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Preface

I have based the material of the Second Edition on the comments that I had received from
the students over the years and on input from colleagues around the world. The text has been
rewritten, reorganized, and expanded for the second edition. Particular attention has been
paid to the pedagogical aspect of the material. Each chapter starts with a list of learning
objectives that the students can keep in mind while studying the material of the chapter. The
basic philosophy of the text remains the same as before: to describe an organized approach
to engineering design optimization in a rigorous and yet simplified manner, illustrate various
concepts and procedures with simple examples, and demonstrate their applicability to engi-
neering design problems. Formulation of a design problem as an optimization problem is
emphasized and illustrated throughout the text. Some computational algorithms are presented
in a step-by-step format to give the students a flavor of the calculations needed for solving
optimum design problems. The new material covered in the second edition includes: use of
Excel and MATLAB as learning and teaching aids, discrete variable optimization, genetic
algorithms, multiobjective optimization, and global optimization.

The text can be used in several ways to design different types of courses for undergradu-
ate and graduate studies. For undergraduate students, the key question is, “What should be
taught on the subject of optimization?” I feel that the material thoroughly covered should be:
optimum design problem formulation, basic concepts that characterize an optimum design,
basic concepts of numerical methods for optimization, and simple but illustrative examples
of optimum design. In addition, some exposure to the use of optimization software would be
quite beneficial. With this background, the students would be able to formulate and use soft-
ware properly to optimize problems once they go into industry. The basic knowledge gained
with this material can serve as a life-long learning tool on the subject of optimum design.
Such a course for junior and senior students in most branches of engineering can include the
following material, augmented with 2- to 3-week-long team projects (project type exercises
and sections with advanced material are marked with an “*” in the text):

Appendix A. Economic Analysis
Chapter 1. Introduction to Design
Chapter 2. Optimum Design Problem Formulation
Chapter 3. Graphical Optimization Method
Chapter 4. Optimum Design Concepts
Chapter 6. Linear Programming Methods for Optimum Design
Chapter 8. Numerical Methods for Unconstrained Optimum Design
Chapter 10. Numerical Methods for Constrained Optimum Design
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Another intermediate level course for seniors and first year graduate students can be
designed to augment the above material with Chapter 12 on MATLAB along with more
advanced design projects and introduction to discrete variable optimization using the mate-
rial contained in Chapters 15 and 16. The pace of material coverage can be a little faster than
the course designed for undergraduates only. A two-course sequence for graduate students
may be designed using the material from Chapters 1 to 10 and 12 in the first course and the
material from Chapters 11 and 13 to 18 for the second course.

I have been fortunate to have received advice, encouragement, and help from numerous
people around the globe to undertake and complete this project. Without that, a project of
this magnitude would not have been possible. I would like sincerely to thank all of them for
their input, in particular, Professor Tae Hee Lee of Hanyang University, and my graduate stu-
dents Tim Marler and Qian Wang for their special contributions to the text material. Pro-
fessor Tae Hee Lee provided me with a first draft of the material for Chapter 12 on
Introduction to Optimization with MATLAB. He developed all the examples and the corre-
sponding m-files. Tim Marler provided me with first draft of the material for Chapter 17 on
Multiobjective Optimum Design Concepts and Methods, and Qian Wang provided me with
material related to the use of Excel. Without their contributions this material would not be in
the good shape it is now. In addition, Tim Marler, Qian Wang, and Ashok Govil proofread several
chapters and provided me with suggestions for improving the presentation of the material.

Along with all the individuals mentioned in the first edition, I would like to sincerely thank
the following colleagues and friends who provided me with specific suggestions on the material
for the second edition of the text: Rick Balling, Ashok Belegundu, Scott Burns, Alex Diaz, Dan
Frangopol, Ramana Grandhi, Don Grierson, RafiHaftka, Gene Hou, Tae Hee Lee, T.C. Lin, Kuni
Matsui, Duc Nguyen, Makoto Ohsaki, G.J. Park, Subby Rajan, David Thompson, Mats Tinnsten,
and Ren-Jye Yang. In addition, the useful exchange of ideas on the subject of optimum design
over the years with many colleagues are acknowledged: Santiago Hernández, Hans Eschenauer,
Ed Haug, Niels Olhoff, H. Furuta, U. Kirsch, J. Sobieski, Panos Papalambros, Colby Swan, V.K.
Goel, F.Y. Cheng, S. Pezeshk, D.H. Choi, Dan Tortorelli, H. Yamakawa, C.M. Chan, Lucien
Schmit, V. Kumar, Kwan Rim, Hasan Kamil, Mike Poldneff, Bob Benedict, John Taylor, Marek
Rysz, Farrokh Mistree, M.H. Abolbashari, Achille Messac, J. Herskovits, M. Kamat, V. Venkayya,
N. Khot, Gary Vanderplaats, B.M. Kwak, George Rozvany, N. Kikuchi, Prabhat Hajela, Z.
Gürdal, Nielen Stander, Omar Ghattas, Peter Eriksson, Olof Friberg, Jan Snyman, U. Kirsch, P.
Pedersen, K. Truman, C. Mota Soares, Igbal Rai, Rajbir Samra, Jagir Sooch,  and many more.

I appreciate my colleagues at The University of Iowa who used the first edition of the
book to teach an undergraduate course on optimum design: Karim Abdel-Malek, Asghar
Bhatti, Kyung Choi, Ray Han, Harry Kane, George Lance, and Emad Tanbour. Their dis-
cussions and suggestions have greatly helped in improving the presentation of the material
of first 11 chapters of the second edition.

I would like to acknowledge all my former graduate students whose thesis work on various
topics of optimization contributed to the broadening of my horizon on the subject. The recent
work of Mike Huang, C.C. Hsieh, Fatos Kocer, and Ossama Elwakeil has formed the basis
for the material of Chapters 15, 16, and 18.

I would also like to thank Carla Kinney, Christine Kloiber, Joel Stein, Shoshanna Gross-
man and Brandy Palacios of Elsevier Science, and Dan Fitzgerald of Graphic World Pub-
lishing Services for their support and superb handling of the manuscript for the book.

I am grateful to the Department of Civil and Environmental Engineering, College of Engi-
neering, and The University of Iowa for providing me with time, resources, and support for
this very satisfying endeavor.

Finally, I would like to thank all my family and friends for their love and support.

Jasbir Singh Arora
Iowa City
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1 Introduction to Design

1

Upon completion of this chapter, you will be able to:

• Describe the overall process of designing systems

• Distinguish between engineering design and engineering analysis activity

• Distinguish between the conventional design process and optimum design process

• Distinguish between the optimum design and optimal control problems

• Understand the notations used for operations with vectors, matrices, and functions

Engineering consists of a number of well established activities, including analysis, design,
fabrication, sales, research, and the development of systems. The subject of this text—the
design of systems—is a major field in the engineering profession. The process of designing
and fabricating systems has been developed over centuries. The existence of many complex
systems, such as buildings, bridges, highways, automobiles, airplanes, space vehicles, and
others, is an excellent testimonial for this process. However, the evolution of these systems
has been slow. The entire process has been both time-consuming and costly, requiring 
substantial human and material resources. Therefore, the procedure has been to design, 
fabricate, and use the system regardless of whether it was the best one. Improved systems
were designed only after a substantial investment had been recovered. These new systems
performed the same or even more tasks, cost less, and were more efficient.

The preceding discussion indicates that several systems can usually accomplish the same
task, and that some are better than others. For example, the purpose of a bridge is to provide
continuity in traffic from one side to the other. Several types of bridges can serve this purpose.
However, to analyze and design all possibilities can be a time-consuming and costly affair.
Usually one type has been selected based on some preliminary analyses and has been
designed in detail.

The design of complex systems requires data processing and a large number of calcula-
tions. In the recent past, a revolution in computer technology and numerical computations
has taken place. Today’s computers can perform complex calculations and process large
amounts of data rapidly. The engineering design and optimization processes benefit greatly
from this revolution because they require a large number of calculations. Better systems can
now be designed by analyzing and optimizing various options in a short time. This is highly



desirable because better designed systems cost less, have more capability, and are easy to
maintain and operate.

The design of systems can be formulated as problems of optimization in which a measure
of performance is to be optimized while satisfying all constraints. Many numerical methods
of optimization have been developed and used to design better systems. This text describes
the basic concepts of optimization methods and their applications to the design of engineer-
ing systems. Design process is emphasized rather than optimization theory. Various theorems
are stated as results without rigorous proofs. However, their implications from an engineer-
ing point of view are studied and discussed in detail. Optimization theory, numerical methods,
and modern computer hardware and software can be used as tools to design better engineer-
ing systems. The text emphasizes this theme throughout.

Any problem in which certain parameters need to be determined to satisfy constraints can
be formulated as an optimization problem. Once this has been done, the concepts and the
methods described in this text can be used to solve the problem. Therefore, the optimiza-
tion techniques are quite general, having a wide range of applicability in diverse fields. The
range of applications is limited only by the imagination or ingenuity of the designers. It is
impossible to discuss every application of optimization concepts and techniques in this 
introductory text. However, using simple applications, we shall discuss concepts, funda-
mental principles, and basic techniques that can be used in numerous applications. The
student should understand them without getting bogged down with the notation, terminol-
ogy, and details of the particular area of application.

1.1 The Design Process
The design of many engineering systems can be a fairly complex process. Many assumptions
must be made to develop models that can be subjected to analysis by the available methods
and the models must be verified by experiments. Many possibilities and factors must be 
considered during the problem formulation phase. Economic considerations play an impor-
tant role in designing cost-effective systems. Introductory methods of economic analysis
described in Appendix A are useful in this regard. To complete the design of an engineering
system, designers from different fields of engineering must usually cooperate. For example,
the design of a high-rise building involves designers from architectural, structural, mechan-
ical, electrical, and environmental engineering as well as construction management experts.
Design of a passenger car requires cooperation among structural, mechanical, automotive,
electrical, human factors, chemical, and hydraulics design engineers. Thus, in an interdisci-
plinary environment considerable interaction is needed among various design teams to com-
plete the project. For most applications the entire design project must be broken down into
several subproblems which are then treated independently. Each of the subproblems can be
posed as a problem of optimum design.

The design of a system begins by analyzing various options. Subsystems and their com-
ponents are identified, designed, and tested. This process results in a set of drawings, calcu-
lations, and reports by which the system can be fabricated. We shall use a systems engineering
model to describe the design process. Although a complete discussion of this subject is
beyond the scope of the text, some basic concepts will be discussed using a simple block
diagram.

Design is an iterative process. The designer’s experience, intuition, and ingenuity are
required in the design of systems in most fields of engineering (aerospace, automotive, civil,
chemical, industrial, electrical, mechanical, hydraulic, and transportation). Iterative implies
analyzing several trial designs one after another until an acceptable design is obtained. The
concept of trial designs is important to understand. In the design process, the designer 
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estimates a trial design of the system based on experience, intuition, or some mathematical
analysis. The trial design is analyzed to determine if it is acceptable. If it is, the design process
is terminated. In the optimization process, the trial design is analyzed to determine if it is the
best. Depending on the specifications, “best” can have different connotations for different
systems. In general, it implies cost-effective, efficient, reliable and durable systems. The
process can require considerable interaction among teams of specialists from different disci-
plines. The basic concepts are described in the text to aid the engineer in designing systems
at the minimum cost and in the shortest amount of time.

The design process should be a well organized activity. To discuss it, we consider a system
evolution model shown in Fig. 1-1. The process begins with the identification of a need which
may be conceived by engineers or nonengineers.

The first step in the evolutionary process is to define precisely specifications for the system.
Considerable interaction between the engineer and the sponsor of the project is usually nec-
essary to quantify the system specifications. Once these are identified, the task of designing
the system can begin.

The second step in the process is to develop a preliminary design of the system. Various
concepts for the system are studied. Since this must be done in a relatively short time, 
simplified models are used. Various subsystems are identified and their preliminary designs
estimated. Decisions made at this stage generally affect the final appearance and performance
of the system. At the end of the preliminary design phase, a few promising concepts that need
further analysis are identified.

The third step in the process is to carry out a detailed design for all subsystems using an
iterative process. To evaluate various possibilities, this must be done for all previously iden-
tified promising concepts. The design parameters for the subsystems must be identified. The
system performance requirements must be identified and satisfied. The subsystems must be
designed to maximize system worth or to minimize a measure of the cost. Systematic opti-
mization methods described in this text can aid the designer in accelerating the detailed design
process. At the end of the process, a description of the system is available in the form of
reports and drawings.

The fourth and fifth blocks of Fig. 1-1 may or may not be necessary for all systems. They
involve fabrication of a prototype system and testing. These steps are necessary when the
system has to be mass produced or when human lives are involved. Although these blocks
may appear to be the final steps in the design process, they are not because the system may
not perform according to specifications during the testing phase. Therefore, specifications
may have to be modified or other concepts may have to be studied. In fact, this re-
examination may be necessary at any step in the design process. It is for this reason that feed-
back loops are placed at every stage of the system evolution process, as shown in Fig. 1-1.
The iterative process has to be continued until an acceptable system has evolved. Depend-
ing on the complexity of the system, the process may take a few days or several months.
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The previously described model is a simplified block diagram for system evolution. In
actual practice, each block may have to be broken down into several sub-blocks to carry out
the studies properly and arrive at rational decisions. The important point is that optimization
concepts and methods can help at every stage in the process. The use of such methods along
with appropriate software can be extremely useful in studying various design possibilities
rapidly. These techniques can be useful during preliminary and detailed design phases as well
as for fabrication and testing. Therefore, in this text, we discuss optimization methods and
their use in the design process.

At some stages in the design process, it may appear that the process can be completely
automated, that the designer can be eliminated from the loop, and that optimization methods
and programs can be used as black boxes. This may be true in some cases. However, the
design of a system is a creative process that can be quite complex. It may be ill-defined and
a solution to the design problem may not exist. Problem functions may not be defined in
certain regions of the design space. Thus, for most practical problems, designers play a key
role in guiding the process to acceptable regions. Designers must be an integral part of the
process and use their intuition and judgment in obtaining the final design. More details of
the interactive design optimization process and the role of the designer are discussed in
Chapter 13.

1.2 Engineering Design versus Engineering Analysis
It is important to recognize differences between engineering analysis and design activities.
The analysis problem is concerned with determining the behavior of an existing system or a
trial system being designed for a given task. Determination of the behavior of the system
implies calculation of its response under specified inputs. Therefore, the sizes of various parts
and their configurations are given for the analysis problem, i.e., the design of the system is
known. On the other hand, the design process calculates the sizes and shapes of various parts
of the system to meet performance requirements. The design of a system is a trial and error
procedure. We estimate a design and analyze it to see if it performs according to given spec-
ifications. If it does, we have an acceptable (feasible) design, although we may still want to
change it to improve its performance. If the trial design does not work, we need to change
it to come up with an acceptable system. In both cases, we must be able to analyze designs
to make further decisions. Thus, analysis capability must be available in the design process.

This book is intended for use in all branches of engineering. It is assumed throughout that
students understand analysis methods covered in undergraduate engineering statics and
physics courses. However, we will not let the lack of analysis capability hinder the under-
standing of the systematic process of optimum design. Equations for analysis of the system
will be given wherever needed.

1.3 Conventional versus Optimum Design Process
It is a challenge for engineers to design efficient and cost-effective systems without com-
promising the integrity of the system. The conventional design process depends on the
designer’s intuition, experience, and skill. This presence of a human element can sometimes
lead to erroneous results in the synthesis of complex systems. Figure 1-2(A) presents a 
self-explanatory flowchart for a conventional design process that involves the use of infor-
mation gathered from one or more trial designs together with the designer’s experience and
intuition.
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Scarcity and the need for efficiency in today’s competitive world have forced engineers
to evince greater interest in economical and better designs. The computer-aided design opti-
mization (CADO) process can help in this regard. Figure 1-2(B) shows the optimum design
process. Both conventional and optimum design processes can be used at different stages 
of system evolution. The main advantage in the conventional design process is that the
designer’s experience and intuition can be used in making conceptual changes in the system
or to make additional specifications in the procedure. For example, the designer can choose
either a suspension bridge or an arched bridge, add or delete certain components of the struc-
ture, and so on. When it comes to detailed design, however, the conventional design process
has some disadvantages. These include the treatment of complex constraints (such as limits
on vibration frequencies) as well as inputs (for example, when the structure is subjected to
a variety of loading conditions). In these cases, the designer would find it difficult to decide
whether to increase or decrease the size of a particular structural element to satisfy the 
constraints. Furthermore, the conventional design process can lead to uneconomical designs
and can involve a lot of calendar time. The optimum design process forces the designer to
identify explicitly a set of design variables, an objective function to be optimized, and the
constraint functions for the system. This rigorous formulation of the design problem helps
the designer gain a better understanding of the problem. Proper mathematical formulation 
of the design problem is a key to good solutions. This topic is discussed in more detail in 
Chapter 2.
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The foregoing distinction between the two design approaches indicates that the conven-
tional design process is less formal. An objective function that measures the performance of
the system is not identified. Trend information is not calculated to make design decisions for
improvement of the system. Most decisions are made based on the designer’s experience 
and intuition. In contrast, the optimization process is more formal, using trend information
to make decisions. However, the optimization process can substantially benefit from the
designer’s experience and intuition in formulating the problem and identifying the critical
constraints. Thus, the best approach would be an optimum design process that is aided by
the designer’s interaction.

1.4 Optimum Design versus Optimal Control
Optimum design and optimal control of systems are two separate activities. There are numer-
ous applications in which methods of optimum design are useful in designing systems. There
are many other applications where optimal control concepts are needed. In addition, there
are some applications in which both optimum design and optimal control concepts must be
used. Sample applications include robotics and aerospace structures. In this text, optimal
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control problems and methods are not described in detail. However, fundamental differences
between the two activities are briefly explained in the sequel. It turns out that optimal control
problems can be transformed into optimum design problems and treated by the methods
described in the text. Thus, methods of optimum design are very powerful and should be
clearly understood. A simple optimal control problem is described in Chapter 14 and is solved
by the methods of optimum design.

The optimal control problem consists of finding feedback controllers for a system to
produce the desired output. The system has active elements that sense fluctuations in the
output. System controls are automatically adjusted to correct the situation and optimize a
measure of performance. Thus, control problems are usually dynamic in nature. In optimum
design, on the other hand, we design the system and its elements to optimize an objective
function. The system then remains fixed for its entire life.

As an example, consider the cruise control mechanism in passenger cars. The idea behind
this feedback system is to control fuel injection to maintain a constant speed. Thus the
system’s output is known, i.e., the cruising speed of the car. The job of the control mecha-
nism is to sense fluctuations in the speed depending upon road conditions and to adjust fuel
injection accordingly.

1.5 Basic Terminology and Notation
To understand and be comfortable with the methods of optimum design, familiarity with
linear algebra (vector and matrix operations) and basic calculus is essential. Operations of
linear algebra are described in Appendix B. Students who are not comfortable with that mate-
rial must review it thoroughly. Calculus of functions of single and multiple variables must
also be understood. These concepts are reviewed wherever they are needed. In this section,
the standard terminology and notations used throughout the text are defined. It is important
to understand and memorize these, because without them it will be difficult to follow the rest
of the text.

1.5.1 Sets and Points
Since realistic systems generally involve several variables, it is necessary to define and utilize
some convenient and compact notation. Set and vector notations serve this purpose quite well
and are utilized throughout the text. The terms vector and point are used interchangeably and
lowercase letters in boldface are used to denote them. Upper case letters in boldface repre-
sent matrices.

A point means an ordered list of numbers. Thus, (x1, x2) is a point consisting of the two
numbers; (x1, x2, . . . , xn) is a point consisting of the n numbers. Such a point is often called
an n-tuple. Each of the numbers is called a component of the (point) vector. Thus, x1 is the
first component, x2 is the second, and so forth. The n components x1, x2, . . . , xn can be col-
lected into a column vector as

(1.1a)

where the superscript T denotes the transpose of a vector or a matrix, a notation that is used
throughout the text (refer to Appendix B for a detailed discussion of vector and matrix
algebra). We shall also use the notation
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(1.1b)

to represent a point or vector in n-dimensional space. This is called an n-vector.
In three-dimensional space, the vector x = [x1 x2 x3]T represents a point P as shown in Fig.

1-3. Similarly, when there are n components in a vector, as in Eqs. (1.1a) and (1.1b), x is
interpreted as a point in the n-dimensional real space denoted as Rn. The space Rn is simply
the collection of all n-vectors (points) of real numbers. For example, the real line is R1 and
the plane is R2, and so on.

Often we deal with sets of points satisfying certain conditions. For example, we may con-
sider a set S of all points having three components with the last component being zero, which
is written as

(1.2)

Information about the set is contained in braces. Equation (1.2) reads as “S equals the set of
all points (x1, x2, x3) with x3 = 0.” The vertical bar divides information about the set S into
two parts: to the left of the bar is the dimension of points in the set; to the right are the prop-
erties that distinguish those points from others not in the set (for example, properties a point
must possess to be in the set S).

Members of a set are sometimes called elements. If a point x is an element of the set S,
then we write x Œ S. The expression “x Œ S” is read, “x is an element of (belongs to) S.”
Conversely, the expression “y œ S” is read, “y is not an element of (does not belong to) S.”

If all the elements of a set S are also elements of another set T, then S is said to be a
“subset of T.” Symbolically, we write S Ã T which is read as, “S is a subset of T,” or “S is
contained in T.” Alternatively, we say T is a superset of S, written as T … S.

As an example of a set S, consider a domain of the xl–x2 plane enclosed by a circle of
radius 3 with the center at the point (4, 4), as shown in Fig. 1-4. Mathematically, all points
within and on the circle can be expressed as

(1.3)S R x x= Œ -( ) + -( ) £{ }x 2
1

2
2

2
4 4 9

S x x x x= = ( ) ={ }x 1 2 3 3 0, ,

x = ( )x x xn1 2, , . . . ,
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Thus, the center of the circle (4, 4) is in the set S because it satisfies the inequality in 
Eq. (1.3). We write this as (4, 4) Œ S. The origin of coordinates (0, 0) does not belong to the
set since it does not satisfy the inequality in Eq. (1.3). We write this as (0, 0) œ S. It can be
verified that the following points belong to the set: (3, 3), (2, 2), (3, 2), (6, 6). In fact, set S
has an infinite number of points. Many other points are not in the set. It can be verified that
the following points are not in the set: (1, 1), (8, 8), (-1, 2).

1.5.2 Notation for Constraints
Constraints arise naturally in optimum design problems. For example, material of the system
must not fail, the demand must be met, resources must not be exceeded, and so on. We shall
discuss the constraints in more detail in Chapter 2. Here we discuss the terminology and nota-
tions for the constraints.

We have already encountered a constraint in Fig. 1-4 that shows a set S of points within
and on the circle of radius 3. The set S is defined by the following constraint:

A constraint of this form will be called a less than or equal to type. It shall be abbrevi-
ated as “£ type.” Similarly, there are greater than or equal to type constraints, abbreviated
as “≥ type.” Both types are called inequality constraints.

1.5.3 Superscripts/Subscripts and Summation Notation
Later we will discuss a set of vectors, components of vectors, and multiplication of matrices
and vectors. To write such quantities in a convenient form, consistent and compact notations
must be used. We define these notations here. Superscripts are used to represent different
vectors and matrices. For example, x(i) represents the ith vector of a set, and A(k) represents
the kth matrix. Subscripts are used to represent components of vectors and matrices. For
example, xj is the jth component of x and aij is the i–j element of matrix A. Double subscripts
are used to denote elements of a matrix.

To indicate the range of a subscript or superscript we use the notation

(1.4)x i ni ;   to = 1

x x1
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This represents the numbers x1, x2, . . . , xn. Note that “i = 1 to n” represents the range for the
index i and is read, “i goes from 1 to n.” Similarly, a set of k vectors, each having n com-
ponents, will be represented as

(1.5)

This represents the k vectors x(l), x(2), . . . , x(k). It is important to note that subscript i in Eq.
(1.4) and superscript j in Eq. (1.5) are free indices, i.e., they can be replaced by any other
variable. For example, Eq. (1.4) can also be written as xj; j = 1 to n and Eq. (1.5) can be
written as x(i); i = 1 to k. Note that the superscript j in Eq. (1.5) does not represent the power
of x. It is an index that represents the jth vector of a set of vectors.

We shall also use the summation notation quite frequently. For example,

(1.6)

will be written as

(1.7)

Also, multiplication of an n-dimensional vector x by an m ¥ n matrix A to obtain an m-
dimensional vector y, is written as

(1.8)

Or, in summation notation, the ith component of y is

(1.9)

There is another way of writing the matrix multiplication of Eq. (1.8). Let m-dimensional
vectors a(i); i = 1 to n represent columns of the matrix A. Then, y = Ax is also given as

(1.10)

The sum on the right side of Eq. (1.10) is said to be a linear combination of columns of the
matrix A with xj, j = 1 to n as multipliers of the linear combination. Or, y is given as a linear
combination of columns of A (refer to Appendix B for further discussion on the linear com-
bination of vectors).

Occasionally, we will have to use the double summation notation. For example, assum-
ing m = n and substituting yi from Eq. (1.9) into Eq. (1.7), we obtain the double sum as

(1.11)

Note that the indices i and j in Eq. (1.11) can be interchanged. This is possible because c is
a scalar quantity, so its value is not affected by whether we first sum on i or j. Equation
(1.11) can also be written in the matrix form as will be shown later.
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1.5.4 Norm/Length of a Vector
If we let x and y be two n-dimensional vectors, then their dot product is defined as

(1.12)

Thus, the dot product is a sum of the product of corresponding elements of the vectors x and
y. Two vectors are said to be orthogonal (normal) if their dot product is zero, i.e., x and y
are orthogonal if x · y = 0. If the vectors are not orthogonal, the angle between them can be
calculated from the definition of the dot product:

(1.13)

where q is the angle between vectors x and y, and ||x|| represents the length of the vector x.
This is also called the norm of the vector (for a more general definition of the norm, refer to
Appendix B). The length of a vector x is defined as the square root of the sum of squares of
the components, i.e.,

(1.14)

The double sum of Eq. (1.11) can be written in the matrix form as follows:

(1.15)

Since Ax represents a vector, the triple product of Eq. (1.15) will be also written as a dot
product:

(1.16)

1.5.5 Functions
Just as a function of a single variable is represented as f(x), a function of n independent vari-
ables x1, x2, . . . , xn is written as

(1.17)

We will deal with many functions of vector variables. To distinguish between functions, sub-
scripts will be used. Thus, the ith function is written as

(1.18)

If there are m functions gi(x); i = 1 to m, these will be represented in the vector form

(1.19)

Throughout the text it is assumed that all functions are continuous and at least twice con-
tinuously differentiable. A function f(x) of n variables is called continuous at a point x* if
for any e > 0, there is a d > 0 such that
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(1.20)

whenever ||x - x*|| < d. Thus, for all points x in a small neighborhood of the point x*, a
change in the function value from x* to x is small when the function is continuous. A con-
tinuous function need not be differentiable. Twice-continuous differentiability of a function
implies that it is not only differentiable two times but also that its second derivative is con-
tinuous. Figures 1.5(A) and 1.5(B) show continuous functions. The function shown in Fig.
1.5(A) is differentiable everywhere, whereas the function of Fig. 1.5(B) is not differentiable
at points x1, x2, and x3. Figure 1-5(C) provides an example in which f is not a function because
it has infinite values at x1. Figure 1-5(D) provides an example of a discontinuous function.
As examples, f(x) = x3 and f(x) = sinx are continuous functions everywhere, and they are
also continuously differentiable. However, the function f(x) = |x| is continuous everywhere
but not differentiable at x = 0.

1.5.6 U.S.-British versus SI Units
The design problem formulation and the methods of optimization do not depend on the units
of measure used. Thus, it does not matter which units are used in defining the problem.
However, the final form of some of the analytical expressions for the problem does depend
on the units used. In the text, we shall use both U.S.-British and SI units in examples and
exercises. Readers unfamiliar with either system of units should not feel at a disadvantage
when reading and understanding the material. It is simple to switch from one system of units
to the other. To facilitate the conversion from U.S.-British to SI units or vice versa, Table 
1-1 gives conversion factors for the most commonly used quantities. For a complete list of
the conversion factors, the ASTM (1980) publication can be consulted.

f fx x( ) - ( ) <* e

12 INTRODUCTION TO OPTIMUM DESIGN

(A) f (x) (B) f (x)

(C) f (x) (D) f (x)

x

x x

x1

x1x1

x2 x3

x

FIGURE 1-5 Continuous and discontinuous functions. (A) Continuous function. (B) Continu-
ous function. (C) Not a function. (D) Discontinuous function.



Introduction to Design 13

TABLE 1-1 Conversion Factors Between U.S.-British and SI Units

To convert from U.S.-British To SI units Multiply by

Acceleration
foot/second2 (ft/s2) meter/second2 (m/s2) 0.3048*
inch/second2 (in/s2) meter/second2 (m/s2) 0.0254*

Area
foot2 (ft2) meter2 (m2) 0.09290304*
inch2 (in2) meter2 (m2) 6.4516 E–04*

Bending moment or torque
pound force inch (lbf·in) Newton meter (N·m) 0.1129848
pound force foot (lbf·ft) Newton meter (N·m) 1.355818

Density
pound mass/inch3 (lbm/in3) kilogram/meter3 (kg/m3) 27,679.90
pound mass/foot3 (lbm/ft3) kilogram/meter3 (kg/m3) 16.01846

Energy or Work
British thermal unit (BTU) Joule (J) 1055.056
foot-pound force (ft·lbf) Joule (J) 1.355818
kilowatt-hour (KWh) Joule (J) 3,600,000*

Force
kip (1000 lbf) Newton (N) 4448.222
pound force (lbf) Newton (N) 4.448222

Length
foot (ft) meter (m) 0.3048*
inch (in) meter (m) 0.0254*
mile (mi), U.S. statute meter (m) 1609.347
mile (mi), International, nautical meter (m) 1852*

Mass
pound mass (lbm) kilogram (kg) 0.4535924
slug (lbf·s2 ft) kilogram (kg) 14.5939
ton (short, 2000 lbm) kilogram (kg) 907.1847
ton (long, 2240 lbm) kilogram (kg) 1016.047
tonne (t, metric ton) kilogram (kg) 1000*

Power
foot-pound/minute (ft·lbf/min) Watt (W) 0.02259697
horsepower (550 ft·lbf/s) Watt (W) 745.6999

Pressure or stress
atmosphere (std) (14.7 lbf/in2) Newton/meter2 (N/m2 or Pa) 101,325*
one bar (b) Newton/meter2 (N/m2 or Pa) 100,000*
pound/foot2 (lbf/ft2) Newton/meter2 (N/m2 or Pa) 47.88026
pound/inch2 (lbf/in2 or psi) Newton/meter2 (N/m2 or Pa) 6894.757

Velocity
foot/minute (ft/min) meter/second (m/s) 0.00508*
foot/second (ft/s) meter/second (m/s) 0.3048*
knot (nautical mi/h),

international meter/second (m/s) 0.5144444
mile/hour (mi/h),

international meter/second (m/s) 0.44704*
mile/hour (mi/h),

international kilometer/hour (km/h) 1.609344*
mile/second (mi/s),

international kilometer/second (km/s) 1.609344*
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TABLE 1-1 continued

To convert from U.S.-British To SI units Multiply by

Volume
foot3 (ft3) meter3 (m3) 0.02831685
inch3 (in3) meter3 (m3) 1.638706 E–05
gallon (Canadian liquid) meter3 (m3) 0.004546090
gallon (U.K. liquid) meter3 (m3) 0.004546092
gallon (U.S. dry) meter3 (m3) 0.004404884
gallon (U.S. liquid) meter3 (m3) 0.003785412
one liter (L) meter3 (m3) 0.001*
ounce (U.K. fluid) meter3 (m3) 2.841307 E–05
ounce (U.S. fluid) meter3 (m3) 2.957353 E–05
pint (U.S. dry) meter3 (m3) 5.506105 E–04
pint (U.S. liquid) meter3 (m3) 4.731765 E–04
quart (U.S. dry) meter3 (m3) 0.001101221
quart (U.S. liquid) meter3 (m3) 9.463529 E–04

*An asterisk indicates the exact conversion factor.
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Upon completion of this chapter, you will be able to:

• Translate a descriptive statement of the design problem into a mathematical
statement for optimization using a five-step process

• Identify and define the problem’s design variables

• Identify a function for the problem that needs to be optimized

• Identify and define the problem’s constraints

It is generally accepted that the proper definition and formulation of a problem takes
roughly 50 percent of the total effort needed to solve it. Therefore, it is critical to follow well
defined procedures for formulating design optimization problems. It is generally assumed in
this text that various preliminary analyses have been completed and a detailed design of a
concept or a subproblem needs to be carried out. Students should bear in mind that a con-
siderable number of analyses usually have to be performed before reaching this stage of
design optimization. In this chapter, we describe the process of transforming the design of a
selected system/subsystem into an optimum design problem using several simple and mod-
erately complex applications. More advanced applications are discussed in later chapters.

The importance of properly formulating a design optimization problem must be stressed
because the optimum solution will only be as good as the formulation. For example, if we
forget to include a critical constraint in the formulation, the optimum solution will most likely
violate it because optimization methods tend to exploit deficiencies in design models. Also,
if we have too many constraints or if they are inconsistent, there may not be a solution to the
design problem. However, once the problem is properly formulated, good software is usually
available to solve it. For most design optimization problems, we shall use the following five-
step formulation procedure:

Step 1: Project/problem statement.
Step 2: Data and information collection.
Step 3: Identification/definition of design variables.
Step 4: Identification of a criterion to be optimized.
Step 5: Identification of constraints.



2.1 The Problem Formulation Process
The formulation of an optimum design problem involves translating a descriptive statement
of the problem into a well defined mathematical statement. We shall describe the tasks to be
performed in each of the five steps to develop a mathematical formulation for the design opti-
mization problem. These steps are illustrated with several examples in subsequent sections
of this chapter.

2.1.1 Step 1: Project/Problem Statement
The formulation process begins by developing a descriptive statement for the
project/problem, which is usually done by the project’s owner/sponsor. The statement
describes the overall objectives of the project and the requirements to be met.

2.1.2 Step 2: Data and Information Collection
To develop a mathematical formulation of the problem, we need to gather material proper-
ties, performance requirements, resource limits, cost of raw materials, and other relevant
information. In addition, most problems require the capability to analyze trial designs. There-
fore, analysis procedures and analysis tools must be identified at this stage. In many cases,
the project statement is vague, and assumptions about the problem need to be made in order
to formulate and solve it. Some of the design data and expressions may depend on design
variables that are identified in the next step. Therefore, such information will need to be spec-
ified later in the formulation process.

2.1.3 Step 3: Identification/Definition of Design Variables
The next step in the formulation process is to identify a set of variables that describe the
system, called design variables. In general, they are referred to as optimization variables and
are regarded as free because we should be able to assign any value to them. Different values
for the variables produce different designs. The design variables should be independent of
each other as far as possible. If they are dependent, then their values cannot be specified inde-
pendently. The number of independent design variables specifies the design degrees of
freedom for the problem.

For some problems, different sets of variables can be identified to describe the same
system. The problem formulation will depend on the selected set. Once the design variables
are given numerical values, we have a design of the system. Whether this design satisfies all
requirements is another question. We shall introduce a number of concepts to investigate such
questions in later chapters.

If proper design variables are not selected for a problem, the formulation will be either
incorrect or not possible at all. At the initial stage of problem formulation, all options of iden-
tifying design variables should be investigated. Sometimes it may be desirable to designate
more design variables than apparent design degrees of freedom. This gives an added flexi-
bility in the problem formulation. Later, it is possible to assign a fixed numerical value to
any variable and thus eliminate it from the problem formulation.

At times it is difficult to identify clearly a problem’s design variables. In such a case, 
a complete list of all variables may be prepared. Then, by considering each variable 
individually, we can decide whether it is an optimization variable. If it is a valid design vari-
able, then the designer should be able to specify a numerical value for it to select a trial
design.

We shall use the term “design variables” to indicate all unknowns of the optimization
problem and represent in the vector x. To summarize, the following considerations should
be given in identifying design variables for a problem.
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• Design variables should be independent of each other as far as possible. If they are
not, then there must be some equality constraints between them (explained later).
Conversely, if there are equality constraints in the problem, then the design variables
are dependent.

• A minimum number of design variables required to formulate a design optimization
problem properly exists.

• As many independent parameters as possible should be designated as design
variables at the problem formulation phase. Later on, some of the variables can be
assigned fixed values.

• A numerical value should be given to each variable once design variables have been
defined to determine if a trial design of the system is specified.

2.1.4 Step 4: Identification of a Criterion to Be Optimized
There can be many feasible designs for a system, and some are better than others. To compare
different designs, we must have a criterion. The criterion must be a scalar function whose
numerical value can be obtained once a design is specified, i.e., it must be a function of the
design variable vector x. Such a criterion is usually called an objective function for the
optimum design problem, which needs to be maximized or minimized depending on problem
requirements. A criterion that is to be minimized is usually called the cost function in engi-
neering literature, which is the term used throughout this text. It is emphasized that a valid
objective function must be influenced directly or indirectly by the variables of the design
problem; otherwise, it is not a meaningful objective function. Note that an optimized design
has the best value for the objective function.

The selection of a proper objective function is an important decision in the design process.
Some examples of objective functions include: cost (to be minimized), profit (to be maxi-
mized), weight (to be minimized), energy expenditure (to be minimized), ride quality of a
vehicle (to be maximized), and so on. In many situations an obvious function can be identi-
fied, e.g., we always want to minimize the cost of manufacturing goods or maximize return
on an investment. In some situations, two or more objective functions may be identified. For
example, we may want to minimize the weight of a structure and at the same time minimize
the deflection or stress at a certain point. These are called multiobjective design optimization
problems, and they are discussed in a later chapter.

For some design problems, it is not obvious what the objective function should be or how
it should relate to the design variables. Some insight and experience may be needed to iden-
tify a proper objective function. For example, consider the optimization of a passenger car.
What are the design variables for the car? What is the objective function, and what is its func-
tional form in terms of design variables? Although this is a very practical problem, it is quite
complex. Usually, such problems are divided into several smaller subproblems and each one
is formulated as an optimum design problem. The design of the passenger car for a given
capacity and for certain performance specifications can be divided into a number of such sub-
problems: optimization of the trunk lid, doors, side panels, roof, seats, suspension system,
transmission system, chassis, hood, power plant, bumpers, and so on. Each subproblem is
now manageable and can be formulated as an optimum design problem.

2.1.5 Step 5: Identification of Constraints
All restrictions placed on a design are collectively called constraints. The final step in the
formulation process is to identify all constraints and develop expressions for them. Most real-
istic systems must be designed and fabricated within given resources and performance
requirements. For example, structural members should not fail under normal operating loads.
Vibration frequencies of a structure must be different from the operating frequency of the
machine it supports; otherwise, resonance can occur causing catastrophic failure. Members
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must fit into available amounts of space. All these and other constraints must depend on the
design variables, since only then do their values change with different trial designs; i.e., a
meaningful constraint must be a function of at least one design variable. Several concepts
and terms related to constraints are explained in the following paragraphs.

Linear and Nonlinear Constraints Many constraint functions have only first-order terms
in design variables. These are called linear constraints. Linear programming problems have
only linear constraint and objective functions. More general problems have nonlinear cost
and/or constraint functions. These are called nonlinear programming problems. Methods to
treat both linear and nonlinear constraint and objective functions have been developed in the
literature.

Feasible Design The design of a system is a set of numerical values assigned to the design
variables (i.e., a particular design variable vector x). Even if this design is absurd (e.g., neg-
ative radius) or inadequate in terms of its function, it can still be called a design. Clearly,
some designs are useful and others are not. A design meeting all requirements is called a fea-
sible design (acceptable or workable). An infeasible design (unacceptable) does not meet
one or more of the requirements.

Equality and Inequality Constraints Design problems may have equality as well as
inequality constraints. The problem statement should be studied carefully to determine which
requirements need to be formulated as equalities and which ones as inequalities. For example,
a machine component may be required to move precisely by D to perform the desired oper-
ation, so we must treat this as an equality constraint. A feasible design must satisfy precisely
all equality constraints. Also, most design problems have inequality constraints. Inequality
constraints are also called unilateral constraints or one-sided constraints. Note that the fea-
sible region with respect to an inequality constraint is much larger than the same constraint
expressed as an equality. To illustrate the difference between equality and inequality con-
straints, we consider a constraint written in both equality and inequality forms. Figure 2-1(A)
shows the equality constraint x1 = x2. Feasible designs with respect to the constraint must lie
on the straight line A–B. However, if the constraint is written as an inequality x1 £ x2, the
feasible region is much larger, as shown in Fig. 2-1(B). Any point on the line A–B or above
it gives a feasible design.

Implicit Constraints Some constraints are quite simple, such as the smallest and largest
allowable values of the design variables, whereas more complex ones may be indirectly influ-
enced by design variables. For example, deflection at a point in a large structure depends on
its design. However, it is impossible to express deflection as an explicit function of the design
variables except for very simple structures. These are called implicit constraints. When there
are implicit functions in the problem formulation, it is not possible to formulate the problem
functions explicitly in terms of design variables alone. Instead, we must use some interme-
diate variables in the problem formulation. We shall discuss formulations having implicit
functions in Chapter 14.

2.2 Design of a Can

Step 1: Project/Problem Statement The purpose of this project is to design a can to hold
at least 400ml of liquid, as well as to meet other design requirements (1ml = 1cm3). The
cans will be produced in the billions so it is desirable to minimize manufacturing costs. Since
cost can be directly related to the surface area of the sheet metal, it is reasonable to 
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minimize the amount of sheet metal required to fabricate the can. Fabrication, handling, aes-
thetics, and shipping considerations impose the following restrictions on the size of the can:
the diameter should be no more than 8cm and no less than 3.5cm, whereas the height should
be no more than 18cm and no less than 8cm.

Step 2: Data and Information Collection Given in the project statement.

Step 3: Identification/Definition of Design Variables The two design variables are defined
as

D = diameter of the can, cm
H = height of the can, cm

Step 4: Identification of a Criterion to Be Optimized The design objective is to mini-
mize the total surface area S of the sheet metal for the three parts of the cylindrical can: the
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surface area of the cylinder (circumference ¥ height) and the surface area of the two ends.
Therefore, the optimization criterion or cost function (the total area of sheet metal), is written
as

(a)

Step 5: Identification of Constraints The first constraint is that the can must hold at least
400cm3 of fluid, which is written as

(b)

If it had been stated that the “can must hold 400ml of fluid,” then the preceding volume
constraint would be an equality. The other constraints on the size of the can are:

(c)

The explicit constraints on design variables have many different names in the literature,
such as the side constraints, technological constraints, simple bounds, sizing constraints, and
upper and lower limits on the design variables. Note that for the present problem there are
really four constraints in Eq. (c). Thus, the problem has two design variables and a total of
five inequality constraints. Note also that the cost function and the first constraint are non-
linear in variables, whereas the remaining constraints are linear.

2.3 Insulated Spherical Tank Design

Step 1: Project/Problem Statement The goal of this project is to choose insulation thick-
ness t to minimize the life-cycle cooling cost for a spherical tank. The cooling costs include
the cost of installing and running the refrigeration equipment, and the cost of installing the
insulation. Assume a 10-year life, 10 percent annual interest rate, and no salvage value. The
tank has already been designed having r (m) as its radius.

Step 2: Data and Information Collection To formulate this design optimization problem,
we need some data and expressions. To calculate the volume of the insulation material, we
require the surface area of the spherical tank, which is given as

(a)

To calculate the capacity of the refrigeration equipment and the cost of its operation, we need
to calculate the annual heat gain G, which is given as

(b)

where DT is the average difference between the internal and external temperatures in Kelvin,
c1 is the thermal resistivity per unit thickness in Kelvin-meter per Watt, and t is the insula-
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tion thickness in meters. DT can be estimated from the historical data for temperatures in the
region in which the tank is to be used. Let c2 = the insulation cost per cubic meter ($/m3), 
c3 = the cost of the refrigeration equipment per Watt-hour of capacity ($/Wh), and c4 = the
annual cost of running the refrigeration equipment per Watt-hour ($/Wh).

Step 3: Identification/Definition of Design Variables Only one design variable is identi-
fied for this problem:

t = the insulation thickness, m

Step 4: Identification of a Criterion to be Optimized The goal is to minimize the life-
cycle cooling cost of refrigeration for the spherical tank over 10 years. The life-cycle cost
has three components: cost of insulation, cost of refrigeration equipment, and cost of opera-
tions for 10 years. Once the annual operations cost has been converted to the present cost,
the total cost is given as

(c)

where uspwf is the uniform series present worth factor (see Appendix A). Note that to cal-
culate the volume of the insulation as At, it is assumed that the insulation thickness is much
smaller than the radius of the spherical tank; i.e., t << r.

Step 5: Identification of Constraints Although no constraints are indicated in the problem
statement, it is important to require that the insulation thickness be nonnegative; i.e., t ≥ 0.
Although this may appear to be an obvious requirement that need not be included in the math-
ematical formulation of the problem, it is important to include the constraint in the formula-
tion. Without its explicit inclusion, the mathematics of optimization may assign negative
values to thickness which is, of course, meaningless. Note also that in reality t cannot be zero
because it appears in the denominator of the expression for G. Therefore, the constraint should
really be expressed as t > 0. However, strict inequalities cannot be treated mathematically or
numerically in the solution process. We must allow the possibility of satisfying inequalities
as equalities; i.e., we must allow the possibility that t = 0 in the solution process. Therefore,
a more realistic constraint is t ≥ tmin, where tmin is the smallest insulation thickness available
in the market.

Cost c At c G c G uspwf uspwf= + + ( )[ ] ( )[ ] =2 3 4 0 1 10 0 1 10 6 14457. , ; . , .
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EXAMPLE: Formulation with Intermediate Variables

Summary of the problem formulation for the design optimization of insulation for a
spherical tank formulation with intermediate variables is as follows:

Specified data: r, DT, c1, c2, c3, c4, tmin

Design variable: t, m

Intermediate variables:

Cost function: Minimize the life-cycle cooling cost of refrigeration of the spherical
tank
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2.4 Saw Mill Operation
Step 1: Project/Problem Statement A company owns two saw mills and two forests. Table
2-1 shows the capacity of each mill (logs/day) and the distances between forests and mills
(km). Each forest can yield up to 200 logs/day for the duration of the project, and the cost
to transport the logs is estimated at $0.15/km/log. At least 300 logs are needed each day. The
goal is to minimize the total cost of transportation of logs each day.

Step 2: Data and Information Collection Data are given in Table 2-1 and in the problem
statement.

Step 3: Identification/Definition of Design Variables The design problem is to determine
how many logs to ship from Forest i to Mill j. Therefore, the design variables for the problem
are identified and defined as follows:

x1 = number of logs shipped from Forest 1 to Mill A
x2 = number of logs shipped from Forest 2 to Mill A
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Constraint:

Note that A and G may also be treated as design variables in this formulation. In such
a case, A must be assigned a fixed numerical value and the expression for G must be
treated as an equality constraint.

t t≥ min

Cost c At c G c G= + +2 3 46 14457.

EXAMPLE: Formulation with Design Variables Only

Summary of the problem formulation for the design optimization of insulation for a
spherical tank formulation in terms of the design variable only is as follows:

Specified data: r, DT, c1, c2, c3, c4, tmin

Design variable: t, m

Cost function: Minimize the life-cycle cooling cost of refrigeration of the spherical
tank

Constraint:
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x3 = number of logs shipped from Forest 1 to Mill B
x4 = number of logs shipped from Forest 2 to Mill B

Note that if we assign numerical values to these variables, an operational plan for the project
is specified and the cost of transportation of logs per day can be calculated. The selected
design may or may not satisfy all other requirements.

Step 4: Identification of a Criterion to Be Optimized The design objective is to mini-
mize the daily cost of transporting the logs to the mills. The cost of transportation, which
depends on the distance between the forests and the mills, is:

(a)

Step 5: Identification of Constraints The constraints for the problem are based on the
capacity of the mills and the yield of the forests:

(b)

The constraint on the number of logs needed for each day is expressed as

(c)

For a realistic problem formulation, all design variables must be nonnegative, i.e.,

(d)

The problem has four design variables, five inequality constraints, and four nonnegativ-
ity constraints on the variables. Note that all functions of the problem are linear in design
variables, so it is a linear programming problem. Note also that for a meaningful solution,
all design variables must have integer values. Such problems are called integer programming
problems, which require special solution methods. Some such methods are discussed in
Chapter 15.
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TABLE 2-1 Data for Saw Mill Operation

Distance, km

Mill Forest 1 Forest 2 Mill capacity/day

A 24.0 20.5 240 logs
B 17.2 18.0 300 logs

Forest 1 Forest 2 

Mill A 

x1  
x2  

x3  

Mill B 

x4



2.5 Design of a Two-Bar Bracket
Step 1: Project/Problem Statement The objective of this project is to design a two-bar
bracket (shown in Fig. 2-2) to support a force W without structural failure. The force is applied
at an angle q, which is between 0 and 90°; h is the height, and s is the base width for the
bracket. The brackets will be produced in large quantities. It has also been determined that
the total cost of the bracket (material, fabrication, maintenance, and so on) is directly related
to the size of the two bars. Thus, the design objective is to minimize the total mass of the
bracket while satisfying performance, fabrication, and space limitations.

Step 2: Data and Information Collection Some data and information are needed to for-
mulate the problem. First, the force W and its angle of application q need to be specified.
Since the bracket may be used in several applications, it may not be possible to specify just
one angle for W. It is possible to formulate the design optimization problem such that a range
is specified for angle q; i.e., the force W may be applied at any angle within that specified
range. In this case, the formulation will be slightly more complex because performance
requirements will need to be satisfied for each angle of application. In the present formula-
tion, it is assumed that the angle q is specified. Secondly, the material to be used for the bars
must be specified because the material properties are needed to formulate the optimization
criterion and performance requirements. Whether the two bars are to be fabricated using the
same material also needs to be determined. In the present formulation, it is assumed that they
are, although it may be prudent to assume otherwise for some advanced applications. In addi-
tion, we need to determine the fabrication and space limitations for the bracket, e.g., limita-
tions on the size of the bars, height, and base width.

In formulating the design problem, we also need to define structural performance more
precisely. Forces F1 and F2 carried by bars 1 and 2, respectively, can be used to define failure
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conditions for the bars. To compute these forces, we use the principle of static equilibrium.
Using the free-body diagram for Node 1 (shown in Fig. 2-2), equilibrium of forces in the
horizontal and vertical directions gives:

(a)

From the geometry of Fig. 2-2, sin a = 0.5 s/l and cos a = h/l, where l is the length of members 

given as Note that F1 and F2 are shown as tensile forces in the free-body
diagram. The solution to Eq. (a) will determine the magnitude and direction of the forces. In
addition, the tensile force will be taken as positive. Thus, the bar will be in compression if
the force carried by it has negative value. By solving the two equations simultaneously for
the unknowns F1 and F2, we obtain

(b)

To avoid bar failure due to overstressing, we need to calculate bar stress. If we know the
force carried by a bar, then the stress s can be calculated as force divided by the bar’s cross-
sectional area (stress = force/area). The SI unit for stress is Newton/m2 (N/m2), also called
Pascal (Pa), whereas the U.S.-British unit is pound/in.2 (written as psi). The expression for
the cross-sectional area depends on the cross-sectional shape used for the bars and selected
design variables. Therefore, a structural shape for the bars and associated design variables
must be selected. This is illustrated later in the formulation process.

In addition to analysis equations, we need to define the properties of the selected mater-
ial. Several formulations for optimum design of the bracket are possible depending on the
requirements of the application. To illustrate, a material with known properties is assumed
for the bracket. However, the structure can be optimized using other materials along with
their associated fabrication costs. Solutions can then be compared to select the best possible
one for the structure. For the selected material, let r be the mass density and sa be the allow-
able design stress, which is taken as a positive quantity. As a performance requirement, it is
assumed that if the stress exceeds this allowable value, the bar is considered to have failed.
The allowable stress is defined as the material failure stress (a property of the material)
divided by a factor of safety greater than one. We may also call it the design stress. In addi-
tion, it is assumed that the allowable stress is calculated in such a way that the buckling
failure of a bar in compression is avoided.

Step 3: Identification/Definition of Design Variables Several sets of design variables may
be identified for the two-bar structure. The height h and span s can be treated as design vari-
ables in the initial formulation. Later, they may be assigned numerical values, if desired, to
eliminate them from the formulation. Other design variables will depend on the cross-
sectional shape of bars 1 and 2. Several cross-sectional shapes are possible, as shown in 
Fig. 2-3, where design variables for each shape are also identified. Note that for many cross-
sectional shapes, different design variables can be selected. For example, in the case of the
circular tube in Fig. 2-3(A), the outer diameter do and the ratio between the inner and outer
diameters r = di/do may be selected as the design variables. Or, do and di may be selected as
design variables. However, it is not desirable to designate do, di, and r as the design variables
because they are not independent of each other. Similar remarks can be made for the design
variables associated with other cross sections, as shown in Fig. 2-3.
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As an example of problem formulation, consider the design of a bracket with hollow cir-
cular tubes, as shown in Fig. 2-3(A). The inner and outer diameters di and do and wall thick-
ness t may be identified as the design variables, although they are not all independent of each
other. We cannot specify di = 10, do = 12, and t = 2 because it violates the physical condi-
tion t = 0.5(do - di). Therefore, if we formulate the problem with di, do, and t as design vari-
ables, we must also impose the constraint t = 0.5(do - di). This type of formulation is usually
unnecessary because we could substitute for t in all equations to eliminate it from the problem,
thus reducing the number of design variables and constraints. To illustrate a formulation of
the problem, let the design variables be defined as

x1 = height h of the bracket
x2 = span s of the bracket
x3 = outer diameter of bar 1
x4 = inner diameter of bar 1
x5 = outer diameter of bar 2
x6 = inner diameter of bar 2

In terms of these variables, the cross-sectional areas A1 and A2 of bars 1 and 2 are given 
as
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(C) (D)

(E) (F)

do

di

t2 t2

t1

t1

d

d d

d d

t

b b

b b

FIGURE 2-3 Bar cross-sectional shapes for two-bar structure. (A) Circular tube. (B) Solid cir-
cular. (C) Rectangular tube. (D) Solid rectangular. (E) I-section. (F) Channel section.



(c)

Once the problem is formulated in terms of the selected six design variables, it is always
possible to modify it to meet more specialized needs. For example, the height x1 may be
assigned a fixed numerical value, thus eliminating it from the problem formulation. In addi-
tion, complete symmetry of the structure may be required to make its fabrication easier; i.e.,
it may be necessary for the two bars to have the same cross section, size, and material. In
such a case, we set x3 = x5 and x4 = x6 in all expressions of the problem formulation. Such
modifications are left as exercises.

Step 4: Identification of a Criterion to Be Optimized The structure’s mass is identified
as the objective function in the problem statement. Since it is to be minimized, it is called
the cost function for the problem. An expression for the mass is determined by the cross-
sectional shape of the bars and associated design variables. For the hollow circular tubes and
selected design variables, the total mass of the structure is calculated as (density ¥ material
volume):

(d)

Note that if the outer diameter and the ratio between the inner and outer diameter are selected
as design variables, the form of the mass function changes. Thus, the final form depends on
design variables selected for the problem. Expressions for the mass of the other cross-
sectional shapes shown in Fig. 2-3 can be easily written, if desired.

Step 5: Identification of Constraints It is important to include all constraints in the
problem formulation because the final solution depends on them. For the two-bar structure,
the constraints are on the stress in the bars and the design variables themselves. These con-
straints will be formulated for hollow circular tubes using the previously defined design vari-
ables. They can be similarly formulated for other sets of design variables and cross-sectional
shapes.

To avoid over-stressing a bar, the calculated stress s must not exceed the material allow-
able stress sa > 0. The stresses s1 and s2 in the two bars are calculated as force/area:

(e)

Note that to treat positive and negative stresses (tension and compression), we must use
the absolute value of the calculated stress in writing the constraints. From Eq. (b), F1 (the
force in bar 1) is always negative, so it is a compressive force. If (sinq)/x1 ≥ (2cosq)/x2 in
Eq. (b) (where x1 = h and x2 = s have been used), then F2 is also a compressive force and is
thus negative. Therefore, the stress constraints for bars 1 and 2 are given as

(f)

If (sin q)/x1 < (2cosq)/x2 in Eq. (b), then F2 becomes a tensile force (thus positive) and the
stress constraint for bar 2 becomes
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(g)

Both compressive and tensile stress constraints for bar 2 can be included in the problem
formulation. The solution methods described in subsequent chapters will automatically select
the appropriate constraint among compressive or tensile choices.

Finally, to impose fabrication and space limitations, constraints on the design variables
are imposed as

(h)

where xil and xiu are the minimum and maximum allowed values for the ith design variable.
Their numerical values must be specified before the problem can be solved.

Note that the expression for bar stress changes if different design variables are chosen for
circular tubes, or if a different cross-sectional shape is chosen for the bars. For example, inner
and outer radii, mean radius and wall thickness, or outside diameter and the ratio of inside
to outside diameter as design variables will all produce different expressions for the cross-
sectional areas and stresses. These results show that the choice of design variables greatly
influences the problem formulation.

Note also that we had to first analyze the structure (calculate its response to given inputs)
to write the constraints properly. It was only after we had calculated the forces in the bars
that we were able to write the constraints. This is an important step in any engineering design
problem formulation: We must be able to analyze the system before we can formulate the
design optimization problem.

In the following examples, we summarize two formulations of the problem. The first for-
mulation uses several intermediate variables, which is useful when the problem is transcribed
into a computer program. Because this formulation involves smaller expressions of various
quantities, it is easier to write and debug a computer program. In the second formulation, all
intermediate variables are eliminated to obtain the formulation exclusively in terms of design
variables. This formulation has slightly more complex expressions. It is important to note
that the second formulation may not be possible for all applications because some problem
functions may only be implicit functions of the design variables. One such formulation is
presented in Chapter 14.

x x x iil i iu£ £ =; 1 6 to 

s s2 £ ( )a stress constraint for bar 2 when in tension
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EXAMPLE: Formulation with Intermediate Variables 

Summary of the problem formulation for optimum design of the two-bar bracket using
intermediate variables is as follows:

Specified data: W, q, sa > 0, xil and xiu, i = 1 to 6

Design variables: x1, x2, x3, x4, x5, x6

Intermediate variables:

Length of bars: l x x= + ( )1
2

2
2

0 5.

Bar cross-sectional areas: A x x A x x1 3
2

4
2

2 5
2

6
2

4 4
= -( ) = -( )p p

;



Optimum Design Problem Formulation 29

Forces in bars:

Cost function: Minimize total mass of the bars, Mass = rl(A1 + A2)

Constraints:

Note that some of the intermediate variables, such as A1, A2, F1, F2, s1, and s2, may
also be treated as optimization variables. However, in that case, we will have six equal-
ity constraints between the variables, in addition to the other constraints.

Design variable limits:  to x xil i iux i£ £ =; 1 6

Bar stress: - £ - £ £s s s s s s1 1 2 2; ;a a

Bar stresses: s s1
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EXAMPLE: Formulation with Design Variables Only

Summary of the problem formulation for optimum design of the two-bar bracket in
terms of design variables only is as follows:

Specified data: W, q, sa > 0, xil and xiu, i = 1 to 6

Design variables: x1, x2, x3, x4, x5, x6

Cost function: Minimize total mass of the bars

Constraints:
Bar stress:

Design variable limits: xil £ xi £ xiu; i = 1 to 6
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2.6 Design of a Cabinet
Step 1: Project/Problem Statement A cabinet is assembled from components C1, C2, and
C3. Each cabinet requires 8 C1, 5 C2, and 15 C3 components. The assembly of C1 requires
either 5 bolts or 5 rivets, whereas C2 requires 6 bolts or 6 rivets, and C3 requires 3 bolts or
3 rivets. The cost of installing a bolt, including the cost of the bolt, is $0.70 for C1, $1.00 for
C2, and $0.60 for C3. Similarly, riveting costs are $0.60 for C1, $0.80 for C2, and $1.00 for
C3. Bolting and riveting capacities per day are 6000 and 8000, respectively. In order to min-
imize the cost for the 100 cabinets that must be assembled each day, we wish to determine
the number of components to be bolted and riveted (after Siddall, 1972).

Step 2: Data and Information Collection All data for the problem are given in the project
statement. This problem can be formulated in several different ways depending on the
assumptions made. Three formulations are presented, and for each formulation, proper design
variables are identified and expressions for the cost and constraint functions are derived, that
is, steps 3 to 5 are presented.

2.6.1 Formulation 1 for Cabinet Design
Step 3: Identification/Definition of Design Variables In the first formulation, the fol-
lowing design variables are identified for 100 cabinets:

x1 = number of C1 to be bolted for 100 cabinets
x2 = number of C1 to be riveted for 100 cabinets
x3 = number of C2 to be bolted for 100 cabinets
x4 = number of C2 to be riveted for 100 cabinets
x5 = number of C3 to be bolted for 100 cabinets
x6 = number of C3 to be riveted for 100 cabinets

Step 4: Identification of a Criterion to Be Optimized The design objective is to mini-
mize the total cost of cabinet fabrication, which is obtained from the specified costs for bolting
and riveting each component:

(a)

Step 5: Identification of Constraints The constraints for the problem consist of riveting
and bolting capacities and the number of cabinets fabricated each day. Since 100 cabinets
must be fabricated, the required numbers of C1, C2, and C3 are given in the following 
constraints:

(b)

Bolting and riveting capacities must not be exceeded. Thus,

(c)

Finally, all design variables must be nonnegative to find a meaningful solution:

(d)x ii ≥ =0 1 6;  to 
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2.6.2 Formulation 2 for Cabinet Design

Step 3: Identification/Definition of Design Variables If we relax the constraint that each
component must be bolted or riveted, then the following design variables can be defined:

x1 = total number of bolts required for all C1

x2 = total number of bolts required for all C2

x3 = total number of bolts required for all C3

x4 = total number of rivets required for all C1

x5 = total number of rivets required for all C2

x6 = total number of rivets required for all C3

Step 4: Identification of a Criterion to Be Optimized The objective is still to minimize
the total cost of fabricating 100 cabinets, given as

(e)

Step 5: Identification of Constraints Since 100 cabinets must be built every day, it will
be necessary to have 800 C1, 500 C2, and 1500 C3 components. The total number of bolts
and rivets needed for all C1, C2, and C3 components is indicated by the following equality
constraints:

(f)

Constraints on capacity for bolting and riveting are:

(g)

Finally, all design variables must be nonnegative:

(h)

Thus, this formulation also has six design variables, three equality, and two inequality
constraints. After an optimum solution has been obtained, we can decide on how many com-
ponents to bolt and how many to rivet.

2.6.3 Formulation 3 for Cabinet Design
Step 3: Identification/Definition of Design Variables Another formulation of the problem
is possible if we require that all cabinets be identical. The following design variables can be
identified:

x1 = number of C1 to be bolted on one cabinet
x2 = number of C1 to be riveted on one cabinet
x3 = number of C2 to be bolted on one cabinet
x4 = number of C2 to be riveted on one cabinet
x5 = number of C3 to be bolted on one cabinet
x6 = number of C3 to be riveted on one cabinet

x ii ≥ =0 1 6;  to 
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Step 4: Identification of a Criterion to Be Optimized With these design variables, the
cost of fabricating 100 cabinets each day is given as

(i)

Step 5: Identification of Constraints Since each cabinet needs 8 C1, 5 C2, and 15 C3 com-
ponents, the following equality constraints can be identified:

(j)

Constraints on the capacity to rivet and bolt are expressed as the following inequalities:

(k)

Finally, all design variables must be nonnegative:

(l)

The following points are noted for these three formulations:

1. Because cost and constraint functions are linear in all three formulations, they are
linear programming problems. It is conceivable that each formulation will yield a
different optimum solution. After solving the problems, the designer can select the
best strategy for fabricating cabinets.

2. All formulations have three equality constraints, each involving two design
variables. Using these constraints, we can eliminate three variables from the problem
and thus reduce its dimension. This is desirable from a computational standpoint
because the number of variables and constraints is reduced. However, because the
elimination of variables is not possible for many complex problems, we must
develop methods to treat both equality and inequality constraints.

3. For a meaningful solution with these formulations, all design variables must have
integer values. These are called integer programming problems. Some numerical
methods to treat this class of problem are discussed in Chapter 15.

2.7 Minimum Weight Tubular Column Design

Step 1: Project/Problem Statement Straight columns are used as structural elements in
many civil, mechanical, aerospace, agricultural and automotive structures. Many such appli-
cations can be observed in daily life, e.g., a street light pole, traffic light post, flag pole, water
tower support, highway sign post, power transmission pole, and so on. It is important to opti-
mize the design of a straight column since it may be mass produced. The objective of this
project is to design a minimum-mass tubular column of length l supporting a load P without
buckling or overstressing. The column is fixed at the base and free at the top, as shown in
Fig. 2-4. This type of structure is called a cantilever column.
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Step 2: Data and Information Collection The buckling load (also called the critical load)
for a cantilever column is given as

(a)

The buckling load for a column with other support conditions will be different from this
formula (Crandall, Dahl, and Lardner, 1978). Here, I is the moment of inertia for the cross
section of the column and E is the material property, called the modulus of elasticity (Young’s
modulus). The material stress s for the column is defined as P/A, where A is the cross-
sectional area of the column. The material allowable stress under the axial load is sa, and the
material mass density is r (mass per unit volume).

A cross section of the tubular column is shown in Fig. 2-4. Many formulations for the
design problem are possible depending on how the design variables are defined. Two such
formulations are described below.

2.7.1 Formulation 1 for Column Design
Step 3: Identification/Definition of Design Variables For the first formulation, the fol-
lowing design variables are defined:

R = mean radius of the column
t = wall thickness

Assuming that the column wall is thin (R >> t), the material cross-sectional area and moment
of inertia are:

(b)

Step 4: Identification of a Criterion to Be Optimized The total mass of the column to
be minimized is given as

(c)Mass lA l Rt= ( ) =r r2 p

A Rt I R t= =2 3p p;

P
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l
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Step 5: Identification of Constraints The first constraint is that the stress (P/A) should not
exceed material allowable stress sa, to avoid crushing the material. This is expressed as the
inequality s £ sa. Replacing s by P/A and then substituting for A, we obtain

(d)

The column should not buckle under the applied load P, which implies that the applied load
should not exceed the buckling load, i.e., P £ Pcr. Using the given expression for the buck-
ling load and substituting for I, we obtain

(e)

Finally, the design variables R and t must be within the specified minimum and maximum
values:

(f)

2.7.2 Formulation 2 for Column Design
Step 3: Identification/Definition of Design Variables Another formulation of the design
problem is possible, if the following design variables are defined:

Ro = outer radius of the column
Ri = inner radius of the column

In terms of these design variables, the cross-sectional area A and moment of inertia I are:

(g)

Step 4: Identification of a Criterion to Be Optimized Minimize the total mass of the
column:

(h)

Step 5: Identification of Constraints The material crushing constraint is (P/A £ sa)

(i)

Using the foregoing expression for I, the buckling load constraint is:

(j)

Finally, the design variables Ro and Ri must be within specified limits:
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When this problem is solved using a numerical method, a constraint Ro > Ri must also be
imposed. Otherwise, some methods may take the design to the point where Ro < Ri. This 
situation is not physically possible and must be explicitly excluded to numerically solve the
design problem.

Note that in the second formulation, the assumption of thin-walled sections is not imposed.
Thus, optimum solutions with the two formulations can differ. If required, the assumption of
thin-walled sections must be explicitly imposed by requiring the ratio between mean radius
and wall thickness to be larger than a specified constant k:

(l)

Usually k ≥ 20 provides a reasonable approximation for thin-walled sections.

2.8 Minimum Cost Cylindrical Tank Design
Step 1: Project/Problem Statement Design a minimum cost cylindrical tank closed at both
ends to contain a fixed volume of fluid V. The cost is found to depend directly on the area
of sheet metal used.

Step 2: Data and Information Collection Let c be the dollar cost per unit area of the sheet
metal. Other data are given in the project statement.

Step 3: Identification/Definition of Design Variables The design variables for the
problem are identified as

R = radius of the tank
H = height of the tank

Step 4: Identification of a Criterion to Be Optimized The cost function for the problem
is the dollar cost of the sheet metal for the tank. Total surface area of the sheet metal con-
sisting of the end plates and cylinder is given as

(a)

Therefore, the cost function for the problem is given as

(b)

Step 5: Identification of Constraints The volume of the tank (pR2H) is required to be V.
Therefore,

(c)

Also, both design variables R and H must be within some minimum and maximum values:

(d)

This problem is quite similar to the can problem discussed in Section 2.2. The only differ-
ence is in the volume constraint. There the constraint is an inequality and here it is equality.

R R R H H Hmin max min max;£ £ £ £

pR H V2 =
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2.9 Design of Coil Springs
Step 1: Project/Problem Statement Coil springs are used in numerous practical applica-
tions. Detailed methods for analyzing and designing such mechanical components have been
developed over the years (e.g., Spotts, 1953; Wahl, 1963; Shigley, 1977; Haug and Arora,
1979). The purpose of this project is to design a minimum mass spring (shown in Fig. 2-5)
to carry a given axial load (called tension-compression spring) without material failure and
while satisfying two performance requirements: the spring must deflect by at least D (in.) and
the frequency of surge waves must not be less than w0 (Hertz, Hz).

Step 2: Data and Information Collection To formulate the problem of designing a coil
spring, the following notation is defined:

Deflection along the axis of the spring d, in.
Mean coil diameter D, in.
Wire diameter d, in.
Number of active coils N
Gravitational constant g = 386 in./s2

Frequency of surge waves w, Hz
Let the material properties be given as
Weight density of spring material g = 0.285 lb/in.3

Shear modulus G = (1.15 ¥ 107) lb/in.2

Mass density of material (r = g /g) r = (7.38342 ¥ 10-4) lb-s2/in.4

Allowable shear stress ta = 80,000 lb/in.2

Other data for the problem are given as

Number of inactive coils Q = 2
Applied load P = 10 lb
Minimum spring deflection D = 0.5 in.
Lower limit on surge wave frequency w0 = 100 Hz
Limit on outer diameter of the coil Do = 1.5 in.

When the spring is under tension or compression, the wire twists. Therefore, shear stress
needs to be calculated so that a constraint on it can be included in the formulation. In addi-
tion, surge wave frequency needs to be calculated. The design equations for the spring are
given as

(a)

(b)Spring constant: K
d G

D N
=

4

38

Load deflection equation: = KP d
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(c)

(d)

(e)

The expression for the Wahl stress concentration factor k in Eq. (d) has been determined
experimentally to account for unusually high stresses at certain points on the spring. These
analysis equations are used to define the constraints.

Step 3: Identification/Definition of Design Variables The three design variables for the
problem are defined as

d = wire diameter, in.
D = mean coil diameter, in.
N = number of active coils

Step 4: Identification of a Criterion to Be Optimized The problem is to minimize the
mass of the spring, given as volume ¥ mass density:

(f)

Step 5: Identification of Constraints Deflection constraint. It is often a requirement that
deflection under a load P be at least D. Therefore, the constraint is that the calculated deflec-
tion d must be greater or equal to D. Such a constraint is common to spring design. The func-
tion of the spring in many applications is to provide a modest restoring force as parts undergo
large displacement in carrying out kinematic functions. Mathematically, this performance
requirement (d ≥ D) is stated in an inequality form using Eq. (a), and as

(g)

Shear stress constraint. To prevent material overstressing, shear stress in the wire must
be no greater than ta, which is expressed in mathematical form as

(h)

Constraint on frequency of surge waves. We also wish to avoid resonance in dynamic
applications by making the frequency of surge waves (along the spring) as large as possible.
For the present problem, we require the frequency of surge waves for the spring to be at least
w0 (Hz). The constraint is expressed in mathematical form as

(i)

Diameter constraint. The outer diameter of the spring should not be greater than 
Do, so

w w≥ 0
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(j)

Explicit bounds on design variables. To avoid fabrication and other practical difficulties,
we put minimum and maximum size limits on the wire diameter, coil diameter, and number
of turns:

(k)

Thus, the purpose of the minimum mass spring design problem is to select the design vari-
ables d, D, and N to minimize the mass of Eq. (f), while satisfying the ten inequality con-
straints of Eqs. (g) through (k). If the intermediate variables are eliminated, the problem
formulation can be summarized in terms of the design variables only.

d d d

D D D

N N N

min max

min max

min max

£ £
£ £
£ £

D d D+ £ 0
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EXAMPLE: Formulation with Design Variables Only 

Summary of the problem formulation for optimum design of coil springs is as follows:

Specified data: Q, P, r, g, ta, G, D, w 0, D0, dmin, dmax, Dmin, Dmax, Nmin, Nmax

Design variables: d, D, N

Cost function: Minimize

Constraints:

Design variable bounds:

N N Nmin £ £ max

D D Dmin £ £ max

d d dmin £ £ max

Diameter constraint: D d D+ £ 0
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2.10 Minimum Weight Design of a Symmetric Three-Bar Truss
Step 1: Project/Problem Statement As an example of a slightly more complex design
problem, consider the three-bar structure shown in Fig. 2-6 (Schmit 1960; Haug and Arora
1979). The structure is to be designed for minimum volume (or, equivalently, minimum mass)



to support a force P. It must satisfy various performance and technological constraints, such
as member crushing, member buckling, failure by excessive deflection of node 4, and failure
by resonance when natural frequency of the structure is below a given threshold.

Step 2: Data and Information Collection The data needed to solve the problem are: geom-
etry data, properties of the material used, and the loading data. In addition, since the struc-
ture is statically indeterminate, we need to use advanced analysis procedures to obtain
expressions for member forces, nodal displacements, and the natural frequency to formulate
constraints for the problem. Here we shall give such expressions.

Since the structure must be symmetric, members 1 and 3 will have same cross-sectional
area, say A1. Let A2 be the cross-sectional area of member 2. Using analysis procedures for
statically indeterminate structures, horizontal and vertical displacements u and v of node 4
are:

(a)

where E is the modulus of elasticity for the material, Pu and Pv are the horizontal and verti-
cal components of the load P given as Pu = Pcosq and Pv = P sinq, and l is defined in Fig.
2-6. Using the displacements, forces carried by the members of the truss can be calculated.
Then the stresses s1, s2, and s3 in members 1, 2, and 3 under the applied load P in Fig. 2-6
can be computed from member forces as (stress = force/area)

(b)

(c)

(d)

Many structures support moving machinery and other dynamic loads. These structures
vibrate with a certain frequency known as the natural frequency. This is an intrinsic dynamic
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property of a structural system. There can be several modes of vibration each having its own
frequency. Resonance causes catastrophic failure of the structure, which occurs when any of
its vibration frequency coincides with the frequency of the operating machinery it supports.
Therefore, it is reasonable to demand that no structural frequency be close to the frequency
of the operating machinery. The mode of vibration corresponding to the lowest natural fre-
quency is important because that mode is excited first. It is important to make the lowest
(fundamental) natural frequency of the structure as high as possible to avoid any possibility
of resonance. This also makes the structure stiffer. Frequencies of a structure are obtained by
solving an eigenvalue problem involving its stiffness and mass properties. The lowest eigen-
value z related to the lowest natural frequency of the symmetric three-bar truss is computed
using a consistent mass model:

(e)

where r is the material mass per unit volume (mass density). This completes analysis of the
structure.

Step 3: Identification/Definition of Design Variables The following design variables are
defined for the symmetric structure:

Al = cross-sectional area of material for members 1 and 3
A2 = cross-sectional area of material for member 2

Other design variables for the problem are possible depending on the cross-sectional shape
of members, as shown in Fig. 2-3.

Step 4: Identification of a Criterion to Be Optimized The relative merit of any design
for the problem is measured in its material volume. Therefore, total volume of the structural
material serves as a cost function (volume of a member = cross-sectional area ¥ length):

(f)

Step 5: Identification of Constraints The structure is designed for use in two applications.
In each application, it supports different loads. These are called loading conditions for 
the structure. In the present application, a symmetric structure would be obtained if the 
following two loading conditions are considered for the structure. The first load is applied 
at an angle q and the second one at an angle (p - q), where the angle q (0° £ q £ 90°) 
is shown in Fig. 2-6. If we let member 1 be the same as member 3, then the second 
loading condition can be ignored. Therefore, we consider only one load applied at an angle
q (0° £ q £ 90°).

Note from Eqs. (b) and (d) that s1 is always larger than s3. Therefore, we need to impose
constraints on only s1 and s2. If sa is an allowable stress for the material, then the stress 
constraints are:

(g)

Horizontal and vertical deflections of node 4 must be within the specified limits Du and
Dv respectively. Using Eq. (a), the deflection constraints are:
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As discussed previously, the fundamental natural frequency of the structure should be
higher than a specified frequency w0 (Hz). This constraint can be written in terms of the
lowest eigenvalue for the structure. The eigenvalue corresponding to a frequency of w0 (Hz)
is given as (2pw0)2 . The lowest eigenvalue z for the structure should be higher than (2pw0)2,
i.e.,

(i)

To impose buckling constraints for members under compression, an expression for the
moment of inertia of the cross section is needed. This expression cannot be obtained since
the cross-sectional shape and dimensions are not specified. However, the moment of inertia
I can be related to the cross-sectional area of the members as I = bA2, where A is the cross-
sectional area and b is a nondimensional constant. This relation follows if the shape of the
cross section is fixed and all its dimensions are varied in the same proportion. The axial force
for the ith member is given as Fi = Aisi, where i = 1, 2, 3 with tensile force taken as posi-
tive. Members of the truss are considered columns with pin ends. Therefore, the buckling
load for the ith member is given as p2EI/li

2, where li is the length of the ith member 
(Crandall, Dahl, and Lardner, 1978). Buckling constraints are expressed as -Fi £ p2EI/li

2,
where i = 1, 2, 3. The negative sign for Fi is used to make the left side of the constraints 
positive when the member is in compression. Also, there is no need to impose buckling 
constraints for members in tension. With the foregoing formulation, the buckling constraint
for tensile members is automatically satisfied. Substituting various quantities, member buck-
ling constraints are:

(j)

Note that the buckling load on the right side has been divided by the member area in the
foregoing expressions. Also, the first two constraints in Eq. (j) are automatically satisfied
since both the members are always in tension (forces in them are always positive for the
direction of load shown in Fig. 2-6).

Finally, A1 and A2 must both be nonnegative, i.e., A1, A2 ≥ 0. Most practical design prob-
lems would require each member to have a certain minimum area, Amin. The minimum area
constraints can be written as

(k)

The optimum design problem then is to find cross-sectional areas A1, A2 ≥ Amin to mini-
mize the volume of Eq. (f) subject to the constraints of Eqs. (g) to (k). This small-scale
problem has 10 inequality constraints and 2 design variables.

2.11 A General Mathematical Model for Optimum Design
To describe optimization concepts and methods, we need a general mathematical statement
for the optimum design problem. Such a mathematical model is defined as minimization of
a cost function while satisfying all the equality and inequality constraints. The inequality con-
straints in the model are always transformed as “£ types.” This will be called the standard
design optimization model that is treated throughout this text. It will be shown that all design
problems can easily be transcribed into the standard form.
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2.11.1 Standard Design Optimization Model
In previous sections, several design problems were formulated. All problems have an opti-
mization criterion that can be used to compare various designs and determine an optimum
(the best) one. Most design problems must also satisfy certain constraints. Some design prob-
lems have only inequality constraints, others have only equality constraints, and some have
both inequalities and equalities. We can define a general mathematical model for optimum
design to encompass all the possibilities. A standard form of the model is first stated and then
transformation of various problems into the standard form is explained.

Standard Design Optimization Model Find an n-vector x = (x1, x2, . . . , xn) of design 
variables to minimize a cost function

(2.1)

subject to the p equality constraints

(2.2)

and the m inequality constraints

(2.3)

Note that the simple bounds on design variables, such as xi ≥ 0, or xil £ xi £ xiu, where 
xil and xiu are the smallest and largest allowed value for xi, are assumed to be included in 
the inequalities of Eq. (2.3). In numerical methods, these constraints are treated explicitly to
take advantage of their simple form to effect efficiency. However, in discussing the basic
optimization concepts, we assume that the inequalities in Eq. (2.3) include these constraints
as well.

Application to Different Engineering Fields Design optimization problems from different
fields of engineering can be transcribed into the standard model. It must be realized that the
overall process of designing different engineering systems is the same. Analytical and numer-
ical methods for analyzing systems can differ. Formulation of the design problem can contain
terminology that is specific to the particular domain of application. For example, in the fields
of structural, mechanical, and aerospace engineering, we are concerned with the integrity of
the structure and its components. The performance requirements involve constraints on
member stresses, strains, deflections at key points, frequencies of vibration, buckling failure,
and so on. These terms are specific to the fields, and designers working in the area under-
stand their meaning and the constraints. Similarly, other fields of engineering have their own
terminology to describe design optimization problems. However, once the problems from dif-
ferent fields have been transcribed into mathematical statements using a standard notation,
they have the same mathematical form. They are contained in the standard design optimiza-
tion model defined in Eqs. (2.1) to (2.3). For example, all the problems formulated earlier in
this chapter can be transformed into the form of Eqs. (2.1) to (2.3). Therefore, optimization
methods described in the text are quite general and can be used to solve problems from
diverse fields. The methods can be developed without reference to any design application.
This key point must be kept in mind while studying the optimization concepts and the
methods.

Important Observations about Standard Model Several points must clearly be under-
stood about the standard model:

g g x x i mi i nxx( ) = ( ) £ =1 2 0 1, , . . . ;,  to 

h h x x j pj j nxx( ) = ( ) = =1 2 0 1, , . . . ;,  to 

f f x x xnx( ) = ( )1 2, , . . . ,
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1. First of all, it is obvious that the functions f(x), hj(x), and gi(x) must depend,
explicitly or implicitly, on some of the design variables. Only then are they valid for
the design problem. Functions that do not depend on any variable have no relation to
the problem and can be safely ignored.

2. The number of independent equality constraints must be less than or at the most
equal to the number of design variables, i.e., p £ n. When p > n, we have an over-
determined system of equations. In that case, either there are some redundant
equality constraints (linearly dependent on other constraints), or they are
inconsistent. In the former case, redundant constraints can be deleted and, if p < n,
the optimum solution for the problem is possible. In the latter case, no solution for
the design problem is possible and the problem formulation should be closely re-
examined. When p = n, no optimization of the system is necessary because solutions
of the equality constraints are the only candidates for optimum design.

3. Note that all inequality constraints in Eq. (2.3) are written as “£ 0.” This is standard
practice throughout the text. In the example problems of previous sections, we
encountered “£ type” as well as “≥ type” constraints. “£ type” constraints can be
converted to the standard form of Eq. (2.3) by transferring the right side to the left
side. “≥ type” constraints can also be transformed to the “£ form” quite easily by
multiplying them by -1 as explained later. Note, however, that while there is a
restriction on the number of independent equality constraints, there is no restriction
on the number of inequality constraints. However, the total number of active
constraints (satisfied at equality) at the optimum is usually less than or at the most
equal to the number of design variables.

4. Some design problems may not have any constraints. These are called unconstrained
optimization problems, and others are called constrained optimization problems.

5. If all the functions f(x), hj(x), and gi(x) are linear in design variables x, then the
problem is called a linear programming problem. If any of these functions is
nonlinear, the problem is called a nonlinear programming problem.

6. It is important to note that if the cost function is scaled by multiplying it with a
positive constant, the optimum design does not change. The optimum cost function
value, however, changes. Also, any constant can be added to the cost function
without affecting the optimum design. Similarly, the inequality constraints can be
scaled by any positive constant and equalities by any constant. This will not affect
the feasible region and hence the optimum solution. All the foregoing
transformations, however, affect the values of the Lagrange multipliers (defined in
Chapter 4). Also, performance of the numerical algorithms is affected by these
transformations.

2.11.2 Maximization Problem Treatment
The general design model treats only minimization problems. This is no restriction as 
maximization of a function F(x) is the same as minimization of a transformed function 
f(x) = -F(x). To see this graphically, consider a plot of the function of one variable F(x),
shown in Fig. 2-7(A). The function F(x) takes its maximum value at the point x*. Next con-
sider a graph of the function f(x) = -F(x) shown in Fig. 2-7(B). It is clear that f(x) is a reflec-
tion of F(x) about the x axis. It is also clear from the graph that f(x) takes on a minimum
value at the same point x* where the maximum of F(x) occurs. Therefore, minimization of
f(x) is equivalent to maximization of F(x).

2.11.3 Treatment of “Greater Than Type” Constraints
The standard design optimization model treats only “£ type” inequality constraints. Many
design problems may also have “≥ type” inequalities. Such constraints can be converted to
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the standard form without much difficulty. A “≥ type” constraint Gj(x) ≥ 0 is equivalent to
the “£ type” inequality gj(x) = -Gj(x) £ 0. Therefore, we can multiply any “≥ type” constraint
by -1 to convert it to the “£ type.”

2.11.4 Discrete and Integer Design Variables
So far, we have assumed in the standard model that variables xi can have any numerical value
within the feasible region. Many times, however, some variables are required to have dis-
crete or integer values. Such variables appear quite often in engineering design problems. We
have already encountered problems in Sections 2.4 and 2.6 that have integer design variables.
Before describing how to treat them, let us define what we mean by discrete and integer 
variables.

A design variable is called discrete if its value must be selected from a given finite set of
values. For example, the plate thickness must be the one that is available commercially, i.e.,
1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 1, . . . and so on. Similarly, structural members must be selected
off-the-shelf to reduce the fabrication cost. Such variables must be treated as discrete in the
standard formulation. An integer variable, as the name implies, must have an integer value,
e.g., the number of logs to be shipped, number of bolts used, number of items to be shipped,
and so on. These are called discrete and integer programming problems. Depending on the
type of problem functions, the problems can be classified into five different types. These 
classifications and methods to solve them are discussed in Chapter 15.

In some sense, discrete and integer variables impose additional constraints on the design
problem. Therefore, as noted before, the optimum value of the cost function is likely to
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increase with their presence compared with the same problem that is solved with continuous
variables. If we treat all the design variables as continuous, the minimum value of the cost
function represents a lower bound on the true minimum value when discrete or integer vari-
ables are used. This gives some idea of the “best” optimum solution if all design variables
were continuous. The optimum cost function value is likely to increase when discrete values
are assigned to variables. Thus, the first suggested procedure is to solve the problem assum-
ing continuous design variables if that is possible. Then the nearest discrete/integer values
are assigned to the variables and the design is checked for feasibility. With a few trials, the
best feasible design close to the continuous optimum can be obtained. Note that there can be
numerous combinations of discrete variables that can give feasible designs.

As a second approach, an adaptive numerical optimization procedure may be used. An
optimum solution with continuous variables is first obtained if that is possible. Then, only
the variables that are close to their discrete or integer value are assigned that value. They are
then held fixed and the problem is optimized again. The procedure is continued until all the
variables have been assigned discrete or integer values. A few further trials may be made to
improve the optimum cost function value. This procedure has been demonstrated by Arora
and Tseng (1988).

The foregoing procedures require additional computational effort and do not guarantee
true minimum solution. However, they are quite straightforward and do not require any addi-
tional methods or software for solution of discrete/integer variable problems.

2.11.5 Feasible Set
The term “feasible set” will be used throughout the text. A feasible set for the design problem
is a collection of all feasible designs. The terms “constraint set” and “feasible design space”
are also used to represent the feasible set of designs. The letter S will be used to represent
the feasible set. Mathematically, the set S is a collection of design points satisfying all the
constraints:

(2.4)

The set of feasible designs is sometimes referred to as the feasible region, especially for
optimization problems with two design variables. It is important to note that the feasible
region usually shrinks when more constraints are added in the design model and expands
when some constraints are deleted. When the feasible region shrinks, the number of possi-
ble designs that can optimize the cost function is reduced, i.e., there are fewer feasible
designs. In this event, the minimum value of the cost function is likely to increase. The effect
is completely the opposite when some constraints are dropped. This observation is signifi-
cant in practical design and should be clearly understood.

2.11.6 Active/Inactive/Violated Constraints
We will quite frequently refer to a constraint as active, tight, inactive, or violated. We define
these terms precisely. An inequality constraint gj(x) £ 0 is said to be active at a design point
x* if it is satisfied at equality, i.e., gj(x*) = 0. This will be also called a tight or binding con-
straint. For a feasible design, an inequality constraint may or may not be active. However,
all equality constraints are active for all feasible designs.

An inequality constraint gj(x) £ 0 is said to be inactive at a design point x* if it is strictly
satisfied, i.e., gj(x*) < 0. It is said to be violated at a design point x* if its value is positive,
i.e., gj(x*) > 0. An equality constraint hi(x) = 0 is violated at a design point x* if hi(x*) is
not identically zero. Note that by these definitions, an equality constraint is either active or
violated at a given design point.

S h j p g i mj i= ( ) = = ( ) £ ={ }x x x0 1 0 1, ; , to  to 
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Exercises for Chapter 2

2.1 A 100 ¥ 100m lot is available to construct a multistory office building. At least
20,000m2 total floor space is needed. According to a zoning ordinance, the
maximum height of the building can be only 21m, and the area for parking outside
the building must be at least 25 percent of the total floor area. It has been decided
to fix the height of each story at 3.5m. The cost of the building in millions of
dollars is estimated at 0.6h + 0.001A, where A is the cross-sectional area of the
building per floor and h is the height of the building. Formulate the minimum cost
design problem.

2.2 A refinery has two crude oils:

1. Crude A costs $30/barrel (bbl) and 20,000bbl are available
2. Crude B costs $36/bbl and 30,000bbl are available.

The company manufactures gasoline and lube oil from the crudes. Yield and sale
price per barrel of the product and markets are shown in Table E2-2. How much
crude oils should the company use to maximize its profit? Formulate the optimum
design problem.
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TABLE E2-2 Data for Refinery Operations

Yield/bbl
Sale price Market

Product Crude A Crude B per bbl ($) (bbl)

Gasoline 0.6 0.8 50 20,000
Lube oil 0.4 0.2 120 10,000

H

R

Ignore bottom surface

FIGURE E2-3 Beer mug.

2.3 Design a beer mug, shown in Fig. E2-3, to hold as much beer as possible. The
height and radius of the mug should be not more than 20cm. The mug must be at
least 5cm in radius. The surface area of the sides must not be greater than 900cm2

(ignore the area of the bottom of the mug and ignore the mug handle—see figure).
Formulate the optimum design problem.

2.4 A company is redesigning its parallel flow heat exchanger of length l to increase its
heat transfer. An end view of the unit is shown in Fig. E2-4. There are certain
limitations on the design problem. The smallest available conducting tube has a
radius of 0.5cm and all tubes must be of the same size. Further, the total cross-



2.5 Proposals for a parking ramp having been defeated, we plan to build a parking lot
in the downtown urban renewal section. The cost of land is 200W + 100D, where W
is the width along the street and D the depth of the lot in meters. The available
width along the street is 100m, while the maximum depth available is 200m. We
want to have at least 10,000m2 in the lot. To avoid unsightly lots, the city requires
that the longer dimension of any lot be no more than twice the shorter dimension.
Formulate the minimum cost design problem.

2.6 A manufacturer sells products A and B. Profit from A is $10/kg and from B $8/kg.
Available raw materials for the products are: 100kg of C and 80kg of D. To
produce 1kg of A, 0.4kg of C and 0.6kg of D are needed. To produce 1kg of B,
0.5kg of C and 0.5kg of D are needed. The markets for the products are 70kg for A
and 110kg for B. How much of A and B should be produced to maximize profit?
Formulate the design optimization problem.

2.7 Design a diet of bread and milk to get at least 5 units of vitamin A and 4 units of
vitamin B each day. The amount of vitamins A and B in 1kg of each food and the cost
per kilogram of food are given in Table E2-7. Formulate the design optimization
problem so that we get at least the basic requirements of vitamins at the minimum cost.
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Outer shell

Individual tubes

FIGURE E2-4 Cross section of heat exchanger.

TABLE E2-7 Data for the Diet Problem

Vitamin Bread Milk

A 1 2
B 3 2

Cost/kg 2 1

sectional area of all the tubes cannot exceed 2000cm2 to ensure adequate space
inside the outer shell. Formulate the problem to determine the number of tubes and
the radius of each tube to maximize the surface area of the tubes in the exchanger.

2.8 Enterprising chemical engineering students have set up a still in a bathtub. They can
produce 225 bottles of pure alcohol each week. They bottle two products from
alcohol: (i) wine, 20 proof, and (ii) whiskey, 80 proof. Recall that pure alcohol is
200 proof. They have an unlimited supply of water but can only obtain 800 empty
bottles per week because of stiff competition. The weekly supply of sugar is enough
for either 600 bottles of wine or 1200 bottles of whiskey. They make $1.00 profit on
each bottle of wine and $2.00 profit on each bottle of whiskey. They can sell
whatever they produce. How many bottles of wine and whiskey should they
produce each week to maximize profit. Formulate the design optimization problem
(created by D. Levy).



2.9 Design a can closed at one end using the smallest area of sheet metal for a specified inte-
rior volume of 600m3. The can is a right circular cylinder with interior height h and
radius r. The ratio of height to diameter must not be less than 1.0 and not greater than
1.5. The height cannot be more than 20cm. Formulate the design optimization problem.

2.10 Design a shipping container closed at both ends with dimensions b ¥ b ¥ h to
minimize the ratio: (round-trip cost of shipping the container only)/(one-way cost of
shipping the contents only). Use the following data:

Mass of the container/surface area: 80kg/m2

Maximum b: 10m
Maximum h: 18m
One-way shipping cost,

full or empty: $18/kg gross mass
Mass of the contents: 150kg/m3

Formulate the design optimization problem.

2.11 Certain mining operations require an open top rectangular container to transport
materials. The data for the problem are:

Construction costs:
sides: $50/m2

ends: $60/m2

bottom: $90/m2

Salvage value: 25 percent of the construction cost
Useful life: 20 years
Yearly maintenance: $12/m2 of outside surface area
Minimum volume needed: 150m3

Interest rate: 12 percent per annum

Formulate the problem of determining the container dimensions for minimum present cost.

2.12 Design a circular tank closed at both ends to have a volume of 250m3. The fabrica-
tion cost is proportional to the surface area of the sheet metal and is $400/m2. The
tank is to be housed in a shed with a sloping roof. Therefore, height H of the tank is
limited by the relation H £ 10 - D/2, where D is the diameter of the tank. Formu-
late the minimum cost design problem.

2.13 Design the steel framework shown in Fig. E2-13 at a minimum cost. The cost of a
horizontal member in one direction is $20w and in the other direction it is $30d.
The cost of a vertical column is $50h. The frame must enclose a total volume of at
least 600m3. Formulate the design optimization problem.
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FIGURE E2-13 Steel frame.



2.15 Transportation problem. A company has m manufacturing facilities. The facility at
the ith location has capacity to produce bi units of an item. The product should be
shipped to n distribution centers. The distribution center at the jth location requires
at least aj units of the item to satisfy demand. The cost of shipping an item from the
ith plant to the jth distribution center is cij. Formulate a minimum cost transportation
system to meet each distribution center’s demand without exceeding the capacity of
any manufacturing facility.

2.16 Design of a two-bar truss. Design a symmetric two-bar truss (both members have
the same cross section) shown in Fig. E2-16 to support a load W. The truss consists
of two steel tubes pinned together at one end and supported on the ground at the
other. The span of the truss is fixed at s. Formulate the minimum mass truss design
problem using height and the cross-sectional dimensions as design variables. The
design should satisfy the following constraints:

1. Because of space limitations, the height of the truss must not exceed b1, and
must not be less than b2.

2. The ratio of the mean diameter to thickness of the tube must not exceed b3.
3. The compressive stress in the tubes must not exceed the allowable stress sa for

steel.
4. The height, diameter, and thickness must be chosen to safeguard against member

buckling.

Use the following data: W = 10kN; span s = 2m; b1 = 5m; b2 = 2m; b3 = 90;
allowable stress, sa = 250MPa; modulus of elasticity, E = 210GPa; mass density, r
= 7850kg/m3; factor of safety against buckling, FS = 2; 0.1 £ D £ 2 (m); and 0.01 
£ t £ 0.1 (m).
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FIGURE E2-14 Power generator.

2.14 Two electric generators are interconnected to provide total power to meet the load.
Each generator’s cost is a function of the power output, as shown in Fig. E2-14. All
costs and power are expressed on a per unit basis. The total power needed is at least
60 units. Formulate a minimum cost design problem to determine the power outputs
P1 and P2.



2.17 A beam of rectangular cross section (Fig. E2-17) is subjected to a maximum
bending moment of M and a maximum shear of V. The allowable bending and
shearing stresses are sa and ta, respectively. The bending stress in the beam is
calculated as

and average shear stress in the beam is calculated as

where d is the depth and b is the width of the beam. It is also desired that the depth
of the beam shall not exceed twice its width. Formulate the design problem for
minimum cross-sectional area using the following data: M = 140kN·m, V =
24kN, sa = 165MPa, ta = 50MPa.
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FIGURE E2-16 Two-bar structure.
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FIGURE E2-17 Cross section of a rectangular beam.

2.18 A vegetable oil processor wishes to determine how much shortening, salad oil, and
margarine to produce to optimize the use of his current oil stocks. At the current
time, he has 250,000kg of soybean oil, 110,000kg of cottonseed oil, and 2000kg of
milk base substances. The milk base substances are required only in the production
of margarine. There are certain processing losses associated with each product; 10
percent for shortening, 5 percent for salad oil, and no loss for margarine. The



producer’s back orders require him to produce at least 100,000kg of shortening,
50,000kg of salad oil, and 10,000kg of margarine. In addition, sales forecasts
indicate a strong demand for all products in the near future. The profit per kilogram
and the base stock required per kilogram of each product are given in Table E2-18.
Formulate the problem to maximize profit over the next production scheduling
period (created by J. Liittschwager).
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TABLE E2-18 Data for the Vegetable Oil Processing Problem

Parts per kg of base stock
requirements

Product Profit per kg Soybean Cottonseed Milk base

Shortening 0.10 2 1 0
Salad oil 0.08 0 1 0
Margarine 0.05 3 1 1

Section 2.11 A General Mathematical Model for Optimum Design

2.19 Answer True or False.
1. Design of a system implies specification for the design variable values.
2. All design problems have only linear inequality constraints.
3. All design variables should be independent of each other as far as possible.
4. If there is an equality constraint in the design problem, the optimum solution

must satisfy it.
5. Each optimization problem must have certain parameters called the design

variables.
6. A feasible design may violate equality constraints.
7. A feasible design may violate “≥ type” constraints.
8. A “£ type” constraint expressed in the standard form is active at a design point

if it has zero value there.
9. The constraint set for a design problem consists of all the feasible points.

10. The number of independent equality constraints can be larger than the number
of design variables for the problem.

11. The number of “£ type” constraints must be less than the number of design
variables for a valid problem formulation.

12. The feasible region for an equality constraint is a subset of that for the same
constraint expressed as an inequality.

13. Maximization of f(x) is equivalent to minimization of 1/f(x).
14. A lower minimum value for the cost function is obtained if more constraints are

added to the problem formulation.
15. Let fn be the minimum value for the cost function with n design variables for a

problem. If the number of design variables for the same problem is increased
to, say m = 2n, then fm > fn where fm is the minimum value for the cost function
with m design variables.

2.20* A trucking company wants to purchase several new trucks. It has $2 million to
spend. The investment should yield a maximum of trucking capacity for each day in
tonnes ¥ kilometers. Data for the three available truck models are given in Table
E2-20; i.e., truck load capacity, average speed, crew required/shift, hours of



operations for three shifts, and the cost of each truck. There are some limitations on
the operations that need to be considered. The labor market is such that the
company can hire at the most 150 persons to operate the trucks. Garage and
maintenance facilities can handle at the most 25 trucks. How many trucks of each
type should the company purchase? Formulate the design optimization problem.
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TABLE E2-20 Data for Available Trucks

Truck model Truck load Average truck Crew required No. of hours of Cost of each
capacity speed (km/h) per shift operations per truck ($)
(tonnes) day (3 shifts)

A 10 55 1 18 40,000
B 20 50 2 18 60,000
C 18 50 2 21 70,000

2.21* A large steel corporation has two iron ore reduction plants. Each plant processes
iron ore into two different ingot stocks. They are shipped to any of the three
fabricating plants where they are made into either of the two finished products. In
total, there are two reduction plants, two ingot stocks, three fabricating plants, and
two finished products.

For the coming season, the company wants to minimize total tonnage of iron ore
processed in its reduction plants, subject to production and demand constraints.
Formulate the design optimization problem and transcribe it into the standard
model.

Nomenclature

a(r, s) tonnage yield of ingot stock s from 1 ton of iron ore processed at
reduction plant r

b(s, f, p) total yield from 1 ton of ingot stock s shipped to fabricating plant f and
manufactured into product p

c(r) iron ore processing capacity in tonnage at reduction plant r
k(f) capacity of the fabricating plant f in tonnage for all stocks
D(p) tonnage demand requirement for product p

Production and demand constraints

1. The total tonnage of iron ore processed by both reduction plants must equal the
total tonnage processed into ingot stocks for shipment to the fabricating plants.

2. The total tonnage of iron ore processed by each reduction plant cannot exceed its
capacity.

3. The total tonnage of ingot stock manufactured into products at each fabricating
plant must equal the tonnage of ingot stock shipped to it by the reduction plants.

4. The total tonnage of ingot stock manufactured into products at each fabricating
plant cannot exceed its available capacity.

5. The total tonnage of each product must equal its demand.



Constants for the problem

a(1, 1) = 0.39 c(1) = 1,200,000 k(1) = 190,000 D(1) = 330,000
a(1, 2) = 0.46 c(2) = 1,000,000 k(2) = 240,000 D(2) = 125,000
a(2, 1) = 0.44 k(3) = 290,000
a(2, 2) = 0.48

b(1, 1, 1) = 0.79 b(1, 1, 2) = 0.84
b(2, 1, 1) = 0.68 b(2, 1, 2) = 0.81
b(1, 2, 1) = 0.73 b(1, 2, 2) = 0.85
b(2, 2, 1) = 0.67 b(2, 2, 2) = 0.77
b(1, 3, 1) = 0.74 b(1, 3, 2) = 0.72
b(2, 3, 1) = 0.62 b(2, 3, 2) = 0.78

2.22 Optimization of a water canal. Design a water canal having a cross-sectional area
of 150m2. Least construction costs occur when the volume of the excavated
material equals the amount of material required for the dykes, as shown in Fig. E2-
22. Formulate the problem to minimize the dugout material A1. Transcribe the
problem into the standard design optimization model (created by V. K. Goel).
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FIGURE E2-22 Cross section of a canal.

FIGURE E2-23 Cantilever beam.

2.23 A cantilever beam is subjected to the point load P (kN), as shown in Fig. E2-23.
The maximum bending moment in the beam is Pl (kN·m) and the maximum shear
is P (kN). Formulate the minimum mass design problem using a hollow circular
cross section. The material should not fail under bending stress or shear stress. The
maximum bending stress is calculated as

where I = moment of inertia of the cross section. The maximum shearing stress is
calculated as

s =
Pl

I
Ro



Transcribe the problem into the standard design optimization model (also use Ro £
40.0cm, Ri £ 40.0cm). Use the following data: P = 14kN; l = 10m; mass density, r
= 7850kg/m3; allowable bending stress, sb = 165MPa; allowable shear stress, ta =
50 MPa.

2.24 Design a hollow circular beam shown in Fig. E2-24 for two conditions: when P =
50 (kN), the axial stress s should be less than sa, and when P = 0, deflection d due
to self-weight should satisfy d £ 0.001l. The limits for dimensions are t = 0.10 to
1.0cm, R = 2.0 to 20.0cm, and R/t ≥ 20. Formulate the minimum weight design
problem and transcribe it into the standard form. Use the following data: d =
5wl4/384EI; w = self weight force/length (N/m); sa = 250MPa; modulus of
elasticity, E = 210GPa; mass density, r = 7800kg/m3; s = P/A; gravitational
constant, g = 9.80m/s2; moment of inertia, I = pR3t (m4).

t = + +( )P

I
R R R Ro o i i

3
2 2
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3 Graphical Optimization

55

Upon completion of this chapter, you will be able to:

• Graphically solve any optimization problem having two design variables

• Plot constraints and identify their feasible/infeasible side

• Identify the feasible region/feasible set for the problem

• Plot objective function contours through the feasible region

• Graphically locate the optimum solution for a problem and identify active/inactive
constraints

• Identify problems that may have multiple, unbounded, or infeasible solutions

Optimization problems having only two design variables can be solved by observing the
way they are graphically represented. All constraint functions are plotted, and a set of 
feasible designs (the feasible set) for the problem is identified. Objective function contours
are then drawn and the optimum design is determined by visual inspection. In this chapter,
we illustrate the graphical solution process and introduce several concepts related to optimum
design problems. In the following section, a design optimization problem is formulated and
used to describe the solution process. Some concepts related to design optimization problems
are also described. Several more example problems are solved in later sections to illustrate
the concepts and procedure.

3.1 Graphical Solution Process
3.1.1 Profit Maximization Problem
Step 1: Project/Problem Statement A company manufactures two machines, A and B.
Using available resources, either 28 A or 14 B machines can be manufactured daily. The sales
department can sell up to 14 A machines or 24 B machines. The shipping facility can handle
no more than 16 machines per day. The company makes a profit of $400 on each A machine
and $600 on each B machine. How many A and B machines should the company manufac-
ture every day to maximize its profit?



Step 2: Data and Information Collection Defined in the project statement.

Step 3: Identification/Definition of Design Variables The following two design variables
are identified in the problem statement:

xl = number of A machines manufactured each day
x2 = number of B machines manufactured each day

Step 4: Identification of a Criterion to Be Optimized The objective is to maximize daily
profit, which can be expressed in terms of design variables as

(a)

Step 5: Identification of Constraints Design constraints are placed on manufacturing
capacity, limitations on the sales personnel, and restrictions on the shipping and handling
facility. The constraint on the shipping and handling facility is quite straightforward,
expressed as

(b)

Constraints on manufacturing and sales facilities are a bit tricky. First, consider the 
manufacturing limitation. It is assumed that if the company is manufacturing xl A machines
per day, then the remaining resources and equipment can be proportionately utilized to man-
ufacture B number of machines, and vice versa. Therefore, noting that xl/28 is the fraction
of resources used to produce A machines and x2/14 is the fraction used for B, the constraint
is expressed as

(c)

Similarly, the constraint on sales department resources is given as

(d)

Finally, the design variables must be nonnegative as

(e)

Note that for this problem, the formulation remains valid even when a design variable has
zero value. The problem has two design variables and five inequality constraints. All func-
tions of the problem are linear in variables xl and x2. Therefore, it is a linear programming
problem.

3.1.2 Step-by-Step Graphical Solution Procedure
Step 1: Coordinate System Set-up The first step in the solution process is to set up an
origin for the x-y coordinate system and scales along the x and y axes. By looking at the con-
straint functions, a coordinate system for the profit maximization problem can be set up using
a range of 0 to 25 along both the x and y axes. In some cases, the scale may need to be
adjusted after the problem has been graphed because the original scale may provide too small
or too large a graph for the problem.

x x1 2 0, ≥

x x1 2

14 24
1+ £ ( ) limitation on sales department

x x1 2

28 14
1+ £ ( ) manufacturing constraint

x x1 2 16+ £ ( ) shipping and handling constraint

P x x= +400 6001 2
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Step 2: Inequality Constraint Boundary Plot To illustrate the graphing of a constraint, let
us consider the inequality x1 + x2 £ 16, given in Eq. (b). To represent the constraint graphi-
cally, we first need to plot the constraint boundary; i.e., plot the points that satisfy the con-
straint as an equality x1 + x2 = 16. This is a linear function of the variables x1 and x2. To plot
such a function, we need two points that satisfy the equation x1 + x2 = 16. Let these points
be calculated as (16,0) and (0,16). Locating these points on the graph and joining them by 
a straight line produces the line F–J, as shown in Fig. 3-1. Line F–J then represents the 
boundary of the feasible region for the inequality constraint x1 + x2 £ 16. Points on one side
of this line will violate the constraint, while those on the other side will satisfy it.

Step 3: Identification of Feasible Region for an Inequality The next task is to determine
which side of constraint boundary F–J is feasible for the constraint x1 + x2 £ 16. To accom-
plish this task, we select a point on either side of F–J at which to evaluate the constraint. For
example, at point (0,0), the left side of the constraint x1 + x2 £ 16 has a value of 0. Because
the value is less than 16, the constraint is satisfied and the region below F–J is feasible. We
can test the constraint at another point on the opposite side of F–J, say at point (10,10). At
this point the constraint is violated because the left side of the constraint function is 20, which
is larger than 16. Therefore, the region above F–J is infeasible with respect to the constraint
x1 + x2 £ 16, as shown in Fig. 3-2. The infeasible region is “shaded-out” or “hatched-out,” a
convention that is used throughout this text. Note that if this was an equality constraint x1 +
x2 = 16, then the feasible region for the constraint would only be the points on line F–J.
Although there is an infinite number of points on F–J, the feasible region for the equality
constraint is much smaller than that for the same constraint written as an inequality.

Step 4: Identification of Feasible Region By following the procedure described in Step
3, all constraints are plotted on the graph and the feasible region for each constraint is 
identified. Note that the constraints x1, x2 ≥ 0 restrict the feasible region to the first quadrant
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of the coordinate system. The intersection of feasible regions for all constraints provides the
feasible region for the profit maximization problem, indicated as ABCDE in Fig. 3-3. Any
point in this region or on its boundary provides a feasible solution to the problem.

Step 5: Plotting Objective Function Contours The next task is to plot the objective func-
tion on the graph and locate its optimum points. For the present problem, the objective is to
maximize the profit, P = 400x1 + 600x2, which involves three variables: P, x1, and x2. The
function needs to be represented on the graph so that the value of P can be compared for dif-
ferent feasible designs and the best design can be located. However, because there is an infi-
nite number of feasible points, it is not possible to evaluate the objective function at every
point. One way of overcoming this impasse is to plot the contours of the objective function.
A contour is a curve on the graph that connects all points having the same objective func-
tion value. A collection of points on a contour is also called the level set. If the objective
function is to be minimized, the contours are also called iso-cost curves. To plot a contour
through the feasible region, we need to assign it a value. To obtain this value, consider a
point in the feasible region and evaluate the profit function there. For example, at point (6,4),
P is P = 6 ¥ 400 + 4 ¥ 600 = 4800. To plot the P = 4800 contour, we plot the function 400x1

+ 600x2 = 4800. This contour is shown in Fig. 3-4.

Step 6: Identification of Optimum Solution To locate an optimum point for the objective
function, we need at least two contours that pass through the feasible region. We can then
observe trends for the values of the objective function at different feasible points to locate
the best solution point. Contours for P = 2400, 4800, and 7200 are plotted in Fig. 3-5. We
now observe the following trend: as the contours move up toward point D, feasible designs
can be found with larger values for P. It is clear from observation that point D has the largest
value for P in the feasible region. We now simply read the coordinates of point D (4,12) to
obtain the optimum design, having a maximum value for the profit function as P = 8800.
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Thus, the best strategy for the company is to manufacture 4 A and 12 B machines to maxi-
mize its daily profit. The inequality constraints in Eqs. (b) and (c) are active at the optimum;
i.e., they are satisfied at equality. These represent limitations on shipping and handling facil-
ities, and manufacturing. The company can think about relaxing these constraints to improve
its profit. All other inequalities are strictly satisfied, and therefore, inactive.

Note that in this example the design variables must have integer values. Fortunately, the
optimum solution has integer values for the variables. If this were not the case, we would
have used the procedure suggested in Section 2.11.4 or in Chapter 15 to solve this problem.
Note also that for this example all functions are linear in design variables. Therefore, all
curves in Figs. 3-1 through 3-5 are straight lines. In general, the functions of a design problem
may not be linear, in which case curves must be plotted to identify the feasible region, and
contours or iso-cost curves must be drawn to identify the optimum design. To plot a non-
linear function, a table of numerical values for xl and x2 must be generated for the function.
These points must be then plotted on a graph and connected by a smooth curve.

3.2 Use of Mathematica for Graphical Optimization
It turns out that good programs, such as Mathematica, are available to implement the step-
by-step procedure of the previous section and obtain a graphical solution for the problem on
the computer screen. Mathematica is an interactive software package with many capabilities;
however, we shall explain its use to solve a two-variable optimization problem by plotting
all functions on the computer screen. Although other commands for plotting functions are
available, the most convenient one for working with inequality constraints and objective func-
tion contours is the ContourPlot command. As with most Mathematica commands, this
command is followed by what we call subcommands as “arguments” that define the nature
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of the plot. All Mathematica commands are case sensitive so it is important to pay attention
to which letters are capitalized.

Mathematica input is organized into what is called a “notebook.” A notebook is divided
into cells with each cell containing input that can be executed independently. For explaining
the graphical optimization capability of Mathematica5, we shall use the profit maximization
problem of the previous section. Note that the commands used here may change in future
releases of the program. We start by entering into the notebook the problem functions as

P=400*x1+600*x2;
g1=x1+x2-16; (*shipping and handling constraint*)
g2=x1/28+x2/14-1; (*manufacturing constraint*)
g3=x1/14+x2/24-1; (*limitation on sales department*)
g4=-x1;
g5=-x2;

This input illustrates some basic features concerning Mathematica format. Note that the
ENTER key acts simply as a carriage return, taking the blinking cursor to the next line. Press-
ing SHIFT and ENTER actually inputs the typed information into Mathematica. When no
immediate output from Mathematica is desired, the input line must end with a semicolon (;).
If the semicolon is omitted, Mathematica will simplify the input and display it on the screen
or execute an arithmetic expression and display the result. Comments are bracketed as
(*Comment*). Note also that all the constraints are assumed to be in the standard “£” form.
This helps in identifying the infeasible region for constraints on the screen using the Con-
tourPlot command.

3.2.1 Plotting Functions
The Mathematica command used to plot the contour of a function, say g1 = 0, is entered as

Plotg1=ContourPlot[g1,{x1,0,25},{x2,0,25}, ContourShadingÆFalse, ContoursÆ{0}, 
ContourStyleÆ{{Thickness[.01]}}, AxesÆTrue, AxesLabelÆ{“x1”,”x2”}, 
PlotLabelÆ“Profit Maximization Problem”, EpilogÆ{Disk[{0,16},{.4,.4}],
Text[“(0,16)”,{2,16}], Disk[{16,0},{.4,.4}], Text[“(16,0)”,{17,1.5}],
Text[“F”,{0,17}], Text[“J”,{17,0}], Text[“x1+x2=16”,{13,9}], 
Arrow[{13,8.3},{10,6}]}, DefaultFontÆ{“Times”,12}, ImageSizeÆ72 5];

Plotg1 is simply an arbitrary name referring to the data points for the function g1 deter-
mined by the ContourPlot command; it is used in future commands to refer to this particu-
lar plot. This ContourPlot command plots a contour defined by the equation g1 = 0 as in Fig.
3-1. Arguments of the ContourPlot command containing various subcommands are explained
as follows (note that the arguments are separated by commas and are enclosed in square
brackets []):

g1: function to be plotted.
{x1, 0, 25}, {x2, 0, 25}: ranges for the variables x1 and x2; 0 to 25.
ContourShading Æ False: indicates that shading will not be used to plot contours,

whereas ContourShading Æ True would indicate that shading will be used (note that
most subcommands are followed by an arrow “Æ” or “->” and a set of parameters
enclosed in braces {}).

Contours Æ {0}: contour values for g1, one contour is requested having 0 value.
ContourStyle Æ {{Thickness[.01]}}: defines characteristics of the contour such as

thickness and color. Here, the thickness of the contour is specified as “.01”. It is
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given as a fraction of the total width of the graph and needs to be determined by trial
and error.

Axes Æ True: indicates whether axes should be drawn at the origin; in the present case,
where the origin (0, 0) is located at the bottom left corner of the graph, the Axes
subcommand is irrelevant except that it allows for the use of the AxesLabel
command.

AxesLabel Æ {“x1”,“x2”}: allows one to indicate labels for each axis.
PlotLabel Æ “Profit Maximization Problem”: puts a label at the top of the graph.
Epilog Æ {. . .}: allows insertion of additional graphics primitives and text in the figure

on the screen; Disk [{0,16}, {.4,.4}] allows insertion of a dot at the location (0,16)
of radius .4 in both directions; Text [“(0,16)”, (2,16)] allows “(0,16)” to be placed at
the location (2,16).

ImageSize Æ 72 5: indicates that the width of the plot should be 5 inches; the size of
the plot also can be adjusted by selecting the image in Mathematica and dragging
one of the black square control points; the images in Mathematica can be copied and
pasted to a word processor file.

DefaultFont Æ {“Times”,12}: specifies the preferred font and size for the text.

3.2.2 Identification and Hatching of Infeasible Region for an Inequality
Figure 3-2 is created using a slightly modified ContourPlot command used earlier for 
Fig. 3-1:

Plotg1=ContourPlot[g1,{x1,0,25},{x2,0,25}, ContourShadingÆFalse,ContoursÆ{0,.65},
ContourStyleÆ{{Thickness[.01]},{GrayLevel[.8],Thickness[.025]}}, AxesÆTrue, 
AxesLabelÆ{“x1”,”x2”}, PlotLabelÆ“Profit Maximization Problem”,
EpilogÆ{Disk[{10,10},{.4,.4}], Text[“(10,10)”,{11,9}], Disk[{0,0},{.4,.4}],
Text[“(0,0)”,{2,.5}], Text[“x1+x2=16”,{18,7}], Arrow[{18,6.3},{12,4}], 
Text[“Infeasible”,{17,17}], Text[“x1+x2>16”,{17,15.5}], Text[“Feasible”,{5,6}],
Text[“x1+x2<16”,{5,4.5}]}, DefaultFontÆ{“Times”,12}, ImageSizeÆ72 5];

Here, two contour lines are specified, the second one having a small positive value. This
is indicated by the command: Contours Æ {0, .65}. The constraint boundary is represented
by the contour g1 = 0. The contour g1 = 0.65 will pass through the infeasible region, where
the positive number 0.65 is determined by trial and error. To shade the infeasible region, the
characteristics of the contour are changed. Each set of brackets {} with the ContourStyle
subcommand corresponds to a specific contour. In this case, {Thickness[.01]} provides 
characteristics for the first contour g1 = 0, and {GrayLevel[.8],Thickness[0.025]} provides
characteristics for the second contour g1 = 0.65. GrayLevel specifies a color for the contour
line. A gray level of 0 yields a black line, whereas a gray level of 1 yields a white line. Thus,
this ContourPlot command essentially draws one thin, black line and one thick, gray line.
This way the infeasible side of an inequality is shaded out.

3.2.3 Identification of Feasible Region
By using the foregoing procedure, all constraint functions for the problem are plotted and
their feasible sides are identified. The plot functions for the five constraints g1 to g5 are
named Plotg1, Plotg2, Plotg3, Plotg4, Plotg5. All these functions are quite similar to the one
that was created using the ContourPlot command explained earlier. As an example, Plotg4
function is given as

Plotg4=ContourPlot[g4,{x1,-1,25},{x2,-1,25}, ContourShadingÆFalse, 
ContoursÆ{0,.35}, ContourStyleÆ{{Thickness[.01]}, {GrayLevel[.8],Thickness[.02]}}, 
DisplayFunctionÆIdentity];
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The DisplayFunction Æ Identity subcommand is added to the ContourPlot command to
suppress display of output from each Plotgi function; without that Mathematica executes each
Plotgi function and displays the results. Next, with the following Show command, the five
plots are combined to display the complete feasible set in Fig. 3-3:

Show[{Plotg1,Plotg2,Plotg3,Plotg4,Plotg5}, AxesÆTrue,AxesLabelÆ{“x1”,”x2”}, 
PlotLabelÆ“Profit Maximization Problem”, DefaultFontÆ{“Times”,12}, EpilogÆ
{Text[“g1”,{2.5,16.2}], Text[“g2”,{24,4}], Text[“g3”,{2,24}], Text[“g5”,{21,1}],
Text[“g4”,{1,10}], Text[“Feasible”,{5,6}]}, DefaultFontÆ{“Times”,12}, ImageSizeÆ72
5,DisplayFunction Æ $DisplayFunction];

The Text subcommands are included to add text to the graph at various locations. The 
DisplayFunction Æ $DisplayFunction subcommand is added to display the final graph;
without that it is not displayed.

3.2.4 Plotting of Objective Function Contours
The next task is to plot the objective function contours and locate its optimum point. The
objective function contours of values 2400, 4800, 7200, 8800, shown in Fig. 3-4 are drawn
by using the ContourPlot command as follows:

PlotP=ContourPlot[P,{x1,0,25},{x2,0,25}, ContourShadingÆFalse, ContoursÆ{4800}, 
ContourStyleÆ{{Dashing[{.03,.04}], Thickness[.007]}}, AxesÆTrue,
AxesLabelÆ{“x1”,”x2”}, PlotLabelÆ“Profit Maximization Problem”,
DefaultFontÆ{“Times”,12}, EpilogÆ{Disk[{6,4},{.4,.4}], Text[“P= 4800”,{9.75,4}]},
ImageSizeÆ72 5];

The ContourStyle subcommand provides four sets of characteristics, one for each 
contour. Dashing[{a,b}] yields a dashed line with “a” as the length of each dash and “b” as
the space between dashes. These parameters represent a fraction of the total width of the
graph.

3.2.5 Identification of Optimum Solution
The Show command used to plot the feasible region for the problem in Fig. 3-3 can be
extended to plot the profit function contours as well. Figure 3-5 contains the graphical 
representation for the problem obtained using the following Show command:

Show[{Plotg1,Plotg2,Plotg3,Plotg4,Plotg5, PlotP}, AxesÆTrue, AxesLabelÆ{“x1”,”x2”},
PlotLabel Æ “Profit Maximization Problem”, DefaultFontÆ{“Times”,12},
EpilogÆ{Text[“g1”,{2.5,16.2}], Text[“g2”,{24,4}], Text[“g3”,{3,23}], Text[“g5”,{23,1}],
Text[“g4”,{1,10}], Text[“P= 2400”,{3.5,2}], Text[“P= 8800”,{17,3.5}], Text[“G”,{1,24.5}],
Text[“C”,{10.5,4}], Text[“D”,{3.5,11}], Text[“A”,{1,1}], Text[“B”,{14,-1}],Text[“J”,{16,-1}],
Text[“H”,{25,-1}], Text[“E”,{-1,14}], Text[“F”,{-1,16}]}, DefaultFontÆ{“Times”,12},
ImageSizeÆ72 5, DisplayFunction Æ$DisplayFunction];

Additional Text subcommands have been added to label different objective function 
contours and different points. The final graph is used to obtain the graphical solution. 
The Disk subcommand can be added to the Epilog command to put a dot at the optimum
point.
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3.3 Use of MATLAB for Graphical Optimization
MATLAB is another software package that has many capabilities to solve engineering prob-
lems. For example, it can be used to plot problem functions and to solve graphically a two-vari-
able optimization problem. In this section, we shall explain use of the program for this purpose;
other uses of the program for solving optimization problems are explained in Chapter 12.
There are two modes of input with MATLAB. One may enter commands interactively, one at
a time, and results are displayed immediately after each command. Alternatively, one may
create an input file, called an M-file, that is executed in batch mode. The M-file can be created
using the text editor in MATLAB. To access this editor, select “File”, “New”, and “M-file”.
When saved, this file will have a suffix of “.m.” To submit or run the file, after starting
MATLAB, simply type the name of the file you wish to run, without the suffix “.m” (the
current directory must be the directory where the file is located). In this section, we shall solve
the profit maximization problem of previous sections using MATLAB6.5. It is important to
note with future releases, the commands discussed below may change.

3.3.1 Plotting of Function Contours
For contour plots, the fist command in the input file is entered as follows:

[x1,x2]=meshgrid(-1.0:0.5:25.0, -1.0:0.5:25.0);

This command creates a grid or array of points where all functions to be plotted are evaluated.
The command indicates that x1 and x2 will start at -1.0 and increase in increments of 0.5 up to
25.0. These variables now represent two-dimensional arrays and require special attention in
operations with them. “*” and “/” indicate scalar multiplication and division respectively,
whereas “.*” and “./” indicate element-by-element multiplication and division. “.Ÿ” is used to
apply an exponent to each element of a vector or a matrix. The semicolon “;” after a command
prevents MATLAB from displaying the numerical results immediately, i.e., all of the values for
x1 and x2. This use of a semicolon is a MATLAB convention for most commands. The
“contour” command is used for plotting all problem functions on the screen. The “.m file” for
the profit maximization problem with explanatory comments is prepared and displayed in Table
3-1. Note that the comments in the “.m file” are preceded by the percent sign, %. The comments
are ignored during MATLAB execution. Also note that matrix division and multiplication capa-
bilities are not used in the present example as the variables in the problem functions are only
multiplied or divided by a scalar rather than another variable. If, for instance, a term such as
x1x2 was present, then the element-by-element operation x1.*x2 would be necessary.

The procedure used to identify the infeasible side of an inequality is the same as explained
in the previous section. Two contours are plotted for the inequality; one of value 0 and the
other of small positive value. The second contour will pass through the infeasible region for
the problem. The thickness of the infeasible contour is changed to indicate the infeasible side
of the inequality using the graph editing capability that is explained in the next section. This
way all the constraint functions are plotted and the feasible region for the problem is identi-
fied. By observing the trend of the objective function contours, we can identify the optimum
point for the problem.

3.3.2 Editing of Graph
Once the graph has been created using the previous commands, it is possible to edit it before
printing it or copying it to a text editor. In particular, one may need to modify the appear-
ance of the infeasible contours of the constraints and edit text in the graph. To do this, first
select “Current Object Properties . . .” under the “Edit” tab on the graph window. Then,
double click any item in the graph to edit its properties. For instance, one may increase the
thickness of the infeasible contours to hatch out the infeasible region. In addition, text may
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TABLE 3-1 MATLAB File for Profit Maximization Problem

%Create a grid from -1 to 25 with an increment of 0.5 for the variables x1 and x2
[x1,x2]=meshgrid(-1:0.5:25.0,-1:0.5:25.0);
%Enter functions for the profit maximization problem
f=400*x1+600*x2;

g1=x1+x2-16;

g2=x1/28+x2/14-1;

g3=x1/14+x2/24-1;

g4=-x1;

g5=-x2;
%Initialization statements; these need not end with a semicolon

cla reset
axis auto %Minimum and maximum values for axes are

determined automatically
%Limits for x- and y-axes may also be specified with

the command
%axis ([xmin xmax ymin ymax])

xlabel(‘x1’),ylabel(‘x2’) %Specifies labels for x- and y-axes
title (‘Profit Maximization Problem’) %Displays a title for the problem
hold on %retains the current plot and axes properties for all

subsequent plots
%Use the “contour” command to plot constraint and cost functions

cv1=[0 .5]; %Specifies two contour values
const1=contour(x1,x2,g1,cv1,‘k’); %Plots two specified contours of g1; k = black color
clabel(const1) %Automatically puts the contour value on the graph
text(1,16,‘g1’) %Writes g1 at the location (1, 16)
cv2=[0 .03];

const2=contour(x1,x2,g2,cv2,‘k’);

clabel(const2)

text(23,3,‘g2’)

const3=contour(x1,x2,g3,cv2,‘k’);

clabel(const3)

text(1,23,‘g3’)

cv3=[0 .5];

const4=contour(x1,x2,g4,cv3,‘k’);

clabel(const4)

text(.25,20,‘g4’)

const5=contour(x1,x2,g5,cv3,‘k’);

clabel(const5)

text(19,.5,‘g5’)

text(1.5,7,’Feasible Region’)
fv=[2400, 4800, 7200, 8800]; %Defines 4 contours for the profit function
fs=contour(x1,x2,f,fv,‘k–’); %‘k–’ specifies black dashed lines for profit function

contours
clabel(fs)
hold off %Indicates end of this plotting sequence

%Subsequent plots will appear in separate windows

be added, deleted, or moved as desired. Note that if MATLAB is rerun, any changes made
directly to the graph are lost. For this reason, it is a good idea to save the graph as a “.fig”
file, which then may be recalled with MATLAB. There are two ways for transferring the



graph to another document. First, select “Copy Figure” under the “Edit” tab. The figure then
can be pasted as a bitmap into another document. Alternatively, one may select “Export . . .”
under the “File” tab. The figure is exported as the specified file type and then can be inserted
into another document through the “Insert” command. The final graph with MATLAB for
the profit maximization problem is shown in Fig. 3-6.

3.4 Design Problem with Multiple Solutions
A situation can arise in which a constraint is parallel to the cost function. If the constraint is
active at the optimum, then there are multiple solutions to the problem. To illustrate this 
situation, consider the following design problem: minimize f(x) = -x1 - 0.5x2 subject to four
inequality constraints

In this problem, the second constraint is parallel to the cost function. Therefore, there is
a possibility of multiple optimum designs. Figure 3-7 provides a graphical solution to the
problem. It can be seen that any point on the line B–C gives an optimum design. Thus the
problem has infinite optimum solutions.

3.5 Problem with Unbounded Solution
Some design problems may not have a bounded solution. This situation can arise if we forget
a constraint or incorrectly formulate the problem. To illustrate such a situation, consider the

2 3 12 2 8 0 01 2 1 2 1 2x x x x x x+ £ + £ - £ - £, , ,
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following design problem: minimize f(x) = -x1 + 2x2 subject to four inequality 
constraints

The feasible set for the problem is shown in Fig. 3-8. Several cost function contours are
shown. It can be seen that the feasible set is unbounded. Therefore, there is no finite optimum
solution. We must re-examine the way the problem was formulated to correct the situation.
It can be seen in Fig. 3-8 that the problem is under-constrained.

3.6 Infeasible Problem
If we are not careful in formulating a design problem, it may not have a solution, which
happens when there are conflicting requirements or inconsistent constraint equations. There
may also be no solution when we put too many constraints on the system, i.e., the constraints
are so restrictive that no feasible solution is possible. These are called infeasible problems.
To illustrate such a situation, consider the following problem: minimize f(x) = x1 + 2x2 subject
to six inequality constraints

Constraints for the problem are plotted in Fig. 3-9. It can be seen that there is no region
within the design space that satisfies all constraints. Thus, the problem is infeasible. Basi-

3 2 6 2 3 12 5 01 2 1 2 1 2 1 2x x x x x x x x+ £ + ≥ £ ≥, , , , ,

- + £ - + £ - £ - £2 0 2 3 6 0 01 2 1 2 1 2x x x x x x, , ,
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cally, the first two constraints impose conflicting requirements on the design problem. The
first requires the feasible design to be below the line A–G, whereas the second requires it to
be above the line C–F. Since the two lines do not intersect in the first quadrant, there is no
feasible region for the problem.



3.7 Graphical Solution for Minimum Weight Tubular Column
The design problem formulated in Section 2.7 will now be solved using the graphical method,
with the following specifications: P = 10MN, E = 207GPa, r = 7833kg/m3, l = 5.0m, and
sa = 248MPa. Using this data, Formulation 1 for the problem is defined as: find mean radius
R (m) and thickness t (m) to minimize the mass function:

(a)

subject to the four inequality constraints

(b)

(c)

(d)

(e)

Note that the explicit bound constraints are simply replaced by the nonnegativity 
constraints g3 and g4. The constraints for the problem are plotted in Fig. 3-10 and the 
feasible region is indicated. Cost function contours for f = 1000, 1500, 1579kg are also
shown. Note that in this example the cost function contours run parallel to the stress con-
straint g1. Since g1 is active at the optimum, the problem has an infinite number of optimum
designs, i.e., the entire curve A–B in Fig. 3-10. We can read the coordinates of any point on
the curve A–B as an optimum solution. In particular, point A, where constraints g1 and g2

intersect, is also an optimum point where R* = 0.1575m and t* = 0.0405m. Note that the
superscript * on a variable indicates its optimum value, a notation that will be used through-
out this text.

Note also that this problem has nonlinear functions. To plot them, we generate tables 
of data points t versus R and connect them using smooth curves on the graph. For example,
to plot the constraint boundary for g2 (R3t = 1.558 ¥ 10-4), we select values for t as 
0.015, 0.03, 0.06, 0.075, 0.09, and calculate the values for R from g2 = 0 as 0.218, 0.173,
0.1374, 0.1275, and 0.12. This procedure can be used to plot any nonlinear function of two
variables. Figure 3-10 was generated using MATLAB with manual hatching of the infeasi-
ble region.

3.8 Graphical Solution for a Beam Design Problem
Step 1: Project/Problem Statement A beam of rectangular cross section is subjected to a
bending moment of M (N·m) and a maximum shear force of V (N). The bending stress in the
beam is calculated as s = 6M/bd2 (Pa) and average shear stress is calculated as t = 3V/2bd
(Pa), where b is the width and d is the depth of the beam. The allowable stresses in bending
and shear are 10MPa and 2MPa, respectively. It is also desirable that the depth of the beam
not exceed twice its width and that the cross-sectional area of the beam is minimized. In this
section, we formulate and solve the problem using the graphical method.
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Step 2: Data and Information Collection Let the bending moment M = 40kN·m and the
shear force V = 150kN. All other data and necessary equations are given in the project state-
ment. We shall formulate the problem using a consistent set of units as N and mm.

Step 3: Identification/Definition of Design Variables Two design variables are:

Step 4: Identification of a Criterion to Be Optimized The cost function for the problem
is the cross-sectional area, which is expressed as

(a)

Step 5: Identification of Constraints Constraints for the problem consist of bending stress,
shear stress, and depth-to-width ratio. Bending and shear stresses are calculated as

(b)

(c)t
t

= =
( )( )3

2

3 150 1000

2
2

bd bd
, N mm

s = =
( )( )( )6 6 40 1000 1000

2 2
2M

bd bd
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f b d bd,( ) =

d
b

=
=
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Allowable bending stress sa and allowable shear stress ta are given as

(d)

(e)

Using Eqs. (b) through (e), we obtain the bending and shear stress constraints as

(f)

(g)

The constraint that requires that the depth be no more than twice the width can be expressed
as

(h)

Finally, both design variables should be nonnegative:

(i)

In reality, b and d cannot both have zero value, so we should use some minimum value as
lower bounds on them, i.e., b ≥ bmin and d ≥ dmin.

Graphical Solution. Using MATLAB, the constraints for the problem are plotted in Fig.
3-11 and the feasible region is identified. Note that the cost function is parallel to the con-
straint g2 (both functions have the same form: bd = constant). Therefore any point along the
curve A–B represents an optimum solution. Thus, there is an infinite number of optimum
designs. This is a desirable situation since a wide choice of optimum solutions is available
to meet a designer’s needs.

The optimum cross-sectional area is 112,500mm2. Point B corresponds to an optimum
design of b = 237mm and d = 474mm. Point A corresponds to b = 527.3mm and d =
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213.3mm. These points represent the two extreme optimum solutions; all other solutions lie
between these two points on the curve A–B.

Exercises for Chapter 3
Solve the following problems using the graphical method.

3.1 Minimize f(x1, x2) = (x1 - 3)2 + (x2 - 3)2

subject to x1 + x2 £ 4
x1, x2 ≥ 0

3.2 Maximize F(x1, x2) = x1 + 2x2

subject to 2x1 + x2 £ 4
x1, x2 ≥ 0

3.3 Minimize f(x1, x2) = x1 + 3x2

subject to x1 + 4x2 ≥ 48
5x1 + x2 ≥ 50
x1, x2 ≥ 0

3.4 Maximize F(x1, x2) = x1 + x2 + 2x3

subject to 1 £ x1 £ 4
3x2 - 2x3 = 6
-1 £ x3 £ 2
x2 ≥ 0

3.5 Maximize F(x1, x2) = 4x1x2

subject to x1 + x2 £ 20
x2 - x1 £ 10
x1, x2 ≥ 0

3.6 Minimize f(x1, x2) = 5x1 + 10x2

subject to 10x1 + 5x2 £ 50
5x1 - 5x2 ≥ -20
x1, x2 ≥ 0

3.7 Minimize f(x1, x2) = 3x1 + x2

subject to 2x1 + 4x2 £ 21
5x1 + 3x2 £ 18
x1, x2 ≥ 0

3.8 Minimize f(x1, x2) = x2
1 - 2x2

2 - 4x1

subject to x1 + x2 £ 6
x2 £ 3
x1, x2 ≥ 0

3.9 Minimize f(x1, x2) = x1x2

subject to x1 + x2
2 £ 0

x2
1 + x2

2 £ 9

3.10 Minimize f(x1, x2) = 3x1 + 6x2

subject to -3x1 + 3x2 £ 2
4x1 + 2x2 £ 4
-x1 + 3x2 ≥ 1
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Develop an appropriate graphical representation for the following problems and determine
all the local minimum and local maximum points.

3.11 f(x, y) = x2 + y2

subject to y - x £ 0
x2 + y2 - 1 = 0

3.12 f(x, y) = 4x2 + 3y2 - 5xy - 8x
subject to x + y = 4

3.13 f(x, y) = 9x2 + 13y2 + 18xy - 4
subject to x2 + y2 + 2x = 16

3.14 f(x, y) = 2x + 3y - x3 - 2y2

subject to x + 3y £ 6
5x + 2y £ 10
x, y ≥ 0

3.15 f(r, t) = (r - 8)2 + (t - 8)2

subject to 12 ≥ r + t
t £ 5
r, t ≥ 0

3.16 f(x1, x2) = x3
1 - 16x1 + 2x2 - 3x2

2

subject to x1 + x2 £ 3

3.17 f(x, y) = 9x2 + 13y2 + 18xy - 4
subject to x2 + y2 + 2x ≥ 16

3.18 f(r, t) = (r - 4)2 + (t - 4)2

subject to 10 - r - t ≥ 0
5 ≥ r
r, t ≥ 0

3.19 f(x, y) = -x + 2y
subject to -x2 + 6x + 3y £ 27

18x - y2 + 6x ≥ 180
x, y ≥ 0

3.20 f(x1, x2) = (x1 - 4)2 + (x2 - 2)2

subject to 10 ≥ x1 + 2x2

0 £ x1 £ 3
x2 ≥ 0

3.21 Solve the rectangular beam problem of Exercise 2.17 graphically for the following
data: M = 80kN·m, V = 150kN, sa = 8MPa, and ta = 3MPa.

3.22 Solve the cantilever beam problem of Exercise 2.23 graphically for the following
data: P = 10kN; l = 5.0m; modulus of elasticity, E = 210Gpa; allowable bending
stress, sa = 250MPa; allowable shear stress, ta = 90MPa; mass density, r = 7850
kg/m3; Ro £ 20.0cm; Ri £ 20.0cm.

3.23 For the minimum mass tubular column design problem formulated in Section 2.7,
consider the following data: P = 50kN; l = 5.0m; modulus of elasticity, E = 210
Gpa; allowable stress, sa = 250MPa; mass density, r = 7850kg/m3.

Treating mean radius R and wall thickness t as design variables, solve the design
problem graphically imposing an additional constraint R/t £ 50. This constraint is
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needed to avoid local crippling of the column. Also impose the member size
constraints as

3.24 For Exercise 3.23, treat outer radius Ro and inner radius Ri as design variables, and
solve the design problem graphically. Impose the same constraints as in Exercise
3.23.

3.25 Formulate the minimum mass column design problem of Section 2.7 using a hollow
square cross section with outside dimension w and thickness t as design variables.
Solve the problem graphically using the constraints and the data given in Exercise
3.23.

3.26 Consider the symmetric (members are identical) case of the two-bar truss problem
discussed in Section 2.5 with the following data: W = 10kN; q = 30°; height h =
1.0m; span s = 1.5m; allowable stress, sa = 250MPa; modulus of elasticity, E =
210GPa.

Formulate the minimum mass design problem with constraints on member
stresses and bounds on design variables. Solve the problem graphically using
circular tubes as members.

3.27 Formulate and solve the problem of Exercise 2.1 graphically.

3.28 In the design of a closed-end, thin-walled cylindrical pressure vessel shown in 
Fig. E3.28, the design objective is to select the mean radius R and wall thickness t
to minimize the total mass. The vessel should contain at least 25.0m3 of gas at an
internal pressure of 3.5MPa. It is required that the circumferential stress in the
pressure vessel not exceed 210MPa and the circumferential strain not exceed 
(1.0E - 03). The circumferential stress and strain are calculated from the equations

where r = mass density (7850kg/m3), sc = circumferential stress (Pa), ec =
circumferential strain, P = internal pressure (Pa), E = Young’s modulus (210GPa),
and n = Poisson’s ratio (0.3).

(i) Formulate the optimum design problem and (ii) solve the problem graphically.
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3.29 Consider the symmetric three-bar truss design problem formulated in Section 2.10.
Formulate and solve the problem graphically for the following data: l = 1.0m; P =
100kN; q = 30°; mass density, r = 2800kg/m3; modulus of elasticity, E = 70GPa;
allowable stress, sa = 140MPa; Du = 0.5cm; Dv = 0.5cm; wo = 50Hz; b = 1.0; 
A1, A2 ≥ 2cm2.



3.30 Consider the cabinet design problem given in Section 2.6. Use the equality
constraints to eliminate three design variables from the problem. Restate the
problem in terms of the remaining three variables, transcribing it into the standard
form.

3.31 Solve the insulated spherical tank design problem formulated in Section 2.3
graphically for the following data: r = 3.0m, c1 = $100, c2 = 500, c3 = $10, c4 = $5,
DT = 10.

3.32 Solve the cylindrical tank design problem given in Section 2.8 graphically for the
following data: c = $1500/m2, V = 3000m3.

3.33 Consider the minimum mass tubular column problem formulated in Section 2.7.
Find the optimum solution for the problem using the graphical method for the data:
load, P = 100kN; length, l = 5.0m; Young’s modulus, E = 210GPa; allowable
stress, sa = 250MPa; mass density, r = 7850kg/m3; R £ 0.4m; t £ 0.1m; R, t ≥ 0.

3.34* Design a hollow torsion rod shown in Fig. E3.34 to satisfy the following
requirements (created by J. M. Trummel):

1. The calculated shear stress, t, shall not exceed the allowable shear stress ta

under the normal operating torque To (N·m).
2. The calculated angle of twist, q, shall not exceed the allowable twist, qa

(radians).
3. The member shall not buckle under a short duration torque of Tmax (N·m).

Requirements for the rod and material properties are given in Tables E3.34(A) and
E3.34(B) (select a material for one rod). Use the following design variables: x1 =
outside diameter of the rod and x2 = ratio of inside/outside diameter, di/do.

Using graphical optimization, determine the inside and outside diameters for a
minimum mass rod to meet the above design requirements. Compare the hollow rod
with an equivalent solid rod (di/do = 0). Use consistent set of units (e.g., Newtons
and millimeters) and let the minimum and maximum values for design variables be
given as

Useful expressions for the rod are:

Mass of rod:

Calculated shear stress:

Calculated angle of twist:

Critical buckling torque:

Notation
M = mass of the rod (kg),
do = outside diameter of the rod (m),
di = inside diameter of the rod (m),
r = mass density of material (kg/m3),
l = length of the rod (m),
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3.35* Formulate and solve Exercise 3.34 using the outside diameter do and the inside
diameter di as design variables.

3.36* Formulate and solve Exercise 3.34 using the mean radius R and wall thickness t as
design variables. Let the bounds on design variables be given as 5 £ R £ 20cm and
0.2 £ t £ 4cm.

3.37 Formulate the problem of Exercise 2.3 and solve it using the graphical method.

3.38 Formulate the problem of Exercise 2.4 and solve it using the graphical method.

3.39 Solve Exercise 3.23 for a column pinned at both ends. The buckling load for such a
column is given as p2EI/l2. Use graphical method.
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TABLE E3-34(B) Materials and Properties for the Torsion Rod

Material Density, r Allowable Elastic Shear Poisson
(kg/m3) shear stress, modulus, modulus, ratio

ta (MPa) E (GPa) G (GPa) (n)

1. 4140 alloy steel 7850 275 210 80 0.30
2. Aluminum alloy 24 ST4 2750 165 75 28 0.32
3. Magnesium alloy A261 1800 90 45 16 0.35
4. Berylium 1850 110 300 147 0.02
5. Titanium 4500 165 110 42 0.30

Torque

di

do
l

FIGURE E3-34 Hollow torsion rod.

TABLE E3-34(A) Rod Requirements

Torsion Length, Normal Maximum, Allowable
rod l (m) torque, Tmax twist, qa

number To (kN·m) (kN·m) (degrees)

1 0.50 10.0 20.0 2
2 0.75 15.0 25.0 2
3 1.00 20.0 30.0 2

To = normal operating torque (N·m),
c = distance from rod axis to extreme fiber (m),
J = polar moment of inertia (m4),
q = angle of twist (radians),
G = modulus of rigidity (Pa),

Tcr = critical buckling torque (N·m),
E = modulus of elasticity (Pa), and
n = Poisson’s ratio.



3.40 Solve Exercise 3.23 for a column fixed at both ends. The buckling load for such a
column is given as 4p2EI/l2. Use graphical method.

3.41 Solve Exercise 3.23 for a column fixed at one end and pinned at the other. The
buckling load for such a column is given as 2p2EI/l2. Use graphical method.

3.42 Solve Exercise 3.24 for a column pinned at both ends. The buckling load for such a
column is given as p2EI/l2. Use graphical method.

3.43 Solve Exercise 3.24 for a column fixed at both ends. The buckling load for such a
column is given as 4p2EI/l2. Use graphical method.

3.44 Solve Exercise 3.24 for a column fixed at one end and pinned at the other. The
buckling load for such a column is given as 2p2EI/l2. Use graphical method.

3.45 Solve the can design problem formulated in Section 2.2 using the graphical approach.

3.46 Consider the two-bar truss shown in Fig. 2-2. Using the given data, design a
minimum mass structure where W = 100kN; q = 30°; h = 1m; s = 1.5m; modulus
of elasticity, E = 210GPa; allowable stress, sa = 250MPa; mass density, r = 7850
kg/m3. Use Newtons and millimeters as units. The members should not fail in stress
and their buckling should be avoided. Deflection at the top in either direction should
not be more than 5cm.

Use cross-sectional areas A1 and A2 of the two members as design variables and
let the moment of inertia of the members be given as I = A2. Areas must also satisfy
the constraint 1 £ Ai £ 50cm2.

3.47 For Exercise 3.46, use hollow circular tubes as members with mean radius R and
wall thickness t as design variables. Make sure that R/t £ 50. Design the structure so
that member 1 is symmetric with member 2. The radius and thickness must also
satisfy the constraints 2 £ t £ 40mm and 2 £ R £ 40cm.

3.48 Design a symmetric structure defined in Exercise 3.46 treating cross-sectional area
A and height h as design variables. The design variables must also satisfy the
constraints 1 £ A £ 50cm2 and 0.5 £ h £ 3m.

3.49 Design a symmetric structure defined in Exercise 3.46 treating cross-sectional area
A and the span s as design variables. The design variables must also satisfy the
constraints 1 £ A £ 50cm2 and 0.5 £ s £ 4m.

3.50 A minimum mass symmetric (area of member 1 is the same as member 3) three-bar
truss is to be designed to support a load P as shown in Fig. 2-6. The following
notation may be used: Pu = P cosq, Pv = P sinq, A1 = cross-sectional area of
members 1 and 3, A2 = cross-sectional area of member 2.

The members must not fail under the stress, and deflection at node 4 must not
exceed 2cm in either direction. Use Newtons and millimeters as units. The data is
given as P = 50kN; q = 30°; mass density, r = 7850kg/m3; modulus of elasticity, E
= 210GPa; allowable stress, sa = 150MPa. The design variables must also satisfy
the constraints 50 £ Ai £ 5000mm2.

3.51* Design of a water tower support column. As a member of the ABC Consulting
Engineers you have been asked to design a cantilever cylindrical support column of
minimum mass for a new water tank. The tank itself has already been designed in
the tear-drop shape shown in Fig. E3-51. The height of the base of the tank (H), the
diameter of the tank (D), and the wind pressure on the tank (w) are given as H =
30m, D = 10m, and w = 700N/m2. Formulate the design optimization problem and
solve it graphically (created by G. Baenziger).
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In addition to designing for combined axial and bending stresses and buckling,
several limitations have been placed on the design. The support column must have
an inside diameter of at least 0.70m (di) to allow for piping and ladder access to the
interior of the tank. To prevent local buckling of the column walls the diameter/
thickness ratio (do/t) shall not be greater than 92. The large mass of water and steel
makes deflections critical as they add to the bending moment. The deflection effects
as well as an assumed construction eccentricity (e) of 10cm must be accounted for
in the design process. Deflection at C.G. of the tank should not be greater than D.

Limits on the inner radius and wall thickness are 0.35 £ R £ 2.0m and 1.0 £ t
£ 20cm.

Pertinent constants and formulas
Height of water tank, h = 10m
Allowable deflection, D = 20cm
Unit weight of water, gw = 10kN/m3

Unit weight of steel, gs = 80kN/m3

Modulus of elasticity, E = 210GPa

Moment of inertia of the column,

Cross-sectional area of column material, A = pt(do - t)
Allowable bending stress, sb = 165MPa

Allowable axial stress, (calculated using the 

critical buckling load with a factor of 

safety of 

Radius of gyration,
Average thickness of tank wall, tt = 1.5cm
Volume of tank, V = 1.2pD2h
Surface area of tank, As = 1.25pD2

Projected area of tank, for wind loading,

Load on the column due to weight of water and steel tank,

Lateral load at the tank C.G. due to wind pressure, W = wAp.
Deflection at C.G. of tank, d = d1 + d2, where

Moment at base, M = W(H + 0.5h) + (d + e)P

Bending stress,

Axial stress,

Combined stress constraint,

Gravitational acceleration, g = 9.81m/s2
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3.52* Design of a flag pole. Your consulting firm has been asked to design a minimum
mass flag pole of height H. The pole will be made of uniform hollow circular tubing
with do and di as outer and inner diameters, respectively. The pole must not fail
under the action of high winds.

For design purposes, the pole will be treated as a cantilever that is subjected to a
uniform lateral wind load of w (kN/m). In addition to the uniform load, the wind
induces a concentrated load of P (kN) at the top of the pole, as shown in Fig.
E3.52. The flag pole must not fail in bending or shear. The deflection at the top
should not exceed 10cm. The ratio of mean diameter to thickness must not exceed
60. The pertinent data are given below. Assume any other data if needed. The
minimum and maximum values of design variables are 5 £ do £ 50cm and 
4 £ di £ 45cm.

Pertinent constants and equations

Cross-sectional area,

Moment of inertia,

Modulus of elasticity, E = 210GPa
Allowable bending stress, sb = 165MPa
Allowable shear stress, ts = 50MPa
Mass density, r = 7800kg/m3

Wind load, w = 2.0kN/m
Height of flag pole, H = 10m
Concentrated load at top, P = 4.0kN
Moment at the base, M = (PH + 0.5wH2), kN·m

Bending stress,

Shear at the base, S = (P + wH), kN

Shear stress,

Deflection at the top,

Minimum and maximum thickness, 0.5 and 2cm
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FIGURE E3-51 Water tower support column.



Formulate the design problem and solve it using the graphical optimization
technique.
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P

H

A A

Section A–A

di

do

FIGURE E3-52 Flag pole.

3.53* Design of a sign support column. The design department of a company has been
asked to design a support column of minimum weight for the sign shown. The
height to the bottom of the sign H, the width of the sign b, and the wind pressure p
on the sign are as follows: H = 20 m, b = 8m, p = 800N/m2 (Fig. E3.53).

The sign itself weights 2.5kN/m2(w). The column must be safe with respect to
combined axial and bending stresses. The allowable axial stress includes a factor of
safety with respect to buckling. To prevent local buckling of the plate the
diameter/thickness ratio do/t must not exceed 92. Note that the bending stress in the
column will increase as a result of the deflection of the sign under the wind load.
The maximum deflection at the center of gravity of the sign should not exceed 
0.1 m. The minimum and maximum values of design variables are 25 £ do £
150cm and 0.5 £ t £ 10cm (created by H. Kane).

Pertinent constants and equations
Height of the sign, h = 4.0m
For column section

Area,

Moment of inertia,

Radius of gyration,

Young’s modulus (aluminum alloy), E = 75GPa

Unit weight of steel, g = 80kN/m3

Allowable bending stress, sb = 140MPa
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Allowable axial stress,

Wind force, F = pbh

Weight of sign, W = wbh

Deflection at center of gravity of sign,

Bending stress in column,

Axial stress,

Moment at the base,

Combined stress requirement,
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FIGURE E3-53 Sign support column.

3.54* Design of a tripod. Design a minimum mass tripod of height H to support a
vertical load W = 60kN. The tripod base is an equilateral triangle with sides B =
1200mm. The struts have a solid circular cross section of diameter D (Fig. E3-54).

The axial stress in the struts must not exceed the allowable stress in
compression, and the axial load in the strut P must not exceed the critical buckling
load Pcr divided by a safety factor FS = 2. Use consistent units of Newtons and
centimeters. The minimum and maximum values for design variables are 0.5 £ H
£ 5m and 0.5 £ D £ 50cm. Material properties and other relationships are given
below:

Material: aluminum alloy 2014-T6
Allowable compressive stress, sa = 150MPa
Young’s modulus, E = 75GPa
Mass density, r = 2800kg/m3

Strut length, l H B= +Ê
Ë

ˆ
¯

2 2

0 5
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FIGURE E3-54 A tripod.
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4 Optimum Design Concepts

83

Upon completion of this chapter, you will be able to:

• Define local and global minima (maxima) for unconstrained and constrained
problems

• Write optimality conditions for unconstrained and constrained problems

• Check optimality of a given point for unconstrained and constrained problems

• Solve first-order optimality conditions for candidate minimum points

• Check convexity of a function and the design optimization problem

• Use Lagrange multipliers to study changes to the optimum value of the cost 
function due to constraint variations

In this chapter, we discuss basic ideas, concepts, and theories used for design optimiza-
tion (the minimization problem). Theorems on the subject are stated without proofs. Their
implications and use in the optimization process are discussed. The student is reminded to
review the basic terminology and notation explained in Section 1.5 as they are used through-
out the present chapter and the remaining text.

As an overview of the material of the present and the remaining chapters, we show in Fig.
4-1 a broad classification of the optimization techniques. Two philosophically different view-
points are shown. It is important to understand the features—limitations and advantages—of
the two approaches to gain insights for practical applications of optimization. The two cate-
gories are indirect (or optimality criteria) methods and direct (or search) methods. Optimal-
ity criteria are the conditions a function must satisfy at its minimum point. Minimization
techniques seeking solutions to optimality conditions are often called indirect methods. The
direct (search) techniques are based on a different philosophy. There we start with an esti-
mate of the optimum design for the problem. Usually the starting design will not satisfy opti-
mality criteria; therefore, it is improved iteratively until they are satisfied. Thus, in this
approach we search the design space for optimum points. We shall address unconstrained and
constrained optimization problems under both categories in this text.

A thorough knowledge of optimality conditions is required to understand the performance
of various numerical (search) methods discussed later in the text. This chapter focuses on
the discussion of the optimality conditions and the solution methods based on them. Simple



examples are used to explain the underlying concepts and ideas. The examples will also show
practical limitations of the methods based on optimality conditions. The search methods are
presented in later chapters and refer to the results discussed in this chapter. Therefore, the
material in the present chapter should be understood thoroughly. We will first discuss the
concept of local optimum of a function and the conditions that characterize it. The problem
of global optimality of a function will be discussed later in this chapter. It is important to
note that all the problem functions are assumed twice continuously differentiable.

4.1 Definitions of Global and Local Minima
Optimality conditions for a minimum point of the function are discussed in later sections. 
In this section, concepts of local and global minima are defined and illustrated using the 
standard mathematical model for design optimization defined in Chapter 2. The design opti-
mization problem is always converted to minimization of a cost function subject to equality
and inequality constraints. The problem is re-stated as follows: Find design variable vector
x to minimize a cost function f (x) subject to the equality constraints hj(x) = 0, j = 1 to p and
inequality constraints gi(x) £ 0, i = 1 to m. Note that the simple bounds on design variables,
such as xi ≥ 0, or xil £ xi £ xiu are assumed to be included in the standard inequality constraints
gi(x); xil and xiu are the smallest and largest allowed values for xi. This is done to explain 
optimization concepts without getting bogged down with a separate treatment of these 
constraints. However, in numerical methods, these constraints are treated explicitly to take
advantage of their special form.

4.1.1 Minimum
In Section 2.11, we defined the feasible set S (also called constraint set, feasible region or
feasible design space) for a design problem as a collection of feasible designs:

Since there are no constraints in unconstrained problems, the entire design space is feasi-
ble for them. The optimization problem is to find a point in the feasible design space that
gives a minimum value to the cost function. Methods to locate optimum designs are dis-
cussed throughout the text. We must first carefully define what is meant by an optimum. In
the following discussion, x* is used to designate a particular point of the feasible set.

Global (Absolute) Minimum A function f (x) of n variables has global (absolute) minimum
at x* if

S h j p g i mj i= ( ) = = ( ) £ ={ }x x x0 1 0 1, ; ;to to
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Optimization methods

Optimality criteria
(indirect methods)

Search methods
(direct methods)

Constrained
problem

Unconstrained
problem

FIGURE 4-1 Classification of optimization methods.



(4.1)

for all x in the feasible design space S. If strict inequality holds for all x other than x* in 
Eq. (4.1), then x* is called a strong (strict) global minimum; otherwise it is called a weak
global minimum.

Local (Relative) Minimum A function f(x) of n variables has a local (relative) minimum
at x* if Inequality (4.1) holds for all x in a small neighborhood N of x* in the feasible design
space S. If strict inequality holds, then x* is called a strong (strict) local minimum; other-
wise it is called a weak local minimum.

Neighborhood N of the point x* is defined as the set of points

for some small d > 0. Geometrically, it is a small feasible region around the point x*. Note that
a function f (x) can have strict global minimum at only one point. It may, however, have a 
global minimum at several points if it has the same value at each of those points. Similarly, a
function f (x) can have a strict local minimum at only one point in the neighborhood N 
of x*. It may, however, have local minimum at several points in N if the function value is the
same at each of those points. Note that global and local maxima are defined in a similar manner
by simply reversing the inequality in Eq. (4.1). We also note here that these definitions do not
provide a method for locating minimum points. Based on them, however, we can develop
analyses and computational procedures to locate them. Also, we can use the definitions to
check optimality of points in the graphical solution process presented in Chapter 3.

To understand the graphical significance of global and local minima, consider graphs of
a function f (x) of one variable, as shown in Fig. 4-2. In Part (A) of the figure, where x is
between -• and • (-• £ x £ •), points B and D are local minima since the function has its
smallest value in their neighborhood. Similarly, both A and C are points of local maxima for
the function. There is, however, no global minimum or maximum for the function since the
domain and the function f (x) are unbounded, i.e., x and f (x) are allowed to have any value
between -• and •. If we restrict x to lie between -a and b as in Part (B) of Fig. 4-2, then
point E gives the global minimum and F the global maximum for the function. We shall
further illustrate these concepts for constrained problems with Examples 4.1 to 4.3.

N S= Œ - <{ }x x x xwith * d

f fx x*( ) £ ( )
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EXAMPLE 4.1 Graphical Representation of Unconstrained 
Minimum for a Constrained Problem

An optimum design problem is formulated and transcribed into the standard form in
terms of the variables x and y as follows: minimize f(x,y) = (x - 4)2 + (y - 6)2 subject
to the constraints:

g y y4 0 0= - £ ≥( )

g x x3 0 0= - £ ≥( )

g x2 8 0= - £

g x y1 12 0= + - £
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(A)

(B)

A

A

B

B

E

D

D

C

C

f (x)

f (x)

x 

x 

F

x = –a

x = b

FIGURE 4-2 Graphical representation of optimum points. (A) Unbounded domain and func-
tion (no global optimum). (B) Bounded domain and function (global minimum and maximum
exist).

Find local and global minima for the function f (x,y) using the graphical method.

Solution. Using the procedure for graphical optimization described in Chapter 3, 
the constraints for the problem are plotted and the feasible region is identified as
ABCD in Fig. 4-3. Contours of the cost function f (x,y), which is an equation of a 
circle with center at (4, 6), are also shown. To locate the minimum points, we use 
the definition of local minimum and check the inequality f (x*,y*) £ f (x,y) at a 
candidate feasible point (x*,y*) in its small feasible neighborhood. Note that the 
cost function always has a nonnegative value at any point with the smallest value as
zero at its center. Since the center of the circle at E(4, 6) is feasible, it is a local
minimum point. We check the local minimum condition at some other points as
follows:

Point A(0,0): f (0,0) = 52 is not a minimum point because the inequality f (0,0) £
f (x,y) is violated for any small feasible move away from the point A; i.e., the
cost function reduces as we move away from the point A in the feasible region.

Point F(4,0): f (4,0) = 36 is also not a minimum point since there are feasible moves
from the point for which the cost function can be reduced.
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EXAMPLE 4.2 Graphical Representation of Constrained
Minimum

Solve the optimum design problem formulated in terms of variables x and y as: min-
imize f (x,y) = (x - 10)2 + (y - 8)2 subject to the constraints of Example 4.1.

Solution. The feasible region for the problem is ABCD as shown in Fig. 4-4. The
cost function is an equation of a circle with center at the point E(10, 8). However, the
point (10, 8) is infeasible. Some cost contours are shown in the figure. The problem
now is to find a point of the feasible region that is closest to the point E; i.e., with the
smallest value for the cost function. It is seen that point G with coordinates (7, 5) and
f = 18 has the smallest distance from point E. At this point, the constraint g1 is active.
Thus, for the present objective function, the constraints play a prominent role in deter-
mining the minimum point for the problem.

Use of the definition of a local minimum point also indicates that the point G is
indeed a local minimum for the function since any feasible move from G results in
an increase in the cost function. The use of the definition also indicates that there is
no other local minimum point. Thus, point G is a global minimum point as well.
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Local minimum: point E(4,6)

Global minimum: point E(4,6)

FIGURE 4-3 Graphical representation of unconstrained minimum for Example 4.1.

It can be checked that points B, C, D, and G are also not local minimum points. In
fact, there is no other local minimum point. Thus, point E is a local as well as a global
minimum point for the function. It is important to note that at the minimum point no
constraints are active; i.e., constraints play no role in determining the minimum points
for this problem. However, this is not always true, as we shall see in Example 4.2.
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FIGURE 4-4 Graphical representation of constrained minimum for Example 4.2.

EXAMPLE 4.3 Graphical Representation of Maxima

Solve the optimum design problem formulated in terms of variables x and y as: 
maximize f (x,y) = (x - 4)2 + (y - 6)2 subject to the constraints of Example 4.1.

Solution. The feasible region for the problem is ABCD as shown in Fig. 4-3. The
objective function is an equation of a circle with center at the point E(4, 6). Some
objective function contours are shown in the figure. It is seen that point D(8, 0) is a
local maximum point because any feasible move away from the point results in reduc-
tion of the objective function. Point C(8, 4) is not a local maximum point since a fea-
sible move along the line CD results in an increase in the objective function thus
violating the definition of a local max point [ f (x*,y*) ≥ f (x,y)]. It can be verified that
points A and B are also local maximum points, and point G is not. Thus this problem
has the following three local maximum points:

It is seen that the objective function has the same value at all the three points.
Therefore all the points are global maximum points. This example shows that an
objective function can have several global optimum points in the feasible region.

Point D 8 0 8 0 52, : ,( ) ( ) =f

Point B 0 12 0 12 52, : ,( ) ( ) =f

Point A 0 0 0 0 52, : ,( ) ( ) =f



4.1.2 Existence of Minimum
In general we do not know before attempting to solve a problem if a minimum even exists.
In certain cases we can ensure existence of a minimum even though we may not know how
to find it. The Weierstrass theorem guarantees this when certain conditions are satisfied.

Theorem 4.1 Weierstrass Theorem—Existence of Global Minimum If f (x) is continuous
on a nonempty feasible set S that is closed and bounded, then f (x) has a global minimum in S.

To use the theorem we must understand the meaning of a closed and bounded set. A set
S is closed if it includes all its boundary points and every sequence of points has a subse-
quence that converges to a point in the set. A set is bounded if for any point, x Œ S, xTx < c,
where c is a finite number. Since the domain of the function in Fig. 4-2(A) is not closed and
the function is also unbounded, a global minimum or maximum for the function is not
assured. Actually, there is no global minimum or maximum for the function. However, in
Fig. 4-2(B), since the feasible region is closed and bounded with -a £ x £ b and the func-
tion is continuous, it has global minimum as well as maximum points. It is important to note
that in general it is difficult to check the boundedness condition xTx < c since there are infi-
nite points in S. The foregoing examples are simple where a graphical representation of the
problem is available and it is easy to check the condition. Nevertheless it is important to keep
the theorem in mind while using a numerical method to solve an optimization problem. If
the numerical process is not converging to a solution, then perhaps some conditions of this
theorem are violated and the problem formulation needs to be re-examined carefully. Example
4.4 further illustrates the use of Weierstrass theorem.
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EXAMPLE 4.4 Existence of Global Minimum Using
Weierstrass Theorem

Consider a function f (x) = -1/x defined on the set S = {x | 0 < x £ 1}. Check exis-
tence of a global minimum for the function.

Solution. The feasible set S is not closed since it does not include the boundary point
x = 0. The conditions of the Weierstrass theorem are not satisfied, although f is con-
tinuous on S. Existence of a global minimum is not guaranteed and indeed there is no
point x* satisfying f (x*) £ f (x) for all x Œ S. If we define S = {x | 0 £ x £ 1}, then the
feasible set is closed and bounded. However, f is not defined at x = 0 (hence not con-
tinuous), so the conditions of the theorem are still not satisfied and there is no guar-
antee of a global minimum for f in the set S.

Note that when conditions of the Weierstrass theorem are satisfied, existence of a global
optimum is guaranteed. It is important, however, to realize that when they are not satisfied, a
global solution may still exist. The theorem does not rule out this possibility. The difference is
that we cannot guarantee its existence. Note also that the theorem does not give a method for
finding a global solution even if its conditions are satisfied; it is only an existence theorem.

4.2 Review of Some Basic Calculus Concepts
Optimality conditions for a minimum point are discussed in later sections. Since most opti-
mization problems involve functions of several variables, these conditions use ideas from
vector calculus. Therefore, in this section, we review basic concepts from calculus using the



vector and matrix notations. Basic material related to vector and matrix algebra (linear
algebra) is described in Appendix B. It is important to be comfortable with these materials
in order to understand the optimality conditions. The topics from this material may be covered
as a review all at once or they may be reviewed on an “as needed” basis at an appropriate
time during coverage of various topics from this chapter.

The differentiation notation for functions of several variables is introduced. The gradient
vector for a function of several variables requiring first partial derivatives of the function is
defined. The Hessian matrix for the function requiring second partial derivatives of the func-
tion is then defined. Taylor’s expansions for functions of single and multiple variables are 
discussed. The idea of Taylor series is fundamental to the development of optimum design
concepts and numerical methods, so it should be thoroughly understood. The concept of qua-
dratic forms is needed to discuss sufficiency conditions for optimality. Therefore, notation
and analyses related to quadratic forms are described. The concepts of necessary and suffi-
cient conditions are explained.

4.2.1 Gradient Vector
Since the gradient of a function is used while discussing methods of optimum design, we
define and discuss its geometrical significance. Also, the differentiation notation defined here
is used throughout the text. Therefore, it should be clearly understood.

Consider a function f(x) of n variables x1, x2, . . . , xn. The partial derivative of the func-
tion with respect to x1 at a given point x* is defined as ∂f (x*)/∂x1, with respect to x2 as
∂f (x*)/∂x2, and so on. Let ci represent the partial derivative of f (x) with respect to xi at the
point x*. Then using the index notation of Section 1.5, we can represent all partial deriva-
tives of f (x) as follows:

(4.2)

For convenience and compactness of notation, we arrange the partial derivatives
∂f(x*)/∂x1, ∂f(x*)/∂x2, . . . , ∂f (x*)/∂xn into a column vector called the gradient vector and 
represent it by any of the following symbols: c, —f, ∂f/∂x, grad f, as

(4.3)

where superscript T denotes transpose of a vector or a matrix. Note that all partial deriva-
tives are calculated at the given point x*. That is, each component of the gradient vector is
a function in itself which must be evaluated at the given point x*.

Geometrically, the gradient vector is normal to the tangent plane at the point x* as shown
in Fig. 4-5 for a function of three variables. Also, it points in the direction of maximum
increase in the function. These properties are quite important, and will be proved and dis-
cussed in Chapter 9. They will be used in developing optimality conditions and numerical
methods for optimum design. In Example 4.5 the gradient vector for a function is calculated.
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x3

x2

f (x1, x2, x3) = const.

x1

Surface

 f (x*)

D

x*

FIGURE 4-5 Gradient vector for f(x1, x2, x3) at the point x*.

EXAMPLE 4.5 Calculation of Gradient Vector

Calculate the gradient vector for the function f (x) = (x1 - 1)2 + (x2 - 1)2 at the point
x* = (1.8, 1.6).

Solution. The given function is the equation for a circle with center at the point (1,
1). Since f (1.8, 1.6) = (1.8 - 1)2 + (1.6 - 1)2 = 1, the point (1.8, 1.6) lies on a circle
of radius 1, shown as point A in Fig. 4-6. The partial derivatives for the function at
point (1.8, 1.6) are calculated as

Thus, the gradient vector for f (x) at point (1.8, 1.6) is given as c = (1.6, 1.2). This
is shown in Fig. 4-6. It can be seen that vector c is normal to the circle at point (1.8,
1.6). This is consistent with the observation that gradient is normal to the surface.
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0.6

FIGURE 4-6 Gradient vector for the function f(x) of Example 4-5 at the point (1.8, 1.6).



4.2.2 Hessian Matrix
Differentiating the gradient vector once again, we obtain a matrix of second partial deriva-
tives for the function f (x) called the Hessian matrix, or simply the Hessian. That is, 
differentiating each component of the gradient vector given in Eq. (4.3) with respect to x1,
x2, . . . , xn, we obtain

(4.4)

where all derivatives are calculated at the given point x*. The Hessian is an n ¥ n matrix,
also denoted as H or —2f. It is important to note that each element of the Hessian is a func-
tion in itself that is evaluated at the given point x*. Also, since f (x) is assumed to be twice
continuously differentiable, the cross partial derivatives are equal, i.e.,

Therefore, the Hessian is always a symmetric matrix. It plays a prominent role in the suffi-
ciency conditions for optimality as discussed later in this chapter. It will be written as

(4.5)

The gradient and Hessian of a function are calculated in Example 4.6.
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EXAMPLE 4.6 Evaluation of Gradient and Hessian of 
a Function

For the following function, calculate the gradient vector and the Hessian matrix at the
point (1, 2):

(a)

Solution. The first partial derivatives of the function are given as

(b)

Substituting the point x1 = 1, x2 = 2, the gradient vector is given as: c = (7, 27). The
second partial derivatives of the function are calculated as
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4.2.3 Taylor’s Expansion
A function can be approximated by polynomials in a neighborhood of any point in terms of
its value and derivatives using Taylor’s expansion. Consider first a function f (x) of a single
variable. Taylor’s expansion for f (x) about the point x* is

(4.6)

where R is the remainder term that is smaller in magnitude than the previous terms if x is
sufficiently close to x*. If we let x - x* = d (a small change in the point x*), Taylor’s expan-
sion of Eq. (4.6) becomes

(4.7)

For a function of two variables f (x1, x2), Taylor’s expansion at the point (x1*, x2*) is

(4.8)

where all partial derivatives are calculated at the given point (x1*, x2*). For notational com-
pactness, the arguments of these partial derivatives are omitted in Eq. (4.8) and in all subse-
quent discussions. Taylor’s expansion in Eq. (4.8) can be written using the summation
notation defined in Section 1.5 as

(4.9)

It can be seen that by expanding the summations in Eq. (4.9), Eq. (4.8) is obtained. Rec-
ognizing the quantities ∂f/∂xi as components of the gradient of the function given in Eq. (4.3)
and ∂2f/∂xi∂xj as the Hessian of Eq. (4.5) evaluated at the given point x*, Taylor’s expansion
can also be written in matrix notation as
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(c)

Therefore, the Hessian matrix at the point (1, 2) is given as
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(4.10)

where x = (x1, x2), x* = (x1*, x2*), and H is the 2 ¥ 2 Hessian matrix. Note that with matrix
notation, Taylor’s expansion in Eq. (4.10) can be easily generalized to functions of n vari-
ables. In that case, x, x*, and —f are n dimensional vectors and H is the n ¥ n Hessian matrix.
Defining x - x* = d, Eq. (4.10) becomes

(4.11)

Often a change in the function is desired when x* moves to a neighboring point x. Defining
the change as Df = f (x) - f (x*), Eq. (4.11) gives

(4.12)

A first-order change in f (x) at x* (denoted as df ) is obtained by retaining only the first term
in Eq. (4.12),

(4.13)

where dx is a small change in x* (dx = x - x*). Note that the first-order change of the func-
tion given in Eq. (4.13) is simply a dot product of the vectors —f and dx. A first-order change
is an acceptable approximation for change in the original function when x is near x*.

In Examples 4.7 to 4.9, we now consider some functions and approximate them at 
the given point x* using Taylor’s expansion. The remainder R will be dropped while using
Eq. (4.11).
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EXAMPLE 4.7 Taylor’s Expansion of a Function of 
One Variable

Approximate f (x) = cos x around the point x* = 0.

Solution. Derivatives of the function f (x) are given as

(a)

Therefore, using Eq. (4.6), the second-order Taylor’s expansion for cos x at the
point x* = 0 is given as

(b)cos cos sin cosx x x xª - -( ) + -( ) -( ) ª -0 0 0
1

2
0 0 1
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2
2 2
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dx
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d f

dx
x= - = -sin cos,

2
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EXAMPLE 4.8 Taylor’s Expansion of a Function of 
Two Variables

Obtain second-order Taylor’s expansion for the function f (x) = 3x1
3x2 at the point x*

= (1, 1):

Solution. The gradient and Hessian of the function f (x) at the point x* = (1, 1) using
Eqs. (4.3) and (4.5) are

(a)

Substituting these in the matrix form of Taylor’s expression given in Eq. (4.10),
and using d = x - x*, we obtain an approximation (x) for f (x) as

(b)

where f (x*) = 3 has been used. Simplifying the expression by expanding vector and
matrix products, we obtain Taylor’s expansion for f (x) about the point (1, 1) as

(c)

This expression is a second-order approximation of the function 3x1
3x2 about the

point x* = (1, 1). That is, in a small neighborhood of x*, the expression will give
almost the same value as the original function f (x). To see how accurately (x) approx-
imates f (x), we evaluate these functions for a 30 percent change in the given point (1,
1); i.e., at the point (1.3, 1.3) as (x) = 8.2200 and f(x) = 8.5683. Therefore the approx-
imate function underestimates the original function by only 4 percent. This is quite a
reasonable approximation for many practical applications.
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EXAMPLE 4.9 Linear Taylor’s Expansion of a Function

Obtain linear Taylor’s expansion for the function

(a)

at the point x* = (1, 2). Compare the approximate function with the original function
in a neighborhood of the point (1, 2).

Solution. The gradient of the function at the point (1, 2) is given as
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4.2.4 Quadratic Forms and Definite Matrices
Quadratic Form Quadratic form is a special nonlinear function having only second-order
terms, e.g., the function

Quadratic forms play a prominent role in optimization theory and methods. Therefore, in
this subsection, we discuss some results related to them. Consider a special function of n
variables F(x) = F(x1, x2, . . . , xn) written in the double summation notation as (refer to Section
1.5 for the summation notation):

(4.14)

where pij are known constants and the factor is used for convenience only to match F(x)
with the second-order term in the Taylor series expansion of Eq. (4.9). The results of this
section will not be affected if the factor is not used, as is done in many other texts. Only
the value of the quadratic form is affected by the factor. Expanding Eq. (4.14) by setting i =
1 and letting j vary from 1 to n, and then setting i = 2 and letting j vary again from 1 to n,
and so on, we get

(4.15)

Note that with coefficients pij specified and the variables xi given, F(x) in Eq. (4.15) is just
a number (scalar). The function is called a quadratic form because each of its terms is either
the square of a variable or product of two different variables.

Matrix of the Quadratic Form The quadratic form can be written in the matrix notation.
Let P = [pij] be an n ¥ n matrix, x = (x1, x2, . . . , xn) an n-dimensional vector, and y = (y1, 
y2, . . . , yn) another n dimensional vector obtained by multiplying P by x. Writing y = Px in
the summation notation we get
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Since f (1, 2) = 1, Eq. (4.10) gives linear Taylor series approximation for f (x) as

(c)

To see how accurately (x) approximates the original f (x) in the neighborhood of
(1, 2), we calculate the functions at the point (1.1, 2.2), a 10 percent change in the
point as (x) = 1.20 and f (x) = 1.25. We see that the approximate function under-
estimates the real function by 4 percent. An error of this magnitude is quite accept-
able in many applications. Note, however, that the errors will be different for different
functions and can be larger for highly nonlinear functions.
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(4.16)

Also, we can rewrite Eq. (4.14) as

(4.17)

Substituting Eq. (4.16) into Eq. (4.17),

(4.18)

But, the summation on the right side of Eq. (4.18) represents the scalar product of vectors x
and y as xTy. Substituting y = Px in this, we obtain the matrix representation for F(x)

(4.19)

P is called the matrix of the quadratic form F(x). Elements of P are identified as coefficients
of the terms in the function F(x). For example, in Eq. (4.15) element pij is twice the 
coefficient of the term xi xj in F(x). We see that except for the squared terms, each product
xi xj(i π j) appears twice. Therefore, Eq. (4.15) can be rewritten as

(4.20)

Thus, the coefficient of xixj is (pij + pji) for j > i. Define coefficients of an n ¥ n matrix A as

(4.21)

Using this definition, it can be easily seen that

Therefore, (pij + pji) in Eq. (4.20) can be replaced with (aij + aji) and the quadratic form of
Eq. (4.19) becomes

(4.22)

The value of the quadratic form does not change with P replaced by A. The matrix A,
however, is always symmetric (aij = aji) whereas P is generally not. Symmetry of A can be
easily seen from the definition of aij given in Eq. (4.21), i.e., interchanging the indices i 
and j, we get aji = aij. Thus, given any quadratic form xTPx we can always replace P with a
symmetric matrix. The preceding discussion also shows that many matrices can be associ-
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ated with the same quadratic form. All of them are asymmetric except one. The symmetric
matrix associated with it is always unique. Asymmetric matrices are not very useful. The
symmetric matrix, however, determines the nature of the quadratic form, which will be dis-
cussed later in this section. Comparing Eq. (4.11) with Eq. (4.22), we observe that the third
term of Taylor’s expansion is a quadratic form in the variables d. Therefore, the Hessian H
is a matrix associated with that quadratic form. Example 4.10 illustrates identification of
matrices associated with a quadratic form.
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EXAMPLE 4.10 Matrix of the Quadratic Form

Identify a matrix associated with the quadratic form

(a)

Solution. Writing F in the matrix form (F(x) = xTPx), we obtain

(b)

The matrix P of the quadratic form can be easily identified by comparing the expres-
sion with Eq. (4.20). The ith diagonal element pii is the coefficient of xi

2. Therefore,
p11 = 2, the coefficient of x1

2; p22 = -6, the coefficient of x2
2; and p33 = 5, the coefficient

of x3
2. The coefficient of xi xj can be divided in any proportion between the elements

pij and pji of the matrix P as long as the sum pij + pji is equal to the coefficient of xi xj.
In the above matrix p12 = 2 and p21 = 0, giving p12 + p21 = 2, which is the coefficient
of xi xj. Similarly, we can calculate the elements p13, p31, p23, and p32.

Since the coefficient of xi xj can be divided between pij and pji in any proportion,
there are many matrices associated with a quadratic form. For example, the follow-
ing matrices are also associated with the same quadratic form:

(c)

Dividing the coefficients equally between pij and pji, we obtain

(d)

Any of the matrices in Eqs. (b) to (d) give a matrix associated with the quadratic
form. However, the matrix in Eq. (d) is symmetric. The diagonal elements of the sym-
metric matrix are obtained from the coefficient of xi

2 as before. The off-diagonal ele-
ments are obtained by dividing the coefficient of the term xixj equally between aij and
aji. This satisfies Eq. (4.21).
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Form of a Matrix Quadratic form F(x) = xTAx may be either positive, negative, or zero
for any x. It may also have the property of being always positive for any x [except for F(0)].
Such a form is called positive definite. Similarly, it is called negative definite if xTAx < 0 for
all x except x = 0. If a quadratic form has the property xTAx ≥ 0 for all x and there exists at
least one x π 0 (nonzero x) with xTAx = 0, then it is called positive semidefinite. A similar
definition for negative semidefinite is obtained by reversing the sense of the inequality. A
quadratic form that is positive for some vectors x and negative for others is called indefinite.
A symmetric matrix A is often referred to as a positive definite, positive semidefinite, nega-
tive definite, negative semidefinite, or indefinite if the quadratic form associated with A is
positive definite, positive semidefinite, negative definite, negative semidefinite, or indefinite,
respectively (Example 4.11).

1
2
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EXAMPLE 4.11 Determination of the Form of a Matrix

Determine the form of the following matrices:

Solution. The quadratic form associated with the matrix (i) is always positive, i.e.,

(a)

unless x1 = x2 = x3 = 0 (x = 0). Thus, the matrix is positive definite. The quadratic form
associated with the matrix (ii) is negative semidefinite, since

(b)

for all x, and xTAx = 0 when x3 = 0, and x1 = x2 [e.g., x = (1, 1, 0)]. The quadratic
form is not negative definite but is negative semidefinite since it can have zero value
for nonzero x. Therefore, the matrix associated with it is also negative semidefinite.

x AxT = - - + -( ) = - - -( ){ } £x x x x x x x x1
2

2
2

1 2 3
2

3
2

1 2
2

2 0

x AxT = + +( ) >2 4 3 01
2

2
2

3
2x x x

i ii( ) =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

( ) =
-

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

A A

2 0 0

0 4 0

0 0 3

1 1 0

1 1 0

0 0 1

We will now discuss methods for checking positive definiteness or semidefiniteness (form)
of a quadratic form or a matrix. Since this involves calculation of eigenvalues of a matrix,
Section B.6 in Appendix B should be reviewed at this point.

Theorem 4.2 Eigenvalue Check for the Form of a Matrix Let li, i = 1 to n be n eigen-
values of a symmetric n ¥ n matrix A associated with the quadratic form F(x) = xTAx (since
A is symmetric, all eigenvalues are real). The following results can be stated regarding the
quadratic form F(x) or the matrix A:

1. F(x) is a positive definite if and only if all eigenvalues of A are strictly positive, i.e.,
li > 0, i = 1 to n.

2. F(x) is positive semidefinite if and only if all eigenvalues of A are nonnegative, i.e.,
li ≥ 0, i = 1 to n (note that at least one eigenvalue must be zero for it to be called
positive semidefinite).

1
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3. F(x) is negative definite if and only if all eigenvalues of A are strictly negative, i.e.,
li < 0, i = 1 to n.

4. F(x) is negative semidefinite if and only if all eigenvalues of A are nonpositive, i.e.,
li £ 0, i = 1 to n (note that at least one eigenvalue must be zero for it to be called
negative semidefinite).

5. F(x) is indefinite if some li < 0 and some other li > 0.

Another way of checking the form of a matrix is provided by the following theorem:

Theorem 4.3 Check for the Form of a Matrix Using Principal Minors Let Mk be the kth
leading principal minor of the n ¥ n symmetric matrix A defined as the determinant of a k ¥
k submatrix obtained by deleting the last (n - k) rows and columns of A (Appendix B, Section
B.3). Assume that no two consecutive principal minors are zero. Then

1. A is positive definite if and only if all Mk > 0, k = 1 to n.
2. A is positive semidefinite if and only if Mk > 0, k = 1 to r, where r < n is the rank of

A (refer to Appendix B, Section B.4 for definition of rank of a matrix).
3. A is negative definite if and only if Mk < 0 for k odd and Mk > 0 for k even, k = 1 to

n.
4. A is negative semidefinite if and only if Mk < 0 for k odd and Mk > 0 for k even, k =

1 to r < n.
5. A is indefinite if it does not satisfy any of the preceding criteria.

This theorem is applicable only if the assumption of no two consecutive principal minors
being zero is satisfied. When there are consecutive zero principal minors, we may resort to
the eigenvalue check of Theorem 4.2. Note also that a positive definite matrix cannot have
negative or zero diagonal elements. The form of a matrix is determined in Example 4.12.

The theory of quadratic forms is used in second-order conditions for a local optimum
point. Also, it is used to determine convexity of functions of the optimization problem.
Convex functions play a role in determining the global optimum point. These topics are dis-
cussed in later sections.
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EXAMPLE 4.12 Determination of the Form of a Matrix

Determine the form of the matrices given in Example 4.11.

Solution. For a given matrix A, the eigenvalue problem is defined as Ax = lx, where
l is an eigenvalue and x is the corresponding eigenvector (refer to Section B.6 in
Appendix B for more details). To determine the eigenvalues, we set the so-called 
characteristic determinant to zero |(A - lI)| = 0. Since the matrix (i) is diagonal, its
eigenvalues are the diagonal elements, i.e., l1 = 2, l2 = 3, and l3 = 4. Since all eigen-
values are strictly positive, the matrix is positive definite. The principal minor check
of Theorem 4.3 also gives the same conclusion.

For the matrix (ii), the characteristic determinant of the eigenvalue problem is

(a)

- -
- -

- -
=

1 1 0

0 1 0

0 0 1

0

l
l

l



Differentiation of a Quadratic Form On several occasions we would like to find gradient
and Hessian matrix for the quadratic form. We consider the symmetric quadratic form of 
Eq. (4.22) and write it in summation notation as

(4.23)

To calculate derivatives of F(x), we first expand the summations and then differentiate the
expression with respect to xi to obtain

(4.24)

Writing the partial derivatives of Eq. (4.24) in a column vector, we get the gradient of the
quadratic form as

(4.25)

Differentiating Eq. (4.24) once again with respect to xi we get

(4.26)

Equation (4.26) shows that the components aij of the matrix A are the components of the
Hessian matrix for the quadratic form. Example 4.13 shows the calculations for the gradi-
ent and Hessian of the quadratic form.
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x x
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2 11

Optimum Design Concepts 101

Expanding the determinant by the third row, we obtain

(b)

Therefore, the three roots give the eigenvalues as l1 = -2, l2 = -1, and l3 = 0.
Since all eigenvalues are nonpositive, the matrix is negative semidefinite. To use
Theorem 4.3, we calculate the three leading principal minors as

(c)

Since there are two consecutive zero leading principal minors, we cannot use
Theorem 4.3.

M M M1 2 31
1 1

1 1
0

1 1 0

1 1 0

0 0 1

0= - =
-

-
= =

-
-

-
=, ,

- -( ) - -( ) -Î ˚ =1 1 1 0
2l l



4.2.5 Concept of Necessary and Sufficient Conditions
In the remainder of this chapter, we shall describe necessary and sufficient conditions for opti-
mality of unconstrained and constrained optimization problems. It is important to understand
the meaning of the terms necessary and sufficient. These terms have general meaning in math-
ematical analyses. We shall, however, discuss them for the optimization problem only. The opti-
mality conditions are derived by assuming that we are at an optimum point and then studying
the behavior of the functions and their derivatives at the point. The conditions that must be 
satisfied at the optimum point are called necessary. Stated differently, if a point does not satisfy
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EXAMPLE 4.13 Calculations for the Gradient and Hessian of
the Quadratic Form

Calculate the gradient and Hessian of the following quadratic form:

(a)

Solution. Differentiating F(x) with respect to x1, x2, and x3, we get gradient compo-
nents as

(b)

Differentiating the gradient components once again, we get the Hessian compo-
nents as

(c)

Writing the given quadratic form in a matrix form, we identify matrix A as

(d)

Comparing elements of the matrix A with second partial derivatives of F, we
observe that the Hessian H = A. Using Eq. (4.25), the gradient of the quadratic form
is also given as
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the necessary conditions, it cannot be optimum. Note, however, that satisfaction of necessary 
conditions does not guarantee optimality of the point, i.e., there can be nonoptimum points that
also satisfy the same conditions. This indicates that the number of points satisfying necessary
conditions can be more than the number of optima. Points satisfying the necessary conditions
are called candidate optimum points. We must, therefore, perform further tests to distinguish
between optimum and nonoptimum points, both satisfying the necessary conditions.

The sufficient conditions provide tests to distinguish between optimum and nonoptimum
points. If a candidate optimum point satisfies the sufficient conditions, then it is indeed
optimum. We do not need any further tests. If the sufficient conditions are not satisfied,
however, or cannot be used, we may not be able to conclude that the candidate design is not
optimum. Our conclusion will depend on the assumptions and restrictions used in deriving
the sufficient conditions. Further analysis of the problem or other conditions are needed to
make a definite statement about optimality of the candidate point. In summary,

1. Optimum points must satisfy the necessary conditions. Points that do not satisfy
them cannot be optimum.

2. A point satisfying the necessary conditions need not be optimum, i.e., nonoptimum
points may also satisfy the necessary conditions.

3. A candidate point satisfying a sufficient condition is indeed optimum.
4. If sufficiency conditions cannot be used or they are not satisfied, we may not be able

to draw any conclusions about optimality of the candidate point.

4.3 Unconstrained Optimum Design Problems
We are now ready to discuss the theory and concepts of optimum design. In this section, we shall
discuss necessary and sufficient conditions for unconstrained optimization problems defined as:
Minimize f (x) without any constraints on x. Such problems arise infrequently in practical 
engineering applications. However, we consider them here because optimality conditions for
constrained problems are a logical extension of these conditions. In addition, one numerical
strategy for solving a constrained problem is to convert it into a sequence of unconstrained prob-
lems. Thus, it is important to completely understand unconstrained optimization concepts.

The optimality conditions for unconstrained or constrained problems can be used in two ways:

1. The optimality conditions can be used to check whether a given point is a local
optimum for the problem.

2. The optimality conditions can be solved for local optimum points.

We will discuss only the local optimality conditions for unconstrained problems. Global
optimality will be discussed in Section 4.6. First the necessary and then the sufficient con-
ditions will be discussed. The necessary conditions must be satisfied at the minimum point,
otherwise it cannot be a minimum. These conditions, however, may also be satisfied by a
point that is not minimum. A point satisfying the necessary conditions is simply a candidate
local minimum. The sufficient conditions distinguish minimum points from others. We shall
elaborate these concepts further with some examples.

4.3.1 Concepts Related to Optimality Conditions
The basic concept for obtaining local optimality conditions is to assume that we are at a
minimum point x* and then examine a small neighborhood to study properties of the func-
tion and its derivatives. Basically, we use the definition of a local minimum given in Inequal-
ity (4.1) to derive the optimality conditions. Since we examine only a small neighborhood,
the conditions we obtain are called local.
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Let x* be a local minimum point for f (x). To investigate its neighborhood, let x be any
point near x*. Define increments d and Df in x* and f (x*), as d = x - x* and Df = f (x) -
f (x*). Since f (x) has a local minimum at x*, it will not reduce any further if we move a small
distance away. Therefore, a change in the function for any move in a small neighborhood of
x* must be nonnegative, i.e., the function value must either remain constant or increase. This
condition, also obtained directly from the definition of local minimum given in Inequality
(4.1), can be expressed as the following inequality:

(4.27)

for all small changes d. The inequality in Eq. (4.27) can be used to derive necessary and 
sufficient conditions for a local minimum point. Since d is small, we can approximate Df by
Taylor’s expansion at x* and derive optimality conditions using it.

4.3.2 Optimality Conditions for Functions of Single Variable
First-Order Necessary Conditions Let us first consider only a function of one variable.
The Taylor’s expansion of f (x) at the point x* gives

where R is the remainder containing higher-order terms in d and “primes” indicate the order
of the derivatives. From this equation, the change in the function at x*, i.e., Df = f (x) - f (x*),
is given as

(4.28)

The Inequality (4.27) shows that expression for Df must be nonnegative as (≥0) as x* is
a local minimum. Since d is small, the first-order term f ¢(x*)d dominates other terms and
therefore Df can be approximated as Df � f ¢(x*)d. Note that Df in this equation can be pos-
itive or negative depending on the sign of the term f ¢(x*)d. Since d is an arbitrary, small
increment in x*, it may be positive or negative. Therefore, if f ¢(x*) π 0, the term f ¢(x*)d (and
hence Df ) can be negative. To see this more clearly, let the term be positive for some incre-
ment d1 that satisfies the Inequality (4.27), i.e., Df = f ¢(x*)d1 > 0. Since the increment d is
arbitrary, it is reversible, so d2 = -d1 is another possible increment. For d2, Df becomes neg-
ative, which violates the Inequality (4.27). Thus, the quantity f ¢(x*)d can have a negative
value regardless of the sign of f ¢(x*), unless it is zero. The only way it can be nonnegative
for all d in a neighborhood of x* is when

(4.29)

Equation (4.29) is a first-order necessary condition for the local minimum of f (x) at x*. It is
called “first-order” because it only involves the first derivative of the function. Note that the pre-
ceding arguments can be used to show that the condition of Eq. (4.29) is also necessary for local
maximum points. Therefore, since the points satisfying Eq. (4.29) can be local minima, maxima,
or neither minimum nor maximum (inflection points), they are called stationary points.

Sufficient Conditions Now we need a sufficient condition to determine which of the sta-
tionary points are actually minimum for the function. Since stationary points satisfy the 
necessary condition f ¢(x*) = 0, the change in function Df of Eq. (4.28) becomes

¢( ) =f x* 0

Df x f x d f x d R( ) = ¢( ) + ¢¢( ) +* *
1

2
2

f x f x f x d f x d R( ) = ( ) + ¢( ) + ¢¢( ) +* * *
1

2
2

Df f f= ( ) - ( ) ≥x x* 0
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(4.30)

Since the second-order term dominates all other higher-order terms, we need to focus on it.
Note that the term can be positive for all d π 0, if

(4.31)

Stationary points satisfying Inequality (4.31) must be at least local minima because they
satisfy Inequality (4.27) (Df > 0). That is, the function has positive curvature at the minimum
points. Inequality (4.31) is then sufficient for x* to be a local minimum. Thus, if we have a
point x* satisfying both conditions in Eqs. (4.29) and (4.31), then any small move away from
it will either increase the function value or keep it unchanged. This indicates that f (x*) has
the smallest value in a small neighborhood (local minimum) of the point x*. Note that the
foregoing conditions can be stated in terms of the curvature of the function since second
derivative is the curvature.

Second-Order Necessary Condition If Inequality (4.31) is not satisfied [e.g., f ≤(x*) = 0],
we cannot conclude that x* is not a minimum point. Note, however, from Eqs. (4.27) and
(4.28) that f (x*) cannot be a minimum unless

(4.32)

That is, if f ≤ evaluated at the candidate point x* is less than zero, then x* is not a local
minimum point. Inequality (4.32) is known as a second-order necessary condition, so any
point violating it [i.e., f ≤(x*) < 0] cannot be a local minimum.

If f ≤(x*) = 0, we need to evaluate higher-order derivatives to determine if the point is a
local minimum (see Examples 4.14 to 4.18). By the arguments used to derive Eq. (4.29), 
f �(x*) must be zero for the stationary point (necessary condition) and f IV(x*) > 0 for x* to
be a local minimum. In general, the lowest nonzero derivative must be even-ordered for 
stationary points (necessary conditions), and it must be positive for local minimum points
(sufficiency condition). All odd-ordered derivatives lower than the nonzero even-ordered
derivative must be zero as the necessary condition.

¢¢( ) ≥f x* 0

¢¢( ) >f x* 0

Df x f x d R( ) = ¢¢( ) +
1

2
2*
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EXAMPLE 4.14 Determination of Local Minimum Points
Using Necessary Conditions

Find local minima for the function f (x) = sin x.

Solution. Differentiating the function twice,

(a)

Stationary points are obtained as roots of f ¢(x) = 0 (cos x = 0). These are

(b)

Local minima are identified as

(c)x* , , . . . ; , , . . .= - -3 2 7 2 2 5 2p p p p

x = ± ± ± ±p p p p2 3 2 5 2 7 2, , , , . . .

¢ = ¢¢ = -f x f xcos sin; ;
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since these points satisfy the sufficiency condition of Eq. (4.31) ( f ≤ = -sin x > 0). The
minimum value of sin x at the points x* is -1. This is true from the graph of the func-
tion sin x. There are infinite minimum points, and they are all actually global minima.
The points p/2, 5p/2, . . . , and -3p/2, -7p/2, . . . are global maximum points where
sin x has a value of 1. At these points, f ¢(x) = 0 and f ≤(x) < 0.

EXAMPLE 4.15 Determination of Local Minimum Points
Using Necessary Conditions

Find local minima for the function f (x) = x2 - 4x + 4.

Solution. Figure 4-7 shows a graph for the function f (x) = x2 - 4x + 4. It can be
seen that the function always has a positive value except at x = 2, where it is zero.
Therefore, this is a local as well as global minimum point for the function. Let us see
how this point will be determined using the necessary and sufficient conditions.

Differentiating the function twice,

(a)

The necessary condition f ¢ = 0 implies that x* = 2 is a stationary point. Since f ≤ > 0
at x* = 2 (actually for all x), the sufficiency condition of Eq. (4.31) is satisfied. There-
fore x* = 0 is a local minimum for f (x). The minimum value of f is 0 at x* = 2. Note
that at x* = 2, the second-order necessary condition for a local maximum f ≤ £ 0 is
violated since f ≤(2) = 2 > 0. Therefore the point x* = 2 cannot be a local maximum
point. In fact the graph of the function shows that there is no local or global maximum
point for the function.

¢ = - ¢¢ =f x f2 4 2;
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FIGURE 4-7 Graph of f(x) = x2 - 4x + 4 of Example 4.15.
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EXAMPLE 4.16 Determination of Local Minimum Points
Using Necessary Conditions

Find local minima for the function f (x) = x3 - x2 - 4x + 4.

Solution. Figure 4-8 shows the graph of the function. It can be seen that point A
is a local minimum point and point B is a local maximum point. We shall use the 
necessary and sufficient conditions to prove that this is indeed true. Differentiating 
the function,

(a)

For this example there are two points satisfying the necessary condition of Eq. (4.29),
i.e., stationary points. These are obtained as roots of the equation f ¢(x) = 0,

(b)

(c)

Evaluating f ≤ at these points,

(d)

We see that only x1* satisfies the sufficiency condition ( f ≤ > 0) of Eq. (4.31). There-
fore, it is a local minimum point. From the graph in Fig. 4-8 we can see that the local
minimum f (x1*) is not the global minimum. A global minimum for f (x) does not exist
since the domain as well as the function are not bounded (Theorem 4.1). The value

¢¢ -( ) = - <f 0 8685 7 211 0. .

¢¢( ) = >f 1 535 7 211 0. .

x2
1

6
2 7 211 0 8685* . .= -( ) = - ( )Point B

x1
1

6
2 7 211 1 535* . .= +( ) = ( )Point A

¢ = - - ¢¢ = -f x x f x3 2 4 6 22 ;

Local maximum
point

Local minimum
point

10

5

B

–3 –2 –1

–5

–10

1 2 3A

f (x)

x

FIGURE 4-8 Graph of f(x) = x3 - x2 - 4x + 4 of Example 4.16.
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EXAMPLE 4.17 Determination of Local Minimum Points
Using Necessary Conditions

Find the minimum for the function f (x) = x4.

Solution. Differentiating the function twice,

(a)

The necessary condition gives x* = 0 as a stationary point. Since f ≤(x*) = 0, we cannot
conclude from the sufficiency condition of Eq. (4.31) that x* is a minimum point.
However, the second-order necessary condition of Eq. (4.32) is satisfied, so we cannot
rule out the possibility of x* being a minimum point. In fact, a graph of f (x) versus 
x will show that x* is indeed the global minimum point f � = 24x, which is zero at 
x* = 0. f IV(x*) = 24, which is strictly greater than zero. Therefore, the fourth-order
sufficiency condition is satisfied, and x* = 0 is indeed a minimum point. It is actually
a global minimum point with f (0) = 0.

¢ = ¢¢ =f x f x4 123 2;

EXAMPLE 4.18 Minimum Cost Spherical Tank Using
Necessary Conditions

The result of a problem formulation in Section 2.3 is a cost function that represents
the lifetime cooling related cost of an insulated spherical tank as

(a)

where x is the thickness of insulation, and a and b are positive constants.

Solution. To minimize f, we solve the equation (necessary condition)

(b)¢ = - =f a b x 2 0

f x ax b x a b( ) = + >, , 0

of the function at the local minimum is obtained as -0.88 by substituting x1* = 1.535
in f (x). Note that x2* = -0.8685 is a local maximum point since f ≤(x2*) < 0. The value
of the function at the maximum point is 6.065. There is no global maximum point for
the function. Note that the second order necessary condition for a local minimum
[ f ≤(x*) ≥ 0] is violated at x2* = -0.8685. Therefore, this stationary point cannot be a
local minimum point. Similarly, the stationary point x1* = 1.535 cannot be a local
maximum point.

As noted earlier, the optimality conditions can also be used to check optimality of
a given point. To illustrate this, let us check optimality of the point x = 1. At this point,
f ¢ = 3(1)2 - 2(1) - 4 = -3 π 0. Therefore x = 1 is not a stationary point and thus cannot
be a local minimum or maximum for the function.



4.3.3 Optimality Conditions for Functions of Several Variables
For the general case of a function of several variables f (x) where x is an n-vector, we can
repeat the derivation of necessary and sufficient conditions using the multidimensional form
of Taylor’s expansion:

Or, change in the function is given as

(4.33)

If we assume a local minimum at x* then Df must be nonnegative due to the definition of a
local minimum given in Inequality (4.1), i.e., Df ≥ 0. Concentrating only on the first-order
term in Eq. (4.33), we observe (as before) that Df can be nonnegative for all possible d when

(4.34)

That is, the gradient of the function at x* must be zero. In the component form, this 
necessary condition becomes

(4.35)

Points satisfying Eq. (4.35) are called stationary points. Considering the second term in Eq.
(4.33) evaluated at a stationary point, the positivity of Df is assured if

(4.36)

for all d π 0. This will be true if the Hessian H(x*) is a positive definite matrix (see Section
4.2) which is then the sufficient condition for a local minimum of f (x) at x*. Conditions
(4.35) and (4.36) are the multidimensional equivalent of Conditions (4.29) and (4.31), respec-
tively. We summarize the development of this section in Theorem 4.4.

Theorem 4.4 Necessary and Sufficient Conditions for Local Minimum

Necessary condition. If f (x) has a local minimum at x* then

d H x dT *( ) > 0

∂ ( )
∂

= =
f

x
i n

i

x*
;0 1 to

— ( ) =f x* 0

Df f R
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2
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The solution is x* = . To check if the stationary point is a local minimum, 
evaluate

(c)

Since b and x* are positive, f ≤(x*) is positive and x* is a local minimum point. The
value of the function at x* is . Note that since the function cannot have a nega-
tive value because of the physics of the problem, x* represents a global minimum for
the problem.

2 ab

¢¢( ) =f x b x* *2 3

b a/



(a)

Second-order necessary condition. If f (x) has a local minimum at x*, then the Hessian
matrix of Eq. (4.5)

(b)

is positive semidefinite or positive definite at the point x*.

Second-order sufficiency condition. If the matrix H(x*) is positive definite at the
stationary point x*, then x* is a local minimum point for the function f (x).

Note that if H(x*) at the stationary point x* is indefinite, then x* is neither a local
minimum nor a local maximum point because the second-order necessary condition is vio-
lated for both cases. Such stationary points are called inflection points. Also if H(x*) is at
least positive semidefinite, then x* cannot be a local maximum since it violates the second-
order necessary condition for a local maximum of f (x). In other words a point cannot be a
local minimum and local maximum simultaneously. The optimality conditions for a function
of single variable and a function of several variables are summarized in Table 4-1.

Note also that these conditions involve derivatives of f (x) and not the value of the func-
tion. If we add a constant to f (x), the solution x* of the minimization problem remains
unchanged, although the value of the cost function is altered. In a graph of f (x) versus x,
adding a constant to f (x) changes the origin of the coordinate system but leaves the shape of
the surface unchanged. Similarly, if we multiply f (x) by any positive constant the minimum
point x* is unchanged but the value f (x*) is altered. In a graph of f (x) versus x this is equi-

H x*( ) =
∂

∂ ∂
È
ÎÍ

˘
˚̇ ¥( )

2 f
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∂ ( )
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= =
f

x
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i

x*
;0 1 to
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TABLE 4-1 Optimality Conditions for Unconstrained Problems

Function of one variable minimize f(x) Function of several variables minimize f(x)

First-order necessary condition: f ¢ = 0. Any point First-order necessary condition: —f = 0. Any point
satisfying this condition is called a stationary point; satisfying this condition is called a stationary point; 
it can be a local minimum, local maximum, or it can be a local minimum, local maximum, or
neither of the two (inflection point) neither of the two (inflection point)

Second-order necessary condition for a Second-order necessary condition for a local minimum: 
local minimum: f ≤ ≥ 0 H must be at least positive semidefinite

Second-order necessary condition for a Second-order necessary condition for a local maximum: 
local maximum: f ≤ £ 0 H must be at least negative semidefinite

Second-order sufficient condition for a Second-order sufficient condition for a local minimum: 
local minimum: f ≤ > 0 H must be positive definite

Second-order sufficient condition for a Second-order sufficient condition for a local maximum: 
local maximum: f ≤ < 0 H must be negative definite

Higher-order necessary conditions for a local 
minimum or local maximum: Calculate a higher 
ordered derivative that is not zero; all odd-ordered 
derivatives below this one must be zero

Higher-order sufficient condition for a local minimum: 
Highest nonzero derivative must be even-ordered and
positive



valent to a uniform change of scale of the graph along the f (x) axis, which again leaves the
shape of the surface unaltered. Multiplying f(x) by a negative constant changes the minimum
at x* to a maximum. We may use this property to convert maximization problems to mini-
mization problems by multiplying f(x) by -1. The effect of scaling and adding a constant to
a function is shown in Example 4.19. In Examples 4.20 and 4.23, the local minima for a
function are found using optimality conditions, while in Examples 4.21 and 4.22, the use of
necessary conditions is explored.
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EXAMPLE 4.19 Effects of Scaling or Adding a Constant to 
a Function

Discuss the effect of the preceding variations for the function f (x) = x2 - 2x + 2.

Solution. Consider the graphs of Fig. 4-9. Figure 4-9(A) represents the function 
f (x) = x2 - 2x + 2, which has a minimum at x* = 1. Figures 4-9(B), (C), and (D) show
the effect of adding a constant to the function [ f (x) + 1], multiplying f (x) by positive
number [2f (x)], and multiplying it by a negative number [-f (x)]. In all cases, the 
stationary point remains unchanged.

f (x)

f (x) f (x)

f (x)

f (x) = x 
2 – 2x + 2

f (x) = 2(x 
2 – 2x + 2) f (x) = –(x 

2 – 2x + 2)

f (x) = (x 
2 – 2x + 2) + 14

2

4

2

1 2 1 2

1 2

1 2

x x

xx

8

6

4

4

2

–2

2

(A) (B)

(C) (D)

FIGURE 4-9 Graphs for Example 4.19. Effects of scaling or adding constant to a func-
tion. (A) Graph of f(x) = x2 - 2x + 2. (B) Effect of addition of a constant to f(x). (C) Effect
of multiplying f(x) by a positive constant. (D) Effect of multiplying f(x) by -1.
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EXAMPLE 4.20 Local Minima for a Function of Two
Variables Using Optimality Conditions

Find local minimum points for the function f (x) = x1
2 + 2x1x2 + 2x2

2 - 2x1 + x2 + 8.

Solution. The necessary conditions for the problem give

(a)

These equations are linear in variables x1 and x2. Solving the equations simultaneously,
we get the stationary point as x* = (2.5, -1.5). To check if the stationary point is a
local minimum, we evaluate H at x*.

(b)

By either of the tests of Theorems 4.2 and 4.3 or (M1 = 2 > 0, M2 = 4 > 0) or 
(l1 = 5.236 > 0, l2 = 0.764 > 0), H is positive definite at the stationary point x*. Thus,
it is a local minimum with f (x*) = 4.75. Figure 4-10 shows a few iso-cost curves for
the function of this problem. It can be seen that the point (2.5, -1.5) is the minimum
for the function.
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FIGURE 4-10 Isocost curves for the function of Example 4.20.
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As noted earlier, the optimality conditions can also be used to check the optimal-
ity of a given point. To illustrate this, let us check the optimality of the point (1, 2).
At this point, the gradient vector is calculated as (4, 11), which is not zero. Therefore
the first-order necessary condition for a local minimum or a local maximum is 
violated and the point is not a stationary point.

EXAMPLE 4.21 Cylindrical Tank Design Using Necessary
Conditions

In Section 2.8, a minimum cost cylindrical storage tank problem is formulated. The
tank is closed at both ends and is required to have volume V. The radius R and height
H are selected as design variables. It is desired to design the tank having minimum
surface area. For the solution we may simplify the cost function as

(a)

The volume constraint is an equality,

(b)

This constraint cannot be satisfied if either R or H is zero. We may then neglect the non-
negativity constraints on R and H if we agree to choose only the positive value for them.
We may further use the equality constraint (b) to eliminate H from the cost function,

(c)

Therefore, the cost function of Eq. (a) becomes

(d)

This is an unconstrained problem in terms of R for which the necessary condition
gives

(e)

The solution is

(f)

Using Eq. (c), we obtain

(g)H
V
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Using Eq. (e), the second derivative of with respect to R at the stationary point is

(h)

Since the second derivative is positive for all positive R, the solution in Eqs. (f ) and
(g) is a local minimum. Using Eqs. (a) or (d) the cost function at the optimum is given
as

(i)f R H
V

*, *( ) = Ê
Ë

ˆ
¯3

2

2 3

p

d f

dR

V

R

2

2 3

2
2 6= + =

p

f

EXAMPLE 4.22 Numerical Solution of Necessary Conditions

Find stationary points for the following function and check sufficiency conditions for
them:

(a)

Solution. The function is plotted in Fig. 4-11. It can be seen that there are three 
stationary points: x = 0 (Point A), x between 1 and 2 (Point C), and x between -1 
and -2 (Point B). The point x = 0 is a local maximum for the function and the other
two are local minima.

f x x x( ) = +
1

3
2 cos

10

9

8

7

6

5

4

3

2

1
A

B C

–5 –4 –3 –2

–2

–1 1 2 3 4 5
–1

Local minima: B and C
Local maximum: A

f (x)

x  

FIGURE 4-11 Graph of f(x) = 1–3x
2 + cos x of Example 4.22.
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The necessary condition is

(b)

It can be seen that x = 0 satisfies Eq. (b), so it is a stationary point. We must find other
roots of Eq. (b). Finding an analytical solution for the equation is difficult, so we must
use numerical methods. We can either plot f ¢(x) versus x and locate the point where
f ¢(x) = 0, or use a numerical method for solving nonlinear equations. A numerical
method for solving such an equation known as the Newton-Raphson method is given
in Appendix C. By either of the two methods, we find that x* = 1.496 and -1.496
satisfy f ¢(x) = 0 in Eq. (b). Therefore, these are additional stationary points. To deter-
mine whether they are local minimum, maximum, or inflection points, we must deter-
mine f ≤ at the stationary points and use sufficient conditions of Theorem 4.4. Since
f ≤ = - cos x, we have

1. x* = 0; f ≤ = - < 0, so this is a local maximum with f (0) = 1.
2. x* = 1.496; f ≤ = 0.592 > 0, so this is a local minimum with f (1.496) = 0.821.
3. x* = -1.496; f ≤ = 0.592 > 0, so this is a local minimum with f (-1.496) = 0.821.

These results agree with the graphical solutions observed in Fig. 4-11. Note that x* =
1.496 and -1.496 are actually global minimum points for the function although the
function is unbounded and the feasible set is not closed. Note also that there is no
global maximum point for the function since the function is unbounded and x is
allowed to have any value.

1
3

2
3

¢( ) = - =f x x x
2

3
0sin

EXAMPLE 4.23 Local Minima for a Function of Two
Variables Using Optimality Conditions

Find a local minimum point for the function

Solution. The necessary conditions for optimality are

(a)

(b)

Equations (a) and (b) give
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4.3.4 Roots of Nonlinear Equations Using Excel
Excel is a spreadsheet program that has many useful capabilities for engineering calculations.
In particular it can be used to solve equations and optimization problems. Online help is 
available to use the program. When the program is invoked, it opens what is called the “work-
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These equations give

(d)

Since neither x1 nor x2 can be zero (the function has singularity at x1 = 0 or x2 = 0),
the preceding equation gives x1 = 250x2. Substituting this into Eq. (b), we obtain 
x2 = 4. Therefore, x1* = 1000, and x2* = 4 is a stationary point for the function f (x).
Using Eqs. (a) and (b), the Hessian matrix for f (x) at the point x* is given as

(e)

Eigenvalues of the above Hessian (without the constant of ) are: l1 = 0.006 and l2

= 500.002. Since both eigenvalues are positive, the Hessian of f (x) at the point x* is
positive definite. Therefore, x* = (1000, 4) is a local minimum point with f (x*) =
3000. Figure 4-12 shows some isocost curves for the function of this problem. It can
be seen that x1 = 1000 and x2 = 4 is the minimum point. (Note that the horizontal and
vertical scales are quite different in Fig. 4-12; this is done to obtain reasonable isocost
curves.)
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FIGURE 4-12 Isocost curves for the function of Example 4.23.



book.” A workbook contains several pages called “worksheets.” These worksheets may be
used to store related data and information. Each worksheet is divided into cells that are 
referenced by their location, the column-row number. All the information, data, and its 
manipulation must be organized in terms of cells. Cells may contain raw data, formulas, and
references to other cells.

“Solver” is the tool available in Excel to solve a nonlinear equation, a system of linear/non-
linear equations, and optimization problems. Here, we shall use Solver to find the roots of
the nonlinear equation x - sinx = 0. This equation was obtained as a necessary condition
for the minimization problem of Example 4.22.

Solver is invoked through the “Tools” menu. If it is not visible under Tools, it is not
installed yet. To install it, use the “Add-in” command under Tools menu.

We need to prepare a worksheet that defines the problem. The worksheet can be prepared
in many different ways, and Fig. 4-13 shows one such way.

We define cell C3 as x, the solution variable. To name a cell, use the Insert/Name/Define
command and click the Add button to define names for cells. Defining meaningful names for
cells is useful because they can be referred to by their names rather than their cell numbers.
Cells contain the following information:

Cell A3: indicates that Row 3 is associated with variable x.
Cell A4: indicates that Row 4 is associated with the equation.
Cell B3: variable name that will appear later in the “Answer Report.”
Cell C3: starting value for the variable in cell B3, named x; updated later by Solver to a

final value.
Cell B4: equation whose roots need to be found; will appear later in the “Answer

Report.”
Cell C4: contains expression for the equation as “=2*x/3 - sin(x)”; currently it displays

the value of the expression for x = 1 in cell C3.

Whenever the value in cell C3 is changed, cell C4 gets updated automatically. Now Solver
is invoked from the Tools menu to define the target cell and the cell to be varied. Figure 4-
14 shows the dialog box for the Solver. We set the target cell as C4 because that contains the
equation whose roots need to be determined. We set its value to zero in the dialog box because
when the root is found its value should be zero. (Solver uses the “$” symbol to identify cells;
for example, $C$4 refers to cell C4. Use of $ in a cell reference is convenient when the “copy
formula” capability is used. With the “copy formula” command, the reference to a cell with
the $ symbol is not changed.)

2
3
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FIGURE 4-13 Excel worksheet for finding roots of 2–3x - sinx = 0.



Next we define the cell whose value needs to be treated as a variable by inserting C3 in
the box “By Changing Cells.” Then by pressing the “Options” button we can reset some of
the parameters related to the solution procedure, if desired. Otherwise, we press the “Solve”
button to find a root starting from x = 1. When Solver is finished, it produces the three reports,
Answer, Sensitivity, and Limits, seen in the “Solver Results” dialog box in Fig. 4-15. We
select only the “Answer Report” because that contains the relevant information. When “OK”
is pressed with the “Answer” option highlighted under “Reports,” Solver produces another
worksheet that contains the final results, as shown in Fig. 4-16. Other roots for the equation
can be found by changing the starting value for x in cell C3. If one starting value does not
work, another value should be tried. Using this procedure, three roots of the equation are
found as 0, 1.496, and -1.496, as before.
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FIGURE 4-14 Solver dialog box to set parameters for the problem.

FIGURE 4-15 Solver results dialog box and the final worksheet.



4.4 Constrained Optimum Design Problems
We have seen in Chapter 2 that most design problems include constraints on variables and
on performance of the system. This section describes concepts related to constrained opti-
mization problems. The necessary conditions for an equality constrained problem are dis-
cussed first. These conditions are contained in the Lagrange Multiplier theorem generally
discussed in textbooks on calculus. Then, the necessary conditions for the general constrained
problem are obtained as an extension of the Lagrange Multiplier theorem. These are known
as Karush-Kuhn-Tucker (KKT) necessary conditions. The necessary conditions for optimal-
ity are explained and illustrated with examples. All optimum designs must satisfy these con-
ditions. The standard design optimization model introduced in Section 2.11 is restated in
Table 4-2. The inequality constraints of Eq. (4.39) will be initially ignored to discuss the
Lagrange theorem given in calculus books. The theorem will then be extended for inequal-
ity constraints.
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FIGURE 4-16 Solver Answer Report for roots of 2–3x - sinx = 0.

TABLE 4-2 General Design Optimization Model

Design variable vector: x = (x1, x2, . . . , xn)
Cost function: f (x) = f(x1, x2, . . . , xn) (4.37)
Equality constraints: hi(x) = 0; i = 1 to p (4.38)
Inequality constraints: gi(x) £ 0; i = 1 to m (4.39)

4.4.1 Role of Constraints
Based on the discussion of unconstrained optimization problems, one might conclude that
only the nature of the cost function f (x) for the constrained problems will determine the 
location of the minimum point. This, however, is not true because the constraint functions
also play a prominent role in determining the optimum solution. Examples 4.24 and 4.25
illustrate these situations.
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EXAMPLE 4.24 Constrained Optimum Point

Minimize f (x) = (x1 - 1.5)2 + (x2 - 1.5)2 subject to the constraints written in the stan-
dard form

(a)

(b)

Solution. The feasible set S for the problem is a triangular region shown in Fig. 
4-17. If constraints are ignored, f (x) has a minimum at the point (1.5, 1.5) which 
violates the constraint g1 and therefore is an infeasible paint. Note that contours of
f (x) are circles. They increase in diameter as f (x) increases. It is clear that the
minimum value for f (x) corresponds to a circle with the smallest radius intersecting
the feasible set. This is the point (1, 1) at which f (x) = 0.5. The point is on the bound-
ary of the feasible region. Thus, the location of the optimum point is governed by the
constraints for this problem as well as cost function contours.

g x g x2 1 3 20 0x x( ) = - £ ( ) = - £;

g x x1 1 2 2 0x( ) = + - £

f = 0.75x2

f (x*) = 0.5
x* = (1,1)

f = 0.5

Cost function contours

Minimum point(1.5, 1.5)

Feasible
region

0
1

1

2

2 3

g1 = x1 + x2 – 2 = 0

x1

FIGURE 4-17 Graphical representation for Example 4.24. Constrained optimum point.

EXAMPLE 4.25 Unconstrained Optimum Point for 
a Constrained Problem

Minimize f (x) = (x1 - 0.5)2 + (x2 - 0.5)2 subject to the same constraints as in Example
4.24.

Solution. The feasible set S is the same as in Example 4.24. The cost function,
however, has been modified. If constraints are ignored, f (x) has a minimum at (0.5,
0.5). Since the point also satisfies all the constraints, it is the optimum solution. The
solution for this problem therefore occurs in the interior of the feasible region and the
constraints play no role in its location.

Note that a solution to a constrained optimization problem may not exist. This can
happen if we over-constrain the system. The requirements can be conflicting such that
it is impossible to build a system to satisfy them. In such a case we must re-examine
the problem formulation and relax constraints. Example 4.26 illustrates the situation.



4.4.2 Necessary Conditions: Equality Constraints
We first discuss the necessary conditions for constrained minimization problems with only
equality constraints. Just as for the unconstrained case, solutions of these conditions give 
candidate minimum points. The sufficient conditions—discussed in Chapter 5—can be used
to determine if a candidate point is indeed a local minimum. Extensions to include inequal-
ities are described in the next subsection.

*Regular Point Before discussing the necessary conditions, we define a regular point of
the feasible set (design space). Consider the constrained optimization problem of minimiz-
ing f (x) subject to the constraints hi(x) = 0, i = 1 to p. A point x* satisfying the constraints
h(x*) = 0 is said to be a regular point of the feasible set if f (x*) is differentiable and gradi-
ent vectors of all constraints at the point x* are linearly independent. Linear independence
means that no two gradients are parallel to each other, and no gradient can be expressed as
a linear combination of the others (Appendix B). When inequality constraints are also
included in the problem definition, then for a point to be regular, gradients of active inequal-
ities must be also linearly independent.
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EXAMPLE 4.26 Infeasible Problem

Minimize f (x) = (x1 - 2)2 + (x2 - 2)2 subject to the constraints written in the standard
form

(a)

(b)

(c)

Solution. Figure 4-18 shows a plot of the constraints for the problem. It can be seen
that there is no design satisfying all the constraints. The feasible set S for the problem
is empty and there is no solution (i.e., no feasible design).

g x g x3 1 4 20 0x x( ) = - £ ( ) = - £;

g x x2 1 2 3 0x( ) = - + + £

g x x1 1 2 2 0x( ) = + - £
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2

1

0 1 2 3 4

Infeasible

x2

x1

g1 = 0

g3 = 0

g2 = 0

g4 = 0

g2 £ 0g1 £ 0

FIGURE 4-18 Plot of constraints for Example 4.26. Infeasible problem.



Lagrange Multipliers and Necessary Conditions It turns out that a scalar multiplier is
associated with each constraint, called the Lagrange multiplier. These multipliers play a
prominent role in optimization theory as well as numerical methods. The multipliers have a
geometrical as well as physical meaning. Their values depend on the form of the cost and
constraint functions. If these functions change, the values of the Lagrange multipliers also
change. We shall discuss this aspect later in Section 4.5. To introduce the idea of Lagrange
multipliers, we consider Example 4.27, which minimizes a cost function of two variables
with one equality constraint.
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EXAMPLE 4.27 Introduction of Lagrange Multipliers and
Their Geometrical Meaning

Minimize

(a)

subject to an equality constraint

(b)

Solution. The problem has two variables and can be solved easily by the graphical
procedure. Figure 4-19 shows a graphical representation for the problem. The straight
line A–B represents the equality constraint and the feasible region for the problem.
Therefore, the optimum solution must lie on the line A–B. The cost function is an
equation of a circle with its center at point (1.5, 1.5). The isocost curves, having 
values of 0.5 and 0.75, are shown in the figure. It can be seen that point C, having
coordinates (1, 1), gives the optimum solution for the problem. The cost function
contour of value 0.5 just touches the line A–B, so this is the minimum value for the
cost function.
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FIGURE 4-19 Graphical solution for Example 4.27. Geometrical interpretation of nec-
essary conditions.
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Introduction of Lagrange multipliers. Now let us see what mathematical con-
ditions are satisfied at the minimum point C. Let the optimum point be represented as
(x1*, x2*). To derive the conditions and to introduce the Lagrange multiplier, we first
assume that the equality constraint can be used to solve for one variable in terms of
the other (at least symbolically), i.e., assume that we can write

(c)

where f is an appropriate function of x1. In many problems, it may not be possible to
write explicitly the function f (x1), but for derivation purposes, we assume its exis-
tence. It will be seen later that the explicit form of this function is not needed. For the
present example, f (x1) from Eq. (b) is given as

(d)

Substituting Eq. (c) into Eq. (a), we eliminate x2 from the cost function and obtain the
unconstrained minimization problem in terms of x1 only:

(e)

For the present example, substituting Eq. (d) into Eq. (a), we eliminate x2 and obtain
the minimization problem in terms of x1 alone:

The necessary condition df/dx1 = 0 gives x1* = 1. Then Eq. (d) gives x2* = 1 and the
cost function at the point (1, 1) is 0.5. It can be checked that the sufficiency condition
d 2f/dx1

2 > 0 is also satisfied, and so the point is indeed a local minimum as seen in 
Fig. 4-19.

If we assume that the explicit form of the function f(x1) cannot be obtained (which
is generally the case), then some alternate procedure must be developed to obtain the
optimum solution. We shall derive such a procedure and see that the Lagrange mul-
tiplier for the constraint gets introduced naturally in the process. Using the chain rule
of differentiation, we write the necessary condition df/dx1 = 0 for the problem defined
in Eq. (e) as

Substituting Eq. (c), the preceding equation can be written at the optimum point
(x1*, x2*) as

(f)

Since f is not known, we need to eliminate df/dx1 = 0 from Eq. (f ). To accomplish
this, we differentiate the constraint equation h(x1, x2) = 0 at the point (x1*, x2*) as
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Or, solving for df/dx1, we obtain (assuming ∂h/∂x2 π 0)

(g)

Now substituting for df/dx1 from Eq. (g) into Eq. (f ), we obtain

(h)

If we define a quantity v as

(i)

and substitute it into Eq. (h), we obtain

( j)

Also, rearranging Eq. (i) that defines v, we obtain

(k)

Equations (j) and (k) along with the equality constraint h(x1, x2) = 0 are the neces-
sary conditions of optimality for the problem. Any point that violates these con-
ditions cannot be a minimum point for the problem. The scalar quantity v defined 
in Eq. (i) is called the Lagrange multiplier. If the minimum point is known, Eq. (i)
can be used to calculate its value. For the present example, ∂f (1, 1)/∂x2 = -1 and 
∂h(1, 1)/∂x2 = 1; therefore, Eq. (i) gives v* = 1 as the Lagrange multiplier at the
optimum point.

Recall that the necessary conditions can be used to solve for the candidate minimum
points, i.e., Eqs. (j), (k), and h(x1, x2) = 0 can be used to solve for x1, x2, and v. For
the present example, these equations give

(l)

Solution of the preceding equations is indeed, x1* = 1, x2* = 1, and v* = 1.

Geometrical meaning of Lagrange multipliers. It is customary to use what is
known as the Lagrange function in writing the necessary conditions. The Lagrange
function is denoted as L and defined using cost and constraint functions as

(m)

It is seen that the necessary conditions of Eqs. (j) and (k) are given in terms of L as
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Or, in the vector notation we see that the gradient of L is zero at the candidate
minimum point, i.e., —L(x1*, x2*) = 0. Writing this condition, using Eq. (m), or writing
Eqs. ( j) and (k) in the vector form, we obtain

(o)

where gradients of the cost and constraint functions are given as

(p)

Equation (o) can be rearranged as

(q)

The preceding equation brings out the geometrical meaning of the necessary condi-
tions. It shows that at the candidate minimum point, gradients of the cost and con-
straint functions are along the same line and proportional to each other, and the
Lagrange multiplier v is the proportionality constant.

For the present example, the gradients of cost and constraint functions at the can-
didate optimum point are given as

(r)

These vectors are shown at point C in Fig. 4-19. Note that they are along the same
line. For any feasible point, say (0.4, 1.6), on line A–B other than the candidate
minimum, the gradients of cost and constraint functions will not be along the same
line, as seen in the following:

(s)

As another example, point D in Fig. 4-19 is not a candidate minimum, since gradi-
ents of cost and constraint functions are not along the same line. Also, the cost func-
tion has higher value at these points compared to the one at the minimum point, i.e.,
we can move away from point D toward point C and reduce the cost function.

It is interesting to note that the equality constraint can be multiplied by -1 without
affecting the minimum point, i.e., the constraint can be written as -x1 - x2 + 2 = 0. The
minimum solution is still the same x1* = 1, x2* = 1 and f (x*) = 0.5; however, the sign of the
Lagrange multiplier is reversed, i.e., v* = -1. This shows that the Lagrange multiplier
for the equality constraint is free in sign, i.e., the sign is determined by the form of the
constraint function. 

It is also interesting to note that any small move from point C in the feasible region
(i.e., along the line A–B) increases the cost function value, and any further reduction to
the cost function is accompanied by violation of the constraint. Thus, point C satisfies
the sufficiency condition for a local minimum point because it has the smallest value in
a neighborhood of point C [note that we have used the definition of a local minimum
given in Eq. (4.1), Section 4.1.1]. Thus, it is indeed a local minimum point.

— ( ) =
-È

ÎÍ
˘
˚̇

— ( ) = È
ÎÍ

˘
˚̇

f h0 4 1 6
2 2

0 2
0 4 1 6

1

1
. , .

.

.
, . , .

— ( ) =
-
-

È
ÎÍ

˘
˚̇

— ( ) = È
ÎÍ

˘
˚̇

f h1 1
1

1
1 1

1

1
, , ,

— ( ) = - — ( )f v hx* x*

— ( ) =

∂ ( )
∂

∂ ( )
∂

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

— =

∂ ( )
∂

∂ ( )
∂

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

f

f x x

x
f x x

x

h

h x x

x
h x x

x

x*

1 2

1

1 2

2

1 2

1

1 2

2

*, *

*, * ,

*, *

*, *

— ( ) + — ( ) =f v hx* x* 0



The concept of Lagrange multipliers is quite general. It is encountered in many engi-
neering applications other than the optimum design. The Lagrange multiplier for a constraint
can be interpreted as the force required to impose the constraint. We shall discuss a physi-
cal meaning of the Lagrange multipliers in Section 4.5. The idea of a Lagrange multiplier
for an equality constraint can be generalized to many equality constraints. It can also be
extended for inequality constraints. We shall first discuss the necessary conditions with mul-
tiple equality constraints in Theorem 4.5 and then describe in the next section their exten-
sions to include the inequality constraints.

Theorem 4.5 Lagrange Multiplier Theorem Consider the problem of minimizing f (x)
subject to the equality constraints hi(x) = 0, i = 1 to p. Let x* be a regular point that is a local
minimum for the problem. Then there exist unique Lagrange multipliers vj*, j = 1 to p such that

(4.40)

It is convenient to write these conditions in terms of a Lagrange function defined as

(4.41)

Then Eq. (4.40) becomes

(4.42)

Differentiating L(x, v) with respect to vj we can recover the equality constraints as

(4.43)

The gradient conditions of Eqs. (4.42) and (4.43) show that the Lagrange function is 
stationary with respect to both x and v. Therefore, it may be treated as an unconstrained 
function in the variables x and v to determine the stationary points. Note that any point that
does not satisfy conditions of the theorem cannot be a local minimum point. However, a point
satisfying the conditions need not be a minimum point either. It is simply a candidate
minimum point which can actually be an inflection or maximum point. The second-order 
necessary and sufficient conditions given in Chapter 5 can distinguish between the minimum,
maximum, and inflection points.

The n variables x and the p multipliers v are the unknowns, and the necessary conditions
of Eqs. (4.42) and (4.43) provide enough equations to solve for them. Note also that the
Lagrange multipliers vi are free in sign, i.e., they can be positive, negative, or zero. This is
in contrast to the Lagrange multipliers for the inequality constraints, which we shall see later
are required to be nonnegative.

The gradient condition of Eq. (4.40) can be rearranged as
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This form shows that the gradient of the cost function is a linear combination of the gradi-
ents of the constraints at the candidate minimum point. The Lagrange multipliers vj* act as
the scalars of the linear combination. This linear combination interpretation of the necessary
conditions is a generalization of the concept discussed in Example 4.27 for one constraint:
“at the candidate minimum point gradients of the cost and constraint functions are along the
same line.” Example 4.28 illustrates the necessary conditions for an equality constrained
problem.
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EXAMPLE 4.28 Cylindrical Tank Design—Use of Lagrange
Multipliers for a Equality Constrained
Problem

We will re-solve the cylindrical storage tank problem (Example 4.21) using the
Lagrange multiplier approach. The problem is to find radius R and length H of the
cylinder to minimize = R2 + RH subject to h = pR2H - V = 0.

Solution. The Lagrange function L for the problem is given as

(a)

The necessary conditions of the Lagrange Multiplier Theorem 4.5 give

(b)

(c)

(d)

These are three equations in three unknown v, R, and H. Note that they are nonlinear.
However, they can be easily solved by the elimination process giving the solution of
the necessary conditions as

(e)

This is the same solution as obtained for Example 4.21, treating it as an unconstrained
problem. It can be also verified that the gradients of the cost and constraint functions
are along the same line at the optimum point. Note that this problem has only one
equality constraint. Therefore the question of linear dependence of the gradients of
active constraints does not arise; i.e., the regularity condition for the solution point is
satisfied.
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Often, the necessary conditions of the Lagrange Multiplier Theorem lead to a nonlinear
set of equations that cannot be solved analytically. In such cases, we must use a numerical
algorithm such as the Newton-Raphson method (Appendix C) to solve for their roots and the
candidate minimum points. Several commercial software packages, such as Excel, MATLAB,
and Mathematica, are also available to find roots of nonlinear equations.

4.4.3 Necessary Conditions: Inequality Constraints—Karush-Kuhn-Tucker (KKT) 
Conditions

The design problem formulations in Chapter 2 often included inequality constraints of the
form gi(x) £ 0. We can transform an inequality constraint to equality by adding a new vari-
able to it, called the slack variable. Since the constraint is of the form “£”, its value is either
negative or zero. Thus the slack variable must always be nonnegative (i.e., positive or zero)
to make the inequality an equality. An inequality constraint gi(x) £ 0 is equivalent to the
equality constraint gi(x) + si = 0, where si ≥ 0 is a slack variable. The variables si are treated
as unknowns of the design problem along with the original variables. Their values are deter-
mined as a part of the solution. When the variable si has zero value, the corresponding inequal-
ity constraint is satisfied at equality. Such inequality is called an active (tight) constraint, i.e.,
there is no “slack” in the constraint. For any si > 0, the corresponding constraint is a strict
inequality. It is called an inactive constraint, and has slack given by si.

Note that with the preceding procedure, we must introduce one additional variable si and
an additional constraint si ≥ 0 to treat each inequality constraint. This increases the dimen-
sion of the design problem. The constraint si ≥ 0 can be avoided if we use si

2 as the slack
variable instead of just si. Therefore, the inequality gi £ 0 is converted to equality as

(4.44)

where si can have any real value. This form can be used in the Lagrange Multiplier Theorem
to treat inequality constraints and to derive the corresponding necessary conditions. The m
new equations needed for determining the slack variables are obtained by requiring the
Lagrangian L to be stationary with respect to the slack variables as well ( ∂L/∂s = 0).

Note that once a design point is specified, Eq. (4.44) can be used to calculate the slack
variable si

2. If the constraint is satisfied at the point (i.e., gi £ 0), then si
2 ≥ 0. If it is violated,

then si
2 is negative which is not acceptable, i.e., the point is not a candidate minimum point.

There is an additional necessary condition for the Lagrange multipliers of “£ type” 
constraints given as

(4.45)

where uj* is the Lagrange multiplier for the jth inequality constraint. Thus, the Lagrange mul-
tiplier for each “£” inequality constraint must be nonnegative. If the constraint is inactive at
the optimum, its associated Lagrange multiplier is zero. If it is active (gi = 0), then the 
associated multiplier must be nonnegative. We will explain the condition of Eq. (4.45) 
from a physical point of view in Section 4.5. Example 4.29 illustrates the use of necessary
conditions in an inequality constrained problem.

u j mj* ;≥ =0 1 to

g si i+ =2 0
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EXAMPLE 4.29 Inequality Constrained Problem—Use of
Necessary Conditions

We will re-solve Example 4.27 by treating the constraint as an inequality. The problem
is to minimize f (x1, x2) = (x1 - 1.5)2 + (x2 - 1.5)2 subject to an inequality written in
the standard form as g(x) = x1 + x2 - 2 £ 0.
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Solution. The graphical representation for the problem remains the same as in Fig.
4-19 for Example 4.27, except that the feasible region is enlarged; it is line A-B and
the region below it. The minimum point for the problem is same as before, i.e., x1* =
1, x2* = 1, f (x*) = 0.5. Introducing a slack variable s2 for the inequality, the Lagrange
function of Eq. (4.41) for the problem is defined as

(a)

where u is the Lagrange multiplier for the inequality constraint. The necessary con-
ditions of the Lagrange Theorem give (treating x1, x2, u, as unknowns)

(b)

(c)

(d)

(e)

These are four equations in four unknowns x1, x2, u, and s. The equations must be
solved simultaneously for all the unknowns. Note that the equations are nonlinear.
Therefore they can have many roots.

One solution can be obtained by setting s to zero to satisfy the condition 2us = 0
in Eq. (e). Equations (b)–(d) are solved to obtain x1* = x2* = 1, u* = 1, s = 0. When s
= 0, the inequality constraint is active. x1, x2, and u are solved from the remaining
three equations (b)–(d), which are linear in the variables. This is a stationary point of
L, so it is a candidate minimum point. Note from Fig. 4-19 that it is actually a
minimum point, since any move away from x* either violates the constraint or
increases the cost function. The second stationary point is obtained by setting u = 0
to satisfy the condition of Eq. (e) and solving the remaining equations for x1, x2, and
s. This gives x1* = x2* = 1.5, u* = 0, s2 = -1. This is not a valid solution as the 
constraint is violated at the point x*, since g = -s2 = 1 > 0.

It is interesting to observe the geometrical representation of the necessary condi-
tions for inequality constrained problems. The gradients of the cost and constraint
functions at the candidate point (1, 1) are calculated as

(f)

These gradients are along the same line but in opposite directions as shown in Fig. 4-
19. Observe also that any small move from point C either increases the cost function
or takes the design into the infeasible region to reduce the cost function any further
(i.e., the condition for a local minimum given in Eq. (4.1), Section 4.1.1 is violated).
Thus, point (1, 1) is indeed a local minimum point. This geometrical condition is called
the sufficient condition for a local minimum point.

— =
-( )
-( )

È
ÎÍ

˘
˚̇

=
-
-

È
ÎÍ

˘
˚̇

— = È
ÎÍ

˘
˚̇

f
x

x
g

2 1 5

2 1 5

1

1

1

1
1

2

.

.
;

∂
∂

= =
L

s
us2 0

∂
∂

= + - + =
L

u
x x s1 2

22 0

∂
∂

= -( ) + =
L

x
x u

2
22 1 5 0.

∂
∂

= -( ) + =
L

x
x u

1
12 1 5 0.

L x x u x x s= -( ) + -( ) + + - +( )1
2

2
2

1 2
21 5 1 5 2. .



The necessary conditions for the equality and inequality constraints can be summed up in
what are commonly known as the Karush-Kuhn-Tucker (KKT) first-order necessary condi-
tions, displayed in Theorem 4.6:

Theorem 4.6 Karush-Kuhn-Tucker (KKT) Optimality Conditions Let x* be a regular
point of the feasible set that is a local minimum for f (x) subject to hi(x) = 0; i = 1 to p; gj(x)
£ 0; j = 1 to m. Then there exist Lagrange multipliers v* (a p-vector) and u* (an m-vector)
such that the Lagrangian function is stationary with respect to xj, vi, uj, and sj at the point x*.

1. Lagrangian Function

(4.46a)

2. Gradient Conditions

(4.46b)

(4.47)

(4.48)

3. Feasibility Check for Inequalities

(4.49)

4. Switching Conditions

(4.50)

5. Nonnegativity of Lagrange Multipliers for Inequalities

(4.51)

6. Regularity Check
Gradients of active constraints should be linearly independent. In such a case the
Lagrange multipliers for the constraints are unique.
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It turns out that the necessary condition u ≥ 0 ensures that the gradients of the cost
and the constraint functions point in opposite directions. This way f cannot be reduced
any further by stepping in the negative gradient direction without violating the con-
straint. That is, any further reduction in the cost function leads to leaving the feasible
region at the candidate minimum point. This can be observed in Fig. 4-19.



It is important to understand the use KKT conditions to (i) check possible optimality of a
given point and (ii) determine the candidate local minimum points. Note first from Eqs. (4.47)
to (4.49) that the candidate minimum point must be feasible, so we must check all the 
constraints to ensure their satisfaction. The gradient conditions of Eq. (4.46b) must also be
satisfied simultaneously. These conditions have a geometrical meaning. To see this rewrite
Eq. (4.46b) as

(4.52)

which shows that at the stationary point, the negative gradient direction on the left side (steep-
est descent direction) for the cost function is a linear combination of the gradients of the con-
straints with Lagrange multipliers as the scalar parameters of the linear combination.

The m conditions in Eq. (4.50) are known as the switching conditions or complementary
slackness conditions. They can be satisfied by setting either si = 0 (zero slack implies active
inequality, i.e., gi = 0), or ui = 0 (in this case gi must be £ 0 to satisfy feasibility). These con-
ditions determine several cases in actual calculations, and their use must be clearly under-
stood. In Example 4.29, there was only one switching condition, which gave two possible
cases; case 1 where the slack variable was zero and case 2 where the Lagrange multiplier u
for the inequality constraint was zero. Each of the two cases was solved for the unknowns.
For general problems, there is more than one switching condition in Eq. (4.50); the number
of switching conditions is equal to the number of inequality constraints for the problem.
Various combinations of these conditions can give many solution cases. In general, with m
inequality constraints, the switching conditions lead to 2m distinct normal solution cases
(abnormal case is the one where both ui = 0 and si = 0). For each case, we need to solve the
remaining necessary conditions for candidate local minimum points. Depending on the 
functions of the problem, it may or may not be possible to solve analytically the necessary
conditions of each case. If the functions are nonlinear, we will have to use numerical methods
to find their roots. In that case, each case may give several candidate minimum points.

We shall illustrate the use of the KKT conditions in several example problems. In Example
4.29 there were only two variables, one Lagrange multiplier and one slack variable. For
general problems, the unknowns are x, u, s, and v. These are n, m, m, and p dimensional
vectors. There are thus (n + 2m + p) unknown variables and we need (n + 2m + p) equations
to determine them. The equations needed for their solution are available in the KKT neces-
sary conditions. If we count the number of equations in Eqs. (4.46) to (4.51), we find that
there are indeed (n + 2m + p) equations. These equations then must be solved simultaneously
for the candidate local minimum points. After the solutions are found, the remaining neces-
sary conditions of Eqs. (4.49) and (4.51) must be checked. Conditions of Eq. (4.49) ensure
feasibility of candidate local minimum points with respect to the inequality constraints gi(x)
£ 0; i = 1 to m. And, conditions of Eq. (4.51) say that the Lagrange multipliers of the 
“£ type” inequality constraints must be nonnegative.

Note that evaluation of si
2 essentially implies evaluation of the constraint function gi(x),

since si
2 = -gi(x). This allows us to check feasibility of the candidate points with respect to

the constraint gi(x) £ 0. It is also important to note that if an inequality constraint gi(x) £ 0
is inactive at the candidate minimum point x* [i.e., gi(x*) < 0, or si

2 > 0], then the corre-
sponding Lagrange multiplier ui* = 0 to satisfy the switching condition of Eq. (4.50). If,
however, it is active [i.e., gi(x*) = 0], then the Lagrange multiplier must be nonnegative, ui*
≥ 0. This condition ensures that there are no feasible directions with respect to the ith con-
straint gi(x*) £ 0 at the candidate point x* along which the cost function can reduce any
further. Stated differently, the condition ensures that any reduction in the cost function at x*
can occur only by stepping into the infeasible region for the constraint gi(x*) £ 0.
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Note further that the necessary conditions of Eqs. (4.46) to (4.51) are generally a non-
linear system of equations in the variables x, u, s, and v. It may not be easy to solve the
system analytically. Therefore, we may have to use numerical methods such as the Newton-
Raphson method of Appendix C to find roots of the system. Fortunately, software, such as
Excel, MATLAB, Mathematica and others, is available in most information technology center
libraries to solve a nonlinear set of equations. Such programs are of great help in solving for
candidate local minimum points.

The following important points should be noted relative to the Karush-Kuhn-Tucker
(KKT) first-order necessary conditions:

1. KKT conditions are not applicable at the points that are not regular. In those cases
their use may yield candidate minimum points; however, the Lagrange multipliers
are not unique.

2. Any point that does not satisfy KKT conditions cannot be a local minimum unless it
is an irregular point (in that case KKT conditions are not applicable). Points
satisfying the conditions are called KKT points.

3. The points satisfying KKT conditions can be constrained or unconstrained. They are
unconstrained when there are no equalities and all inequalities are inactive. If the
candidate point is unconstrained, it can be a local minimum, maximum, or inflection
point depending on the form of the Hessian matrix of the cost function (refer to
Section 4.3 for the necessary and sufficient conditions for unconstrained problems).

4. If there are equality constraints and no inequalities are active (i.e., u = 0), then the
points satisfying KKT conditions are only stationary. They can be minimum,
maximum, or inflection points.

5. If some inequality constraints are active and their multipliers are positive, then the
points satisfying KKT conditions cannot be local maxima for the cost function (they
may be local maximum points if active inequalities have zero multipliers). They may
not be local minima either; this will depend on the second-order necessary and
sufficient conditions discussed in Chapter 5.

6. It is important to note that value of the Lagrange multiplier for each constraint
depends on the functional form for the constraint. For example, Lagrange multiplier
for the constraint x/y - 10 £ 0 (y > 0) is different for the same constraint expressed
as x - 10y £ 0, or 0.1x/y - 1 £ 0. The optimum solution for the problem does not
change by changing the form of the constraint, but its Lagrange multiplier is
changed. This is further explained in Section 4.5.

Examples 4.30 and 4.31 illustrate various solutions of KKT necessary conditions for candi-
date local minimum points.
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EXAMPLE 4.30 Various Solutions of KKT Necessary
Conditions

Write KKT necessary conditions and solve them for the problem: minimize f (x) =
x3 - (b + c)x2 + bcx + f0 subject to a £ x £ d where 0 < a < b < c < d and f0 are 

specified constants (created by Y. S. Ryu).

Solution. A graph for the function is shown in Fig. 4-20. It can be seen that Point
A is a constrained minimum, Point B is an unconstrained maximum, Point C is an
unconstrained minimum, and Point D is a constrained maximum. We shall show how
the KKT conditions distinguish between these points. Note that since only one con-

1
2

1
3
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straint can be active at the candidate minimum point (x cannot be at the points A and
D simultaneously), all the feasible points are regular. There are two inequality 
constraints,

(a)

The Lagrangian function of Eq. (4.46a) for the problem is given as

(b)

where u1 and u2 are the Lagrange multipliers and s1 and s2 are the slack variables for
g1 = a - x £ 0 and g2 = x - d £ 0, respectively. The KKT conditions give

(c)

(d)

(e)

(f)

The switching conditions in Eq. (e) give four cases for the solution of KKT condi-
tions. Each case will be considered separately and solved.

Case 1: u1 = 0, u2 = 0. For this case, Eq. (c) gives two solutions as x = b and x
= c. For these points both the inequalities are strictly satisfied because slack variables 
calculated from Eq. (d) are

(g)

(h)for x c s c a s d c= = - > = - >: ;1
2

2
20 0

for x b s b a s d b= = - > = - >: ;1
2

2
20 0

u u1 20 0≥ ≥;

u s u s1 1 2 20 0= =;
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1
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2
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FIGURE 4-20 Graphical representation for Example 4.30. Point A, constrained local
minimum; B, unconstrained local maximum; C, unconstrained local minimum; D, 
constrained local maximum.
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Thus, all the KKT conditions are satisfied, and these are candidate minimum points.
Since the points are unconstrained, they are actually stationary points. We can check
the sufficient condition by calculating the curvature of the cost function at the two
candidate points:

(i)

Since b < c, d 2f/dx 2 is negative. Therefore, the sufficient condition for a local minimum
is violated. Actually, the second-order necessary condition of Eq. (4.32) is also 
violated, so the point cannot be a local minimum for the function. It is actually a local
maximum point because it satisfies the sufficient condition for that, as also seen in
Fig. 4-20.

( j)

Since b < c, d 2f/dx 2 is positive. Therefore, the second-order sufficient condition of 
Eq. (4.31) is satisfied, and this is a local minimum point, as also seen in Fig. 4-20.

Case 2: u1 = 0, s2 = 0. g2 is active for this case and since s2 = 0, therefore, x = d.
Equation (c) gives

(k)

Since d > c > b, u2 is < 0. Actually the term within the square brackets is also the
slope of the function at x = d which is positive, so u2 < 0. The KKT necessary con-
dition is violated, so there is no solution for this case, i.e., x = d is not a candidate
minimum point. This is true as can be observed for the point D in Fig. 4-20.

Case 3: s1 = 0, u2 = 0. s1 = 0 implies that g1 is active and, therefore, x = a.
Equation (c) gives

(l)

Also, since u1 = slope of the function at x = a, it is positive and all the KKT condi-
tions are satisfied. Thus, x = a is a candidate minimum point. Actually x = a is a local
minimum point because a feasible move from the point increases the cost function.
This is a sufficient condition which we shall discuss in Chapter 5.

Case 4: s1 = 0, s2 = 0. This case for which both constraints are active does not
give any valid solution since x cannot be simultaneously equal to a and d.

u a b c a bc a b a c1
2 0= - +( ) + = -( ) -( ) >

u d b c d bc d c d b2
2= - - +( ) +[ ] = - -( ) -( )

x c
d f

dx
c b= = - >;

2

2
0

x b
d f

dx
x b c b c= = - +( ) = - <;

2

2
2 0

EXAMPLE 4.31 Solution of KKT Necessary Conditions

Solve KKT condition for the problem: minimize f (x) = x1
2 + x2

2 - 3x1x2 subject to 
g = x1

2 + x2
2 - 6 £ 0.

Solution. The feasible region for the problem is a circle with its center at (0, 0) and
radius as . This is plotted in Fig. 4-21. Several cost function contours are shown6



Optimum Design Concepts 135

there. It can be seen that points A and B give minimum value for the cost function.
The gradients of cost and constraint functions at these points are along the same line
but in opposite directions, so KKT necessary conditions are satisfied. We shall verify
this by writing these conditions and solving them for candidate minimum points. The
Lagrange function of Eq. (4.46a) for the problem is

(a)

Since there is only one constraint for the problem, all points of the feasible region are
regular, so the KKT necessary conditions are applicable. They are given as

(b)

(c)

(d)

(e)

Equations (b)–(e) are the four equations in four unknowns, x1, x2, s, and u. Thus, in
principle, we have enough equations to solve for all the unknowns. The system of
equations is nonlinear; however, it is possible to analytically solve for all the roots.

There are three possible ways of satisfying the switching condition of Eq. (e): (i)
u = 0, (ii) s = 0, implying g is active, or (iii) u = 0 abd s = 0. We will consider each
case separately and solve for roots of the necessary conditions.

us = 0

x x s s u1
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FIGURE 4-21 Graphical solution for Example 4.31. Local minimum points, A and B.
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Case 1: u = 0. In this case, the inequality constraint is considered as inactive at
the solution point. We shall solve for x1 and x2 and then check the constraint. Equa-
tions (b) and (c) reduce to

(f)

This is 2 ¥ 2 homogeneous system of linear equations (right side is zero). Such a
system has a nontrivial solution only if the determinant of the coefficient matrix is
zero. However, since the determinant of the matrix is -5, the system has only a trivial
solution, x1 = x2 = 0. We can also solve the system using Gaussian elimination 
procedures. This solution gives s2 = 6 from Eq. (d), so the inequality is not active.
Thus, the candidate minimum point for this case is

(g)

Case 2: s = 0. In this case, s = 0 implies inequality as active. We must solve Eqs.
(b)–(d) simultaneously for x1, x2, and u. Note that this is a nonlinear set of equations,
so there can be multiple roots. Equation (b) gives u = -1 + 3x2/2x1. Substituting for u
in Eq. (c), we obtain x1

2 = x2
2. Using this in Eq. (d), solving for x1 and x2, and then

solving for u, we obtain four roots of Eqs. (b), (c), and (d) as

(h)

The last two roots violate KKT necessary condition, u ≥ 0. Therefore, there are two
candidate minimum points for this case. The first point corresponds to point A and the
second one to B in Fig. 4-21.

Case 3: u = 0, s = 0. With these conditions, Eqs. (b) and (c) give x1 = 0, x2 = 0. 
Substituting these into Eq. (d), we obtain s2 = 6 π 0. Therefore, all KKT conditions
cannot be satisfied.

The case where both u and s are zero usually does not occur in most practical prob-
lems. This can also be explained using the physical interpretation of the Lagrange
multipliers discussed later in this chapter. The multiplier u for a constraint g £ 0 actu-
ally gives the first derivative of the cost function with respect to variation in the right
side of the constraint, i.e., u = -(∂f/∂e), where e is a small change in the constraint
limit as g £ e. Therefore, u = 0 when g = 0 implies that, any change in the right side
of the constraint g £ 0 has no effect on the optimum cost function value. This usually
does not happen in practice. When the right side of a constraint is changed, the fea-
sible region for the problem changes, which usually has some effect on the optimum
solution.

x x u1 2 3
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x x u1 2 3
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x x u1 2 3
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The foregoing two examples illustrate the procedure of solving Karush-Kuhn-Tucker 
necessary conditions for candidate local minimum points. It is extremely important to 
understand the procedure clearly. Example 4.31 had only one inequality constraint. The
switching condition of Eq. (e) gave only two normal cases—either u = 0 or s = 0 (the abnor-
mal case where u = 0 and s = 0 rarely gives additional candidate points, so it will be ignored).
Each of the cases gave candidate minimum point x*. For case 1 (u = 0), there was only one
point x* satisfying Eqs. (b), (c), and (d). However, for case 2 (s = 0), there were four roots
for Eqs. (b), (c), and (d). Two of the four roots did not satisfy nonnegativity conditions on
the Lagrange multipliers. Therefore, the corresponding two roots were not candidate local
minimum points.

The preceding procedure is valid for more general nonlinear optimization problems. In
Example 4.32, we illustrate the procedure for a problem with two design variables and two
inequality constraints.
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Finally, the points satisfying KKT necessary conditions for the problem are 
summarized

1. x1* = 0, x2* = 0, u* = 0, f (0, 0) = 0, Point O in Fig. 4-21
2. x1* = x2* = , u* = , f ( , ) = -3, Point A in Fig. 4-21
3. x1* = x2* = - , u* = , f (- , - ) = -3, Point B in Fig. 4-21

It is interesting to note that points A and B satisfy the sufficient condition for local
minima. As can be observed from Fig. 4-21, any feasible move from the points results
in an increase in the cost and any further reduction in the cost results in violation 
of the constraint. It can also be observed that point O does not satisfy the sufficient
condition because there are feasible directions that result in a decrease in the cost 
function. So, point O is only a stationary point. We shall check the sufficient 
conditions for this problem later in Chapter 5.

331
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EXAMPLE 4.32 Solution of KKT Necessary Conditions

Minimize f(x1, x2) = x1
2 + x2

2 - 2x1 - 2x2 + 2 subject to g1 = -2x1 - x2 + 4 £ 0, 
g2 = -x1 - 2x2 + 4 £ 0.

Solution. Figure 4-22 gives a graphical representation for the problem. The two con-
straint functions are plotted and the feasible region is identified. It can be seen that
point A( , ), where both the inequality constraints are active, is the optimum solu-
tion for the problem. Since it is a two-variable problem, only two vectors can be lin-
early independent. It can be seen in Fig. 4-22 that the constraint gradients —g1 and
—g2 are linearly independent (hence the optimum point is regular), so any other vector
can be expressed as a linear combination of them. In particular, -—f (the negative gra-
dient of the cost function) can be expressed as linear combination of —g1 and —g2,
with positive scalars as the multipliers of the linear combination, which is precisely
the KKT necessary condition of Eq. (4.46b). In the following, we shall write these
conditions and solve them to verify the graphical solution.

4
3

4
3
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The Lagrange function of Eq. (4.46a) for the problem is given as

(a)

The KKT necessary conditions are

(b)

(c)

(d)

(e)

(f)

Equations (b)–(f) are the six equations in six unknowns: xl, x2, sl, s2, ul, and u2. We
must solve them simultaneously for candidate local minimum points. One way to
satisfy the switching conditions of Eq. (f ) is to identify various cases and then solve
them for the roots. There are four cases, and we will consider each case separately
and solve for all the unknowns:

1. u1 = 0, u2 =0
2. u1 = 0, s2 = 0 (g2 = 0)
3. s1 = 0 (g1 = 0), u2 = 0
4. s1 = 0 (g1 = 0), s2 = 0 (g2 = 0)
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FIGURE 4-22 Graphical solution for Example 4.32.
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Case 1: u1 = 0, u2 = 0. Equations (b) and (c) give xl = x2 = 1. This is not a valid
solution as it gives s1

2 = -1(g1 = 1), s2
2 = -1(g2 = 1) from Eqs. (d) and (e), which 

implies that both inequalities are violated, and so x1 = 1 and x2 = 1 is not a feasible
design.

Case 2: u1 = 0, s2 = 0. With these conditions, Eqs. (b), (c), and (e) become

(g)

These are three linear equations in the three unknowns x1, x2, and u2. Any method of
solving a linear system of equations such as Gaussian elimination, or method of deter-
minants (Cramer’s rule), can be used to find roots. Using the elimination procedure,
we obtain x1 = 1.2, x2 = 1.4, and u2 = 0.4. Therefore, the solution for this case is

(h)

We need to check for feasibility of the design point with respect to constraint g1 before
it can be claimed as a candidate local minimum point. Substituting x1 = 1.2 and x2 =
1.4 into Eq. (d), we find that s1

2 = -0.2 < 0 (g1 = 0.2), which is a violation of constraint
g1. Therefore, case 2 also does not give any candidate local minimum point. It can be
seen in Fig. 4-22 that point (1.2, 1.4) corresponds to point B, which is not in the fea-
sible set.

Case 3: s1 = 0, u2 = 0. With these conditions Eqs. (b), (c), and (d) give

(i)

This is again a linear system of equations for the variables x1, x2, and u1. Solving the
system, we get the solution as

(j)

Checking the design for feasibility with respect to constraint g2, we find from Eq. (e)
s2

2 = -0.2 < 0 (g2 = 0.2). This is not a feasible design. Therefore, Case 3 also does not
give any candidate local minimum point. It can be observed in Fig. 4-22 that point
(1.4, 1.2) corresponds to point C, which is not in the feasible region.

Case 4: s1 = 0, s2 = 0. For this case, Eqs. (b) to (e) must be solved for the four
unknowns x1, x2, u1, and u2. This system of equations is again linear and can be solved
easily. Using the elimination procedure as before, we obtain x1 = and x2 = from 
Eqs. (d) and (e). Solving for u1 and u2 from Eqs. (b) and (c), we get u1 = > 0 and 
u2 = > 0. To check regularity condition for the point, we evaluate the gradients of
the active constraints and define the constraint gradient matrix A as

(k)

Since rank (A) = # of active constraints, the gradients —g1 and —g2 are linearly inde-
pendent. Thus, all the KKT conditions are satisfied and the preceding solution is a
candidate local minimum point. The solution corresponds to point A in Fig. 4-22. The
cost function at the point has a value of .2
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Note that addition of an inequality to the problem formulation doubles the number of KKT
solution cases. With 2 inequalities, we had 4 KKT cases; with 3 inequalities we will have 8
cases; and with 4 inequalities, we will have 16 cases. Therefore the number of cases quickly
gets out of hand and thus this solution procedure cannot be used to solve most practical prob-
lems. Based on these conditions, however, numerical methods have been developed that can
handle any number of equality and inequality constraints. In Section 4.7, we shall solve two
problems having 16 and 32 cases, respectively. In summary, the following points should be
noted regarding Karush-Kuhn-Tucker first-order necessary conditions:

1. The conditions can be used to check whether a given point is a candidate minimum;
it must be feasible, the gradient of the Lagrangian with respect to the design
variables must be zero, and the Lagrange multipliers for inequality constraints must
be nonnegative.

2. For a given problem, the conditions can be used to find candidate minimum points.
Several cases defined by the switching conditions must be considered and solved.
Each case can give multiple solutions.

3. For each solution case, remember to
(i) check all inequality constraints for feasibility (i.e., gi £ 0 or si

2 ≥ 0)
(ii) calculate all the Lagrange multipliers
(iii) ensure that the Lagrange multipliers for all the inequality constraints are 

nonnegative

4.4.4 Solution of KKT Conditions Using Excel
Excel Solver was introduced in Section 4.3.4 to find roots of a nonlinear equation. We shall
use that capability to solve the KKT conditions for the problem solved in Example 4.31. The
first step in the solution process is to prepare the Excel worksheet to describe the problem
functions. Then Solver is invoked under the Tools menu to define equations and constraints.
Figure 4-23 shows the worksheet for the problem and the Solver Parameters dialog box. Cells
A5 to A8 show the variable names that will appear later in the “Answer Report” worksheet.
Cells B5 to B8 are named as x, y, u and s, respectively and contain the starting values for
the four variables. Note that the variables x1 and x2 have been changed to x and y because x1

and x2 are not valid names in Excel. Cells A10 to A15 contain expressions for the KKT con-
ditions given in Eqs. (b) to (e) in Example 4.31. These expressions will appear later in the
“Answer Report.” Cells B10 to B15 contain the expressions coded in terms of the variable
cells B4 to B7 as follows:

Cell B10: = 2*x-3*y+2*u*s (expression for ∂L/∂x)
Cell B11: = 2*y-3*x+2*u*y (expression for ∂L/∂y)
Cell B12: = x*x+y*y-6+s*s (constraint, g + s2)
Cell B13: = u*s (switching condition)
Cell B14: = s*s (s2)
Cell B15: = u (u)
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It can be observed in Fig. 4-22 that the vector -—f can be expressed as a linear
combination of the vectors —g1 and —g2 at point A. This satisfies the necessary con-
dition of Eq. (4.52). It can also be seen from the figure that point A is indeed a local
minimum because any further reduction in the cost function is possible only if we go
into the infeasible region. Any feasible move from point A results in an increase in
the cost function.



The current values for these cells for starting values of the variables are shown in Fig. 4-
23. Now the root finding problem can be defined in the “Solver Parameters” dialog box. The
target cell is set to B10, whose value is set to zero at the solution point. The variable cells
are identified as B5 to B8. The rest of the equations are entered as constraints by clicking
the “Add” button. Note that in order to solve a set of nonlinear equations, one of the equa-
tions is identified as the target equation (#1 in the present case), and rest of them are identi-
fied as constraints. Once the problem has been defined, the “Solve” button is clicked to solve
the problem. Solver solves the problem and reports the final results by updating the original
worksheet and opening the “Solver Results” dialog box, as shown in Fig. 4-24. The final
“Answer” worksheet can be generated if desired. The current starting point of (1, -2, 2, 0)
gave the KKT point as (-1.732, -1.732, 0.5, 0).

It is important to note that using the worksheet shown in Fig. 4-23, the two KKT cases
can be solved. These cases can be generated using starting values for the slack variable 
and the Lagrange multiplier. For example, selecting u = 0 and s > 0 generates the case where
the constraint is inactive. This gives the solution x = 0 and y = 0. Selecting u > 0 and s = 0
gives the case where the constraint is active. Selecting different starting values for x and 
y gives two other points as solutions of the necessary conditions. When there are two or more
inequality constraints, various KKT cases can be generated in a similar way.

4.4.5 Solution of KKT Conditions Using MATLAB
MATLAB can also be used to solve a set of nonlinear equations. The primary command used
for this purpose is fsolve. This command is part of MATLAB Optimization Toolbox which
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FIGURE 4-23 Excel Worksheet and Solver Parameters dialog box for Example 4.31.



must also be installed in the computer. We shall discuss use of this capability by solving 
the KKT conditions for the problem of Example 4.31. When using MATLAB, it is necessary
first to create a separate M-file containing the equations in the form F(x) = 0. For the 
present example, components of the vector x are defined as x(1) = x1, x(2) = x2, x(3) = u, and
x(4) = s. In terms of these variables, the KKT conditions of Eqs. (b) to (e) in Example 4.31
are given as

The file defining the equations is prepared as follows:

Function F = kktsystem(x)
F = [2*x(1) - 3*x(2) + 2*x(3)*x(1);
2*x(2) - 3*x(1) + 2*x(3)*x(2);
x(1)^2 + x(2)^2 - 6 + x(4)^2;
x(3)*x(4)];

x 3 *x 4( ) ( ) = 0

x 1 2 x 2 2 6 x 4 2 0( ) + ( ) - + ( ) =Ÿ Ÿ Ÿ

2*x 2 3*x 1 2*x 3 *x 2 0( ) - ( ) + ( ) ( ) =

2*x 1 3*x 2 2*x 3 *x 1 0( ) - ( ) + ( ) ( ) =
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FIGURE 4-24 Solver Results for Example 4.31.



The first line defines a function, named “kktsystem,” that accepts a vector of variables x
and returns a vector of function values F. This file should be named “kktsystem” (the same
name as the function itself), and as with other MATLAB files, it should be saved with a suffix
of “.m.” Next, the main commands are entered interactively or in a separate file as follows:

x0=[1;1;1;1];
options=optimset('Display','iter')
x=fsolve(@kktsystem,x0,options)

x0 is the starting point or initial guess. The “options” command displays output for each
iteration. If the command Options = optimset(‘Display’,’off’ ”) is used, then only the final
solution is provided. The command “fsolve” finds a root of the system of equations provided
in the function “kktsystem.” Although there may be many potential solutions, the solution
closest to the initial guess is provided. Consequently, different starting points must be used
to find different points that satisfy the KKT conditions. Starting with the given point, the
solution is obtained as (1.732, 1.732, 0.5, 0).

4.5 Postoptimality Analysis: Physical Meaning of 
Lagrange Multipliers

The study of variations in the optimum solution as some of the original problem parameters
are changed is known as postoptimality analysis or sensitivity analysis. This is an important
topic for optimum design of engineering systems. Variation of the optimum cost function and
design variables due to the variations of many parameters can be studied. Since sensitivity
of the cost function to the variations in the constraint limit values can be studied without any
further analysis, we shall focus on this aspect of sensitivity analysis only. We shall assume
that the minimization problem has been solved with hi(x) = 0 and gj(x) £ 0, i.e., with the
current limit values for the constraints as zero. Thus, we like to know what happens to the
optimum cost function when the constraint limits are changed from zero.

It turns out that the Lagrange multipliers (v*, u*) at the optimum design provide infor-
mation to answer the foregoing sensitivity question. The investigation of this question leads
to a physical interpretation of the Lagrange multipliers that can be very useful in practical
applications. The interpretation will also show why the Lagrange multipliers for the “£ type”
constraints have to be nonnegative. The multipliers show the benefit of relaxing a constraint
or the penalty associated with tightening it; relaxation enlarges the feasible set, while tight-
ening contracts it. The sensitivity result is stated in a theorem. Later in this section we shall
also discuss what happens to the Lagrange multipliers if the cost and constraint functions for
the problem are scaled.

4.5.1 Effect of Changing Constraint Limits
To discuss changes in the cost function due to changes in the constraint limits, we consider
the modified problem of minimizing f (x) subject to the constraints

(4.53)

where bi and ej are small variations in the neighborhood of zero. It is clear that the optimum
point for the perturbed problem depends on vectors b and e, i.e., it is a function of b and e
that can be written as x* = x*(b,e). Also, optimum cost function value depends on b and e,
i.e., f = f (b,e). However, explicit dependence of the cost function on b and e is not known,

h b i p g e j mi i j jx x( ) = = ( ) £ =; ;1 1to and to
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i.e., an expression for f in terms of bi and ej cannot be obtained. The following theorem gives
a way of obtaining the partial derivatives ∂f/∂bi and ∂f/∂ej.

Theorem 4.7 Constraint Variation Sensitivity Theorem Let f (x), hi(x), i = 1 to p, and
gj(x)j = 1 to m, have two continuous derivatives. Let x* be a regular point that, together with
the multipliers vi* and uj* satisfies both the KKT necessary conditions and the sufficient con-
ditions presented in the next chapter for an isolated local minimum point for the problem
defined in Eqs. (4.37) to (4.39). If for each gj(x*), it is true that uj* > 0, then the solution
x*(b,e) of the modified optimization problem defined in Eq. (4.53) is a continuously differ-
entiable function of b and e in some neighborhood of b = 0, e = 0. Furthermore,

(4.54)

The theorem gives values for implicit first-order derivatives of the cost function f with
respect to the right side parameters of the constraints bi and ej. The derivatives can be used
to calculate changes in the cost function as bi and ej are changed. Note that the theorem is
applicable only when the inequality constraints are written in the “£” form. Using the theorem
we can estimate changes in the cost function if we decide to adjust the right side of con-
straints in the neighborhood of zero. For this purpose, Taylor’s expansion for the cost func-
tion in terms of bi and ej can be used. Let us assume that we want to vary the right sides, bi

and ej, of ith equality and jth inequality constraints. First-order Taylor’s expansion for the
cost function about the point bi = 0 and ej = 0 and is given as

Or, substituting from Eq. (4.54), we obtain

(4.55)

where f (0, 0) is the optimum cost function value obtained with bi = 0, and ej = 0. Using 
Eq. (4.55), a first-order change in the cost function df due to small changes in bi and ej is
given as

(4.56)

For given values of bi and ej we can estimate the new value of the cost function from Eq.
(4.55). If we want to change the right side of more constraints, we simply include them in
Eq. (4.56) and obtain the change in cost function as

(4.57)

It is useful to note that if conditions of Theorem 4.7 are not satisfied, existence of implicit
derivatives of Eq. (4.54) is not ruled out by the theorem. That is, the derivatives may still
exist but their existence cannot be guaranteed by Theorem 4.7. This observation shall be ver-
ified later in an example problem in Section 4.7.2.

Equation (4.56) can also be used to show that the Lagrange multiplier corresponding to
a “£ type” constraint must be nonnegative. To see this, let us assume that we want to relax
an inequality constraint gj £ 0 that is active (gj = 0) at the optimum point, i.e., we select ej >
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0 in Eq. (4.53). When a constraint is relaxed, the feasible set for the design problem expands.
We allow more feasible designs to be candidate minimum points. Therefore, with the
expanded feasible set we expect the optimum cost function to reduce further or at the most
remain unchanged (Example 4.33). We observe from Eq. (4.56) that if uj* < 0, then relaxation
of the constraint (ej > 0) results in an increase in cost (df = -uj*ej > 0). This is a contradic-
tion as it implies that there is a penalty to relax the constraint. Therefore, the Lagrange mul-
tiplier for a “£ type” constraint must be nonnegative.
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EXAMPLE 4.33 Effect of Variations of Constraint Limits on
Optimum Cost Function

To illustrate the use of constraint variation sensitivity theorem, we consider the fol-
lowing problem solved as Example 4.31 and discuss the effect of changing the limit
for the constraint: minimize

(a)

Solution. The graphical solution for the problem is given in Fig. 4-21. A point sat-
isfying both necessary and sufficient conditions is

(b)

We like to see what happens if we change the right side of the constraint equation to
a value “e” from zero. Note that the constraint g(x1, x2) £ 0 gives a circular feasible
region with its center at (0,0) and its radius as , as shown in Fig. 4-21. From
Theorem 4.7, we have

(c)

If we set e = 1, the new value of cost function will be approximately -3 + (- )(1) =
-3.5 using Eq. (4.55). This is consistent with the new feasible set because with e = 1,
the radius of the circle becomes and the feasible region is expanded (as can be
seen in Fig. 4-21). We should expect some reduction in the cost function. If we set e
= -1, then the effect is opposite. The feasible set becomes smaller and the cost func-
tion increases to -2.5 using Eq. (4.55).
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From the foregoing discussion and example, we see that optimum Lagrange multipliers
give very useful information about the problem. The designer can compare the magnitude of
the multipliers for the active constraints. The multipliers with relatively larger values will
have a significant effect on optimum cost if the corresponding constraints are changed. The
larger the value of the Lagrange multiplier, the higher is the dividend to relax the constraint,
or the higher is the penalty to tighten the constraint. Knowing this, the designer can select
a few critical constraints having the greatest influence on the cost function, and then analyze
to see if these constraints can be relaxed to further reduce the optimum cost function value.



4.5.2 Effect of Cost Function Scaling on Lagrange Multipliers
On many occasions, a cost function for the problem is multiplied by a positive constant. As
noted in Section 4.3, any scaling of the cost function does not alter the optimum point. It
does, however, change the optimum value for the cost function. The scaling should also affect
the implicit derivatives of Eqs. (4.54) for the cost function with respect to the right side para-
meters of the constraints. We observe from these equations that all the Lagrange multipliers
also get multiplied by the same constant. Let uj* and vi* be the Lagrange multipliers for
inequality and equality constraints, respectively, and f (x*) be the optimum value of the cost
function at the solution point x*. Let the cost function be scaled as (x) = Kf (x), where K >
0 is a given constant, and j* and i* be the optimum Lagrange multipliers for the inequality
and equality constraints, respectively, for the changed problem. Then the optimum design
variable vector for the perturbed problem is x* and the relationship between optimum
Lagrange multipliers is derived using the KKT conditions for the original and the changed
problems, as

(4.58)

Example 4.34 shows the effect of scaling the cost function on the Lagrange multipliers.

u Ku v Kvj j i i* * * *= =and

vu
f
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EXAMPLE 4.34 Effect of Scaling the Cost Function on 
the Lagrange Multipliers

Consider Example 4.31: minimize f (x) = x1
2 + x2

2 - 3x1x2 subject to g(x) = x1
2 + x2

2 - 6
£ 0. Study the effect on the optimum solution of scaling the cost function by a con-
stant K > 0.

Solution. The graphical solution for the problem is given in Fig. 4-21. A point 
satisfying both the necessary and sufficient condition is

(a)

Let us solve the scaled problem by writing KKT conditions. The Lagrangian for the
problem is given as (quantities with an over bar are for the perturbed problem):

(b)

The necessary conditions give

(c)

(d)

(e)
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4.5.3 Effect of Scaling a Constraint on Its Lagrange Multiplier
Many times, a constraint is scaled by a positive constant. We would like to know the effect
of this scaling on the Lagrange multiplier for the constraint. It should be noted that scaling
of a constraint does not change the constraint boundary, so it has no effect on the optimum
solution. Only the Lagrange multiplier for the scaled constraint is affected. Looking at the
implicit derivatives of the cost function with respect to the constraint right side parameters,
we observe that the Lagrange multiplier for the scaled constraint gets divided by the scaling
parameter. Let Mj > 0 and Pi be the scale parameters for the jth inequality and ith equality
constraints ( j = Mjgj; i = Pihi), and uj* and and vi*, and j* and i* the corresponding Lagrange
multipliers for the original and the scaled constraints, respectively. Then the following rela-
tions hold for the Lagrange multipliers:

(4.59)

Example 4.35 illustrates the effect of scaling a constraint on its Lagrange multiplier.

u u M v v Pj j j i i i* * * *= =and

vuhg
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As in Example 4.31, the case where = 0 gives candidate minimum points. Solving
Eqs. (c)–(e), we get the two KKT points as

(g)

(h)

Therefore, comparing the solutions with those obtained in Example 4.31, we observe
that * = Ku*.u

x x u K f K1 2 3 2 3* * , * , *= = - = ( ) = -x

x x u K f K1 2 3 2 3* * , * , *= = = ( ) = -x

s

EXAMPLE 4.35 Effect of Scaling a Constraint on its
Lagrange Multiplier

Consider Example 4.31 and study the effect of multiplying the inequality by a con-
stant M > 0.

Solution. The Lagrange function for the problem with scaled constraint is given as

(a)

The KKT conditions give

(b)

(c)

(d)
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4.5.4 Generalization of Constraint Variation Sensitivity Result
Many times variations are desired with respect to parameters that are embedded in the con-
straint expression in a complex way. Therefore the sensitivity expressions given in Eq. (4.54)
need to be generalized. We shall pursue these generalizations for the inequality constraints
only in the following paragraphs; equality constraints can be treated in similar ways. It turns
out that the sensitivity of the optimum cost function with respect to an inequality constraint
can be written as

(4.60)

If the constraint function depends on a parameter s as gj(s), then variation with respect to the
parameter s can be written using the chain rule of differentiation as

(4.61)

Therefore change in the cost function due to a small change ds in the parameter s is given
as

(4.62a)

Another way of writing this small change to the cost function would be to express it in
terms of changes to constraint function itself, using Eq. (4.60) as

(4.62b)

Sometimes the right side ej is dependent on a parameter s. In that case sensitivity of the
cost function f with respect to s (derivative of f with respect to s) can be obtained directly
from Eq. (4.54) using the chain rule of differentiation as

(4.63)
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As in Example 4.31, only the case with = 0 gives candidate optimum points. Solving
this case, we get the two KKT points:

(f )

(g)

Therefore, comparing these solutions with the ones for Example 4.31, we observe that
* = */M.uu

x x u
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f1 2 3
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2
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s



4.6 Global Optimality
In the optimum design of systems, the question about global optimality of a solution always
arises. In general, it is difficult to answer the question satisfactorily. However, an answer can
be attempted in the following two ways:

1. If the cost function f (x) is continuous on a closed and bounded feasible set, then
Weierstrauss Theorem 4.1 guarantees the existence of a global minimum. Therefore,
if we calculate all the local minimum points, then the point that gives the least value
to the cost function can be selected as a global minimum for the function. This is
called exhaustive search.

2. If the optimization problem can be shown to be convex, then any local minimum is
also a global minimum; also the KKT necessary conditions are sufficient for the
minimum point.

Both these procedures can involve substantial computations. In this section we pursue the
second approach and discuss topics of convexity and convex programming problems. Such
problems are defined in terms of convex sets and convex functions; specifically convexity of
the feasible set and the cost function. Therefore, we introduce these concepts and discuss
results regarding global optimum solutions.

4.6.1 Convex Sets
A convex set S is a collection of points (vectors x) having the following property: If P1 and
P2 are any points in S, then the entire line segment P1–P2 is also in S. This is a necessary and
sufficient condition for convexity of the set S. Figure 4-25 shows some examples of convex
and nonconvex sets. To explain convex sets further, let us consider points on a real line along
the x-axis (Fig. 4-26). Points in any interval on the line represent a convex set. Consider an
interval between points a and b as shown in Fig. 4-26. To show that it is a convex set, let x1

and x2 be two points in the interval. The line segment between the points can be written as

(4.64)x x x= + -( ) £ £a a a2 11 0 1;
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FIGURE 4-25 (A) Convex sets. (B) Nonconvex sets.



In this equation, if a = 0, x = x1 and if a = 1, x = x2. It is clear that the line defined in Eq.
(4.64) is in the interval [a,b]. In general, for the n-dimensional space, the line segment
between any two points x(1) and x(2) can be written as

(4.65)

If the entire line segment of Eq. (4.65) is in the set S, then it is a convex set. Equation (4.65) is a
generalization of Eq. (4.64) and is called the parametric representation of a line segmentbetween
the points x(1) and x(2). Acheck of the convexity of a set is demonstrated in Example 4.36.

x x x= + -( ) £ £( ) ( )a a a2 11 0 1;
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a b

a

x1 x2x
x

a = 0 a = 1

FIGURE 4-26 Convex interval between a and b on a real line.

EXAMPLE 4.36 Check for Convexity of a Set

Show convexity of the set

Solution. To show the set S graphically, we first plot the constraint as an equality that
represents a circle of radius 1 centered at (0,0), shown in Fig. 4-27. Points inside or on
the circle are in S. Geometrically we see that for any two points inside the circle, the line
segment between them is also inside the circle. Therefore, S is a convex set. We can also
use Eq. (4.65) to show convexity of S. To do this take any two points x(1) and x(2) in the
set S. Use of Eq. (4.65) to calculate x and the condition that the distance between x(1) and
x(2) is nonnegative (i.e., ||x(1) - x(2)|| ≥ 0), will show x Œ S. This will prove the convexity
of S and is left as an exercise. Note that if the foregoing set S is defined by reversing the
inequality as x1

2 + x2
2 - 1.0 ≥ 0, then it will consist of points outside the circle. Such a set

is clearly nonconvex because it violates the condition that the line segment of Eq. (4.65)
defined by any two points in the set is not entirely in the set.

S x x= + - £{ }x 1
2

2
2 1 0 0.

P1

P2

x2

x1

x 1 + x 2 = 1

S

2 2

FIGURE 4-27 Convex set S for Example 4.36.



4.6.2 Convex Functions
Consider a function of single variable f (x) = x2. Graph of the function is shown in Fig. 4-28.
Note that if a straight line is constructed between any two points (x1, f (x1)) and (x2, f (x2)) on
the curve, the line lies above the graph of f (x) at all points between x1 and x2. This property
characterizes convex functions.

The convex function of a single variable f (x) is defined on a convex set, i.e., the inde-
pendent variable x must lie in a convex set. A function f (x) is called convex on the convex
set S if the graph of the function lies below the line joining any two points on the curve f (x).
Figure 4-29 shows geometrical representation of a convex function. Using the geometry, the 
foregoing definition of a convex function can be expressed by the inequality f (x) £ a f (x2) +
(1 - a)f (x1). Since x = ax2 + (1 - a)x1, the inequality becomes

(4.66)

The definition can be generalized to functions of n variables. A function f (x) defined on a
convex set S is convex if it satisfies the inequality

(4.67)

for any two points x(1) and x(2) in S. Note that convex set S is a region in the n-dimensional
space satisfying the convexity condition. Equations (4.66) and (4.67) give necessary and suf-
ficient conditions for convexity of a function. However, they are difficult to use in practice
because we will have to check an infinite number of pairs of points. Fortunately, the 
following theorem gives an easier way of checking the convexity of a function.

f f fa a a a ax x x x2 1 2 11 1 0 1( ) ( ) ( ) ( )+ -( )( ) £ ( ) + -( ) ( ) £ £for

f x x f x f xa a a a a2 1 2 11 1 0 1+ -( )( ) £ ( ) + -( ) ( ) £ £for
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FIGURE 4-28 Convex function f(x) = x2.
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x = ax2 + (1 – a )x1

FIGURE 4-29 Characterization of a convex function.



Theorem 4.8 Check for Convexity of a Function A function of n variables f(x1, x2, . . . ,
xn) defined on a convex set S is convex if and only if the Hessian matrix of the function is
positive semidefinite or positive definite at all points in the set S. If the Hessian matrix is 
positive definite for all points in the feasible set, then f is called a strictly convex function.
(Note that the converse of this is not true, i.e., a strictly convex function may have only 
positive semidefinite Hessian at some points; e.g., f(x) = x4 is a strictly convex function but
its second derivative is zero at x = 0.)

Note that the Hessian condition of Theorem 4.8 is both necessary and sufficient, i.e., the
function is not convex if the Hessian is not at least positive semidefinite for all points in the
set S. Therefore if it can be shown that the Hessian is not positive definite or positive semi-
definite at some points in the set S, then the function is not convex because the condition of
the Theorem 4.8 is violated. In one dimension, the convexity check of the theorem reduces
to the condition that the second derivative (curvature) of the function be nonnegative. The
graph of such a function has nonnegative curvature, as for the functions in Figs. 4-28 and 4-
29. The theorem can be proved by writing a Taylor's expansion for the function f(x) and then
using the definition of Eqs. (4.66) and (4.67). Examples 4.37 and 4.38 illustrate the check
for convexity of functions.
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EXAMPLE 4.37 Check for Convexity of a Function

f (x) = x2
1 + x2

2 - 1

Solution. The domain for the function (which is all values of x1 and x2) is convex.
The gradient and Hessian of the function are given as

By either of the tests given in Theorems 4.2 and 4.3 (M1 = 2, M2 = 4, l1 = 2, l2 = 2), we
see that H is positive definite everywhere. Therefore, f is a strictly convex function.
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EXAMPLE 4.38 Check for Convexity of a Function

f(x) = 10 - 4x + 2x2 - x3

Solution. The second derivative of the function is d 2f/dx 2 = 4 - 6x. For the func-
tion to be convex, d 2f/dx 2 ≥ 0. Thus, the function is convex only if 4 - 6x ≥ 0 or x £
. The convexity check actually defines a domain for the function over which it is

convex. The function f(x) is plotted in Fig. 4-30. It can be seen that the function is
convex for x £ and concave for x ≥ [a function f(x) is called concave if -f(x) is
convex].

2
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2
3

2
3



4.6.3 Convex Programming Problem
If a function gi(x) is convex, then the set gi(x) £ ei is convex, where ei is any constant. If
functions gi(x) for i = 1 to m are convex, then the set defined by gi(x) £ ei for i = 1 to m is
also convex. The set gi(x) £ ei for i = 1 to m is called the intersection of sets defined by the
individual constraints gi(x) £ ei. Therefore, intersection of convex sets is a convex set. We
can relate convexity of functions and sets by the following theorem:

Theorem 4.9 Convex Functions and Convex Sets Let a set S be defined with constraints
of the general optimization problem in Eqs (4.37) to (4.39) as

(4.68)

Then S is a convex set if functions gj are convex and hi are linear.

The set S of Example 4.36 is convex because it is defined by a convex function. It is
important to realize that if we have a nonlinear equality constraint hi(x) = 0, then the feasi-
ble set S is always nonconvex. This can be easily seen from the definition of a convex set.
For an equality constraint, the set S is a collection of points lying on the surface hi(x) = 0. If
we take any two points on the surface, the straight line joining them cannot be on the surface,
unless it is a plane (linear equality). Therefore, a feasible set defined by any nonlinear equal-
ity constraint is always nonconvex. On the contrary, a feasible set defined by a linear equal-
ity or inequality is always convex.

S h i to p g j mi j= ( ) = = ( ) £ ={ }x x x0 1 0 1, ; , to
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FIGURE 4-30 Graph of the function f(x) = 10 - 4x + 2x2 - x3 of Example 4.38.



If all inequality constraint functions for an optimum design problem are convex, and all
equality constraint are linear, then the feasible set S is convex by Theorem 4.9. If the cost
function is also convex over, then we have what is known as a convex programming problem.
Such problems have a very useful property that KKT necessary conditions are also sufficient
and any local minimum is also a global minimum.

It is important to note that Theorem 4.9 does not say that the feasible set S cannot be
convex if a constraint function gi(x) fails the convexity check, i.e., it is not an “if and only
if” theorem. There are some problems having inequality constraint functions that fail the con-
vexity check, but the feasible set is still convex. Thus, the condition that gi(x) be convex for
the region gi(x) £ 0 to be convex are only sufficient but not necessary.

Theorem 4.10 Global Minimum If f (x*) is a local minimum for a convex function f (x)
defined on a convex feasible set S, then it is also a global minimum.

It is important to note that the theorem does not say that x* cannot be a global minimum
point if functions of the problem fail the convexity test. The point may indeed be a global
minimum; however, we cannot claim global optimality using Theorem 4.10. We will have to
use some other procedure, such as exhaustive search. Note also that the theorem does not
say that the global minimum is unique; i.e., there can be multiple minimum points in the 
feasible set, all having the same cost function value. The convexity of several problems is
checked in Examples 4.39 to 4.41.
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EXAMPLE 4.39 Check for Convexity of a Problem

Minimize f(x1, x2) = x1
3 - x subject to the constraints x1 ≥ 0, x2 £ 0.

Solution. The constraints actually define the domain for the function f (x) which is
the fourth quadrant of a plane (shown in Fig. 4-31). This domain is convex. The
Hessian of f is given as

The Hessian is positive semidefinite or positive definite over the domain defined by
the constraints (x1 ≥ 0, x2 £ 0). Therefore, the cost function is convex and the problem
is convex. Note that if constraints x1 ≥ 0 and x2 £ 0 are not imposed, then the cost
function will not be convex for all feasible x. This can be observed in Fig. 4-31 where
several cost function contours are also shown. Thus, the condition of positive semi-
definiteness of the Hessian can define the domain for the function over which it is
convex.
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FIGURE 4-31 Graphical representation of Example 4.39.

EXAMPLE 4.40 Check for Convexity of a Problem

Minimize f (x1, x2) = 2x1 + 3x2 - x1
3 - 2x2

2 subject to the constraints

Solution. Since all the constraint functions are linear in the variables xl and x2, the
feasible set for the problem is convex. If the cost function f is also convex, then the
problem is convex. The Hessian of the cost function is

The eigenvalues of H are -6x1 and -4. Since the first eigenvalue is nonpositive for 
x1 ≥ 0, and the second eigenvalue is negative, the function is not convex (Theorem
4.8), so the problem cannot be classified as a convex programming problem. Global
optimality of a local minimum is not guaranteed. Figure 4-32 shows the feasible set
for the problem along with several isocost curves. It is seen that the feasible set is
convex but the cost function is not. Thus the problem can have multiple local minima
having different values for the cost function.
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4.6.4 Transformation of a Constraint
A constraint function can be transformed to a different form that is equivalent to the origi-
nal function, i.e., the constraint boundary and the feasible set for the problem do not change
but the form of the function changes. Transformation of a constraint function, however, may
affect its convexity check, i.e., transformed constraint function may fail the convexity check.
Convexity of the feasible set is, however, not affected by the transformation. To illustrate the
effect of transformations, let us consider the following inequality constraint:
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FIGURE 4-32 Graphical representation of Example 4.40.

EXAMPLE 4.41 Check for Convexity of a Problem

Minimize f (x1, x2) = 9x1
2 - 18x1x2 + 13x2

2 - 4 subject to x1
2 + x2

2 + 2x1 ≥ 16.

Solution. To check for convexity of the problem, we need to write the constraint in
the standard form as g(x) = -x1

2 - x2
2 - 2x1 + 16 £ 0. The Hessian of g(x) is

Eigenvalues of the Hessian are -2 and -2. Since, the Hessian is neither positive 
definite nor positive semideftnite, g(x) is not convex [in fact, the Hessian is negative
definite, so g(x) is concave]. Therefore, the problem cannot be classified as a convex
programming problem, and global optimality for the solution cannot be guaranteed
by Theorem 4.10.
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(a)

with x1 > 0, x2 > 0, and a and b as the given positive constants. To check convexity of the
constraint, we calculate the Hessian matrix as

(b)

Both eigenvalues as well as the two leading principal minors of the preceding matrix are
strictly positive, so the matrix is positive definite and the constraint function g1 is convex.
The feasible set for g1 is convex.

Now let us transform the constraint by multiplying throughout by x1x2 (since x1 > 0, 
x2 > 0, the sense of the inequality is not changed) to obtain

(c)

The constraints g1 and g2 are equivalent and will give the same optimum solution for the
problem. To check convexity of the constraint function, we calculate the Hessian matrix as

(d)

The eigenvalues of the preceding matrix are: l1 = -b and l2 = b. Therefore, the matrix is
indefinite by Theorem 4.2, and by Theorem 4.8, the constraint function g2 is not convex.
Thus, we lose convexity of the constraint function and we cannot claim convexity of the 
feasible set by Theorem 4.9. Since the problem cannot be shown to be convex, we cannot
use results related to convex programming problems.

4.6.5 Sufficient Conditions for Convex Programming Problems
Theorem 4.11 Sufficient Condition for Convex Programming Problem If f (x) is a
convex cost function defined on a convex feasible set, then the first-order KKT conditions
are necessary as well as sufficient for a global minimum.

Thus, if we can show convexity of a problem, any solution of the necessary conditions
will automatically satisfy sufficient conditions (see Example 4.42). In addition, the solution
will be a global minimum. Following the procedure of Section 4.4, we consider various cases
defined by the switching conditions of Eq. (4.50) until a solution is found. We can stop there
as the solution is a global optimum design.
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EXAMPLE 4.42 Check for Convexity of a Problem

Let us consider Example 4.29 again and check for its convexity. Minimize f (x) =
(x1 - 1.5)2 + (x2 - 1.5)2 subject to g(x) = x1 + x2 - 2 £ 0.

Solution. The KKT necessary conditions give the candidate local minimum as 
xl* = 1, x2* = 1, and u* = 1. The constraint function g(x) is linear, so it is convex. Since
the inequality constraint function is convex and there is no equality constraint, the 
feasible set S is convex. The Hessian matrix for the cost function is



4.7 Engineering Design Examples
The procedures described in the previous sections are used to solve two engineering design
examples. The problems are formulated, convexity is checked, KKT necessary conditions 
are written and solved, and the constraint variation sensitivity theorem is illustrated and 
discussed.

4.7.1 Design of a Wall Bracket
The wall bracket shown in Fig. 4-33 is to be designed to support a load of W = 1.2MN. The
material for the bracket should not fail under the action of forces in the bars. These are
expressed as the following stress constraints:
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Since H is positive definite everywhere by Theorem 4.2 or Theorem 4.3, the cost func-
tion f(x) is strictly convex by Theorem 4.8. Therefore, the problem is convex and the
solution xl = 1, x2 = 1 satisfies sufficiency condition of Theorem 4.11. It is a strict
global minimum point for the problem.
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˘
˚̇

2 0

0 2

TABLE 4-3 Convex Programming Problem—Summary of Results

The problem must be written in the standard form: Minimize f(x) subject to hi(x) = 0, gj(x) £ 0

1. Convex set. The geometrical condition that a line joining two points in the set is to be in the set,
is an “if and only if” condition for convexity of the set.

2. Convexity of feasible set S. All the constraint functions should be convex. This condition is only
sufficient but not necessary; i.e., functions failing the convexity check may also define convex
sets.
• nonlinear equality constraints always give nonconvex sets
• linear equalities or inequalities always give convex sets

3. Convex functions. A function is convex if and only if its Hessian is at least positive semidefinite
everywhere.

A function is strictly convex if its Hessian is positive definite everywhere; however, the
converse is not true, i.e., a strictly convex function may not have a positive definite Hessian
everywhere; thus this condition is only sufficient but not necessary.

4. Form of constraint function. Changing the form of a constraint function can result in failure of
the convexity check for the new constraint or vice versa.

5. Convex programming problem. f (x) is convex over the convex feasible set S.
• KKT first order conditions are necessary as well as sufficient for global minimum
• Any local minimum point is also a global minimum point

Nonconvex programming problem: If a problem fails convexity checks, it does not imply that there is
no global minimum for the problem. It could also have only one local minimum in the feasible set S
which would then be a global minimum as well.

The convexity results are summarized in Table 4-3.



where sa = allowable stress for the material (16,000N/cm2)
s1 = stress in Bar 1 which is given as F1/A1, N/cm2

s2 = stress in Bar 2 which is given as F2/A2, N/cm2

A1 = cross-sectional area of Bar 1 (cm2)
A2 = cross-sectional area of Bar 2 (cm2)
F1 = force due to load W in Bar 1 (N)
F2 = force due to load W in Bar 2 (N)

Total volume of the bracket is to be minimized.

Problem Formulation The cross-sectional areas A1 and A2 are the two design variables and
the cost function for the problem is the volume, which is given as

(a)

where l1 = = 50cm is the length of member 1 and l2 = 40cm is the length of
member 2. To write the stress constraints, we need forces in the members which are obtained
using static equilibrium analysis as follows: F1 = 2.0 ¥ 106 N, F2 = 1.6 ¥ 106 N. Therefore,
stress constraints are given as

(b)

(c)

The cross-sectional areas must both be nonnegative:

(d)g A g A3 1 4 20 0= - £ = - £,

g
A

2

6

2

1 6 10
16000 0=

¥( )
- £

.

g
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1
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1

2 0 10
16000 0=

¥( )
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.
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Bar 1 1: s s£ a
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FIGURE 4-33 Wall bracket. h = 30cm, s = 40cm, and W = 1.2MN.



Constraints for the problem are plotted in Fig. 4-34, and the feasible region is identified. A
few cost function contours are also shown. It can be seen that the optimum solution is at
point A with A1

* = 125cm2, A2
* = 100cm2, and f = 10,250cm3.

Convexity Since the cost function of Eq. (a) is linear in terms of design variables, it is
convex. The Hessian matrix for the constraint g1 is

which is a positive semidefinite matrix for A1 > 0, so g1 is convex. Similarly, g2 is convex,
and since g3 and g4 are linear, they are convex. Thus the problem is convex, and KKT nec-
essary conditions are also sufficient and any design satisfying the KKT conditions is a global
minimum.

KKT Necessary Conditions To use the KKT conditions, we introduce slack variables into
the constraints and define the Lagrange function of Eq. (4.46a) for the problem as

(e)

L l A l A u
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s u
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FIGURE 4-34 Graphical solution for the wall bracket problem.



The necessary conditions become

(f)

(g)

(h)

The switching conditions in Eq. (h) give 16 solution cases. These case can be identified
using a systematic procedure as shown in Table 4-4. Note that any case that requires s3 = 0
(i.e., g3 = 0) makes the area A1 = 0. For such a case the constraint g1 of Eq. (b) is violated,
so it does not give a candidate solution. Similarly, s4 = 0 makes A2 = 0, which violates the
constraint of Eq. (c). In addition, A1 and A2 cannot be negative because the corresponding
solution has no physical meaning. Therefore, all the cases requiring either s3 = 0 and/or 
s4 = 0 do not give any candidate solution. These cases need not be considered any further.
This leaves only cases 1 to 3 and 6 for further consideration, and we solve them as follows
(any case giving A1 < 0 or A2 < 0 will also be discarded).

Case 1: u1 = 0, u2 = 0, u3 = 0, u4 = 0. This case gives l1 = 0 and l2 = 0 in Eqs. (f ) and
(g) which is not acceptable.

Case 2: s1 = 0, u2 = 0, u3 = 0, u4 = 0. This gives l1 = 0 in Eq. (f ) which is not
acceptable.

Case 3: u1 = 0, s2 = 0, u3 = 0, u4 = 0. This gives l2 = 0 in Eq. (g) which is not
acceptable.

Case 6: s1 = 0, s2 = 0, u3 = 0, u4 = 0. Equations (b) and (c) give A1
* = 125cm2, A2

* =
100cm2. Equations (f) and (g) give the Lagrange multipliers as u1 = 0.391 and u2 =
0.25 and since both are nonnegative, all the KKT conditions are satisfied. The cost
function at optimum is obtained as f* = 50(125) + 40(100) or f* = 10,250cm3. The
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TABLE 4-4 Definition of Karush-Kuhn-Tucker Cases with Four Inequalities

No. Case Active Constraints

1 u1 = 0, u2 = 0, u3 = 0, u4 = 0 No inequality active

2 s1 = 0, u2 = 0, u3 = 0, u4 = 0 One inequality active at a time
3 u1 = 0, s2 = 0, u3 = 0, u4 = 0
4 u1 = 0, u2 = 0, s3 = 0, u4 = 0
5 u1 = 0, u2 = 0, u3 = 0, s4 = 0

6 s1 = 0, s2 = 0, u3 = 0, u4 = 0 Two inequalities active at a time
7 u1 = 0, s2 = 0, s3 = 0, u4 = 0
8 u1 = 0, u2 = 0, s3 = 0, s4 = 0
9 s1 = 0, u2 = 0, u3 = 0, s4 = 0

10 s1 = 0, u2 = 0, s3 = 0, u4 = 0
11 u1 = 0, s2 = 0, u3 = 0, s4 = 0

12 s1 = 0, s2 = 0, s3 = 0, u4 = 0 Three inequalities active at a time
13 u1 = 0, s2 = 0, s3 = 0, s4 = 0
14 s1 = 0, u2 = 0, s3 = 0, s4 = 0
15 s1 = 0, s2 = 0, u3 = 0, s4 = 0

16 s1 = 0, s2 = 0, s3 = 0, s4 = 0 Four inequalities active at a time



gradients of active constraints are (-(2.0 ¥ 106)/A1
2, 0) and (0, -(1.0 ¥ 106)/A2

2). These
vectors are linearly independent, and so the minimum point is a regular point of the
feasible set.

Sensitivity Analysis If the allowable stress changes to 16,500N/cm2 from 16,000N/cm2, we
need to know how the cost function will change. Using Eq. (4.56) we get the change in the
cost function as df* = -u1e1 - u2e2, where e1 = e2 = 16,500 - 16,000 = 500N/cm2. Therefore,
the change in the cost function is df* = -0.391(500) - 0.25(500) = -320.5cm3. Thus the
volume of the bracket will reduce by 320.5cm3.

4.7.2 Design of a Rectangular Beam
In Section 3.8, a rectangular beam design problem is formulated and solved graphically. We
will solve the same problem using the KKT necessary conditions. The problem is formulated
as follows. Find b and d to minimize

(a)

subject to the inequality constraints

(b)

(c)

(d)

(e)

Convexity Constraints g3, g4, and g5 are linear in terms of b and d, and are therefore convex.
The Hessian for the constraint g1 is given as

Since this matrix is positive definite for b > 0 and d > 0, g1 is a strictly convex function. The
Hessian for the constraint g2 is given as

Since this matrix is positive definite, the constraint g2 is also strictly convex. Since all the
constraints of the problem are convex, the feasible set is convex.

It is interesting to note that constraints g1 and g2 can be transformed as (since b > 0 and
d > 0, the sense of inequality is not changed):
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Hessians of the functions 1 and 2 are given as

Both of the preceding matrices are not positive semidefinite. Therefore, the constraint functions
1 and 2 given in Eqs. (f ) and (g) are not convex. This goes to show that convexity of a function

can be lost if it is transformed to another form. This is an important observation, and it shows
that we should be careful in transformation of constraint functions. Note, however, that trans-
formation of constraints does not change the optimum solution. It does change the values of the
Lagrange multipliers for the constraints, however, as discussed in Section 4.5.

In order to check convexity of the cost function, we write its Hessian as

(h)

This matrix is indefinite, so the cost function is nonconvex. The problem fails the convexity
check of Theorem 4.9, and we cannot guarantee global optimality of the solution by Theorem
4.10. Note that this does not say that a local minimum cannot be a global minimum. It may
still be a global minimum, but cannot be guaranteed by Theorem 4.10.

KKT Necessary Conditions To use the KKT conditions, we introduce slack variables into
the constraints and define the Lagrange function for the problem as

The necessary conditions give

(i)

(j)

(k)

The switching conditions in Eq. (k) give 32 cases for the necessary conditions. However, note
that the cases requiring either s4 = 0 or s5 = 0, or both as zero, do not give any 
candidate optimum points because they violate the constraint of either Eqs. (b) and (c) or 
Eq. (d). Therefore, these cases shall not be considered, which can be done by setting u4 = 0 and
u5 = 0 in the remaining cases. This leaves the following eight cases for further consideration:

1. u1 = 0, u2 = 0, u3 = 0, u4 = 0, u5 = 0
2. u1 = 0, u2 = 0, s3 = 0, u4 = 0, u5 = 0
3. u1 = 0, s2 = 0, u3 = 0, u4 = 0, u5 = 0
4. s1 = 0, u2 = 0, u3 = 0, u4 = 0, u5 = 0
5. u1 = 0, s2 = 0, s3 = 0, u4 = 0, u5 = 0
6. s1 = 0, s2 = 0, u3 = 0, u4 = 0, u5 = 0
7. s1 = 0, u2 = 0, s3 = 0, u4 = 0, u5 = 0
8. s1 = 0, s2 = 0, s3 = 0, u4 = 0, u5 = 0
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We consider each case at a time and solve for the candidate optimum points. Note that
any solution having b < 0 or d < 0 violates constraints g4 or g5 and shall be discarded.

Case 1: u1 = 0, u2 = 0, u3 = 0, u4 = 0, u5 = 0. This case gives d = 0, b = 0 in Eqs. (i) and
(j). Therefore, this case does not give a solution.

Case 2: u1 = 0, u2 = 0, s3 = 0, u4 = 0, u5 = 0. Equation (d) gives d = 2b. Equations (i)
and (j) give d - 2u3 = 0 and d + u3 = 0. These three equations give b = 0 and d = 0,
which is not feasible.

Case 3: u1 = 0, s2 = 0, u3 = 0, u4 = 0, u5 = 0. Equations (i), (j), and (c) give

These equations give a solution as u2 = (5.625 ¥ 104) and bd = (1.125 ¥ 105). Since 
u2 > 0, this is a valid solution. Actually, there is a family of solutions given by bd = (1.125
¥ 105); for any d > 0, b can be found from this equation. However, there must be some limits
on the values of b and d for which this family of solutions is valid. These ranges are 
provided by requiring s1

2 ≥ 0 and s3
2 ≥ 0, or g1 £ 0 and g3 £ 0.

Substituting b = (1.125 ¥ 105)/d into g1 (Eq. b),

(l)

Substituting b = (1.125 ¥ 105)/d into g3 (Eq. d),

(m)

This gives limits on the depth d. We can find limits on the width b by substituting 
Eqs. (l) and (m) into bd = (1.125 ¥ 105):

Therefore, for this case the possible solutions are

Case 4: s1 = 0, u2 = 0, u3 = 0, u4 = 0, u5 = 0. Equations (i) and (j) reduce to
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Since the previous two equations are inconsistent, there is no solution for this case.

Case 5: u1 = 0, s2 = 0, s3 = 0, u4 = 0, u5 = 0. Equations (c) and (d) can be solved for b
and d, e.g., substituting b = 2d from Eq. (d) into Eq. (c), we get b = 237.17mm.
Therefore, d = 2(237.17) = 474.34mm. We can calculate u2 and u3 from Eqs. (i) and
(j) as u2 = (5.625 ¥ 104), u3 = 0. Substituting values of b and d into Eq. (b), we get 
g1 = -5.5 < 0, so the constraint is satisfied (i.e., s1

2 > 0). It can be verified that the
gradients of g2 and g3 at the candidate point are linearly independent, and so the
regularity condition is satisfied. Since all the necessary conditions are satisfied, this
is a valid solution. The constraint sensitivity Theorem 4.7 and Eq. (4.54) tell us that
since u3 = 0, we can move away from that constraint toward the feasible region
without affecting the optimum cost function value. This can also be observed from
Fig. 3-11 where the graphical solution for the problem is given. In the figure, point B
represents the solution for this case. We can leave point B toward point A and
remain on the constraint g2 = 0 for optimum designs.

Case 6: s1 = 0, s2 = 0, u3 = 0, u4 = 0, u5 = 0. Equations (b) and (c) can be solved for 
the band d as b = 527.34mm and d = 213.33mm. We can solve for u1 and u2 from
Eqs. (i) and (j) as u1 = 0 and u2 = (5.625 ¥ 104). Substituting values of b and d into
Eq. (d), we get g3 = -841.35 < 0, so the constraint is satisfied (i.e., s3

2 ≥ 0). It can
also be verified that the point also satisfies the regularity condition. Since all the
KKT conditions are satisfied, this is a valid solution. This solution is quite similar to
the one for case 5. The solution corresponds to point A in Fig. 3-11. If we leave
constraint g1 = 0 (point A) and remain on the curve A-B, we obtain other optimum
designs near the point A.

Case 7: s1 = 0, u2 = 0, s3 = 0, u4 = 0, u5 = 0. Equations (b) and (d) can be solved as 
b = 181.71mm and d = 363.42mm. Equations (i) and ( j) give the Lagrange
multipliers u1 = 4402.35 and u3 = -60.57. Since u3 < 0, this case does not give a
valid solution.

Case 8: s1 = 0, s2 = 0, s3 = 0, u4 = 0, u5 = 0. This case gives three equations in two
unknowns (over-determined system), which has no solution.

Sensitivity Analysis It should be observed that none of the candidate minimum points
(Points A and B and curve A-B in Fig. 3-11) satisfies the sufficiency conditions presented in
the next chapter. Therefore, the existence of partial derivatives of the cost function with
respect to the right side parameters of Eq. (4.54) is not guaranteed by Theorem 4.7. However,
since we have a graphical solution for the problem in Fig. 3-11, we can check what happens
if we do use the sensitivity theorem.

For Point A in Fig. 3-11 (case 6), constraints g1 and g2 are active, b = 527.34mm, d =
213.33mm, u1 = 0, and u2 = (5.625 ¥ 104). Since u1 = 0, Eq. (4.54) gives ∂f/∂e1 = 0. This
means any small change in the constraint limit does not change the optimum cost function
value. This is true, which can be observed from Fig. 3-11. The optimum point is changed but
constraint gl remains active; i.e., bd = (1.125 ¥ 105) must be satisfied. Any change in g2 moves
the constraint parallel to itself, changing the optimum solution (design variables and the cost
function). Since u2 = (5.625 ¥ 104), Eq. (4.54) gives ∂f/∂e2 = (-5.625 ¥ 104). It can be veri-
fied that the sensitivity coefficient predicts correct changes in the cost function.

b
bd

b d-
¥( )

= = ¥( )4 80 10
0 4 80 10

8

3
2 3 8.

; .or

d
b d

b d-
¥( )

= = ¥( )2 40 10
0 2 40 10

8

2 2
2 3 8.

; .or
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It can be verified that the other two solution cases (3 and 5) also give correct values for
the sensitivity coefficients.

Exercises for Chapter 4

Section 4.2 Review of Some Basic Calculus Concepts

4.1 Answer True or False.
1. A function can have several local minimum points in a small neighborhood 

of x*.
2. A function cannot have more than one global minimum point.
3. The value of the function having global minimum at several points must be the

same.
4. A function defined on an open set cannot have a global minimum.
5. The gradient of a function f (x) at a point is normal to the surface defined by the

level surface f (x) = constant.
6. Gradient of a function at a point gives a local direction of maximum decrease

in the function.
7. The Hessian matrix of a continuously differentiable function can be

asymmetric.
8. The Hessian matrix for a function is calculated using only the first derivatives

of the function.
9. Taylor series expansion for a function at a point uses the function value and its

derivatives.
10. Taylor series expansion can be written at a point where the function is

discontinuous.
11. Taylor series expansion of a complicated function replaces it with a polynomial

function at the point.
12. Linear Taylor series expansion of a complicated function at a point is only a

good local approximation for the function.
13. A quadratic form can have first-order terms in the variables.
14. For a given x, the quadratic form defines a vector.
15. Every quadratic form has a symmetric matrix associated with it.
16. A symmetric matrix is positive definite if its eigenvalues are nonnegative.
17. A matrix is positive semidefinite if some of its eigenvalues are negative and

others are nonnegative.
18. All eigenvalues of a negative definite matrix are strictly negative.
19. The quadratic form appears as one of the terms in Taylor’s expansion of a

function.
20. A positive definite quadratic form must have positive value for any x π 0.

Write the Taylor series expansion for the following functions up to quadratic terms.

4.2 cos x about the point x* = p/4

4.3 cos x about the point x* = p/3

4.4 sin x about the point x* = p/6

4.5 sin x about the point x* = p/4

4.6 ex about the point x* = 0
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4.7 ex about the point x* = 2

4.8 f (x1, x2) = 10x1
4 - 20x1

2x2 + 10x2
2 + x1

2 - 2x1 + 5 about the point (1, 1). Compare
approximate and exact values of the function at the point (1.2, 0.8).

Determine the nature of the following quadratic forms.

4.9 F(x) = x1
2 + 4x1

2x2 + 2x1x3 - 7x2
2 - 6x2x3 + 5x3

2

4.10 F(x) = 2x1
2 + 2x2

2 - 5x1x2

4.11 F(x) = x1
2 + x2

2 + 3x1x2

4.12 F(x) = 3x1
2 + x2

2 - x1x2

4.13 F(x) = x1
2 - x2

2 + 4x1x2

4.14 F(x) = x1
2 - x2

2 + x3
2 - 2x2x3

4.15 F(x) = x1
2 - 2x1x2 + 2x2

2

4.16 F(x) = x1
2 - x1x2 - x2

2

4.17 F(x) = x1
2 + 2x1x3 - 2x2

2 + 4x3
2 - 2x2x3

4.18 F(x) = 2x1
2 + x1x2 + 2x2

2 + 3x3
2 - 2x1x3

4.19 F(x) = x1
2 + 2x2x3 + x2

2 + 4x3
2

4.20 F(x) = 4x1
2 + 2x1x3 - x2

2 + 4x3
2

Section 4.3 Unconstrained Optimum Design Problems

4.21 Answer True or False.
1. If the first-order necessary condition at a point is satisfied for an unconstrained

problem, it can be a local maximum point for the function.
2. A point satisfying first-order necessary conditions for an unconstrained function

may not be a local minimum point.
3. A function can have a negative value at its maximum point.
4. If a constant is added to a function, the location of its minimum point is

changed.
5. If a function is multiplied by a positive constant, the location of the function’s

minimum point is unchanged.
6. If curvature of an unconstrained function of a single variable at the point x* is

zero, then it is a local maximum point for the function.
7. The curvature of an unconstrained function of a single variable at its local

minimum point is negative.
8. The Hessian of an unconstrained function at its local minimum point must be

positive semidefinite.
9. The Hessian of an unconstrained function at its minimum point is negative

definite.
10. If the Hessian of an unconstrained function is indefinite at a candidate point,

the point may be a local maximum or minimum.

Find stationary points for the following functions (use a numerical method such as the
Newton-Raphson method in Appendix C, or a software package like Excel, MATLAB, and
Mathematica, if needed). Also determine the local minimum, local maximum, and inflection
points for the functions (inflection points are those stationary points that are neither minimum
nor maximum).
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4.22 f(x1, x2) = 3x1
2 + 2x1x2 + 2x2

2 + 7

4.23 f(x1, x2) = x1
2 + 4x1x2 + x2

2 + 3

4.24 f(x1, x2) = x1
3 + 12x1x2

2 + 2x2
2 + 5x1

2 + 3x2

4.25 f(x1, x2) = 

4.26 f(x) = cos x

4.27 f(x1, x2) = x1
2 + x1x2 + x2

2

4.28 f(x) = x2e-x

4.29

4.30 f (x1, x2) = x1
2 - 2x1 + 4x2

2 - 8x2 + 6

4.31 f(x1, x2) = 3x1
2 - 2x1x2 + 5x2

2 + 8x2

4.32 The annual operating cost U for an electrical line system is given by the following
expression

where V = line voltage in kilovolts and C = line conductance in mhos. Find
stationary points for the function, and determine V and C to minimize the operating
cost.

4.33 f(x1, x2) = x1
2 + 2x2

2 - 4x1 - 2x1x2

4.34 f(x1, x2) = 12x1
2 + 22x2

2 - 1.5x1 - x2

4.35 f(x1, x2) = 7x1
2 + 12x2

2 - x1

4.36 f(x1, x2) = 12x1
2 + 21x2

2 - x2

4.37 f(x1, x2) = 25x1
2 + 20x2

2 - 2x1 - x2

4.38 f(x1, x2, x3) = x1
2 + 2x2

2 + 2x3
2 + 2x1x2 + 2x2x3

4.39 f(x1, x2) = 8x1
2 + 8x2

2 - 80

- 80 - 5x1 - 5x2

4.40 f(x1, x2) = 9x1
2 + 9x2

2 - 100

- 64 - 5x1 - 41x2

4.41 f(x1, x2) = 100(x2 - x1
2)2 + (1 - x1)2

4.42 f(x1, x2, x3, x4) = (x1- 10x2)2 + 5(x3 - x4)2 + (x2 - 2x3)4 + 10(x1 - x4)4

Section 4.4 Constrained Optimum Design Problems

4.43 Answer True or False.
1. A regular point of the feasible region is defined as a point where the cost

function gradient is independent of the gradients of active constraints.

x x x1
2

2
2

216 64+ + +

x x x1
2

2
2

220 100+ - +

x x x1
2

2
2

220 100+ + +

x x x1
2

2
2

220 100+ - +

U
E

V C
E C E V=

+( )
+ +( ) + +( )21 9 07

3 9 06 1 0 03
2

.
. .

f x x x
x x

x1 2 1
1 2

2
10

5,( ) = - +

5
1

16

1

4
1 1

2
2

1
2
2x x x

x
x- +

168 INTRODUCTION TO OPTIMUM DESIGN



2. A point satisfying KKT conditions for a general optimum design problem can
be a local max-point for the cost function.

3. At the optimum point, the number of active independent constraints is always
more than the number of design variables.

4. In the general optimum design problem formulation, the number of independent
equality constraints must be “£” to the number of design variables.

5. In the general optimum design problem formulation, the number of inequality
constraints cannot exceed the number of design variables.

6. At the optimum point, Lagrange multipliers for the “£ type” inequality
constraints must be nonnegative.

7. At the optimum point, the Lagrange multiplier for a “£ type” constraint can be
zero.

8. While solving an optimum design problem by KKT conditions, each case
defined by the switching conditions can have multiple solutions.

9. In optimum design problem formulation, “≥ type” constraints cannot be 
treated.

10. Optimum design points for constrained optimization problems give stationary
value to the Lagrange function with respect to design variables.

11. Optimum design points having at least one active constraint give stationary
value to the cost function.

12. At a constrained optimum design point that is regular, the cost function gradient
is linearly dependent on the gradients of the active constraint functions.

13. If a slack variable has zero value at the optimum, the inequality constraint is
inactive.

14. Gradients of inequality constraints that are active at the optimum point must be
zero.

15. Design problems with equality constraints have the gradient of the cost function
as zero at the optimum point.

Find points satisfying KKT necessary conditions for the following problems; check if they
are optimum points using the graphical method (if possible).

4.44 Minimize f(x1, x2) = 4x1
2 + 3x2

2 - 5x1x2 - 8x1

subject to x1 + x2 = 4

4.45 Minimize f(x1, x2) = 4x1
2 + 3x2

2 - 5x1x2 - 8x1

subject to x1 + x2 = 4

4.46 Minimize f(x1, x2) = (x1 - 2)2 + (x2 + 1)2

subject to 2x1 + 3x2 - 4 = 0

4.47 Minimize f(x1, x2) = 4x1
2 + 9x2

2 + 6x2 - 4x1 + 13

subject to x1 - 3x2 + 3 = 0

4.48 Minimize f(x) = (x1 - 1)2 + (x2 + 2)2 + (x3 - 2)2

subject to 2x1 + 3x2 - 1 = 0
x1 + x2 + 2x3 - 4 = 0

4.49 Minimize f(x1, x2) = 9x1
2 + 18x1x2 + 13x2

2 - 4

subject to x1
2 + x2

2 + 2x1 = 16

4.50 Minimize f(x1, x2) = (x1 - 1)2 + (x2 - 1)2

subject to x1 + x2 - 4 = 0
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4.51 Consider the following problem with equality constraints:

Minimize (x1 - 1)2 + (x2 - 1)2

subject to x1 + x2 - 4 = 0
x1 - x2 - 2 = 0

1. Is it a valid optimization problem? Explain.
2. Explain how you would solve the problem? Are necessary conditions needed to

find the optimum solution?

4.52 Minimize f(x1, x2) = 4x1
2 + 3x2

2 - 5x1x2 - 8

subject to x1 + x2 = 4

4.53 Maximize F(x1, x2) = 4x1
2 + 3x2

2 - 5x1x2 - 8

subject to x1 + x2 = 4

4.54 Maximize F(x1, x2) = 4x1
2 + 3x2

2 - 5x1x2 - 8

subject to x1 + x2 £ 4

4.55 Minimize f(x1, x2) = 4x1
2 + 3x2

2 - 5x1x2 - 8

subject to x1 + x2 £ 4

4.56 Maximize F(x1, x2) = 4x1
2 + 3x2

2 - 5x1x2 - 8x1

subject to x1 + x2 £ 4

4.57 Minimize f(x1, x2) = (x1 - 1)2 + (x2 - 1)2

subject to x1 + x2 ≥ 4
x1 - x2 - 2 = 0

4.58 Minimize f(x1, x2) = (x1 - 1)2 + (x2 - 1)2

subject to x1 + x2 = 4
x1 - x2 - 2 ≥ 0

4.59 Minimize f(x1, x2) = (x1 - 1)2 + (x2 - 1)2

subject to x1 + x2 ≥ 4
x1 - x2 ≥ 2

4.60 Minimize f(x, y) = (x - 4)2 + (y - 6)2

subject to 12 ≥ x + y
x ≥ 6, y ≥ 0

4.61 Minimize f(x1, x2) = 2x1 + 3x2 - x1
3 - 2x2

2

subject to x1 + 3x2 £ 6
5x1 + 2x2 £ 10
x1, x2 ≥ 0

4.62 Minimize f(x1, x2) = 4x1
2 + 3x2

2 - 5x1x2 - 8x1

subject to x1 + x2 £ 4

4.63 Minimize f(x1, x2) = x1
2 + x2

2 - 4x1 - 2x2 + 6

subject to x1 + x2 ≥ 4

4.64 Minimize f(x1, x2) = 2x1
2 - 6x1x2 + 9x2

2 - 18x1 + 9x2

subject to x1 + 2x2 £ 10
4x1 - 3x2 £ 20; xi ≥ 0; i = 1, 2

4.65 Minimize f(x1, x2) = (x1 - 1)2 + (x2 - 1)2

subject to x1 + x2 - 4 £ 0
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4.66 Minimize f(x1, x2) = (x1 - 1)2 + (x2 - 1)2

subject to x1 + x2 - 4 £ 0
x1 - x2 - 2 ≥ 0

4.67 Minimize f(x1, x2) = (x1 - 1)2 + (x2 - 1)2

subject to x1 + x2 - 4 £ 0
2 - x1 £ 0

4.68 Minimize f(x1, x2) = 9x1
2 - 18x1x2 + 13x2

2 - 4

subject to x1
2 + x2

2 + 2x1 ≥ 16

4.69 Minimize f(x1, x2) = (x1 - 3)2 + (x2 - 3)2

subject to x1 + x2 £ 4
x1 - 3x2 = 1

4.70 Minimize f(x1, x2) = x1
3 - 16x1 + 2x2 - 3x2

2

subject to x1 + x2 £ 3

4.71 Minimize f(x1, x2) = 3x1
2 - 2x1x2 + 5x2

2 + 8x2

subject to x1
2 - x2

2 + 8x2 £ 16

4.72 Minimize f(x, y) = (x - 4)2 + (y - 6)2

subject to x + y £ 12

x £ 6
x, y ≥ 0

4.73 Minimize f(x, y) = (x - 8)2 + (y - 8)2

subject to x + y £ 12

x £ 6
x, y ≥ 0

4.74 Maximize F(x, y) = (x - 4)2 + (y - 6)2

subject to x + y £ 12

6 ≥ x
x, y ≥ 0

4.75 Maximize F(r, t) = (r - 8)2 + (t - 8)2

subject to 10 ≥ r + t

t £ 5
r, t ≥ 0

4.76 Maximize F(r, t) = (r - 3)2 + (t - 2)2

subject to 10 ≥ r + t

t £ 5
r, t ≥ 0

4.77 Maximize F(r, t) = (r - 8)2 + (t - 8)2

subject to r + t £ 10

t ≥ 0
r £ 0

4.78 Maximize F(r, t) = (r - 3)2 + (t - 2)2

subject to 10 ≥ r + t

t ≥ 5
r, t ≥ 0
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4.79 Consider the problem of designing the “can” formulated in Section 2.2. Write KKT
conditions and solve them. Interpret the necessary conditions at the solution point
graphically.

4.80 A minimum weight tubular column design problem is formulated in Section 2.7
using mean radius R and thickness t as design variables. Solve the KKT conditions
for the problem imposing an additional constraint R/t £ 50 for the following data: 
P = 50kN, l = 5.0m, E = 210GPa, sa = 250MPa and r = 7850kg/m3. Interpret the
necessary conditions at the solution point graphically.

4.81 A minimum weight tubular column design problem is formulated in Section 2.7
using outer radius Ro and inner radius Ri as design variables. Solve the KKT
conditions for the problem imposing an additional constraint 0.5(Ro + Ri)/(Ro - Ri) £
50 Use the same data as in Exercise 4.80. Interpret the necessary conditions at the
solution point graphically.

4.82 An engineering design problem is formulated as
minimize f(x1, x2) = x1

2 + 320x1x2

subject to 

x1, x2 ≥ 0

Write KKT necessary conditions and solve for the candidate minimum designs.
Verify the solutions graphically. Interpret the KKT conditions on the graph for the
problem.

Formulate and solve the following problems graphically. Verify the KKT conditions at the
solution point and show gradients of the cost function and active constraints on the graph.

4.83 Exercise 2.1 4.84 Exercise 2.2 4.85 Exercise 2.3

4.86 Exercise 2.4 4.87 Exercise 2.5 4.88 Exercise 2.6

4.89 Exercise 2.7 4.90 Exercise 2.8 4.91 Exercise 2.9

4.92 Exercise 2.10 4.93 Exercise 2.11 4.94 Exercise 2.12

4.95 Exercise 2.13 4.96 Exercise 2.14

Section 4.5 Physical Meaning of Lagrange Multipliers

Solve the following problems graphically, verify the KKT necessary conditions for the solu-
tion points and study the effect on the cost function of changing the boundary of the active
constraint(s) by one unit.

4.97 Exercise 4.44 4.98 Exercise 4.45 4.99 Exercise 4.46

4.100 Exercise 4.47 4.101 Exercise 4.48 4.102 Exercise 4.49

4.103 Exercise 4.50 4.104 Exercise 4.51 4.105 Exercise 4.52

4.106 Exercise 4.53 4.107 Exercise 4.54 4.108 Exercise 4.55

4.109 Exercise 4.56 4.110 Exercise 4.57 4.111 Exercise 4.58

4.112 Exercise 4.59 4.113 Exercise 4.60 4.114 Exercise 4.61

1
1

3600
01 1 2- -( ) £x x x

1

60
1 0

2
1

x
x - £
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4.115 Exercise 4.62 4.116 Exercise 4.63 4.117 Exercise 4.64

4.118 Exercise 4.65 4.119 Exercise 4.66 4.120 Exercise 4.67

4.121 Exercise 4.68 4.122 Exercise 4.69 4.123 Exercise 4.70

4.124 Exercise 4.71 4.125 Exercise 4.72 4.126 Exercise 4.73

4.127 Exercise 4.74 4.128 Exercise 4.75 4.129 Exercise 4.76

4.130 Exercise 4.77 4.131 Exercise 4.78

Section 4.6 Global Optimality

4.132 Answer True or False.
1. A linear inequality constraint always defines a convex feasible region.
2. A linear equality constraint always defines a convex feasible region.
3. A nonlinear equality constraint cannot give a convex feasible region.
4. A function is convex if and only if its Hessian is positive definite 

everywhere.
5. An optimum design problem is convex if all constraints are linear and cost

function is convex.
6. A convex programming problem always has an optimum solution.
7. An optimum solution for a convex programming problem is always unique.
8. A nonconvex programming problem cannot have global optimum solution.
9. For a convex design problem, the Hessian of the cost function must be positive

semidefinite everywhere.
10. Checking for the convexity of a function can actually identify a domain over

which the function may be convex.

4.133 Using the definition of a line segment given in Eq. (4.65), show that the following
set is convex

4.134 Find the domain for which the following functions are convex: (i) sin x, (ii) cosx.

Check for convexity of the following functions. If the function is not convex everywhere, then
determine the domain ( feasible set S) over which the function is convex.

4.135 f(x1, x2) = 3x1
2 + 2x1x2 + 2x2

2 + 7

4.136 f(x1, x2) = x1
2 + 4x1x2 + x2

2 + 3

4.137 f(x1, x2) = x1
3 + 12x1x2

2 + 2x2
2 + 5x1

2 + 3x2

4.138 f(x1, x2) =

4.139 f(x1, x2) = x1
2 + x1x2 + x2

2

4.140

4.141 Consider the problem of designing the “can” formulated in Section 2.2. Check
convexity of the problem. Solve the problem graphically and check the KKT
conditions at the solution point.

U
E

V C
E C E V=

+( )
+ +( ) + +( )21 9 07

3 9 06 1 0 03
2

.
. .

5
1

16

1

4
1 1

2
2
2

1
2
2x x x

x
x- +

S x x= + - £{ }x 1
2

2
2 1 0 0.
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Formulate and check convexity of the following problems; solve the problems graphically
and verify the KKT conditions at the solution point.

4.142 Exercise 2.1 4.143 Exercise 2.3 4.144 Exercise 2.4

4.145 Exercise 2.5 4.146 Exercise 2.9 4.147 Exercise 2.10

4.148 Exercise 2.12 4.149 Exercise 2.14

Section 4.7 Engineering Design Examples

4.150 The problem of minimum weight design of the symmetric three-bar truss of Fig. 2-6
is formulated as follows:
minimize f(x1, x2) = 2 x1 + x2

subject to the constraints

where x1 is the cross-sectional area of members 1 and 3 (symmetric structure) and
x2 is the cross-sectional area of member 2, Pu = P cosq, Pv = P sinq, with P > 0 and
0 £ q £ 90. Check for convexity of the problem for q = 60°.

4.151 For the three-bar truss problem of Exercise 4.150, consider the case of KKT
conditions with g1 as the only active constraint. Solve the conditions for optimum
solution and determine the range for the load angle q for which the solution is valid.

4.152 For the three-bar truss problem of Exercise 4.150, consider the case of KKT
conditions with only g1 and g2 as active constraints. Solve the conditions for
optimum solution and determine the range for the load angle q for which the
solution is valid.

4.153 For the three-bar truss problem of Exercise 4.150, consider the case of KKT
conditions with g2 as the only active constraint. Solve the conditions for optimum
solution and determine the range for the load angle q for which the solution is valid.

4.154 For the three-bar truss problem of Exercise 4.150, consider the case of KKT
conditions with g1 and g4 as active constraints. Solve the conditions for optimum
solution and determine the range for the load angle q for which the solution is valid.

g x4 2 0= - £

g x3 1 0= - £

g
P

x x
v

2
1 2

2

2
20 000 0=

+( ) - £,

g
P

x

P

x x
u v

1
1 1 2

1

2 2
20 000 0= +

+( )
È
ÎÍ

˘
˚̇

- £,

2
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5 More on Optimum Design Concepts

175

Upon completion of this chapter, you will be able to:

• Write and use an alternate form of optimality conditions for constrained problems

• Determine if the candidate points are irregular

• Check the second-order optimality conditions at the candidate minimum points
for general constrained problems

In this chapter, we discuss some additional topics related to the optimality condition for 
constrained problems. Implications of the regularity requirements in the Karush-Kuhn-Tucker
(KKT) necessary conditions are discussed. Second-order optimality conditions for the
problem are presented and discussed. These topics are usually not covered in a first course
on optimization or in a first reading of the book. They are more suitable for a second course
or a graduate level course on the subject.

5.1 Alternate Form of KKT Necessary Conditions
There is an alternate but entirely equivalent form for the KKT necessary conditions. In this
form, the slack variables are not added to the inequality constraints and the conditions of
Eqs. (4.46) to (4.51) are written without them. It can be seen that in the necessary conditions
of Eqs. (4.46) to (4.51), the slack variable si appears only in two equations: Eq. (4.48) as 
gi(x*) + si

2 = 0, and Eq. (4.50) as ui*si = 0. We shall show that both the equations can be
written in an equivalent form without the slack variable si

2.
Consider first Eq. (4.48), gi(x*) + si

2 = 0 for i = 1 to m. The purpose of this equation is to
ensure that at the candidate minimum point, all the inequalities remain satisfied. The equa-
tion can be written as si

2 = -gi(x*) and since si
2 ≥ 0 ensures satisfaction of the constraint, we

get -gi(x*) ≥ 0, or gi(x*) £ 0 for i = 1 to m. Thus, Eq. (4.48), gi(x*) + si
2 = 0, can be simply

replaced by gi(x*) £ 0.
The second equation involving the slack variable is Eq. (4.50), ui*si = 0, i = 1 to m.

Multiplying the equation by si, we get ui*si
2 = 0. Now substituting si

2 = -gi(x*), we get 
ui*gi(x*) = 0, i = 1 to m. This way the slack variable is eliminated from the equation and 



the switching condition of Eq. (4.50) can be written as ui*gi(x*) = 0, i = 1 to m. These con-
ditions can be used to define various cases as ui* = 0 or gi = 0 (instead of si = 0). Table 5-1
gives the KKT conditions of Theorem 4.6 in the alternate form without the slack variables,
and Examples 5.1 and 5.2 provide an illustration of its use.
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TABLE 5-1 Alternate Form of KKT Necessary Conditions

Problem: minimize f(x) subject to hi(x) = 0, i = 1 to p; gj (x) £ 0, j = 1 to m

1. Lagrangian function definition

(5.1)

2. Gradient conditions

(5.2)

3. Feasibility check

(5.3)

4. Switching conditions

(5.4)

5. Nonnegativity of Lagrange multipliers for inequalities

(5.5)

6. Regularity check
Gradients of active constraints must be linearly independent. In such a case, the Lagrange
multipliers for the constraints are unique.
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EXAMPLE 5.1 Use of Alternate form of KKT Conditions

Minimize f (x, y) = (x - 10)2 + (y - 8)2 subject to g1 = x + y - 12 £ 0, g2 = x - 8 < 0.

Solution. The KKT conditions are

1. Lagrangian function definition: 
L = (x - 10)2 + (y - 8)2 + u1(x + y - 12) + u2(x - 8)

2. Gradient condition: 

(a)

∂
∂
∂
∂

L

x
x u u

L

y
y u

= -( ) + + =

= -( ) + =

2 10 0

2 8 0

1 2

1
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3. Feasibility check: g1 £ 0, g2 £ 0 (b)
4. Switching conditions: u1g1 = 0, u2g2 = 0 (c)
5. Nonnegativity of Lagrange multipliers: u1, u2 ≥ 0
6. Regularity check.

The switching conditions (c) give the following four cases:

1. u1 = 0, u2 = 0 (both g1 and g2 inactive)
2. u1 = 0, g2 = 0 (g1 inactive, g2 active)
3. g1 = 0, u2 = 0 (g1 active, g2 inactive)
4. g1 = 0, g2 = 0 (both g1 and g2 active)

Case 1: u1 = 0, u2 = 0 (both g1 and g2 inactive).

Equations (a) give the solution as, x = 10, y = 8. Checking feasibility of this point
gives g1 = 6 > 0, g2 = 2 > 0; thus both constraints are violated and so this case does
not give any candidate minimum point.

Case 2: u1 = 0, g2 = 0 (g1 inactive, g2 active).

g2 = 0 gives x = 8. Equations (a) give y = 8 and u2 = 4. At the point (8, 8), g1 = 4 > 0
which is a violation. Thus the point (8, 8) is infeasible and this case also does not give
any candidate minimum points.

Case 3: g1 = 0, u2 = 0 (g1 active, g2 inactive).

Equations (a) and g1 = 0 give x = 7, y = 5, u1 = 6 > 0. Checking feasibility, g2 = -1 <
0 which is satisfied. Since there is only one active constraint, the question of linear
dependence of gradients of active constraints does not arise; therefore regularity con-
dition is satisfied. Thus point (7, 5) satisfies all the KKT necessary conditions.

Case 4: g1 = 0, g2 = 0 (both g1 and g2 active).

g1 = 0, g2 = 0 give x = 8, y = 4. Equations (a) give u1 = 8, u2 = -4 < 0, which is a vio-
lation of the necessary conditions. Therefore, this case also does not give any candi-
date minimum points.

It may be checked that this is a convex programming problem since constraints are
linear and the cost function is convex. Therefore the point obtained in Case 3 is indeed
a global minimum point according to the convexity results of Section 4.6.

EXAMPLE 5.2 Check for KKT Necessary Conditions

An optimization problem has one equality constraint h and one inequality constraint
g. Check KKT necessary conditions at what is believed to be the optimum point using
the following information:

(a)

Solution. At the candidate minimum point, the gradients of h and g are linearly inde-
pendent, so the given point is regular. The KKT conditions are

(b)

— = — + — + — =
= £ = ≥
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5.2 Irregular Points
In all the examples that have been considered thus far it is implicitly assumed that conditions
of the Karush-Kuhn-Tucker Theorem 4.6 or the Lagrange Theorem 4.5 are satisfied. In par-
ticular; we have assumed that x* is a regular point of the feasible design space. That is, gra-
dients of all the active constraints at x* are linearly independent (i.e., they are not parallel to
each other, nor any gradient can be expressed as a linear combination of others). It must be
realized that necessary conditions are applicable only if the assumption for regularity of x*
is satisfied. To show that the necessary conditions are not applicable if x* is not a regular
point, we consider Example 5.3.
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Substituting for —f, —h and —g, we get the following three equations:

These are three equations in two unknowns; however, only two of them are linearly
independent. Solving for u and v, we get ≥ 0 and . Thus, all the KKT nec-
essary conditions are satisfied.

v = - 1
3u = 5

3

2 0 3 2 0 2 0+ - = - - = + - =v u v u v u, ,

EXAMPLE 5.3 Check for KKT Conditions at Irregular Points

Minimize f (x1, x2) = x1
2 + x2

2 - 4x1 + 4 subject to g1 = -x1 £ 0, g2 = -x2 £ 0, g3 = x2 -
(1 - x1)3 £ 0. Check if the minimum point (1, 0) satisfies KKT necessary conditions
(McCormick, 1967).

Solution. The graphical solution shown in Fig. 5-1 gives the global minimum 
for the problem at x* = (1, 0). Let us see if the solution satisfies KKT necessary 
conditions:

x* = (1, 0), —f (x*) = (–2, 0)

—g2 (x*)

—g3 (x*)

—f (x*)

x*

g1 = 0
g3 = 0

x2

x1

g2 = 0

f = 5
f = 4

f = 1

1.51.0

1.0

0.5

0.5

–0.5

0

FIGURE 5-1 Graphical solution for Example 5.3. Irregular optimum point.



5.3 Second-Order Conditions for Constrained Optimization
Solutions of the necessary conditions are candidate local minimum designs. In this section,
we shall discuss second-order necessary and sufficiency conditions for constrained opti-
mization problems. As in the unconstrained case, second-order information about the func-
tions at the candidate point x* will be used to determine if it is indeed a local minimum.
Recall for the unconstrained problem that the local sufficiency of Theorem 4.4 requires the
quadratic part of the Taylor’s expansion for the function at x* to be positive for all nonzero
changes d. In the constrained case, we must also consider active constraints at x* to deter-
mine feasible changes d. We will consider only the points x = x* + d in the neighborhood
of x* that satisfy the active constraint equations. Any d π 0 satisfying active constraints to
the first order must be in the constraint tangent hyperplane (Fig. 5-2). Such d’s are then
orthogonal to the gradients of the active constraints since constraint gradients are normal to
the constraint tangent hyperplane. Therefore, the dot product of d with each of the constraint
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1. Lagrangian definition: L = x1
2 + x2

2 - 4x1 + 4 + u1(-x1) + u2(-x2) + u3(x2 - [1 - x1]3)
2. Gradient condition: 

(a)

3. Feasibility check: gi £ 0, i = 1, 2, 3 (b)
4. Switching conditions: uigi = 0, i = 1, 2, 3 (c)
5. Nonnegativity of Lagrange multipliers: ui ≥ 0, i = 1, 2, 3
6. Regularity check.

At x* = (1, 0) the first constraint (g1) is inactive and the second and third constraints
are active. The switching conditions (c) identify the case as u1 = 0, g2 = 0, g3 = 0. 
Substituting the solution into Eq. (a), we find that the first equation gives 2 = 0 and
therefore it is not satisfied. Thus, KKT necessary conditions are not satisfied at the
minimum point.

This apparent contradiction can be resolved by checking the regularity condition
at the minimum point x* = (1, 0). The gradients of the active constraints g2 and g3 are
given as

These vectors are not linearly independent. They are along the same line but in oppo-
site directions, as shown in Fig. 5-1. Thus x* is not a regular point of the feasible set.
Since this is assumed in the KKT conditions, their use is invalid here. Note also that
geometrical interpretation of the KKT conditions is violated; that is, —f at (1, 0) cannot
be written as a linear combination of the gradients of the active constraints g2 and g3.
Actually —f is normal to both —g2 and —g3 as shown in the figure.

Note that for some problems, irregular points can be obtained as solution of the
KKT conditions; however, in such cases, the Lagrange multipliers of the active con-
straints cannot be guaranteed to be unique. Also the constraint variation sensitivity
result of Section 4.5 may or may not be applicable for some values of the Lagrange
multipliers.
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gradients —hi and —gi must be zero, i.e., —hi
Td = 0 and —gi

Td = 0. These equations are used
to determine directions d that define a feasible region around the point x*. Note that only
active inequalities constraints (gi = 0) are used in determining d. The situation is depicted in
Fig. 5-2 for one inequality constraint.

To derive the second-order conditions, we write Taylor’s expansion of the Lagrange func-
tion and consider only those d that satisfy the preceding conditions. x* is then a local
minimum point if the second-order term of Taylor’s expansion is positive for all d in the 
constraint tangent hyperplane. This is then the sufficient condition for an isolated local
minimum point. As a necessary condition the second-order term must be nonnegative. We
summarize these results in Theorems 5.1 and 5.2.

Theorem 5.1 Second-order Necessary Condition for General Constrained Problems
Let x* satisfy the first-order KKT necessary conditions for the general optimum design
problem. Define the Hessian of the Lagrange function L at x* as

(5.6)

Let there be nonzero feasible directions, d π 0, satisfying the following linear systems at the
point x*:

(5.7)

(5.8)

Then if x* is a local minimum point for the optimum design problem, it must be true that

(5.9)

Note that any point that does not satisfy the second-order necessary conditions cannot be a
local minimum point.

Theorem 5.2 Sufficient Conditions for General Constrained Problems Let x* satisfy the
first-order KKT necessary conditions for the general optimum design problem. Define
Hessian of the Lagrange function L at x* as in Eq. (5.6). Define nonzero feasible directions,
d π 0, as solutions of the linear systems

(5.10)
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Constraint tangent plane

dd

x*

gi(x) = 0

—gi(x)

FIGURE 5-2 Directions d used in constrained sufficiency conditions.



Also let —gi
Td £ 0 for those active inequalities with ui* = 0. If

(5.12)

then x* is an isolated local minimum point (isolated means that there are no other local
minimum points in the neighborhood of x*).

Note first the difference in the conditions for the directions d in Eq. (5.8) for the neces-
sary condition and Eq. (5.11) for the sufficient condition. In Eq. (5.8) all active inequalities
with nonnegative multipliers are included whereas in Eq. (5.11) only those active inequal-
ities with a positive multiplier are included. Equations (5.10) and (5.11) simply say that the
dot product of vectors —hi and d and —gi (having ui* > 0) and d should be zero. So, only the
d orthogonal to the gradients of equality and active inequality constraints with ui* > 0 are
considered. Or, stated differently, only d in the tangent hyperplane to the active constraints
at the candidate minimum point are considered. Equation (5.12) says that the Hessian of the
Lagrangian must be positive definite for all d lying in the constraint tangent hyperplane. Note
that —hi, —gi and —2L are calculated at the candidate local minimum points x* satisfying the
KKT necessary conditions.

It is important to note that if matrix —2L(x*) is negative definite or negative semidefinite
then the second-order necessary condition for a local minimum is violated and x* cannot be
a local minimum point. Also if —2L(x*) is positive definite, i.e., Q in Eq. (5.12) is positive for
any d π 0 then x* satisfies the sufficiency condition for an isolated local minimum and no
further checks are needed. The reason is that if —2L(x*) is positive definite, then it is also
positive definite for those d that satisfy Eqs. (5.10) and (5.11). However, if —2L(x*) is not
positive definite then we cannot conclude that x* is not an isolated local minimum. We must
calculate d to satisfy Eqs. (5.10) and (5.11) and carry out the sufficiency test given in the
Theorem 5.2. This result is summarized in Theorem 5.3.

Theorem 5.3 Strong Sufficient Condition Let x* satisfy the first-order KKT necessary
conditions for the general optimum design problem. Define Hessian —2L(x*) for the Lagrange
function at x* as in Eq. (5.6). Then if —2L(x*) is positive definite, x* is an isolated minimum
point.

It should also be emphasized that if the inequality in Eq. (5.12) is not satisfied, we cannot
conclude that x* is not a local minimum. It may still be a local minimum but not an isolated
one. Note also that the theorem cannot be used for any x* if its assumptions are not satis-
fied. In that case, we cannot draw any conclusions for the point x*.

One case arising in some applications needs special mention. This occurs when the total
number of active constraints (with at least one inequality) at the candidate minimum point
x* is equal to the number of independent design variables; that is, there are no design degrees
of freedom. Since x* satisfies KKT conditions, gradients of all the active constraints are lin-
early independent. Thus, the only solution for the system of Eqs. (5.10) and (5.11) is d = 0
and Theorem 5.2 cannot be used. However, since d = 0 is the only solution, there are no fea-
sible directions in the neighborhood that can reduce the cost function any further. Thus, the
point x* is indeed a local minimum for the cost function (see also the definition of a local
minimum in Section 4.1.1). We consider Examples 5.4 to 5.6 to illustrate the use of suffi-
cient conditions of optimality.

Q Q L> = — ( )0 2, *where Td x d

More on Optimum Design Concepts 181

EXAMPLE 5.4 Check for Sufficient Conditions

Check sufficiency condition for Example 4.30: Minimize +
bcx + f0 subject to a £ x £ d where 0 < a < b < c < d and f0 are specified constants.

f x b c xx( ) = - +( )1
3

3 1
2

2
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Solution. There is only one constrained candidate local minimum point, x = a. Since
there is only one design variable and one active constraint, the condition —g1 = 0 of
Eq. (5.11) gives = 0 as the only solution (note that is used as a direction for suf-
ficiency check since d is used as a constant in the example). Therefore, Theorem 5.2
cannot be used for a sufficiency check. Also note that at x = a, d2L/dx2 = 2a - b - c
which can be positive, negative, or zero depending on the values of a, b, and c. So,
we cannot use curvature of Hessian to check the sufficiency condition (Strong Suffi-
cient Theorem 5.3). However, from Fig. 4-20 we observe that x = a is indeed an iso-
lated local minimum point. From this example we can conclude that if the number of
active inequality constraints is equal to the number of independent design variables
and all other KKT conditions are satisfied, then the candidate point is indeed a local
minimum design.

dd
d

EXAMPLE 5.5 Check for Sufficient Conditions

Consider the optimization problem of Example 4.31: Minimize f (x) = x1
2 + x2

2 - 3x1x2

subject to g(x) = x1
2 + x2

2 - 6 £ 0. Check for sufficient conditions for the candidate
minimum points.

Solution. The points satisfying KKT necessary conditions are

(a)

It was previously observed in Example 4.31 and Fig. 4-21 that the point (0, 0) did not
satisfy the sufficiency condition, and the other two points did satisfy it. Those geo-
metrical observations shall be mathematically verified using the sufficient theorems
of optimality. The Hessian matrices for the cost and constraint functions are

(b)

By the method of Appendix B, eigenvalues of —2g are l1 = 2 and l2 = 2. Since both
eigenvalues are positive, the function g is convex, and so the feasible set defined by
g(x) £ 0 is convex by Theorem 4.9. However, since eigenvalues of —2f are -1 and 5,
f is not convex. Therefore, it cannot be classified as a convex programming problem
and sufficiency cannot be shown by Theorem 4.11. We must resort to the general suf-
ficiency Theorem 5.2. The Hessian of the Lagrangian function is given as

(c)

For the first point x* = (0, 0), u* = 0, —2L becomes —2f (the constraint g(x) £ 0 is 
inactive). In this case the problem is unconstrained and the local sufficiency requires
dT—2f (x*)d > 0 for all d. Or, —2f should be positive definite at x*. Since both eigen-
values of —2f are not positive, we conclude that the above condition is not satisfied.
Therefore, x* = (0, 0) does not satisfy the second-order sufficiency condition. 
Note that since l1 = -1 and l2 = 5, the matrix —2f is indefinite at x*. Therefore the
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point x* = (0, 0) violates the second-order necessary condition of Theorem 4.4 requir-
ing —2f to be positive semidefinite or definite at the candidate local minimum point.
Thus, x* = (0, 0) cannot be a local minimum point. This agrees with graphical obser-
vation made in Example 4.31.

At points 

(d)

(e)

It may be checked that —2L is not positive definite at either of the two points. There-
fore, we cannot use Theorem 5.3 to conclude that x* is a minimum point. We must
find d satisfying Eqs. (5.10) and (5.11). If we let d = (d1, d2), then —gTd = 0 gives

(f)

Thus, d1 = -d2 = c, where c π 0 is an arbitrary constant, and a d π 0 satisfying —gTd
= 0 is given as d = c(l, -1). The sufficiency condition of Eq. (5.12) gives

(g)

The points satisfy the sufficiency conditions.
They are therefore isolated local minimum points as was observed graphically in
Example 4.31 and Fig. 4-21. We see for this example that —2L is not positive definite,
but x* is still an isolated minimum point.

Note that since f is continuous and the feasible set is closed and bounded, we are
guaranteed the existence of a global minimum by the Weierstrass Theorem 4.1. Also
we have examined every possible point satisfying necessary conditions. Therefore, we
must conclude by elimination that are global
minimum points. The value of the cost function for both points is f(x*) = -3.
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EXAMPLE 5.6 Check for Sufficient Conditions

Consider Example 4.32: Minimize f (x1, x2) = x1
2 + x2

2 - 2x1 - 2x2 + 2 subject to g1 =
-2x1 - x2 + 4 £ 0, g2 = -x1 - 2x2 + 4 £ 0. Check the sufficiency condition for the can-
didate minimum point.

Solution. The KKT necessary conditions are satisfied for the point

(a)

Since all the constraint functions are linear, the feasible set S is convex. The Hessian
of the cost function is positive definite. Therefore, it is also convex and the problem

x x u u1 2 1 2
4

3

4

3

2

9

2

9
* , * , * , *= = = =



5.4 Sufficiency Check for Rectangular Beam Design Problem
The rectangular beam problem is formulated and graphically solved in Section 3.8. The KKT
necessary conditions are written and solved in Section 4.7.2. Several points that satisfy the
KKT conditions are obtained. It is seen from the graphical representation of the problem that
all these points are global minima for the problem; however, none of the points is an isolated
minimum. Let us show that the sufficiency condition will not be satisfied for any of these
points.

Cases 3, 5, and 6 in Section 4.7.2 give solutions that satisfy the KKT conditions. Cases 5
and 6 have two active constraints; however, only the constraint with positive multiplier needs
to be considered in Eq. (5.11). The sufficiency theorem requires only constraints with ui > 0
to be considered in calculating the feasible directions for use in Eq. (5.12). Therefore only
the g2 constraint needs to be included in the check for sufficient conditions. Thus, all the
three cases have the same sufficiency check. We need to calculate Hessians of the cost func-
tion and the second constraint:

(a)

Since bd = (1.125E + 05), —2g2 becomes

(b)

The Hessian of the Lagrangian is given as
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is convex. By Theorem 4.11, satisfies sufficiency conditions for a
global minimum with the cost function as .

Note that local sufficiency cannot be shown by the method of Theorem 5.2. The
reason is that the conditions of Eq. (5.11) give two equations in two unknowns:

-2d1 - d2 = 0, -d1 - 2d2 = 0 (b)

This is a homogeneous system of equations with a nonsingular coefficient matrix.
Therefore, its only solution is d1 = d2 = 0. Thus, we cannot find a d π 0 for use in the
condition of Eq. (5.12), and Theorem 5.2 cannot be used. However, we have seen in
the foregoing and in Fig. 4-22 that the point is actually an isolated global minimum
point. Since it is a two-variable problem and two inequality constraints are active at
the KKT point, the condition for local minimum is satisfied.

f x *( ) = 2
9

x x1
4
3 2

4
3

* , *= =



(d)

The determinant of —2L is 0 for bd = (1.125E + 05); the matrix is only positive semidefinite.
Therefore, Theorem 5.3 cannot be used to show sufficiency of x*. We must check the suf-
ficiency condition of Eq. (5.12). In order to do that, we must find directions y satisfying 
Eq. (5.11). The gradient of g2 is given as

(e)

The feasible directions y are given by —g2
Ty = 0, as

(f)

Therefore, vector y is given as y = (1, -d/b)c, where c = y1 is any constant. Using —2L and
y, Q of Eq. (5.12) is given as

Q = yT—2Ly = 0 (g)

Thus, the sufficiency condition of Theorem 5.2 is not satisfied. The points satisfying 
bd = (1.125E + 05) need not be isolated minimum points. This is, of course, true from Figure
3-11. Note, however, that since Q = 0, the second-order necessary condition of Theorem 5.1
is satisfied for Case 3 solution. Theorem 5.2 cannot be used for solutions of Cases 5 and 6
since there are two active constraints for this two variable problem; therefore there are no
nonzero d vectors.

It is important to note that this problem does not satisfy the condition for a convex pro-
gramming problem and all the points satisfying KKT conditions do not satisfy the sufficiency
condition for isolated minimum. Yet, all the points are actually global minimum points. Two
conclusions can be drawn from this example:

1. Global optimum solutions can be obtained for problems that cannot be classified as
convex programming problems. We cannot show global optimality unless we find all
the local optimum solutions in the closed and bounded set (Weierstrass Theorem 4.1).

2. If sufficiency conditions are not satisfied, the only conclusion we can draw is that the
candidate point need not be an isolated minimum. It may have many local optima in
the neighborhood, and they may all be actually global solutions.

Exercises for Chapter 5
5.1 Answer True or False.

1. A convex programming problem always has a unique global minimum point.
2. For a convex programming problem, KKT necessary conditions are also

sufficient.
3. The Hessian of the Lagrange function must be positive definite at constrained

minimum points.
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4. For a constrained problem, if the sufficiency condition of Theorem 5.2 is
violated, the candidate point x* may still be a minimum point.

5. If the Hessian of the Lagrange function at x*, —2L(x*), is positive definite, the
optimum design problem is convex.

6. For a constrained problem, the sufficient condition at x* is satisfied if there are
no feasible directions in a neighborhood of x* along which the cost function
reduces.

5.2 Formulate the problem of Exercise 4.84. Show that the solution point for the
problem is not a regular point. Write KKT conditions for the problem, and study the
implication of the irregularity of the solution point.

5.3 Solve the following problem using the graphical method:

Minimize f(x1, x2) = (x1 - 10)2 + (x2 - 5)2

subject to x1 + x2 £ 12, x1 £ 8, x1 - x2 £ 4

Show that the minimum point does not satisfy the regularity condition. Study the
implications of this situation.

Solve the following problems graphically. Check necessary and sufficient conditions for 
candidate local minimum points and verify them on the graph for the problem.

5.4 Minimize f(x1, x2) = 4x1
2 + 3x2

2 - 5x1x2 - 8x1

subject to x1 + x2 = 4

5.5 Maximize F(x1, x2) = 4x1
2 + 3x2

2 - 5x1x2 - 8x1

subject to x1 + x2 = 4

5.6 Minimize f(x1, x2) = (x1 - 2)2 + (x2 + 1)2

subject to 2x1 + 3x2 - 4 = 0

5.7 Minimize f(x1, x2) = 4x1
2 + 9x2

2 + 6x2 - 4x1 + 13

subject to x1 - 3x2 + 3 = 0

5.8 Minimize f(x) = (x1 - 1)2 + (x2 + 2)2 + (x3 - 2)2

subject to 2x1 + 3x2 - 1 = 0
x1 + x2 + 2x3 - 4 = 0

5.9 Minimize f(x1, x2) = 9x1
2 + 18x1x2 + 13x2

2 - 4

subject to x1
2 + x2

2 + 2x1 = 16

5.10 Minimize f(x1, x2) = (x1 - 1)2 + (x2 - 1)2

subject to x1 + x2 - 4 = 0

5.11 Minimize f(x1, x2) = 4x1
2 + 3x2

2 - 5x1x2 - 8

subject to x1 + x2 = 4

5.12 Maximize F(x1, x2) = 4x1
2 + 3x2

2 - 5x1x2 - 8

subject to x1 + x2 = 4

5.13 Maximize F(x1, x2) = 4x1
2 + 3x2

2 - 5x1x2 - 8

subject to x1 + x2 £ 4
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5.14 Minimize f(x1, x2) = 4x1
2 + 3x2

2 - 5x1x2 - 8

subject to x1 + x2 £ 4

5.15 Maximize F(x1, x2) = 4x1
2 + 3x2

2 - 5x1x2 - 8x1

subject to x1 + x2 £ 4

5.16 Minimize f(x1, x2) = (x1 - 1)2 + (x2 - 1)2

subject to x1 + x2 ≥ 4
x1 - x2 - 2 = 0

5.17 Minimize f(x1, x2) = (x1 - 1)2 + (x2 - 1)2

subject to x1 + x2 = 4
x1 - x2 - 2 ≥ 0

5.18 Minimize f(x1, x2) = (x1 - 1)2 + (x2 - 1)2

subject to x1 + x2 ≥ 4
x1 - x2 ≥ 2

5.19 Minimize f(x, y) = (x - 4)2 + (y - 6)2

subject to 12 ≥ x + y
x ≥ 6, y ≥ 0

5.20 Minimize f(x1, x2) = 2x1 + 3x2 - x1
3 - 2x2

2

subject to x1 + 3x2 £ 6
5x1 + 2x2 £ 10
x1, x2 ≥ 0

5.21 Minimize f(x1, x2) = 4x1
2 + 3x2

2 - 5x1x2 - 8x1

subject to x1 + x2 £ 4

5.22 Minimize f(x1, x2) = x1
2 + x2

2 - 4x1 - 2x2 + 6

subject to x1 + x2 ≥ 4

5.23 Minimize f(x1, x2) = 2x1
2 - 6x1x2 + 9x2

2 - 18x1 + 9x2

subject to x1 + 2x2 £ 10
4x1 - 3x2 £ 20; xi ≥ 0; i = 1, 2

5.24 Minimize f(x1, x2) = (x1 - 1)2 + (x2 - 1)2

subject to x1 + x2 - 4 £ 0

5.25 Minimize f(x1, x2) = (x1 - 1)2 + (x2 - 1)2

subject to x1 + x2 - 4 £ 0
x1 - x2 - 2 £ 0

5.26 Minimize f(x1, x2) = (x1 - 1)2 + (x2 - 1)2

subject to x1 + x2 - 4 £ 0
2 - x1 £ 0

5.27 Minimize f(x1, x2) = 9x1
2 - 18x1x2 + 13x2

2 - 4

subject to x1
2 + x2

2 + 2x1 ≥ 16
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5.28 Minimize f(x1, x2) = (x1 - 3)2 + (x2 - 3)2

subject to x1 + x2 £ 4
x1 - 3x2 = 1

5.29 Minimize f(x1, x2) = x1
3 - 16x1 + 2x2 - 3x2

2

subject to x1 + x2 £ 3

5.30 Minimize f(x1, x2) = 3x1
2 - 2x1x2 + 5x2

2 + 8x2

subject to x1
2 - x2

2 + 8x2 £ 16

5.31 Minimize f(x, y) = (x - 4)2 + (y - 6)2

subject to x + y £ 12
x £ 6
x, y ≥ 0

5.32 Minimize f(x, y) = (x - 8)2 + (y - 8)2

subject to x + y £ 12
x £ 6
x, y ≥ 0

5.33 Maximize F(x, y) = (x - 4)2 + (y - 6)2

subject to x + y £ 12
6 ≥ x
x, y ≥ 0

5.34 Maximize F(r, t) = (r - 8)2 + (t - 8)2

subject to 10 ≥ r + t
t £ 5
r, t ≥ 0

5.35 Maximize F(r, t) = (r - 3)2 + (t - 2)2

subject to 10 ≥ r + t
t £ 5
r, t ≥ 0

5.36 Maximize F(r, t) = (r - 8)2 + (t - 8)2

subject to r + t £ 10
t ≥ 0
r ≥ 0

5.37 Maximize F(r, t) = (r - 3)2 + (t - 2)2

subject to 10 ≥ r + t
t ≥ 5
r, t ≥ 0

5.38 Formulate and graphically solve Exercise 2.23 of the design of a cantilever beam
using hollow circular cross section. Check the necessary and sufficient conditions at
the optimum point. The data for the problem are P = 10kN; l = 5m; modulus of
elasticity, E = 210GPa; allowable bending stress, sa = 250MPa; allowable shear
stress, ta = 90MPa; and mass density, r = 7850kg/m3; 0 £ Ro £ 20cm, and 0 £ Ri

£ 20cm.
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5.39 Formulate and graphically solve Exercise 2.24. Check the necessary and sufficient
conditions for the solution points and verify them on the graph.

5.40 Formulate and graphically solve Exercise 3.28. Check the necessary and sufficient
conditions for the solution points and verify them on the graph.

Find optimum solutions for the following problems graphically. Check necessary and suffi-
cient conditions for the solution points and verify them on the graph for the problem.

5.41 A minimum weight tubular column design problem is formulated in Section 2.7
using mean radius R and thickness t as design variables. Solve the problem by
imposing an additional constraint R/t £ 50 for the following data: P = 50kN, 
l = 5.0m, E = 210GPa, sa = 250MPa, and r = 7850kg/m3.

5.42 A minimum weight tubular column design problem is formulated in Section 2.7
using outer radius Ro and inner radius Ri as design variables. Solve the problem by
imposing an additional constraint 0.5(Ro + Ri)/(Ro - Ri) £ 50. Use the same data as
in Exercise 5.41.

5.43 Solve the problem of designing a “can” formulated in Section 2.2.

5.44 Exercise 2.1

5.45* Exercise 3.34

5.46* Exercise 3.35

5.47* Exercise 3.36

5.48* Exercise 3.54

5.49 Answer True or False.

1. Candidate minimum points for a constrained problem that do not satisfy second-
order sufficiency conditions can be global minimum designs.

2. Lagrange multipliers may be used to calculate the sensitivity coefficient for the
cost function with respect to the right side parameters even if Theorem 4.7
cannot be used.

3. Relative magnitudes of the Lagrange multipliers provide useful information for
practical design problems.

5.50 A circular tank that is closed at both ends is to be fabricated to have a volume of
250p m3. The fabrication cost is found to be proportional to the surface area of the
sheet metal needed for fabrication of the tank and is $400/m2. The tank is to be
housed in a shed with a sloping roof which limits the height of the tank by the
relation H £ 8D, where H is the height and D is the diameter of the tank. The
problem is formulated as minimize f (D, H) = 400(0.5pD2 + pDH) subject to the 
constraints , and H £ 8D. Ignore any other constraints.

1. Check for convexity of the problem.
2. Write KKT necessary conditions.
3. Solve KKT necessary conditions for local minimum points. Check sufficient

conditions and verify the conditions graphically.
4. What will be the change in cost if the volume requirement is changed to 

255p m3 in place of 250 p m3?

5.51 A symmetric (area of member 1 is the same as area of member 3) three-bar truss
problem is described in Section 2.10.

p p4
2 250D H =
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1. Formulate the minimum mass design problem treating A1 and A2 as design
variables.

2. Check for convexity of the problem.
3. Write KKT necessary conditions for the problem.
4. Solve the optimum design problem using the data: P = 50kN, q = 30°, r =

7800kg/m3, sa = 150MPa. Verify the solution graphically and interpret the
necessary conditions on the graph for the problem.

5. What will be the effect on the cost function if sa is increased to 152MPa?

Formulate and solve the following problems graphically; check necessary and sufficient con-
ditions at the solution points, verify the conditions on the graph for the problem and study
the effect of variations in constraint limits on the cost function.

5.52 Exercise 2.1 5.53 Exercise 2.3 5.54 Exercise 2.4

5.55 Exercise 2.5 5.56 Exercise 2.9 5.57 Exercise 4.92

5.58 Exercise 2.12 5.59 Exercise 2.14 5.60 Exercise 2.23

5.61 Exercise 2.24 5.62 Exercise 5.41 5.63 Exercise 5.42

5.64 Exercise 5.43 5.65 Exercise 3.28 5.66* Exercise 3.34

5.67* Exercise 3.35 5.68* Exercise 3.36 5.69* Exercise 3.39

5.70* Exercise 3.40 5.71* Exercise 3.41 5.72* Exercise 3.46

5.73* Exercise 3.47 5.74* Exercise 3.48 5.75* Exercise 3.49

5.76* Exercise 3.50 5.77* Exercise 3.51 5.78* Exercise 3.52

5.79* Exercise 3.53 5.80* Exercise 3.54
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6 Linear Programming Methods for 
Optimum Design

191

Upon completion of this chapter, you will be able to:

• Transform a linear programming problem to the standard form

• Explain terminology and concepts related to linear programming problems

• Use the two-phase Simplex method to solve linear programming problems

• Perform postoptimality analysis for linear programming problems

An optimum design problem having linear cost and constraint functions in the design vari-
ables is called a linear programming problem. We shall use the abbreviation LP for linear
programming problems, or simply for linear programs. LP problems arise in many fields of
engineering such as water resources, systems engineering, traffic flow control, resources
management, transportation engineering, and electrical engineering. In the areas of aerospace,
automotive, structural, or mechanical system design, most problems are not linear. However,
one way of solving nonlinear programming problems is to transform them to a sequence of
linear programs (Chapter 10). Many other nonlinear programming methods also solve a linear
programming problem during the iterative process. Thus, linear programming methods are
useful in many applications and must be clearly understood. This chapter describes the basic
theory and concepts for solving such problems.

In Section 2.11, a general mathematical model for optimum design nonlinear problems
was defined to minimize a cost function subject to equality and “£” inequality constraints.
In Chapter 4, a general theory of optimum design for treating the model was described. That
theory can also be used to solve LP problems. However, more efficient and elegant numeri-
cal methods are available to solve the LP problem directly. Since there are numerous LP prob-
lems in the real world, it is worthwhile to discuss these methods in detail. Any linear function
f (x) of n variables is written as:

where ci, i = 1 to n are constants. All functions of an LP problem can be represented in the
preceding form. Therefore, the general nonlinear optimization model is replaced by a linear

f c x c x c x c xn n i i
T

i

n

x c x( ) = + + + = =
=
Â1 1 2 2

1

. . .



model in this chapter and a standard form for the model is defined. A two-phase algorithm
to solve LP problems, known as the Simplex method, is developed and illustrated with simple
numerical examples.

Details of the Simplex method are described to show the numerical steps needed to solve
LP problems. Before attempting to implement the algorithm into a computer program, the
existence of standard packages for solving LP problems must be checked. Most information
technology centers have at least one software package to treat such problems, e.g., LINDO
(Schrage, 1981). It is more economical to use the available software than to develop a 
new one.

It is noted here that the subject of linear programming is well developed and several excel-
lent full-length textbooks are available on the subject. These books may be consulted for 
in-depth treatment of the subject.

6.1 Definition of a Standard Linear Programming Problem
Linear programming problems may have equality as well as inequality constraints. Also,
many problems require maximization of a function whereas others require minimization.
Although the standard LP problem can be defined in several different ways, we define it as
minimization of a function with equality constraints and nonnegativity of design variables.
This form will be used to describe the Simplex method to solve linear programming prob-
lems. The form is not as restrictive as it may appear since all other LP problems can be readily
transcribed into it. We shall explain the process of transcribing a given LP problem into the
standard form.

6.1.1 Linear Constraints
The ith linear constraint involving k design variables, yj, j = 1 to k has one of three possible
forms, “£,” “=,” or “≥”:

(6.1)

where aij and bi are known constants. Also bi, called the resource limits, are assumed to be
always nonnegative, i.e., bi ≥ 0. bi’s can always be made nonnegative by multiplying both
sides of Eq. (6.1) by -1 if necessary. Note, however, that multiplication by -1 changes the
sense of the original inequality, i.e., “£ type” becomes “≥ type” and vice versa. For example,
a constraint y1 + 2y2 £ -2 must be transformed as -y1 - 2y2 ≥ 2 to have a nonnegative 
right side.

Since only equality constraints are treated in the standard LP, the inequalities in Eq. (6.1)
must be converted to equalities. This is no real restriction since any inequality can be con-
verted to an equality by introducing a nonnegative slack or surplus variable as explained in
the following paragraphs. Note also that since bi’s are required to be nonnegative in Eq. (6.1),
it is not always possible to convert “≥” inequalities to the “£ form” and keep bi ≥ 0. In Chap-
ters 2–5, this was done where a standard optimization problem was defined with only “£
type” constraints. However, in this chapter, we will have to explicitly treat “≥ type” linear
inequalities. It will be seen later that “≥ type” constraints do require a special treatment in
LP methods.

For the ith “£ type” constraint, we introduce a nonnegative slack variable si ≥ 0 and convert
it to an equality as

a y a y b

a y a y b

a y a y b

i ik k i

i ik k i

i ik k i

1 1

1 1

1 1

+ + £

+ + =

+ + ≥

. . .

. . .

. . .
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(6.2)

We also introduced the idea of slack variables in Chapter 4. There s2
i was used as a slack

variable instead of si. That was done to avoid the additional constraint si ≥ 0. However, in
LP problems we cannot use s2

i as a slack variable because it makes the problem nonlinear.
Therefore, we will use si as a slack variable along with the additional constraint si ≥ 0. For
example, a constraint 2y1 - y2 £ 4 will be transformed as 2y1 - y2 + s1 = 4 with s1 ≥ 0 as its
slack variable.

Similarly, the ith “≥ type” constraint is converted to equality by subtracting a nonnega-
tive surplus variable si ≥ 0, as

(6.3)

The idea of a surplus variable is very similar to the slack variable. For the “≥ type” con-
straint, the left side has to be always greater than or equal to the right side, so we must subtract
a nonnegative variable to transform it to an equality. For example, a constraint -y1 + 2y2 ≥ 2
will be transformed as -y1 + 2y2 - s1 = 2 with s1 ≥ 0 as its surplus variable. Note that slack and
surplus variables are additional unknowns that must be determined as a part of the solution.

6.1.2 Unrestricted Variables
In addition to the equality constraints, we require all design variables to be nonnegative in
the standard LP problem, i.e., yi ≥ 0, i = 1 to k. If a design variable yj is unrestricted in sign,
it can always be written as the difference of two nonnegative variables, as yj = y+

j - y-
j, with

y+
j ≥ 0 and yj

- ≥ 0. This decomposition is substituted into all equations and y+
j and yj

- are treated
as unknowns in the problem. At the optimum, if y+

j ≥ yj
- then yj is nonnegative, and if y+

j £ y-
j

then yj is nonpositive. This treatment for each free variable increases the dimension of the
design variable vector by 1.

6.1.3 Standard LP Definition
For notational clarity, let x represent an n-vector consisting of k original design variables and
(n - k) slack, surplus, or other variables. Now let us define the standard LP problem as: find
an n-vector x to minimize a linear cost function

(6.4)

subject to the equality constraints

(6.5)

with bi ≥ 0, i = 1 to m; and nonnegativity constraints on the design variables

(6.6)

The quantities bi ≥ 0, cj, and aij (i = 1 to m and j = 1 to n) are known constants, and m and
n are positive integers. Note that bi are required to be positive or at the most zero.

x j nj ≥ =0 1;  to 

a x a x a x b

a x a x a x b

a x a x a x b

n n

n n

m m mn n m

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

+ + + =
+ + + =

+ + + =

. . .

. . .

. . . . . . .

. . . . . . .

. . .

f c x c x c xn n= + + +1 1 2 2 . . .

a y a y a y s bi i ik k i i1 1 2 2+ + + - =. . .

a y a y a y s bi i ik k i i1 1 2 2+ + + + =. . .
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The standard LP problem can also be written in the summation notation as

(6.7)

subject to the nonnegativity constraints of Eq. (6.6) and the constraints

(6.8)

Matrix notation may also be used to define the LP problem as

(6.9)

subject to the constraints

(6.10)

(6.11)

where A = [aij] is an m ¥ n matrix, c and x are n-vectors, and b is an m-vector. Note that the
vector inequalities, such as b ≥ 0 in Eq. (6.10), are assumed to the applied to each compo-
nent of the vector throughout the text.

The formulations given in Eqs. (6.4) to (6.11) are more general than what may appear at first
sight because all LP problems can be transcribed into them. Conversion of “£ type” and “≥
type” inequalities to equalities using slack and surplus variables has been explained previ-
ously. Unrestricted variables can be decomposed into the difference of two nonnegative vari-
ables. Maximization of functions can also be routinely treated. For example, if the objective is
to maximize a function (rather than minimize it), we simply minimize its negative. Maximiza-
tion of a function z = (d1x1 + d2x2 + . . . + dn xn) is equivalent to minimization of its negative, f =
-(d1x1 + d2x2 + . . . + dnxn). Note that a function that is to be maximized is denoted as z in this
chapter. It is henceforth assumed that the LP problem has been converted into the standard
form defined in Eqs. (6.4) to (6.11). Example 6.1 shows conversion to standard LP form.

x 0≥

Ax b; b 0= ≥

minimize f T= c x

a x b b i mij j i
j
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1
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minimize f c xi i
i

n

=
=
Â
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EXAMPLE 6.1 Conversion to Standard LP Form

Convert the following problem into the standard LP form: maximize z = 2y1 + 5y2

subject to 3y1 + 2y2 £ 12, 2y1 + 3y2 ≥ 6, and y1 ≥ 0. y2 is unrestricted in sign.

Solution. To transform the problem into the standard LP form, we take the
following steps:

1. Since y2 is unrestricted in sign, we split it into its positive and negative parts
as y2 = y+

2 - y-
2 with y+

2 ≥ 0, y-
2 ≥ 0.

2. Substituting this definition of y2 into the problem, we get: maximize z = 2y1 +
5(y+

2 - y-
2) subject to 3y1 + 2(y+

2 - y-
2) £ 12, 2y1 + 3(y+

2 - y-
2) ≥ 6, and y1, y+

2, y-
2

≥ 0.
3. The right sides of both the constraints are nonnegative so they conform to the

standard form, and there is no need to modify them further.
4. Converting to a minimization problem subject to equality constraints, we get

the problem in the standard form as minimize f = -2y1 - 5(y+
2 - y-

2) subject to
3y1 + 2(y+

2 - y-
2) + s1 = 12, 2y1 + 3(y+

2 - y-
2) - s2 = 6, y1, y+

2, y-
2, s1, s2 ≥ 0, where



6.2 Basic Concepts Related to Linear Programming Problems
Several terms related to LP problems are defined and explained. Some fundamental proper-
ties of LP problems are discussed. It is shown that the optimum solution for an LP problem
always lies on the boundary of the feasible set. In addition, the solution is at least at one of
the vertices of the convex feasible set (called the convex polyhedral set). Some LP theorems
are stated and their significance is discussed. The geometrical meaning of the optimum solu-
tion is explained.

6.2.1 Basic Concepts
Since all functions are linear in an LP problem, the feasible set defined by linear equalities
or inequalities is convex (Section 4.6). Also, the cost function is linear, so it is convex. There-
fore, the LP problem is convex, and if an optimum solution exists, it is global as shown in
Theorem 4.10.

Note also that even when there are inequality constraints in an LP design problem, the
solution, if it exists, always lies on the boundary of the feasible set; i.e., some constraints are
always active at the optimum. This can be seen by writing the necessary conditions of
Theorem 4.4 for an unconstrained optimum. These conditions, ∂f / ∂xi = 0, when used for the
cost function of Eq. (6.7), give ci = 0 for i = 1 to n. This is not possible, as all ci’s are not
zero. If all ci’s were zero, there would be no cost function. Therefore, by contradiction, the
optimum solution for any LP problem must lie on the boundary of the feasible set. This is in
contrast to the general nonlinear problems where the optimum can be inside or on the bound-
ary of the feasible set.

An optimum solution of the LP problem must also satisfy the equality constraints in Eq.
(6.5). Only then can the solution be feasible. Therefore, to have a meaningful optimum design
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s1 = slack variable for the first constraint and s2 = surplus variable for the
second constraint.

5. We can redefine the solution variables as x1 = y1, x2 = y+
2, x3 = y-

2, x4 = s1, x5 =
s2 and rewrite the problem in the standard form as

(a)

subject to

(b)

(c)

(d)

Comparing the preceding equations with Eqs. (6.9) to (6.11), we can define the fol-
lowing quantities:

m = 2 (the number of equations) n = 5 (the number of variables)

(e)

(f)b A= [ ] = [ ] =
-
- -

È
ÎÍ

˘
˚̇¥12 6

3 2 2 1 0

2 3 3 0 12 5

T
ija

x c= [ ] = - -[ ]x x x x x
T T

1 2 3 4 5 2 5 5 0 0

x ii ≥ =0 1,  to 5

2 3 3 61 2 3 5x x x x+ - - =

3 2 2 121 2 3 4x x x x+ - + =

minimize f x x x= - - +2 5 51 2 3



problem, Eq. (6.5) should have more than one solution. Only then there is a choice of 
feasible solutions that can have minimum cost. To have many solutions, the number of 
linearly independent equations in Eq. (6.5) must be less than n, the number of variables in
the LP problem (refer to Section B.5 in Appendix B for further discussion on a general solu-
tion of m equations in n unknowns). It is assumed in the following discussion that all the m
rows of the matrix A in Eq. (6.10) are linearly independent and that m < n. This means that
there are no redundant equations. Therefore, Eq. (6.5) has infinite solutions and we seek a
feasible solution that also minimizes the cost function. A method for solving simultaneous
equations (6.5) based on Gaussian elimination is described in Appendix B. The Simplex
method of LP described later in the chapter uses steps of the Gaussian elimination procedure.
Therefore, that procedure must be reviewed thoroughly before studying the Simplex method.

We shall use Example 6.2 to illustrate the preceding ideas. It shall also be used later to
introduce LP terminology and the basic steps of the Simplex method.
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EXAMPLE 6.2 Profit Maximization Problem—
Characterization of Solution for LP Problems

As an example of solving constraint equations, we consider the profit maximization
problem solved graphically in Chapter 3. The problem is to find x1 and x2 to

(a)

subject to

(b)

(c)

(d)

(e)

Solution. The graphical solution for the problem is given in Fig. 6-1. All constraints
of Eqs. (b) to (e) are plotted and some isocost lines are shown. Each point of the region
bounded by the polygon ABCDE satisfies all the constraints of Eqs. (b) to (d) and the
nonnegativity conditions of Eq. (e). It is seen from Fig. 6-1 that the vertex D gives
the optimum solution.

Introducing slack variables for constraints of Eqs. (b) to (d) and writing the problem
in the standard LP form, we have

(f)

subject to

(g)

(h)
1

28

1

14
11 2 4x x x+ + =

x x x1 2 3 16+ + =

minimize f x x= - -400 6001 2

x x1 2 0, ≥

1

14

1

24
11 2x x+ £

1

28

1

14
11 2x x+ £

x x1 2 16+ £

minimize f x x= - -400 6001 2
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(i)

( j)

where x3, x4, and x5 are slack variables for the first, second, and third constraints,
respectively.

Note that all three equations in Eq. (g) to (i) are linearly independent. Since the
number of variables (5) exceeds the number of constraint equations (3), a unique solu-
tion cannot exist for Eqs. (g) to (i) (see Appendix B). Actually there are infinite solu-
tions. To see this, we write a general solution for the equations by transferring the
terms associated with the variables x1 and x2 to the right side of Eqs. (g) to (i) as

(k)

(l)

(m)

In these equations, x1 and x2 act as independent variables that can be given any value,
and x3, x4, and x5 are dependent on them. Different values for x1 and x2 generate dif-
ferent values for x3, x4, and x5. A solution of particular interest in LP problems is
obtained by setting p of the variables to zero and solving for the rest, where p is the
difference between the number of variables (n) and the number of constraint equa-
tions (m), i.e., p = n - m [e.g., p = 2 in the case of Eqs. (g) to (i)]. With two variables
set to zero, a unique solution of Eqs. (g) to (i) exists for the remaining three variables
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FIGURE 6-1 Graphical solution for profit maximization LP problem. Optimum point =
(4, 12). Optimum cost = -8800.



6.2.2 LP Terminology
We shall now introduce various definitions and terms related to the LP problem. Example
6.2 and Fig. 6-1 will be used to illustrate the meaning of these terms. Also, the definitions of
convex sets, convex function, and the line segment introduced earlier in Section 4.6 will be
used here.

Vertex (Extreme) Point. This is a point of the feasible set that does not lie on a line
segment joining two other points of the set. For example, every point on the
circumference of a circle and each vertex of the polygon satisfy the requirements for
an extreme point.

Feasible Solution. Any solution of the constraint Eq. (6.5) satisfying the nonnegativity
conditions is a feasible solution. In the profit maximization example of Fig. 6-1,
every point bounded by the polygon ABCDE (convex set) is a feasible solution.
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since there are now three equations in three unknowns. A solution obtained by setting
p variables to zero is called the basic solution. For example, a basic solution is obtained
from Eqs. (g) to (i) or (k) to (m) by setting x1 = 0 and x2 = 0, as x3 = 16, x4 = 1, x5 =
1. Another basic solution is obtained by setting x1 = 0, x3 = 0, and solving the three
equations in the remaining three unknowns as x2 = 16, x4 = - 2–

7
, x5 = 1–

3
. Since there are

10 different ways in which combinations of 2 variables can be set to zero, there are 10
basic solutions (later a formula is given to calculate the number of basic solutions).
Table 6-1 shows all 10 basic solutions for the present example obtained by using the
procedure just described. Note that of the 10 solutions, exactly 5 (Nos. 1, 2, 6, 8, and
9) correspond to the vertices of the polygon of Fig. 6-1, and the remaining 5 violate
the nonnegativity condition and correspond to infeasible vertices. Therefore, only 5 of
the 10 basic solutions are feasible. By moving the isocost line parallel to itself, it is
seen that the optimum solution is at point D. Note that the optimum point is at one of
the vertices of the feasible polygon. This will be observed later as a general property
of any LP problem. That is, if an LP has a solution, it is at least at one of the vertices
of the feasible set.

TABLE 6-1 Ten Basic Solutions for the Profit Maximization Problem

No. x1 x2 x3 x4 x5 f Location in Fig. 6-1

1 0 0 16 1 1 0 A

2 0 14 2 0 5–
12

-8400 E

3 0 16 0 - 2–
7

1–
3

— F (infeasible)

4 0 24 -8 - 5–
7

0 — G (infeasible)

5 16 0 0 3–
7

- 2–
7

— J (infeasible)

6 14 0 2 1–
2

0 -5600 B

7 28 0 -12 0 -1 — H (infeasible)

8 4 12 0 0 3–
14

-8800 D

9 11.2 4.8 0 1–
5

0 -7360 C

10 130—
17

168—
17

-26–
17

0 0 — I (infeasible)
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Basic Solution. A basic solution is a solution of the constraint Eq. (6.5) obtained by
setting the “redundant number” (n - m) of the variables to zero and solving the
equations simultaneously for the remaining variables. The variables set to zero are
called nonbasic, and the remaining ones are called basic. In the profit maximization
example, each of the 10 solutions in Table 6-1 is basic, but only A, B, C, D, and E
are basic and feasible.

Basic Feasible Solution. A basic solution satisfying the nonnegativity conditions on the
variables is called a basic feasible solution. Note that solutions 1, 2, 6, 8, and 9 in
Table 6-1 are the basic feasible solutions.

Degenerate Basic Solution. If a basic variable has zero value in a basic solution, the
solution is called a degenerate basic solution.

Degenerate Basic Feasible Solution. If a basic variable has zero value in a basic
feasible solution, the solution is called degenerate basic feasible solution.

Optimum Solution. A feasible solution minimizing the cost function is called an
optimum solution. The point D in Fig. 6-1 corresponds to the optimum solution.

Optimum Basic Solution. It is a basic feasible solution that has optimum cost function
value. From Table 6-1 and Fig. 6-1 it is clear that only solution number 8 is the
optimum basic solution.

Convex Polyhedron. If the feasible set for an LP problem is bounded, it is called a
convex polyhedron. As an example, the polygon ABCDE in Fig. 6-1 represents a
convex polyhedron for the problem of Example 6.2.

Basis. Columns of the coefficient matrix A in Eq. (6.10) of the constraint equations
corresponding to the basic variables are said to form a basis for the m-dimensional
vector space. Any other m-dimensional vector can be expressed as a linear
combination of the basis vectors.

Example 6.3 presents how to determine basic solutions.

EXAMPLE 6.3 Determination of Basic Solutions

Find all basic solutions for the following problem and identify basic feasible solutions
in a figure of the feasible set: maximize z = 4x1 + 5x2 subject to -x1 + x2 £ 4, x1 + x2

£ 6, and x1, x2 ≥ 0.

Solution. The feasible region for the problem is shown in Fig. 6-2. Introducing slack
variables x3 and x4 into the constraint equations and converting maximization of z to
minimization, the problem is written in the standard LP form as

(a)

subject to

(b)

(c)

(d)

Since there are four variables and two constraints in Eqs. (b) and (c) (n = 4, m =
2), the problem has six basic solutions; i.e., there are six different ways in which two

x ii ≥ =0 1;  to 4

x x x1 2 4 6+ + =

- + + =x x x1 2 3 4

minimize f x x= - -4 51 2
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of the variables can be chosen as nonbasic. These solutions are obtained from Eqs.
(b) and (c) by choosing two variables as nonbasic and the remaining two as basic. For
example, x1 and x2 may be chosen as nonbasic, i.e., x1 = 0, x2 = 0. Then Eqs. (b) and
(c) give x3 = 4, x4 = 6. Also with x1 = 0 and x3 = 0, Eqs. (b) and (c) give x2 = 2 and x4

= 2 as another basic solution. Similarly, the remaining basic solutions are obtained by
selecting two variables as nonbasic (zero) and solving for the other two from Eqs. (b)
and (c). The six basic solutions for the problem are summarized in Table 6-2 along
with the corresponding cost function values. The basic feasible solutions are 1, 2, 
5, and 6. These correspond to points (0, 0), (0, 4), (6, 0), and (1, 5) in Fig. 6-2, 
respectively. The minimum value of the cost function is obtained at the point (1, 5)
as f = -29 (maximum value of z = 29). In Section 6.3, we shall introduce a system-
atic tabular procedure based on the Gaussian elimination method of Sections B.3 and
B.4 to determine all the basic solutions of Eqs. (b) and (c).

4

4

6

6 –x 1
 +

 x 2
 =

 4

x1 + x2 = 6

2

2

A

B
C

D

E

Optimum point = (1, 5)

x2

x1

z* = 29

z = 10

z = 20

z = 30

FIGURE 6-2 Graphical solution for the LP problem of Example 6.3. Optimum point =
(1, 5). z* = 29.

TABLE 6-2 Basic Solutions for Example 6-3

No. x1 x2 x3 x4 f Location in Fig. 6-2

1 0 0 4 6 0 A
2 0 4 0 2 -20 B
3 0 6 -2 0 — infeasible
4 -4 0 0 10 — infeasible
5 6 0 10 0 -24 D
6 1 5 0 0 -29 C



6.2.3 Optimum Solution for LP Problems
Now some important theorems that define the optimum solution for LP problems are stated
and explained.

Theorem 6.1 Extreme Points and Basic Feasible Solutions The collection of feasible
solutions for an LP problem constitutes a convex set whose extreme points correspond to
basic feasible solutions.

This theorem relates extreme points of the convex polyhedron to the basic feasible solu-
tions. This is an important result giving geometric meaning to the basic feasible solutions;
they are the vertices of the polyhedron representing the feasible set for an LP problem. As
an example, basic feasible solutions in Table 6-1 correspond to vertices of the feasible set in
Fig. 6-1. Theorem 6.2 establishes the importance of the basic feasible solutions.

Theorem 6.2 Basic Theorem of Linear Programming Let the m ¥ n coefficient matrix A
of the constraint equations have full row rank, i.e., rank (A) = m. Then

1. If there is a feasible solution, there is a basic feasible solution,
2. If there is an optimum feasible solution, there is an optimum basic feasible solution.

Part 1 of the theorem says that if there is any feasible solution to the LP problem, then
there must be at least one extreme point or vertex of the convex feasible set. Part 2 of the
theorem says that if the LP problem has a solution, then it is at least at one of the vertices of
the convex polyhedron representing feasible solutions. There can be multiple optimum solu-
tions if the cost function is parallel to one of the active constraints, as we have seen before
in Chapter 3. As noted earlier, the LP problem has an infinite number of feasible designs. We
seek a feasible design that minimizes the cost function. Theorem 6.2 says that such a solu-
tion must be one of the basic feasible solutions, i.e., at one of the extreme points of the convex
feasible set. Thus, our task of solving an LP problem has been reduced to the search for an
optimum only among the basic feasible solutions. For a problem having n variables and m
constraints, the maximum number of basic solutions is obtained by counting the total number
of combinations where m variables are nonzero out of a total of n variables. This number is
given by the formula:

(6.12)

This formula gives only a finite number of basic solutions. Thus according to Theorem
6.2, the optimum solution is at one of these points that is also feasible. We need to search
these solutions systematically for the optimum. The Simplex method of the next section is
based on searching among the basic feasible solutions to reduce the cost function con-
tinuously until an optimum point is reached.

6.3 Basic Ideas and Steps of the Simplex Method
Basics of the Simplex method for solving LP problems are described. Ideas of a canonical
form, pivot row, pivot column, pivot element, and pivot step are introduced. The Simplex
tableau is introduced and its notation is explained. The method is described as an extension
of the standard Gauss-Jordan elimination process for solving a system of linear equations Ax
= b, where A is an m ¥ n (m < n) matrix, x is an n-vector, and b ≥ 0 is an m-vector. In this
section, the Simplex method is developed and illustrated for “£ type” constraints since with

#  of combinations = Ê
Ë

ˆ
¯ =

-( )
n

m

n

m n m

!
! !
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such constraints, the method can be developed in a straightforward manner. In the next
section, “≥ type” and equality constraints that require special treatment in the Simplex method
are discussed. A detailed derivation of the Simplex method is presented in Chapter 7.

Theorem 6.2 guarantees that one of the basic feasible solutions is an optimum for the LP
problem. The basic idea of the Simplex method is simply to proceed from one basic feasible
solution to another in a way that continually decreases the cost function until the minimum is
reached. Thus, to solve an LP problem we need a method to systematically find basic feasible
solutions of the linear system of equations in Eqs. (6.8). The Gauss-Jordan elimination process
provides such a procedure (for a review of the method, see Appendix B, Sections B.3 and B.4).
Before the Simplex method is developed, the idea of Simplex, canonical form tableau, and
pivot step are explained. These are fundamental in the development of the method.

6.3.1 The Simplex
A Simplex in two-dimensional space is formed by any three points that do not lie on a straight
line. In three-dimensional space, it is formed by four points that do not lie in the same plane.
Three points can lie in a plane, and the fourth one has to lie outside the plane. In general, a
Simplex in the n-dimensional space is a convex hull of any (n + 1) points that do not lie on
one hyperplane. A convex hull of (n + 1) points is the smallest convex set containing all the
points. Thus, the Simplex represents a convex set.

6.3.2 Canonical Form/General Solution of Ax = b
The idea of a canonical form is important in the development of the Simplex method. There-
fore, we introduce this idea and discuss its use. An m ¥ n system of simultaneous equations
given in Eq. (6.10) with rank (A) = m is said to be in the canonical form if each equation
has a variable (with unit coefficient) that does not appear in any other equation. A canonical
form in general is written as follows:

Note that variables x1 to xm appear in only one of the equations; x1 appears in the first
equation, x2 in the second equation, and so on. Note also that this sequence of variables x1

to xm in Eq. (6.13) is chosen only for convenience. In general, any of the variables x1 to xn

may be associated with the first equation as long as it does not appear in any other equation.
Similarly, the second equation need not be associated with the second variable x2. This will
become clearer when we discuss the Simplex method.

The Gauss-Jordan elimination process can be used to convert a given system of equations
into the canonical form of Eq. (6.13). It is also possible to write the canonical form of Eq.
(6.13) as a matrix equation, as also explained in Section B.4 of Appendix B:

(6.14)

where

I(m) = m-dimensional identity matrix
x(m) = [x1 x2 . . . xm]T; vector of dimension m
x(n-m) = [xm+1 . . . xn]T; vector of dimension (n - m)

I x Qx bm m n m( ) ( ) -( )+ =

x a x a x a x b

x a x a x a x b

x a x a x a x b

m m m m n n

m m m m n n

m m m m m m m m n n m

1 1 1 1 1 2 2 1 1

2 2 1 1 2 2 2 2 2

1 1 2 2

+ + + + =
+ + + + =

+ + + + =

+ + + +

+ + + +

+ + + +

, , ,
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Q = m ¥ (n - m) matrix consisting of coefficients of the variables xm+1 to xn in Eq.
(6.13)

b = [b1 b2 . . . bm]T; vector of dimension m

Basic and Nonbasic Variables The canonical form in Eq. (6.13) or Eq. (6.14) gives a
general solution for Ax = b as x(m) = b - Qx(n-m) (Appendix B, Section B.4). It is seen that
x(n-m) can be assigned different values and the corresponding values for x(m) can be calculated
from this equation. Thus x(m) are dependent variables and x(n-m) are independent variables. A
particular solution of the equations is obtained if we set the independent variables to zero,
x(n-m) = 0. Then from Eq. (6.13) or (6.14), x(m) = b. The variables set to zero in x(n-m) are called
nonbasic, and the variables x(m) solved from Eq. (6.13) or (6.14) are called basic. The solu-
tion thus obtained is called a basic solution. If the right side parameters bi are ≥ 0, then the
canonical form gives a basic feasible solution.

Equations (g) to (i) in Example 6.2 represent a canonical form. In these equations, the
variables x1 and x2 are nonbasic, so they have zero value. The variables x3, x4, and x5 are basic
and their values are readily obtained from the canonical form as x3 = 16, x4 = 1, and x5 = 1.
Similarly, Eqs. (b) and (c) of Example 6.3 represent a canonical form giving a basic solution
of x1 = 0, x2 = 0, x3 = 4, x4 = 6.

6.3.3 Tableau
It is customary to represent the canonical form in a tableau as shown in Table 6-3. A tableau
is defined as the representation of a scene or a picture. It is a convenient way of represent-
ing all the necessary information related to an LP problem. With the Simplex method, the
tableau consists of coefficients of the design variables in the cost and constraint functions.
The tableau in Table 6-3 does not contain coefficients of the cost function; they can, however,
be included, as we shall see later.

It is important to understand the structure and notation of the tableau as explained in the
following because the tableau is used later to develop the Simplex method:

1. The entries of the tableau are obtained by reducing the linear system of equations Ax =
b to the canonical form of Eq. (6.14). In Table 6-3, the first m columns correspond to
the identity matrix, the next (n - m) columns correspond to the Q matrix, and the last
column corresponds to the vector b on the right side (RS) of Eq. (6.14).

2. Each column of the tableau is associated with a variable; x1 with the first column, x2

with the second, and so on. This is because the ith column contains the coefficient of
the variable xi in each of the rows in Eq. (6.14).

3. Each row of the tableau contains coefficients of the corresponding row in Eq. (6.13)
or (6.14).

4. Each row of the tableau is also associated with a variable as indicated in the column
named “Basic” on the left in Table 6-3. These variables correspond to the columns
of the identity matrix in the tableau. In Table 6-3, x1 corresponds to the first column,

Linear Programming Methods for Optimum Design 203

TABLE 6-3 Representation of a Canonical Form in a Tableau

# BasicØ x1 x2 • • • xm xm+1 xm+2 • • • xn RS

1 x1 1 0 • • • 0 a1,m+1 a1,m+2 • • • a1,n b1

2 x2 0 1 • • • 0 a2,m+1 a2,m+2 • • • a2,n b2

3 x3 0 0 • • • 0 a3,m+1 a3,m+2 • • • a3,n b3

• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
m xm 0 0 • • • 1 am,m+1 am,m+2 • • • am,n bm



x2 to the second column, and so on. Note, however, that columns of the identity
matrix can appear anywhere in the tableau. They need not be in any sequence either.
Since variables associated with the identity matrix in Eq. (6.14) are basic, the
leftmost column then identifies a basic variable associated with each row. This will
become clearer later when we solve example problems.

5. Since each basic variable appears in only one row, its value is immediately available
in the rightmost column (recall that by definition, the nonbasic variables have zero
value). For the example of Table 6-3, the basic variables have the values xi = bi, i =
1 to m. If all bi ≥ 0, we have a basic feasible solution.

6. The tableau identifies basic and nonbasic variables, and gives their values, i.e., it
gives a basic solution. We shall see later that the tableau can be augmented with the
cost function expression, and in that case, it will also immediately give the value of
the cost function associated with the basic solution.

7. Columns associated with the basic variables are called basic columns and others are
called nonbasic columns.

Example 6.4 describes the canonical form and tableau.
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EXAMPLE 6.4 Canonical Form and Tableau

Write the canonical form of Example 6.2 in a tableau.

Solution. Table 6-4 shows Eq. (f ) of Example 6.2 written in the notation of the
tableau of Table 6-3. Note that for this example, the number of equations is three and
the number of variables is five, i.e., m = 3 and n = 5.

The variables x3, x4, and x5 appear in one and only one equation, so the columns
x3, x4, and x5 define the identity matrix I(m) of the canonical form of Eq. (6.14). The
basic and nonbasic variable vectors x(m) and x(n-m) are defined as

(a)

The matrix Q of Eq. (6.14) is identified as

(b)

If x1 and x2 are taken as nonbasic, then the values for the basic variables are obtained
from the tableau as x3 = 16, x4 = 1, x5 = 1.

Q =

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

1 1
1

28

1

14
1

14

1

24

Basic: Nonbasic: x xm
T

n m
T

x x x x x( ) -( )= [ ] = [ ]3 4 5 1 2;

TABLE 6-4 Tableau for LP Problem of Example 6.4

BasicØ x1 x2 x3 x4 x5 b

1 x3 1 1 1 0 0 16

2 x4
1–

28
1–

14
0 1 0 1

3 x5
1–

14
1–

24
0 0 1 1



6.3.4 The Pivot Step
In the Simplex method, we want to systematically search among the basic feasible solutions
for the optimum design. We must have a basic feasible solution to initiate the Simplex method.
Starting from the basic feasible solution, we want to find another that decreases the cost 
function. This can be done by interchanging a current basic variable with a nonbasic vari-
able. That is, a current basic variable is made nonbasic (i.e., reduced to 0 from a positive
value) and a current nonbasic variable is made basic (i.e., increased from 0 to a positive
value). The pivot step accomplishes this task and results in a new canonical form (general
solution), as explained in the following.

Let us select a basic variable xp (1 £ p £ m) to be replaced by a nonbasic variable xq for
(n - m) £ q £ n. We will describe later how to determine xp and xq. The pth basic column is
to be interchanged with the qth nonbasic column. This is possible only when the element in
the pth column and qth row is nonzero; i.e., apq π 0. The element apq π 0 is called the pivot
element. The pivot element must always be positive in the Simplex method as we shall see
later. Note that xq will be basic if it is eliminated from all the equations except the pth one.
This can be accomplished by performing a Gauss-Jordan elimination step on the qth column
of the tableau shown in Table 6-3 using the pth row for elimination. This will give apq = 1
and zeros elsewhere in the qth column. The row used for the elimination process (pth row)
is called the pivot row. The column on which the elimination is performed (qth column) is
called the pivot column. The process of interchanging one basic variable with a nonbasic 
variable is called the pivot step.

Let a¢ij denote the new coefficients in the canonical form after the pivot step. Then, the
pivot step for performing elimination in the qth column using the pth row as the pivot row
is described by the following general equations.

Divide the pivot row ( p) by the pivot element apq:

(6.15)

Eliminate xq from all rows except the pth row:

(6.16)

(6.17)

In Eq. (6.15), the pth row of the tableau is simply divided by the pivot element apq. Equa-
tions (6.16) and (6.17) perform the elimination step in the qth column of the tableau. Elements
in the qth column above and below the pth row are reduced to zero by the elimination process
thus eliminating xq from all the rows except the pth row. These equations may be coded into a
computer program to perform the pivot step. On completion of the pivot step, a new canonical
form for the equation Ax = b is obtained; i.e., a new basic solution of the equations is obtained.
The process of interchanging roles of two variables is illustrated in Example 6.5.

¢ = - ( ) π =b b b a a i p i mi i p pq iq ; , 1 to 

¢ = - ( ) π =
=

Ï
Ì
Ó

a a a a a
i p i m

j n
ij ij pj pq iq ;

, 1

1

 to 

 to 

¢ = ¢ =a a a j n b b apj pj pq p p pq for =  to 1 ;
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EXAMPLE 6.5 Pivot Step—Interchange of Basic and
Nonbasic Variables

Assuming x3 and x4 as basic variables, Example 6.3 is written in the canonical form
as follows: minimize f = -4x1 - 5x2 subject to -x1 + x2 + x3 = 4, x1 + x2 + x4 = 6, xi ≥
0; i = 1 to 4. Obtain a new canonical form by interchanging the roles of x1 and x4, i.e.,
make x1 a basic variable and x4 a nonbasic variable.
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TABLE 6-5 Pivot Step to Interchange Basic Variable x4 with Nonbasic Variable xl for 
Example 6.5

Initial canonical form.

BasicØ x1 x2 x3 x4 b

1 x3 -1 1 1 0 4
2 x4 1 1 0 1 6

Basic solution: Nonbasic variables: x1 = 0, x2 = 0
Basic variables: x3 = 4, x4 = 6

To interchange x1 with x4, choose row 2 as the pivot row and column 1 as the pivot column.
Perform elimination using a21 as the pivot element.

Result of the pivot operation: second canonical form.

BasicØ x1 x2 x3 x4 b

1 x3 0 2 1 1 10
2 x1 1 1 0 1 6

Basic solution: Nonbasic variables: x2 = 0, x4 = 0
Basic variables: x1 = 6, x3 = 10

Solution. The given canonical form can be written in a tableau as shown in Table
6-5; x1 and x2 are nonbasic and x3 and x4 are basic, i.e., x1 = x2 = 0, x3 = 4, x4.= 6. This
corresponds to point A in Fig. 6-2. In the tableau, the basic variables are identified in
the leftmost column and the rightmost column gives their values. Also, the basic vari-
ables can be identified by examining columns of the tableau. The variables associated
with the columns of the identity matrix are basic; e.g., variables x3 and x4 in Table 6-
5. Location of the positive unit element in a basic column identifies the row whose
right side parameter bi is the current value of the basic variable associated with that
column. For example, the basic column x3 has unit element in the first row, and so x3

is the basic variable associated with the first row. Similarly, x4 is the basic variable
associated with row 2.

To make x1 basic and x4 a nonbasic variable, one would like to make a¢21 = 1 and
a¢11 = 0. This will replace x1 with x4 as the basic variable and a new canonical form
will be obtained. The second row is treated as the pivot row, i.e., a21 = 1 ( p = 2, q =
1) is the pivot element. Performing Gauss-Jordan elimination in the first column with
a21 = 1 as the pivot element, we obtain the second canonical form as shown in Table
6-5. For this canonical form, x2 = x4 = 0 are the nonbasic variables and x1 = 6 and x3

= 10 are the basic variables. Thus, referring to Fig. 6-2, this pivot step results in a
move from the extreme point A(0, 0) to an adjacent extreme point D(6, 0).

6.3.5 Basic Steps of the Simplex Method
In this section, we shall illustrate the basic steps of the Simplex method with an example
problem. In the next subsection, we shall explain the basis for these steps and summarize
them in a step-by-step general algorithm. The method starts with a basic feasible solution,
i.e., at a vertex of the convex polyhedron. A move is then made to an adjacent vertex while



maintaining feasibility of the new solution as well as reducing the cost function. This is
accomplished by replacing a basic variable with a nonbasic variable. In the Simplex method,
movements are to the adjacent vertices only. Since there may be several points adjacent to
the current vertex, we naturally wish to choose the one that makes the greatest improvement
in the cost function f. If adjacent points make identical improvements in f, the choice becomes
arbitrary. An improvement at each step ensures no backtracking. Two basic questions now
arise:

1. How to choose a current nonbasic variable that should become basic?
2. Which variable from the current basic set should become nonbasic?

The Simplex method answers these questions based on some theoretical considerations
which shall be discussed in Chapter 7. Here, we consider an example to illustrate the basic
steps of the Simplex method that answer the foregoing two questions. Before presentation of
the example problem, an important requirement of the Simplex method is discussed. In this
method the cost function must always be given in terms of the nonbasic variables only. To
accomplish this, the cost function expression cTx = f is written as another linear equation in
the Simplex tableau; for example, the (m + l)th row. One then performs the pivot step on the
entire set of (m + 1) equations so that x1, x2, . . . , xm and f are the basic variables. This way
the last row of the tableau representing the cost function expression is automatically given
in terms of the nonbasic variables after each pivot step. The coefficients in the nonbasic
columns of the last row are called the reduced cost coefficients written as c¢j. Example 6.6
describes the steps of the Simplex method in a systematic way.
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EXAMPLE 6.6 Steps of the Simplex Method

Solve the following LP problem: maximize

Solution. The graphical solution for the problem is given in Fig. 6-3. It can be seen
that the problem has an infinite number of solutions along the line C–D (z* = 4)
because the objective function is parallel to the second constraint. The Simplex method
is illustrated in the following steps:

1. Convert the problem to the standard form. We write the problem in the
standard LP form by transforming the maximization of z to minimization of 
f = -2x1 - x2, and adding slack variables x3, x4, and x5 to the constraints. Thus,
the problem becomes

(a)

subject to

(b)

(c)2 41 2 4x x x+ + =

4 3 121 2 3x x x+ + =

minimize f x x= - -2 1 2

z x x x x x x x x x x= + + £ + £ + £ ≥2 4 3 12 2 4 2 4 01 2 1 2 1 2 1 2 1 2 subject to , , , ,
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FIGURE 6-3 Graphical solution for the LP problem of Example 6.6. Optimum solution:
along line C–D. z* = 4.

(d)

(e)

We use the tableau and notation of Table 6-3 which will be augmented with
the cost function expression as the last row. The initial tableau for the
problem is shown in Table 6-6, where the cost function expression -2x1 - x2

= f is written as the last row. Note also that the cost function is in terms of
only the nonbasic variables x1 and x2. This is one of the basic requirements of
the Simplex method—that the cost function always be in terms of the
nonbasic variables. When the cost function is only in terms of the nonbasic
variables, then the cost coefficients in the last row are the reduced cost
coefficients, written as c¢j.

2. Initial basic feasible solution.
To initiate the Simplex method, a basic feasible solution is needed. This is

already available in Table 6-6 which is given as:

basic variables: x3 = 12, x4 = 4, x5 = 4
nonbasic variables: x1 = 0, x2 = 0
cost function: f = 0

Note that the cost row gives 0 = f after substituting for x1 and x2. This
solution represents point A in Fig. 6-3 where none of the constraints is active
except the nonnegativity constraints on the variables.

3. Optimality check. We scan the cost row, which should have nonzero entries
only in the nonbasic columns, i.e., x1 and x2. If all the nonzero entries are
nonnegative, then we have an optimum solution because the cost function

x ii ≥ =0 1;  to 5

x x x1 2 52 4+ + =
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cannot be reduced any further and the Simplex method is terminated. There
are negative entries in the cost row so the current basic feasible solution is
not optimum (see Chapter 7 for further explanation).

4. Choice of a nonbasic variable to become basic. We select a nonbasic column
having a negative cost coefficient; i.e., -2 in the x1 column. This identifies a
nonbasic variable (x1) that should become basic. Thus, eliminations will be
performed in the x1 column. This answers question 1 posed earlier: “How to
choose a current nonbasic variable that should become basic?” Note also that
when there is more than one negative entry in the cost row, the variable
tapped to become basic is arbitrary among the indicated possibilities. The
usual convention is to select a variable associated with the smallest value in
the cost row (or, negative element with the largest absolute value).

Notation. The boxed negative reduced cost coefficient in Table 6-6 indicates
the nonbasic variable associated with that column selected to become basic, a nota-
tion that is used throughout.

5. Selection of a basic variable to become nonbasic. To identify which current
basic variable should become nonbasic (i.e., to select the pivot row), we take
ratios of the right side parameters with the positive elements in the x1 column
as shown in Table 6-7. We identify the row having the smallest positive ratio,
i.e., the second row. This will make x4 nonbasic. The pivot element is a21 = 2
(the intersection of pivot row and pivot column). This answers the question 2
posed earlier: “Which variable from the current basic set should become
nonbasic?” Selection of the row with the smallest ratio as the pivot row
maintains feasibility of the new basic solution. This is justified in Chapter 7.

TABLE 6-6 Initial Tableau for the LP Problem of Example 6.6

BasicØ x1 x2 x3 x4 x5 b

1 x3 4 3 1 0 0 12
2 x4 2 1 0 1 0 4
3 x5 1 2 0 0 1 4

Cost function -2 -1 0 0 0 f

Notation. The reduced cost coefficients in the nonbasic columns are boldfaced. The selected
negative reduced cost coefficient is boxed.

TABLE 6-7 Selection of Pivot Column and Pivot Row for Example 6.6

BasicØ x1 x2 x3 x4 x5 b Ratio: bi/ai1; ai1 > 0

1 x3 4 3 1 0 0 12 12–
4

= 3

2 x4 2 1 0 1 0 4 4–
2

= 2 ¨ smallest

3 x5 1 2 0 0 1 4 4–
1

= 4

Cost function -2 -1 0 0 0 f

The selected pivot element is boxed. Selected pivot row and column are shaded. x1 should
become basic (pivot column). x4 row has the smallest ratio, and so x4 should become nonbasic.
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Notation. The selected pivot element is also boxed, and the pivot column and
row are shaded throughout.

6. Pivot operation. We perform eliminations in column x1 using row 2 as the
pivot row and Eqs. (6.15) to (6.17) to eliminate x1 from rows 1, 3, and the
cost row as follows:
• divide row 2 by 2, the pivot element
• multiply new row 2 by 4 and subtract from row 1 to eliminate x1 from row 1
• subtract new row 2 from row 3 to eliminate x1 from row 3
• multiply new row 2 by 2 and add to the cost row to eliminate x1

As a result of this elimination step, a new tableau is obtained as shown in
Table 6-8. The new basic feasible solution is given as

basic variables: x3 = 4, x1 = 2, x5 = 2

nonbasic variables: x2 = 0, x4 = 0

cost function: 0 = f + 4, f = -4

7. This solution is identified as point D in Fig. 6-3. We see that the cost function
has been reduced from 0 to -4. All coefficients in the last row are
nonnegative so no further reduction of the cost function is possible. Thus, the
foregoing solution is the optimum. Note that for this example, only one
iteration of the Simplex method gave the optimum solution. In general, more
iterations are needed until all coefficients in the cost row become
nonnegative.

Note that the cost coefficients corresponding to the nonbasic variable x2 in the last
row is zero in the final tableau. This is an indication of multiple solutions for the
problem. In general, when the reduced cost coefficient in the last row corresponding
to a nonbasic variable is zero, the problem may have multiple solutions. We shall
discuss this point later in more detail.

Let us see what happens if we do not select a row with the least ratio as the pivot
row. Let a31 = 1 in the third row be the pivot element in Table 6-6. This will inter-
change nonbasic variable x1 with the basic variable x5. Performing the elimination
steps in the first column as explained earlier, we obtain the new tableau given in Table
6-9. From the tableau, we have

basic variables: x3 = -4, x4 = -4, x1 = 4

nonbasic variables: x2 = 0, x5 = 0

cost function: 0 = f + 8, f = -8

TABLE 6-8 Second Tableau for Example 6.6 Making x1 a Basic Variable

BasicØ x1 x2 x3 x4 x5 b

1 x3 0 1 1 -2 0 4
2 x1 1 0.5 0 0.5 0 2
3 x5 0 1.5 0 -0.5 1 2

Cost function 0 0 0 1 0 f + 4

The cost coefficient in nonbasic columns are nonnegative; the tableau gives the optimum 
solution.
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The foregoing solution corresponds to point G in Fig. 6-3. We see that this basic
solution is not feasible because x3 and x4 have negative values. Thus, we conclude that
if a row with the smallest ratio (of right sides with positive elements in the pivot
column) is not selected, the new basic solution is not feasible. Note that a spreadsheet
program, such as Excel, can be used to carry out the pivot step. Such a program can
facilitate learning of the Simplex method without getting bogged down with the
manual elimination process.

TABLE 6-9 Result of Improper Pivoting in Simplex Method for LP Problem of 
Example 6.6

BasicØ x1 x2 x3 x4 x5 b

1 x3 0 -5 1 0 -4 -4
2 x4 0 -3 0 1 -2 -4
3 x1 1 2 0 0 1 4

Cost function 0 3 0 0 4 f + 8

The pivot step making xl basic and x5 nonbasic in Table 6-6 gives a basic solution that is not
feasible.

6.3.6 Simplex Algorithm
In the previous subsection, basic steps of the Simplex method are explained and illustrated
with an example problem. In this subsection, the underlying principles for these steps are
summarized in two theorems, called basic theorems of linear programming. We have seen
that in general the reduced cost coefficients c¢j of the nonbasic variables may be positive, neg-
ative, or zero. Let one of c¢j be negative, then if a positive value is assigned to the associated
nonbasic variable (i.e., it is made basic), the value of f will decrease. If more than one neg-
ative c¢j is present, a widely used rule of thumb is to choose the nonbasic variable associated
with the smallest c¢j (i.e., the most negative c¢j ) to become basic. Thus, if any c¢j for (m + 1) £
j £ n (for nonbasic variables) is negative, then it is possible to find a new basic feasible solu-
tion (if one exists) that will further reduce the cost function. If a c¢j is zero, then the associ-
ated nonbasic variable can be made basic without affecting the cost function value. If all c¢j
are nonnegative, then it is not possible to reduce the cost function any further, and the current
basic feasible solution is optimum. These ideas are summarized in the following Theorems
6.3 and 6.4.

Theorem 6.3 Improvement of Basic Feasible Solution Given a nondegenerate basic fea-
sible solution with the corresponding cost function f0, suppose that c¢j < 0 for some j. Then,
there is a feasible solution with f < f0. If the jth nonbasic column associated with c¢j can be
substituted for some column in the original basis, the new basic feasible solution will have
f < f0. If the jth column cannot be substituted to yield a basic feasible solution (i.e., there is
no positive element in the jth column), then the feasible set is unbounded and the cost func-
tion can be made arbitrarily small (toward negative infinity).

Theorem 6.4 Optimum Solution for LP Problems If a basic feasible solution has reduced
cost coefficients c¢j ≥ 0 for all j, then it is optimum.

According to Theorem 6.3, the basic procedure of the Simplex method is to start with an
initial basic feasible solution, i.e., at the vertex of the convex polyhedron. If this solution is



not optimum according to Theorem 6.4, then a move is made to an adjacent vertex to reduce
the cost function. The procedure is continued until the optimum is reached. The steps of the
Simplex method illustrated in the previous subsection in Example 6.6 are summarized as
follows assuming that the initial tableau has been set up as described earlier:

Step 1. Initial Basic Feasible Solution This is readily obtained if all constraints are “£
type” because the slack variables can be selected as basic and the real variables as nonbasic.
If there are equality or “≥ type” constraints, then the two-phase simplex procedure explained
in the next section must be used.

Step 2. The Cost Function Must be in Terms of Only the Nonbasic Variables This is
readily available when there are only “£ type” constraints and slack variables are added into
them to convert the inequalities to equalities. The slack variables are basic, and they do not
appear in the cost function. In subsequent iterations, eliminations must also be performed in
the cost row.

Step 3. If All the Reduced Cost Coefficients for Nonbasic Variables Are Nonnegative
(≥0), We Have the Optimum Solution Otherwise, there is a possibility of improving the
cost function. We need to select a nonbasic variable that should become basic. We identify
a column having negative reduced cost coefficient because the nonbasic variable associated
with this column can become basic to reduce the cost function from its current value. This
is called the pivot column.

Step 4. If All Elements in the Pivot Column Are Negative, Then We Have an Unbounded
Problem Design problem formulation should be examined to correct the situation. If there
are positive elements in the pivot column, then we take ratios of the right side parameters with
the positive elements in the pivot column and identify a row with the smallest positive ratio. In
the case of a tie, any row among the tying ratios can be selected. The basic variable associated
with this row should become nonbasic (i.e., become zero). The selected row is called the pivot
row, and its intersection with the pivot column identifies the pivot element.

Step 5. Complete the Pivot Step Use the Gauss-Jordan elimination procedure and the
pivot row identified in Step 4. Elimination must also be performed in the cost function row
so that it is only in terms of nonbasic variables in the next tableau. This step eliminates the
nonbasic variable identified in Step 3 from all the rows except the pivot row.

Step 6. Identify Basic and Nonbasic Variables, and Their Values Identify the cost func-
tion value and go to Step 3.

Note that when all the reduced cost coefficient c¢j in the nonbasic columns are strictly pos-
itive, the optimum solution is unique. If at least one c¢j is zero in a nonbasic column, then
there is a possibility of an alternate optimum. If the nonbasic variable associated with a zero
reduced cost coefficient can be made basic by using the foregoing procedure, the extreme
point (vertex) corresponding to an alternate optimum is obtained. Since the reduced cost coef-
ficient is zero, the optimum cost function value will not change. Any point on the line segment
joining the optimum extreme points also corresponds to an optimum. Note that all these
optima are global as opposed to local, although there is no distinct global optimum. Geo-
metrically, multiple optima for an LP problem imply that the cost function hyperplane is par-
allel to one of the constraint hyperplanes. Example 6.7 shows how to obtain a solution for
an LP problem using the Simplex method.
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EXAMPLE 6.7 Solution by the Simplex Method

Using the Simplex method, find the optimum (if one exists) for the LP problem of
Example 6.3:

(a)

subject to

(b)

(c)

(d)

Solution. Writing the problem in the Simplex tableau, we obtain the initial canoni-
cal form as shown in Table 6-10. From the initial tableau, the basic feasible solution
is

Note that the cost function in the last row is in terms of only nonbasic variables x1

and x2. Thus, coefficients in the x1 and x2 columns and the last row are the reduced

cost function: f = 0 from the last row of the tableau
nonbasic variables: x x1 2 0= =
basic variables: x x3 44 6= =,

x ii ≥ =0 1;  to 4

x x x1 2 4 6+ + =

- + + =x x x1 2 3 4

minimize f x x= - -4 51 2

TABLE 6-10 Solution of Example 6.7 by the Simplex Method

Initial tableau: x3 is identified to be replaced with x2 in the basic set.

BasicØ x1 x2 x3 x4 b Ratio: bi /aiq

x3 -1 1 1 0 4 4–
1

= 4 ¨ smallest

x4 1 1 0 1 6 6–
1

= 6

Cost -4 -5 0 0 f

Second tableau: x4 is identified to be replaced with x1 in the basic 
set.

BasicØ x1 x2 x3 x4 b Ratio: bi /aiq

x2 -1 1 1 0 4 Negative

x4 2 0 -1 1 2 2–
2

= 1

Cost -9 0 5 0 f + 20

Third tableau: Reduced cost coefficients in nonbasic columns are
nonnegative; the tableau gives optimum point.

BasicØ x1 x2 x3 x4 b Ratio: bi/aiq

x2 0 1 1–
2

1–
2

5 Not needed

x1 1 0 - 1–
2

1–
2

1 Not needed

Cost 0 0 1–
2

9–
2

f + 29



Example 6.8 demonstrates the solution of the profit maximization problem by the Simplex
method.
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cost coefficients c¢j. Scanning the last row, we observe that there are negative coeffi-
cients. Therefore, the current basic solution is not optimum. In the last row, the most
negative coefficient of -5 corresponds to the second column. Therefore, we select x2

to become a basic variable, i.e., elimination should be performed in the x2 column.
This fixes the column index q to 2 in Eq. (6.15). Now taking the ratios of the right
side parameters with positive coefficients in the second column bi/ai2, we obtain a
minimum ratio for the first row as 4. This identifies the first row as the pivot row
according to Step 4. Therefore, the current basic variable associated with the first row,
x3, should become nonbasic. Now performing the pivot step on column 2 with a12 as
the pivot element, we obtain the second canonical form (tableau) as shown in Table
6-10. For this canonical form the basic feasible solution is

The cost function is f = -20 (0 = f + 20), which is an improvement from f = 0.
Thus, this pivot step results in a move from (0, 0) to (0, 4) on the convex polyhedron
of Fig. 6-2.

The reduced cost coefficient corresponding to the nonbasic column x1 is negative.
Therefore, the cost function can be reduced further. Repeating the above-mentioned
process for the second tableau, we obtain a21 = 2 as the pivot element, implying that
x1 should become basic and x4 should become nonbasic. The third canonical form is
shown in Table 6-10. For this tableau, all the reduced cost coefficients c¢j (corre-
sponding to the nonbasic variables) in the last row are ≥0. Therefore, the tableau yields
the optimum solution as x1 = 1, x2 = 5, x3 = 0, x4 = 0, f = -29 (f + 29 = 0), which cor-
responds to the point C (1,5) in Fig. 6-2.

nonbasic variables: x x1 3 0= =
basic variables: x x2 44 2= =,

EXAMPLE 6.8 Solution of Profit Maximization Problem by
the Simplex Method

Use the Simplex method to find the optimum solution for the profit maximization
problem of Example 6.2.

Solution. Introducing slack variables in the constraints of Eqs. (c) through (e) in
Example 6.2, we get the LP problem in the standard form:

(a)

subject to

(b)

(c)
1

28

1

14
11 2 4x x x+ + =

x x x1 2 3 16+ + =

minimize f x x= - -400 6001 2
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(d)

(e)

Now writing the problem in the standard Simplex tableau, we obtain the initial
canonical form as shown in Table 6-11. Thus the initial basic feasible solution is x1 =
0, x2 = 0, x3 = 16, x4 = x5 = 1, f = 0, which corresponds to point A in Fig. 6-1. The
initial cost function is zero, and x3, x4, and x5 are the basic variables.

Using the Simplex procedure, we note that a22 = 1–
14

is the pivot element. This implies
that x4 should be replaced by x2 in the basic set. Carrying out the pivot operation using
the second row as the pivot row, we obtain the second tableau (canonical form) shown
in Table 6-11. At this point the basic feasible solution is x1 = 0, x2 = 14, x3 = 2, x4 =
0, x5 = 5–

12
, which corresponds to point E in Fig. 6-1. The cost function is reduced to 

-8400. The pivot element for the next step is a11, implying that x3 should be replaced
by x1 in the basic set. Carrying out the pivot operation, we obtain the third canonical
form shown in Table 6-11. At this point all reduced cost coefficients (corresponding
to nonbasic variables) are nonnegative, so according to Theorem 6.4, we have the
optimum solution: x1 = 4, x2 = 12, x3 = 0, x5 = 3–

14
. This corresponds to the D in 

x ii ≥ =0 1;  to 5

1

14

1

24
11 2 5x x x+ + =

TABLE 6-11 Solution of Example 6.8 by the Simplex Method

Initial tableau: x4 is identified to be replaced with x2 in the basic set.

BasicØ x1 x2 x3 x4 x5 b Ratio: bi /aiq

x3 1 1 1 0 0 16 16–
1

= 16

x4
1–
28

1–
14

0 1 0 1 1—
1/14

= 14 ¨ smallest

x5
1–
14

1–
24

0 0 1 1 1—
1/24

= 24

Cost -400 -600 0 0 0 f - 0

Second tableau: x3 is identified to be replaced with x1 in the basic
set.

BasicØ x1 x2 x3 x4 x5 b Ratio: bi /aiq

x3
1–
2

0 1 -14 0 2 2—
1/2

= 4 ¨ smallest

x2
1–
2

1 0 14 0 14 14—
1/2

= 28

x5
17—
336

0 0 - 7–
12

1 5–
12

5/12—
17/336

= 140—
17

Cost -100 0 0 8400 0 f + 8400

Third tableau: Reduced cost coefficients in the nonbasic columns are
nonnegative; the tableau gives optimum solution

BasicØ x1 x2 x3 x4 x5 b Ratio: bi /aiq

x3 1 0 2 -28 0 4 Not needed

x2 0 1 -1 28 0 12 Not needed

x5 0 0 - 17—
168

5–
6

1 3–
14

Not needed

Cost 0 0 200 5600 0 f + 8800
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Fig. 6-1. The optimum value of the cost function is -8800. Note that c¢j, correspond-
ing to the nonbasic variables x3 and x4, are positive. Therefore, the global optimum is
unique, as may be observed in Fig. 6-1 as well.

EXAMPLE 6.9 LP Problem with Multiple Solutions

Solve the following problem by the Simplex method: maximize z = x1 + 0.5x2 subject
to 2x1 + 3x2 £ 12, 2x1 + x2 £ 8, x1, x2 ≥ 0.

Solution. The problem was solved graphically in Section 3.4 of Chapter 3. It has
multiple solutions as may be seen in Fig. 3-7. We will solve the problem using the
Simplex method and discuss how multiple solutions can be recognized for genera1
LP problems. The problem is converted to standard LP form:

(a)

subject to

(b)

(c)

(d)

Table 6-12 contains iterations of the Simplex method. The optimum point is reached
in just one iteration because all the reduced cost coefficients are nonnegative in the
second canonical form (second tableau). The solution is given as

basic variables: x1 = 4, x3 = 4

nonbasic variables: x2 = x4 = 0

optimum cost function: f = -4

The solution corresponds to point B in Fig. 3-7. In the second tableau, the reduced
cost coefficient for the nonbasic variable x2 is zero. This means that it is possible to
make x2 basic without any change in the optimum cost function value. This suggests
existence of multiple optimum solutions. Performing the pivot operation in column 2,
we find another solution given in the third tableau of Table 6-12 as:

basic variables: x1 = 3, x2 = 2

nonbasic variables: x3 = x4 = 0

optimum cost function: f = -4

x ii ≥ =0 1;  to 4

2 81 2 4x x x+ + =

2 3 121 2 3x x x+ + =

minimize f x x= - -1 20 5.

Problem in Example 6.9 has multiple solution. The example illustrates how to recognize
such solutions with the Simplex method.
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This solution corresponds to point C on Fig. 3-7. Note that any point on the line B–C
also gives an optimum solution. Multiple solutions can occur when the cost function
is parallel to one of the constraints. For the present example, the cost function is par-
allel to the second constraint, which is active at the solution.

TABLE 6-12 Solution by the Simplex Method for Example 6.9

Initial tableau: x4 is identified to be replaced with x1 in the basic set.

BasicØ x1 x2 x3 x4 b Ratio: bi /aiq

x3 2 3 1 0 12 12–
2

= 6

x4 2 1 0 1 8 8–
2

= 4 ¨ smallest

Cost -1 -0.5 0 0 f - 0

Second tableau: First optimum point; reduced cost coefficients in
nonbasic columns are nonnegative; the tableau gives optimum
solution. c ¢3 = 0 indicates the possibility of multiple solutions. x3 is
identified to be replaced with x2 in the basic set to obtain another
optimum point.

BasicØ x1 x2 x3 x4 b Ratio: bi /aiq

x3 0 2 1 -1 4 4–
2

= 2 ¨ smallest

x1 1 1–
2

0 1–
2

4 4—
1/2

= 8

Cost 0 0 0 1–
2

f + 4

Third tableau: Second optimum point.

BasicØ x1 x2 x3 x4 b Ratio: bi /aiq

x2 0 1 1–
2

- 1–
2

2 Not needed

x1 1 0 - 1–
4

3–
4

3 Not needed

Cost 0 0 0 1–
2

f + 4

In general, if a reduced cost coefficient corresponding to a nonbasic variable is zero in
the final tableau, there is a possibility of multiple optimum solutions. From a practical stand-
point, this is not a bad situation. Actually, it may be desirable because it gives the designer
options; any suitable point on the straight line joining the two optimum designs can be
selected to better suit the needs of the designer. Note that all optimum design points are global
solutions as opposed to local solutions.

Example 6.10 demonstrates how to recognize an unbounded feasible set (solution) for a
problem.
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EXAMPLE 6.10 Identification of an Unbounded Problem
with the Simplex Method

Solve the LP problem: maximize z = x1 - 2x2 subject to 2x1 - x2 ≥ 0, -2x1 + 3x2 £ 6,
x1, x2 ≥ 0

Solution. The problem has been solved graphically in Section 3.5. It can be seen
from the graphical solution (Fig. 3-8) that the problem is unbounded. We will solve
the problem using the Simplex method and see how we can recognize unbounded
problems. Writing the problem in the standard Simplex form, we obtain the initial
canonical form shown in Table 6-13 where x3 and x4 are the slack variables (note that
the first constraint has been transformed as -2x1 + x2 £ 0). The basic feasible solution
is

basic variables: x3 = 0, x4 = 5

nonbasic variables: x1 = x2 = 0

cost function: f = 0

TABLE 6-13 Initial Canonical form for Example 6.10 (Unbounded Problem)

BasicØ x1 x2 x3 x4 b

x3 -2 1 1 0 0
x4 -2 3 0 1 6

Cost -1 2 0 0 f - 0

Scanning the last row, we find that the reduced cost coefficient for the nonbasic vari-
able x1 is negative. Therefore, x1 should become a basic variable. However, a pivot
element cannot be selected in the first column because there is no positive element.
There is no other possibility of selecting another nonbasic variable to become basic;
the reduced cost coefficient for x2 (the other nonbasic variable) is positive. Therefore,
no pivot steps can be performed, and yet we are not at the optimum point. Thus, the
feasible set for the problem is unbounded. The foregoing observation will be true in
general. For unbounded problems, there will be negative reduced cost coefficients for
nonbasic variables but no possibility of pivot steps.

6.4 Two-Phase Simplex Method—Artificial Variables
The basic Simplex method of Section 6.3 is extended to handle “≥ type” and equality con-
straints. A basic feasible solution is needed to initiate the Simplex solution process. Such a
solution is immediately available if only “£ type” constraints are present. However, for the
“≥ type” and equality constraints, an initial basic feasible solution is not available. To obtain
such a solution, we must introduce artificial variables for the “≥ type” and equality con-
straints, define an auxiliary minimization LP problem, and solve it. The standard Simplex
method can still be used to solve the auxiliary problem. This is called Phase I of the Simplex



procedure. At the end of Phase I, a basic feasible solution for the original problem becomes
available. Phase II then continues to find a solution to the original LP problem. The method
is illustrated with examples.

6.4.1 Artificial Variables
When there are “≥ type” constraints in the LP problem, surplus variables are subtracted from
them to transform the problem to the standard form. The equality constraints, if present, are
not changed because they are already in the standard form. For such problems, an initial basic
solution cannot be obtained by selecting the original design variables as nonbasic (setting
them to zero), as is the case when there are only “£ type” constraints, e.g., for all the exam-
ples in Section 6.3. To obtain an initial basic feasible solution, the Gauss-Jordan elimination
procedure can be used to convert the Ax = b in the canonical form. However, an easier way
is to introduce nonnegative auxiliary variables for the “≥ type” and equality constraints, define
an auxiliary LP problem, and solve it using the Simplex method. The auxiliary variables are
called artificial variables and are different from the surplus variables. They have no physi-
cal meaning; however, with their addition we obtain an initial basic feasible solution for the
auxiliary LP problem by treating them as basic along with any slack variables for “£ type”
constraints. All other variables are treated as nonbasic (i.e., set to zero).

For the sake of simplicity of discussion, let us assume that each constraint of the standard
LP problem requires an artificial variable. We shall see later in examples that constraints that
do not require an artificial variable can also be treated routinely. Recalling that the standard
LP problem has n variables and m constraints, the constraint equations augmented with the
artificial variables are written as

(6.18)

where xn+j, j = 1 to m are the artificial variables. The constraints of Eq. (6.18) can be written
in the summation notation as

(6.19)

Thus the initial basic feasible solution is obtained as xj = 0, j = 1 to n, and xn+i = bi, i = 1
to m. Note that the artificial variables basically augment the convex polyhedron of the 
original problem. The initial basic feasible solution corresponds to an extreme point (vertex)
located in the new expanded space. The problem now is to traverse extreme points in the
expanded space until an extreme point is reached in the original space. When the original
space is reached, all artificial variables will be nonbasic (i.e., they will have zero value). At
this point the augmented space is literally removed so that future movements are only among
the extreme points of the original space until the optimum is reached. In short, after creating
artificial variables, we eliminate them as quickly as possible. The preceding procedure is
called the two-phase Simplex method of LP.

6.4.2 Artificial Cost Function
To eliminate the artificial variables from the problem, we define an auxiliary function called
the artificial cost function, and minimize it subject to the constraints of Eq. (6.19) and non-
negativity of all the variables. The artificial cost function is simply a sum of all the artificial
variables and will be designated as w:
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(6.20)

6.4.3 Definition of Phase I Problem
Since the artificial variables are introduced to simply obtain an initial basic feasible solution
for the original problem, they need to be eliminated eventually. This elimination is done by
defining an LP problem called the Phase I problem. The objective of this problem is to make
all the artificial variables nonbasic so that they have zero value. In that case, the artificial cost
function in Eq. (6.20) will be zero, indicating the end of Phase I. However the Phase I problem
is not yet in a form suitable to initiate the Simplex method. The reason is that the reduced
cost coefficients c¢j of the nonbasic variables in the artificial cost function are not yet avail-
able to determine the pivot element and perform the pivot step. Currently, the artificial cost
function in Eq. (6.20) is in terms of the basic variables xn+1, . . . , xn+m. Therefore the reduced
cost coefficients c¢j cannot be identified. They can be identified only if the artificial cost func-
tion w is in terms of the nonbasic variables x1, . . . , xn. To obtain w in terms of nonbasic vari-
ables, we use the constraint expressions to eliminate the basic variables from the artificial
cost function. Calculating xn+1, . . . , xn+m from Eqs. (6.18) and substituting into Eq. (6.20), we
obtain the artificial cost function w in terms of the nonbasic variables as

(6.21)

The reduced cost coefficients c¢j are identified as the coefficients of the nonbasic variables xj

in Eq. (6.21) as

(6.22)

If there are also “£ type” constraints in the original problem, these are cast into the stan-
dard LP form by adding slack variables that serve as basic variables in Phase I. Therefore,
the number of artificial variables is less than m—the total number of constraints. Accordingly,
the number of artificial variables required to obtain an initial basic feasible solution is also
less than m. This implies that the sums in Eqs. (6.21) and (6.22) are not for all the m con-
straints. They are only over the constraints requiring an artificial variable.

6.4.4 Phase I Algorithm
The standard Simplex procedure described in Section 6.3 can now be employed to solve the
auxiliary optimization problem of Phase I. During this phase, the artificial cost function is
used to determine the pivot element. The original cost function is treated as a constraint and
the elimination step is also executed for it. This way, the real cost function is in terms of the
nonbasic variables only at the end of Phase I, and the Simplex method can be continued
during Phase II. All artificial variables become nonbasic at the end of Phase I. Since w is the
sum of all the artificial variables, its minimum value is clearly zero. When w = 0, an extreme
point of the original feasible set is reached. w is then discarded in favor of f and iterations
continue in Phase II until the minimum of f is obtained. Suppose, however, that w cannot 
be driven to zero. This will be apparent when none of the reduced cost coefficients for the
artificial cost function is negative and yet w is greater than zero. Clearly, this means that we
cannot reach the original feasible set and, therefore, no feasible solution exists for the 
original design problem, i.e., it is an infeasible problem. At this point the designer should
re-examine the formulation of the problem, which may be over-constrained or improperly
formulated.
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6.4.5 Phase II Algorithm
In the final tableau from Phase I, the artificial cost row is replaced by the actual cost func-
tion equation and the Simplex iterations continue based on the algorithm explained in Section
6.3. The basic variables, however, should not appear in the cost function. Thus, pivot steps
need to be performed on the cost function equation to eliminate the basic variables from it.
A convenient way of accomplishing this is to treat the cost function as one of the equations
in the Phase I tableau, say the second equation from the bottom. Elimination is performed
on this equation along with others. In this way, the cost function is in the correct form to
continue with Phase II. The artificial variable columns can also be discarded for Phase II cal-
culations. However, they are kept in the tableau because they provide information that can
be useful for postoptimality analysis.

For most LP problems, the Simplex method yields one of the following results as illus-
trated in the examples:

1. If there is a solution to the problem, the method will find it (Example 6.11).
2. If the problem is infeasible, the method will indicate that (Example 6.12).
3. If the problem is unbounded, the method will indicate that (Example 6.10, Example

6.13).
4. If there are multiple solutions, the method will indicate that, as seen in Examples 6.6

and 6.9.
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EXAMPLE 6.11 Use of Artificial Variable for 
“≥ Type” Constraints

Find the optimum solution for the following LP problem using the Simplex method:
maximize z = y1 + 2y2 subject to 3y1 + 2y2 £ 12, 2y1 + 3y2 ≥ 6, y1 ≥ 0, y2 is unrestricted
in sign.

Solution. The graphical solution for the problem is shown in Fig. 6-4. It can be seen
that the optimum solution is at point B. We shall use the two-phase Simplex method
to verify the solution. Since y2 is free in sign, we decompose it as y2 = y+

2 - y-
2. To

write the problem in the standard form, we define x1 = y1, x2 = y+
2, and x3 = y-

2, and
transform the problem as

(a)

subject to

(b)

(c)

(d)

where x4 is a slack variable for the first constraint and x5 is a surplus variable for the
second constraint. It can be seen that if we select the real variables as nonbasic, i.e.,
x1 = 0, x2 = 0, x3 = 0, the resulting basic solution is infeasible because x5 = -6. There-
fore, we need to use the two-phase algorithm. Accordingly, we introduce an artificial
variable x6 in the second constraint as

x ii ≥ =0 1;  to 5

2 3 3 61 2 3 5x x x x+ - - =

3 2 2 121 2 3 4x x x x+ - + =

minimize f x x x= - - +1 2 32 2



222 INTRODUCTION TO OPTIMUM DESIGN

(e)

The artificial cost function is defined as w = x6. Since w should be in terms of non-
basic variables (x6 is basic), we substitute for x6 from Eq. (e) and obtain w as

(f)

The initial tableau for Phase I is shown in Table 6-14. The initial basic variables
are x4 = 12 and x6 = 6. The nonbasic variables are x1 = x2 = x3 = x5 = 0. Also w = 6
and f = 0. This corresponds to the infeasible point D in Fig. 6-4. According to the
Simplex algorithm, the pivot element is a22, which implies that x2 should become basic
and x6 should become nonbasic. Performing the pivot step, we obtain the second
tableau given in Table 6-14. For the second tableau, x4 = 8 and x2 = 2 are the basic
variables and all others are nonbasic. This corresponds to the feasible point A in Fig.
6-4. Since all the reduced cost coefficients of the artificial cost function are nonneg-
ative and the artificial cost function is zero, an initial basic feasible solution for the
original problem is obtained. Therefore, this is the end of Phase I.

For Phase II, column x6 should be ignored in determining pivots. For the next step,
the pivot element is a15 in the second tableau according to Steps 1 and 2 of the Simplex
method. This implies that x4 should be replaced by x5 as a basic variable. The third
tableau is obtained as shown in Table 6-14. The last tableau yields an optimum solu-
tion for the problem, which is x5 = 12, x2 = 6, x1 = x3 = x4 = 0, and f = -12. The solu-
tion for the original design problem is then y1 = 0, y2 = 6, and z = 12, which agrees
with the graphical solution of Fig. 6-4. Note that the artificial variable column (x6) in
the final tableau is the negative of the surplus variable column (x5). This is true for all
“≥ type” constraints.

w x x x x x= = - - + +6 1 2 3 56 2 3 3

2 3 3 61 2 3 5 6x x x x x+ - - + =

3y1 + 2y2 = 12

2y
1  + 3y

2  = 6

z = 10

z = 6

z = 2

4

4

6

6

2

2

0

A

B

C

D

Optimum point

y2

y1

y1 = 0, y2 = 6, z * = 12

FIGURE 6-4 Graphical solution for Example 6.11.
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TABLE 6-14 Solution by the Two-Phase Simplex Method for Example 6.11

Initial tableau: x6 is identified to be replaced with x2 in the basic set.

BasicØ x1 x2 x3 x4 x5 x6 b Ratio

x4 3 2 -2 1 0 0 12 12–
2

= 6

x6 2 3 -3 0 -1 1 6 6–
3

= 2

Cost -1 -2 2 0 0 0 f - 0

Artificial cost -2 -3 3 0 1 0 w - 6

Second tableau: End of Phase I. Begin Phase II. x4 is identified to be
replaced with x5 in the basic set.

BasicØ x1 x2 x3 x4 x5 x6 b Ratio

x4
5–
3

0 0 1 2–
3

- 2–
3

8 8—
2/3

= 12

x2
2–
3

1 -1 0 - 1–
3

1–
3

2 Negative

Cost 1–
3

0 0 0 - 2–
3

2–
3

f + 4

Artificial cost 0 0 0 0 0 1 w - 0

Third tableau: Reduced cost coefficients in nonbasic columns are
nonnegative; the third tableau gives the optimum solution. End of
Phase II.

BasicØ x1 x2 x3 x4 x5 x6 b

x5
5–
2

0 0 3–
2

1 -1 12

x2
3–
2

1 -1 1–
2

0 0 6

Cost 2 0 0 1 0 0 f + 12

EXAMPLE 6.12 Use of Artificial Variables for Equality
Constraints (Infeasible Problem)

Solve the LP problem: maximize z = x1 + 4x2 subject to x1 + 2x2 £ 5, 2x1 + x2 = 4, 
x1 - x2 ≥ 3, x1, x2 ≥ 0.

Solution. The constraints for the problem are plotted in Fig. 6-5. It can be seen that
the problem has no feasible solution. We will solve the problem using the Simplex
method to see how we can recognize an infeasible problem. Writing the problem in
the standard LP form, we obtain

(a)

subject to

(b)

(c)

(d)

(e)x ii ≥ =0 1;  to 6

x x x x1 2 4 6 3- - + =

2 41 2 5x x x+ + =

x x x1 2 32 5+ + =

minimize f x x= - -1 24
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FIGURE 6-5 Constraints for Example 6.12. Infeasible problem.

TABLE 6-15 Solution for Example 6.12 (Infeasible Problem)

Initial tableau: x5 is identified to be replaced with x1 in the basic set.

BasicØ x1 x2 x3 x4 x5 x6 b Ratio

x3 1 2 1 0 0 0 5 5–
1

= 5

x5 2 1 0 0 1 0 4 4–
2

= 2

x6 1 -1 0 -1 0 1 3 3–
1

= 3

Cost -1 -4 0 0 0 0 f - 0

Artificial cost -3 0 0 1 0 0 w - 7

Second tableau: End of Phase I.

BasicØ x1 x2 x3 x4 x5 x6 b

x3 0 3–
2

1 0 - 1–
2

0 3

x1 1 1–
2

0 0 1–
2

0 2

x6 0 - 3–
2

0 -1 - 1–
2

1 1

Cost 0 - 7–
2

0 0 1–
2

0 f + 2

Artificial cost 0 3–
2

0 1 3–
2

0 w - 1

Here x3 is a slack variable, x4 is a surplus variable, and x5 and x6 are artificial vari-
ables. Table 6-15 shows Phase I iterations of the Simplex method. It can be seen that
after the first pivot step, all the reduced cost coefficients of the artificial cost function
for nonbasic variables are positive indicating the end of Phase I. However, the artifi-
cial cost function is not zero (w = 1). Therefore there is no feasible solution to the
original problem.
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EXAMPLE 6.13 Use of Artificial Variables (Unbounded
Problem)

Solve the LP problem: maximize z = 3x1 - 2x2 subject to x1 - x2 ≥ 0, x1 + x2 ≥ 2, 
x1, x2 ≥ 0.

Solution. The constraints for the problem are plotted in Fig. 6-6. It can be seen that
the problem is unbounded. We will solve the problem by the Simplex method and see
how to recognize unboundedness. Transforming the problem to the standard form, we
get:

(a)

subject to

(b)

(c)

(d)

where x3 is a slack variable, x4 is a surplus variable, and x5 is an artificial variable.
Note that the right side of the first constraint is zero so it can be treated as either 
“£ type” or “≥ type.” We will treat it as “£ type.” Note also that the second constraint
is “≥ type,” so we must use an artificial variable and an artificial cost function to find
the initial basic feasible solution. The solution for the problem is given in Table 6-16.
For the initial tableau x3 = 0 and x5 = 2 are basic variables and all others are nonba-
sic. Note that this is a degenerate basic feasible solution. The solution corresponds to
point A (the origin) in Fig. 6-6. Scanning the artificial cost row, we observe that there
are two possibilities for pivot columns, x1 or x2. If x2 is selected as the pivot column,

x ii ≥ =0 1;  to 5

x x x x1 2 4 5 2+ - + =

- + + =x x x1 2 3 0

minimize f x x= - +3 21 2

x
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2  = 2

x 1
 +

 x 2
 =

 0
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2

2

1
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A

B

C

D

Feasible region unbounded

x2

x1

FIGURE 6-6 Constraints for Example 6.13. Unbounded problem.
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then the first row must be the pivot row with a12 = 1 as the pivot element. This will
make x2 basic and x3 nonbasic. However, x2 will remain zero and the resulting solu-
tion will be degenerate, corresponding to point A. One more iteration will be neces-
sary to move from A to D. If we choose x1 as the pivot column, then a21 = 1 will be
the pivot element making x1 as basic and x5 as nonbasic. Carrying out the pivot step,
we obtain the second tableau as shown in Table 6-16. The basic feasible solution is
x1 = 2, x3 = 2, and other variables are zero. This solution corresponds to point D in
Fig. 6-6. This is the basic feasible solution for the original problem because the arti-
ficial cost function is zero, i.e., w = 0. The original cost function has also reduced
from 0 to -6. This is the end of Phase I. Scanning the cost function row, we find that
the reduced cost coefficient c¢4 is negative, but the pivot element cannot be determined,
i.e., x4 cannot be made basic (all elements in the x4 column are negative in the second
tableau). This indicates the problem to be unbounded.

TABLE 6-16 Solution for Example 6.13 (Unbounded Problem)

Initial tableau: x5 is identified to be replaced with x1 in the basic set.

BasicØ x1 x2 x3 x4 x5 b Ratio

x3 -1 1 1 0 0 0 Negative

x5 1 1 0 -1 1 2 2–
1

= 2

Cost -3 2 0 0 0 f - 0

Artificial cost -1 -1 0 1 0 w - 2

Second tableau: End of Phase I. End of Phase II.

BasicØ x1 x2 x3 x4 x5 b Ratio

x3 0 2 1 -1 1 2 Negative

x1 1 1 0 -1 1 2 Negative

Cost 0 5 0 -3 3 f + 6

Artificial cost 0 0 0 0 1 w - 0

6.4.6 Degenerate Basic Feasible Solution
It is possible that during iterations of the Simplex method, a basic variable attains zero value,
i.e., the basic feasible solution becomes degenerate. What are the implications of this situa-
tion? We shall discuss them in Example 6.14.

EXAMPLE 6.14 Implications of Degenerate Basic 
Feasible Solution

Solve the following LP problem by the Simplex method: maximize z = x1 + 4x2 subject
to x1 + 2x2 £ 5, 2x1 + x2 £ 4, 2x1 + x2 ≥ 4, x1 - x2 ≥ 1, x1, x2 ≥ 0.

Solution. The problem is transcribed into the standard LP form as follows: 
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(a)

subject to

(b)

(c)

(d)

(e)

(f)

where x3 and x4 are slack variables, x5 and x6 are surplus variables, and x7 and x8 are
artificial variables. The two-phase Simplex procedure takes three iterations to reach
the optimum point. These iterations are given in Table 6-17. It can be seen that in the
third tableau, the basic variable x4 has zero value so the basic feasible solution is
degenerate. At this iteration, it is determined that x5 should become basic so x5 is the
pivot column. We need to determine the pivot row. We take ratios of the right sides
with the positive elements in the x5 column. This determines the second row as the
pivot row because it has the lowest ratio (zero). In general, if the element in the pivot
column and the row that gives degenerate basic variable is positive, then that row must
always be the pivot row; otherwise, the new solution cannot be feasible. Also, in this
case, the new basic feasible solution will be degenerate, as for the final tableau in
Table 6-17. The only way the new feasible solution can be nondegenerate is when the
element in the pivot column and the degenerate variable row is negative. In that case

x ii ≥ =0 1;  to 8

x x x x1 2 6 8 1- - + =

2 41 2 5 7x x x x+ - + =

2 41 2 4x x x+ + =

x x x1 2 32 5+ + =

minimize f x x= - -1 24

TABLE 6-17 Solution for Example 6.14 (Degenerate Basic Feasible Solution)

Initial tableau: x8 is identified to be replaced with x1 in the basic set.

BasicØ x1 x2 x3 x4 x5 x6 x7 x8 b Ratio

x3 1 2 1 0 0 0 0 0 5 5–
1

= 5

x4 2 1 0 1 0 0 0 0 4 4–
2

= 2

x7 2 1 0 0 -1 0 1 0 4 4–
2

= 2

x8 1 -1 0 0 0 -1 0 1 1 1–
1

= 1

Cost -1 -4 0 0 0 0 0 0 f - 0

Artificial -3 0 0 0 1 1 0 0 w - 5

Second tableau: x7 is identified to be replaced with x2 in the basic
set.

BasicØ x1 x2 x3 x4 x5 x6 x7 x8 b Ratio

x3 0 3 1 0 0 1 0 -1 4 4–
3

x4 0 3 0 1 0 2 0 -2 2 2–
3

x7 0 3 0 0 -1 2 1 -2 2 2–
3

x1 1 -1 0 0 0 -1 0 1 1 Negative

Cost 0 -5 0 0 0 -1 0 1 f + 1

Artificial 0 -3 0 0 1 -2 0 3 w - 2
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TABLE 6-17 Continued

Third tableau: x4 is identified to be replaced with x5 in the basic set.
End of Phase I.

BasicØ x1 x2 x3 x4 x5 x6 x7 x8 b Ratio

x3 0 0 1 0 1 -1 -1 1 2 2–
1

= 2

x4 0 0 0 1 1 0 -1 0 0 0–
1

= 0

x2 0 1 0 0 - 1–
3

2–
3

1–
3

- 2–
3

2–
3

Negative

x1 1 0 0 0 - 1–
3

- 1–
3

1–
3

1–
3

5–
3

Negative

Cost 0 0 0 0 - 5–
3

7–
3

5–
3

- 7–
3

f + 13–
3

Artificial 0 0 0 0 0 0 1 1 w - 0

Final tableau: End of Phase II.

BasicØ x1 x2 x3 x4 x5 x6 x7 x8 b

x3 0 0 1 -1 0 -1 0 1 2

x5 0 0 0 1 1 0 -1 0 0

x2 0 1 0 1–
3

0 2–
3

0 - 2–
3

2–
3

x1 1 0 0 1–
3

0 - 1–
3

0 1–
3

5–
3

Cost 0 0 0 5–
3

0 7–
3

0 - 7–
3

f + 13–
3

the new basic feasible solution will be nondegenerate. It is theoretically 
possible for the Simplex method to fail by cycling between two degenerate basic fea-
sible solutions. However, in practice this usually does not happen. The final solution
for this problem is

basic variables: x1 = 5–
3
, x2 = 2–

3
, x3 = 2, x5 = 0

nonbasic variables: x4 = x6 = x7 = x8 = 0

optimum cost function: f = - 3–
13

or z = 13–
3

6.5 Postoptimality Analysis
The optimum solution of the LP problem depends on the parameters in vectors c and b, and
the matrix A defined in Eqs. (6.9) to (6.11). These parameters are prone to errors in practi-
cal design problems. Thus we are interested not only in the optimum solution but also in how
it changes when the parameters change. The changes may be either discrete (e.g., when we
are uncertain about which of several choices is the value of a particular parameter) or con-
tinuous. The study of discrete parameter changes is often called sensitivity analysis, and that
of continuous changes is called parametric programming. There are five basic parametric
changes affecting the solution:



1. Changes in the cost function coefficients, cj

2. Changes in the resource limits, bi

3. Changes in the constraint coefficients, aij

4. The effect of including additional constraints
5. The effect of including additional variables

A thorough discussion of these changes, while not necessarily difficult, is beyond our
scope. In principle, we could imagine solving a new problem for every change. Fortunately,
for a small number of changes there are useful shortcuts. Almost all computer programs for
LP problems provide some information about parameter variations. We shall study the para-
metric changes defined in items 1 through 3. The final tableau for the LP problem contains
all the information needed to study these changes. We shall describe the information con-
tained in the final tableau and its use to study the three parametric changes. For other varia-
tions, full length texts on linear programming may be consulted.

It turns out that the optimum solution of the altered problem can be computed using the
optimum solution of the original problem and the information in the final tableau as long as
changes in the parameters are within certain limits. This is especially beneficial for problems
that take a long time to solve. In the following discussion we use a¢ij, c¢j, and b¢i to represent
the corresponding values of the parameters aij, cj, and bi in the final tableau.

6.5.1 Changes in Resource Limits
First, we study how the optimum value of the cost function for the problem changes if we
change the right side parameters, bi’s (also known as resource limits), of the constraints. The
constraint variation sensitivity Theorem 4.7 of Section 4.5 can be used to study the effect of
these changes. Use of that theorem requires knowledge of the Lagrange multipliers for the
constraints. Theorem 6.5 gives a way of recovering the multipliers for the constraints of an
LP problem from the final tableau.

Theorem 6.5 Lagrange Multiplier Values Let the standard LP problem be solved using
the Simplex method. (1) For “£ type” constraints, the Lagrange multiplier equals the reduced
cost coefficient in the slack variable column associated with the constraint. (2) For “=” and
“≥ type” constraints, the Lagrange multiplier equals the reduced cost coefficient in the arti-
ficial variable column associated with the constraint. (3) The Lagrange multiplier is always
≥ 0 for the “£ type” constraint, always £ 0 for the “≥ type” constraint, and free in sign for
the “= type” constraint.

In Section 4.5, the physical meaning of the Lagrange multipliers was described. There, the
Lagrange multipliers were related to derivatives of the cost function with respect to the right
side parameters. Equality and inequality constraints were treated separately with vi and ui as
their Lagrange multipliers, respectively. However, in this section, we use a slightly different
notation. We use ei as the right side parameter of any constraint and yi as its Lagrange multi-
plier. Using this notation and Theorem 4.7, we obtain the following derivative of the cost func-
tion with respect to the right side parameters, and change in the optimum cost function:

(6.23)

It is noted here that Theorem 6.5 and Eq. (6.23) are applicable only if changes in the right
side parameters are within certain limits, i.e., there are upper and lower limits on changes
in the resource limits for which Eq. (6.23) is valid. The changes need not be small any more
as was stipulated for nonlinear problems in Section 4.5. Calculations for the limits are dis-
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cussed later in this section. Note the calculation for Df remains valid for simultaneous changes
to multiple constraints; in that case all the changes are added.

It is also noted that Theorem 4.7 and Eq. (6.23) were discussed for the general problem
written as minimization of a cost function with “£ type” and equality constraints. However,
Eq. (6.23) is applicable to “≥ type” constraints as well as long as care is exercised in using
appropriate signs for the Lagrange multiplier yi and the change Dei. We shall demonstrate use
of Theorem 6.5 and Eq. (6.23) with examples.

It is also important to note that if an inequality is inactive at the optimum, then its slack
or surplus variable is greater than 0. Therefore its Lagrange multiplier is 0 to satisfy the
switching condition, yisi = 0 (except for the abnormal case where both the Lagrange multi-
plier and the constraint function have zero value). This observation can help in verifying the
correctness of the Lagrange multipliers recovered from the final LP tableau. Example 6.15
describes recovery of the Lagrange multipliers from the final tableau for the “£ type” 
constraints.
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EXAMPLE 6.15 Recovery of Lagrange Multipliers for 
“£ Type” Constraint

Consider the problem: maximize z = 5x1 - 2x2 subject to the constraints 2x1 + x2 £ 9,
x1 - 2x2 £ 2, -3x1 + 2x2 £ 3, x1, x2 ≥ 0. Solve the problem by the Simplex method.
Recover Lagrange multipliers for the constraints.

Solution. Constraints for the problem and cost function contours are plotted in Fig.
6-7. The optimum solution is at point C and is given as x1 = 4, x2 = 1, z = 18. The
problem is transformed to the standard form as
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FIGURE 6-7 Graphical solution for Example 6.15.
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(a)

subject to

(b)

(c)

(d)

(e)

where x3, x4, and x5 are the slack variables. Solving the problem using the Simplex
method, we obtain the sequence of calculations given in Table 6-18. From the final
tableau,

basic variables: x1 = 4, x2 = 1, x5 = 13

nonbasic variables: x3 = 0, x4 = 0

objective function: z = 18 ( f = -18)

In the problem formulation, x3, x4, and x5 are the slack variables for the three con-
straints. Since all constraints are “£ type,” the reduced cost coefficients for the slack
variables are the Lagrange multipliers as follows:

x ii ≥ =0 1;  to 5

- + + =3 2 31 2 5x x x

x x x1 2 42 2- + =

2 91 2 3x x x+ + =

minimize f x x= - +5 21 2

TABLE 6-18 Solution for Example 6.15 by the Simplex Method

Initial tableau: x4 is identified to be replaced with x1 in the basic set.

BasicØ x1 x2 x3 x4 x5 b

x3 2 1 1 0 0 9

x4 1 -2 0 1 0 2

x5 -3 2 0 0 1 3

Cost -5 2 0 0 0 f - 0

Second tableau: x3 is identified to be replaced with x2 in the basic set.

BasicØ x1 x2 x3 x4 x5 b

x3 0 5 1 -2 0 5

x1 1 -2 0 1 0 2

x5 0 -4 0 3 1 9

Cost 0 -8 0 5 0 f + 10

Third tableau: Reduced cost coefficients in nonbasic columns are
nonnegative; the tableau gives optimum point.

BasicØ x1 x2 x3 x4 x5 b

x2 0 1 0.2 -0.4 0 1

x1 1 0 0.4 0.2 0 4

x5 0 0 0.8 1.4 1 13

Cost 0 0 1.6 1.8 0 f + 18

(c¢1) (c¢2) (c¢3) (c¢4) (c¢5)

x3, x4, and x5 are slack variables.
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1. For 2x1 + x2 £ 9: y1 = 1.6 (c¢3 in column x3)
2. For x1 - 2x2 £ 2: y2 = 1.8 (c¢4 in column x4)
3. For -3x1 + 2x2 £ 3: y3 = 0 (c¢5 in column x5)

Therefore, Eq. (6.23) gives partial derivatives of f with respect to ei as

(f)

where f = -(5x1 - 2x2); note that Eq. (6.23) is valid for a minimization problem only.
If the right side of the first constraint changes from 9 to 10, the cost function f changes
by Df = -1.6(10 - 9) = -1.6, i.e., the new value of f will be -19.6 (z = 19.6). Point F
in Fig. 6-7 gives the new optimum solution for this case. If the right side of the second
constraint changes from 2 to 3, the cost function f changes by Df = -1.8(3 - 2) =
-1.8 to -19.8. Point G in Fig. 6-7 gives the new optimum solution. Note that any
small change in the right side of the third constraint will have no effect on the cost
function. When the right side of first and second constraints are changed to 10 and 3
simultaneously, the net change in the cost function is -(1.6 + 1.8), i.e., new f will be
-21.4. The new solution is at point H in Fig. 6-7.

∂
∂

= -
∂
∂

= -
∂
∂

=
f

e

f

e

f

e1 2 3

1 6 1 8 0. ; . ;

It is noted (as in Section 4.5) that the Lagrange multipliers are very useful for practical
design problems. Their values give the relative effect of changes in the right side parameters
of constraints (resource limits). Using their relative values, the designer can determine the
most profitable way to adjust the resource limits, if necessary and possible. The Lagrange
multipliers are also called the dual variables (or, dual prices). The concept of duality in linear
programming is described in Chapter 7. Example 6.16 demonstrates recovery of Lagrange
multipliers for equality and “≥ type” constraints.

EXAMPLE 6.16 Recovery of Lagrange Multipliers for “=”
and “≥ Type” Constraints

Solve the following LP problem and recover proper Lagrange multipliers for the con-
straints: maximize z = x1 + 4x2 subject to x1 + 2x2 £ 5, 2x1 + x2 = 4, x1 - x2 ≥ 1, x1, 
x2 ≥ 0

Solution. Constraints for the problem are plotted in Fig. 6-8. It can be seen that line
E–C is the feasible region for the problem and point E gives the optimum solution.
Converting the problem to standard Simplex form, we obtain:

(a)

subject to

(b)

(c)2 41 2 5x x x+ + =

x x x1 2 32 5+ + =

minimize f x x= - -1 24



Linear Programming Methods for Optimum Design 233

(d)

(e)

where x3 is a slack variable, x4 is a surplus variable, and x5 and x6 are artificial vari-
ables. The problem, solved in Table 6-19, takes just two iterations to reach the
optimum. The solution from the final tableau is

basic variables: x1 = 5–
3
, x2 = 2–

3
, x3 = 2

nonbasic variables: x4 = 0, x5= 0, x6 = 0
cost function: f = - 13–

3

Note that the artificial variable column (x6) is the negative of the surplus variable
column (x4) for the third constraint. Using Theorem 6.5, the Lagrange multipliers for
the constraints are

1. For x1 + 2x2 £ 5: y1 = 0 (c¢3 in the slack variable column x3)
2. For 2x1 + x2 = 4: y2 = 5–

3
(c¢5 in the artificial variable column x5)

3. For x1 - x2 ≥ 1: y3 = - 7–
3

(c¢6 in the artificial variable column x6)

When the right side of the third constraint is changed to 2 (i.e., x1 - x2 ≥ 2), the cost
function f = (-x1 - 4x2) changes by

(f)

That is, the cost function will increase by 7–
3
, from -13–

3
to -2 (z = 2). This can be also

observed from Fig. 6-8. We shall demonstrate that same result is obtained when the
third constraint is written in the “£ form” (-x1 + x2 £ -1). The Lagrange multiplier for
the constraint is 7–

3
, which is the negative of the preceding value. Note that it is also c¢4

D Df y e= - = - -Ê
Ë

ˆ
¯ -( ) =3 3

7

3
2 1

7

3

x ii ≥ =0 1;  to 6

x x x x1 2 4 6 1- - + =

4

2x
1  + x

2  = 4

x
1  + 2x

2  = 5

f = –6
f = –5

f = –4

x 1
 –

 x 2
 =

 1

4 5

3

3

2

2

1

10

A B C

F

D

E
Optimum

point

x2

x1

FIGURE 6-8 Constraints for Example 6.16. Feasible region: line E-C.
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in the surplus variable column x4. When the right side of the third constraint is changed
to 2 (i.e., it becomes -x1 + x2 £ -2), the cost function f = (-x1 - 4x2) changes by

(g)

which is same as before.
When the right side of the equality constraint is changed to 5 from 4, the cost func-

tion f = (-x1 - 4x2) changes by

(h)

That is, the cost function will decrease by 5–
3
, from -13–

3
to -6 (z = 6).

D Df y e= - = - -( ) = -2 2
5

3
5 4

5

3

D Df y e= - = - - - -( )[ ] =3 3
7

3
2 1

7

3

TABLE 6-19 Solution for Example 6.16 with Equality Constraint

Initial tableau: x6 is identified to be replaced with x1 in the basic set.

BasicØ x1 x2 x3 x4 x5 x6 b

x3 1 2 1 0 0 0 5

x5 2 1 0 0 1 0 4

x6 1 -1 0 -1 0 1 1

Cost -1 -4 0 0 0 0 f - 0

Artificial -3 0 0 1 0 0 w - 5

Second tableau: x5 is identified to be replaced with x2 in the basic set.

BasicØ x1 x2 x3 x4 x5 x6 b

x3 0 3 1 1 0 -1 4

x5 0 3 0 2 1 -2 2

x1 1 -1 0 -1 0 1 1

Cost 0 -5 0 -1 0 1 f + 1

Artificial 0 -3 0 -2 0 3 w - 2

Third tableau: Reduced cost coefficients in nonbasic columns are
nonnegative; the tableau gives the optimum point. End of Phase I. End
of Phase II.

BasicØ x1 x2 x3 x4 x5 x6 b

x3 0 0 1 -1 -1 1 2

x2 0 1 0 2–
3

1–
3

- 2–
3

2–
3

x1 1 0 0 - 1–
3

1–
3

1–
3

5–
3

Cost 0 0 0 7–
3

5–
3

- 7–
3

f + 13–
3

(c¢1) (c¢2) (c¢3) (c¢4) (c¢5) (c¢6)
Artificial 0 0 0 0 1 1 w - 0

x3, slack variable; x4, surplus variable; x5, x6, artificial variables.



6.5.2 Ranging Right Side Parameters
When the right side of a constraint is changed, the constraint boundary moves parallel to
itself, changing the feasible region for the problem. However, the isocost lines do not change.
Since the feasible region is changed, the optimum solution may change, i.e., the design vari-
ables as well as the cost function may change. There are, however, certain limits on 
changes for which the set of active constraints at the optimum point is not altered. That is,
if the changes are within certain limits, the sets of basic and nonbasic variables do not change.
In that case, the solution of the altered problem can be obtained from the information 
contained in the final tableau. Otherwise, Eq. (6.23) cannot be used, and more iterations of
the Simplex method are needed to obtain solution for the altered problem. Theorem 6.6
describes determination of the limits and the new right sides when the changes are within
the limits.

Theorem 6.6 Limits on Changes in Resources Let Dk be the possible change in the right
side bk of the kth constraint. If Dk satisfies the following inequalities, then no more iterations
of the Simplex method are required to obtain the solution for the altered problem and Eq.
(6.23) can be used to determine changes to the cost function:

(6.24)

where

b¢i = right side parameter for the ith constraint in the final tableau
a¢ij = parameters in the jth column of the final tableau; the jth column corresponds to xj

which is the slack variable for a “£ type” constraint, or the artificial variable for an
equality, or “≥ type” constraint

ri = negative of the ratios of the right sides with the parameters in the jth column
Dk = possible change in the right side of the kth constraint; the slack or the artificial

variable for the kth constraint determines the index j of the column whose elements
are used in the Inequalities (6.24)

Furthermore, the new right side parameters b≤j due to a change of Dk in bk are given 
as

(6.25)

Using Eq. (6.25) and the final tableau, new values for the basic variables in each row can
be obtained. Equation (6.25) is applicable only if Dk is in the range determined by 
Inequalities (6.24). To determine the range, we first determine the column index j according
to the rules given in Theorem 6.6. Then using the elements in the jth column, we determine
the ratios ri = -b¢i/a¢ij. The largest negative ratio ri gives the lower limit on change Dk

in bk. If there is no a¢ij > 0 (i.e., there is no negative ri), then the said ratio cannot be 
found, and so there is no lower bound on Dk, i.e., the lower limit is -•. The smallest posi-
tive ratio ri gives the upper limit on change Dk in bk. If there is no a¢ij < 0 (i.e., there is no
positive ri), then the said ratio cannot be found, and so there is no upper bound on Dk, i.e.,
the upper  limit is •. Example 6.17 demonstrates calculations of the ranges for the right side
parameters and new values for the right side (i.e., the basic variables) for a problem with 
“£ type” constraints.

¢¢= ¢+ ¢ =b b a i mi i k ijD ; 1 to 

max min ;r r r
b

a
i mi k i i

i

ij

<{ } £ £ >{ } = -
¢
¢

=0 0 1D  to 

Linear Programming Methods for Optimum Design 235



236 INTRODUCTION TO OPTIMUM DESIGN

EXAMPLE 6.17 Ranges for Resource Limits—“£ Type”
Constraints

Find ranges for the right side parameters of constraints for the problem solved in
Example 6.15.

Solution. The graphical solution for the problem is shown in Fig. 6-7. The final
tableau for the problem is given in Table 6-18. For the first constraint, x3 is the slack
variable, and so j = 3 in Inequalities (6.24) for calculation of range for D1, the change
to the constraint’s right side. The ratios of the right side parameters with the elements
in column 3, ri of Eq. (6.24) are calculated as

(a)

Since there is no positive ri, there is no upper limit on D1. The lower limit is deter-
mined as the largest element among the negative ratios according to the Inequality
(6.24) as:

(b)

Thus, limits for D1 are -5 £ D1 £ • and the range on b1 is obtained by adding the
current value of b1 = 9 to both sides, as

(c)

For the second constraint (k = 2), x4 is the slack variable. Therefore, we will use
elements in column x4 of the final tableau (a¢i4, j = 4) in the inequalities of Eq. (6.24).
The ratios of the right side parameters with the elements in column 4, ri of Eq. (6.24),
are calculated as

(d)

According to the inequalities in Eq. (6.24), lower and upper limits for D2 are given as

(e)

Therefore, the allowed decrease in b2 is 9.286 and the allowed increase is 2.5. Adding
2 to the above inequality (the current value of b2), the range on b2 is given as

(f)

Similarly, for the third constraint, the ranges for D3 and b3 are:

(g)

New values of design variables. Let us calculate new values for the design 
variables if the right side of the first constraint is changed from 9 to 10. Note that this
change is within the limits determined in the foregoing. In Eq. (6.25), k = 1, so D1 =

- £ £ • - £ £ •13 103 3D , b

- £ £7 286 4 52. .b

max , . min . , . .- -{ } £ £ { } - £ £20 9 286 2 5 9 286 2 52 2D D or 

r
b

a
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= -
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= -
-

- -Ï
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˝
˛
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10 - 9 = 1. Also, j = 3, so we use the third column from Table 6-18 in Eq. (6.25) and
obtain new values of the variables as

(h)

(i)

(j)

The other variables remain nonbasic, so they have zero values. The new solution cor-
responds to point F in Fig. 6-7. Similarly, if the right side of the second constraint is
changed from 2 to 3, the new values of the variables, using Eq. (6.25) and the x4

column from Table 6-18, are calculated as x2 = 0.6, x1 = 4.2, and x5 = 14.4. This solu-
tion corresponds to point G in Fig. 6-7.

When the right sides of two or more constraints are changed simultaneously, we
can use Eq. (6.25) to determine new values of the design variables. However, we have
to make sure that the new right sides do not change the basic and nonbasic sets of
variables, i.e., the vertex that gives the optimum solution is not changed. Or, in other
words, no new constraint becomes active. As an example, let us calculate the new
values of design variables using Eq. (6.25) when the right sides of the first and the
second constraints are changed to 10 and 3 from 9 and 2, respectively:

(k)

(l)

(m)

It can be verified that the new solution corresponds to point H in Fig. 6-7.

x b b a a5 3 3 1 33 2 34 13 1 0 8 1 1 4 15 2= ¢¢= ¢ + ¢ + ¢ = + ( )( ) + ( )( ) =D D . . .

x b b a a1 2 2 1 23 2 24 4 1 0 4 1 0 2 4 6= ¢¢ = ¢ + ¢ + ¢ = + ( )( ) + ( )( ) =D D . . .

x b b a a2 1 1 1 13 2 14 1 1 0 2 1 0 4 0 8= ¢¢= ¢ + ¢ + ¢ = + ( )( ) + ( ) -( ) =D D . . .

x b b a5 3 3 1 33 13 1 0 8 13 8= ¢¢= ¢ + ¢ = + ( )( ) =D . .

x b b a1 2 2 1 23 4 1 0 4 4 4= ¢¢ = ¢ + ¢ = + ( )( ) =D . .

x b b a2 1 1 1 13 1 1 0 2 1 2= ¢¢= ¢ + ¢ = + ( )( ) =D . .

Example 6.18 demonstrates calculations of the ranges for the right side parameters and
the new values for the right sides (i.e., the basic variables) for a problem with equality and
“≥ type” constraints.

EXAMPLE 6.18 Ranges for Resource Limits—Equality and 
“≥ Type” Constraints

Find ranges for the right side parameters of the problem solved in Example 6.16.

Solution. The final tableau for the problem is given in Table 6-19. The graphical
solution for the problem is given in Fig. 6-8. In the tableau, x3 is a slack variable for
the first constraint, x4 is a surplus variable for the third constraint, x5 is an artificial
variable for the second constraint, and x6 is an artificial variable for the third con-
straint. For the first constraint, x3 is the slack variable, and therefore, index j for use
in Inequalities (6.24) is determined as 3. Using the same procedure as for Example
6.17, the ranges for D1 and b1 are calculated as -2 £ D1 £ • and 3 £ b1 £ •.
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Since the second constraint is an equality, the index j for use in Eq. (6.24) is deter-
mined by the artificial variable x5 for the constraint, i.e., j = 5. Accordingly, ratios ri

in Eq. (6.24) and the range for D2 are calculated as

(a)

(b)

The range for b2 can be found by adding the current value of b2 = 4 to both sides of
the above inequality as 2 £ b2 £ 6.

The third constraint is a “≥ type”, so index j for use in Inequalities (6.24) is deter-
mined by its artificial variable x6; i.e., j = 6. Accordingly, ratios ri in Eq. (6.24) and
the range for D3 are calculated as

(c)

(d)

The limits on changes in b3 are (add current value of b3 = 1 to both sides of the above
inequality) -1 £ b3 £ 2.

New values of design variables. We can use Eq. (6.25) to calculate the new values
of the design variables for the right side changes that remain within the previously
determined ranges. It can be seen that since the first constraint is not active, it does
not affect the optimum solution as long as its right side remains within the range 3 £
b1 £ • determined previously.

Let us determine the new solution when the right side of the second constraint is
changed to 5 from 4 (the change is within the range determined previously). The
second constraint has x5 as an artificial variable, so we use column 5 ( j = 5) from
Table 6-19 in Eq. (6.25) and obtain the new values of the variables as follows:

(e)

(f)

(g)

To determine the new values of design variables when the right side of the third con-
straint is changed from 1 to 2, we use the x6 column (j = 6) from Table 6-19 in 
Eq. (6.25) and obtain the new solution as

(h)

(i)

(j)

It can easily be seen from Fig. 6-8 that the new solution corresponds to point C.

x b b a1 3 3 3 36
5

3
1

1

3
2= ¢¢= ¢ + ¢ = + ( )ÊË

ˆ
¯ =D

x b b a2 2 2 3 26
2

3
1

2

3
0= ¢¢ = ¢ + ¢ = + ( ) -Ê

Ë
ˆ
¯ =D

x b b a3 1 1 3 16 2 1 1 3= ¢¢= ¢ + ¢ = + ( )( ) =D

x b b a1 3 3 2 35
5

3
1

1

3
2= ¢¢= ¢ + ¢ = + ( )ÊË

ˆ
¯ =D

x b b a2 2 2 2 25
2

3
1

1

3
1= ¢¢ = ¢ + ¢ = + ( )ÊË

ˆ
¯ =D

x b b a3 1 1 2 15 2 1 1 1= ¢¢= ¢ + ¢ = + ( ) -( ) =D

max . , . min . ,- -{ } £ £ { } - £ £2 0 5 0 1 0 2 13 3D Dor 
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6.5.3 Ranging Cost Coefficients
If a cost coefficient ck is changed to ck + Dck, we like to find an admissible range on Dck such
that the optimum design variables are not changed. Note that when the cost coefficients are
changed, the feasible region for the problem does not change. However, orientation of the
cost function hyperplane and value of the cost function change. Limits on the change Dck for
the coefficient ck depend on whether xk is a basic variable at the optimum. Thus, we must
consider the two cases separately. Theorems 6.7 and 6.8 give ranges for the cost coefficients
for the two cases.

Theorem 6.7 Range for Cost Coefficient of Nonbasic Variables Let ck be such that x*
k

is
not a basic variable. If this ck is replaced by any ck + Dck, where -c¢k £ Dck £ •, then the
optimum solution (design variables and the cost function) does not change. Here, c¢k is the
reduced cost coefficient corresponding to x*k in the final tableau.

Theorem 6.8 Range for Cost Coefficient of Basic Variables Let ck be such that x*k is 
a basic variable, and let x*

k
= b¢r (a superscript * is used to indicate optimum value). Then, 

the range for the change Dck in ck for which the optimum design variables do not change is
given as

(6.26)

where

a¢rj = element in the rth row and the jth column of the final tableau. The index r is
determined by the row that determines x*

k
. Index j corresponds to each of the

nonbasic columns excluding artificial columns. (Note: if no a¢ij > 0, then there is no
upper limit; if no a¢ij < 0, then there is no lower limit.)

c¢j = reduced cost coefficient in the jth nonbasic column excluding artificial variable
columns

dj = ratios of the reduced cost coefficients with the elements in the rth row
corresponding to nonbasic columns excluding artificial columns

When Dck satisfies Inequality (6.26), the optimum value of the cost function is f* + Dckx*
k
.

To determine possible changes in the cost coefficient of a basic variable, the first step is
to determine the row index r for use in Inequalities (6.26). This represents the row deter-
mining the basic variable x*

k
. After r has been determined, we determine ratios of the reduced

cost coefficients and elements in the rth row according to the rules given in Theorem 6.8.
The lower limit on Dck is determined by the maximum of the negative ratios. The upper limit
is determined by the minimum of the positive ratios. Example 6.19 demonstrates the proce-
dure for the “£ type” constraints and Example 6.20 demonstrates it for the equality and 
“≥ type” constraints.

max min ,d c d d
c

a
j k j j

j

rj

<{ } £ £ >{ } =
¢
¢

0 0D
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EXAMPLE 6.19 Ranges for Cost Coefficients—“£ Type”
Constraints

Determine ranges for the cost coefficients of the problem solved in Example 6.15.

Solution. The final tableau for the problem is given in Table 6-18. The problem is
solved as a minimization of the cost function f = -5x1 + 2x2. Therefore, we will find
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ranges for the cost coefficients c1 = -5 and = c2 = 2. Note that since both x1 and x2 are
basic variables, Theorem 6.8 will be used.

Since the second row determines the basic variable x1, r = 2 (the row number) for
use in Inequalities (6.26). Columns 3 and 4 are nonbasic; therefore j = 3, 4 are the
column indices for use in Eq. (6.26). After calculating the ratios dj, the range for Dc1

is calculated as

(a)

The range for c1 is obtained by adding the current value of c1 = -5 to both sides of
the above inequality,

(b)

Thus, if c1 changes from -5 to -4, the new cost function value is given as

(c)

That is, the cost function will increase by 4. 
For the second cost coefficient, r = 1 (the row number) because the first row deter-

mines x2 as a basic variable. After calculating the ratios dj, the range for Dc2 is calcu-
lated as

(d)

The range for c2 is obtained by adding the current value of c2 = 2 to both sides of the
above inequality,

(e)

Thus, if c2 is changed from 2 to 3, the new cost function value is given as

(f)

Note that the range for the coefficients of the maximization function (z = 5x1 - 2x2)
can be obtained from Eqs. (b) and (e). To determine these ranges, we multiply Eqs.
(b) and (e) by -1. Therefore, the range for c1 = 5 is given as 1 £ c1 £ •, and that for
c2 = -2 is -10 £ c2 £ 2.5.

f f c xnew
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EXAMPLE 6.20 Ranges for Cost Coefficients—Equality and
“≥ Type” Constraints

Find ranges for the cost coefficients of the problem solved in Example 6.16.

Solution. The final tableau for the problem is given in Table 6-19. In the tableau, 
x3 is a slack variable for the first constraint, x4 is a surplus variable for the third 
constraint, and x5 and x6 are artificial variables for the second and third constraints,
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respectively. Since both x1 and x2 are basic variables, we will use Theorem 6.8 to find
ranges for the cost coefficients c1 = -1 and c2 = -4. Note that the problem is solved
as minimization of the cost function f = -x1 - 4x2. Columns 4, 5, and 6 are nonbasic.
However, since artificial columns 5 and 6 must be excluded, only column 4 can be
used in Eq. (6.26).

To find the range for Dc1, r = 3 is used because the third row determines x1 as a
basic variable. Using Inequalities (6.26) with r = 3 and j = 4, we have

(a)

The range for c1 is obtained by adding the current value of c1 = -1 to both sides of
the inequality,

(b)

Thus, if c1 changes from -1 to -2, the new cost function value is given as

(c)

For the second cost coefficient, r = 2 because the second row determines x2 as a
basic variable. Using Eq. (6.26) with r = 2 and j = 4, the range for Dc2 is obtained as
-• £ Dc2 £ 3.5. Thus the range for c2 with current value c2 = -4 is given as -• £ c2

£ -0.5. If c2 changes from -4 to -3, the new value of the cost function is given as

(d)

The ranges for coefficients of the maximization function (z = x1 + 4x2) are obtained by
multiplying the above ranges by -1, as
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*6.5.4 Changes in the Coefficient Matrix
Any change in the coefficient matrix A in Eq. (6.10) changes the feasible region for the
problem. This may change the optimum solution for the problem depending on whether the
change is associated with a basic variable. Let aij be replaced by aij + Daij. We shall deter-
mine limits for Daij so that with minor computations the optimum solution for the changed
problem can be obtained. We must consider the two cases: (i) when the change is associated
with a nonbasic variable and (ii) when the change is associated with a basic variable. Results
for these two cases are summarized in Theorems 6.9 and 6.10, respectively.

Theorem 6.9 Change Associated with a Nonbasic Variable Let j in aij be such that xj is
not a basic variable and k be the column index for the slack or artificial variable associated
with the constraint of the ith row. Define a vector



(6.27)

where cBi = cj if x*
j
= b*

i
, i = 1 to m (i.e., the index i corresponds to the row that determines

the optimum value of variable xj). Recall that m is the number of constraints. Also define a
scalar

(6.28)

With this notation, if Daij satisfies one of the following sets of inequalities, then the optimum
solution (design variables and cost function) does not change when aij is replaced by any 
aij + Daij:

(6.29)

or,

(6.30)

Also, if R = 0, the solution does not change for any value of Daij.

To use the theorem, a first step is to determine indices j and k. Then we determine the
vector cB of Eq. (6.27), and the scalar R of Eq. (6.28). Conditions of Inequalities (6.29) and
(6.30) then determine whether the given Daij will change the optimum solution. If the inequal-
ities are not satisfied, then we have to re-solve the problem to obtain the new solution.

Theorem 6.10 Change Associated with a Basic Variable Let j in aij be such that xj is a
basic variable and let x*j = b¢t (i.e., t is the row index that determines optimum value of xj).
Let the index k and the scalar R be defined as in Theorem 6.9. Let Daij satisfy the following
inequalities:

(6.31)

(6.32)

and

(6.33)

(6.34)

and

(6.35)

Note that the upper and lower limits on Daij do not exist if the corresponding denominators
in Eqs. (6.31) and (6.33) do not exist. If Daij satisfies the above inequalities, then the optimum
solution of the changed problem can be obtained without any further iterations of the Simplex
method. If b¢r for r = 1 to m is replaced by

(6.36)
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in the final tableau, then the new optimum values for the basic variables can be obtained
when aij is replaced by aij + Daij. In other words, if x*j = b¢r, then x¢j = b≤r, where x¢j refers to the
optimum solution for the changed problem.

To use the theorem, we need to determine indices j, t, and k. Then we determine the con-
stants Ar and Bq from Eqs. (6.32) and (6.34). With these, ranges on Daij can be determined
from Inequalities (6.31) and (6.33). If Daij satisfy these inequalities, Eq. (6.36) determines
the new solution. If the inequalities are not satisfied, the problem must be re-solved for the
new solution.

6.6 Solution of LP Problems Using Excel Solver
Excel Solver can be used to solve linear programming problems. The procedure for solving
the problem is basically the same as explained for the solution of nonlinear equations in
Chapter 4. An Excel worksheet needs to be prepared to enter all the data and equations for
the problem. Then, the Solver dialog box is activated under the Tools menu. There, the objec-
tive function, design variables, and the constraints are defined, and the problem is solved.
We shall demonstrate this process by solving the problem given in Example 6.16.

The Excel worksheet for the problem can be organized in many different ways. Figure 
6-9 shows one possible format for setting up the problem. The original problem is entered
at the top of the sheet just as a reminder. Other cells containing data about the problem are
explained as follows:

A10 to A15: row designations
C11, D11: starting values for the variables x1 and x2, respectively; currently set to 0
C12, D12: objective function coefficients for x1 and x2.
C13 to D15: constraint coefficient matrix
E12: formula to calculate the objective function value using the design

variable values in the cells C11 and D11
E13: formula to calculate the left side of constraint 1
E14: formula to calculate the left side of constraint 2
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FIGURE 6-9 Excel worksheet for the problem of Example 6.16.



E15: formula to calculate the left side of constraint 3
F13 to F15: right side limits for the constraints

The “Formula Auditing” command under the Tools menu is used to display the formulas
in cells E12 to E15; without that command the cells display the current evaluation of the for-
mulas. The formula in cell E12 is entered and the rest of the formulas are generated using
the “copy cell” facility. It is important to note the “$” signs used in referencing some of the
cell in the formulas entered in cell E12, as “=C12*$C$11+D12*$D$11.” The cells that are 
required to remain fixed in the formula while copying, need to have a “$” sign with them.
For example, cells C11 and D11 have design variable values that are needed with each
formula; therefore these cells are entered as $C$11 and $D$11. These cell references do not
change in the formulas in cells E13 to E14. Alternatively, equations can be entered manually
in each cell.

The next step is to identify the objective function, variables, and constraints for Solver.
This is done by invoking Solver under the Tools menu. This is shown in Fig. 6-10 where cell
E12 is identified as the objective function in the Target Cell. The “Max” button is selected
to indicate that the objective is to be maximized. Next, the design variables are entered as
cells C11 and D11 in the “By Changing Cells” text box. Excel will change the values in these
cells as it determines the optimal solution. The constraints are entered by clicking the “Add”
button; a dialog box appears in which the cells for the left and right sides of a constraint are
entered. The final set-up for the present problem in the Solver Parameters box is shown in
Fig. 6-10. Now we click the Options button and identify the problem as a “Linear Model”
and click the Solve button to obtain Solver results.
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Figure 6-11 shows the Solver Results dialog box and the updated worksheet. Since the
“Keep Solver Solution” option is chosen, the Solver updates the values of the cells C11, D11,
and E12 to E15. Three reports are produced in separate worksheets, “Answers, Sensitivity,
and Limits.” Any of these can be highlighted before clicking “OK.” Figure 6-12 shows the
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FIGURE 6-11 Solver Results dialog box for the problem of Example 6.16.

Microsoft Excel 10.0 Answer Report
Worksheet: [Example 6.16.xls]Example 6.16

Target Cell (Max)

Cell Name Final ValueOriginal Value

$E$12 Objective function: max Sum 0 4.333333333

Adjustable Cells

Cell Name Original Value Final Value

$C$11 Variable value x1 0 1.666666667
$D$11 Variable value x2 0 0.666666667

Constraints

Cell Name Cell Value Formula Status Slack

$E$13 Constraint 1 Sum of LHS 3 $E$13<=$F$13 Not Binding 2
$E$15 Constraint 3 Sum of LHS 1 $E$15>=$F$15 Binding 0
$E$14 Constraint 2 Sum of LHS 4 $E$14=$F$14 Not Binding 0
$C$11 Variable value x1 1.666666667 $C$11>=0 Not Binding 1.666666667
$D$11 Variable value x2 0.666666667 $D$11>=0 Not Binding 0.666666667  

FIGURE 6-12 Answer Report from Solver for Example 6.16.



Answer Report; it is seen that the solution obtained is the same as that given in Table 6-19.
Figure 6-13 shows the Sensitivity Report for the problem. It gives ranges for the right side
parameters and the objective function coefficients. It is seen that these ranges match with the
values obtained for Examples 6.18 and 6.20. The Limits Report (not shown) gives the lower
and upper limits for each variable and the corresponding value of the objective function.
Solver determines these limits by rerunning the optimizer with all variables fixed to their
optimal values except one which is optimized.

Exercises for Chapter 6

Section 6.1 Definition of Standard Linear Programming Problem

6.1 Answer True or False.
1. A linear programming problem having maximization of a function cannot be 

transcribed into the standard LP form.
2. A surplus variable must be added to a “£ type” constraint in the standard LP

formulation.
3. A slack variable for an LP constraint can have a negative value.
4. A surplus variable for an LP constraint must be nonnegative.
5. If a “£ type” constraint is active, its slack variable must be positive.
6. If a “≥ type” constraint is active, its surplus variable must be zero.
7. In the standard LP formulation, the resource limits are free in sign.
8. Only “£ type” constraints can be transcribed into the standard LP form.
9. Variables that are free in sign can be treated in any LP problem.

10. In the standard LP form, all the cost coefficients must be positive.
11. All variables must be nonnegative in the standard LP definition.
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Microsoft Excel 10.0 Sensitivity Report

Worksheet: [Example 6.16.xls]Example 6.16

Adjustable Cells

Final Reduced Objective Allowable Allowable

Cell Name Value Cost Coefficient Increase Decrease

$C$11 Variable value x1 1.666667 0 1 7 1E+30

$D$11 Variable value x2 0.666667 0 4 1E+30 3.5

Constraints

Final Shadow Constraint Allowable Allowable

Cell Name Value Price R.H. Side Increase Decrease

$E$13 Constraint 1 Sum of LHS 0 53 1E+30 2

$E$15 Constraint 3 Sum of LHS –2.3333331 1 1 2

$E$14 Constraint 2 Sum of LHS 1.66666674 4 2 2  

FIGURE 6-13 Sensitivity Report from Solver for Example 6.16.



Convert the following problems to the standard LP form.

6.2 Minimize f = 5x1 + 4x2 - x3

subject to x1 + 2x2 - x3 ≥ 1
2x1 + x2 + x3 ≥ 4
x1, x2 ≥ 0; x3 is unrestricted in sign

6.3 Maximize z = x1 + 2x2

subject to -x1 + 3x2 £ 10
x1 + x2 £ 6
x1 - x2 £ 2
x1 + 3x2 ≥ 6
x1, x2 ≥ 0

6.4 Minimize f = 2x1 - 3x2

subject to x1 + x2 £ 1
-2x1 + x2 ≥ 2
x1, x2 ≥ 0

6.5 Maximize z = 4x1 + 2x2

subject to -2x1 + x2 £ 4
x1 + 2x2 ≥ 2
x1, x2 ≥ 0

6.6 Maximize z = x1 + 4x2

subject to x1 + 2x2 £ 5
x1 + x2 = 4
x1 - x2 ≥ 3
x1, x2 ≥ 0

6.7 Maximize z = x1 + 4x2

subject to x1 + 2x2 £ 5
2x1 + x2 = 4
x1 - x2 ≥ 1
x1, x2 ≥ 0

6.8 Minimize f = 9x1 + 2x2 + 3x3

subject to -2x1 - x2 + 3x3 £ -5
x1 - 2x2 + 2x3 ≥ -2
x1, x2, x3 ≥ 0

6.9 Minimize f = 5x1 + 4x2 - x3

subject to x1 + 2x2 - x3 ≥ 1
2x1 + x2 + x3 ≥ 4
x1, x2 ≥ 0; x3 is unrestricted in sign

6.10 Maximize z = -10x1 - 18x2

subject to x1 - 3x2 £ -3
2x1 + 2x2 ≥ 5
x1, x2 ≥ 0

6.11 Minimize f = 20x1 - 6x2

subject to 3x1 - x2 ≥ 3
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-4x1 + 3x2 = -8
x1, x2 ≥ 0

6.12 Maximize z = 2x1 + 5x2 - 4.5x3 + 1.5x4

subject to 5x1 + 3x2 + 1.5x3 £ 8
1.8x1 - 6x2 + 4x3 + x4 ≥ 3
-3.6x1 + 8.2x2 + 7.5x3 + 5x4 = 15
xi ≥ 0; i = 1 to 4

6.13 Minimize f = 8x1 - 3x2 + 15x3

subject to 5x1 - 1.8x2 - 3.6x3 ≥ 2
3x1 + 6x2 + 8.2x3 ≥ 5
1.5x1 - 4x2 + 7.5x3 ≥ -4.5
-x2 + 5x3 ≥ 1.5
x1, x2 ≥ 0; x3 is unrestricted in sign

6.14 Maximize z = 10x1 + 6x2

subject to 2x1 + 3x2 £ 90
4x1 + 2x2 £ 80
x2 ≥ 15
5x1 + x2 = 25
x1, x2 ≥ 0

6.15 Maximize z = -2x1 + 4x2

subject to 2x1 + x2 ≥ 3
2x1 + 10x2 £ 18
x1, x2 ≥ 0

6.16 Maximize z = x1 + 4x2

subject to x1 + 2x2 £ 5
2x1 + x2 = 4

x1 - x2 ≥ 3
x1 ≥ 0, x2 is unrestricted in sign

6.17 Minimize f = 3x1 + 2x2

subject to x1 - x2 ≥ 0

x1 + x2 ≥ 2
x1, x2 ≥ 0

6.18 Maximize z = 3x1 + 2x2

subject to x1 - x2 ≥ 0
x1 + x2 ≥ 2
2x1 + x2 £ 6
x1, x2 ≥ 0

6.19 Maximize z = x1 + 2x2

subject to 3x1 + 4x2 £ 12

x1 + 3x2 ≥ 3
x1 ≥ 0; x2 is unrestricted in sign
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Section 6.2 Basic Concepts Related to Linear Programming Problems

6.20 Answer True or False.
1. In the standard LP definition, the number of constraint equations (i.e., rows in the

matrix A) must be less than the number of variables.
2. In an LP problem, the number of “£ type” constraints cannot be more than the

number of design variables.
3. In an LP problem, the number of “≥ type” constraints cannot be more than the

number of design variables.
4. An LP problem has an infinite number of basic solutions.
5. A basic solution must have zero value for some of the variables.
6. A basic solution can have negative values for some of the variables.
7. A degenerate basic solution has exactly m variables with nonzero values, where m is

the number of equations.
8. A basic feasible solution has all variables with nonnegative values.
9. A basic feasible solution must have m variables with positive values, where m is the

number of equations.
10. The optimum point for an LP problem can be inside the feasible region.
11. The optimum point for an LP problem lies at a vertex of the feasible region.
12. The solution to any LP problem is only a local optimum.
13. The solution to any LP problem is a unique global optimum.

Find all the basic solutions for the following LP problems using the Gauss-Jordan elimination
method. Identify basic feasible solutions and show them on graph paper.

6.21 Maximize z = x1 + 4x2

subject to x1 + 2x2 £ 5
2x1 + x2 = 4

x1 - x2 ≥ 1
x1, x2 ≥ 0

6.22 Maximize z = -10x1 - 18x2

subject to x1 - 3x2 £ -3

2x1 + 2x2 ≥ 5
x1, x2 ≥ 0

6.23 Maximize z = x1 + 2x2

subject to 3x1 + 4x2 £ 12

x1 + 3x2 ≥ 3
x1 ≥ 0, x2 is unrestricted in sign

6.24 Minimize f = 20x1 - 6x2

subject to 3x1 - x2 ≥ 3
-4x1 + 3x2 = -8
x1, x2 ≥ 0

6.25 Maximize z = 5x1 - 2x2

subject to 2x1 + x2 £ 9
x1 - 2x2 £ 2
-3x1 + 2x2 £ 3
x1, x2 ≥ 0
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6.26 Maximize z = x1 + 4x2

subject to x1 + 2x2 £ 5
x1 + x2 = 4
x1 - x2 ≥ 3
x1, x2 ≥ 0

6.27 Minimize f = 5x1 + 4x2 - x3

subject to x1 + 2x2 - x3 ≥ 1

2x1 + x2 + x3 ≥ 4
x1, x3 ≥ 0; x2 is unrestricted in sign

6.28 Minimize f = 9x1 + 2x2 + 3x3

subject to -2x1 - x2 + 3x3 £ -5
x1 - 2x2 + 2x3 ≥ -2
x1, x2, x3 ≥ 0

6.29 Maximize z = 4x1 + 2x2

subject to -2x1 + x2 £ 4
x1 + 2x2 ≥ 2
x1, x2 ≥ 0

6.30 Maximize z = 3x1 + 2x2

subject to x1 - x2 ≥ 0
x1 + x2 ≥ 2
x1, x2 ≥ 0

6.31 Maximize z = 4x1 + 5x2

subject to -x1 + 2x2 £ 10
3x1 + 2x2 £ 18
x1, x2 ≥ 0

Section 6.3 Basic Ideas and Concepts of the Simplex Method

Solve the following problems by the Simplex method and verify the solution graphically 
whenever possible.

6.32 Maximize z = x1 + 0.5x2

subject to 6x1 + 5x2 £ 30
3x1 + x2 £ 12
x1 + 3x2 £ 12
x1, x2 ≥ 0

6.33 Maximize z = 3x1 + 2x2

subject to 3x1 + 2x2 £ 6
-4x1 + 9x2 £ 36
x1, x2 ≥ 0

6.34 Maximize z = x1 + 2x2

subject to -x1 + 3x2 £ 10
x1 + x2 £ 6
x1 - x2 £ 2
x1, x2 ≥ 0
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6.35 Maximize z = 2x1 + x2

subject to -x1 + 2x2 £ 10
3x1 + 2x2 £ 18
x1, x2 ≥ 0

6.36 Maximize z = 5x1 - 2x2

subject to 2x1 + x2 £ 9
x1 - x2 £ 2
-3x1 + 2x2 £ 3
x1, x2 ≥ 0

6.37 Minimize f = 2x1 - x2

subject to -x1 + 2x2 £ 10
3x1 + 2x2 £ 18
x1, x2 ≥ 0

6.38 Minimize f = -x1 + x2

subject to 2x1 + x2 £ 4
-x1 - 2x2 ≥ -4
x1, x2 ≥ 0

6.39 Maximize z = 2x1 - x2

subject to x1 + 2x2 £ 6

2 ≥ x1

x1, x2 ≥ 0

6.40 Maximize z = x1 + x2

subject to 4x1 + 3x2 £ 12
x1 + 2x2 £ 4
x1, x2 ≥ 0

6.41 Maximize z = -2x1 + x2

subject to x1 £ 2
x1 + 2x2 £ 6
x1, x2 ≥ 0

6.42 Maximize z = 2x1 + x2

subject to 4x1 + 3x2 £ 12
x1 + 2x2 £ 4
x1, x2 ≥ 0

6.43 Minimize f = 9x1 + 2x2 + 3x3

subject to 2x1 + x2 - 3x3 ≥ -5
x1 - 2x2 + 2x3 ≥ -2
x1, x2, x3 ≥ 0

6.44 Maximize z = x1 + x2

subject to 4x1 + 3x2 £ 9
x1 + 2x2 £ 6
2x1 + x2 £ 6
x1, x2 ≥ 0
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6.45 Minimize f = -x1 - 4x2

subject to x1 + x2 £ 16
x1 + 2x2 £ 28
24 ≥ 2x1 + x2

x1, x2 ≥ 0

6.46 Minimize f = x1 - x2

subject to 4x1 + 3x2 £ 12
x1 + 2x2 £ 4
4 ≥ 2x1 + x2

x1, x2 ≥ 0

6.47 Maximize z = 2x1 + 3x2

subject to x1 + x2 £ 16
-x1 - 2x2 ≥ -28
24 ≥ 2x1 + x2

x1, x2 ≥ 0

6.48 Maximize z = x1 + 2x2

subject to 2x1 - x2 ≥ 0
2x1 + 3x2 ≥ -6
x1, x2 ≥ 0

6.49 Maximize z = 2x1 + 2x2 + x3

subject to 10x1 + 9x3 £ 375
x1 + 3x2 + x3 £ 33
2 ≥ x3

x1, x2, x3 ≥ 0

6.50 Maximize z = x1 + 2x2

subject to -2x1 - x2 ≥ -5
3x1 + 4x2 £ 10
x1 £ 2
x1, x2 ≥ 0

6.51 Minimize f = -2x1 - x2

subject to -2x1 - x2 ≥ -5
3x1 + 4x2 £ 10
x1 £ 3
x1, x2 ≥ 0

6.52 Maximize z = 12x1 + 7x2

subject to 2x1 + x2 £ 5
3x1 + 4x2 £ 10
x1 £ 2
x2 £ 3
x1, x2 ≥ 0

6.53 Maximize z = 10x1 + 8x2 + 5x3

subject to 10x1 + 9x2 £ 375
5x1 + 15x2 + 3x3 £ 35
3 ≥ x3

x1, x2, x3 ≥ 0
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Section 6.4 Two Phase Simplex Method—Artificial Variables

6.54 Answer True or False.
1. A pivot step of the Simplex method replaces a current basic variable with a 

nonbasic variable.
2. The pivot step brings the design point to the interior of the constraint set.
3. The pivot column in the Simplex method is determined by the largest reduced

cost coefficient corresponding to a basic variable.
4. The pivot row in the Simplex method is determined by the largest ratio of right

side parameters with the positive coefficients in the pivot column.
5. The criterion for a current basic variable to leave the basic set is to keep the new

solution basic and feasible.
6. A move from one basic feasible solution to another corresponds to extreme

points of the convex polyhedral set.
7. A move from one basic feasible solution to another can increase the cost func-

tion value in the Simplex method.
8. The right sides in the Simplex tableau can assume negative values.
9. The right sides in the Simplex tableau can become zero.

10. The reduced cost coefficients corresponding to the basic variables must be posi-
tive at the optimum.

11. If a reduced cost coefficient corresponding to a nonbasic variable is zero at the
optimum point, there may be multiple solutions to the problem.

12. If all elements in the pivot column are negative, the problem is infeasible.
13. The artificial variables must be positive in the final solution.
14. If artificial variables are positive at the final solution, the artificial cost function

is also positive.
15. If artificial cost function is positive at the optimum solution, the problem is

unbounded.

Solve the following LP problems by the Simplex method and verify the solution graphically,
whenever possible.

6.55 Maximize z = x1 + 2x2

subject to -x1 + 3x2 £ 10
x1 + x2 £ 6
x1 - x2 £ 2
x1 + 3x2 ≥ 6
x1, x2 ≥ 0

6.56 Maximize z = 4x1 + 2x2

subject to -2x1 + x2 £ 4
x1 + 2x2 ≥ 2
x1, x2 ≥ 0

6.57 Maximize z = x1 + 4x2

subject to x1 + 2x2 £ 5
x1 + x2 = 4
x1 - x2 ≥ 3
x1, x2 ≥ 0

6.58 Maximize z = x1 + 4x2

subject to x1 + 2x2 £ 5
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2x1 + x2 = 4
x1 - x2 ≥ 1
x1, x2 ≥ 0

6.59 Minimize f = 3x1 + x2 + x3

subject to -2x1 - x2 + 3x3 £ -5
x1 - 2x2 + 3x3 ≥ -2
x1, x2, x3 ≥ 0

6.60 Minimize f = 5x1 + 4x2 - x3

subject to x1 + 2x2 - x3 ≥ 1
2x1 + x2 + x3 ≥ 4
x1, x2 ≥ 0; x3 is unrestricted in sign

6.61 Maximize z = -10x1 - 18x2

subject to x1 - 3x2 £ -2
2x1 + 2x2 ≥ 5
x1, x2 ≥ 0

6.62 Minimize f = 20x1 - 6x2

subject to 3x1 - x2 ≥ 3
-4x1 + 3x2 = -8
x1, x2 ≥ 0

6.63 Maximize z = 2x1 + 5x2 - 4.5x3 + 1.5x4

subject to 5x1 + 3x2 + 1.5x3 £ 8
1.8x1 - 6x2 + 4x3 + x4 ≥ 3
-3.6x1 + 8.2x2 + 7.5x3 + 5x4 = 15
xi ≥ 0; i = 1 to 4

6.64 Minimize f = 8x - 3x2 + 15x3

subject to 5x1 - 1.8x2 - 3.6x3 ≥ 2
3x1 + 6x2 + 8.2x3 ≥ 5
1.5x1 - 4x2 + 7.5x3 ≥ -4.5
-x2 + 5x3 ≥ 1.5
x1, x2 ≥ 0; x3 is unrestricted in sign

6.65 Maximize z = 10x1 + 6x2

subject to 2x1 + 3x2 £ 90
4x1 + 2x2 £ 80
x2 ≥ 15
5x1 + x2 = 25
x1, x2 ≥ 0

6.66 Maximize z = -2x1 + 4x2

subject to 2x1 + x2 ≥ 3
2x1 + 10x2 £ 18
x1, x2 ≥ 0

6.67 Maximize z = x1 + 4x2

subject to x1 + 2x2 £ 5
2x1 + x2 = 4
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x1 - x2 ≥ 3
x1 ≥ 0; x2 is unrestricted in sign

6.68 Minimize f = 3x1 + 2x2

subject to x1 - x2 ≥ 0
x1 + x2 ≥ 2
x1, x2 ≥ 0

6.69 Maximize z = 3x1 + 2x2

subject to x1 - x2 ≥ 0
x1 + x2 ≥ 2
2x1 + x2 £ 6
x1, x2 ≥ 0

6.70 Maximize z = x1 + 2x2

subject to 3x1 + 4x2 £ 12
x1 + 3x2 £ 3
x1 ≥ 0; x2 is unrestricted in sign

6.71 Minimize f = x1 + 2x2

subject to -x1 + 3x2 £ 20
x1 + x2 £ 6
x1 - x2 £ 12
x1 + 3x2 ≥ 6
x1, x2 ≥ 0

6.72 Maximize z = 3x1 + 8x2

subject to 3x1 + 4x2 £ 20
x1 + 3x2 ≥ 6
x1 ≥ 0; x2 is unrestricted in sign

6.73 Minimize f = 2x1 - 3x2

subject to x1 + x2 £ 1
-2x1 + x2 ≥ 2
x1, x2 ≥ 0

6.74 Minimize f = 3x1 - 3x2

subject to -x1 + x2 £ 0
x1 + x2 ≥ 2
x1, x2 ≥ 0

6.75 Minimize f = 5x1 + 4x2 - x3

subject to x1 + 2x2 - x3 ≥ 1
2x1 + x2 + x3 ≥ 4
x1, x2 ≥ 0; x3 is unrestricted in sign

6.76 Maximize z = 4x1 + 5x2

subject to x1 - 2x2 £ -10
3x1 + 2x2 £ 18
x1, x2 ≥ 0

6.77 Formulate and solve the optimum design problem of Exercise 2.2. Verify the solution
graphically.
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6.78 Formulate and solve the optimum design problem of Exercise 2.6. Verify the solution
graphically.

6.79 Formulate and solve the optimum design problem of Exercise 2.7. Verify the solution
graphically.

6.80 Formulate and solve the optimum design problem of Exercise 2.8. Verify the solution
graphically.

6.81* Formulate and solve the optimum design problem of Exercise 2.18.

6.82* Formulate and solve the optimum design problem of Exercise 2.20.

6.83 Solve the “saw mill” problem formulated in Section 2.4.

6.84* Formulate and solve the optimum design problem of Exercise 2.21.

6.85* Obtain solutions for the three formulations of the “cabinet design” problem given in
Section 2.6. Compare solutions for the three formulations.

Section 6.5 Postoptimality Analysis

6.86 Formulate and solve the “crude oil” problem stated in Exercise 2.2. What is the effect
on the cost function if the market for lubricating oil suddenly increases to 12,000
barrels? What is the effect on the solution if the price of Crude A drops to $24/bbl.
Verify the solutions graphically.

6.87 Formulate and solve the problem stated in Exercise 2.6. What are the effects of the 
following changes? Verify your solutions graphically.
1. The supply of material C increases to 120kg.
2. The supply of material D increases to 100kg.
3. The market for product A decreases to 60.
4. The profit for A decreases to $8/kg.

Solve the following problems and determine Lagrange multipliers for the constraints at the
optimum point.

6.88 Exercise 6.55 6.89 Exercise 6.56 6.90 Exercise 6.57

6.91 Exercise 6.58 6.92 Exercise 6.59 6.93 Exercise 6.60

6.94 Exercise 6.61 6.95 Exercise 6.62 6.96 Exercise 6.63

6.97 Exercise 6.64 6.98 Exercise 6.65 6.99 Exercise 6.66

6.100 Exercise 6.67 6.101 Exercise 6.68 6.102 Exercise 6.69

6.103 Exercise 6.70 6.104 Exercise 6.71 6.105 Exercise 6.72

6.106 Exercise 6.73 6.107 Exercise 6.74 6.108 Exercise 6.75

6.109 Exercise 6.76

Solve the following problems and determine ranges for the right side parameters.

6.110 Exercise 6.55 6.111 Exercise 6.56 6.112 Exercise 6.57

6.113 Exercise 6.58 6.114 Exercise 6.59 6.115 Exercise 6.60

6.116 Exercise 6.61 6.117 Exercise 6.62 6.118 Exercise 6.63

6.119 Exercise 6.64 6.120 Exercise 6.65 6.121 Exercise 6.66
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6.122 Exercise 6.67 6.123 Exercise 6.68 6.124 Exercise 6.69

6.125 Exercise 6.70 6.126 Exercise 6.71 6.127 Exercise 6.72

6.128 Exercise 6.73 6.129 Exercise 6.74 6.130 Exercise 6.75

6.131 Exercise 6.76

Solve the following problems and determine ranges for the coefficients of the 
objective function.

6.132 Exercise 6.55 6.133 Exercise 6.56 6.134 Exercise 6.57

6.135 Exercise 6.58 6.136 Exercise 6.59 6.137 Exercise 6.60

6.138 Exercise 6.61 6.139 Exercise 6.62 6.140 Exercise 6.63

6.141 Exercise 6.64 6.142 Exercise 6.65 6.143 Exercise 6.66

6.144 Exercise 6.67 6.145 Exercise 6.68 6.146 Exercise 6.69

6.147 Exercise 6.70 6.148 Exercise 6.71 6.149 Exercise 6.72

6.150 Exercise 6.73 6.151 Exercise 6.74 6.152 Exercise 6.75

6.153 Exercise 6.76

6.154* Formulate and solve the optimum design problem of Exercise 2.2. Determine
Lagrange multipliers for the constraints. Calculate the ranges for the right side para-
meters, and the coefficients of the objective function. Verify your results graphically.

6.155* Formulate and solve the optimum design problem of Exercise 2.6. Determine
Lagrange multipliers for the constraints. Calculate the ranges for the parameters of
the right side and the coefficients of the objective function. Verify your results 
graphically.

6.156 Formulate and solve the “diet” problem stated in Exercise 2.7. Investigate the effect
on the optimum solution of the following changes:
1. The cost of milk increases to $1.20/kg.
2. The need for vitamin A increases to 6 units.
3. The need for vitamin B decreases to 3 units.
Verify the solution graphically.

6.157 Formulate and solve the problem stated in Exercise 2.8. Investigate the effect on the
optimum solution of the following changes:
1. The supply of empty bottles decreases to 750.
2. The profit on a bottle of wine decreases to $0.80.
3. Only 200 bottles of alcohol can be produced.

6.158* Formulate and solve the problem stated in Exercise 2.18. Investigate the effect on the
optimum solution of the following changes:
1. The profit on margarine increases to $0.06/kg.
2. The supply of milk base substances increases to 2500kg
3. The supply of soybeans decreases to 220,000kg.

6.159 Solve the “saw mill” problem formulated in Section 2.4. Investigate the effect on the
optimum solution of the following changes:
1. The transportation cost for the logs increases to $0.16 per kilometer per log.
2. The capacity of Mill A decreases to 200 logs/day.
3. The capacity of Mill B decreases to 270 logs/day.
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6.160* Formulate and solve the problem stated in Exercise 2.20. Investigate the effect on the
optimum solution of the following changes:
1. Due to demand on capital, the available cash decreases to $1.8 million.
2. The initial investment for truck B increases to $65,000.
3. Maintenance capacity decreases to 28 trucks.

6.161* Formulate and solve the “steel mill” problem stated in Exercise 2.21. Investigate the
effect on the optimum solution of the following changes:
1. The capacity of reduction plant 1 increases to 1,300,000.
2. The capacity of reduction plant 2 decrease to 950,000.
3. The capacity of fabricating plant 2 increases to 250,000.
4. The demand for product 2 increases to 130,000.
5. The demand for product 1 decreases to 280,000.

6.162* Obtain solutions for the three formulations of the “cabinet design” problem given in
Section 2.6. Compare the three formulations. Investigate the effect on the optimum
solution of the following changes:
1. Bolting capacity is decreased to 5500/day.
2. The cost of riveting the Cl component increases to $0.70.
3. The company must manufacture only 95 devices per day.

6.163 Given the following problem:
minimize f = 2x1 - 4x2

subject to g1 = 10x1 + 5x2 £ 15
g2 = 4x1 + 10x2 £ 36
x1 ≥ 0, x2 ≥ 0

Slack variables for g1 and g2 are x3 and x4, respectively. The final tableau for the
problem is given in Table E6.163. Using the given tableau:

1. Determine the optimum values of f and x.
2. Determine Lagrange multipliers for g1 and g2.
3. Determine the ranges for the right sides of g1 and g2.
4. What is the smallest value that f can have, with the current basis, if the right side

of g1 is changed? What is the right side of g1 for that case?
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TABLE E6.163 Final Tableau for Exercise 6.163

x1 x2 x3 x4 b

2 1 1–
5

0 3

-16 0 -2 1 6

10 0 4–
5

0 f + 12
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Upon completion of this chapter, you will be able to:

• Derive the Simplex method and understand the theory behind its steps

• Use an alternate form of the two-phase Simplex method called the Big-M method

• Write a dual problem for the given LP problem

• Recover solution for the original LP problem from the solution of the dual
problem

In this chapter, some additional topics related to linear programming problems are pre-
sented. These topics are usually not covered in an undergraduate course on optimum design.
They may also be omitted on the first independent reading of the book.

7.1 Derivation of the Simplex Method
In the previous chapter, we presented the basic ideas and concepts of the Simplex method.
The steps of the method were described and illustrated in several examples. In this section,
we describe the theory that leads to the steps used in the example problems.

7.1.1 Selection of a Basic Variable That Should Become Nonbasic
Derivation of the Simplex method is based on answering the two questions posed earlier: (1)
which current nonbasic variable should become basic, and (2) which current basic variable
should become nonbasic. We will answer the second question in this section. Assume for the
moment that xr is a nonbasic variable tapped to become basic. This indicates that the rth non-
basic column should replace some current basic column. After this interchange, there should
be all zero elements in the rth column except a positive unit element at one location.

To determine a current basic variable that should become nonbasic, we need to determine
the pivot row for the elimination process. This way the current basic variable associated with
that row will become nonbasic after the elimination step. To determine the pivot row, we
transfer all the terms associated with the current nonbasic variable xr (tapped to become basic)
to the right side of the canonical form of Eq. (6.13). The system of equations becomes:



Since xr is to become a basic variable, its value should become nonnegative in the new
solution. The new solution must also remain feasible. The right sides of Eq. (7.1) represent
values of the basic variables for the next Simplex iteration once xr is assigned a value greater
than or equal to 0. An examination of these right sides shows that xr cannot increase arbi-
trarily. The reason is that if xr becomes arbitrarily large, then some of the new right side para-
meters (bi - ai,r xr), i = 1 to m may become negative. Since right side parameters are the new
values of the basic variables, the new basic solution will not be feasible. Thus for the new
solution to be basic and feasible, the following constraints must be satisfied by the right sides
of Eq. (7.1) in selecting a current basic variable that should become nonbasic (i.e., attain zero
value):

(7.2)

Any ai,r that are nonpositive pose no limit on how much xr can be increased since Inequal-
ity (7.2) remains satisfied; recall that bi ≥ 0. For a positive ai,r, xr can be increased from zero
until one of the inequalities in Eq. (7.2) becomes active, i.e., one of the right sides of Eq.
(7.1) becomes zero. A further increase would violate the nonnegativity conditions of Eq. (7.2).
Thus, the maximum value that the incoming variable xr can take is given as

(7.3)

where s is the index of the smallest ratio. Equation (7.3) says that we take ratios of the right
side parameters bi with the positive elements in the rth column (air’s) and we select the row
index s giving the smallest ratio. In the case of a tie, the choice for the index s is arbitrary
among the tying indices and in such a case the resulting basic feasible solution may be degen-
erate. Thus, Eq. (7.3) identifies a row with the smallest ratio bi/ai,r. The basic variable xs asso-
ciated with this row should become nonbasic. If all ai,r are nonpositive in the rth column,
then xr can be increased indefinitely. This indicates that the LP problem is unbounded. Any
practical problem with this situation is not properly constrained so the problem formulation
should be reexamined.

7.1.2 Selection of a Nonbasic Variable That Should Become Basic
We now know how to select a basic variable that should replace a nonbasic variable. To
answer the first question posed earlier, let us see how we can identify the nonbasic variable
that should become basic. The main idea of bringing a nonbasic variable into the basic set
is to improve the design, i.e., to reduce the current value of the cost function. A clue to the
desired improvement is obtained if we examine the cost function expression. To do this we
need to write the cost function in terms of the nonbasic variables only. We substitute for the
current values of basic variables from Eq. (6.13) into the cost function to eliminate the basic
variables. Current values of the basic variables are given in terms of the nonbasic variables
as follows:
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(7.1)



(7.4)

Substituting Eq. (7.4) into the cost function expression in Eq. (6.7) and simplifying, we 
obtain an expression for the cost function in terms of the nonbasic variables (xj, j = m + 1 to n) as

(7.5)

where f0 is the current value of the cost function given as

(7.6)

and the parameters c¢j are

(7.7)

The cost coefficients c¢j of the nonbasic variables play a key role in the Simplex method
and are called the reduced or relative cost coefficients. They are used to identify a nonbasic
variable that should become basic to reduce the current value of the cost function. Express-
ing the cost function in terms of the current nonbasic variables is a key step in the Simplex
method. We have seen that this is not difficult to accomplish because the Gaussian elimina-
tion steps can be used routinely on the cost function expression to eliminate basic variables
from it. Once this has been done, the reduced cost coefficients c¢j can be readily identified.

In general the reduced cost coefficients c¢j of the nonbasic variables may be positive, neg-
ative, or zero. Let one of c¢j be negative. Then, note from Eq. (7.5) that if a positive value is
assigned to the associated nonbasic variable (i.e., it is made basic), the value of f will decrease.
If more than one negative c¢j is present, a widely used rule of thumb is to choose the non-
basic variable associated with the smallest c¢j (i.e., negative c¢j with the largest absolute value)
to become basic. Thus, if any c¢j for (m + 1) £ j £ n (for nonbasic variables) is negative, then
it is possible to find a new basic feasible solution (if one exists) that will further reduce the
cost function. If a c¢j is zero, then the associated nonbasic variable can be made basic without
affecting the cost function value. If all c¢j are nonnegative, then it is not possible to reduce
the cost function any further and the current basic feasible solution is optimum. These results
have been summarized previously in Theorems 6.3 and 6.4.

Note that when all c¢j in the nonbasic columns are positive, the optimum solution is unique.
If at least one c¢j (reduced cost coefficient associated with a nonbasic variable) is zero, then
there is a possibility of alternate optima. If the nonbasic variable associated with a zero
reduced cost coefficient can be made basic according to the foregoing procedure, the extreme
point corresponding to alternate optima can be obtained. Since the reduced cost coefficient
is zero, the optimum cost function value will not change. Any point on the line segment
joining the optimum extreme points also corresponds to an optimum. Note that these optima
are global as opposed to local, although there is no distinct global optimum. Geometrically,
multiple optima for an LP problem imply that the cost function hyperplane is parallel to one
of the active constraint hyperplanes.

Note that if the nonbasic variable associated with the negative reduced cost coefficient c¢j
cannot be made basic (e.g., when all aij in the c¢j column are negative), then the feasible region
is unbounded.
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7.2 Alternate Simplex Method
A slightly different procedure can be used to solve linear programming problems having “≥
type” and equality constraints. The artificial variables are introduced into the problem as
before. However, the artificial cost function is not used. Instead, the original cost function is
augmented by adding to it the artificial variables multiplied by large positive constants. The
additional terms act as penalties for having artificial variables in the problem. Since artifi-
cial variables are basic, they need to be eliminated from the cost function before the Simplex
method can be used to solve the preceding modified problem. This can easily be done by
using the appropriate equations that contain artificial variables. Once this has been done, the
regular Simplex method can be used to solve the problem. We illustrate the procedure with
Example 7.1.
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EXAMPLE 7.1 The Big-M Method for Equality and “≥ Type”
Constraints

Find the numerical solution for the problem given in Example 6.11 using the alter-
nate Simplex procedure: maximize z = y1 + 2y2 subject to 3y1 + 2y2 £ 12, 2y1 + 3y2 ≥
6, y1 ≥ 0, y2 is unrestricted in sign.

Solution. Since y2 is unrestricted, it has been defined as y2 = x2 - x3. Converting the
problem to the standard form, we obtain:

(a)

subject to

(b)

(c)

(d)

Where x4 is a slack variable, x5 is a surplus variable, and x6 is an artificial variable.
Following the alternate Simplex procedure, we add Mx6 (with, say, M = 10) to the cost
function and obtain f = -x1 - 2x2 + 2x3 + 10x6. Note that if there is a feasible solution
to the problem, then all artificial variables will become nonbasic, i.e., zero, and we
will recover the original cost function. Also note that if there are other artificial vari-
ables in the problem, they will be multiplied by M and added to the cost function.
This is sometimes called the Big-M Method. Now substituting for x6 from the second
constraint into the foregoing cost function, we get

This is written as -21x1 - 32x2 + 32x3 + 10x5 = f - 60 in the Simplex tableau. With
this cost function, iterations of the Simplex method are shown in Table 7-1. It can be
seen that the final solution is the same as given in Table 6-14 and Fig. 6-4.

f x x x x x x x x x x x= - - + + - - + +( ) = - - + +1 2 3 1 2 3 5 1 2 3 52 2 10 6 2 3 3 60 21 32 32 10

x ii ≥ =0 1 6;  to 

2 3 3 61 2 3 5 6x x x x x+ - - + =

3 2 2 121 2 3 4x x x x+ - + =

minimize f x x x= - - +1 2 32 2



7.3 Duality in Linear Programming
Associated with every LP problem is another problem called the dual. The original LP
is called the primal problem. Some theorems related to dual and primal problems are stated
and explained. Dual variables are related to Lagrange multipliers of the primal constraints.
Solution of the dual problem can be recovered from the final primal solution, and vice 
versa. Therefore, only one of the two problems needs to be solved. This is illustrated with
examples.

7.3.1 Standard Primal LP
There are several ways of defining the primal and the corresponding dual problems. We shall
define a standard primal problem as: find x1, x2, . . . , xn to maximize a primal objective 
function

(7.8)

subject to the constraints

(7.9)
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TABLE 7-1 Solution for Example 7.1 by Alternate Simplex Method

Initial tableau: x6 is identified to be replaced with x2 in the basic set.

BasicØ x1 x2 x3 x4 x5 x6 b Ratio

x4 3 2 -2 1 0 0 12 12–
2

= 6

x6 2 3 -3 0 -1 1 6 6–
3

= 2

Cost -21 -32 32 0 10 0 f - 60

Second tableau: x4 is identified to be replaced with x5 in the basic
set.

BasicØ x1 x2 x3 x4 x5 x6 b Ratio

x4
5–
3

0 0 1 2–
3

- 2–
3

8 8—
2/3

= 12

x2
2–
3

1 -1 0 - 1–
3

1–
3

2 Negative

Cost 1–
3

0 0 0 - 2–
3

32–
3

f + 4

Third tableau: Reduced cost coefficients in nonbasic columns are
nonnegative; the tableau gives the optimum point.

BasicØ x1 x2 x3 x4 x5 x6 b

x4
5–
2

0 0 3–
2

1 -1 12

x2
3–
2

1 -1 1–
2

0 0 6

Cost 2 0 0 1 0 10 f + 12



We shall use a subscript p on z to indicate the primal objective function. Also z is used as
the maximization function. It must be understood that in the standard LP problem defined in
Eqs. (6.4) to (6.6), all constraints were equalities and right side parameters bi were non-
negative. However, in the definition of the standard primal problem, all constraints must be
“£ type” and there is no restriction on the sign of the right side parameters ei. So, “≥ type”
constraints must be multiplied by -1 to convert them to “£ type.” Equalities should be also
converted to “£ type” constraints. This is explained later in this section. Note that to solve
the preceding primal LP problem by the Simplex method, we must transform it into the stan-
dard Simplex form of Eqs. (6.4) to (6.6).

7.3.2 Dual LP Problem
The dual for the standard primal is defined as follows: find dual variables y1, y2, . . . , ym to
minimize a dual objective function

(7.10)

subject to the constraints

(7.11)

We use a subscript d on f to indicate that it is the cost function for the dual problem. Note
the following relations between the primal and dual problems:

1. The number of dual variables is equal to the number of primal constraints. Each dual
variable is associated with a primal constraint. For example, yi is associated with the
ith primal constraint.

2. The number of dual constraints is equal to the number of primal variables. Each
primal variable is associated with a dual constraint. For example, xi is associated
with the ith dual constraint.

3. Primal constraints are “£ type” inequalities, whereas the dual constraints are “≥
type.”

4. The maximization of the primal objective function is replaced by the minimization
of the dual cost function.

5. The coefficients di of the primal objective function become the right side of the dual
constraints. The right side parameters ei of the primal constraints become coefficients
for the dual cost function.

6. The coefficient matrix [aij] of the primal constraints is transposed to [aji] for dual
constraints.

7. The nonnegativity condition applies to both primal and dual variables.

Example 7.2 illustrates how to write the dual problem for a given LP problem.
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7.3.3 Treatment of Equality Constraints
Many design problems have equality constraints. Each equality constraint can be replaced
by a pair of inequalities. For example, 2x1 + 3x2 = 5 can be replaced by the pair 2x1 + 3x2 ≥
5 and 2x1 + 3x2 £ 5. We can multiply the “≥ type” inequality by -1 to convert it into the stan-
dard primal form. Example 7.3 illustrates treatment of equality and “≥ type” constraints.
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EXAMPLE 7.2 Dual of an LP Problem

Write the dual of the problem: maximize zp = 5x1 - 2x2 subject to 2x1 + x2 £ 9, x1 -
2x2 £ 2, -3x1 + 2x2 £ 3, x1, x2 ≥ 0.

Solution. The problem is already in the standard primal form and the following asso-
ciated vectors and matrices can be identified:

(a)

Since there are three primal constraints, there are three dual variables for the problem.
Let y1, y2, and y3 be the dual variables associated with the three constraints. There-
fore, Eqs. (7.10) and (7.11) give the dual for the problem as: minimize fd = 9y1 + 2y2

+ 3y3 subject to 2y1 + y2 - 3y3 ≥ 5, y1 - 2y2 + 2y3 ≥ -2, y1, y2, y3 ≥ 0.
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EXAMPLE 7.3 Dual of an LP with Equality and “≥ Type”
Constraints

Write the dual for the problem: maximize zp = x1 + 4x2 subject to x1 + 2x2 £ 5, 2x1 +
x2 = 4, x1 - x2 ≥ 1, x1, x2 ≥ 0.

Solution. The equality constraint 2x1 + x2 = 4 is equivalent to the two inequalities
2x1 + x2 ≥ 4 and 2x1 + x2 £ 4. The “≥ type” constraints are multiplied by -1 to convert
them into the “£” form. Thus, the standard primal of the above problem is:

(a)

subject to

(b)

(c)

(d)

(e)- + £ -x x1 2 1

- - £ -2 41 2x x

2 41 2x x+ £

x x1 22 5+ £

maximize z x xp = +1 24
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(f)

Using Eqs. (7.10) and (7.11), the dual for the primal is:

(g)

subject to

(h)

(i)

(j)y y y y1 2 3 4 0, , , ≥

2 41 2 3 4y y y y+ -( ) + ≥

y y y y1 2 3 42 1+ -( ) - ≥

minimize f y y y yd = + -( ) -5 41 2 3 4

x x1 2 0, ≥

7.3.4 Alternate Treatment of Equality Constraints
We will show that it is not necessary to replace an equality constraint by a pair of inequali-
ties to write the dual. Note that there are four dual variables for Example 7.3. The variables
y2 and y3 correspond to the second and third primal constraints written in the standard form.
The second and third constraints are actually equivalent to the original equality constraint.
Note also that the term (y2 - y3) appears in all the expressions of the dual problem. We define
y5 = y2 - y3, which can be positive, negative, or zero, since it is the difference of two non-
negative variables ( y2 ≥ 0, y3 ≥ 0). Substituting for y5, the dual problem in Example 7.3 is
rewritten as:

(a)

subject to

(b)

(c)

(d)

The number of dual variables is now only three. Since the number of dual variables is
equal to the number of the original primal constraints, the dual variable y5 must be associ-
ated with the equality constraint 2x1 + x2 = 4. Thus, we can draw the following conclusion:
If the ith primal constraint is left as an equality, the ith dual variable is unrestricted in sign.
In a similar manner, we can show that if the primal variable is unrestricted in sign, then the
ith dual constraint is an equality. This is left as an exercise. Example 7.4 demonstrates recov-
ery of the primal formulation from the dual formulation.

y y y y y1 4 5 2 30, ;≥ = -  is unrestricted in sign

2 41 5 4y y y+ + ≥

y y y1 5 42 1+ - ≥

minimize f y y yd = + -5 41 5 4



Theorem 7.1 Dual of Dual The dual of the dual problem is the primal problem.

7.3.5 Determination of Primal Solution from Dual Solution
It remains to be determined how the optimum solution of the primal is obtained from 
the optimum solution of the dual or vice versa. First, let us multiply each inequality in 
Eq. (7.11) by x1, x2, . . . , xn and add them. Since xj¢s are restricted to be nonnegative, we get
the inequality
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EXAMPLE 7.4 Recovery of Primal Formulation from 
Dual Formulation

Note that we can convert a dual problem into the standard primal form and write its
dual again. It can be shown that the dual of this problem gives the primal problem
back again. To see this, let us convert the preceding dual problem into standard primal
form:

(a)

subject to

(b)

(c)

(d)

Writing the dual of the above problem, we obtain:

(e)

subject to

(f)

(g)

(h)

(i)

which is the same as the original problem (Example 7.3). Note that in the preceding
dual problem, the second constraint is an equality because the second primal variable
(y5) is unrestricted in sign. Theorem 7.1 states this result.

x x1 2 0, ≥

x x1 2 1- ≥

- - = -2 41 2x x

- - ≥ -x x1 22 5

minimize f x xd = - -1 24

y y y y y1 4 5 2 30, ;≥ = -  is unrestricted in sign

- - - £ -2 41 5 4y y y

- - + £ -y y y1 5 42 1

maximize z y y yp = - - +5 41 5 4



(7.12a)

In the matrix form, the above inequality is written as xTATy ≥ xTd. Rearranging the equa-
tion by collecting terms with y1, y2, . . . ym (or taking transpose of the left side as yTAx), we
obtain

(7.12b)

In the matrix form the above inequality can be written as yTAx ≥ xTd. Each term in 
parentheses in Eq. (7.12b) is less than the corresponding value of e on the right side of
Inequalities (7.9). Therefore, replacing these terms with the corresponding e’s from In-
equalities (7.9) preserves the inequality in Eq. (7.12b).

(7.13)

Note that in Inequality (7.13) the left side is the dual cost function and the right side is the
primal objective function. Therefore, from Inequality (7.13), fd ≥ zp for all (x1, x2, . . . , xn) and
(y1, y2, . . . , ym) satisfying Eqs. (7.8) to (7.11). Thus, the vectors x and y with zp = fd, maxi-
mize zp while minimizing fd. The optimum (minimum) value of the dual cost function is also
the optimum (maximum) value of the primal objective function. Theorems 7.2, 7.3, and 7.4
regarding primal and dual problems can be stated as follows.

Theorem 7.2 Relationship Between Primal and Dual Let x and y be in the feasible sets
of primal and dual problems, respectively [defined in Eqs. (7.8) to (7.11)]. Then the follow-
ing conditions hold:

1. fd(y) ≥ zp(x).
2. If fd = zp, then x and y are solutions for the primal and dual problems, respectively.
3. If the primal is unbounded, the corresponding dual is infeasible, and vice versa.
4. If the primal is feasible and the dual is infeasible, then the primal is unbounded and

vice versa.

Theorem 7.3 Primal and Dual Solutions Let both the primal and dual have feasible points.
Then both have optimum solution in x and y respectively, and fd(y) = zp(x).

Theorem 7.4 Solution of Primal from Dual If the ith dual constraint is a strict inequality
at optimum, then the corresponding ith primal variable is nonbasic, i.e. it vanishes. Also, if
the ith dual variable is basic, then the ith primal constraint is satisfied at equality.

The conditions of Theorem 7.4 can be written as

(a)

(if the jth dual constraint is a strict inequality, then the jth primal variable is nonbasic)

(b)

(if the ith dual variable is basic, the ith primal constraint is an equality).

if > 0, theny a x ei ij j i
j

n

=
=

Â
1

if then a y d xij i j j
i

m

> =
=
Â , 0

1

y e y e y e d x d x d xm m n n
T T

1 1 2 2 1 1 2 2+ + + ≥ + + + ≥. . . . . . ,  or  y e x d

y a x a x a x y a x a x a x

y a x a x a x d x d x d x
n n n n

m m m mn n n n

1 11 1 12 2 1 2 21 1 22 2 2

1 1 2 2 1 1 2 2

+ + +( ) + + + +( )
+ + + + +( ) ≥ + + +

. . . . . .

. . . . . . . . .

x a y a y x a y a y

x a y a y d x d x d x
m m m m

n n mn m n n

1 11 1 1 2 12 1 2

1 1 1 1 2 2

+ +( ) + +( )
+ + + +( ) ≥ + + +

. . . . . .

. . . . . . . . .
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These conditions can be used to obtain primal variables using the dual variables. The
primal constraints satisfied at equality are identified from values of the dual variables. The
resulting linear equations can be solved simultaneously for the primal variables. However,
this is not necessary as the final dual tableau can be used directly to obtain primal variables. 
We shall illustrate the use of these theorems in Example 7.5.
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EXAMPLE 7.5 Primal and Dual Solutions

Consider the following problem:

(a)

subject to

(b)

(c)

(d)

(e)

Solve the primal and the dual problems and study their final tableaux.

Solution. The problem has been solved using the Simplex method in Example 6.15
and Table 6-18. The final tableau is reproduced from there in Table 7-2. From the final
primal tableau,

basic variables: x1 = 4, x2 = 1, x5 = 13
nonbasic variables: x3 = 0, x4 = 0

maximum objective function: zp = 18 (minimum value is -18)

Now, let us write the dual for the problem and solve it using the Simplex method.
Note that the original problem is already in the standard primal form. There are three
primal inequality constraints so there are three dual variables. There are two primal
variables so there are two dual constraints. Let y1, y2, and y3 be the dual variables.
Therefore, the dual of the problem is given as:

(f)

subject to
(g)2 3 51 2 3y y y+ - ≥

minimize f y y yd = + +9 2 31 2 3

x x1 2 0, ≥

- + £3 2 31 2x x

x x1 22 2- £

2 91 2x x+ £

maximize z x xp = -5 21 2

TABLE 7-2 Final Tableau for Example 7.5 by Simplex Method (Primal Solution)

BasicØ. x1 x2 x3 x4 x5 b

x2 0 1 0.2 -0.4 0 1
x1 1 0 0.4 0.2 0 4
x5 0 0 0.8 1.4 1 13

Cost 0 0 1.6 1.8 0 fp + 18
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(h)

(i)

Writing the constraints in the standard Simplex form by introducing slack, surplus,
and artificial variables, we obtain

(j)

(k)

(l)

where y4 is a surplus variable, y5 is a slack variable, and y6 is an artificial variable.
The two-phase Simplex procedure can be used to solve the problem. Thus, we obtain
the sequence of calculations for the dual problem shown in Table 7-3. From the final
dual tableau, we obtain the following solution:

basic variables: y1 = 1.6, y2 = 1.8
nonbasic variables: y3 = 0, y4 = 0, y5 = 0

minimum value of dual function: fd = 18

y ii ≥ =0 1 6;  to 

y y y y1 2 3 52 2 2- - + =

2 3 51 2 3 4 6y y y y y+ - - + =

y y y1 2 3 0, , ≥

y y y1 2 32 2 2- + ≥ -

TABLE 7-3 Solution of Dual of the Problem in Example 7.5

Initial tableau: y6 is identified to be replaced with y1 in the basic set.

BasicØ y1 y2 y3 y4 y5 y6 b

y6 2 1 -3 -1 0 1 5

y5 -1 2 -2 0 1 0 2

Cost 9 2 3 0 0 0 fd - 0

Artificial cost -2 -1 3 1 0 0 w - 5

Second tableau: End of Phase I. y5 is identified to be replaced with y2

in the basic set.

BasicØ y1 y2 y3 y4 y5 y6 b

y1 1 0.5 -1.5 -0.5 0 0.5 2.5

y5 0 2.5 -3.5 -0.5 1 0.5 4.5

Cost 0 -2.5 16.5 4.5 0 -4.5 fd - 22.5

Artificial cost 0 0 0 0 0 1 w - 0

Third tableau: Reduced cost coefficients in nonbasic columns are
nonnegative; the tableau gives optimum point. End of Phase II.

BasicØ y1 y2 y3 y4 y5 y6 b

y1 1 0 -0.8 -0.4 -0.2 0.4 1.6

y2 0 1 -1.4 -0.2 0.4 0.2 1.8

Cost 0 0 13.0 4.0 1.0 -4.0 fd - 18



7.3.6 Use of Dual Tableau to Recover Primal Solution
It turns out that we do not need to follow the preceding procedure (use of Theorem 7.4) to
recover the primal variables. The final dual tableau contains all the information to recover
the primal solution. Similarly, the final primal tableau contains all the information to recover
the dual solution. Looking at the final tableau in Table 7-3 for Example 7.5, we observe that
the elements in the last row of the dual tableau match the elements in the last column of the
primal tableau in Table 7-2. Similarly, the reduced cost coefficients in the final primal tableau
match the dual variables. To recover the primal variables from the final dual tableau, we use
reduced cost coefficients in columns corresponding to slack or surplus variables. We note
that the reduced cost coefficient in column y4 is precisely x1 and the reduced cost coefficient
in column y5 is precisely x2. Therefore, reduced cost coefficients corresponding to slack and
surplus variables in the final dual tableau give values of primal variables. Similarly, if we
solve the primal problem, we can recover the dual solution from the final primal tableau.
Theorem 7.5 summarizes this result.

Theorem 7.5 Recovery of Primal Solution from Dual Tableau Let the dual of the stan-
dard primal defined in Eqs. (7.8) and (7.9) (i.e., maximize dTx subject to Ax £ e, x ≥ 0) be
solved by the standard Simplex method. Then the value of the ith primal variable equals the
reduced cost coefficient of the slack or surplus variable associated with the ith dual constraint
in the final dual tableau. In addition, if a dual variable is nonbasic, then its reduced cost coef-
ficient equals the value of slack or surplus variable for the corresponding primal constraint.

Note that if a dual variable is nonbasic (i.e., has zero value), then its reduced cost coef-
ficient equals the value of the slack or surplus variable for the corresponding primal con-
straint. In Example 7.5, y3, the dual variable corresponding to the third primal constraint, is
nonbasic. The reduced cost coefficient in the y3 column is 13. Therefore, the slack variable
for the third primal constraint has a value of 13. This is the same as obtained from the final
primal tableau. We also note that the dual solution can be obtained from the final primal
tableau using Theorem 7.5 as y1 = 1.6, y2 = 1.8, y3 = 0, which is the same solution as before.
While using Theorem 7.5, the following additional points should be noted:

1. When the final primal tableau is used to recover the dual solution, the dual variables
correspond to the primal constraints expressed in the “£” form only. However, 
the primal constraints must be converted to standard Simplex form while solving 
the problem. Recall that all the right sides of constraints must be nonnegative for the
Simplex method. The dual variables are nonnegative only for the constraints written
in the “£” form.

2. When a primal constraint is an equality, it is treated in the Simplex method by
adding an artificial variable in Phase I. There is no slack or surplus variable
associated with an equality. We also know from the previous discussion that the dual
variable associated with the equality constraint is unrestricted in sign. Then the
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Note that at the optimum fd = zp, which satisfies the conditions of Theorems 7.2
and 7.3. Using Theorem 7.4, we see that the first and second primal constraints must
be satisfied at equality since the dual variables y1 and y2 associated with the constraints
are positive (basic) in Table 7-3. Therefore, primal variables x1 and x2 are obtained as
a solution of the first two primal constraints satisfied at equality: 2x1 + x2 = 9, x1 - 2x2

= 2. The solution of these equations is given as x1 = 4, x2 = 1 which is the same as
obtained from the final primal tableau.



question is how to recover the dual variable for the equality constraint from the final
primal tableau? There are a couple of ways of doing this. The first procedure is to
convert the equality constraint into a pair of inequalities, as noted previously. For
example, the constraint 2x1 + x2 = 4 is written as the pair of inequalities 2x1 + x2 £ 4,
-2x1 - x2 £ -4. The two inequalities are treated in a standard way in the Simplex
method. The corresponding dual variables are recovered from the final primal
tableau using Theorem 7.5. Let y2 ≥ 0 and y3 ≥ 0 be the dual variables associated
with the two inequality constraints, respectively, and y1 be the dual variable
associated with the original equality constraint. Then, y1 = y2 - y3. Accordingly, y1 is
unrestricted in sign and its value is known using y2 and y3.

The second way of recovering the dual variable for the equality constraint is to carry
along its artificial variable column in Phase II of the Simplex method. Then the dual
variable for the constraint is the reduced cost coefficient in the artificial variable column
in the final primal tableau. We illustrate these procedures in Example 7.6.
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EXAMPLE 7.6 Use of Final Primal Tableau to Recover 
Dual Solutions

Solve the following LP problem and recover its dual solution from the final primal
tableau:

(a)

subject to

(b)

(c)

(d)

(e)

Solution. When the equality constraint is converted into a pair of inequalities 2x1 +
x2 £ 4, -2x1 - x2 £ -4, the problem is the same as the one solved in Example 6.14.
The final tableau for the problem is given in Table 6-17. Using Theorem 7.5, the dual
variables for the preceding four constraints are

1. x1 + 2x2 £ 5: y1 = 0, reduced cost coefficient of x3, the slack variable
2. 2x1 + x2 £ 4: y2 = 5–3, reduced cost coefficient of x4, the slack variable
3. -2x1 - x2 £ -4: y3 = 0, reduced cost coefficient of x5, the surplus variable
4. -x1 + x2 £ -1: y4 = 7–3, reduced cost coefficient of x6, the surplus variable

Thus, from the above discussion, the dual variable for the equality constraint 2x1 + x2

= 4 is y2 - y3 = 5–3. Note also that y4 = 7–3 is the dual variable for the fourth constraint
written as -x1 + x2 £ -1 and not for the constraint x1 - x2 ≥ 1.

Now, let us re-solve the same problem with the equality constraint as it is. The
problem is the same as the one solved in Example 6.16. The final tableau for 
the problem is given in Table 6-19. Using Theorem 7.5 and the preceding discussion,
the dual variables for the given three constraints are

x x1 2 0, ≥

x x1 2 1- ≥ ,

2 41 2x x+ = ,

x x1 22 5+ £ ,

maximize z x xp = +1 24



7.3.7 Dual Variables as Lagrange Multipliers
Section 6.5 describes how the optimum value of the cost function for the problem changes
if we change right side parameters of constraints, bi’s, the resource limits. The constraint vari-
ation sensitivity theorem 4.7 of Section 4.5 is used to study this effect. Use of that theorem
requires knowledge of the Lagrange multipliers for the constraints that must be determined.
It turns out that the dual variables of the problem are related to the Lagrange multipliers.
Theorem 7.6 gives this relationship.

Theorem 7.6 Dual Variables as Lagrange Multipliers Let x and y be optimal solutions
for the primal and dual problems stated in Eqs. (7.8) to (7.11), respectively. Then the dual
variables y are also Lagrange multipliers for primal constraints of Eq. (7.9).

Proof The theorem can be proved by writing the KKT necessary conditions of Theorem
4.6 for the primal problem defined in Eqs. (7.8) and (7.9). To write these conditions, 
convert the primal problem to a minimization problem and define a Lagrange function of Eq.
(4.46a) as

(a)

where yi is the Lagrange multiplier for the ith primal constraint of Eq. (7.9) and vj is the
Lagrange multiplier for the jth nonnegativity constraint for the variable xj. Write the KKT
necessary conditions of Theorem 4.6 as

(b)

(c)

(d)

(e)

(f)

Rewrite Eq. (b) as

v i ni ≥ =0 1,  to 

y i mi ≥ =0 1,  to 
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1. x1 + 2x2 £ 5: y1 = 0, reduced cost coefficient of x3, the slack variable
2. 2x1 + x2 = 4: y2 = 5–3, reduced cost coefficient of x5, the artificial variable
3. -x1 + x2 £ -1: y3 = 7–3, reduced cost coefficient of x4, the surplus variable

We see that the two solutions are the same. Therefore, we do not have to replace an
equality constraint by two inequalities in the standard Simplex method. The reduced
cost coefficient corresponding to the artificial variable associated with the equality
constraint gives the value of the dual variable for the constraint.



Using conditions (f) in the preceding equation, we conclude

(g)

Thus yi’s are feasible solutions for the dual constraints of Eq. (7.11).
Now let xi represent the optimum solution for the primal problem. Then, m of the xi’s are

positive (barring degeneracy), and the corresponding vi are equal to zero from Eq. (d). The
remaining xi’s are zero and the corresponding vi’s are greater than zero. Therefore, from Eq.
(g), we obtain

(h)

(i)

Now adding the m rows given in Eq. (c), interchanging the sums on the left side, and 
rearranging, we obtain

(j)

Using Eqs. (h) and (i), Eq. ( j) can be written as

(k)

Equation (k) also states that

(l)

The right side of Eq. (l) represents the dual cost function. According to Theorem 7.2, if
the primal and dual functions have the same values and if x and y are feasible points for the
primal and the dual problems, then they are optimum solutions for the respective problems.
Thus, the Lagrange multipliers yi, i = 1 to m solve the dual problem defined in Eqs. (7.10)
and (7.11).

z y ep i i
i

m
T= =

=
Â

1

y e

d x y ej j
j

n

i i
i

m
T T

= =
Â Â= =( )

1 1

d x y e

x a y y ej
j

n

ij i
i

m

i i
i

m
T T T

= = =
Â Â Â= =( )

1 1 1

x A y y e

ii v x a y dj j ij i j
i

m

( ) = > =
=
Â0 0

1

, ,

i v x a y dj j ij i j
i

m

( ) > = >
=
Â0 0

1

, ,

a y d j nij i j
i

m
T≥ = ≥( )

=
Â ;

1

1 to A y d

- + = = - + =( )
=
Âd a y v j nj ij i j
i

m
T;

1

1 to d A y v

274 INTRODUCTION TO OPTIMUM DESIGN



Exercises for Chapter 7
Write dual problem for the following problems; solve the dual problems and recover the
values of the primal variables from the final dual tableau; verify the solution graphically
whenever possible.

7.1 Exercise 6.55 7.2 Exercise 6.56 7.3 Exercise 6.57

7.4 Exercise 6.58 7.5 Exercise 6.59 7.6 Exercise 6.60

7.7 Exercise 6.61 7.8 Exercise 6.62 7.9 Exercise 6.63

7.10 Exercise 6.64 7.11 Exercise 6.65 7.12 Exercise 6.66

7.13 Exercise 6.67 7.14 Exercise 6.68 7.15 Exercise 6.69

7.16 Exercise 6.70 7.17 Exercise 6.71 7.18 Exercise 6.72

7.19 Exercise 6.73 7.20 Exercise 6.74 7.21 Exercise 6.75

7.22 Exercise 6.76
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8 Numerical Methods for Unconstrained
Optimum Design

277

Upon completion of this chapter, you will be able to:

• Explain the concept of iterative numerical search methods for optimum design

• Verify the descent condition for a given search direction

• Explain two basic calculations in the numerical search methods for optimum
design: (1) calculation of a search direction and (2) calculation of a step size in
the search direction

• Calculate the search direction for the steepest descent and conjugate gradient
methods

• Calculate a step size along the search direction using the golden sections method

When some or all of the functions of the problem (cost function and/or constraint func-
tions) are nonlinear for an optimization problem, it is called a nonlinear programming (NLP)
problem. This chapter and the next chapter concentrate on the concepts and description 
of methods for unconstrained nonlinear optimization problems. Chapters 10 and 11 treat 
constrained problems.

Numerical methods for nonlinear optimization problems are needed because the 
analytical methods for solving some of the problems are too cumbersome to use. With the
analytical methods described in Chapters 4 and 5, we write the necessary conditions of 
optimality and solve them for candidate local minimum designs. There are two basic reasons
why the methods are inappropriate for many engineering design problems:

1. The numbers of design variables and constraints can be large. In that case, the
necessary conditions give a large number of nonlinear equations, which can be
difficult to solve. Numerical methods must be used to find solutions of such
equations in any case. Therefore it is appropriate to use the numerical methods
directly to solve the optimization problems. Even if the problem is not large, these
equations can be highly nonlinear and cannot be solved in a closed form.

2. In many engineering applications, cost and/or constraint functions are implicit
functions of the design variables; that is, explicit functional forms in terms of the
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independent variables are not known. These functions cannot be treated easily in the
analytical methods for solution of optimality conditions.

For these reasons, we must develop systematic numerical approaches for the optimum
design of engineering systems. In such approaches, we estimate an initial design and improve
it until optimality conditions are satisfied. Many numerical methods have been developed for
NLP problems. Some are better than others and research in the area continues to develop still
better techniques. Detailed derivations and theory of various methods are beyond the scope
of the present text. However, it is important to understand a few basic concepts, ideas, and
procedures that are used in most algorithms for unconstrained and constrained optimization.
Therefore, the approach followed in this text is to stress these underlying concepts with
example problems. Some details of the numerical algorithms are also presented to give the
student a flavor of the calculations performed in search for optimum solutions.

In the present chapter, unconstrained optimization problems are treated. Numerical details
for some algorithms are presented and discussed to show the type of calculations needed to
solve nonlinear optimization problems. These algorithms are rarely done “by hand”; they
require a computer program for their effective use. Most information technology centers
either have or can easily acquire some standard computer programs for general use, such
as MATLAB, Excel, and so on. Therefore, coding of the algorithms should be attempted only
as a last resort. It is, however, important to understand the underlying ideas to use the
methods properly. In addition, many of the concepts are applicable to constrained optimiza-
tion problems as well.

Some numerical problems are solved using the programs given in Appendix D to study
the performance of the algorithms and compare them. It must be understood that the behav-
ior of any algorithm can be drastically affected by the numerical implementation details. In
addition, numerical performance of a program can change from one computer system to
another and from one compiler to another.

The unconstrained optimization problems are classified as one-dimensional and multi-
dimensional problems as shown in Fig. 8-1. Numerical methods for solving unconstrained
problems have been developed over the last several decades. Substantial work, however, 
was done during the 1950s and 1960s because it was shown that constrained optimization
problems could be transformed to a sequence of unconstrained problems (procedures for
transformations are presented in Chapter 9). Consequently, the methods have gained consider-
able importance, and substantial effort has been expended in developing efficient algorithms
and computer programs for unconstrained optimization problems.

8.1 General Concepts Related to Numerical Algorithms
In this section, we describe some basic concepts that are applicable to both constrained and
unconstrained numerical optimization methods. The idea of iterative numerical algorithms is

Unconstrained optimization

One-dimensional or line
search problems

Multidimensional problems

To find points x* to minimize
a function f (x) = f (x1, x2, ..., xn)

To find a scalar a* to minimize
a function f (a)

FIGURE 8-1 Classification of unconstrained optimization problems.



introduced to search for optimum solutions for the design problem. The algorithms are 
initiated with an estimate for the optimum solution that is improved iteratively if it does 
not satisfy the optimality conditions. Since we want to minimize the cost function, the idea
of a descent step is introduced, which simply means that changes in the design at every 
search step must reduce the cost function value. Convergence of an algorithm and its rate of
convergence are also briefly described.

8.1.1 A General Algorithm
Many numerical solution methods are described by the following iterative prescription:
Vector form:

(8.1)

Component form:

(8.2)

In these equations, the superscript k represents the iteration number, subscript i denotes
the design variable number, x(0) is a starting point, and Dx(k) is a change in the current point.
The iterative scheme described in Eq. (8.1) or (8.2) is continued until optimality conditions
are satisfied or an acceptable solution is obtained. The iterative formula is applicable to con-
strained as well as unconstrained problems. For unconstrained problems, calculations for Dx(k)

depend on the cost function and its derivatives at the current design point. For constrained
problems, the constraints must also be considered while computing the change in design Dx(k).
Therefore, in addition to the cost function and its derivatives, the constraint functions and
their derivatives play a role in determining Dx(k). There are several methods for calculating
Dx(k) for unconstrained and constrained problems. We shall describe some of the basic
methods for unconstrained problems later in this chapter.

The change in design Dx(k) is further decomposed into two parts as

(8.3)

where d(k) is a “desirable” search direction in the design space and ak is a positive scalar
called the step size in that direction. If the direction d(k) is any “good,” then the step size must
be greater than 0; this shall become clearer when we relate the search direction to a descent
direction for the cost function. Thus, the process of computing Dx(k) involves solving two
separate subproblems: the direction finding subproblem and the step length determination
subproblem (scaling along the direction). The process of moving from one design point to
the next is illustrated in Fig. 8-2. In the figure, B is the current design point, d(k) is the search
direction, and ak is a step length. Therefore, when akd(k) is added to the current design, we
reach a new point C in the design space. The entire process is repeated from point C. There
are many procedures for calculating the step size ak and the search direction d(k). Various
combinations of the procedures can be used to develop different optimization algorithms.

In summary, the basic idea of numerical methods for nonlinear optimization problems is
to start with a reasonable estimate for the optimum design. Cost and constraint functions and
their derivatives are evaluated at that point. Based on them, the design is moved to a new
point. The process is continued until either optimality conditions or some other stopping 
criteria are met. This iterative process represents an organized search through the design 
space for points that represent local minima. Thus, the procedures are often called the search
techniques or direct methods of optimization. The iterative process is summarized as a
general algorithm that is applicable to both constrained and unconstrained problems:

Dx dk
k

k( ) ( )= a

x x x i n ki
k

i
k

i
k+( ) ( ) ( )= + = =1 1 0 1 2D ; , , , . . . to ;

x x x+k k k k1 0 1 2( ) ( ) ( )= + =D ; , , , . . .
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Step 1. Estimate a reasonable starting design x(0). Set the iteration counter k = 0.
Step 2. Compute a search direction d(k) in the design space. This calculation generally

requires a cost function value and its gradient for unconstrained problems and, in
addition, constraint functions and their gradients for constrained problems.

Step 3. Check for convergence of the algorithm. If it has converged, stop; otherwise,
continue.

Step 4. Calculate a positive step size ak in the direction d(k).
Step 5. Update the design as follows, set k = k + 1 and go to Step 2:

(8.4)

In the remaining sections of this chapter, we shall present some methods for calculating
the step size ak and the search direction d(k) for unconstrained optimization problems.

8.1.2 Descent Direction and Descent Step
We have referred to d(k) as a desirable direction of design change in the iterative process.
Now we discuss what we mean by a desirable direction. The objective of the iterative 
optimization process is to reach a minimum point for the cost function f(x). Let us assume
that we are in the kth iteration and we have determined that x(k) is not a minimum point, i.e.,
the optimality conditions of Theorem 4.4 are not satisfied. If x(k) is not a minimum point, 
then we should be able to find another point x(k+1) with a smaller cost function value than the
one at x(k). This statement can be expressed mathematically as

(8.5)

Substitute x(k+1) from Eq. (8.4) into the preceding inequality to obtain

(8.6)

Approximating the left side of Eq. (8.6) by the linear Taylor’s expansion at the point x(k),
we get

(8.7)f fk
k

k k kx c d x( ) ( ) ( ) ( )( ) + ◊( ) < ( )a

f fk
k

k kx d x( ) ( ) ( )+( ) < ( )a

f fk kx x+1( ) ( )( ) < ( )

x x d+k k
k

k1( ) ( ) ( )= + a

FIGURE 8-2 Conceptual diagram for iterative steps of an optimization method.
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where c(k) = —f(x(k)) is the gradient of f(x) at the point x(k) and (·) represents the dot product
of the two vectors. Subtracting f(x(k)) from both sides of Inequality (8.7), we get ak(c(k) ·d(k))
< 0. Since ak > 0, it may be dropped without affecting the inequality. Therefore, we get the
condition

(8.8)

Since c(k) is a known quantity (gradient of the cost function), the search direction d(k) must
be calculated to satisfy Inequality (8.8). Any small move in such a direction will decrease
the cost function. Geometrically, using the definition of the dot product of two vectors, 
the inequality shows that the angle between the vectors c(k) and d(k) must be between 90°
and 270°.

We can now define a desirable direction of change as any vector d(k) satisfying 
Inequality (8.8). Such vectors are also called directions of descent for the cost function, and
Inequality (8.8) is called the descent condition. A step of the iterative optimization method
based on these directions is called a descent step. There can be several directions of descent
at a design point and each optimization algorithm computes it differently.

The descent direction is also sometimes called the “downhill” direction. The problem of
minimizing f(x) can be considered as a problem of trying to reach the bottom of a hill from
a high point. From the top, we find a downhill direction and travel along it to the lowest
point. From the lowest point in the direction, we repeat the process until the bottom of the
hill is reached. A method based on the idea of a descent step is called a descent method.
Clearly, such a method will not converge to a local maximum point for the function. The
concepts of descent directions and descent step are used in most numerical optimization
methods. Therefore, they should be clearly understood. Example 8.1 illustrates the concept
of a descent direction.

c dk k( ) ( )◊ < 0

EXAMPLE 8.1 Check for the Descent Condition

For the function

(a)

check if the direction d = (1, 2) at the point (0, 0) is a descent direction for the 
function f.

Solution. If d = (1, 2) is a descent direction, then it must satisfy Inequality (8.8). To
verify this, we calculate the gradient c of the function f(x) at (0, 0) and evaluate 
(c ·d), as

(b)

(c)

Inequality (8.8) is violated, and thus the given d is not a descent direction for the 
function f(x).
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8.1.3 Convergence of Algorithms
The central idea behind numerical methods of optimization is to search for the optimum point
in an iterative manner, generating a sequence of designs. It is important to note that the
success of a method depends on the guarantee of convergence of the sequence to the optimum
point. The property of convergence to a local optimum point irrespective of the starting point
is called global convergence of the numerical method. It is desirable to employ such con-
vergent numerical methods in practice since they are more reliable. For unconstrained prob-
lems, a convergent algorithm must reduce the cost function at each iteration until a minimum
point is reached. It is important to note that the algorithms converge to a local minimum point
only, as opposed to a global minimum, since they only use the local information about the
cost function and its derivatives in the search process. Methods to search for global minima
are described in Chapter 18.

8.1.4 Rate of Convergence
In practice, a numerical method may take a large number of iterations to reach the optimum
point. Therefore, it is important to employ methods having a faster rate of convergence. Rate
of convergence of an algorithm is usually measured by the numbers of iterations and func-
tion evaluations needed to obtain an acceptable solution. Rate of convergence is a measure
of how fast the difference between the solution point and its estimates goes to zero. Faster
algorithms usually use second-order information about the problem functions when calcu-
lating the search direction. They are known as Newton methods. Many algorithms also
approximate second-order information using only the first-order information. They are known
as quasi-Newton methods, described in Chapter 9.

8.2 Basic Ideas and Algorithms for Step Size Determination
Unconstrained numerical optimization methods are based on the iterative formula given in
Eq. (8.1). As discussed earlier, the problem of obtaining the design change Dx is usually
decomposed into two subproblems: (1) direction finding and (2) step size determination, as
expressed in Eq. (8.3). We need to discuss numerical methods for solving both subproblems.
In the following paragraphs, we first discuss the problem of step size determination. This is
often called the one-dimensional search (or, line search) problem. Such problems are simpler
to solve. This is one reason for discussing them first. Following one-dimensional minimiza-
tion methods, two methods are described in Sections 8.3 and 8.4 for finding a “desirable”
search direction d in the design space.

8.2.1 Definition of One-Dimensional Minimization Subproblem
For an optimization problem with several variables, the direction finding problem must be
solved first. Then, a step size must be determined by searching for the minimum of the cost
function along the search direction. This is always a one-dimensional minimization problem.
To see how the line search will be used in multidimensional problems, let us assume for the
moment that a search direction d(k) has been found. Then, in Eqs. (8.1) and (8.3), scalar ak is the
only unknown. Since the best step size ak is yet unknown, we replace it by a in Eq. (8.3). Then,
using Eqs. (8.1) and (8.3), the cost function f(x) is given as f(x(k+1)) = f(x(k) + ad(k)). Now, since
d(k) is known, the right side becomes a function of the scalar parameter a only. This process is
summarized in the following equations:

Design update:

(8.9a)x x dk k k+( ) ( ) ( )= +1 a
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Cost function evaluation:

(8.9b)

where (a) is the new function with a as the only independent variable (in the sequel, we
shall drop the overbar for functions of single variable). Note that at a = 0, f(0) = f(x(k)) from
Eq. (8.9b), which is the current value of the cost function. It is important to understand this
reduction of a function of n variables to a function of only one variable since this funda-
mental step is used in almost all optimization methods. It is also important to understand 
the geometric significance of Eq. (8.9b). We shall elaborate on these ideas later.

If x(k) is not a minimum point, then it is possible to find a descent direction d(k) at the point
and reduce the cost function further. Recall that a small move along d(k) reduces the cost func-
tion. Therefore, using Eqs. (8.5) and (8.9b), the descent condition for the cost function can
be expressed as the inequality:

(8.10)

Since f(a) is a function of single variable, we can plot f(a) versus a. To satisfy Inequal-
ity (8.10), the curve f(a) versus a must have a negative slope at the point a = 0. Such a curve
is shown by the solid line in Fig. 8-3. It must be understood that if the search direction is
that of descent, the graph of f(a) versus a cannot be the one shown by the dashed curve
because any positive a would cause the function f(a) to increase, violating Inequality (8.10).
This would also be a contradiction as d(k) is a direction of descent for the cost function. There-
fore, the graph of f(a) versus a must be the solid curve in Fig. 8-3 for all problems. In fact,
the slope of the curve f(a) at a = 0 is calculated as f ¢(0) = c(k) ·d(k), which is negative as seen
in Eq. (8.8). This discussion shows that if d(k) is a descent direction, then a must always be
a positive scalar in Eq. (8.8). Thus, the one-dimensional minimization problem is to find ak

= a such that f(a) is minimized.

8.2.2 Analytical Method to Compute Step Size
If f(a) is a simple function, then we can use the analytical procedure to determine ak

(necessary and sufficient conditions of Section 4.3). The necessary condition is df(ak)/da =
0, and the sufficient condition is d 2f(ak)/da 2 > 0. We shall illustrate the analytical line search

f fa( ) < ( )0

f

f f fk k kx x d+( ) ( ) ( )( ) = +( ) = ( )1 a a

f (a)

f (0)

tan–1 | c · d |

a = ak
a 

FIGURE 8-3 Graph of f(a) versus a.
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procedure with Example 8.2. Note that differentiation of f(x(k+1)) in Eq. (8.9b) with respect
to a, using the chain rule of differentiation and setting it to zero, gives

(8.11)

Since the dot product of two vectors is zero in Eq. (8.11), the gradient of the cost func-
tion at the new point is orthogonal to the search direction at the kth iteration, i.e., c(k+1) is
normal to d(k). The condition in Eq. (8.11) is important for two reasons: (1) it can be used
directly to obtain an equation in terms of step size a whose smallest root gives the exact step
size, and (2) it can be used to check the accuracy of the step size in a numerical procedure
to calculate a and thus it is called the line search termination criterion. Many times numer-
ical line search methods will give an approximate or inexact value of the step size along the
search direction. The line search termination criterion is useful for determining the accuracy
of the step size; i.e., for checking c(k+1) ·d(k) = 0.
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EXAMPLE 8.2 Analytical Step Size Determination

Let a direction of change for the function

(a)

at the point (1, 2) be given as (-1, -1). Compute the step size ak to minimize f(x) in
the given direction.

Solution. For the given point x(k) = (1, 2), f(x(k)) = 22, and d(k) = (-1, -1). We first
check to see if d(k) is a direction of descent using Inequality (8.8). The gradient of the
function at (1, 2) is given as c(k) = (10, 10) and c(k) ·d(k) = 10(-1) + 10(-1) = -20 < 0.
Therefore, (-1, -1) is a direction of descent. The new point x(k+1) using Eq. (8.9a) is
given as

(b)

Substituting these equations into the cost function of Eq. (a), we get

(c)

Therefore, along the given direction (-1, -1), f(x) becomes a function of the single
variable a. Note from Eq. (c) that f(0) = 22, which is the cost function value at the
current point, and that f ¢(0) = -20 < 0, which is the slope of f(a) at a = 0 (also recall
that f ¢(0) = c(k) ·d(k)). Now using the necessary and sufficient conditions of optimality
for f(a), we obtain

(d)

Therefore, ak = 10–7 minimizes f(x) in the direction (-1, -1). The new point is
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8.2.3 Concepts Related to Numerical Methods to Compute Step Size
In Example 8.2, it was possible to simplify expressions and obtain an explicit form for the
function f(a). Also, the functional form of f(a) was quite simple. Therefore, it was possible
to use the necessary and sufficient conditions of optimality to find the minimum of f(a) and
analytically calculate the step size ak. For many problems, it is not possible to obtain an
explicit expression for f(a). Moreover, even if the functional form of f(a) is known, it may
be too complicated to lend itself to analytical solution. Therefore, a numerical method must
be used to find ak to minimize f(x) in the known direction d(k).

The numerical line search process is itself iterative, requiring several iterations before a
minimum point is reached. Many line search techniques are based on comparing function
values at several points along the search direction. Usually, we must make some assumptions
on the form of the line search function to compute step size by numerical methods. For
example, it must be assumed that a minimum exists and that it is unique in some interval of
interest. A function with this property is called the unimodal function. Figure 8-4 shows the
graph of such a function that decreases continuously until the minimum point is reached.
Comparing Figs. 8-3 and 8-4, we observe that f(a) is a unimodal function in some interval.
Therefore, it has a unique minimum.

Most one-dimensional search methods assume the line search function to be a unimodal
function. This may appear to be a severe restriction on the methods; however, it is not. For
functions that are not unimodal, we can think of locating only a local minimum point that is
closest to the starting point, i.e., closest to a = 0. This is illustrated in Fig. 8-5, where the
function f(a) is not unimodal for 0 £ a £ a0. Points A, B, and C are all local minima. If we
restrict a to lie between 0 and , however, there is only one local minimum point A because
the function f(a) is unimodal for 0 £ a £ . Thus, the assumption of unimodality is not as
restrictive as it appears.

The line search problem then is to find a in an interval 0 £ a £ at which the function
f(a) has a global minimum. This statement of the problem, however, requires some modifi-
cation. Since we are dealing with numerical methods, it is not possible to locate the exact
minimum point a*. In fact, what we determine is the interval in which the minimum lies, i.e.,
some lower and upper limits al and au for a*. The interval (al, au) is called the interval of
uncertainty and is designated as I = au - al. Most numerical methods iteratively reduce the
interval of uncertainty until it satisfies a specified tolerance e, i.e., I < e. Once this stopping
criterion is satisfied, a* is taken as 0.5(al + au). Methods based on the preceding philosophy

a

a
a

(e)

Substituting the new design (- 3–7 , 4–7 ) into the cost function f(x) we find the new value
of the cost function as 54–7 . This is a substantial reduction from the cost function value
of 22 at the previous point. Note that Eq. (d) for calculation of step size a can also
be obtained by directly using the condition given in Eq. (8.11). Using Eq. (b), the 
gradient of f at the new design point in terms of a is given as

(f)

Using the condition of Eq. (8.11), we get 14a - 20 = 0 which is same as Eq. (d).
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are called interval reducing methods. In this chapter, we shall only present methods based
on this idea. The basic procedure for these methods can be divided into two phases. In phase
one, the location of the minimum point is bracketed and the initial interval of uncertainty is
established. In the second phase, the interval of uncertainty is refined by eliminating regions
that cannot contain the minimum. This is done by computing and comparing function values
in the interval of uncertainty. We shall describe the two phases for these methods in more
detail in the following subsections.

It is important to note that the performance of most optimization methods depends heavily
on the step size calculation procedure. Therefore, it is not surprising that numerous proce-
dures have been developed and evaluated for step size calculation. In the sequel, we describe
two rudimentary methods to give the students a flavor of the calculations needed to evaluate
a step size. In Chapter 9, some more advanced methods based on the concept of an inaccu-
rate line search are described and discussed.

8.2.4 Equal Interval Search
As mentioned earlier, the basic idea of any interval reducing method is to reduce succes-
sively the interval of uncertainty to a small acceptable value. To clearly discuss the ideas,
we start with a very simple-minded approach called the equal interval search method. The
idea is quite elementary as illustrated in Fig. 8-6. In the interval 0 £ a £ , the function f(a)
is evaluated at several points using a uniform grid in Phase I. To do this, we select a small
number d and evaluate the function at the a values of d, 2d, 3d, . . . , qd, (q + 1)d, and so on

a

f (a)

a* a
a–

FIGURE 8-4 Unimodal function f(a).

A
B C

f (a)

a* a = a a = a0
– a

FIGURE 8-5 Nonunimodal function f(a) for 0 £ a £ a0 (unimodal for 0 £ a £ ).a
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as shown in Fig. 8-6(A). We compare values of the function at the two successive points, say
q and (q + 1). Then, if the function at the point q is larger than that at the next point (q + 1),
i.e., f(qd) > f((q + 1)d) the minimum point has not been surpassed yet. However, if the 
function has started to increase, i.e.,

(8.12)

then the minimum has been surpassed. Note that once Eq. (8.12) is satisfied for points q 
and (q + 1), the minimum can be between either the points (q - 1) and q or the points q and 
(q + 1). To account for both possibilities, we take the minimum to lie between the points 
(q - 1) and (q + 1). Thus, lower and upper limits for the interval of uncertainty are estab-
lished as

(8.13)

Establishment of the lower and upper limits on the minimum value of a indicates end of
Phase I. In Phase II, we restart the search process from the lower end of the interval of uncer-
tainty a = al with some reduced value for the increment in d, say rd, where r << 1. Then,
the preceding process of Phase I is repeated from a = al with the reduced d and the minimum
is again bracketed. Now, the interval of uncertainty I is reduced to 2rd. This is illustrated in
Fig. 8-6(B). The value of the increment is further reduced, to say r2d, and the process is

a d a d a a dl u u lq q I= -( ) = +( ) = - =1 1 2, ,

f q f qd d( ) < +( )( )1

f (a)

f (a)

d

a
a

a*
2d –

(q – 1)d (q + 1)d
qd

d

rd

al
a

a* au

(A) Phase I

(B) Phase II

FIGURE 8-6 Equal interval search process. (A) Phase I: Initial bracketing of minimum. (B) Phase
II: Reducing the interval of uncertainty.
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repeated, until the interval of uncertainty is reduced to an acceptable value e. Note that the
method is convergent for unimodal functions and can be easily coded into a computer
program.

The efficiency of a method such as the equal interval search depends on the number of
function evaluations needed to achieve the desired accuracy. Clearly, this depends on the
initial choice for the value of d. If d is very small, the process may take many function eval-
uations to initially bracket the minimum. An advantage of using a smaller d, however, is that
the interval of uncertainty at the end of the Phase I is fairly small. Subsequent improvements
for the interval of uncertainty require fewer function evaluations. It is usually advantageous
to start with a larger value of d and quickly bracket the minimum point. Then, the process is
continued until the accuracy requirement is satisfied.

8.2.5 Alternate Equal Interval Search
A slightly different computational procedure can be followed to reduce the interval of 
uncertainty in Phase II once the minimum has been bracketed in Phase I. This procedure is
a precursor to the more efficient golden sections search presented in the next section. 
The procedure is to evaluate the function at two new points, say aa and ab in the interval of
uncertainty. The points aa and ab are located at a distance of I/3 and 2I/3 from the lower 
limit al, respectively, where I = au - al. That is,

This is shown in Fig. 8-7. Next, the function is evaluated at the two new points aa and ab.
Let these be designated as f(aa) and f(ab). Now, the following two conditions must be
checked:

1. If f(aa) < f(ab), then the minimum lies between al and ab. The right one-third
interval between ab and au is discarded. New limits for the interval of uncertainty
are a¢l = al and a¢u = ab (the prime on a is used to indicate revised limits for the
interval of uncertainty). Therefore, the reduced interval of uncertainty is I¢ = a ¢u - a¢l
= ab - al. The procedure is repeated with the new limits.

2. If f(aa) < f(ab), then the minimum lies between aa and au. The interval between al and
aa is discarded. The procedure is repeated with a¢l = aa and a¢u = au(I¢ = a¢u - a¢l).

a a a a aa l b l uI I I= + = + = -
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al aa ab au
a

(au – al)/ 3

FIGURE 8-7 An alternate equal interval search process.



With the preceding calculations, the interval of uncertainty is reduced to I¢ = 2I/3 after every
set of two function evaluations. The entire process is continued until the interval of uncer-
tainty is reduced to an acceptable value.

8.2.6 Golden Section Search
Golden section search is an improvement over the alternate equal interval search and is one
of the better methods in the class of interval reducing methods. The basic idea of the method
is still the same: evaluate the function at predetermined points, compare them to bracket the
minimum in Phase I, and then converge on the minimum point in Phase II. The method uses
fewer function evaluations to reach the minimum point compared with other similar methods.
The number of function evaluations is reduced during both the phases, the initial bracketing
phase as well as the interval reducing phase.

Initial Bracketing of Minimum—Phase I In the equal interval methods, the initially
selected increment d is kept fixed to bracket the minimum initially. This can be an inefficient
process if d happens to be a small number. An alternate procedure is to vary the increment
at each step, i.e., multiply it by a constant r > 1. This way initial bracketing of the minimum
is rapid; however, the length of the initial interval of uncertainty is increased. The golden
section search procedure is such a variable interval search method. In the method the value
of r is not selected arbitrarily. It is selected as the golden ratio, which can be derived as 1.618
in several different ways. One derivation is based on the Fibonacci sequence defined as

(a)

Any number of the Fibonacci sequence for n > 1 is obtained by adding the previous two
numbers, so the sequence is given as 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89. . . . The sequence has
the property,

(b)

That is, as n becomes large, the ratio between two successive numbers Fn and Fn-1 in the
Fibonacci sequence reaches a constant value of 1.618 or This golden ratio has
many other interesting properties that will be exploited in the one-dimensional search 
procedure. One property is that 1/1.618 = 0.618.

Figure 8-8 illustrates the process of initially bracketing the minimum using a sequence of
larger increments based on the golden ratio. In the figure, starting at q = 0, we evaluate f(a)
at a = d, where d > 0 is a small number. We check to see if the value f(d) is smaller than
the value f(0). If it is, we then take an increment of 1.618d in the step size (i.e., the increment
is 1.618 times the previous increment d). This way we evaluate the function at the follow-
ing points and compare them:
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In general, we continue to evaluate the function at the points

(8.14)

Let us assume that the function at aq-1 is smaller than that at the previous point aq-2 and
the next point aq, i.e.,

(8.15)

Therefore, the minimum point has been surpassed. Actually the minimum point lies
between the previous two intervals, i.e., between aq and aq-2, as in the equal interval search.
Therefore, upper and lower limits on the interval of uncertainty are

(8.16)

Thus, the initial interval of uncertainty is calculated as

(8.17)

Reduction of Interval of Uncertainty—Phase II The next task is to start reducing the inter-
val of uncertainty by evaluating and comparing functions at some points in the established
interval of uncertainty I. The method uses two function values within the interval I, just as in
the alternate equal interval search of Fig. 8-7. However, the points aa and ab are not located
at I/3 from either end of the interval of uncertainty. Instead, they are located at a distance of
0.382I (or 0.618I) from either end. The factor 0.382 is related to the golden ratio as we shall
see in the following.

To see how the factor 0.618 is determined, consider two points symmetrically located from
either end as shown in Fig. 8-9(A)—points aa and ab are located at a distance of tI from
either end of the interval. Comparing functions values at aa and ab, either the left (al, aa) or
the right (ab, au) portion of the interval gets discarded because the minimum cannot lie there.
Let us assume that the right portion gets discarded as shown in Fig. 8-9(B), so a¢l and a¢u are
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FIGURE 8-8 Initial bracketing of the minimum point in the golden section method.
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the new lower and upper bounds on the minimum. The new interval of uncertainty is I¢ = tI.
There is one point in the new interval at which the function value is known. It is required
that this point be located at a distance of tI¢ from the left end; therefore, tI¢ = (1 - t)I. 
Since I¢ = tI, this gives the equation t2 + t - 1 = 0. The positive root of this equation is

Thus the two points are located at a distance of 0.618I or 0.382I
from either end of the interval.

The golden section search can be initiated once the initial interval of uncertainty is known.
If the initial bracketing is done using the variable step increment (with a factor of 1.618,
which is 1/0.618), then the function value at one of the points aq-1 is already known. It turns
out that aq-1 is automatically the point aa. This can be seen by multiplying the initial inter-
val I in Eq. (8.17) by 0.382. If the preceding procedure is not used to initially bracket 
the minimum, then the points aa and ab will have to be calculated by the golden section 
procedure.

Algorithm for One-Dimensional Search by Golden Sections Find a to minimize f(a).

Step 1. For a chosen small number d, let q be the smallest integer to satisfy Eq. (8.15)
where aq, aq-1, and aq-2 are calculated from Eq. (8.14). The upper and lower bounds
on a* (the optimum value for a) are given by Eq. (8.16).

Step 2. Compute f(ab), where ab = al + 0.618I (the interval of uncertainty I = au - al).
Note that, at the first iteration, aa = al + 0.382I = aq-1, and so f (aa) is already known.

Step 3. Compare f(aa) and f(ab), and go to (i), (ii), or (iii).
(i) If f (aa) < f(ab), then minimum point a* lies between al and ab, i.e., al £ a* £

ab. The new limits for the reduced interval of uncertainty are a¢l = al and a¢u =
ab. Also, a¢b = aa. Compute f(a¢a), where a¢a = a¢l + 0.382(a¢u - a¢l) and go to
Step 4.

(ii) If f(aa) > f(ab), then minimum point a* lies between aa and au, i.e., aa £ a* £
au. Similar to the procedure in Step 3(i), let a¢l = aa and a¢u = au, so that a ¢a =
ab. Compute f(a ¢b), where a ¢b = a ¢l + 0.618(a¢u - a¢l ) and go to Step 4.

(iii) If f(aa) = f(ab), let al = aa and au = ab and return to Step 2.
Step 4. If the new interval of uncertainty I¢ = a ¢u - a¢l is small enough to satisfy a

stopping criterion (i.e., I¢ < e), let a* = (a ¢u + a ¢l )/2 and stop. Otherwise, delete the
primes on a ¢l , a ¢a, and a ¢b and return to Step 3.

Example 8.3 illustrates the golden sections method for step size calculation.

t = - +( ) =1 5 2 0 618. .
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(B)

FIGURE 8-9 Golden section partition.
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EXAMPLE 8.3 Minimization of a Function by Golden 
Section Search

Consider the function f(a) = 2 - 4a + ea. Use golden section search to find the
minimum within an accuracy of e = 0.001. Use d = 0.5.

Solution. Analytically, the solution is a* = 1.3863, f(a*) = 0.4548. In the golden
section search, we need to first bracket the minimum point (Phase I) and then iteratively
reduce the interval of uncertainty (Phase II). Table 8-1 shows various iterations of the
method. In Phase I, the minimum point is bracketed in only four iterations as shown in
the first part of the table. The initial interval of uncertainty is calculated as I = (au - al)
= 2.618034 - 0.5 = 2.118034 since f(2.618034) > f(1.309017) in Table 8-1. Note that
this interval would be larger than the one obtained using equal interval searching.

Now, to reduce the interval of uncertainty in Phase II, let us calculate ab as (al +
0.618I) or ab = au - 0.382I (calculations are shown in the second part of Table 8-1).
Note that aa and f(aa) are already known and need no further calculation. This is the
main advantage of the golden section search; only one additional function evaluation
is needed in the interval of uncertainty in each iteration, compared with the two func-
tion evaluations needed for the alternate equal interval search. We calculate ab =
1.809017 and f(ab) = 0.868376. Note that the new calculation of the function is shown
in boldface for each iteration. Since f(aa) < f(ab), new limits for the reduced interval

TABLE 8-1 Golden Section Search for f(a) = 2 - 4a + ea of Example 8.3

Phase 1: Initial bracketing of minimum

No., q Trial step, a Function value, f(a)

1 0.000000 3.000000
2 al Æ 0.500000 1.648721
3 1.309017 0.466464
4 au Æ 2.618034 5.236610

Phase 2: Reducing interval of uncertainty

No. al [f(al)] aa [f(aa)] ab [f(ab)] au [f(au)] I

1 0.500000 1.309017 1.809017 2.618034 2.118034
[1.648721] Ø [0.466464] [0.868376] [5.236610]

2 0.500000 1.000000 1.309017 1.809017 1.309017
[1.648721] [0.718282] [0.466464] [0.868376] Ø

3 1.000000 1.309017 1.500000 1.809017 0.809017
[0.718282] [0.466464] [0.481689] [0.868376]

— — — — — —
— — — — — —

16 1.385438 1.386031 1.386398 1.386991 0.001553
[0.454824] [0.454823] [0.454823] [0.454824]

17 1.386031 1.386398 1.386624 1.386991 0.000960
[0.454823] [0.454823] [0.454823] [0.454823]

a = 0.5(1.386398 + 1.386624) = 1.386511; f(a*) = 0.454823.
Note: The new calculation for each iteration is shown as boldfaced and shaded; the arrows indi-
cate direction of transfer of data.

ØØ

ØØ
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8.3 Search Direction Determination: Steepest Descent Method
Thus far we have assumed that a search direction in the design space was known and we
have tackled the problem of step size determination. In this section and the next, we shall
address the question of how to determine the search direction d. The basic requirement for
d is that the cost function be reduced if we make a small move along d; that is, the descent
condition of Eq. (8.8) be satisfied. This will be called the descent direction.

Several methods are available for determining a descent direction for unconstrained opti-
mization problems. The steepest descent method or the gradient method is the simplest, the
oldest, and probably the best known numerical method for unconstrained optimization. 
The philosophy of the method, introduced by Cauchy in 1847, is to find the direction d at
the current iteration in which the cost function f(x) decreases most rapidly, at least locally.
Because of this philosophy, the method is called the steepest descent search technique. Also,
properties of the gradient of the cost function are used in the iterative process, which is the
reason for its alternate name: the gradient method. The steepest descent method is a first-
order method since only the gradient of the cost function is calculated and used to evaluate
the search direction. In the next chapter, we shall discuss second-order methods in which the
Hessian of the function will be used in determining the search direction.

The gradient of a scalar function f(x1, x2, . . . , xn) was defined in Chapter 4 as the column
vector:

(8.18)

To simplify the notation, we shall use vector c to represent gradient of the cost function
f(x); that is, ci = ∂f/∂xi. We shall use a superscript to denote the point at which this vector is
calculated, as

(8.19)

The gradient vector has several properties that are used in the steepest descent method.
These will be discussed in the next chapter in more detail. The most important property is
that the gradient at a point x points in the direction of maximum increase in the cost func-
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of uncertainty are a ¢l = 0.5 and a ¢u = 1.809017. Also, a ¢b = 1.309017 at which the func-
tion value is already known. We need to compute only f(a ¢a) where a ¢a = a ¢l + 0.382(a ¢u
- a ¢l ) = 1.000. Further refinement of the interval of uncertainty is repetitive and can
be accomplished by writing a computer program.

A subroutine GOLD implementing the golden section search procedure is given in
Appendix D. The minimum for the function f is obtained at a* = 1.386511 with f(a*)
= 0.454823 in 22 function evaluations as shown in Table 8-1. The number of func-
tion evaluations is a measure of efficiency of an algorithm. The problem was also
solved using the equal interval search and 37 function evaluations were needed to
obtain the same solution. This verifies our earlier observation that golden section
search is a better method for a specified accuracy and initial step length.

It may appear that if the initial step length d is too large in the equal interval or
golden section method, the line search fails, i.e., f(d) > f(0). Actually, it indicates that
initial d is not proper and needs to be reduced until f(d) < f(0). With this procedure,
convergence of the method can be numerically enforced. This numerical procedure
has been implemented in the GOLD subroutine given in Appendix D.
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tion. Thus the direction of maximum decrease is opposite to that, i.e., negative of the gradi-
ent vector. Any small move in the negative gradient direction will result in the maximum
local rate of decrease in the cost function. The negative gradient vector then represents a
direction of steepest descent for the cost function and is written as

(8.20)

Equation (8.20) gives a direction of change in the design space for use in Eq. (8.4). Based
on the preceding discussion, the steepest descent algorithm is stated as follows:

Step 1. Estimate a starting design x(0) and set the iteration counter k = 0. Select a
convergence parameter e > 0.

Step 2. Calculate the gradient of f(x) at the point x(k) as c(k) = —f(x(k)).
Step 3. Calculate ||c(k)||. If ||c(k)|| < e, then stop the iterative process because x* = x(k) is a

minimum point. Otherwise, continue.
Step 4. Let the search direction at the current point x(k) be d(k) = -c(k).
Step 5. Calculate a step size ak that minimizes f(x(k) + ad(k)). Any one-dimensional

search algorithm may be used to determine ak.
Step 6. Update the design as x(k+1) = x(k) + akd(k). Set k = k + 1, and go to Step 2.

The basic idea of the steepest descent method is quite simple. We start with an initial esti-
mate for the minimum design. The direction of steepest descent is computed at that point. If
the direction is nonzero, we move as far as possible along it to reduce the cost function. At
the new design point, we calculate the steepest descent direction again and repeat the entire
process. Note that since d = -c, the descent condition of inequality (8.8) is always satisfied
as c · d = -||c||2 < 0. Examples 8.4 and 8.5 illustrate the calculations involved in the steep-
est descent method.
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EXAMPLE 8.4 Use of Steepest Descent Algorithm

Minimize (a)

using the steepest descent method starting from the point (1, 0).

Solution. To solve the problem, we follow the steps of the steepest descent 
algorithm.

1. The starting design is given as x(0) = (1, 0).
2. c(0) = (2x1 - 2x2, 2x2 - 2x1) = (2, -2).
3.
4. Set d(0) = -c(0) = (-2, 2).
5. Calculate a to minimize f(x(0) + ad(0)) where x(0) + ad(0) = (1 - 2a, 2a):

(b)

Since this is a simple function of a, we can use necessary and sufficient condi-
tions to solve for the optimum step length. In general, a numerical one-dimen-
sional search will have to be used to calculate a. Using the analytic approach
to solve for optimum a, we get
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The preceding problem is quite simple and an optimum point is obtained in only one iter-
ation. This is because the condition number of the Hessian of the cost function is 1 (condi-
tion number is a scalar associated with the given matrix; refer to Section B.7 in Appendix
B). In such a case, the steepest descent method converges in just one iteration with any start-
ing point. In general, the algorithm will require several iterations before an acceptable
optimum is reached.

(c)

(d)

Therefore, the sufficiency condition for a minimum for f(a) is satisfied.
6. Updating the design (x(0) + a0d(0)): x 1

(1) = 1 - 0.25(2) = 0.5, x2
(1) = 0 + 0.25(2) =

0.5 Solving for c(1) from the expression in Step 2, we see that c(1) = (0, 0), which
satisfies the stopping criterion. Therefore, (0.5, 0.5) is a minimum point for f(x)
and f * = 0.
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EXAMPLE 8.5 Use of Steepest Descent Algorithm

Minimize (a)

using the steepest descent method with a starting design as (2, 4, 10). Select the con-
vergence parameter e as 0.005. Perform a line search by golden section search with
initial step length d = 0.05 and an accuracy of 0.0001.

Solution.

1. The starting point is set as x(0) = (2, 4, 10).
2. c = —f = (2x1 + 2x2, 4x2 + 2x1 + 2x3, 4x3 + 2x2); c(0) = (12, 40, 48).
3.
4. d(0) = -c(0) = (-12, -40, -48).
5. Calculate a0 by golden section search to minimize f(x(0) + ad(0)); a0 = 0.1587.
6. Update the design as x(1) = x(0) + a0d(0) = (0.0956, -2.348, 2.381). At the new

design, c(1) = (-4.5, -4.438, 4.828), ||c(1)|| = 7.952 > e.

Note that c(1) · d(0) = 0, which verifies the exact line search termination criterion given
in Eq. (8.11). The steps in steepest descent algorithm should be repeated until the con-
vergence criterion is satisfied. Appendix D contains the computer program and user
supplied subroutines FUNCT and GRAD to implement steps of the steepest descent
algorithm. The optimum results for the problem with the program are given in Table
8-2. The true optimum cost function value is 0.0 and the optimum point is (0, 0, 0).

c 0 4048 63 6( ) = = > ( ). .e continue

f x x x x x x x x x x1 2 3 1
2

2
2
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2
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Although the method of steepest descent is quite simple and robust (it is convergent), it
has some drawbacks. These are:

1. Even if convergence of the method is guaranteed, a large number of iterations may
be required for the minimization of even positive definite quadratic forms, i.e., the
method can be quite slow to converge to the minimum point.

2. Information calculated at the previous iterations is not used. Each iteration is started
independent of others, which is inefficient.

3. Only first-order information about the function is used at each iteration to determine
the search direction. This is one reason that convergence of the method is slow. It
can further deteriorate if an inaccurate line search is used. Moreover, the rate of
convergence depends on the condition number of the Hessian of the cost function at
the optimum point. If the condition number is large, the rate of convergence of the
method is slow.

4. Practical experience with the method has shown that a substantial decrease in the
cost function is achieved in the initial few iterations and then it decreases quite
slowly in later iterations.

5. The direction of steepest descent (direction of most rapid decrease in the cost
function) may be good in a local sense (in a small neighborhood) but not in a global
sense.

8.4 Search Direction Determination: Conjugate 
Gradient Method

There are many optimization methods based on the concept of conjugate gradients; however,
we shall only present a method due to Fletcher and Reeves (1964). The conjugate gradient
method is a very simple and effective modification of the steepest descent method. It will be
shown in the next chapter that the steepest descent directions at two consecutive steps are
orthogonal to each other. This tends to slow down the steepest descent method although it is
convergent. The conjugate gradient directions are not orthogonal to each other. Rather, these
directions tend to cut diagonally through the orthogonal steepest descent directions. There-
fore, they improve the rate of convergence of the steepest descent method considerably. 

Note that large numbers of iterations and function evaluations are needed to reach the
optimum.

TABLE 8-2 Optimum Solution for Example 8.5 with Steepest Descent Method: 
f(x1, x2, x3) = x2

1 + 2x2
2 + 2x2

3 + 2x1x2 + 2x2x3

Starting values of design variables: 2, 4, 10
Optimum design variables: 8.04787E-03, -6.81319E-03, 3.42174E-03
Optimum cost function value: 2.473 47E-05
Norm of gradient of the cost function at optimum: 4.970 71E-03
Number of iterations: 40
Total number of function evaluations: 753
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Actually, the conjugate gradient directions d(i) are orthogonal with respect to a symmetric
and positive definite matrix A, i.e., d(i)TAd( j) = 0 for all i and j, i π j. The conjugate gradient
algorithm is stated as follows:

Step 1. Estimate a starting design as x(0). Set the iteration counter k = 0. Select the
convergence parameter e. Calculate

(8.21a)

Check stopping criterion. If ||c(0)|| < e, then stop. Otherwise, go to Step 4 (note that
Step 1 of the conjugate gradient and the steepest descent methods is the same).

Step 2. Compute the gradient of the cost function as c(k) = —f(x(k)).
Step 3. Calculate ||c(k)||. If ||c(k)|| < e, then stop; otherwise continue.
Step 4. Calculate the new conjugate direction as

(8.21b)

Step 5. Compute a step size ak = a to minimize f(x(k) ad(k)).
Step 6. Change the design as follows, set k = k + 1 and go to Step 2.

(8.22)

Note that the conjugate direction in Eq. (8.21b) satisfies the descent condition of Inequal-
ity (8.8). This can be shown by substituting d(k) from Eq. (8.21b) into Inequality (8.8) and
using the step size determination condition given in Eq. (8.11). The first step of the conju-
gate gradient method is just the steepest descent step. The only difference between the con-
jugate gradient and steepest descent methods is in Eq. (8.21b). In this step the current steepest
descent direction is modified by adding a scaled direction used in the previous iteration. The
scale factor is determined using lengths of the gradient vector at the two iterations as shown
in Eq. (8.21b). Thus, the conjugate direction is nothing but a deflected steepest descent direc-
tion. This is an extremely simple modification that requires little additional calculation. It 
is, however, very effective in substantially improving the rate of convergence of the 
steepest descent method. Therefore, the conjugate gradient method should always be pre-
ferred over the steepest descent method. In the next chapter an example is discussed that
compares the rate of convergence of the steepest descent, conjugate gradient, and Newton’s
methods. We shall see there that the method performs quite well compared with the other
two methods.

The conjugate gradient algorithm finds the minimum in n iterations for positive definite
quadratic functions having n design variables. For general functions, if the minimum has not
been found by then, it is recommended that the iterative process should be restarted every (n
+ 1) iterations for computational stability. That is, set x(0) = x(n+1) and restart the process from
Step 1 of the algorithm. The algorithm is very simple to program and works very well for
general unconstrained minimization problems. Example 8.6 illustrates the calculations
involved in the conjugate gradient method.
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EXAMPLE 8.6 Use of Conjugate Gradient Algorithm

Consider the problem solved in Example 8.5: minimize

(a)

Carry out two iterations of the conjugate gradient method starting from the design (2,
4, 10).

Solution. The first iteration of the conjugate gradient method is the same as given
in Example 8.5:

(b)

(c)

The second iteration starts from Step 2 of the conjugate gradient algorithm:

2. (d)

3. ||c(1)|| = 7.952 > e, so continue.
4. (e)

(f)

5. Step size in the direction d(1) is calculated as a = 0.3156.

6. (g)

Calculating the gradient at this point, we get c(2) = (0.6238, -0.4246, 0.1926). ||c2|| =
0.7788 > e, so we need to continue the iterations. Note that c(2) · d(1) = 0.

The problem is solved using the conjugate gradient method available in the
IDESIGN software with e = 0.005 (Arora and Tseng, 1987a,b). Table 8-3 summarizes
performance results for the method. It can be seen that a very precise optimum is
obtained in only 4 iterations and 10 function evaluations. Comparing these with the
steepest descent method results given in Table 8-2, we conclude that the conjugate
gradient method is superior for this example.

The design is updated as x 2
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TABLE 8-3 Optimum Solution for Example 8.6 with the Conjugate Gradient Method:
f(x1, x2, x3) = x2

1 + 2x2
2 + 2x2

3 + 2x1x2 + 2x2x3

Starting values of design variables: 2, 4, 10
Optimum design variables: -6.4550E-10, -5.8410E-10, 1.3150E-10.
Optimum cost function value: 6.8520E-20.
Norm of the gradient at optimum: 3.0512E-05.
Number of iterations: 4
Number of function evaluations: 10
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EXAMPLE 8.7 Use of Excel Solver

Solve the problem of Example 8.6 using Solver in Excel.

Solution. Figure 8-10 shows the worksheet and the Solver dialog box for the
problem. The worksheet for the problem can be prepared in several different ways as
explained earlier in Chapters 4 and 6. For the present example, cell D9 defines the
final expression for the cost function. Once the worksheet has been prepared, Solver
is invoked under the Tools tab, and the “Options” button is used to invoke the conju-
gate gradient method. The forward finite difference option is selected for calculation
of the gradient of the cost function. The algorithm converges to the solution reported
in Table 8-3 in five iterations.

FIGURE 8-10 Excel worksheet and Solver dialog box for Example 8.7.

Example 8.7 illustrates the use of Excel Solver to solve unconstrained optimization 
problems.



Exercises for Chapter 8
Section 8.1 General Concepts Related to Numerical Algorithms

8.1 Answer True or False.

1. All optimum design algorithms require a starting point to initiate the iterative
process.

2. A vector of design changes must be computed at each iteration of the iterative
process.

3. The design change calculation can be divided into step size determination and
direction finding subproblems.

4. The search direction requires evaluation of the gradient of the cost function.
5. Step size along the search direction is always negative.
6. Step size along the search direction can be zero.
7. In unconstrained optimization, the cost function can increase for an arbitrary small

step along the descent direction.
8. A descent direction always exists if the current point is not a local minimum.
9. In unconstrained optimization, a direction of descent can be found at a point

where the gradient of the cost function is zero.
10. The descent direction makes an angle of 0–90° with the gradient of the cost

function.

Determine if the given direction at the point is that of descent for the following functions
(show all the calculations).

8.2 f(x) = 3x2
1 + 2x1 + 2x2

2 + 7; d = (-1, 1) at x = (2, 1)

8.3 f(x) = x2
1 + x2

2 - 2x1 - 2x2 + 4; d = (2, 1) at x = (1, 1)

8.4 f(x) = x2
1 + 2x2

2 + 2x2
3 + 2x1x2 + 2x2x3; d = (-3, 10, -12) at x = (1, 2, 3)

8.5 f(x) = 0.1x2
1 + x2

2 - 10; d = (1, 2) at x = (4, 1)

8.6 f(x) = (x1 - 2)2 + (x2 - 1)2; d = (2, 3) at x = (4, 3)

8.7 f(x) = 10(x2 - x2
1)2 + (1 - x1)2; d = (162, -40) at x = (2, 2)

8.8 f(x) = (x1 - 2)2 + x2
2; d = (-2, 2) at x = (1, 1)

8.9 f(x) = 0.5x2
1 + x2

2 - x1x2 - 7x1 - 7x2; d = (7, 6) at x = (1, 1)

8.10 f(x) = (x1 + x2)2 + (x2 + x3)2; d = (4, 8, 4,) at x = (1, 1, 1)

8.11 f(x) = x2
1 + x2

2 + x2
3; d = (2, 4, -2) at x = (1, 2, -1)

8.12 f(x) = (x1 + 3x2 + x3)2 + 4(x1 - x2)2; d = (-2, -6, -2) at x = (-1, -1, -1)

8.13 f(x) = 9 - 8x1 - 6x2 - 4x3 - 2x2
1 + 2x2

2 + x2
3 + 2x1x2 + 2x2x3; d = (-2, 2, 0) at x =

(1, 1, 1)

8.14 f(x) = (x1 - 1)2 + (x2 - 2)2 + (x3 - 3)2 + (x4 - 4)2; d = (2, -2, 2, -2) at x = (2, 1, 4, 3)

Section 8.2 Basic Ideas and Algorithms for Step Size Determination

8.15 Answer True or False.
1. Step size determination is always a one-dimensional problem.
2. In unconstrained optimization, the slope of the cost function along the descent

direction at zero step size is always positive.
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3. The optimum step lies outside the interval of uncertainty.
4. After initial bracketing, the golden section search requires two function

evaluations to reduce the interval of uncertainty.

8.16 Find the minimum of the function f(a) = 7a2 - 20a + 22 using the equal interval
search method within an accuracy of 0.001. Use d = 0.05.

8.17 For the function f(a) = 7a2 - 20a + 22, use the golden section method to find the
minimum with an accuracy of 0.005 (final interval of uncertainty should be less than
0.005). Use d = 0.05.

8.18 Write a computer program to implement the alternate equal interval search process
shown in Fig. 8.7 for any given function f(a). For the function f(a) = 2 - 4a = +ea,
use your program to find the minimum within an accuracy of 0.001. Use d = 0.50.

8.19 Consider the function f(x1, x2, x3) = x2
1 + 2x2

2 + 2x2
3 + 2x1x2 + 2x2x3. Verify whether the

vector d = (-12, -40, -48) at the point (2, 4, 10) is a descent direction for f. What is
the slope of the function at the given point? Find an optimum step size along d by
any numerical method.

8.20 Consider the function f(x) = x2
1 + x2

2 - 2x1 - 2x2 + 4. At the point (1, 1), let a search
direction be defined as d = (1, 2). Express f as a function of one variable at the given
point along d. Find an optimum step size along d analytically.

For the following functions, direction of change at a point is given. Derive the function of
one variable (line search function) that can be used to determine optimum step size (show
all calculations).

8.21 f(x) = 0.1x2
1 + x2

2 - 10; d = (-1, -2) at x = (5, 1)

8.22 f(x) = (x1 - 2)2 + (x2 - 1)2; d = (-4, -6) at x = (4, 4)

8.23 f(x) = 10(x2 - x2
1)2 + (1 - x1)2; d = (-162, 40) at x = (2, 2)

8.24 f(x) = (x1 - 2)2 + x2
2; d = (2, -2) at x = (1, 1)

8.25 f(x) = 0.5x2
1 + x2

2 - x1x2 - 7x1 - 7x2; d = (7, 6) at x = (1, 1)

8.26 f(x) = (x1 + x2)2 + (x2 + x3)2; d = (-4, -8, -4) at x = (1, 1, 1)

8.27 f(x) = x2
1 + x2

2 + x2
3; d = (-2, -4, 2) at x = (1, 2, -1)

8.28 f(x) = (x1 + 3x2 + x3)2 + 4(x1 - x2)2; d = (1, 3, 1) at x = (-1, -1, -1)

8.29 f(x) = 9 - 8x1 - 6x2 - 4x3 + 2x2
1 + 2x2

2 + x2
3 + 2x1x2 + 2x2x3; d = (2, -2, 0) at x = (1, 1, 1)

8.30 f(x) = (x1 - 1)2 + (x2 - 2)2 + (x3 - 3)2 + (x4 - 4)2; d = (-2, 2, -2, 2) at x = (2, 1, 4, 3)

For the following problems, calculate the initial interval of uncertainty for the equal inter-
val search with d = 0.05 at the given point and the search direction.

8.31 Exercise 8.21 8.32 Exercise 8.22

8.33 Exercise 8.23 8.34 Exercise 8.24

8.35 Exercise 8.25 8.36 Exercise 8.26

8.37 Exercise 8.27 8.38 Exercise 8.28

8.39 Exercise 8.29 8.40 Exercise 8.30
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For the following problems, calculate the initial interval of uncertainty for the golden section
search with d = 0.05 at the given point and the search direction; then complete two itera-
tions of the Phase II of the method.

8.41 Exercise 8.21 8.42 Exercise 8.22

8.43 Exercise 8.23 8.44 Exercise 8.24

8.45 Exercise 8.25 8.46 Exercise 8.26

8.47 Exercise 8.27 8.48 Exercise 8.28

8.49 Exercise 8.29 8.50 Exercise 8.30

Section 8.3 Search Direction Determination: Steepest Descent Method

8.51 Answer True or False.
1. The steepest descent method is convergent.
2. The steepest descent method can converge to a local maximum point starting from
a point where the gradient of the function is nonzero.
3. Steepest descent directions are orthogonal to each other.
4. Steepest descent direction is orthogonal to the cost surface.

For the following problems, complete two iterations of the steepest descent method starting
from the given design point.

8.52 f(x1, x2) = x2
1 + 2x2

2 - 4x1 - 2x1x2; starting design (1, 1)

8.53 f(x1, x2) = 12.096x2
1 + 21.504x2

2 - 1.7321x1 - x2; starting design (1, 1)

8.54 f(x1, x2) = 6.983x2
1 + 12.415x2

2 - x1; starting design (2, 1)

8.55 f(x1, x2) = 12.096x2
1 + 21.504x2

2 - x2; starting design (1, 2)

8.56 f(x1, x2) = 25x2
1 + 20x2

2 - 2x1 - x2; starting design (3, 1)

8.57 f(x1, x2, x3) = x2
1 + 2x2

2 + 2x2
3 + 2x1x2 + 2x2x3; starting design (1, 1, 1)

8.58

Starting design (4, 6); the step size may be approximated or calculated using a
computer program.

8.59

Starting design (5, 2); the step size may be approximated or calculated using a
computer program.

8.60 f(x1, x2) = 100(x2 - x2
1)2 + (1 - x1)2; starting design (5, 2)

8.61 f(x1, x2, x3, x4) = (x1 - 10x2)2 + 5(x3 - x4)2 + (x2 - 2x3)4 + 10(x1 - x4)4

Let the starting design be (1, 2, 3, 4).

8.62 Solve Exercises 8.52 to 8.61 using the computer program given in Appendix D for
the steepest descent method.

f x x x x x x

x x x x x

x1 2 1
2

2
2

1
2

2
2

2

1
2

2
2

2 1 2

9 9 100 20 100

64 16 64 5 41

,( ) = + - + - +
- + + + - -

f x x x x x x

x x x x x

x1 2 1
2

2
2

1
2

2
2

2

1
2

2
2

2 1 2

8 8 80 20 100

80 20 100 5 5

,( ) = + - + - +
- + + + - -
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8.63 Consider the following three functions:

Minimize f1, f2, and f3 using the program for the steepest descent method given in
Appendix D. Choose the starting design to be (1, 1, 2) for all functions. What do 
you conclude from observing the performance of the method on the foregoing
functions?

8.64 Calculate the gradient of the following functions at the given points by the forward,
backward, and central difference approaches with a 1 percent change in the point and
compare them with the exact gradient:
1. f(x) = 12.096x2

1 + 21.504x2
2 - 1.7321x1 - x2 at (5, 6)

2. f(x) = 50(x2 - x2
1)2 + (2 - x1)2 at (1, 2)

3. f(x) = x2
1 + 2x2

2 + 2x2
3 + 2x1x2 + 2x2x3 at (1, 2, 3)

8.65 Consider the following optimization problem

Here u = (u1, u2, . . . , un) are components of a unit vector. Solve this optimization
problem and show that the u that maximizes the preceding objective function is
indeed in the direction of the gradient c.

Section 8.4 Search Direction Determination: Conjugate Gradient Method

8.66 Answer True or False.
1. The conjugate gradient method usually converges faster than the steepest descent

method.
2. Conjugate directions are computed from gradients of the cost function.
3. Conjugate directions are normal to each other.
4. The conjugate direction at the kth point is orthogonal to the gradient of the cost

function at the (k + l)th point when an exact step size is calculated.
5. The conjugate direction at the kth point is orthogonal to the gradient of the cost

function at the (k - 1)th point.

For the following problems, complete two iterations of the conjugate gradient method.

8.67 Exercise 8.52 8.68 Exercise 8.53

8.69 Exercise 8.54 8.70 Exercise 8.55

8.71 Exercise 8.56 8.72 Exercise 8.57

8.73 Exercise 8.58 8.74 Exercise 8.59

8.75 Exercise 8.60 8.76 Exercise 8.61

8.77 Write a computer program to implement the conjugate gradient method (or, modify
the steepest descent program given in Appendix D). Solve Exercises 8.52 to 8.61
using your program.

subject to the constraint ui
i

n
2

1

1
=
Â =

maximize u
f

x
i

i

n

i=
Â ∂

∂
= ◊( )

1

c u

f x x x f x x x f x x x1 1
2

2
2

3
2

2 1
2

2
2

3
2

3 1
2

2
2

3
210 100 100 0 1= + + = + + = + +; ; .
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For the following problems, write an Excel worksheet and solve the problems using Solver.

8.78 Exercise 8.52 8.79 Exercise 8.53

8.80 Exercise 8.54 8.81 Exercise 8.55

8.82 Exercise 8.56 8.83 Exercise 8.57

8.84 Exercise 8.58 8.85 Exercise 8.59

8.86 Exercise 8.60 8.87 Exercise 8.61
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9 More on Numerical Methods for
Unconstrained Optimum Design

305

Upon completion of this chapter, you will be able to:

• Use some alternate procedures for step size calculation

• Explain properties of the gradient vector used in the steepest descent method

• Use scaling of design variables to improve performance of optimization methods

• Use the second-order methods for unconstrained optimization, such as the
Newton method and understand its limitations

• Use approximate second-order methods for unconstrained optimization, called
quasi-Newton methods

• Transform constrained problems to unconstrained problems and use unconstrained
optimization methods to solve them

The material of this chapter builds upon the basic concepts and numerical methods for
unconstrained problems presented in the previous chapter. Topics covered include polyno-
mial interpolation for step size calculation, properties of the gradient vector, a Newton method
that uses Hessian of the cost function in numerical optimization, scaling of design variables,
approximate second-order methods—called quasi-Newton methods, and transformation
methods that transform a constrained problem to an unconstrained problem so that uncon-
strained optimization methods can be used to solve constrained problems. These topics may
be omitted in an undergraduate course on optimum design or on first independent reading of
the text.

9.1 More on Step Size Determination
The interval reducing methods described in Chapter 8 can require too many function evalu-
ations during line search to determine an appropriate step size. In realistic engineering design
problems, the function evaluation requires a significant amount of computational effort.
Therefore, methods such as golden section search are inefficient for many practical applica-
tions. In this section, we present some other line search methods such as polynomial inter-
polation and inaccurate line search.



9.1.1 Polynomial Interpolation
Instead of evaluating the function at numerous trial points, we can pass a curve through a
limited number of points and use the analytical procedure to calculate the step size. Any con-
tinuous function on a given interval can be approximated as closely as desired by passing a
higher order polynomial through its data points and then calculating its minimum explicitly.
The minimum point of the approximating polynomial is often a good estimate of the exact
minimum of the line search function f(a). Thus, polynomial interpolation can be an efficient
technique for one-dimensional search. Whereas many polynomial interpolation schemes can
be devised, we will present two procedures based on quadratic interpolation.

Quadratic Curve Fitting Many times it is sufficient to approximate the function f(a) on
an interval of uncertainty by a quadratic function. To replace a function in an interval with
a quadratic function, we need to know the function value at three distinct points to determine
the three coefficients of the quadratic polynomial. It must also be assumed that the function
f(a) is sufficiently smooth and unimodal, and that the initial interval of uncertainty (al, au)
is known. Let ai be any intermediate point in the interval (al, au), and let f(al), f(ai), and
f(au) be the function values at the respective points. Figure 9-1 shows the function f(a) and
the quadratic function q(a) as its approximation in the interval (al, au). is the minimum
point of the quadratic function q(a) whereas a* is the exact minimum point of f(a). An 
iteration can be used to improve the estimate for a*.

Any quadratic function q(a) can be expressed in the general form as

(9.1)

where a0, a1, and a2 are the unknown coefficients. Since the function q(a) must have the same
value as the function f(a) at the points al, ai, and au, we get three equations in three unknowns
a0, a1, and a2 as follows:

a a a fu u u0 1 2
2+ + = ( )a a a

a a a fi i i0 1 2
2+ + = ( )a a a

a a a fl l l0 1 2
2+ + = ( )a a a

q a a aa a a( ) = + +0 1 2
2

a

a
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f (a)

q(a)

a
ai aua* aal

Quadratic
approximation to f (a)

FIGURE 9-1 Quadratic approximation for a function f(a).



Solving the system of linear simultaneous equations for a0, a1, and a2, we get:

(9.2)

The minimum point of the quadratic curve q(a) in Eq. (9.1) is calculated by solving the
necessary condition dq/da = 0 and verifying the sufficiency condition d2q/da2 > 0, as

(9.3)

Thus, if a2 > 0, is a minimum of q(a). Additional iterations may be used to further refine
the interval of uncertainty. The quadratic curve fitting technique may now be given in the
form of a computational algorithm:

Step 1. Select a small number d, and locate the initial interval of uncertainty (al, au).
Any zero-order method discussed previously may be used.

Step 2. Let ai be an intermediate point in the interval (al, au) and f(ai) be the value of
f(a) at ai.

Step 3. Compute the coefficients a0, a1, and a2 from Eqs. (9.2), from Eq. (9.3), and
f( ).

Step 4. Compare ai and . If ai < , continue with this step. Otherwise, go to Step 5.
(a) If f(ai) < f( ), then al £ a* £ . The new limits of the reduced interval of

uncertainty are a¢l = al, a¢u = , and a¢i = ai and go to Step 6.
(b) If f(ai) > f( ), then £ a* £ au. The new limits of the reduced interval of

uncertainty are a¢l = , a¢u = au, and a¢i = ai and go to Step 6.
Step 5. (a) If f(ai) < f( ), then al £ a* £ ai. The new limits of the reduced interval of

uncertainty are a¢l = , a¢u = au, and a¢i = ai and go to Step 6.
(b) If f(ai) > f( ), then al £ a* £ ai. The new limits for the reduced interval of

uncertainty are a¢l = al, a¢u = ai, and a¢i = and go to Step 6.
Step 6. If the two successive estimates of the minimum point of f(a) are sufficiently

close, then stop. Otherwise, delete the primes on a¢l, a¢i, and a¢u and return to
Step 2.

Example 9.1 illustrates evaluation of the step size using quadratic interpolation.
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EXAMPLE 9.1 One-dimensional Minimization with
Quadratic Interpolation

Find the minimum point of f(a) = 2 - 4a + ea of Example 8.3 by polynomial inter-
polation. Use the golden section search with d = 0.5 to bracket the minimum point
initially.



Alternate Quadratic Interpolation In this approach, we use the known information about
the function at a = 0 to perform quadratic interpolation; i.e., we can use f(0) and f ¢(0) in the
interpolation process. Example 9.2 illustrates this alternate quadratic interpolation procedure.
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EXAMPLE 9.2 One-Dimensional Minimization with
Alternate Quadratic Interpolation

Find the minimum point of f(a) = 2 - 4a + ea using f(0), f ¢(0), and f(au) to fit a qua-
dratic curve, where au is an upper bound on the minimum point of f(a).

Solution. Let the general equation for a quadratic curve be a0 + a1a + a2a 2, where
a0, a1, and a2 are the unknown coefficients. Let us select the upper bound on a* to be

Solution.

Iteration 1. From Example 8.3 the following information is known.

The coefficients a0, a1, and a2 are calculated from Eq. (9.2) as

Therefore, = 1.2077 from Eq. (9.3), and f( ) = 0.5149. Note that < ai and f(ai)
< f( ). Thus, new limits of the reduced interval of uncertainty are a¢l = = 1.2077,
a¢u = au = 2.618034, and a¢i = ai = 1.309017.

Iteration 2. We have the new limits for the interval of uncertainty, the interme-
diate point, and the respective values as

The coefficients a0, a1, and a2 are calculated as before, a0 = 5.7129, a1 = -7.8339, and
a2 = 2.9228. Thus, = 1.34014 and f( ) = 0.4590.

Comparing these results with the optimum solution given in Table 8-1, we observe
that and f( ) are quite close to the final solution. One more iteration can give a very
good approximation to the optimum step size. Note that only five function evaluations
are used to obtain a fairly accurate optimum step size for the function f(a). Therefore,
the polynomial interpolation approach can be quite efficient for one-dimensional 
minimization.

aa

aa

f f fl i ua a a( ) = ( ) = ( ) =0 5149 0 466464 5 23661. , . , .

a a al i u= = =1 2077 1 309017 2 618034. , . , .

aa
aaa

a0 1 648271 5 821 0 50 2 41 0 25 3 957= - -( )( ) - ( ) =. . . . . .

a1
1 1823

0 80902
2 41 1 80902 5 821=

-
- ( )( ) = -

.
.

. . .

a2
1

1 30902

3 5879
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2 410= -

-Ê
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ˆ
¯ =

.
.
.

.
.

.

f f fl i ua a a( ) = ( ) = ( ) =1 648721 0 466464 5 236610. , . , .

a a al i u= = =1 2077 1 309017 2 618034. , . , .



9.1.2 Inaccurate Line Search
Exact line search during unconstrained or constrained minimization can be quite time con-
suming. Therefore, usually, the inaccurate line search procedures that also satisfy global con-
vergence requirements are used in most computer implementations. The basic concept of
inaccurate line search is that the step size should not be too small or too large, and there
should be sufficient decrease in the cost function value. Several inaccurate line search pro-
cedures have been developed and used. Here, we discuss some basic concepts and present a
procedure for inaccurate line search.

Recall that a step size ak > 0 exists if d(k) satisfies the descent condition (c(k) ·d(k)) < 0. Gen-
erally, an iterative method, such as quadratic interpolation, is used during line search, and
the process is terminated when the step size is sufficiently accurate; i.e., the line search ter-
mination criterion (c(k+1) ·d(k)) = 0 of Eq. (8.11) is satisfied sufficiently accurately. However,
note that to check this condition, we need to calculate the gradient of the cost function at
each trial step size, which can be quite expensive. Therefore, some other simple strategies
have been developed that do not require this calculation. One such strategy is called the
Armijo’s rule. The essential idea is first to guarantee that the selected step size a is not too
large; i.e., the current step is not far beyond the optimum step size. Next, the step size should
not be too small such that there is little progress toward the minimum point (i.e., there is very
little reduction in the cost function).

Let the line search function be defined as f(a) = f(x(k) + ad(k)) as in Eq. (8.9). Armijo’s
rule uses a linear function of a as f(0) + a[rf ¢(0)], where is a fixed number between 0 and
1; 0 < r < 1. This function is shown as the dashed line in Fig. 9-2. A value of a is consid-
ered not too large if the corresponding function value lies below the dashed line, i.e.,

(9.4)

To ensure that a is not too small, a number h > 1 is selected. Then a is considered not
too small if it satisfies the following inequality:

(9.5)f f fha ha r( ) > ( ) + ¢( )[ ]0 0

f f fa a r( ) £ ( ) + ¢( )[ ]0 0

r.
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2.618034 (au) from the golden section search. Using the given function f(a), we have
f(0) = 3, f(2.618034) = 5.23661, and f ¢(0) = -3. Now, as before, we get the follow-
ing three equations to solve for the unknown coefficients a0, a1, and a2:

Solving the three equations simultaneously, we get a0 = 3, a1 = -3, and a2 = 1.4722.
The minimum point of the parabolic curve using Eq. (9.3) is given as = 1.0189 and
f( ) = 0.69443. This estimate can be improved using an iteration as demonstrated in
Example 9.1. Note that an estimate of the minimum point of the function f(a) can be
found in only two function evaluations. Since the slope f ¢(0) = c(k) ·d(k) is known for
multidimensional problems, no additional calculations are required to evaluate it at 
a = 0.

a
a

a f1 0 3= ¢( ) = -

a a a f0 1 22 618034 6 854 2 618034 5 23661+ + = ( ) =. . . .

a f0 0 3= ( ) =



This means that if a is increased by a factor h, it will not meet the test given in 
Eq. (9.4).

Armijo’s rule can be used to determine the step size without interpolation as follows: one
starts with an arbitrary a. If it satisfies Eq. (9.4), it is repeatedly increased by h (h = 2 to 10
and r = 0.2 are often used) until Eq. (9.4) is violated. The largest a satisfying Eq. (9.4) 
is selected as the step size. If on the other hand, the starting value of a does not satisfy 
Eq. (9.4), it is repeatedly divided by h until Inequality (9.4) is satisfied. Use of a procedure
similar to Armijo’s rule is demonstrated in a numerical algorithm for constrained problems
in Chapter 11.

9.2 More on Steepest Descent Method
In this section we shall study properties of the gradient vector that is used in the steepest
descent method. Proofs of the properties are given since they are quite instructive. We shall
also show that the steepest descent directions at successive iterations are orthogonal to each
other.

9.2.1 Properties of the Gradient Vector

Property 1 The gradient vector c of a function f(x1, x2, . . . , xn) at the point x* = (x*1, x*2,
. . . , xn*) is orthogonal (normal) to the tangent hyperplane for the surface f(x1, x2, . . . , xn) =
constant.

This is an important property of the gradient vector shown graphically in Fig. 9-3. It shows
the surface f(x) = constant; x* is a point on the surface; C is any curve on the surface through
the point x*; T is a vector tangent to the curve C at the point x*; u is any unit vector; and c
is the gradient vector at x*. According to the above property, vectors c and T are normal to
each other, i.e., their dot product is zero, c ·T = 0.
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FIGURE 9-2 Inaccurate line search using Armijo’s rule.



Proof To show this, we take any curve C on the surface f(x1, x2, . . . , xn) = constant, as
shown in Fig. 9-3. Let the curve pass through the point x* = (x1*, x2*, . . . , xn*). Also, let s
be a parameter along C. Then a unit tangent vector T along C at the point x* is given as

(a)

Since f(x) = constant, the derivative of f along the curve C is zero, i.e., df/ds = 0 (direc-
tional derivative of f in the direction s). Or, using the chain rule of differentiation, we get

(b)

Writing Eq. (b) in the vector form after identifying ∂f/∂xi and ∂xi/∂s [from Eq. (a)] as com-
ponents of the gradient and the unit tangent vectors, we obtain c ·T = 0, or cTT = 0. Since
the dot product of the gradient vector c with the tangential vector T is zero, the vectors are
normal to each other. But, T is any tangent vector at x*, and so c is orthogonal to the tangent
plane for the surface f(x) = constant at the point x*.

Property 2 The second property is that the gradient represents a direction of maximum rate
of increase for the function f(x) at the point x*.

Proof To show this, let u be a unit vector in any direction that is not tangent to the surface.
This is shown in Fig. 9-3. Let t be a parameter along u. The derivative of f(x) in the direc-
tion u at the point x* (i.e., directional derivative of f ) is given as

(c)

where e is a small number. Using Taylor’s expansion, we have
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FIGURE 9-3 Gradient vector for the surface f(x) = constant at the point x*.



where ui are components of the unit vector u and o(e 2) are terms of order e 2. Rewriting the
foregoing equation,

(d)

Substituting Eq. (d) into Eq. (c) and taking the indicated limit, we get

(e)

Using the definition of the dot product in Eq. (e), we get

(f)

where q is the angle between the c and u vectors. The right side of Eq. (f) will have extreme
values when q = 0° or 180°. When q = 0°, vector u is along c and cos q = 1. Therefore, from
Eq. (f), df /dt represents the maximum rate of increase for f(x) when q = 0°. Similarly, when
q = 180°, vector u points in the negative c direction. Therefore, from Eq. (f), df /dt represents
the maximum rate of decrease for f(x) when q = 180°.

According to the foregoing property of the gradient vector, if we need to move away from
the surface f(x) = constant, the function increases most rapidly along the gradient vector com-
pared with a move in any other direction. In Fig. 9-3, a small move along the direction c will
result in a larger increase in the function, compared with a similar move along the direction
u. Of course, any small move along the direction T results in no change in the function since
T is tangent to the surface.

Property 3 The maximum rate of change of f(x) at any point x* is the magnitude of the
gradient vector.

Proof Since u is a unit vector, the maximum value of df/dt from Eq. (f) is given as

However, for q = 0°, u is in the direction of the gradient vector. Therefore, the magnitude of
the gradient represents the maximum rate of change for the function f(x).

These properties show that the gradient vector at any point x* represents a direction of
maximum increase in the function f(x) and the rate of increase is the magnitude of the vector.
The gradient is therefore called a direction of steepest ascent for the function f(x). Example
9.3 verifies properties of the gradient vector.
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EXAMPLE 9.3 Verification of Properties 
of the Gradient Vector

Verify the properties of the gradient vector for the function f(x) = 25x1
2 + x2

2 at the
point x(0) = (0.6, 4).

Solution. Figure 9-4 shows in the x1 - x2 plane the contours of value 25 and 100 for
the function f. The value of the function at (0.6, 4) is f(0.6, 4) = 25. The gradient of
the function at (0.6, 4) is given as
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(a)

(b)

Therefore, a unit vector along the gradient is given as

(c)

Using the given function, a vector tangent to the curve at the point (0.6, 4) is given
as

(d)

This vector is obtained by differentiating the equation for the curve 25x1
2 + x2

2 = 25 at
the point (0.6, 4) with respect to the parameter s along the curve. This gives the expres-
sion ∂x1/∂s = -(4/15)∂x2/∂s. Then the vector t tangent to the curve is obtained using
Eq. (a) as (∂x1/∂s, ∂x2/∂s). The unit tangent vector is calculated as

(e)

Property 1. If the gradient is normal to the tangent, then C ·T = 0. This is indeed
true for the preceding data. We can also use the condition that if two lines are orthog-
onal, then m1m2 = -1, where m1 and m2 are the slopes of the two lines (this result can

T t t= = -( )0 257663 0 966235. , .

t = -( )4 15,

C c c= = ( )0 966235 0 257663. , .

c = ¥ + ¥ =30 30 8 8 31 04835.

c = — ( ) = ( ) = ( ) = ( )f f x f x x x0 6 4 50 2 30 81 2 1 2. , , , ,∂ ∂ ∂ ∂

x2

x1

f = 100

f = 25

(0.6, 4)

c = (30, 8)

t = (–4, 15)

d

830

FIGURE 9-4 Contours of function f = 25x1
2 + x2

2 for f = 25 and 100.



9.2.2 Orthogonality of Steepest Descent Directions
It is interesting to note that the successive directions of steepest descent are normal to one
another, i.e., (c(k) ·c(k+1)) = 0. This can be shown quite easily by using the necessary condi-
tions to determine the optimum step size. The step size determination problem is to compute
ak that minimizes f(x(k) + ad(k)). The necessary condition for this is df/da = 0. Using the chain
rule of differentiation, we get

(9.6a)

which gives

(9.6b)c d c ck k k k+( ) ( ) +( ) ( )◊( ) = ◊( ) =1 10 0or
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be proved by using the rotational transformation of coordinates through 90 degrees).
To calculate the slope of the tangent, we use the equation for the curve 25x1

2 + x2
2 =

25, or Therefore, the slope of the tangent at the point (0.6, 4) is given
as

(f)

This slope is also obtained directly from the tangent vector t = (-4, 15). The slope of
the gradient vector c = (30, 8) is Thus m1m2 is, indeed, -1, and the two
lines are normal to each other.

Property 2. Consider any arbitrary direction d = (0.501034, 0.865430) at the point
(0.6, 4) as shown in Fig. 9-4. If C is the direction of steepest ascent, then the func-
tion should increase more rapidly along C than along d. Let us choose a step size a
= 0.1 and calculate two points, one along C and the other along d as

(g)

(h)

Now, we calculate the function at these points and compare their values: f(x(1)) =
28.3389, f(x(2)) = 27.2657. Since f(x(1)) > f(x(2)), the function increases more rapidly
along C than along d.

Property 3. If the magnitude of the gradient vector represents the maximum rate
of change of f(x), then (c ·c) > (c ·d), (c ·c) = 964.0, and (c ·d) = 21.9545. Therefore,
the gradient vector satisfies this property also.

Note that the last two properties are valid only in a local sense, i.e., only in a small
neighborhood of the point at which the gradient is evaluated.
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(9.6c)

In the two-dimensional case, x = (x1, x2). Figure 9-5 is a view of the design variable space.
The closed curves in the figure are contours of the cost function f(x). The figure shows several
steepest descent directions that are orthogonal to each other.

9.3 Scaling of Design Variables
The rate of convergence of the steepest descent method is at best linear even for a quadratic
cost function. It is possible to accelerate this rate of convergence of the steepest descent
method if the condition number of the Hessian of the cost function can be reduced by scaling
the design variables. For a quadratic cost function it is possible to scale the design variables
such that the condition number of the Hessian matrix with respect to the new design vari-
ables, is unity (the condition number of a matrix is calculated as the ratio of the largest to
the smallest eigenvalues of the matrix). The steepest descent method converges in only one
iteration for a positive definite quadratic function with a unit condition number. To obtain the
optimum point with the original design variables, we could then unscale the transformed
design variables. Thus the main objective of scaling the design variables is to define trans-
formations such that the condition number of the Hessian with respect to the transformed
variables is 1. We shall demonstrate the advantage of scaling the design variables with Exam-
ples 9.4 and 9.5.

c
x
x

x
x d dk

k k
k k kf+( )

+( ) +( )
( ) ( ) ( )=

( )
= +( ) =1

1 1∂
∂

∂
∂

∂
∂

and
a a

a

More on Numerical Methods for Unconstrained Optimum Design 315

x*
x(3)

x(2)

x(0)

x1

x2

x(1)

FIGURE 9-5 Orthogonal steepest descent paths.

EXAMPLE 9.4 Effect of Scaling of Design Variables

Minimize f(x1, x2) = 25x1
2 + x2

2 with a starting design (1, 1) by the steepest descent method.
How would you scale the design variables to accelerate the rate of convergence?

Solution. Let us solve the problem by the computer program for the steepest descent
method given in Appendix D. The results are summarized in Table 9-1. Note the inef-
ficiency of the method on such a simple quadratic cost function; the method takes 5
iterations and 111 function evaluations. Figure 9-6 shows the contours of the cost func-
tion and the progress of the method from the initial design.
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The Hessian of f(x1, x2) is a diagonal matrix given as

The condition number of the Hessian is 50/2 = 25 since its eigenvalues are 50 and 2.
Now let us introduce new design variables y1 and y2 such that

x Dy D= =

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

where

1

50
0

0
1

2
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50 0

0 2

TABLE 9-1 Optimum Solution for Example 9.4 with Steepest Descent Method: f(x) =
25x2

1 + x2
2

Starting values of design variables: 1, 1
Optimum design variables: -2.35450E-06, 1.37529E-03
Optimum cost function value: 1.89157E-06
Norm of gradient at optimum: 2.75310E-03
Number of iterations: 5
Number of function evaluations: 111

x2

x2

x1

x1

Detail A

Detail A

x(0) = (1, 1)

x* = (0, 0)

f = 26

x(1)

FIGURE 9-6 Iteration history for Example 9.4 with the steepest descent method.
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Note that, in general, we may use for i = 1 to n if the Hessian is a diag-
onal matrix (the diagonal elements are the eigenvalues of H). The previous transfor-
mation gives and and The minimum
point of f(y1, y2) is found in just one iteration by the steepest descent method com-
pared with the five iterations for the original function since the condition number of
the transformed Hessian is 1. The optimum point is (0, 0) in the new design variable
space. To obtain the minimum point in the original design space, we have to unscale
the transformed design variables as and Thus for
this example, the use of design variable scaling is quite beneficial.

x y2 2 2 0* .= =x y1 1 50 0* = =

f y y y y1 2
1
2 1

2
2
2, .( ) = +( )x y2 2 2=x y1 1 50=

D Hii ii= 1

EXAMPLE 9.5 Effect of Scaling of Design Variables

Minimize (a)

with a starting design (-1, -2) by the steepest descent method. Scale the design vari-
ables to have a condition number of unity for the Hessian matrix of the function with
respect to the new design variables.

Solution. Note that unlike the previous example the function f in this problem con-
tains the cross term x1x2. Therefore the Hessian matrix is not a diagonal matrix, and
we need to compute its eigenvalues and eigenvectors to find a suitable scaling or trans-
formation of the design variables. The Hessian H of the function f is given as

(b)

The eigenvalues of the Hessian are calculated as 0.7889 and 15.211 (condition 
number = 15.211/0.7889 = 19.3). The corresponding eigenvectors are (0.4718, 0.8817)
and (-0.8817, 0.4718). Now let us define new variables y1 and y2 by the following
transformation

(c)

Note that the columns of Q are the eigenvectors of the Hessian matrix H. The trans-
formation of variables defined by Eq. (c) gives the function in terms of y1 and y2 as

(d)

The condition number of the Hessian matrix in the new design variables y1 and y2 is
still not unity. To achieve the condition number equal to unity for the Hessian, we
must define another transformation of y1 and y2 using the eigenvalues of the Hessian
matrix as
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9.4 Search Direction Determination: Newton’s Method
With the steepest descent method, only first-order derivative information is used to determine
the search direction. If second-order derivatives were available, we could use them to repre-
sent the cost surface more accurately, and a better search direction could be found. With the
inclusion of second-order information, we could expect a better rate of convergence. For
example, Newton’s method, which uses the Hessian of the function in calculation of the
search direction, has a quadratic rate of convergence (meaning it converges very rapidly
when the design point is within certain radius of the minimum point). For any positive def-
inite quadratic function, the method converges in just one iteration with a step size of one.

9.4.1 Classical Newton’s Method
The basic idea of the Newton’s method is to use a second-order Taylor’s expansion of the
function about the current design point. This gives a quadratic expression for the change in
design Dx. The necessary condition for minimization of this function then gives an explicit
calculation for design change. In the following, we shall omit the argument x(k) from all func-
tions, because the derivation applies to any design iteration. Using second-order Taylor’s
expansion for the function f(x), we obtain

(9.7)

where Dx is a small change in design and H is the Hessian of f at the point x (sometimes
denoted as �2f ). Equation (9.7) is a quadratic function in terms of Dx. The theory of convex
programming problems in Chapter 4 guarantees that if H is positive semidefinite, then there
is a Dx that gives a global minimum for the function of Eq. (9.7). In addition, if H is posi-
tive definite, then the minimum for Eq. (9.7) is unique. Writing optimality conditions
[∂f /∂(Dx) = 0] for the function of Eq. (9.7),

(9.8)

Assuming H to be nonsingular, we get an expression for Dx as

(9.9)

Using this value for Dx, the design is updated as
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where z1 and z2 are the new design variables that can be calculated from the equations:

(f)

and f(z1, z2) = 0.5(z1
2 + z2

2) + 1.3148z1 + 1.6142z2. Note that the condition number of
the Hessian of f(z1, z2) is 1. The steepest descent method converges to the solution of
f(z1, z2) in just one iteration as (-1.3158, -1.6142). The minimum point in the origi-
nal design space is found by defining the inverse transformation as x = QDz. This
gives the minimum point in the original design space as - -( )1

3
3
2, .

y
z

y
z

1 and= =1
2

2

0 7889 15 211. .



Since Eq. (9.7) is just an approximation for f at the point x(0), x(1) will probably not be the
precise minimum point of f(x). Therefore, the process will have to be repeated to obtain
improved estimates until the minimum is reached. Each iteration of Newton’s method
requires computation of the Hessian of the cost function. Since it is a symmetric matrix, it
needs computation of n(n + 1)/2 second-order derivatives of f(x) (recall that n is the number
of design variables). This can require considerable computational effort.

9.4.2 Modified Newton’s Method
Note that the classical Newton’s method does not have a step size associated with the cal-
culation of design change Dx in Eq. (9.9); i.e., step size is taken as one (step of length one
is called an ideal step size or Newton’s step). Therefore, there is no way to ensure that the
cost function will be reduced at each iteration; i.e., to ensure that f(x(k+1)) < f(x(k))). Thus, the
method is not guaranteed to converge to a local minimum point even with the use of second-
order information that requires large calculations. This situation can be corrected if we incor-
porate the use of a step size in the calculation of the design change Dx. In other words, we
treat the solution of Eq. (9.9) as the search direction and use any of the one-dimensional
search methods to calculate the step size in the search direction. This is called the modified
Newton’s method and is stated as follows.

Step 1. Make an engineering estimate for a starting design x(0). Set iteration counter k =
0. Select a tolerance e for the stopping criterion.

Step 2. Calculate ci
(k) = ∂f(x(k))/∂xi for i = 1 to n. If �c(k)� < e, stop the iterative process.

Otherwise, continue.
Step 3. Calculate the Hessian matrix H(k) at the current point x(k).
Step 4. Calculate the search by solving Eq. (9.9) as

(9.11)

Note that the calculation of d(k) in the above equation is symbolic. For computational
efficiency, the linear equation H(k)d(k) = -c(k) is solved directly instead of evaluating
the inverse of the Hessian matrix.

Step 5. Update the design as x(k+1) = x(k) + akd(k), where ak is calculated to minimize
f(x(k) + ad(k)). Any one-dimensional search procedure may be used to calculate a.

Step 6. Set k = k + 1 and go to Step 2.

It is important to note here that unless H is positive definite, the direction d(k) determined
from Eq. (9.11) may not be that of descent for the cost function. To see this, we substitute
d(k) from Eq. (9.11) into the descent condition of Eq. (8.8) to obtain

(9.12)

The foregoing condition will always be satisfied if H is positive definite. If H is negative
definite or negative semidefinite, the condition is always violated. With H as indefinite or
positive semidefinite, the condition may or may not be satisfied, so we must check for it. If
the direction obtained in Step 4 is not that of descent for the cost function, then we should
stop there because a positive step size cannot be determined. Based on the foregoing dis-
cussion, it is suggested that the descent condition of Eq. (8.8) should be checked for Newton’s
search direction at each iteration before calculating the step size. Examples 9.6 and 9.7
demonstrate use of the modified Newton’s method.

- <( ) - ( )c H ck T k1 0

d H ck k k( ) ( ) - ( )= -[ ] 1
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EXAMPLE 9.6 Use of Modified Newton’s Method

Minimize (a)

using the modified Newton’s algorithm starting from the point (5, 10). Use e = 0.0001
as the stopping criterion.

Solution. We will follow the steps of the modified Newton’s method.

1. x(0) is given as (5, 10).
2. The gradient vector c(0) at the point (5, 10) is given as

(b)

(c)

Therefore, the convergence criterion is not satisfied.

3. The Hessian matrix at the point (5, 10) is given as

(d)

Note that the Hessian does not depend on design variables and is positive definite
(since its eigenvalues are 7.24 and 2.76). Therefore Newton’s direction satisfies the
descent condition at each iteration.

4. The direction of design change is

(e)

5. Step size a is calculated to minimize f(x(0) + ad(0)):

(f)

(g)

Using the Step 2 calculations, �f(x(1)) and the dot product �f(x(1)) ·d(0) are calcu-
lated as

(h)

(i)

(j)Or,  - -( ) - -( ) =5 50 50 10 50 50 0a a

— ( ) ◊ = - -( ) -
-

È
ÎÍ

˘
˚̇

=( ) ( )f x d1 0 50 50 50 50
5

10
0a a,

— ( ) =
-( ) + -( )
-( ) + -( )

È
ÎÍ

˘
˚̇

=
-
-

È
ÎÍ

˘
˚̇

( )f x 1 6 5 5 2 10 10

2 5 5 4 10 10

50 50

50 50

a a
a a

a
a

df

d
f

a
= — ( ) ◊ =( ) ( )0 01 0; or x d

x x d1 0 0 5

10

5

10

5 5

10 10
( ) ( ) ( )= + = È

ÎÍ
˘
˚̇

+
-

-
È
ÎÍ

˘
˚̇

=
-
-

È
ÎÍ

˘
˚̇

a a
a
a

d H c0 1 0 1

20

4 2

2 6

50

50

5

10
( ) - ( )= - =

- -
-

È
ÎÍ

˘
˚̇
È
ÎÍ

˘
˚̇

=
-

-
È
ÎÍ

˘
˚̇

H 0 6 2

2 4
( ) = È

ÎÍ
˘
˚̇

c 0 2 250 50 50 2( ) = + = > e

c 0
1 2 1 26 2 2 4 50 50( ) = + +( ) = ( )x x x x, ,

f x x x xx( ) = + + +3 2 2 71
2

1 2 2
2



More on Numerical Methods for Unconstrained Optimum Design 321

Solving the preceding equation, we get a = 1. Note that the golden section search
also gives a = 1. Therefore,

(k)

The gradient of the cost function at x(1) is calculated as

(l)

Since �c(k)� < e, the Newton’s method has given the solution in just one iteration. This
is because the function is a positive definite quadratic form (the Hessian of f is posi-
tive definite everywhere). Note that the condition number of the Hessian is not 1;
therefore the steepest descent method will not converge in one iteration, as was the
case in Examples 9.4 and 9.5.
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A computer program based on the modified Newton’s method is given in Appendix D,
which needs three user-supplied subroutines FUNCT, GRAD, and HASN. These subroutines
evaluate cost function, the gradient, and the Hessian matrix of the cost function, respectively.
The program is used to solve the problem of Example 9.7.

EXAMPLE 9.7 Use of Modified Newton’s Method

Minimize (a)

using the computer program for the modified Newton’s method given in Appendix D
from the point (-1, 3). Golden section search may be used for step size determination
with d = 0.05 and line search accuracy equal to 0.0001. For the stopping criterion, use
e = 0.005.

Solution. Note that f(x) is not a quadratic function in terms of the design variables.
Thus, we cannot expect the Newton’s method to converge in one iteration. The 
gradient of f(x) is given as

(b)

and the Hessian matrix of f(x) is

(c)

Results with the modified Newton’s method for the problem are given in Table 9-2.
The optimum point is (1, 1) and the optimum value of f(x) is 4.0. Newton’s method
has converged to the optimum solution in eight iterations. Figure 9-7 shows the 
contours for the function and the progress of the method from the starting design 
(-1, 3). It is noted that the step size was approximately equal to one in the last phase
of the iterative process. This is because the function resembles a quadratic function 
sufficiently close to the optimum point and step size is equal to unity for a quadratic
function.

H x= — ( ) =
- + -

-
È
ÎÍ

˘
˚̇

2 1
2

2 1

1

120 40 2 40

40 20
f

x x x

x

c x= — ( ) = - + - - +( )f x x x x x x40 40 2 2 20 201
3

1 2 1 1
2

2,

f x x x x x xx( ) = - + + - +10 20 10 2 51
4

1
2

2 2
2

1
2

1



322 INTRODUCTION TO OPTIMUM DESIGN

FIGURE 9-7 Iteration history for Example 9.7 with Newton’s method.

TABLE 9-2 Optimum Solution for Example 9.7 with Modified Newton’s Method: f(x) =
10x4

1 - 20x2
1x2 + 10x2

2 + x2
1 - 2x1 + 5

Starting point: -1, 3
Optimum design variables: 9.99880E-01, 9.99681E-01
Optimum cost function value: 4.0
Norm of gradient at optimum: 3.26883E-03
Number of iterations: 8
Number of function evaluations: 198

x1

x2

(–1, 3)

3.0

2.0

2.0
–1.0

–2.0 –1.0

1.0

1.0

0

0

x(0)

x(1)

9

x(2)

x(3)

x(4)

Optimum point
(1, 1) and f = 4

7

5

35
14

6

f = 65

The drawbacks of the modified Newton’s method for general applications are:

1. It requires calculations of second-order derivatives at each iteration, which is usually
quite time consuming. In some applications it may not even be possible to calculate
such derivatives. Also, a linear system of equations in Eq. (9.11) needs to be solved.
Therefore, each iteration of the method requires substantially more calculations
compared with the steepest descent or conjugate gradient method.

2. The Hessian of the cost function may be singular at some iterations. Thus, Eq. (9.11)
cannot be used to compute the search direction. Also, unless the Hessian is positive
definite, the search direction cannot be guaranteed to be that of descent for the cost
function, as discussed earlier.

3. The method is not convergent unless the Hessian remains positive definite and a step
size is calculated along the search direction to update design. However, the method
has a quadratic rate of convergence when it converges. For a strictly convex
quadratic function, the method converges in just one iteration from any starting
design.

A comparison of steepest descent, conjugate gradient, and modified Newton methods is
presented in Example 9.8.



9.4.3 Marquardt Modification
As noted before the modified Newton’s method has several drawbacks that can cause numer-
ical difficulties. For example, if the Hessian H of the cost function is not positive definite,
the direction found from Eq. (9.11) may not be that of descent for the cost function. In that
case, a step cannot be executed along the direction. Marquardt (1963) suggested a modifica-
tion to the direction finding process that has the desirable features of the steepest descent and
Newton’s methods. It turns out that far away from the solution point, the method behaves
like the steepest descent method, which is quite good there. Near the solution point, it behaves
like the Newton’s method, which is very effective there. In the modified procedure, the
Hessian is modified as (H + lI), where l is a positive constant. l is initially selected as a
large number that is reduced as iterations progress. The search direction is computed from
Eq. (9.11) as

(9.13)

Note that when l is large, the effect of H essentially gets neglected and d(k) is essentially
-(1/l)c(k), which is the steepest descent direction with 1/l as the step size. As the algorithm
proceeds, l is reduced (i.e., step size is increased). When l becomes sufficiently small, then
the effect of lI is essentially neglected and the Newton direction is obtained from Eq. (9.13).
If the direction d(k) of Eq. (9.13) does not reduce the cost function, then l is increased (step

d H I ck k
k

k( ) ( ) - ( )= - +[ ]l
1
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EXAMPLE 9.8 Comparison of Steepest Descent, Conjugate
Gradient, and Modified Newton Methods

Minimize f(x) = 50(x2 - x1
2)2 + (2 - x1)2 starting from the point (5, -5). Use the steep-

est descent, Newton, and conjugate gradient methods, and compare their performance.

Solution. The minimum point for the function is known as (2, 4) with f(2, 4) = 0.
We use exact gradient expressions and e = 0.005 to solve the problem using the steep-
est descent and Newton’s method programs given in Appendix D and the conjugate
gradient method available in IDESIGN. Table 9-3 summarizes final results with the
three methods. For the steepest descent method, d0 = 0.05 and a line search termina-
tion criterion of 0.00001 are used. For the Newton’s method, they are 0.05 and 0.0001
respectively. Golden section search is used with both methods. It can be observed
again that for the present example the steepest descent method is the most inefficient
and the conjugate gradient is most efficient. Therefore, the conjugate gradient method
is recommended for general applications.

TABLE 9-3 Evaluation of Three Methods for Example 9.8: f(x) = 50(x2 - x2
1)2 + (2 - x1)2

Steepest descent Conjugate gradient Modified Newton

x1 1.9941 2.0000 2.0000
x2 3.9765 3.9998 3.9999
f 3.4564E-05 1.0239E-08 2.5054E-10
||c|| 3.3236E-03 1.2860E-04 9.0357E-04
No. of function 138,236 65 349

evaluations
No. of iterations 9670 22 13



size is reduced) and the search direction is recomputed. Marquardt’s algorithm is sum-
marized in the following steps.

Step 1. Make an engineering estimate for starting design x(0). Set iteration counter k = 0.
Select a tolerance e as the stopping criterion, and l0 as a large constant (say 1000).

Step 2. Calculate ci
(k) = ∂f(x(k))/∂xi for i = 1 to n. If �c(k)� < e, stop. Otherwise, continue.

Step 3. Calculate the Hessian matrix H(x(k)).
Step 4. Calculate the search direction by solving Eq. (9.13).
Step 5. If f(x(k) + d(k)) < f(x(k)), then continue. Otherwise, increase lk (to say 2lk), and go

to Step 4.
Step 6. Reduce lk, say, lk+1 = 0.5lk. Set k = k + 1 and go to Step 2.

9.5 Search Direction Determination: Quasi-Newton Methods
In Section 8.3 the steepest descent method was described. Some of the drawbacks of that
method were pointed out. It was noted that the method has a poor rate of convergence because
only first-order information is used. This flaw was corrected with Newton’s method where
second-order derivatives were used. Newton’s method has very good convergence proper-
ties. However, the method can be inefficient because it requires calculation of n(n + 1)/2
second-order derivatives to generate the Hessian matrix (recall that n is the number of design
variables). For most engineering design problems, calculation of second-order derivatives
may be tedious or even impossible. Also, Newton’s method runs into difficulties if the Hessian
of the function is singular at any iteration. The methods presented in this section overcome
these drawbacks by generating an approximation for the Hessian matrix or its inverse at each
iteration. Only the first derivatives of the function are used to generate these approximations.
Therefore the methods have desirable features of both the steepest descent and the Newton’s
methods. They are called quasi-Newton methods.

The quasi-Newton methods were initially developed for positive definite quadratic func-
tions. For such functions they converge to the exact optimum in at most n iterations. However,
this ideal behavior does not carry over to general cost functions, and the methods usually
need to be restarted at every (n + 1)th iteration.

There are several ways to approximate the Hessian or its inverse. The basic idea is to
update the current approximation of the Hessian using two pieces of information: change in
design and the gradient vectors between two successive iterations. While updating, the prop-
erties of symmetry and positive definiteness are preserved. Positive definiteness is essential
because without that the search direction may not be a descent direction for the cost func-
tion. The derivation of the updating procedures is based on the so-called quasi-Newton con-
dition (Gill et al., 1981). This condition is derived by requiring the curvature of the cost
function in the search direction d(k) to be the same at two consecutive points x(k) and x(k+1).
The enforcement of this condition gives the updating formulas for the Hessian of the cost
function or its inverse. For a strictly convex quadratic function, the updating procedure con-
verges to the exact Hessian in n iterations. We shall describe two of the most popular methods
in the class of quasi-Newton methods.

9.5.1 Inverse Hessian Updating: DFP Method
This method, initially proposed by Davidon (1959), was modified by Fletcher and Powell
(1963) and that method is presented here. This is one of the most powerful methods for the
minimization of a general function f(x). The method builds an approximate inverse of the
Hessian of f(x) using only the first derivatives. It is often called the DFP (Davidon-Fletcher-
Powell) method:
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Step 1. Estimate an initial design x(0). Choose a symmetric positive definite n ¥ n matrix
A(0) as an estimate for the inverse of the Hessian of the cost function. In the absence
of more information, A(0) = I may be chosen. Also, specify a convergence parameter
e. Set k = 0. Compute the gradient vector as c(0) = �f(x(0)).

Step 2. Calculate the norm of the gradient vector as �c(k)�. If �c(k)� < e, then stop the
iterative process. Otherwise continue. 

Step 3. Calculate the search direction as d(k) = -A(k)c(k) (a)
Step 4. Compute optimum step size ak = a to minimize f(x(k) + ad(k)).
Step 5. Update the design as x(k+1) = x(k) + akd(k) (b)
Step 6. Update the matrix A(k)—approximation for the inverse of the Hessian of the cost

function—as

(c)

where the correction matrices B(k) and C(k) are calculated using the quasi-Newton
condition mentioned earlier, as

(d)

(e)

(f)

Step 7. Set k = k + 1 and go to Step 2.

Note that the first iteration of the method is the same as that for the steepest descent
method. Fletcher and Powell (1963) prove that this algorithm has the following properties:

1. The matrix A(k) is positive definite for all k. This implies that the method will always
converge to a local minimum point, since

(g)

as long as c(k) π 0. This means that f(x(k)) may be decreased by choosing a > 0 if 
c(k) π 0 (i.e., d(k) is a direction of descent).

2. When this method is applied to a positive definite quadratic form, A(k) converges to
the inverse of the Hessian of the quadratic form.

Example 9.9 illustrates calculations for two iterations of the DFP method.
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EXAMPLE 9.9 Application of DFP Method

Execute two iterations of the DFP method for the problem: minimize f(x) = 5x1
2 +

2x1x2 + x2
2 + 7 starting from the point (1, 2).

Solution. We shall follow steps of the algorithm.
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Iteration 1 (k = 0).

1. x(0) = (1, 2); A(0) = I, k = 0, e = 0.001
c(0) = (10x1 + 2x2, 2x1 + 2x2) = (14, 6)

2. so continue
3. d(0) = -c(0) = (-14, -6)
4. x(1) = x(0) + ad(0) = (1 - 14a, 2 - 6a)

(a)

(b)

Therefore, step size of a = 0.099 is acceptable.

5. x(1) = x(0) + a0d(0) = (-0.386, 1.407)
6. s(0) = a0d(0) = (-1.386, -0.593); c(1) = (-1.046, 2.042) (c)

(d)

(e)

(f)

(g)

(h)

Iteration 2 (k = 1).

2. �c(1)� = 2.29 > e, so continue
3. d(1) = -A(1)c(1) = (0.586, -1.719)
4. Step size determination: minimize f(x(1) + ad(1)); a1 = 0.776
5. x(2) = x(1) + a1d(1) = (-0.386, 1.407) + (0.455, -1.334) = (0.069, 0.073)
6. s(1) = a1d(1) = (0.455, -1.334)
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9.5.2 Direct Hessian Updating: BFGS Method
It is possible to update the Hessian rather than its inverse at every iteration. Several such
updating methods are available; however, we shall present a popular method that has proven
to be most effective in applications. Detailed derivation of the method is given in Gill and
coworkers (1981). It is known as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method,
which is summarized in the following algorithm:

Step 1. Estimate an initial design x(0). Choose a symmetric positive definite n ¥ n matrix
H(0) as an estimate for the Hessian of the cost function. In the absence of more
information, let H(0) = I. Choose a convergence parameter e. Set k = 0, and compute
the gradient vector as c(0) = �f(x(0)).

Step 2. Calculate the norm of the gradient vector as �c(k)�. If �c(k)� < e then stop the
iterative process; otherwise continue.

Step 3. Solve the linear system of equations H(k)d(k) = -c(k) to obtain the search direction.
Step 4. Compute optimum step size ak = a to minimize f(x(k) + ad(k)).
Step 5. Update the design as x(k+1) = x(k) + akd(k)

Step 6. Update the Hessian approximation for the cost function as

(a)

where the correction matrices D(k) and E(k) are given as

(b)

s(k) = akd(k) (change in design); y(k) = c(k+1) - c(k) (change in gradient); 
c(k+1) = �f(x(k+1)) (c)

Step 7. Set k = k + 1 and go to Step 2.

Note again that the first iteration of the method is the same as that for the steepest descent
method when H(0) = I. It can be shown that the BFGS update formula keeps the Hessian
approximation positive definite if an accurate line search is used. This is important to know
because the search direction is guaranteed to be that of descent for the cost function if 
H(k) is positive definite. In numerica1 calculations, difficulties can arise because the Hessian
can become singular or indefinite as a result of inaccurate line search, and round-off and trun-
cation errors. Therefore, some safeguards against the numerical difficulties must be incor-
porated into computer programs for stable and convergent calculations. Another numerical
procedure that is extremely useful is to update decomposed factors (Cholesky factors) of the
Hessian rather than the Hessian itself. With that procedure, the matrix can numerically be
guaranteed to be positive definite, and the linear equation H(k)d(k) = -c(k) can be solved more
efficiently.

Example 9.10 illustrates calculations for two iterations of the BFGS method.
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(m)

It can be verified that the matrix A(2) is quite close to the inverse of the Hessian of the
cost function. One more iteration of the DFP method will yield the optimum solution
of (0, 0).
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EXAMPLE 9.10 Application of the BFGS Method

Execute two iterations of the BFGS method for the problem: 

minimize f(x) = 5x1
2 + 2x1x2 + x2

2 + 7 starting from the point (1, 2).

Solution. We shall follow steps of the algorithm. Note that the first iteration gives
steepest descent step for the cost function.

Iteration 1 (k = 0).

1. x(0)(1, 2), H(0) = I, e = 0.001, k = 0
c(0) = (10x1 + 2x2, 2x1 + 2x2)= (14, 6)

2. so continue
3. d(0) = -c(0) = (-14, -6); since H(0) = I
4. Step size determination (same as Example 9.9): a0 = 0.099
5. x(1) = x(0) + a0d(0) = (-0.386, 1.407)
6. s(0) = a0d(0) = (-1.386, 0.593); c(1) = (-1.046, 2.042)

(a)

(b)

(c)

(d)

Iteration 2 (k = 1).

2. �c(1)� = 2.29 > e, so continue
3. H(1)d(1) = -c(1); or, d(1) = (17.20, -76.77)
4. Step size determination: a1 = 0.018455
5. x(2) = x(1) + a1d(1) = (-0.0686, -0.0098)
6. s(1) = a1d(1) = (0.317, -1.417); c(2) = (-0.706, -0.157) (e)

(f)

(g)

(h)

(i)

It can be verified that H(2) is quite close to the Hessian of the given cost function. One
more iteration of the BFGS method will yield the optimum solution of (0, 0).
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9.6 Engineering Applications of Unconstrained Methods
There are several engineering applications where unconstrained optimization methods can be
used. For example, linear as well as nonlinear simultaneous equations can be solved with
unconstrained optimization methods. Such equations arise while calculating the response of
structural and mechanical systems. The procedures have been incorporated into some com-
mercial software packages as well.

9.6.1 Minimization of Total Potential Energy
The equilibrium states of structural and mechanical systems are characterized by the sta-
tionary points of the total potential energy of the system. This is known as the principle of
stationary potential energy. If at a stationary point the potential energy actually has a
minimum value, the equilibrium state is called stable. In structural mechanics, these princi-
ples are of fundamental importance and form the basis for numerical methods of structural
analysis.

To demonstrate the principle, we consider the symmetric two-bar truss shown in Fig. 
9-8. The structure is subjected to a load W at node C. Under the action of this load, node C
moves to a point C¢. The problem is to compute the displacements x1 and x2 of node C. This
can be done by writing the total potential energy of the structure in terms of x1 and x2 and
then minimizing it. Once displacements x1 and x2 are known, member forces and stresses can
be calculated using them. Let

E = modulus of elasticity, N/m2 (this is the property of a material which relates stresses
in the material to strains)

s = span of the truss, m
h = height of the truss, m
A1 = cross-sectional area of member 1, m2

A2 = cross-sectional area of member 2, m2

q = angle at which load W is applied, degrees
L = length of the members; L2 = h2 + 0.25s2, m
W = load, N
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FIGURE 9-8 Two-bar truss.



x1 = horizontal displacement, m
x2 = vertical displacement, m

The total potential energy of the system, assuming small displacements, is given as

(a)

where the angle b is shown in Fig. 9-8. Minimization of P with respect to x1 and x2 gives the
displacements x1 and x2 for the equilibrium state of the two-bar structure. Example 9.11
demonstrates this calculation.
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EXAMPLE 9.11 Minimization of Total Potential Energy of 
a Two-Bar Truss

For the two-bar truss problem use the following numerical data: A1 = A2 =
1.0E-05m2, h = 1.0m, s = 1.5m, W = 10kN, q = 30°, E = 207GPa. Minimize the
total potential energy given in Eq. (a) by (i) the graphical method, (ii) the analytical
method, and (iii) the conjugate gradient method.

Solution. Substituting these data into Eq. (a) and simplifying, we get (note that 
cosb = s/2L and sin b = h/L):

(b)

Contours for the function are shown in Fig. 9-9. The optimum solution from the graph
is read as x1 = (7.2634E-03)m; x2 = (2.3359E-03)m; P = -37.348N·m. Using the nec-
essary conditions of optimality (�P = 0), we get
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FIGURE 9-9 Contours of the potential energy function P(x1, x2) for a two-bar truss (P =
0, -9.0, -18.0, -27.0, -36.0, and -37.348 N·m).



9.6.2 Solution of Nonlinear Equations
Unconstrained optimization methods can be used to find roots of a nonlinear system of equa-
tions. To demonstrate this, we consider the following 2 ¥ 2 system:

(a)

We define a function that is the sum of the squares of the functions F1 and F2 as

(b)

Note that if x1 and x2 are roots of Eq. (a), then f = 0 in Eq. (b). If x1 and x2 are not roots,
then the function f > 0 represents the sum of the squares of the errors in the equations F1 =
0 and F2 = 0. Thus, the optimization problem is to find x1 and x2 to minimize the function
f(x1, x2) of Eq. (b). We need to show that the necessary conditions for minimization of f(x)
give roots for the nonlinear system of equations. The necessary conditions of optimality give

(c)

(d)

Note that the necessary conditions are satisfied if F1 = F2 = 0, i.e., x1 and x2 are roots of
the equations F1 = 0 and F2 = 0. At this point f = 0. Note also that the necessary conditions
can be satisfied if ∂Fi/∂xj = 0 for i, j = 1, 2. If ∂Fi/∂xj = 0, x1 and x2 are stationary points for
the functions F1 and F2. For most problems it is unlikely that stationary points for F1 and F2

will also be roots of F1 = 0 and F2 = 0, so we may exclude these cases. In any case, if x1 and
x2 are roots of the equations, then f must have zero value. Also if the optimum value of f is
different from zero ( f π 0), then x1 and x2 cannot be roots of the nonlinear system. Thus, if
the optimization algorithm converges with f π 0, then the optimum point for the problem of
minimization of f is not a root of the nonlinear system. The algorithm should be restarted
from a different point. Example 9.12 illustrates this root finding process.
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(c)

The conjugate gradient method given in IDESIGN also converges to the same 
solution.

2 1 06 5000 0 2 032 2.0598E .3589E m+( ) - = = -( )x x, ,

2 5 962 06 8660 0 7 2629 031 1. , . ,E E m+( ) - = = -( )x x

EXAMPLE 9.12 Roots of Nonlinear Equations by
Unconstrained Minimization

Find roots of the equations F1(x) = 3x1
2 + 12x2

2 + 10x1 = 0; F2(x) = 24x1x2 + 4x2 + 3 = 0.

Solution. We define the error function f(x) as

(a)f F F x x x x x xx( ) = + = + +( ) + + +( )1
2

2
2
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2

2
2
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2

1 2 2
2

3 12 10 24 4 3



Note that the preceding procedure can be generalized to a system of n equations in n
unknowns. In this case, the error function f(x) will be defined as

(b)

9.7 Solution of Constrained Problems Using Unconstrained
Optimization Methods

It turns out that unconstrained optimization methods can also be used to solve constrained
design problems. This section briefly describes such methods that transform the constrained
problem to a sequence of unconstrained problems. The basic idea is to construct a compos-
ite function using the cost and constraint functions. It also contains certain parameters—
called the penalty parameters—that penalize the composite function for violation of
constraints. The larger the violation, the larger the penalty. Once the composite function is
defined for a set of penalty parameters, it is minimized using any of the unconstrained opti-
mization techniques. The penalty parameters are then adjusted based on certain conditions,
and the composite function is redefined and minimized. The process is continued until there
is no significant improvement in the estimate for the optimum point.

Methods based on the foregoing philosophy have been generally called sequential uncon-
strained minimization techniques, or in short SUMT (Fiacco and McCormick, 1968). It is
seen that the basic idea of SUMT is quite straightforward. Because of their simplicity, the
methods have been extensively developed and tested for engineering design problems. A very
brief discussion of the basic concepts and philosophy of the methods is included in the text
to give the students a flavor for the techniques. For more detailed presentations, texts by Gill
and coworkers (1981), Reklaitis and coworkers (1983), and others should be consulted.

The term “transformation method” is used to describe any method that solves the con-
strained optimization problem by transforming it into one or more unconstrained problems.
They include the so-called penalty and barrier function methods (exterior and interior penalty

f Fi
i

n

x x( ) = ( )[ ]
=
Â 2

1
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To minimize this function, we can use any of the methods discussed previously. Table
9-4 shows the iteration history with the conjugate gradient method available in
IDESIGN (Arora and Tseng, 1987a,b). A root of the equations is x1 = -0.3980, x2 =
0.5404 starting from the point (-1, 1). Starting from the point (-50, 50) another root
is found as (-3.331, 0.03948). However, starting from another point (2, 3), the program
converges to (0.02063, -0.2812) with f = 4.351. Since f π 0, this point is not a root
of the given system of equations. When this happens, we start from a different point
and re-solve the problem.

TABLE 9–4 Root of Nonlinear Equations of Example 9.12: The Conjugate Gradient
Method

No. x1 x2 F1 F2 f

0 -1.0000 1.0000 5.0000 -17.0000 314.0000
1 -0.5487 0.4649 -1.9900 -1.2626 5.5530
2 -0.4147 0.5658 0.1932 -0.3993 0.1968
3 -0.3993 0.5393 -0.0245 -0.0110 7.242E-4
4 -0.3979 0.5403 -9.377E-4 -1.550E-3 2.759E-6
5 -0.3980 0.5404 -4.021E-4 -3.008E-4 1.173E-8



methods, respectively) as well as the multiplier methods (also called augmented Lagrangian
methods). To remind the reader of the original constrained problem that we are trying to solve,
we re-state it as follows: Find an n-vector x = (x1, x2, . . . , xn) to minimize a cost function f
= f(x) subject to hi(x) = 0; i = 1 to p and gi(x) £ 0; i = 1 to m. All transformation methods
convert this constrained optimization problem into an unconstrained problem using a trans-
formation function of the form:

(9.14)

where r is a vector of penalty parameters and P is a real valued function whose action of
imposing the penalty on the cost function is controlled by r. The form of penalty function P
depends on the method used. The basic procedure is to choose an initial design estimate x(0)

and define the function f of Eq. (9.14). The penalty parameters r are also initially selected.
The function f is minimized for x, keeping r fixed. Then the parameters r are adjusted and
the procedure is repeated until no further improvement is possible.

9.7.1 Sequential Unconstrained Minimization Techniques
Sequential unconstrained minimization techniques consist of two different types of penalty
functions. The first one is called the penalty function method and the second is called the
barrier function method. The basic idea of the penalty function approach is to define the
function P in Eq. (9.14) in such a way that if there are constraint violations, the cost func-
tion f(x) gets penalized by addition of a positive value. Several penalty functions can be
defined. The most popular one is called the quadratic loss function defined as

(9.15)

where gi
+(x) = max (0, gi(x)), and r is a scalar penalty parameter. Note that gi

+(x) ≥ 0; it is
zero if the inequality is inactive (gi(x) < 0) and it is positive if the inequality is violated. It
can be seen that if the equality constraint is not satisfied, i.e., hi(x) π 0, or the inequality is
violated, i.e., gi(x) > 0, then Eq. (9.15) gives a positive value to the function P, and the cost
function is penalized, as seen in Eq. (9.14). The starting design point for the method can be
arbitrary. The methods based on the philosophy of penalty functions are sometimes called
the exterior methods because they iterate through the infeasible region.

The advantages and disadvantages of the penalty function method are:

1. It is applicable to general constrained problems with equality and inequality
constraints.

2. The starting design point can be arbitrary.
3. The method iterates through the infeasible region where the problem functions may

be undefined.
4. If the iterative process terminates prematurely, the final design may not be feasible

and hence not usable.

The barrier function methods are applicable only to the inequality constrained problems.
Popular barrier functions are:

1. Inverse barrier function
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2. Log barrier function

(9.17)

These are called the barrier function methods because a large barrier is constructed around
the feasible region. In fact, the function P becomes infinite if any of the inequalities is active.
Thus, when the iterative process is started from a feasible point, it cannot go into the infea-
sible region because the iterative process cannot cross the huge barrier. For both penalty func-
tion and barrier function methods, it can be shown that as r Æ •, x(r) Æ x*, where x(r) is
a point that minimizes the transformed function f(x, r) of Eq. (9.14) and x* is a solution of
the original constrained optimization problem.

The advantages and disadvantages of the barrier function method are:

1. The method is applicable to inequality constrained problems only.
2. The starting design point must be feasible. It turns out, however, that the method

itself can be used to determine the starting point (Haug and Arora, 1979).
3. The method always iterates through the feasible region, so if it terminates

prematurely, the final design is feasible and hence usable.

The sequential unconstrained minimization techniques have certain weaknesses that are
most serious when r is large. The penalty and barrier functions tend to be ill-behaved near
the boundary of the feasible set where the optimum points usually lie. There is also a problem
of selecting the sequence r(k). The choice of r(0) and the rate at which r(k) tends to infinity can
seriously affect the computational effort to find a solution. Furthermore, the Hessian matrix
of the unconstrained function becomes ill-conditioned as r Æ •.

9.7.2 Multiplier (Augmented Lagrangian) Methods
To alleviate some of the difficulties of the methods presented in the previous section, a dif-
ferent class of transformation methods has been developed in the literature. These are called
the multiplier or augmented Lagrangian methods. In these methods, there is no need for the
penalty parameters r to go to infinity. As a result the transformation function f has good con-
ditioning with no singularities. The multiplier methods are convergent as are the SUMTs.
That is, they converge to a local minimum starting from any point. It has been proven that
they possess a faster rate of convergence than the two methods of the previous subsection.
With multiplier methods, the penalty function is given as

(9.18)

where qi > 0, ri > 0, and qi, r¢i are parameters associated with the ith inequality and equality
constraints. If qi = q ¢i = 0 and ri = r¢i = r, then Eq. (9.18) reduces to the well-known quadratic
loss function given in Eq. (9.15), where convergence is enforced by letting r Æ •. However,
the objective of the multiplier methods is to keep each ri and r¢i finite. The idea of multiplier
methods is to start with some ri, r¢i, q ¢i, and qi and minimize the transformation function of
Eq. (9.14). The parameters ri, r¢i, q ¢i, and qi are then adjusted using some procedures and the
entire process is repeated until optimality conditions are satisfied. For a more detailed dis-
cussion and applications of the methods, Arora and coworkers (1991) and Arora (1999) and
the references cited in there may be consulted.
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Exercises for Chapter 9*

Section 9.1 More on Step Size Determination

9.1 Write a computer program to implement the polynomial interpolation with a
quadratic curve fitting. Choose a function f(a) = 7a2 - 20a + 22. Use the golden
section method to initially bracket the minimum point of f(a) with d = 0.05. Use
your program to find the minimum point of f(a). Comment on the accuracy of the
solution.

9.2 For the function f(a) = 7a 2 - 20a + 22, use two function values, f(0) and f(au),
and the slope of f at a = 0 to fit a quadratic curve. Here au is any upper bound on
the minimum point of f(a). What is the estimate of the minimum point from the
preceding quadratic curve? How many iterations will be required to find a*? Why?

9.3 Under what situation can the polynomial interpolation approach not be used for
one-dimensional minimization?

9.4 Given

For the one-dimensional search, three values of a, al = 0, ai = 2, and au = 4 are
tried. Using quadratic polynomial interpolation, determine
1. At what value of a is the function a minimum? Prove that this is a minimum

point and not a maximum.
2. At what values of a is f(a) = 15?

Section 9.2 More on Steepest Descent Method

Verify the properties of the gradient vector for the following functions at the given point.

9.5 f(x) = 6x1
2 - 6x1x2 + 2x2

2 - 5x1 + 4x2 + 2; x(0) = (-1, -2)

9.6 f(x) = 3x1
2 + 2x1x2 + 2x2

2 + 7; x(0) = (5, 10)

9.7 f(x) = 10(x1
2 - x2) + x1

2 - 2x1 + 5; x(0) = (-1, 3)

Section 9.3 Scaling of Design Variables

9.8 Consider the following three functions:

Minimize f1, f2, and f3 using the program for the steepest descent method given in
Appendix D. Choose the starting design to be (1, 1, 2) for all functions. What do
you conclude from observing the performance of the method on the foregoing
functions? How would you scale the design variables for the functions f2 and f3 to
improve the rate of convergence of the method?

Section 9.4 Search Direction Determination: Newton’s Method

9.9 Answer True or False.
1. In Newton’s method, it is always possible to calculate a search direction at any
point.
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2. The Newton direction is always that of descent for the cost function.
3. Newton’s method is convergent starting from any point with a step size of 1.
4. Newton’s method needs only gradient information at any point.

For the following problems, complete one iteration of the modified Newton’s method; also
check the descent condition for the search direction.

9.10 Exercise 8.52 9.11 Exercise 8.53

9.12 Exercise 8.54 9.13 Exercise 8.55

9.14 Exercise 8.56 9.15 Exercise 8.57

9.16 Exercise 8.58 9.17 Exercise 8.59

9.18 Exercise 8.60 9.19 Exercise 8.61

9.20 Write a computer program to implement the modified Newton’s algorithm. Use
equal interval search for line search. Solve Exercises 8.52 to 8.61 using the
program.

Section 9.5 Search Direction Determination: Quasi-Newton Methods

9.21 Answer True or False for unconstrained problems.
1. The DFP method generates an approximation to the inverse of the Hessian.
2. The DFP method generates a positive definite approximation to the inverse of the

Hessian.
3. The DFP method always gives a direction of descent for the cost function.
4. The BFGS method generates a positive definite approximation to the Hessian of

the cost function.
5. The BFGS method always gives a direction of descent for the cost function.
6. The BFGS method always converges to the Hessian of the cost function.

For the following problems, complete two iterations of the Davidon-Fletcher-Powell method.

9.22 Exercise 8.52 9.23 Exercise 8.53

9.24 Exercise 8.54 9.25 Exercise 8.55

9.26 Exercise 8.56 9.27 Exercise 8.57

9.28 Exercise 8.58 9.29 Exercise 8.59

9.30 Exercise 8.60 9.31 Exercise 8.61

9.32 Write a computer program to implement the Davidon-Fletcher-Powell method.
Solve Exercises 8.52 to 8.61 using the program.

For the following problems, complete two iterations of the BFGS method.

9.33 Exercise 8.52 9.34 Exercise 8.53

9.35 Exercise 8.54 9.36 Exercise 8.55

9.37 Exercise 8.56 9.38 Exercise 8.57

9.39 Exercise 8.58 9.40 Exercise 8.59

9.41 Exercise 8.60 9.42 Exercise 8.61

9.43 Write a computer program to implement the BFGS method. Solve Exercises 8.52 to
8.61 using the program.
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Section 9.6 Engineering Applications of Unconstrained Methods

Find the equilibrium configuration for the two-bar structure of Fig. 9-8 using the following
numerical data.

9.44 A1 = 1.5cm2, A2 = 2.0cm2, h = 100cm, s = 150cm, W = 100,000N, q = 45°, E =
21MN/cm2

9.45 A1 = 100mm2, A2 = 200mm2, h = 1000mm, s = 1500mm, W = 50,000N, q = 60°, E
= 210,000N/mm2

Find roots of the following nonlinear equations using the conjugate gradient method.

9.46 F(x) = 3x - ex = 0

9.47 F(x) = sinx = 0

9.48 F(x) = cos x = 0

9.49

9.50

9.51 F x x
x

x F x
x

x1 1 2
1
2 2

2
2 1

2

1
25

1

8

1

4
0

1

16

1

2
0x x( ) = - - = ( ) = - + =,

F
x x

F
x x

1
1
2

2
2

1 2
2

1
10

0 1
2

0x x( ) = - = ( ) = - =,

F x
x

x( ) = - =
2

3
0sin

More on Numerical Methods for Unconstrained Optimum Design 337





10 Numerical Methods for Constrained
Optimum Design

339

Upon completion of this chapter, you will be able to:

• Explain basic steps of a numerical algorithm for solution of constrained
optimization problems

• Explain the concepts of a descent direction and descent step for the constrained
nonlinear optimization problem

• Linearize the constrained nonlinear optimization problem and define a linear
programming subproblem

• Use sequential linear programming algorithm to solve constrained nonlinear
optimization problems

• Define a quadratic programming subproblem for the constrained nonlinear
optimization problem

• Use an optimization algorithm to solve nonlinear optimization problems

• Use Excel Solver to optimize some engineering design problems

In the previous chapter, the constrained nonlinear programming problem was transformed
into a sequence of unconstrained problems. In this chapter, we describe numerical methods—
sometimes called the primal methods—to directly solve the original constrained problem.
For convenience of reference, the problem defined in Section 2.11 is restated as: find 
x = (x1, . . . , xn), a design variable vector of dimension n, to minimize a cost function f = f(x)
subject to equality and inequality constraints

(10.1)

and the explicit bounds on design variables xil £ xi £ xiu; i = 1 to n, where xil and xiu are,
respectively, the smallest and largest allowed values for the ith design variable xi. Note that
these constraints are quite simple and easy to treat in actual numerical implementations. It is
usually efficient to treat them in that manner. However, in the discussion and illustration of
the numerical methods, we shall assume that they are included in the inequality constraints
in Eq. (10.1). Note also that we shall present only the methods that can treat the general 

h i p g i mi ix x( ) = = ( ) £ =0 1 0 1, ; ,to to



constrained problem with equality and inequality constraints defined in Eq. (10.1). That is,
the methods that treat only equalities or only inequalities will not be presented.

Just as for unconstrained problems, several methods have been investigated for the 
preceding model of general constrained optimization problems. Most methods follow the
two-phase approach as before: search direction and step size determination phases. The
approach followed here will be to describe the underlying ideas and concepts of the methods.
A comprehensive coverage of all the methods giving their advantages and disadvantages 
will be avoided. Only a few simple and generally applicable methods will be described and
illustrated with examples.

In Section 8.3 we described the steepest descent method for solving unconstrained 
optimization problems. That method is quite straightforward. It is, however, not directly
applicable to constrained problems. One reason is that we must consider constraints 
while computing the search direction and the step size. In this chapter, we shall describe a
constrained steepest descent method that computes the direction of design change consider-
ing local behavior of cost and constraint functions. The method (and most others) is based
on linearization of the problem about the current estimate of the optimum design. Therefore,
linearization of the problem is quite important and is discussed in detail. Once the problem
has been linearized, it is natural to ask if it can be solved using linear programming methods.
Therefore, we shall first describe a method that is a simple extension of the Simplex method
of linear programming. Then we shall discuss extension of the steepest descent method to
constrained problems.

10.1 Basic Concepts and Ideas
This section contains basic concepts, ideas, and definitions of the terms used in numerical
methods for constrained optimization. The status of a constraint at a design point is defined.
Active, inactive, violated, and e-active constraints are defined. Normalization of constraints
and its advantages are explained with examples. The ideas of a descent function and con-
vergence of algorithms are explained.

10.1.1 Basic Concepts Related to Algorithms for Constrained Problems
In the direct numerical (search) methods, we select a design to initiate the iterative process,
as for the unconstrained methods described in Chapter 8. The iterative process is continued
until no further moves are possible and the optimality conditions are satisfied. Most of the
general concepts of iterative numerical algorithms discussed in Section 8.1 also apply to
methods for constrained optimization problems. Therefore, those concepts should be 
thoroughly reviewed.

All numerical methods discussed in this chapter are based on the following iterative 
prescription as also given in Eqs. (8.1) and (8.2) for unconstrained problems:

(10.2)

(10.3)

The superscript k represents the iteration or design cycle number, subscript i refers to the ith
design variable, x(0) is the starting design estimate, and Dx(k) represents a change in the current
design. As in the unconstrained numerical methods, the change in design Dx(k) is decomposed
as
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where ak is a step size in the search direction d(k). Thus, the design improvement involves
the solution of the search direction and step size determination subproblems. Solution of both
the subproblems can involve values of cost and constraint functions as well as their gradi-
ents at the current design point.

Conceptually, algorithms for unconstrained and constrained optimization problems are
based on the same iterative philosophy. There is one important difference, however; 
constraints must be considered while determining the search direction as well as the step 
size for the constrained problems. A different procedure for determining either one can give
a different optimization algorithm. We shall describe, in general terms, a couple of ways in
which the algorithms may proceed in the design space. All algorithms need a design estimate
to initiate the iterative process. The starting design can be feasible or infeasible. If it is inside
the feasible set as Point A in Fig. 10-1, then there are two possibilities:

1. The gradient of the cost function vanishes at the point so it is an unconstrained
stationary point. We need to check the sufficient condition for optimality of the
point.

2. If the current point is not stationary, then we can reduce the cost function by 
moving along a descent direction, say, the steepest descent direction (-c) as shown
in Fig. 10-1. We continue such iterations until either a constraint is encountered or
an unconstrained minimum point is reached.

For the remaining discussion, we assume that the optimum point is on the boundary of
the feasible set, i.e., some constraints are active. Once the constraint boundary is encountered
at Point B, one strategy is to travel along a tangent to the boundary such as the direction 
B–C in Fig. 10-1. This results in an infeasible point from where the constraints are corrected
to again reach the feasible point D. From there the preceding steps are repeated until the
optimum point is reached. Another strategy is to deflect the tangential direction B–C toward
the feasible region by a certain angle q. Then a line search is performed through the feasi-
ble region to reach the boundary point E, as shown in Fig. 10-1. The procedure is then
repeated from there.

When the starting point is infeasible, as Point A in Fig. 10-2, then one strategy is to correct
constraints to reach the constraint boundary at Point B. From there, the strategies described
in the preceding paragraph can be followed to reach the optimum point. This is shown 
in Path 1 in Fig. 10-2. The second strategy is to iterate through the infeasible region by 
computing directions that take successive design points closer to the optimum point, shown
as Path 2 in Fig. 10-2.
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Several algorithms based on the strategies described in the foregoing have been devel-
oped and evaluated. Some algorithms are better for a certain class of problems than others.
A few algorithms work well if the problem has only inequality constraints whereas others
can treat both equality and inequality constraints simultaneously. In this text, we shall con-
centrate mostly on general algorithms that have no restriction on the form of the functions
or the constraints. Most of the algorithms that we shall describe will be based on the fol-
lowing four basic steps:

1. Linearization of cost and constraint functions about the current design point.
2. Definition of a search direction determination subproblem using the linearized

functions.
3. Solution of the subproblem that gives a search direction in the design space.
4. Calculation of a step size to minimize a descent function in the search direction.

10.1.2 Constraint Status at a Design Point
An inequality constraint can be either active, e-active, violated, or inactive at a design point.
On the other hand, an equality constraint is either active or violated at a design point. The
precise definitions of the status of a constraint at a design point are needed in the develop-
ment and discussion of numerical methods.

Active Constraint An inequality constraint gi(x) £ 0 is said to be active (or tight) at a design
point x(k) if it is satisfied as an equality at that point, i.e., gi(x(k)) = 0.

Inactive Constraint An inequality constraint gi(x) £ 0 is said to be inactive at a design point
x(k) if it has negative value at that point, i.e., gi(x(k)) < 0.

Violated Constraint An inequality constraint gi(x) £ 0 is said to be violated at a design
point x(k) if it has positive value there, i.e., gi(x(k)) > 0. An equality constraint hi(x(k)) = 0 
is violated at a design point x(k) if it has nonzero value there, i.e., hi(x(k)) π 0. Note that by
these definitions, an equality constraint is always either active or violated for any design
point.

e-Active Constraint Any inequality constraint gi(x(k)) £ 0 is said to be e-active at the point
x(k) if gi(x(k)) < 0 but gi(x(k)) + e ≥ 0, where e > 0 is a small number. This means that the point
is close to the constraint boundary on the feasible side (within an e-band as shown in 
Fig. 10-3).
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FIGURE 10-2 Conceptual steps of constrained optimization algorithms initiated from an 
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To understand the idea of the status of a constraint, we refer to Fig. 10-3. Consider the ith
inequality constraint gi(x) £ 0. The constraint boundary (surface in n-dimensional space),
gi(x) = 0, is plotted, and feasible and infeasible sides for the constraint are identified. An arti-
ficial boundary at a distance of e from the boundary gi(x) = 0 and inside the feasible region
is also plotted. We consider four design points A, B, C, and D as shown in Fig. 10-3. For
design point A, the constraint gi(x) is negative and even gi(x) + e < 0. Thus, the constraint
is inactive for design point A. For design point B, gi(x) is strictly less than zero, so it is inac-
tive. However, gi(x) + e > 0, so the constraint is e-active for design point B. For design point
C, gi(x) = 0 as shown in Fig. 10-3. Therefore, the constraint is active there. For design point
D, gi(x) is greater than zero, so the constraint is violated.

10.1.3 Constraint Normalization
In numerical calculations, it is desirable to normalize all the constraint functions. As noted
earlier, active and violated constraints are used in computing a desirable direction of design
change. Usually one value for e (say 0.10) is used for all constraints. Since different con-
straints involve different orders of magnitude, it is not proper to use the same e for all the
constraints unless they are normalized. For example, consider a stress constraint as

(10.5)

and a displacement constraint as

(10.6)

where

s = calculated stress at a point
sa = an allowable stress
d = calculated deflection at a point
da = an allowable deflection

Note that the units for the two constraints are different. Constraint of Eq. (10.5) involves
stress, which has units of Pascals (Pa, N/m2). For example, allowable stress for steel is 
250MPa. The other constraint in Eq. (10.6) involves deflections of the structure, which may
be only a few centimeters. For example, allowable deflection da may be only 2cm. Thus, the
values of the two constraints are of widely differing orders of magnitude. If the constraints
are violated, it is difficult to judge the severity of their violation. We can, however, normal-
ize the constraints by dividing them by their respective allowable values to obtain the 
normalized constraint as

d d d d£ - £a a, or 0

s s s s£ - £a a, or 0
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(10.7)

where R = s/sa for the stress constraint and R = d/da for the deflection constraint. Here, both
sa and da are assumed to be positive; otherwise, the sense of the inequality changes. For nor-
malized constraints, it is easy to check for e-active constraint using the same value of e for
both of them.

There are other constraints that must be written in the form

(10.8)

when normalized with respect to their nominal value. For example, the fundamental vibra-
tion frequency w of a structure or a structural element must be above a given threshold value
of wa, i.e., w ≥ wa. When the constraint is normalized and converted to the standard 
“less than” form, it is given as in Eq. (10.8) with R = w/wa. In subsequent discussions, it 
is assumed that all equality as well as inequality constraints have been converted to the 
normalized form.

There are some constraints that cannot be normalized. For these constraints the allowable
values may be zero. For example, the lower bound on some design variables may be zero.
Such constraints cannot be normalized with respect to lower bounds. These constraints may
be kept in the original form. Or, they may be divided by 100 to transform them to a percent
value. Example 10.1 illustrates the constraint normalization process and checking of the 
constraint status.

1 0 0. - £R

R - £1 0 0.
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EXAMPLE 10.1 Constraint Normalization and Status 
at a Point

Consider the two constraints:

(a)

(b)

At the design points (1, 1) and (-4.5, -4.5), investigate whether the constraints are
active, violated, e-active, or inactive. Use e = 0.1 to check e-active constraints.

Solution. Let us normalize the constraint and express it in the standard form as

(c)

Evaluating the constraint at the two points we get, h(1, 1) = -0.9166, and h(-4.5, 
-4.5) = 0. Therefore, the equality constraint is violated at (1, 1) and active at (-4.5,
-4.5).

The inequality constraint cannot be normalized by dividing it by 500x1 or
30,000x2 because x1 and x2 can have negative values which will change the sense of
the inequality. We must normalize the constraint functions using only positive con-
stants or positive variables. To treat this situation, we may divide the constraint by
30,000|x2| and obtain a normalized constraint as x1/60|x2|-x2/|x2| £ 0. This type of nor-

g

h x x= + - =
1

18

1

36
1 0 01

2
2 .

h

g x x= - £500 30 000 01 2,

h x x= + =1
2

2
1

2
18



10.1.4 Descent Function
For unconstrained optimization, each algorithm in Chapters 8 and 9 required reduction in the
cost function at every design iteration. With that requirement, a descent toward the minimum
point was maintained. A function used to monitor progress toward the minimum is called the
descent function or the merit function. The cost function is used as the descent function in
unconstrained optimization problems. The idea of a descent function is very important in con-
strained optimization as well. Use of the cost function, however, as a descent function for
constrained optimization is quite cumbersome. Therefore, many other descent functions have
been proposed and used. We shall discuss one such function later in this chapter. At this point,
the purpose of the descent function should be well understood. The basic idea is to compute
a search direction d(k) and then a step size along it such that the descent function is reduced.
With this requirement proper progress toward the minimum point is maintained. The descent
function also has the property that its minimum value is the same as that of the original cost
function.

10.1.5 Convergence of an Algorithm
The idea of convergence of an algorithm is very important in constrained optimization 
problems. We first define and then discuss its importance, and how to achieve it. An algo-
rithm is said to be convergent if it reaches a minimum point starting from an arbitrary 
point. An algorithm that has been proven to converge starting from an arbitrary point is called
a robust method. In practical applications of optimization, such reliable algorithms are 
highly desirable. Many engineering design problems require considerable numerical effort to
evaluate functions and their gradients. Failure of the algorithm can have disastrous effects
with respect to wastage of valuable resources as well as morale of designers. Thus, it is
extremely important to develop convergent algorithms for practical applications. It is equally
important to enforce convergence in numerical implementation of algorithms in general
purpose design optimization software. A convergent algorithm satisfies the following two
requirements:

1. There is a descent function for the algorithm. The idea is that the descent function
must decrease at each iteration. This way, progress towards the minimum point can
be monitored.
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malization is, however, not desirable since it changes the nature of the constraint from
linear to nonlinear. Linear constraints are more efficient to treat than the nonlinear
constraints in numerical calculations. Therefore, care and judgment needs to be 
exercised while normalizing constraints. If a normalization procedure does not 
work, another procedure should be tried. In some cases, it may be better to use the
constraints in their original form, especially the equality constraints. Thus, in numer-
ical calculations, some experimentation with normalization of constraints may be
needed for some forms of the constraints. For the present constraint, we normalize 
it with respect to the constant 500 and then divide by 100 to obtain it in the percent
form as

(d)

At (1, 1), g = -0.59 < 0 (so, inactive) and at (-4.5, -4.5), g = 2.655 > 0 (so, violated).

g x x= -( ) £
1

100
60 01 2



2. The direction of design change d(k) is a continuous function of the design variables.
This is also an important requirement. It implies that a proper direction can be found
such that descent toward the minimum point can be maintained. This requirement
also avoids “oscillations,” or “zigzagging” in the descent function.

In addition to the preceding two requirements, the assumption of the feasible set for the
problem being closed and bounded must be satisfied for the guarantee of the algorithms to
be convergent to a local minimum point. The algorithm may or may not converge if the two
conditions are not satisfied. The feasible set is closed if all the boundary points are included
in the set; i.e., there are no strict inequalities in the problem formulation. A bounded set
implies that there are upper and lower bounds on the elements of the set. These requirements
are satisfied if all functions of the problem are continuous. The preceding assumptions are
not unreasonable for many engineering design applications.

10.2 Linearization of Constrained Problem
At each iteration, most numerical methods for constrained optimization compute design
change by solving an approximate subproblem that is obtained by writing linear Taylor’s
expansions for the cost and constraint functions. This idea of approximate or linearized sub-
problems is central to the development of many numerical optimization methods and should
be thoroughly understood.

All search methods start with a design estimate and iteratively improve it. Let x(k) be 
the design estimate at the kth iteration and Dx(k) be the change in design. Writing Taylor’s
expansion of the cost and constraint functions about the point x(k), we obtain the linearized
subproblem as

(10.9)

subject to the linearized equality constraints

(10.10)

and the linearized inequality constraints

(10.11)

where —f, —hj and —gj are gradients of the cost function, jth equality constraint, and jth
inequality constraint, respectively, and “�” implies approximate equality. In the following
presentation, we introduce some simplified notations for the current design x(k) as follows:

Cost function value:

fk = f(x(k)) (10.12)

Negative of the jth equality constraint function value:

ej = -hj(x(k)) (10.13)

Negative of the jth inequality constraint function value:

bj = -gj(x(k)) (10.14)

g g g j mj
k k

j
k

j
T k kx x x x x( ) ( ) ( ) ( ) ( )+( ) @ ( ) + — ( ) £ =D D 0 1;  to 

h h h j pj
k k

j
k

j
T k kx x x x x( ) ( ) ( ) ( ) ( )+( ) @ ( ) + — ( ) = =D D 0 1;  to 

minimize f f fk k k T k kx x x x x( ) ( ) ( ) ( ) ( )+( ) @ ( ) + — ( )D D
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Derivative of the cost function with respect to xi:

(10.15)

Derivative of hj with respect to xi:

(10.16)

Derivative of gj with respect to xi:

(10.17)

Design change:

di = Dxi
(k) (10.18)

Note also that the linearization of the problem is done at any design iteration, so the argu-
ment x(k) as well as the superscript k indicating the iteration number shall be omitted for some
quantities. Using these notations, the approximate subproblem given in Eqs. (10.9) to (10.11)
gets defined as follows:

(10.19)

subject to the linearized equality constraints:

(10.20)

and the linearized inequality constraints:

(10.21)

where columns of the matrix N (n ¥ p) are the gradients of equality constraints and the
columns of the matrix A (n ¥ m) are the gradients of the inequality constraints. Note that
since fk is a constant that does not affect solution of the linearized subproblem, it is dropped
from Eq. (10.19). Therefore, represents the linearized change in the original cost function.
Let n(j) and a(j) represent the gradients of the jth equality and jth inequality constraints, respec-
tively. Therefore, they are given as the column vectors:

(10.22)

The matrices N and A are formed using gradients of the constraints as their columns:
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Examples 10.2 and 10.3 illustrate the linearization process for nonlinear optimization
problems.
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EXAMPLE 10.2 Definition of Linearized Subproblem

Consider the optimization problem of Example 4.31,

(a)

subject to the constraints

(b)

Linearize the cost and constraint functions about the point x(0) = (1, 1) and write the
approximate problem given by Eqs. (10.19) to (10.21).

Solution. The graphical solution for the problem is shown in Fig. 10-4. It can be
seen that the optimum solution is at the point with the cost function as -
3. The given point (1, 1) is inside the feasible region. The gradients of cost and con-
straint functions are

(c)

Evaluating the cost and constraint functions and their gradients at the point (1, 1), 
we get

— = - -( ) — = Ê
Ë

ˆ
¯

— = -( ) — = -( )

f x x x x g x x

g g

2 3 2 3
2
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2

6

1 0 0 1
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2 3

, , , ,

, , ,

- -( )3 3,
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FIGURE 10-4 Graphical representation of the cost and constraints for Example 10.2.
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(d)

Note that the given design point (1, 1) is in the feasible set since all the constraints
are satisfied. The matrix A and vector b of Eq. (10.21) are defined as

(e)

Now the linearized subproblem of Eqs. (10.19) to (10.21) can be written as, minimize

(f)

subject to

(g)

Or, in the expanded notation, we get minimize = -d1 - d2 subject to

(h)

The last two constraints in the subproblem ensure nonnegativity of the design 
variables required in the problem definition. Note that unless we enforce limits on 
the design changes di, the subproblem may be unbounded. 

Note also that the linearized subproblem is in terms of the design changes d1 and
d2. We may also write the subproblem in terms of the original variables x1 and x2. 
To do this we replace d with x - x(0) in all the foregoing expressions or in the linear
Taylor’s expansion and obtain:

(i)
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In the foregoing expressions, “overbar” for a function indicates linearized approxi-
mation. The feasible regions for the linearized problem at the point (1, 1) and the origi-
nal problem are shown in Fig. 10-5. Since the linearized cost function is parallel to
the linearized first constraint 1, the optimum solution for the linearized problem is
any point on the line D–E in Fig. 10-5.

It is important to note that the linear approximations for the functions of the
problem change from point to point. Therefore, the feasible region for the linearized
subproblem will change with the point at which the linearization is performed.
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FIGURE 10-5 Graphical representation of the linearized feasible region for Example
10.2.

EXAMPLE 10.3 Linearization of Rectangular Beam 
Design Problem

Linearize the rectangular beam design problem formulated in Section 3.8 at the point
(50, 200)mm.

Solution. The problem, after normalization, is defined as follows: Find width b and
depth d to minimize f(b, d) = bd subject to

(a)

(b)

(c)

(d)g b g d4 50 0= - £ = - £;

g
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g
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At the given point the problem functions are evaluated as

(e)

In the following calculations, we shall ignore constraints g4 and g5 assuming that they
will remain satisfied, that is, the design will remain in the first quadrant. The gradi-
ents of the functions are evaluated as

(f)

Using the function values and their gradients, the linear Taylor’s expansions give the
linearized subproblem at the point (50, 200) in terms of the original variables as

(g)

The linearized constraint functions are plotted in Fig. 10-6 and their feasible region
is identified. The feasible region for the original constraints is also identified. 
It can be observed that the two regions are quite different. Since the linearized 
cost function is parallel to constraint 2, the optimum solution lies on the line I–J. 
If point I is selected as the solution for the linearized subproblem, then the new point
is given as

(h)

For any point on line I–J all the original constraints are still violated. Apparently, for
nonlinear constraints, iterations may be needed to correct constraint violations and
reach the feasible set.

One interesting observation concerns the third constraint; the original constraint 
d - 2b £ 0 is normalized as d/2b - 1 £ 0. The normalization does not change the con-
straint boundary; thus the graphical representation for the problem remains the same,
as may be verified in Fig. 10-6. However, the normalization changes the form of the
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10.3 Sequential Linear Programming Algorithm
Note that all the functions in Eqs. (10.19) to (10.21) are linear in the variables di. Therefore,
linear programming methods can be used to solve for di. Such procedures where linear 
programming is used to compute design change are called sequential linear programming
methods or in short SLP. In this section, we shall briefly describe such a procedure and discuss
its advantages and drawbacks. The idea of move limits and their needs are explained and
illustrated.

10.3.1 The Basic Idea—Move Limits
To solve the LP by the standard Simplex method, the right side parameters ei and bj in Eqs.
(10.13) and (10.14) must be nonnegative. If any bj is negative, we must multiply the corre-
sponding constraint by -1 to make the right side nonnegative. This will change the sense of
the inequality in Eq. (10.21), i.e., it will become a “≥ type” constraint.

It must be noted that the problem defined in Eqs. (10.19) to (10.21) may not have a
bounded solution, or the changes in design may become too large, thus invalidating the linear
approximations. Therefore, limits must be imposed on changes in design. Such constraints
are usually called move limits, expressed as

(10.24)- £ £ =( ) ( )D Dil
k

i iu
kd i n1 to
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constraint function that affects its linearization. If the constraint is not normalized, its
linearization will give the same functional form as the original constraint for all design
points, i.e., d - 2b £ 0. This is shown as line 0–K in Fig. 10-6. The linearized form
of the normalized constraint changes; it gives the line G–H for the point (50, 200).
This is quite different from the original constraint. The iterative process with and
without the normalized constraint can lead to different paths to the optimum point. In
conclusion, we must be careful while normalizing the constraints so as not to change
the functional form for the constraints as far as possible.
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FIGURE 10-6 Feasible region for the original and the linearized constraints of the 
rectangular beam design problem of Example 10.3.



where Dil
(k) and Diu

(k) are the maximum allowed decrease and increase in the ith design variable,
respectively, at the kth iteration. The problem is still linear in terms of di so LP methods can
be used to solve it. Note that the iteration counter k is used to specify Dil

(k) and Diu
(k). That is,

the move limits may change every iteration. Figure 10-7 shows the effect of imposing the
move limits on changes in the design x(k); the new design estimate is required to stay in the 
rectangular area ABCD for a two-dimensional problem.

Selection of Proper Move Limits Selecting proper move limits is of critical importance
because it can mean success or failure of the SLP algorithm. Their specification, however,
requires some experience with the method as well as knowledge of the problem being solved.
Therefore, the user should not hesitate to try different move limits if one specification leads
to failure or improper design. Many times lower and upper bounds are specified on the real
design variables xi. Therefore, move limits must be selected to remain within the specified
bounds. Also, since linear approximations for the functions are used, the design changes
should not be very large, and the move limits should not be excessively large. Usually Dil

(k)

and Diu
(k) are selected as some fraction of the current design variable values (this may vary

from 1 to 100 percent). If the resulting LP problem turns out to be infeasible, the move limits
will have to be relaxed (i.e., allow larger changes in design) and the subproblem solved again.
Usually, a certain amount of experience with the problem is necessary to select proper move
limits and adjust them at every iteration to solve the problem successfully.

Positive/Negative Design Changes Another point must also be noted before an SLP algo-
rithm can be stated. This concerns the sign of the variables di (or Dxi), which can be posi-
tive or negative, i.e., current values of design variables can increase or decrease. To allow
for such a change, we must treat the LP variables di as free in sign. This can be done as
explained in Section 6.1. Each free variable di is replaced as di = d+

i - d-
i in all the expres-

sions. The LP subproblem defined in Eqs. (10.19) to (10.21) is then transformed to the stan-
dard form to use the Simplex method.

10.3.2 An SLP Algorithm
We must define some stopping criteria before stating the algorithm:

1. All constraints must be satisfied. This can be expressed as gi £ e1; i = 1 to m and |hi|
£ e1; i = 1 to p, where e1 > 0 is a specified small number defining tolerance for
constraint violation.

2. The changes in design should be almost zero; that is, ||d|| £ e2, where e2 > 0 is a
specified small number.
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FIGURE 10-7 Linear move limits on design changes.



The sequential linear programming algorithm is now stated as follows:

Step 1. Estimate a starting design as x(0). Set k = 0. Specify two small positive numbers,
e1 and e2.

Step 2. Evaluate cost and constraint functions at the current design x(k), i.e., calculate fk,
bj; j = 1 to m, and ej; j = 1 to p as defined in Eqs. (10.12) to (10.14). Also, evaluate
the cost and constraint function gradients at the current design x(k).

Step 3. Select the proper move limits Dil
(k) and Diu

(k) as some fraction of the current design.
Define the LP subproblem of Eqs. (10.19) to (10.21).

Step 4. If needed, convert the LP subproblem to the standard Simplex form (refer to
Section 6.1), and solve it for d(k).

Step 5. Check for convergence. If gi £ e1; i = 1 to m; |hi| £ e1; i = 1 to p; and ||d(k)|| £ e2

then stop. Otherwise, continue.
Step 6. Update the design as x(k+1) = x(k) + d(k). Set k = k + 1 and go to Step 2.

It is interesting to note here that the LP problem defined in Eqs. (10.19) to (10.21) can be
transformed to be in the original variables by substituting di = xi - xi

(k). This was demon-
strated in Examples 10.2 and 10.3. The move limits on di of Eq. (10.24) can also be trans-
formed to be in the original variables. This way the solution of the LP problem directly gives
the estimate for the next design point. Examples 10.4 and 10.5 illustrate the use of sequen-
tial linear programming algorithm.
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EXAMPLE 10.4 Study of Sequential Linear Programming
Algorithm

Consider the problem given in Example 10.2. Define the linearized subproblem at the
point (3, 3), and discuss its solution imposing, proper move limits.

Solution. To define the linearized subproblem, the following quantities are calcu-
lated at the given point (3, 3):

(a)

(b)

(c)

(d)

(e)

(f)

The given point is in the infeasible region as the first constraint is violated. The lin-
earized subproblem is defined according to Eqs. (10.19) to (10.21) as

(g)minimize f
d

d
= - -[ ]È

ÎÍ
˘
˚̇

3 3 1

2

— = Ê
Ë

ˆ
¯ = ( ) — = -( ) — = -( )g x x g g1 1 2 2 3

2
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6
1 1 1 0 0 1, , , , , ,

c = — = - -( ) = - -( )f x x x x2 3 2 3 3 31 2 2 1, ,
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g x2 13 3 3 0,( ) = - = - < ( )inactive
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subject to the linearized constraints

(h)

The subproblem has only two variables, so it can be solved using the graphical solu-
tion procedure, as shown in Fig. 10-8. This figure when superimposed on Fig. 10-4
represents a linearized approximation for the original problem at the point (3, 3). The
feasible solution for the linearized subproblem must lie in the region ABC in Fig. 10-
8. The cost function is parallel to the line B–C, thus any point on the line minimizes
the function. We may choose d1 = -1 and d2 = -1 as the solution that satisfies all the
linearized constraints (note that the linearized change in cost is 6). If 100 percent
move limits are selected, i.e., -3 £ d1 £ 3 and -3 £ d2 £ 3, then the solution to the LP
subproblem must lie in the region ADEF. If the move limits are set as 20 percent of
the current value of design variables, then the solution must satisfy -0.6 £ d1 £ 0.6
and -0.6 £ d2 £ 0.6. In this case the solution must lie in the region A1D1E1F1. It can
be seen that there is no feasible solution to the linearized subproblem because region
A1D1E1F1 does not intersect the line B–C. We must enlarge this region by increasing
the move limits. Thus, we note that if the move limits are too restrictive, the linearized
subproblem may not have any solution.

If we choose d1 = -1 and d2 = -1, then the improved design is given as (2, 2). 
This is still an infeasible point, as can be seen in Fig. 10-4. Therefore, although 
the linearized constraint is satisfied with d1 = -1 and d2 = -1, the original nonlinear
constraint g1 is still violated.

f
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FIGURE 10-8 Graphical solution for the linearized subproblem of Example 10.4.
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EXAMPLE 10.5 Use of Sequential Linear Programming

Consider the problem given in Example 10.2. Perform one iteration of the SLP algo-
rithm. Use e1 = e2 = 0.001 and choose move limits such that a 15 percent design change
is permissible. Let x(0) = (1, 1) be the starting design.

Solution. The given point represents a feasible solution for the problem as may be
seen in Fig. 10-4. The linearized subproblem with the appropriate move limits on
design changes d1 and d2 at the point x(0) is obtained in Example 10.2 as

(a)

subject to

(b)

(c)

(d)

The graphical solution for the linearized subproblem is given in Fig. 10-9. Move limits
of 15 percent define the solution region as DEFG. The optimum solution for the
problem is at point F where d1 = 0.15 and d2 = 0.15. It is seen that much larger move
limits are possible in the present case.

We shall solve the problem using the Simplex method as well. Note that in the lin-
earized subproblem, the design changes d1 and d2 are free in sign. If we wish to solve
the problem by the Simplex method, we must define new variables, A, B, C, and D
such that d1 = A - B, d2 = C - D and A, B, C, and D ≥ 0. Therefore, substituting these

- £ £ - £ £0 15 0 15 0 15 0 151 2. . , . .d d

- +( ) £ - +( ) £1 0 1 01 2d d,

1

3

1

3

2

3
1 2d d+ £

minimize f d d= - -1 2

C

2

2

1

1D E

FG

–1

–1

A B

d1

d2

FIGURE 10-9 Graphical solution for the linearized subproblem of Example 10.5.
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decompositions into the foregoing equations, we get the following problem written in
standard form as:

(e)

subject to

(f)

-A + B £ 1.0, -C + D £ 1.0 (g)

A - B £ 0.15, B - A £ 0.15 (h)

C - D £ 0.15, D - C £ 0.15 (i)

A, B, C, D ≥ 0 (j)

The solution to the foregoing LP problem with the Simplex method is A = 0.15, B =
0, C = 0.15, and D = 0. Therefore, d1 = A - B = 0.15 and d2 = C - D = 0.15. This
gives the updated design as x(1) = x(0) + d(0) = (1.15, 1.15). At the new design (1.15,
1.15), we have, f(x(1)) = -1.3225 and g1(x(1)) = -0.5592. Note that the cost function
has decreased for the new design x(1) without violating the constraint. This indicates
that the new design is an improvement over the previous one. Since the norm of the
design change, ||d|| = 0.212 is larger than the permissible tolerance (0.001), we need
to go through more iterations to satisfy the stopping criteria.

Note also that the linearized subproblem at the point (1, 1) can be written in the
original variables. This was done in Example 10.2 and the linearized subproblem was
obtained as

(k)

subject to

(l)

The 15 percent move limits can be also transformed to be in the original variables
using -Dil £ xi - xi

(0) £ Diu as

(m)

(n)

Solving the subproblem, we obtain the same solution (1.15, 1.15) as before.

- £ -( ) £ £ £0 15 1 0 15 0 85 1 152 2. . . .x xor

- £ -( ) £ £ £0 15 1 0 15 0 85 1 151 1. . . .x xor

g x x g x g x1 1 2 2 1 3 2
1

3
4 0 0 0= + -( ) £ = - £ = - £, ,

minimize f x x= - - +1 2 1

1

3

2

3
A B C D- + -( ) £

minimize f A B C D= - + - +

10.3.3 SLP Algorithm: Some Observations
The sequential linear programming algorithm is a simple and straightforward approach 
to solving constrained optimization problems. The algorithm can be used to solve various
engineering design problems, especially problems having a large number of design variables.
The following observations highlight some features and limitations of the SLP method.



1. The method should not be used as a black box approach for engineering design
problems. The selection of move limits is a trial and error process and can be best
achieved in an interactive mode. The move limits can be too restrictive resulting in
no solution for the LP subproblem. Move limits that are too large can cause
oscillations in the design point during iterations. Thus performance of the method
depends heavily on selection of move limits.

2. The method may not converge to the precise minimum since no descent function is
defined, and line search is not performed along the search direction to compute a
step size. Thus progress toward the solution point cannot be monitored.

3. The method can cycle between two points if the optimum solution is not a vertex of
the feasible set.

4. The method is quite simple conceptually as well as numerically. Although it may not
be possible to reach the precise optimum with the method, it can be used to obtain
improved designs in practice.

10.4 Quadratic Programming Subproblem
As observed in the previous section, the SLP is a simple algorithm to solve general 
constrained optimization problems. However, the method has some limitations, the major 
one being the lack of robustness. To correct the drawbacks, a method is presented in the 
next section where a quadratic programming (QP) subproblem is solved to determine a 
search direction. Then a step size is calculated by minimizing a descent function along the
search direction. In this section, we shall define a QP subproblem and discuss a method for
solving it.

10.4.1 Definition of QP Subproblem
To overcome some of the limitations of the SLP method, other methods have been devel-
oped to solve for design changes. Most of the methods still utilize linear approximations of
Eqs. (10.19) to (10.21) for the nonlinear optimization problem. However, the linear move
limits of Eq. (10.24) are abandoned in favor of a step size calculation procedure. The move
limits of Eq. (10.24) play two roles in the solution process: (1) they make the linearized sub-
problem bounded, and (2) they give the design change without performing line search. It
turns out that these two roles of the move limits of Eq. (10.24) can be achieved by defining
and solving a slightly different subproblem to determine the search direction and then per-
forming a line search for the step size to calculate the design change. The linearized sub-
problem can be bounded if we require minimization of the length of the search direction in
addition to minimization of the linearized cost function. This can be accomplished by com-
bining these two objectives. Since this combined objective is a quadratic function in terms
of the search direction, the resulting subproblem is called a QP subproblem. The subprob-
lem is defined as

(10.25)

subject to the linearized constraints of Eqs. (10.20) and (10.21)

(10.26)

The factor of with the second term in Eq. (10.25) is introduced to eliminate the factor
of 2 during differentiations. Also, the square of the length of d is used instead of the length

1
2

N d e A d bT T= £;

minimize f T T= +c d d d
1

2
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of d. Note that the QP subproblem is strictly convex and therefore its minimum (if one exists)
is global and unique. It is also important to note that the cost function of Eq. (10.25) repre-
sents an equation of a hypershere with center at -c. Example 10.6 demonstrates how to define
a quadratic programming subproblem at a given point.

EXAMPLE 10.6 Definition of a QP Subproblem

Consider the constrained optimization problem:

(a)

subject to equality and inequality constraints as

(b)

Linearize the cost and constraint functions about a point (1, 1) and define the QP
subproblem.

Solution. Figure 10-10 shows a graphical representation for the problem. Note that
the constraints are already written in the normalized form. The equality constraint is
shown as h = 0 and boundary of the inequality constraint as g = 0. The feasible region
for the inequality constraint is identified and several cost function contours are shown.
Since the equality constraint must be satisfied the optimum point must lie on the two
curves h = 0. Two optimum solutions are identified as

h x x x g x xx x( ) = + + = ( ) = - - £1
2

1 2 1 2
21 0 0

1

4
1 0 0. , .

minimize f x x x x xx( ) = + - -2 15 8 41
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FIGURE 10-10 Graphical representation of Example 10.6.
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Point A:

Point B:

The gradients of the cost and constraint functions are

(c)

The cost and constraint function values and their gradients at (1, 1) are

(d)

Using move limits of 50 percent, the linear programming subproblem of Eqs. (10.19)
to (10.21) is defined as: 

(e)

subject to

(f)

The QP subproblem of Eqs. (10.25) and (10.26) is defined as: 

(g)

subject to

(h)

To compare the solutions, the preceding LP and QP subproblems are plotted in Figs.
10-11 and 10-12, respectively. In these figures, the solution must satisfy the linearized
equality constraint, so it must lie on the line C–D. The feasible region for the linearized
inequality constraint is also shown. Therefore, the solution for the subproblem must
lie on the line G–C. It can be seen in Fig. 10-11 that with 50 percent move limits, the
linearized subproblem is infeasible. The move limits require the changes to lie in the
square HIJK, which does not intersect the line G–C. If we relax the move limits to
100 percent, then point L gives the optimum solution: .
Thus, we again see that the design change with the linearized subproblem is affected
by the move limits.

With the QP subproblem, the constraint set remains the same but there is no need
for the move limits as seen in Fig. 10-12. The cost function is quadratic in variables.
The optimum solution is at point G: d1 = -0.5, d2 = -1.5, = -28.75. Note that the
direction determined by the QP subproblem is unique, but it depends on the move
limits with the LP subproblem. The two directions determined by LP and QP sub-
problems are in general different.

f
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FIGURE 10-11 Solution of the linearized subproblem for Example 10.6 at the point
(1,1).
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FIGURE 10-12 Solution of the quadratic programming subproblem for Example 10.6 at
the point (1,1).

10.4.2 Solution of QP Subproblem
QP problems are encountered in many real-world applications. In addition, many general
nonlinear programming algorithms require solution of a quadratic programming subproblem
at each design cycle. Therefore it is extremely important to solve a QP subproblem efficiently
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so that large-scale optimization problems can be treated. Thus, it is not surprising that sub-
stantial research effort has been expended in developing and evaluating many algorithms for
solving QP problems (Gill et al., 1981; Luenberger, 1984). Also, many good programs have
been developed to solve such problems. In the next chapter, we shall describe a method for
solving general QP problems that is a simple extension of the Simplex method of linear pro-
gramming. If the problem is simple, we can solve it using the KKT conditions of optimality
given in Theorem 4.6. To aid the KKT solution process, we can use a graphical representa-
tion of the problem to identify the possible solution case and solve that case only. We present
such a procedure in Example 10.7.

EXAMPLE 10.7 Solution of QP Subproblem

Consider the problem of Example 10.2 linearized as: minimize = -d1 - d2 subject
to -d1 £ 1, -d2 £ 1. Define the quadratic programming subproblem and
solve it.

Solution. The linearized cost function is modified to a quadratic function as follows:

(a)

The cost function corresponds to an equation of a circle with center at (-c1, -c2) where
ci are components of the gradient of the cost function; i.e., at (1, 1). The graphical
solution for the problem is shown in Fig. 10-13 where triangle ABC represents the
feasible set. Cost function contours are circles of different radii. The optimum solu-
tion is at point D where d1 = 1 and d2 = 1. Note that the QP subproblem is strictly
convex and thus, has a unique solution. A numerical method must generally be used
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FIGURE 10-13 Solution of quadratic programming subproblem for Example 10.7 at the
point (1, 1).



10.5 Constrained Steepest Descent Method
As noted at the beginning of this chapter, numerous methods have been proposed and eval-
uated for constrained optimization problems since 1960. Some methods have good perfor-
mance for equality constrained problems only, whereas others have good performance for
inequality constrained problems only. An overview of some of these methods is presented
later in Chapter 11. In this section, we focus only on a general method, called the constrained
steepest descent method, that can treat equality as well as inequality constraints in its com-
putational steps. It also requires inclusion of only a few of the critical constraints in the cal-
culation of the search direction at each iteration; that is, the QP subproblem of Eqs. (10.25)
and (10.26) may be defined using only the active and violated constraints. This can lead to
efficiency of calculations for larger scale engineering design problems, as explained in
Chapter 11. The method has been proved to be convergent to a local minimum point start-
ing from any point. This is considered as a model algorithm that illustrates how most opti-
mization algorithms work. In addition, it can be extended for more efficient calculations, 
as explained in Chapter 11. Here, we explain the method and illustrate its calculations with
simple numerical examples. A descent function and a step size determination procedure for
the method are described. A step-by-step procedure is given to show the kind of calculations
needed to implement the method for numerical calculations. It is important to understand
these steps and calculations to effectively use optimization software and diagnose errors when
something goes wrong with an application.

Note that when there are either no constraints or no active ones, minimization of the qua-
dratic function of Eq. (10.25) gives d = -c (using the necessary condition, ∂ /∂d = 0). This
is just the steepest descent direction of Section 8.3 for the unconstrained problems. When

f
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to solve the subproblem. However, since the present problem is quite simple, it can
be solved by writing the KKT necessary conditions of Theorem 4.6 as follows:

(b)

(c)

(d)

(e)

(f)

where u1, u2, and u3 are the Lagrange multipliers for the three constraints and s2
1, 

s2
2, and s2

3 are the corresponding slack variables. Note that the switching conditions 
uisi = 0 give eight solution cases. However, only one case can give the optimum 
solution. The graphical solution shows that only the first inequality is active at 
the optimum, giving the case as: s1 = 0, u2 = 0, u3 = 0. Solving this case, we get the
direction vector d = (1, 1) with = -1 and u = (0, 0, 0), which is the same as the
graphical solution.
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there are constraints, their effect must be included in calculating the search direction. The
search direction must satisfy all the linearized constraints. Since the search direction is a mod-
ification of the steepest descent direction to satisfy constraints, it is called the constrained
steepest descent direction. The steps of the resulting constrained steepest descent algorithm
(CSD) will be clear once we define a suitable descent function and a related line search pro-
cedure to calculate the step size along the search direction. It is important to note that the
CSD method presented in this section is the most introductory and simple interpretation of
more powerful sequential quadratic programming (SQP) methods. All features of the algo-
rithms are not discussed here to keep the presentation of the key ideas simple and straight-
forward. It is noted, however, that the methods work equally well when initiated from feasible
or infeasible points.

10.5.1 Descent Function
Recall that in unconstrained optimization methods the cost function is used as the descent
function to monitor progress of algorithms toward the optimum point. For constrained prob-
lems, the descent function is usually constructed by adding a penalty for constraint violations
to the current value of the cost function. Based on this idea, many descent functions can be
formulated. In this section, we shall describe one of them and show its use.

One of the properties of a descent function is that its value at the optimum point must be
the same as that for the cost function. Also, it should be such that a unit step size is admis-
sible in the neighborhood of the optimum point. We shall introduce Pshenichny’s descent
function (also called the exact penalty function) because of its simplicity and success in
solving a large number of engineering design problems (Pshenichny and Danilin, 1982; 
Belegundu and Arora, 1984a,b). Other descent functions shall be discussed in Chapter 11.
Pshenichny’s descent function F at any point x is defined as

(10.27)

where R > 0 is a positive number called the penalty parameter (initially specified by the user),
V(x) ≥ 0 is either the maximum constraint violation among all the constraints or zero, and
f(x) is the cost function value at x. As an example, the descent function at the point x(k) during
the kth iteration is calculated as

(10.28)

where Fk and Vk are the values of F(x) and V(x) at x(k) as

(10.29)

and R is the most current value of the penalty parameter. As explained later with examples,
the penalty parameter may change during the iterative process. Actually, it must be ensured
that it is greater than or equal to the sum of all the Lagrange multipliers of the QP subprob-
lem at the point x(k). This is a necessary condition given as

(10.30)

where rk is the sum of all the Lagrange multipliers at the kth iteration:
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Since the Lagrange multiplier vi
(k) for an equality constraint is free in sign, its absolute value

is used in Eq. (10.31). ui
(k) is the multiplier for the ith inequality constraint.

The parameter Vk ≥ 0 related to the maximum constraint violation at the kth iteration is
determined using the calculated values of the constraint functions at the design point x(k) as

(10.32)

Since the equality constraint is violated if it is different from zero, the absolute value is used
with each hi in Eq. (10.32). Note that Vk is always nonnegative, i.e., Vk ≥ 0. If all con-
straints are satisfied at x(k), then Vk = 0. Example 10.8 illustrates calculations for the descent
function.

V h h h g g gk p m= { }max 0; 1 2 1 2, , . . . , ; , , . . . ,
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EXAMPLE 10.8 Calculation of Descent Function

A design problem is formulated as follows: 

(a)

subject to four inequalities

(b)

Taking the penalty parameter R as 10,000, calculate the value of the descent function
at the point x(0) = (40, 0.5).

Solution. The cost and constraint functions at the given point x(0) = (40, 0.5) are
evaluated as

(c)

(d)

(e)

(f)

(g)

Thus, the maximum constraint violation is determined using Eq. (10.32) as

(h)

Using Eq. (10.28), the descent function is calculated as
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V0 40 0 5 0 5611= - -{ } =max 0; 0.333, 0.5611, , . .

g4 0 5 0= - < ( ). inactive

g3 40 0= - < ( )inactive

g2 1
40 40 0 5

3600
0 5611= -

-( )
= ( ).

. violation

g1
40

60 0 5
1 0 333= ( ) - = ( )

.
. violation

f f0
2

40 0 5 40 320 40 0 5 8000= ( ) = ( ) + ( )( ) =, . .

x

x

x x x
x x1

2

1 1 2
1 2

60
1 0 1

3600
0 0 0- £ -

-( )
£ - £ - £, , ,

minimize f x x xx( ) = +1
2
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10.5.2 Step Size Determination
Before the constrained steepest descent algorithm can be stated, a step size determination
procedure is needed. The step size determination problem is to calculate ak for use in Eq.
(10.4) that minimizes the descent function F of Eq. (10.27). In most practical implementa-
tions of the algorithm, an inaccurate line search that has worked fairly well is used to deter-
mine the step size. We shall describe that procedure and illustrate its use with examples in
Chapter 11. In this section we assume that a step size along the search direction can be cal-
culated using the golden section method described in Chapter 8. However, it is realized that
the method can be inefficient; therefore, inaccurate line search should be preferred in most
constrained optimization methods.

In performing the line search for minimum of the descent function F, we need a notation
to represent the trial design points, and values of the descent, cost, and constraint functions.
The following notation shall be used at iteration k:

aj: jth trial step size
xi

(k,j): ith design variable value at the jth trial step size
fk,j: cost function value at the jth trial point
Fk,j: descent function value at the jth trial point
Vk,j: maximum constraint function value at the jth trial point
Rk: penalty parameter value that is kept fixed during line search as long as the

necessary condition of Eq. (10.30) is satisfied.

Example 10.9 illustrates calculations for the descent function during golden section search.

EXAMPLE 10.9 Calculation of Descent Function for Golden
Section Search

For the design problem defined in Example 10.8, the QP subproblem has been defined
and solved at the starting point x(0) = (40, 0.5). The search direction is determined as
d(0) = (26.60, 0.45) and the Lagrange multipliers for the constraints are determined 
as u = (4880, 19 400, 0, 0). Let the initial value of the penalty parameter be given as 
R0 = 1. Calculate the descent function value at the two points during initial bracket-
ing of the step size in the golden section search using d = 0.1. Compare the descent
function values.

Solution. Since we are evaluating the step size at the starting point, k = 0, and j will
be taken as 0, 1, and 2. Using the calculations given in Example 10.8 at the starting
point, we get

(a)

To check the necessary condition of Eq. (10.30) for the penalty parameter, we need
to evaluate r0 using Eq. (10.31) as follows:

(b)

The necessary condition of Eq. (10.30) is satisfied if we select the penalty parameter
R as R = max(R0, r0):

(c)R = ( ) =max , ,1 24 280 24 280

r ui
i

m

0
0

1

4880 19 400 0 0 24 280= = + + + =( )

=
Â , ,

f V0 0 0 08000 0 5611, ,, .= =
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Thus, the descent function value at the starting point is given as

(d)

Now let us calculate the descent function at the first trial step size d = 0.1, i.e., a1 =
0.1. Updating the current design point in the search direction, we get

(e)

Various functions for the problem are calculated at x(0,1) as

(f)

The constraint violation parameter is given as

(g)

Thus, the descent function at the trial step size of a1 = 0.1 is given as (note that the
value of the penalty parameter R is not changed during step size calculation)

(h)

Since F0,1 < F0,0 (21,454 < 21,624), we need to continue the initial bracketing process
in the golden section search procedure. Following that procedure, the next trial step
size is given as a2 = d + 1.618d = 0.1 + 1.618(0.1) = 0.2618. The trial design point is
obtained as

(i)

Following the foregoing procedure, various quantities are calculated as

(j)

(k)

(l)

Since F0,2 < F0,1 (21,182 < 21,454), the minimum for the descent function has not
been surpassed yet. Therefore we need to continue the initial bracketing process. The
next trial step size is given as

(m)

Following the foregoing procedure, F0,3 can be calculated and compared with F0,2. 
Note that the value of the penalty parameter R is calculated at the beginning of 

the line search and then kept fixed during all subsequent calculations for step size
determination.

a d d d3
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10.5.3 CSD Algorithm
We are now ready to state the constrained steepest descent (CSD) algorithm in a step-by-step
form. It has been proved that the solution point of the sequence {x(k)} generated by the algo-
rithm is a KKT point for the general constrained optimization problem (Pshenichny and
Danilin, 1982). The stopping criterion for the algorithm is that ||d|| £ e for a feasible point.
Here e is a small positive number and d is the search direction that is obtained as a solution
of the QP subproblem. The CSD method is now summarized in the form of a computational
algorithm.

Step 1. Set k = 0. Estimate initial values for design variables as x(0). Select an
appropriate initial value for the penalty parameter R0, and two small numbers e1 and
e2 that define the permissible constraint violation and convergence parameter values,
respectively. R0 = 1 is a reasonable selection.

Step 2. At x(k) compute the cost and constraint functions and their gradients. Calculate
the maximum constraint violation Vk as defined in Eq. (10.32).

Step 3. Using the cost and constraint function values and their gradients, define the QP
subproblem given in Eqs. (10.25) and (10.26). Solve the QP subproblem to obtain
the search direction d(k) and Lagrange multipliers vectors v(k) and u(k).

Step 4. Check for the following stopping criteria ||d(k)|| £ e2 and the maximum constraint
violation Vk £ e1. If these criteria are satisfied then stop. Otherwise continue.

Step 5. To check the necessary condition of Eq. (10.30) for the penalty parameter R,
calculate the sum rk of the Lagrange multipliers defined in Eq. (10.31). Set R = max
{Rk, rk}. This will always satisfy the necessary condition of Eq. (10.30).

Step 6. Set x(k+1) = x(k) + akd(k), where a = ak is a proper step size. As for the
unconstrained problems, the step size can be obtained by minimizing the descent
function of Eq. (10.27) along the search direction d(k). Any of the procedures, such as
the golden section search, can be used to determine a step size.

Step 7. Save the current penalty parameter as Rk+1 = R. Update the iteration counter as 
k = k + 1, and go to Step 2.

The CSD algorithm along with the foregoing step size determination procedure is con-
vergent provided second derivatives of all the functions are piece-wise continuous (this is the
so-called Lipschitz condition) and the set of design points x(k) are bounded as follows:

10.5.4 CSD Algorithm: Some Observations

1. The CSD algorithm is a first-order method that can treat equality and inequality
constraints. The algorithm converges to a local minimum point starting from an
arbitrary point.

2. The potential constraint strategy discussed in the next chapter is not introduced in
the algorithm for the sake of simplicity of presentation. This strategy is essential for
engineering applications and can be easily incorporated into the algorithm
(Belegundu and Arora, 1984).

3. The golden section search can be inefficient and is generally not recommended for
engineering applications. The inaccurate line search described in Chapter 11 works
quite well and is recommended.

4. The rate of convergence of the CSD algorithm can be improved by including
second-order information in the QP subproblem. This is discussed in Chapter 11.

F Fx xk k( ) ( )( ) £ ( ) =0 1 2 3; , , , . . .
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5. The starting point can affect performance of the algorithm. For example, at some
points the QP subproblem may not have any solution. This need not mean that the
original problem is infeasible. The original problem may be highly nonlinear, so that
the linearized constraints may be inconsistent giving infeasible subproblem. This
situation can be handled by either temporarily deleting the inconsistent constraints or
starting from another point. For more discussion on the implementation of the
algorithm, Tseng and Arora (1988) may be consulted.

10.6 Engineering Design Optimization Using Excel Solver
Project/Problem Statement Welded plate girders are used in many practical applications,
such as overhead cranes, and highway and railway bridges. As an example of formulation of
a practical design problem and the optimization solution process, we shall present design of
a welded plate girder for a highway bridge to minimize its cost. Other applications of plate
girders can be formulated and solved in a similar way. It has been determined that the life-
cycle cost of the girder is related to its total mass. Since mass is proportional to the mater-
ial volume, the objective of this project is to design a minimum volume girder and at the
same time satisfy requirements of the AASHTO Specifications (American Association of
State Highway and Transportation Officials) (Arora et al., 1997). The dead load for the girder
consists of weight of the pavement and self weight of the girder. The live load consists of
equivalent uniform load and concentrated loads based on HS-20(MS18) truck loading con-
dition. The cross-section of the girder is shown in Fig. 10-14.

In this section, we present a formulation for the problem using the procedure described in
Chapter 2. Preparation of the Excel worksheet to solve the problem is explained and the
problem is solved using Solver.

Data and Information Collection Material and loading data and other parameters for the
plate girder are specified as follows:

Span: L = 25m
Modulus of elasticity: E = 210GPa
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Yield stress: sy = 262MPa
Allowable bending stress: sa = 0.55sy = 144.1MPa
Allowable shear stress: ta = 0.33sy = 86.46MPa
Allowable fatigue stress: st = 255MPa
Allowable deflection:
Concentrated load for moment: Pm = 104kN
Concentrated load for shear: Ps = 155kN
Live load impact factor:

Note that the live load impact factor depends on the span length L. For L = 25 m, this factor
is calculated as 1.33, and it is assumed that the loads Pm and Ps already incorporate this factor.
The dependent variables for the problem that can be evaluated using the cross-sectional
dimensions and other data, are defined as:

Cross-sectional area: A = (htw + 2btf), m2

Moment of inertia:
Uniform load for the girder: w = (19 + 77A), kN/m
Bending moment:

Bending stress:

Flange buckling stress limit:

Web crippling stress limit:
Shear force: S = 0.5(Ps + wL), kN

Deflection:

Average shear stress:

Identification/Definition of Design Variables Cross-sectional dimensions of the plate
girder are treated as four design variables for the problem:

h = web height, m
b = flange width, m
tf = flange thickness, m
tw = web thickness, m

Identification of Criterion To Be Optimized The objective is to minimize the material
volume of the girder:

(a)

Identification of Constraints The following constraints for the plate girder are defined:

Bending stress: s £ sa (b)
Flange buckling: s £ sf (c)
Web crippling: s £ sw (d)
Shear stress: t £ ta (e)
Deflection: D £ Da (f)
Fatigue stress: (g)
Size constraints: 0.30 £ h £ 2.5, 0.30 £ b £ 2.5

0.01 £ tf £ 0.10, 0.01 £ tw £ 0.10 (h)

s s£ 1
2 t

Vol m3= = +( )AL ht bt Lw f2 ,

t = S
htw1000 , MPa

D P wLL

EI m= +( )
¥

3

6384 10
8 5 , m

s w
t
h
w= ( )3 648 276

2
, , , MPa

s f
t

b
f= ( )72 845

2
, , MPa

s = +( )M
I fh t1000 0 5. , MPa

M P wLL
m= +( )

8 2 , kN-m

I t h bt bt h h tw f f f= + + +( )1
12

3 2
3

3 1
2

42 , m

LLIF L= + +( )1 50
125
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Note that the lower and upper limits on the design variables have been specified arbitrar-
ily in the present example. In practice, appropriate values for the given design problem will
have to be specified based on the available plate sizes. It is important to note that constraints
of Eqs. (b) to (g) can be written explicitly in terms of the design variables h, b, tf, and tw

by substituting into them expressions for all the dependent variables. However, there 
are many applications where it is not possible or convenient to eliminate the dependent 
variables to obtain explicit expressions for all the functions of the optimization problem in
terms of the design variables alone. In such cases, the dependent variables must be 
kept in the problem formulation and treated in the solution process. In addition, use of 
dependent variables makes it easier to read and debug the program that contains the problem
formulation.

Spreadsheet Layout Layout of the spreadsheet for solution of KKT optimality conditions,
linear programming problems, and unconstrained problems was explained earlier in Chap-
ters 4, 6, and 8. As noted there, Solver is an “Add-in” to Microsoft Excel; if it does not appear
under the “Tools” menu, it can be easily installed. Figure 10-15 shows the layout of the
spreadsheet showing formulas for the plate girder design problem in various cells. The
spreadsheet can be organized in any convenient way. The main requirements are that the cells
containing objective and constraint functions and the design variables be clearly identified.
For the present problem the spreadsheet is organized into five distinct blocks. The first block
contains information about the design variables. Symbols for the variables and their upper
and lower limits are defined. The cells containing the starting values for the variables are
identified as D3 to D6. These are the cells that are updated during the solution process. Also
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since these cells are used in all expressions, they are given real names, such as h, b, tf, tw.
This is done by using the “Insert/Name” command. The second block defines various data
and parameters for the problem. Material properties, loading data, and span length are
defined. Equations for the dependent variables are entered in cells C18 to C25 in block 3.
Although it is not necessary to include them (because they can be incorporated explicitly into
the constraint and objective function formulas), it can be very useful. First they simplify the
formulation of the constraint expressions, reducing algebraic manipulation errors. Second,
they provide a check of these intermediate quantities for debugging purposes and for infor-
mation feedback. Block 4 identifies the cell for the objective function, cell C28. Block 5 con-
tains the information about the constraints. Cells B31 to B36 contain the left sides and cells
D31 to D36 contain the right sides of the constraints. Constraints are implemented in Excel
by relating two cells through an inequality (£ or ≥) or an equality (=) relationship. This is
defined in the Solver dialog box, which is described next. Although many of the quantities
appearing in the constraint section also appear elsewhere in the spreadsheet, they are simply
references to other cells in the variables section and the parameters section of the spread-
sheet (see formulas in Fig. 10-15). This way, the only cells that need to be modified during
a “what-if” analysis are those in the independent variable section or the parameters section.
The constraints are automatically updated to reflect the changes.

Solver Dialog Box Once the spreadsheet has been created, the next step is to define the
optimization problem for Solver. Figure 10-16 shows a screen shot of the Solver dialog box.
The objective function cell is entered as the “Target Cell,” which is to be minimized. The
independent design variables are identified next under the “By Changing Cells:” heading. A
range of cells has been entered here, but individual cells, separated by commas could be
entered instead. Finally the constraints are entered under the “Subject to the Constraints”
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heading. The constraints include not only those identified in the constraints section of the
spreadsheet but also the bounds on the design variables.

Solution Once the problem has been defined in the “Solver Dialog Box,” clicking Solve
button initiates the optimization process. Once Solver has found the solution, the design vari-
able cells, D3 to D6, dependent variable cells, C18 to C25, and the constraint function cells,
B31 to B36 and D31 to D36 are updated using the optimum values of the design variables.
Solver also generates three reports in separate worksheets, “Answer, Sensitivity, Limits” (as
explained in Chapter 6). The Lagrange multipliers and constraint activity can be recovered
from these reports. The solution is obtained as follows: h = 2.0753 m, b = 0.3960 m, tf =
0.0156 m, tw = 0.0115 m, Vol = 0.90563 m3. The flange buckling, web crippling, and deflec-
tion constraints are active at the optimum point.

It is important to note that once a design problem has been formulated and coupled to 
an optimization software, such as Excel, variations in the operating environment and other
conditions for the problem can be investigated in a very short time. “What if ” type questions
can be investigated and insights about behavior of the system can be gained. For example
the problem can be solved for the following conditions in a short time:

1. What happens if deflection or web crippling constraint is omitted from the
formulation?

2. What if the span length is changed?
3. What if some material properties change?
4. What if a design variable is assigned a fixed value?
5. What if bounds on the variables are changed?

Exercises for Chapter 10
Section 10.1 Basic Concepts and Ideas

10.1 Answer True or False.

1. The basic numerical iterative philosophy for solving constrained and
unconstrained problems is the same.

2. Step size determination is a one-dimensional problem for unconstrained
problems.

3. Step size determination is a multidimensional problem for constrained problem.
4. An inequality constraint gi(x) £ 0 is violated at x(k) if gi(x(k)) > 0.
5. An inequality constraint gi(x) £ 0 is active at x(k) if gi(x(k)) > 0.
6. An equality constraint hi(x) = 0 is violated at x(k) if hi(x(k)) > 0.
7. An equality constraint is always active at the optimum.
8. In constrained optimization problems, search direction is found using the cost

gradient only.
9. In constrained optimization problems, search direction is found using the

constraint gradients only.
10. In constrained problems, the descent function is used to calculate the search

direction.
11. In constrained problems, the descent function is used to calculate a feasible

point.
12. Cost function can be used as a descent function in constrained problems.
13. One-dimensional search on a descent function is needed for convergence of

algorithms.
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14. A robust algorithm guarantees convergence.
15. A feasible set must be closed and bounded to guarantee convergence of

algorithms.
16. A constraint x1 + x2 £ -2 can be normalized as (x1 + x2)/(-2) £ 1.0.
17. A constraint x2

1 + x2
2 £ 9 is active at x1 = 3 and x2 = 3.

Section 10.2 Linearization of the Constrained Problem

10.2 Answer True or False.

1. Linearization of cost and constraint functions is a basic step for solving
nonlinear optimization problems.

2. General constrained problems cannot be solved by solving a sequence of linear
programming subproblems.

3. In general, the linearized subproblem without move limits may be unbounded.
4. The sequential linear programming method for general constrained problems is

guaranteed to converge.
5. Move limits are essential in the sequential linear programming procedure.
6. Equality constraints can be treated in the sequential linear programming

algorithm.

Formulate the following design problems, transcribe them into the standard form, create a
linear approximation at the given point, and plot the linearized subproblem and the original
problem on the same graph.

10.3 Beam design problem formulated in Section 3.8 at the point (b, d) =
(250, 300)mm.

10.4 Tubular column design problem formulated in Section 2.7 at the point (R, t) = (12, 
4) cm. Let P = 50kN, E = 210GPa, l = 500cm, sa = 250MPa, and r = 7850kg/m3.

10.5 Wall bracket problem formulated in Section 4.7.1 at the point (A1, A2) = (150, 
150)cm2.

10.6 Exercise 2.1 at the point h = 12m, A = 4000m2.

10.7 Exercise 2.3 at the point (R, H) = (6, 15) cm.

10.8 Exercise 2.4 at the point R = 2cm, N = 100.

10.9 Exercise 2.5 at the point (W, D) = (100, 100) m.

10.10 Exercise 2.9 at the point (r, h) = (6, 16) cm.

10.11 Exercise 2.10 at the point (b, h) = (5, 10) m.

10.12 Exercise 2.11 at the point, width = 5m, depth = 5m, and height = 5m.

10.13 Exercise 2.12 at the point D = 4m and H = 8m.

10.14 Exercise 2.13 at the point w = 10m, d = 10m, h = 4m.

10.15 Exercise 2.14 at the point P1 = 2 and P2 = 1.

Section 10.3 Sequential Linear Programming Algorithm

Complete one iteration of the sequential linear programming algorithm for the following
problems (try 50 percent move limits and adjust them if necessary).

10.16 Beam design problem formulated in Section 3.8 at the point (b, d) = (250, 300) mm.
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10.17 Tubular column design problem formulated in Section 2.7 at the point (R, t) = (12,
4) cm. Let P = 50kN, E = 210GPa, l = 500cm, sa = 250MPa, and s = 7850kg/m3.

10.18 Wall bracket problem formulated in Section 4.7.1 at the point (A1, A2) = (150, 
150)cm2.

10.19 Exercise 2.1 at the point h = 12m, A = 4000m2.

10.20 Exercise 2.3 at the point (R, H) = (6, 15) cm.

10.21 Exercise 2.4 at the point R = 2cm, N = 100.

10.22 Exercise 2.5 at the point (W, D) = (100, 100) m.

10.23 Exercise 2.9 at the point (r, h) = (6, 16) cm.

10.24 Exercise 2.10 at the point (b, h) = (5, 10) m.

10.25 Exercise 2.11 at the point, width = 5m, depth = 5m, and height = 5m.

10.26 Exercise 2.12 at the point D = 4m and H = 8m.

10.27 Exercise 2.13 at the point w = 10m, d = 10m, h = 4m.

10.28 Exercise 2.14 at the point P1 = 2 and P2 = 1.

Section 10.4 Quadratic Programming Subproblem

Solve the following QP problems using KKT optimality conditions.

10.29 Minimize f(x) = (x1 - 3)2 + (x2 - 3)2

subject to x1 + x2 £ 5
x1, x2 ≥ 0

10.30 Minimize f(x) = (x1 - 1)2 + (x2 - 1)2

subject to x1 + 2x2 £ 6
x1, x2 ≥ 0

10.31 Minimize f(x) = (x1 - 1)2 + (x2 - 1)2

subject to x1 + 2x2 £ 2
x1, x2 ≥ 0

10.32 Minimize f(x) = x2
1 + x2

2 - x1x2 - 3x1

subject to x1 + x2 £ 3
x1, x2 ≥ 0

10.33 Minimize f(x) = (x1 - 1)2 + (x2 - 1)2 - 2x2 + 2

subject to x1 + x2 £ 4
x1, x2 ≥ 0

10.34 Minimize f(x) = 4x2
1 + 3x2

2 - 5x1x2 - 8x1

subject to x1 + x2 = 4
x1, x2 ≥ 0

10.35 Minimize f(x) = x2
1 + x2

2 - 2x1 - 2x2

subject to x1 + x2 - 4 = 0
x1 - x2 - 2 = 0
x1, x2 ≥ 0
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10.36 Minimize f(x) = 4x2
1 + 3x2

2 - 5x1x2 - 8x1

subject to x1 + x2 £ 4
x1, x2 ≥ 0

10.37 Minimize f(x) = x2
1 + x2

2 - 4x1 - 2x2

subject to x1 + x2 ≥ 4
x1, x2 ≥ 0

10.38 Minimize f(x) = 2x2
1 + 6x1x2 + 9x2

2 - 18x1 + 9x2

subject to x1 - 2x2 £ 10
4x1 - 3x2 £ 20
x1, x2 ≥ 0

10.39 Minimize f(x) = x2
1 + x2

2 - 2x1 - 2x2

subject to x1 + x2 - 4 £ 0
2 - x1 £ 0
x1, x2 ≥ 0

10.40 Minimize f(x) = 2x2
1 + 2x2

2 + x2
3 + 2x1x2 - x1x3 - 0.8x2x3

subject to 1.3x1 + 1.2x2 + 1.1x3 ≥ 1.15
x1 + x2 + x3 = 1
x1 £ 0.7
x2 £ 0.7
x3 £ 0.7
x1, x2, x3 ≥ 0

For the following problems, obtain the quadratic programming subproblem, plot it on a
graph, obtain the search direction for the subproblem, and show the search direction on the
graphical representation of the original problem.

10.41 Beam design problem formulated in Section 3.8 at the point (b, d) = (250, 300) mm.

10.42 Tubular column design problem formulated in Section 2.7 at the point (R, t) = (12,
4) cm. Let P = 50kN, E = 210GPa, l = 500cm, sa = 250MPa, and r = 7850kg/m3.

10.43 Wall bracket problem formulated in Section 4.7.1 at the point (A1, A2) = (150, 
150)cm2.

10.44. Exercise 2.1 at the point h = 12m, A = 4000m2.

10.45 Exercise 2.3 at the point (R, H) = (6, 15) cm.

10.46 Exercise 2.4 at the point R = 2cm, N = 100.

10.47 Exercise 2.5 at the point (W, D) = (100, 100) m.

10.48 Exercise 2.9 at the point (r, h) = (6, 16) cm.

10.49 Exercise 2.10 at the point (b, h) = (5, 10) m.

10.50 Exercise 2.11 at the point, width = 5m, depth = 5m, and height = 5m.

10.51 Exercise 2.12 at the point D = 4m and H = 8m.

10.52 Exercise 2.13 at the point w = 10m, d = 10m, h = 4m.

10.53 Exercise 2.14 at the point P1 = 2 and P2 = 1.
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Section 10.5 Constrained Steepest Descent Method

10.54 Answer True or False.

1. The constrained steepest descent (CSD) method, when there are active
constraints, is based on using the cost function gradient as the search direction.

2. The constrained steepest descent method solves two subproblems: the search
direction and step size determination.

3. The cost function is used as the descent function in the CSD method.
4. The QP subproblem in the CSD method is strictly convex.
5. The search direction, if one exists, is unique for the QP subproblem in the CSD

method.
6. Constraint violations play no role in step size determination in the CSD

method.
7. Lagrange multipliers of the subproblem play a role in step size determination in

the CSD method.
8. Constraints must be evaluated during line search in the CSD method.

For the following problems, complete one iteration of the constrained steepest descent
method for the given starting point (let R0 = 1, and determine an approximate step size using
the golden section method).

10.55 Beam design problem formulated in Section 3.8 at the point (b, d) = (250, 300) mm.

10.56 Tubular column design problem formulated in Section 2.7 at the point (R, t) = (12,
4) cm. Let P = 50kN, E = 210GPa, l = 500cm, sa = 250MPa, and r = 7850kg/m3.

10.57 Wall bracket problem formulated in Section 4.7.1 at the point (A1, A2) = (150, 
150)cm2.

10.58 Exercise 2.1 at the point h = 12m, A = 4000m2.

10.59 Exercise 2.3 at the point (R, H) = (6, 15) cm.

10.60 Exercise 2.4 at the point R = 2cm, N = 100.

10.61 Exercise 2.5 at the point (W, D) = (100, 100) m.

10.62 Exercise 2.9 at the point (r, h) = (6, 16) cm.

10.63 Exercise 2.10 at the point (b, h) = (5, 10) m.

10.64 Exercise 2.11 at the point, width = 5m, depth = 5m, and height = 5m.

10.65 Exercise 2.12 at the point D = 4m and H = 8m.

10.66 Exercise 2.13 at the point w = 10m, d = 10m, h = 4m.

10.67 Exercise 2.14 at the point P1 = 2 and P2 = 1.

Section 10.6 Engineering Design Optimization Using Excel Solver
Formulate and solve the following problems using Excel Solver or another software.

10.68* Exercise 3.34 10.69* Exercise 3.35 10.70* Exercise 3.36

10.71* Exercise 3.50 10.72* Exercise 3.51 10.73* Exercise 3.52

10.74* Exercise 3.53 10.75* Exercise 3.54
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11 More on Numerical Methods for
Constrained Optimum Design

379

Upon completion of this chapter, you will be able to:

• Use potential constraint strategy in numerical optimization algorithms for
constrained problems

• Determine whether a software for nonlinear constrained optimization problems
uses potential constraint strategy that is appropriate for most engineering
applications

• Use approximate step size that is more efficient for constrained optimization
methods

• Use quasi-Newton methods to solve constrained nonlinear optimization problems

• Explain basic ideas behind methods of feasible direction, gradient projection, and
generalized reduced gradient

In Chapter 10, basic concepts and steps related to constrained optimization methods were
presented and illustrated. In this chapter, we build upon those basic ideas and describe some
concepts and methods that are more appropriate for practical applications. Topics such as
inaccurate line search, constrained quasi-Newton methods, and potential constraint strategy
to define the quadratic programming subproblem are discussed and illustrated. These topics
usually should not be covered in an undergraduate course on optimum design or on first inde-
pendent reading of the text. 

For convenience of reference, the general constrained optimization problem treated in the
previous chapter is restated as: find x = (x1, . . . , xn), a design variable vector of dimension
n, to minimize a cost function f = f(x) subject to equality constraints hi(x) = 0, i = 1 to p and
inequality constraints gi(x) £ 0, i = 1 to m.

11.1 Potential Constraint Strategy
To evaluate the search direction in numerical methods for constrained optimization, one needs
to know the cost and constraint functions and their gradients. The numerical algorithms for
constrained optimization can be classified based on whether gradients of all the constraints



or only a subset of them are required to define the search direction determination subprob-
lem. The numerical algorithms that use gradients of only a subset of the constraints in the
definition of this subproblem are said to use potential constraint strategy. To implement this
strategy, a potential constraint index set needs to be defined, which is composed of active, e-
active, and violated constraints at the current iteration. At the kth iteration, we define a poten-
tial constraint index set Ik as follows:

(11.1)

Note that the set Ik contains a list of constraints that satisfy the criteria given in Eq. (11.1);
all the equality constraints are always included in Ik by definition. The main effect of using
this strategy in an algorithm is on the efficiency of the entire iterative process. This is par-
ticularly true for large and complex applications where the evaluation of gradients of con-
straints is expensive. With the potential set strategy, gradients of only the constraints in the
set Ik are calculated and used in defining the search direction determination subproblem. The
original problem may have hundreds of constraints, but only a few may be in the potential
set. Thus with this strategy, not only the number of gradient evaluations is reduced but also
the dimension of the subproblem for the search direction is substantially reduced. This can
result in additional saving in the computational effort. Therefore, the potential set strategy is
beneficial and should be used in practical applications of optimization. Before using soft-
ware to solve a problem, the designer should inquire whether the program uses the potential
constraint strategy. Example 11.1 illustrates determination of a potential constraint set for an
optimization problem.

I j j p i g i mk i
k= ={ } ( ) + ≥ ={ }[ ]( )1 0 1 to  for equalities  and  to x e ,

380 INTRODUCTION TO OPTIMUM DESIGN

EXAMPLE 11.1 Determination of Potential Constraint Set

Consider the following six constraints:

Let x(k) = (-4.5, -4.5) and e = 0.1. Form the potential constraint index set Ik of Eq.
(11.1).

Solution. After normalization and conversion to the standard form, the constraints
are given as

(a)

(b)

(c)

Since the second constraint does not have a constant in its expression, the constraint
is divided by 100 to get a percent value of the constraint. Evaluating the constraints
at the given point (-4.5, -4.5), we obtain

g x g x5 1 6 1
1

10
1 0 0= - £ = - £,

g x g x3 2 4 2
1

10
1 0

1

2
1 0= - £ = - - £,

g x x g x x1 1
2

2 2 1 2
1

18

1

36
1 0

1

100
60 0= + - £ = - +( ) £,

2 36 60 10 2 0 10 01
2

2 1 2 2 2 1 1x x x x x x x x+ £ ≥ £ + ≥ £ ≥; ; ; ; ;



It is important to note that a numerical algorithm using the potential constraint strategy
must be proved to be convergent. The potential set strategy has been incorporated into the
CSD algorithm of Chapter 10; that algorithm has been proved to be convergent to a local
minimum point starting from any point. Note that the elements of the index set depend on
the value of e used in Eq. (11.1). Also the search direction with different index sets can be
different, giving a different path to the optimum point. Example 11.2 calculates the search
directions with and without the potential set strategy and shows that they are different.
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(d)

(e)

(f)

(g)

(h)

(i)

Therefore, we see that g1 is active (also e - active); g4 and g6 are violated; and g2, g3,
and g5 are inactive. Thus, Ik = {1, 4, 6}.

g6 4 5 4 5 0= - -( ) = > ( ). .  violated

g5
1

10
4 5 1 0 1 45 0= -( ) - = - < ( ). . .  inactive

g4
1

2
4 5 1 0 1 25 0= - -( ) - = > ( ). . .  violated

g3
4 5

10
1 0 1 45 0=

-
- = - < ( ).

. .  inactive

g2
1

100
4 5 60 4 5 2 655 0= - -( ) + -( )[ ] = - < ( ). . .  inactive

g1
21

18
4 5

1

36
4 5 1 0 0= -( ) + -( ) - = ( ). . . active

EXAMPLE 11.2 Search Direction with and without Potential
Constraint Strategy

Consider the design optimization problem: 

(a)

subject to the constraints

(b)

At the point (4, 4) calculate the search directions with and without the potential set
strategy. Use e = 0.1.

Solution. Writing constraints in the standard normalized form, we get

(c)

At the point (4, 4), functions and their gradients are calculated as

g x x g x x g x g x1 1 2 2 1 2 3 1 4 2
1

3
1 0

1

12
2 1 0 0 0= -( ) - £ = +( ) - £ = - £ = - £,

x x x x x x1 2 1 2 1 23 2 12 0- £ + £ ≥, , , and  

minimize f x x x x x xx( ) = - + - -1
2

1 2 2
2

1 23 4 5 10 6.
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(d)

(e)

(f)

(g)

(h)

When the potential constraint strategy is not used, the QP subproblem of Eqs.
(10.25) and (10.26) is defined as

minimize

(i)

subject to

(j)

Solution of the problem using the KKT necessary conditions of Theorem 4.6 is
given as d = (-0.5, -3.5), u = (43.5, 0, 0, 0). If we use the potential constraint strat-
egy, the index set Ik is defined as Ik = {2}, that is only the second constraint needs to
be considered in defining the QP subproblem. With this strategy, the QP subproblem
is defined as

minimize 

(k)

subject to

(l)

Solution of this problem using the KKT necessary conditions is given as d = (14,
-18), u = 0. Thus it is seen that the search directions determined by the two sub-
problems are quite different. The path to the optimum solution and the computational
effort will also be quite different.

1

12

1

6
01 2d d+ £

f d d d d= - + + +( )14 181 2
1
2 1

2
2
2

1

3

1

3
1

12

1

6
1 0

0 1

1

0

4

4

1

2

-

-
-

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

È
ÎÍ

˘
˚̇

£

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 

 

 

d

d

f d d d d= - + + +( )14 18
1

2
1 2 1

2
2
2

g g4
4

44 4 4 0 0 1, , ,( ) = - < ( ) = — = -( )( ) inactive a

g g3
3

34 4 4 0 1 0, , ,( ) = - < ( ) = — = -( )( ) inactive a

g g2
2

24 4 0
1

12

1

6
, , ,( ) = ( ) = — = Ê

Ë
ˆ
¯

( ) active a

g g1
1

14 4 1 0
1

3

1

3
, , ,( ) = - < ( ) = — = -Ê

Ë
ˆ
¯

( ) inactive a

f f x x x x4 4 24 2 3 10 3 9 6 14 181 2 1 2, , , ,( ) = - = — = - - - + -( ) = -( )c



11.2 Quadratic Programming Problem
A quadratic programming (QP) problem has a quadratic cost function and linear constraints.
Such problems are encountered in many real-world applications. In addition, many general
nonlinear programming algorithms require solution of a quadratic programming subproblem
at each iteration. As seen in Eqs. (10.25) and (10.26), the QP subproblem is obtained when
a nonlinear problem is linearized and a quadratic step size constraint is imposed. It is impor-
tant to solve the QP subproblem efficiently so that large-scale problems can be treated. Thus,
it is not surprising that substantial research effort has been expended in developing and eval-
uating many algorithms for solving QP problems (Gill et al., 1981; Luenberger, 1984). Also,
several commercially available software packages are available for solving QP problems,
e.g., MATLAB, QPSOL (Gill et al., 1984), VE06A (Hopper, 1981), and E04NAF (NAG,
1984). Some of the available LP codes also have an option to solve QP problems (Schrage,
1981).

To give a flavor of the calculations needed to solve QP problems, we shall describe a
method that is a simple extension of the Simplex method. Many other methods are available
that can be considered as variations of that procedure in numerical implementation details.

11.2.1 Definition of QP Problem
Let us define a general QP problem as follows:

(11.2)

subject to linear equality and inequality constraints

(11.3)

(11.4)

and nonnegativity of the variables

(11.5)

where c = n dimensional constant vector

x = n dimensional vector of unknowns
b = m dimensional constant vector
e = p dimensional constant vector
H = n ¥ n constant Hessian matrix
A = n ¥ m constant matrix
N = n ¥ p constant matrix

Note that all the linear inequality constraints are expressed in the “£ form.” This is needed
because we shall use KKT necessary conditions of Section 4.4, which require this form. Note
also that if the matrix H is positive semidefinite, the QP problem is convex, so any solution
(if one exists) represents a global minimum point (which need not be unique). Further, if the
matrix H is positive definite, the problem is strictly convex. Therefore, the problem has a
unique global solution (if one exists). We shall assume that the matrix H is at least positive
semidefinite. This is not an unreasonable assumption in practice as many applications satisfy
it. For example, in the QP subproblem of Eqs. (10.25) and (10.26), H = I (an identity matrix),

x 0≥

A x bT £

N x eT =

minimize q T Tx c x x Hx( ) = +
1

2
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so the Hessian is actually positive definite. Note also that the variables x are required to be
nonnegative in Eq. (11.5). Variables that are free in sign can be easily treated by the method
described in Section 6.1.

11.2.2 KKT Necessary Conditions for the QP Problem
A procedure for solving the QP problem of Eqs. (11.2) to (11.5) is to first write the KKT
necessary conditions of Section 4.4, and then to transform them into a form that can be 
treated by Phase I of the Simplex method of Section 6.4. To write the necessary 
conditions, we introduce slack variables s for Inequalities (11.4) and transform them to 
equalities as

(11.6)

Or, the slack variable for the jth inequality in Eq. (11.4) can be expressed using Eq. (11.6)
as

(11.7)

Note the nonnegativity constraints of Eq. (11.5) (when expressed in the standard form 
-x £ 0) do not need slack variables because xi ≥ 0 itself is a slack variable. Let us now define
the Lagrange function of Eq. (4.46a) for the QP problem as

where u, v, and x are the Lagrange multiplier vectors for the inequality constraints of Eq.
(11.4) or (11.7), equality constraints of Eq. (11.3), and the nonnegativity constraints (-x £
0), respectively. The KKT necessary conditions give

(11.8)

(11.9)

(11.10)

(11.11)

(11.12)

(11.13)

These conditions need to be solved for x, u, v, s, and x.

11.2.3 Transformation of KKT Conditions
Before discussing the method for solution of KKT conditions, we shall transform them into
a more compact form in this subsection. Since the Lagrange multipliers v for the equality
constraints are free in sign, we may decompose them as

(11.14)v y z y z 0= - ≥ with ,

s u i m i ni i i, ;≥ = ≥ =0 0 0 1 for  to  for  to x

xi ix i n= =0 1;  to 

u s i mi i = =0 1;  to 

N x e 0T - =

A x s b 0T + - =

∂
∂

= + + - + =
L

x
c Hx Au Nv 0x

L T T T T T T T= + + + -( ) - + -( )c x x Hx u A x s b x v N x e0 5. x

s b a xj j ij i
i

n
T= - = -( )

=
Â

1

s b A x

A x s b s 0T + = ≥; with
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Now, writing Eqs. (11.8), (11.9), and (11.10) into a matrix form, we get

(11.15)

where I(n) and I(m) are n ¥ n and m ¥ m identity matrices respectively, and 0 are zero matri-
ces of the indicated order. In a compact matrix notation, Eq. (11.15) becomes

(11.16)

where matrix B and vectors X and D are identified from Eq. (11.15) as

(11.17)

(11.18)

The KKT conditions are now reduced to finding X as a solution of the linear system in
Eq. (11.16) subject to the constraints of Eqs. (11.11) to (11.13). In the new variables Xi the
complementary slackness conditions of Eqs. (11.11) and (11.12), reduce to

(11.19)

and the nonnegativity conditions of Eq. (11.13) reduce to

(11.20)

11.2.4 Simplex Method for Solving QP Problem
A solution of the linear system in Eq. (11.16) that satisfies the complementary slackness of
Eq. (11.19) and nonnegativity condition of Eq. (11.20) is a solution of the original QP
problem. Note that the complementary slackness condition of Eq. (11.19) is nonlinear in the
variables Xi. Therefore, it may appear that the Simplex method for LP cannot be used to solve
Eq. (11.16). However, a procedure developed by Wolfe (1959) and refined by Hadley (1964)
can be used to solve the problem. The procedure converges to a solution in the finite number
of steps provided the matrix H in Eq. (11.2) is positive definite. It can be further shown
(Kunzi and Krelle, 1966, p. 123) that the method converges even when H is positive semi-
definite provided the vector c in Eq. (11.2) is zero.

X i n m pi ≥ = + +( )0 1 2 2;  to 2

X X i n mi n m i+ + = = +( )0 1;  to 

X

x

u

s

y

z

D

c

b

e

=

È
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Í
Í
Í
Í
Í
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˘

˚

˙
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B

H A I 0 N N

A 0 0 I 0 0
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The method is based on Phase I of the Simplex procedure of Chapter 6 where we intro-
duced an artificial variable for each equality constraint, defined an artificial cost function,
and used it to determine an initial basic feasible solution. Following that procedure we intro-
duce an artificial variable Yi for each of the Eq. (11.16) as

(11.21)

where Y is an (n + m + p) dimensional vector. This way, we initially choose all Xi as non-
basic and Yj as basic variables. Note that all elements in D must be nonnegative for the initial
basic solution to be feasible. If any of the elements in D are negative, the corresponding equa-
tion in Eq. (11.16) must be multiplied by -1 to have a nonnegative element on the right side.
The artificial cost function for the problem is defined as

(11.22)

To use the Simplex procedure, we need to express the artificial cost function w in terms
of nonbasic variables only. We eliminate basic variables Yi from Eq. (11.22) by substituting
Eq. (11.21) into it as

(11.23)

(11.24)

Thus w0 is the initial value of the artificial cost function and Cj is the initial relative cost
coefficient obtained by adding the elements of the jth column of the matrix B and changing
its sign. Before we can use Phase I of the Simplex method, we need to develop a procedure
to impose the complementary slackness condition of Eq. (11.19). The condition is satisfied
if both Xi and Xn+m+i are not simultaneously basic. Or, if they are, then one of them has zero
value (degenerate basic feasible solution). These conditions can easily be checked while
determining the pivot element in the Simplex method.

It is useful to note here that a slightly different procedure to solve the KKT necessary 
conditions for the QP problem has been developed by Lemke (1965). It is known as the 
complementary pivot method. Numerical experiments have shown that method to be 
computationally more attractive than many other methods for solving QP problems when
matrix H is positive semidefinite (Ravindran and Lee, 1981). Example 11.3 illustrates use of
the Simplex method to solve a QP problem.

C B w Dj ij
i

n m p

i
i

n m p

= - =
=

+ +

=

+ +

Â Â
1

0
1

and

w D B X w C Xi
i

n m p

j

n m p

ij j
i

n m p

j

n m p

j j= - = +
=

+ +

=

+ +( )

=

+ +

=

+ +( )

Â Â Â Â
1 1

2

1
0

1

2

w Yi
i

n m p

=
=

+ +

Â
1

BX Y D+ =
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EXAMPLE 11.3 Solution of QP Problem

(a)

subject to

(b)x x x x x x1 2 1 2 1 24 3 1 0+ £ - = ≥, , ,

Minimize f x xx( ) = -( ) + -( )1
2

2
2

3 3
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Solution. The cost function for the problem can be expanded as f(x) = x1
2 - 6x1 + x2

2

- 6x2 + 18. We shall ignore the constant 18 in the cost function and minimize the fol-
lowing quadratic function expressed in the form of Eq. (11.2):

(c)

From the foregoing equations, the following quantities can be identified:

(d)

Using these quantities, matrix B and vectors D and X of Eqs. (11.17) and (11.18) are
identified as

(e)

Table 11-1 shows the initial Simplex tableau as well as the four iterations to reach the
optimum solution. Note that the relative cost coefficient Cj in the initial tableau is
obtained by adding all the elements in the jth column and changing the sign of the
sum. Also, the complementary slackness condition of Eq. (11.19) requires X1X4 = 0,
X2X5 = 0, X3X6 = 0 implying that X1 and X4, X2 and X5, and X3 and X6 cannot be basic
variables simultaneously. We impose these conditions while determining the pivots in
Phase I of the Simplex procedure. After four iterations of the Simplex method, all the
artificial variables are nonbasic and the artificial cost function is zero. Therefore, the
optimum solution is given as

(e)

Using these values, the optimum solution for the original QP problem is recovered as

(f)

It can be verified that the solution satisfies all the KKT conditions for the problem.
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11.3 Approximate Step Size Determination
11.3.1 The Basic Idea
In Chapter 10, the constrained steepest descent (CSD) algorithm was presented. There it was
proposed to calculate the step size using the golden section method. Although that method
is quite good among the interval reducing methods, it may be inappropriate for many engi-
neering applications. The method can require too many function evaluations, which for many
engineering problems require solution of a complex analysis problem. Therefore in most prac-
tical implementations of algorithms, an inaccurate line search that has worked fairly well is
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Table 11-1 Simplex Solution Procedure for QP Problem of Example 11.2

X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 D

Initial

Y1 2 0 1 -1 0 0 1 -1 1 0 0 0 6
Y2 0 2 1 0 -1 0 -3 3 0 1 0 0 6
Y3 1 1 0 0 0 1 0 0 0 0 1 0 4
Y4 1 -3 0 0 0 0 0 0 0 0 0 1 1

-4 0 -2 1 1 -1 2 -2 0 0 0 0 w - 17

First iteration

Y1 0 6 1 -1 0 0 1 -1 1 0 0 -2 4
Y2 0 2 1 0 -1 0 -3 3 0 1 0 0 6
Y3 0 4 0 0 0 1 0 0 0 0 1 -1 3
X1 1 -3 0 0 0 0 0 0 0 0 0 1 1

0 -12 -2 1 1 -1 2 -2 0 0 0 4 w - 13

Second iteration

X2 0 1 1–6 - 1–6 0 0 1–6 - 1–6
1–6 0 0 - 1–3

2–3
Y2 0 0 2–3

1–3 -1 0 -10–3
10–3 - 1–3 1 0 2–3

14–3
Y3 0 0 - 2–3

2–3 0 1 - 2–3
2–3 - 2–3 0 1 1–3

1–3
X1 1 0 1–2 - 1–2 0 0 1–2 - 1–2

1–2 0 0 0 3

0 0 0 -1 1 -1 4 -4 2 0 0 0 w - 5

Third iteration

X2 0 1 0 0 0 1–4 0 0 0 0 1–4 - 1–4
3–4

Y2 0 0 4 -3 -1 -5 0 0 3 1 -5 -1 3
X8 0 0 -1 1 0 3–2 -1 1 -1 0 3–2

1–2
1–2

X1 1 0 0 0 0 3–4 0 0 0 0 3–4
1–4

7–4

0 0 -4 3 1 5 0 0 -2 0 6 2 w - 3

Fourth iteration

X2 0 1 0 0 0 1–4 0 0 0 0 1–4 -1–4
3–4

X3 0 0 1 - 3–4 - 1–4 - 5–4 0 0 3–4
1–4 - 5–4 -1–4

3–4
X8 0 0 0 1–4 - 1–4

1–4 -1 1 - 1–4
1–4

1–4
1–4

5–4
X1 1 0 0 0 0 3–4 0 0 0 0 3–4

1–4
13–4

0 0 0 0 0 0 0 1 1 1 1 w - 0



used to determine an approximate step size. We shall describe the procedure and illustrate
its use in an example.

The philosophy of the inaccurate line search that we shall present is quite similar to the
Armijo’s procedure that was presented for unconstrained problems in Chapter 9. There the
cost function was used to determine the approximate step size; here the descent function F(k)

= f (k) + RV (k) defined in Eq. (10.28) will be used. The basic idea of the approach is to try 
different step sizes until the condition of sufficient reduction in the descent function is satis-
fied. To determine an acceptable step size, define a sequence of trial step sizes tj as follows:

(11.25)

Thus an acceptable step size will be one of the numbers in the sequence {1, 1–2, 
1–4, 

1–8, 
1–16, . . .}

of trial step sizes. Basically, we start with the trial step size as t0 = 1. If a certain descent con-
dition (defined in the following paragraph) is not satisfied, the trial step is taken as half of
the previous trial, i.e., t1 = 1–2. If the descent condition is still not satisfied, the trial step size
is bisected again. The procedure is continued, until the descent condition is satisfied.

11.3.2 Descent Condition
In the following development, we shall use a second subscript or superscript to indicate
values of certain quantities at the trial step sizes. For example, let tj be the trial step size at
the kth iteration. Then the trial design point for which the descent condition is checked is
calculated as

(11.26)

At the kth iteration, we determine an acceptable step size as ak = tj, with j as the smallest
integer (or, largest number in the sequence 1, 1–2, 

1–4, . . .) to satisfy the descent condition

(11.27)

where Fk+1,j is the descent function of Eq. (10.28) evaluated at the trial step size tj and the
corresponding design point x(k+1, j) as

(11.28)

with fk+1, j = f(x(k+1, j)) and Vk+1, j ≥ 0 as the maximum constraint violation at the trial design
point calculated using Eq. (10.32). Note that in evaluating Fk+1, j and Fk in Eq. (11.27), the
most recent value of the penalty parameter R is used. The constant bk in Eq. (11.27) is deter-
mined using the search direction d(k) as

(11.29)

where g is a specified constant between 0 and 1. We shall later study the effect of g on the
step size determination process. Note that in the kth iteration bk defined in Eq. (11.29) is a
constant. As a matter of fact tj is the only variable on the right side of Inequality (11.27).
However, when tj is changed, the design point is changed, affecting the cost and constraint
function values. This way the descent function value on the left side of Inequality (11.27) is
changed.

Inequality (11.27) is called the descent condition. It is an important condition that must
be satisfied at each iteration to obtain a convergent algorithm. To understand the meaning of
condition (11.27), consider Fig. 11-1, where various quantities are plotted as functions of t.
For example, the horizontal line A–B represents the constant Fk, which is the value of the

b gk
k= ( )d

2

F Fk j
k j

k j k jf RV+
+( )

+ += ( ) = +1
1

1 1,
,

, ,x

F Fk j k j kt+ £ -1, b

x x dk j k
j

kt+( ) ( ) ( )= +1,

t jj

j

= Ê
Ë

ˆ
¯ =

1

2
0 1 2 3 4; , , , , , . . .
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descent function at the current design point x(k); line A–C represents the function whose origin
has been moved to point A; and the curve AHGD represents the descent function F plotted
as a function of the parameter t and originating from point A. The line A–C and the curve
AHGD intersect at point J which corresponds to the point t = on the t-axis. For the descent
condition of Inequality (11.27) to be satisfied, the curve AHGD must be below the line A–C.
This gives only the portion AHJ of the curve AHGD. Thus, we see from the figure that a step
size larger than does not satisfy the descent condition of Inequality (11.27). To verify this,
consider points D and E on the line t0 = 1. Point D represents Fk+1,0 = F(x(k+1,0)) and point E
represents (Fk - t0bk). Thus point D represents the left side (LS) and point E represents the
right side (RS) of the Inequality (11.27). Since point D is higher than point E, Inequality
(11.27) is violated. Similarly, points G and F on the line t1 = 1–2 violate the descent condition.
Points I and H on the line t2 = 1–4 satisfy the descent condition, so the step size ak at the kth
iteration is taken as 1–4 for the example of Fig. 11-1.

It is important to understand the effect of g on step size determination. g is selected as a
positive number between 0 and 1. Let us select g1 and g2 > 0 with g2 > g1. Larger g gives 
a larger value for the constant bk in Eq. (11.29). Since bk is the slope of the line tbk, we 
designate line A–C as g = g1 and A–C¢ as g = g2 in Fig. 11-2. Thus, we observe from the figure
that a larger g tends to reduce the step size in order to satisfy the descent condition of Inequal-

t

t
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F

F(t ) = F(x(k) + td(k))

Fk
A

I

B

C

D

G

E

t0bk

0 t2 = 1/4 t1 = 1/2 t0 = 1
t  

t

H J F

-

FIGURE 11-1 Geometrical interpretation of the descent condition for determination of step size
in the constrained steepest descent algorithm.

F

g = g1

g = g2

F(t ) = F (x(k) + td(k))

Fk

A
B

C

C¢

D

G

0 t2 = 1/4 t1 = 1/2 t0 = 1
t 

t-

FIGURE 11-2 Effect of parameter g on step size determination.
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EXAMPLE 11.4 Calculations for Step Size in Constrained
Steepest Descent Method

An engineering design problem is formulated as

(a)

subject to the constraints

(b)

(c)

At a design point x(0) = (40, 0.5), the search direction is given as d(0) = (25.6, 0.45).
The Lagrange multiplier vector for the constraint is given as u = [4880 19,400 0 0]T.
Choose g = 0.5 and calculate the step size for design change using the inexact line
search procedure.

Solution. Since the Lagrange multipliers for the constraints are given, the initial
value of the penalty perimeter is calculated as

(d)

It is important to note that same value of R is to be used on both sides of the descent
condition in Eq. (11.27) or Eq. (11.30). The constant b0 of Eq. (11.29) is calculated
as

(e)

Calculation of F0 . The cost and constraint functions at the starting point x(0) =
(40, 0.5) are calculated as

(f)

g4 40 0 5 0 5 0, . .( ) = - < ( ) inactive

g3 40 0 5 40 0, .( ) = - < ( ) inactive

g2 40 0 5 1
40 40 0 5

3600
0 5611, .

.
.( ) = -

-( )
= ( ) violation

g1 40 0 5
40

60 0 5
1 0 333, .

.
.( ) = ( ) - = ( ) violation

f f0
240 0 5 40 320 40 0 5 8800= ( ) = + ( )( ) =, . .

b0
2 20 5 25 6 0 45 328= +( ) =. . .

R ui
i

= = + =
=
Â

1

4

4880 19 400 24 280, ,

g x g x3 1 4 20 0x x( ) = - £ ( ) = - £,

g
x

x
g

x x x
1

1

2
2

1 1 2

60
1 0 1

3600
0x x( ) = - £ ( ) = -

-( )
£,

minimize f x x xx( ) = +1
2

1 2320

ity (11.27). For the purpose of checking the descent condition in actual calculations, it may
be more convenient to write the inequality of Eq. (11.27) as

(11.30)

We illustrate the procedure for calculating step size in Example 11.4.

F Fk j j k kt j+ + £ =1 0 1 2, ; , , . . .b
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Maximum constraint violation using Eq. (10.32) is given as

(g)

Using Eq. (10.28), the current descent function is evaluated as

(h)

Trial step size t0 = 1. Let j = 0 in Eq. (11.25), so the trial step size is t0 = 1. The
trial design point is calculated from Eq. (11.26) as

(i)

The cost and constraint functions at the trial design point are calculated as

(j)

(k)

The maximum constraint violation using Eq. (10.32) is given as

(l)

The descent function at the first trial point is calculated using Eq. (11.28) as

(m)

For the descent condition of Eq. (11.30), we get LS = 27,912 + 328 = 28,240 and RS
= 21,624. Since LS > RS, Inequality (11.30) is violated.

Trial step size t1 = 0.5. Let j = 1 in Eq. (11.25), so the trial step size t1 = 0.5. The
new trial design point is

(n)

The cost and constraint functions at the new trial design point are calculated as

(o)
f f

g

1 1
2

1

52 8 0 725 52 8 320 52 8 0 725 15 037

52 8 0 725
52 8

60 0 725
1 0 2138 0

, . , . . . . ,

. , .
.
.

.

= ( ) = ( ) + ( )( ) =

( ) = ( ) - = > ( ) violation

x x t d

x x t d

1
1 1

1
0

1 1
0

2
1 1

2
0

1 2
0

40 0 5 25 6 52 8

0 5 0 5 0 45 0 725

,

,

. . .

. . . .

( ) ( ) ( )

( ) ( ) ( )

= + = + ( ) =
= + = + ( ) =

F1 0 1 0 1 0 24 246 24 480 0 151 27 912, , , , , . ,= + = + ( ) =f RV

V1 0 0 0 151 0 1781 65 6 0 95 0 151, max ; . , . , . , . .= - - -{ } =

g

g

g

2

3

4

65 6 0 95 1
65 6 65 6 0 95

3600
0 1781 0

65 6 0 95 65 6 0

65 6 0 95 0 95 0
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. , . .

. , . .

( ) = -
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= - < ( )

( ) = - < ( )
( ) = - < ( )

 inactive

 inactive

 inactive

f f

g

1 0
2

1

65 6 0 95 65 6 320 65 6 0 95 24 246

65 6 0 95
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60 0 95
1 0 151 0
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. , .
.
.

.
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x x t d

x x t d

1
1 0

1
0

0 1
0

2
1 0

2
0

0 2
0

40 1 0 25 6 65 6
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,

,

. . .
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( ) ( ) ( )

( ) ( ) ( )

= + = + ( )( ) =
= + = + ( )( ) =

F0 0 0 8000 24 280 0 5611 21 624= + = + ( )( ) =f RV , . ,

V0 0 0 333 0 5611 40 0 5 0 5611= - -{ } =max ; . , . , , . .
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(p)

Maximum constraint violation using Eq. (10.32) is given as

(q)

The descent function at the trial design point is calculated using Eq. (10.27) as

(r)

Evaluating the descent condition of Eq. (11.30), we get the left side as LS = 20,772
+ (0.5)(328) = 20,936, and the right side as RS = 21,624. Since LS < RS, Inequality
(11.30) is satisfied. Therefore the step size of 0.5 is acceptable.

F1 1 1 1 1 1 15 037 24 280 0 2362 20 772, , , , , . ,= + = + ( ) =f RV

V1 1 0 0 2138 0 2362 52 8 0 725 0 2362, max ; . , . , . , . .= - -{ } =

g

g

g

2

3

4

52 8 0 725 1
52 8 52 8 0 725

3600
0 2362 0

52 8 0 725 52 8 0

52 8 0 725 0 725 0

. , .
. . .

.

. , . .

. , . .

( ) = -
-( )

= > ( )

( ) = - < ( )
( ) = - < ( )

 violation

 inactive

 inactive

11.3.3 CSD Algorithm with Approximate Step Size
Example 11.5 illustrates calculation of the approximate step size in the CSD algorithm.

EXAMPLE 11.5 Use of Constrained Steepest 
Descent Algorithm

Consider the problem of Example 10.2: 

(a)

subject to

(b)

Let x(0) = (1, 1) be the starting design. Use R0 = 10, g = 0.5, and e1 = e2 = 0.001 in the
constrained steepest descent method. Perform only two iterations.

Solution. The functions of the problem are plotted in Fig. 10-4. The optimum solu-
tion for the problem is obtained as 

Iteration 1 (k = 0). For the CSD method the following steps are implemented.

Step 1. The initial data are specified as x(0) = (1, 1); R0 = 10; g = 0.5 (0 < g < 1); 
e1 = e2 = 0.001.

Step 2. To form the QP subproblem, the cost and constraint function values and their
gradients must be evaluated at the initial design point x(0):

x u= ( ) = ( ) = -3 3 3 0 0 3, , , , , . f

g x x g x g x1 1
2

2
2

2 1 3 2
1

6

1

6
1 0 0 0 0x x x( ) = + - £ ( ) = - £ ( ) = - £. , ,

minimize f x x x xx( ) = + -1
2

2
2

1 23
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( c )

Note that all constraints are inactive at the starting point so V0 = 0 calculated from
Eq. (10.32) as V0 = max{0; - 2–3, -1, -1}. The linearized constraints are plotted in 
Fig. 10.5.

Step 3. Using the preceding values, the QP subproblem of Eqs. (10.25) and (10.26)
at (1, 1) is given as: minimize = (-d1 - d2) + 0.5(d1

2 + d2
2) subject to 1–3d1 + 1–3 d2 £

2–3, -d1 £ 1, -d2 £1. Note that the QP subproblem is strictly convex and thus has 
a unique solution. A numerical method must generally be used to solve the 
subproblem. However, since the present problem is quite simple, it can be solved
by writing the KKT necessary conditions of Theorem 4.6 as follows:

(d)

(e)

(f)

(g)

where u1, u2, and u3 are the Lagrange multipliers for the three constraints and s1
2, s2

2,
and s2

3 are the corresponding slack variables. Solving the foregoing KKT conditions,
we get the direction vector d(0) = (1, 1) with = -1 and u(0) = (0, 0, 0). This solution
agrees with the graphical solution given in Fig. 10-13. The feasible region for the sub-
problem is the triangle ABC, and the optimum solution is at Point D.

Step 4. Because ||d(0)|| = > e2, the convergence criterion is not satisfied.
Step 5. Calculate r0 = Sm

i=1ui
(0) = 0 as defined in Eq. (10.31). To satisfy the necessary

condition of Inequality (10.30), let R = max {R0, r0} = max {10, 0} = 10. It is
important to note that R = 10 is to be used throughout the first iteration to satisfy
the descent condition of Eq. (11.27) or Eq. (11.30).

Step 6. For step size determination, we use the inaccurate line search described earlier
in this section. The current value of the descent function F0 of Eq. (10.28) and the
constant b0 of Eq. (11.29) are calculated as

(h)

(i)b g0
0 2

0 5 1 1 1= = +( ) =( )d .

F0 0 0 1 10 0 1= + = - + ( )( ) = -f RV

2

f

u s s u ii i i i= ≥ =0 0 1 2 32; , ; , ,and

1

3
2 0

1 0 1 0

1 2 1
2

1 2
2

2 3
2

d d s

d s d s

+ -( ) + =

- -( ) + = - -( ) + =,

∂
∂

= - + + - =

∂
∂

= - + + - =

L

d
d u u

L

d
d u u

1
1 1 2

2
2 1 3

1
1

3
0

1
1

3
0

L d d d d u d d s u d s

u d s

= - -( ) + +( ) + + -( ) +È
ÎÍ

˘
˚̇

+ - - +( )

+ - - +( )

1 2 1
2

2
2

1 1 2 1
2

2 1 2
2

3 2 3
2

0 5
1

3
2 1

1

.

f

f f

g g

g g

g g

1 1 1 1 1 1 1

1 1
2

3
0 1 1

1

3

1

3

1 1 1 0 1 1 1 0

1 1 1 0 1 1

1 1

2 2

3 3

, , , ,

, , ,

, , ,

, ,

( ) = - — ( ) = - -( )

( ) = - < ( ) — ( ) = Ê
Ë

ˆ
¯

( ) = - < ( ) — ( ) = -( )
( ) = - < ( ) — ( ) =

 inactive

 inactive

 inactive 00 1, -( )



More on Numerical Methods for Constrained Optimum Design 395

Let the trial step size be t0 = 1 and evaluate the new value of the descent function to
check the descent condition of Eq. (11.27):

(j)

At the trial design point, evaluate the cost and constraint functions, and then evaluate
the maximum constraint violation to calculate the descent function:

(k)

Since F1,0 > F0 - t0b0, the descent condition of Inequality (11.27) is not satisfied. Let
us try j = 1 (i.e., bisect the step size to t1 = 0.5), and evaluate the new value of the
descent function to check the descent condition of Eq. (11.27). The design is updated
as

(l)

At the new trial design point, evaluate the cost and constraint functions, and then 
evaluate the maximum constraint violation to calculate the descent function:

(m)

Now the descent condition of Inequality (11.27) is satisfied (i.e., F1,1 < F0 - t1b0);
thus a0 = 0.5 is acceptable and x(1) = (1.5, 1.5)

Step 7. Set R0+1 = R0 = 10, k = 1 and go to Step 2.

Iteration 2 (k = 1). For the second iteration, Steps 3 to 7 of the CSD algorithm
are repeated as follows:

Step 3. The QP subproblem of Eqs. (10.25) and (10.26) at x(1) = (1.5, 1.5) is defined
as follows:

(n)

Since all constraints are inactive, the maximum violation V1 = 0 from Eq. (10.32). The
new cost function is given as f1 = -2.25. The solution of the preceding QP subprob-
lem is d(1) = (0.25, 0.25) and u(1) = (2.5, 0, 0).

Step 4. As ||d(1)|| = 0.3535 > e2 the convergence criterion is not satisfied.

minimize 

subject to 0.5  and 
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Step 5. Evaluate r1 = Sm
i=1ui

(1) = 2.5. Therefore, R = max {R1, r1} = max {10, 2.5} = 10.
Step 6. For line search, try j = 0 in Inequality (11.27) (i.e., t0 = 1):

(o)

Let the trial step size be t0 = 1 and evaluate the new value of the descent function to
check the descent condition of Eq. (11.27):

(p)

(q)

Because the descent condition of Inequality (11.27) is satisfied, a1 = 1.0 is acceptable
and x(2) = (1.75, 1.75)

Step 7. Set R2 = R = 10, k = 2 and go to Step 2.

The maximum constraint violation at the new design x(2) = (1.75, 1.75) is 0.0208,
which is greater than the permissible constraint violation. Therefore, we need to go
through more iterations to reach the optimum point back to the feasible region. Note,
however, that since the optimum point is (1.732, 1.732), the current point is quite close
to the solution with f2 = -3.0625. Also, it is observed that the algorithm iterates through
the infeasible region for the present problem.

V V
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t
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Example 11.6 examines the effect of g [for use in Eq. (11.29)] on the step size determi-
nation in the CSD method.

EXAMPLE 11.6 Effect of g on the Performance of 
CSD Algorithm

For the optimum design problem of Example 11.5, study the effect of variations in
the parameter g on the performance of the CSD algorithm.

Solution. In Example 11.5, g = 0.5 is used. Let us see what happens if a very small
value of g (say 0.01) is used. All calculations up to Step 6 of Iteration 1 are unchanged.
In Step 6, the value of b0 is changed to b0 = g ||d(0)||2 = 0.01(2) = 0.02. Therefore,

(a)

which is smaller than F1,0, so the descent condition of Inequality (11.27) is violated.
Thus, the step size in Iteration 1 will be 0.5 as before. Calculations in Iteration 2 are
unchanged until Step 6 where b1 = g ||d(1)||2 = 0.01(0.125) = 0.00125. Therefore,

(b)

The descent condition of Inequality (11.27) is satisfied. Thus a smaller value of g has
no effect on the first two iterations.

F1 0 1 2 25 1 0 00125 2 25125- = - - ( )( ) = -t b . . .

F0 0 0 1 1 0 02 1 02- = - - ( ) = -t b . .
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EXAMPLE 11.7 Effect of Penalty Parameter R on 
CSD Algorithm

For the optimum design problem of Example 11.5, study the effect of variations in
the parameter R on the performance of the CSD algorithm.

Solution. In Example 11.5, the initial R is selected as 10. Let us see what happens
if R is selected as 1.0. There is no change in the calculations up to Step 5 in Iteration
1. In Step 6,

(a)

Therefore, a0 = 1 satisfies the descent condition of Inequality (11.27) and the new
design is given as x(1) = (2, 2). This is different from what was obtained in Example
11.5.

Iteration 2. Since the acceptable step size in Iteration 1 has changed compared
with that in Example 11.5, calculations for Iteration 2 need to be performed again.

Step 3. The QP subproblem of Eqs. (10.25) and (10.26) at x(1) = (2, 2) is defined as
follows: 

(b)

subject to

(c)

At the point (2, 2), V1 = 1–3 and f1 = -4. The solution of the QP subproblem is given as

(d)

Step 4. As ||d(1)|| = 0.3535 > e2, the convergence criterion is not satisfied.
Step 5. Evaluate r1 = S3

i=1ui
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Example 11.7 examines the effect of initial value of the penalty parameter R on step size
calculation in the CSD method.

Let us see what happens if a larger value for g (say 0.9) is chosen. It can be veri-
fied that in Iteration 1, there is no difference in calculations. In Step 2, the step size
is reduced to 0.5. Therefore, the new design point is x(2) = (1.625, 1.625). At this point
f2 = -2.641, g1 = -0.1198, and V1 = 0. Thus, a larger g results in a smaller step size
and the new design point remains strictly feasible.



Example 11.8 illustrates use of the CSD method for an engineering design problem.
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Step 6. For line search, try j = 0 in Inequality (11.27), i.e., t0 = 1:

(f)

As the descent condition is satisfied, a1 = 1.0 is acceptable and x(2) = (1.75, 1.75).

Step 7. Set R2 = R1 = 27–8 , k = 2 and go to Step 2.

The design at the end of the second iteration is the same as in Example 11.5. This
is just a coincidence. We observe that a smaller R gave a larger step size in the first
iteration. In general this can change the history of the iterative process.
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EXAMPLE 11.8 Minimum Area Design of a Rectangular
Beam

For the minimum area beam design problem of Section 3.8, find the optimum 
solution using the CSD algorithm starting from the points (50, 200) mm and 
(1000, 1000) mm.

Solution. The problem is formulated and solved graphically in Section 3.8. After
normalizing the constraints, we define the problem as follows: find width b and depth
d to minimize the cross-sectional area f(b, d) = bd subject to

Bending stress constraint: (a)

Shear stress constraint: (b)

Depth constraint: (c)

Explicit bound constraint: (d)

The graphical solution for the problem is given in Fig. 11-3; any point on the curve
AB gives an optimum solution. The problem is solved starting from the given points
with the CSD algorithm available in the IDESIGN software package (Arora and Tseng,
1987a,b). The algorithm has been implemented using the potential constraint strategy.
Initial data to the program is provided, and it is allowed to run without interruption
until convergence is obtained. The constraint violation tolerance and the convergence
parameter are set as 0.0001. Iteration histories with the two starting points I and II are
shown in Fig. 11-3. Results of the optimization process are summarized in Table 
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11-2. The starting point I is infeasible with a maximum constraint violation of 1100
percent. The program finds the optimum solution in eight iterations. The algorithm
iterates through the infeasible region to reach the optimum solution, which agrees with
the one obtained analytically in Section 3.8. The starting point II is feasible and takes
six iterations to converge to the optimum. Although the first starting point takes more
iterations (eight) to converge to the optimum point compared with the second point
(six), the number of calls for function evaluations is smaller for the first point. The
total numbers of constraint gradient evaluations with the two points are 14 and 3,
respectively. Note that if the potential constraint strategy had not been used, the total
number of gradient evaluations would have been 24 and 18, respectively, for the two
points. These are substantially higher than the actual number of gradient evaluations
with the potential set strategy. It is clear that for large-scale applications, the poten-
tial set strategy can have a substantial impact on the efficiency of calculations for an
optimization algorithm.
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FIGURE 11-3 The history of the iterative process for the rectangular beam design
problem.

TABLE 11-2 Results of Optimum Design Process for Rectangular Beam Design Problem

Starting point I Starting point II
(50, 200)mm (1000, 1000)mm

Optimum point (315.2, 356.9) (335.4, 335.4)
Optimum area 1.125 ¥ 105 1.125 ¥ 105

No. of iterations to reach optimum 8 6
No. of calls for function evaluations 8 12
Total no. of constraint gradients evaluated 14 3
Active constraints at optimum Shear stress Shear stress
Lagrange multipliers for constraints 1.125 ¥ 105 1.125 ¥ 105



11.4 Constrained Quasi-Newton Methods
Thus far we have used only linear approximation for the cost and constraint functions in
defining the search direction determination subproblem. The rate of convergence of algo-
rithms based on such subproblems can be slow. This rate can be improved if second-order
information about the problem functions is incorporated into the solution process. It turns
out that the QP subproblem defined in Section 10.4 can be modified slightly to introduce 
curvature information for the Lagrange function into the quadratic cost function of Eq.
(10.25) (Wilson, 1963). Since second-order derivatives of the Lagrange function are quite
tedious and difficult to calculate, they are approximated using only the first-order informa-
tion (Han, 1976, 1977; Powell, 1978a,b). The basic idea is the same as for the unconstrained
quasi-Newton methods described in Section 9.5. Therefore it is important to review that mate-
rial at this point. There we used gradients of the cost function at two points for generating
the approximate Hessian of the cost function. Instead here, we use the gradient of the
Lagrange function at the two points to update approximation to the Hessian of the Lagrange
function. These are generally called constrained quasi-Newton methods. They have been also
called constrained variable metric (CVM), sequential quadratic programming (SQP), or
recursive quadratic programming (RQP) methods in the literature. Several variations of the
methods can be generated. However, we shall extend the constrained steepest descent algo-
rithm to include the Hessian of the Lagrange function in the definition of the QP subprob-
lem. Derivation of the subproblem is given, and the procedure for updating the approximate
Hessian is explained. The idea of constrained quasi-Newton methods is quite simple and
straightforward, but very effective in their numerical performance. The method is illustrated
with an example and numerical aspects are discussed. The method is used in subsequent chap-
ters to solve several design problems.

11.4.1 Derivation of Quadratic Programming Subproblem
There are several ways to derive the quadratic programming (QP) subproblem that has to 
be solved at each optimization iteration. Understanding of the detailed derivation of the QP
subproblem is not necessary in using the constrained quasi-Newton methods. Therefore, the
reader who is not interested in the derivation can skip this subsection. It is customary to
derive the QP subproblem by considering only the equality constrained design optimization
problem as

(11.31)

Later on, the inequality constraints are easily incorporated into the subproblem. The 
procedure for the derivation of the QP subproblem is to write KKT necessary conditions of
Theorem 4.6 for the problem defined in Eq. (11.31) and then solve the resulting nonlinear
equations by Newton’s method. Each iteration of Newton’s method can be then interpreted
as being equivalent to the solution of a QP subproblem. In the following derivations, we
assume that all functions are twice continuously differentiable, and gradients of all constraints
are linearly independent.

The Lagrange function for the design optimization problem defined in Eq. (11.31) is given
as

(11.32)

where vi is the Lagrange multiplier for the ith equality constraint hi(x) = 0. Note that there is
no restriction on the sign of vi. The KKT necessary conditions give
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(11.33)

(11.34)

Note that Eq. (11.33) actually represents n equations because the dimension of the design
variable vector is n. These equations along with the p equality constraints in Eq. (11.34) give
(n + p) equations in (n + p) unknowns (n design variables in x and p Lagrange multipliers
in v). These are nonlinear equations, so the Newton-Raphson method of Appendix C can be
used to solve them. Let us write Eqs. (11.33) and (11.34) in a compact notation as

(11.35)

where F and y are identified as

(11.36)

Now using the iterative procedure of Section C.2 of Appendix C, we assume that y(k) at
the kth iteration is known and a change Dy(k) is desired. Using linear Taylor’s expansion for
Eq. (11.35), Dy(k) is given as a solution of the linear system (refer to Eq. C.12 in Appendix
C):

(11.37)

where —F is an (n + p) ¥ (n + p) Jacobian matrix for the nonlinear equations whose ith column
is the gradient of the function Fi(y) with respect to the vector y. Substituting definitions of
F and y from Eq. (11.36) into Eq. (11.37), we obtain

(11.38)

where the superscript k indicates that the quantities are calculated at the kth iteration, 
—2L is an n ¥ n Hessian matrix of the Lagrange function, N is an n ¥ p matrix defined in 
Eq. (10.23) whose ith column is the gradient of the equality constraint hi, Dx(k) = x(k+1) - x(k),
and Dv(k) = v(k+1) - v(k). Equation (11.38) can be converted to a slightly different form by
writing the first row as

(11.39)

Substituting for Dv(k) = v(k+1) - v(k) and —L from Eq. (11.33) into Eq. (11.39), we obtain

(11.40)

Or, the equation is simplified to

(11.41)

Combining Eq. (11.41) with the second row of Eq. (11.38), we obtain
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(11.42)

Solution of Eq. (11.42) gives a change in the design Dx(k) and a new value for the Lagrange
multiplier vector v(k+1). The foregoing Newton-Raphson iterative procedure to solve KKT
necessary conditions is continued until a stopping criterion is satisfied.

It will be now shown that Eq. (11.42) is also the solution of a certain QP problem defined
at the kth iteration as (note that the superscript k is omitted for simplicity of presentation):

minimize (11.43)

subject to linearized equality constraints

(11.44)

where n(i) is the gradient of the function hi. The Lagrange function of Eq. (4.46a) for the
problem defined in Eqs. (11.43) and (11.44) is given as

(11.45)

The KKT necessary conditions of Theorem 4.6 treating Dx as the unknown variable give

(11.46)

(11.47)

It can be seen that if we combine Eqs. (11.46) and (11.47) and write them in a matrix form,
we get Eq. (11.42). Thus, the problem of minimizing f(x) subject to hi(x) = 0; i = 1 to p can
be solved by iteratively solving the QP subproblem defined in Eqs. (11.43) and (11.44).

Just as in Newton’s method for unconstrained problems, the solution Dx is treated as a
search direction and step size is determined by minimizing an appropriate descent function
to obtain a convergent algorithm. Defining the search direction d as Dx and including inequal-
ity constraints, the QP subproblem for the general constrained optimization problem is
defined as

(11.48)

subject to constraints of Eqs. (11.3) and (11.4) as

(11.49)

(11.50)

where the notation defined in Section 10.2 is used, c is the gradient of the cast function, and
H is the Hessian matrix —2L or its approximation. Usually, a potential constraint strategy can
be used in reducing the number of inequalities in Eq. (11.50) as discussed in Section 11.1.
We shall further elaborate on this point later.
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11.4.2 Quasi-Newton Hessian Approximation
Just as for the quasi-Newton methods of Section 9.5 for unconstrained problems, we can
approximate the Hessian of the Lagrange function for the constrained problems. We assume
that the approximate Hessian H(k) at the kth iteration is available and we desire to update it
to H(k+1). The BFGS formula of Section 9.5 for direct updating of the Hessian can be used.
It is important to note that the updated Hessian should be kept positive definite because, with
this property, the QP subproblem defined in Eqs. (11.48) to (11.50) remains strictly convex.
Thus a unique search direction is obtained. It turns out that the standard BFGS updating
formula can lead to a singular or indefinite Hessian. To overcome this difficulty, Powell
(1978a) suggested a modification to the standard BFGS formula. Although the modification
is based on intuition, it has worked well in most applications. We shall give the modified
BFGS formula.

Several intermediate scalars and vectors must be calculated before the final formula can
be given. We define these as follows:

Design change vector (ak = step size):

(11.51)

Vector:

(11.52)

Difference in the gradients of the Lagrange function at two points:

(11.53)

Scalar:

(11.54)

Scalar:

(11.55)

Scalar:

(11.56)

Scalar:

(11.57)

Scalar:

(11.58)

An n ¥ n correction matrix:

(11.59)

An n ¥ n correction matrix:
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With the preceding definition of matrices D(k) and E(k), the Hessian is updated as

(11.61)

It turns out that if the scalar x1 in Eq. (11.54) is negative, the original BFGS formula can
lead to an indefinite Hessian. The use of the modified vector w(k) given in Eq. (11.57) tends
to alleviate this difficulty. Because at the usefulness of incorporating a Hessian into an opti-
mization algorithm, several updating procedures have been developed in the literature (Gill
et al., 1981). For example, Cholesky factors of the Hessian can be directly updated. In numer-
ical implementations, it is useful to incorporate such procedures because numerical stability
can be guaranteed.

11.4.3 Modified Constrained Steepest Descent Algorithm
The CSD algorithm of Section 10.5 has been extended to include Hessian updating and poten-
tial set strategy (Belegundu and Arora, 1984a; Lim and Arora, 1986; Thanedar et al., 1986;
Huang and Arora, 1996). The original algorithm did not use the potential set strategy (Han,
1976, 1977; Powell, 1978a,b,c). The new algorithm has been extensively investigated numer-
ically and several computational enhancements have been incorporated into it to make it
robust as well as efficient. In the following, we describe a very basic algorithm as a simple
extension of the CSD algorithm. We refer to the new algorithm that uses a potential set strat-
egy as the SQP method:

Step 1. The same as the CSD algorithm of Section 10.5, except also set the initial
estimate or the approximate Hessian as identity, i.e. H(0) = I.

Step 2. Calculate the cost and constraint functions at x(k) and calculate the gradients of
cost and constraint functions. Calculate the maximum constraint violation Vk as
defined in Eq. (10.32). If k > 0, update the Hessian of the Lagrange function using
Eqs. (11.51) to (11.61). If k = 0, skip updating and go to Step 3.

Step 3. Define the QP subproblem of Eqs. (11.48) to (11.50) and solve it for the search
direction d(k) and Lagrange multipliers v(k) and u(k).

Steps 4–7. Same as for the CSD algorithm of Section 10.5.3.

Thus, we see that the only difference between the two algorithms is in Steps 2 and 3. We
demonstrate use of the SQP algorithm with Example 11.9.

H H D Ek k k k+( ) ( ) ( ) ( )= + -1
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EXAMPLE 11.9 Use of SQP Method

Complete two iterations of the SQP algorithm for Example 11.5: 

(a)

subject to

(b)

The starting point is (1, 1), R0 = 10, g = 0.5, e1 = e2 = 0.001.

Solution. The first iteration of the SQP algorithm is the same as the CSD algorithm.
From Example 11.5, results of the first iteration are
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Iteration 2. At the point x(1) = (1.5, 1.5), the cost and constraint functions and
their gradients are evaluated as

(d)

To update the Hessian matrix, we define the vectors in Eqs. (11.51) and (11.52) as

(e)

Since the Lagrange multiplier vector u(0) = (0, 0, 0), the gradient of the Lagrangian 
—L is simply the gradient of the cost function —f. Therefore, vector y(0) of Eq. (11.53)
is calculated as

(f)

Also, the scalars in Eqs. (11.54) and (11.55) are calculated as

(g)

Since x1 < 0.2x2, q in Eq. (11.56) is calculated as q = 0.8(0.5)/(0.5 + 0.5) = 0.4. The
vector w(0) in Eq. (11.57) is calculated as w(0) = 0.4(-0.5, -0.5) + (1 - 0.4)(0.5, 0.5)
= (0.1, 0.1). The scalar x3 in Eq. (11.58) is calculated as (0.5, 0.5) · (0.1, 0.1) = 0.1.
The two correction matrices in Eqs. (11.59) and (11.60) are calculated as

(h)

Finally, from Eq. (11.61), the updated Hessian is given as

(i)

Step 3. With the updated Hessian and other data previously calculated, the QP sub-
problem of Eqs. (11.48) to (11.50) is defined as:

minimize = -1.5d1 - 1.5d2 + 1–2(0.6d 2
1 - 0.8d1d2 + 0.6d2

2) subject to

(j)

The QP subproblem is strictly convex and, thus, has a unique solution. Using KKT
conditions the solution is obtained as

(k)

This solution is the same as in Example 11.5. Therefore, the rest of the steps have the
same calculations. It is seen that in this example, inclusion of the approximate Hessian
does not actually change the search direction at the second iteration. In general, it will
give different directions and better convergence.
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11.4.4 Observations on the Constrained Quasi-Newton Methods
The quasi-Newton methods are considered to be most efficient, reliable and generally applic-
able. Schittkowski and coworkers (1980, 1981, 1987) have extensively analyzed the methods
and evaluated them against several other methods using a set of nonlinear programming test
problems. Their conclusion is that quasi-Newton methods are far superior to others. Lim and
Arora (1986), Thanedar and coworkers (1986), Thanedar, Arora and coworkers (1987) 
and Arora and Tseng (1987b) have evaluated the methods for a class of engineering design
problems. Gabrielle and Beltracchi (1987) have also discussed several enhancements of
Pshenichny’s constrained steepest descent (CSD) algorithm including incorporation of quasi-
Newton updates of the Hessian of the Lagrangian. In general, these investigations have shown
the quasi-Newton methods to be superior. Therefore the methods are recommended for
general engineering design applications.

Numerical implementation of an algorithm is an art. Considerable care, judgment, safe-
guards, and user-friendly features must be designed and incorporated into the software.
Numerical calculations must be robustly implemented. Each step of the algorithm must be
analyzed and proper numerical procedures developed to implement the intent of the step. The
software must be properly evaluated for performance by solving many different problems.
Many aspects of numerical implementation of algorithms are discussed by Gill and cowork-
ers (1981). The steps of the SQP algorithm have been analyzed (Tseng and Arora, 1988).
Various potential constraint strategies have been incorporated and evaluated. Several descent
functions have been investigated. Procedures to resolve inconsistencies in the QP subprob-
lem have been developed and evaluated. As a result of these enhancements and evaluations,
a very powerful, robust, and general algorithm for engineering design applications has
become available. The algorithm is used in subsequent chapters to solve engineering design 
problems.

11.4.5 Descent Functions
Descent functions play an important role in the constrained quasi-Newton methods, so we
shall discuss them briefly. Some of the descent functions are nondifferentiable while others
are differentiable. For example, the descent function of Eq. (10.27) is nondifferentiable.
Another nondifferentiable descent function has been proposed by Han (1977) and Powell
(1978c). We shall denote this as FH and define it as follows at the kth iteration:

(11.62)

where ri
(k) ≥ |vi

(k)| are the penalty parameters for equality constraints and mi
(k) ≥ ui

(k) are the penalty
parameters for inequality constraints. The penalty parameters sometimes become very large
so Powell (1978c) suggested a procedure to adjust them as follows:

First iteration:

(11.63)

Subsequent iterations:
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Schittkowski (1981) has suggested using the following augmented Lagrangian function
FA as the descent function:

(11.65)

(11.66)

(11.67)

where the penalty parameters ri and mi have been defined previously in Eqs. (11.63) and
(11.64). One good feature of FA is that the function and its gradient are continuous.

11.5 Other Numerical Optimization Methods
Many other methods and their variations for constrained optimization have been developed
and evaluated in the literature. For more details, Gill and coworkers (1981), Luenberger
(1984) and Reklaitis and coworkers (1983) should be consulted. In this section, we shall
briefly discuss the basic ideas of three methods—the feasible directions, gradient projection,
and generalized reduced gradient—that have been used quite successfully for engineering
design problems.

11.5.1 Method of Feasible Directions
The method of feasible directions is one of the earliest primal methods for solving constrained
optimization problems. The basic idea of the method is to move from one feasible point to
an improved feasible point. Thus given a feasible design x(k), an “improving feasible direc-
tion” d(k) is determined such that for a sufficiently small step size a > 0, the following two
properties are satisfied:

1. The new design, x(k+1) = x(k) + ad(k) is feasible.
2. The new cost function is smaller than the current one, i.e., f(x(k+1)) < f(x(k)).

Once d(k) is determined, a line search is performed to determine how far to proceed along
d(k). This leads to a new feasible design x(k+1), and the process is repeated from there.

The method is based on the general algorithm described in Section 10.1.1, where the
design change determination is decomposed into search direction and step size determina-
tion subproblems. The direction is determined by defining a linearized subproblem at the
current feasible point, and step size is determined to reduce the cost function as well as 
maintain feasibility. Since linear approximations are used, it is difficult to maintain feasibil-
ity with respect to the equality constraints. Therefore, the method has been developed and
applied mostly to inequality constrained problems. Some procedures have been developed to
treat equality constraints in these methods. However, we shall describe the method for prob-
lems with only inequality constraints.

Now we define a subproblem that yields improving feasible direction at the current design
point. An improving feasible direction is defined as the one that reduces the cost function as
well as remains strictly feasible for a small step size. Thus it is a direction of descent for 
the cost function as well as pointing toward the inside of the feasible region. The improving
feasible direction d satisfies the conditions cTd < 0 and a(i)Td < 0 for i Œ Ik where Ik is a 
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potential constraint set at the current point as defined in Eq. (11.1). It can be obtained by
minimizing the maximum of cTd and a(i)Td for i Œ Ik. Denoting this maximum by b, the direc-
tion finding subproblem is defined as: minimize b subject to

(11.68)

(11.69)

(11.70)

The normalization constraint of Eq. (11.70) has been introduced to obtain a bounded solu-
tion. Other forms of normalization constraints can also be used. Let (b, d) be an optimum
solution for the previous problem. If b < 0, then d is an improving feasible direction. If 
b = 0, then the current design point satisfies the KKT necessary conditions.

There are many different line search algorithms that may be used to determine the appro-
priate step size along the search direction. Also, to determine a better feasible direction d(k),
the constraints of Eq. (11.69) can be expressed as a(i)Td £ qib, where qi > 0 are the “push-
off” factors. The greater the value of qi, the more the direction vector d is pushed into the
feasible region. The reason for introducing qi is to prevent the iterations from repeatedly
hitting the constraint boundary and slowing down the convergence. Figure 11-4 shows the
physical significance of qi in the direction-finding subproblem. It depicts a two-variable
design space with one active constraint. If qi is taken as zero, then the right-side of Eq. (11.69)
(qib) becomes zero. The direction d in this case tends to follow the active constraint, i.e., it
is tangent to the constraint surface. On the other hand, if qi is very large, the direction d tends
to follow the cost function contour. Thus, a small value of qi will result in a direction which
rapidly reduces the cost function. It may, however, rapidly encounter the same constraint
surface due to nonlinearities. Larger values of qi will reduce the risk of re-encountering the
same constraint, but will not reduce the cost function as fast. A value of qi = 1 yields accept-
able results for most problems.
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FIGURE 11-4 The effect of push-off factor qi on search direction d in the feasible directions
method.



Disadvantages of the method are (1) a feasible starting point is needed—special algo-
rithms must be used to obtain such a point if it is not known—and (2) equality constraints
are difficult to impose and require special procedures for their implementation.

11.5.2 Gradient Projection Method
The gradient projection method was developed by Rosen in 1961. Just as in the feasible direc-
tions method, the method also uses first-order information about the problem at the current
point. The feasible directions method requires the solution of an LP at each iteration to find
the search direction. In some applications, this can be an expensive calculation. Thus, Rosen
was motivated to develop a method that does not require the solution of an LP. His idea was
to develop a procedure in which the direction vector could be calculated easily, although it
may not be as good as the one obtained from the feasible directions approach. Thus, he
derived an explicit expression for the search direction.

In this method, if the initial point is inside the feasible set, the steepest descent direction
for the cost function is used until a constraint boundary is encountered. If the starting point
is infeasible, then the constraint correction step is used to reach the feasible set. When the
point is on the boundary, a direction that is tangent to the constraint surface is calculated 
and used to change the design. This direction is computed by projecting the steepest descent
direction for the cost function on to the tangent hyperplane. This was termed the constrained
steepest descent (CSD) direction in Section 10.5. A step is executed in the negative pro-
jected gradient direction. Since the direction is tangent to the constraint surface, the new point
will be infeasible. Therefore, a series of correction steps need to be executed to reach the
feasible set.

The iterative process of the gradient projection method is illustrated in Fig. 11-5. At the
point x(k), -c(k) is the steepest descent direction and d(k) is the negative projected gradient 
(constrained steepest descent) direction. An arbitrary step takes the point x(k) to x(k+1) from
where constraint correction steps are executed to reach the feasible point x(k,1). Comparing
the gradient projection method and the constrained steepest descent method of Section 10.5,
we observe that at a feasible point where some constraints are active, the two methods have
identical directions. The only difference is in the step size determination.

Philosophically, the idea of the gradient projection method is quite good, i.e., the search
direction is easily computable, although it may not be as good as the feasible direction.
However, numerically the method has considerable uncertainty. The step size specification
is arbitrary; the constraint correction process is quite tedious. A serious drawback is that 
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convergence of the algorithm is tedious to enforce. For example, during the constraint cor-
rection steps, it must be ensured that f(x(k+1)) < f(x(k)). If this condition cannot be satisfied or
constraints cannot be corrected, then the step size must be reduced and the entire process
must be repeated from the previously updated point. This can be tedious to implement, result-
ing in additional calculations. Despite these drawbacks, the method has been applied quite
successfully to a wide variety of engineering design problems (Haug and Arora, 1979). In
addition, many variations of the method have been investigated in the literature (Gill et al.
1981; Luenberger, 1984; Belegundu and Arora, 1985).

11.5.3 Generalized Reduced Gradient Method
In 1967, Wolfe developed the reduced gradient method based on a simple variable elimina-
tion technique for equality constrained problems (Abadie, 1970). The generalized reduced
gradient (GRG) method is an extension of the reduced gradient method to accommodate 
nonlinear inequality constraints. In this method, a search direction is found such that for any
small move, the current active constraints remain precisely active. If some active constraints
are not precisely satisfied because of nonlinearity of constraint functions, the Newton-
Raphson method is used to return to the constraint boundary. Thus, the GRG method can be
considered somewhat similar to the gradient projection method.

Since inequality constraints can always be converted to equalities by adding slack vari-
ables, we can form an equality constrained NLP model. Also, we can employ the potential
constraint strategy and treat all the constraints in the subproblem as equalities. The direction-
finding subproblem in the GRG method can be defined in the following way (Abadie and
Carpenter, 1969): Let us partition the design variable vector x as [yT, zT]T, where y(n-p) and
z(p) are vectors of independent and dependent design variables, respectively. First-order
changes in the cost and constraint functions (treated as equalities) are given as

(11.71)

(11.72)

Since we started with a feasible design, any change in the variables must keep the current
equalities satisfied at least to first order, i.e., Dhi = 0. Therefore, using Eq. (11.72) this require-
ment is written in the matrix form as

(11.73)

where columns of matrices A((n-p)¥p) and B(p¥p) contain gradients of equality constraints with
respect to y and z, respectively. Equation (11.73) can be viewed as the one that determines
Dz (change in the dependent variable) when Dy (change in the independent variable) is 
specified. Substituting Dz from Eq. (11.73) into Eq. (11.71) we can calculate Df and identify
df/dy as

(11.74)

df/dy is commonly known as the reduced gradient. In line search, the cost function is 
treated as the descent function. For a trial value of a, the design variables are updated using
Dy = -a df/dy and Dz from Eq. (11.73). If the trial design is not feasible, then independent
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design variables are considered to be fixed and dependent variables are changed iteratively
by applying the Newton-Raphson method [Eq. (11.73)] until we get a feasible design point.
If the new feasible design satisfies the descent condition, then line search is terminated; 
otherwise, the previous trial step size is discarded and the procedure is repeated with a
reduced step size. It can be observed that when df/dy = 0 in Eq. (11.74), the KKT conditions
of optimality are satisfied for the original NLP problem.

The main computational burden associated with the GRG algorithm arises from the
Newton-Raphson iterations during line search. Strictly speaking, the gradients of constraints
need to be recalculated and the Jacobian matrix B needs to be inverted at every iteration
during the line search. This is prohibitively expensive. Toward this end, many efficient numer-
ical schemes have been suggested, e.g., the use of a quasi-Newton formula to update B-1

without recomputing gradients but requiring only constraint function values. This can cause
problems if the set of independent variables changes during iterations. Another difficulty is
to select a feasible starting point. Special algorithms must be used to handle arbitrary start-
ing points, as in the feasible directions method.

There is some confusion in the literature on the relative merits and demerits of the reduced
gradient method. For example, the method has been declared superior to the gradient pro-
jection method, whereas the two methods are considered essentially the same by Sargeant
(1974). The confusion arises when studying the reduced gradient method in the context of
solving inequality constrained problems; some algorithms convert the inequalities into equal-
ities by adding nonnegative slack variables while others adopt potential constraint strategy.
It turns out that if a potential constraint strategy is used, the reduced gradient method becomes
essentially the same as the gradient projection method (Belegundu and Arora, 1985). On the
other hand, if inequalities are converted to equalities, it behaves quite differently from the
gradient projection method. Unfortunately, the inequality constrained problem in most engi-
neering applications must be solved using a potential constraint strategy, as the addition of
slack variables to inequalities implies that all constraints are active at every iteration and
must, therefore, be differentiated. This is ruled out for large-scale applications because of 
the enormous computation and storage of information involved. Therefore, as observed by
Belegundu and Arora (1985), we need not differentiate between gradient projection and
reduced gradient methods when solving most engineering optimization problems.

Exercises for Chapter 11

Section 11.3 Approximate Step Size Determination

For the following problems, complete one iteration of the constrained steepest descent
method for the given starting point (let R0 = 1 and g = 0.5, use the approximate step size
determination procedure).

11.1 Beam design problem formulated in Section 3.8 at the point (b, d) = (250, 300) mm.

11.2 Tubular column design problem formulated in Section 2.7 at the point 
(R, t) = (12, 4) cm. Let P = 50kN, E = 210GPa, l = 500cm, sa = 250MPa, and 
r = 7850kg/m3.

11.3 Wall bracket problem formulated in Section 4.7.1 at the point (A1, A2) =
(150, 150) cm2.

11.4 Exercise 2.1 at the point h = 12m, A = 4000m2.

11.5 Exercise 2.3 at the point (R, H) = (6, 15) cm.
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11.6 Exercise 2.4 at the point R = 2cm, N = 100.

11.7 Exercise 2.5 at the point (W, D) = (100, 100) m.

11.8 Exercise 2.9 at the point (r, h) = (6, 16) cm.

11.9 Exercise 2.10 at the point (b, h) = (5, 10) m.

11.10 Exercise 2.11 at the point, width = 5m, depth = 5m, and height = 5m.

11.11 Exercise 2.12 at the point D = 4m and H = 8m.

11.12 Exercise 2.13 at the point w = 10m, d = 10m, h = 4m.

11.13 Exercise 2.14 at the point P1 = 2 and P2 = 1.

Section 11.4 Constrained Quasi-Newton Methods

Complete two iterations of the constrained quasi-Newton method and compare the search
directions with the ones obtained with the CSD algorithm (note that the first iteration is the
same for both methods; let R0 = 1, g = 0.5).

11.14 Beam design problem formulated in Section 3.8 at the point (b, d) = (250, 300) mm.

11.15 Tubular column design problem formulated in Section 2.7 at the point 
(R, t) = (12, 4) cm. Let P = 50kN, E = 210GPa, l = 500cm, sa = 250MPa, and 
r = 7850kg/m3.

11.16 Wall bracket problem formulated in Section 4.7.1 at the point (A1, A2) = (150, 
150) cm2.

11.17. Exercise 2.1 at the point h = 12m, A = 4000m2.

11.18 Exercise 2.3 at the point (R, H) = (6, 15) cm.

11.19 Exercise 2.4 at the point R = 2cm, N = 100.

11.20 Exercise 2.5 at the point (W, D) = (100, 100) m.

11.21 Exercise 2.9 at the point (r, h) = (6, 16) cm.

11.22 Exercise 2.10 at the point (b, h) = (5, 10) m.

11.23 Exercise 2.11 at the point, width = 5m, depth = 5m, and height = 5m.

11.24 Exercise 2.12 at the point D = 4m and H = 8m.

11.25 Exercise 2.13 at the point w = 10m, d = 10m, h = 4m.

11.26 Exercise 2.14 at the point P1 = 2 and P2 = 1.

Formulate and solve the following problems using Excel Solver or other software.

11.27* Exercise 3.34 11.28* Exercise 3.35 11.29* Exercise 3.36

11.30* Exercise 3.50 11.31* Exercise 3.51 11.32* Exercise 3.52

11.33* Exercise 3.53 11.34* Exercise 3.54
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12 Introduction to Optimum Design 
with MATLAB

413

Upon completion of this chapter you will be able to:

• Use the Optimization Toolbox in MATLAB to solve unconstrained and
constrained problems

MATLAB was used in Chapter 3 to graphically solve two variable optimization problems.
In Chapter 4 it was used to solve a set of nonlinear equations obtained as KKT optimality
conditions for constrained optimization problems. In this chapter, we describe capabilities of
the Optimization Toolbox in MATLAB to solve linear, quadratic, and nonlinear programming
problems. We start by describing the basic capabilities of this toolbox. Some operators and
syntax used to enter expressions and data are described. In subsequent sections, we illustrate
the use of the program for unconstrained and constrained optimization problems. Some 
engineering design optimization problems are also solved using the program.

12.1 Introduction to Optimization Toolbox

12.1.1 Variables and Expressions
MATLAB can be considered a high-level programming language for numerical computation,
data analysis, and graphics for applications in many fields. It interprets and evaluates 
expressions entered at the keyboard. The statements are usually in the form “variable =
expression.” The variables can be scalars, arrays, or matrices. Arrays may store many 
variables at a time. A simple way to define a scalar, array, or matrix is to use assignment
statements as follows:

a = 1; b = [1, 1]; c = [1, 0, 0; 1, 1, 0; 1, -2, 1];

Note that several assignment statements can be entered in one row. A semicolon “;” at the
end of a statement prevents the program from executing the statement interactively and dis-
playing the results immediately. The variable a denotes a scalar that is assigned a value of 1;



the variable b denotes a 1 ¥ 2 row vector and the variable c denotes a 3 ¥ 3 matrix assigned
as follows:

The semicolons in the brackets of expression for c separate the rows, and the values in
the rows can be separated by commas or blanks. MATLAB has a rule that the variable name
must be a single word without spaces, and start with a letter followed by any number of
letters, digits, or underscores. It is also important to note that the variable names are case
sensitive. In addition, there are several built-in variables; e.g., “pi” for the ratio of the 
circumference of a circle to its diameter, “esp” for the smallest number in the computer, “inf”
for infinity, and so on.

12.1.2 Scalar, Array, and Matrix Operations
The arithmetic operators for scalars in MATALB are: addition “+”, subtraction “-”, multi-
plication “*”, division “/”, and exponentiation “^”. Vector and matrix calculations can also
be organized in a simple way using these operators. For example, multiplication of two matri-
ces A and B is expressed as A * B. Slight modification of the standard operators is used for
element-by-element operations between vectors and matrices: “.*” for multiplication, “./”
for division, and “.^” for exponentiation. For example, element-by-element multiplication of
vectors of same dimension is accomplished by using the operator “.*”, as

Here a, b, and c are column vectors with three elements. For addition and subtraction,
element-by-element and usual matrix operations are the same. Other useful matrix operators
are: A2 = A. * A, A-1 = inv(A), determinant as det(A), and transpose as A¢.

12.1.3 Optimization Toolbox
Optimization Toolbox must be installed in the computer in addition to MATLAB before it
can be used. Table 12-1 shows the some “functions” available in the toolbox. Most of these
optimization routines require M-files (stored in the current directory) containing a definition
of the problem to be solved; several such files are presented and discussed later. Default 
optimization parameters are used extensively; however, they can be modified through 
an “options” command available in the program. The syntax of invoking an optimization
function is generally of the form:

[x, FunValue, ExitFlag, Output] = fminX (‘ObjFun’, . . ., options)

The left side of the statement represents the quantities returned by the “function.” These
output arguments are described in Table 12-2. On the right side, fminX represents one of the
functions given in Table 12-1. There can be several arguments for the function fminX; e.g.,
starting values for the variables; upper and lower bounds for the variables; M-file names con-
taining problem functions and their gradients; optimization algorithm related data; and so on.
Use of this function is demonstrated in subsequent sections for various types of problems
and conditions. For further explanation of various functions and commands, extensive on-
line help is also available.
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TABLE 12-1 Optimization Toolbox Functions

Type of problem Formulation Function

One-variable unconstrained minimization Find x Œ [xl xu] to minimize f(x) fminbnd
Unconstrained minimization Find x to minimize f(x) fminunc

fminsearch
Constrained minimization Find x to minimize f(x) fmincon

subject to Nx = e, Ax £ b
hj = 0, j = 1 to p
gi(x) £ 0, i = 1 to m
xil £ xi £ xiu

Linear programming Find x to minimize f(x) = cTx linprog
subject to Nx = e, Ax £ b

Quadratic programming Find x to minimize quadprog
f(x) = cTx + xTHx
subject to Nx = e, Ax £ b

1
2

TABLE 12-2 Explanation of Output from Optimization Function

Argument Description

x The solution vector or matrix found by the optimization function. If ExitFlag 
> 0 then x is a solution, otherwise x is the latest value from the optimization
routine.

FunValue Value of the objective function, ObjFun, at the solution x.
ExitFlag The exit condition for the optimization function. If ExitFlag is positive, then the

optimization routine converged to a solution x. If ExitFlag is zero, then the
maximum number of function evaluations was reached. If ExitFlag is negative,
then the optimization routine did not converge to a solution.

Output The output vector contains several pieces of information about the optimization
process. It provides the number of function evaluations (Output.iterations) and the
name of the algorithm used to solve the problem (Output.algorithm), etc.

12.2 Unconstrained Optimum Design Problems
In this section, we first illustrate the use of fminbnd function for minimization of a function
of single variable f(x) with bounds on x as xl £ x £ xu. Then the use of function fminunc
is illustrated for minimization of a function f(x) of several variables. The M-files for the pro-
blems, containing extensive comments, are included to explain the use of these functions.
Example 12.1 demonstrates use of the function fminbnd for functions of single variable.

EXAMPLE 12.1 Single-Variable Unconstrained Minimization

Find x to minimize f(x) = 2 - 4x + ex, -10 £ x £ 10.

Solution. To solve the problem, we write an M-file that returns the objective func-
tion value. Then, we invoke the single-variable unconstrained minimization routine
fminbnd through another M-file that is shown in Table 12-3. The file that evaluates
the function, shown in Table 12-4, is called through fminbnd. Table 12-3 also shows
results of the optimization process.
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EXAMPLE 12.2 Multivariable Unconstrained Minimization

Consider a two variable problem of minimizing f(x) = 100(x2 - x1
2)2 + (1 - x1)2

starting from a point x(0) = (-1.2, 1.0). Solve the problem using different algorithms
available in the Optimization Toolbox.

Solution. The optimum solution for the problem is known as x* = (1.0, 1.0) 
with f(x*) = 0 (Schittkowski, 1987). The syntax for functions fminsearch and 
fminunc used to solve a multivariable unconstrained optimization problem is given as
follows:

[x,FunValue,ExitFlag,Output] = fminsearch (‘ObjFun’,x0,options)
[x,FunValue,ExitFlag,Output] = fminunc (‘ObjFun’,x0,options)

where ObjFun = name of the M-file that returns the function value and its gradient if
programmed; x0 = starting values of design variables; and options = a command that

TABLE 12-3 M-File for Single Variable Unconstrained Minimizer fminbnd for Example
12.1

% All comments start with %
% File name: Example12_1.m
% Problem: minimize f(x) = 2 - 4x + exp(x)

clear all
% Set lower and upper bound for the design variable

Lb = -10; Ub = 10;
% Invoke single variable unconstrained optimizer fminbnd;
% The argument ObjFunction12_1 refers to the M-file that
% contains expression for the objective function

[x,FunVal,ExitFlag,Output] = fminbnd(‘ObjFunction12_1’,Lb,Ub)

TABLE 12-4 M-File for Objective Function for Example 12.1

% File name: ObjFunction12_1.m
% Example 12.1 Single variable unconstrained minimization

function f = ObjFunction12_1(x)
f = 2 - 4*x + exp(x);

The output from the function is given as

x = 1.3863, FunVal = 0.4548, ExitFlag = 1 > 0 (i.e., minimum was found), 
output = (iterations: 14, funcCount: 14, algorithm: golden section search, parabolic

interpolation.

Example 12.2 demonstrates the use of functions fminsearch and fminunc for multi-
variable unconstrained optimization problems.
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can be used to invoke various conditions for the optimization process. fminsearch 
uses the Simplex search method of Nelder-Mead, which does not require numerical
or analytical gradient of the objective function.

Since fminunc does require this information and with the option LargeScale set to
‘off’, it uses the BFGS quasi-Newton method with a mixed quadratic and cubic line
search procedures. The DFP formula, which approximates the inverse Hessian matrix,
can be selected by setting the option HessUpdate to ‘dfp’. The steepest descent method
can be selected by setting option HessUpdate to ‘steepdesc’. fminsarch is generally 
less efficient than fminunc. However, it can be effective for problems for which the
gradient evaluation is expensive or not possible.

To solve this problem, we write an M-file that returns the objective function value.
Then, the unconstrained minimization function fminsearch or fminunc is invoked
through execution of another M-file shown in Table 12-5. The M-file for function and
gradient evaluations is shown in Table 12-6. The gradient evaluation option can be
omitted if its automatic evaluation by the finite difference method is desired. Three
solution methods are used as shown in Table 12-5. All methods converge to the known
solution.

TABLE 12-5 M-File for Unconstrained Optimization Routines for Example 12.2

% File name: Example12_2
% Rosenbruck valley function with analytical gradient of
% the objective function

clear all
x0 = [-1.2 1.0]’; % Set starting values

% Invoke unconstrained optimization routines

% 1. Nelder-Mead simplex method, 
% Set options: medium scale problem, maximum number of function evaluations
% Note that “. . .” indicates that the text is continued on the next line

options = optimset(‘LargeScale’, ‘off’, ‘MaxFunEvals’, 300);
[x1, FunValue1, ExitFlag1, Output1] = . . .
fminsearch (‘ObjAndGrad12_2’, x0, options)

% 2. BFGS method, , dafault option
% Set options: medium scale problem, maximum number of function evaluations,
% gradient of objective function

options = optimset(‘LargeScale’, ‘off’, ‘MaxFunEvals’, 300,. . .
‘GradObj’, ‘on’);

[x2, FunValue2, ExitFlag2, Output2] = . . .
fminunc (‘ObjAndGrad12_2’, x0, options)

% 3. DFP method, , HessUpdate = dfp
% Set options: medium scale optimization, maximum number of function evaluation,
% gradient of objective function, DFP method

options = optimset(‘LargeScale’, ‘off’, ‘MaxFunEvals’, 300, . . .
‘GradObj’, ‘on’, ‘HessUpdate’, ‘dfp’);

[x3, FunValue3, ExitFlag3, Output3] = . . .
fminunc (‘ObjAndGrad12_2’, x0, options)

fminunc

fminunc

fminsearch



12.3 Constrained Optimum Design Problems
The general constrained optimization problem treated by the function fmincon is defined in
Table 12-1. The procedure for invoking this function is the same as for the unconstrained
problems except that an M-file containing the constraint functions must also be provided. If
analytical gradient expressions are programmed in the objective function and constraint func-
tions M-files, then these are declared through the “options” command. Otherwise, fmincon
uses numerical gradient calculations based on the finite difference method. Example 12.3
shows the use of this function for an inequality constrained problem. Equalities if present
can be included similarly.
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TABLE 12-6 M-File for Objective Function and Gradient Evaluations for Example 12.2

% File name: ObjAndGrad12_2.m
% Rosenbrock valley function

function [f, df] = ObjAndGrad12_2(x)
% Re-name design variable x

x1 = x(1); x2 = x(2); %
% Evaluate objective function

f = 100*(x2 - x1^2)^2 + (1 - x1)^2;
% Evaluate gradient of the objective function

df(1) = -400*(x2-x1^2)*x1 - 2*(1-x1);
df(2) = 200*(x2-x1^2);

EXAMPLE 12.3 Constrained Minimization Problem Using
Fmincon in Optimization Toolbox

Solve the problem to 

(a)

subject to the constraints

(b)

(c)

(d)

Solution. The optimum solution for the problem is known as x = (14.095, 0.84296)
and f(x*) = -6961.8 (Schittkowski, 1981). Three M-files for the problem are given in
Tables 12-7 to 12-9. The file in Table 12-7 invokes the function fmincon with appro-
priate arguments and options. The file in Table 12-8 contains the cost function and its
gradient expressions, and the file in Table 12-9 contains the constraint functions and
their gradients. The problem is solved successfully and the final results are shown in
Table 12-7.

13 100 0 1001 2£ £ £ £x x,

g x x2 1
2

2
2

82 81 6 5 0x( ) = - - -( ) - -( ) £.

g x x1 1
2

2
2

100 5 5 0x( ) = - -( ) - -( ) £

minimize f x xx( ) = -( ) + -( )1
3

2
3

10 20
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The output from the function is given as

Active Constraints: 5, 6 (i.e, g(1) and g(2))
x = (14.095, 0.843), FunVal = -6.9618e+003, ExitFlag = 1 > 0 (i.e., minimum was
found), output = (iterations: 6, funcCount: 13, stepsize: 1, algorithm: medium scale:
SQP, quasi-Newton, line-search).

Note that the “active constraints” command at the optimum solution are identified
with their index counted as Lb, Ub, inequality constraints, and equality constraints. If
‘Display off’ is included in the “options” command, then the set of active constraints is
not printed.

TABLE 12-7 M-File for Constrained Minimizer fmincon for Example 12.3

% File name: Example12_3
% Constrained minimization with gradient expressions available
% Calls ObjAndGrad12_3 and ConstAndGrad12_3

clear all
% Set options; medium scale, maximum number of function evaluation,
% gradient of objective function, gradient of constraints, tolerances
% Note that three periods “. . .” indicate continuation on next line

options = optimset (‘LargeScale’, ‘off’, ‘GradObj’, ‘on’,. . .
‘GradConstr’, ‘on’, ‘TolCon’, 1e-8, ‘TolX’, 1e-8);

% Set bounds for variables
Lb = [13; 0]; Ub = [100; 100];

% Set initial design
x0 = [20.1; 5.84];

% Invoke fmincon; four [ ] indicate no linear constraints in the problem
[x,FunVal, ExitFlag, Output] = . . .

fmincon(‘ObjAndGrad12_3’,x0,[ ],[ ],[ ],[ ],Lb, . . .
Ub,’ConstAndGrad12_3’,options)

TABLE 12-8 M-File for Objective Function and Gradient Evaluations for Example 12.3

% File name: ObjAndGrad12_3.m
function [f, gf] = ObjAndGrad12_3(x)

% f returns value of objective function; gf returns objective function gradient
% Re-name design variables x

x1 = x(1); x2 = x(2);
% Evaluate objective function

f = (x1-10)^3 + (x2-20)^3;
% Compute gradient of objective function

if nargout > 1
gf(1,1) = 3*(x1-10)^2;
gf(2,1) = 3*(x2-20)^2;
end



12.4 Optimum Design Examples with MATLAB

12.4.1 Location of Maximum Shear Stress for Two Spherical Bodies in Contact

Project/Problem Statement There are many practical applications where two spherical
bodies come into contact with each other as shown in Fig. 12-1. It is desired to determine
the maximum shear stress and its location along the z axis for a given value of the Poisson’s
ratio of the material, n = 0.3.
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TABLE 12-9 Constraint Functions and Their Gradients Evaluation M-File for Example
12.3

% File name: ConstAndGrad12_3.m
function [g, h, gg, gh] = ConstAndGrad12_3(x)

% g returns inequality constraints; h returns equality constraints
% gg returns gradients of inequalities; each column contains a gradient
% gh returns gradients of equalities; each column contains a gradient
% Re-name design variables

x1 = x(1); x2 = x(2);
% Inequality constraints

g(1) = 100-(x1-5)^2-(x2-5)^2;
g(2) = -82.81+ (x1-6)^2 + (x2-5)^2;

% Equality constraints (none)
h = [ ];

% Gradients of constraints
if nargout > 2
gg(1,1) = -2*(x1-5);
gg(2,1) = -2*(x2-5);
gg(1,2) = 2*(x1-6);
gg(2,2) = 2*(x2-5);
gh = [];
end

P 

x  

z 

x  

y  

z 

a 

pmax  

FIGURE 12-1 Spherical bodies in contact and pressure distribution on contact-patch.



Data and Information Collection The shear stress along the z-axis is calculated using the
principal stresses as (Norton, 2000)

(a)

where a = z/a and a is the contact-patch radius as shown in Fig. 12-1. The maximum pres-
sure occurs at the center of the contact patch a and is given as

(b)

It is well known that the peak shear stress does not occur at the contact surface but rather
at a small distance below the surface. The subsurface location of the maximum shear stress
is believed to be a significant factor in the surface fatigue failure called pitting.

Identification/Definition of Design Variables a is the only design variable for the
problem.

Identification of a Criterion To Be Optimized The objective is to locate a point along the
z axis where the shear stress is maximum. Transforming to the standard minimization form
and normalizing with respect to pmax, the problem becomes: find a to minimize

(c)

Identification of Constraints There are no constraints for the problem except bounds on
the variable a taken as 0 £ a £ 5.

Solution The exact solution for the problem is given as

(d)

This is a single variable optimization problem with only lower and upper bounds on the
variable. Therefore the function fminbnd in Optimization Toolbox can be used to solve the
problem. Table 12-10 shows the M-file that invokes the function fminbnd, and Table 12-11
shows the M-file that evaluates the function to be minimized. The M-file also contains com-
mands to plot the shear stress as a function of z, and it is shown in Fig. 12-2. The optimum
solution is obtained as alpha = 0.6374, FunVal = -0.3329 [a* = 0.6374, f(a*) = -0.3329]
which matches the exact solution.

12.4.2 Column Design for Minimum Mass

Project/Problem Statement As noted in Section 2.7, columns are used as structural
members in many practical applications. Many times such members are subjected to 
eccentric loads such as a jib crane. The problem is to design a minimum mass tubular 
column that is subjected to an eccentric load, as shown in Fig. 12-3. The cross section of 
the column is a hollow circular tube with R and t as the mean radius and wall thickness,
respectively.
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TABLE 12-10 M-File to Invoke Function fminbnd for Spherical Contact Problem

% File name: sphcont_opt.m
% Design variable: ratio of the max shear stress location to
% size of the contact patch
% Find location of the maximum shear stress along the z-axis

clear all
% Set lower and upper bound for the design variable

Lb = 0; Ub = 5;
% Plot normalized shear stress distribution along the z-axis in spherical contact

z = [Lb: 0.1: Ub]’;
n = size (z);
for i = 1: n

outz(i) = -sphcont_objf(z(i));
end

plot(z, outz); grid
xlabel (‘normalized depth z/a’);
ylabel (‘normalized shear stress’);

% Invoke the single-variable unconstrained optimizer
[alpha, FunVal, ExitFlag, Output] = fminbnd (‘sphcont_objf’, Lb, Ub)

TABLE 12-11 M-File for Evaluation of Objective Function for the Spherical Contact Problem

% File name = sphcont_objf.m
% Location of max shear stress along z-axis for spherical contact problem

function f = sphcont_objf(alpha)
% f = - shear stress/max pressure

nu = 0.3; % Poisson’s ratio
f = -0.5*( (1-2*nu)/2 + (1+nu)*alpha/sqrt(1+alpha^2) - . . .

1.5*( alpha/sqrt(1+alpha^2) )^3 );
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FIGURE 12-2 Normalized shear stress along the z-axis.



Data and Information Collection The data for the problem are given as

Load: P = 100kN
Length: L = 5m
Young’s modulus: E = 210GPa
Allowable stress: sa = 250MPa
Eccentricity (2% of radius): e = 0.02R, m
Allowable deflection: D = 0.25m
Mass density: r = 7850kg/m3

Cross-sectional area: A = 2pRt, m2

Moment of inertia: I = pR3t, m4

Distance to the extreme fiber:

An analysis of the structure yields the following design equations:

Normal stress: (a)

Buckling load: (b)

Deflection: (c)

Identification/Definition of Design Variables Two design variables for the problem are
defined as

R = mean radius of the tube, m
t = wall thickness, m
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FIGURE 12-3 Configuration of vertical column with an eccentric load.



Identification of a Criterion To Be Optimized The objective is to minimize the mass of
the column which is given as

(d)

Identification of Constraints Constraints for the problem are on performance of the struc-
ture, maximum radius to thickness ratio, and bounds on the radius and thickness:

Stress constraint: s £ sa (e)
Buckling load constraint: P £ Pcr (f)
Deflection constraint: d £ D (g)
Radius/thickness constraint: (h)
Bounds on the variables: 0.01 £ R £ 1, 0.005 £ t £ 0.2 (i)

Solution Let us redefine the design variables and other parameters for MATLAB as

(j)

(k)

(l)

All constraints are normalized and rewritten using redefined design variables. Therefore
the optimization problem is stated in the standard form as follows:

minimize (m)

subject to

(n)

(o)

(p)

(q)

(r)

The problem is solved using the fmincon function in the Optimization Toolbox. Table 
12-12 shows the M-file for invoking this function and setting various options for the opti-
mization process. Tables 12-13 and 12-14 show the M-files for the objective and constraint
functions, respectively. Note that analytical gradients are not provided for the problem 
functions.

The output from the function is given as

Active Constraints: 2, 5, i.e., the lower limit for thickness and g(1).
x = (0.0537, 0.0050), FunVal = 66.1922, ExitFlag = 1, Output = ( iterations: 31, 
funcCount: 149, stepsize: 1, algorithm: medium-scale: SQP, Quasi-Newton, line-search).
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12.4.3 Flywheel Design for Minimum Mass

Project/Problem Statement Shafts are used in practical applications to transfer torque
from a source point to another point to achieve desired operations. However, the torque to
be transferred can fluctuate causing variations in the angular speed of the shaft which is not

Introduction to Optimum Design with MATLAB 425

TABLE 12-12 M-File for Invoking Minimization Function for Column Design Problem

% File name = column_opt.m
clear all

% Set options
options = optimset (‘LargeScale’, ‘off’, ‘TolCon’, 1e-8, ‘TolX’, 1e-8);

% Set the lower and upper bounds for design variables
Lb = [0.01 0.005]; Ub = [1 0.2];

% Set initial design
x0 = [1 0.2];

% Invoke the constrained optimization routine, fmincon
[x, FunVal, ExitFlag, Output] = . . .

fmincon(‘column_objf’, x0, [], [], [], [], Lb, Ub, ‘column_conf’, options)

TABLE 12-13 M-File for Objective Function for Minimum Mass Column Design Problem

% File name = column_objf.m
% Column design

function f = column_objf (x)
% Rename design variables

x1 = x(1); x2 = x(2);
% Set input parameters

L = 5.0; % length of column (m)
rho = 7850; % density (kg/m^3)

f = 2*pi*L*rho*x1*x2; % mass of the column

TABLE 12-14 M-File for Constraint Functions for the Column Design Problem

% File name = column_conf.m
% Column design

function [g, h] = column_conf (x)
x1 = x(1); x2 = x(2);

% Set input parameters
P = 50000; % loading (N)
E = 210e9; % Young’s modulus (Pa)
L = 5.0; % length of the column (m)
Sy = 250e6; % allowable stress (Pa)
Delta = 0.25; % allowable deflection (m)

% Inequality constraints
g(1) = P/(2*pi*x1*x2)*(1 + . . .
2*0.02*(x1+x2/2)/x1*sec( 5*sqrt(2)/x1*sqrt(P/E/(2*pi*x1*x2)) ) )/Sy - 1;
g(2) = 1 - pi^3*E*x1^3*x2/4/L^2/P;
g(3) = 0.02*x1*( sec( L*sqrt( P/(pi*E*x1^3*x2) ) ) - 1 )/Delta - 1;
g(4) = x1/x2/50 - 1;

% Equality constraint (none)
h = [];



desirable. Flywheels are used on the shaft to smooth out these variations of the speed (Norton,
2000; Shigley and Mischke, 2001). The purpose of this project is to design a flywheel to
smooth out variations in the speed of a solid shaft of radius ri. The flywheel-shaft system is
shown in Fig. 12-4. The input torque function, which varies during a cycle, is shown in Fig.
12-5. This torque variation about its average value, as a function of the shaft angle for one
360° cycle, is shown there. The kinetic energy due to this variation is obtained by integrat-
ing the torque pulse above and below its average value during the cycle and is given as 
Ek = 26,105 in·lb. The shaft is rotating at a nominal angular speed of w = 800 rad/s.

Data and Information Collection The one cycle of torque variation shown in Fig. 12-5 is
assumed to be repetitive and thus representative of the steady-state condition. The desired
coefficient of fluctuation is assumed to be 0.05 (Cf). The coefficient of fluctuation represents
the ratio of variation of angular velocity to the nominal angular velocity: Cf = (wmax - wmin)/w.
The system is assumed to be in continuous operation with minimal start-stop cycles. The
minimum mass moment of inertia for the flywheel is determined using the required change
in kinetic energy, Ek, specified earlier, as
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(a)

The design data and equations needed to formulate the minimum mass flywheel problem
are given as

Specific weight: g = 0.28 lb/in3

Gravitational constant: g = 386 in/s2

Yield stress: Sy = 62,000psi
Nominal angular velocity: w = 800 rad/s
Poisson’s ratio: n = 0.28
Inner radius of flywheel: ri = 1.0 in
Outer radius of flywheel: ro, in
Thickness of flywheel: t, in
Mass moment of inertia of flywheel: (b)

Tangential stress in flywheel at radius r: (c)

Radial stress in flywheel at radius r: (d)

von Mises stress: (e)

Identification/Definition of Design Variables The two design variables for the problem
are defined as

ro = outer radius of the flywheel, in
t = thickness of the flywheel, in

Identification of a Criterion To Be Optimized The objective of the project is to design a
flywheel of minimum mass. Since mass is proportional to the material volume, it is desired
to minimize the volume of the flywheel, which is given as

(f)

Identification of Constraints Performance and other constraints are expressed as

Mass moment of inertia requirement: Im ≥ Is (g)
von Mises stress constraint: (h)
Limits on design variables: 4.5 £ ro £ 9.0, 0.25 £ t £ 1.25 (i)

Solution The problem is solved using the fmincon function in the Optimization Toolbox.
Table 12-15 shows the M-file that invokes the fmincon function for the flywheel problem.
Table 12-16 shows the M-file that calculates the objective function for the problem. Table
12-17 shows the M-file for calculation of constraints for the problem. Note that the von Mises
stress constraint is imposed at the point of maximum stress. Therefore this maximum is 
calculated using the fmincon function itself. Table 12-18 shows the M-file that calculates 
the von Mises stress. This file is called by the constraint evaluation file. Also note that all
constraints are entered in the normalized “£” form. The solution and other output from the
function are given as

Active constraints are 2 and 5, i.e., lower bound on thickness and g(1)
ro* = 7.3165 in, t* = 0.25 in, f* = 13.1328, Output = [iterations: 8, funcCount: 37]
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TABLE 12-15 M-File to Invoke Constrained Minimization Routine for Flywheel Design Problem

% File name = flywheel_opt.m
% Flywheel design
% Design variables: outside radius (ro), and thickness (t)

clear all
% Set options

options = optimset (‘LargeScale’, ‘off’);
% Set limits for design variables

Lb = [4.5, 0.25]; % lower limit
Ub = [9, 1.25]; % upper limit

% Set initial design
x0 = [6, 1.0];

% Set radius of shaft
ri = 1.0;
[x, FunVal, ExitFlag, Output] = . . .

fmincon(‘flywheel_objf’, x0, [], [], [], [], Lb, Ub, ‘flywheel_conf’, options, ri)

TABLE 12-16 M-File for Objective Function for Flywheel Design Problem

% File name = flywheel_objf.m
% Objective function for flywheel design problem

function f = flywheel_objf(x, ri)
% Rename the design variables x

ro = x(1);
t = x(2);
f = pi*(ro^2 - ri^2)*t; % volume of flywheel

TABLE 12-17 M-File for Constraint Functions for Flywheel Design Problem

% Constraint functions for flywheel design problem
function [g, h] = flywheel_conf(x, ri)

% Rename design variables x
ro = x(1);
t = x(2);

% Constraint limits
Is = 0.816; % mass moment of inertia
Sy = 62000; % yield strength

% Normalized inequality constraints
g(1) = 1 - pi/2*(0.28/386)*(ro^4 - ri^4)*t/Is;

% Evaluate maximum von Mises stress
options = [];
[alpha, vonMS] = fminbnd(‘flywheel_vonMs’, ri, ro, options, ri, ro);
g(2) = -vonMS/(0.5*Sy) - 1;

% Equality constraint (none)
h = [];



Exercises for Chapter 12*
Formulate and solve the following problems.

12.1 Exercise 3.34 12.2 Exercise 3.35 12.3 Exercise 3.36

12.4 Exercise 3.50 12.5 Exercise 3.51 12.6 Exercise 3.52

12.7 Exercise 3.53 12.8 Exercise 3.54

12.9 Consider the cantilever beam-mass system shown in Fig. E12-9. Formulate and
solve the minimum weight design problem for the rectangular cross section so that
the fundamental vibration frequency is larger than 8 rad/s and the cross-sectional
dimensions satisfy the limitations

Use a nonlinear programming algorithm to solve the problem. Verify the solution
graphically and trace the history of the iterative process on the graph of the
problem. Let the starting point be (0.5, 0.2). The data and various equations for the
problem are as follows:

Fundamental vibration frequency

Equivalent spring constant, ke

Mass attached to the spring m = W/g
Weight attached to the spring W = 50 lb
Length of the beam L = 12 in
Modulus of elasticity E = (3.00E+07) psi
Spring constant k = 10 lb/in
Moment of inertia I, in4

Gravitational constant g, in/s2

1 1
3

3

k k
L
EIe

= +
w = k me rad/s
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b

h

in
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TABLE 12-18 M-File for Computation of Maximum von Mises Stress at Current Design

% File name = flywheel_vonMS.m
% von Mises stress

function vonMS = flywheel_vonMS (x, ri, ro)
temp = (0.28/386)*(800)^2*(3+0.28)/8;

% Tangential stress
st = temp*(ri^2 + ro^2 + ri^2*ro^2/x^2 - (1+3*0.28)/(3+0.28)*x^2 );

% Radial stress
sr = temp*(ri^2 + ro^2 - ri^2*ro^2/x^2 - x^2); % radial stress
vonMS = -sqrt(st^2 - st*sr + sr^2); % von Mises stress
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FIGURE E12-9 Cantilever beam with spring-mass at the free end.



12.10 A prismatic steel beam with symmetric I cross section is shown in Fig. E12-10.
Formulate and solve the minimum weight design problem subject to the following
constraints:

1. The maximum axial stress due to combined bending and axial load effects
should not exceed 100MPa.

2. The maximum shear stress should not exceed 60MPa.
3. The maximum deflection should not exceed 15mm.
4. The beam should be guarded against lateral buckling.
5. Design variables should satisfy the limitations b ≥ 100mm, t1 £ 10mm,

t2 £ 15mm, h £ 150mm.

Solve the problem using a numerical optimization method, and verify the solution
using KKT necessary conditions for the following data:

Modulus of elasticity E = 200GPa
Shear modulus G = 70GPa
Load P = 70kN
Load angle q = 45°
Beam length L = 1.5m
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FIGURE E12-10 Cantilever I beam. Design variables: b, t1, t2, and h.

12.11 Shape optimization of a structure. The design objective is to determine the shape of
the three-bar structure shown in Fig. E12-11 to minimize its weight (Corcoran,
1970). The design variables for the problem are the member cross-sectional areas
A1, A2, and A3 and the coordinates of nodes A, B, and C (note that x1, x2, and x3 have
positive values in the figure; the final values can be positive or negative), so that the
truss is as light as possible while satisfying the stress constraints due to the
following three loading conditions:

Cond. No. Load Angle
j Pj (lb) q j (degrees)

1 40,000 45
2 30,000 90
3 20,000 135

The stress constraints are written as

where j = 1, 2, 3 represents the index for the three loading conditions and the
stresses are calculated from the following expressions:
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where L = 10 in and

and uj and vj are the horizontal and vertical displacements for the jth loading
condition determined from the following linear equations:

where the stiffness coefficients are given as (E = 3.0E+07psi)

Formulate the design problem and find the optimum solution starting from the point

Compare the solution with that given later in Table 14.7.

A A A

x x x
1 2 3

1 2 3

6 0 6 0 6 0

5 0 0 0 5 0

= = =
= = =

. , . , .

. , . , .

k E
A x

L

A x

L

A x

L

k E
A Lx

L

A Lx

L

A Lx

L
k

k E
A L

L

A L

L

A L

L

11
1 1

2

1
3

2 2
2

2
3

3 3
2

3
3

12
1 1

1
3

2 2

2
3

3 3

3
3 21

22
1

2

1
3

2
2

2
3

3
2

3
3

= + +Ê
Ë

ˆ
¯

= + -Ê
Ë

ˆ
¯ =

= + +Ê
Ë

ˆ
¯

k k

k k

u

v

P

P
j

j

j

j j

j j

11 12

21 22

1 2 3È
ÎÍ

˘
˚̇
È
ÎÍ

˘
˚̇

= È
ÎÍ

˘
˚̇

=
cos

sin
, , ,

q
q

L L x

L L x

L L x

1
2

1
2

2
2

2
2

3
2

3
2

= = +
= = +
= = +

length of member 1

length of member 2

length of member 3

s a a

s a a

s a a

1
1

1 1
1
2 1

2
2

2
2
2 2

3
3

3 3
3
2 3

j j j j j

j j j j j

j j j j j

E

L
u v

E

L
u x v L

E

L
u v

E

L
u x v L

E

L
u v

E

L
u x v L

= +[ ] = +( )

= +[ ] = +( )

= +[ ] = - +( )

cos sin

cos

cos sin

sin 2

Introduction to Optimum Design with MATLAB 431

x1

a1 a2

qj

a3

x3

x2

Pj

u

A C

D

2
1 3

B

L

v

FIGURE E12-11 Three-bar structure–shape optimization.



12.12 Design synthesis of a nine-speed gear drive. The arrangement of a nine-speed gear
train is shown in Fig. E12-12. The objective of the synthesis is to find the size of all
gears from the mesh and speed ratio equations such that the size of the largest gears
are kept to a minimum (Osman et al., 1978). Because of the mesh and speed ratio
equations, it is found that only the following three independent parameters need to
be selected:

Because of practical considerations, it is found that the minimization of |x2 - x3|
results in the reduction of the cost of manufacturing the gear drive.

The gear sizes must satisfy the following mesh equations:

where f is the step ratio in speed. Find the optimum solution for the problem for
two different values of f as and (2)1/3.2

f
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Upon completion of this chapter, you will be able to:

• Explain the kind of interaction possible with an optimization algorithm

• Use optimization software in an interactive mode, if it offers such facilities

• Use an optimization algorithm in a manual interactive mode, if appropriate

Optimization techniques can—to some extent—automate the tedious trial-and-error
aspects of the design process, thus allowing the engineer to concentrate on the more creative
aspects of designing systems. They harness a computer’s speed with computational algo-
rithms to methodically generate the efficient (not just satisfactory) designs that are needed in
today’s competitive world. Optimization techniques can be applied to virtually any engi-
neering design situation, such as the design of aircraft structures, buildings, automotive struc-
tures, engine components, heat exchangers, land developments, water reclamation projects,
chemical processes, electronic circuits, and many more.

Most numerical methods for design optimization involve considerable repetitive calcula-
tions. They must be transcribed into proper computer software. Performance and robustness
of the methods are affected by the round-off and truncation errors in computer calculations.
Most optimization algorithms are proved to converge only in the limit, i.e., there is no algo-
rithm for general optimization problems that is proved to converge in a finite number of iter-
ations. In addition, algorithms lack preciseness in their computational steps because a given
algorithm can be implemented in several different ways depending on the programmer’s
knowledge, experience, and preferences. In addition, the performance of software can differ
when it is installed on different computers, or when different compilers are used on the same
computer. All these difficulties and the lack of preciseness point to the need to somehow
monitor the progress of an algorithm toward the solution and interact with it if needed.

In order to monitor progress of the optimum design process, proper hardware and soft-
ware are needed. The software must have proper interactive facilities so the designer can
change the course of the design process if necessary. The design information must be dis-
played in a comprehensible form. Proper help facilities should also be available. The graph-
ical display of various data and information can facilitate the interactive decision-making
process, so it should be available (Arora and Tseng, 1988).



In this chapter, we describe the interactive design optimization process. The role of
designer interaction and algorithms for interaction are described, especially for advanced
users who would prefer to interact with the optimization process. Desired interactive capa-
bilities and decision-making facilities are discussed and simple examples are used to demon-
strate their use in the design process. These discussions essentially lay out the specifications
for an interactive design optimization software.

13.1 Role of Interaction in Design Optimization
13.1.1 What Is Interactive Design Optimization?
In Chapter 1 we described the engineering design process. The differences between the 
conventional and the optimum design process were explained. The optimum design process
requires sophisticated computational algorithms. However, most algorithms have some
uncertainties in their computational steps. Therefore, it is sometimes prudent to interactively
monitor their progress and guide the optimum design process. Interactive design optimiza-
tion algorithms are based on utilizing the designer’s input during the iterative process. They
are in some sense open-ended algorithms in which the designer can specify what needs to
be done depending on the current design conditions. They must be implemented into inter-
active software that can be interrupted during the iterative process and that can report 
the status of the design to the user. Relevant data and conditions must be displayed at the
designer’s command at a graphics workstation. Various options should be available to the
designer to facilitate decision making and change design data. It should be possible to restart
or terminate the process. With such facilities, designers have complete control over the design
optimization process. They can guide it to obtain better designs and ultimately the best design.

It is clear that for interactive design optimization, proper algorithms must be implemented
into highly flexible and user-friendly software. It must be possible for the designer to inter-
act with the algorithm and change the course of its calculations. We describe later in Section
13.2 algorithms that are suitable for designer interaction. Figure 13-1 is a conceptual flow
diagram for the interactive design optimization process. It is a modification of Fig. 1-2 in
which an interactive block has been added. The designer interacts with the design process
through this block. We shall discuss the desired interactive capabilities and their use later in
this chapter.

13.1.2 Role of Computers in Interactive Design Optimization
As we have discussed earlier, the conventional trial-and-error design philosophy is chang-
ing with the emergence of fast computers and computational algorithms. The new design
methodology is characterized by the phrase model and analyze. Once the design problem is
properly formulated, numerical methods can be used to optimize the system. The methods
are iterative and generate a sequence of design points before converging to the optimum solu-
tion. They are best suited for computer implementation to exploit the speed of computers for
performing repetitive calculations.

It is extremely important to select only robust optimization algorithms for practical appli-
cations. Otherwise, failure of the design process will undoubtedly result in the waste of com-
puter resources and, more importantly, the loss of the designer’s time and morale.

An optimization algorithm involves a limiting process, because some parameters go to zero
or infinity as the optimum design is approached. The representation of such limiting processes
is difficult in computer implementation as it may lead to underflow or overflow. In other
words, the limiting processes can never be satisfied exactly on a computer and quantities such
as zero and infinity must be redefined as very small and large numbers, respectively, on the
computer. These quantities are relative and machine-dependent.
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Often, the proof of convergence or rate of convergence of an iterative optimization algo-
rithm is based on exact arithmetic and under restrictive conditions. Thus, the theoretical
behavior of an algorithm may no longer be valid in practice because of inexact arithmetic
causing round-off and truncation errors in computer representation of numbers. This discus-
sion highlights the fact that proper coding and interactive monitoring of theoretically con-
vergent algorithms are equally important.

13.1.3 Why Interactive Design Optimization?
The design process can be quite complex. Often the problem cannot be stated in a precise
form for complete analysis and there are uncertainties in the design data. The solution to the
problem need not exist. On many occasions, the formulation of the problem must be devel-
oped as part of the design process. Therefore, it is neither desirable nor useful to optimize
an inexact problem to the end in a batch environment. It would be a complete waste of valu-
able resources to find out at the end that wrong data were used or a constraint was inadver-
tently omitted. It is desirable to have an interactive algorithm and software capable of
designer interaction. Such a capability can be extremely useful in a practical design envi-
ronment because not only can better designs be obtained, but more insights into the problem
behavior can be gained. The problem formulation can be refined, and inadequate and absurd
designs can be avoided. We shall describe some interactive algorithms and other suitable
capabilities to demonstrate the usefulness of designer interaction in the design process.
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13.2 Interactive Design Optimization Algorithms
It is clear from the preceding discussion that for a useful interactive capability, proper algo-
rithms must be implemented into well-designed software. Some optimization algorithms are
not suitable for designer interaction. For example, the constrained steepest descent method
of Section 10.5 and the quasi-Newton method of Section 11.4 are not suitable for the inter-
active environment. Their steps are in a sense closed-ended allowing little opportunity for
the designer to change course from the iterative design process. However, it turns out that
the QP subproblem and the basic concepts discussed there can be utilized to devise algo-
rithms suitable for the interactive environment. We shall describe these algorithms and illus-
trate them with examples.

Depending on the design condition at the current iteration, the designer may want to ask
any of the following four questions:

1. If the current design is feasible but not optimum, can the cost function be reduced by
g percent?

2. If the starting design is infeasible, can a feasible design be obtained at any cost?
3. If the current design is infeasible, can a feasible design be obtained without

increasing the cost?
4. If the current design is infeasible, can a feasible design be obtained with only d

percent penalty on the cost?

We shall describe algorithms to answer these questions. It will be seen that the algorithms
are conceptually quite simple and easy to implement. As a matter of fact, they are modifica-
tions of the constrained steepest descent (CSD) and quasi-Newton methods of Sections 10.5
and 11.4. It should also be clear that if interactive software with commands to execute the
foregoing steps is available, the designer can actually use the commands to guide the process
to successively better designs and ultimately an optimum design.

13.2.1 Cost Reduction Algorithm
A subproblem for the cost reduction algorithm can be defined with or without the approxi-
mate Hessian H. Without Hessian updating, the problem is defined in Eqs. (10.25) and (10.26)
and, with Hessian updating, it is defined in Eqs. (11.48) to (11.50). Although Hessian up-
dating can be used, we shall define the cost reduction subproblem without it to keep the 
discussion and the presentation simple. Since the cost reduction problem is solved from a
feasible or almost feasible point, the right side vector e in Eq. (10.26) is zero. Thus, the cost
reduction QP subproblem is defined as

minimize (13.1)

subject to (13.2)

(13.3)

The columns of matrices N and A contain gradients of equality and inequality constraints,
respectively, and c is the gradient of the cost function. Equation (13.2) gives the dot product
of d with all the columns of N as zero. Therefore, d is orthogonal to the gradients of all the
equality constraints. Since gradients in the matrix N are normal to the corresponding con-
straint surfaces, the search direction d lies in a plane tangent to the equality constraints. The
right side vector b for the inequality constraints in Eq. (13.3) contains zero elements corre-
sponding to the active constraints and positive elements corresponding to the inactive con-

A d bT £

N d 0T =

f T T= +c d d d0 5.
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straints. If an active constraint remains satisfied at the equality (i.e., a(i) ·d = 0), the direction
d is in a plane tangent to that constraint. Otherwise, it must point into the feasible region for
the constraint.

The QP subproblem defined in Eqs. (13.1) to (13.3) can incorporate the potential con-
straint strategy as explained in Section 11.1. The subproblem can be solved for the cost reduc-
tion direction by any of the available subroutines cited in Section 11.2. In the example
problems, however, we shall solve the QP subproblem using KKT conditions. We shall call
this procedure of reducing cost from a feasible point the cost reduction (CR) algorithm.

After the direction has been determined, the step size can be calculated by a line search
on the proper descent function. Or, we can require a certain reduction in the cost function
and determine the step size that way. For example, we can require a fractional reduction g in
the cost function (for a 5 percent reduction, g = 0.05), and calculate a step size based on it.
Let a be the step size along d. Then the first-order change in the cost using a linear Taylor’s
expansion is given as a|c ·d|. Equating this to the required reduction in cost |g f |, the step size
is calculated as

(13.4)

Note that c ·d should not be zero in Eq. (13.4) to give a reasonable step size. The cost reduc-
tion step is illustrated in Example 13.1.

a
g

=
◊
f

c d
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EXAMPLE 13.1 Cost Reduction Step

Consider the design optimization problem

minimize 

subject to

From the feasible point (4, 4), calculate the cost reduction direction and the new design
point requiring a cost reduction of 10 percent.

Solution. The constraints can be written in the standard form as

The optimum solution for the problem is calculated using the KKT conditions as

x u x* , ; * , , , ; * .= ( ) = ( ) ( ) = -6 3 17 16 0 0 55 5f

g x4 2 0= - £

g x3 1 0= - £

g x x2
1

12 1 22 1 0 0= +( ) - £.

g x x1
1
3 1 2 1 0 0= -( ) - £.

x x1 2 0, £

x x1 22 12+ £

x x1 2 3- £

f x x x x x xx( ) = - + - -1
2

1 2 2
2

1 23 4 5 10 6.
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At the given point (4, 4),

Therefore, constraint g2 is active, and all the others are inactive. The cost function is
much larger than the optimum value. The constraints for the problem are plotted in
Fig. 13-2. The feasible region is identified as 0ABC. Several cost function contours
are shown there. The optimum solution is at the point B (6, 3). The given point (4, 4)
is identified as D on the line B–C in Fig. 13-2.

The gradients of cost and constraint functions at the point D (4, 4) are calculated
as

These gradients are shown at point D in Fig. 13-2. Each constraint gradient points to
the direction in which the constraint function value increases. Using these quantities,
the QP subproblem of Eqs. (13.1) to (13.3) is defined as

minimize 

subiect to

The solution for the QP subproblem using KKT conditions or the Simplex method of
Section 10.4 is

At the solution, only the first constrain is active having a positive Lagrange multiplier.
The direction d is shown in Fig. 13-2. Since the second constraint is inactive, a(2) ·d
must be negative according to Eq. (13.3) and it is (-0.625). Therefore, direction d
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points toward the feasible region with respect to the second constraint, which can be
observed in Fig. 13-2.

The step size is calculated from Eq. (13.4) based on a 10 percent reduction (g =
0.1) of the cost function as

Thus, the new design point is given as

which is quite close to point D along direction d. The cost function at this point is
calculated as

which is approximately 10 percent less than the one at the current point (4, 4). It may
be checked that all constraints are inactive at the new point.

Direction d points into the feasible region at point D as can be seen in Fig. 13-2.
Any small move along d results in a feasible design. If the step size is taken as 1
(which would be obtained if the inaccurate line search of Section 11.3 was performed),
then the new point is given as (3.5, 0.5), which is marked as E in Fig. 13-2. At point
E, constraint g1 is active and the cost function has a value of -29.875, which is smaller
than the previous value of -26.304. If we perform an exact line search, then a is com-
puted as 0.5586 and the new point is given as (3.7207, 2.0449)—identified as point
E¢ in Fig. 13-2. The cost function at this point is -39.641, which is still better than
the one with step size as unity.
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FIGURE 13-2 Feasible region for Example 13.1. Cost reduction step from point D.



Example 13.2 illustrates the cost reduction step with potential constraints.
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EXAMPLE 13.2 Cost Reduction Step with Potential
Constraints

For Example 13.1, calculate the cost reduction step by considering the potential
inequality constraints only.

Solution. In some algorithms, only the potential inequality constraints at the current
point are considered while defining the direction finding subproblem, as discussed 
previously in Section 11.1. The direction determined with this subproblem can be dif-
ferent from that obtained by including all constraints in the subproblem.

For the present problem, only the second constraint is active (g2 = 0) at the point
(4, 4). The QP subproblem with this active constraint is defined as

minimize 

subject to

Solving the problem by KKT optimality conditions, we get

Since the Lagrange multiplier for the constraint is zero, it is not active, so d = -c is
the solution to the subproblem. This search direction points into the feasible region
along the negative cost function gradient direction, as seen in Fig. 13-2. An appro-
priate step size can be calculated along the direction.

If we require the constraint to remain active (i.e., d1/12 + d2/6 = 0), then the solu-
tion to the subproblem is given as

This direction is tangent to the constraint, i.e., along the line D–B in Fig. 13-2.

d = -( ) = -18 4 9 2 52 8. , . ; .u

d = -( ) =14 18 0, ; u

1
12 1

1
6 2 0d d+ £

f d d d d= - +( ) + +( )14 18 0 51 2 1
2

2
2.

13.2.2 Constraint Correction Algorithm
If constraint violations are very large at a design point, it may be useful to find out if a fea-
sible design can be obtained. Several algorithms can be used to correct constraint violations.
We shall describe a procedure that is a minor variation of the constrained steepest descent
method of Section 10.5. A QP subproblem that gives constraint correction can be obtained
from Eqs. (10.25) and (10.26) by neglecting the term related to the cost function. In other
words, we do not put any restriction on the changes in the cost function, and define the QP
subproblem as

minimize (13.5)

subject to (13.6)

(13.7)A d bT £

N d eT =

f T= 0 5. d d



A solution to the subproblem gives a direction with the shortest distance to the constraint
boundary (linear approximation) from an infeasible point. Equation (13.5) essentially says:
find a direction d having the shortest path to the linearized feasible region from the current
point. Equations (13.6) and (13.7) impose the requirement of constraint corrections. Note that
the potential set strategy as described in Section 11.1 can also be used here. After the direc-
tion has been found, a step size can be determined to make sure that the constraint violations
are improved. We shall call this procedure the constraint correction (CC) algorithm.

Note that constraint correction usually results in an increase in cost. However, there can
be some unusual cases where constraint correction is also accompanied by a reduction in the
cost function. The constraint correction step is illustrated in Example 13.3.
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EXAMPLE 13.3 Constraint Correction Step

For Example 13.1, calculate the constraint correction step from the infeasible point
(9, 3).

Solution. The feasible region for the problem and the starting point (F) are shown
in Fig. 13-3. The constraint and cost gradients are also shown there. At the point 
F (9, 3), the following data are calculated:

g3 9 0= - < ( ) inactive

g2 0 25 0= > ( ).  violation

g1 1 0= > ( ) violation

f 9 3 67 5, .( ) = -

FIGURE 13-3 Feasible region for Example 13.3. Constraint correction and constant cost
steps from point F; constant cost step from point I.
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13.2.3 Algorithm for Constraint Correction at Constant Cost
In some instances, the constraint violations are not very large. It is useful to know whether
a feasible design can be obtained without any increase in the cost. This shall be called a 
constant cost subproblem, which can be defined by adding another constraint to the QP
subproblem given in Eqs. (13.5) to (13.7). The additional constraint simply requires the
current linearized cost to either remain constant or decrease; that is, the linearized change in
cost (c ·d) be nonpositive, which is expressed as

(13.8)

The constraint imposes the condition that the direction d be either orthogonal to the gradi-
ent of the cost function (i.e., c ·d = 0), or make an angle between 90 and 270° with it (i.e.,
c ·d < 0). We shall see this in the example problem discussed later.

c d◊ £ 0
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and gradients of the constraints are the same as in Example 13.1. Cost and constraint
gradients are shown at point F in Fig. 13-3. Thus, the constraint correction QP sub-
problem of Eqs. (13.5) to (13.7) is defined as

minimize 

subject to

Using the KKT necessary conditions, the solution for the QP subproblem is given as

Note that the shortest path from Point F to the feasible region is along the line F–B,
and the QP subproblem actually gives this solution. The new design point is given as

which is point B in Fig. 13-3. At the new point, constraints g1 and g2 are active, and
g3 and g4 are inactive. Thus, a single step corrects both violations precisely. This is due
to the linearity of all the constraints in the present example. In general several itera-
tions may be needed to correct the constraint violations. Note that the new point actu-
ally represents the optimum solution.
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If Inequality (13.8) is active (i.e., the dot product is zero, so d is orthogonal to c), then
there is no change in the linearized cost function value. However, there may be some change
in the original cost function due to nonlinearities. If the constraint is inactive, then there is
actually some reduction in the linearized cost function along with correction of the con-
straints. This is a desirable situation. Thus, we observe that a constant cost problem is also
a QP subproblem defined in Eqs. (13.5) to (13.8). It seeks a shortest path to the feasible
region that either reduces the linearized cost function or keeps it unchanged. We shall 
call this procedure the correction at constant cost (CCC) algorithm that is illustrated in
Examples 13.4 and 13.5.

Note that the constant cost QP subproblem can be infeasible if the current cost function
contour does not intersect the feasible region. This can happen in practice, so a QP sub-
problem should be solved properly. If it turns out to be infeasible, then the constraint of Eq.
(13.8) must be relaxed, and the linearized cost function must be allowed to increase to obtain
a feasible point. This will be discussed in the next subsection.
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EXAMPLE 13.4 Constraint Correction at Constant Cost

For Example 13.3, calculate the constant cost step from the infeasible point (9, 3).

Solution. To obtain the constant cost step from point F in Fig. 13-3, we impose an
additional constraint of Eq. (13.8) as (c ·d) £ 0 on the QP subproblem given in
Example 13.3. Substituting for c, the constraint is given as

(13.9)

which imposes the condition that the linearized cost function either remain constant
at -67.5 or decrease further. From the graphical representation for the problem in Fig.
13-3, we observe that the cost function value of -67.5 at the given point (9, 3) is below
the optimum cost of -55.5. Therefore, the current cost function value represents a
lower bound on the optimum cost function value. However, the linearized cost func-
tion line, shown as G–H in Fig. 13-3, intersects the feasible region. Thus, the QP
subproblem of Example 13.3 with the preceding additional constraint has feasible
solutions. The inequality of Eq. (13.8) imposes the condition that direction d be either
on the line G–H (if the constraint is active) or above it (if the constraint is inactive).
In case it is inactive, the angle between c and d will be between 90 and 270°. If it is
below the line G–H, it violates Inequality (13.8). Note that the shortest path from F
to the feasible region is along the line F–B. But this path is below the line G–H and
thus not feasible for the preceding QP subproblem.

Solving the problem using KKT conditions, we obtain the solution for the preced-
ing QP subproblem as

Thus the new point is given as

At the new point (G in Fig. 13-3), all the constraints are inactive except the second
one (g2). The constant cost condition of Eq. (13.8) is also active, which implies that

x = ( ) = -4 5 3 75 34 6. , . .with  f

d u= -( ) = ( )4 5 0 75 0 83 25 0 0 2 4375. , . ; , . , , , .

- - £d d1 26 0
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the direction d is orthogonal to the cost gradient vector c. As seen in Fig. 13-3, this
is indeed true. Note that because of the highly nonlinear nature of the cost function
at the point F (9, 3), the new cost function actually increases substantially. Thus the
direction d is not truly a constant cost direction. Although the new point corrects all
the violations, the cost function increases beyond the optimum point, which is unde-
sirable. Actually, from point F it is better to solve just the constraint correction
problem, as in Example 13.3. The increase in cost is smaller for that direction. Thus,
in certain cases, it is better to solve just the constraint correction subproblem.

EXAMPLE 13.5 Constraint Correction at Constant Cost

Consider another starting point as (4, 6) for Example 13.3, and calculate the constant
cost step from there.

Solution. The starting point is identified as I in Fig. 13-3. The following data are
calculated at the point (4, 6):

and the constraint gradients are the same as in Example 13.1. Cost and constraint gra-
dients are shown in Fig. 13-3 at point I. Note that the cost function at point I is above
the optimum value. Therefore, the constant cost constraint of Eq. (13.8) may not be
active for the solution of the subproblem, i.e., we may be able to correct constraints
and reduce the cost function at the same time.

The constant cost QP subproblem given in Eqs. (13.5) to (13.8) is defined as

minimize 

subject to
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13.2.4 Algorithm for Constraint Correction at Specified Increase in Cost
As observed in the previous subsection, the constant cost subproblem can be infeasible. In
that case, the current value of the cost function must be allowed to increase. This can be done
quite easily by slightly modifying Inequality (13.8) as

(13.10)

where D is a specified limit on the increase in cost. The increase in cost can be specified
based on the condition that the new cost based on the linearized expression does not go
beyond the previous cost at a feasible point, if known. Note again that the QP subproblem
in this case can be infeasible if the increase in the cost specified in D is not enough. There-
fore, D may have to be adjusted. We shall call this procedure the constraint correction at
specified cost (CCS) algorithm that is illustrated in Example 13.6.

c dT £ D
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Writing the KKT conditions for the QP subproblem, we obtain the solution as

Note that only the second constraint is active. Therefore, the new point should be pre-
cisely on the constraint equation x1 + 2x2 = 12, shown as point L in Fig. 13-3. The con-
stant cost constraint is not active (the direction d lies below the line J–K in Fig. 13-3
making an angle greater than 90° with c). Thus the new cost function value should
decrease at the new point (3.2, 4.4), and it does; -3.28 versus 30, which is a sub-
stantial reduction.

d u= - -( ) = ( )0 8 1 6 0 9 6 0 0 0. , . ; , . , , ,

EXAMPLE 13.6 Constraint Correction at Specified Increase 
in Cost

For Example 13.4, calculate the constraint correction step from the infeasible point
(9, 3) with a 10 percent increase in cost.

Solution. Since the current value of the cost function is -67.5, the 10 percent
increase in cost gives D as 6.75 in Eq. (13.10). Therefore, using c = (-1, -6) as cal-
culated in Example 13.3, the constraint of Eq. (13.10) becomes

Other constraints and the cost function are the same as defined in Example 13.3.
Solving the problem using KKT conditions, we obtain the solution of the subproblem
as

At the solution, the first two constraints are active, and the constraint of Eq. (13.10)
is inactive. Note that this is the same solution as obtained in Example 13.3. Thus the
new point represents the optimum solution.

d u= -( ) = ( )3 0 6 12 0 0 0, ; , , , ,

- - £d d1 26 6 75.



13.2.5 Constraint Correction with Minimum Increase in Cost
It is possible to define a subproblem that minimizes the increase in cost and at the same time
corrects constraints. The subproblem is defined as

subject to the constraints of Eqs. (13.6) and (13.7), where fL is the linearized change in the
cost function. This problem may be unbounded, so we impose the following move limits

to obtain a bounded problem. Here Di represents the maximum and minimum value for di.
The preceding subproblem is linear, so any LP code can be used to solve it. A line search
can be performed along the direction d to find the proper step size. Example 13.7 illustrates
calculations for constraint correction with minimum increase in cost.

- £ £ =D Di i id i n; 1 to 

minimize fL
T= c d
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EXAMPLE 13.7 Constraint Correction with Minimum
Increase in Cost

For Example 13.4, solve the constraint correction problem with the minimum increase
in cost from point F (9, 3) shown in Fig. 13-3.

Solution. At the point (9, 3) the following data are calculated in Example 13.3:

Therefore, the subproblem is defined as

minimize 

subject to

- £ £ - £ £D D D D1 1 1 2 2 2d d;

- £d2 3

- £d1 9

1
12 1

1
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f d dL = - -1 26

c = - -( )1 6, .

g4 3 0= - < ( ) inactive

g3 9 0= - < ( ) inactive

g2 0 25 0= > ( ). ; violation

g1 1 0= > ( ) violation ;

f 9 3 67 5, .( ) = -



13.2.6 Observations on Interactive Algorithms
We have discussed several algorithms that are useful for interactive design optimization. They
are demonstrated for a problem that has linear constraints and quadratic cost function. There
are certain limitations of these algorithms that should be clearly understood:

1. All the algorithms use linear approximations for the cost and constraint functions.
For highly nonlinear problems, the solution of the subproblems are therefore valid
for a small region around the current point.

2. The step size calculated in Eq. (13.4) using the desired reduction g in the cost
function is based on the linear approximation for the cost function. With the
calculated step size, the actual reduction in the cost function may be smaller or
larger than g depending on the nonlinearity of the cost function.

3. In the constraint correction problem of Example 13.3, only one step is needed to
correct all the constraints. This is due to the linearity of all the constraints. When the
constraints are nonlinear, several constraint correction steps are usually needed to
reach the feasible region. The spring design problem solved later in Section 13.5
demonstrates this fact.

4. Constraint correction is most often accompanied by an increase in the cost function.
However, in certain cases it may also result in a decrease in the cost function. This is
rare and depends on the nonlinearity of functions and the starting point.
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The linear programming subproblem can be solved using the Simplex method used
in Chapter 6. We solve the problem using the program LINDO (Schrage, 1981). With
D1 = D2 = 1, the problem is infeasible, the move limits are too restrictive, and the fea-
sible point cannot be found. Since the problem has two variables, one can easily graph
all the problem functions and verify that there is no solution to the preceding lin-
earized subproblem. When D1 = D2 = 3, the following solution is obtained:

and the second constraint is active with the Lagrange multiplier as 36. The lower limit
on d1 is also active with the Lagrange multiplier as 2.0. When d1 and d2 are added to
the starting point (9, 3), the new point is given as (6, 3). This is actually the optimum
point with the cost function value as -55.5. Note that since fL = 3, the cost function
was supposed to increase by only 3 from -67.5. However, because of nonlinearity, it
has actually increased by 12.

Note that since the Lagrange multiplier for the lower bound constraint on d1 is 2,
the Constraint Sensitivity Theorem 4.7 predicts that fL will decrease by 2 to 1 if D1 is
changed to 4. This is indeed the case. With D1 = D2 = 4, the solution of the subprob-
lem is obtained as

and the second constraint is active with the Lagrange multiplier as 36. The lower limit
on d1 is still active with the Lagrange multiplier as 2.0. The new point is given as (5,
3.5) with the cost function as -43.375. For this point the cost function is actually
increased by 24.125 rather than just 1 as predicted by the solution of the linearized
subproblem.

d d fL1 24 0 5 1 0= - = =, . , .

d d fL1 23 0 3= - = =, ,



5. The constant cost condition of Eq. (13.8) is based on the linearized cost function.
Even if this constraint is active at the solution for the subproblem, there may be
changes to the original cost function at the new point. This is due to the nonlinearity
of the cost and constraint functions. We have observed this phenomena in Examples
13.4–13.7.

6. For some infeasible points, it is better to solve the constraint correction subproblem
rather than the constant cost subproblem.

7. As seen in Examples 13.1 and 13.2, there are several cost reduction directions at a
given feasible point. They depend on the definition of the QP subproblem. It is
difficult to determine the best possible direction.

8. The Lagrange multipliers evaluated during the solution of QP subproblems can be
quite different from their values at the optimum solution to the original problem.
This can be observed in the solution of Examples 13.1–13.7.

13.3 Desired Interactive Capabilities
Interactive software for design optimization should be flexible and user-friendly. Help facil-
ities should be available in the program which should have graphical user interface or be
menu driven. We shall mention several desirable capabilities of such interactive software.

The program should be able to treat general nonlinear programming as well as uncon-
strained problems; treat equality, inequality, and design variable bound constraints; should
have choice of a few good algorithms that are robustly implemented; and trap users’ mis-
takes and not abort abnormally.

13.3.1 Interactive Data Preparation
The software should have a module for interactive data preparation and editing. The com-
mands for data entry should be explicit. Only the minimum amount of data should be required.
The user should be able to edit any data that have been entered previously. The step-by-step
procedure should be set up to display the menu for data selection and entry. Or, it should be
possible to enter data in a simple question/answer session. The system should be set up in
such a way so that it is protected from any of the designer’s mistakes. If data mismatch is
found, messages should be given in detail. The interactive input procedure should be simple
so that even a beginner can follow it easily.

13.3.2 Interactive Capabilities
As observed earlier, it is prudent to allow designer interaction in the computer-aided design
process. Such a dialog can be very beneficial, saving computer and human resources. For the
use of the interactive software system in engineering, two questions arise: (1) what are the
advantages and disadvantages of the interaction, and (2) what type of interactive capability
needs to be provided? We shall address both these questions.

All general-purpose design optimization software need the following information about
the problem to be solved: (1) input data such as number of design variables, number of con-
straints, and so on, (2) the cost and constraint functions, and (3) the gradients of cost and
constraint functions. If the gradients are not available, then the system should automatically
approximate them by a finite difference method. If there is a mistake in the input data or
problem definition, errors will occur in the problem-solving procedure. The optimization
system should take care of such mistakes as much as possible.

It is also useful to monitor the optimum process through the interactive session. Histories
of the cost function, constraint functions, design variables, maximum constraint violation,
and convergence parameter should be monitored. When these histories are graphically dis-
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played, they can be of great help in certain cases of decision making. If the design process
is not proceeding satisfactorily (there could be inaccuracies or errors in the problem formu-
lation and modeling), it is necessary to terminate it and check the formulation of the problem.
This will save human as well as computer resources. Also, if one algorithm is not progress-
ing satisfactorily, a switch should be made to another one. The system should be able to give
suggestions for design change based on the analysis of the trends. Therefore, monitoring the
iterative process interactively is an important capability that should be available in design
optimization software.

The designer should also be able to guide the problem-solving process. For example, the
program can be run for a certain number of iterations and interrupted to see if the process is
progressing satisfactorily. If it is not progressing as expected, a decision to change the course
of calculations can be made. If there are constraint violations, the designer may want to know
whether they can be corrected without any penalty to the cost function. If this cannot be done,
the penalty to the cost function to correct the constraints should be made available. When
the design is in the feasible region, the system should have the capability to perform calcu-
lations and determine if the cost function can be reduced by a certain percentage and still
remain feasible. If the iterative process does not progress well, then the designer should be
able to restart the program from any previous iteration or any other design. At the optimum
point, the penalty to tighten a constraint or the gain to relax it should be displayed. This infor-
mation is available from the Lagrange multipliers for the constraints. In practical optimiza-
tion, these interactive capabilities can be quite useful.

It should be possible to change the input data for a design problem during the iterative
process. After monitoring the process for a few iterations, it may be necessary to change the
problem or program parameters. This should be possible without terminating the program.
Design sensitivity coefficients of the cost function and potential constraints should be 
displayed in a convenient form, e.g., as normalized bar charts. This information will show
relative sensitivity of the design variables. The designer should also be able to determine 
the status of the design variables and change it interactively if desired. The trend informa-
tion when displayed graphically can aid the designer in gaining insights into the problem
behavior so this capability should be available.

It should also be possible to utilize the interactive design optimization software in the
batch environment with a minimum of input data. The system should have default values for
the best parameters determined through expertise and numerical experimentation.

13.3.3 Interactive Decision Making
When the program is run interactively, a wide range of options should be available to the
designer. The following is a list of possible capabilities that can aid the designer in decision
making:

1. The designer may want to re-examine the problem formulation or design data.
Therefore, it should be possible to terminate the program properly and restart it.

2. It should be possible at any iteration to display the status of the design, such as
current values of variables, cost function, maximum constraint violation, and other
such data.

3. It should be possible to change data at any iteration, such as design variables and
their limits, convergence criteria, and other data.

4. The designer should be able to fix design variables to any value. It should also be
possible to release the fixed design variables.

5. The designer should be able to run the algorithm one iteration at a time or several
iterations.

6. It should be possible to restart the program from any iteration.
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7. It should be possible to change the algorithm during the iterative process.
8. The designer should be able to request a reduction in the cost function by x percent

from a feasible point.
9. The designer should be able to request a constraint correction at any iteration.

10. The designer should be able to request a constant cost step.
11. The designer should be able to request a constraint correction with an x percent

limit on the increase in cost.
12. The designer should be able to request various graphical displays.

13.3.4 Interactive Graphics
Graphical display of data is a convenient way to interpret results and draw conclusions. Inter-
active graphics can p1ay a major role in design decision making during the iterative opti-
mization process. Possible graphical displays are:

1. Plots of cost function, convergence parameters, and maximum constraint violation
histories. These show the progress of the iterative process toward the optimum
point.

2. Histories of design variables. These can be used to observe the trend in design
variables and possibly used to extrapolate their values.

3. Constraint function histories can be displayed. This can show constraints that are
not playing any role in the design process. It can also show dominant constraints.

4. Sensitivity coefficients for the cost and constraint functions can be displayed in the
form of bar charts. These are nothing but normalized gradients of cost and
constraint functions showing sensitive or insensitive variables and functions.

It can be seen that by using interactive graphics capabilities, designers can observe the
progress of the optimization process. They can learn more about the behavior of the design
problem and perhaps refine its formulation.

13.4 Interactive Design Optimization Software
The preceding sections essentially describe specifications for a general-purpose interac-
tive design optimization software. Based on them, a software system can be designed and
implemented. It can be observed that to implement all the flexibilities and capabilities, the
software will be quite large and complex. The most modern software design and data man-
agement techniques will have to be utilized to achieve the stated goals. The entire process of
software design, implementation, and evaluation can be quite costly and time-consuming,
requiring the equivalent of several man-years.

In this section, we shall briefly describe software that has some of the previously stated
capabilities. Other available software may also have similar capabilities. The present program
is called IDESIGN, which stands for Interactive Design Optimization of Engineering
Systems. It has interactive and graphics facilities suitable for computer-aided optimization
and design (Arora, 1984; Arora and Tseng, 1987a,b). With the IDESIGN program, the com-
puter and the designer’s experience can be utilized to adjust design variables so as to improve
the design objective while satisfying the constraints. It contains four state-of-the-art non-
linear optimization algorithms. Efficient and reliable implementations of the algorithms have
been developed over several years of testing. The simpler cases of linear and unconstrained
optimization can also be handled.

IDESIGN has several facilities that permit the engineer to interact with and control the
optimization process. The designer can backtrack to any previous design or manually input
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a new trial design. Design information can be displayed in a variety of ways or represented
in graphs. The system has been designed to accommodate both experienced users and begin-
ners. The beginner can respond to one menu at a time as guided by online instruction, whereas
the expert can prepare an input data file and thus bypass immediate menus. The software
identifies and helps the user correct improper responses. Input and output can be echoed to
a “dialog” file for the user’s reference. Input can also be received from a file for batch mode
operation for large-scale problems.

13.4.1 User Interface for IDESIGN
IDESIGN consists of a main program and several standard subroutines that need not be
changed by the user. In order to solve a design problem, the user must prepare additional
subroutines for the program. The input data, such as the initial design, lower and upper limits
on design variables, problem parameters, and the parameter values to invoke various options
available in the program, must also be provided. The input data and options available in the
program are described in the user’s manual (Arora and Tseng, 1987a).

The user must describe the design problem by coding the following four FORTRAN 
subroutines:

USERMF: Minimization (cost) Function evaluation subroutine
USERCF: Constraint Functions evaluation subroutine
USERMG: Minimization (cost) function Gradient evaluation subroutine
USERCG: Constraint functions Gradient evaluation subroutine

A fifth subroutine USEROU may also be provided by the user to perform postoptimality
analyses for the optimum solution and obtain more output using specialized formats.

Figure 13-4 shows a conceptual layout of the interactive design optimization environment
with the program IDESIGN. To create a design system for a particular application, the
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designer needs to develop FORTRAN subroutines that define the problem—cost and con-
straint functions as well as gradient evaluation subroutines. The designer has all the flexibil-
ities to develop these subroutines as long as the “argument” requirements to interface with
IDESIGN are satisfied. For example, additional arrays may be declared, external subroutines
or independent programs may be called, and additional input data may be entered. Through
these subroutines, the designer may also incorporate more interactive commands that are 
specific to the domain of the application.

General-purpose interactive capability is available in IDESIGN as shown on the left side
of Fig. 13-4. In this part, interactive commands that are not connected to any specific area
of application are available. Table 13-1 contains a list of commands that are currently avail-
able. Using these commands, the designer can interactively guide the process toward accept-
able designs. The command CH/XXX is particularly useful, as it allows the designer to
change design variable values and their upper and lower limits, algorithm, and convergence
criteria. It can also be used for obtaining advice from IDESIGN for the best changes to design
variables to correct constraints. The PLOT commands can be used to observe trends in the
design variables, determine critical constraints, and determine sensitive and insensitive vari-
ables with respect to the cost and constraint functions.

It can be seen that the foregoing interactive facilities can be utilized to gain insights into
the behavior of a particular design problem. Having gained this knowledge, the designer can
perhaps develop alternate design concepts that may be more efficient and economical.
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TABLE 13-1 Interactive Commands Available in IDESIGN

Command Purpose

CON CONTINUE IDESIGN
DIS DISPLAY THE DATA
HELP HELP THE USER
QUIT STOP IDESIGN
PLOT/NO. NO = 1 COST HISTORY

NO = 2 CONVERGENCE PARAMETER HISTORY
NO = 3 MAX CONSTRAINT VIOLATION HISTORY
NO = 4 DESIGN VARIABLES HISTORY
NO = 5 CONSTRAINTS HISTORY
NO = 6 CONSTRAINT AND COST SENSITIVITY BAR CHARTS

CH/XXX CHANGE VARIABLES OR PARAMETERS
XXX = ABBREVIATION OF PARAMETER

OPT GO TO OPTIMUM
OK/XX READY TO CONTINUE IDESIGN

XX = NUMBER OF ITERATIONS;
IF/XX IS OMITTED, IDESIGN GOES TO

NEXT DESIGN POINT
FOR OK/FEA, IDESIGN GOES TO NEXT

FEASIBLE DESIGN
RS/XXX RESTART FROM ITERATION NUMBER XXX
CR SOLVES COST REDUCTION PROBLEM
CC SOLVES CONSTRAINT CORRECTION PROBLEM
CCC SOLVES CONSTRAINT CORRECTION AT

CONSTANT COST PROBLEM
CCS SOLVES CONSTRAINT CORRECTION WITH

BOUND ON INCREASE IN COST



13.4.2 Capabilities of IDESIGN
The program has been used to solve several classes of optimal design problems:

1. Small-scale engineering design problems having explicit cost and constraint
functions, such as the ones described earlier in this text.

2. Structural design problems modeled using finite elements, such as trusses, frames,
mixed finite elements, bridges, industrial buildings, high-rise buildings, plate girders,
machine elements, and many others (Arora and Haug, 1979; Arora and Thanedar,
1986; Arora, 2002). More details of applications in this area are also given in
Chapter 14.

3. Dynamic response optimization applications, such as vibration isolation, steady-state
response, designs for earthquake resistance, worst-case design, and transient
response problems (Hsieh and Arora, 1984; Lim and Arora, 1987; Tseng and Arora,
1987; Arora, 1999).

4. Biomechanics applications, such as muscle force distribution and contact force
determination problems (Pederson et al., 1987).

5. Optimal control of systems—structural, mechanical, and aerospace applications.
More details of applications in this area are discussed in Chapter 14.

6. System identification problems, such as environmental and material modeling
problems (Kim and Arora, 2003).

Problem Type and Algorithms The program can solve any general nonlinear programming
problem formulated as given in Eq. (10.1), linear programming problems, and unconstrained
problems. Although the program has the option of solving linear programming problems, the
algorithm used is not as efficient as the Simplex method. So, for large linear programming
problems, it is suggested that a program based on the Simplex method be used. The follow-
ing algorithms are available:

1. Cost function bounding algorithm (Arora, 1984a,b).
2. Pshenichny’s linearization method (Section 10.5; Belegundu and Arora, 1984).
3. Sequential quadratic programming algorithm that generates and uses approximate

second-order information for the Lagrange function (Section 11.4; Lim and Arora,
1986).

4. A hybrid method that combines the cost function bounding and the sequential
quadratic programming algorithms (Thanedar et al., 1986).

5. Conjugate gradient method for unconstrained problems (Section 8.4).

If an algorithm is not specified by the user, the program automatically uses the best algorithm.

Gradient Evaluation The following capabilities to evaluate gradients and check gradient
expressions are available:

1. If the user does not program gradient expressions in USERMG and USERCG sub-
routines, the program has an option to automatically calculate them.

2. An option is available in IDESIGN to determine the optimum value of d for the
finite difference gradient evaluation of cost and constraint functions.

3. If the user has programmed gradient expressions in USERMG and USERCG
subroutines, an option is available to verify them, i.e., the gradient evaluation is
checked using the finite difference approach. If the gradient expressions are in error,
an option is available to either stop the program or continue its execution.

These options have proved to be useful in practical applications.
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Output Several levels of output can be obtained from the program. This can be specified
in the input data. The minimum output giving the final design, design variables and constraint
activities, and histories of cost function, convergence parameter and maximum constraint 
violation, can be obtained. More detailed information at each iteration, such as the gradient
matrix and other intermediate results, can also be obtained.

13.5 Examples of Interactive Design Optimization
In this section, we shall demonstrate the use of some of the interactive capabilities by solving
the spring design optimization problem formulated in Section 2.9 (Shigley and Mischke,
2001). Given numerical data will be used to solve the problem using batch and interactive
capabilities.

13.5.1 Formulation of the Spring Design Problem

Standard Definition of the Problem After normalizing the constraints, using the defined
data and writing them in the standard form of Section 2.11, we obtain the optimum design
formulation for the spring problem as

minimize (13.11)

subject to the deflection constraint

(13.12)

the shear stress constraint

(13.13)

the surge wave frequency constraint

(13.14)

and the outer diameter constraint

(13.15)

The lower and upper bounds on the design variables are selected as follows:
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Note that the constant p2r/4 in the cost function of Eq. (13.11) has been neglected. This
simply scales the cost function value without affecting the final optimum solution. The
problem has three design variables and 10 inequality constraints in Eqs. (13.12) to (13.16).
If we attempt to solve the problem analytically using the KKT conditions of Section 4.4, we
will have to consider 210 cases, which will be tedious and time-consuming.

13.5.2 Optimum Solution for the Spring Design Problem
Any suitable program can be used to solve the problem defined in Eqs. (13.11) to (13.16).
We solve the problem using the sequential quadratic programming algorithm of Section 11.4
available in the IDESIGN software package. The history of the iterative design process is
shown in Table 13-2. The table shows iteration number (Iter.), maximum constraint violation
(Max. vio.), convergence parameter (Conv. parm.), cost function (Cost), and design variable
values at each iteration. It also gives constraint activity at the optimum point indicating
whether a constraint is active or not, constraint function values, and their Lagrange multi-
pliers. Design variable activity is shown at the optimum point, and the final cost function
value and the number of calls to user routines are also given.

The following stopping criteria are used for the present problem:

1. The maximum constraint violation (Max. vio.) should be less than e1, i.e., V � e1 in
Step 4 of the algorithm given in Section 11.4. e1 is taken as 1.00E-04.

2. The length of the direction vector (Conv. parm.) should be less than e2, i.e., ||d|| � e2

in Step 4 of the algorithm given in Section 11.4. e2 is taken as 1.00E-03.

The starting design estimate is (0.2, 1.3, 2.0), where the maximum constraint violation is
96.2 percent and the cost function value is 0.208. At the sixth iteration, a feasible design
(maximum constraint violation is 1.97E-05) is obtained at a cost function value of
(1.76475E-02). Note that in this example, the constraint correction is accompanied by a sub-
stantial reduction (by a factor of 10) in the cost function. However, most often, the constraint
correction will result in an increase in cost. The program takes another 12 iterations to reach
the optimum design. At the optimum point, the deflection and shear stress constraints of Eqs.
(13.13) and (13.14) are active. The Lagrange multiplier values are (1.077E-02) and
(2.4405E-02). Design variable one (wire diameter) is close to its lower bound.

13.5.3 Interactive Solution for Spring Design Problem
In the previous subsection, the spring design problem was solved in the batch environment
where the designer had no control over the iterative process. The program took 18 iterations
to converge to the optimum point. We shall solve the problem interactively starting from the
same design point. The procedure will be to interrupt the program at every iteration, analyze
the design conditions, and give interactive commands to execute a particular step. In the
current application, only the cost function value and maximum constraint violation are mon-
itored and used to make decisions. In more advanced applications, histories of design vari-
ables and other graphic facilities can also be used to make decisions. For example, design
variable values can be extrapolated based on the observation of trends. This will be demon-
strated in the next subsection.

Table 13-3 contains histories of design variables, maximum constraint violation, conver-
gence parameter, and the cost function. It also shows the interactive algorithm used at each
iteration. The initial objective is to obtain a feasible design so the constraint correction (CC)
algorithm is executed for the first six iterations. A feasible design is obtained at the seventh
iteration. Note that during the first six iterations, constraint correction is accompanied by a
reduction in the cost function. At the seventh iteration, the cost reduction (CR) algorithm is
executed with a 20 percent reduction in the cost function. At the eighth iteration the cost
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function is reduced but constraint violation again appears. For the next two iterations, con-
straint correction at constant cost (CCC) is sought and a nearly feasible design is obtained at
the tenth iteration. At the tenth iteration, constraint correction at a specified increase in cost
(CCS) is sought. At the eleventh iteration, all constraints are satisfied and the convergence
parameter is quite small, so the program is terminated. The cost function is fairly close to
the true optimum. However, the design point is somewhat different. It turns out that there are
several near optimum designs in the neighborhood of the true optimum for this example
problem.
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TABLE 13-2 History of the Iterative Optimization Process for the Spring Design Problem in Batch 
Environment

Iter. Max. vio. Conv. parm Cost d D N

1 9.61791E-01 1.00000E+00 2.08000E-01 2.0000E-01 1.3000E+00 2.0000E+00
2 2.48814E+00 1.00000E+00 1.30122E-02 5.0000E-02 1.3000E+00 2.0038E+00
3 6.89874E-01 1.00000E+00 1.22613E-02 5.7491E-02 9.2743E-01 2.0000E+00
4 1.60301E-01 1.42246E-01 1.20798E-02 6.2522E-02 7.7256E-01 2.0000E+00
5 1.23963E-02 8.92216E-03 1.72814E-02 6.8435E-02 9.1481E-01 2.0336E+00
6 1.97357E-05 6.47793E-03 1.76475E-02 6.8770E-02 9.2373E-01 2.0396E+00
7 9.25486E-06 3.21448E-02 1.76248E-02 6.8732E-02 9.2208E-01 2.0460E+00
8 2.27139E-04 7.68889E-02 1.75088E-02 6.8542E-02 9.1385E-01 2.0782E-00
9 5.14338E-03 8.80280E-02 1.69469E-02 6.7635E-02 8.7486E-01 2.2346E+00

10 8.79064E-02 8.87076E-02 1.44839E-02 6.3848E-02 7.1706E-01 2.9549E+00
11 9.07017E-02 6.66881E-02 1.31958E-02 6.0328E-02 5.9653E-01 4.0781E+00
12 7.20705E-02 7.90647E-02 1.26517E-02 5.7519E-02 5.1028E-01 5.4942E+00
13 6.74501E-02 6.86892E-02 1.22889E-02 5.4977E-02 4.3814E-01 7.2798E+00
14 2.81792E-02 4.50482E-02 1.24815E-02 5.3497E-02 4.0092E-01 8.8781E+00
15 1.57825E-02 1.94256E-02 1.25465E-02 5.2424E-02 3.7413E-01 1.0202E+01
16 5.85935E-03 4.93063E-03 1.26254E-02 5.1790E-02 3.5896E-01 1.1113E+01
17 1.49687E-04 2.69244E-05 1.26772E-02 5.1698E-02 3.5692E-01 1.1289E+01
18 0.00000E+00 9.76924E-08 1.26787E-02 5.1699E-02 3.5695E-01 1.1289E+01

Constraint activity

No. Active Value Lagr. mult.

1 Yes -4.66382E-09 1.07717E-02
2 Yes -2.46286E-09 2.44046E-02
3 No -4.04792E+00 0.00000E+00
4 No -7.27568E-01 0.00000E+00

Design variable activity

No. Active Design Lower Upper Lagr. mult.

1 Lower 5.16987E-02 5.00000E-02 2.00000E-01 0.00000E+00
2 Lower 3.56950E-01 2.50000E-01 1.30000E+00 0.00000E+00
3 No 1.12895E+01 2.00000E+00 1.50000E+01 0.00000E+00

No. of calls for cost function evaluation (USERMF) = 18
No. of calls for evaluation of cost function gradient (USERMG) = 18
No. of calls for constraint function evaluation (USERCF) = 18
No. of calls for evaluation of constraint function gradients (USERCG) = 18
No. of total gradient evaluations = 34



13.5.4 Use of Interactive Graphics
The graphical display of a large amount of data is an extremely convenient way to interpret
results and draw conclusions. Interactive graphics can play a major role in decision making
during the design process. We demonstrate the possible use of interactive graphics during the
design optimization process using the spring design problem as an example. We execute the
spring design problem for 10 iterations starting from the point (0.2, 1.3, 2.0). At the tenth
iteration the program is interrupted and the execution control is transferred to the designer.
Various plotting commands available in the program are used to display the data on the screen.
Next, we will explain various graphics facilities and their possible use in the practical design
environment.

Design Variable Trend The history of design variables when displayed on the screen can
show their trend. For example, Fig. 13-5 shows the variation of design variables as the iter-
ations progress. It shows that design variable 1 decreases at the first iteration and then remains
almost constant. If the information were displayed at an intermediate iteration, the variable
could be assigned a fixed value since it was not changing very much. Design variable 2
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TABLE 13-3 Interactive Solution Process for the Spring Design Problem

Iter. Algor. Max. vio. Conv. parm. Cost d D N

1 CC 9.61791E-01 l.00000E+00 2.08000E-01 2.0000E-01 1.3000E+00 2.0000E+00
2 CC 2.48814E-00 1.00000E+00 1.30122E-02 5.0000E-02 1.3000E+00 2.0038E+00
3 CC 6.89874E-01 1.00000E+00 1.22613E-02 5.7491E-02 9.2743E-01 2.0000E+00
4 CC 1.60301E-01 1.00000E+00 1.20798E-02 6.2522E-02 7.7256E-01 2.0000E+00
5 CC 3.70554E-01 1.00000E+00 1.03315E-02 5.8477E-02 5.1558E-01 3.8601E+00
6 CC 5.06054E-01 1.00000E+00 7.96802E-03 5.0000E-02 2.9195E-01 8.9170E+00
7 CR 0.00000E+00 1.67623E-02 1.47352E-02 5.5455E-02 4.3230E-01 9.0837E+00
8 CCC 3.53358E-02 1.67623E-02 1.19085E-02 5.2692E-02 3.8896E-01 9.0828E+00
9 CCC 4.24950E-04 1.67623E-02 1.27298E-02 5.3485E-02 4.0151E-01 9.0831E+00

10 CCS 1.08957E-04 1.67623E-02 1.27290E-02 5.3395E-02 3.9916E-01 9.1854E+00
11 CR 0.00000E+00 5.49055E-05 1.27300E-02 5.3396E-02 3.9918E-01 9.1854E+00

Constraint activity

No. Active Value Lagr. mult.

1 Yes -2.94670E-09 1.09581E-02
2 Yes -1.36188E-09 2.45745E-02
3 No -4.12384E+00 0.00000E+00
4 No -6.98284E-01 0.00000E+00

Design variable activity

No. Active Design Lower Upper Lagr. mult.

1 Lower 5.33956E-02 5.00000E-02 2.00000E-01 0.00000E+00
2 No 3.99178E-01 2.50000E-01 1.30000E+00 0.00000E+00
3 No 9.18539E+00 2.00000E+00 1.50000E+01 0.00000E+00

No. of calls for cost function evaluation = 11
No. of calls for evaluation of cost function gradient = 11
No. of calls for constraint function evaluation = 11
No. of calls for evaluation of constraint function gradient = 11
No. of total gradient evaluations = 20



decreases for the first few iterations and then remains almost constant. Variable 3 does not
change for the first three iterations and then increases rapidly for the next two iterations.
Using the trend formation, the designer can extrapolate the value of a design variable 
manually.

We conclude that by using a design variable history, we can make the following decisions:

1. Based on the displayed trend, we can extrapolate the value of a design variable.
2. If a design variable is not changing, we can fix it for a few iterations and optimize

only the remaining ones.

Maximum Constraint Violation History Figure 13-6 shows a plot of maximum constraint
violation versus the iteration number for the spring design problem. Using this graph, we can
locate feasible designs. For example, designs after iteration seven are feasible. Designs at all
previous iterations had some violation of constraints.
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FIGURE 13-6 History of the maximum constraint violation for the spring design problem.



Cost Function History Figure 13-7 shows the history of the cost function for the first 10
iterations for the spring design problem. The cost function decreases substantially at the first
iteration. After that, it changes slowly and appears to be quite close to the optimum. The iter-
ative process could have been terminated at a feasible design

Convergence Parameter History Figure 13-8 shows the convergence parameter history
for the spring design problem. This parameter is supposed to go to zero as the optimum is
reached. The parameter is close to zero at the seventh iteration, so the solution is quite close
to the optimum and the iterative process could be terminated.

Constraint Function History Figure 13-9 shows the history of the four constraints for the
spring design problem. A value of less than zero indicates the constraint to be inactive and
greater than zero indicates the constraint to be violated. It can be seen that the first and fourth
constraints are violated in the beginning, but during later iterations the first and the second
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constraints are active. The third constraint is never active or violated and may be ignored.
The constraint does not influence the solution or the optimization process. Thus, using the
history of constraint functions, we can identify constraints that are critical in determining
the optimum solution. The designer can further analyze these constraints to determine whether
they can be adjusted to improve the optimum solution.

Cost Function Sensitivity Chart Figure 13-10 shows a normalized bar chart for the cost
function sensitivity to design variables. The chart is obtained by plotting the relative values
of the gradient components of the cost function (derivatives with respect to the design vari-
ables). For the spring design problem, the cost function is most sensitive to the first design
variable and least sensitive to the third one. Knowing this, the designer can decide to fix the
third variable and optimize only the first and the second ones.
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Design Variable Sensitivity for Various Constraints It may be useful to know what happens
to various constraints if a design variable is changed. Figure 13-11 shows such a normalized
bar chart for design variable 1 (wire diameter) for the spring design problem. It shows how
the four constraints change if design variable 1 is changed slightly. For example, a small
increase in the variable increases the value of the first constraint and reduces it for constraint
2. The bar chart is obtained by plotting the normalized derivatives of all the active constraints
with respect to the first design variable.

Constraint Sensitivity Chart Figure 13-12 is a plot for the normalized gradient components
for the second constraint for the spring design problem. It indicates what happens to the con-
straint function value if any design variable is changed. For example, an increase in variable
1 (wire diameter) reduces the value of the constraint quite rapidly. An increase in the values
of design variable 2 increases the value of constraint 2.

Concluding Remark It can be seen that various graphs and bar charts give extremely useful
information about the design problem. Such information can be used in accelerating the
optimum design process as well as in learning more about the behavior of the system. The
insights gained can lead to new concepts and better designs for the system.
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Exercises for Chapter 13
Section 13.2 Interactive Design Optimization Algorithms

13.1 Consider the following constrained problem:

subject to

Graph the problem functions and identify the feasible region. Locate the optimum
point.

13.2 At the feasible point (0, 2) for Exercise 13.1, compute the cost reduction direction
and obtain a new point requiring a 10 percent reduction in the cost function. Show
the direction on the graph and explain your solution.

13.3 At the infeasible point (3, 3) for Exercise 13.1, compute the constraint correction
direction, show it on the graph, and explain your solution.

13.4 At the infeasible point (2, 0.8) for Exercise 13.1, compute the constant cost
direction, show it on the graph, and explain your solution.

13.5 At the infeasible point (2, 0.8) for Exercise 13.1, compute the constraint correction
direction allowing only a 10 percent increase in the cost function. Show the
direction on the graph and explain your solution.

13.6 Consider the following constrained problem:

subject to

Plot the problem functions on a graph and identify the feasible region. Locate the
optimum point.

13.7 At the feasible point (0, 1.25) for Exercise 13.6, compute the cost reduction
direction and obtain a new point requiring a 10 percent reduction in the cost
function. Show the direction on the graph and explain your solution.

13.8 At the infeasible point (4, 2) for Exercise 13.6, compute the constraint correction
direction and show it on the graph. Explain your solution.

x x1 2 0, ≥

x x1 24 5+ £

2 3 61 2x x+ £

maximize 2 41 2 1
2

2
2x x x x+ - -

x x1 2 0, ≥

5 2 101 2x x+ £

x x1 23 6+ £

minimize f x x x xx( ) = + - -2 3 21 2 1
3

2
2
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13.9 At the infeasible point (1, 2) for Exercise 13.6, compute the constant cost direction
and show it on the graph. Explain your solution.

13.10 At the infeasible point (2, 2) for Exercise 13.6, compute the constraint correction
direction allowing only a 10 percent increase in the cost function. Show the
direction on the graph and explain your solution.
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14 Design Optimization Applications with
Implicit Functions

465

Upon completion of this chapter, you will be able to:

• Explain what is meant by applications that have implicit functions

• Explain how to evaluate derivatives of implicit functions for your problem

• Determine which software components need to be integrated to solve your design
problem

Thus far we have considered simple engineering design problems to describe optimiza-
tion concepts and computational methods. Explicit expressions for all the functions of the
problem in terms of the design variables were assumed to be known. Whereas some practi-
cal problems can be formulated with explicit functions, there are numerous other applica-
tions for which explicit dependence of the problem functions on design variables is not known.
In addition, complex systems require large and more sophisticated analysis models. The
number of design variables and constraints can be quite large. A check for convexity of the
problem is almost impossible. The existence of even feasible designs is not guaranteed, much
less the optimum solution. The calculation of problem functions can require large computa-
tional effort. In many cases large special purpose software must be used to compute the
problem functions. Although we will discuss some methods in Chapters 15 and 16 that do
not require gradients of functions, most computational algorithms for continuous variable
problems require gradients of cost and constraint functions. When an explicit form of the
problem functions is not known, gradient evaluation requires special procedures that must
be developed and implemented into proper software. Finally, various software components
must also be integrated properly to create an optimum design capability for a particular class
of design problems.

In this chapter, issues of the optimum design of complex practical engineering systems
are addressed. Formulation of the problem, gradient evaluation, and other practical issues,
such as algorithm and software selection are discussed. The important problem of inter-
facing a particular application with design optimization software is discussed, and several
engineering design applications are described. Although most of the applications discussed
in this chapter are related to mechanical and structural systems, the issues described here are



also relevant for other areas as well. Therefore, the methodologies presented and illustrated
can serve as guidelines for other application areas.

14.1 Formulation of Practical Design Optimization Problems
14.1.1 General Guidelines
The problem formulation for a design task is an important step which must define a realis-
tic model for the engineering system under consideration. The mathematics of optimization
methods can easily give rise to situations that are absurd or violate the laws of physics. There-
fore, to transcribe a design task correctly into a mathematical model, the designers must use
intuition, skill, and experience. The following points can serve as guiding principles to gen-
erate a mathematical model that is faithful to the real-world design task.

1. Once the conceptual design is ready we must concentrate on the detailed design 
of the system to perform the given task. To start with, all the possible parameters 
or unknowns should be viewed as potential design variables which should be
independent of each other as far as possible. Also, a variety of failure criteria and
other technological requirements must be taken as constraints for the safe
performance of the system. In short, considerable flexibility and freedom must be
allowed before analyzing different possibilities. As we gain more knowledge about
the problem, redundant or unnecessary design variables can be fixed or eliminated
from the model. Finally, only significant cost and constraint functions can be
retained in the design optimization model.

2. The existence of an optimum solution to a design optimization model depends on
its formulation. If the constraints are too restrictive, there may not be any feasible
solution for the problem. In such a case, the constraints must be relaxed by
allowing larger resource limits for inequality constraints. The question of
uniqueness of the global solution for the problem depends on the strict convexity of
the cost and constraint functions. In reality, most engineering design problems are
not convex, thus global optimality of a local solution cannot be guaranteed.
Usually there are multiple local optimum solutions. This, however, is not
necessarily an undesirable situation, since it offers additional freedom to the
designer to choose a suitable solution among the many available ones.

3. In numerical computations, it is sometimes easier to find a feasible design with
respect to the inequality constraints than it is with respect to the equality
constraints. This, of course, depends on the problem structure and nonlinearity of
functions. A constraint expressed as an inequality defines a much larger feasible
region than the same constraint expressed as an equality. In case the number of
equality constraints is greater than the number of design variables in a problem, no
solution will exist unless some of the constraints are dependent.

4. The representation of engineering design problems by the standard nonlinear
programming design optimization model with a single real valued objective
function subject to a set of equality and inequality constraints is not as restrictive 
as it may appear. The problem of optimizing more than one objective function
simultaneously (multiobjective problems) can be transformed into the standard
problem by assigning weighting factors to different objective functions to combine
them into a single objective function. Or, the most important criterion can be
treated as the cost function and the remaining ones as constraints. By varying the
limits for the ones treated as constraints, trade-off curves can be generated and used
for the final design of the system.
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5. The idea of design variable linking is useful to reduce the number of design
variables in an optimization model. If one of the design variables can be expressed
in terms of others, then that variable can be eliminated from the model. Also, if the
designer can identify any symmetry in the system, it can help in reducing the
number of design variables.

6. The potential cost functions for many structural, mechanical, automotive, and
aerospace systems are weight, volume, mass, stress at a point, performance,
reliability of a system, among others. The constraints can be placed on stresses,
strains, displacements, vibration frequencies, manufacturing limitations, and other
performance criteria.

7. It is important to have continuous and differentiable cost and constraint functions.
If a function is not continuous or differentiable, then conventional optimization
theory is not adequate. In certain instances, it may be possible to replace a
nondifferentiable function such as |x| with a smooth function x2 without changing
the problem definition drastically.

8. In general it is difficult to determine dependent constraints and eliminate them from
the formulation. Modern optimization algorithms and the associated software are
capable of handling difficulties arising from the dependent constraints. Also,
equality constraints can be used to reduce the number of design variables by
expressing one variable in terms of the others. However, such an approach is
appropriate for only small-scale problems where explicit expressions for the
constraints are available. In more complex applications, equality constraints must
be retained and treated in the optimization algorithm.

9. In engineering design problems, lower and upper limits on the design variables are
often imposed as a result of practical limitations. If there is no lower limit on a
design variable, then a large negative number may be taken as the lower limit, and
similarly a large positive number may be prescribed as the upper limit if no upper
limit is given in the problem definition.

10. For nonlinear programming problems, the design variables are often assumed to be
continuous. In practice, however, discrete and integer variables often arise. For
example, because of manufacturing limitations, structural elements and spare parts
for many engineering systems are available only in fixed shapes and sizes.
Therefore, once we obtain the optimum solution, we can select members that 
have dimensions nearest to the optimum values. Or, the adaptive optimization
procedure described in Section 2.11 and Chapter 15 can be used to obtain practical
solutions.

11. In general, it is desirable to normalize all the constraints with respect to their limit
values, as discussed in Section 10.1.3. In numerical computations, this procedure
leads to more stable behavior. Therefore, as far as possible, all constraints should
be normalized in practical applications.

14.1.2 Example of a Practical Design Optimization Problem
Optimum design formulation of complex engineering systems requires more general tools
and procedures than the ones discussed previously. We shall demonstrate this by consider-
ing a class of problems that has a wide range of applications in automotive, aerospace,
mechanical, and structural engineering. This important application area is chosen to demon-
strate the procedure of problem formulation and explain the treatment of implicit constraints.
Evaluation of constraint functions and their gradients shall be explained. Readers unfamiliar
with this application area should use the material as guiding principles for their area of 
interest because similar analyses and procedures will need to be used in other practical 
applications.
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The application area that we have chosen to investigate is the optimum design of systems
modeled by the finite element technique. It is common practice to analyze complex structural
systems using the technique that is also available in many commercial software packages.
Displacements, stresses, and strains at various points, vibration frequencies, and buckling
loads for the system can be computed and constraints imposed on them. We shall describe
an optimum design formulation for this application area.

Let x represent an n component vector containing design parameters for the system. This
may contain thicknesses of members, cross-sectional areas, parameters describing the shape
of the system, and stiffness and material properties of elements. Once x is specified, a design
of the system is known. To analyze the system (calculate stresses, strains and frequencies,
buckling load, and displacements), the procedure is to first calculate displacements at some
key points—called the grid points or nodal points—of the finite element model. From these
displacements, strains (relative displacement of the material particles), and stresses at various
points of the system are available in many textbooks (Cook, 1981; Huebner and Thornton,
1982; Grandin, 1986; Chandrupatla and Belegundu, 1997).

Let U be a vector having l components representing generalized displacements at key 
points of the system. The basic equation that determines the displacement vector U for a linear
elastic system—called the equilibrium equation in terms of displacements—is given as

(14.1)

where K(x) is an l ¥ l matrix called the stiffness matrix and F(x) is an effective load vector
having l components. The stiffness matrix K(x) is a property of the structural system that
depends explicitly on the design variables, material properties, and geometry of the system.
Systematic procedures have been developed to automatically calculate the matrix with dif-
ferent finite elements. The load vector F(x), in general, can also depend on design variables.
We shall not discuss procedures to calculate K(x) because that is beyond the scope of the
present text. Our objective is to demonstrate how the design can be optimized once a finite
element model for the problem [meaning Eq. (14.1)] has been developed. We shall pursue
that objective assuming that the finite element model for the system has been developed.

It can be seen that once the design x is specified, the displacements U can be calculated
by solving the linear system of Eq. (14.1). Note that a different x will give, in general, dif-
ferent values for the displacements U. Thus U is a function of x; however, its explicit func-
tional form cannot be written. That is, U is an implicit function of the design variables x. The
stress si at the ith point is calculated using the displacements and is an explicit function of
U and x as si(U, x). However, since U is an implicit function of x, si also becomes an implicit
function of the design variables x. The stress and displacement related constraints can be
written in a functional form as

(14.2)

In many automotive, aerospace, mechanical, and structural engineering applications, the
amount of material used must be minimized for efficient and cost-effective systems. Thus,
the usual cost function for this class of applications is the weight, mass, or material volume
of the system, which is usually an explicit function of the design variables x. Implicit cost
functions, such as stress, displacement, vibration frequencies, etc., can also be treated by
introducing artificial design variables (Haug and Arora, 1979). We shall assume that this has
been done and treat only explicit cost functions.

In summary, a general formulation for the design problem involving explicit and implicit
functions of design variables is defined as: Find an n-dimensional vector x of design vari-
ables to minimize a cost function f(x) satisfying the implicit design constraints of Eq. (14.2)

gi x U,( ) £ 0

K x U F x( ) = ( )
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with U satisfying the system of Eq. (14.2), and other practical limitations. Note that equal-
ity constraints, if present, can be routinely included as in the previous chapters. We illustrate
the procedure of problem formulation in Example 14.1.
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EXAMPLE 14.1 Design of a Two-Member Frame

Consider the design of a two-member frame subjected to out-of-plane loads as shown in
Fig. 14-1. Such frames are encountered in numerous automotive, aerospace, mechani-
cal, and structural engineering applications. We wish to formulate the problem of mini-
mizing the volume of the frame subject to stress and size limitations (Bartel, 1969).

Solution. Since the optimum structure will be symmetric, the two members of the
frame are identical. Also, it has been determined that hollow rectangular sections shall
be used as members with three design variables defined as d = width of the member
(in), h = height of the member (in), and t = wall thickness (in). Thus, the design vari-
able vector is x = (d, h, t).

The volume for the structure is taken as the cost function, which is an explicit 
function of the design variables given as

(14.3)

To calculate stresses, we need to solve the analysis problem. The members are sub-
jected to both bending and torsional stresses, and the combined stress constraint needs
to be imposed at points 1 and 2. Let s and t be the maximum bending and shear
stresses in the member, respectively. The failure criterion for the member is based on
a combined stress theory, known as the von Mises (or maximum distortion energy)
yield condition (Crandall et al., 1978). With this criterion, the effective stress se is 
given as and the stress constraint is written in a normalized form as

(14.4)

where sa is the allowable design stress.
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FIGURE 14-1 Two-member frame.
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The stresses are calculated from the member-end moments and torques, which are
calculated using the finite element procedure. The three generalized nodal displace-
ments (deflections and rotations) for the finite element model shown in Fig. 14-1 are
defined as U1 = vertical displacement at node 2, U2 = rotation about line 3–2, and U3

= rotation about line 1–2. Using these, the equilibrium equation [Eq. (14.1)] for the
finite element model that determines the displacements U1, U2, and U3, is given as (for
details of the procedure to obtain the equation using individual member equilibrium
equations, refer to texts by Cook, 1981; Haug and Arora, 1979; Huebner and 
Thornton, 1982; Grandin, 1986; Chandrupatla and Belegundu, 1997):

where
E = modulus of elasticity, (3.0E+07) psi
L = member length, 100 in
G = shear modulus, (1.154E+07) psi
P = load at node 2, -10,000 lb

(14.6)

(14.7)

A = area for calculation of torsional shear stress
= (d - t)(h - t), in2

From Eq. (14.5), the stiffness matrix K(x) and the load vector F(x) of Eq. (14.1) can
be identified. Note that in the present example, the load vector F does not depend on
the design variables.

As can be seen from Eq. (14.5), U is an implicit function of x. If K can be inverted
explicitly in terms of the design variables x, then U can be written as an explicit func-
tion of x. This is possible in the present example; however, we shall deal with the
implicit form to illustrate the procedures for evaluating constraints and their gradients.

For a given design, once the displacements U1, U2, and U3 have been calculated
from Eq. (14.5), the torque and bending moment at points 1 and 2 for member 1–2
are calculated as

(14.8)

(14.9)

(14.10)

Using these moments, the torsional shear and bending stresses are calculated as
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(14.12)

(14.13)

Thus the stress constraints of Eq. (14.4) at points 1 and 2 are given as

(14.14)

(14.15)

We observe that since moments T, M1, and M2 are implicit functions of design vari-
ables, the stresses are also implicit functions. They are also explicit functions of design
variables, as seen in Eqs. (14.12) and (14.13). Therefore, the stress constraints of Eqs.
(14.14) and (14.15) are implicit as well as explicit functions of design variables. This
observation is important because gradient evaluation for implicit constraint functions
requires special procedures, which are explained in the next section.

In addition to the two stress constraints, the following upper and lower bound con-
straints on design variables are imposed:

As can easily be observed, the explicit forms of the constraint functions g1 and g2 in
terms of the design variables d, h, and t are quite difficult to obtain even for this simple
problem. We will need an explicit form for the displacements U1, U2, and U3 in Eqs.
(14.8) to (14.10) to have an explicit form for the stress t, s1, and s2. To have an explicit
form for U1, U2, and U3, we will have to explicitly invert the coefficient matrix for
the equilibrium equation (14.5). Although this is not impossible for the present
example, it is quite impossible to do, in general. Thus we observe that the constraints
are implicit functions of the design variables.

To illustrate the procedure, we select a design point as (2.5, 2.5, 0.1) and calculate
the displacements and stresses. Using the given data, we calculate the following quan-
tities that are needed in further calculations:
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Using the foregoing data, the equilibrium equation (Eq. 14.5), is given as

Solving the preceding equation, the three generalized displacements of node 2 are
given as

Using Eqs. (14.8) to (14.10), torque in the member and bending moments at points 1
and 2 are

Since M1 > M2, s1 will be larger than s2 as observed from Eqs. (14.12) and (14.13).
Therefore, only the g1 constraint of Eq. (14.14) needs to be imposed.

The torsional shear stress and bending stress at point 1 are calculated from 
Eqs. (14.11) and (14.12) as

Taking the allowable stress sa as 40,000 psi, the effective stress constraint of 
Eq. (14.14) is given as

Therefore, the constraint is very severely violated at the given design.
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14.2 Gradient Evaluation for Implicit Functions
To use the modern optimization method, we need to evaluate gradients of constraint func-
tions. When the constraint functions are implicit in design variables, we need to develop and
utilize special procedures for gradient evaluation. We shall develop a procedure using the
finite element application of Section 14.1.

Let us consider the constraint function gi(x, U) of Eq. (14.2). Using the chain rule of 
differentiation, the total derivative of gi with respect to the jth design variable is given as

(14.16)

where

(14.17)

and

(14.18)

Therefore, to calculate the gradient of a constraint, we need to calculate the partial deriva-
tives ∂gi/∂xj and ∂gi/∂U, and the total derivatives dU/dxj. The partial derivatives ∂gi/∂xj and
∂gi/∂U are quite easy to calculate using the form of the function gi(x, U). To calculate dU/dxj,
we differentiate the equilibrium Eq. (14.1) to obtain

(14.19)

Or, the equation can be rearranged as

(14.20)

The equation can be used to calculate dU/dxj. The derivative of the stiffness matrix 
∂K(x)/∂xj can easily be calculated if the explicit dependence of K on x is known. Note 
that Eq. (14.20) needs to be solved for each design variable. Once dU/dxj are known, the 
gradient of the constraint is calculated from Eq. (14.16). The derivative vector in Eq. (14.16)
is often called the design gradient. We shall illustrate the procedure with an example 
problem.

It should be noted that substantial work has been done in developing and implementing
efficient procedures for calculating derivatives of implicit functions with respect to the 
design variables (Arora and Haug, 1979; Adelman and Haftka, 1986; Arora, 1995). The
subject is generally known as design sensitivity analysis. For efficiency considerations 
and proper numerical implementations, the foregoing literature should be consulted. The 
procedures have been programmed into general-purpose software for automatic computation
of design gradients.
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EXAMPLE 14.2 Gradient Evaluation for 
a Two-Member Frame

Calculate the gradient of the stress constraint g1(x, U) for the two-member frame of
Example 14.1 at the design point (2.5, 2.5, 0.1).

Solution. The problem has been formulated in Example 14.1. The finite element
model has been defined there, and nodal displacements and member stresses have been
calculated. We shall use Eqs. (14.16) and (14.20) to evaluate the gradient of the stress
constraint of Eq. (14.14).

The partial derivatives of the constraint of Eq. (14.14) with respect to x and U are
given as

(14.21)

(14.22)

Using Eqs. (14.8) to (14.13), partial derivatives of t and s1 with respect to x and U
are calculated as follows.

Partial derivatives of shear stress. Differentiating the expression for shear stress
in Eq. (14.11) with respect to the design variables x, we get

(14.23)

where partial derivatives of the torque T with respect to the design variable x are given
as

(14.24)

with ∂J/∂x calculated as

∂
∂

=
-( ) -( ) - -( ) -( ) - -( ) -( )

+ -( )

-
-( ) -( ) -( )

+ -( )
=

J

t

d t h t t d t h t t d t h t

d h t

t d t h t

d h t

2 4 4

2

2 2

2
12 096

2 2 2 2

2 2

2
.

∂
∂

=
-( ) -( ) + -( ) - -( ) -( )

+ -( )
=

J

h

t d t h t d h t t d t h t

d h t

4 2 2

2
0 864

2 2 2

2
.

∂
∂

=
-( ) -( ) + -( ) - -( ) -( )

+ -( )
=

J

d

t d t h t d h t t d t h t

d h t

4 2 2

2
0 864

2 2 2

2
.

∂
∂

= -
∂
∂

T GU

L

J

x x
3

∂
∂

=
∂
∂

-
∂
∂

-
∂
∂

t
x x x x

1

2 2 22 2At

T T

A t

A T

At

t

∂
∂

=
∂
∂

+
∂
∂

È
ÎÍ

˘
˚̇

g

a

1

2 1
11

2 6
U U Us

s
s

t
t

∂
∂

=
∂
∂

+
∂
∂

È
ÎÍ

˘
˚̇

g

a

1

2 1
11

2 6
x x xs

s
s

t
t



Design Optimization Applications with Implicit Functions 475

Therefore, ∂J/∂x is assembled as

and Eq. (14.24) gives ∂T/∂x as

Other quantities needed to complete calculations in Eq. (14.23) are ∂A/∂x and ∂t/∂x,
which are calculated as

Substituting various quantities into Eq. (14.23), we get the partial derivative of t with
respect to x as

Differentiating the expression for the shear stress t in Eq. (14.11) with respect to
the generalized displacements U, we get
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Partial derivatives of bending stress. Differentiating the expression for s1 given
in Eq. (14.12) with respect to design variables x, we get

(14.25)

where ∂M1/∂x, ∂I/∂x, and ∂h/∂x are given as

Substituting various quantities into Eq. (14.25),

Differentiating the expression for s1 in Eq. (14.12) with respect to generalized 
displacements U, we get

where ∂M1/∂U is given from Eq. (14.9) as
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Substituting various quantities into Eqs. (14.21) and (14.22), we obtain the partial
derivatives of constraints as

Derivatives of the displacements. To calculate derivatives of the displacements, 
we use Eq. (14.20). Since the load vector does not depend on design variables, 
∂F/∂xj = 0 for j = 1, 2, 3 in Eq. (14.20). To calculate (∂K(x)/∂xj)U on the right-side
of Eq. (14.20), we differentiate Eq. (14.5) with respect to the design variables. 
For example, differentiation of Eq. (14.5) with respect to d gives the following 
vector:

Similarly, by differentiating with respect to h and t, we obtain

Since K(x) is already known in Example 14.1, we use Eq. (14.20) to calculate dU/dx
as

Finally, substituting all the quantities in Eq. (14.16), we obtain the design gradient
for the effective stress constrain of Eq. (14.14) as

As noted in Example 14.1, the stress constraint of Eq. (14.14) is severely violated
at the given design. The signs of the foregoing design derivatives indicate that all the
variables will have to be increased to reduce the constraint violation at the point (2.5,
2.5, 0.1).
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14.3 Issues in Practical Design Optimization
Several issues need to be considered for practical design optimization. For example, careful
consideration needs to be given to the selection of an algorithm and the software. Improper
choice of either one can mean failure of the optimum design process and frustration with
optimization techniques. In this section, we shall discuss some of the issues that can have a
significant impact on practical applications of the optimization methodology.

14.3.1 Selection of an Algorithm
Many algorithms have been developed and evaluated for practical design optimization. We
need to consider several aspects when selecting an algorithm for practical applications, such
as robustness, efficiency, generality, and ease of use.

Robustness Characteristics of a robust algorithm are discussed in Section 10.1.5. For prac-
tical applications, it is extremely important to use a method that is theoretically guaranteed
to converge. A method having such a guarantee starting from any initial design estimate is
called robust. Robust algorithms usually require a few more calculations during each itera-
tion compared with algorithms that have no proof of convergence. Such approximate algo-
rithms usually require considerable tuning for each problem before a reasonable optimum
solution is obtained, and many times they converge to nonoptimum solutions. Thus, although
the approximate algorithms consume slightly less computer time during each iteration, 
they have considerable uncertainty in their performance. They usually need considerable
experimentation and tuning to make them work for a particular problem. This can be an
unnecessary distraction requiring the designer’s time. Therefore, in the overall sense, such
approximate algorithms are actually more costly to use than the robust algorithms. We suggest
that only robust algorithms be used in practical applications, i.e., robustness must be given
higher priority over efficiency while selecting an algorithm and the associated software.

Potential Constraint Strategy To evaluate the search direction in numerical methods for
constrained optimization, we need to know the cost and constraint functions and their gra-
dients. The numerical algorithms can be classified into two categories based on whether gra-
dients of all the constraints or only a subset of them are required during a design iteration.
The numerical algorithms that need the gradients of only a subset of the constraints are said
to use potential constraint strategy. The potential constraint set, in general, is composed of
active, nearly active, and violated constraints at the current iteration. For a further discussion
on the topic of potential set strategy, refer to Section 11.1.

14.3.2 Attributes of a Good Optimization Algorithm
Based on the preceding discussion, attributes of a good algorithm for practical design 
applications are defined as follows.

1. Reliability. The algorithm must be reliable for general design applications because
such algorithms converge to a minimum point starting from any initial design
estimate. Reliability of an algorithm is guaranteed if it is theoretically proven to
converge.

2. Generality. The algorithm must be general, which implies that it should be able to
treat equality as well as inequality constraints. In addition, it should not impose any
restrictions on the form of functions of the problem.

3. Ease of use. The algorithm must be easy to use by the experienced as well as the
inexperienced designer. From a practical standpoint, this is an extremely important
requirement because an algorithm requiring selection of tuning parameters is quite
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difficult to use. The proper specification of the parameters usually requires not only a
complete knowledge and understanding of the mathematical structure of the
algorithm but also experimentation with each problem. Such an algorithm is
unsuitable for practical design applications.

4. Efficiency. The algorithm must be efficient for general engineering applications. An
efficient algorithm has (1) a faster rate of convergence to the minimum point, and (2)
the fewest number of calculations within one design iteration. The rate of
convergence can be accelerated by incorporating the second-order information about
the problem into the algorithm. Incorporation of the second-order information,
however, requires additional calculations during an iteration. Therefore, there is a
trade-off between efficiency of calculation within an iteration and the rate of
convergence. Some existing algorithms use second-order information whereas others
do not. Efficiency within an iteration implies a minimum number of calculations for
the search direction and the step size. One way to achieve efficiency is to use a
potential constraint strategy in calculating the search direction. There are some
algorithms that use this strategy in their calculations while others do not. When the
potential constraint strategy is used, the direction-finding subproblem needs gradients
of only potential constraints. Otherwise, gradients of all constraints are needed,
which is inefficient in most practical applications.

Another consideration for improving efficiency within an iteration is to keep the number
of function evaluations for step size determination to a minimum. This can be achieved by
using step size determination procedures requiring fewer calls for function evaluations, e.g.,
inaccurate line search.

The designer needs to ask the following questions (all answers should be yes) before select-
ing an optimization algorithm for practical applications:

1. Does the algorithm have proof of convergence? That is, is it theoretically guaranteed
to converge to an optimum point starting from any initial design estimate? Can the
starting design be infeasible (i.e., arbitrary)?

2. Can the algorithm solve a general optimization problem without any restrictions on
the constraint functions? Can it treat equality as well as inequality constraints?

3. Is the algorithm easy to use? In other words, it does not require tuning for each
problem?

4. Does the algorithm incorporate a potential constraint strategy?

14.4 Use of General-Purpose Software
As we have seen in previous sections, practical systems require considerable computer 
analysis before optimum solutions are obtained. For a particular application, problem func-
tions and gradient evaluation software as well as optimization software must be integrated
to create an optimum design capability. Depending on the application, each of the software
components can be very large. Therefore, to create a design optimization capability, the 
most sophisticated and modern computer facilities must be used to integrate the software
components.

For the example of structures modeled by the finite elements discussed in Section 14.1.2,
large analysis packages must be used to analyze the structure. From the calculated response,
constraint functions must be evaluated and programs must be developed to calculate gradi-
ents. All the software components must be integrated to create the optimum design capabil-
ity for structures modeled by finite elements.
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In this section we shall discuss the issues involved in selecting a general-purpose 
optimization software. Also interfacing of the software with a particular application shall be
discussed.

14.4.1 Software Selection
Several issues need to be explored before general-purpose optimization software is selected
for integration with other application-dependent software. The most important question per-
tains to the optimization algorithm and how well it is implemented. The attributes of a good
algorithm are given in Section 14.3.2. The software must contain at least one algorithm that
satisfies all the requirements stated there. The algorithm should also be robustly implemented
because a good algorithm when badly implemented is not very useful. The proof of conver-
gence of most algorithms is based on certain assumptions. These need to be strictly adhered
to while implementing the algorithm. In addition, most algorithms have numerical un-
certainties in their steps which need to be recognized and proper procedures need to be 
developed for numerical implementation. It is also important that the software be well tested
on a range of applications of varying difficulty.

Several other user-friendly features are desirable. For example, the possibility of inter-
action during the iterative process, interactive graphics, and other aids to facilitate design 
decision making are highly desirable. The topic of interactive design optimization and facil-
ities is covered in more detail in Chapter 13. Documentation for the software is also very
important. How good is the user’s manual? What sample problems are available with the
program and how well are they documented? How easy is it to install the program on 
different computer systems? All these questions should be investigated before selecting the
software.

14.4.2 Integration of an Application into General-Purpose Software
Each general-purpose program for optimization requires that the particular design applica-
tion be integrated into the software. Ease of integration of the software components for
various applications can influence selection of the program. Also, the amount of data pre-
paration needed to use the program is important.

Some general-purpose libraries are available that contain various subroutines implement-
ing different algorithms. The user is required to write a main program to call the subroutine.
Subprograms for function and gradient evaluation must also be written. Several exits are
made from the subroutine, and it is re-entered with different conditions. The main program
becomes quite complex and is prone to user error. In addition, there is little chance for user
interaction in this environment because users must develop their own interactive capability.

The other approach is to develop a computer program with options of various algorithms
and facilities. Each application is implanted into the program through a standard interface
that consists of “subroutine calls.” The user prepares a few subroutines to describe the design
problem only. All the data between the program and the subroutines flow through the sub-
routine arguments. For example, design variable data are sent to the subroutines and the
expected output is the constraint function values and their gradients. Most interactive capa-
bilities, graphics, and other user-friendly features are built into the program. A key feature
of this approach is that the users do not get involved with the algorithmic idiosyncrasies in
selecting various parameters and trying to make the algorithm work. They are relieved of
these duties by the software developers, and can concentrate on their design problem 
formulation and its description for the program.

Both procedures described in the foregoing paragraphs have been successfully used in the
past for many practical applications of optimization. In most cases, the choice of the proce-
dure has been dictated by the availability of the software. We shall use the program IDESIGN,
which is based on the second approach, to solve several design optimization problems. Figure
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14-2 shows how an application can be implanted into the program IDESIGN. As explained
in Section 13.4, the program is combined with the user-supplied subroutines to create an 
executable module. The user-supplied subroutines can be quite simple for problems having
explicit functions and complex for problems having implicit functions. External subroutines
or programs may have to be called upon to generate the function values and their gradients
needed by IDESIGN. This has been done and several complex problems have been solved
and reported in the literature (Tseng and Arora, 1987, 1988).

Besides the general-purpose interactive capability contained in IDESIGN, the user can
write additional interactive facilities for the specific application, as shown in Fig. 14-2. Input
data for the application are supplied to the program to execute it. Using this arrangement
several practical problems from different fields have been solved with the program. In the
remaining sections of this chapter, we shall describe several design problems and solve them
with the previously mentioned arrangement for the program IDESIGN.

14.5 Optimum Design of a Two-Member Frame 
with Out-of-Plane Loads

Figure 14-1 shows a two-member frame subjected to out-of-plane loads. The members of the
frame are subjected to torsional, bending, and shearing loads. The objective of the problem
is to design a structure having minimum volume without material failure due to applied loads.
The problem has been formulated in Section 14.1.2 using the finite element approach. In
defining the stress constraint, von Mises yield criterion is used and the shear stress due to
the transverse load is neglected.

The formulation and equations give in Sections 14.1.2 and 14.2 are used to develop appro-
priate subroutines for the program IDESIGN. The data given there are used to optimize the
problem. Two widely separated starting designs, (2.5, 2.5, 0.1) and (10, 10, 1), are tried to
observe their effect on the convergence rate. For the first starting point, all the variables are
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at their lower bounds; for the second point they are all at their upper bounds. Both starting
points converge to the same optimum solution with almost the same values for design vari-
ables and Lagrange multipliers for active constraints, as shown in Tables 14-1 and 14-2 (refer
to Section 13.5 for an explanation of the notations used in the tables). However, the number
of iterations and the number of calls for function and gradient evaluations are quite differ-
ent. For the first starting point, the stress constraint is severely violated (by 20,212 percent).
Several iterations are expended to bring the design close to the feasible region. For the second
starting point, the stress constraint is satisfied and the program takes only six iterations to
find the optimum solution. Note that both solutions reported in Tables 14-1 and 14-2 are
obtained by using the Sequential Quadratic Programming option (SQP) available in
IDESIGN. Also, a very severe convergence criterion is used to obtain the precise optimum
point.

The preceding discussion shows that the starting design estimate for the iterative process
can have a substantial impact on the rate of convergence of an algorithm. In many practical
applications, a good starting design is available or can be obtained after some preliminary
analyses. Such a starting design for the optimization algorithm is desirable because this can
save substantial computational effort.
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TABLE 14-1 History of the Iterative Process and Optimum Solution for a Two-Member Frame, Starting Point
(2.5, 2.5, 0.10)

I Max. vio. Conv. parm. Cost d h t

1 2.02119E+02 1.00000E+00 1.92000E+02 2.5000E+00 2.5000E+00 1.0000E-01
2 8.57897E+01 1.00000E+00 2.31857E+02 2.5000E+00 3.4964E+00 1.0000E-01
3 3.58717E+01 1.00000E+00 2.85419E+02 2.5000E+00 4.8355E+00 1.0000E-01
� � � � � � �

17 6.78824E-01 1.00000E+00 6.14456E+02 5.5614E+00 1.0000E+01 1.0000E-01
18 1.58921E-01 6.22270E-01 6.76220E+02 7.1055E+00 1.0000E+01 1.0000E-01
19 1.47260E-02 7.01249E-02 7.01111E+02 7.7278E+00 1.0000E+01 1.0000E-01
20 1.56097E-04 7.59355E-04 7.03916E+02 7.7979E+00 1.0000E+01 1.0000E-01

Constraint activity

No. Active Value Lagr. mult.

1 Yes 1.56097E-04 1.94631E+02

Design variable activity

No. Active Design Lower Upper Lagr. mult.

1 No 7.79791E+00 2.50000E+00 1.00000E+01 0.00000E+00
2 Upper 1.00000E+01 2.50000E+00 1.00000E+01 7.89773E+01
3 Lower 1.00000E-01 1.00000E-01 1.00000E+00 3.19090E+02

Cost function at optimum = 7.039163E+02
No. of calls for cost function evaluation = 20
No. of calls for evaluation of cost function gradient = 20
No. of calls for constraint function evaluation = 20
No. of calls for evaluation of constraint function gradients = 20
No. of total gradient evaluations = 20



14.6 Optimum Design of a Three-Bar Structure for Multiple
Performance Requirements

In the previous section, we discussed design of a structural system for one performance
requirement—the material must not fail under the applied loads. In this section, we 
discuss a similar application where the system must perform safely under several operat-
ing environments. The problem that we have chosen is the three-bar structure that is 
formulated in Section 2.10. The structure is shown in Fig. 2-6. The design requirement 
is to minimize the weight of the structure and satisfy the constraints of member stress, 
deflection at node 4, buckling of members, vibration frequency, and explicit bounds on the
design variables. We shall optimize symmetric and asymmetric structures and compare the
solutions. A very strict convergence criterion shall be used to obtain the precise optimum
designs.

14.6.1 Symmetric Three-Bar Structure
A detailed formulation for the symmetric structure where members 1 and 3 are similar is dis-
cussed in Section 2.10. In the present application, the structure is designed to withstand three
loading conditions and the foregoing constraints. Table 14-3 contains all the data used for
designing the structure. All the expressions programmed for IDESIGN are given in Section
2.10. The constraint functions are appropriately normalized and expressed in the standard
form.
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TABLE 14-2 History of the Iterative Process and Optimum Solution for a Two-Member Frame, Starting Point
(10, 10, 1)

I Max. vio. Conv. parm. Cost d h t

1 0.00000E+00 6.40000E+03 7.20000E+03 1.0000E+01 1.0000E+01 1.0000E+00
2 0.00000E+00 2.27873E+01 7.87500E+02 9.9438E+00 9.9438E+00 1.0000E-01
3 1.25020E-02 1.31993E+00 7.13063E+02 9.0133E+00 9.0133E+00 1.0000E-01
4 2.19948E-02 1.03643E-01 6.99734E+02 7.6933E+00 1.0000E+01 1.0000E-01
5 3.44115E-04 1.67349E-03 7.03880E+02 7.7970E+00 1.0000E+01 1.0000E-01
6 9.40469E-08 4.30513E-07 7.03947E+02 7.7987E+00 1.0000E+01 1.0000E-01

Constraint activity

No. Active Value Lagr. mult.

1 Yes 9.40469E-08 1.94630E+02

Design variable activity

No. Active Design Lower Upper Lagr. mult.

1 No. 7.79867E+00 2.50000E+00 1.00000E+01 0.00000E+00
2 Upper 1.00000E+01 2.50000E+00 1.00000E+01 7.89767E+01
3 Lower 1.00000E-01 1.00000E-00 1.00000E+00 3.19090E+02

Cost function at optimum = 7.039466E+02
No. of calls for cost function evaluation = 9
No. of calls for evaluation of cost function gradient = 6
No. of calls for constraint function evaluation = 9
No. of calls for evaluation of constraint function gradient = 4
No. of total gradient evaluations = 4



To study the effect of imposing more performance requirements, the following three
design cases are defined (note that explicit design variable bound constraints are also imposed
in all cases):

Case 1. Stress constraints only (total constraints = 13).
Case 2. Stress and displacement constraints (total constraints = 19).
Case 3. All constraints—stress, displacement, member buckling, and frequency (total

constraints = 29).

Tables 14-4 to 14-6 contain the history of the iterative process, constraint and design vari-
able activities at the final design, and the potimum cost function for the three cases with the
SQP method in IDESIGN. The active constraints at the optimum point and their Lagrange
multipliers (for normalized constraints) are:

Case 1. Stress in member 1 under loading condition 1, 21.11.
Case 2. Stress in member 1 under loading condition 1, 0.0; horizontal displacement

under loading condition 1, 16.97; vertical displacement under loading condition 1,
6.00; horizontal displacement under loading condition 2, 0.0.

Case 3. Same as for Case 2.

Note that the cost function value at the optimum point increases for Case 2 as compared
with Case 1. This is consistent with the hypothesis that more constraints for the system imply
a smaller feasible region, thus giving a higher value for the optimum cost function. There is
no difference between the solutions for Cases 2 and 3 because none of the additional con-
straints for Case 3 is active.

14.6.2 Asymmetric Three-Bar Structure
When the symmetry condition for the structure (member 1 same as member 3) is relaxed,
we get three design variables for the problem compared with only two for the symmetric
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TABLE 14-3 Design Data for a Three-Bar Structure

Allowable stress: Members 1 and 3, s1a = s3a = 5000 psi
Member 2, s2a = 20,000 psi

Allowable displacements: ua = 0.005 in
na = 0.005 in

Modulus of elasticity: E = (1.00E+07) psi
Weight density: g = (1.00E-01) lb/in3

Constant: b = 1.0
Lower limit on design: (0.1, 0.1, 0.1) in2

Upper limit on design: (100, 100, 100) in2

Starting design: (1, 1, 1) in2

Lower limit on frequency: 2500Hz

Loading conditions: 3

Angle, q (degrees) 45 90 135

Load, P (lb) 40,000 30,000 20,000



case, i.e., areas A1, A2, and A3 for members 1, 2, and 3, respectively. With this, the design
space becomes expanded so we can expect better optimum designs compared with the pre-
vious cases. The data used for the problem are the same as given in Table 14-3. The struc-
ture is optimized for the following three cases (note that the explicit design variable bound
constraints are imposed in all cases):

Case 4. Stress constraints only (total constraints = 15).
Case 5. Stress and displacement constraints (total constraints = 21).
Case 6. All constraints—stress, displacement, buckling, and frequency (total constraints

= 31).

The structure can be analyzed by considering either the equilibrium of node 4 or the
general finite element procedures. By following the general procedures, the following expres-
sions for displacements, member stresses, and fundamental vibration frequency are obtained
(note that the notations are defined in Section 2.10):

Design Optimization Applications with Implicit Functions 485

TABLE 14-4 History of the Iterative Process and Final Solution for a Symmetric Three-Bar Struc-
ture, Case 1—Stress Constraints

I Max. vio. Conv. parm. Cost A1 = A3 A2

1 4.65680E+00 1.00000E+00 3.82843E+00 1.0000E+00 1.0000E+00
2 2.14531E+00 1.00000E+00 6.72082E+00 1.9528E+00 1.1973E+00
� � � � � �

8 2.20483E-04 3.97259E-03 2.11068E+01 6.3140E+00 3.2482E+00
9 1.58618E-06 5.34172E-05 2.11114E+01 6.3094E+00 3.2657E+00

Constraint activity

No. Active Value Lagr. mult.
1 Yes 1.58618E-06 2.11114E+01
2 No -7.32069E-01 0.00000E+00
3 No -8.16982E-01 0.00000E+00
4 No -6.11757E-01 0.00000E+00
5 No -6.11757E-01 0.00000E+00
6 No -8.05879E-01 0.00000E+00
7 No -8.66035E-01 0.00000E+00
8 No -4.99999E-01 0.00000E+00
9 No -9.08491E-01 0.00000E+00

Design variable activity

No. Active Design Lower Upper Lagr. mult.

1 No 6.30942E+00 1.00000E-01 1.00000E+02 0.00000E+00
2 No 3.26569E+00 1.00000E-01 1.00000E+02 0.00000E+00

Cost function at optimum = 2.111143E+01
No. of calls for cost function evaluation = 9
No. of calls for evaluation of cost function gradient = 9
No. of calls for constraint function evaluation = 9
No. of calls for evaluation of constraint function gradient = 9
No. of total gradient evaluations = 19
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TABLE 14-5 History of the Iterative Process and Final Solution for a Symmetric Three-Bar Struc-
ture, Case 2—Stress and Displacement Constraints

I Max. vio. Conv. parm. Cost A1 = A3 A2

1 6.99992E+00 1.00000E+00 3.82843E+00 1.0000E+00 1.0000E+00
2 3.26663E+00 1.00000E+00 6.90598E+00 1.8750E+00 1.6027E+00
� � � � � �

8 1.50650E-04 3.05485E-04 2.29695E+01 7.9999E+00 3.4230E-01
9 2.26886E-08 4.53876E-08 2.29704E+01 7.9999E+00 3.4320E-01

Constraint activity

No. Active Value Lagr. mult.

1 Yes -2.86000E-02 0.00000E+00
2 No -9.71400E-01 0.00000E+00
3 No -7.64300E-01 0.00000E+00
4 Yes 1.33227E-15 1.69704E+01
5 Yes -5.72000E-02 0.00000E+00
6 No -5.00000E-01 0.00000E+00
7 No -5.00000E-01 0.00000E+00
8 No -7.50000E-01 0.00000E+00
9 No -1.00000E+00 0.00000E+00

10 Yes 2.26886E-08 6.00000E+00
11 No -9.85700E-01 0.00000E+00
12 No -5.14300E-01 0.00000E+00
13 No -8.82150E-01 0.00000E+00
14 No -5.00000E-01 0.00000E+00
15 No -5.28600E-01 0.00000E+00

Design variable activity

No. Active Design Lower Upper Lagr. mult.

1 No 7.99992E+00 1.00000E-01 1.00000E+02 0.00000E+00
2 No 3.43200E-01 1.00000E-01 1.00000E+02 0.00000E+00

Cost function at optimum = 2.297040E+01
No. of calls for cost function evaluation = 9
No. of calls for evaluation of cost function gradient = 9
No. of calls for constraint function evaluation = 9
No. of calls for evaluation of constraint function gradient = 9
No. of total gradient evaluations = 48
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TABLE 14-6 History of the Iterative Process and Final Solution for a Symmetric Three-Bar Struc-
ture, Case 3—All Constraints

I Max. vio. Conv. parm. Cost A1 = A3 A2

1 6.99992E+00 1.00000E+00 3.82843E+00 1.0000E+00 1.0000E+00
2 2.88848E+00 1.00000E+00 7.29279E+00 2.0573E+00 1.4738E+00
� � � � � �

7 7.38741E-05 3.18776E-04 2.29691E+01 7.9993E+00 3.4362E-01
8 5.45657E-09 2.31529E-08 2.29704E+01 7.9999E+00 3.4320E-01

Constraint activity

No. Active Value Lagr. mult.

1 No -1.56967E-01 0.00000E+00
2 Yes -2.86000E-02 0.00000E+00
3 No -9.71400E-01 0.00000E+00
4 No -7.64300E-01 0.00000E+00
5 Yes 5.45657E-09 1.69704E+01
6 Yes -5.72000E-02 0.00000E+00
7 No -5.00000E-01 0.00000E+00
8 No -5.00000E-01 0.00000E+00
9 No -7.50000E-01 0.00000E+00

10 No -1.00000E+00 0.00000E+00
11 Yes 0.00000E+00 6.00000E+00
12 No -9.85700E-01 0.00000E+00
13 No -5.14300E-01 0.00000E+00
14 No -8.82150E-01 0.00000E+00
15 No -5.00000E-01 0.00000E+00
16 No -5.28600E-01 0.00000E+00

Design variable activity

No. Active Design Lower Upper Lagr. mult.

1 No 7.99992E+00 1.00000E-01 1.00000E+02 0.00000E+00
2 No 3.43200E-01 1.00000E-01 1.00000E+02 0.00000E+00

Cost function at optimum = 2.297040E+01
No. of calls for cost function evaluation = 8
No. of calls for evaluation of cost function gradient = 8
No. of calls for constraint function evaluation = 8
No. of calls for evaluation of constraint function gradient = 8
No. of total gradient evaluations = 50
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Tables 14-7 to 14-9 contain the history of the iterative process, constraint, and design vari-
able activities at the final design, and the optimum cost for the three cases with the SQP
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TABLE 14-7 History of the Iterative Process and Final Solution for an Asymmetric Three-Bar Structure, Case
4—Stress Constraints

I Max. vio. Conv. parm. Cost A1 A2 A3

1 4.65680E+00 l.00000E+00 3.82843E+00 1.0000E+00 1.0000E+00 1.0000E+00
2 2.10635E+00 1.00000E+00 6.51495E+00 1.9491E+00 1.4289E+00 1.6473E+00
� � � � � � �

8 4.03139E-04 2.52483E-03 1.59620E+01 7.0220E+00 2.1322E+00 2.7572E+00
9 4.80986E-07 6.27073E-05 1.59684E+01 7.0236E+00 2.1383E+00 2.7558E+00

Constraint activity

No. Active Value Lagr. mult.

1 Yes 4.80986E-07 1.10020E+01
2 No -8.38571E-01 0.00000E+00
3 No -6.45716E-01 0.00000E+00
4 No -6.57554E-01 0.00000E+00
5 No -6.96193E-01 0.00000E+00
6 No -1.27218E-01 0.00000E+00
7 No -8.22858E-01 0.00000E+00
8 No -7.94285E-01 0.00000E+00
9 Yes 4.80918E-07 4.96650E+00

Design variable activity

No. Active Design Lower Upper Lagr. mult.

1 No 7.02359E+00 1.00000E-01 1.00000E+02 0.00000E+00
2 No 2.13831E+00 1.00000E-01 1.00000E+02 0.00000E+00
3 No 2.75579E+00 1.00000E-01 1.00000E+02 0.00000E+00

Cost function at optimum = 1.596844E+01
No. of calls for cost function evaluation = 9
No. of calls for evaluation of cost function gradient = 9
No. of calls for constraint function evaluation = 9
No. of calls for evaluation of constraint function gradient = 9
No. of total gradient evaluations = 26



Case 4. Stress in member 1 under loading condition 1, 11.00; stress in member 3 under
loading condition 3, 4.97.

Case 5. Horizontal displacement under loading condition 1, 11.96; vertical
displacement under loading condition 2, 8.58.

Case 6. Frequency constraint, 6.73; horizontal displacement under loading condition 1,
13.28; vertical displacement under loading condition 2, 7.77.

Note that the optimum weight for Case 5 is higher than that for Case 4, and for Case 6
it is higher than that for Case 5. This is consistent with the previous observation; the
number of constraints for Case 5 is larger than that for Case 4, and for Case 6 it is
larger than that for Case 5.
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TABLE 14-8 History of the Iterative Process and Final Solution for an Asymmetric Three-Bar Structure, Case
5—Stress and Displacement Constraints

I Max. vio. Conv. parm. Cost A1 A2 A3

1 6.99992E+00 1.00000E+00 3.82843E+00 1.0000E+00 1.0000E+00 1.0000E+00
2 3.26589E+00 1.00000E+00 6.77340E+00 1.9634E+00 1.6469E+00 1.6616E+00
� � � � � � �

9 2.18702E-05 3.83028E-04 2.05432E+01 8.9108E+00 1.9299E+00 4.2508E+00
10 6.72142E-09 1.42507E-06 2.05436E+01 8.9106E+00 1.9295E+00 4.2516E+00

Constraint activity

No. Active Value Lagr. Mult.

1 No -1.95461E-01 0.00000E+00
2 No -8.47731E-01 0.00000E+00
3 No -8.04539E-01 0.00000E+00
4 Yes 6.72142E-09 1.19642E+01
5 No -3.90923E-01 0.00000E+00
6 No -6.76985E-01 0.00000E+00
7 No -7.50000E-01 0.00000E+00
8 No -3.23015E-01 0.00000E+00
9 No -6.46030E-01 0.00000E+00
10 Yes 6.72141E-09 8.57942E+00
11 No -9.02269E-01 0.00000E+00
12 No -8.40435E-01 0.00000E+00
13 No -2.64008E-01 0.00000E+00
14 No -1.66277E-01 0.00000E+00
15 No -3.61739E-01 0.00000E+00

Design variable activity

No. Active Design Lower Upper Lagr. mult.

1 No 8.91058E+00 1.00000E-01 1.00000E+02 0.00000E+00
2 No 1.92954E+00 1.00000E-01 1.00000E+02 0.00000E+00
3 No 4.25157E+00 1.00000E-01 1.00000E+02 0.00000E+00

Cost function at optimum = 2.054363E+01
No, of calls for cost function evaluation = 10
No, of calls for evaluation of cost function gradient = 10
No, of calls for constraint function evaluation = 10
No. of calls for evaluation of constraint function gradient = 10
No, of total gradient evaluations = 43



14.6.3 Comparison of Solutions
Table 14-10 contains a comparison of solutions for all six cases. Since an asymmetric 
structure has a larger design space, the optimum solutions should be better than those for 
the symmetric case, and they are; Case 4 is better than Case 1, Case 5 is better than 
Case 2, and Case 6 is better than Case 3. These results show that for better practical 
solutions, more flexibility should be allowed in the design process by defining more design
variables; i.e., by allowing more design degrees of freedom.
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TABLE 14-9 History of the Iterative Process and Final Solution for an Asymmetric Three-Bar Structure, Case
6—All Constraints

I Max. vio. Conv. parm. Cost A1 A2 A3

1 6.99992E+00 1.00000E+00 3.82843E+00 1.0000E+00 1.0000E+00 1.0000E+00
2 2.88848E+00 1.00000E+00 7.29279E+00 2.0573E+00 1.4738E+00 2.0573E+00
� � � � � � �

7 6.75406E-05 2.25516E-04 2.10482E+01 8.2901E+00 1.2017E+00 6.7435E+00
8 6.46697E-09 1.88151E-08 2.10494E+01 8.2905E+00 1.2013E+00 5.7442E+00

Constraint activity

No. Active Value Lagr. mult.

1 Yes 2.99788E-09 6.73133E+00
2 No -1.14125E-01 0.00000E+00
3 No -8.07062E-01 0.00000E+00
4 No -8.85875E-01 0.00000E+00
5 Yes 6.46697E-09 1.32773E+01
6 No -2.28249E-01 0.00000E+00
7 No -5.90714E-01 0.00000E+00
8 No -7.50000E-01 0.00000E+00
9 No -4.09286E-01 0.00000E+00

10 No -8.18573E-01 0.00000E+00
11 Yes 1.23490E-09 7.77213E+00
12 No -9.42938E-01 0.00000E+00
13 No -8.60769E-01 0.00000E+00
14 No -3.86013E-01 0.00000E+00
15 No -3.28951E-01 0.00000E+00
16 No -4.43075E-01 0.00000E+00

Design variable activity

No. Active Design Lower Upper Lagr. mult.

1 No 8.29052E+00 1.00000E-01 1.00000E+02 0.00000E+00
2 No 1.20130E+00 1.00000E-01 1.00000E+02 0.00000E+00
3 No 5.74423E+00 1.00000E-01 1.00000E+02 0.00000E+00

Cost function at optimum = 2.104943E+01
No. of calls for cost function evaluation = 8
No. of calls for evaluation of cost function gradient = 8
No. of calls for constraint function evaluation = 8
No. of calls for evaluation of constraint function gradient = 8
No. of total gradient evaluations = 48
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14.7 Discrete Variable Optimum Design
In many practical applications of optimization, design variables for a problem must be
selected from a given set of values. For example, structural elements must be chosen from
those that are already commercially available. This is called discrete variable optimization,
which is essential to economize on fabrication costs for the design. The subject is briefly dis-
cussed in Section 2.11.4. We shall demonstrate the procedure described there for a simple
design problem.

The application area that we have chosen is the optimum design of aerospace, automo-
tive, mechanical, and structural systems, by employing finite element models. The problem
is to design a minimum weight system with constraints on various performance specifica-
tions. As a sample application, we shall consider the 10-bar cantilever structure shown in 
Fig. 14-3. The loading and other design data for the problem are given in Table 14-11. The
set of discrete values taken from the American Institute of Steel Construction (AISC) Manual
are also given there. The final design for the structure must be selected from this set. The
cross-sectional area of each member is treated as a design variable giving a total of 10 vari-
ables. Constraints are imposed on member stress (10), nodal displacement (8), member buck-
ling (10), vibration frequency (1), and explicit bounds on the design variables (20). This gives
a total of 49 constraints. In imposing the member buckling constraint, the moment of inertia
is taken as I = bA2, where b is a constant and A is the member cross-sectional area. The for-
mulation for the problem is quite similar to the one for the three-bar structure discussed in
Section 2.10. The only difference is that the explicit form of the constraint function is not
known. Therefore, we must use the finite element procedures described in Sections 14.1 and
14.2 for structural analysis and the gradient evaluation of constraints.

TABLE 14-10 Comparison of Optimum Costs for Six Cases of a Three-Bar Structure

Symmetric structure Asymmetric structure

Cast 1 Case 2 Case 3 Case 4 Case 5 Case 6

Optimum weight (lb) 21.11 22.97 22.97 15.97 20.54 21.05
NITa 9 9 8 9 10 8
NCFa 9 9 8 9 10 8
NGEa 19 48 50 26 43 48

a NIT, number of iterations; NCF, number of calls for function evaluation; NGE, total number of gra-
dient evaluations.
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FIGURE 14-3 Ten-bar cantilever truss.



14.7.1 Continuous Variable Optimization
To compare solutions, the continuous variable optimization problem is solved first. To use
the program IDESIGN, USER subroutines are developed using the material of Sections 14.1
and 14.2 to evaluate the functions and their gradients. The optimum solution using a very
severe convergence criteria and a uniform starting design of 1.62 in2, is obtained as

Design variables: 28.28, 1.62, 27.262, 13.737, 1.62, 4.0026, 13.595, 17.544, 19.13, 1.62
Optimum cost function: 5396.5 lb
Number of iterations: 19
Number of analyses: 21
Maximum constraint violation at optimum: (8.024E-10)
Convergence parameter at optimum: (2.660E-05)
Active constraints at optimum and their Lagrange multipliers

frequency, 392.4
stress in member 2, 38.06
displacement at node 2 in the y direction, 4967
lower bound for member 2, 7.829
lower bound for member 5, 205.1
lower bound for member 10, 140.5

14.7.2 Discrete Variable Optimization
We use the adaptive numerical optimization procedure described in Section 2.11.4 to obtain
a discrete variable solution. The procedure is to use the program IDESIGN in an interactive
mode. Design conditions are monitored and decisions made to fix design variables that are
not changing. The interactive facilities used include design variable histories, maximum con-
straint violation, and the cost function.

Table 14-12 contains a snapshot of the design conditions at various iterations and the 
decisions made. It can be seen that for the first five iterations the constraint violations are
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TABLE 14-11 Design Data for a 10-Bar Structure

Modulus of elasticity: E = (1.00E+07) psi
Material weight density: g = (1.0E-01) lb/in3

Displacement limit: ±2.0 in
Stress limit: 25,000 psi
Frequency limit: 22 Hz
Lower limit on design variables: 1.62 in2

Upper limit on design variables: none
Constant b (I = bA2): 1.0

Loading Data:

Node no. Load in y-direction (lb)

1 50,000
2 -150,000
3 50,000
4 -150,000

Available member sizes (in2): 1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47,
3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90,
14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50.



very large, so the constraint correction (CC) algorithm is used to correct the constraints. At
the sixth iteration, it is determined that design variables 5 and 10 are not changing, so they
are fixed to their current value, Similarly, at other iterations, variables are assigned values
from the available set. At the 14th iteration, variables have discrete values, the constraint 
violation is about 1.4 percent and the structural weight is 5424.69, which is an increase of
less than 1 percent from the true optimum. This is a reasonable final solution.

It should be noted that with the discrete variables, several solutions near the true optimum
point are possible. A different sequence of fixing variables can give a different solution. For
example, starting from the optimum solution with continuous variables, the following accept-
able discrete solutions are obtained interactively:

1. 30.0, 1.62, 26.5, 13.9, 1.62, 4.18, 13.5, 18.8, 18.8, 1.62; cost = 5485.6, max. viol. =
4.167 percent for stress in member 2.

2. Same as (1) except the eighth design variable is 16.9; cost = 5388.9 and max. viol. =
0.58 percent.

3. Same as (1) except design variables 2 and 6 are 2.38 and 2.62; cost = 5456.8, max.
viol. = 3.74 percent for stress in member 2

4. Same as (3) except design variable 2 is 2.62; cost = 5465.4; all constraints are
satisfied.

It can be seen that the interactive facilities described in Chapter 13 can be exploited to
obtain practical engineering designs.

14.8 Optimal Control of Systems by Nonlinear Programming
14.8.1 A Prototype Optimal Control Problem
Optimal control problems are dynamic in nature. A brief discussion of differences between
optimal control and optimum design problems is given there. It turns out that some optimal
control problems can be formulated and solved by the nonlinear programming methods
described in Chapters 11 and 13. In this section, we consider a simple optimal control problem
that has numerous practical applications. Various formulations of the problem are described
and optimal solutions are obtained and discussed.
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TABLE 14-12 Interactive Solution for a 10-Member Structure with Discrete Variables

Iteration Maximum Cost Algorithm Variables fixed to value
no. violation (%) function used shown in parentheses

1 1.274E+04 679.83 CC All free
2 4.556E+03 1019.74 CC All free
3 1.268E+03 1529.61 CC All free
4 4.623E+02 2294.42 CC All free
5 1.144E+02 3441.63 CC All free
6 2.020E+01 4722.73 CC 5 (1.62), 10 (1.62)
7 2.418E+00 5389.28 CCC 2 (1.80)

11 1.223E-01 5402.62 SQP 1 (30.0), 6 (3.84), 7 (13.5)
13 5.204E-04 5411.13 SQP 3 (26.5), 9 (19.9)
14 1.388E+00 5424.69 — 4 (13.5), 8 (16.9)

CC, constraint correction algorithm; CCC, constraint correction at constant cost; SQP, sequential qua-
dratic programming.



The application area that we have chosen to demonstrate the use of nonlinear program-
ming methods for this class of problems is the vibration control of systems. This is an impor-
tant class of problems that is encountered in numerous real-world applications. For example,
the control of structures under earthquake and wind loads, vibration control of sensitive
instruments to blast loading or shock input, control of the large space structures, precision
control of machines, among others. To treat these problems we shall consider a simple model
of the system to demonstrate the basic formulation and solution procedure. Using the demon-
strated procedures, more complex models can be treated to simulate the real-world systems
more accurately.

To treat optimal control problems, dynamic response analysis capability must be avail-
able. In the present text, we shall assume that students have some background in vibra-
tion analysis of systems. In particular, we shall model systems as single-degree-of-freedom
linear spring-mass systems. This leads to a second-order linear differential equation 
whose closed-form solution is available (Clough and Penzien, 1975; Chopra, 1995). It 
may be worthwhile for the students to briefly review the material on the solution of linear
differential equations.

To demonstrate the formulation and the solution process, we consider a cantilever struc-
ture shown in Fig. 14-4. The data for the problem and various notations used in Fig. 14-4
are defined in Table 14-13. The structure is a highly idealized model of many systems that
are used in practice. The length of the structure is L and its cross section is rectangular with
width as b and depth as h. The system is at rest initially at time t = 0. It experiences a sudden
load due to a shock wave or other similar causes. The problem is to control the vibrations 
of the system such that the displacements are not too large and the system comes to rest in
a controlled manner. The system has proper sensors and actuators that generate the desired
force to suppress the vibrations and bring the system to rest. The control force may also be
generated by properly designed dampers or viscoelastic support pads along the length of the
structure. We shall not discuss the detailed design of the control force generating mecha-
nisms, but we shall discuss the problem of determining the optimum shape of the control
force.

The governing equation that describes the motion of the system is a second-order partial
differential equation. To simplify the analysis, we use separation of variables, and express
the deflection function y(x, t) as

(14.26)y x t x q t,( ) = ( ) ( )y

494 INTRODUCTION TO OPTIMUM DESIGN

x

x k
m

q(t)

q(t)

q(t)

u(t)y(x, t)

y(x, t)

L

E, I, m–

E, I, m–
L

h

b

Cross-section
Motion

(B)(A)

FIGURE 14-4 Model of a system subjected to shock input. (A) Cantilever structures subjected
to shock input at support. (B) Equivalent single degree of freedom model.



where y(x) is a known function called the shape function, and q(t) is the displacement at the
tip of the cantilever, as shown in Fig. 14-4. Several shape functions can be used; however,
we shall use the following one:

(14.27)

Using kinetic and potential energies for the system, y(x) of Eq. (14.27), and the data of Table
14-13, the mass and spring constants for an equivalent single-degree-of-freedom system
shown in Fig. 14-4 are calculated as follows (Clough and Penzien, 1975; Chopra, 1995):
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TABLE 14-13 Data for the Optimal Control Problem

Length of the structure: L = 1.0m
Width of cross section: b = 0.01m
Depth of cross section: h = 0.02m
Modulus of elasticity: E = 200GPa
Mass density: r = 7800kg/m3

Moment of inertia: I = (6.667E-09) m4

Mass per unit length: = 1.56kg/m
Control function: u(t) = to be determined
Limit on the control function: ua = 30N
Initial velocity: v0 = 1.5m/s

m



where the spring constant k is identified as

In the foregoing, a “dot” over a variable indicates derivatives with respect to time and a
“prime” indicates derivatives with respect to the coordinate x.

The equation, of motion for the single-degree-of-freedom system along with the initial
conditions (initial displacement q0, initial velocity v0) are given as

(14.28)

(14.29)

where u(t) is the control force needed to suppress vibrations due to the initial velocity v0

(shock loading for the system is transformed to an equivalent initial velocity calculated as
impulse of the force divided by the mass). Note that the material damping for the system is
neglected. Therefore, if no control force u(t) is used, the system will continue to oscillate.
Figures 14-5 and 14-6 show the displacement and velocity response of the system for the
initial 0.10s when u(t) = 0, i.e., no control mechanism is used.

The control problem is to determine the forcing function u(t) such that the system comes
to rest in a specified time. We can also pose the problem as follows: Determine the control
force to minimize the time to bring the system to rest. We shall investigate several of these
formulations in the following paragraphs.
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FIGURE 14-5 Displacement response of the equivalent single-degree-of-freedom system to
shock loading with no control force.



We note here that for the preceding simple problem, solution procedures other than the
nonlinear programming methods are available (Meirovitch, 1985). Those procedures may be
better for the simple problem. However, we shall use nonlinear programming formulations
to solve the problem to demonstrate generality of the method.

14.8.2 Minimization of Error in State Variable
As a first formulation, we define the performance index (cost function) as minimization of
error in the state variable (response) in the time interval 0 to T as

(14.30)

Constraints are imposed on the terminal response, the displacement response, and the control
force as follows:

Displacement constraint: |q(t)| £ qa in the time interval 0 to T (14.31)
Terminal displacement constraint: q(T) = qT (14.32)
Terminal velocity constraint: q(T) = vT (14.33)
Control force constraint: |u(t)| £ ua in the interval 0 to T (14.34)

where qa is the maximum allowed displacement of the system, qT and vT are small specified
constants, and ua is the limit on the control force. Thus, the design problem is to compute
the control function u(t) in the time interval 0 to T to minimize the performance index of Eq.
(14.30) subject to the constraints of Eqs. (14.31) to (14.34) and satisfaction of the equations
of motion (14.28) and the initial conditions in Eq. (14.29). Note that the constraints of 
Eqs. (14.31) and (14.34) are dynamic in nature and need to be satisfied over the entire time
interval 0 to T.

f q t dt
T

1
2

0
= ( )Ú
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loading with no control force.



Another performance index can be defined as the sum of the squares of the displacement
and the velocity as:

(14.35)

Formulation for Numerical Solution In order to obtain numerical results, the following
data are used:

Allowable time to suppress motion: T = 0.10s
Initial velocity: v0 = 1.5m/s
Initial displacement: q0 = 0.0m
Allowable displacement: qa = 0.01m
Terminal velocity: vT = 0.0m/s
Terminal displacement: qT = 0.0m
Limit on the control force: ua = 30.0N

For the present example, the equation of motion is quite simple, and its analytical solu-
tion can be written using Duhamel’s integral (Clough and Penzien, 1975; Chopra, 1995) as
follows:

(14.36)

(14.37)

In more complex applications, the equations of motion will have to be integrated using
numerical methods (Shampine and Gordon, 1975; Hsieh and Arora, 1984).

Since explicit forms for the displacement and velocity in terms of the design variable u(t)
are known, we can calculate their derivatives explicitly by differentiating Eqs. (14.36) and
(14.37) with respect to u(h), where h is a point between 0 and T, as

(14.38)

(14.39)

In the foregoing expressions, du(t)/du(h) = d(t-h) has been used, where d(t-h) is 
the Dirac delta function. The derivative expressions can easily be programmed to impose
constraints on the problem. For more general applications, derivatives must be evaluated
using numerical computational procedures. Several such procedures developed and evalu-
ated by Hsieh and Arora (1984) and Tseng and Arora (1987) can be used for more complex
applications.

Equations (14.36) to (14.39) are used to develop the user-supplied subroutines for the
program IDESIGN. Several procedures are needed to solve the problem numerically. First
of all, a grid must be used to discretize the time where displacement, velocity, and the control
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force are evaluated. Interpolation methods, such as cubic splines, B-splines (De Boor, 1978),
etc., can be used to evaluate the functions at points other than the grid points.

Another difficulty concerns the dynamic displacement constraint of Eq. (14.31). The con-
straint must be imposed during the entire time interval 0 to T. Several treatments for such
constraints have been investigated (Hsieh and Arora, 1984; Tseng and Arora, 1987). For
example, the constraint can be replaced by several constraints imposed at the local maximum
points for the function q(t); it may be replaced by an integral constraint; or it may be imposed
at each grid point.

In addition to the foregoing numerical procedures, a numerical integration scheme, such
as simple summation, trapezoidal rule, Simpson’s rule, Gaussian quadrature, and so on, must
be selected for evaluating the integrals in Eqs. (14.30), (14.36), and (14.37). Based on some
preliminary investigations, the following numerical procedures are selected for their sim-
plicity to solve the present problem:

Numerical integration: Simpson’s method
Dynamic constraint: imposed at each grid point
Design variable (control force): value at each grid point

Numerical Results Using the foregoing procedures and the numerical data, the problem is
solved using the SQP method of Section 11.4 available in the IDESIGN software package.
The number of grid points is selected as 41, so there are 41 design variables. The displace-
ment constraint of Eq. (14.31) is imposed at the grid points with its limit set as qa = 0.01m.
As an initial estimate, u(t) is set to zero, so constraints of Eqs. (14.31) to (14.33) are vio-
lated. The algorithm finds a feasible design in just three iterations. During these iterations,
the cost function of Eq. (14.30) is also reduced. The algorithm reaches near to the optimum
point at the 11th iteration. As a result of the severe convergence criteria, it takes another 27
iterations to satisfy the specified convergence criteria. The cost function history is plotted in
Fig. 14-7. For all practical purposes the optimum solution is obtained somewhere between
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the 15th and 30th iterations. Thus, if IDESIGN was being executed in the interactive mode,
the designer could terminate the iterative process at the 17th iteration.

The final displacement and velocity responses and the control force history are shown in
Figs. 14-8 to 14-10. It can be observed that the displacement and velocity both go to zero at
about 0.05s, so the system comes to rest at that point. The control force also has zero value
after that point and reaches its limit value at several points during that interval. The final cost
function value is (8.536E-07).

Effect of Problem Normalization It turns out that for the present application it is advan-
tageous to normalize the problem and optimize it with normalized variables. We shall briefly
discuss these normalizations which can also be useful in other applications. Without nor-
malization of the present problem, the cost function and its gradient as well as constraint
functions and their gradients have quite small values. The algorithm required a very small
value for the convergence parameter (1.0E-09) to converge to the same optimum solution 
as with the normalized problem. In addition, the rate of convergence without normalization
was also quite slow. This apparent numerical difficulty was due to ill-conditioning in the
problem which was overcome by the normalization procedure that is described in the 
following.

The independent variable transformation for the time is defined as

(14.40)

where t is the normalized independent variable. With this transformation, when t varies
between 0 and T, t varies between 0 and 1. The displacement is normalized as

(14.41)q t Tq q q
q t

Tq
( ) = ( ) ( ) =

( )
max

max
t tor

t T
t

T
= =t tor
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FIGURE 14-8 Displacement response at optimum with minimization of error in the state vari-
able as the performance index (cost function f1).
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FIGURE 14-9 Velocity response at optimum with minimization of error in the state variable as
the performance index (cost function f1).
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FIGURE 14-10 Optimum control force to minimize error in the state variable due to shock
input (cost function f1).



where (t) is the normalized displacement and qmax is taken as 0.015. Derivatives of the 
displacement with respect to time are transformed as

(14.42)

(14.43)

(14.44)

The control force is normalized as

(14.45)

With this normalization, (t) varies between -1 and 1 as u(t) varies between -umax and umax.
Substituting the preceding transformations into Eqs. (14.28) and (14.29), we get

(14.46)

(14.47)

The constraints of Eqs. (14.31) to (14.34) are also normalized as

Displacement constraint: (14.48)

Terminal displacement constraint: (14.49)

Terminal velocity constraint: (14.50)

Control force constraint: (14.51)

With the foregoing normalizations, the numerical algorithm behaved considerably better
and convergence to the optimum solution as reported earlier was quite rapid. Therefore, for
general usage, normalization of the problem is recommended whenever possible. Note that
many forms of normalizations of a problem are possible. If one form does not work, others
should be tried. We shall use the foregoing normalizations in the two formulations discussed
in Sections 14.8.3 and 14.8.4.

Discussion of Results The final solution for the problem can be affected by the number of
grid points and the convergence criterion. The solution reported previously was obtained
using 41 grid points and a convergence criterion of (1.0E-03). A stricter convergence 
criterion of (1.0E-06) also gave the same solution, using a few more iterations.

The number of grid points can also affect the accuracy of the final solution. The use of
21 grid points also gave approximately the same solution. The shape of the final control force
was slightly different. The final cost function value was slightly higher than that with 41 grid
points, as expected.
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It is also important to note that the problem can become infeasible if the limit qa on the
displacement in Eq. (14.31) is too severe. For example, when qa was set to 0.008m, the
problem was infeasible with 41 grid points. However, with 21 grid points a solution was
obtained. This also shows that when the number of grid points is small, the displacement
constraint may actually be violated between the grid points, although it is satisfied at the grid
points. Therefore, the number of grid points should be selected judiciously.

The foregoing discussion shows that to impose the constraints more precisely, the exact
local max-points should be located and the constraint imposed there. To locate the exact max-
points, interpolation procedures may be used, or bisection of the interval in which the max-
point lies can be used (Hsieh and Arora, 1984). The gradient of the constraint must be
evaluated at the max-points. For the present problem, the preceding procedure is not too dif-
ficult to implement because the analytical form for the response is known. For more general
applications, the computational as well as programming effort can increase substantially to
implement the foregoing procedure.

It is worthwhile to note that several other starting points for the control force such as u(t)
= -30N, u(t) = 30N, converged to the same solution as given in Figs. 14-8 to 14-10. The
computational effort varied somewhat. The CPU time with 21 grid points was about 20
percent of that with 41 grid points when u(t) = 0 was used as the starting point.

It is interesting to note that at the optimum, the dynamic constraint of Eq. (14.31) is not
active at any time grid point. It is violated at many intermediate iterations. Also, the termi-
nal response constraints of Eqs. (14.32) and (14.33) are satisfied at the optimum with nor-
malized Lagrange multipliers as (-7.97E-04) and (5.51E-05). Since the multipliers are
almost zero, the constraints can be somewhat relaxed without affecting the optimal solution.
This can be observed from the final displacement and velocity responses shown in Figs. 14-
8 and 14-9, respectively. Since the system is essentially at rest after t = 0.05s, there is no
effect of imposing the terminal constraints of Eqs. (14.32) and (14.33).

The control force is at its limit value (ua = 30N) at several grid points; for example, it is
at its lower limit at the first six grid points and at the upper limit at the next six. The Lagrange
multiplier for the constraint has its largest value initially and gradually decreases to zero after
the 13th grid point. According to the Constraint Variation Sensitivity Theorem 4.7, the
optimum cost function can be reduced substantially if the limit on the control force is relaxed
for a small duration after the system is disturbed.

14.8.3 Minimum Control Effort Problem
Another formulation for the problem is possible where we minimize the total control effort
calculated as

(14.52)

The constraints are the same as defined in Eqs. (14.31) to (14.34) and Eqs. (14.28) and
(14.29). The numerical procedures for obtaining an optimum solution for the problem are the
same as described previously in Section 14.8.2.

This formulation of the problem is quite well-behaved. The same optimum solution is
obtained quite rapidly (9–27 iterations) with many different starting points. Figures 14-11 to
14-14 give the cost function history, displacement and velocity responses, and the control
force at the optimum solution, which is obtained by starting from u(t) = 0 and 41 grid points.
The final control effort of 7.481 is much smaller than that for the first case where it was
28.74. The system, however, comes to rest at 0.10s compared with 0.05s in the previous
case. The solution with 21 grid points resulted in a slightly smaller control effort as a result
of the numerical procedures used, as explained earlier.

f u t dt
T

3
2

0
= ( )Ú
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It is interesting to note that the constraint of Eq. (14.31) is active at the eighth grid point
with the normalized Lagrange multiplier as (2.429E-02). The constraints of Eqs. (14.32) 
and (14.33) are also active with the normalized Lagrange multipliers as (-1.040E-02) and
(-3.753E-04). In addition, the control force is at its lower limit at the first grid point with
the Lagrange multiplier as (7.153E-04). This shows that by increasing or decreasing the limit
on the control force, the optimum cost function will not be affected significantly.
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FIGURE 14-11 Cost function history for the optimal control problem of minimization of the
control effort (cost function f3).
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FIGURE 14-12 Displacement response at optimum with minimization of control effort as the
performance index (cost function f3).



14.8.4 Minimum Time Control Problem
The idea of this formulation is to minimize the time required to suppress the motion of the
system subject to various contraints. In the previous formulations, the desired time to bring
the system to rest was specified. In the present formulation, however, we try to minimize the
time T. Therefore, the cost function is
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FIGURE 14-13 Velocity response at optimum with minimization of control effort as the per-
formance index (cost function f3).
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FIGURE 14-14 Optimum control force to minimize the control effort to bring the system to
rest after shock input (cost function f3).



(14.53)

The constraints on the system are the same as defined in Eqs. (14.28), (14.29), and (14.31)
to (14.34). Note that compared with the previous formulations, gradients of constraints with
respect to T are also needed. They can be computed quite easily, since analytical expressions
for the functions are known.

The same optimum solution is obtained by starting from several points, such as T = 0.1,
0.04, 0.02, and u(t) = 0, 30, -30. Figures 14-15 to 14-18 show the cost function history, 

f T4 =
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FIGURE 14-15 Cost function history for the optimal control problem of minimization of time
to bring the system to rest (cost function f4).
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FIGURE 14-16 Displacement response at optimum with minimization of time as the perfor-
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displacement and velocity responses, and the control force at the optimum with 41 grid points,
T = 0.04, and u(t) = 0 as the starting point. The CPU time for the entire solution process is
302s on the Apollo DN460 workstation. It takes 0.02933s to bring the system to rest. Depend-
ing on the starting point, the number of iterations to converge to the final solution varies
between 20 and 56.
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FIGURE 14-17 Velocity response at optimum with minimization of time as the performance
index (cost function f4).
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FIGURE 14-18 Optimum control force to minimize time to bring the system to rest after shock
input (cost function f4).



Constraints of Eqs. (14.32) and (14.33) are active with the normalized Lagrange multi-
pliers as (6.395E-02) and (-1.771E-01), respectively. The control force is at its lower limit
for the first 22 grid points and at the upper limit at the remaining points.

Interestingly, even after normalization of the problem, the rate of convergence for the
problem could be affected by multiplying the cost function by a positive constant. For
example, the number of iterations decreased from 60 to 20 when a factor of 1000 was used.
The results reported in the preceding discussion use a factor of 1000. Apparently, the use of
this factor affects the step size determinination process for the algorithm. One conclusion that
can be drawn based on the study is that the step size determination process has room for
further improvement in the IDESIGN system.

14.8.5 Comparison of Three Formulations for the Optimal Control of 
System Motion

It is interesting to compare the three formulations for the optimal control of motion of the
system shown in Fig. 14-4. Table 14-14 contains a summary of the optimum solutions with
the three formulatons. All the solutions are obtained with 41 grid points and u(t) = 0 as the
starting point using an Apollo DN460 workstation. For the third formulation, T = 0.04s is
used as the starting point.

The results of Table 14-14 show that the control effort is largest with the first formulation
and the smallest with the second one. The second formulation turns out to be the most effi-
cient as well as convenient to implement. By varying the total time T, this formulation can
be used to generate results for Formulation 3. For example, using T = 0.05 and 0.02933s,
solutions with Formulation 2 were obtained. With T = 0.02933s, the same results as with
Formulation 3 were obtained. Also, when T = 0.025s was used, Formulation 2 resulted in an
infeasible problem. For practical applications, Formulation 2 is recommended for the vibra-
tion control problems.

Exercises for Chapter 14*
Formulate and solve the following design problems using a nonlinear programming algo-
rithm starting with a reasonable design estimate. Also solve the problems graphically when-
ever possible and trace the history of the iterative process on the graph of the problem.
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TABLE 14-14 Summary of Optimum Solutions for Three Formulations of Optimal
Control of Motion of a System Subjected to Shock Input

Formulation 1: Formulation 2: Formulation 3:
Minimization of error Minimization of Minimization of
in state variable control effort terminal time

f1 8.53607E-07 2.32008E-06 8.64466E-07
f2 1.68241E-02 2.73540E-02 1.45966E-02
f3 2.87398E+01 7.48104 2.59761E+01
f4 0.10 0.10 2.9336E-02
NIT 38 13 20
NCF 38 13 20
NGE 100 68 64
CPU 212 43 302

NIT, number of iterations; NCF, number of calls for function evaluation; NGE, total
number of gradient evaluations.



14.1 Exercise 3.34 14.2 Exercise 3.35 14.3 Exercise 3.36

14.4 Exercise 3.50 14.5 Exercise 3.51 14.6 Exercise 3.52

14.7 Exercise 3.53 14.8 Exercise 3.54 14.9 Exercise 12.9

14.10 Exercise 12.10 14.11 Exercise 12.11 14.12 Exercise 12.12

14.13 Design of a tapered flag pole. Formulate the flag pole design problem of Exercise
3.52 for the data given there. Use a hollow tapered circular tube with constant
thickness as the structural member. The mass of the pole is to be minimized 
subject to various constraints. Use a numerical optimization method to obtain 
the final solution and compare it with the optimum solution for the uniform flag
pole.

14.14 Design of a sign support. Formulate the sign support column design problem
described in Exercise 3.53 for the data given there. Use a hollow tapered circular
tube with constant thickness as the structural member. The mass of the pole is to be
minimized subject to various constraints. Use a numerical optimization method to
obtain the final solution and compare it with the optimum solution for the uniform
column.

14.15 Repeat the problem of Exercise 14.13 for a hollow square tapered column of
uniform thickness.

14.16 Repeat the problem of Exercise 14.14 for a hollow square tapered column of
uniform thickness.

14.17 For the optimal control problem of minimization of error in the state variable
formulated and solved in Section 14.8.2, study the effect of changing the limit on
the control force (ua) to 25N or 35N.

14.18 For the minimum control effort problem formulated and solved in Section 14.8.3,
study the effect of changing the limit on the control force (ua) to 25N or 35N.

14.19 For the minimum time control problem formulated and solved in Section 14.8.4,
study the effect of changing the limit on the control force (ua) to 25N or 35N.

14.20 For the optimal control problem of minimization of error in the state variable
formulated and solved in Section 14.8.2, study the effect of having an additional
lumped mass M at the tip of the beam (M = 0.05kg) as shown in Fig. E14-20.

14.21 For the minimum control effort problem formulated and solved in Section 
14.8.3, study the effect of having an additional mass M at the tip of the beam 
(M = 0.05kg).

14.22 For the minimum time control problem formulated and solved in Section 14.8.4,
study the effect of having an additional lumped mass M at the tip of the beam 
(M = 0.05kg).

14.23 For Exercise 14.20, what will be the optimum solution if the tip mass M is treated
as a design variable with limits on it as 0 £ M £ 0.10kg?

14.24 For Exercise 14.21, what will be the potimum solution if the tip mass M is treated
as a design variable with limits on it as 0 £ M £ 0.10kg?

14.25 For Exercise 14.22, what will be the potimum solution if the tip mass M is treated
as a design variable with limits on it as 0 £ M £ 0.10kg?
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14.26 For the optimal control problem of minimization of error in the state variable
formulated and solved in Section 14.8.2 study the effect of including a 1 percent
critical damping in the formulation.

14.27 For the minimum control effort problem formulated and solved in Section 14.8.3,
study the effect of including a 1 percent critical damping in the formulation.

14.28 For the minimum time control problem formulated and solved in Section 14.8.4,
study the effect of including a 1 percent critical damping in the formulation.

14.29 For the spring-mass-damper system shown in Fig. E14-29, formulate and solve the
problem of determining the spring constant and damping coefficient to minimize the
maximum acceleration of the system over a period of 10s when it is subjected to an
initial velocity of 5m/s. The mass is specified as 5kg.

The displacement of the mass should not exceed 5cm for the entire time interval of 
10s. The spring constant and the damping coefficient must also remain within the
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limits 1000 £ k £ 3000N/m; 0 £ c £ 300N·S/m. (Hint: The objective of 
minimizing the maximum acceleration is a min–max problem, which can be
converted to a nonlinear programming problem by introducing an artificial design
variable. Let a(t) be the acceleration and A be the artificial variable. Then the
objective can be to minimize A subject to an additional constraint |a(t)| £ A for 
0 £ t £ 10).

14.30 Formulate the problem of optimum design of steel transmission poles described in
Kocer and Arora (1996b). Solve the problem as a continuous variable optimization
problem.

Design Optimization Applications with Implicit Functions 511





15 Discrete Variable Optimum Design 
Concepts and Methods

513

Upon completion of this chapter, you will be able to:

• Formulate mixed continuous-discrete variable optimum design problems

• Use the terminology associated with mixed continuous-discrete variable 
optimization problems

• Explain concepts associated with various types of mixed continuous-discrete 
variable optimum design problems and methods

• Determine an appropriate method to solve your mixed continuous-discrete 
variable optimization problem

Discrete Variable. A variable is called discrete if its value must be assigned from a
given set of values.

Integer Variable. A variable that can have only integer values is called an integer
variable. Note that the integer variables are just a special class of discrete variables.

Linked Discrete Variable. If assignment of a value to a variable specifies the values for
a group of parameters, then it is called a linked discrete variable.

Binary Variable. A discrete variable that can have a value of 0 or 1 is called a binary
variable.

In many practical applications, discrete and integer design variables occur naturally in the
problem formulation. For example, plate thickness must be selected from the available ones,
number of bolts must be an integer, material properties must correspond to the available mate-
rials, number of teeth in a gear must be an integer, number of reinforcing bars in a concrete
member must be an integer, diameter of reinforcing bars must be selected from the available
ones, number of strands in a prestressed member must be an integer, structural members must
be selected from commercially available ones, and many more. Types of discrete variables
and cost and constraint functions can dictate the method used to solve such problems. For
the sake of brevity, we shall refer to these problems as mixed variable (discrete, continuous,
integer) optimization problems, or in short MV-OPT. In this chapter, we shall describe various
types of MV-OPT problems, and concepts and terminologies associated with their solution.
Various methods for solution of different types of problems shall be described. The approach



taken is to stress the basic concepts of the methods and point out their advantages and 
disadvantages.

Because of the importance of this class of problems for practical applications, consider-
able interest has been shown in the literature to study and develop appropriate methods for
their solution. Material for the present chapter is introductory in nature and describes various
solution strategies in the most basic form. The material is derived from several publications
of the author and his coworkers, and numerous other references cited there (Arora et al.,
1994; Arora and Huang, 1996; Huang and Arora, 1995, 1997a,b; Huang et al., 1997; Arora,
1997, 2002; Kocer and Arora 1996a,b, 1997, 1999, 2002). These references contain numer-
ous examples of various classes of discrete variable optimization problems. Only a few of
these examples are covered in this chapter.

15.1 Basic Concepts and Definitions
15.1.1 Definition of Mixed Variable Optimum Design Problem: MV-OPT
The standard design optimization model defined and treated in earlier chapters with equality
and inequality constraints can be extended by defining some of the variables as continuous
and others as discrete, as follows (MV-OPT):

minimize f(x) subject to

(15.1)

where f, hi, and gj are cost and constraint functions, respectively; xil and xiu are lower and
upper bounds for the continuous design variable xi; p, m, and n are the number of equality
constraints, inequality constraints, and design variables, respectively; nd is the number of dis-
crete design variables; Di is the set of discrete values for the ith variable; qi is the number
of allowable discrete values; and dik is the kth possible discrete value for the ith variable.
Note that the foregoing problem definition includes integer variable as well as 0-1 variable
problems. The formulation in Eq. (15.1) can also be used to solve design problems with linked
discrete variables (Arora and Huang 1996; Huang and Arora 1997a). There are many design
applications where such linked discrete variables are encountered. We shall describe some
of them in a later section.

15.1.2 Classification of Mixed Variable Optimum Design Problems
Depending on the type of design variables, and cost and constraint functions, the mixed 
continuous-discrete variable problems can be classified into five different categories as dis-
cussed later. Depending on the type of the problem, one discrete variable optimization method
may be more effective than another to solve the problem. In the following, we assume that
the continuous variables in the problem can be treated with an appropriate continuous vari-
able optimization method. Or, if appropriate, a continuous variable is transformed to a dis-
crete variable by defining a grid for it. Thus we focus only on the discrete variables.

x x x i n nil i iu d£ £ = +( ), 1 to

x D D d d d i ni i i i i iq di
Œ = ( ) =, , , . . . , ,1 2 1 to

g j mj £ =0 1, to
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MV-OPT 1 Mixed design variables; problem functions are twice continuously differen-
tiable; discrete variables can have nondiscrete values during the solution process (i.e., func-
tions can be evaluated at nondiscrete points). Several solution strategies are available for this
class of problem. There are numerous examples of this type of problem; e.g., plate thickness
from specified values and member radii from the ones available in the market.

MV-OPT 2 Mixed design variables; problem functions are nondifferentiable; however, 
discrete variables can have nondiscrete values during the solution process. An example of
this class of problems includes design problems where constraints from a design code 
are imposed. Many times, these constraints are based on experiments and experience, and
are not differentiable everywhere in the feasible set. Another example is given in Huang 
and Arora (1997a,b).

MV-OPT 3 Mixed design variables; problem functions may or may not be differentiable;
some of the discrete variables must have only discrete values in the solution process; some
of the problem functions can be evaluated only at discrete design variable values during the
solution process. Examples of such variables are: number of strands in a prestressed beam
or column, number of teeth in a gear, and the number of bolts for a joint. On the other hand,
a problem is not classified as MV-OPT 3 if the effects of the nondiscrete design points can
be “simulated” somehow. For instance, a coil spring must have an integer number of coils.
However, during the solution process, having a noninteger number of coils is acceptable (it
may or may not have any physical meaning) as long as function evaluations are possible.

MV-OPT 4 Mixed design variables; problem functions may or may not be differentiable;
some of the discrete variables are linked to others; assignment of a value to one variable
specifies values for others. This type of a problem covers many practical applications, such
as structural design with members selected from a catalog, material selection, and engine-
type selection.

MV-OPT 5 Combinatorial problems. These are purely discrete nondifferentiable problems.
A classic example of this class of problems is the traveling salesman problem. The total dis-
tance traveled to visit a number of cities needs to be minimized. A set of integers (cities) can
be arranged in different orders to specify a travel schedule (a design). A particular integer
can appear only once in a sequence. Examples of this type of engineering design problems
include design of a bolt insertion sequence, welding sequence, and member placement
sequence between given set of nodes (Huang et al., 1997).

As will be seen later, some of the discrete variable methods assume that the functions and
their derivatives can be evaluated at nondiscrete points. Such methods are not applicable to
some of the problem types defined above. Various characteristics of the five problem types
are summarized in Table 15-1.

15.1.3 Overview of Solution Concepts
Enumerating on the allowable discrete values for each of the design variables can always
solve discrete variable optimization problems. The number of combinations Nc to be evalu-
ated in such a calculation is given as

(15.2)

The number of combinations to be analyzed, however, increases very rapidly with an increase
in nd, the number of design variables, and qi, the number of allowable discrete values for each

N qc i
i

nd

=
=

’
1
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variable. This can lead to an extremely large computational effort to solve the problem. Thus
many discrete variable optimization methods try to reduce the search to only a partial list of
possible combinations using various strategies and heuristic rules. This is sometimes called
implicit enumeration. Most of the methods guarantee optimum solution for only a very
restricted class of problems (linear or convex). For more general nonlinear problems,
however, good usable solutions can be obtained depending on how much computation is
allowed. Note that at a discrete optimum point, none of the inequalities may be active unless
the discrete point happens to be exactly on the boundary of the feasible set. Also the final
solution is affected by how widely separated the allowable discrete values are in the sets Di

in Eq. (15.1).
It is important to note that if the problem is MV-OPT 1 type, then it is useful to solve it

first using a continuous variable optimization method. The optimum cost function value for
the continuous solution represents a lower bound for the value corresponding to a discrete
solution. The requirement of discreteness of design variables represents additional constraints
on the problem. Therefore, the optimum cost function with discrete design variables will have
higher value compared with that for the continuous solution. This way the penalty paid to
have a discrete solution can be assessed.

There are two basic classes of methods for MV-OPT: enumerative and stochastic. In the
enumerative category full enumeration is a possibility; however partial enumeration is most
common based on branch and bound methods. In the stochastic category, the most common
ones are simulated annealing and genetic algorithms. Simulated annealing will be discussed
later in this chapter, and genetic algorithms will be discussed in Chapter 16.

15.2 Branch and Bound Methods (BBM)
The branch and bound (BBM) method was originally developed for discrete variable linear
programming (LP) problems for which a global optimum solution is obtained. It is some-
times called an implicit enumeration method because it reduces the full enumeration in a sys-
tematic manner. It is one of the earliest and the best-known methods for discrete variable
problems and has also been used to solve MV-OPT problems. The concepts of branching,
bounding, and fathoming are used to perform the search, as explained later. The following
definitions are useful for description of the method, especially when applied to continuous
variable problems.

Half-Bandwidth. When r allowable discrete values are taken below and (r - 1) values 
are taken above a given discrete value for a variable, giving 2r allowable values, the
parameter r is called the half-bandwidth. It is used to limit the number of allowable
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TABLE 15-1 Characteristics of Design Variables and Functions for Problem Types

MV-OPT Variable Functions Functions Nondiscrete Are discrete
types differentiable? defined at values allowed variables

nondiscrete for discrete linked?
points? variables?

1 Mixed Yes Yes Yes No
2 Mixed No Yes Yes No
3 Mixed Yes/No No No No
4 Mixed Yes/No No No Yes
5 Discrete No No No Yes/No



values for a discrete variable, for example, based on the rounded-off continuous
solution.

Completion. Assignment of discrete values from the allowable ones to all the variables
is called a completion.

Feasible Completion. It is a completion that satisfies all the constraints.
Partial Solution. It is an assignment of discrete values to some but not all the variables

for a continuous discrete problem.
Fathoming. A partial solution for a continuous problem or a discrete intermediate

solution for a discrete problem (node of the solution tree) is said to be fathomed if it
is determined that no feasible completion of smaller cost than the one previously
known can be determined from the current point. It implies that all possible
completions have been implicitly enumerated from this node.

15.2.1 Basic BBM
The first use of the branch and bound method for linear problems is attributed to Land and Doig
(1960). Dakin (1965) later modified the algorithm that has been subsequently used for many
applications. There are two basic implementations of the BBM. In the first one, nondiscrete
values for the discrete variables are not allowed (or they are not possible) during the solution
process. This implementation is quite straightforward; the concepts of branching, bounding,
and fathoming are used directly to obtain the final solution. No subproblems are defined or
solved; only the problem functions are evaluated for different combinations of design variables.
In the second implementation, nondiscrete values for the design variables are allowed. Forcing
a variable to have a discrete value generates a node of the solution tree. This is done by defining
additional constraints to force out a discrete value for the variable. The subproblem is solved
using either LP or NLP methods depending on the problem type. Example 15.1 demonstrates
use of the BBM when only discrete values for the variables are allowed.
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EXAMPLE 15.1 BBM with Only Discrete Values Allowed

Solve the following LP problem: 

minimize (a)

subject to

(b)

(c)

(d)

(e)

Solution. In this implementation of the BBM, variables x1 and x2 can have only dis-
crete values from the given four and seven values, respectively. The full enumeration
would require evaluation of problem functions for 28 combinations; however, the
BBM can find the final solution in fewer evaluations. For the problem, the derivatives
of f with respect to x1 and x2 are always negative. This information can be used to

x x1 20 1 2 3 0 1 2 3 4 5 6Œ{ } Œ{ }, , , , , , , , , ,and

g x x3 1 225 10 90 0= + - £

g x x2 1 212 7 55 0= + - £

g x x1 1 220 10 75 0= - - + £

f x x= - -20 101 2
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advantage in the BBM. One can enumerate the discrete points in the descending order
of x1 and x2 to ensure that the cost function is always increased when one of the vari-
ables is perturbed to the next lower discrete value. The BBM for the problem is illus-
trated in Fig. 15-1. For each point (called a node), the cost and constraint function
values are shown. From each node, assigning the next smaller value to each of the
variables generates two more nodes. This is called branching. At each node, all the
problem functions are evaluated again. If there is any constraint violation at a node,
further branching is necessary from that node. Once a feasible completion is obtained,
the node requires no further branching since no point with a lower cost is possible
from there. Such nodes are said to have fathomed, i.e., reached their lowest point on
the branch and no further branching will produce a solution with lower cost. Nodes
6 and 7 are fathomed this way where the cost function has a value of -80. For the
remaining nodes, this value becomes an upper bound for the cost function. This is
called bounding. Later any node having a cost function value higher than the current
bound is also fathomed. Nodes 9, 10, and 11 are fathomed because the designs are
infeasible with the cost function value larger than or equal to the current bound of 
-80. Since no further branching is possible, the global solution for the problem is
found at Nodes 6 and 7 in 11 function evaluations.

x=(3,6)  f=–120

g=(–45,23,45)

x=(3,5)  f=–110

g=(–35,16,35)

x=(2,6)  f=–100

g=(–25,11,20)

x=(3,4)  f=–100

g=(–25,9,25)

x=(2,5)  f=–90

g=(–15,4,10)

x=(1,6)  f=–80

g=(–5,–1,–5)

x=(2,4)  f=–80

g=(–5,–3,0)

x=(1,5)  f=–70

g=(5,–8,–15)

Node 2

Node 4

Node 7

Node 5

Node 9

Node 3

Node 6

Node 1

x=(3,3)  f=–90

g=(–15,–2,15)

Node 8

x=(3,2)  f=–80

g=(–5,5,5)

Node 10
x=(2,3)  f=–70

g=(5,–10,–10)

Node 11

STOP—Since no
other feasible points
with smaller cost

STOP—Since no 
other feasible points
with smaller cost

STOP–Since cost
is larger than –80

STOP—Since cost
is larger than -80

STOP—Feasible cost
will be higher than –80

Figure 15-1 Basic branch and bound method without solving continuous subproblems.



15.2.2 BBM with Local Minimization
For optimization problems where the discrete variables can have nondiscrete values during
the solution process and all the functions are differentiable, we can take advantage of the
local minimization procedures to reduce the number of nodes in the solution tree. In such a
BBM procedure, initially an optimum point is obtained by treating all the discrete variables
as continuous. If the solution is discrete, an optimum point is obtained and the process is ter-
minated. If one of the variables does not have a discrete value, then its value lies between
two discrete values; e.g., dij < xi < dij+1. Now two subproblems are defined, one with the con-
straint xi £ dij and the other with xi ≥ dij+1. This process is also called branching, which is
slightly different from the one explained in Example 15.1 for purely discrete problems. It
basically eliminates some portion of the continuous feasible region that is not feasible for the
discrete problem. However, none of the discrete feasible solutions is eliminated. The two
subproblems are solved again, and the optimum solutions are stored as nodes of the tree con-
taining optimum values for all the variables, the cost function, and the appropriate bounds
on the variables. This process of branching and solving continuous problems is continued
until a feasible discrete solution is obtained. Once this has been achieved, the cost function
corresponding to the discrete feasible solution becomes an upper bound on the cost function
for the remaining subproblems (nodes) to be solved later. The solutions that have cost values
higher than the upper bound are eliminated from further consideration (i.e., they are 
fathomed).

The foregoing process of branching and fathoming is repeated from each of the unfath-
omed nodes. The search for the optimum solution terminates when all the nodes have been
fathomed as a result of one of the following reasons: (1) a discrete optimum solution is found,
(2) no feasible continuous solution can be found, or (3) a feasible solution is found but the
cost function value is higher than the established upper bound. Example 15.2 illustrates use
of the BBM where nondiscrete values for the variables are allowed during the solution
process.
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EXAMPLE 15.2 BBM with Local Minimizations

Re-solve the problem of Example 15.1 treating the variables as continuous during the
branching and bounding process.

Solution. Figure 15-2 shows implementation of the BBM where requirements of dis-
creteness and nondifferentiability of the problem functions are relaxed during the solu-
tion process. Here one starts with a continuous solution for the problem. From that
solution two subproblems are defined by imposing an additional constraint requiring
that x1 not be between 1 and 2. Subproblem 1 imposes the constraint x1 £ 1 and Sub-
problem 2, x1 ≥ 2. Subproblem 1 is solved using the continuous variable algorithm
that gives a discrete value for x1 but a nondiscrete value for x2. Therefore further
branching is needed from this node. Subproblem 2 is also solved using the continu-
ous variable algorithm that gives discrete values for the variables with the cost func-
tion of -80. This gives an upper bound for the cost function, and no further branching
is needed from this node. Using the solution of Subproblem 1, two subproblems are
defined by requiring that x2 be not between 6 and 7. Subproblem 3 imposes the con-
straint x2 £ 6 and Subproblem 4, x2 ≥ 7. Subproblem 3 has a discrete solution with f
= -80, which is the same as the current upper bound. Since the solution is discrete,
there is no need to branch further from there by defining more subproblems. Sub-



Since the foregoing problem has only two design variables, it is fairly straightforward 
to decide how to create various nodes of the solution process. When there are more design
variables, node creation and the branching processes are not unique. These aspects are 
discussed further for nonlinear problems.

15.2.3 BBM for General MV-OPT
In most practical applications for nonlinear discrete problems, the latter version of the BBM
has been used most often, where functions are assumed to be differentiable and the design
variables can have nondiscrete values during the solution process. Different methods have
been used to solve nonlinear optimization subproblems to generate the nodes. The branch
and bound method has been used successfully to deal with discrete design variable problems
and has proved to be quite robust. However, for problems with a large number of discrete
design variables, the number of subproblems (nodes) becomes large. Therefore considerable
effort has been spent in investigating strategies to reduce the number of nodes by trying dif-
ferent fathoming and branching rules. For example, the variable that is used for branching 
to its upper and lower values for the two subproblems is fixed to the assigned value, thus
eliminating it from further consideration. This reduces dimensionality of the subproblem that
can result in efficiency. As the iterative process progresses, more and more variables are fixed
and the size of the optimization problem keeps on decreasing. Many other variations of the

520 INTRODUCTION TO OPTIMUM DESIGN

problem 4 does not lead to a discrete solution with f = -80. Since further branching
from this node cannot lead to a discrete solution with the cost function value smaller
than the current upper bound of -80, the node is fathomed. Thus, Subproblems 2 and
3 give the two optimum discrete solutions for the problem, as before.

x = (16/11, 59/11)  

f =–82.7

x = (1, 6.15) 

f =–81.5

Subproblem 1 

Continuous solution 

Subproblem 2 

x = (1, 6)

f =–80 

Subproblem 3 

x = (0.5, 7)

f =–80 

Subproblem 4 

x2 £ 6 

x1 £ 1 
x1 ≥ 2 

x2 ≥ 7 

x = (2, 4) 

f =–80 

Stop—Discrete 
feasible solution 

Stop—Discrete 
feasible solution 

Stop—Discrete solution 
will have cost higher than –80 

Figure 15-2 Branch and bound method with solution of continuous subproblems.



BBM for nonlinear continuous problems have been investigated to improve its efficiency.
Since an early establishment of a good upper bound on the cost is important, it may be pos-
sible to accomplish this by choosing an appropriate variable for branching. More nodes or
subproblems may be fathomed early if a smaller upper bound is established. Several ideas
have been investigated in this regard. For example, the distance of a continuous variable from
its nearest discrete value, and the cost function value when a variable is assigned a discrete
value can be used to decide the variable to be branched.

It is important to note that the BBM is guaranteed to find the global optimum only if the
problem is linear or convex. In the case of general nonlinear nonconvex problems, there is
no such guarantee. It is possible that a node is fathomed too early and one of its branches
actually contains the true global solution.

15.3 Integer Programming
Optimization problems where the variables are required to take on integer values are called
integer programming (IP) problems. If some of the variables are continuous, then we get a
mixed variable problem. With all functions as linear, an integer linear programming (ILP)
problem is obtained, otherwise it is nonlinear. The ILP problem can be converted to a 0-1
programming problem. Linear problems with discrete variables can also be converted to 
0-1 programming problems. Several algorithms are available to solve such problems (Sysko
et al., 1983; Schrijver, 1986), such as the BBM discussed earlier. Nonlinear discrete prob-
lems can also be solved by sequential linearization procedures if the problem functions are
continuous and differentiable, as discussed later. In this section, we show how to transform
an ILP into a 0-1 programming problem. To do that, let us consider an ILP as follows:

minimize f = cTx subject to Ax £ b

(15.3)

Define zij as the 0-1 variables (zij = 0 or 1 for all i and j). Then the ith integer variable is
expressed as

(15.4)

where qi and dij are defined in Eq. (15.1). Substituting this into the foregoing mixed ILP
problem, it is converted to a 0-1 programming problem in terms of zij, as

minimize subject to

(15.5)

It is important to note that many modern computer programs for linear programming have
an option to solve discrete variable LP problems; e.g., LINDO (Schrage, 1991).
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15.4 Sequential Linearization Methods
If functions of the problem are differentiable, a reasonable approach to solving the MV-OPT
is to linearize the nonlinear problem at each iteration. Then discrete-integer linear program-
ming (LP) methods can be used to solve the linearized subproblem. There are several ways
in which the linearized subproblems can be defined and solved. For example, the linearized
subproblem can be converted to a 0-1 variable problem. This way the number of variables
is increased considerably; however, several methods are available to solve integer linear pro-
gramming problems. Therefore, MV-OPT can be solved using the sequential LP approach
and existing codes. A modification of this approach is to obtain a continuous optimum point
first, and then linearize and use integer programming methods. This process can reduce the
number of integer LP subproblems to be solved. Restricting the number of discrete values to
those in the neighborhood of the continuous solution (a small value for r, the half bandwidth)
can also reduce the size of the ILP problem. It is noted here that once a continuous solution
has been obtained, then any discrete variable optimization method can be used with a reduced
set of discrete values for the variables.

Another possible approach to solve an MV-OPT problem is to optimize for discrete 
and continuous variables in sequence. The problem is first linearized in terms of the discrete
variables but keeping the continuous variables fixed at their current values. The linearized
discrete subproblem is solved using a discrete variable optimization method. Then the 
discrete variables are fixed at their current values, and the continuous subproblem is solved
using a nonlinear programming method. The process is repeated a few times to obtain the
final solution.

15.5 Simulated Annealing
Simulated annealing (SA) is a stochastic approach that simulates the statistical process of
growing crystals using the annealing process to reach its absolute (global) minimum inter-
nal energy configuration. If the temperature in the annealing process is not lowered slowly
and enough time is not spent at each temperature, the process could get trapped in a local
minimum state for the internal energy. The resulting crystal may have many defects or the
material may even become glass with no crystalline order. The simulated annealing method
for optimization of systems emulates this process. Given a long enough time to run, an 
algorithm based on this concept finds global minima for continuous-discrete-integer variable
nonlinear programming problems.

The basic procedure for implementation of this analogy to the annealing process is to gen-
erate random points in the neighborhood of the current best point and evaluate the problem
functions there. If the cost function (penalty function for constrained problems) value is
smaller than its current best value, then the point is accepted, and the best function value 
is updated. If the function value is higher than the best value known thus far, then the point
is sometimes accepted and sometimes rejected. Point’s acceptance is based on the value of
the probability density function of the Bolzman-Gibbs distribution. If this probability density
function has a value greater than a random number, then the trial point is accepted as the best
solution even if its function value is higher than the known best value. In computing the prob-
ability density function, a parameter called the temperature is used. For the optimization
problem, this temperature can be a target for the optimum value of the cost function. 
Initially, a larger target value is selected. As the trials progress, the target value (the tem-
perature) is reduced (this is called the cooling schedule), and the process is terminated 
after a large number of trials. The acceptance probability steadily decreases to zero as the
temperature is reduced. Thus, in the initial stages, the method sometimes accepts worse
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designs, while in the final stages, the worse designs are almost always rejected. This strat-
egy avoids getting trapped at a local minimum point.

It is seen that the SA method requires evaluation of cost and constraint functions only. 
Continuity and differentiability of functions are not required. Thus the method can be useful
for nondifferentiable problems, and problems for which gradients cannot be calculated or are
too expensive to calculate. It is also possible to implement the algorithm on parallel com-
puters to speed up the calculations. The deficiencies of the method are the unknown rate for
reduction of the target level for the global minimum, and the uncertainty in the total number
of trials and the point at which the target level needs to be reduced.

Simulated Annealing Algorithm It is seen that the algorithm is quite simple and easy to
program. The following steps illustrate the basic ideas of the algorithm.

Step 1. Choose an initial temperature T0 (expected global minimum for the cost
function) and a feasible trial point x(0). Compute f(x(0)). Select an integer L (e.g., a
limit on the number of trials to reach the expected minimum value), and a parameter
r < 1. Initialize the iteration counter as K = 0 and another counter k = 1.

Step 2. Generate a new point x(k) randomly in a neighborhood of the current point. If
the point is infeasible, generate another random point until feasibility is satisfied 
(a variation of this step is explained later). Compute f(x(k)) and Df = f(x(k)) - f(x(0)).

Step 3. If Df < 0, then take x(k) as the new best point x(0), set f(x(0)) = f(x(k)) and go to
Step 4. Otherwise, calculate the probability density function:

(15.6)

Generate a random number z uniformly distributed in [0,1]. If z < p(Df ), then 
take x(k) as the new best point x(0) and go to Step 4. Otherwise go to Step 2.

Step 4. If k < L, then set k = k + 1 and go to Step 2. If k > L and any of the stopping
criteria is satisfied, then stop. Otherwise, go to Step 5.

Step 5. Set K = K + 1, k = 1; set TK = rTK-1; go to Step 2.

The following points are noted for implementation of the algorithm:

1. In Step 2 only one point is generated at a time within a certain neighborhood of the
current point. Thus, although SA randomly generates design points without the need for
function or gradient information, it is not a pure random search within the entire design
space. At the early stage, a new point can be located far away from the current point to
speed up the search process and to avoid getting trapped at a local minimum point. Once
the temperature gets low, the new point is usually created nearby in order to focus on the
local area. This can be controlled by defining a step size procedure.

2. In Step 2, the newly generated point is required to be feasible. If it is not, another
point is generated until feasibility is attained. Another method for treating constraints
is to use the penalty function approach; i.e., the constrained problem is converted to
an unconstrained one, as discussed in Chapter 9. The cost function is replaced by the
penalty function in the algorithm. Therefore the feasibility requirements are not
imposed explicitly in Step 2.

3. The following stopping criteria are suggested in Step 4: (1) The algorithm stops if
change in the best function value is less than some specified value for the last J
consecutive iterations. (2) The program stops if I/L < d, where L is a limit on the
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D
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number of trials (or number of feasible points generated) within one iteration, and I
is the number of trials that satisfy Df < 0 (see Step 3). (3) The algorithm stops if K
reaches a preset value.

The foregoing ideas from statistical mechanics can also be used to develop methods 
for global optimization of continuous variable problems. For such problems, simulated
annealing may be combined with a local minimization procedure. However, the temperature
T is slowly and continuously decreased so that the effect is similar to annealing. Using the
probability density function given in Eq. (15.6), a criterion can be used to decide whether to
start a local search from a particular point.

15.6 Dynamic Rounding-off Method
A simple approach for MV-OPT 1 type problems is to first obtain an optimum solution using
a continuous approach. Then, using heuristics, the variables are rounded off to their nearest
available discrete values to obtain a discrete solution. Rounding-off is a simple idea that has
been used often, but it can result in infeasible designs for problems having a large number
of variables. The main concern of the rounding-off approach is the selection of variables to
be increased and the variables to be decreased. The strategy may not converge, especially in
case of high nonlinearity and widely separated allowable discrete values. In that case, 
the discrete minimum point need not be in a neighborhood of the continuous solution.

Dynamic Rounding-off Algorithm The dynamic rounding-off algorithm is a simple exten-
sion of the usual rounding-off procedure. The basic idea is to round off variables in a sequence
rather than all of them at the same time. After a continuous variable optimum solution is
obtained, one or a few variables are selected for discrete assignment. This assignment can be
based on the penalty that needs to be paid for the increase in the cost function or the
Lagrangian function. These variables are then eliminated from the problem and the continu-
ous variable optimization problem is solved again. This idea is quite simple because an exist-
ing optimization program can be used to solve discrete variable problem of type MV-OPT 1.
The process can be carried out in an interactive mode, as demonstrated in Chapter 14 for 
a structural design problem, or it may be implemented manually. Whereas the dynamic 
rounding-off strategy can be implemented in many different ways, the following algorithm
illustrates one simple procedure:

Step 1. Assume all the design variables to be continuous and solve the NLP problem.
Step 2. If the solution is discrete, stop. Otherwise, continue.
Step 3. FOR k = 1 to n

Calculate the Lagrangian function value for each k with the kth variable 
perturbed to its discrete neighbors.
END FOR

Step 4. Choose a design variable that minimizes the Lagrangian in Step 3 and remove 
that variable from the design variable set. This variable is assigned the selected 
discrete value. Set n = n - 1 and if n = 1, stop; otherwise, go to Step 2.

The number of additional continuous problems that needs to be solved by the above
method is (n - 1). However, the number of design variables is reduced by one for each sub-
sequent continuous problem. In addition, more variables may be assigned discrete values
each time, thus reducing the number of continuous problems to be solved. The dynamic
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rounding-off strategy has been used successfully to solve several optimization problems
(Section 14.7; Al-Saadoun and Arora, 1989; Huang and Arora, 1997a,b).

15.7 Neighborhood Search Method
When the number of discrete variables is small and each discrete variable has only a few
choices, the simplest way to find the solution of a mixed variable problem may be just to
explicitly enumerate all the possibilities. With all the discrete variables fixed at their chosen
values, the problem is then optimized for the continuous variables. This approach has some
advantages over the BBM: it can be implemented easily with an existing optimization
program, the problem to be solved is smaller, and the gradient information with respect to
the discrete variables is not needed. However, the approach is far less efficient than an implicit
enumeration method, such as the BBM, as the number of discrete variables and size of the
discrete set of values become large.

When the number of discrete variables is large and the number of discrete values for each
variable is large, then a simple extension of the above approach is to solve the optimization
problem first by treating all the variables as continuous. Based on that solution, a reduced
set of allowable discrete values for each variable is then selected. Now the neighborhood
search approach is used to solve the MV-OPT 1 problem. A drawback is that the search for
a discrete solution is restricted to only a small neighborhood of the continuous solution.

15.8 Methods for Linked Discrete Variables
Linked discrete variables occur in many applications. For example, in the design of a coil
spring problem formulated in Chapter 2, one may have choice of three materials as shown
in Table 15-2. Once a material type is specified, all the properties associated with it must be
selected and used in all calculations. The optimum design problem is to determine the mate-
rial type and other variables to optimize an objective function and satisfy all the constraints.
The problem has been solved in Huang and Arora (1997a,b).

Another practical example where linked discrete variables are encountered is the optimum
design of framed structural systems. Here the structural members must be selected from the
ones available in manufacturer’s catalog. Table 15-3 shows some of the standard sections
available in the catalog. The optimum design problem is to find the best possible sections for
members of a structural frame to minimize a cost function and satisfy all the performance
constraints. The section number, section area, moment of inertia, or any other section 
property can be designated as a linked discrete design variable for the frame member. Once
a value for such a discrete variable is specified from the table, each of its linked variables
(properties) must also be assigned the unique value and used in the optimization process.
These properties affect values of the cost and constraint functions for the problem. A certain
value for a particular property can only be used when appropriate values for other properties
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TABLE 15-2 Material Data for Spring Design Problem

G, lb/in2 r, lb-s2/in4 ta,lb/in2 Up

Material type 1 11.5 ¥ 106 7.38342 ¥ 10-4 80,000 1.0
Material type 2 12.6 ¥ 106 8.51211 ¥ 10-4 86,000 1.1
Material type 3 13.7 ¥ 106 9.71362 ¥ 10-4 87,000 1.5

G = shear modulus, r = mass density, ta = shear stress, Up = relative unit price.



are also assigned. Relationships among such variables and their linked properties cannot be
expressed analytically, and so a gradient-based optimization method may be applicable only
after some approximations. It is not possible to use one of the properties as the only contin-
uous design variable because other section properties cannot be calculated using just that
property. Also, if each property were treated as an independent design variable, the final 
solution would generally be unacceptable since the variables would have values that cannot
co-exist in the table. Solutions for such problems are presented in Huang and Arora (1997a,b).

It is seen that problems with linked variables are discrete and the problem functions are
not differentiable with respect to them. Therefore they must be treated by a discrete variable
optimization algorithm that does not require gradients of functions. There are two algorithms
for such problems: simulated annealing and genetic algorithms. Simulated annealing has been
discussed earlier and genetic algorithms are presented in Chapter 16.

It is noted that for each class of problems having linked discrete variables, it is possible
to develop strategies to treat the problem more efficiently by exploiting the structure of the
problem and knowledge of the problem functions. Two or more algorithms may be combined
to develop strategies that are more effective than the use of a purely discrete algorithm. For
the structural design problem, several such strategies have been developed (Arora, 2002).

15.9 Selection of a Method
Selection of a method to solve a particular mixed variable optimization problem depends on
the nature of the problem functions. Features of the methods and their suitability for various
types of MV-OPT problems are summarized in Table 15-4. It is seen that branch and bound,
simulated annealing, and genetic algorithms (discussed in Chapter 16) are the most 
general methods. They can be used to solve all the problem types. However, these are also
the most expensive ones in terms of computational effort. If the problem functions are 
differentiable and discrete variables can be assigned nondiscrete values during the iterative
solution process, then there are numerous strategies for their solution that are more efficient
than the three methods just discussed. Most of these involve a combination of two or more
algorithms.

Huang and Arora (1997a,b) have evaluated the discrete variable optimization methods 
presented in this chapter using 15 different types of test problems. Applications involving
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TABLE 15-3 Some Wide Flange Standard Sections

Section A d tw b tf Ix Sx rx Iy Sy ry

W36 ¥ 300 88.30 36.74 0.945 16.655 1.680 20300 1110 15.20 1300 156 3.830
W36 ¥ 280 82.40 36.52 0.885 16.595 1.570 18900 1030 15.10 1200 144 3.810
W36 ¥ 260 76.50 36.26 0.840 16.550 1.440 17300 953 15.00 1090 132 3.780
W36 ¥ 245 72.10 36.08 0.800 16.510 1.350 16100 895 15.00 1010 123 3.750
W36 ¥ 230 67.60 35.90 0.760 16.470 1.260 15000 837 14.90 940 114 3.730
W36 ¥ 210 61.80 36.69 0.830 12.180 1.360 13200 719 14.60 411 67.5 2.580
W36 ¥ 194 57.00 36.49 0.765 12.115 1.260 12100 664 14.60 375 61.9 2.560

A: Cross-sectional area, in2 Ix: Moment of inertia about the x-x axis, in4

d: Depth, in Sx: Elastic section modulus about the x-x axis, in3

tw: Web thickness, in rx: Radius of gyration with respect to the x-x axis, in
b: Flange width, in Iy: Moment of inertia about the y-y axis, in4

tf: Flange thickness, in Sy: Elastic section modulus about the y-y axis, in3

ry: Radius of gyration with respect to the y-y axis, in



linked discrete variables are described in Huang and Arora (1997), Arora and Huang (1996),
and Arora (2002). Applications of discrete variable optimization methods to electric trans-
mission line structures are described in Kocer and Arora (1996, 1997, 1999, 2002). Discrete
variable optimum solutions for the plate girder design problem formulated and solved in
Section 10.6 are described and discussed in Arora and coworkers (1997).

Exercises for Chapter 15*

15.1 Solve Example 15.1 with the available discrete values for the variables as 
x1 Œ {0,1,2,3}, and x2 Œ {0,1,2,3,4,5,6}. Assume that the functions of the problem
are not differentiable.

15.2 Solve Example 15.1 with the available discrete values for the variables as 
x1 Œ {0,1,2,3}, and x2 Œ {0,1,2,3,4,5,6}. Assuming that the functions of the 
problem are differentiable, use a continuous variable optimization procedure to
solve for discrete variables.

15.3 Formulate and solve Exercise 3.34 using the outside diameter d0 and the inside
diameter di as design variables. The outside diameter and thickness must be selected
from the following available sets:

Check your solution using the graphical method of Chapter 3. Compare continuous
and discrete solutions.

15.4 Consider the minimum mass tubular column problem formulated in Section 2.7.
Find the optimum solution for the problem using the following data: P = 100kN,
length, l = 5m, Young’s modulus, E = 210GPa, allowable stress, sa = 250MPa,
mass density, r = 7850kg/m3, R £ 0.4m, t £ 0.05m, and R, t ≥ 0. The design
variables must be selected from the following sets:

Check your solution using the graphical method of Chapter 3. Compare continuous
and discrete solutions.

15.5 Consider the plate girder design problem described and formulated in Section 10.6.
The design variables for the problem must be selected from the following sets

R tŒ{ } Œ{ }0 01 0 012 0 014 0 38 0 40 4 6 8 48 50. , . , . , . . . , . , . ; , , , . . . , ,m mm

d t0 0 020 0 022 0 024 0 48 0 50 5 7 9 23 25Œ{ } Œ{ }. , . , . , . . . , . , . ; , , , . . . , ,m mm
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TABLE 15-4 Characteristics of Discrete Variable Optimization Methods

MV-OPT Can find Can find global Need
problem type feasible discrete minimum for gradients?
solved solution? convex prob.?

Branch and bound 1 – 5 Yes Yes No/Yes
Simulated annealing 1 – 5 Yes Yes No
Genetic algorithm 1 – 5 Yes Yes No
Sequential linearization 1 Yes Yes Yes
Dynamic round-off 1 Yes No Guar. Yes
Neighborhood search 1 Yes Yes Yes



Assume that the functions of the problem are differentiable and a continuous
variable optimization program can be used to solve subproblems, if needed. Solve
the discrete variable optimization problem. Compare the continuous and discrete
solutions.

15.6 Consider the plate girder design problem described and formulated in Section 
10.6. The design variables for the problem must be selected from the following 
sets

Assume functions of the problem to be nondifferentiable. Solve the discrete variable
optimization problem. Compare the continuous and discrete solutions.

15.7 Consider the plate girder design problem described and formulated in Section 
10.6. The design variables for the problem must be selected from the following 
sets

Assume that the functions of the problem are differentiable and a continuous
variable optimization program can be used to solve subproblems, if needed. Solve
the discrete variable optimization problem. Compare the continuous and discrete
solutions.

15.8 Consider the plate girder design problem described and formulated in Section 10.6.
The design variables for the problem must be selected from the following sets

Assume functions of the problem to be nondifferentiable. Solve the discrete variable
optimization problem. Compare the continuous and discrete solutions.

15.9 Solve the problems of Exercises 15.3 and 15.5. Compare the two solutions,
commenting on the effect of the size of the discreteness of variables on the
optimum solution. Also, compare the continuous and discrete solutions.

15.10 Consider the spring design problem formulated in Section 2.9 and solved in Section
13.5. Assume that the wire diameters are available in increments of 0.01 in, the
coils can be fabricated in increments of th of an inch, and the number of coils
must be an integer. Assume functions of the problem to be differentiable. Compare
the continuous and discrete solutions.

15.11 Consider the spring design problem formulated in Section 2.9 and solved in Section
13.5. Assume that the wire diameters are available in increments of 0.01 in, the
coils can be fabricated in increments of th of an inch, and the number of coils
must be an integer. Assume the functions of the problem to be nondifferentiable.
Compare the continuous and discrete solutions.

15.12 Consider the spring design problem formulated in Section 2.9 and solved in Section
13.5. Assume that the wire diameters are available in increments of 0.015 in, the

1
16

1
16

h b t tw f, . , . , . , . . . , . , . ; , , , , . . . , ,Œ{ } Œ{ }0 30 0 32 0 34 2 48 2 50 10 14 16 96 100m mm

h b t tw f, . , . , . , . . . , . , . ; , , , , . . . , ,Œ{ } Œ{ }0 30 0 31 0 32 2 48 2 50 10 14 16 96 100m mm

h b t tw f, . , . , . , . . . , . , . ; , , , , . . . , ,Œ{ } Œ{ }0 30 0 31 0 32 2 49 2 50 10 12 14 98 100m mm

h b t tw f, . , . , . , . . . , . , . ; , , , , . . . , ,Œ{ } Œ{ }0 30 0 31 0 32 2 49 2 50 10 12 14 98 100m mm
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coils can be fabricated in increments of th of an inch, and the number of coils
must be an integer. Assume functions of the problem to be differentiable. Compare
the continuous and discrete solutions.

15.13 Consider the spring design problem formulated in Section 2.9 and solved in Section
13.5. Assume that the wire diameters are available in increments of 0.015 in, the
coils can be fabricated in increments of th of an inch, and the number of coils
must be an integer. Assume the functions of the problem to be nondifferentiable.
Compare the continuous and discrete solutions.

15.14 Solve problems of Exercises 15.8 and 15.10. Compare the two solutions,
commenting on the effect of the size of the discreteness of variables on the
optimum solution. Also, compare the continuous and discrete solutions.

15.15 Formulate the problem of optimum design of prestressed concrete transmission
poles described in Kocer and Arora (1996a). Use a mixed variable optimization
procedure to solve the problem. Compare the solution to that given in the 
reference.

15.16 Formulate the problem of optimum design of steel transmission poles described in
Kocer and Arora (1996b). Solve the problem as a continuous variable optimization
problem.

15.17 Formulate the problem of optimum design of steel transmission poles described in
Kocer and Arora (1996b). Assume that the diameters can vary in increments of 0.5
in and the thicknesses can vary in increments of 0.05 in. Solve the problem as a
discrete variable optimization problem.

15.18 Formulate the problem of optimum design of steel transmission poles using
standard sections described in Kocer and Arora (1997). Compare your solution to
the solution given there.

15.19 Solve the following mixed variable optimization problem (Hock and Schittkowski,
1981):

minimize

subject to

The first three design variables must be selected from the following sets

x x x1 2 31 2 3 4 5 1 2 3 4 5Œ{ } Œ{ }, , , , ; , , , , ,

g x x x x x x x4 1
2

2
2

1 2 3
2

6 74 3 2 5 11 0= + - + + - £

g x x x x3 1 2
2

6
2

723 6 8 196= + + - £

g x x x x x2 1 2 3
2

4 57 3 10 282= + + + - £

g x x x x x1 1
2

2
4

3 4
2

52 3 4 5 127= + + + + £

f x x x x x

x x x x x x

= -( ) + -( ) + + -( ) +
+ + - - -
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1
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15.20 Formulate and solve the three-bar truss of Exercise 3.50 as a discrete variable
problem where the cross-sectional areas must be selected from the following
discrete set:

Check your solution using the graphical method of Chapter 3. Compare continuous and
discrete solutions.

Ai Œ{ }50 100 150 4950 5000 2, , , . . . , , mm
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16 Genetic Algorithms for Optimum Design

531

Upon completion of this chapter, you will be able to:

• Explain basic concepts and terminology associated with genetic algorithms

• Explain basic steps of a genetic algorithm

• Use a software based on genetic algorithm to solve your optimum design problem

Genetic algorithms (GA) belong to the class of stochastic search optimization methods, 
such as simulated annealing method described in Chapter 15. As you get to know basics of
the algorithms, you will see that decisions made in most computational steps of the algo-
rithms are based on random number generation. The algorithms use only the function values
in the search process to make progress toward a solution without regard to how the functions
are evaluated. Continuity or differentiability of the problem functions is neither required nor
used in calculations of the algorithms. Therefore, the algorithms are very general and can be
applied to all kinds of problems—discrete, continuous, and nondifferentiable. In addition, 
the methods determine global optimum solutions as opposed to the local solutions determined
by a continuous variable optimization algorithm. The methods are easy to use and program
since they do not require use of gradients of cost or constraint functions. Drawbacks of the
algorithms are that (1) they require a large amount of calculation for even reasonable size
problems, or for problems where evaluation of functions itself requires massive calculation,
and (2) there is no absolute guarantee that a global solution has been obtained. The first draw-
back can be overcome to some extent by the use of massively parallel computers. The second
drawback can be overcome to some extent by executing the algorithm several times and
allowing it to run longer.

In the remaining sections of this chapter, concepts and terminology associated with genetic
algorithms are defined and explained. Fundamentals of the algorithm are presented and
explained. Although the algorithm can be used for continuous problems, our focus will be
on discrete variable optimization problems. Various steps of a genetic algorithm are described
that can be implemented in different ways. Most of the material for this chapter is derived
from the work of the author and his coworkers and is introductory in nature (Arora et al.,
1994; Huang and Arora, 1997; Huang et al., 1997; Arora, 2002). Numerous other good ref-



erences on the subject are available (e.g., Holland, 1975; Goldberg, 1989; Mitchell, 1996;
Gen and Cheng, 1997; Coello-Coello, 2002; Osyczka, 2002; Pezeshk and Camp, 2002).

16.1 Basic Concepts and Definitions
Genetic algorithms loosely parallel biological evolution and are based on Darwin’s theory of
natural selection. The specific mechanics of the algorithm use the language of microbiology,
and its implementation mimics genetic operations. We shall explain this in subsequent 
paragraphs and sections. The basic idea of the approach is to start with a set of designs, 
randomly generated using the allowable values for each design variable. Each design is also
assigned a fitness value, usually using the cost function for unconstrained problems or the
penalty function for constrained problems. From the current set of designs, a subset is selected
randomly with a bias allocated to more fit members of the set. Random processes are used
to generate new designs using the selected subset of designs. The size of the set of designs
is kept fixed. Since more fit members of the set are used to create new designs, the succes-
sive sets of designs have a higher probability of having designs with better fitness values.
The process is continued until a stopping criterion is met. In the following paragraphs, some
details of implementation of these basic steps are presented and explained. First, we shall
define and explain various terms associated with the algorithm.

Population The set of design points at the current iteration is called a population. It rep-
resents a group of designs as potential solution points. Np = number of designs in a popula-
tion; also called the population size.

Generation An iteration of the genetic algorithm is called a generation. A generation has
a population of size Np that is manipulated in a genetic algorithm.

Chromosome This term is used to represent a design point. Thus a chromosome represents
a design of the system, whether feasible or infeasible. It contains values for all the design
variables of the system.

Gene This term is used for a scalar component of the design vector; i.e., it represents the
value of a particular design variable.

Design Representation A method is needed to represent design variable values in the
allowable sets and to represent design points so that they can be used and manipulated in the
algorithm. This is called a schema, and it needs to be encoded; i.e., defined. Although binary
encoding is the most common approach, real-number coding and integer encoding are also
possible. Binary encoding implies a string of zeros and ones. Binary strings are also useful
because it is easier to explain the operations of the genetic algorithm with them. A binary
string of 0’s and 1’s can represents a design variable. Also, an L-digit string with a 0 or 1 for
each digit, where L is the total number of binary digits, can be used to specify a design point.
Elements of a binary string are called bits; a bit can have a value of 0 or 1. We shall use the
term “V-string” for a binary string that represents the value of a variable; i.e., component
of a design vector (a gene). Also, we shall use the term “D-string” for a binary string that
represents a design of the system; i.e., a particular combination of n V-strings, where n is the
number of design variables. This is also called a genetic string (or a chromosome).

An m-digit binary string has 2m possible 0–1 combinations implying that 2m discrete values
can be represented. The following method can be used to transform a V-string consisting 
of a combination of m 0’s and 1’s to its corresponding discrete value of a variable having 
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Nc allowable discrete values: let m be the smallest integer satisfying 2m > Nc; calculate the
integer j:

(16.1)

where ICH(i) is the value of the ith digit (either 0 or 1). Thus the jth allowable discrete value
corresponds to this 0–1 combination; i.e., the jth discrete value corresponds to this V-string.
Note that when j > Nc in Eq. (16.1), the following procedure can be used to adjust j such that
j £ Nc:

(16.2)

where INT(x) is the integer part of x. As an example, consider a problem with three design
variables each having Nc = 10 possible discrete values. Thus we shall need a 4-digit binary
string to represent discrete values for each design variable; i.e., m = 4 implying that 16 pos-
sible discrete values can be represented. Let a design point x = (x1, x2, x3) be encoded as the
following D-string (genetic string):

(16.3)

Using Eq. (16.1), the j values for the three V-strings are calculated as 7, 16, and 14. Since
the last two numbers are larger than Nc = 10, they are adjusted by using Eq. (16.2) as 6 and 4,
respectively. Thus the foregoing D-string (genetic string) represents a design point where the
seventh, sixth, and fourth allowable discrete values are assigned to x1, x2, and x3, respectively.

Initial Generation/Starting Design Set With a method to represent a design point defined,
the first population consisting of Np designs needs to be created. This means that Np D-strings
need to be created. In some cases, the designer already knows some good usable designs for
the system. These can be used as seed designs to generate the required number of designs
for the population using some random process. Otherwise, the initial population can be gen-
erated randomly via the use of a random number generator. Several methods can be used for
this purpose. The following procedure shows a way to produce a 32-digit D-string:

1. Generate random numbers between 0 and 1 as “0.3468 0254 7932 7612 and 0.6757
2163 5862 3845”.

2. Create a string by combining the two numbers as “3468 0254 7932 7612 6757 2163
5862 3845”.

3. The 32 digits of the above string are converted to 0’s and 1’s by using a rule in
which “0” is used for any value between 0 and 4 and “1” for any value between 5
and 9, as “0011 0010 1100 1100 1111 0010 1110 0101”.

Fitness Function The fitness function defines the relative importance of a design. A higher
fitness value implies a better design. While the fitness function may be defined in several dif-
ferent ways, it can be defined using the cost function value as follows:
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where fi is the cost function (penalty function value for a constrained problems) for the ith
design, fmax is the largest recorded cost (penalty) function value, and e is a small value (e.g.,
2 ¥ 10-7) to prevent numerical difficulties when Fi becomes 0.

16.2 Fundamentals of Genetic Algorithms
The basic idea of a genetic algorithm is to generate a new set of designs (population) from
the current set such that the average fitness of the population is improved. The process is
continued until a stopping criterion is satisfied or the number of iterations exceeds a speci-
fied limit. Three genetic operators are used to accomplish this task: reproduction, crossover,
and mutation. Reproduction is an operator where an old design (D-string) is copied into the
new population according to the design’s fitness. There are many different strategies to imple-
ment this reproduction operator. This is also called the selection process. The crossover
operator corresponds to allowing selected members of the new population to exchange 
characteristics of their designs among themselves. Crossover entails selection of starting and
ending positions on a pair of randomly selected strings (called mating strings), and simply
exchanging the string of 0’s and 1’s between these positions. Mutation is the third step that
safeguards the process from a complete premature loss of valuable genetic material during
reproduction and crossover. In terms of a binary string, this step corresponds to selection of
a few members of the population, determining a location on the strings at random, and switch-
ing the 0 to 1 or vice versa.

The foregoing three steps are repeated for successive generations of the population until
no further improvement in fitness is attainable. The member in this generation with the highest
level of fitness is taken as the optimum design. Some details of the GA algorithm imple-
mented by Huang and Arora (1997a) are described in the sequel.

Reproduction Procedure Reproduction is a process of selecting a set of designs (D-
strings) from the current population and carrying them into the next generation. The selec-
tion process is biased toward more fit members of the current design set (population). Using
the fitness value Fi for each design in the set, its probability of selection is calculated as

(16.5)

It is seen that the members with higher fitness value have larger probability of selection.
To explain the process of selection, let us consider a roulette wheel with a handle shown in
Fig. 16-1. The wheel has Np segments to cover the entire population, with the size of the ith
segment proportional to the probability Pi. Now a random number w is generated between 
0 and 1. The wheel is then rotated clockwise, with the rotation proportional to the random
number w. After spinning the wheel, the member pointed to by the arrow at the starting loca-
tion is selected for inclusion in the next generation. In the example shown in Fig. 16-1,
member 2 is carried into the next generation. Since the segments on the wheel are sized
according to the probabilities Pi, the selection process is biased toward the more fit members
of the current population. Note that a member copied to the mating pool remains in the current
population for further selection. Thus, the new population may contain identical members
and may not contain some of the members found in the current population. This way, the
average fitness of the new population is increased.

Crossover Once a new set of designs is determined, crossover is conducted as a means to
introduce variation into a population. Crossover is the process of combining or mixing two
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different designs (chromosomes) in the population. Although there are many methods for per-
forming crossover, the most common ones are the one-cut-point and two-cut-point methods.
A cut point is a position on the D-string (genetic string). In the one-cut method a position on
the string is randomly selected that marks the point at which two parent designs (chromo-
somes) split. The resulting four halves then are exchanged to produce new designs (children).
The process is illustrated in Fig. 16-2 where the cut point is determined as 4 digits from 
the right end. The new designs produced x1¢ and x2¢ and replace the old designs (parents).
Similarly, the two-cut-point method is illustrated in Fig. 16-3. Selecting how many or what
percentage of chromosomes crossover and at what points the crossover operation occurs are
part of the heuristic nature of genetic algorithms. There are many different approaches, and
most are based on random selections.

Mutation Mutation is the next operation on the members of the new design set (popula-
tion). The idea of mutation is to safeguard the process from a complete premature loss of
valuable genetic material during reproduction and crossover steps. In terms of a genetic
string, this step corresponds to selecting a few members of the population, determining a
location on each string randomly, and switching 0 to 1 or vice versa. The number of members
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FIGURE 16-1 Roulette wheel process for selection of designs for new generation (reproduction).

x1 = 101110|1001 x2 = = 010100|1011

(A) Designs selected for crossover (parent chromosomes)

x1' = 101110|1011 x2' = = 010100|1001

(B) New designs (children) after crossover 

FIGURE 16-2 Crossover operation with one-cut point.



selected for mutation is based on heuristics, and the selection of location on the string for
mutation is based on a random process. Let us select a design as “10 1110 1001” and the
location #7 from the right end on its D-string. The mutation operation involves replacing the
current value of 1 at the seventh location with 0 as “10 1010 1001”.

Amount of Crossover and Mutation For each generation (iteration), three operators—
reproduction or selection, crossover, and mutation—are performed. While the number of the
reproduction operations is always equal to the size of the population, the amount of crossover
and mutation can be adjusted to fine-tune the performance of the algorithm. To show the type
of operations needed to implement the mutation and crossover at each generation, we present
a possible procedure as follows.

1. Set Imax as an integer that controls the amount of crossover. Calculate Im, which
controls the amount of mutation as Im = INT(PmNp), where Pm represents a fraction
of the population that is selected for mutation, and Np is the size of the population.
Too many crossovers can result in a poorer performance of the algorithm since it
may produce designs that are far away from the mating designs. Therefore, Imax

should be set to a small number. The mutation, however, changes designs in the
neighborhood of the current design; therefore a larger amount of mutation may be
allowed. Note also that the population size Np needs to be set to a reasonable number
for each problem. It may be heuristically related to the number of design variables
and the number of all possible designs determined by the number of allowable
discrete values for each variable.

2. Let f *K denote the best cost (or penalty) function value for the population at the Kth
iteration. If the improvement in f *K is less than some small positive number e¢ for the
last two consecutive iterations, then Imax is doubled temporarily. This “doubling”
strategy continues at the subsequent iterations and returns to the original value as
soon as f *K is reduced. The concept behind this is that we do not want too much
crossover or mutation to ruin the good designs in D-strings as long as they keep
producing better offspring. On the other hand, we need more crossover and mutation
to trigger changes when progress stops.

3. If the improvement in f *K is less than e ¢ for the last Ig consecutive iterations, then Pm

is doubled.
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x1 = 101|1101|001 x2 = 010|1001|011

(A) Designs selected for crossover (parent chromosomes)

x1’ = 101|1001|001 x2’ = 010|1101|011

(B) New designs (children) after crossover 

FIGURE 16-3 Crossover operation with two-cut point.



4. The crossover and mutation may be performed as follows:

FOR i = 1, Imax

Generate a random number z uniformly distributed in [0, 1]
If z > 0.5, perform crossover.
If z £ 0.5, skip crossover.
FOR j = 1, Im

Generate a random number z uniformly distributed in [0, 1]
If z > 0.5, perform mutation.
If z £ 0.5, skip to next j.

ENDFOR
ENDFOR

Leader of the Population At each generation, the member having the lowest cost function
value among all the designs is defined as the “leader” of the population. If several members
have the same lowest cost, only one of them is chosen as the leader. The leader is replaced
if another member with lower cost appears. This way, it is safeguarded from extinction (as
a result of reproduction, crossover, or mutation). In addition, the leader is guaranteed a higher
probability of selection for reproduction. One benefit of using a leader is that the best cost
(penalty) function value of the population can never increase from one iteration to another,
and some of the best design variable values (V-strings or genes) can always survive.

Stopping Criteria If the improvement for the best cost (penalty) function value is less than
e¢ for the last I consecutive iterations, or if the number of iterations exceeds a specified value,
then the algorithm terminates.

Genetic Algorithm Based on the ideas presented here, a sample genetic algorithm is stated.
Np: population size

Step 1. Define a schema to represent different design points. Randomly generate Np

genetic strings (members of the population) according to the schema, where Np is the
population size. Or use the seed designs to generate the initial population. For
constrained problems, only the feasible strings are accepted when the penalty
function approach is not used. Set iteration counter K = 0. Define a fitness function
for the problem, as in Eq. (16.4).

Step 2. Calculate the fitness values for all the designs in the population. Set K = K + 1,
and the counter for the number of crossovers Ic = 1.

Step 3. Reproduction: Select designs from the current population according to the
roulette wheel selection process described earlier for the mating pool (next
generation) from which members for crossover and mutation are selected.

Step 4. Crossover: Select two designs from the mating pool. Randomly choose two
sites on the genetic strings and swap strings of 0’s and 1’s between the two chosen
sites. Set Ic = Ic + 1.

Step 5. Mutation: Choose a fraction (Pm) of the members from the mating pool and
switch a 0 to 1 or vice versa at a randomly selected site on each chosen string. If, 
for the past Ig consecutive generations, the member with the lowest cost remains the
same, the mutation fraction Pm is doubled. Ig is an integer defined by the user.

Step 6. If the member with the lowest cost remains the same for the past two
consecutive generations, then increase Imax. If Ic < Imax, go to Step 4. Otherwise,
continue.

Step 7. Stopping criterion: If after the mutation fraction Pm is doubled, the best value of
the fitness is not updated for the past Ig consecutive generations, then stop.
Otherwise, go to Step 2.
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Immigration It may be useful to introduce completely new designs into the population in
an effort to increase diversity. This is called immigration, which may be done at a few iter-
ations during the solution process when progress toward the solution point is slow.

Multiple Runs for a Problem It is seen that the genetic algorithms make decisions at
several places based on random number generation. Therefore, when the same problem is
run at different times, it may give different final designs. It is suggested that the problem be
run a few times to ensure that the best possible solution has been obtained.

16.3 Genetic Algorithm for Sequencing-Type Problems
There are many applications in engineering where the sequence of operations needs to be
determined. To introduce the type of problems being treated, let us consider the design of a
metal plate that is to have 10 bolts at locations shown in Fig. 16-4. Bolts are to be inserted
into the predrilled holes by a computer-controlled robot arm. The objective is to minimize
the movement of the robot arm while it passes over and inserts a bolt into each hole. This
class of problems is generally known as traveling salesman problem, which is defined as
follows: given a list of N cities and a means to calculate the traveling distance between any
two cities, one must plan the salesman route that passes through each city once (with option
of returning to the starting point) while minimizing the total distance. For such problems, a
feasible design is a string of numbers (a sequence of the cities to be visited) that does not
have repeated numbers (e.g., “1 3 4 2” is feasible and “3 1 3 4” is not). Typical operators
used in genetic algorithms, such as crossover and mutation, are not applicable to these types
of problems since they usually create infeasible designs with repeated numbers. Therefore,
other operators need to be used to solve such problems. We shall describe some such oper-
ators in the following paragraphs.

Permutation Type 1 Let n1 be a fraction for selection of the mating pool members for 
carrying out the Type 1 permutation. Choose Nn1 members from the mating pool at random,
and reverse the sequence between two randomly selected sites on each chosen string. For
example, a chosen member with a string of “345216” and two randomly selected sites of “4”
and “1”, is changed to “312546”.
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Permutation Type 2 Let n2 be a fraction for selection of the mating pool members for 
carrying out the Type 2 permutation. Choose Nn2 members from the mating pool at random,
and exchange the numbers of two randomly selected sites on each chosen string. For example,
a chosen member with a string of “345216” and two randomly selected sites of “4” and “1”,
is changed to “315246”.

Permutation Type 3 Let n3 be a fraction for selection of the mating pool members for car-
rying out the Type 3 permutation. Choose Nn3 members from the mating pool at random, and
exchange the numbers of one randomly selected site and the site next to it on each chosen
string. For example, a chosen member with a string of “345216” and a randomly selected
site of “4”, is changed to “354216”.

Relocation Let nr be a fraction for selection of the mating pool members for carrying out
relocation. Choose Nnr members from the mating pool at random, remove the number of a
randomly selected site, and insert it in front of another randomly selected site on each chosen
string. For example, a chosen member with a string of “345216” and two randomly selected
sites of “4” and “1”, is changed to “352416”. 

A computer program based on the previously mentioned operators is developed and used
to solve the bolt insertion sequence problem in Example 16.1.
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EXAMPLE 16.1 Bolt Insertion Sequence Determination 
at 10 Locations

Solve the problem shown in Fig. 16-4 using a genetic algorithm.

Solution. The problem is solved by using a genetic algorithm (Huang and Arora,
1997). The population size Np is set to 150 and Ig is set to 10. No seed designs are used
for the problem. The optimum bolting sequence is not unique for the problem. With
hole 1 as the starting point, the optimum sequence is determined as (1, 5, 4, 10, 7, 8, 
9, 3, 6, 2) and the cost function value is 74.63 in. The number of function evaluations 
is 1445, which is much smaller than the total number of possibilities (10! = 3,628,800).

Two other problems are solved in Huang and Arora (1997). The first problem concerns
determination of the bolting sequence for 16 locations. The optimum sequence is not unique
for this example as well. The solution is obtained in 3358 function evaluations compared
with the total number of possibilities, 16! � 2.092 ¥ 1013. The second example concerns the
A-pillar subassembly welding sequence determination for a passenger vehicle. There are 14
welding locations. The objective is to determine the best welding sequence that minimizes
the deformation at some critical points of the structure. Cases where one and two welding
guns are available are considered. This is equivalent to having two salesmen traveling
between N cities for the traveling salesman problem. The optimum sequences are obtained
with 3341 and 3048 function evaluations for the two cases, which are much smaller than
those for the full enumeration.

16.4 Applications
Numerous applications of genetic algorithms for different classes of problems have been pre-
sented in the literature. There are specialty conferences focusing on the development in the



genetic algorithms and their applications. The literature in this area is growing rapidly. There-
fore a survey of all the applications is not attempted here. For the field of mechanical and
structural design, some of the applications are covered in Arora (2002), Pezeshk and Camp
(2002), Arora and Huang (1996), and Chen and Rajan (2000). Applications of the genetic
algorithms for optimum design of electric transmission line structures are given in Kocer and
Arora (1996, 1997, 1999, 2002).

Exercises for Chapter 16*
Solve the following problems using a genetic algorithm.

16.1 Example 15.1 with the available discrete values for the variables as x1 Œ {0, 1, 2,
3}, and x2 Œ {0, 1, 2, 3, 4, 5, 6}. Compare the solution with that obtained with the
branch and bound method.

16.2 Exercise 3.34 using the outside diameter d0 and the inside diameter di as design
variables. The outside diameter and thickness must be selected from the following
available sets:

Check your solution using the graphical method of Chapter 3. Compare continuous
and discrete solutions. Study the effect of reducing the number of elements in the
available discrete sets.

16.3 Formulate the minimum mass tubular column problem described in Section 2.7
using the following data: P = 100kN, length, l = 5m, Young’s modulus, E =
210GPa, allowable stress, sa = 250MPa, mass density, r = 7850kg/m3, R £ 0.4m, 
t £ 0.05m, and R, t ≥ 0. The design variables must be selected from the following
sets:

Check your solution using the graphical method of Chapter 3. Compare continuous
and discrete solutions. Study the effect of reducing the number of elements in the
available discrete sets.

16.4 Consider the plate girder design problem described and formulated in Section 10.6.
The design variables for the problem must be selected from the following sets

Compare the continuous and discrete solutions. Study the effect of reducing the
number of elements in the available discrete sets.

16.5 Consider the plate girder design problem described and formulated in Section 10.6.
The design variables for the problem must be selected from the following sets

Compare the continuous and discrete solutions. Study the effect of reducing the
number of elements in the available discrete sets.

h b t tw f, . , . , . , . . . , . , . ; , , , , . . . , ,Œ{ } Œ{ }0 30 0 32 0 34 2 48 2 50 10 14 16 96 100m mm

h b t tw f, . , . , . , . . . , . , . ; , , , , . . . , ,Œ{ } Œ{ }0 30 0 31 0 32 2 49 2 50 10 12 14 98 100m mm

R tŒ{ } Œ{ }0 01 0 012 0 014 0 38 0 40 4 6 8 48 50. , . , . , . . . , . , . ; , , , . . . , ,m mm

d t0 0 020 0 022 0 024 0 48 0 50 5 7 9 23 25Œ{ } Œ{ }. , . , . , . . . , . , . ; , , , . . . , ,m mm
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16.6 Solve problems of Exercises 16.4 and 16.5. Compare the two solutions,
commenting on the effect of the size of the discreteness of variables on the
optimum solution. Also, compare the continuous and discrete solutions.

16.7 Formulate the spring design problem described in Section 2.9 and solved in Section
13.5. Assume that the wire diameters are available in increments of 0.01 in, the coils
can be fabricated in increments of th of an inch, and the number of coils must be
an integer. Compare the continuous and discrete solutions. Study the effect of
reducing the number of elements in the available discrete sets.

16.8 Formulate the spring design problem described in Section 2.9 and solved in Section
13.5. Assume that the wire diameters are available in increments of 0.015 in, the
coils can be fabricated in increments of th of an inch, and the number of coils
must be an integer. Compare the continuous and discrete solutions. Study the effect
of reducing the number of elements in the available discrete sets.

16.9 Solve problems of Exercises 16.7 and 16.8. Compare the two solutions,
commenting on the effect of the size of the discreteness of variables on the
optimum solution. Also, compare the continuous and discrete solutions.

16.10 Formulate the problem of optimum design of prestressed concrete transmission
poles described in Kocer and Arora (1996a). Compare your solution to that given in
the reference.

16.11 Formulate the problem of optimum design of steel transmission poles described in
Kocer and Arora (1996b). Solve the problem as a continuous variable optimization
problem.

16.12 Formulate the problem of optimum design of steel transmission poles described in
Kocer and Arora (1996b). Assume that the diameters can vary in increments of 0.5
in and the thicknesses can vary in increments of 0.05 in. Compare your solution to
that given in the reference.

16.13 Formulate the problem of optimum design of steel transmission poles using
standard sections described in Kocer and Arora (1997). Compare your solution to
the solution given in the reference.

16.14 Formulate and solve three-bar truss of Exercise 3.50 as a discrete variable problem
where the cross-sectional areas must be selected from the following discrete set:

Check your solution using the graphical method of Chapter 3. Compare continuous
and discrete solutions. Study the effect of reducing the number of elements in the
available discrete sets.

16.15 Solve Example 16.1 of bolt insertion sequence at 10 locations. Compare your
solution to the one given in the example.

16.16 Solve the 16-bolt insertion sequence determination problem described in Huang 
and coworkers (1997). Compare your solution to the one given in the reference.

Ai Œ{ }50 100 150 4950 5000, , , . . . , , mm2

1
8

1
16
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16.18 The material for the spring in Exercise 16.8 must be selected from one of three
possible materials given in Table E16.17 (refer to Section 15.8 for more discussion
of the problem) (Huang and Arora, 1997). Obtain a solution for the problem.
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TABLE E16-17 Material Data for Spring Design Problem

G, lb/in2 r, lb-s2/in4 ta, lb/in2 Up

Material type 1 11.5 ¥ 106 7.38342 ¥ 10-4 80,000 1.0
Material type 2 12.6 ¥ 106 8.51211 ¥ 10-4 86,000 1.1
Material type 3 13.7 ¥ 106 9.71362 ¥ 10-4 87,000 1.5

G = shear modulus, r = mass density, ta = shear stress, Up = relative unit price.

16.17 The material for the spring in Exercise 16.7 must be selected from one of 
three possible materials given in Table E16.17 (refer to Section 15.8 for more
discussion of the problem) (Huang and Arora, 1997). Obtain a solution for the
problem.



17 Multiobjective Optimum Design 
Concepts and Methods

543

Upon completion of this chapter, you will be able to:

• Explain basic terminology and concepts related to multiobjective optimization
problems

• Explain the concepts of Pareto optimality and Pareto optimal set

• Solve your multiobjective optimization problem using a suitable formulation

Thus far, we have considered problems in which only one objective function needed to
be optimized. However, there are many practical applications where the designer may want
to optimize two or more objective functions simultaneously. These are called multiobjective,
multicriteria, or vector optimization problems; we refer to them as multiobjective optimiza-
tion problems. In this chapter, we describe basic terminology, concepts, and solution methods
for such problems. The material is introductory in nature and is derived from Marler and
Arora (2004) and many other references cited in there (e.g., Ehrgott and Grandibleaux, 2000).

17.1 Problem Definition
The general design optimization model defined in Chapter 2 is modified to treat multiobjec-
tive optimization problems as follows:

minimize f(x) = ( f1(x), f2(x), . . . , fk(x))

subject to

(17.1)

where k is the number of objective functions, p is the number of equality constraints, and m
is the number of inequality constraints. f(x) is a k-dimensional vector of objective functions.
Recall that the feasible set S (also called the feasible design space) is defined as a collection
of all the feasible design points, as

S h i p g j mi j= ( ) £ = ( ) £ ={ }x x x0 1 0 1; ; ;to and to

g j mj x( ) £ =0 1; to

h i pi x( ) = =0 1; to
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EXAMPLE 17.1 Single-Objective Optimization Problem

minimize (a)

subject to (b)

(c)

Solution. Figure 17-1 shows a graphical representation for the problem. The feasi-
ble set S is convex as shown in the figure. A few objective function contours are also
shown. It is seen that the problem has a distinct minimum at the point A (4, 6) with
the objective function value of f1(4, 6) = 5. At the minimum point, both constraints
are active. Note that since the objective function is also strictly convex, point A rep-
resents the unique global minimum for the problem.

g x x2 1 22 3 10 0= - + - £

g x x1 1 2 10 0= - - + £
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FIGURE 17-1 Graphical representation of a single-objective optimization problem.

The problem shown in Eq. (17.1) usually does not have a unique solution, and this idea
is illustrated by contrasting single-objective and multiobjective problems. Note that we shall
use the terms “cost function” and “objective function” interchangeably in this chapter.
Examples 17.1 and 17.2 illustrate the basic difference between single-objective and multi-
objective optimization problems.
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EXAMPLE 17.2 Two-Objective Optimization Problem

A second objective function is added to the Example 17.1 to obtain the following two-
objective problem:

minimize (a)

(b)

subject to same constraints as for Example 17.1.

Solution. Figure 17-2 is a modification of Fig. 17-1, where contours of the second
objective function are also shown. The minimum value of f2 is 3.25 at point B (5.5,
7.0). Note that f2 is also a strictly convex function, and so point B is a unique global
minimum point for f2. The minimum points for the two objective functions are dif-
ferent. Therefore, if one wishes to minimize f1 and f2 simultaneously, then pinpoint-
ing a single optimum point is not possible. In fact, there are infinitely many possible
solution points called the Pareto optimal set, which is explained later. The challenge
is to find a solution that suits one’s requirements. This dilemma requires the descrip-
tion of additional terminology and solution concepts.
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FIGURE 17-2 Graphical representation of a two-objective optimization problem.



17.2 Terminology and Basic Concepts
17.2.1 Criterion Space and Design Space
Example 17.2 is depicted in the design space in Fig. 17-2. That is, the constraints g1 and g2,
and the objective function contours are plotted as functions of the design variables x1 and x2.
Alternatively, a multiobjective optimization problem may also be depicted in the criterion
space (also called the cost space), where the axes represent different objective functions. For
the present problem, f1 and f2 are the axes in the criterion space, as shown in Figs. 17-3 and
17-4. q1 represents the g1 boundary, and q2 represents the g2 boundary. In general, a curve in
the design space in the form gj(x) = 0 is translated into a curve qj in the criterion space simply
by evaluating the values of the objective functions at different points on the constraint curve
in the design space. The feasible criterion space Z is defined simply as the set of objective
function values corresponding to the feasible points in the design space; i.e.,

Z S= ( ){ }f x x in the feasible set .
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FIGURE 17-3 Graphical representation of a two-objective optimization problem in the crite-
rion space.



The feasible points in the design space map onto a set of points in the criterion space.
Note that although qj represents gj in the criterion space, it may not necessarily represent the
boundaries of the feasible criterion space. This is seen in Fig. 17-3 where the feasible crite-
rion space for the problem of Example 17.2 is displayed. All portions of the curves q1 and
q2 do not form boundaries of the feasible criterion space. This concept of feasible criterion
space is important and used frequently, so we will discuss it further.

Let us first consider the single-objective function problem depicted in Fig. 17-1. The fea-
sible criterion space for the problem is the line f1 that starts at 5, the minimum value for the
function, and goes to infinity. Note that each feasible design point corresponds only to one
objective function value; it maps onto only one point on the feasible criterion line. However,
for one objective function value, there may be many different feasible design points in the
feasible design space S. For instance, in Fig. 17-1, there are infinitely many design points
that result in f1 = 16.25 as seen for the contour f1 = 16.25. Note also that the contour f1 =
16.25 passes through the infeasible region as well. Thus, for a given objective function value
(a given point in the feasible criterion space), there can be feasible or infeasible points in the
design space. Note also that the objective function values for design points on the constraint
boundaries for g1 and g2 fall on the line f1 in the criterion space.
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FIGURE 17-4 Illustration of Pareto optimal set and utopia point in the criterion space.



Now let us consider the problem with two objective functions and study the relationship
between constraint boundaries in the design space and the corresponding curves in the cri-
terion space. Let us consider two feasible points E and F in the criterion space as shown in
Fig. 17-3. Both points are on the curve q1 and have a value of 16.25 for f1. Since both points
are on the curve q1, they must also lie on the constraint boundary g1 in the design space. They
indeed are on the g1 line in the design space at E(1.076, 8.924) and F(5.924, 4.076), as shown
in Fig. 17-2. Whereas both the points satisfy the constraint g1, the point E violates the con-
straint g2, and thus, is not in the feasible set S. Then the question is how can point E be in
the feasible criterion space? It turns out that there is another point G on the f1 = 16.25 contour
in Fig. 17-2 that is feasible and has the same value for f2 as for the point E. Therefore point
G also maps onto point E in the criterion space as shown in Fig. 17-3. Thus, a feasible point
in the criterion space can map onto multiple points in the design space, some of which may
violate constraints. Note that the feasible point C and infeasible point D in Fig. 17-2 both
map onto a feasible point C in the criterion space, as seen in Fig. 17-4. An infeasible point
H in the criterion space in Fig. 17-3 having f1 = 16.25 maps onto an infeasible point H in the
design space, as seen in Fig. 17-2. Thus, the feasible criterion space indicates all the points
in the criterion space that are obtained by using feasible points in the design space.

A concept that is related to the feasibility of design points is that of attainability. Feasi-
bility of a design implies that no constraint is violated in the design space. Attainability
implies that a point in the criterion space can be related to a point in the feasible design space.
Whereas each point in the feasible design space translates to a point in the criterion space,
the reverse may not be true; i.e., every point in the criterion space does not necessarily cor-
respond to a single point x in the feasible design space S, as we saw in the foregoing example.
Thus, even with an unconstrained problem, only certain points in the criterion space are
attainable. We shall use the symbol Z to indicate points in the criterion space that are attain-
able and correspond to a feasible point in the set S. The set Z is also referred to as the attain-
able set. For the relatively simple problem in Example 17.2, it is possible to depict Z, 
as illustrated in Figs. 17-3 and 17-4, but generally, it is not possible to depict the feasible 
criterion space directly.

As noted earlier for Example 17.1, the feasible criterion space is the real line starting at
5 and going up to infinity. Therefore, only the objective function values of 5 and higher are
attainable and constitute the feasible criterion space Z for the problem.

17.2.2 Solution Concepts
From a classical standpoint, optimizing a single function simply entails determining a set of
stationary points, identifying a local maximum or minimum, and possibly finding the global
optimum, such as point A in Fig. 17-1. In contrast, the process of determining a solution for
a multiobjective optimization problem is slightly more complex and less definite than that
for a single-objective problem. As seen for the Example 17.2 and depicted in Fig. 17-2, point
A is the minimum for f1 and point B is the minimum for f2. But, which design point mini-
mizes both f1 and f2 simultaneously? This is not clear even for this simple problem. There-
fore, it is not clear what is meant by the minimum of multiple functions that may have
opposing characteristics since what decreases the value of one function may increase the
value of another. Therefore, in this section we describe some solution concepts related to
multiobjective optimization problems.

Pareto Optimality The predominant solution concept in defining solutions for multiobjec-
tive optimization problems is that of Pareto optimality (Pareto, 1906). A point x* in the 
feasible design space S is called Pareto optimal if there is no other point x in the set S that
reduces at least one objective function without increasing another one. This is defined more
precisely as follows:
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A point x* in the feasible design space S is Pareto optimal if and only if there does not
exist another point x in the set S such that f(x) £ f(x*) with at least one fi(x) < fi(x*).

Note that inequalities between vectors apply to every component of each vector; e.g., 
f(x) £ f(x*) implies f1 £ f 1*, f2 £ f 2*, and so on. The set of all Pareto optimal points is called
the Pareto optimal set, and this term can refer to points in the design space or to points in
the criterion space. The above definition means that for x* to be called the Pareto optimal
point, no other point exists in the feasible design space S that improves at least one objec-
tive function while keeping others unchanged.

As an example of a Pareto optimal point, consider point A in Figs. 17-2 and 17-4. It is
not possible to move from this point and simultaneously decrease the value of f1 and f2 without
violating a constraint, i.e., without moving into the infeasible region. Therefore, point A is a
Pareto optimal point. However, it is possible to move from point C and simultaneously reduce
the values of both f1 and f2. This can be seen most clearly in Fig. 17-4. Thus, point C is not
Pareto optimal. In Fig. 17-2, the points on the line between A and B along g2 represent the
Pareto optimal set. In Fig. 17-4, the Pareto optimal set is shown as the curve between points
A and B along q2. In fact, the Pareto optimal set is always on the boundary of the feasible
criterion space Z. When there are just two objective functions, as with this example, then the
minimum points of each objective function define the endpoints of the Pareto optimal curve,
assuming the minima to be unique.

Note that although the Pareto optimal set is always on the boundary of Z, it is not neces-
sarily defined by the constraints. As noted earlier, Z exists even for unconstrained problems.
In such a case, the Pareto optimal set is defined by the relationship between the gradients 
of the objective functions. In the simple case when there are just two objective functions, 
the gradients of the functions point in opposite directions at all Pareto optimal points. 
An exception to this rule is the individual minimum points for the functions at which the 
gradient is zero. For Example 17.2 without the constraints g1 and g2, the Pareto optimal set
is along the line connecting the centers of the circles for the two objective functions, i.e.,
points (2, 5) and (4.5, 8.5). This line would map onto a curve in the criterion space in Fig.
17-3.

Weak Pareto Optimality A concept closely related to Pareto optimality is that of weak
Pareto optimality. At the weakly Pareto optimal points, it is possible to improve some objec-
tive functions without penalizing others. A weakly Pareto optimal point is defined as follows:

A point x* in the feasible design space S is weakly Pareto optimal if and only if there does
not exist another point x in the set S such that f(x) < f(x*). That is, there is no point that
improves all the objective functions simultaneously; however, there may be points that
improve some of the objectives while keeping others unchanged.

In contrast to weakly Pareto optimal points, no objective function can be improved from
a Pareto optimal point without detriment to another objective function. It will be seen later
that there are numerical algorithms for multiobjective optimization that may converge to
weakly Pareto optimal solutions as opposed to always giving Pareto optimal solutions.

Efficiency and Dominance Efficiency is another primary concept in multiobjective 
optimization and is defined as follows:

A point x* in the feasible design space S is efficient if and only if there does not exist
another point x in the set S such that f(x) £ f(x*) with at least one fi(x) < fi(x*). Other-
wise, x* is inefficient. The set of all efficient points is called the efficient frontier.
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Another common concept is that of nondominated and dominated points defined as
follows:

A vector of objective functions f* = f(x*) in the feasible criterion space Z is nondomi-
nated if and only if there does not exist another vector f in the set Z such that f £ f*, with
at least one fi < f i*. Otherwise, f* is dominated.

Note that the definitions of Pareto optimal and efficient points are the same. Also, the def-
initions of efficient and nondominated points are similar. The only distinction is that effi-
ciency refers to points in the design space and nondominance refers to the points in the
criterion space. Pareto optimality, however, generally refers to both the design and the crite-
rion spaces. In numerical algorithms, the idea of nondomination in the criterion space is often
used for a subset of points; one point may be nondominated compared with other points in
the subset. Pareto optimality, on the other hand, implies a condition in terms of the complete
feasible design or criterion space. Genetic algorithms and some random search methods for
multiobjective optimization update and store a discrete set of potential solution points in each
iteration. Each new addition to this set is compared with all the objective function values of
potential solution points to determine if the new point is dominated. If it is nondominated,
then it is kept in the set of potential solution points; note, however, that this point may not
be Pareto optimal.

Utopia Point This is a unique point in the criterion space that is defined as follows:

A point f° in the criterion space is called the utopia point if f °i = min{fi(x) | for all x in the
set S}, i = 1 to k. It is also called the ideal point.

The utopia point is obtained by minimizing each objective function without regard for
other objective functions. Each minimization yields a design point in the design space and
the corresponding value for the objective function. It is rare that each minimization will end
up at the same point in the design space. That is, one design point cannot simultaneously
minimize all the objective functions. Thus, the utopia point exists only in the criterion space
and, in general, it is not attainable.

Figure 17-4 shows the Pareto optimal set and the utopia point for the problem of Example
17.2. The Pareto optimal set is on the boundary of Z and coincides with the curve q2. The
utopia point is located at the point (5, 3.25), as calculated before. Note that the utopia point
is not in Z, and is therefore unattainable.

Compromise Solution The next best thing to a utopia point is a solution that is as close
as possible to the utopia point. Such a solution is called a compromise solution. The term
closeness can be defined in several different ways. Usually, it implies that one minimizes the
Euclidean distance D(x) from the utopia point in the criterion space, which is defined as
follows:

(17.2)

where f °i represents a component of the utopia point in the criterion space. Compromise solu-
tions are Pareto optimal.
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17.2.3 Preferences and Utility Functions
Because mathematically, there are infinitely many Pareto optimal solutions, one often has to
make decisions concerning which solution is preferred. Fundamentally, this specification of
preferences is based on opinions concerning points in the criterion space. Ideally, a multi-
objective optimization method should reflect the user’s preferences, if known; i.e., it should
incorporate how the user feels about different solution points. However, having a mathe-
matical model or algorithm to represent one’s preferences perfectly is usually impossible.
Nonetheless, different methods for multiobjective optimization try to incorporate preferences
in different ways. This idea of accurately incorporating and reflecting preferences is a
common and significant issue for multiobjective optimization methods. Consequently, some
work has been done to develop methods that effectively incorporate preferences. These
methods typically try to capture knowledge about the problem functions and incorporate it
into mathematical expressions that are then used in multiobjective optimization methods. One
such recent method that captures this knowledge quite accurately is called physical pro-
gramming. The method has been used successfully in several applications (Messac, 1996;
Chen et al., 2000, Messac et al., 2001; Messac and Mattson, 2002).

Essentially, there are three approaches for expressing preferences about different objec-
tive functions. Preferences can be declared before solving the multiobjective optimization
problem. For instance, one may specify weights associated with each objective, indicating
the relative importance of each objective. Alternatively, preferences can be indicated by inter-
acting with the optimization routine and making choices based on intermediate optimization
results. For engineering applications, such approaches can be awkward, especially with prob-
lems that require a significant amount of time to evaluate the problem functions. Finally, it
is possible to calculate the complete Pareto optimal set (or its approximation) and then select
a single solution point after the problem has been solved. This, however, is not practical for
more than three objective functions (although selected subsets of two or three objectives func-
tions may be displayed). In some instances, the decision maker may not be able to concretely
define preferences. Thus, as a special case, one may choose not to declare preferences at all.

A utility function is a mathematical expression that attempts to model the decision maker’s
preferences. A utility function is most relevant to methods that indicate preferences before
the problem is solved. In this context, utility, which is modeled with a utility function, rep-
resents an individual’s degree of contentment. Utility emphasizes a decision maker’s satis-
faction, which is slightly different from the usual meaning of usefulness or worth. The utility
function is a scalar function incorporating various objective functions.

17.2.4 Vector Methods and Scalarization Methods
One of the predominant classifications for multiobjective approaches is known as scalariza-
tion and vector optimization methods. With scalarization methods, the components of objec-
tive function vector are combined to form a scalar objective function. Then, one can use
standard single-objective methods to optimize the resulting scalar function. Alternatively, the
term “vector optimization” implies that each objective function is treated independently. We
shall describe examples of both approaches.

17.2.5 Generation of Pareto Optimal Set
A key characteristic of multiobjective optimization methods is the nature of the solutions that
they provide. Some methods always yield Pareto optimal solutions but may skip certain points
in the Pareto optimal set; that is, they may not be able to yield all the Pareto optimal points.
Alternatively, other methods are able to capture all the points in the Pareto optimal set (when
the problem is solved by changing the method parameters) but may also provide non-Pareto
optimal points. The former quality is beneficial when one is interested in using a method to
obtain just one solution point. The latter quality is useful when the complete Pareto optimal
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set needs to be generated. We shall note this feature of each method when it is described in
later sections. The tendency of a particular method to result in non-Pareto optimal points and
the ability of a method to capture all the Pareto optimal points depend not only on the method
itself but also on the nature of the problem being solved.

17.2.6 Normalization of Objective Functions
Many multiobjective optimization methods involve comparing and making decisions about
different objectives functions. However, values of different functions may have different units
and/or significantly different orders of magnitude, making comparisons difficult. Thus, it is
usually necessary to transform the objective functions such that they all have similar orders
of magnitude. Although there are many approaches, the most robust approach is to normal-
ize the objective functions as follows:

(17.3)

f i
norm(x) generally has values between 0 and 1, depending on the accuracy and method with

which f i
max(x) and f °i(x) are determined. There are two approaches for determining f i

max(x).
One can define f i

max(x) such that f i
max(x) = 1£j£k

maximumfi(x*j), where x*j is the point that minimizes
the jth objective function. This implies that each objective fj(x) needs to be minimized to
determine x*j . Then all objective functions need to be evaluated at x*j . The maximum of all
the fi values is f i

max(x). This process also determines the utopia point f °i (x). It is noted that 
this normalization process may not be practical in some cases. Therefore, instead of f i

max(x),
one may use the absolute maximum value of fi(x), or its approximation based on engineer-
ing intuition. Similarly, the utopia point may be replaced with a reasonable estimate (called
the aspiration point, target value, or goal). We shall assume that the objective functions have
been normalized. Note, however, that if all the objective functions have similar values, 
normalization may not be needed.

17.2.7 Optimization Engine
Most approaches for solving multiobjective optimization problems actually entail formulat-
ing the multiple objective functions into a single-objective problem or a series of problems.
Then, a standard single-objective optimization routine is used to solve the consequent for-
mulation. We call this routine the optimization engine. The performance of most multi-
objective methods depends on which optimization engine is used.

17.3 Multiobjective Genetic Algorithms
Genetic algorithms (GAs) for single-objective optimization can be extended to provide an
effective approach for solving multiobjective optimization problems as well. Since GAs for
multiobjective optimization build upon the GAs for single-objective optimization, the con-
cepts and procedures described previously in Chapter 16 should be reviewed.

Because genetic algorithms do not require gradient information, they can be effective
regardless of the nature of the problem functions. They combine the use of random numbers
and information from previous iterations to evaluate and improve a population of points (a
group of potential solutions) rather than a single point at a time. Another appeal of genetic
algorithms is their ability to converge to the Pareto optimal set rather than a single Pareto
optimal point (Osyczka, 2002).

Although the algorithms in this section are intended for application to engineering prob-
lems, much of the literature uses terminology from the fields of biology and genetics. Thus,
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for the sake of clarity, basic definitions from Chapter 16 are reviewed here and some new
terms are introduced.

A population represents a set of design points in the design space. A subpopulation is a
subset of points in a generation. The generation refers to a computational iteration. To say
that a point survives into the next generation means that the point is selected for use in the
next iteration. A niche is a group of points that are close together (typically in terms of dis-
tance in the criterion space).

Multiobjective Genetic Algorithms The primary questions when developing genetic algo-
rithms for multiobjective problems are: how to evaluate fitness, how to incorporate the idea
of Pareto optimality, and how to determine which potential solution points should be selected
(survive) for the next iteration (generation). Note that the fitness of a design point (deter-
mined usually by a fitness function) is used in the selection process; i.e., to decide whether
to include the design in the next generation. However, in some multiobjective genetic 
algorithms, fitness of a design is neither defined nor used; instead some selection strategy is
used directly to select the designs for the next iteration. The approaches that are described
in this section, collectively address these two issues. Different selection techniques are dis-
cussed that serve as potential ingredients in a genetic multiobjective optimization algorithm.
Once a set of designs is selected for the next generation, the cross-over and mutation oper-
ators, described in Chapter 16, are used to create a new set of designs that are subjected to
the selection process again; thus, the iterations continue this way.

In general, genetic algorithms for multiobjective optimization are still evolving. We shall
describe some basic ideas and techniques that can be combined, modified, and used in dif-
ferent ways in a specific genetic algorithm for selection of designs for the next generation.

Vector Evaluated Genetic Algorithm One of the first treatments of multiobjective genetic
algorithms was presented by Schaffer (1985), which has provided a foundation for later devel-
opments. The general idea behind the approach, called the vector evaluated genetic algo-
rithm (VEGA), involves producing smaller subsets (subpopulations) of the current designs
(population) in a given iteration (generation). One subset is created by evaluating one objec-
tive function at a time rather than aggregating all the functions. The selection process is com-
posed of a series of computational loops, and during each loop, the fitness of each member
of the current set of designs is evaluated using a single-objective function. Then, certain
members of the population are selected and passed on to the next generation using the sto-
chastic processes discussed earlier in Chapter 16. This selection process is repeated for each
objective function. Consequently, for a problem with k objectives, k subsets are created, each
with Np/k members, where Np is the size of the entire set (population size). The resulting
subsets are then combined to yield a new population.

This process is based on the idea that the minimum of a single-objective function is a
Pareto optimal point (assuming the minimum is unique). Such minima generally define 
vertices of the Pareto optimal set. Consequently, Schaffer’s method does not yield an even
distribution of Pareto optimal points. Solutions in a given generation tend to cluster around
individual function minima. This is analogous to the evolution of species, where a species is
a class of organisms with common attributes.

Ranking A class of alternatives to VEGA, when it comes to evaluating fitness and select-
ing designs for the next generation, involves giving each design a rank based on whether it
is dominated in the criterion space (Goldberg, 1989; Srinivas and Deb, 1995; Cheng and Li,
1998). Fitness then is based on a design’s rank within a population. The means of determin-
ing rank and assigning fitness values associated with rank may vary from method to method,
but the general approach is common as described in the following discussion.
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For a given set of designs, the objective functions are evaluated at each point. All non-
dominated points receive a rank of 1. Determining whether a point is dominated (perform-
ing a nondominated check) entails comparing the vector of objective function values at the
point with the vector at all other points. Then, the points with a rank of 1 are temporarily
removed from consideration, and the points that are nondominated relative to the remaining
group are given a rank of 2. This process is repeated until all points are ranked. Those points
with the lowest rank have the highest fitness value. That is, fitness is determined such that it
is inversely proportional to the rank.

Pareto Fitness Function The fitness function for a problem with multiple objectives can
be defined in many different ways (Balling et al., 1999, 2000; Balling, 2000). The following
function, called the maximin fitness function, has been used successfully in some applications
(Balling, 2003):

(17.4)

Here, F(xi) is the fitness of the ith design, P is the set of nondominated points in the current
population, and it is assumed that each objective function has been scaled by dividing it by
an appropriate positive constant. Thus, with each iteration, one must first determine all the
nondominated points before evaluating the fitness of the designs. Note that the nondominated
points have negative fitness values. This fitness function automatically penalizes clustering
of nondominated points. Thus, compared with other selection approaches, this approach is
relatively simple and effective.

Pareto-Set Filter It is possible to have a Pareto optimal point in a particular iteration that
does not appear in subsequent iterations; that is, it may get dropped from further considera-
tion during the selection process. To guard against this situation, a Pareto-set filter can be
used. Regardless of how fitness is determined, most genetic multiobjective optimization
methods incorporate some type of Pareto-set filter to avoid losing potential Pareto optimal
solutions, which is described as follows (Cheng and Li, 1997). Basically, the algorithm stores
two sets of solutions: the current population and the filter (another set of potential solutions).
The filter is called an approximate Pareto set, and it provides an approximation of the Pareto
optimal set. With each iteration, points with a rank of 1 are saved in the filter. When new
points from subsequent iterations are added to the filter, they are subjected to a nondomi-
nated check within the filter, and the dominated points are discarded. The capacity of the
filter typically is set to the size of the population. When the filter is full, points at a minimum
distance from other points are discarded in order to maintain an even distribution of Pareto
optimal points. The filter eventually converges on the true Pareto optimal set.

Elitist Strategy Although this procedure is similar to the Pareto-set filter approach, it pro-
vides an alternative means for ensuring that Pareto optimal solutions are not lost (Ishibuchi
and Murata, 1996; Murata et al., 1996). It functions independently of the ranking scheme.
As with the Pareto-set filter, two sets of solutions are stored: a current population and a ten-
tative set of nondominated solutions, which is an approximate Pareto optimal set. With each
iteration, all points in the current population that are not dominated by any points in the ten-
tative set are added to the tentative set. Then, the dominated points in the tentative set are
discarded. After crossover and mutation operations are applied, a user-specified number of
points from the tentative set are reintroduced into the current population. These are called
elite points. In addition, the k solutions with the best values for each objective function can
be regarded as elite points and preserved for the next generation.
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Tournament Selection This is another technique for selecting designs that are used in sub-
sequent iterations. Although this technique concerns the selection process, it circumvents the
idea of fitness. It is an alternative to the ranking approach described above and proceeds as
follows (Horn et al., 1994; Srinivas and Deb, 1995). Two points, called candidate points, are
randomly selected from the current population. These candidate points essentially compete
for survival in the next generation. A separate set of points called a tournament set or com-
parison set also is randomly compiled. The candidate points are then compared with each
member of the tournament set. If both points are dominated by the points in the tournament
set, then another pair is selected. If there is only one candidate that is nondominated relative
to the tournament set, that candidate is selected for use in the next iteration. However, if there
is no preference between candidates, or if there is a tie, fitness sharing (explained later) is
used to select a candidate. The size of the tournament set is prespecified as a percentage of
the total population. The size of the tournament set imposes the degree of difficulty in sur-
viving, which is called the domination pressure. An insufficient number of Pareto optimal
points will be found if the tournament size is too small, and premature convergence may
result if the tournament size is too large.

Niche Techniques A niche in genetic algorithms is a group of points that are close to each
other, typically in the criterion space. Niche techniques (also called niche schemes or niche-
formation methods) are methods for ensuring that a set of designs does not converge to a
niche, i.e., a limited number of Pareto optimal points. Thus, these techniques foster an even
spread of points (in the criterion space). Genetic multiobjective algorithms tend to create a
limited number of niches; they converge to or cluster around a limited set of Pareto optimal
points. This phenomenon is known as genetic drift (or population drift), and niche techniques
force the development of multiple niches while limiting the growth of any single niche.

Fitness sharing is a common niche technique, the basic idea of which is to penalize the
fitness of points in crowded areas, thus reducing the probability of their survival for the next
iteration (Deb, 1989; Fonseca and Fleming, 1993; Horn et al., 1994; Srinivas and Deb, 1995;
Narayana and Azarm, 1999). The fitness of a given point is divided by a constant that is pro-
portional to the number of other points within a specified distance in the criterion space. This
way the fitness of all the points in a niche is shared in some sense, and thus the term “fitness
sharing.”

In reference to tournament selection, when two candidates are both either nondominated
or dominated, the most fit candidate is the one with the least number of individuals sur-
rounding it (within a specified distance in the criterion space). This is called equivalence class
sharing.

17.4 Weighted Sum Method
The most common approach to multiobjective optimization is the weighted sum method:

(17.5)

Here, w is a vector of weights typically set by the decision maker such that Sk
i=1wi = 1 and 

w > 0. If objectives are not normalized, wi’s need not add to 1. As with most methods that
involve objective function weights, setting one or more of the weights to zero can result in
weakly Pareto optimal points. The relative value of the weights generally reflects the rela-
tive importance of the objectives. This is another common characteristic of weighted
methods. If all the weights are omitted or are set to 1, then all objectives are treated equally.
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The weights can be used in two ways. The user may either set w to reflect preferences
before the problem is solved or systematically alter w to yield different Pareto optimal points
(generate the Pareto optimal set). In fact, most methods that involve weights can be used in
both of these capacities; i.e., to generate a single solution or multiple solutions.

This method is easy to use, and if all the weights are positive, the minimum of Eq. (17.5)
is always Pareto optimal. However, there are a few recognized difficulties with the weighted
sum method (Koski, 1985; Das and Dennis, 1997). First, even with the use of some of the
methods discussed in the literature for determining weights, a satisfactory a priori selection
of weights does not necessarily guarantee that the final solution will be acceptable; one may
have to re-solve the problem with new weights. In fact, this is true of most weighted methods.
The second problem is that it is impossible to obtain points on nonconvex portions of the
Pareto optimal set in the criterion space. Although nonconvex Pareto optimal sets are rela-
tively uncommon, some examples are noted in the literature (Koski, 1985; Stadler and Dauer,
1992; Stadler, 1995). The final difficulty with the weighted sum method is that varying the
weights consistently and continuously may not necessarily result in an even distribution of
Pareto optimal points and an accurate, complete representation of the Pareto optimal set.

17.5 Weighted Min-Max Method
The weighted min-max method (also called the weighted Tchebycheff method) is formulated
as follows:

(17.6)

A common approach for treatment of Eq. (17.6) is to introduce an additional unknown
parameter l as follows: minimize l subject to additional constraints

(17.7)

Whereas the weighted sum method of Section 17.4 always yields Pareto optimal points
but may miss certain points when the weights are varied, this method can provide all the
Pareto optimal points (the complete Pareto optimal set). However, it may provide non-Pareto
optimal points as well. Nonetheless, the solution to the min-max approach is always weakly
Pareto optimal, and if the solution is unique, then it is Pareto optimal.

Advantages of the method are: (1) it provides a clear interpretation of minimizing the
largest difference between fi(x) and f °i , (2) it can provide all the Pareto optimal points, (3) it
always provides a weakly Pareto optimal solution, and (4) it is relatively well suited for gen-
erating the complete Pareto optimal set (with variation in the weights). Disadvantages are:
(1) it requires the minimization of each objective when using the utopia point, which can be
computationally expensive, (2) it requires that additional constraints be included, and (3) it
is not clear exactly how to set the weights when only one solution point is desired.

17.6 Weighted Global Criterion Method
This is a scalarization method that combines all objective functions to form a single func-
tion. Although the term “global criterion” can refer to any scalarized function, it has been
used in the literature primarily for formulations similar to the ones presented in this section.
Although a global criterion may be a mathematical function with no correlation to prefer-
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ences, a weighted global criterion is a type of utility function in which parameters are used
to model preferences.

The most common weighted global criterion is defined as follows:

(17.8)

Solutions using the global criterion formulation depend on the values of both w and p.
Generally, p is proportional to the amount of emphasis placed on minimizing the function
with the largest difference between fi(x) and f °i . The root 1/p may be omitted because the for-
mulations with and without the root theoretically provide the same solution. p and w typi-
cally are not varied or determined in unison. Rather, a fixed value for p is selected, and then
either w is selected to reflect preferences before the problem is solved or it is systematically
altered to yield different Pareto optimal points.

Depending on how p is set, the global criteria can be reduced to other common methods.
For instance, when p = 1, Eq. (17.8) is similar to a weighted sum with the objective func-
tions adjusted with the utopia point. When p = 2 and weights equal to 1, Eq. (17.8) repre-
sents the distance from the utopia point, and the solution usually is called a compromise
solution, as discussed earlier. When p = •, Eq. (17.8) reduces to Eq. (17.6). With the weighted
global criterion method, increasing the value of p can increase its effectiveness in providing
the complete Pareto optimal set (Athan and Papalambros, 1996; Messac et al., 2000a,b). This
explains why the weighted min-max approach can provide the complete Pareto optimal set
with variation in the weights; the weighted min-max method shown in Eq. (17.6) is the limit
of Eq. (17.8) as p Æ •.

For computational efficiency or in cases where a function’s independent minimum may
be difficult to determine, one may approximate the utopia point with z, which is called an
aspiration point, reference point, goal, or target point. When this is done, U is called an
achievement function. Then, the user has three different parameters that can be used to specify
different types of preferences: w, p, and z. Assuming w is fixed, then every Pareto optimal
point may be captured by using a different aspiration point z, as long as the aspiration point
is not in the feasible criterion space Z. However, this is not a practical approach for gener-
ating the complete Pareto optimal set. Often, it is not possible to determine whether z is in
the feasible criterion space Z before solving the problem. In addition, if the aspiration point
is in the feasible criterion space, the method may provide non-Pareto optimal solutions. Thus,
it is recommended that the utopia point be used whenever possible. In addition, the aspira-
tion point should not be varied as a parameter of the method but only as an approximation
of the utopia point.

Equation (17.8) always yields a Pareto optimal solution as long as w > 0 and as long 
as the utopia point is used. However, it may skip certain Pareto optimal points, depending
on the nature of the objective functions and the value of p that is used. Generally, using 
a higher value for p enables one to better capture all Pareto optimal points (with variation 
in w).

One can view the arguments of the summation in Eq. (17.8) in two ways: as transforma-
tions of the original objective functions or as components of a distance function that mini-
mizes the distance between the solution point and the utopia point in the criterion space.
Consequently, global criterion methods often are called utopia point methods or compromise
programming methods, as the decision maker usually has to compromise between the final
solution and the utopia point.

Advantages of the global criterion method are: (1) it gives a clear interpretation of 
minimizing the distance from the utopia point (or, aspiration point), (2) it gives a general 
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formulation that reduces to many other approaches, (3) it allows multiple parameters to be
set to reflect preferences, and (4) it always provides a Pareto optimal solution when the utopia
point is used. Disadvantages of the method are: (1) the use of the utopia point requires min-
imization of each objective function, which can be computationally expensive, (2) the use of
an aspiration point requires that it be infeasible in order to yield a Pareto optimal solution,
and (3) the setting of parameters is not intuitively clear when only one solution point is
desired.

17.7 Lexicographic Method
With the lexicographic method, preferences are imposed by ordering the objectives accord-
ing to their importance or significance, rather than by assigning weights. The objective func-
tions are arranged in the order of their importance. Then, the following optimization problems
are solved one at a time:

minimize fi(x) subject to

(17.9)

Here, i represents a function’s position in the preferred sequence, and fj(x*j ) represents the
minimum value for the jth objective function, found in the jth optimization problem. Note
that after the first iteration ( j > 1), fj(x*j) is not necessarily the same as the independent
minimum of fj(x) because new constraints are introduced for each problem. The algorithm
terminates once a unique optimum is determined. Generally, this is indicated when two con-
secutive optimization problems yield the same solution point. However, determining if a solu-
tion is unique (within the feasible design space S) can be difficult, especially with local
gradient-based optimization engines. For this reason, often with continuous problems, this
approach terminates after simply finding the optimum of the first objective f1(x). Thus, it is
best to use a global optimization engine with this approach. In any case, theoretically, the
solution is always Pareto optimal. Note that this method is classified as a vector multiobjec-
tive optimization method because each objective is treated independently.

Advantages of the method are: (1) it is a unique approach to specifying preferences, (2)
it does not require that the objective functions be normalized, and (3) it always provides a
Pareto optimal solution. Disadvantages are: (1) it can require the solution of many single-
objective problems to obtain just one solution point, (2) it needs additional constraints to be
imposed, and (3) it is most effective when used with a global optimization engine, which can
be expensive.

17.8 Bounded Objective Function Method
The bounded objective function method minimizes the single, most important objective func-
tion fs(x) with other objective functions treated as constraints: li £ fi(x) £ ei; i = 1 to k; i π s.
li and ei are the lower and upper bounds for the objective function fi(x), respectively. In this
way, the user imposes preferences by setting limits on the objectives. li is obsolete unless the
intent is to achieve a goal or fall within a range of values for fi(x).

The e-constraint approach (also called the e-constraint or trade-off approach) is a varia-
tion of the bounded objective function method in which li is excluded. In this case, a sys-
tematic variation of ei yields a set of Pareto optimal solutions. However, improper selection
of the e-vector can result in a formulation with no feasible solution. Guidelines for selecting
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e-values that reflect preferences are discussed in the literature (Cohon, 1978; Stadler, 1988).
A general mathematical guideline for selecting ei is provided as follows (Carmichael, 1980):

(17.10)

A solution to the e-constraint formulation, if it exists, is weakly Pareto optimal. If the solu-
tion is unique, then it is Pareto optimal. Of course, uniqueness can be difficult to verify,
although if the problem is convex and if fs(x) is strictly convex, then the solution is neces-
sarily unique. Solutions with active e-constraints (and nonzero Lagrange multipliers) are 
necessarily Pareto optimal (Carmichael, 1980).

Advantages of the method are: (1) it focuses on a single objective with limits on others,
(2) it always provides a weakly Pareto optimal point, assuming the formulation gives a solu-
tion, (3) it is not necessary to normalize the objective functions, and (4) it gives Pareto optimal
solution if one exists and is unique. The only disadvantage is that the optimization problem
may be infeasible if the bounds on the objective functions are not appropriate.

17.9 Goal Programming
With goal programming, goals bj are specified for each objective function fj(x). Then, the
total deviation from the goals Sk

j=1|dj| is minimized, where dj is the deviation from the goal bj

for the jth objective function. To model the absolute values, dj is split into positive and neg-
ative parts such that dj = d +

j - d -
j with d +

j ≥ 0, d -
j ≥ 0, and d +

j d -
j = 0. Consequently, |dj| d +

j +
d -

j ◊d +
j and d -

j represent underachievement and overachievement, respectively, where achieve-
ment implies that a goal has been reached. The optimization problem is formulated as follows:

minimize  (17.11)

subject to

In the absence of any other information, goals may be set to the utopia point, i.e., bj = f °j.
In this case Eq. (17.11) can be considered a type of global criterion method. Lee and Olson
(1999) provide an extensive review of applications for goal programming. However, despite
its popularity, there is no guarantee that it provides a Pareto optimal solution. Also, 
Eq. (17.11) has additional variables and nonlinear equality constraints, both of which can be
troublesome with larger problems.

Advantages of the method are: (1) it is easy to assess whether the predetermined goal have
been reached, and (2) it is easy to tailor the method to a variety of problems. Disadvantages
are: (1) there is no guarantee that the solution is even weakly Pareto optimal, (2) there is an
increased number of variables, and (3) an increase in the number of constraints.

17.10 Selection of Methods
Deciding which multiobjective optimization method is most appropriate or most effective
can be difficult. It depends on the nature of the user’s preferences and what types of solu-
tions might be acceptable (Floudas et al., 1990). Knowledge about the problem functions 
can aid in the selection process. Table 17-1 summarizes the following key characteristics of
the methods discussed in this chapter and is helpful in selecting the most appropriate method
for a particular application:
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Exercises for Chapter 17*

17.1 In the design space, plot the objective function contours for the following
unconstrained problem and sketch the Pareto optimal set, which should turn out to
be a curve:

minimize

Draw the gradients of each function at any point on the Pareto optimal curve.
Comment on the relationship between the two gradients.

17.2 Sketch the Pareto optimal set for Exercise 17-1 in the criterion space.

17.3 In the design space, plot the following constrained problem and sketch the Pareto
optimal set:

f x x2 1
2

2
2

2 5 1 5= -( ) + -( ). .

f x x1 1
2

2
2

0 75 2= -( ) + -( ).
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TABLE 17-1 Characteristics of Multiobjective Optimization Methods

Method Always Can yield Involves Depends on Uses
yields all Pareto weights? function utopia
Pareto optimal continuity? point?
optimal points?
point?

Genetic Yes Yes No No No
Weighted sum Yes No Yes Problem type and Utopia point or its 

the optimization approximation is needed 
engine determines for function normalization,
this. or in  the method 

formulation.
Weighted min-max Yes1 Yes Yes Same as above Same as above
Weighted global criterion Yes No Yes Same as above Same as above
Lexicographic Yes2 No No Same as above No
Bounded objective fun. Yes3 No No Same as above No
Goal programming No No No4 Same as above No

1 Sometimes the solution is only weakly Pareto optimal.
2 Lexicographic method always provides a Pareto optimal solution only if a global optimization engine is used or if
the solution point is unique.
3 Always weak Pareto optimal if it exists; Pareto optimal if the solution is unique.
4 Weights may be incorporated into the objective function to represent the relative significance of deviation from a
particular goal.

1. Always provides a Pareto optimal solution.
2. Can provide all the Pareto optimal solutions.
3. Involves weights to express preferences.
4. Depends on the continuity of the problem functions.
5. Uses the utopia point or its approximation.



FIGURE E17-4 Identification of weakly Pareto optimal points.

minimize

subject to

17.4 Identify the weakly Pareto optimal points in the plot in Fig. E17-4:

g x1 16 8 0= - + £.

g x x2 2 12 5 3 0= - + £.

g x x1 2 170 4 8 0= - - £

f x x2 1
2

2
2

9 8= -( ) + -( )

f x x1 1
2

2
2

3 7= -( ) + -( )
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17.5 Plot the following global criterion contour in the criterion space, using p-values of
1, 2, 5, and 20 (plot one contour line for each p-value):

Comment on the difference between the shapes of the different contours. Which
case represents the weighted sum utility function (with all weights equal to 1)?

17.6 Plot contours for the following min-max utility function in the criterion space:

Compare the shape of these contours with those determined in Exercise 17.5.

17.7 Solve the following problem using the KKT optimality conditions of Chapter 4 with
the weighted sum method:

minimize

Write your solution for the design variables in terms of the two weights w1 and w2.
Comment on how the different weights affect the final solution. 

17.8 Solve the following problem using KKT optimality conditions of Chapter 4 with the
weighted sum method:

minimize 

subject to g1 = -x2 £ 0

First, use w1 = 0.1 and w2 = 0.9. Then, resolve the problem using w1 = 0.9 and 
w2 = 0.1. Comment on the constraint activity in each case.

17.9 Formulate the following problem (Stadler and Dauer, 1992) and solve it using Excel
with the weighted sum method:

Determine the optimal height and radius of a closed-end cylinder necessary to
simultaneously maximize the volume and minimize the surface area. Assume that
the cylinder has negligible thickness. The height must be at least 0.1m, and the
radius must be at least half the height. Neither the height nor the radius should be
greater than 2.0m.

Use a starting point of x(0) = (1, 1). Use the following vectors of weights and
comment on the solution that each yields: w = (1, 0); w = (0.75, 0.25); w = (0.5,
0.5); w = (0.25, 0.75); w = (0, 1).

17.10 Solve Exercise 17.9 using Excel with a weighted global criterion. Use x(0) = (1, 1), 
w = (0.5, 0.5), and p = 2.0. Compare the solution with those determined in Exercise
17.9.
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17.11 Plot the objective functions contours for the following problem (on the same graph)
and solve the problem using the lexicographic method:

minimize

Indicate the final solution point on the graph. Assume the functions are prioritized
in the following order: f1, f2, f3, with f1 being the most important.

f x3
2

8 3= -( )

f x2
2

4 2= -( )

f x x1
2 2

1 4= -( ) -( )

Multiobjective Optimum Design Concepts and Methods 563





18 Global Optimization Concepts and 
Methods for Optimum Design

565

Upon completion of this chapter, you will be able to:

• Explain basic concepts associated with finding a global solution for a design 
problem

• Explain basic ideas, procedures, and limitations of deterministic and stochastic
methods for global optimization

• Use an appropriate method for solving your global optimization problem

The standard design optimization model treated in this text is minimize f(x) with x in the 
feasible set S defined as

(18.1)

The discrete variables in the problem are treated as explained in Chapter 15. Thus far in this
text, we have addressed mainly the problem of finding a local minimum for the cost func-
tion in the feasible set. In this chapter, we focus on presentation and discussion of concepts
and methods for the global optimum solutions because in some practical applications, it is
important to find such solutions as opposed to the local ones. The material for the chapter is
introductory in nature and is derived from the work of the author and his coworkers (Arora
et al., 1995; Elwakeil and Arora, 1996a,b). Numerous other references are cited in these 
articles that contain more exposition on the subject (Dixon and Szego, 1978; Evtushenko,
1985; Pardalos and Rosen, 1987; Rinnooy and Timmer, 1987a,b; Törn and ilinskas, 1989;
Pardalos et al., 2002).

18.1 Basic Concepts of Solution Methods
18.1.1 Basic Concepts
Most of the methods presented in this chapter assume continuous variables and functions.
For discrete and nondifferentiable problems, the simulated annealing and genetic algorithms
are appropriate for global optimization and may be used as described earlier in Chapters 15
and 16. It is also important to note that many methods for global optimization presented in

Ž
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the literature considered the unconstrained problem only. It is assumed that the constraints
can be treated implicitly using the penalty or augmented Lagrangian type methods that are
discussed in Chapter 9. A possible disadvantage of that approach is that such methods can
terminate at infeasible points. Many methods, however, can treat or may even require explicit
bound constraints on the design variables. To discuss such methods, let us define a set Sb of
feasible points with respect to the explicit bound constraints as

(18.2)

Recall that n is the number of design variables, and xil and xiu are the lower and upper bounds
on the ith variable. Note that the feasible set S of Eq. (18.1) is a subset of the set Sb.

It is also noted that many global optimization methods repeatedly search for local minima
in their algorithm. These methods are relatively easy to implement and use for solving global
optimization problems. It is important to use robust and efficient software to search for local
minima. We shall assume that such an optimization engine is available for use with these
global optimization methods.

Before describing the methods for finding global minima, let us first recall definitions of
local and global minima presented and discussed in Chapter 4. A point x* is called a local
minimum for the problem f(x*) £ f(x) for all x in a small feasible neighborhood of the point
x*. A point x*G is defined as a global minimum for the problem if f(x*G) £ f(x) for all x in the
feasible set S. A problem can have multiple global minimum points that must have the same
cost function value. If the feasible set S is closed and bounded and the cost function is con-
tinuous on it, the Weierstrass Theorem 4.1 in Chapter 4 guarantees existence of a global
minimum point, though finding it is altogether a different matter. At a local optimum point,
the Karush-Kuhn-Tucker (KKT) necessary conditions apply (as described in Chapters 4 and
5). Although a global minimum point must also be a local minimum point, there are no 
mathematical conditions that characterize a global minimum point, except when the problem
can be shown to be convex. However in most practical applications, it is difficult to check
for convexity of the problem. Therefore, the problem is generally assumed to be nonconvex.

An important question then is: How do you know that a numerical search process has ter-
minated at a global minimum point? The answer is that, in general, you do not know. Because
of this, it is difficult to define a precise stopping criterion for a computational algorithm for
global optimization. Usually, the best solution obtained by an algorithm after it is allowed to
run for a long time is accepted as the global solution for the problem. In general, the quality
of the solution depends on how long the algorithm is allowed to run. It is important to note
that the computational effort to solve a global optimization problem is substantial, and it
increases enormously as the number of design variables increase. Thus, solving global opti-
mization problems remains a challenge from a mathematical as well as a computational view
point. It is noted, however, that some algorithms can be implemented on parallel processors
which can reduce the “wall clock” time to solve the problem.

It is seen that because of the lack of global optimality conditions for general problems, a
global solution to the problem can be obtained only by an exhaustive search of the design
space (the feasible set S). The procedure for such a search is to specify some sample points
in the set Sb and evaluate the cost function at those points. The point where the function has
the smallest value is taken as the global minimum point. It is seen that the location and value
of the global minimum depend on the sample size. An exact solution for the problem requires
an infinite number of calculations. Generally, this infinite calculation is avoided by accept-
ing the best solution as a global minimum point obtained by an algorithm after it is allowed
to run for a sufficiently long time. When a point within a distance e from x*G is sought, many
strategies exist that only require a finite number of function evaluations. These strategies,
however, are of limited practical use since e cannot be specified because x*G is not known.
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Thus, either a further restriction on the class of cost functions or a further relaxation of what
is required of an algorithm is necessary.

18.1.2 Overview of Methods
The global optimization methods can be divided into two major categories: deterministic and
stochastic. This classification is mainly based on whether the method incorporates any 
stochastic elements to solve the global optimization problem. Deterministic methods find the
global minimum by an exhaustive search over the set Sb. The success of the method can be
guaranteed for only the functions that satisfy certain conditions. We shall describe four deter-
ministic methods: covering, zooming, generalized descent, and tunneling.

Several stochastic methods have been developed as some variation of the pure random
search. Some methods are useful for only discrete optimization problems while others can
be used for both discrete and continuous problems. All the stochastic methods involve random
elements to determine the global minimum point, each one trying to reduce the computa-
tional burden of pure random search. At the outset, a random sample of points in the set Sb

is picked. Then each method manipulates the sample points in a different manner. In some
cases the two operations are simultaneous; i.e., a random point is picked and manipulated or
used before the next one is picked. We shall briefly describe some of the methods such as
multistart, clustering, control random search, acceptance-rejection, stochastic integration, 
stochastic zooming, and domain elimination.

In the remaining sections of this chapter, we describe basic concepts and ideas of various
methods for global optimization. Algorithms for some of the methods are described and dis-
cussed to give the student a flavor of the type of calculations needed to find a global solu-
tion for the design problem. Some of the methods describe calculations for the global
minimum of the cost function without reference to constraints. It is assumed in these methods
that the constraints are used to define a penalty function, which is then minimized. Some of
the algorithms have been implemented on the computer to evaluate their performance on
mathematical programming test problems as well as structural design problems. These
numerical experiments are described, and performance results of the methods are discussed.

18.2 Overview of Deterministic Methods
Deterministic methods find the global minimum by an exhaustive search over the set Sb. If
an absolute guarantee of success is desired for such a method, additional assumptions about
the cost function are needed to avoid huge calculations. The most popular approach is to
assume the Lipschitz continuity condition for the function: There exists a Lipschitz constant
L such that for all x, y in the set Sb, | f(x) - f(y)| £ L||x - y||, i.e., the rate of change of the
function is bounded. The upper bound on the rate of change of f(x) implied by the Lipschitz
constant can be used in various ways to perform an exhaustive search over the set Sb

(Evtushenko, 1985). Unfortunately, in practice it is hard to verify whether a function satis-
fies such a condition for all points in the set Sb.

Deterministic methods for global optimization are further classified as finite exact and
heuristic methods. Finite exact methods provide an absolute guarantee that the global
minimum will be found in a finite number of steps. Generally, the number of steps is very
large, and so the methods require large computational effort, especially when the number of
design variables is more than two. However, for some problems, it is essential to find the
global minimum with absolute guarantee, irrespective of the computational effort needed.
Since no other method gives an absolute guarantee of finding the global minimum in a finite
number of steps, these methods become important. Heuristic methods, on the other hand,
offer only an empirical guarantee of finding the global optimum.
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18.2.1 Covering Methods
As the name implies, the basic idea of covering methods is to “cover” the set Sb by evaluat-
ing the cost function at all the points in this search for the global minimum. This is, of course,
an infinite calculation and is therefore impossible to implement and use. Thus all the cover-
ing methods devise procedures to evaluate the functions at selected points but still cover the
entire set Sb implicitly. Some covering methods take advantage of certain properties of the
cost function to define a mesh of points that may or may not be uniform for evaluating func-
tions at these points. Some of the covering methods are relatively efficient but can treat only
simple cost functions (which occur only in standard test problems). In these methods, upper
and lower bounds on the cost function over a subset of Sb are computed by interval arith-
metic. Different means to exclude inferior intervals are then used. The branch-and-bound
methods discussed in Chapter 15 are also based on such ideas. Other methods successively
form closer approximations (of given functions) that can be separated into convex and
concave terms.

The covering method of Evtushenko (1985) uses a nonuniform mesh to cover the set Sb.
In the method, an approximation to the solution point x*G is obtained for a given positive 
tolerance e such that it belongs to the set Ae of points with cost function values less than 
f(x*G) + e, i.e., Ae is defined as

(18.3)

The set Ae can never be constructed since x*G is not known. The solution, however, is guar-
anteed to belong to it; i.e., it is within e of the global minimum value. In some covering
methods, the mesh density is determined using the Lipschitz constant L. The upper bound on
the rate of change of f(x) implied by the Lipschitz constant is used in various ways to sequen-
tially generate a mesh and perform an exhaustive search over the set Sb. Unfortunately, in
practice it is hard to verify whether a function satisfies such a condition for all points in the
set Sb. Also, the computational effort required to compute L is substantial. Therefore, only
an approximation to L can be used.

In Evtushenko’s method, the mesh points are generated as centers of hyperspheres. The union
of these spheres has to completely cover Sb for the approximate solution to be valid. The cover-
ing is done sequentially; one sphere after another is constructed until the entire set is covered.
Therefore, the total number of mesh points is not known until the covering is complete. In 
multidimensional problems, covering by hyperspheres is difficult and inefficient as the 
hyperspheres must overlap to cover the entire set Sb. Therefore, hypercubes inscribed in the
hyperspheres are used instead. In two dimensions the design space is filled with squares; in three
dimensions it is filled with cubes and so on. The resulting mesh is nonuniform in the first vari-
able and uniform in the rest of the variables. Since finding the true value of the Lipschitz con-
stant L is a difficult task, a smaller approximation for L and a larger value for the tolerance e are
used initially. Then the approximation for L is increased and that of e is decreased and the entire
covering procedure is repeated. The repetition is continued until the difference between two con-
secutive solutions is less than e. In some methods, departing from purely deterministic proce-
dures, the Lipschitz constant is estimated using some statistical models of the cost function. An
advantage of Evtushenko’s method is that it yields a guaranteed estimate of the global minimum
for any upper bound approximation of the Lipschitz constant. It is seen that the covering methods
are generally not practical for problems having more than two variables. Two variable problems
can be solved more efficiently by the graphical optimization method of Chapter 3.

18.2.2 Zooming Method
The zooming method was designed especially for problems with general constraints. The
method uses a target value for the global minimum of the cost function. Once the target is
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achieved, it is reduced further to “zoom-in” on the global minimum. The method combines
a local minimization method with successive truncation of the feasible set S to eliminate
regions of local minima to zoom-in on the global solution. The basic idea is to initiate the
search for a constrained local minimum from any point—feasible or infeasible. Once a local
minimum point has been found, the problem is redefined in such a way that the current solu-
tion is eliminated from any further search by adding the following constraint to the problem:

(18.4)

where f(x*) is the cost function value at the current minimum point and 0 < g < 1 if 
f(x*) > 0, and g > 1 if f(x*) < 0. The redefined problem is solved again and the process con-
tinued until no more minimum points can be found. The zooming method appears to be a
good alternative to stochastic methods (discussed later in this chapter) and other methods for
constrained global optimization problems. It is quite simple to use: the formulation is 
modified slightly by adding the zooming constraint of Eq. (18.4), and an existing local min-
imization routine is used. However, there are certain limitations of the method. As the target
level for the global minimum of the cost function is lowered, the feasible set for the problem
keeps on shrinking. It may also result in a disjointed feasible set. Therefore as the global
minimum is approached, finding even a feasible point for the redefined problem becomes
quite difficult. Several different trial starting points needs to be tried before declaring the
redefined problem to be infeasible and accepting the previous local minimum as the global
minimum. The only stopping criterion is the limit on the number of trials allowed to search
a feasible point for the reduced feasible set. An improvement of the method is described later
where some stochastic elements are introduced into the computational procedure.

18.2.3 Methods of Generalized Descent
Generalized descent methods are classified as heuristic deterministic methods. These methods
are a generalization of the descent methods described earlier in Chapters 8 and 9. In those
methods, finite descent steps are taken along straight lines, i.e., the search directions. For
nonquadratic problems, it is sometimes difficult to find a suitable step size along the search
direction. Therefore, it may be more effective if we deliberately follow a curvilinear path in
the design space (also called trajectories). Before describing the generalized descent methods
for global optimization, we shall describe the basic ideas of trajectory methods that gener-
ate curvilinear paths in the design space in search of minimum points.

A trajectory can be considered as a design history of the cost function from the starting
point x(0) to a local minimum point x*. Let the design vector x be dependent on the parame-
ter t that monotonically increases along the solution curve x(t) and is zero at x(0). The sim-
plest path from an arbitrary initial point x(0) to x* is a continuous steepest descent trajectory
given as solution of the vector differential equation:

(18.5)

where an “over dot” represents the derivative with respect to t. We can also use a continu-
ous Newton’s trajectory by changing the right side of Eq. (18.5) to -[H(x)]-1—f(x), where
H(x) is the Hessian of the cost function that is assumed to be nonsingular for all x. It is noted
that good software is available to solve the first-order differential equation (18.5).

The generalized descent methods for global optimization are extensions of the foregoing
trajectory methods. In these methods, the trajectories are solutions of certain second-order
differential equations rather than the first order equation (18.5). The search for the global
minimum is based on solution properties of these differential equations. The most important
property is that their trajectories pass through the majority of the stationary points of the cost
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function (or in their neighborhood). Certain conditions determine if the trajectory will pass
through all the local minima of the function. In that case, the global minimum is guaranteed
to be found. The differential equations use the function values and function gradients along
the trajectories.

There are two types of generalized descent methods: (1) the trajectory methods that modify
the differential equation describing the local descent trajectory in such a way to make it con-
verge to a global rather than a local minimum, and (2) the penalty methods that apply the
standard local algorithm repeatedly to a modified cost function so as to prevent the descent
trajectory from converging to local minima that were previously found. Examples of penalty
methods are: algebraic functions, filled function, and tunneling. In this section we shall
describe the trajectory methods only. The tunneling methods in the class of penalty methods
shall be described in the next section.

Alternation of Descents and Ascents Trajectory methods have been implemented in two
ways: alternation of descents and ascents and the so-called golf methods. The first method
consists of three subalgorithms that are modifications of the local descent algorithms. These
are: descent to a local minimum, ascent from a local minimum, and pass through a saddle
point. First, to descend to a local minimum from a starting point, we use a combination of
steepest descent and Newton’s methods based on whether the Hessian matrix of the cost func-
tion is positive definite or not at a point along the trajectory (this is the modified Newton’s
method for local minimization). Second, to get from the local minimum point to a saddle
point, we use the eigenvector corresponding to the maximum eigenvalue of the Hessian as
the search direction. Third, to pass through the saddle point, we use Newton’s method. To
descend to the next local minimum, we use the direction of the last step of the passing oper-
ation as a starting direction for the descent operation. The three operations are repeated until
some stopping criterion is satisfied. Note that all local minimum points are recorded so that
if the trajectory retraces itself, a new initial point is chosen to restart the algorithm. Disad-
vantages of this method are the large number of function evaluations wasted in ascending
from a local minimum, and difficulties with solving problems of dimension larger than two.
It is also difficult to apply the method if we do not have an expression for the cost function
gradient.

Golf Methods The golf methods make analogy with mechanics of inertial motion of a par-
ticle of mass m moving in a force field. The resulting trajectory is analogous to that of the
optimization problem. Mathematically, the assignment of mass means introducing a second-
order term into the particle’s equation of motion. Taking the mass as a function of time m(t),
the particle is thus moving in a force field defined by the cost function f(x) and subjected to
a dissipating or nonconservative resistance force (e.g., air resistance force) given by -n(t)
(t), where n(t) is the resistance function. The force field of f(x) is given as -—f(x). Thus, the
motion of the particle is described by the system of differential equation:

(18.6)

where (t) and (t) are the velocity and acceleration vectors of the particle, respectively.
Under some conditions, the trajectory, which is a solution of the system of equations, con-
verges to a local minimum point of f(x). Moreover, the trajectory leaves some local minima
that are not deep enough, and hence the name, golf methods. It is obvious that algorithm effi-
ciency is a function of the mass and resistance functions m(t) and n(t). For some functions,
the differential equation is simplified by assuming the mass of the particle as 1 and a 
frictionless force field [i.e., m(t) = 1 and n(t) = 0]. In this case the differential equation gets
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simplified to (t) = -—f(x). Such a class of functions is encountered if f(x) is an interpola-
tion of noisy data from some experiments.

18.2.4 Tunneling Method
The tunneling method falls into the class of heuristic generalized descent penalty methods.
The method was initially developed for unconstrained problems and then extended for 
constrained problems (Levy and Gomez, 1985). The basic idea is to execute the following
two phases successively until some stopping criterion is satisfied: the local minimization
phase and the tunneling phase. The first phase consists of finding a local minimum x* for the
problem using any reliable and efficient method. The tunneling phase determines a starting
point that is different from x* but has a cost function value smaller than or equal to the known
minimum value. However, finding a suitable point in the tunneling phase is also a global
problem that is as hard as the original problem. When a rough estimate of the global minimum
is required, use of the tunneling or zooming methods is justified instead of a method that can
guarantee a global minimum at the expense of a large computational effort.

The basic idea of the tunneling method is depicted graphically in Fig. 18-1 for the case
of the one-dimensional problem. Starting from the initial minimum point x*(1), the method
tunnels under many other local minima, and locates a new starting point x0(2). From there, a
new local minimum is found, and the process is repeated. The tunneling phase is accom-
plished by finding a root of the nonlinear tunneling function, T(x). This function is defined
in such a way that it avoids previously determined local minima and the starting points. The
new point found during the tunneling phase should not be a local minimum either because
the local minimization procedure cannot be started from such a point. Therefore, if the tun-
neling phase yields a local minimum point, a new root of the tunneling function is sought.
Once a suitable point is obtained through the tunneling phase, local minimization is started
to obtain a new local minimum point. The two phases are repeated until no suitable roots of
the tunneling function can be found, which is realized numerically when T(x) ≥ 0 for all x.
We note here that such a criterion is very expensive to satisfy in terms of the number of func-
tion evaluations needed. The first few tunneling phases are relatively efficient, i.e., they
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require only little computing effort. As the tunneling level approaches the global minimum,
the number of computations increases because there are fewer roots of the tunneling func-
tion. This difficulty is similar to the one noted for the zooming method.

The tunneling method has the global descent property: the local minima obtained by the
minimization phase approach the global minimum in an orderly fashion. Tunneling takes
place below irrelevant local minima regardless of their number or location. Because of this
property, the tunneling method can be efficient relative to other methods, especially for prob-
lems with a large number of local minima. The method has the advantage that a point with
a smaller cost function value is reached at each iteration. Therefore a point with a relatively
smaller cost function value is obtained very quickly, as with the zooming method. Such a
solution is acceptable for some engineering applications. In such cases, use of the tunneling
or the zooming method is justified instead of a method that can guarantee a global minimum
at the expense of a large computational effort.

18.3 Overview of Stochastic Methods
Let S* be the set of all the local minima of the optimization problem. The aim of many 
stochastic methods is to determine this set S*. Then, the best point of the set is claimed 
as the global minimum point. Generally, far better results have been obtained using 
stochastic methods than deterministic methods. Stochastic methods usually have two 
phases: a global phase and a local phase. In the global phase, the function is evaluated at a
number of randomly sampled points. In the local phase, the sample points are manipulated,
e.g., by means of local searches, to yield candidate global minima. The global phase is 
necessary because there is no local improvement strategy that, starting from an arbitrary
point, can be guaranteed to converge to the global minimum. The global phase locates a 
candidate global minimum point in every subset of the feasible set Sb to ensure reliability
of the method. Local search techniques are efficient tools for finding a point with a 
relatively small function value. Therefore, the local phase is incorporated into the stochastic
methods to improve their efficiency. A challenge for global optimization algorithms is to
increase their efficiency while maintaining reliability. There are many stochastic methods for
global optimization, such as random search, multistart, clustering, controlled random search,
simulated annealing, acceptance-rejection, stochastic integration, genetic, and tabu search.
We shall describe only the underlying ideas that lay the foundation for computations of 
the methods. More details can be found in Arora and coworkers (1995) and other references
cited therein.

Most of the stochastic methods are based on some variation of the pure random search.
The stochastic ideas are used in two ways: (1) to develop stopping criteria and (2) to develop
techniques to approximate the region of attraction for a local minimum point, which is
defined as follows: When the search for the local minimum started from a point within a
certain region around the minimum converges to the same minimum point, the region is called
the region of attraction for that local minimum. The goal of many stochastic methods is to
develop good approximations for the regions of attraction for local minima so that the search
for a local minimum is performed only once.

Usually, most of the stochastic algorithms use uniform distribution of sampling over the
set Sb. However, mechanisms for modifying the sampling distribution based on the informa-
tion obtained in previous iterations may be more appropriate. A stochastic approximation of
the type used in sampling can be used to determine a sampling distribution that would peak
in unexplored regions of attraction to discover new local minima. Even though the stochas-
tic methods do not offer an absolute guarantee of success, the probability that a point within
a distance e of x*G is found approaches 1 as the sample size increases.
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Note that since some stochastic methods use random processes, such as simulated anneal-
ing and genetic algorithms, an algorithm run at different times can generate different design
histories and local minima. Therefore, a particular problem needs to be run several times
before the solution is accepted as the global optimum.

18.3.1 Pure Random Search
Pure random search is the simplest stochastic method for global optimization. Most other 
stochastic methods are some variation of the pure random search. Though very inefficient, it
is described here to introduce a basis for many other stochastic methods. The method con-
sists only of a global phase: evaluate f(x) at N sample points drawn from a random uniform
distribution over the set Sb. The smallest function value found is the candidate global
minimum for f(x). The pure random search is asymptotically guaranteed to converge, in a
probabilistic sense, to the global minimum point. The method is quite inefficient because of
the large number of function evaluations required to provide such a guarantee. A simple exten-
sion of the method is the so-called single start method. In this, a single local search is per-
formed (if the problem is continuous) starting from the best point in the sample set at the end
of the pure random search.

18.3.2 Multistart Method
The multistart method is one of several extensions of the pure random search where a local
phase is added to the global phase to improve efficiency. In multistart, in contrast to the single
start method, each sample point is used as a starting point for the local minimization proce-
dure. The best local minimum point found is a candidate for the global minimum x*G. The
method is reliable, but it is not efficient since many sample points will lead to the same local
minimum. The algorithm consists of three simple steps: (1) take a random point x(0) from a
uniform distribution over the set Sb, (2) start a local minimization procedure from x(0), and
(3) return to Step 1 unless a stopping criterion is satisfied. Once the stopping criterion is sat-
isfied, the local minimum with the smallest function value is taken as the global minimum
x*G. It can be seen that a particular local minimum may be reached several times starting from
different points. Therefore, strategies to eliminate this inefficiency in the algorithm have been
developed; they are discussed in the following sections.

Stopping Criterion Several ideas about terminating an algorithm have been proposed;
however, most of them are not practical. Here we describe a criterion that has been used most
often. Since the starting points of the multistart method are uniformly distributed over Sb, a
local minimum has a fixed probability of being found in each trial. In a Bayesian approach,
in which the unknowns are themselves assumed to be random variables with a uniform prior
distribution, the following result can be proved: Given that M distinct local minima have
been found in L searches, the optimal Bayesian estimate of the unknown number of local
minima K is given by

(18.7)

The multistart method can be stopped when M = K. It can be shown that this stopping rule
can be used for other methods as well.

18.3.3 Clustering Methods
Clustering methods remove the inefficiency of the multistart method by trying to use the local
search procedure only once for each local minimum point. To do this, random sample points
are linked into groups to form clusters. Each cluster is considered to represent one region of
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attraction for a local minimum point. Each local minimum point has a region of attraction
such that a search initiated from any point in the region converges to the same local minimum
point. Four clustering methods have been used for development of the regions of attraction:
density clustering, single linkage, mode analysis, and vector quantization multistart. They
differ in the way in which these regions of attraction are constructed. A major disadvantage
of the clustering methods is that their performance depends heavily on the dimension of the
problem, i.e., the number of design variables.

Let AN be a set of random points drawn from a uniform distribution over the set Sb (details
of how to define AN are given later). In the clustering methods, a preprocessing of the sample
is performed to produce regions that are likely to contain local minima. This can be done in
two ways: reduction and concentration. In reduction, a set Aq of sample points having the
cost function values smaller than or equal to some value fq is constructed, i.e.,

(18.8)

This is called an fq-level set of f(x) or simply the reduced set, and points x in the set Aq are
called the reduced sample points. The set Aq may be composed of a number of components
that are disjointed. Each of the components will contain at least one local minimum point.
Figure 18-2(A) shows an example of a uniform sample in a set, and Fig. 18-2(B) shows the
reduced sample points—the set Aq. The set consists of three components each containing one
local minimum point. A component of Aq is called a cluster, which is taken as an approxi-
mation to the region of attraction. Note that depending on the value of fq, a component may
contain more than one local minimum point. Furthermore, the local minimum points x*
having function values higher than fq will not belong to Aq and therefore may not be found.

In the second preprocessing procedure, called concentration, a few steepest descent steps
are applied to every sample point. However in this case, unlike in reduction, the transformed
points are not uniformly distributed. Usually, in clustering methods, a uniform distribution
is assumed; therefore, the former method of transformation is preferred.

Four clustering methods are available in the literature: density clustering, single linkage
clustering, mode analysis clustering, and vector quantization multistart. In these methods it
is assumed that (1) all local minima of f(x) lie in the interior of Sb, (2) stationary points are

A A f fq N q= Œ ( ) £{ }x x
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FIGURE 18-2 An example of random and reduced sample points. (A) Random sample of points.
(B) Reduced sample points. The * indicates a local minimum point.



isolated, and (3) local search is always that of descent. The methods execute a basic 
algorithm a number of times. In every iteration, a set of AN consisting of kN sample points
is used from a uniform random distribution, where k is an integer containing the number of
times the algorithm has been executed. That is, the sample size keeps on increasing with each
execution of the algorithm. Before clustering, the sample is reduced to produce the set Aq

defined in Eq. (18.8). The clustering algorithm is then applied to Aq. The iterations are con-
tinued until a stopping criterion is satisfied. The stopping criterion used for multistart can be
also applied to all the clustering methods. In applying these rules, we have to assume that
the way Aq changes with different samples does not affect analysis. More importantly, 
we also have to assume that each local minimum with a function value smaller than fq is 
actually found.

In density clustering, clusters are identified based on the density of the reduced sample
points defined in Eq. (18.8); hence the name “density clustering.” Regions of attraction are
approximated by hyperspheres or ellipsoids with centers at local minimum points. Reduced
sample points are added to clusters based on their distance from the centers (also called the
seed points), i.e., all points within a critical radius of a center belong to the cluster. A cluster
is started with a local minimum point as a seed and then expanded in stages by increasing
its critical radius. All points within the new radius are added to the cluster and so on. At the
end of a stage, the best unclustered point is used in a local search procedure to find a local
minimum point. If the local minimum found is new, then it is taken as the seed for a new
cluster; otherwise that minimum point is the seed for an already existing cluster that needs
to be expanded. This is continued until all the reduced sample points are clustered.

In single linkage clustering, a better approximation to the clusters is achieved by not
enforcing a particular shape. Points are linked to others in their proximity as opposed to
linkage to the clusters’ centers or seeds. A point is assigned to a cluster if it falls within a
critical distance rk from any point that already belongs to that cluster.

The density clustering and the single linkage clustering methods use information at only
two points at a time. In the mode analysis method, on the other hand, clusters are formed by
using more information. In this, the set Sb is partitioned into nonoverlapping, small hyper-
cubic cells that cover Sb entirely. The cell is said to be full if it contains at least G reduced
sample points, otherwise it is empty.

In the vector quantization method, theory of lattices and vector quantization are used to
form clusters. The basic idea is to cluster cells rather than sample points, like mode analy-
sis. In this, the entire space Sb is divided into a finite number of cells and a code point is
associated with each cell. The code point is then used to represent all the points in that cell
during the clustering process. The point with the smallest function value of a cell is the most
suitable code point. Further, code points need not be sample points; they can be generated
independently. They may also be centroids of the cells. Identification of a cluster is done
using vector quantization of the reduced sample points. The aim is to approximate the clus-
ters in a more efficient way than the previous three methods.

18.3.4 Controlled Random Search
The basic idea of the controlled random search (CRS) method, which is another variation of
the pure random search, is to use the sample points in such a way so as to move toward the
global minimum point (Price, 1987). The method does not use gradients of the cost function
and so continuity and differentiability of the functions are not required. It uses the idea of a
simplex, which is a geometric figure formed by a set of n + 1 points in the n-dimensional
space (recall that n is the number of design variables). When the points are equidistant, the
simplex is said to be regular. In two dimensions, the simplex is just a triangle; in three dimen-
sions, it is a tetrahedron (see Fig. 18-3), and so on. The method has global and local phases.
The notation used in the global phase of the algorithm that follows, is defined as
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xW, f W: worst point and the corresponding cost function value (largest)
xL, f L: best point and the corresponding cost function value (smallest)
xC, f C: centroid of n points and the corresponding cost function value
xP, f P: trial point and the corresponding cost function value

Step 1. Generate N random points uniformly distributed over Sb. Evaluate the cost
function at the points.

Step 2. Find the worst point xW with function value f W (largest) and the best point xL

with function value f L (smallest).
Step 3. Let x(1) = xL. Randomly choose n distinct points x(2), . . . , x(n+1) from the

remaining N - 1 sample points. Determine the centroid xC of the points x(1), . . . , x(n).
Compute a new trial point xP = 2xC - x(n+1).

Step 4. If xP is feasible, evaluate f P, and go to Step 5. Otherwise, go to Step 3.
Step 5. If f P < f W, then replace xW by xP and go to Step 6. Otherwise, go to Step 3.
Step 6. If a stopping criterion is satisfied, then stop. Otherwise, go to Step 2.

As the algorithm proceeds, the current set of n points tends to cluster around the minimum
point. Note that the point x(n+1) used in the calculation of the new trial point xP in Step 3 is
arbitrarily chosen. This point is called the vertex of the simplex. Once the global phase has
terminated, the local phase starts. The basic idea of the local phase is to compare cost func-
tion values at the n + 1 vertices of the simplex and move this simplex gradually toward the
optimum point. The movement of the simplex is achieved by using three operations known
as reflection, expansion, and contraction. The following additional notation is used in describ-
ing these operations:

xS, f S: the second worst point and the corresponding cost function value
xR, f R: reflected point and the corresponding cost function value
xE, f E: expansion point and the corresponding cost function value
xQ, f Q: contraction point and the corresponding cost function value

Reflection Let x(1), . . . , x(n+1) be the n + 1 points that define the simplex and let the worst
point (xW) be the vertex with largest cost function value. It can be expected that the point xR
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FIGURE 18-3 Reflection operations. (A) Two-dimensional simplex. (B) Three-dimensional
simplex. The points xW, xC, and xR lie on a straight line.



obtained by reflecting xW in the opposite face of the simplex will have a smaller cost func-
tion value. If this is the case, then a new simplex can be constructed by rejecting the point
xW from the simplex and including the new point xR. In Fig. 18-3(B), the original simplex is
given by points x(1), x(2), x(3), and x(4) = xW and the new simplex is given by x(1), x(2), x(3), and
xR. The point xC is the centroid of the n points of the original simplex excluding xW. It is seen
that the direction of movement of the simplex is always away from the worst point. Mathe-
matically, the reflection point xR is given by

(18.9)

Expansion If the reflection procedure produces a better point, one can generally expect 
to reduce the function value further by moving along the direction xC to xR. An expansion
point xE along this direction is calculated as (its use is explained later the local phase 
algorithm):

(18.10)

Contraction If the point obtained by reflection is not satisfactory, a contraction point xQ

along the direction xC to xR can be calculated as (its use is explained later in the local phase
algorithm):

(18.11)

The local search algorithm given below uses the relations in Eqs. (18.9) to (18.11) with 
aR = 1, aE = 3, and aQ = -1/2, respectively. The n + 1 best points of the random sample of
the global phase constitute a simplex in the n-dimensional space for this algorithm. The algo-
rithm does not use the gradient of the cost function f(x). Therefore, a compatible local search
procedure that also does not use gradients is needed. An algorithm that is an adaptation of
basic Nelder-Mead simplex algorithm (1965) for general constrained optimization problems
may be used.

Step 1. For the simplex formed of n + 1 points, let xW be the worst point and xC be the
centroid of the other n points. Let xS be the second worst point of the simplex with
function value f S. Compute three trial points based on reflection, expansion, and
contraction as xR = 2xC - xW, xE = 4xC - 3xW, xQ = (xC + xW)/2.

Step 2. If xR is not in Sb, then go to Step 4. Otherwise, evaluate the function value f R at
xR. If f R < f S, then go to Step 3. Otherwise, go to Step 4.

Step 3. Expansion: If xE is not in Sb, then accept xR as the replacement point and go to
Step 5. Otherwise calculate the function value f E at xE. If f E < f S, then accept xE as
the replacement point and go to Step 5. Otherwise, accept xR as the replacement
point and go to Step 5.

Step 4. If xQ is infeasible, then stop; no further improvement is possible. Otherwise
evaluate the function value f Q at xQ. If f Q < f S, then accept xQ as the replacement
point and go to Step 5. Otherwise, stop.

Step 5. Update the simplex by replacing xW with the replacement point. Return to 
Step 1.

The global and local phases of the method described in the foregoing are combined as
follows: Execute the global phase and generate a new trial point xP in Step 3. Let the N sample
points be sorted in the descending order of their cost function values. If xP is feasible and
falls within the bottom n + 1 points of the sample, then execute the local phase starting with

x x xQ
Q

C
Q

W
Q= +( ) - - < <1 1 0a a a, with

x x xE
E

C
E

W
E= +( ) - >1 1a a a, with

x x xR
R

C
R

W
R= +( ) - < £1 0 1a a a, with

Global Optimization Concepts and Methods for Optimum Design 577



those n + 1 points as a simplex. Continue execution of the two phases until the global phase
stops in Step 6.

The following features of the method should be noted. The local phase operates only on
the best n + 1 points in the database of sample points. Thus, it has minimal effect on the per-
formance of the global phase. In Step 2 of the composite algorithm, the local phase may
improve the best point in the database. Thus, it tends to speed up the convergence as the
global phase always uses the best point. However, this may reduce, to a small degree, the
global search capability. If desired, it is easy to counter this effect by requiring the global
phase to not include the best point in some iterations (i.e., in Step 3 of the algorithm, choose
all the n + 1 distinct points x(1) to x(n+1) randomly from the N sample points).

Taking the sample size N = 10(n + 1) gives satisfactory results. In Step 1 of the compos-
ite algorithm, if f W/f L < 1 + e (e > 0 is a small number), then the global phase may be ter-
minated. Any other stopping criterion may also be used.

18.3.5 Acceptance-Rejection Methods
The acceptance-rejection (A-R) methods are modifications of the multistart algorithm to
improve its efficiency by using ideas from statistical mechanics. In the multistart method, a
local minimization is started from each randomly generated point. Thus, the number of local
minimizations is very large and many of them converge to the same local minimum point.
A strategy to improve this situation is to start the local minimization procedure only 
when the randomly generated point has a smaller cost function value than that of the local
minimum previously obtained. This forces the algorithm to tunnel below irrelevant local
minima. This modification, however, has been shown to be inefficient. As a result, the tun-
neling process has been pursued only by means of deterministic algorithms explained earlier.
The acceptance-rejection based methods modify this tunneling procedure. The basic idea is
to sometimes start local minimization from a randomly generated point even if it has a 
higher cost function value than that at a previously obtained local minimum. This is called
the acceptance phase, which involves calculation of certain probabilities. If the local mini-
mization procedure started from an accepted point produces a local minimum that has higher
cost function value than a previously obtained minimum, then the new minimum point 
is rejected (rejection phase). The procedure just described is sometimes called random 
tunneling.

A possible formulation of the acceptance criterion to start the local minimization is 
suggested by the statistical mechanics approach described earlier in Chapter 15, the simu-
lated annealing approach. Thus, the acceptance-rejection methods resemble the simulated
annealing approach. The local minimization is started from a point x only if it has the prob-
ability given by

(18.12)

where is an estimate of the upper bound of the global minimum, F is a target value for the
global minimum, and [h]+ = max(0, h). The initial value of F is usually provided by the user,
or it may be estimated using a few random points. In this algorithm, unlike simulated anneal-
ing, the choice of schedule for reduction of the target level does not prevent convergence.
Nevertheless, the schedule is critical for performance of the algorithm. is adjusted at each
iteration as the best approximation to the global minimum value. At the start, it may be taken
as the smallest cost function value among some randomly generated points, or it can be sup-
plied by the user if a better value is known.
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18.3.6 Stochastic Integration
In the stochastic integration methods, a suitable stochastic perturbation of the system of equa-
tions for the trajectory methods described in Section 18.2.3 is introduced in order to force
the trajectory to a global minimum point. This is achieved by monitoring the cost function
value along the trajectories. By changing some coefficients in the differential equations, we
get different solution processes starting from the same initial point. This idea is similar to
simulated annealing but here the differential equation parameter is decreased continuously.
We describe the stochastic-integration global minimization method using the steepest descent
trajectory. In this, a stochastic perturbation is introduced in Eq. (18.5) in order to increase
the chance for the trajectory to reach the global minimum point. The resulting system of 
stochastic differential equations is given as

(18.13)

where w(t) is an n-dimensional standard Wiener process and e(t) is a real function called the
noise coefficient. In actual implementation, a standard Gaussian distribution is usually used
instead of the Wiener process.

Let x(t) be the solution of Eq. (18.13) starting from x(0) with a constant noise coefficient
e(t) = e0. Then, as is well known in the field of statistical mechanics, the probability density
function of x(t) approaches the limit density Zexp[-2f(x)/e 2

0], as t Æ •, where Z is a nor-
malization constant. The limit density is independent of x(0) and peaks around the global
minima of f(x). The peaks become narrower with smaller e0; i.e., e0 is equivalent to the target
level F that decreases in the simulated annealing method. In this method, an attempt is made
to obtain the global minima by looking at the asymptotic (as t Æ •) values of a numerically
computed sample trajectory of Eq. (18.13), where the noise function e(t) is continuous and
suitably tends to zero as t Æ •. In other words, unlike simulated annealing, the target level
is lowered continuously. The computational effort in this method can be reduced by observ-
ing that a correct numerical computation of the gradient in Eq. (18.13) is not really needed
since a stochastic term is added to it. An approximate finite difference gradient may be used
instead.

Computing a single trajectory of Eq. (18.13) by decreasing e(t) (for t > 0) and following the
trajectory for a long time to obtain a global solution may not be very efficient. Therefore, in
actual implementation an alternative strategy can be used where several trajectories are gener-
ated simultaneously. The cost function values along all the trajectories are monitored and com-
pared with each other. A point corresponding to the smallest cost function value on any of the
trajectories at any trial is stored. If some trajectories are not progressing satisfactorily, they
may be discarded and new ones initiated. As with other stochastic methods, the procedure is
executed several times before accepting the best point as the global optimum point.

18.4 Two Local-Global Stochastic Methods
In this section, we describe two stochastic global optimization methods that have both local
and global phases. The algorithms have been designed to treat general constraints in the
problem explicitly. The algorithms can be viewed as a modification of the multistart proce-
dure but with the ability to learn as the search progresses.

18.4.1 A Conceptual Local-Global Algorithm
As explained in the last section, most stochastic methods have local and global phases. In
this subsection, we describe a conceptual algorithm having both of these phases that forms
the basis for the two algorithms described in the next two sections.

d t f dt t d tx x w x x( ) = -— ( ) + ( ) ( ) ( ) = ( )e , with 0 0
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Step 1. Generate a random point x(0) in the set Sb.
Step 2. Check some rejection criteria (discussed later) based on proximity of x(0) to one

of the previous starting points, local minimum points, or rejected points. If a
rejection criterion is satisfied, add x(0) to the set of rejected points, and go to Step 1.
Otherwise, execute the local phase by continuing with Step 3.

Step 3. Add x(0) to the set of starting points and find a local minimum x* in the feasible
set S for the problem.

Step 4. Check if x* is a new local minimum; if so, add it to the set of local minima,
otherwise add x(0) to the set of rejected points. Go to Step 1.

Steps 1 and 2 constitute the global phase and Steps 3 and 4 constitute the local phase of
the algorithm. The basic idea of the algorithm is to explore the entire feasible domain in a
systematic way for the global minimum. Bearing in mind that generation of a random point
and its evaluation is much cheaper than one local minimization, which may require many
function and gradient evaluations, more emphasis is placed on the global phase of the algo-
rithm. The algorithm avoids searching near any local minimum point and all the points
leading to it, thus increasing the chance of finding a new local minimum in the unexplored
region. To do this, several sets that contain certain types of points are constructed. For
example, a set is reserved for all the local minimum points found, and another contains all
the starting points for local searches. The following sets, in addition to S and Sb defined earlier,
are used in the two algorithms:

S* = set of local minima
S0 = set of starting points x(0)

Sr = set of rejected points

A uniformly distributed random point generation scheme over Sb is used so that the entire
feasible domain is explored with a uniform probability of finding the global minimum. In
Step 1 of the algorithm, the point x(0) in Sb is accepted because finding a point in S can be a
difficult problem (Elwakeil and Arora, 1995). The use of a uniform distribution enables the
application of some well-known stopping rules.

The next two sections present the domain elimination and stochastic zooming methods.
In both methods, a random point is generated in Sb. Other constraints are ignored at this stage
because a local minimization procedure that does not require a feasible starting point can be
used. Also, both methods require very little programming effort since the local phase can use
existing software. In the algorithms, a modified local phase is used instead of the one given
in Step 3: the local search is performed using many subsearches, each one consisting of a
few iterations (two or three). Certain criteria, explained in the following sections, are checked
after each subsearch to determine if the next subsearch should be started or the local phase
terminated.

18.4.2 Domain Elimination Method
The basic idea of this algorithm is to explore the entire feasible domain for the problem in
a systematic way for the global minimum. To accomplish this, each local search is attempted
from a point that is likely to lead to a new local minimum point. Figure 18-4 shows a con-
ceptual flow diagram for the major steps of the algorithm. The method starts with the selec-
tion of a random point from a uniform distribution over the set (Block 2). The point is rejected
or accepted based on certain criteria (Block 3); if the point is accepted, then a search for a
local minimum is initiated from there (Block 5). If it is rejected, then it is added to the set
of rejected points (Block 4) and a new random point is selected. In order to accept or reject
a random point, records for the following three types of points are kept: previous starting
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points for local minimization, local minimum points, and rejected points. A random point is
rejected if it is within a critical distance to one of the foregoing sets. The distance between
the random point and the points in the sets can be calculated in different ways; the infinity
norm being the simplest is suggested. If the point is accepted, a search is initiated for a new
local minimum point. The local search process is also monitored, and if the search is going
toward a known local minimum point, it is terminated. This is done by checking the close-
ness of the design points generated during the local search to stored trajectories between 
previous starting points and the corresponding local minimum points. Thus it is seen that the
method eliminates domains around the known local minimum points and previously rejected
points. At the beginning of the search for a global minimum, most of the random points are
accepted as starting points for local minimization. However, near the tail end of the search
process, fewer local minimizations are performed.

The following counters are used in the algorithm given below:

c1 number of elements in Sr, the set of rejected points
c2 number of rejected points that were near Sr

c3 number of elements in S0, the set of starting points
c4 number of elements in S*, the set of local minimum points
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Step 1. Initialize the sets S*, S0, and Sr. Select a value for the parameter M that specifies
the number of local search iterations to be performed to determine an intermediate
point xM for checking the rejection criteria. Set global iteration counter i = 0. Set
four counters c1, c2, c3, and c4 to 0; these are used to keep track of the number of
elements in various sets defined earlier.

Step 2. If one of the stopping criteria is met, then stop. Otherwise generate a random
point xR drawn from a uniform distribution over Sb.

Step 3. If the current point xR is in or near S* or S0 (determined using a procedure
presented later in Section 18.4.4), then add xR to Sr and set c1 = c1 + 1; else if it is in
or near Sr, then set c2 = c2 + 1; else if xR is near a trajectory (a mapping S0 Æ S*),
then add xR to Sr and set c1 = c1 + 1. If any of the four conditions is true, go to Step
2 (this avoids starting the local phase that has a low probability of finding a new
minimum). Otherwise add xR to S0, and set x(0) = xR and c3 = c3 + 1.

Step 4. Execute the local minimization for M iterations to yield an intermediate point
xM. If xM is a local minimum point, then set x* = xM and go to Step 6. Otherwise,
continue.

Step 5. If the current point xM is in or near S0, then add xM to Sr and set c1 = c1 + 1; else
if xM is in or near Sr, then set c2 = c2 + 1; else if xM is near a trajectory then add xM

to Sr and set c1 = c1 + 1. If any of the three conditions is true, then store the
trajectory from x(0) to xM and go to Step 2. Otherwise, go to Step 4.

Step 6. If x* is a new local minimum, then add it to S* and set c4 = c4 + 1; otherwise,
increment the associated indicator of the number of times x* was found.

Step 7. Set i = i + 1; if i is larger than a specified limit, then stop. Otherwise, go to
Step 2.

Stopping Criteria Several stopping criteria can be used and two of them are discussed next.
In Step 2 of the algorithm, the procedure is stopped if any of the sets S0, S*, or Sr becomes
full based on prespecified limits on the sizes of the sets. The maximum size of a set is deter-
mined based on the number of design variables and a confidence level parameter. Since the
random points are drawn from a uniform distribution, the number of points generated before
stopping the search is proportional to n. The size of set S* of local minimum points is usually
much smaller than the other two sets (since there could be only one minimum for each start-
ing point). In the numerical evaluation presented later, the sizes chosen for current imple-
mentation are 10n for S* and 40n for S0 and Sr.

Another criterion is to stop the algorithm if the number of local minima found exceeds
the Bayesian estimate for the number of local minima explained earlier in Section 18.3.2, or
a specified limit on iterations is exceeded.

18.4.3 Stochastic Zooming Method
This method is an extension of the zooming method described earlier in Section 18.2.2. Recall
that as the target level for the cost function gets closer to the global optimum, it becomes
difficult to find a feasible point in the set S. Eventually, the modified problem needs to be
declared as infeasible to stop the algorithm. To overcome this difficulty, that algorithm is
modified by adding a global phase to it to ensure that the set S is reasonably well searched
before declaring the modified problem to be infeasible and accepting the previous local
minimum as the global minimum. The major difference between this method and the domain
elimination method is the addition of the zooming constraint of Eq. (18.4). Therefore that
algorithm can be used with some minor modification to keep track of the number of local
searches that did not terminate at a feasible minimum point. To do that, the number of iter-
ations to search for a local minimum in Steps 4 and 5 of the algorithm is monitored. If this
number exceeds a specified limit, then the local search process is declared to have failed. The
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number of such failures is also monitored, and if this number exceeds a specified limit, the
algorithm is terminated and the best local minimum is taken as the global minimum point
for the problem. In addition to this stopping criterion, if the cost function value reaches a
target value F specified by the user [i.e., f(x) £ F] the algorithm is terminated.

18.4.4 Operations Analysis of Methods
It is seen that the domain elimination and stochastic zooming methods differ from each other
primarily in the inclusion of the constraint of Eq. (18.4) in the zooming method. This is an
important difference, however, because it changes the behavior of the basic algorithm con-
siderably. This section presents an analysis of the operations and choice of design variable
bounds used in both methods. The analysis includes numerical requirements and performance
with available implementation alternatives for various rejection criteria used in the algorithm.
The following calculations are needed in the algorithms: (1) distance between a point and a
set of points, (2) approximation of the trajectory between a starting point and a local
minimum, and (3) distance between a point and a trajectory. Each of these calculations can
be accomplished with several different procedures. The operations count for each option is
necessary for choosing the most efficient procedure.

Checking Proximity of a Point to a Set After generating a random point, one needs to
determine if it will yield a new local minimum. For this purpose, the random point xR is com-
pared with the points in the three sets S*, S0, and Sr. If it is within a certain critical distance
Dcr from any point in these sets, it is discarded and a new random point is generated. The
same procedure is used for the intermediate point xM (Step 4 of the algorithm). Two methods
are presented for checking proximity of a point to a set.

Let xS be a point belonging to one of the sets mentioned above and xM be either a random
point or an intermediate point. The first method is to construct a hypersphere of either con-
stant or variable radius around xS. The proposed point (xR or xM) is rejected if it lies inside
the hypersphere. This involves calculation of the distance between the two points D = ||xS -
xM|| and the point is rejected if D £ Dcr, where Dcr is specified as a||x|| with x = xR or xM and
0.01 £ a £ 0.20. The second method is to construct a hyperprism around xS rather than a
hypersphere. The proposed point is rejected if it lies inside the hyperprism. In this case, the
distance between the two points is not required. Each of the design variables is compared in
turn with the corresponding one for the prism’s center. If the difference is larger than the cor-
responding critical value then the rest of the variables need not be compared and the point
is accepted. This can be represented by the following pseudocode [let Dcr(i) = a|xi| be a vector
with xi = (xR or xM)i]:

for i = 1 to n do
if (xS - xM)i ≥ Dcr(i) then accept xM

end do
reject xM

Based on the operations count, it is seen that the second approach is less expensive.

Trajectory Approximation The random points xR selected for starting a local search as well
as the intermediate points xM during local minimization are examined for proximity to each
stored trajectory. A trajectory is the design history from a starting point to the corresponding
local minimum point. There could be many trajectories meeting at one local minimum point.
The selected point is rejected if it is near any trajectory. This is done to prevent unnecessary
minimization steps that would otherwise lead to already known local minima. The trajectory
can be approximated using several techniques. The simplest approximation of the trajectory
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is a straight line connecting x(0) and the corresponding x*. Experiments have shown that actual
trajectories usually do not follow straight lines, especially at the beginning of the search and
for nonlinear problems. Other alternatives to approximate the trajectory include: (1) passing
a least squares straight line through several points along the trajectory, (2) passing straight
line segments through selected points along the trajectory, (3) passing a quadratic curve
through three points, (4) passing quadratic segments through groups of three points, and (5)
constructing higher-order polynomial or spline approximations. Several issues affect the 
decision to select the appropriate technique: the number of points needed (which have to be
stored), number of operations, and accuracy of the approximation. Any technique other than
the straight line approximation requires more intermediate points to be saved and more 
calculations. Therefore, use of a straight line approximation is suggested.

Distance between a Point and a Trajectory With the linear approximation for the tra-
jectory, the decision whether a point x lies near the trajectory can be made in several ways.
The first procedure is to calculate the internal angle x(0) - x - x* of the triangle formed by
the three points. The point x is rejected if the angle is larger than a threshold value. The
second approach is to calculate an offset distance by generating as a projection of x on the
line x(0) - x*. If lies outside the line segment x(0) - x*, then it is accepted; otherwise 
the offset length x - is calculated. If it is larger than a critical value, then x is considered
far from the trajectory.

Geometrical representation of the triangle method indicates construction of an ellipsoidal
body around the line segment x(0) - x*. The offset method, on the other hand, can be repre-
sented by a cylinder constructed with x(0) - x* as its axis. A point x is considered close to
the trajectory if it lies inside the ellipsoidal body or the cylinder, respectively. The offset
method features a uniform critical distance from the linear trajectory, whereas with the tri-
angle method the distance is made smaller near the end points. This means that the critical
offset distance in the triangle method is related to the trajectory’s length. This makes physi-
cal sense because the trajectory’s length can be related to the size of the region of attraction
for the local minimum. The same effect can be achieved for the cylinder method by requir-
ing the critical offset to be proportional to the length of the line segment x(0) - x* (i.e., b||x(0)-
x*|| for some b > 0). The proportional offset has the advantage of accounting for the problem’s
scale and, thus, maintains accuracy. Another advantage is that large subdomains get elimi-
nated from larger regions of attractions and vice versa.

A third approach is to construct a truncated cone with the larger base at x* and smaller at
x(0), thus allowing a better identification of close regions of attraction. The cone can be con-
structed by requiring that the critical offset distance be proportional to the distance || - x(0)||.
This option requires more calculations than the simple cylinder method.

Based on the operations count, the triangle method is chosen for implementation described
later since it uses fewer multiplications. The critical angle in the range 150° £ q £ 175° has
shown good performance (q = 170° is used in implementation).

Design Variable Constraints In local minimization algorithms, any simple bounds on the
design variables can be treated efficiently. Specification of appropriate bounds on the design
variables is more important in stochastic global optimization methods compared with other
methods. The further apart these bounds are, the larger the number of random points gener-
ated in the set Sb. Consequently, the number of local searches performed is increased, which
reduces the efficiency. Therefore, the design variable bounds for a global optimization
problem must be chosen carefully to reflect the nature of the problem. A simple numerical
experiment where the allowable range for one of the design variables out of a total of 40 was
doubled, showed that the numerical effort to obtain the same global minimum point increased

x

x
x

x
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by 50 percent (Elwakeil and Arora, 1996a). This clearly shows the importance of selecting
appropriate bounds on the design variables in global optimization.

18.5 Numerical Performance of Methods
Various concepts and aspects of global optimization methods have been described in this
chapter. Details of some of the algorithms have been presented to give a flavor of the com-
putations that are needed to solve the problem. It is seen that solving a global optimization
problem is a challenge from a computational viewpoint, especially when a true global
minimum is required. The main reason is that even if the global minimum point has been
reached during the search process, it is not possible to recognize this fact, that is, there is no
definite stopping criterion. Therefore the search process needs to be continued and the algo-
rithm needs to be executed repeatedly to ensure that the global minimum point has not been
missed. In other words, the entire feasible set needs to be thoroughly searched, implicitly or
explicitly. For practical applications, however, improved local minima or improved feasible
designs are acceptable. In that case, reasonably efficient and effective computational algo-
rithms are available or can be devised to achieve this objective. In addition, many algorithms
can be implemented on parallel processors to reduce the “wall clock” time to solve practi-
cal applications.

In this section, we summarize features of the methods described earlier. Numerical per-
formance of some of the methods is described using a limited set of test problems to gain
insights into the type of computation needed and the behavior of the methods (Elwakeil and
Arora, 1996a,b). Several structural design problems have also been devised and solved to
study that class of problems for global optimization.

18.5.1 Summary of Features of Methods
It is difficult to recommend a single global optimization method for all applications. Selec-
tion of a method depends on characteristics of the problem and what is desired. For example,
if all the local minima are desired, then the tunneling or zooming method is not suitable. If
the problem has discrete variables and the functions are not differentiable, then a method that
requires and uses gradients is not suitable. If an absolute guarantee of a global solution is
desired, then certain methods that do not guarantee this are not appropriate. Therefore, it is
suggested that the problem characteristics and requirements be analyzed before selecting an
algorithm for global optimization. Table 18-1 summarizes the characteristics of various algo-
rithms described in this chapter. Also be aware that no matter which algorithm is selected,
the computational effort to reach a solution point is substantial. Therefore, one must be
willing and able to bear the enormous cost of finding an estimate of a global solution for the
problem. The table summarizes the following characteristics of various global optimization
algorithms:

1. Classification of method: deterministic (D) or stochastic (S).
2. Ability of the method to solve discrete problems; it is desirable that the method be

able to solve discrete problems.
3. Ability to treat general constraints explicitly; this is a desirable feature.
4. Ability to find all the local minima; this depends on the desire of the user.
5. Use of local-global phases; methods using both phases are generally more reliable

and efficient.
6. Need for gradients; if a method definitely needs gradients of the functions, then its

applicability is limited to continuous problems only.
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18.5.2 Performance of Some Methods Using Unconstrained Problems
As a first numerical performance study, the following four methods were implemented
(Elwakeil and Arora, 1996a): covering method, acceptance-rejection method (A-R), con-
trolled random search (CRS), and simulated annealing (SA). The numerical tests were 
performed on 29 unconstrained problems available in the literature. The problems had one
to six design variables and only explicit bounds on them. Global solutions for the problems
were known.

Based on the results, it was concluded that the covering methods were not practical
because of their inefficiency for problems with n > 2. The methods required very large com-
putational effort. Also, it was difficult to generate a good estimate for the Lipschitz constant
that is needed in the algorithm. Both A-R and CRS methods performed better than simulated
annealing and the covering method. The fact that the A-R method does not include any stop-
ping criterion makes it undesirable for practical applications. The method worked efficiently
on test problems because it was stopped upon finding the known global optimum point. The
CRS method contains a stopping criterion and is more efficient compared with other methods.
An attempt to treat general constraints explicitly in the CRS method was not successful
because constraint violations could not be corrected in reasonable computational effort.

18.5.3 Performance of Stochastic Zooming and Domain Elimination Methods
In another study, the stochastic zooming method (ZOOM) and the domain elimination (DE)
method were also implemented (in addition to CRS and SA), and their performance was eval-
uated using 10 mathematical programming test problems (Elwakeil and Arora, 1996a). The
test problems included constrained as well as unconstrained problems. Even though most
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TABLE 18-1 Characteristics of Global Optimization Methods

Method Can solve General Tries to Phases Needs
discrete constraints? find all gradients?
problems? x*?

Covering (D) No No Yes G 1
Zooming (D) Yes1 Yes No L 1
Generalized No No No G Yes

descent (D)
Tunneling (D) No Yes No L + G 1
Multistart (S) Yes1 Yes Yes L + G 1
Clustering (S) Yes1 Yes Yes L + G 1
Controlled Yes No No L + G No

random (S)
Simulated Yes No No G No

annealing (S)
Acceptance- Yes1 Yes No G No

rejection (S)
Stochastic No No No G No

integration (S)
Genetic (S) Yes No No G No
Stochastic Yes1 Yes No L + G 1

zooming (S)
Domain Yes1 Yes Yes L + G 1

elimination (S)

D: deterministic methods; S: stochastic methods; G: global phase; L: local phase.
1 Depends on the local minimization procedure used.



engineering application problems are constrained, it is beneficial to test performance of the
algorithms on the unconstrained problems as well. The CRS method could be used only for
unconstrained problems. It is noted, however, that the problems classified as unconstrained
still include simple bounds on the design variables. The sequential quadratic programming
(SQP) method was used in all local searches performed in the ZOOM and DE methods. For
ZOOM, the percent reduction required from one local minimum to the next was set arbi-
trarily to 15 percent [i.e., g = 0.85 in Eq. (18.4)] for all the test problems.

The 10 test problems used in the study had the following characteristics: 4 problems had
no constraints, the number of design variables varied from 2 to 15, the total number of general
constraints varied from 2 to 29, 2 problems had equality constraints, all problems had 2 or
more local minima, 2 problems had 2 global minima and 1 had 4, 1 had global minimum as
0, and 4 had negative global minimum values.

To compare performance of different algorithms, each of the test problems was solved
five times and averages for the following evaluation criteria were recorded: number of
random starting points, number of local searches performed, number of iterations used during
the local search, number of local minima found by the method, cost function value of the
best local minimum (the global minimum), total number of calls for function evaluations,
and CPU time used.

Because a random point generator with a random seed was used, the performance of the
algorithms changed each time they were executed. The seed is automatically chosen based
on the wall clock time. The results differed in the number of local minima found as well as
for the other evaluation criteria.

DE found the global solution for 9 out of 10 problems, whereas ZOOM found a global
minimum for 7 out of 10 problems. In general, DE found more local minima than ZOOM
did. This is attributed to the latter requiring a reduction in the cost function value after each
local minimum was found. As noted earlier, ZOOM is designed to “tunnel” under some
minima with relatively close cost function values.

In terms of the number of function evaluations and CPU time, DE was cheaper than
ZOOM. This was because the latter performed more local iterations for a particular search
without finding a feasible solution. On the other hand, the number of iterations during a local
search performed in DE was smaller since it could find a solution in most cases.

The CPU time needed by CRS was considerably smaller than that for other methods even
with a larger number of function evaluations. This was due to the use of a local search pro-
cedure that did not require gradients or line search. However, the method is applicable to
only unconstrained problems.

Simulated annealing (SA) failed to locate the global minimum for six problems. For the
successful problems, the CPU time required was three to four times that for DE. The tests
also showed that there was a drastic increase in the computational effort for the problems as
the number of design variables increased. Therefore, that implementation of SA was consid-
ered inefficient and unreliable compared with that of both DE and ZOOM. It is noted that
the SA may be more suitable for problems with discrete variables only.

18.5.4 Global Optimization of Structural Design Problems
The DE and ZOOM methods have also been applied to structural design problems to find
global solutions for them (Elwakeil and Arora, 1996b). In this section, we summarize and
discuss results of that study which used the following 6 structures: a 10-bar cantilever truss,
a 200-bar truss, a 1-bay–2-story frame, a 2-bay–6-story-frame, a 10-member cantilever frame,
and a 200-member frame. These structures have been used previously in the literature to test
various algorithms for local minimization (Haug and Arora, 1979). A variety of constraints
were imposed on the structures: constraints and other requirements given in the Specifica-
tion of the American Institute of Steel Construction (AISC, 1989), Aluminum Association
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Specifications (AA, 1986), displacement constraints, and constraints on the natural frequency
of the structure. Some of the structures were subjected to multiple loading cases. For all prob-
lems, the weight of the structure was minimized. Using these 6 structures, 28 test problems
were devised by varying the cross-sectional shape of members to hollow circular tubes or I
sections, and changing the material from steel to aluminum. The number of design variables
varied from 4 to 116, the number of stress constraints varied from 10 to 600, the number of
deflection constraints varied from 8 to 675, and the number of local buckling constraints for
the members varied from 0 to 72. The total number of general inequality constraints varied
from 19 to 1276. These test problems can be considered to be large compared with the ones
used in the previous section.

Detailed results using DE and ZOOM can be found in Elwakeil (1995). Each problem was
solved five times with a different seed for the random number generator. The five runs were
then combined and all the optimum solutions found were stored.

It was observed that all the six structures tested possessed many local minima. ZOOM
found only one local minimum for each problem (except two problems). For most of the
problems, the global minimum was found with the first random starting point. Therefore,
other local minima were not found since they had a higher cost function value. DE found
many local minima for most of the problems except for one problem that turned out to be
infeasible. The method did not find all the local minima in one run because of the imposed
limit on the number of random starting designs. From the recorded CPU times, it was diffi-
cult to draw a general conclusion about the relative efficiency of the two methods because
for some problems one method was more efficient and for the remaining the second method
was more efficient. However, each of the methods can be useful depending on the require-
ments. If only the global minimum is sought, then ZOOM can be used. If all or most of the
local minima are wanted, then DE should be used. The zooming method can be used to deter-
mine lower-cost practical designs by appropriately selecting the parameter g in Eq. (18.4).

Some problems showed only a small difference between weights for the best and the worst
local minima. This indicates a flat feasible domain perhaps with small variations in the weight
which results in multiple global minima. One of the problems was infeasible because of an
unreasonable requirement for the natural frequency to be no less than 22Hz. However, when
the constraint was gradually relaxed, a solution was found at a value of 17Hz.

It is clear that the designer’s experience and knowledge about the problems, and the design
requirements can affect performance of the global optimization algorithms. For example, by
setting a correct limit on the number of local minima desired, the computational effort of the
domain elimination method can be reduced substantially. For the zooming method, the com-
putational effort will be reduced if the parameter g in Eq. (18.4) is selected judiciously. In
this regards, it may be possible to develop a strategy to automatically adjust the value of g
dynamically during local searches. This will avoid the infeasible problems which constitute
a major computational effort in the zooming method. Also, a realistic value for F, the target
value for the global minimum cost function, would improve efficiency of the method.

Exercises for Chapter 18*
Calculate a global minimum point for the following problems.

18.1 (Branin and Hoo, 1972)

minimize

f x x x x x x xx( ) = - +Ê
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¯ + + - +( )4 2 1
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subject to

18.2 (Lucidi and Piccion, 1989)

minimize

subject to

18.3 (Walster et al., 1984)

minimize

subject to

where the coefficients (ai, bi) (i = 1 to 11) are given as follows:

(0.1975, 4), (0.1947, 2), (0.1735, 1), (0.16, 0.5), (0.0844, 0.25), (0.0627, 0.1667),
(0.0456, 0.125), (0.0342, 0.1), (0.0323, 0.0833), (0.0235, 0.0714), (0.0246, 0.0625).

18.4 (Evtushenko, 1974)
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18.6 (Hock and Schittkowski, 1981)

minimize

subject to

18.7 (Hock and Schittkowski, 1981)

minimize

subject to

18.8 (Hock and Schittkowski, 1981)
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where the parameters (bi, ci) (i = 1 to 8) are given as

(3.8112E+00, 3.4604E-03), (2.0567E-03, 1.3514E-05),
(1.0345E-05, 5.2375E-06), (6.8306E+00, 6.3000E-08),
(3.0234E-02, 7.0000E-10), (1.2814E-03, 3.4050E-04),
(2.2660E-07, 1.6638E-06), (2.5645E-01, 3.5256E-05).

18.9 (Hock and Schittkowski, 1981)

minimize

subject to

18.10 (Hock and Schittkowski, 1981)

minimize

subject to
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and the bounds are (k = 1 to 4):

8.0 £ x1 £ 21.0, 43.0 £ x2 £ 57.0, 3.0 £ x3 £ 16.0, 0.0 £ x3k+1 £ 90.0,
0.0 £ x3k+2 £ 120.0, 0.0 £ x3k+3 £ 60.0.

Find all the local minimum points for the following problems and determine a global
minimum point.

18.11 Exercise 18.1 18.12 Exercise 18.2 18.13 Exercise 18.3

18.14 Exercise 18.4 18.15 Exercise 18.5 18.16 Exercise 18.6

18.17 Exercise 18.7 18.18 Exercise 18.8 18.19 Exercise 18.9

18.20 Exercise 18.10
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Appendix A Economic Analysis

593

The main body of this textbook describes promising analytical and numerical techniques
for engineering design optimization. This appendix departs from the main theme and contains
an introduction to engineering decision making based on economic considerations. More
detailed treatment of the subject can be found in texts by Grant and coworkers (1982) and
Blank and Tarquin (1983).

A.1 Time Value of Money
Engineering systems are designed to perform specific tasks. Usually many alternative designs
can perform the same task. The question is, which one of the alternatives is the best? Several
factors such as precedents, social environment, aesthetic, economic, and psychological 
values can influence the final selection. This appendix considers only the economic factors
influencing the selection of an alternative.

Economic problems are an integral part of engineering because engineers are sensitive to
the direct cost of a design. They must anticipate maintenance and operating costs. Future 
economic conditions must also be taken into account in the decision-making process. We
shall discuss ways to measure the value of money to enable comparisons of alternative
designs. The following notation is used:

n = number of interest periods, e.g., months, years.
i = return per dollar per period; note that i is not the annual interest rate. This shall be 

further explained in examples.
P = value (or sum) of money at the present time, in dollars.
Sn = final sum after n periods or n payments from the present date, in dollars.
R = a series of consecutive, equal, end-of-period amounts of money—payment or 

receipt; e.g., dollars per month, dollars per year, and so on.

It is important to understand the notation and the meaning of the symbols to correctly inter-
pret and solve the examples and the exercises. For example, i must be interpreted as the rate
of return per dollar per period and not the annual interest rate, and R is the end-of-period



amount and not at the beginning of the period. It is important to note that we shall quote the
annual interest rate in examples and exercises; using that one can calculate i.

A.1.1 Cash Flow Diagrams
A cash flow diagram is a pictorial representation of cash receipts and disbursements. These
diagrams are helpful in solving problems of economic analysis. Once a correct cash flow
diagram for the problem has been drawn, it is a simple matter of using proper interest for-
mulas to perform calculations. In this section, we introduce the idea of a cash flow diagram.

Figure A-1 gives a cash flow diagram from two points of view—the lender’s and the bor-
rower’s. In the diagram, a person has borrowed a sum of $20,000 and promises to pay it back
in 1 year, with simple interest paid every month. The annual interest rate is 12 percent. There-
fore, $200 is paid as interest at the end of every month and $20,000 principal is paid at the
end of the 12th month. Note that vertical lines with arrows pointing downward imply dis-
bursements and with arrows pointing upward imply receipts. Also, disbursements are shown
below and receipts above the horizontal line.

A.1.2 Basic Economic Formulas
Consider an investment of P dollars that returns i dollars per dollar per period. The return at
the end of the first period is iP, and the original investment increases to (1 + i)P. This sum
is reinvested and returns i(1 + i)P at the end of the next period so that the original amount
is worth (1 + i)2P, and so on. If the process is continued for n periods, an original investment
P will increase to the final sum Sn, given by

(A.1)

where spcaf (i, n) is called the single payment compound amount factor.

S i P i n Pn
n= +( ) = ( )[ ]1 spcaf ,
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First period (first month)
$200 interest received every month

$20,200 principal
and interest received

0

1 2 3 4 5 6 7 8 9 10 11 12
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$20,000 loan

$20,000 loan received

0

1 2 3

$200 interest payment every month

$20,200 final payment of
principal and interest

(A)

(B)

FIGURE A-1 Cash flow diagrams. (A) Lender’s cash flow. (B) Borrower’s cash flow.



A future payment Sn made at the end of the nth period has an equivalent present worth P,
which can be calculated by inverting Eq. (A.l) as

(A.2)

where sppwf (i, n) is called the single payment present worth factor. Note from Eq. (A.1)
that sppwf (i, n) is the reciprocal of spcaf (i, n).

P i S i n S
n

n n= +( ) = ( )[ ]-
1 sppwf ,
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EXAMPLE A.1 Use of Single Payment Compound 
Amount Factor

Consider an investment of $1000 at an annual interest rate of 9 percent compounded
monthly. Calculate the final sum at the end of 2 and 4 years.

Solution. For the given annual interest rate, the rate of return per dollar per month
is i = 0.09/12 = 0.0075. The final sum on an investment of $1000 at the end of 2 years
(n = 24) using the single payment compound amount factor of Eq. (A.1) will be

and at the end of 4 years (n = 48) it will become

S48
48

1 0 0075 1000

1 43141 1000 1431 41

= +( ) ( )
= ( )( ) =

.

. $ .

S24

24

0 0075 24 1000

1 0 0075 1000 1 19641 1000 1196 41

= ( )( )

= +( ) ( ) = ( )( ) =

spcaf . ,

. . $ .

EXAMPLE A.2 Use of Single Payment Present Worth Factor

Consider the case of a person who wants to borrow some money from the bank but
can pay back only $10,000 at the end of 2 years. How much can the bank lend if the
prevailing annual interest rate is 12 percent compounded monthly?

Solution. Using the given rate of interest, the rate of return per dollar per period for
this example is i = 0.12/12 = 0.01. Using the single payment present worth factor of
Eq. (A.2), the present worth of $10,000 paid at the end of 2 years (n = 24) is given
as P = [sppwf (0.01, 24)](10,000):

Thus, the bank can lend only $7876.66 at the present time.

P = +( ) ( )
= ( ) =

-
1 0 01 10 000

0 787566 10 000 7876 66

24
. ,

. , $ .



Consider a sequence of n uniform periodic payments R made at the end of each period.
The first payment made at the end of the first period earns interest over (n - 1) periods. There-
fore, from Eq. (A.1), it is equivalent to an amount (1 + i)n-1R at the end of the nth period.
The second payment made at the end of the second period earns interest over (n - 2) periods
and is worth (1 + i)n-2R at the end of the nth period; and so on. This sequence of payments
is equivalent to a sum Sn, given by the finite geometric series,

(A.3)

where uscaf (i, n) is the uniform series compound amount factor. Likewise, a future sum Sn

can be expressed as an equivalent series of uniform payments R by inverting the expression
in Eq. (A.3):

(A.4)

where sfdf (i, n) is called the sinking fund deposit factor.
It is important to note in Eqs. (A.3) and (A.4) that

1. n is the number of interest periods and the first payment occurs at the end of the first
period.

2. The final sum Sn at the end of the nth period includes the final nth payment.

R
iS

i
i n Sn

n n=
+( ) -[ ] = ( )

1 1
sfdf ,

S i R i R R

i i R

i i R i n R

n
n

n

n

= +( ) + + +( ) +

= +( ) + + +( ) +[ ]
= ( ) +( ) -[ ] = ( )[ ]

-

-

1 1

1 1 1

1 1 1

1

1

. . .

. . .

,uscaf
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EXAMPLE A.3 Use of Uniform Series Compound 
Amount Factor

Consider the case of a person who decides to deposit $50 at the end of each month
for the next 10 years. The prevailing annual rate of interest is 9 percent compounded
monthly. How much will have accumulated at the end of a 10-year period?

Solution. Since the interest is compounded monthly, the value of i for this problem
is 0.09/12 = 0.0075. Other data are: R = $50 and n = 120. We need to determine S120.
Using the uniform series compound amount factor of Eq. (A.3), the final sum S120 is
given as S120 = [uscaf (0.0075, 120)](50):

Note that the final sum S120 includes the final payment made at the end of the tenth
year.

S120

120
1 0 0075 1

0 0075
50

193 51428 50 9675 71

=
-( ) -[ ] ( )

= ( )( ) =

.

.
. $ .



The sequence of n payments R made at the end of each period can also be expressed as
a present worth P. Combining Eqs. (A.2) and (A.3) yields

(A.5)

where uspwf (i, n) is called the uniform series present worth factor.
Finally, expressing a present amount P as an equivalent sequence of n uniform payments

made at the end of each period gives [from Eq. (A.5)]:

(A.6)

where crf (i, n) is called the capital recovery factor. Table A-1 summarizes all the factors.

R
iP

i
i n P

n
=

- +( )[ ] = ( )[ ]-
1 1

crf ,

P i i R i n R
n= ( ) - +( )[ ] = ( )[ ]-

1 1 1 uspwf ,
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EXAMPLE A.4 Use of Sinking Fund Deposit Factor

A person promises to pay the bank $10,000 at the end of 2 years. How much money can
the bank lend per month if the annual interest rate is 12 percent compounded monthly?

Solution. Since the annual interest rate is 12 percent, the rate of return per dollar
per period for this problem is i = 0.12/12 = 0.01. Using the sinking fund deposit factor
of Eq. (A.4), the amount received at the end of each month is given as R = [sfdf (0.01,
24)](10,000):

Note that the first payment occurs at the end of the first month. Also, the final payment
from the bank occurs at the end of 2 years and at that time a payment of $10,000 must
also be made to the bank.

R =
+( ) -[ ]

( )

= ( )( ) =

0 01

1 0 01 1
10 000

0 037073 10 000 370 73

24

.

.
,

. , $ .

TABLE A-1 Interest Formulas

To find Given Multiply by

Sn P Single payment compound amount factor a (spcaf), (1 + i)n

P Sn Single payment present worth factor (sppwf), (1 + i)-n

Sn R Uniform series compound amount factor (uscaf), 

R Sn Sinking fund deposit factor (sfdf), 

P R Uniform series present worth factor (uspwf), 

R P Capital recovery factor (crf), 

a That is, Sn = [spcaf (i, n)]P = (1 + i)nP.

i

i n1 1- +( )[ ]-

1
1 1

i
i n- +( )[ ]-

i

i n1 1+( ) -[ ]

1
1 1

i
i n+( ) -[ ]



A.2 Economic Bases for Comparison
The formulas given in Table A.1 can be employed in making economic comparisons of alter-
natives. Two methods of comparison commonly used are the annual cost (AC) and the present
worth (PW) methods. We shall describe both methods. It is important to realize that the same
conditions must be used to compare various alternatives. However, the annual base method
allows us to compare easily alternatives having different life spans. This will be illustrated
with examples. Also, both methods lead to the same conclusion so either one may be used
to compare alternatives.

Sign Convention A note about the sign convention used in comparing alternatives is in
order. When most of the transactions involve disbursements or costs, a positive sign is used
for costs and a negative sign for receipts in calculating annual costs or present worths. In that
case, salvage is considered as a negative cost and any other income is also given a negative
sign. With this sign convention, present worth greater than zero actually implies present cost,
so an alternative with smaller present worth is to be preferred. If present worth has a nega-
tive sign, then it actually represents income. Also, in this case, an alternative with smallest
present worth taking into account the algebraic sign is to be preferred, i.e., an alternative with
the largest numerical value for the present worth. The final selection of an alternative does
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EXAMPLE A.5 Use of Uniform Series Present Worth Factor

A person promises to pay the bank $100 per month for the next 2 years. If the annual
interest rate is 15 percent compounded monthly, how much can the bank afford to
lend at the present?

Solution. Since the interest is compounded monthly, the value of i for this example
is 0.15/12 = 0.0125. Using the uniform series present worth factor of Eq. (A.5), the
present worth of $100 paid at the end of each month beginning with the first one and
ending with the 24th, is P = [uspwf (0.0125, 24)](100):

P = - +( )[ ]( )
= ( )( ) =

-
1 1 0 0125 100 0 0125

20 6242 100 2062 42

24
. .

. $ .

EXAMPLE A.6 Use of Capital Recovery Factor

A person puts $10,000 in the bank and would like to withdraw a fixed sum of money at
the end of each month over the next 2 years until the fund is depleted. How much can be
withdrawn every month at an annual interest rate of 9 percent compounded monthly?

Solution. Since the interest is compounded monthly, i = 0.09/12 = 0.0075. Using
the capital recovery factor of Eq. (A.6), we can find the amount that can be withdrawn
at the end of every month for the next 2 years as R = [crf (0.0075, 24)](10,000):

R =
( )

- +( )[ ]
= ( )( ) =

-

0 0075 10 000

1 1 0 0075

0 045685 10 000 456 85

24

. ,

.

. , $ .



not depend on the sign convention used in calculations so any consistent convention can be
used. However, we shall use the preceding sign convention in all calculations.

A.2.1 Annual Base Comparisons
An annual base comparison reduces all revenues and expenditures over the selected time to
an equivalent annual value. Recall that a positive sign will be used for costs and a negative
sign for income. Therefore, the alternative with lower cost is to be preferred.
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EXAMPLE A.7 Alternate Designs

A design project has two options, A and B. Option A will cost $280,000 and Option
B $250,000. Annual operating and maintenance paid at the end of each year will be
$8000 for A and $10,000 for B. Using the annual cost (AC) method of comparison
with a 12 percent interest rate, which option should be chosen if both have a 50-year
life with no salvage?

Solution. The cash flow diagrams for the two options are shown in Fig. A-2. The
annual cost of Option A is the sum of the annual maintenance cost and the equivalent
uniform payment of the initial cost ($280,000). The initial cost can be converted to
equivalent yearly payment using the capital recovery factor. Thus, the annual cost
(ACA) of Option A is given as

since crf (0.12, 50) = 0.12042. Similarly, for Option B, the annual cost is

On this basis Option B is cheaper.

ACB crf= ( ) +
=

250 000 0 12 50 10 000

40 104 17

, . , ,

$ , .

ACA crf= ( ) +
=

280 000 0 12 50 8000

41 716 67

, . ,

$ , .

First period

50

50

$8000/year maintenance and operation cost

$10,000/year maintenance and operation cost

$280,000

$250,000

(A)

(B)

0 1 2 3 4

0 1 2 3 4

FIGURE A-2 Cash flow diagrams for alternate designs of Example A.7. (A) Option A. 
(B) Option B.
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EXAMPLE A.8 Alternate Power Stations

Three companies have submitted bids shown in the following table for the design and
operation of a temporary power station that will be used for 4 years. Which design
should be used by annual base comparison if a 15 percent return is required and if all
the equipment can be resold after 4 years for 30 percent of the initial cost?

A B C

Initial cost ($) 5000 6000 7500
Annual cost ($) 2500 2000 1800

Solution. This example is slightly different from Example A.7 in that the salvage
value must also be included while calculating the annual cost. Salvage is an income
received at the end of the project. This future sum must be converted to an equiva-
lent yearly income and subtracted from the expenses. A future sum is converted to an
equivalent yearly value using the sinking fund deposit factor (sfdf). Therefore, the
annual cost of Bid A is given as

since crf (0.15, 4) = 0.35027 and sfdf (0.15, 4) = 0.20027. Similarly, the annual costs
of Bids B and C are

Based on these calculations, Bid B is the cheapest option.

ACC crf sfdf= ( ) + - ( ) ( )
=

7500 0 15 4 1800 0 3 7500 0 15 4

3976 39

. , . . ,

$ .

ACB crf sfdf= ( ) + - ( ) ( )
=

6000 0 15 4 2000 0 3 6000 0 15 4

3741 11

. , . . ,

$ .

ACA crf sfdf= ( ) + - ( ) ( )
=

5000 0 15 4 2500 0 3 5000 0 15 4

3950 93

. , . . ,

$ .

EXAMPLE A.9 Alternate Quarries

A company can purchase either of the two mineral quarries. Quarry A costs $600,000,
is estimated to last 12 years, and would have a land-salvage value at the end of 12
years of $120,000. Digging and shipping operations would cost $50,000 per year.
Quarry B costs $900,000, would last 20 years, and would have a salvage value of
$60,000. Digging and shipping would cost $40,000 per year. Which quarry should be
purchased? Use the annual base method with an interest rate of 15 percent. Assume
that similar quarries will be available in the future.

Solution. Note for the example that the life spans of Quarries A and B are different.
This causes no problem when the annual base method is used. However, with the
present worth method of the next section, we shall have to somehow use the same life
spans for the two options.



A.2.2 Present Worth Comparisons
In present worth (PW) comparisons, all anticipated revenues and expenditures are expressed
by their equivalent present values. The same life spans for all the options must be used for
valid comparisons. The same sign convention as before shall be used, i.e., a positive sign for
costs and a negative sign for receipts. Note also, that in most problems, the present worth of
a project is actually its total present cost. Therefore, an alternative with lower present worth
is to be preferred. We will solve the examples of the previous subsection again using the
present worth method.

Appendix A Economic Analysis 601

The cash flow diagrams for the quarries are shown in Fig. A-3. To calculate the
annual cost of Quarry A, we need to find the annual cost of an initial investment of
$600,000 using the capital recovery factor (crf), and the equivalent annual income due
to salvage of $120,000 after 12 years. For this income, the sinking fund deposit factor
(sfdf) will be used. Therefore,

since crf (0.15, 12) = 0.18448 and sfdf (0.15, 12) = 0.034481. Similarly,

since crf (0.15, 20) = 0.15976 and sfdf (0.15, 20) = 0.0097615. Based on these 
calculations, Quarry A is a better investment.

ACB crf sfdf= ( ) + - ( )
=

900 000 0 15 20 40 000 60 000 0 15 20

183 199 64

, . , , , . ,

$ , .

ACA crf sfdf= ( ) + - ( )
=

600 000 0 15 12 50 000 120 000 0 15 12

156 550 77

, . , , , . ,

$ , .

0 1 2 3 4

0 1 2 3 4

$50,000/year digging and shipping cost

$40,000/year digging and shipping cost

$600,000

$120,000 salvage value

$60,000 salvage value

$900,000

12

20

(A)

(B)

FIGURE A-3 Cash flow diagrams for the mineral quarries of Example A.9. (A) Quarry
A. (B) Quarry B.
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EXAMPLE A.10 Alternate Designs

The problem is stated in Example A.7. The cash flow diagrams for the problem are
shown in Fig. A-2. We will calculate the present worth of the two designs and compare
them. To calculate the present worth of Option A, we need to convert the annual main-
tenance cost of $8000 to its present value. For this we use the uniform series present
worth factor (uspwf).

Therefore, the present worth of Option A (PWA) is calculated as

since uspwf (0.12, 50) = 8.3045. Similarly, for Option B, we have

Based on these calculations, Option B is a cheaper option. This is the same conclu-
sion as in Example A.7.

PWB uspwf= + ( )
=

250 000 10 000 0 12 50

333 044 99

, , . ,

$ , .

PWA uspwf= + ( )
=

280 000 8000 0 12 50

346 435 99

, . ,

$ , .

EXAMPLE A.11 Alternate Power Stations

The problem is stated in Example A.8. We need to calculate the present worths of the
annual cost and the salvage value in order to compare the alternatives by the present
worth method. We use the uniform series present worth factor (uspwf) to convert the
annual cost to its present value. The single payment present worth factor (sppwf) is
used to convert the salvage value to its present worth. Therefore,

since uspwf (0.15, 4) = 2.8550 and sppwf (0.15, 4) = 0.57175. Similarly,

Therefore, Bid B is the cheapest option based on these calculations. This is the same
conclusion as in Example A.8.

PWC uspwf sppwf= + ( ) - ( ) ( )
=

7500 1800 0 15 4 0 3 7500 0 15 4

11 352 52

. , . . ,

$ , .

PWB uspwf sppwf= + ( ) - ( ) ( )
=

6000 2000 0 15 4 0 3 6000 0 15 4

10 680 80

. , . . ,

$ , .

PWA uspwf sppwf= + ( ) - ( ) ( )
=

5000 2500 0 15 4 0 3 6000 0 15 4

11 279 82

. , . . ,

$ , .
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EXAMPLE A.12 Alternate Quarries

The problem is stated in Example A.9. The cash flow diagrams for the two quarries
are shown in Fig. A-3. The life span of the two available options is different. We must
somehow use the equivalent present worths to compare the alternatives. Several pro-
cedures can be used. We shall demonstrate two of them.

Procedure 1. The basic idea here is to calculate the present worth of Quarry B using
a 12-year life span, which is the life span of Quarry A. We do this by first calculating
the annual cost of Quarry B using a 20-year life span. We then calculate the present
worth of the annual cost for the first 12 years only and compare it with the present
worth of Quarry A:

since uspwf (0.15, 12) = 5.42062 and sppwf (0.15, 12) = 0.18691. Calculating the
annual cost of B, we get

since crf (0.15, 20) = 0.15976 and sfdf (0.15, 20) = 0.0097615. Now, we can calcu-
late the present worth of B using a 12-year life span, as

Therefore, Quarry A offers a cheaper solution.

Procedure 2. Since it is known that similar quarries would be available in the near
future, we can use 5 A and 3 B quarries to get a total life of 60 years for both options.
All future investments, expenses, and salvage values must be converted to their present
worth. Using this procedure, the present worth of Quarries A and B are calculated as

Therefore, with this procedure also, Quarry A is a cheaper option.

PWB uspwf sppwf

uspwf sppwf

uspwf sppwf

= + ( ) - ( )
+ ( ) - ( )
+ ( ) - ( )

= + + + -
=

900 000 40 000 0 15 60 60 000 0 15 20

900 000 0 15 20 60 000 0 15 40

900 000 0 15 40 60 000 0 15 60

900 000 266 605 84 51 324 23 3135 93 13 69

1 221 052 30

, , . , , . ,

, . , , . ,

, . , , . ,

, , . , . . .

$ , , .

PWA uspwf sppwf

uspwf sppwf

uspwf sppwf

uspwf sppwf

uspwf

= + ( ) - ( )
+ ( ) - ( )
+ ( ) - ( )
+ ( ) - ( )
+

600 000 50 000 0 15 60 120 000 0 15 12

600 000 0 15 12 120 000 0 15 24

600 000 0 15 24 120 000 0 15 36

600 000 0 15 36 120 000 0 15 48

600 000 0 15 48

, , . , , . ,

, . , , . ,

, . , , . ,

, . , , . ,

, . ,(( ) - ( )
= + + + + + -
=

120 000 0 15 60

600 000 333 257 30 89 715 43 16 768 46 3134 14 585 79 27 37

1 043 433 7

, . ,

, , . , . , . . . .

$ , , .

sppwf

PWB uspwf= ( )
=

183 199 64 0 15 12

993 055 42

, . . ,

$ , .

ACB crf sfdf= ( ) + - ( )
=

900 000 0 15 20 40 000 60 000 0 15 20

183 199 64

, . , , , . ,

$ , .

PWA uspwf sppwf= + ( ) - ( )
=

600 000 50 000 0 15 12 120 000 0 15 12

848 602 09

, , . , , . ,

$ , .



Use of the annual base or present worth comparison is dependent on the problem and the
available information. For some problems the annual base comparison is better suited while
others lend themselves to the present worth method. For each problem a suitable method
should be selected.

There are many other factors that must also be considered in the comparison of alterna-
tives. For example, the rate of inflation, the effect of nonuniform payments, and variations
in the interest rate should also be considered in comparing alternatives. Most real-world prob-
lems will require consideration of such factors. However, these are beyond the scope of the
present text. Blank and Tarquin (1983) and other texts on the subject of engineering economy
may be consulted for a more comprehensive treatment of these factors.

Exercises for Appendix A

A.1 A person wants to borrow $10,000 for one year. The current interest rate is 9
percent compounded monthly. What is the monthly installment to pay back the
loan?

A.2 A person borrows $15,000 from the bank for one year. The current interest rate is
12 percent compounded daily. If the bank assumes 300 banking days in a year, how
much money will have to be paid at the end of the year?

A.3 A person borrows $15,000 from the bank for one year. The current interest rate is
12 percent compounded daily. If the bank assumes 365 banking days in a year, how
much money will have to be paid at the end of the year?

A.4 A person promises to pay the bank $500 every month for the next 24 months. If the
interest rate is 9 percent compounded monthly, how much money can the bank lend
at the present time?

A.5 A person deposits $1000 into the bank at the end of every month. If the prevailing
interest rate is 6 percent compounded daily, how much money is accumulated at the
end of the year? Assume 30 days in a month.

A.6 On February 1, 1950 a person went to the bank and promised to pay the bank
$20,000 on February 1, 1951. Based on that promise, how much did the bank lend
him at the beginning of every month? The first payment occurred on February 1,
1950 and the last payment on January 1, 1951. Assume the interest rate at that time
to be 6 percent compounded monthly.

A.7 A person decides to deposit $50 per month for the next 18 years at an annual
interest rate of 8 percent compounded monthly. How much money is accumulated at
the end of 18 years? How much per month can be withdrawn for the next 4 years
after the 18th year?

A.8 A person borrows $4000 at an annual interest rate of 13 percent compounded
monthly to buy a car and promises to pay it back in 30 monthly installments. What
is the monthly installment? How much money would be needed to pay off the loan
after the 14th installment?

A.9 A couple borrows $200,000 to buy a house. How much is the monthly installment if
the interest rate is 8 percent compounded monthly and the money is borrowed for
20 years? If the house is sold for $250,000 at the beginning of the sixth year (after
the 60th installment), how much cash will the owners have after paying back the
balance of the loan?
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A.10 A couple deposits $1000 in a bank at the end of every month for the next 12
months (one year). For the next 12 months (during the second year), they deposit
$1500 every month. If the interest rate is 6 percent compounded monthly, how
much money is accumulated in the bank account at the end of two years?

A.11 A person wants to buy a house costing $90,000. The prevailing interest rate is 13
percent compounded monthly. The down payment must be 20 percent of the
purchase price (i.e., only 80 percent of the purchase price can be borrowed). What
is the monthly installment if the loan is for 20 years? How much money will be
needed at the end of the 5th year (i.e., at the time of the 60th installment) if the loan
has to be paid off at that time?

A.12 A person invests $2000 at an annual interest rate of 9 percent compounded monthly.
How much money will be received at the end of 2 years? How much money will be
received if the interest is compounded daily?

A.13 A person borrows $10,000 and agrees to pay $950 per month for the next 12
months. If the interest is compounded monthly, what is the annual interest 
rate?

A.14 On the day a child is born, the parents decide to save a certain amount of money
every year for his college education. They decided to deposit the money on every
birthday through the 18th starting with the first one, so that the child can withdraw
$10,000 on his 18th, 19th, 20th and 21st birthdays. If the expected rate of return is
9 percent per year, how much money must be deposited annually?

A.15 A bank can lend $80,000 for a design project at an annual interest rate of 9 percent
compounded monthly. At the time the loan is made, the bank charges 2 percent of
the loan as the processing fee. The processing fee can be added to the loan. If the
life of the project is 5 years, what is the effective annual interest rate on the
$80,000 loan?

A.16 A company has two alternative designs for the construction of a bridge. Option A
costs $500,000 initially with an annual maintenance cost of $10,000. Option B costs
$400,000 initially and its annual maintenance cost is $12,000. Both options have a
salvage value of 5 percent at the end of a 50-year life. Which option should the
company adopt? Assume 10 percent per annum as the rate of return. Use both the
present worth and annual cost comparison methods.

A.17 To complete a design project, a person needs $100,000. Bank A can lend the money
at an interest rate of 9 percent compounded annually. Bank B can lend the money at
8 percent compounded annually but it charges 5 percent of the loan as the
processing fee. The bank also allows this additional money to be borrowed at an
interest rate of 8 percent. Compare the two options using the annual cost
comparison method. The life span of the project is 20 years with no salvation 
value.

A.18 Compare the two options of Problem A.17 using the present worth method.

A.19 A county has two options to build a bridge over a creek. Option A calls for a
wooden bridge costing $600,000, and having a life span of 20 years and a
maintenance cost of $10,000 per year. At the end of 10 years, the bridge would
require a major renovation costing $200,000. Option B calls for a concrete and steel
bridge costing $800,000, and having a life span of 40 years and an annual
maintenance cost of $6000. At the end of 20 years this bridge would also need a
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major renovation costing $200,000. There is no salvage value for either the wooden
bridge or the concrete bridge at the end of their life. The prevailing interest rate is 8
percent compounded monthly. Compare the two options using the annual cost
comparison method.

A.20 Compare the two options of Problem A.19 using the present worth method.

A.21 There are two options to complete a project. The life span for the project is 20
years. Option A will cost $100,000 that needs to be borrowed at an annual interest
rate of 9 percent. Option B will cost $110,000 that will be borrowed at an annual
interest rate of 8 percent. In both cases, the interest is compounded annually.
Compare the two options using the annual cost method.

A.22 Compare the two options of Problem A.21 using the present worth method.

A.23 A city in a mountainous region requires an additional 100-MW peak power capacity
and is considering the following alternatives for the next 20-year period, until a
breeder reactor meets all needs:

1. Build a new power plant for $10 million and a $1 million per year operating
cost. The salvage value at the end of 20 years is $2 million.

2. Build a pumping/generator station that pumps water to a high lake during
periods of low power usage and uses the water for power generation during peak
load periods. The initial cost is $5 million and the operating cost is $1.5 million
per year. There is no salvage value at the end of 20 years.

Which of these alternatives is preferable on a present worth basis? At present
interest rates, the following relations hold:

where S20 = value at 20 years, P = present worth, and R = transactions per year.

A.24 An 80-cm pipeline can be built for $150,000. The annual operating and
maintenance cost is estimated at $30,000. The alternate 50-cm line can be built for
$120,000. Its operating and maintenance cost is estimated at $35,000 per year.
Either line is expected to serve for 25 years with 10 percent salvage when replaced.
Compare the two pipelines on an annual cost and present worth basis assuming a 15
percent rate of return.

A.25 A company has received two bids for the design and maintenance of a project.
Compare the two designs by a present worth analysis using the following data
assuming a 10 percent interest rate. Both designs have an economic life of 40 years
with no salvage value.

S R R S20 2030
1

30
= =, or

S P P S20 202 0 5= =, .or
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A B

First cost ($) 40,000 50,000
Annual maintenance ($) 1500 500

A.26 A person wants to buy a house costing $100,000. Bank A can lend the money at 12
percent interest compounded monthly. The bank requires 20 percent of the purchase



price as the down payment and charges 2 percent of the loan as a loan processing
fee. Bank B also requires a 20 percent down payment. It does not charge a loan
processing fee, but its interest rate is 12.5 percent compounded monthly. Both banks
require a monthly mortgage payment on the loan and can lend the money for 20
years. Which bank offers the cheaper option to buy the house? Use both the present
worth and annual base comparisons.

A.27 Two rental properties are for sale:
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Property I Property II

Sale price ($) 600,000 400,000
Annual gross income ($) 80,000 56,000
Annual management cost ($) 4,000 3,000
Annual maintenance ($) 10,000 6,000
Property tax ($) 12,000 8,000

Each property requires a minimum down payment of 10 percent. The prevailing
interest rate is 10 percent compounded annually, and the loan can be obtained for 
20 years. Because of the high demand, the value of rental properties is expected to
double in 20 years. A person has $100,000 that can be kept in the bank giving a
return of 6 percent or invested into the properties.

1. Evaluate the following options using both the annual cost and present worth
comparisons assuming a 20-year life for the project:

Option A: Buy only Property I ($100,000 down payment)
Option B: Buy only Property II ($100,000 down payment)
Option C: Buy both properties (total down payment $100,000)

2. If the properties are liquidated at the end of 5 years at 110 percent of the
purchase price, how much money will be received from Options A, B, and C?

A.28 A company has two options for an operation. The associated costs are:

Annual
First cost maintenance cost

Option A ($) 80,000 4,000
Option B ($) 110,000 2,000

Assume a 40-year life, with zero salvage for either option. Choose the better option,
using the present worth comparison with a 15 percent interest rate.

A.29 To transport its goods, a company has two options: take a slightly longer route to
use an existing bridge, or build a new bridge that cuts down the distance and
increases the number of trips (which is desirable) for the same cost. The
construction of the new bridge will cost $100,000 and will save $100 per day over 
a 240-day working year. The economic life of the bridge is 40 years and the
maintenance cost of the structure is estimated at $1000 per year. Compare the
alternatives based on the annual cost and present worth comparisons using a 20
percent annual rate of return.



A.30 A university is planning to develop a student laboratory. One proposal calls for the
construction of the laboratory that would cost $500,000 and would satisfy the need
over the next 12 years. The expected annual operating cost would be $40,000. After
12 years, an addition to the laboratory would be constructed for $600,000 with an
additional annual operating cost of $30,000.

The alternative plan is to build a single large laboratory now, which would cost
$650,000. The annual operating cost would be $42,000 for the first 12 years. At the
end of the 12th year, the laboratory would need renovations costing $100,000 and
the annual operating costs would be expected to increase to $60,000. Compare the
two plans using either the annual base or present worth method with an annual
interest rate of 10 percent.

A.31 A company has three options to correct a problem. The costs of the options are (A)
$70,000, (B) $100,000 and (C) $50,000. All options are expected to serve for 60
years without any salvage value. However, Option A requires an expense of $1000
per year, and Option C will require an additional investment of $80,000 at the end
of 20 years, which will have a salvage value of $15,000 at 60 years from the
present time. Which of the three options should be adopted, assuming a 15 percent
interest rate?

A.32 Your company has decided to buy a new company car. You have been designated to
evaluate the following three cars and make your recommendation. Assume the
following for all cars:

1. The car will be driven 20,000 miles each year for an expected life of 5 years. A
total of 90 percent of these will be highway miles; the other 10 percent will be in
the city.

2. The price of gasoline is now $1.25 per gallon and will increase at 10 percent per
year for the next 5 years. The gasoline cost will be paid based on the average
monthly consumption at the end of each month.

3. At the end of the 5th year, the company will sell the car at a 15 percent salvage
value.

4. Insurance will be 5 percent of the original car value per year.
5. The annual rate of return is 8 percent.

The car choices are as follows:

Car A: $6250 list price

Requires: $150/year maintenance first 2 years
$300/year maintenance last 3 years

Mileage estimates: 35 MPG highway
25 MPG city

Financing: $1000 down payment and the rest in 60 equal monthly
payments at 11 percent annual interest

Car B: $6900 list price

Requires: $125/year maintenance first 2 years
$250/year maintenance last 3 years

Mileage estimates: 35 MPG highway
22 MPG city

Financing: $1500 down payment and the rest in 60 equal monthly
payments at 12 percent annual interest
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Car C: $7200 list price

Requires: $l00/year maintenance first 2 years
$200/year maintenance last 3 years

Mileage estimates: 38 MPG highway
28 MPG city

Financing: $1100 down payment and the rest in 60 equal monthly
payments at 10 percent annual interest

Use the present worth method of comparison (created by G. Jackson).
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Matrix and vector notation is compact and useful in describing many numerical methods
and derivations. Matrix and vector algebra is a basic tool needed in developing methods for
the optimum design of systems. The solution of linear optimization problems (linear pro-
gramming) involves an understanding of the solution process for a system of linear equa-
tions. Therefore, it is important to understand operations of vector and matrix algebra and be 
comfortable with their notation. The subject is often referred to as linear algebra and has
been well-developed for a long time. It has become a standard tool in almost all engineering
and scientific applications. In this appendix, some fundamental properties of vectors and
matrices are reviewed. For more comprehensive treatment of the subject, several excellent
textbooks are available and should be consulted (Hohn, 1964; Franklin, 1968; Cooper and
Steinberg, 1970; Stewart, 1973; Bell, 1975; Strang, 1976; Jennings, 1977; Deif, 1982; Gere
and Weaver, 1983). In addition, most software libraries have subroutines for linear algebra
operations which should be directly utilized.

After reviewing the basic vector and matrix notations, special matrices, determinants, and
rank of a matrix, the subject of the solution of a simultaneous system of linear equations is
discussed. First an n ¥ n system and then a rectangular m ¥ n system are treated. A section
on linear independence of vectors is also included. Finally, the eigenvalue problem encoun-
tered in many fields of engineering is discussed. Such problems play a prominent role in
convex programming problems and sufficiency conditions for optimization.

B.1 Definition of Matrices
A matrix is defined as a rectangular array of quantities that can be real numbers, complex
numbers, or functions of several variables. The entries in the rectangular array are also called
the elements of the matrix. Since the solution of simultaneous linear equations is the most
common application of matrices, we use them to develop the notion of matrices.

Consider the following system of two simultaneous linear equations in three unknowns:

(B.1)- + - =x x x1 2 36 2 3

x x x1 2 32 3 6+ + =



The symbols x1, x2, x3 represent the solution variables for the system of equations. Note that
the variables x1, x2, and x3 can be replaced by any other variables, say w1, w2, and w3, without
affecting the solution. Therefore, they are sometimes called the dummy variables. Since they
are dummy variables, they can be omitted while writing the equations in a matrix form. For
example, Eq. (B.1) can be written in a rectangular array as

The entries to the left of the vertical line are coefficients of the variables x1, x2, and x3, and
to the right of the vertical line are the numbers on the right side of the equations. It is cus-
tomary to enclose the array by square brackets as shown. Thus, we see that the system of
equations in Eq. (B.1) can be represented by a matrix having two rows and four columns.

An array with m rows and n columns is called a matrix of order “m by n,” written as (m,
n) or as m ¥ n. To distinguish between matrices and scalars, we shall boldface the variables
that represent matrices. In addition, capital letters will be used to represent matrices. For
example, a general matrix A of order m ¥ n can be represented as

(B.2)

The coefficients aij are called elements of the matrix A; subscripts i and j indicate the row
and column numbers for the element aij (e.g., a32 represents the element in the third row and
second column). Although the elements can be real numbers, complex numbers, or functions,
we shall not deal with complex matrices in the present text. We shall encounter matrices
having elements as functions of several variables, e.g., the Hessian matrix of a function dis-
cussed in Chapter 4.

It is useful to employ more compact notation for matrices. For example, a matrix A of
order m ¥ n with aij’s as its elements is written compactly as

(B.3)

Often, the size of the matrix is also not shown and A is written as [aij].
If a matrix has the same number of rows and columns, then it is called a square matrix.

In Eq. (B.2) or (B.3), if m = n, A is a square matrix. It is called a matrix of order n.
It is important to understand the matrix notation for a set of linear equations because 

we shall encounter such equations quite often in this text. For example, Eq. (B.1) can be
written as

The preceding array containing coefficients of the equations and the right-side parameters is
called the augmented matrix. Note that each column of the matrix is identified with a vari-
able; the first column is associated with the variable x1 because it contains coefficients of x1

for all equations, the second with x2, the third with x3, and the last column with the right-side

x x x1 2 3

1 2 3

1 6 2

6

3

b

- -
È
ÎÍ

˘
˚̇

A = [ ] ¥( )aij m n

A =

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

a a a

a a a

a a a

n

n

m m mn

11 12 1

21 22 2

1 2

. . .

. . .

. . .

M M M

1 2 3

1 6 2

6

3- -
È
ÎÍ

˘
˚̇

612 Appendix B Vector and Matrix Algebra



vector, which we call b. This interpretation is important while solving linear simultaneous
equations (discussed later) or linear programming problems (discussed in Chapter 6).

B.2 Type of Matrices and Their Operations
B.2.1 Null Matrix
A matrix having all zero elements is called a null (zero) matrix denoted by boldfaced zero
as 0. Any zero matrix of proper order when premultiplied or postmultiplied by any other
matrix (or scalar) results in a zero matrix.

B.2.2 Vector
A matrix of order 1 ¥ n is called a row matrix, or simply row vector. Similarly, a matrix of
order n ¥ 1 is called a column matrix, or simply column vector. A vector with n elements is
called an n-component vector, or an n-vector. In this text, all vectors are considered to be
column vectors and denoted by a lower-case letter in boldface.

B.2.3 Addition of Matrices
If A and B are two matrices of the order m ¥ n, then their sum is also an m ¥ n matrix defined as

(B.4)

Matrix addition satisfies the following properties

(B.5)

If A, B, and C are three matrices of the same order, then

(B.6)

If A, B, and C are of same order, then

(B.7)

where A = B implies that the matrices are equal. Two matrices A and B of order m ¥ n are
equal if aij = bij for i = 1 to m and j = 1 to n.

B.2.4 Multiplication of Matrices
Multiplication of a matrix A of order m ¥ n by a scalar k is defined as

(B.8)

The multiplication (product) AB of two matrices A and B is defined only if A and B are of
proper order. The number of columns of A must be equal to the number of rows of B for the
product AB to be defined. In that case, the matrices are said to be conformable for multiplica-
tion. If A is m ¥ n and B is r ¥ p, then the multiplication AB is defined only when n = r, and mul-
tiplication BA is defined only when m = p. Multiplication of two matrices of proper order results
in a third matrix. If A and B are of order m ¥ n and n ¥ p respectively, then

(B.9a)AB C=

k kaij m n
A = [ ] ¥( )

A C B C A B+ = + =implies

A B C A B C+ +( ) = +( ) + ( )associative

A B B A+ = + ( )commutative

C A Bm n ij ij ijc a b i j¥( ) = + = +; for all and
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where C is a matrix of order m ¥ p. Elements of the matrix C are determined by multiply-
ing the elements of a row of A with the elements of a column of B and adding all the mul-
tiplications. Thus

(B.9b)

where elements cij are calculated as

(B.10)

Note that if B is an n ¥ 1 matrix (i.e., a vector), then C is an m ¥ 1 matrix. We shall encounter
this type of matrix multiplication quite often in this text, e.g., a linear system of equations is
represented as Ax = b, where x contains the solution variables and b the right-side parame-
ters. Equation (B.1) can be written in this form.

In the product AB the matrix A is said to be postmultiplied by B or B is said to be pre-
multiplied by A. Whereas the matrix addition satisfies commutative law, matrix multiplica-
tion does not, in general, satisfy this law, i.e., AB π BA. Also, even if AB is well defined,
BA may not be defined.
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EXAMPLE B.1 Multiplication of Matrices

(a)

Note that the product BA is not defined because the number of columns in B is not
equal to the number of rows in A.
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Note that even if matrices A, B, and C are properly defined, AB = AC does not imply B
= C. Also, if AB = 0, it does not imply either B = 0 or A = 0. The matrix multiplication,
however, satisfies two important laws: the associative and distributive laws. Let matrices A,
B, C, D, and F be of proper dimension. Then

1. (AB)C = A(BC) (associative law) (B.11)
2a. B(C + D) = BC + BD (distributive laws)
2b. (C + D)F = CF + DF (B.12)
2c. (A + B)(C + D) = AC + AD + BC + BD

B.2.5 Transpose of a Matrix
We can write rows of a matrix as columns and obtain another matrix. Such an operation is
called the transpose of a matrix. If A = [aij] is an m ¥ n matrix, then its transpose, denoted
as AT, is an n ¥ m matrix. It is obtained from A by interchanging its rows and columns. The
first column of A is the first row of AT; the second column of A is the second row of AT; and
so on. Thus, if A = [aij], then AT = [aji]. The operation of transposing a matrix is illustrated
by the following 2 ¥ 3 matrix:

Some properties of the transpose are

1. (AT)T = A
2. (A + B)T = AT + BT

3. (aA)T = aAT, a = scalar
4. (AB)T = BTAT

A A= È
ÎÍ

˘
˚̇

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

a a a

a a a

a a

a a

a a

T11 12 13

21 22 23

11 21

12 22

13 23

;

Appendix B Vector and Matrix Algebra 615

EXAMPLE B.2 Multiplication of Matrices

Note that for the products AB and BA to be matrices of the same order, A and B
must be square matrices.
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B.2.6 Elementary Row–Column Operations
There are three simple but extremely useful operations for rows or columns of a matrix. They
are used in later discussions, so we state them here:

1. Interchange any two rows (columns).
2. Multiply any row (column) by a nonzero scalar.
3. Add to any row (column) a scalar multiple of another row (column).

B.2.7 Equivalence of Matrices
A matrix A is said to be equivalent to another matrix B written as A ~ B if A can be trans-
formed into B by means of one or more elementary row and/or column operations. If only
row (column) operations are used, we say A is row (column) equivalent to B.

B.2.8 Scalar Product–Dot Product of Vectors
A special case of matrix multiplication of particular interest is the multiplication of a row
vector by a column vector. If x and y are two n-component vectors, then

(B.13)

where

The product in Eq. (B.13) is called the scalar product or dot product of x and y. It is also
denoted as x ◊ y. Note that since the dot product of two vectors is a scalar, xTy = yTx.

Associated with any vector x is a scalar called norm or length of the vector defined as

(B.14)

Often the norm of x is designated as ||x||.

B.2.9 Square Matrices
A matrix having the same number of rows and columns is called a square matrix; otherwise
it is called a rectangular matrix. The elements aii, i = 1 to n are called the main diagonal ele-
ments and others are called the off-diagonal elements. A square matrix having zero entries at
all off-diagonal locations is called a diagonal matrix. If all main diagonal elements of a diag-
onal matrix are equal, it is called a scalar matrix.

A square matrix A is called symmetric if AT = A and asymmetric or unsymmetric other-
wise. It is called antisymmetric if AT = -A.

If all the elements below the main diagonal of a square matrix are zero (aij = 0 for i > j),
it is called an upper triangular matrix. Similarly, a lower triangular matrix has all zero ele-
ments above the main diagonal (aij = 0 for i < j). A matrix that has all zero entries except in
a band around the main diagonal is called a banded matrix.

A square matrix having unit elements on the main diagonal and zeros elsewhere is called
an identity matrix. An identity matrix of order n is denoted as I(n). Identity matrices are useful
because their pre- or postmultiplication with another matrix does not change the matrix, e.g.,
let A be any m ¥ n matrix, then
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(B.15)

A scalar matrix S(n) having diagonal elements as a can be written as

(B.16)

Note that premultiplying or postmultiplying any matrix by a scalar matrix of proper order
results in multiplying the original matrix by the scalar. This can be proved for any m ¥ n
matrix A as follows:

(B.17)

B.2.10 Partitioning of Matrices
It is often useful to divide vectors and matrices into a smaller group of elements. This can
be done by partitioning the matrix into smaller rectangular arrays called submatrices and a
vector into subvectors. For example, consider a matrix A as

A possible partitioning of A is

Therefore, submatrices of A are

where Aij are matrices of proper order. Thus, A can be written in terms of submatrices as

Note that partitioning of vectors and matrices must be proper so that the operations of
addition or multiplication remain defined. To see how two partitioned matrices are multi-
plied, consider A an m ¥ n and B an n ¥ p matrix. Let these be partitioned as

A
A

A

A

A
= È

ÎÍ
˘
˚̇

11

21

12

22

————

A A21

2 3

22

2 2

1 6 2

3 0 5

3 8

2 7
=

-
-

È
ÎÍ

˘
˚̇

=
-

È
ÎÍ

˘
˚̇¥( ) ¥( )

A A11

2 3

12

2 2

2 1 6

2 3 8

4 3

1 3
=

-È
ÎÍ

˘
˚̇

=
- -

È
ÎÍ

˘
˚̇¥( ) ¥( )

A =

-

-
-

- -

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

¥( )

2 1 6

2 3 8

1 6 2

3 0 5

4 3

1 3

3 8

2 7 4 5

—————————

A =

-
- -

-
- -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

¥( )

2 1 6 4 3

2 3 8 1 3

1 6 2 3 8

3 0 5 2 7 4 5

S A I A A AI A I ASm m n n n( ) ( ) ( ) ( ) ( )= = = ( ) = ( ) =a a a a

S In n( ) ( )= a

I A A AIm n( ) ( )= =

Appendix B Vector and Matrix Algebra 617



Then the product AB can be written as

Note that the partitioning of matrices A and B must be such that the matrix products A11B11,
A12B21, A11B12, A12B22, etc., are proper. In addition, the pairs of matrices A11B11 and A12B21,
A11B12 and A12B22, etc., must be of the same order.

B.3 Solution of n Linear Equations in n Unknowns
B.3.1 Linear Systems
Linear systems of equations are encountered in numerous engineering and scientific appli-
cations. Therefore, substantial research and development work has been done to devise
several solution procedures. It is critically important to understand the basic ideas and con-
cepts related to linear equations because we use them quite often in this text. In this section
we shall describe a basic procedure, known as Gaussian elimination, for solution of an n ¥
n (square) linear system of equations. More general methods for solving a rectangular m ¥
n system are discussed in the next section.

It turns out that the idea of determinants is closely related to the solution of a linear system
of equations so first we discuss determinants and their properties. It also turns out that the
solution of a square system can be found by inverting the matrix associated with the system
so we describe methods for inverting matrices.

Let us consider the following system of n equations in n unknowns:

(B.18)

where A is an n ¥ n matrix of specified constants, x is an n-vector of solution variables, and
b is an n-vector of specified constants known as the right-side vector. A is called the coeffi-
cient matrix and when the vector b is added as the (n + 1)th column of A as [A | b], the
resulting matrix is called the augmented matrix for the given system of equations. Note that
the left side of Eq. (B.18) consists of multiplication of an n ¥ n matrix with an n-component
vector resulting in another n-component vector. If the right-side vector b is zero, Eq. (B.18)
is called a homogeneous system; otherwise it is called the nonhomogeneous system of 
equations.

The equation Ax = b can also be written in the following summation form:

(B.19)

If each row of the matrix A is interpreted as an n-dimensional row vector (i), then the left
side of Eq. (B.19) can be interpreted as the dot product of two vectors as
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If each column of A is interpreted as an n-dimensional column vector a(i), then the left side
of Eq. (B.18) can be interpreted as the summation of the scaled columns of the matrix A as

(B.21)

These interpretations can be useful in devising solution strategies for the system Ax = b and
in their implementation. For example, Eq. (B.21) shows that the solution variable xi is simply
a scale factor for the ith column of A, i.e., variable xi is associated with the ith column.

B.3.2 Determinants
To develop the solution strategies for the linear system Ax = b, we begin by introducing the
concept of determinants and study their properties. The methods for calculating determinants
are intimately related to the procedures for solving linear equations, so we shall also discuss
them.

Every square matrix has a scalar associated with it, called the determinant calculated
from its elements. To introduce the idea of determinants, we set n = 2 in Eq. (B.18) and con-
sider the following 2 ¥ 2 system of simultaneous equations:

(a)

The number (a11a22 - a21a12) calculated using elements of the coefficient matrix is called its
determinant. To see how this number arises, we shall solve the system in Eq. (a) by the elim-
ination process.

Multiplying the first row by a22 and the second by a12 in Eq. (a), we get

(b)

Subtracting the second row from the first one in Eq. (b), we eliminate x2 from the first 
equation and obtain:

(c)

Now repeating the foregoing process to eliminate x1 from the second row in Eq. (a) by 
multiplying the first equation by a21 and the second by a11 and subtracting, we obtain:

(d)

The coefficient of x1 and x2 in Eqs. (c) and (d) must be nonzero for a unique solution of the
system, i.e., (a11a22 - a12a21) π 0, and the values of x1 and x2 are calculated as

(e)

The denominator (a11a22 - a12a21) is identified as the determinant of the matrix A of Eq. (a).
It is denoted by det(A), or |A|. Thus, for any 2 ¥ 2 matrix A,
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(f)

Using the definition of Eq. (f), we can rewrite Eq. (e) as

(g)

where B1 is obtained by replacing the first column of A with the right side and B2 is obtained
by replacing the second column of A with the right side, as

(h)

Equation (g) is known as Cramer’s rule. According to this rule, we need to compute only the
three determinants—|A|, |B1|, and |B2|—to determine the solution to any 2 ¥ 2 system of equa-
tions. If |A| = 0, there is no unique solution to Eq. (a). There may be an infinite number of
solutions or no solution at all. These cases are investigated in the next section.

The preceding concept of a determinant can be generalized to n ¥ n matrices. For every
square matrix A of any order, we can associate a unique scalar, called the determinant of A.
There are many ways of calculating the determinant of a matrix. These procedures are closely
related to the ones used for solving the linear system of equations that we shall discuss later
in this section.

Properties of Determinants The determinants have several properties that are useful in
devising procedures for their calculation. Therefore, these should be clearly understood.

1. The determinant of any square matrix A is also equal to the determinant of the
transpose of the matrix, i.e., |A| = |AT|.

2. If a square matrix A has two identical columns (or rows), then its determinant is
zero, i.e., |A| = 0.

3. If a new matrix is formed by interchanging any two columns (or rows) of a given
matrix A (elementary row–column Operation 1), the determinant of the resulting
matrix is the negative of the determinant of the original matrix.

4. If a new matrix is formed by adding any multiple of one column (row) to a different
column (row) of a given matrix (elementary row–column Operation 3), the
determinant of the resulting matrix is equal to the determinant of the original 
matrix.

5. If a square matrix B is identical to a matrix A, except some column (or row) is a
scalar multiple c of the corresponding column (or row) of A (elementary
row–column Operation 2), then |B| = c |A|.

6. If elements of a column (or row) of a square matrix A are zero, then |A| = 0.
7. If a square matrix A is lower or upper triangular, then the determinant of A is equal

to the product of the diagonal elements:

(B.22)

8. If A and B are any two square matrices of the same order, then

AB A B=

A = ◊ ◊a a ann11 22 . . .
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9. Let |Aij| denote the determinant of a matrix obtained by deleting the ith row and the
jth column of A (yielding a square matrix of order n - 1); the scalar |Aij| is called the
minor of the element aij of matrix A. Then the cofactor of aij is defined as

(B.23)

The determinant of A is calculated in terms of the cofactors as

(B.24)

Or,

(B.25)

Note that the cofac (aij) is also a scalar obtained from the minor |Aij| but having a positive or
negative sign determined by the indices i and j as (-1)i+j. Equation (B.24) is called the cofac-
tor expansion for |A| by the ith row; Eq. (B.25) is called the cofactor expansion for |A| by
the jth column. Equations (B.24) and (B.25) can be used to prove Properties 2, 5, 6, and 7
directly.

It is important to note that Eq. (B.24) or (B.25) is difficult to use to calculate the deter-
minant of A. These equations require calculation of the cofactors of the elements aij, which
are determinants in themselves. However, using the elementary row and column operations,
a square matrix can be converted to either lower or upper triangular form. The determinant
is then computed using Eq. (B.22). This will be illustrated in an example later in this section.

A matrix having a zero determinant is called a singular matrix; a matrix with a nonzero
determinant is called nonsingular. A nonhomogeneous n ¥ n system of equations has a unique
solution if and only if the matrix of coefficients is nonsingular. These properties are discussed
and used subsequently to develop methods for solving a system of equations.

Leading Principal Minor Every n ¥ n square matrix A has certain scalars associated with
it, called the leading principal minors. They are obtained as determinants of certain subma-
trices of A. They are useful in determining the “form” of a matrix that is needed in check-
ing sufficiency conditions for optimality as well as the convexity of functions discussed in
Chapter 4. Therefore, we discuss the idea of leading principal minors here.

Let Mk, k = 1 to n be called the leading principal minors of A. Then each Mk is defined as
the determinant of the following submatrix:

(B.26)

where Akk is a k ¥ k submatrix of A obtained by deleting the last (n - k) columns and the
corresponding rows. For example, M1 = a11, M2 = determinant of a 2 ¥ 2 matrix obtained by
deleting all rows and columns of A except the first two, and so on, are the leading principal
minors of the matrix A.

B.3.3 Gaussian Elimination Procedure
The elimination process described earlier in Section B.3.1 for solving a 2 ¥ 2 system of equa-
tions can be generalized to solve any n ¥ n system of equations. The entire process can be

Mk kk= A

A = ( )
=
Âa a jij ij
i

n

cofac for any,
1

A = ( )
=

Âa a iij ij
j

n

cofac for any,
1

cofac aij
i j

ij( ) = -( ) +
1 A
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organized and explained using the matrix notation. The procedure can also be used to cal-
culate the determinant of any matrix. The procedure is known as Gaussian elimination, which
we shall describe in detail in the following.

Using the three elementary row–column operations defined in Section B.2, the system Ax
= b of Eq. (B.18) can be transformed to the following form:

(B.27)

Or, in expanded form, Eq. (B.27) becomes

(B.28)

Note that we use ij and i to represent modified elements aij and bj of the original system.
From the nth equation of the system (B.28), we have xn = n. If we substitute this value into
the (n - 1)th equation of (B.28), we can solve for xn-1:

(B.29)

Equation (B.29) can now be substituted into the (n - 2)th equation of (B.28) and xn-2 can be
determined. Continuing in this manner, each of the unknowns can be solved in reverse order:
xn, xn-1, xn-2, . . . , x2, x1. The procedure of reducing a system of n equations in n unknowns
and then solving successively for xn, xn-1, xn-2, . . . , x2, x1 is called the Gaussian elimination
procedure or Gauss reduction. The latter part of the method (solving successively for xn, xn-

1, xn-2, . . . , x2, x1) is called the backward substitution, or backward pass.
The Gaussian elimination procedure uses elementary row–column operations to convert

the main diagonal elements of the given coefficient matrix to 1 and the elements below the
main diagonal to zero. To carry out these operations we start with the first row and the first
column of the given matrix augmented with the right side of the system of equations. To
make the diagonal element 1, the first row is divided by the diagonal element. To convert the
elements in the first column below the main diagonal to zero, we multiply the first row by
the element i1 in the ith row (i = 2 to n). The resulting elements of the first row are sub-
tracted from the ith row. This makes the element i1 zero in the ith row. These operations are
carried out for each row using the first row for elimination each time. Once all the elements
below the main diagonal are zero in the first column, the procedure is repeated for the second
column using the second row for elimination, and so on. The row used to obtain zero ele-
ments in a column is called the pivot row, and the column in which elimination is performed
is called the pivot column. We will illustrate this procedure in an example later.

The foregoing operations of converting elements below the main diagonal to zero can be
explained in another way. When we make the elements below the main diagonal in the first
column zero, we are eliminating the variable x1 from all the equations except the first equa-
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tion (x1 is associated with the first column). For this elimination step we use the first equa-
tion. In general, when we reduce the elements below the main diagonal in the ith column 
to zero, we use the ith row as the pivot row. Thus, we eliminate the ith variable from all 
the equations below the ith row. This explanation is quite straightforward once we realize
that each column of the coefficient matrix has a variable associated with it, as noted 
before.
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EXAMPLE B.3 Solution of Equations by Gaussian
Elimination

Solve the following 3 ¥ 3 system of equations

(a)

Solution. We shall illustrate the Gaussian elimination procedure in a step-by-
step manner using the augmented matrix idea. The augmented matrix for Eq. (a) is
defined using the coefficients of the variables in each equation and the right-side 
parameters, as

To convert the preceding system to the form of Eq. (B.27), we use the elementary
row-column operations as follows:

1. Add -1 times row 1 to row 2 and -1 times row 1 to row 3 (eliminating x1 from
the second and third equations; elementary row operation 3):

2. Since the element at location (2, 2) is zero, interchange rows 2 and 3 to bring
a nonzero element at that location (elementary row operation 1). Then dividing
the new second row by 2 gives
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x x x1 2 32 1- + =

x x x1 2 3 0- + =
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The Gaussian elimination method can easily be transcribed into a general-purpose com-
puter program that can handle any given system of equations. However, certain modifica-
tions must be made to the procedure because numerical calculations on a machine with a
finite number of digits introduce round-off errors. These errors can become significantly large
if certain precautions are not taken. The modifications primarily involve a reordering of the
rows or columns of the augmented matrix in such a way that possible round-off effects tend
to be minimized. This reordering must be performed at each step of the elimination process
so that the diagonal element of the pivot row is the absolute largest among the elements of
the remaining matrix on the lower right side. This is known as the total pivoting procedure.
When only the rows are interchanged to bring the absolute largest element from a column to
the diagonal location, the procedure is known as partial pivoting. Note that many programs
are available to solve a system of equations. Thus, before attempting to write a program for
Gaussian elimination, computer center libraries must be searched for the existing ones.
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3. Since the element at the location (3, 3) is one and all elements below the main
diagonal are zero, the foregoing matrix puts the system of Eq. (a) into the form
of Eq. (B.27), as

Performing the backward substitution, we obtain

Therefore, the solution of Eq. (a) is

x x x1 2 31 2 1= = =, ,

x x x1 3 20 1= - + = ( )from first row

x x2 32 5 0 5 2= - = ( ). . from second row

x3 1= ( )from third row
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EXAMPLE B.4 Determinant of a Matrix by 
Gaussian Elimination

The Gaussian elimination procedure can also be used to calculate the determinant of
a matrix. We illustrate the procedure for the following 3 ¥ 3 matrix:

Solution. Using the Gaussian elimination procedure, we make the elements 
below the main diagonal zero, but this time the diagonal elements are not converted
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B.3.4 Inverse of a Matrix: Gauss-Jordan Elimination
If the multiplication of two square matrices results in an identity matrix, they are called the
inverse of each other. Let A and B be two square matrices of order n. Then B is called the
inverse of A if

(B.30)

The inverse of A is usually denoted by A-1. We shall later describe methods to calculate the
inverse of a matrix. Every square matrix may not have an inverse. A matrix having no inverse
is called a singular matrix. If the coefficient matrix of an n ¥ n system of equations has an
inverse, then the system can be solved for the unknown variables. Consider the n ¥ n system
of equations Ax = b, where A is the coefficient matrix and b is the right-side vector. Pre-
multiplying both sides of the equation by A-1, we get

Since A-1A = I, the equation reduces to

Thus, if we know the inverse of matrix A, then the preceding equation can be used to solve
for the unknown vector x.

There are a couple of ways to calculate the inverse of a nonsingular matrix. The first pro-
cedure is based on the use of the cofactors of A and its determinant. If B is the inverse of A,
then its elements are given as (called inverse using cofactors):

(B.31)

Note that indices on the left side of the equation are ji and on the right side they are ij. Thus,
cofactors of the row of matrix A generate the corresponding column of the inverse matrix B.
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x A b= -1

A Ax A b- -=1 1

AB BA I= = ( )n
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to unity. Once the matrix is converted to that form, the determinant is obtained using
Eq. (B.22).

The preceding system is in the canonical form, and |A| is given simply by multipli-
cation of all the diagonal elements, i.e.,

A = ( )( ) -( ) = -2 0 5 2 2. .
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The preceding procedure is reasonable for smaller matrices up to, say, 3 ¥ 3. For larger
matrices, it becomes cumbersome and inefficient.

A clue to the second procedure for calculating the inverse is provided by Eq. (B.30). In
that equation, elements of B can be considered as unknowns for the system of equations AB
= I. Thus, the system can be solved using the Gaussian elimination procedure to obtain the
inverse of A. We illustrate the procedure with an example.
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EXAMPLE B.5 Inverse of a Matrix by Cofactors and Gauss-
Jordan Reduction

Compute the inverse of the following 3 ¥ 3 matrix:

Solution.

Inverse by cofactors. Let B be a 3 ¥ 3 matrix that is the inverse of matrix A. In
order to use the cofactors approach given in Eq. (B.31), we first calculate the deter-
minant of A as |A| = -1. Using Eq. (B.23), the cofactors of the first row of A are

Similarly, the cofactors of the second and third rows are

Thus, Eq. (B.31) gives the inverse of A as

Inverse by Gaussian elimination. We shall first demonstrate the Gaussian elim-
ination procedure before presenting the Gauss-Jordan procedure. Since B is the inverse
of A, AB = I. Or writing this in the expanded form
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where bij’s are the elements of B. The foregoing equation can be considered as a system
of simultaneous equations having three different right-side vectors. We can solve for
each unknown column on the left-side corresponding to each right-side vector by using
the Gaussian elimination procedure. For example, considering the first column of B
only, we obtain

Using the elimination procedure in the augmented matrix form, we obtain

Using back substitution, we obtain the first column of B as b31 = -3, b21 = 1, 
b11 = -2. Similarly, we find b12 = 3, b22 = -1, b32 = 3, b13 = 0, b23 = 0, and b33 = 1.
Therefore, the inverse of A is given as

Inverse by Gauss-Jordan elimination. We can organize the procedure for cal-
culating the inverse of a matrix slightly differently. The augmented matrix can be
defined with all the three columns of the right side. The Gaussian elimination process
can be carried out below as well as above the main diagonal. With this procedure, the
left-hand 3 ¥ 3 matrix is converted to an identity matrix; and the right-hand 3 ¥ 3
matrix then contains the inverse of the matrix. When elimination is performed below
as well as above the main diagonal, the procedure is called Gauss-Jordan elimination.
The process proceeds as follows for calculating the inverse of A:
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The Gauss-Jordan procedure of computing the inverse of a 3 ¥ 3 matrix can be generalized
to any nonsingular n ¥ n matrix. It can also be coded systematically into a general-purpose
computer program to compute the inverse of a matrix.

B.4 Solution of m Linear Equations in n Unknowns
In the last section, the concept of determinants was used to determine the existence of a
unique solution for any n ¥ n system of equations. There are many instances in engineering
applications where the number of equations is not equal to the number of variables, i.e., rec-
tangular systems. In a system of m equations in n unknowns (m π n), the matrix of coeffi-
cients is not square. Therefore, no determinant can be associated with it. Thus, to treat such
systems, a more general concept than the determinants is needed. We introduce such a concept
in this section.

B.4.1 Rank of a Matrix
The general concept needed to develop the solution procedure for a general m ¥ n system of
equations is known as the rank of the matrix, defined as the order of the largest nonsingular
square submatrix of the given matrix. Using the idea of a rank of a matrix, we can develop
a general theory for the solution of a linear system of equations.

Let r be the rank of an m ¥ n matrix A. Then r satisfies the following conditions:

1. For m < n, r £ m < n (if r = m, the matrix is said to have full row rank).
2. For n < m, r £ n < m (if r = n, the matrix is said to have full column rank).
3. For n = m, r £ n (if r = n, the square matrix is called nonsingular).

In order to determine the rank of a matrix, we need to check the determinants of all the
submatrices. This is a cumbersome and time-consuming process. However, it turns out that
the Gauss-Jordan elimination process can be used to solve the linear system as well as deter-
mine the rank of the matrix. Using the Gauss-Jordan elimination procedure, we can trans-
form any m ¥ n matrix A into the following equivalent form (for m < n):

(B.32)

where I(r) is the r ¥ r identity matrix. Then r is the rank of the matrix, where r satisfies one
of the preceding three conditions. Note that the identity matrix I(r) is unique for any given
matrix.
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There is no need to perform elimination on the third column since 13 = 23 = 0 and
33 = 1. We observe from the above matrix that the last three columns give precisely

the matrix B, which is the inverse of A.
a

aa



B.4.2 General Solution of m ¥ n Linear Equations
Let us now consider solving a system of m simultaneous equations in n unknowns. The 
existence of a solution for such a system depends on the rank of the system’s coefficient 
matrix and the augmented matrix. Let the system be represented as

(B.33)

where A is an m ¥ n matrix, b is an m-vector, and x is an n-vector of the unknowns. Note
that m may be larger than n, i.e., there may be more equations than the number of unknowns.
In that case the system is either inconsistent (has no solution) or some of the equations are
redundant and may be deleted. The solution process described in the following provides
answers to these questions.

Note that if an equation is multiplied by a constant, the solution of the system is
unchanged. If c times one equation is added to another, the solution of the resulting system

Ax b=
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EXAMPLE B.6 Rank Determination by Elementary
Operations

Determine rank of the following matrix:

Solution. The elementary operations lead to the following matrices:

This matrix is in the form of Eq. (B.32). The rank of A is 2, since a 2 ¥ 2 identity
matrix is obtained at the upper left corner.

A ~
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~

~
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1 times column 1 to column 3;

2 times column 1 to column 4
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is the same as for the original system. Also, if two columns of the coefficient matrix are inter-
changed (for example, columns i and j), the resulting set of equations is equivalent to the
original system; however, the solution variables xi and xj are interchanged in the vector x as
follows:

(B.34)

This indicates that each column of the coefficient matrix has a variable associated with it as
also noted earlier, e.g., xi and xj for the ith and the jth columns, respectively.

Using the elementary row–column operations, it is always possible to convert a system
of m equations in n unknowns in Eq. (B.33) into an equivalent system of the form shown in
the following Eq. (B.35). In the equation, a ‘¯’ over each element indicates its new value,
obtained by performing row–column operations on the augmented matrix of the original
system. The value of subscript r in Eq. (B.35) is the rank of the coefficient matrix.

Note that if r+1 = r+2 = . . . = m = 0 in Eq. (B.35) then the last (m - r) equations become

These rows can be eliminated from further consideration. However, if any of the last 
(m - r) components of vector is not 0, then at least one of the last (m - r) equations is
inconsistent and the system has no solution. Note also that the rank of the coefficient matrix
equals the rank of the augmented matrix if and only if i = 0, i = (r + 1) to m. Thus, a system
of m equations in n unknowns is consistent (i.e., possesses solutions) if and only if the rank
of the coefficient matrix equals the rank of the augmented matrix.

If elementary operations are performed below as well as above the main diagonal to 
eliminate off-diagonal elements, an equivalent system of the following form is obtained:

(B.36)

Here I(r) is an r ¥ r identity matrix, and x(r) and x(n-r) are the r-component and (n - r)-
component subvectors of vector x. Note that depending on the values of r, n, and m, the 
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(B.35)



equation can have several different forms. For example, if r = n, the matrices Q(r¥n-r), 
0(m-r¥n-r), and the vector x(n-r) disappear; similarly, if r = m, matrices 0(m-r¥r), 0(m-r¥n-r), and the
vector p(m-r¥1) disappear. The system of equations (B.33) is consistent only if vector p = 0
in Eq. (B.36). It must be remembered that for every interchange of columns necessary to
produce Eq. (B.36), the corresponding components of x must be interchanged.

When the system is consistent, the first line of Eq. (B.36) gives

(B.37)

or

(B.38)

Equation (B.38) gives r components of x in terms of the remaining (n - r) components. If
the system is consistent, Eq. (B.38) represents the general solution of the system of equa-
tions Ax = b. The last (n - r) components of x can be assigned arbitrary values; any assign-
ment to xr+1, . . . , xn yields a solution. Thus, the system of equations has infinitely many
solutions. If r = n, the solution is unique. Equation (B.36) is known as the canonical repre-
sentation for the system of equations Ax = b. This form of equations is very useful in solving
linear programming problems in Chapter 4.

The following examples illustrate the Gauss-Jordan elimination procedure.

x q Qxr n r( ) -( )= -

I x Qx qr r n r( ) ( ) -( )+ =
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EXAMPLE B.7 General Solution by Gauss-Jordan Reduction

Find a general solution for the set of equations

Solution. The augmented matrix for the set of equations is given as

The following elimination steps are used to transform the system to a canonical
form:

1. Subtracting row 1 from rows 2 and 3, we convert elements below the main 
diagonal in the first column (a21 and a31) to zero, i.e., we eliminate x1 from 
equations 2 and 3, and obtain

x x x x
x

x

x

x

1 2 3 4
1

2

3

4

1 1 1 5

1 1 2 1

1 1 1 1

6

0

2

b

A x~ - -
-

È
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˘

˚

˙
˙
˙

=

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

and

x x x x1 2 3 4 2+ - + =

x x x x1 2 3 42 0+ - - =

x x x x1 2 3 45 6+ + + =

(a)

(b)
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2. Now, since a22 is zero we cannot proceed any further with the elimination
process. We must interchange rows and/or columns to bring a nonzero element
at location a22. We can interchange either column 3 or column 4 with column 2
to bring a nonzero element in the position a22. (Note: The last column can never
be interchanged with any other column; it is the right side of the system Ax =
b, so it does not correspond to a variable). Interchanging column 2 with column
3 (elementary column operation 1), we obtain

Note that the positions of the variables x2 and x3 are also interchanged in the
vector x.

3. Now, dividing row 2 by -3, multiplying it by 2 and adding to row 3 gives

(e)

Thus elements below the main diagonal in Eq. (e) are zero and the Gaussian 
elimination process is complete.

4. To put the equations in the canonical form of Eq. (B.36), we need to perform 
elimination above the main diagonal also (Gauss-Jordan elimination). Sub-
tracting row 2 from row 1, we obtain

(f)

5. Using the matrix of Eq. (f ), the given system of equations is transformed into
a canonical form of Eq. (B.36) as follows:
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Basic Solutions In the preceding general solution, we see that x2 and x4 can be given arbi-
trary values, and the corresponding x1 and x3 calculated from the Eq. (k). Thus the system has
an infinite number of solutions. A particular solution of much interest in linear programming
(LP) is obtained by setting x(n-r) = 0 in the general solution of Eq. (B.38). Such a solution is
called the basic solution of the system of equations Ax = b. For the present example, a basic
solution is x1 = 4, x2 = 0, x3 = 2, and x4 = 0, which is obtained from Eq. (k) by setting 
x2 = x4 = 0.

Note that although Eq. (k) give an infinite number of solutions for the system of equa-
tions, the number of basic solutions is finite. For example, another basic solution can be
obtained by setting x2 = x3 = 0 and solving for x1 and x4. It can be verified that this basic solu-
tion is x1 = 1, x2 = 0, x3 = 0, and x4 = 1. The fact that the number of basic solutions is finite
is very important for the linear programming problems discussed in Chapter 6. The reason
is that the optimum solution for an LP problem is one of the basic solutions.
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or

where

6. Since p = 0, the given system of equations is consistent (i.e., it has solutions).
Its general solution, in the form of Eq. (B.38) is

Or, in the expanded notation, the general solution is

(k)

7. It can be seen that the general solution of Eq. (k) gives x1 and x3 in terms of x2

and x4; i.e., x2 and x4 are independent variables and x1 and x3 are dependent on
them. The system has infinite solutions because any specification for x2 and x4

gives a solution.
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x

x

x

x
1

3

2

4

4

2

1 3

0 2
È
ÎÍ

˘
˚̇

= È
ÎÍ

˘
˚̇

- È
ÎÍ

˘
˚̇
È
ÎÍ

˘
˚̇

x xr n rx x x x( ) -( )= ( ) = ( )1 3 2 4, , ,

Q q p 0= È
ÎÍ

˘
˚̇

= È
ÎÍ

˘
˚̇

=
1 3

0 2

4

2
; ;

I

0

Q

0

q

p
2

1 2

2 2

1 2

1

3

2

4

2 1

1 1

( )

¥( )

¥( )

¥( )

¥( )

¥( )

È
ÎÍ

˘
˚̇

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

= È
ÎÍ

˘
˚̇

x

x

x

x

————— — —— (h)

(i)

( j)



634 Appendix B Vector and Matrix Algebra

EXAMPLE B.8 Gauss-Jordan Reduction Process 
in Tabular Form

Find a general solution for the following set of equations using a tabular form of the
Gauss-Jordan reduction process:

Solution. The iterations of the Gauss-Jordan reduction process for the linear system
are explained in Table B-1. Three iterations are needed to reduce the given system to
the canonical form of Eq. (B.36). Note that at the second step, the element a33 is zero
so it cannot be used as a pivot element. Therefore, we use element a34 as the pivot
element and perform elimination in the x4 column. This effectively means that we
interchange column x3 with column x4 (as was done in Example B.7).

Rewriting the results from the third step of Table B-1 in the form of Eq. (B.36),
we get
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x x x x1 2 3 43 2 1+ - - =

x x x x1 2 3 42 3- + + =

2 2 21 2 3 4x x x x+ + - =

- + - + = -x x x x1 2 3 42 3 1

TABLE B-1 General Solution of Linear System of Equations of Example B.8 by Gauss-
Jordan Elimination

Step x1 x2 x3 x4 b

-1 2 -3 1 -1 Divide row 1 by -1 and use it to

Initial 2 1 1 -2 2 perform elimination in column x1,
1 -1 2 1 3 e.g., multiply new row 1 by 2
1 3 -2 -1 1 and subtract it from row 2, etc.
1 -2 3 -1 1

First iteration 0 5 -5 0 0 Divide row 2 by 5 and perform
0 1 -1 2 2 elimination in column x2

0 5 -5 0 0
1 0 1 -1 1

Second iteration 0 1 -1 0 0 Divide row 3 by 2 and perform
0 0 0 2 2 elimination in column x4

0 0 0 0 0
1 0 1 0 2 Canonical form with columns x1,

Third iteration 0 1 -1 0 0 x2, and x4 containing the identity
0 0 0 1 1 matrix
0 0 0 0 0

(a)

(b)



To summarize the results of this section, we note that

1. The m ¥ n system of equations (B.33) is consistent if the rank of the coefficient
matrix is the same as the rank of the augmented matrix. A consistent system implies
that it has a solution.

2. If the number of equations is less than the number of variables (m < n) and the
system is consistent, having rank less than or equal to m (r £ m), then it has
infinitely many solutions.

3. If m = n = r, then the system (B.33) has a unique solution.

B.5 Concepts Related to a Set of Vectors
In several applications, we come across a set of vectors. It is useful to discuss some concepts
related to these sets, such as the linear independence of vectors and vector spaces. In this
section, we briefly discuss these concepts and describe a procedure for checking the linear
independence of a set of vectors.

B.5.1 Linear Independence of a Set of Vectors
Consider a set of k vectors each of dimension n:

where a superscript (i) represents the ith vector. A linear combination of vectors in the set A
is another vector obtained by scaling each vector in A and adding all the resulting vectors.
That is, if b is a linear combination of a vector in A, then it is defined as

(B.39a)

where x1, x2, . . . , xk are some scalars. The preceding equation can be written compactly in
matrix form as

(B.39b)

where x is a k-component vector and A is an n ¥ k matrix with vectors a(i) as its columns.

b Ax=

b a a a a= + + + =( ) ( ) ( ) ( )

=
Âx x x xk

k
i

i

i

k

1
1

2
2

1

. . .

A k= { }( ) ( ) ( )a a a1 2, , . . . ,
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Since the last equation essentially gives 0 = 0, the given system of equations is con-
sistent (i.e., it has solutions). Also, since the rank of the coefficient matrix is 3, which
is less than the number of equations, there are an infinite number of solutions for the
linear system. From the preceding equation the general solution is given as

A basic solution is obtained by setting x3 to zero as x1 = 2, x2 = 0, x3 = 0, x4 = 1.

x4 1=

x x2 30= +

x x1 32= -

(c)



To determine if the set of vectors is linearly independent or dependent, we set the linear
combination of Eq. (B.39) to zero as

(B.40)

This gives a homogeneous system of equations with xi’s as unknowns. There are n equations
in k unknowns. Note that x = 0 satisfies Eq. (B.40). If x = 0 is the only solution, then the set
of vectors is linearly independent. In this case rank r of the matrix A must be equal to k (the
number of vectors in the set). If there exists a set of scalars xi not all zero and satisfying Eq.
(B.40), then the vectors a(l), a(2), . . . , a(k) are said to be linearly dependent. In this case rank
r of A is less than k.

If a set of vectors is linearly dependent, then one or more vectors are parallel to each other,
or there is at least one vector that can be expressed as a linear combination of the rest. That
is, at least one of the scalars x1, x2, . . . , xk must be nonzero. If we assume xj to be nonzero,
then Eq. (B.40) can be written as follows:

Or, since xj π 0, we can divide both sides by it to obtain

(B.41)

In Eq. (B.41) we have expressed a( j) as a linear combination of a(1), a(2), . . . , a( j-1), a( j+1), . . . ,
a(k). In general, we see that if a set of vectors is linearly dependent, then at least one of them can
be expressed as a linear combination of the rest.
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EXAMPLE B.9 Check for Linear Independence of Vectors

Check linear independence of the following set of vectors:

(i)

(ii)

Solution. To check for linear independence, we form the linear combination of 
Eq. (B.39) and set it to zero as in Eq. (B.40). The resulting homogeneous system of
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equations is solved for the scalars xi. If all the scalars are zero, then the given set of
vectors is linearly independent; otherwise it is dependent.

The vectors in set (i) are linearly dependent, since x1 = 1, x2 = 2, and x3 = -1 give
the linear combination of Eq. (B.40) a zero value, i.e.,

It may also be checked that the rank of the following matrix whose columns are the
given vectors is only 2; so the set of vectors is linearly dependent:

For set (ii), let us form a linear combination of the given vectors and set it to zero:

(c)

This is a vector equation that gives the following system when written in the expanded
form:

(d)

(e)

(f)

(g)

We solve the preceding system of equations by the elimination process.

From Eq. (g), we find x3 = 2x1. Equations (d) to (f ) then become

(h)

(i)

( j)

From Eq. ( j), we find x2 = -5x1. Substituting this result into Eqs. (h) and (i) gives

(k)

(l)

Equations (k) and ( l) imply x1 = 0; therefore, x2 = -5x1 = 0, x3 = 2x1 = 0. Thus, the
only solution to Eq. (c) is the trivial solution x1 = x2 = x3 = 0. The vectors a(1), a(2), and
a(3) are therefore linearly independent.
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Equation (B.40) may be considered as a set of n simultaneous equations in k unknowns.
To see this, define the k vectors as

Also, let A(n¥k) = [a(1), a(2), . . . , a(k)], i.e., A is a matrix whose ith column is the ith vector a(i).
Then Eq. (B.40) can be written as

(B.42)

The results of Section B.4 show that there is a unique solution to Eq. (B.42) if and only
if the rank r of A is equal to k (r = k < n), the number of columns of A. In that case, the
unique solution is x = 0. Therefore, the vectors a(l), a(2), . . . , a(k) are linearly independent if
and only if the rank of the matrix A is k (the number of vectors in the set).

Note that if k > n, then the rank of A cannot exceed n. Therefore, a(1), a(2), . . . , a(k) will
always be linearly dependent if k > n. Thus, the maximum number of linearly dependent 
n-component vectors is n. Any set of (n + 1) vectors is always linearly dependent.

Given any set of n linearly independent (n-component) vectors, a(1), a(2), . . . , a(n), any other
(n-component) vector b can be expressed as a unique linear combination of these vectors.
The problem is to choose a set of scalars x1, x2, . . . , xn such that

(B.43)

We wish to show that a solution exists for Eq. (B.43) and it is unique. Note that a(1), a(2),
. . . , a(n) are linearly independent. Therefore, the rank of the coefficient matrix A is n, and
the rank of the augmented matrix [A, b] is also n. It cannot be (n + 1) because the matrix
has only n rows. Thus, Eq. (B.43) always possesses a solution for any given b. Moreover, A
is nonsingular, hence the solution is unique.

In summary, we state the following points for a k set of vectors each having n components:

1. If k > n, the set of vectors is always linearly dependent, e.g., three vectors each
having two components. That is, the number of linearly independent vectors is
always less than or equal to n, e.g., for two-component vectors, there are at the most
two linearly independent vectors.

2. If there are n linearly independent vectors each of dimension n, then any other n-
component vector can be expressed as a unique linear combination of them, e.g.,
given two linearly independent vectors a(1) = (1, 0) and a(2) = (0, 1) of dimension
two, any other vector such as b = (b1, b2) can be expressed as a unique linear
combination of a(1) and a(2).

3. Linear independence of the given set of vectors can be determined in two ways:
(i) Form the matrix A of dimension n ¥ k whose columns are the given vectors.

Then, if rank r is equal to k (r = k), the given set is linearly independent;
otherwise it is dependent.
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(ii) Set the linear combination of the given vectors to zero as Ax = 0. If x = 0 is the
only solution for the resulting system, then the set is independent; otherwise it is
dependent.

B.5.2 Vector Spaces
Before defining the concept of a vector space, let us define closure under addition and scalar
multiplication:

Definition: Closure under addition. A set of vectors is said to be closed under
addition if the sum of any two vectors in the set is also in the set.

Definition: Closure under scalar multiplication. A set of vectors is said to be closed
under scalar multiplication if the product of any vector in the set by a scalar gives a
vector in the set.

Definition: Vector space. A nonempty set S of elements (vectors) x, y, z, . . . is called a
vector space if the two algebraic operations (vector addition and multiplication by a
real scalar) on them satisfy the following properties:

1. Closure under addition: if x Œ S and y Œ S then x + y Œ S.
2. Commutative in addition: x + y = y + x.
3. Associative in addition: (x + y) + z = x + (y + z).
4. Identity in addition: there exists a zero vector 0 in the set S such that x + 0 = x for

all x.
5. Inverse in addition: there exists a -x in the set S such that x + (-x) = 0 for all x.
6. Closure under scalar multiplication: for real scalars a, b, . . . , if x Œ S then ax Œ S.
7. Distributive: (a + b)x = ax + bx.
8. Distributive: a(x + y) = ax + ay.
9. Associative in scalar multiplication: (ab)x = a(bx).

10. Identity in scalar multiplication: 1x = x.

In the preceding section, it was noted that the maximum number of linearly independent
vectors in the set of all n-component vectors is n. Thus, for every subset of this set, there
exists some maximum number of linearly independent vectors. In particular, every vector
space has a maximum number of linearly independent vectors. This number is called the
dimension of the vector space. If a vector space has dimension k, then any set of k linearly
independent vectors in the vector space is called a basis for the vector space. Any other vector
in the vector space can be expressed as a unique linear combination of the given set of basis
vectors.
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EXAMPLE B.10 Check for Vector Space

Check if the set S = {(x1, x2, x3) | x1 = 0} is a vector space.

Solution. To see this consider any two vectors in S as
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È
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where scalars a, b, c, and d are completely arbitrary. Then,

Therefore, x + y is in the set S. Also, for any scalar a,

Therefore, ax is in the set S. Thus, S is closed under addition and scalar multiplica-
tion. All other properties for the definition of a vector space can be proved easily. To
show the property (2), we have

“Associative in addition” is shown as

For identity in addition we have a zero vector in the set S as

such that

Inverse in addition exists if we define -x as
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such that

In a similar way, properties (7) to (10) can easily be shown.
Therefore, the set S is a vector space. Note that the set V = {(x1, x2, x3) | x1 = 1} is

not a vector space.
Let us now determine the dimension of S. Note that if A is a matrix whose columns

are vectors in S, then A has three rows, and the first row contains only zeros. Thus,
the rank of A must be less than or equal to 2, and the dimension of S is either 1 or 2.
To show that it is in fact 2, we need only find two linearly independent vectors. The
following are three such sets of two linearly independent vectors from the set S:

Each of these three sets is a basis for S. Any vector in S can be expressed as a linear
combination of each of these sets. If x = (0, c, d) is any element of S, then

(i) x = ca(1) + da(2)
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B.6 Eigenvalues and Eigenvectors
Given an n ¥ n matrix A, any nonzero vector x satisfying

(B.44)

where l is a scale factor, is called an eigenvector (proper or characteristic vector). The scalar
l is called the eigenvalue (proper or characteristic value). Since x π 0, from Eq. (B.44) we
see that l is given as roots of the characteristic equation

(B.45)

Equation (B.45) gives an nth degree polynomial in l. Roots of this polynomial are the
required eigenvalues. After eigenvalues have been determined, eigenvectors can be deter-
mined from Eq. (B.44).

The coefficient matrix A may be symmetric or asymmetric. For many applications, A is
a symmetric matrix, so we consider this case in the text. Some properties of eigenvalues and
eigenvectors are:

1. Eigenvalues and eigenvectors of a real symmetric matrix are real. They may be
complex for real nonsymmetric matrices.

2. Eigenvectors corresponding to distinct eigenvalues of real symmetric matrices are
orthogonal to each other (that is, their dot product vanishes).

A I- =l 0

Ax x= l
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EXAMPLE B.11 Calculation of Eigenvalues and Eigenvectors

Find eigenvalues and eigenvectors of the matrix

Solution. The eigenvalue problem is defined as

The characteristic polynomial is given by |A - lI| = 0,

or,

The roots of this polynomial are

Therefore, the eigenvalues are 3 and 1.
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The eigenvectors are determined from Eq. (B.44). For l1 = 3, Eq. (B.44) is

or, x1 = x2. Therefore, a solution of the above equation is (1, 1). After normalization
(dividing by its length), the first eigenvector becomes

For l2 = 1, Eq. (B.44) is

or x1 = -x2. Therefore, a solution of the above equation is (1, -1). After normaliza-
tion, the second eigenvector is

It may be verified that x(l) ◊x(2) is zero, i.e., x(l) and x(2) are orthogonal to each other.

x 2 1

2

1

1
( ) = Ê

Ë
ˆ
¯ -

È
ÎÍ

˘
˚̇

2 1 1

1 2 1

0

0
1

2

-( )
-( )

È
ÎÍ

˘
˚̇

È
ÎÍ

˘
˚̇

= È
ÎÍ

˘
˚̇

x

x

x 1 1

2

1

1
( ) = È

ÎÍ
˘
˚̇

2 3 1

1 2 3

0

0
1

2

-( )
-( )

È
ÎÍ

˘
˚̇

È
ÎÍ

˘
˚̇

= È
ÎÍ

˘
˚̇

x

x

B.7* Norm and Condition Number of a Matrix
B.7.1 Norm of Vectors and Matrices
Every n-dimensional vector x has a scalar-valued function associated with it, denoted as ||x||.
It is called a norm of x if it satisfies the following three conditions:

1. ||x|| > 0 for x π 0, and ||x|| = 0 only when x = 0.
2. ||x + y|| £ ||x|| + ||y|| (triangle inequality).
3. ||ax|| = |a| ||x|| where a is a scalar.

The ordinary length of a vector for n ≤ 3 satisfies the foregoing three conditions. The
concept of norm is therefore a generalization of the ordinary length of a vector in one-, two-,
or three-dimensional Euclidean space. For example, it can be verified that the Euclidean 
distance in the n-dimensional space

(B.46)

satisfies the three norm conditions and hence is a norm.
Every n ¥ n matrix A has a scalar function associated with it called its norm. It is denoted

as ||A|| and is calculated as

x x x x x= = ◊T

(f)

(g)

(h)

(i)



(B.47)

Note that since Ax is a vector, Eq. (B.47) says that the norm of A is determined by the vector
x that maximizes the ratio ||Ax||/||x||. The three conditions of the norm can be verified easily
for Eq. (B.47), as follows:

1. ||A|| > 0 unless it is a null matrix in which case it is zero.
2. ||A + B|| £ ||A|| + ||B||.
3. ||aA|| = |a| ||A|| where a is a scalar.

Other vector norms can also be defined. For example, the summation norm and the max-
norm (called the “•-norm”) are defined as

(B.48)

They also satisfy the three conditions of the norm of the vector x.
If l2

1 is the largest eigenvalue of ATA, then it can be shown using Eq. (B.47) that the norm
of A is also defined as

Similarly, if l2
n is the smallest eigenvalue of ATA, then the norm of A-1 is defined as

B.7.2 Condition Number of a Matrix
The condition number is another scalar associated with an n ¥ n matrix. The idea of a con-
dition number is useful while solving a linear system of equations Ax = b. Often there is
uncertainty in elements of the coefficient matrix A or the right side vector b. The question
then is, how does the solution vector x change for small perturbations in A and b? The answer
to this question is contained in the condition number of the matrix A.

It can be shown that the condition number of an n ¥ n matrix A, denoted as cond (A), is
given as

where l2
1 and l2

n are the largest and the smallest eigenvalues of ATA. It turns out that a larger
condition number indicates that the solution x is very sensitive to variations in the elements
of A and b. That is, small changes in A and b give large changes in x.

A very large condition number for the matrix A indicates it to be nearly singular. The cor-
responding system of equations Ax = b is called ill-conditioned.
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Exercises for Appendix B
Evaluate the following determinants.

B.1

B.3

For the following determinants, calculate values of the scalar l for which determinants
vanish.

B.4

Determine the rank of the following matrices.

B.6

B.8

Obtain the solution of the following equations using the Gaussian elimination procedure.

B.9 2x1 + 2x2 + x3 = 5 B.10 x2 - x3 = 0
x1 - 2x2 + 2x3 = 1 x1 + x2 + x3 = 3
x2 + 2x3 = 3 x1 - 3x2 = -2

B.11 2x1 + x2 + x3 = 7 B.12 2x1 + x2 - 3x3 + x4 = 1
4x2 - 5x3 = -7 x1 + 2x2 + 5x3 - x4 = 7
x1 - 2x2 + 4x3 = 9 -x1 + x2 + x3 + 4x4 = 5

2x1 - 3x2 + 2x3 - 5x4 = -4

B.13 3x1 + x2 + x3 = 8 B.14 x1 + x2 - x3 = 2
2x1 - x2 - x3 = -3 2x1 - x2 + x3 = 4
x1 + 2x2 - x3 = 2 -x1 + 2x2 + 3x3 = 3

B.15 -x1 + x2 - x3 = -2 B.16 -x1 + 2x2 + 3x3 = 4
-2x1 + x2 + 2x3 = 6 2x1 - x2 - 2x3 = -1
x1 + x2 + x3 = 6 x1 - 3x2 + 4x3 = 2
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B.17 x1 + x2 + x3 + x4 = 2 B.18 x1 + x2 + x3 + x4 = -1
2x1 + x2 - x3 + x4 = 2 2x1 - x2 + x3 - 2x4 = 8
-x1 + 2x2 + 3x3 + x4 = 1 3x1 + 2x2 + 2x3 + 2x4 = 4
3x1 + 2x2 - 2x3 - x4 = 8 -x1 - x2 + 2x3 - x4 = -2

Check if the following systems of equations are consistent. If they are, calculate their general
solution.

B.19 3x1 + x2 + 5x3 + 2x4 = 2 B.20 x1 + x2 + x3 + x4 = 10
2x1 - 2x2 + 4x3 = 2 -x1 + x2 - x3 + x4 = 2
2x1 + 2x2 + 3x3 + 2x4 = 1 2x1 - 3x2 + 2x3 - 2x4 = -6
x1 + 3x2 + x3 + 2x4 = 0

B.21 x2 + 2x3 + x4 = -2 B.22 x1 + x2 + x3 + x4 = 0
x1 - 2x2 - x3 - x4 = 1 2x1 + x2 - 2x3 - x4 = 6
x1 - 2x2 - 3x3 + x4 = 1 3x1 + 2x2 + x3 + 2x4 = 2

B.23 x1 + x2 + x3 + 3x4 - x5 = 5 B.24 2x1 - x2 + x3 + x4 - x5 = 2
2x1 - x2 + x3 - x4 + 3x5 = 4 -x1 + x2 - x3 - x4 + x5 = -1
-x1 + 2x2 - x3 + 3x4 - 2x5 = 1 4x1 + 2x2 + 3x3 + 2x4 - x5 = 20

B.25 3x1 + 3x2 + 2x3 + x4 = 19 B.26 x1 + x2 + 2x4 - x5 = 5
2x1 - x2 + x3 + x4 - x5 = 2 x1 + x2 + x3 + 3x4 - x5 = 5
4x1 + 2x2 + 3x3 + 2x4 - x5 = 20 2x1 - x2 + x3 - x4 + 3x5 = 4

-x1 + 2x2 - x3 + 3x4 -2x5 = 1

B.27 x2 + 2x3 + x4 + 3x5 + 2x6 = 9
-x1 + 5x2 + 2x3 + x4 + 2x5 + x7 = 10
5x1 - 3x2 + 8x3 + 6x4 + 3x5 - 2x8 = 17
2x1 - x2 + x4 + 5x5 - 2x8 = 5

Check the linear independence of the following set of vectors.

B.28

B.29

Find eigenvalues for the following matrices.
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Nonlinear equations are encountered in many fields of engineering. In design optimiza-
tion, such equations arise when we write the necessary conditions of optimality for uncon-
strained or constrained problems, discussed in Chapter 4. Roots of that nonlinear set of
equations are the candidate minimum designs. Thus the problem of finding roots of nonlin-
ear equations must be treated.

The analytical solution of nonlinear equations is almost impossible except in very simple
cases where elimination of variables can be carried out. Therefore, numerical methods and
digital computers must be used to find the solutions of such systems. In this appendix, we
describe a basic numerical method known as the Newton-Raphson method for finding roots
of nonlinear equations. Many variations of the method as well as other methods are avail-
able in the literature (Atkinson, 1978). The method can find only one root at a time depend-
ing on the initial estimate for the root. Therefore, several widely separated starting points
must be tried to find different roots. The method may also fail to converge unless the start-
ing point is in some neighbourhood of the solution. If it fails, a different starting point should
be tried.

We shall describe a basic algorithm that can be coded into a computer program. However,
most computer center libraries have several programs for solving a system of nonlinear equa-
tions. These programs can be used directly. Therefore, the possibility of utilizing existing
programs must be investigated before attempting to code the algorithm.

C.1 Single Nonlinear Equation
To develop the method, let us first consider the problem of finding roots of a general non-
linear equation

(C.1)

where F(x) is a nonlinear function of an independent variable x. A simple way of finding
roots is to graph F(x) versus x. Then, the points where the function crosses the x axis are the
roots of F(x) = 0.

F x( ) = 0



The second method developed by Newton-Raphson is an iterative numerical procedure in
which we start with an initial estimate for a root. For the estimate, the function F(x) will gen-
erally not have zero value, i.e., the initial estimate is usually not a root of F(x) = 0. There-
fore, we try to improve the estimate until a root is found. This process, requiring several
cycles (or iterations) before the root is found, can be described by the following equation:

(C.2)

where superscript k is the iteration number, x(0) is an initial estimate (starting point), and Dx(k)

is a change in the estimate at the kth iteration. The iterative process is continued until F(x)
is reduced to zero or a small acceptable value, say d (i.e., the stopping criterion is |F| ≤ d ).
Thus the Newton-Raphson method is reduced to somehow computing Dx(k) at each iteration
of the process. Note that the iteration concept described by Eq. (C.2) is very general because
many other numerical methods are based on the same formula.

To develop an expression for Dx(k), we use a linear (first-order) Taylor series expansion for
the function F(x) about the current estimate x(k). Therefore, from Eq. (4.7), we have

(C.3)

In Eq. (C.3), x(k) is the current estimate for the root, F(x(k)) is the current value of the func-
tion F(x), and dF(x(k))/dx is the current slope (gradient) of F(x). Our objective is to find Dx(k)

(an improvement in the current estimate) such that the equation F(x) = 0 is satisfied at the
new estimate, i.e., F(x(k) + Dx(k)) = 0. Therefore, setting Eq. (C.3) to zero, Dx(k) is given as

(C.4a)

For each k, Dx(k) is calculated from Eq. (C.4) and a new estimate for the root is obtained from
Eq. (C.2). The process is repeated until F(x) goes to zero.

The Newton-Raphson method also has a simple geometrical representation. To see this,
let us consider the graph of a function F(x) versus x shown in Fig. C-1. Point A on the curve
represents the current value of the function F(x), and point B on the x-axis represents the
current estimate x(k) for the root of F(x) = 0. Point x* is the root of F(x) = 0. The objective
of the method is to reach point x*. The method proceeds by following the tangent to the curve
F(x) at point A. Intersection of the tangent with the x-axis gives point C, x(k+1) from where
the process is repeated.

The geometry of Fig. C-1 can be used to derive Eq. (C.4a). To do this, we consider the 
triangle ABC:

or

which is same as Eq. (C.4a).
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(C.4b)

(C.4c)



Steps of the iterative Newton-Raphson method are summarized as follows:

Step 1. Select a starting point x(0) and the parameter d for stopping the iterative process.
Set the iteration counter k = 0.

Step 2. Calculate the function F at the current estimate x(k). Check for convergence; if
|F(x(k))| ≤ d, then stop the iterative process and accept x(k) as a root of F(x) = 0.
Otherwise continue.

Step 3. Calculate the derivative of the function dF/dx at the current estimate x(k).
Step 4. Calculate Dx(k) = -F(x(k))/(dF/dx).
Step 5. Update the estimate for the root as x(k+1) = x(k) + Dx(k).
Step 6. Set k = k + 1 and go to Step 2.

We demonstrate the procedure in the following example.
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F (x )

Dx 
(k )

F (x 
(k ))

x 
(k ) x 

(k +1 ) x*
x

A

B C
q

FIGURE C-1 Graphical representation of the Newton-Raphson method for finding roots of 
F(x) = 0.

EXAMPLE C.1 Roots of a Nonlinear Equation by the
Newton-Raphson Method

Find a root of the following equation using the Newton-Raphson method starting from
the point x(0) = 1.0:

Solution. The derivative of F(x) for use in Eq. (C.4) is given as

dF dx x= -
2

3
cos

F x
x

x( ) = - =
2

3
0sin (a)

(b)



C.2 Multiple Nonlinear Equations
The foregoing Newton-Raphson procedure can be generalized for the case of n nonlinear
equations in n unknowns. We first derive the procedure and then summarize it in a step-by-
step algorithm. The reader who is not interested in the derivation can go directly to the 
algorithm and the example problem.

A set of nonlinear equations can be written in vector form as

(C.5)

where F and x are both n-dimensional vectors. In the iterative procedure, we start with an
estimate x(0) for the root of Eq. (C.5). Just as before, this estimate is improved based on the
vector form of Eq. (C.2) as

(C.6)

where x(0) is an initial estimate, k is an iteration number, and Dx(k) is a vector of changes in
the estimate x(k). The iterative procedure is continued until x(k) satisfies Eq. (C.5). Since
numerical computations are not exact, we need a criterion for judging when a root is found.
A common method is to calculate the length of the vector F(x) as

x x xk k k k+( ) ( ) ( )= + =1 0 1 2D , , , , . . .

F x 0( ) =
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We follow the steps of the foregoing algorithm:

1. x(0) = 1.0; let d = 0.001; k = 0.
2. F(x(0)) = (1) - sin(1) = -0.1750. 

|F| = 0.1750 > 0.001, so x(0) = 1.0 is not a root.
3. dF/dx = - cos(1) = 0.1264.

4.

5. x(0+1) = x(0) + Dx(0); or x(1) = 1.0 + 1.3830 = 2.3830.
6. k = 0 + 1 = 1; go to Step 2.

Results of various iterations of the preceding procedure are summarized in Table 
C-1. At the fourth iteration |F(x(4))| = 0.00013 < 0.001 satisfying the specified stop-
ping criteria. Therefore, x(4) = 1.496 is taken as an estimate of the root for the given
function. To find other roots, we must repeat the preceding process from another start-
ing point.

Dx
F x

dF dx
0

0 0 1750

0 1264
1 3830( )

( )

=
- ( )

= -
-( )
( ) =

.
.

. .

2
3

2
3

TABLE C-1 Newton-Raphson Iterations for Example C.1: F(x) = 2x/3 - sinx

k x(k) F(x(k)) dF(x(k))/dx Dx(k)

0 1.000 -0.175 0.1264 1.383
1 2.383 0.900 0.1393 -0.646
2 1.737 0.172 0.832 -0.207
3 1.530 0.021 0.626 -0.034
4 1.496 0.00013 — —



(C.7)

and accept x* as a root of F(x) = 0 if

(C.8)

where d > 0 is some small specified number. Another stopping criterion might be to require
the largest component of F(x) to satisfy the stopping criterion, i.e., |Fi|max ≤ 0.

Now our task is to develop a formula for Dx(k) so that Eq. (C.6) may be used to improve
the estimate for the root of Eq. (C.5). To do this, we follow the procedure used for the case
of one equation in one variable, i.e., we write a linear Taylor series expansion of each func-
tion. To derive the procedure, we consider the case of two equations in two unknowns in Eq.
(C.5) and then generalize the result to the case of n equations in n unknowns. Equation (C.5)
for the case of n = 2 is given as

(a)

and the iterative equation (C.6) becomes

(b)

To obtain expression for Dx1
(k) and Dx2

(k), we write linear Taylor series expansions for the func-
tions F1 and F2 in Eq. (a) about the current estimate x(k) and, as before, set them to zero:

(c)

where the partial derivatives ∂Fi/∂xj are evaluated at the current estimate x1
(k) and x2

(k). Equa-
tion (c) shows two linear equations in two unknowns Dx1

(k) and Dx2
(k); all other quantities are

known. Therefore, they are solved for Dx1
(k) and Dx2

(k), and Eq. (b) is used to update the esti-
mate for the root. The process is repeated until convergence is achieved.

Equation (c) can be written in matrix form as

(d)

where F1
(k) = F1(x1

(k), x2
(k)) and F2

(k) = F2(x1
(k), x2

(k)) are the function values at the current estimate
x(k). Or, we can write the equation compactly as
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(C.9)

where the vector F(k), matrix J, and vector Dx(k) are easily identified from Eq. (d). The matrix
J in Eq. (C.9) is usually called the Jacobian of the system of equations.

Equation (C.9) allows us to generalize the Newton-Raphson method for n equations in n
unknowns. In that case F(k) and Dx(k) become n-dimensional vectors and J becomes an n ¥ n
matrix of partial derivatives defined as

(C.10)

Using the procedure for calculating the Jacobian for two equations in two unknowns identi-
fied in Eq. (d), we observe that the ith row of J in Eq. (C.10) is obtained by differentiating
the function Fi(x) with respect to all the variables. That is, the first row is obtained by dif-
ferentiating F1 with respect to x1, x2, . . . , xn, the second row by differentiating F2, and so on.
Note that the ith row of the Jacobian in Eq. (C.10) can be also considered as a transpose of
the gradient vector of Fi(x), i.e., —FT

i.
If the inverse of the matrix J can be calculated, then an improvement to the estimate for

the root is obtained from Eq. (C.9) as

(C.11)

In numerical calculations, however, it is inefficient to invert matrices. Therefore, it is rec-
ommended that Dx(k) be computed by solving the following linear system of equations
obtained from Eq. (C.9) as

(C.12)

The Newton-Raphson algorithm is then summarized as follows:

Step 1. Select a starting point x(0) and the parameter d for stopping the iterative process.
Set the iteration counter k = 0.

Step 2. Calculate the functions in F at the current estimate x(k). Check for convergence;
if ||F(k)||  ≤ d, then stop the iterative process and accept x(k) as a root of the equation
F(x) = 0. Otherwise, continue.

Step 3. Calculate the Jacobian matrix J of partial derivatives at the current estimate x(k)

as in Eq. (C.10), i.e., calculate [∂Fi/∂xj]; i = 1 to n; j = 1 to n.
Step 4. Calculate Dx(k) from Eq. (C.12).
Step 5. Update the estimate for the root using Eq. (C.6).
Step 6. Set k = k + 1 and go to Step 2.

Note that since the system of equations F(x) = 0 is nonlinear, it has in general many roots.
The Newton-Raphson algorithm finds only one root at a time. The method converges to a
root depending on the starting estimate x(0). To find other roots we should restart the algo-
rithm by selecting a different initial estimate x(0). Note also that the method will not work if
the Jacobian J is singular at any iteration since its inverse cannot be calculated. In addition,
the method may fail to converge even if Jacobian J is nonsingular at all iterations. Several
modifications of the basic Newton-Raphson method have been developed to make the method
stable and convergent. These extensions, however, are beyond the scope of the present text.
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EXAMPLE C.2 Roots of Nonlinear Equations by the Newton-
Raphson Method

Find a root of the following 2 ¥ 2 system of nonlinear equations using the Newton-
Raphson procedure:

(a)

(b)

Solution. To use the Newton-Raphson algorithm, we need to compute the Jacobian
for the system of Eqs. (a) and (b). Using the definition given in Eq. (C.10), the 
Jacobian is given as

(c)

We use the steps of the algorithm as follows:

1. Let x(0) = (500.0, 1.0) and d = 0.10; set k = 0.
2. Calculate the function values from Eqs. (a) and (b)

||F|| = = 7750 > 0.10 so x(0) is not a root; continue the iterative 
process.

3. Jacobian matrix is calculated using Eq. (c):

4. Equation (C.9) or (C.12) defines the following linear system of equations for 
Dx1

(0) and Dx2
(0):
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Solving the two equations by the elimination process, we get Dx1
(0) = 151.0, 

Dx2
(0) = 0.330.

For this problem it is possible to invert the Jacobian matrix J and use Eq. (C.11)
for calculating Dx1

(0) and Dx2
(0). J-1 is calculated using the cofactors approach (Appen-

dix B, Section B.3) as

Using Eq. (C.11), we obtain the same values for Dx1
(0) and Dx2

(0) as before.
5. Update the estimate for the root using Eq. (C.6) or Eqs. (b)

6. Set k = 0 + 1 = 1, and go to Step 2.

Results from various iterations of the Newton-Raphson algorithm are summarized
in Table C-2. The table is generated by repeating the six steps of the algorithm. At the
seventh iteration ||F(7)|| = 0.05 < 0.10. Thus x(7) = (1000.3, 3.9995) is considered as a
root for the system of Eqs. (a) and (b) satisfying the desired accuracy. The exact root
is x* = (1000.0, 4.0).
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TABLE C-2 Newton-Raphson Iterations for Example C.2

k x1
(k) x2

(k) ||F(k)||

0 500.0 1.0000 7750.00
1 651.0 1.3300 3206.00
2 822.0 1.7700 1291.00
3 976.0 2.3500 489.20
4 1047.0 3.0490 161.30
5 1025.0 3.6770 38.50
6 1003.0 3.9630 3.98
7 1000.3 3.9995 0.05



Exercises for Appendix C
Find roots of the following equations using the Newton-Raphson method and d = 0.001.

C.1 F(x) = 3x - ex = 0 starting from x = 0.
C.2 F(x) = sinx = 0 starting from x = 10.
C.3 F(x) = cos x = 0 starting from x = 2.

C.4 F(x) = - sinx = 0 starting from x = -4.

Complete two iterations of the Newton-Raphson method for the following systems of 
nonlinear equations.

C.5 F1(x) = 1 - = 0

F2(x) = 5 - = 0; starting point (4, 1)

C.6 F1(x) = 5 - x1x2 - x2
2 = 0

F2(x) = - x1
2 + x2 = 0; starting point (10, 10)

C.7 F1(x) = 3x1
2 + 12x2

2 + 10x1 = 0
F2(x) = 24x1x2 + 4x2 + 3 = 0; starting point (-5, 0)

Find all roots of the following systems of nonlinear equations using a computer program.

C.8 Exercise C.5

C.9 Exercise C.6

C.10 Exercise C.7
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This appendix contains the listing of some computer programs based on the algorithms
for numerical methods of unconstrained optimization given in Chapters 8 and 9. The objec-
tive is to educate the student on how to transform a step-by-step numerical algorithm into a
computer program. Note that the given computer programs are not claimed to be the most
efficient ones. The key idea is to emphasize the essential numerical aspects of the algorithms
in a simple and straightforward way. A beginner in the numerical techniques of optimization
is expected to experiment with the computer programs and get a feel for the various methods
by solving some numerical examples. Thus, a black box usage of the computer programs
given in this appendix is discouraged.

D.1 Equal Interval Search
As discussed in Chapter 8, equal interval search is the simplest method of one-dimensional
minimization. A computer program based on it is given in Fig. D-1. It is assumed that the
one-dimensional function is unimodal and continuous, and has a negative slope in the inter-
val of interest. The initial step length (d) and line search accuracy (e) must be specified in
the main program. The subroutine EQUAL is called from the main program to perform a line
search by equal interval search. The three major tasks to be accomplished in the subroutine
EQUAL are: (1) to establish initial step length d such that f(0) > f(d), (2) to establish the
initial interval of uncertainty, (al, au), and (3) to reduce the interval of uncertainty such that
(al - au) £ e.

The subroutine EQUAL calls the subroutine FUNCT to evaluate the value of the one-
dimensional function at various trial steps. The subroutine FUNCT is supplied by the user.
As an example, f(a) = 2 - 4a + ea is chosen as the one-dimensional minimization function.
The listing of the program in Fig. D-1 is self-explanatory. In the subroutine EQUAL, the fol-
lowing notation is used:

AL = lower limit on a; al

AU = upper limit on a; au

FL = function value at al; f(al)
FU = function value at au; f(au)
AA = intermediate point aa

FA = function value at aa; f(aa)
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C     MAIN PROGRAM FOR EQUAL INTERVAL SEARCH

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

      DELTA  = 5.0D-2 
      EPSLON = 1.0D-3 
      NCOUNT = 0 
      F      = 0.0D0
      ALFA   = 0.0D0
C 
C     TO PERFORM LINE SEARCH CALL SUBROUTINE EQUAL
C 
      CALL EQUAL(ALFA,DELTA,EPSLON,F,NCOUNT)
      WRITE(*,10) ' MINIMUM =', ALFA
      WRITE(*,10) ' MINIMUM FUNCTION VALUE =', F 
      WRITE(*,*) 'NO. OF FUNCTION EVALUATIONS =', NCOUNT
10    FORMAT(A,1PE14.5)
 
      STOP
      END

      SUBROUTINE EQUAL(ALFA,DELTA,EPSLON,F,NCOUNT)
C     -------------------------------------------------------
C     THIS SUBROUTINE IMPLEMENTS EQUAL INTERVAL SEARCH
C     ALFA  = OPTIMUN VALUE ON RETURN
C     DELTA = INITIAL STEP LENGTH
C     EPSLON= CONVERGENCE PARAMETER
C     F     = OPTIMUM VALUE OF THE FUNCTION ON RETURN
C     NCOUNT= NUMBER OF FUNCTION EVALUATIONS ON RETURN
C     -------------------------------------------------------

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
C 
C     ESTABLISH INITIAL DELTA  
C 
      AL = 0.0D0  
      CALL FUNCT(AL,FL,NCOUNT)
10    CONTINUE  
      AA = DELTA  
      CALL FUNCT(AA,FA,NCOUNT)
      IF (FA .GT. FL) THEN  
         DELTA = DELTA * 0.1D0
         GO TO 10  
      END IF  

FIGURE D-1 Program for equal interval search.
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         AA = AU
         FL = FA

         FA = FU
         GO TO 20

      END IF
C 
C     REFINE THE INTERVAL OF UNCERTAINTY FURTHER 

C 
30    CONTINUE

      IF ((AU - AL) .LE. EPSLON) GO TO 50
      DELTA = DELTA * 0.1D0
      AA = AL

      FA = FL
40    CONTINUE

      AU = AA + DELTA
      CALL FUNCT(AU,FU,NCOUNT)
      IF (FA .GT. FU) THEN

         AL = AA
         AA = AU

         FL = FA
         FA = FU
         GO TO 40

      END IF 
      GO TO 30

C 
C     MINIMUM IS FOUND
C  

50    ALFA = (AU + AL) * 0.5D0
      CALL FUNCT(ALFA,F,NCOUNT)

 
      RETURN
      END

C 
C     ESTABLISH INITIAL INTERVAL OF UNCERTAINTY
C 
20    CONTINUE  
      AU = AA + DELTA  
      CALL FUNCT(AU,FU,NCOUNT)
      IF (FA .GT. FU) THEN
         AL = AA

FIGURE D-1 Continued



D.2 Golden Section Search
Golden section search is considered to be one of the efficient methods requiring only func-
tion values. The subroutine GOLD, given in Fig. D-2, implements the golden section search
algorithm given in Chapter 8 and is called from the main program given in Fig. D-1; the call
to subroutine EQUAL is replaced by a call to the subroutine GOLD. The initial step length
and initial interval of uncertainty are established in GOLD, as in the subroutine EQUAL. The
interval of uncertainty is reduced further to satisfy the line search accuracy by implementing
Step 3 of the algorithm given in Chapter 8. The subroutine FUNCT is used to evaluate the
function value at a trial step. The following notation is used in the subroutine GOLD: AA =
aa, AB = ab, AL = al, AU = au, FA = f(aa), FB = f(ab), FL = f(al), FU = f(au), and GR =
golden ratio, ( + 1)/2.

D.3 Steepest Descent Method
The steepest descent method is the simplest of the gradient-based methods for unconstrained
optimization. A computer program for the method is given in Fig. D-3. The basic steps in 
the algorithm are: (1) evaluate the gradient of the cost function at the current point, (2) eval-
uate an optimum step size along the negative gradient direction, and (3) update the design,
check the convergence criterion, and if necessary repeat the preceding steps. The main
program essentially follows these steps. The arrays declared in the main program must have
dimensions of the design variable vector. Also, the initial data and starting point must be 
provided by the user. The cost function and its gradient must be provided in subroutines
FUNCT and GRAD, respectively. The line search is performed in subroutine GOLDM by
golden section search for a multivariate problem. As an example, f(x) = x1

2 + 2x2
2 + 2x3

2 + 2x1x2

+ 2x2x3 is chosen as the cost function.

5
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      SUBROUTINE FUNCT(AL,F,NCOUNT)

C     -------------------------------------------------------
C     CALCULATES THE FUNCTION VALUE

C     AL     = VALUE OF ALPHA, INPUT
C     F      = FUNCTION VALUE ON RETURN
C     NCOUNT = NUMBER OF CALLS FOR FUNCTION EVALUATION

C     -------------------------------------------------------

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

      NCOUNT = NCOUNT + 1 

c      F = 1.0D0 - 3.0D0 * AL + DEXP(2.0D0 * AL)
       F = 18.5D0*AL**2-85.0D0*AL-13.5D0

 
      RETURN
      END

FIGURE D-1 Continued
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      SUBROUTINE GOLD(ALFA,DELTA,EPSLON,F,NCOUNT)
C     -------------------------------------------------------
C     THIS SUBROUTINE IMPLEMENTS GOLDEN SECTION SEARCH
C     ALFA  = OPTIMUM VALUE OF ALPHA ON RETURN
C     DELTA = INITIAL STEP LENGTH
C     EPSLON= CONVERGENCE PARAMETER
C     F     = OPTIMUM VALUE OF THE FUNCTION ON RETURN
C     NCOUNT= NUMBER OF FUNCTION EVALUATIONS ON RETURN
C     -------------------------------------------------------
 
      IMPLICIT DOUBLE PRECISION(A-H,O-Z) 
 
      GR = 0.5D0 * SQRT(5.0D0) + 0.5D0
C 
C     ESTABLISH INITIAL DELTA
C 
      AL = 0.0D0
      CALL FUNCT(AL,FL,NCOUNT)
10    CONTINUE
      AA = DELTA
      CALL FUNCT(AA,FA,NCOUNT)
      IF (FA .GT. FL) THEN 
         DELTA = DELTA * 0.1D0
         GO TO 10
      END IF
C 
C     ESTABLISH INITIAL INTERVAL OF UNCERTAINTY
C 
      J = 0 
20    CONTINUE 
      J = J + 1 
      AU = AA + DELTA * (GR ** J)
      CALL FUNCT(AU,FU,NCOUNT)
      IF (FA .GT. FU) THEN
         AL = AA
         AA = AU
         FL = FA
         FA = FU
         GO TO 20
      END IF
C 
C     REFINE THE INTERVAL OF UNCERTAINTY FURTHER
C 
      AB = AL + (AU - AL) / GR

      CALL FUNCT(AB,FB,NCOUNT)

30    CONTINUE

FIGURE D-2 Subroutine GOLD for golden section search.
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      FU = FB
      AB = AA
      FB = FA
      AA = AL + (AU - AL) * (1.0D0 - 1.0D0 / GR)
      CALL FUNCT(AA,FA,NCOUNT)
      GO TO 30
C 
C     FA IS GREATER THAN FB (STEP 5)
C 
50    AL = AA
      FL = FA
      AA = AB
      FA = FB
      AB = AL + (AU - AL) / GR
      CALL FUNCT(AB,FB,NCOUNT)
      GO TO 30
C 
C     FA IS EQUAL TO FB (STEP 6)
C 
60    AL = AA
      FL = FA
      AU = AB
      FU = FB
      AA = AL + (1.0D0 - 1.0D0 / GR) * (AU - AL)
      CALL FUNCT(AA,FA,NCOUNT)
      AB = AL + (AU - AL) / GR
      CALL FUNCT(AB,FB,NCOUNT) 
      GO TO 30
C 
C     MINIMUM IS FOUND
C 

      IF ((AU - AL) .LE. EPSLON) GO TO 80
C 
C     IMPLEMENT STEPS 4 ,5 OR 6 OF THE ALGORITHM
C 
      IF (FA - FB) 40, 60, 50
C 
C     FA IS LESS THAN FB (STEP 4)

40    AU = AB

80    ALFA = (AU + AL) * 0.5D0
      CALL FUNCT(ALFA,F,NCOUNT)
       RETURN
      END

FIGURE D-2 Continued
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C     THE MAIN PROGRAM FOR STEEPEST DESCENT METHOD
C     ---------------------------------------------------------
C     DELTA = INITIAL STEP LENGTH FOR LINE SEARCH
C     EPSLON= LINE SEARCH ACCURACY
C     EPSL  = STOPPING CRITERION FOR STEEPEST DESCENT METHOD
C     NCOUNT= NO. OF FUNCTION EVALUATIONS
C     NDV   = NO. OF DESIGN VARIABLES
C     NOC   = NO. OF CYCLES OF THE METHOD
C     X     = DESIGN VARIABLE VECTOR
C     D     = DIRECTION VECTOR
C     G     = GRADIENT VECTOR
C     WK    = WORK ARRAY USED FOR TEMPORARY STORAGE
C     ---------------------------------------------------------

      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION X(4), D(4), G(4), WK(4)
C 
C     DEFINE INITIAL DATA
C 
      DELTA = 5.0D-2 
      EPSLON= 1.0D-4 
      EPSL  = 5.0D-3 
      NCOUNT= 0 
      NDV   = 3 
      NOC   = 100
C 
C     STARTING VALUES OF THE DESIGN VARIABLES
C 
      X(1)=2.0D0
      X(2)=4.0D0
      X(3)=10.0D0
 
      CALL GRAD(X,G,NDV)
      WRITE(*,10)
10    FORMAT(' NO.     COST FUNCT      STEP SIZE',
     &       '   NORM OF GRAD  ')
      DO 20 K = 1, NOC
         CALL SCALE (G,D,-1.0D0,NDV)
         CALL GOLDM(X,D,WK,ALFA,DELTA,EPSLON,F,NCOUNT,NDV)
         CALL SCALE(D,D,ALFA,NDV)
         CALL PRINT(K,X,ALFA,G,F,NDV)
         CALL ADD(X,D,X,NDV)
         CALL GRAD(X,G,NDV)
         IF(TNORM(G,NDV) .LE. EPSL) GO TO 30
20    CONTINUE

FIGURE D-3 Computer program for steepest descent method.
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      CALL FUNCT(X,F,NCOUNT,NDV)
      WRITE(*,50)' THE OPTIMUM COST FUNCTION VALUE IS :', F 
50    FORMAT(A, F13.6)
      WRITE(*,*)'TOTAL NO. OF FUNCTION EVALUATIONS ARE', NCOUNT

      STOP
      END

      SUBROUTINE GRAD(X,G,NDV)
C 
C     CALCULATES THE GRADIENT OF F(X) IN VECTOR G 
C 
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION X(NDV),G(NDV)
 
      G(1) = 2.0D0 * X(1) + 2.0D0 * X(2)
      G(2) = 2.0D0 * X(1) + 4.0D0 * X(2) + 2.0D0 * X(3)
      G(3) = 2.0D0 * X(2) + 4.0D0 * X(3)
 
      RETURN
      END

      SUBROUTINE SCALE(A,X,S,M)
C 
C     MULTIPLIES VECTOR A(M) BY SCALAR S AND STORES IN X(M)
C 
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION A(M),X(M)

      WRITE(*,*)
      WRITE(*,*)' LIMIT ON NO. OF CYCLES HAS EXCEEDED'
      WRITE(*,*)' THE CURRENT DESIGN VARIABLES ARE:'
      WRITE(*,*) X 
      CALL EXIT

30    WRITE(*,*)
      WRITE(*,*) 'THE OPTIMAL DESIGN VARIABLES ARE:'
      WRITE(*,40) X
40    FORMAT (3F15.6)

FIGURE D-3 Continued
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      RETURN
      END

      SUBROUTINE ADD(A,X,C,M)
C     
C     ADDS VECT0RS A(M) AND X(M) AND STORES IN C(M)
C 
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION A(M), X(M), C(M)
 
      DO 10 I = 1, M 
         C(I) = A(I) + X(I)
10    CONTINUE
 
      RETURN 
      END

      DO 10 I = 1, M 
         X(I) = S * A(I)
10    CONTINUE

      RETURN
      END

      REAL*8 FUNCTION TNORM(X,N)
C 
C     CALCULATES NORM OF VECTOR X(N)
C 
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION X(N) 

      SUM = 0.0D0
      DO 10 I = 1, N 
         SUM = SUM + X(I) * X(I)
10    CONTINUE
      TNORM = DSQRT(SUM)

FIGURE D-3 Continued
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      SUBROUTINE UPDATE (XN,X,D,AL,NDV)
C 
C     UPDATES THE DESIGN VARIABLE VECTOR
C 
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION XN(NDV), X(NDV), D(NDV)

      DO 10 I = 1, NDV
         XN(I) = X(I) + AL * D(I)
10    CONTINUE 
 
      RETURN
      END

      SUBROUTINE PRINT(I,X,ALFA,G,F,M)
C 
C     PRINTS THE OUTPUT
C 
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION X(M),G(M)

      WRITE(*,10) I, F, ALFA, TNORM(G,M)
10    FORMAT(I4, 3F15.6)

      RETURN
      END

      SUBROUTINE FUNCT(X,F,NCOUNT,NDV)
C 
C     CALCULATES THE FUNCTION VALUE
C 
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION X(NDV)

      NCOUNT = NCOUNT + 1 
      F = X(1) ** 2 + 2.D0 * (X(2) **2) + 2.D0 * (X(3) ** 2)
     &    + 2.0D0 * X(1) * X(2) + 2.D0 * X(2) * X(3)

      RETURN
      END

FIGURE D-3 Continued



Appendix D Sample Computer Programs 667

      CALL UPDATE(XN,X,D,AU,NDV)
      CALL FUNCT(XN,FU,NCOUNT,NDV)
      IF (FA .GT. FU) THEN
         AL = AA

      SUBROUTINE GOLDM(X,D,XN,ALFA,DELTA,EPSLON,F,NCOUNT,NDV)
C     --------------------------------------------------------
C     IMPLEMENTS GOLDEN SECTION SEARCH FOR MULTIVARIATE PROBLEMS
C     X     = CURRENT DESIGN POINT
C     D     = DIRECTION VECTOR
C     XN    = CURRENT DESIGN + TRIAL STEP * SEARCH DIRECTION 
C     ALFA  = OPTIMUM VALUE OF ALPHA ON RETURN
C     DELTA = INITIAL STEP LENGTH
C     EPSLON= CONVERGENCE PARAMETER               
C     F     = OPTIMUM VALUE OF THE FUNCTION        
C     NCOUNT= NUMBER OF FUNCTION EVALUATIONS ON RETURN
C     --------------------------------------------------------

      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION X(NDV), D(NDV), XN(NDV)

      GR = 0.5D0 * DSQRT(5.0D0) + 0.5D0
      DELTA1 = DELTA
C 
C     ESTABLISH INITIAL DELTA
C 
      AL = 0.0D0
      CALL UPDATE(XN,X,D,AL,NDV)
      CALL FUNCT(XN,FL,NCOUNT,NDV)
      F = FL
10    CONTINUE 
      AA = DELTA1
      CALL UPDATE(XN,X,D,AA,NDV)
      CALL FUNCT(XN,FA,NCOUNT,NDV)
      IF (FA .GT. FL) THEN
         DELTA1 = DELTA1 * 0.1D0
         GO TO 10
      END IF
C 
C     ESTABLISH INITIAL INTERVAL OF UNCERTAINTY
C 
      J = 0 
20    CONTINUE
      J = J + 1 
      AU = AA + DELTA1 * (GR ** J)

FIGURE D-3 Continued
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         AA = AU
         FL = FA
         FA = FU

         GO TO 20
      END IF

C  
C     REFINE THE INTERVAL OF UNCERTAINTY FURTHER
C 

      AB = AL + (AU - AL) / GR
      CALL UPDATE(XN,X,D,AB,NDV)

      CALL FUNCT(XN,FB,NCOUNT,NDV)
30    CONTINUE
      IF((AU-AL) .LE. EPSLON) GO TO 80

C 
C     IMPLEMENT STEPS 4 ,5 OR 6 OF THE ALGORITHM

C 
      IF (FA-FB) 40, 60, 50
C 

C     FA IS LESS THAN FB (STEP 4)
C 

40    AU = AB
      FU = FB
      AB = AA

      FB = FA
      AA = AL + (1.0D0 - 1.0D0 / GR) * (AU - AL)

      CALL UPDATE(XN,X,D,AA,NDV)
      CALL FUNCT(XN,FA,NCOUNT,NDV)
      GO TO 30

C 
C     FA IS GREATER THAN FB (STEP 5)

C 
50    AL = AA
      FL = FA

      AA = AB
      FA = FB

      AB = AL + (AU - AL) / GR
      CALL UPDATE(XN,X,D,AB,NDV)
      CALL FUNCT(XN,FB,NCOUNT,NDV)

      GO TO 30
C 

C     FA IS EQUAL TO FB (STEP 6)
C 

FIGURE D-3 Continued
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C
C     MINIMUM IS FOUND
C
80    ALFA = (AU + AL) * 0.5D0

      RETURN
      END

      FU = FB
      AA = AL + (1.0D0 - 1.0D0 / GR) * (AU - AL)
      CALL UPDATE(XN,X,D,AA,NDV)

      CALL FUNCT(XN,FA,NCOUNT,NDV)
      AB = AL + (AU - AL) / GR

      CALL UPDATE(XN,X,D,AB,NDV)
      CALL FUNCT(XN,FB,NCOUNT,NDV)
      GO TO 30

60    AL = AA

      FL = FA
      AU = AB

FIGURE D-3 Continued

D.4 Modified Newton’s Method
The modified Newton’s method evaluates the gradient as well as the Hessian for
the function and thus has a quadratic rate of convergence. Note that even though
the method has a superior rate of convergence, it may fail to converge because
of the singularity or indefiniteness of the Hessian matrix of the cost function. A
program for the method is given in Fig. D-4. The cost function, gradient vector,
and Hessian matrix are calculated in the subroutines FUNCT, GRAD, and HASN,
respectively. As an example, f(x) = x1

2 + 2x2
2 + 2x3

2 + 2x1x2 + 2x2x3 is chosen as the
cost function. The Newton direction is obtained by solving a system of linear
equations in the subroutine SYSEQ. It is likely that the Newton direction may
not be a descent direction in which the line search will fail to evaluate an appro-
priate step size. In such a case, the iterative loop is stopped and an appropriate
message is printed. The main program for the modified Newton’s method and the
related subroutines are given in Fig. D-4.
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C     THE MAIN PROGRAM FOR MODIFIED NEWTON'S METHOD
C     ----------------------------------------------------------
C     DELTA = INITIAL STEP LENGTH FOR LINE SEARCH
C     EPSLON= LINE SEARCH ACCURACY
C     EPSL  = STOPPING CRITERION FOR MODIFIED NEWTON'S METHOD
C     NCOUNT= NO. OF FUNCTION EVALUATIONS
C     NDV   = NO. OF DESIGN VARIABLES
C     NOC   = NO. OF CYCLES OF THE METHOD
C     X     = DESIGN VARIABLE VECTOR
C     D     = DIRECTION VECTOR
C     G     = GRADIENT VECTOR
C     H     = HESSIAN MATRIX
C     WK    = WORK ARRAY USED FOR TEMPORARY STORAGE
C     -----------------------------------------------------------

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      DIMENSION X(3), D(3), G(3), H(3,3), WK(3)
C 
C     DEFINE INITIAL DATA
C 
      DELTA  = 5.0D-2 
      EPSLON = 1.0D-4 
      EPSL   = 5.0D-3 
      NCOUNT = 0 
      NDV    = 3 
      NOC    = 100
C 
C     STARTING VALUES OF THE DESIGN VARIABLES
C 
      X(1) = 2.0D0
      X(2) = 4.0D0
      X(3) = 10.0D0

      CALL GRAD(X,G,NDV)
      WRITE(*,10) 
10    FORMAT(' NO.      COST FUNCT     STEP SIZE',
     &       '   NORM OF GRAD  ')
      DO 20 K = 1, NOC
         CALL HASN(X,H,NDV)
         CALL SCALE (G,D,-1.0D0,NDV)
         CALL SYSEQ(H,NDV,D)
         IF (DOT(G,D,NDV) .GE. 1.0E-8) GO TO 60
         CALL GOLDM(X,D,WK,ALFA,DELTA,EPSLON,F,NCOUNT,NDV)
         CALL SCALE(D,D,ALFA,NDV)
         CALL PRINT(K,X,ALFA,G,F,NDV)

FIGURE D-4 A program for Newton’s method.
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30    WRITE(*,*)
      WRITE(*,*) 'THE OPTIMAL DESIGN VARIABLES ARE  :'
      WRITE(*,40) X 
40    FORMAT(4X,3F15.6)
      CALL FUNCT(X,F,NCOUNT,NDV)
      WRITE(*,50) ' OPTIMUM COST FUNCTION VALUE IS    :', F 
50    FORMAT(A, F13.6)
      WRITE(*,*) 'NO. OF FUNCTION EVALUATIONS ARE   :    ', NCOUNT

CALL EXIT

60    WRITE(*,*)
      WRITE(*,*)' DESCENT DIRECTION CANNOT BE FOUND'
      WRITE(*,*)' THE CURRENT DESIGN VARIABLES ARE:'
      WRITE(*,40) X 

      STOP
      END

      DOUBLE PRECISION FUNCTION DOT(X,Y,N)
C 
C     CALCULATES DOT PRODUCT OF VECTORS X AND Y 
C 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      DIMENSION X(N),Y(N)

      SUM = 0.0D0
      DO 10 I = 1, N 
      SUM = SUM + X(I) * Y(I)
10    CONTINUE
      DOT = SUM

      RETURN
      END

         CALL GRAD(X,G,NDV)
         IF(TNORM(G,NDV) .LE. EPSL) GO TO 30
20    CONTINUE

      WRITE(*,*)
      WRITE(*,*)' LIMIT ON NO. OF CYCLES HAS EXCEEDED'
      WRITE(*,*)' THE CURRENT DESIGN VARIABLES ARE:'
      WRITE(*,*) X 
      CALL EXIT

         CALL ADD(X,D,X,NDV)

FIGURE D-4 Continued
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      RETURN
      END

      SUBROUTINE SYSEQ(A,N,B)
C 
C     SOLVES AN N X N SYMMETRIC SYSTEM OF LINEAR EQUATIONS
      AX = B 

C     A IS THE COEFFICIENT MATRIX; B IS THE RIGHT HAND SIDE; 
C     THESE ARE INPUT

C     B CONTAINS SOLUTION ON RETURN
C 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      DIMENSION A(N,N), B(N)
C 
C     REDUCTION OF EQUATIONS
C 
      M = 0 
50    M = M + 1 
      MM = M + 1 
      B(M) = B(M) / A(M,M)
      IF (M - N) 70, 130, 70
70    DO 80 J = MM, N 
         A(M,J) = A(M,J) / A(M,M)
80    CONTINUE
C 
C     SUBSTITUTION INTO REMAINING EQUATIONS
C 

      SUBROUTINE HASN(X,H,N)
C 
C     CALCULATES THE HESSIAN MATRIX H AT X 
C 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      DIMENSION X(N),H(N,N)

      H(1,1) = 2.0D0
      H(2,2) = 4.0D0
      H(3,3) = 4.0D0
      H(1,2) = 2.0D0
      H(1,3) = 0.0D0
      H(2,3) = 2.0D0
      H(2,1) = H(1,2)
      H(3,1) = H(1,3)
      H(3,2) = H(2,3)

FIGURE D-4 Continued
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      DO 120 I = MM, N 
         IF(A(I,M)) 90, 120, 90
90       DO 100 J = I, N 
            A(I,J) = A(I,J) - A(I,M) * A(M,J)
            A(J,I) = A(I,J)
100      CONTINUE        
         B(I) = B(I) - A(I,M) * B(M)
120   CONTINUE
      GO TO 50
C 
C     BACK SUBSTITUTION
C     
130   M = M - 1 
      IF(M .EQ. 0) GO TO 150
      MM = M + 1 
      DO 140 J = MM, N 
         B(M) = B(M) - A(M,J) * B(J)
140   CONTINUE
      GO TO 130
 
150   RETURN
      END

FIGURE D-4 Continued
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Chapter 3 Graphical Optimization
3.1 x* = (2, 2), f* = 2. 3.2 x* = (0, 4), F* = 8. 3.3 x* = (8, 10), f* = 38. 3.4 x* = (4,
3.333, 2), F* = 11.33. 3.5 x* = (10, 10), F* = 400. 3.6 x* = (0, 0), f* = 0. 3.7 x* =
(0, 0), f* = 0. 3.8 x* = (2, 3), f* = -22. 3.9 x* = (-2.5, 1.58), f* = -3.95. 3.10 x* =
(-0.5, 0.167), f* = -0.5. 3.21 b* = 24.66cm, d* = 49.32cm, f* = 1216cm3. 3.22 Ro* 
= 20cm, Ri* = 19.84cm, f* = 79.1kg. 3.23 R* = 53.6mm, t* = 5.0mm, f* = 66kg. 3.24
Ro* = 56mm, Ri* = 51mm, f* = 66kg. 3.25 w* = 93mm, t* = 5mm, f* = 70kg. 3.26 Infi-
nite optimum points, f* = 0.812kg. 3.27 A* = 5000, h* = 14, f* = $13.4 million. 3.28
R* � 1.0m, t* = 0.0167m, f* � 8070kg. 3.29 A1* = 6.1cm2, A2* = 2.0cm2, f* = 5.39kg.
3.31 t* = 8.45, f* = 1.91 ¥ 105. 3.32 R* = 7.8m, H* = 15.6m, f* = $1.75 ¥ 106. 3.33
Infinite optimum points; one point: R* = 0.4m, t* = 1.59 ¥ 10-3 m, f* = 15.7kg. 3.34 For
l = 0.5m, To = 10kN◊m, Tmax = 20kN◊m, x1* = 103mm, x2* = 0.955, f* = 2.9kg. 3.35 For 
l = 0.5, To = 10kN◊m, Tmax = 20kN◊m, do* = 103mm, di* = 98.36mm, f* = 2.9kg. 3.36
R* = 50.3mm, t* = 2.35mm, f* = 2.9kg. 3.37 R* = 20cm, H* = 7.2cm, f* = -9000cm3.
3.38 R* = 0.5cm, N* = 2550, f* = -8000(l = 10). 3.39 R* = 33.7mm, t* = 5.0mm, f* =
41kg. 3.40 R* = 21.5mm, t* = 5.0mm, f* = 26kg. 3.41 R* = 27, t* = 5mm, f* = 33kg.
3.42 Ro* = 36mm, Ri* = 31mm, f* = 41kg. 3.43 Ro* = 24.0mm, Ri* = 19.0mm, f* = 26kg.
3.44 Ro* = 29.5mm, Ri* = 24.5mm, f* = 33kg. 3.45 D* = 8.0cm, H* = 8.0cm, f* = 301.6
cm2. 3.46 A1* = 413.68mm, A2* = 163.7mm, f* = 5.7kg. 3.47 Infinite optimum points;
one point: R* = 20mm, t* = 3.3mm, f* = 8.1kg. 3.48 A* = 390mm2, h* = 500mm, 
f* = 5.5kg. 3.49 A* = 410mm2, s* = 1500mm, f* = 8kg. 3.50 A1* = 300mm2, 
A2* = 50mm2, f* = 7kg. 3.51 R* = 130cm, t* = 2.86cm, f* = 57,000kg. 3.52 do* = 41.56
cm, di* = 40.19cm, f* = 680kg. 3.53 do* = 1310mm, t* = 14.2mm, f* = 92,500N. 3.54
H* = 50.0cm, D* = 3.42cm, f* = 6.6kg.

Chapter 4 Optimum Design Concepts
4.2 cos x = 1.044 - 0.15175x - 0.35355x2 at x = p/4. 4.3 cosx = 1.1327 - 0.34243x - 0.25x2

at x = p/3. 4.4 sinx = -0.02199 + 1.12783x - 0.25x2 at x = . 4.5 sinx = 0.06634 +
1.2625x - 0.35355x2 at x = . 4.6 ex = 1 + x + 0.5x2 at x = 0. 4.7 ex = 7.389 - 7.389x +
3.6945x2 at x = 2. 4.8 (x) = 41x1

2 - 42x1 - 40x1x2 + 20x2 + 10x2
2 + 15; (1.2, 0.8) = 7.64,

f(1.2, 0.8) = 8.136, Error = f - = 0.496. 4.9 Indefinite. 4.10 Indefinite. 4.11 Indefi-
nite. 4.12 Positive definite. 4.13 Indefinite. 4.14 Indefinite. 4.15 Positive definite.

f
ff

p
4

p
6



4.16 Indefinite. 4.22 x = (0, 0) - local minimum, f = 7. 4.23 x = (0, 0) - inflection point.
4.24 x*1 = (-3.332, 0.0395) - local maximum, f = 18.58; x*2 = (-0.398, 0.5404) - inflec-
tion point. 4.25 x*1 = (4, 8) - inflection point; x*2 = (-4, -8) - inflection point. 4.26 x*
= (2n + 1)p, n = 0, ±1, ±2, . . . local minima, f* = -1; x* = 2np, n = 0, ±1, ±2, . . . local
maxima, f* = 1. 4.27 x* = (0, 0) - local minimum, f* = 0. 4.28 x* = 0 - local minimum,
f* = 0; x* = 2 - local maximum, f* = 0.541. 4.29 x* = (3.684, 0.7368) - local minimum,
f* = 11.0521. 4.30 x* = (1, 1) - local minimum, f* = 1. 4.31 x* = (- , - ) - local
minimum, f* = - . 4.32 x*1 = (241.7643, 0.03099542) - local minimum, U* = 483,528.6;
x*2 = (-241.7643, -0.03099542) - local maximum. 4.44 x* = (2.166667, 1.83333), 
�* = -0.166667, f* = -8.33333. 4.49 x*1 = (1.5088, 3.272), �* = -17.1503, f* = 244.528;
x*2 = (2.5945, -2.0198), �* = -1.4390, f* = 15.291; x*3 = (-3.630, -3.1754), �* = -23.2885,
f* = 453.154; x*4 = (-3.7322, 3.0879), �* = -2.122, f* = 37.877. 4.50 x* = (2, 2), 
�* = -2, f* = 2. 4.51 (i) No, (ii) Solution of equalities, x* = (3, 1), f* = 4. 4.53 x* = ( ,

), �* = - , F* = - . 4.61 x*1 = (0.816, 0.75), u* = (0, 0, 0, 0), f* = 2.214; x*2 = (0.816,
0), u* = (0, 0, 0, 3), f* = 1.0887; x*3 = (0, 0.75), u* = (0, 0, 2, 0), f* = 1.125; x*4 = (1.5073,
1.2317), u* = (0, 0.9632, 0, 0), f* = 0.251; x*5 = (1.0339, 1.655), u* = (1.2067, 0, 0, 0), f*
= 0.4496; x*6 = (0, 0), u* = (0, 0, 2, 3), f* = 0; x*7 = (2, 0), u* = (0, 2, 0, 7), f* = -4; x*8

= (0, 2), u* = ( , 0, , 0), f* = -2; x*9 = (1.386, 1.538), u* = (0.633, 0.626, 0, 0), f* =
-0.007388. 4.62 x* = ( , ), u* = 0, f* = - . 4.63 x* = (2.5, 1.5), u* = 1, f* = 1.5.
4.64 x* = (6.3, 1.733), u* = (0, 0.8, 0, 0), f* = -56.901. 4.65 x* = (1, 1), u* = 0, f* = 0.
4.66 x* = (1, 1), u* = (0, 0), f* = 0. 4.67 x* = (2, 1), u* = (0, 2), f* = 1. 4.68 x*1 =
(2.5945, 2.0198), u1* = 1.439, f* = 15.291; x*2 = (-3.63, 3.1754), u1* = 23.2885, f* = 453.154;
x*3 = (1.5088, -3.2720), u1* = 17.1503, f* = 244.53; x*4 = (-3.7322, -3.0879), u1* = 2.1222,
f* = 37.877. 4.69 x* = (3.25, 0.75), �* = -1.25, u* = 0.75, f* = 5.125. 4.70 x*1 = ( ,
), u* = 0, f* = -24.3; x*2 = (- , ), u* = 0, f* = 24.967; x*3 = (0, 3), u* = 16, f* = -21;

x*4 = (2, 1), u* = 4, f* = -25. 4.71 x* = (- , - ), u* = 0, f* = - . 4.72 x* = 4, y* = 6,
u* = (0, 0, 0, 0), f* = 0. 4.74 Three local maxima: x* = 0, y* = 0, u* = (0, 0, -18, -12),
F* = 52; x* = 6, y* = 0, u* = (0, -4, 0, -12), F* = 40; x* = 0, y* = 12, u* = (-12, 0, -4, 0),
F* = 52; One stationary point: x* = 5, y* = 7, u* = (-2, 0, 0, 0), F* = 2. 4.79 D* = 7.98
cm, H* = 8cm, u* = (0.5, 0, 0, 0.063, 0), f* = 300.6cm2. 4.80 R* = 7.871686 ¥ 10-2, t* =
1.574337 ¥ 10-3, u* = (0, 3.056 ¥ 10-4, 0.3038, 0, 0), f* = 30.56kg. 4.81 Ro* = 7.950204
¥ 10-2, Ri* = 7.792774 ¥ 10-2, u* = (0, 3.056 ¥ 10-4, 0.3055, 0, 0), f* = 30.56kg. 4.82 x1*
= 60.50634, x2* = 1.008439, u1* = 19,918, u2* = 23,186, u*3 = u*4 = 0, f = 23,186.4. 4.83 h* =
14m, A* = 5000m2, u1* = 5.9 ¥ 10-4, u2* = 6.8 ¥ 10-4, u*3 = u*4 = u*5 = 0, f* = $13.4 million.
4.84 A* = 20,000, B* = 10,000, u1* = 35, u*3 = 27 (or, u1* = 8, u2* = 108), f* = -$1,240,000.
4.85 R* = 20cm, H* = 7.161973cm, u1* = 10, u*3 = 450, f* = -9000cm3. 4.86 R* = 0.5
cm, N = 2546.5, u1* = 16,000, u2* = 4, f = -8000cm2. 4.87 W* = 70.7107m, D* = 141.4214
m, u*3 = 1.41421, u*4 = 0, f* = $28,284.28. 4.88 A* = 70kg, B = 76kg, u1* = 0.4, u*4 = 16,
f* = -$1308. 4.89 B* = 0, M* = 2.5kg, u1* = 0.5, u*3 = 1.5, f* = $2.5. 4.90 x1* = 316.667,
x2* = 483.33, u1* = , u2* = , f* = -$1283.333. 4.91 r* = 4.57078cm, h* = 9.14156cm, �1*
= -0.364365, u1* = 43.7562, f* = 328.17cm2. 4.92 b* = 10m, h* = 18m, u1* = 0.04267, 
u2* = 0.00658, f* = 0.545185. 4.94 D* = 5.758823m, H* = 5.758823m, �1* = -277.834, 
f* = $62,512.75. 4.96 P1* = 30.4, P2* = 29.6, u1* = 59.8, f* = $1789.68. 4.134 (i) p £ x £
2p (ii) £ x £ . 4.135 Convex everywhere. 4.136 Not convex. 4.137 S = {x|x1 ≥
- , (x1 + )2 - 4x2

2 - ≥ 0}. 4.138 Not convex. 4.139 Convex everywhere. 4.140
Convex if C ≥ 0. 4.141 Fails convexity check. 4.142 Fails convexity check. 4.143
Fails convexity check. 4.144 Fails convexity check. 4.145 Fails convexity check.
4.146 Fails convexity check. 4.147 Convex. 4.148 Fails convexity check. 4.149
Convex. 4.150 Convex. 4.151 18.43° £ q £ 71.57°. 4.152 q ≥ 71.57°. 4.153 No
solution. 4.154 q £ 18.43°.
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Chapter 5 More on Optimum Design Concepts
5.4 x1* = 2.1667, x2* = 1.8333, �* = -0.1667; isolated minimum. 5.9 (1.5088, 3.2720), �*
= -17.15; not a minimum point; (2.5945, -2.0198), �* = -1.439; isolated local minimum; 
(-3.6300, -3.1754), �* = -23.288; not a minimum point; (-3.7322, 3.0879), �* = -2.122;
isolated local minimum. 5.20 (0.816, 0.75), u* = (0, 0, 0, 0); not a minimum point; (0.816,
0), u* = (0, 0, 0, 3); not a minimum point; (0, 0.75), u* = (0, 0, 2, 0); not a minimum point;
(1.5073, 1.2317), u* = (0, 0.9632, 0, 0); not a minimum point; (1.0339, 1.6550), u* = (1.2067,
0, 0, 0); not a minimum point; (0, 0), u* = (0, 0, 2, 3); isolated local minimum; (2, 0), 
u* = (2, 0, 0, 7); isolated local minimum; (0, 2), u* = (1.667, 0, 3.667, 0); isolated local
minimum; (1.386, 1.538), u* = (0.633, 0.626, 0, 0); isolated local minimum. 5.21 (2.0870,
1.7391), u* = 0; isolated global minimum. 5.22 x* = (2.5, 1.5), u* = 1, f* = 1.5. 5.23 x*
= (6.3, 1.733), u* = (0, 0.8, 0, 0), f* = -56.901. 5.24 x* = (1, 1), u* = 0, f* = 0.
5.25 x* = (1, 1), u* = (0, 0), f* = 0. 5.26 x* = (2, 1), u* = (0, 2), f* = 1. 5.27 (2.5945, 
2.0198), u* = 1.4390; isolated local minimum; (-3.6300, 3.1754), u* = 23.288; not a
minimum; (1.5088, -3.2720), u* = 17.150; not a minimum; (-3.7322, -3.0879), u* = 2.122;
isolated local minimum. 5.28 (3.25, 0.75), u* = 0.75, �* = -1.25; isolated global minimum.
5.29 (2.3094, 0.3333), u* = 0; not a minimum; (-2.3094, 0.3333), u* = 0; not a minimum;
(0, 3), u* = 16; not a minimum; (2, 1), u* = 4; isolated local minimum. 5.30 (-0.2857, 
-0.8571), u* = 0; isolated local minimum. 5.38 Ro* = 20cm, Ri* = 19.84cm, f* =
79.1kg, u* = (3.56 ¥ 10-3, 0, 5.29, 0, 0, 0). 5.39 Multiple optima between (31.83, 1.0) and
(25.23, 1.26)mm, f* = 45.9kg. 5.40 R* = 1.0077m, t* = 0.0168m, f* = 8182.8kg, u* =
(0.0417, 0.00408, 0, 0, 0). 5.41 R* = 0.0787m, t* = 0.00157m, f* = 30.56kg. 5.42
Ro* = 0.0795m, Ri* = 0.0779m, f* = 30.56kg. 5.43 H* = 8cm, D* = 7.98cm, f* = 300.6
cm2. 5.44 A* = 5000m2, h* = 14m, f* = $13.4 million. 5.45 x1* = 102.98mm, x2* =
0.9546, f* = 2.9kg, u* = (4.568 ¥ 10-3, 0, 3.332 ¥ 10-8, 0, 0, 0, 0). 5.46 do* = 103mm, di*
= 98.36mm, f* = 2.9kg, u* = (4.657 ¥ 10-3, 0, 3.281 ¥ 10-8, 0, 0, 0, 0). 5.47 R* = 50.3
mm, t* = 2.34mm, f* = 2.9kg, u* = (4.643 ¥ 10-3, 0, 3.240 ¥ 10-8, 0, 0, 0, 0). 5.48 H* =
50cm, D* = 3.42cm, f* = 6.6kg, u* = (0, 9.68 ¥ 10-5, 0, 4.68 ¥ 10-2, 0, 0). 5.50 Not a
convex programming problem; D* = 10m, H* = 10m, f* = 60,000pm3; Df = 800pm3. 5.51
Convex; A1* = 2.937 ¥ 10-4 m2, A2* = 6.556 ¥ 10-5 m2, f* = 7.0kg. 5.52 h* = 14m, 
A* = 5000m2, u1* = 5.9 ¥ 10-4, u2* = 6.8 ¥ 10-4, u*3 = u*4 = u*5 = 0, f* = $13.4 million.
5.53 R* = 20, H* = 7.16, u1* = 10, u*3 = 450, f* = -9000cm3. 5.54 R* = 0.5cm, 
N* = 2546.5, u1* = 16,022, u2* = 4, f* = 8000cm2. 5.55 W* = 70.7107, D* = 141.4214, u*3
= 1.41421, u*4 = 0, f* = $28,284.28. 5.56 r* = 4.57078cm, h* = 9.14156cm, 
�1* = -0.364365, u1* = 43.7562, f* = 328.17cm2. 5.57 b* = 10m, h* = 18m, u1* = 0.04267,
u2* = 0.00658, f* = 0.545185. 5.58 D* = 5.758823m, H* = 5.758823m, �1* = -277.834, f*
= $62,512.75. 5.59 P1* = 30.4, P2* = 29.6, u1* = 59.8, f* = $1789.68. 5.60 Ro* = 20cm, 
Ri* = 19.84cm, f* = 79.1kg. 5.61 Multiple optima between (31.83, 1.0) and (25.23, 
1.26)mm, f* = 45.9kg. 5.62 R* = 0.0787m, t* = 0.00157m, u* = (0, 3.056 ¥ 10-4, 0.3038,
0, 0), f* = 30.56kg. 5.63 Ro* = 0.0795m, Ri* = 0.0779m, u* = (0, 3.056 ¥ 10-4, 0.3055, 
0, 0), f* = 30.56kg. 5.64 D* = 7.98cm, H* = 8cm, u* = (0.5, 0, 0, 0.063, 0), f* =
300.6cm2. 5.65 R* = 1.0077m, t* = 0.0168m, f* = 8182.8kg, u* = (0.0417, 0.00408, 0,
0, 0, 0). 5.66 x1* = 102.98mm, x2* = 0.9546, f* = 2.9kg, u* = (4.568 ¥ 10-3, 0, 3.332 ¥ 10-8,
0, 0, 0). 5.67 do* = 103mm, di* = 98.36mm, f* = 2.9kg, u* = (4.657 ¥ 10-3, 0, 3.281 ¥
10-8, 0, 0, 0, 0). 5.68 R* = 50.3mm, t* = 2.34, f* = 2.9kg, u* = (4.643 ¥ 10-3, 0, 3.240 ¥
10-8, 0, 0, 0, 0). 5.69 R* = 33.7mm, t* = 5.0mm, f* = 41.6kg, u* = (0, 2.779 ¥ 10-4, 0,
0, 0, 5.54, 0). 5.70 R* = 21.3mm, t* = 5.0mm, f* = 26.0kg, u* = (0, 1.739 ¥ 10-4, 0, 0,
0, 3.491, 0). 5.71 R* = 27.0mm, t* = 5.0mm, f* = 33.0kg, u* = (0, 2.165 ¥ 10-4, 0, 0, 0,
4.439, 0). 5.72 A1* = 413.68mm2, A2* = 163.7mm2, f* = 5.7kg, u* = (0, 1.624 ¥ 10-2, 0,
6.425 ¥ 10-3, 0).
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5.73 Multiple solutions R* = 20.0mm, t* = 3.3mm, f* = 8.1kg, u* = (0.0326, 0, 0, 0, 0, 0,
0). 5.74 A* = 390mm2, h* = 500mm, f* = 5.5kg, u* = (2.216 ¥ 10-2, 0, 0, 0, 0, 0, 1.67 ¥
10-3). 5.75 A* = 415mm2, s* = 1480mm, f* = 8.1kg, u1* = 0.0325, all others are zero.
5.76 A1* = 300mm2, A2* = 50mm2, f* = 7.04kg, u* = (0.0473, 0, 0, 0, 0, 0, 0, 0). 5.77 R*
= 130cm, t* = 2.86cm, f* = 57,000kg, u* = (28170, 0, 294, 0, 0, 0, 0, 0). 5.78 do* = 41.6
cm, di* = 40.2cm, f* = 680kg, u* = (0, 0, 35.7, 6.1, 0, . . .). 5.79 do* = 1310mm, t* = 14.2
mm, f* = 92,500N, u* = (0, 508, 462, 0, . . .). 5.80 H* = 50.0cm, D* = 3.42cm, f* = 6.6
kg, u* = (0, 9.68 ¥ 10-5, 0, 4.68 ¥ 10-2, 0, 0).

Chapter 6 Linear Programming Methods for Optimum Design
6.21 (0, 4, -3, -5); (2, 0, 3, 1); (1, 2, 0, -2); ( , , 2, 0). 6.22 (0, 0, -3, -5); (0, 1, 0, -3);
(0, 2.5, 4.5, 0); (-3, 0, 0, -11); (2.5, 0, -5.5, 0); ( , , 0, 0). 6.23 Decompose x2 into two
variables; (0, 0, 0, 12, -3); (0, 0, -3, 0, 6); (0, 0, -1, 8, 0); (0, 3, 0, 0, 6); (0, 1, 0, 8, 0); (4,
0, 0, 0, 1); (3, 0, 0, 3, 0); (4.8, 0, 0.6, 0, 0); (4.8, -0.6, 0, 0, 0). 6.24 (0, - , - ); (2, 0, 3);
(0.2, -2.4, 0). 6.25 (0, 0, 9, 2, 3); (0, 9, 0, 20, -15); (0, -1, 10, 0, 5); (0, 1.5, 7.5, 5, 0);
(4.5, 0, 0, -2.5, 16.5); (2, 0, 5, 0, 9); (-1, 0, 11, 3, 0); (4, 1, 0, 0, 13); ( , , 0, , 0); (-2.5,
-2.25, 16.25, 0, 0). 6.26 (0, 4, -3, -7); (4, 0, 1, 1); (3, 1, 0, -1); (3.5, 0.5, 0.5, 0). 6.27
Decompose x2 into two variables; 15 basic solutions; basic feasible solutions are (0, 4, 0, 0,
7, 0); (0, , 0, , 0, 0); (2, 0, 0, 0, 1, 0); ( , 0, 0, , 0, 0); ( , 0, , 0, 0, 0). 6.28 Ten basic
solutions; basic feasible solutions are (2.5, 0, 0, 0, 4.5); (1.6, 1.8, 0, 0, 0). 6.29 (0, 0, 4, 
-2); (0, 4, 0, 6); (0, 1, 3, 0); (-2, 0, 0, -4); (2, 0, 8, 0); (-1.2, 1.6, 0, 0). 6.30 (0, 0, 0, -2);
(0, 2, -2, 0); (0, 0, 0, -2); (2, 0, 2, 0); (0, 0, 0, -2); (1, 1, 0, 0). 6.31 (0, 0, 10, 18); (0, 5, 0,
8); (0, 9, -8, 0); (-10, 0, 0, 48); (6, 0, 16, 0); (2, 6, 0, 0). 6.32 x* = ( , 2); f* = - . 6.33
Infinite solutions between x* = (0, 3) and x* = (2, 0); f* = 6. 6.34 x* = (2, 4); f* = 10.
6.35 x* = (6, 0); z* = 12. 6.36 x* = (3.667, 1.667); z* = 15. 6.37 x* = (0, 5); f* = -5.
6.55 x* = (2, 4); z* = 10. 6.56 Unbounded. 6.57 x* = (3.5, 0.5); z* = 5.5. 6.58 x* =
(1.667, 0.667); z* = 4.333. 6.60 x* = (0, 1.667, 2.333); f* = 4.333. 6.61 x* = (1.125,
1.375); f* = 36. 6.62 x* = (2, 0); f* = 40. 6.63 x* = (1.3357, 0.4406, 0, 3.2392); z* =
9.7329. 6.64 x* = (0.6541, 0.0756, 0.3151); f* = 9.7329. 6.65 x* = (0, 25); z* = 150.
6.66 x* = ( , ); z* = . 6.67 x* = ( , - ); z* = - . 6.68 x* = (1, 1); f* = 5. 6.69 x*
= (2, 2); f* = 10. 6.70 x* = (4.8, -0.6); z* = 3.6. 6.71 x* = (2, 4); z* = 10. 6.72 x* =
(0, 5); z* = 40. 6.73 Infeasible problem. 6.74 Infinite solutions; f* = 0. 6.77 A* =
20,000, B* = 10,000, Profit = $1,240,000. 6.78 A* = 70, B* = 76, Profit = $1308. 6.79
Bread = 0, Milk = 2.5kg; Cost = $2.5. 6.80 Bottles of wine = 316.67, Bottles of whiskey
= 483.33; Profit = $1283.3. 6.81 Shortening produced = 149,499.5kg, Salad oil produced
= 50,000 kg, Margarine produced = 10,000kg; Profit = $19,499.2. 6.82 A* = 10, B* = 0,
C* = 20; Capacity = 477,000. 6.83 x1* = 0, x2* = 0, x*3 = 200, x*4 = 100; f* = 786. 6.84 f*
= 1,333,679 ton. 6.85 x* = (0, 800, 0, 500, 1500, 0); f* = 7500; x* = (0, 0, 4500, 4000,
3000, 0); f* = 7500; x* = (0, 8, 0, 5, 15, 0), f* = 7500. 6.86 (a) No effect (b) Cost decreases
by 120,000. 6.87 1. No effect; 2. Out of range, re-solve the problem; A* = 70, B* = 110;
Profit = $1580; 3. Profit reduces by $4; 4. Out of range, re-solve the problem; A* = 41.667,
B* = 110; Profit = $1213.33. 6.88 y1 = 0.25, y2 = 1.25, y3 = 0, y4 = 0. 6.89 Unbounded.
6.90 y1 = 0, y2 = 2.5, y3 = -1.5. 6.91 y1 = 0, y2 = , y3 = - . 6.92 y1 = 4, y2 = -1. 6.93
y1 = - , y2 = - . 6.94 y1 = 2, y2 = -6. 6.95 y1 = 0, y2 = 5. 6.96 y1 = 0.654, y2 = -0.076,
y3 = 0.315. 6.97 y1 = -1.336, y2 = -0.441, y3 = 0, y4 = -3.239. 6.98 y1 = 0, y2 = 0, y3 =
0, y4 = 6. 6.99 y1 = -1.556, y2 = 0.556. 6.100 y1 = 0, y2 = , y3 = - . 6.101 y1 = -0.5,
y2 = -2.5. 6.102 y1 = - , y2 = 0, y3 = . 6.103 y1 = 0.2, y2 = 0.4. 6.104 y1 = 0.25, y2 =
1.25, y3 = 0, y4 = 0. 6.105 y1 = 2, y2 = 0. 6.106 Infeasible problem. 6.107 y1 = 3, y2 =
0. 6.110 For b1 = 10: -8 £ D1 £ 8; for b2 = 6: -2.667 £ D2 £ 8; for b3 = 2: -4 £ D3 £ •; for
b4 = 6: -• £ D4 £ 8. 6.111 Unbounded problem. 6.112 For b1 = 5: -0.5 £ D1 £ •; for b2

= 4: -1 £ D2 £ 0.333; for b3 = 3: -1 £ D3 £ 1. 6.113 For b1 = 5: -2 £ D1 £ •; for b2 = -4:
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-2 £ D2 £ 2; for b3 = 1: -2 £ D1 £ 1. 6.114 For b1 = -5: -• £ D1 £ 4; for b2 = -2: -8 £ D2

£ 4.5. 6.115 b1 = 1: -5 £ D1 £ 7; for b2 = 4: -3.5 £ D2 £ •. 6.116 For b1 = -3: -4.5 £ D1

£ 5.5; for b2 = 5: -3 £ D2 £ •. 6.117 For b1 = 3: -• £ D1 £ 3; for b2 = -8: -• £ D2 £ 4.
6.118 For b1 = 8: -8 £ D1 £ •; for b2 = 3: -14.307 £ D2 £ 4.032; for b3 = 15: -20.16 £ D3 £
101.867. 6.119 For b1 = 2: -3.9178 £ D1 £ 1.1533; for b2 = 5: -0.692 £ D2 £ 39.579; for
b3 = -4.5: -• £ D3 £ 7.542; for b4 = 1.5: -2.0367 £ D4 £ 0.334. 6.120 For b1 = 90: -15 £
D1 £ •; for b2 = 80: -30 £ D2 £ •; for b3 = 15: -• £ D3 £ 10; for b4 = 25: -10 £ D4 £ 5.
6.121 For b1 = 3: -1.2 £ D1 £ 15; for b2 = 18: -15 £ D2 £ 12. 6.122 For b1 = 5: -4 £ D1 £
•; for b2 = 4: -7 £ D2 £ 2; for b3 = 3: -1 £ D3 £ •. 6.123 For b1 = 0: -2 £ D1 £ 2; for b2

= 2: -2 £ D2 £ •. 6.124 For b1 = 0: -6 £ D1 £ 3; for b2 = 2: -• £ D2 £ 2; for b3 = 6: -3 £
D3 £ •. 6.125 For b1 = 12: -3 £ D1 £ •; for b2 = 3: -• £ D2 £ 1. 6.126 For b1 = 10: -8
£ D1 £ 8; for b2 = 6: -2.667 £ D2 £ 8; for b3 = 2: -4 £ D3 £ •; for b4 = 6: -• £ D4 £ 8. 6.127
For b1 = 20: -12 £ D1 £ •; for b2 = 6: -• £ D2 £ 9. 6.128 Infeasible problem. 6.129 For
b1 = 0: -2 £ D1 £ 2; for b2 = 2: -2 £ D2 £ •. 6.132 For c1 = -1: -1 £ Dc1 £ 1.667; for c2

= -2: -• £ Dc2 £ 1. 6.133 Unbounded problem. 6.134 For c1 = -1: -• £ Dc1 £ 3; for c2

= -4: -3 £ Dc2 £ •. 6.135 For c1 = 1: -• £ Dc1 £ 7; for c2 = 4: -3.5 £ Dc2 £ •. 6.136
For c1 = 9: -5 £ Dc1 £ •; for c2 = 2: -9.286 £ Dc2 £ 2.5; for c3 = 3: -13 £ Dc3 £ •. 6.137
For c1 = 5: -2 £ Dc1 £ •; for c2 = 4: -2 £ Dc2 £ 2; for c3 = -1: 0 £ Dc3 £ 2; for c4 = 1: 0 £
Dc4 £ •. 6.138 For c1 = -10: -8 £ Dc1 £ 16; for c2 = -18: -• £ Dc2 £ 8. 6.139 For c1 =
20: -12 £ Dc1 £ •; for c2 = -6: -9 £ Dc2 £ •. 6.140 For c1 = 2: -3.918 £ Dc1 £ 1.153; for
c2 = 5: -0.692 £ Dc2 £ 39.579; for c3 = -4.5: -• £ Dc3 £ 7.542; for c4 = 1.5: -3.573 £ Dc4 £
0.334. 6.141 c1 = 8: -8 £ Dc1 £ •; for c2 = -3: -4.032 £ Dc2 £ 14.307; for c3 = 15: 0 £ Dc3

£ 101.8667; for c4 = -15: 0 £ Dc4 £ •. 6.142 For c1 = 10: -• £ Dc1 £ 20; for c2 = 6: -4 £
c2 £ •. 6.143 For c1 = -2: -• £ Dc1 £ 2.8; for c2 = 4: -5 £ Dc2 £ •. 6.144 For c1 = 1: 
-• £ Dc1 £ 7; for c2 = 4: -• £ Dc2 £ 0; for c3 = -4: -• £ Dc3 £ 0. 6.145 For c1 = 3: -1 £
Dc1 £ •; for c2 = 2: -5 £ Dc2 £ 1. 6.146 For c1 = 3: -5 £ Dc1 £ 1; for c2 = 2: -0.5 £ Dc2 £
•. 6.147 For c1 = 1: -0.3333 £ Dc1 £ 0.5; for c2 = 2: -• £ Dc2 £ 0; for c3 = -2: -1 £ Dc3

£ 0. 6.148 For c1 = 1: -1.667 £ Dc1 £ 1; for c2 = 2: -1 £ Dc2 £ •. 6.149 For c1 = 3: -•
£ Dc1 £ 3; for c2 = 8: -4 £ Dc2 £ 0; for c3 = -8: -• £ Dc3 £ 0. 6.150 Infeasible problem.
6.151 For c1 = 3: 0 £ Dc1 £ •; for c2 = -3: 0 £ Dc2 £ 6. 6.154 For c1 = -48: -• £ Dc1 £
27; for c2 = -28: -36 £ Dc2 £ 4. 6.155 For c1 = -10: -• £ Dc1 £ 0.4; for c2 = -8: -0.3333
£ Dc2 £ 8. 6.156 1. Df = 0.5; 2. Df = 0.5 (Bread = 0, Milk = 3, f* = 3); 3. Df = 0. 6.157
1. Df = 33.33 (Wine bottles = 250, Whiskey bottles = 500, Profit = 1250); 2. Df = 63.33. 3.
Df = 83.33 (Wine bottles = 400, Whiskey bottles = 400, Profit = 1200). 6.158 1. Re-solve;
2. Df = 0; 3. No change. 6.159 1. Cost function increases by $52.40; 2. No change; 3. Cost
function increases by $11.25, x1* = 0, x2* = 30, x*3 = 200, x*4 = 70. 6.160 1. Df = 0; 2. No
change; 3. Df = 1800 (A* = 6, B* = 0, C* = 22, f* = -475,200). 6.161 1. Df = 0; 2. 
Df = 2,485.65; 3. Df = 0; 4. Df = 14,033.59; 5. Df = -162,232.3. 6.162 1. Df = 0; 2. Df =
400; 3. Df = -375. 6.163 1. x1* = 0, x2* = 3, f* = -12; 2. y1 = , y2 = 0; 3. -15 £ D1 £ 3, -6
£ D2 £ •; 4. f* = -14.4, b1 = 18.

Chapter 7 More on Linear Programming Methods for Optimum Design
7.1 y1* = , y2* = , y*3 = 0, y*4 = 0, f*d = 10. 7.2 Dual problem is infeasible. 7.3 y1* = 0, y2*
= 2.5, y*3 = 1.5, f*d = 5.5. 7.4 y1* = 0, y2* = 1.6667, y*3 = 2.3333, f*d = 4.3333. 7.5 y1* = 4, y2*
= 1, f*d = -18. 7.6 y1* = 1.6667, y2* = 0.6667, f*d = -4.3333. 7.7 y1* = 2, y2* = 6, f*d = -36.
7.8 y1* = 0, y2* = 5, f*d = -40. 7.9 y1* = 0.65411, y2* = 0.075612, y3* = 0.315122, f*d = 9.732867.
7.10 y1* = 1.33566, y2* = 0.44056, y*3 = 0, y*4 = 3.2392, f*d = -9.732867.

Chapter 8 Numerical Methods for Unconstrained Optimum Design
8.2 Yes. 8.3 No. 8.4 Yes. 8.5 No. 8.6 No. 8.7 No. 8.8 No. 8.9 Yes. 8.10
No. 8.11 No. 8.12 No. 8.13 No. 8.14 No. 8.16 a* = 1.42850, f* = 7.71429.
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8.17 a* = 1.42758, f* = 7.71429. 8.18 a* = 1.38629, f* = 0.454823. 8.19 d is descent
direction; slope = -4048; a* = 0.15872. 8.20 a* = 0. 8.21 f(a) = 4.1a2 - 5a - 6.5. 8.22
f(a) = 52a2 - 52a + 13. 8.23 f(a) = 6.88747 ¥ 109a4 - 3.6111744 ¥ 108a3 + 5.809444 ¥
106a2 - 27844a + 41. 8.24 f(a) = 8a2 - 8a + 2. 8.25 f(a) = 18.5a2 - 85a - 13.5. 8.26
f(a) = 288a2 - 96a + 8. 8.27 f(a) = 24a2 - 24a + 6. 8.28 f(a) = 137a2 - 110a + 25.
8.29 f(a) = 8a2 - 8a. 8.30 f(a) = 16a2 - 16a + 4. 8.31 a* = 0.61. 8.32 a* = 0.5.
8.33 a* = 3.35E-03. 8.34 a* = 0.5. 8.35 a* = 2.2973. 8.36 a* = 0.16665. 8.37 a*
= 0.5. 8.38 a* = 0.40145. 8.39 a* = 0.5. 8.40 a* = 0.5. 8.41 a* = 0.6097. 8.42
a* = 0.5. 8.43 a* = 3.45492E-03. 8.44 a* = 0.5. 8.45 a* = 2.2974. 8.46 a* =
0.1667. 8.47 a* = 0.5. 8.48 a* = 0.4016. 8.49 a* = 0.5. 8.50 a* = 0.5. 8.52 x(2)

= (5/2, 3/2). 8.53 x(2) = (0.1231, 0.0775). 8.54 x(2) = (0.222, 0.0778). 8.55 x(2) =
(0.0230, 0.0688). 8.56 x(2) = (0.0490, 0.0280). 8.57 x(2) = (0.259, -0.225, 0.145). 8.58
x(2) = (4.2680, 0.2244). 8.59 x(2) = (3.8415, 0.48087). 8.60 x(2) = (-1.590, 2.592). 8.61
x(2) = (2.93529, 0.33976, 1.42879, 2.29679). 8.62 (8.52) x* = (3.996096, 1.997073), f* =
-7.99999; (8.53) x* = (0.071659, 0.023233), f* = -0.073633; (8.54) x* = (0.071844, 
-0.000147), f* = -0.035801; (8.55) x* = (0.000011, 0.023273), f* = -0.011626; (8.56) 
x* = (0.040028, 0.02501), f* = -0.0525; (8.57) x* = (0.006044, -0.005348, 0.002467), f* =
0.000015; (8.58) x* = (4.1453, 0.361605), f* = -1616.183529; (8.59) x* = (3.733563,
0.341142), f* = -1526.556493; (8.60) x* = (0.9087422, 0.8256927), f* = 0.008348, 1000
iterations; (8.61) x* = (0.13189, 0.013188, 0.070738, 0.072022), f* = 0.000409, 1000 itera-
tions. 8.63 x* = (0.000023, 0.000023, 0.000045), f 1* = 0, 1 iteration; x* = (0.002353, 0.0,
0.000007), f 2* = 0.000006, 99 iterations; x* = (0.000003, 0.0, 0.023598), f*3 = 0.000056, 135
iterations. 8.64 Exact gradients are: 1. —f = (119.2, 258.0), 2. —f = (-202, 100), 3. —f = (6,
16, 16). 8.65 u = , v = Lagrange multiplier for the equality constraints. 8.67 x(2) = (4.2).
8.68 x(2) = (0.07175, 0.02318). 8.69 x(2) = (0.072, 0.0). 8.70 x(2) = (0.0, 0.0233). 8.71
x(2) = (0.040, 0.025). 8.72 x(2) = (0.257, -0.229, 0.143). 8.73 x(2) = (4.3682, 0.1742).
8.74 x(2) = (3.7365, 0.2865). 8.75 x(2) = (-1.592, 2.592). 8.76 x(2) = (3.1134, 0.32224,
1.34991, 2.12286).

Chapter 9 More on Numerical Methods for Unconstrained Optimum Design
9.1 a* = 1.42857, f* = 7.71429. 9.2 a* = , f* = 7.71429, one iteration. 9.4 1. a* =

2. a = 1.81386 or 4.68614. 9.10 x(1) = (4, 2). 9.11 x(1) = (0.071598, 0.023251). 9.12
x(1) = (0.071604, 0.0). 9.13 x(1) = (0.0, 0.0232515). 9.14 x(1) = (0.04, 0.025). 9.15 x(1)

= (0, 0, 0). 9.16 x(1) = (-2.7068, 0.88168). 9.17 x(1) = (3.771567, 0.335589). 9.18 x(1)

= (4.99913, 24.99085). 9.19 x(1) = (-1.26859, -0.75973, 0.73141, 0.39833). 9.22 x(2) =
(4, 2). 9.23 x(2) = (0.0716, 0.02325). 9.24 x(2) = (0.0716, 0.0). 9.25 x(2) = (0.0,
0.02325). 9.26 x(2) = (0.04, 0.025). 9.27 DFP: x(2) = (0.2571, -0.2286, 0.1428); BFGS:
x(2) = (0.2571, -0.2286, 0.1429). 9.28 DFP: x(2) = (4.37045, 0.173575); BFGS: x(2) =
(4.37046, 0.173574). 9.29 x(2) = (3.73707, 0.28550). 9.30 x(2) = (-1.9103, -1.9078).
9.31 DFP: x(2) = (3.11339, 0.32226, 1.34991, 2.12286); BFGS: x(2) = (3.11339, 0.32224,
1.34991, 2.12286). 9.44 x1 = 3.7754mm, x2 = 2.2835mm. 9.45 x1 = 2.2213mm, x2 =
1.8978mm. 9.46 x* = 0.619084. 9.47 x* = 9.424753. 9.48 x* = 1.570807. 9.49 x*
= 1.496045. 9.50 x* = (3.667328, 0.739571). 9.51 x* = (4.000142, 7.999771).

Chapter 10 Numerical Methods for Constrained Optimum Design
10.29 x* = ( , ), u* = 1, f* = 0.5. 10.30 x* = (1, 1), u* = 0, f* = 0. 10.31 x* = ( , ),
u* = , f* = . 10.32 x* = (2, 1), u* = 0, f* = -3. 10.33 x* = (1, 2), u* = 0, f* = -1.
10.34 x* = ( , ), v* = - , f* = - . 10.35 x* = (3, 1), v1* = -2, v2* = -2, f* = 2. 10.36
x* = ( , ), u* = 0, f* = - . 10.37 x* = ( , ), u* = 1, f* = - . 10.38 x* = ( , ),
u1* = 0, u2* = , f* = - . 10.39 x* = (2, 1), u1* = 0, u2* = 2, f* = -1. 10.40 x* = (0.241507,
0.184076, 0.574317); u* = (0, 0, 0, 0), v1* = -0.7599, f* = 0.3799.
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Chapter 12 Introduction to Optimum Design with MATLAB
12.1 For l = 0.5m, To = 10kN◊m, Tmax = 20kN◊m, x1* = 103mm, x2* = 0.955, f* = 2.9kg. 12.2
For l = 0.5, To = 10kN◊m, Tmax = 20kN◊m, do* = 103mm, di* = 98.36mm, f* = 2.9kg. 12.3
R* = 50.3mm, t* = 2.35mm, f* = 2.9kg. 12.4 A1* = 300mm2, A2* = 50mm2, f* = 7kg.
12.5 R* = 130cm, t* = 2.86cm, f* = 57,000kg. 12.6 do* = 41.56cm, di* = 40.19cm, f* =
680kg. 12.7 do* = 1310mm, t* = 14.2mm, f* = 92,500N. 12.8 H* = 50.0cm, D* = 3.42
cm, f* = 6.6kg. 12.9 b* = 0.5 in, h* = 0.28107 in, f* = 0.140536 in2; Active constraints:
fundamental vibration frequency and lower limit on b. 12.10 b* = 50.4437cm, h* = 15.0
cm, t 1* = 1.0cm, t 2* = 0.5218cm, f* = 16,307.2cm3; Active constraints: axial stress, shear
stress, upper limit on t1 and upper limit on h. 12.11 A1* = 1.4187 in2, A2* = 2.0458 in2, A*3 =
2.9271 in2, x1* = -4.6716 in, x2* = 8.9181 in, x*3 = 4.6716 in, f* = 75.3782 in3; Active stress con-
straints: member 1—loading condition 3, member 2—loading condition 1, member 3—
loading conditions 1 and 3. 12.12 For f = : x1* = 2.4138, x2* = 3.4138, x*3 = 3.4141, f* =
1.2877 ¥ 10-7; For f = 21/3: x1* = 2.2606, x2* = 2.8481, x*3 = 2.8472, f* = 8.03 ¥ 10-7.

Chapter 13 Interactive Design Optimization
13.1 Several local minima: (0, 0), (2, 0), (0, 2), (1.386, 1.538). 13.2 d = (0, 0). 13.3 d
= (- , - ), f (x(1)) = -0.00364. 13.4 Subproblem is infeasible. 13.5 d = (-0.01347, 
-0.7663). 13.6 x* = (0.76471, 1.05882), f (x*) = -4.05882. 13.7 d = (1.5294, -0.38235);
f (x(1)) = -3.73362. 13.8 d = (-1.2308, -1.8462); f (x(1)) = 1.53846. 13.9 d = (-0.2353, 
-0.9412); f (x(1)) = -4.05822. 13.10 d = (-0.29412, -1.1765); f (x(1)) = -3.11765.

Chapter 14 Design Optimization Applications with Implicit Functions
14.1 For l = 500mm, do* = 102.985mm, do*/di* = 0.954614, f * = 2.900453kg; Active con-
straints: shear stress and critical torque. 14.2 For l = 500mm, do* = 102.974mm, di* =
98.2999mm, f * = 2.90017kg; Active constraints: shear stress and critical torque. 14.3 For
l = 500mm, R* = 50.3202mm, t* = 2.33723mm, f * = 2.90044kg; Active constraints: shear
stress and critical torque. 14.5 R* = 129.184cm, t* = 2.83921cm, f * = 56,380.61kg; Active
constraints: combined stress and diameter/thickness ratio. 14.6 do* = 41.5442cm, di* =
40.1821cm, f * = 681.957kg; Active constraints: deflection and diameter/thickness ratio.
14.7 do* = 1308.36mm, t* = 14.2213mm, f * = 92,510.7N; Active constraints: diameter/
thickness ratio and deflection. 14.8 H* = 50cm, D* = 3.4228cm, f * = 6.603738kg; Active
constraints: buckling load and minimum height. 14.9 b* = 0.5 in, h* = 0.28107 in, f * =
0.140536 in2; Active constraints: fundamental vibration frequency and lower limit on b.
14.10 b* = 50.4437cm, h* = 15.0cm, t 1* = 1.0cm, t 2* = 0.5218cm, f * = 16,307.2cm3; Active
constraints: axial stress, shear stress, upper limit on t1 and upper limit on h. 14.11 A1* =
1.4187 in2, A2* = 2.0458 in2, A*3 = 2.9271 in2, x1* = -4.6716 in, x2* = 8.9181 in, x*3 = 4.6716 in,
f * = 75.3782 in3; Active stress constraints: member 1—loading condition 3, member 2—
loading condition 1, member 3—loading conditions 1 and 3. 14.12 For f = : x1* = 2.4138,
x2* = 3.4138, x*3 = 3.4141, f * = 1.2877 ¥ 10-7; For f = 21/3: x1* = 2.2606, x2* = 2.8481, 
x*3 = 2.8472, f * = 8.03 ¥ 10-7. 14.13 do* at base = 48.6727cm, do* at top = 16.7117cm, 
t* = 0.797914cm, f * = 623.611kg. 14.14 do* at base = 1419mm, do* at top = 956.5mm, 
t* = 15.42mm, f * = 90,894kg. 14.15 Outer dimension at base = 42.6407cm, outer dimen-
sion at top = 14.6403cm, t* = 0.699028cm, f * = 609.396kg. 14.16 Outer dimension at
base = 1243.2mm, outer dimension at top = 837.97mm, t* = 13.513mm, f * = 88,822.2kg.
14.17 ua = 25: f1 = 1.07301E-06, f2 = 1.83359E–02, f3 = 24.9977; ua = 35: f1 = 6.88503E-07,
f2 = 1.55413E–02, f3 = 37.8253. 14.18 ua = 25: f1 = 2.31697E-06, f2 = 2.74712E–02, f3 =
7.54602; ua = 35: f1 = 2.31097E–06, f2 = 2.72567E–02, f3 = 7.48359. 14.19 ua = 25: f1 =
1.11707E–06, f2 = 1.52134E–02, f3 = 19.815, f4 = 3.3052E-02; ua = 3.5: f1 = 6.90972E-07, f2

= 1.36872E–02, f3 = 31.479, f4 = 2.3974E–02. 14.20 f1 = 1.12618E–06, f2 = 1.798E–02, f3

= 33.5871, f4 = 0.10. 14.21 f1 = 2.34615E–06, f2 = 2.60131E–02, f3 = 10.6663, f4 = 0.10.

2

19
13

21
13

2
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14.22 f1 = 1.15097E-06, f2 = 1.56229E–02, f3 = 28.7509, f4 = 3.2547E–02. 14.23 f1 =
8.53536E–07, f2 = 1.68835E–02, f3 = 31.7081, f4 = 0.10. 14.24 f1 = 2.32229E-06, f2 =
2.73706E–02, f3 = 7.48085, f4 = 0.10. 14.25 f1 = 8.65157E–07, f2 = 1.4556E–02, 
f3 = 25.9761, f4 = 2.9336E–02. 14.26 f1 = 8.27815E–07, f2 = 1.65336E–02, f3 = 28.2732, 
f4 = 0.10. 14.27 f1 = 2.313E–06, f2 = 2.723E–02, f3 = 6.86705, f4 = 0.10. 14.28 f1 =
8.39032E–07, f2 = 1.43298E-2, f3 = 25.5695, f4 = 2.9073E-02. 14.29 k* = 2084.08, c* =
300 (upper limit), f * = 1.64153.

Chapter 18 Global Optimization Concepts and Methods for Optimum Design
18.1 Six local minima, two global minima: (0.0898, -0.7126), (-0.0898, 0.7126), f*G =
-1.0316258. 18.2 10n local minima; global minimum: xi* = 1, f*G = 0. 18.3 Many local
minima; global minimum: x* = (0.195, -0.179, 0.130, 0.130), f*G = 3.13019 ¥ 10-4. 18.4
Many local minima; two global minima: x* = (0.05, 0.85, 0.65, 0.45, 0.25, 0.05), x* = (0.55,
0.35, 0.15, 0.95, 0.75, 0.55), f*G = -1. 18.5 Local minima: x* = (0, 0), f* = 0; x* = (0, 2),
f* = -2; x* = (1.38, 1.54), f* = -0.04; Global minimum: x* = (2, 0), f* = -4.

Appendix A Economic Analysis
A.7 (a) S216 = $24,004.31, (b) R = $586.02. A.8 (a) R = $156.89, (b) P = $2,293.37. A.11
(a) R = $843.53, (b) P = $67,512.98. A.12 (a) S24 = $2,392.83, (b) S730 = $2,394.38. A.13
i = 0.02075 (24.9% annual). A.14 $855.01. A.16 PWA = $598,935.18, PWB =
$518,807.40; ACA = $60,408.07, ACB = $52,326.46. A.23 PWA = $24 ¥ 106, PWB = $27.5
¥ 106. A.24 AC80 = $53,134.42, AC50 = $53,507.54; PW80 = $343,468.81, PW50 =
$345,880.69. A.25 PWA = $54,668.58, PWB = $54,889.53. A.26 PWA = $101,600.00,
PWB = $102,546,86; ACA = $14,187.96 (MCA = $1,118.70), ACB = $14,442.54 (MCB =
$1,136.14). A.27 (a) ACA = -$4,475.76, ACB = -$5,983.84, ACC = -$10,459.63; PWA =
-38.104.76, PWB = -$50,943.86, PWC = -$89,048.62; (b) A = $213,296.47, B = $171,977.88,
C = $295,933.65. A.28 PWA = $106,567.11, PWB = $123,283.56. A.29 ACA =
$21,013.62, ACB = $24,000.00; PWA = $104,996.60, PWB = $119,918.35. A.30 PWA =
$1,186,767.70, PWB = $1,159,216.60; ACA = $118.676.77, ACB = $115,921.66. A.31 PWA

= $76,665.15, PWB = $100,000.00, PWC = $54,884.60. A.32 PWA = $11,928.68, PWB =
$12,708.79, PWC = $12,392.64.

Appendix B Vector and Matrix Algebra
B.1 |A| = 1. B.2 |A| = 14. B.3 |A| = -20. B.4 l1 = (5 - )/2, l2 = 2, l3 = (5 + )/2.
B.5 l1 = (2 - ), l2 = 2, l3 = (2 + ). B.6 r = 4. B.7 r = 4. B.8 r = 4. B.9 x1 =
1, x2 = 1, x3 = 1. B.10 x1 = 1, x2 = 1, x3 = 1. B.11 x1 = 1, x2 = 2, x3 = 3. B.12 x1 = 1, x2

= 1, x3 = 1, x4 = 1. B.13 x1 = 1, x2 = 2, x3 = 3. B.14 x1 = 2, x2 = 1, x3 = 1. B.15 x1 = 1,
x2 = 2, x3 = 3. B.16 x1 = 1, x2 = 1, x3 = 1. B.17 x1 = 2, x2 = 1, x3 = 1, x4 = -2. B.18 x1

= 6, x2 = -15, x3 = -1, x4 = 9. B.19 x1 = (3 - 7x3 - 2x4)/4, x2 = (-1 + x3 - 2x4)/4. B.20 x1

= (4 - x3), x2 = 2, x4 = 4. B.21 x1 = (-3 - 4x4), x2 = (-2 - 3x4), x3 = x4. B.22 x1 = -x4, x2

= (2 + x4), x3 = (-2 - x4). B.27 x1 = 4 + (2x2 - 8x3 - 5x4 + 2x5)/3; x6 = (9 - x2 - 2x3 - x4 -
3x5)/2; x7 = 14 - (13x2 + 14x3 + 8x4 + 4x5)/3; x8 = (9 + x2 - 16x3 - 7x4 + 19x5)/6. B.28
Linearly dependent. B.29 Linearly independent. B.30 l1 = (3 - 2 ), l2 = (3 + 2 ).
B.31 l1 = (3 - ), l2 = (3 + ). B.32 l1 = (5 - )/2, l2 = (5 + )/2, l3 = 5. B.33
l1 = (1 - ), l2 = 1, l3 = (1 + ). B.34 l1 = 0, l2 = (3 - ), l3 = (3 + ).

Appendix C A Numerical Method for Solution of Nonlinear Equations
C.1 x(3) = 0.6190. C.2 x(2) = 9.4249. C.3 x(2) = 1.5708. C.4 x(3) = -1.4958. C.5 x(2)

= (3.78842, 0.6545). C.6 x(2) = (4.10321, 8.14637). C.7 x(2) = (-3.3738, 0.03760). C.8
x = (3.6840, 0.7368). C.9 x = (-4, -8); x = (4, 8). C.10 x = (-3.3315, 0.03949); x =
(-0.3980, 0.5404).
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A
Acceptance criterion, 578
Acceptance-rejection (A-R) method, 578, 

586
Algebra, vector and matrix, 611–646

concepts related to set of vectors, 635–641
definition of matrices, 611–613
eigenvalues and eigenvectors, 642–643
exercises, 645–646
norm and condition number of matrix,

643–644
solution of m linear equations in n unknowns,

628–635
type of matrices and their operations,

613–618
Algorithms

attributes of good optimization, 478–479
conceptual local-global, 579–580
and constrained problems, 340–342
constraint correction, 440–442
for constraint correction at constant cost,

442–445
for constraint correction at specified increase

in cost, 445
convergence of, 345–346
cost reduction, 436–440
CSD, 368
modified constrained steepest descent,

404–405
observations on interactive, 447–448
Phase I, 220
Phase II, 221
robust, 478
selection of, 478
Simplex, 211–212

Algorithms, concepts related to numerical,
278–282

convergence of algorithms, 282
descent direction and descent step, 280–281
example—checking for descent condition,

281
general algorithm, 279–280
rate of convergence, 282

Algorithms for step size determination, ideas
and, 282–293

alternate equal interval search, 288–289
analytical method to compare step size,

283–285
definition of one-dimensional minimization

subproblem, 282–283
equal interval search, 286–288
example—analytical step size determination,

284–285
example—minimization of function by

golden section search, 292–293
golden section search, 289–293
numerical methods and compute step size,

285–286
Algorithms, interactive design optimization,

436–448
algorithm for constraint correction at constant

cost, 442–445
algorithm for constraint correction at

specified increase in cost, 445
constraint correction algorithm, 440–442
cost reduction algorithm, 436–440
example—constraint correction at constant

cost, 443–444, 444–445
example—constraint correction at specified

increase in cost, 445

Index
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Algorithms, interactive design optimization
(continued)

example—constraint correction step, 441–442
example—constraint correction with

minimum increase in cost, 446–447
example—cost reduction step, 437–439
example—cost reduction step with potential

constraints, 440
observations on interactive algorithms,

447–448
Algorithms, SLP, 352–358

basic idea—move limits, 352–353
example—sequential linear programming

algorithm, 354–355
example—use of sequential linear

programming, 356–357
SLP algorithm, 353–357
SLP algorithm observations, 357–358

Alternate equal interval search, 288–289
Alternate quadratic interpolation, 308–309
American Association of State Highway and

Transportation Officials (AASHTO), 
369

Analyses
engineering, 4
operations, 583–585

Analyses, economic, 593–609
economic bases for comparison, 598–604
exercises, 604–609
time value of money, 593–598

Analyses, postoptimality, 143–148, 228–243
changes in coefficient matrix, 241–243
changes in resource limits, 229–230
constraint variation sensitivity result, 148
effect of scaling constraint on Lagrange

multiplier, 147–148
example—£ type constraints, 236–237
example—£ type constraints, 239–240
example—effect of scaling constraint,

147–148
example—effect of scaling cost function,

146–147
example—equality and ≥ type constraints,

237–238, 240–241
example—Lagrange multipliers, 146–147,

147–148
example—optimum cost function, 145
example—ranges for cost coefficients,

239–240, 240–241
example—ranges for resource limits,

236–237, 237–238
example—recovery of Lagrange multipliers

for £ type constraint, 230–232
example—variations of constraint limits, 

145

ranging cost coefficients, 239–241
ranging right side parameters, 235–238
recovery of Lagrange multipliers for ≥ type

constraints, 232–234
scaling cost function on Lagrange multipliers,

146–147
Annual base comparisons, 599–601
Annual cost (AC), 598
Applications, design optimization, 465–511
Array operation, 414
Artificial cost function, 219–220
Artificial variables, 218–228

artificial cost function, 219–220
definition of Phase I problem, 220
degenerate basic feasible solution, 226–228
example—feasible problem, 223–224
example—implications of degenerate feasible

solution, 226–228
example—unbounded problem, 225–226
example—use of artificial variables, 

225–226
example—use of artificial variables for 

≥ type constraints, 221–223
example—use of artificial variables for

equality constraints, 223–224
Phase I algorithm, 220
Phase II algorithm, 221
use for equality constraints, 223–224

Ascents, alternation of descents and, 570
Asymmetric three-bar structure, 484–490
Augmented Lagrangian methods, 334

B
Basic feasible solution, degenerate, 226–228
BBM. See Branch and bound method
Beam, design of rectangular, 162–166
Beam design problem, graphical solution for,

69–72
Binary variable defined, 513
Bounded objective function method, 558–559
Brackets

design of two-bar, 24–29, 28–29
design of wall, 158–162

Branch and bound method (BBM), 516–521
basic, 517–518
BBM for general MV-OPT, 520–521
BBM with local minimization, 519–520
example—BBM with local minimizations,

519–520
example—BBM with only discrete values
allowed, 517–518

British versus SI units. See U.S.-British versus
SI units

Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method, 327–328
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C
Cabinet, design of, 30–32
Calculus concepts, 89–103

concept of necessary and sufficient
conditions, 102–103

example—calculation of gradient vector, 91
example—evaluation of gradient and Hessian

of function, 92–93
example—linear Taylor’s expansion of

function, 95–96
example—Taylor’s expansion of a function

of one variable, 94
example—Taylor’s expansion of a function

of two variables, 95
gradient vector, 90–91
Hessian matrix, 92–93
quadratic forms and definite matrices, 96–102
Taylor’s expansion, 93–96

Can, design of, 18–20
Canonical form/general solution of Ax. = b,

202–203
Capabilities, desired interactive, 448–450
Cash flow diagrams, 594
Changing constraint limits, effect of, 143–145
Chromosome defined, 532
Clustering methods, 573–575
Coefficient matrix, changes in, 241–243
Coefficients, ranging cost, 239–241
Coil springs, design of, 36–38
Column design

for minimum mass, 421–425
minimum weight tubular, 32–35

Column matrix, 613
Column vector, 613
Columns, graphical solutions for minimum

weight tubular, 69
Comparisons

annual base, 599–601
PW, 601

Comparisons, economic bases for, 598–604
alternate power stations, 602
annual base comparisons, 599–601
example—alternate designs, 599, 602
example—alternate power stations, 600
example—alternate quarries, 600–601, 603
PW comparisons, 601

Compromise solution, 550
Computer-aided design optimization (CADO), 5
Computer programs, sample, 657–673

equal interval search, 657–660
golden section search, 660
modified Newton’s method, 669–673
steepest descent method, 660–669

Computers, role in interactive design
optimization, 434–435

Concepts and methods, multiobjective optimum
design, 543–563

Concepts, calculus, 89–103
concept of necessary and sufficient

conditions, 102–103
example—calculation of gradient vector, 91
example—evaluation of gradient and Hessian

of function, 92–93
example—linear Taylor’s expansion of

function, 95–96
example—Taylor’s expansion of a function

of one variable, 94
example—Taylor’s expansion of a function

of two variables, 95
gradient vector, 90–91
Hessian matrix, 92–93
quadratic forms and definite matrices, 96–102
Taylor’s expansion, 93–96

Concepts, optimum design, 83–174, 175–190
alternate form of KKT necessary conditions,

175–178
basic calculus concepts, 89–103
constrained optimum design problems,

119–143
engineering design examples, 158–166
exercises, 185–190
global optimality, 149–158
irregular points, 178–179
physical meaning of Lagrange multipliers,

143–148
postoptimality analysis, 143–148
second-ordered conditions for constrained

optimization, 179–184
sufficiency check for rectangular beam design

problem, 184–185
unconstrained optimum design problems,

103–119
Concepts, optimum design (exercises), 166–174

constrained optimum design problems,
168–172

engineering design examples, 174
global optimality, 173–174
physical meaning of Lagrange multipliers,

172–173
review of some basic calculus concepts,

166–167
unconstrained optimum design problems,

167–168
Concepts, solution, 515–516, 548–550

compromise solution, 550
efficiency and dominance, 549–550
Pareto optimality, 548–549
utopia point, 550
weak Pareto optimality, 549

Condition, descent, 389–393
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Conditions
second-ordered, 179–184
transformation of KKT, 384–385

Conditions, alternate form of KKT necessary,
175–178

example—alternate form of KKT conditions,
176–177

example—check for KKT necessary
conditions, 177–178

Conditions, concepts relating to optimality,
103–104

Conjugate gradient method, 296–299
example—use of conjugate gradient

algorithm, 298
example—use of Excel Solver, 299

Constraint correction (CC), 493
Constant cost, algorithm for constraint correction

at, 442–445
Constrained design, numerical methods for,

339–377, 379–412
algorithms and constrained problems,

340–342
approximate step size determination, 388–399
basic concepts and ideas, 340–346
constrained quasi-Newton methods, 400–407
constrained steepest descent method,

363–369
constraint normalization, 343–345
constraint status at design point, 342–343
convergence of algorithms, 345–346
descent function, 345
engineering design optimization using Excel

Solver, 369–373
examples—constraint normalization and

status at point, 344–345
exercises, 373–377, 411–412
linearization of constrained problem,

346–352
miscellaneous numerical optimization

methods, 407–411
potential constraint strategy, 379–382
QP problem, 383–388
QP subproblem, 358–363
SLP algorithm, 352–358

Constrained design, numerical methods for
(exercises), 373–377, 411–412

approximate step size determination, 411–412
basic concepts and ideas, 373–374
constrained quasi-Newton methods, 412
CSD method, 377
engineering design optimization using Excel

Solver, 377
linearization of constrained problem, 374
quadratic programming subproblem, 

375–376

sequential linear programming algorithm,
374–375

Constrained design problems, 119–143, 418–420
example—constrained minimization problem

using fmincon, 418–420
example—constrained optimum point, 120
example—cylindrical tank design, 127
example—equality constrained problem, 127
example—fmincon in Optimization Toolbox,

418–420
example—inequality constrained problem,

128–130
example—infeasible problem, 121
example—Lagrange multipliers and their

geometrical meaning, 122–125
example—solution of KKT necessary

conditions, 134–137, 137–140
example—solutions of KKT necessary

conditions, 132–134
example—unconstrained optimum point for

constrained problem, 120
example—use of Lagrange multipliers, 127
example—use of necessary conditions,

128–130
inequality constraints, 128–140
KKT, 128–140
necessary conditions, 128–140
necessary conditions: equality constraints,

121–128
role of constraints, 119–121
solution of KKT necessary conditions using

Excel, 140–141
solution of KKT necessary conditions using

MATLAB, 141–143
Constrained optimization, second-ordered

conditions for, 179–184
example—check for sufficient conditions,

181–182, 182–183, 183–184
Constrained problems

concepts related to algorithms for, 340–342
solution of, 332–334

Constrained problems, linearization of, 
346–352

example—definition of linearized
subproblem, 348–350

example—linearization of rectangular beam
design problem, 350–352

Constrained quasi-Newton methods, 400–407
descent functions, 406–407
deviation of QP subproblem, 400–402
example—use of constrained quasi-Newton

method, 404–405
modified constrained steepest descent

algorithm, 404–405
observations on, 406
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observations on constrained quasi-Newton
methods, 406

quasi-Newton Hessian approximation,
403–404

Constrained steepest descent (CSD), 368, 388,
409, 436

CSD algorithm, 368
CSD algorithm, modified, 404–405
CSD algorithm observations, 368–369
CSD method, 363–369
descent function, 364–365
example—calculation of descent function,

365, 366–367
example—golden section search, 366–367
step size determination, 366–367

Constrained variable metric (CVM), 400
Constraint correction, algorithm for, 442–445
Constraint correction with minimum increase in

cost, 446–447
Constraint limits, effect of changing, 143–145
Constraint normalization, 343–345
Constraint status at design point, 342–343
Constraint strategy, potential, 379–382, 478

example—determination of potential
constraint set, 380–381

example—search direction and potential
constraint strategy, 381–382

Constraint tangent hyperplane, 179
Constraints

linear, 192–193
notation for, 9
role of, 119–121

Constraints, identification of, 17–18
equality and inequality constraints, 18
feasibility design, 18
implicit constraints, 18
linear and nonlinear constraints, 18

Continuous variable optimization, 492
Contours

plotting of function, 64
plotting of objective function, 63

Control effort problem, minimum, 503–505
Control of systems by nonlinear programming,

optimal, 493–508
Control, optimal, 6–7
Control problems

minimum time, 505–508
prototype optimal, 493–497

Controlled random search (CRS), 575–578, 586
Conventional versus optimum design, 4–6
Convex functions, 151–153
Convex programming problem, 153–156,

157–158
Convex sets, 149–151
Correction algorithm, constraint, 440–442

Correction, algorithm for constraint, 442–445
Cost

algorithm for constraint correction at
constant, 442–445

algorithm for constraint correction at
specified increase in, 445

constraint correction with minimum increase
in, 446–447

Cost coefficients, ranging, 239–241
Cost function, artificial, 219–220
Cost function scaling, effect on Lagrange

multipliers, 146–147
Cost reduction algorithm, 436–440
Covering methods, 568
Criterion, acceptance, 578
Criterion method, weighted global, 556–558
Criterion space and design space, 546–548
CRS. See Controlled random search
CSD. See Constrained steepest descent
CSD algorithm with appropriate step size,

393–399
Curve fitting, quadratic, 306–308
Cylindrical tank design, minimum cost, 35

D
Data preparation, interactive, 448
Davidon-Fletcher-Powell (DFP) method,

324–327
DE. See Domain elimination
Decision making, interactive, 449–450
Definite matrices, quadratic forms and, 96–102
Definitions, standard LP, 193–194
Degenerate basic feasible solution, 226–228
Descent algorithm, modified constrained

steepest, 404–405
Descent condition, 389–393
Descent directions

and descent step, 280–281
orthogonality of steepest, 314–315

Descent functions, 345, 406–407
Descent method, steepest, 293–296, 310–315

example—verification of properties of
gradient vector, 312–314

orthogonality of steepest descent directions,
314–315

properties of gradient vector, 310–314
Descent, methods of generalized, 569–571
Descent search, steepest, 660–669
Descent step, 280–281
Descents and ascents, alternation of, 570
Design

column, 421–425
conventional versus optimum, 4–6
engineering, 4
flywheel, 425–429
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Design (continued)
insulated spherical tank, 20–22
minimum cost cylindrical tank, 35
minimum weight tubular column, 32–35
optimum, 6–7

Design concepts and methods, discrete variable,
513–530

basic concepts and definitions, 514–516
BBM, 516–521
dynamic rounding-off method, 524–525
exercises, 527–530
IP, 521
methods for linked discrete variables,

525–526
neighborhood search method, 525
SA, 522–524
selection of methods, 526–527
sequential linearization methods, 522

Design concepts and methods, multiobjective,
543–563

bounded objective function method, 558–559
criterion space and design space, 546–548
example—single-objective optimization

problem, 544
example—two-objective optimization

problem, 545
exercises, 560–563
generation of Pareto optimal set, 551–552
goal programming, 559
lexicographic method, 558
multiobjective GA, 552–555
normalization of objective functions, 552
optimization engine, 552
preferences and utility functions, 551
problem definition, 543–546
scalarization methods, 551
selection of methods, 559–560
solution concepts, 548–550
terminology and basic concepts, 546–552
vector methods, 551
weighted global criterion method, 556–558
weighted min-max method, 556
weighted sum method, 555–556

Design concepts, optimum, 83–174, 175–190
alternate form of KKT necessary conditions,

175–178
basic calculus concepts, 89–103
constrained optimum design problems,

119–143
engineering design examples, 158–166
exercises, 185–190
global optimality, 149–158
irregular points, 178–179
physical meaning of Lagrange multipliers,

143–148

postoptimality analysis, 143–148
second-ordered conditions for constrained

optimization, 179–184
sufficiency check for rectangular beam design

problem, 184–185
unconstrained optimum design problems,

103–119
Design concepts, optimum (exercises), 166–174

constrained optimum design problems,
168–172

engineering design examples, 174
global optimality, 173–174
physical meaning of Lagrange multipliers,

172–173
review of some basic calculus concepts,

166–167
unconstrained optimum design problems,

167–168
Design, discrete variable optimum, 491–493

continuous variable optimization, 492
discrete variable optimization, 492–493

Design examples, engineering, 158–166
Design examples with MATLAB, optimum,

420–429
Design, GA for optimum, 531–542

applications, 539–540
basic concepts and definitions, 532–534
exercises, 540–542
fundamentals of GA, 534–538
GA for sequencing-type problems, 538–539

Design, general mathematical model for
optimum, 41–45

active/inactive/violated constraints, 45
discrete integer design variables, 44–45
feasibility set, 45
maximization problem treatment, 43
standard design optimization model, 42–43
treatment of greater than type constraints,

43–44
Design, global optimization concepts and

methods for, 565–592
basic concepts of solution methods, 565–567
deterministic methods, 567–572
exercises, 588–592
numerical performance of methods, 585–588
stochastic methods, 572–579
two local-global stochastic methods, 579–585

Design, introduction to, 1–14
basic terminology and notation, 7–14
conventional versus optimum design process,

4–6
design process, 2–4
engineering design versus engineering

analysis, 4
optimum design versus optimal control, 6–7
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Design, linear programming methods for
optimum, 191–258, 259–275

alternate Simplex method, 262–263
artificial variables, 218–228
basic concepts related to linear programming

problems, 195–201
basic ideas and steps of Simplex method,

201–218
definition of standard linear programming

problem, 192–195
derivation of Simplex method, 259–261
duality in linear programming, 263–274
exercises, 246–258, 275
postoptimality analysis, 228–243
solution of LP problems using Excel Solver,

243–246
two-phase Simplex method, 218–228

Design, linear programming methods for
optimum (exercises), 246–258

basic concepts related to linear programming
problem, 249–250

basic ideas and concepts of Simplex method,
250–252

definition of standard linear programming
problem, 246–248

postoptimality analysis, 256–258
two phase Simplex method—artificial

variables, 253–256
Design, numerical methods for constrained,

339–377, 379–412
algorithms and constrained problems,

340–342
approximate step size determination, 388–399
basic concepts and ideas, 340–346
constrained quasi-Newton methods, 400–407
constrained steepest descent method,

363–369
constraint normalization, 343–345
constraint status at design point, 342–343
convergence of algorithms, 345–346
descent function, 345
engineering design optimization using Excel

Solver, 369–373
examples—constraint normalization and

status at point, 344–345
linearization of constrained problem,

346–352
miscellaneous numerical optimization

methods, 407–411
potential constraint strategy, 379–382
QP problem, 383–388
QP subproblem, 358–363
SLP algorithm, 352–358

Design, numerical methods for constrained
(exercises), 373–377, 411–412

approximate step size determination, 411–412
basic concepts and ideas, 373–374
constrained quasi-Newton methods, 412
CSD method, 377
engineering design optimization using Excel

Solver, 377
linearization of constrained problem, 374
quadratic programming subprogram, 375–376
sequential linear programming algorithm,

374–375
Design, numerical methods for unconstrained

(exercises), 300–304, 335–337
basic ideas and algorithm for step size

determination, 300–302
conjugate gradient method, 303
exercises, 300–304
general concepts related to numerical

algorithm, 300
search direction determination, 302–303
steepest descent method, 302–303

Design, numerical methods for unconstrained
optimum, 277–304, 305–337

concepts related to numerical algorithms,
278–282

conjugate gradient method, 296–299
engineering applications of unconstrained

methods, 329–332
ideas and algorithms for step size

determination, 282–293
Newton’s method, 318–324
quasi-Newton methods, 324–328
scaling of design variables, 315–318
search direction determination, 293–296,

296–299, 318–324, 324–328
solution of constrained problems, 332–334
steepest descent method, 293–296, 310–315
step size determination, 305–310
unconstrained optimization methods,

332–334
Design of

cabinet, 30–32
can, 18–20
rectangular beam, 162–166
two-bar bracket, 24–29
wall bracket, 158–162

Design optimization
applications with implicit functions, 465–511
engineering, 369–373
role of computers in interactive, 434–435

Design optimization algorithms, interactive,
436–448

Design optimization applications with implicit
functions

discrete variable optimum design, 491–493
exercises, 508–511
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Design optimization applications with implicit
functions (continued)

formulation of practical design optimization
problems, 466–472

general-purpose software, 479–481
gradient evaluation for implicit functions,

473–477
issues in practical design optimization,

478–479
multiple performance requirements, 483–491
optimal control of systems by nonlinear

programming, 493–508
optimum design of three-bar structure,

483–491
optimum design of two-member frame,

481–483
out-of plane loads, 481–483

Design optimization, interactive, 433–463
desired interactive capabilities, 448–450
examples of interactive design optimization,

454–461
exercises, 462–463
interactive design optimization algorithms,

436–448
interactive design optimization software,

450–454
role of interaction in design optimization,

434–435
Design optimization, issues in practical, 478–479

attributes of good optimization algorithm,
478–479

potential constraint strategy, 478
robustness, 478
selection of algorithm, 478

Design optimization, role of interaction in,
434–435

choosing interactive design optimization, 435
interactive design optimization defined, 434
role of computers in interactive design

optimization, 434–435
Design optimization software, interactive,

450–454
Design point, constraint status at, 342–343
Design problem

graphical solution for beam, 69–72
sufficiency check for rectangular beam,

184–185
Design problem formulation, optimum, 15–54

design of cabinet, 30–32
design of can, 18–20
design of coil springs, 36–38
design of two-bar bracket, 24–29
exercises, 46–54
general mathematical model for optimum

design, 41–45

insulated spherical tank design, 20–22
minimum cost cylindrical tank design, 35
minimum weight design of symmetric 

three-bar truss, 38–41
minimum weight tubular column design,

32–35
problem formulation process, 16–18
saw mill operation, 22–23

Design problem formulation, optimum
(exercises), 46–54

beam of rectangular cross-section, 50
beer mug, 46
can, 48
cantilever beam, 53–54
circular tank, 48
cost transportation system, 49
crude oil refinery, 46
diet of bread and milk, 47
electric generators, 49
hollow circular beam, 54
manufacturer’s products, 47
multistory office building, 46
parallel flow heat exchanger, 46–47
parking lot, 47
shipping container, 48
steel framework, 48
still in bathtub, 47
tonnage of iron ore, 52–53
top rectangular container to transport

materials, 48
two-bar truss, 49–50
vegetable oil stocks, 50–51
water canal, 53

Design problems
classification of mixed variable optimum,

514–515
graphical solutions for beam, 69–72
with multiple solutions, 66

Design problems, constrained optimum,
119–143, 418–420

example—constrained minimization problem
using fmincon, 418–420

example—constrained optimum point, 120
example—cylindrical tank design, 127
example—equality constrained problem, 

127
example—fmincon in Optimization Toolbox,

418–420
example—inequality constrained problem,

128–130
example—infeasible problem, 121
example—Lagrange multipliers and their

geometrical meaning, 122–125
example—solution of KKT necessary

conditions, 134–137, 137–140
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example—solutions of KKT necessary
conditions, 132–134

example—unconstrained optimum point for
constrained problem, 120

example—use of Lagrange multipliers, 
127

example—use of necessary conditions,
128–130

inequality constraints, 128–140
KKT, 128–140
necessary conditions, 128–140
necessary conditions: equality constraints,

121–128
role of constraints, 119–121
solution of KKT necessary conditions using

Excel, 140–141
solution of KKT necessary conditions using

MATLAB, 141–143
Design problems, global optimization of

structural, 587–588
Design problems, unconstrained optimum,

103–119, 415–418
concepts relating to optimality conditions,

103–104
example—adding constant to function, 111
example—cylindrical tank design, 113–114
example—determination of local minimum

points, 105–106
example—effects of scaling, 111
example—local minima for function of two

variables, 112–113, 115–116
example—local minimum points using

necessary conditions, 107–108
example—minimum cost spherical tank using

necessary conditions, 108–109
example—multivariable unconstrained

minimization, 416–418
example—numerical solution of necessary

conditions, 114–115
example—single-variable unconstrained

minimization, 415–416
example—using necessary conditions,

105–106, 113–114
example—using optimality conditions,

112–113, 115–116
optimality conditions for functions of several

variables, 109–116
optimality conditions for functions of single

variables, 104–109
roots of nonlinear equations using Excel,

116–119
Design process, 2–4
Design representation, 532
Design space, 546–548
Design variables, scaling of, 315–318

example—effect of scaling of design
variables, 315–317, 317–318

Designs, multiple optimum, 66
Desirable direction, 280
Determinant, 619–621
Determination, approximate step size, 388–399

basic idea, 388–389
CSD algorithm with appropriate step size,

393–399
descent condition, 389–393
example—calculations for step size, 391–393
example—constrained steepest descent

method, 391–393
example—effect of g on performance of CSD

algorithm, 396–397
example—minimum area design of

rectangular beam, 398–399
example—penalty parameter R and CSD

algorithm, 397–398
example—use of constrained steepest descent

algorithm, 393–396
Determination, search direction, 318–324,

324–328
Determination, step size, 305–310

example—alternate quadratic interpolation,
308–309

example—one-dimensional minimization,
308–309

example—quadratic interpolation, 307–308
inaccurate line search, 309–310
polynomial interpolation, 306–309

Deterministic methods, 567–572
covering methods, 568
methods of generalized descent, 569–571
tunneling method, 571–572
zooming method, 568–569

Diagonal matrix, 616
Diagrams, cash flow, 594
Direct Hessian updating, 327–328
Directions

descent, 280–281
desirable, 280
method of feasibility, 407–409
orthogonality of steepest descent, 314–315

Discrete variable defined, 513
Discrete variable optimization, 492–493
Discrete variable optimum design, 491–493

continuous variable optimization, 492
discrete variable optimization, 492–493

Discrete variable optimum design concepts and
methods, 513–530

basic concepts and definitions, 514–516
BBM, 516–521
dynamic rounding-off method, 524–525
exercises, 527–530
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Discrete variable optimum design concepts and
methods (continued)

IP, 521
methods for linked discrete variables,

525–526
neighborhood search method, 525
SA, 522–524
selection of methods, 526–527
sequential linearization methods, 522

Discrete variables, methods for linked, 525–
526

Domain elimination (DE), 586, 587
method, 580–582

Dominance, efficiency and, 549–550
Dynamic rounding-off method, 524–525

E
Economic analysis, 593–609

economic bases for comparison, 598–604
exercises, 604–609
time value of money, 593–598

Economic bases for comparison, 598–604
alternate power stations, 602
annual base comparisons, 599–601
example—alternate designs, 599, 602
example—alternate power stations, 600
example—alternate quarries, 600–601, 603
PW comparisons, 601

Economic formulas, basic, 594–598
Efficiency and dominance, 549–550
Eigenvalues and eigenvectors, 642–643

example—calculation of eigenvalues and
eigenvectors, 642–643

Eigenvectors, eigenvalues and, 642–643
Elements, off-diagonal, 616
Elimination, Gauss-Jordan, 625–628
Elimination method, domain, 580–582
Engine, optimization, 552
Engineering applications of unconstrained

methods, 329–332
Engineering design examples, 158–166

design of rectangular beam, 162–166
design of wall bracket, 158–162

Engineering design optimization using Excel
Solver, 369–373

data and information collection, 369–370
identification/definition of design variables,

370
identification of constraints, 370–371
identification of criterion to be optimized,

370
project/problem statement, 369
solution, 373
Solver dialog box, 372–373
spreadsheet layout, 371–372

Engineering design versus engineering analysis,
4

Equal interval search, 286–288, 657–660
alternate, 288–289

Equations
general solution of m x n linear, 629–635
solution of m linear, 628–635
solution of nonlinear, 331–332

Equations, multiple nonlinear, 650–654
example—Newton-Raphson method,

653–654
example—roots of nonlinear equations,

653–654
Equations, numerical method for nonlinear,

647–655
exercises, 655
multiple nonlinear equations, 650–654
single nonlinear equation, 647–650

Equations, roots of nonlinear, 116–119
Equations, single nonlinear, 647–650

example—Newton-Raphson method,
649–650

example—roots of nonlinear equation,
649–650

Errors, minimization of, 497–503
Evaluation, gradient, 465
example—Lagrange multipliers

Postoptimality analysis, 146–147
Examples

£ type constraints, 236–237
£ type constraints, 239–240
adding constant to function, 111
alternate designs, 599, 602
alternate form of KKT conditions, 176–177
alternate power stations, 600, 602
alternate quadratic interpolation, 308–309
alternate quarries, 600–601
analytical step size determination, 284–285
application of BFGS method, 328
application of DFP method, 325–327
BBM with local minimizations, 519–520
BBM with only discrete values allowed,

517–518
Big-M method for equality and ≥ type

constraints, 262–263
bolt insertion sequence determination, 539
calculation of descent function, 365, 366–367
calculation of eigenvalues and eigenvectors,

642–643
calculation of gradient vector, 91
calculations for gradient of quadratic form,

102
calculations for Hessian of quadratic form,

102
calculations for step size, 391–393
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canonical form and tableau, 204
capital recovery factor, 598
characterization of solution for LP problems,

196–198
check for KKT conditions at irregular points,

178–179
check for KKT necessary conditions,

177–178
check for sufficient conditions, 181–182,

182–183, 183–184
checking for convexity of function, 152,

152–153
checking for convexity of problem, 154–155,

155–156, 157–158
checking for convexity of sets, 150
checking for descent condition, 281
checking for linear independence of vectors,

636–637
checking for vector spaces, 639–641
conjugate gradient and modified Newton

methods, 323
constrained minimization problem using

fmincon, 418–420
constrained optimum point, 120
constrained problem, 85–87
constrained steepest descent method,

391–393
constraint correction at constant cost,

443–444, 444–445
constraint correction at specified increase in

cost, 445
constraint correction step, 441–442
constraint correction with minimum increase

in cost, 446–447
constraint normalization and status at point,

344–345
conversion to standard LP form, 194–195
cost reduction step, 437–439
cost reduction step with potential constraints,

440
cylindrical tank design, 113–114, 127
definition of linearized subproblem, 

348–350
definition of QP subproblem, 359–361
design of two-member frame, 469–472
determinant of matrix by Gaussian

elimination, 624–625
determination of form of matrix, 99, 100–101
determination of local minimum points,

105–106
determination of potential constraint set,

380–381
dual of LP program, 265
dual of LP with equality and ≥ type

constraints, 265–266

effect of g on performance of CSD algorithm,
396–397

effect of scaling constraint, 147–148
effect of scaling cost function, 146–147
effect of scaling of design variables,

315–317, 317–318
effects of scaling, 111
equality and ≥ type constraints, 237–238,

240–241
equality constrained problem, 127
evaluation of gradient and Hessian of

function, 92–93
existence of global minimum, 89
feasible problem, 223–224
fmincon in Optimization Toolbox, 418–420
Gauss-Jordan reduction, 626–627
Gauss-Jordan reduction process in tabular

form, 634–635
general solution by Gauss-Jordan reduction,

631–633
golden section search, 366–367
gradient evaluation for two-member frame,

474–477
graphical representation of constrained

minima, 87–88
graphical representation of maxima, 88
identification of unbounded problem with

Simplex method, 218
implications of degenerate feasible solution,

226–228
inequality constrained problem, 128–130
infeasible problem, 121
inverse of matrix by cofactors, 626–627
Lagrange multipliers, 146–147, 147–148
Lagrange multipliers and their geometrical

meaning, 122–125
linear Taylor’s expansion of function, 95–96
linearization of rectangular beam design

problem, 350–352
local minima for function of two variables,

112–113, 115–116
local minimum points using necessary

conditions, 107–108
LP problem with multiple solutions, 

216–217
matrix of quadratic form, 98
minimization of function by golden section

search, 292–293
minimization of total potential energy of 

two-bar truss, 330–331
minimum area design of rectangular beam,

398–399
minimum cost spherical tank using necessary

conditions, 108–109
multiplication of matrices, 614, 615
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Examples (continued)
multivariable unconstrained minimization,

416–418
Newton-Raphson method, 649–650, 653–654
numerical solution of necessary conditions,

114–115
one-dimensional minimization, 308–309
one-dimensional minimization with quadratic

interpolation, 307–308
optimum cost function, 145
optimum design, 420–429
optimum design of two-bar bracket, 28–29
penalty parameter R and CSD algorithm,

397–398
pivot step, 205–206
of practical design optimization problems,

467–472
primal and dual solutions, 269–271
profit maximization problem, 196–198
ranges for cost coefficients, 239–240,

240–241
ranges for resource limits, 236–237, 237–238
rank determination by elementary operation,

629
recovery of Lagrange multipliers for £ type

constraint, 230–232
recovery of Lagrange multipliers for = and 

≥ type constraints, 232–234
recovery of primal formulation from dual

formulation, 267
representation of unconstrained minimum,

85–87
roots of nonlinear equation, 649–650
roots of nonlinear equations, 653–654
roots of nonlinear equations by unconstrained

minimization, 331–332
search direction and potential constraint

strategy, 381–382
sequential linear programming algorithm,

354–355
single-objective optimization problem, 544
single payment compound amount factor, 

595
single payment present worth factor, 595
single-variable unconstrained minimization,

415–416
sinking fund deposit factor, 597
solution of equations by Gaussian

elimination, 623–624
solution of KKT necessary conditions,

134–137, 137–140
solution of profit maximization problem by

Simplex method, 214–216
solution of QP problem, 386–388
solution of QP subproblem, 362–363

solutions of KKT necessary conditions,
132–134

steepest descent and conjugate gradient
methods, 323

Taylor’s expansion of a function of one
variable, 94

Taylor’s expansion of a function of two
variables, 95

two-objective optimization problem, 545
unbounded problem, 225–226
unconstrained optimum point for constrained

problem, 120
uniform series compound amount factor, 

596
uniform series present worth factor, 598
use of artificial variables for ≥ type

constraints, 221–223
use of artificial variables for equality

constraints, 223–224
use of conjugate gradient algorithm, 298
use of constrained quasi-Newton method,

404–405
use of constrained steepest descent algorithm,

393–396
use of Excel Solver, 299
use of final primal tableau to recover dual

solutions, 272–273
use of Lagrange multipliers, 127
use of modified Newton’s method, 320–321,

321–322
use of necessary conditions, 128–130
use of sequential linear programming,

356–357
use of steepest descent algorithm, 294–295,

295–296
using necessary conditions, 105–106,

113–114
using optimality conditions, 112–113,

115–116
using Weierstrass theorem, 89
variations of constraint limits, 145
verification of properties of gradient vector,

312–314
Examples, engineering design, 158–166

design of rectangular beam, 162–166
design of wall bracket, 158–162

Examples of interactive design optimization,
454–461

Excel, roots of nonlinear equations using,
116–119

Excel Solver, engineering design using, 369–373
data and information collection, 369–370
identification/definition of design variables,

370
identification of constraints, 370–371
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identification of criterion to be optimized,
370

project/problem statement, 369
solution, 373
Solver dialog box, 372–373
spreadsheet layout, 371–372

Excel Solver, solution of LP problems using,
243–246

Exercises, for
Chapter 2, 46
Chapter 3, 72
Chapter 4, 166
Chapter 5, 185
Chapter 6, 246
Chapter 7, 275
Chapter 8, 300
Chapter 9, 335
Chapter 10, 373
Chapter 11, 411
Chapter 12, 429
Chapter 13, 462
Chapter 14, 508
Chapter 15, 527
Chapter 16, 540
Chapter 17, 560
Chapter 18, 588
Appendix A, 604
Appendix B, 645
Appendix C, 655

Expansion, Taylor’s, 93–96
Expressions, variables and, 413–414

F
Feasibility directions, method of, 407–409
Feasible region, identification of, 62–63
Feasible solution, degenerate basic, 226–228
Filters, Pareto-set, 554
Fitness functions, Pareto, 554
Fitting, quadratic curve, 306–308
Flywheel design for minimum mass, 425–429

data and information collection, 426–427
identification/definition of design variables,

427
identification of constraints, 427–429
identification of criterion to be optimized,

427
project/problem statement, 425–426

Forms, canonical, 202–203
Formulas, basic economic, 594–598
Formulation, design problem, 15–54

design of cabinet, 30–32
design of can, 18–20
design of coil springs, 36–38
design of two-bar bracket, 24–29
exercises, 46–54

general mathematical model for optimum
design, 41–45

insulated spherical tank design, 20–22
minimum cost cylindrical tank design, 35
minimum weight design of symmetric 

three-bar truss, 38–41
minimum weight tubular column design,

32–35
problem formulation process, 16–18
saw mill operation, 22–23

Formulation, design problem (exercises), 46–54
beam of rectangular cross-section, 50
beer mug, 46
can, 48
cantilever beam, 53–54
circular tank, 48
cost transportation system, 49
crude oil refinery, 46
diet of bread and milk, 47
electric generators, 49
hollow circular beam, 54
manufacturer’s products, 47
multistory office building, 46
parallel flow heat exchanger, 46–47
parking lot, 47
shipping container, 48
steel framework, 48
still in bathtub, 47
tonnage of iron ore, 52–53
top rectangular container to transport

materials, 48
two-bar truss, 49–50
vegetable oil stocks, 50–51
water canal, 53

Formulation process, problem, 16–18
data and information collection, 16
identification/definition of design variables,

16–17
identification of constraints, 17–18
identification of criterion to be optimized, 17
project/problem statement, 16

Formulations, comparison of three, 508
Frame, optimum design of two-member,

481–483
Function contours

plotting of, 64
plotting of objective, 63

Function method, bounded objective, 558–559
Functions

artificial cost, 219–220
descent, 345, 406–407
normalization of objective, 552
Pareto fitness, 554
plotting, 61–62
utility, 551
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Functions, convex, 151–153
Functions, design applications with implicit,

465–511
discrete variable optimum design, 491–493
exercises, 508–511
formulation of practical design optimization

problems, 466–472
general-purpose software, 479–481
gradient evaluation for implicit functions,

473–477
issues in practical design optimization,

478–479
multiple performance requirements, 483–491
optimal control of systems by nonlinear

programming, 493–508
optimum design of three-bar structure,

483–491
optimum design of two-member frame,

481–483
out-of plane loads, 481–483

Functions, gradient evaluation for implicit,
473–477

example—gradient evaluation for 
two-member frame, 474–477

Functions of single variables, optimality
conditions for, 104–109

G
GA. See Genetic algorithms
Gauss-Jordan elimination, 625–628
Gaussian elimination procedure, 621–625
Gene defined, 532
General-purpose software, 479–481, 480–481

integration of application into, 480–481
software selection, 480

Generalized descent, methods of, 569–571
Generalized reduced gradient (GRG) method,

410–411
Generation defined, 532
Genetic algorithms (GA) for optimum design,

531–542
applications, 539–540
basic concepts and definitions, 532–534
exercises, 540–542
fundamentals of GA, 534–538
GA for sequencing-type problems, 

538–539
Genetic algorithms (GA) for sequencing-type

problems, 538–539
example—bolt insertion sequence

determination, 539
Genetic algorithms (GA), fundamentals of,

534–538
amount of crossover and mutation, 536–537
crossover, 534–535

genetic algorithms, 537
immigration, 538
leader of population, 537
multiple runs for problem, 538
mutation, 535–536
reproduction procedure, 534
stopping criteria, 537

Genetic algorithms (GA), multiobjective,
552–555

elitist strategy, 554
niche techniques, 555
Pareto fitness function, 554
Pareto-set filter, 554
ranking, 553–554
tournament selection, 555

VEGA, 553
Global and local minima, definitions of, 84–89
Global criterion method, weighted, 556–558
Global optimality, 149–158

convex functions, 151–153
convex programming problem, 153–156
convex sets, 149–151
example—checking for convexity of

function, 152, 152–153
example—checking for convexity of

problem, 154–155, 155–156, 157–158
example—checking for convexity of sets,

150
sufficient conditions for convex programming

problems, 157–158
transformation of constraint, 156–157

Global optimization concepts and methods,
565–592

basic concepts of solution methods, 
565–567

deterministic methods, 567–572
exercises, 588–592
numerical performance of methods, 585–588
stochastic methods, 572–579
two local-global stochastic methods, 579–585

Global optimization of structural design
problems, 587–588

Goal programming, 559
Golden section search, 289–293, 660
Golf methods, 570–571
Good optimization algorithm, attributes of,

478–479
Gradient evaluation for implicit functions,

473–477
Gradient evaluation requires special procedures,

465
Gradient method, conjugate, 296–299
Gradient projection method, 409–410
Gradient vectors, 90–91

properties of, 310–314
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Graphical optimization, 55–82
design problem with multiple solutions, 66
exercises, 72–82
graphical solution for beam design problem,

69–72
graphical solution for minimum weight

tubular column, 69
graphical solution process, 55–60
infeasible problem, 67–69
problem with unbounded solution, 66–67
use of Mathematica for graphical

optimization, 60–63
use of MATLAB for graphical optimization,

64–66
Graphical optimization (exercises), 72–82

design of flag pole, 79–80
design of sign support column, 80–81
design of tripod, 81–82
design of water tower support column, 

77–79
Graphical optimization, use of Mathematica for,

60–63
identification and hatching of infeasible

region, 62
identification of feasible region, 62–63
identification of optimum solution, 63
plotting functions, 61–62
plotting of objective function contours, 63

Graphical optimization, use of MATLAB for,
64–66

editing graphs, 64–66
plotting of function contours, 64

Graphical solution for beam design problem,
69–72

Graphical solution for minimum weight tubular
column, 69

Graphical solution procedure, step-by-step,
56–60

coordinate system set-up, 56–60
identification of feasible region, 57–58
identification of feasible region for inequality,

57
identification of optimum solution, 58–60
inequality constraint boundary plot, 57
plotting objective function contours, 58

Graphical solution process, 55–60
profit maximization problem, 55–56
step-by-step, 56–60

Graphics, interactive, 450, 457–461
Graphs, editing, 64–66

H
Hessian approximation, quasi-Newton, 

403–404
Hessian matrix, 92–93

Hessian updating
direct, 327–328
inverse, 324–327

Hyperplane, constraint tangent, 179

I
Identity matrix, 616
IDESIGN

capabilities of, 453–454
user interface for, 451–452

Implicit functions, design applications with,
465–511

discrete variable optimum design, 491–493
exercises, 508–511
formulation of practical design optimization

problems, 466–472
general-purpose software, 479–481
gradient evaluation for implicit functions,

473–477
issues in practical design optimization,

478–479
multiple performance requirements, 483–491
optimal control of systems by nonlinear

programming, 493–508
optimum design of three-bar structure,

483–491
optimum design of two-member frame,

481–483
out-of plane loads, 481–483

Implicit functions, gradient evaluation for,
473–477

example—gradient evaluation for 
two-member frame, 474–477

Inaccurate line search, 309–310
Inequality, identification and hatching of

infeasible region for, 62
Infeasible problem, 67–69
Infeasible region, identification and hatching of,

62
Information, second-order, 179
Insulated spherical tank design, 20–22
Integer programming (IP), 521
Integer variable defined, 513
Integration, stochastic, 579
Interaction, role in design optimization, 434–435

choosing interactive design optimization, 
435

interactive design optimization defined, 434
role of computers in interactive design

optimization, 434–435
Interactive algorithms, observations on, 447–448
Interactive capabilities, 448–449
Interactive capabilities, desired, 448–450

interactive capabilities, 448–449
interactive data preparation, 448
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Interactive capabilities, desired (continued)
interactive decision making, 449–450
interactive graphics, 450

Interactive data preparation, 448
Interactive decision making, 449–450
Interactive design optimization, 433–463

desired interactive capabilities, 448–450
examples of interactive design optimization,

454–461
exercises, 462–463
interactive design optimization algorithms,

436–448
interactive design optimization software,

450–454
role of computers in, 434–435
role of interaction in design optimization,

434–435
Interactive design optimization algorithms,

436–448
algorithm for constraint correction at constant

cost, 442–445
algorithm for constraint correction at

specified increase in cost, 445
constraint correction algorithm, 440–442
constraint correction with minimum increase

in cost, 446–447
cost reduction algorithm, 436–440
example—constraint correction at constant

cost, 443–444, 444–445
example—constraint correction at specified

increase in cost, 445
example—constraint correction step, 

441–442
example—constraint correction with

minimum increase in cost, 446–447
example—cost reduction step, 437–439
example—cost reduction step with potential

constraints, 440
observations on interactive algorithms,

447–448
Interactive design optimization, examples of,

454–461
formulation of spring design problem,

454–455
interactive graphics, 457–461
interactive solution for spring design

problem, 455–457
optimum solution for spring design problem,

455
Interactive design optimization software,

450–454
capabilities of IDESIGN, 453–454
user interface for IDESIGN, 451–452

Interactive graphics, 450, 457–461
Interface, user, 451–452

Interpolation, alternate quadratic, 308–309
Interpolation, polynomial, 306–309

alternate quadratic interpolation, 308–309
quadratic curve fitting, 306–308

Interval reducing methods, 286
Interval search

alternate equal, 288–289
equal, 286–288, 657–660

Inverse Hessian updating, 324–327
IP. See Integer programming
Irregular points, 178–179

example—check for KKT conditions at
irregular points, 178–179

K
Karush-Kuhn-Tucker (KKT), 175, 566
KKT conditions, transformation of, 384–385
KKT. See Karush-Kuhn-Tucker
KKT necessary conditions, alternate form of,

175–178
example—alternate form of KKT conditions,

176–177
example—check for KKT necessary

conditions, 177–178
KKT necessary conditions for QP problem, 384

L
Lagrange multipliers, effect of cost function

scaling on, 146–147
Lagrange multipliers, physical meaning of,

143–148
constraint variation sensitivity result, 148
effect of scaling constraint on Lagrange

multiplier, 147–148
example—effect of scaling constraint,

147–148
example—effect of scaling cost function,

146–147
example—Lagrange multipliers, 146–147,

147–148
example—optimum cost function, 145
example—variations of constraint limits, 

145
scaling cost function on Lagrange multipliers,

146–147
Lagrangian methods, augmented, 334
Length of vectors. See Norm/length of vectors
Lexicographic method, 558
Line search, inaccurate, 309–310
Linear constraints, 192–193
Linear equations, general solution of m x n,

629–635
Linear equations in n unknowns, solution of n,

618–628
determinants, 619–621
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example—determinant of matrix by Gaussian
elimination, 624–625

example—Gauss-Jordan reduction, 626–627
example—Gauss-Jordan reduction process in

tabular form, 634–635
example—general solution by Gauss-Jordan

reduction, 631–633
example—inverse of matrix by cofactors,

626–627
example—rank determination by elementary

operation, 629
example—solution of equations by Gaussian

elimination, 623–624
Gauss-Jordan elimination, 625–628
Gaussian elimination procedure, 621–625
general solution of m x n linear equations,

629–635
inverse of matrix, 625–628
linear systems, 618–619
rank of matrix, 628–629

Linear equations, solution of n, 628–635
Linear programming, duality in, 263–274

alternate treatment of equality constraints,
266–267

determination of primal solution from dual
solution, 267–271

dual LP program, 264–265
dual variables as Lagrange multipliers,

273–274
example—dual of LP program, 265
example—dual of LP with equality and 

≥ type constraints, 265–266
example—primal and dual solutions,

269–271
example—recovery of primal formulation

from dual formulation, 267
example—use of final primal tableau to

recover dual solutions, 272–273
standard primal LP, 263–264
treatment of equality constraints, 265–266
use of dual tableau to recover primal

solution, 271–273
Linear programming methods for optimum

design, 191–258, 259–275
alternate Simplex method, 262–263
artificial variables, 218–228
basic concepts related to linear programming

problems, 195–201
basic ideas and steps of Simplex method,

201–218
definition of standard linear programming

problem, 192–195
derivation of Simplex method, 259–261
duality in linear programming, 263–274
exercises, 246–258, 275

postoptimality analysis, 228–243
solution of LP problems using Excel Solver,

243–246
two-phase Simplex method, 218–228

Linear programming methods for optimum
design (exercises), 246–258, 275

basic concepts related to linear programming
problem, 249–250

basic ideas and concepts of Simplex method,
250–252

definition of standard linear programming
problem, 246–248

postoptimality analysis, 256–258
two phase Simplex method—artificial

variables, 253–256
Linear programming problem, 56
Linear programming problem, definition of

standard, 192–195
example—conversion to standard LP form,

194–195
linear constraints, 192–193
standard LP definition, 193–194
unrestricted variables, 193

Linear programming problems, concepts related
to, 191, 195–201

basic concepts, 195–196
example—characterization of solution for LP

problems, 196–198
example—determination of basic solutions,

199–200
example—profit maximization problem,

196–198
LP terminology, 198–200
optimum solution for LP problems, 201

Linear programs (LP), 191
Linear systems, 618–619
Linearization methods, sequential, 522
Linearization of constrained problem, 346–352

example—definition of linearized
subproblem, 348–350

example—linearization of rectangular beam
design problem, 350–352

Linked discrete variable, 513
Linked discrete variables, methods for, 

525–526
Loads, out-of plane, 481–483
Local-global algorithm, conceptual, 579–580
Local minima, definitions of global and, 

84–89
Lower triangle matrix, 616
LP definition, standard, 193–194
LP problems

optimum solutions for, 201
solution of, 243–246

LP terminology, 198–200
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M
Marquardt modification, 323–324
Mass

column design for minimum, 421–425
flywheel design for minimum, 425–429

Mathematica, use of for graphical optimization,
60–63

identification and hatching of infeasible
region, 62

identification of feasible region, 62–63
identification of optimum solution, 63
plotting functions, 61–62
plotting of objective function contours, 63

Mathematical model for optimum design
active/inactive/violated constraints, 45
discrete integer design variables, 44–45
feasibility set, 45
general, 41–45
maximization problem treatment, 43
standard design optimization model, 42–43
treatment of greater than type constraints,

43–44
MATLAB, optimum design examples with,

420–429
column design for minimum mass, 421–425
flywheel design for minimum mass, 425–429
location of maximum shear stress, 420–421
two spherical bodies in contact, 420–421

MATLAB, optimum design with, 413–432
constrained optimum design problems,

418–420
exercises, 429–432
Optimization Toolbox, 413–415
optimum design examples with MATLAB,

420–429
unconstrained optimum design problems,

415–418
MATLAB, use of for graphical optimization,

64–66
editing graphs, 64–66
plotting of function contours, 64

Matrices
addition of, 613
column, 613
condition numbers of, 644
definition of, 611–613
diagonal, 616
equivalence of, 616
identity, 616
inverse of, 625–628
lower triangle, 616
multiplication of, 613–615
null, 613
partitioning of, 617–618
quadratic forms and definite, 96–102

rank of, 628–629
row, 613
scalar, 616
square, 616–617
upper triangle, 616

Matrices, norms and condition numbers of,
643–644

condition number of matrix, 644
norm of vectors and matrices, 643–644

Matrices, type of, 613–618
addition of matrices, 613
elementary row—column operations, 616
equivalence of matrices, 616
example—multiplication of matrices, 614,

615
multiplication of matrices, 613–615
null matrix, 613
partitioning of matrices, 617–618
scalar product–dot product of vectors, 616
square matrices, 616–617
vectors, 613

Matrix algebra, vector and, 611–646
concepts related to set of vectors, 635–641
definition of matrices, 611–613
eigenvalues and eigenvectors, 642–643
exercises, 645–646
norm and condition number of matrix,

643–644
solution of m linear equations in n unknowns,

628–635
type of matrices and their operations,

613–618
Matrix, changes in coefficient, 241–243
Matrix, Hessian, 92–93
Matrix operation, 414
Methods

A-R, 586
alternate Simplex, 262–263
augmented Lagrangian, 334
basic steps of Simplex, 206–211
BFGS, 327–328
bounded objective function, 558–559
DFP, 324–327
domain elimination, 580–582
dynamic rounding-off, 524–525
of generalized descent, 569–571
golf, 570–571
gradient projection, 409–410
GRG, 410–411
interval reducing, 286
lexicographic, 558
linear programming, 191–258
modified Newton’s, 669–673
multiplier, 334
multistart, 573
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neighborhood search, 525
observations on constrained quasi-Newton,

406
operations analysis of, 583–585
performance, 586
performance of stochastic zooming, 586–587
scalarization, 551
sequential linearization, 522
stochastic zooming, 582–583
tunneling, 571–572
two-phase Simplex, 218–228
vector, 551
weighted global criterion, 556–558
weighted min-max, 556
weighted sum, 555–556
zooming, 568–569

Methods, A-R (acceptance-rejection), 578
Methods, basic concepts of solution, 565–567
Methods, basic ideas and steps of Simplex,

201–218
basic steps of Simplex method, 206–211
canonical form/general solution of Ax. = b,

202–203
example—canonical form and tableau, 

204
example—identification of unbounded

problem with Simplex method, 218
example—LP problem with multiple

solutions, 216–217
example—pivot step, 205–206
example—solution by Simplex method,

213–214
example—solution of profit maximization

problem, 214–216
interchange of basic and nonbasic variables,

205–206
pivot step, 205–206
Simplex, 202
Simplex algorithms, 211–212
steps of Simplex method, 207–211
tableau, 203–204

Methods, clustering, 573–575
Methods, conjugate gradient, 296–299

example—use of conjugate gradient
algorithm, 298

example—use of Excel Solver, 299
Methods, constrained quasi-Newton, 400–407

descent functions, 406–407
deviation of QP subproblem, 400–402
example—use of constrained quasi-Newton

method, 404–405
modified constrained steepest descent

algorithm, 404–405
observations on constrained quasi-Newton

methods, 406

quasi-Newton Hessian approximation,
403–404

Methods, constrained steepest descent, 363–369
CSD algorithm, 368
CSD algorithm observations, 368–369
descent function, 364–365
example—calculation of descent function,

365, 366–367
example of—golden section search, 366–367
step size determination, 366–367

Methods, covering, 568
Methods, deterministic, 567–572

covering methods, 568
methods of generalized descent, 569–571
tunneling method, 571–572
zooming method, 568–569

Methods, engineering applications of
unconstrained, 329–332

example—minimization of total potential
energy of two-bar truss, 330–331

example—roots of nonlinear equations,
331–332

example—unconstrained minimization,
331–332

minimization of total potential energy,
329–331

solution of nonlinear equations, 331–332
Methods for linked discrete variables, 525–526
Methods for optimum design, global concepts

and, 565–592
basic concepts of solution methods, 565–567
deterministic methods, 567–572
exercises, 588–592
numerical performance of methods, 585–588
stochastic methods, 572–579
two local-global stochastic methods, 579–585

Methods, miscellaneous numerical optimization,
407–411

gradient projection method, 409–410
GRG method, 410–411
method of feasibility directions, 407–409

Methods, multiobjective optimum design
concepts and, 543–563

bounded objective function method, 558–559
criterion space and design space, 546–548
example—single-objective optimization

problem, 544
example—two-objective optimization

problem, 545
exercises, 560–563
generation of Pareto optimal set, 551–552
goal programming, 559
lexicographic method, 558
multiobjective GA, 552–555
normalization of objective functions, 552
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Methods, multiobjective optimum design
concepts and (continued)

optimization engine, 552
preferences and utility functions, 551
problem definition, 543–546
scalarization methods, 551
selection of methods, 559–560
solution concepts, 548–550
terminology and basic concepts, 546–552
vector methods, 551
weighted global criterion method, 556–558
weighted min-max method, 556
weighted sum method, 555–556

Methods, Newton’s, 318–324
classical Newton’s method, 318–319
example—conjugate gradient and modified

Newton methods, 323
example—steepest descent and conjugate

gradient methods, 323
example—use of modified Newton’s method,

320–321, 321–322
Marquardt modification, 323–324
modified Newton’s method, 319–323

Methods, numerical performance of, 585–588
DE methods, 586–587
global optimization of structural design

problems, 587–588
performance methods using unconstrained

problems, 586
performance of stochastic zooming method,

586–587
summary of features of methods, 585–586

Methods, quasi-Newton, 324–328
BFGS method, 327–328
DFP method, 324–327
direct Hessian updating, 327–328
example—application of BFGS method, 

328
example—application of DFP method,

325–327
inverse Hessian updating, 324–327

Methods, steepest descent, 293–296, 310–315
example—use of steepest descent algorithm,

294–295, 295–296
example—verification of properties of

gradient vector, 312–314
orthogonality of steepest descent directions,

314–315
properties of gradient vector, 310–314

Methods, stochastic, 572–579
A-R methods, 578
clustering methods, 573–575
CRS method, 575–578
multistart method, 573
pure random search, 573

stochastic integration, 579
Methods, two local-global stochastic, 579–585

conceptual local-global algorithm, 579–580
domain elimination method, 580–582
operations analysis of methods, 583–585
stochastic zooming method, 582–583

Methods, unconstrained optimization, 
332–334

augmented Lagrangian methods, 334
multiplier methods, 334
sequential unconstrained minimization

techniques, 333–334
Mill, saw, 22–23
Min-max method, weighted, 556
Minima, definitions of global and local, 

84–89
example—constrained problem, 85–87
example—existence of global minimum, 

89
example—graphical representation of

constrained minima, 87–88
example—graphical representation of

maxima, 88
example—graphical representation of

unconstrained minimum, 85–87
example—using Weierstrass theorem, 89
existence of minimum, 89

Minimization techniques, sequential
unconstrained, 333–334

Minimum control effort problem, 503–505
Minimum, existence of, 89
Minimum mass

column design for, 421–425
flywheel design for, 425–429

Minimum weight tubular column, graphical
solution for, 69

Mixed variable optimum design problems 
(MV-OPT), classification of, 514–515

Modifications, Marquardt, 323–324
Modified constrained steepest descent algorithm,

404–405
Money, time value of, 593–598

basic economic formulas, 594–598
cash flow diagrams, 594
example—capital recovery factor, 598
example—single payment compound amount

factor, 595
example—single payment present worth

factor, 595
example—sinking fund deposit factor, 597
example—uniform series compound amount

factor, 596
example—uniform series present worth

factor, 598
Motion, optimal control of system, 508



Index 715

Multiobjective design concepts and methods,
543–563

bounded objective function method, 558–559
criterion space and design space, 546–548
example—single-objective optimization

problem, 544
example—two-objective optimization

problem, 545
exercises, 560–563
generation of Pareto optimal set, 551–552
goal programming, 559
lexicographic method, 558
multiobjective GA, 552–555
normalization of objective functions, 552
optimization engine, 552
preferences and utility functions, 551
problem definition, 543–546
scalarization methods, 551
selection of methods, 559–560
solution concepts, 548–550
terminology and basic concepts, 546–552
vector methods, 551
weighted global criterion method, 556–558
weighted min-max method, 556
weighted sum method, 555–556

Multiobjective GA, 552–555
elitist strategy, 554
niche techniques, 555
Pareto fitness function, 554
Pareto-set filter, 554
ranking, 553–554
tournament selection, 555
VEGA, 553

Multiple nonlinear equations, 650–654
Multiple optimum designs, 66
Multiple performance requirements, 483–491

asymmetric three-bar structure, 484–490
comparison of solutions, 490–491
symmetric three-bar structure, 483–484

Multiple solutions, design problem with, 66
Multiplier methods, 334
Multipliers, physical meaning of Lagrange,

143–148
constraint variation sensitivity result, 148
effect of scaling constraint on Lagrange

multiplier, 147–148
example—effect of scaling constraint,

147–148
example—effect of scaling cost function,

146–147
example—Lagrange multipliers, 146–147,

147–148
example—optimum cost function, 145
example—variations of constraint limits, 

145

scaling cost function on Lagrange multipliers,
146–147

Multistart method, 573

N
Necessary conditions, 128–140
Neighborhood search method, 525
Newton’s methods. See also Quasi-Newton

methods, 318–324
classical Newton’s methods, 318–319
example—conjugate gradient and modified

Newton methods, 323
example—steepest descent and conjugate

gradient methods, 323
example—use of modified Newton’s method,

320–321, 321–322
Marquardt modification, 323–324
modified, 669–673
modified Newton’s method, 319–323

Niche techniques, 555
Nonlinear equation, single, 647–650

example—Newton-Raphson method,
649–650

example—roots of nonlinear equation,
649–650

Nonlinear equations, multiple, 650–654
example—Newton-Raphson method,

653–654
example—roots of nonlinear equations,

653–654
Nonlinear equations, numerical method for,

647–655
exercises, 655
multiple nonlinear equations, 650–654
single nonlinear equation, 647–650

Nonlinear equations, solution of, 331–332
Nonlinear equations using Excel, roots of,

116–119
Nonlinear optimization problems, numerical

methods for, 277
Nonlinear programming (NLP), 277
Nonlinear programming, control of systems by,

493–508
comparison of three formulations, 508
minimization of errors in state variables,

497–503
minimum control effort problem, 503–505
minimum time control problem, 505–508
optimal control of system motion, 508
prototype optimal control problem, 493–497

Norm/length of vectors, 11
Normalization, constraint, 343–345
Notation

basic terminology and, 7–14
summation, 9–10
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Notation for constraints, 9
Null matrix, 613
Numerical algorithms, concepts related to,

278–282
convergence of algorithms, 282
descent direction and descent step, 280–281
example—checking for descent condition,

281
general algorithm, 279–280
rate of convergence, 282

Numerical method for nonlinear equations,
647–655

exercises, 655
multiple nonlinear equations, 650–654
single nonlinear equation, 647–650

Numerical methods for constrained design,
339–377, 379–412

approximate step size determination, 388–399
constrained quasi-Newton methods, 400–407
miscellaneous numerical optimization

methods, 407–411
potential constraint strategy, 379–382
QP problem, 383–388

Numerical methods for constrained design
(exercises), 411–412

approximate step size determination, 
411–412

constrained quasi-Newton methods, 412
Numerical methods for nonlinear optimization

problems, 277
Numerical methods for unconstrained design,

277–304, 305–337
concepts related to numerical algorithms,

278–282
conjugate gradient method, 296–299
engineering applications of unconstrained

methods, 329–332
exercises, 335–337
ideas and algorithms for step size

determination, 282–293
Newton’s method, 318–324
quasi-Newton methods, 324–328
scaling of design variables, 315–318
search direction determination, 293–296,

296–299, 318–324, 324–328
solution of constrained problems, 332–334
steepest descent method, 293–296, 310–315
step size determination, 305–310
unconstrained optimization methods,

332–334
Numerical methods for unconstrained design

(exercise), 300–304
basic ideas and algorithm for step size

determination, 300–302
conjugate gradient method, 303

general concepts related to numerical
algorithm, 300

search direction determination, 302–303
steepest descent method, 302–303

Numerical optimization methods, miscellaneous,
407–411

gradient projection method, 409–410
GRG method, 410–411
method of feasibility directions, 407–409

Numerical performance of methods, 585–588
DE methods, 586–587
global optimization of structural design

problems, 587–588
performance methods using unconstrained

problems, 586
performance of stochastic zooming method,

586–587
summary of features of methods, 585–586

O
Objective function contours, plotting of, 63
Objective functions, normalization of, 552
Off-diagonal elements, 616
Operations analysis of methods, 583–585
Optimal control of system motion, 508
Optimal control, optimum design versus, 6–7
Optimal control problem, prototype, 493–497
Optimal set, generation of Pareto, 551–552
Optimality conditions

concepts relating to, 103–104
for functions of single variables, 104–109

Optimality, global, 149–158
convex functions, 151–153
convex programming problem, 153–156
convex sets, 149–151
example—checking for convexity of

function, 152, 152–153
example—checking for convexity of

problem, 154–155, 155–156, 157–158
example—checking for convexity of sets,

150
sufficient conditions for convex programming

problems, 157–158
transformation of constraint, 156–157

Optimality, Pareto, 548–549
Optimality weak Pareto, 549
Optimization

continuous variable, 492
discrete variable, 492–493
engineering design, 369–373
engines, 552
role of computers in interactive design,

434–435
Optimization algorithm, attributes of good,

478–479



Index 717

Optimization algorithms, interactive design,
436–448

algorithm for constraint correction at constant
cost, 442–445

algorithm for constraint correction at
specified increase in cost, 445

constraint correction algorithm, 440–442
constraint correction with minimum increase

in cost, 446–447
cost reduction algorithm, 436–440
example—constraint correction at constant

cost, 443–444, 444–445
example—constraint correction at specified

increase in cost, 445
example—constraint correction step, 441–442
example—constraint correction with

minimum increase in cost, 446–447
example—cost reduction step, 437–439
example—cost reduction step with potential

constraints, 440
observations on interactive algorithms,

447–448
Optimization applications with implicit

functions, design, 465–511
Optimization, examples of interactive design,

454–461
formulation of spring design problem,

454–455
interactive graphics, 457–461
interactive solution for spring design

problem, 455–457
optimum solution for spring design problem,

455
Optimization, graphical, 55–82

design problem with multiple solutions, 66
exercises, 72–82
graphical solution for beam design problem,

69–72
graphical solution for minimum weight

tubular column, 69
graphical solution process, 55–60
infeasible problem, 67–69
problem with unbounded solution, 66–67
use of Mathematica for graphical

optimization, 60–63
use of MATLAB for graphical optimization,

64–66
Optimization, graphical, (exercises), 72–82

design of flag pole, 79–80
design of sign support column, 80–81
design of tripod, 81–82
design of water tower support column, 

77–79
Optimization, interactive design, 433–463

desired interactive capabilities, 448–450

examples of interactive design optimization,
454–461

exercises, 462–463
interactive design optimization algorithms,

436–448
interactive design optimization software,

450–454
role of interaction in design optimization,

434–435
Optimization, issues in practical design, 478–479

attributes of good optimization algorithm,
478–479

potential constraint strategy, 478
robustness, 478
selection of algorithm, 478

Optimization methods, miscellaneous numerical,
407–411

gradient projection method, 409–410
GRG method, 410–411
method of feasibility directions, 407–409

Optimization methods, unconstrained, 332–334
augmented Lagrangian methods, 334
multiplier methods, 334
sequential unconstrained minimization

techniques, 333–334
Optimization problems, numerical methods for

nonlinear, 277
Optimization problems, practical design,

466–472
Optimization, role of interaction in design,

434–435
choosing interactive design optimization, 

435
interactive design optimization defined, 434
role of computers in interactive design

optimization, 434–435
Optimization, second-ordered conditions for

constrained, 179–184
example—check for sufficient conditions,

181–182, 182–183, 183–184
Optimization software, interactive design,

450–454
capabilities of IDESIGN, 453–454
user interface for IDESIGN, 451–452

Optimization Toolbox, 413–415
array operation, 414
matrix operation, 414
scalar operation, 414
variables and expressions, 413–414

Optimization, use of Mathematica for graphical,
60–63

identification and hatching of infeasible
region for inequality, 62

identification of feasible region, 62–63
identification of optimum solution, 63
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Optimization, use of Mathematica for graphical
(continued)

plotting functions, 61–62
plotting of objective function contours, 63

Optimization, use of MATLAB for graphical,
64–66

editing graphs, 64–66
plotting of function contours, 64

Optimum design
conventional versus, 4–6
general mathematical model for, 41–45

Optimum design concepts, 83–174, 175–190
alternate form of KKT necessary conditions,

175–178
basic calculus concepts, 89–103
constrained optimum design problems,

119–143
engineering design examples, 158–166
exercises, 185–190
global optimality, 149–158
irregular points, 178–179
physical meaning of Lagrange multipliers,

143–148
postoptimality analysis, 143–148
second-ordered conditions for constrained

optimization, 179–184
sufficiency check for rectangular beam design

problem, 184–185
unconstrained optimum design problems,

103–119
Optimum design concepts and methods, discrete

variable, 513–530
basic concepts and definitions, 514–516
BBM, 516–521
dynamic rounding-off method, 524–525
exercises, 527–530
IP, 521
methods for linked discrete variables,

525–526
neighborhood search method, 525
SA, 522–524
selection of methods, 526–527
sequential linearization methods, 522

Optimum design concepts and methods,
multiobjective, 543–563

bounded objective function method, 558–559
criterion space and design space, 546–548
example—single-objective optimization

problem, 544
example—two-objective optimization

problem, 545
exercises, 560–563
generation of Pareto optimal set, 551–552
goal programming, 559
lexicographic method, 558

multiobjective GA, 552–555
normalization of objective functions, 552
optimization engine, 552
preferences and utility functions, 551
problem definition, 543–546
scalarization methods, 551
selection of methods, 559–560
solution concepts, 548–550
terminology and basic concepts, 546–552
vector methods, 551
weighted global criterion method, 556–558
weighted min-max method, 556
weighted sum method, 555–556

Optimum design concepts (exercises), 166–174
constrained optimum design problems,

168–172
engineering design examples, 174
global optimality, 173–174
physical meaning of Lagrange multipliers,

172–173
review of some basic calculus concepts,

166–167
unconstrained optimum design problems,

167–168
Optimum design, discrete variable, 491–493

continuous variable optimization, 492
discrete variable optimization, 492–493

Optimum design examples with MATLAB,
420–429

column design for minimum mass, 421–425
flywheel design for minimum mass, 425–429
location of maximum shear stress, 420–421
two spherical bodies in contact, 420–421

Optimum design, GA for, 531–542
applications, 539–540
basic concepts and definitions, 532–534
exercises, 540–542
fundamentals of GA, 534–538
GA for sequencing-type problems, 538–539

Optimum design, global concepts and methods
for, 565–592

basic concepts of solution methods, 565–567
deterministic methods, 567–572
exercises, 588–592
numerical performance of methods, 585–588
stochastic methods, 572–579
two local-global stochastic methods, 579–585

Optimum design, linear programming methods
for, 191–258, 259–275

alternate Simplex method, 262–263
artificial variables, 218–228
basic concepts related to linear programming

problems, 195–201
basic ideas and steps of Simplex method,

201–218
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definition of standard linear programming
problem, 192–195

derivation of Simplex method, 259–261
duality in linear programming, 263–274
exercises, 246–258, 275
postoptimality analysis, 228–243
solution of LP problems using Excel Solver,

243–246
two-phase Simplex method, 218–228

Optimum design, linear programming methods
for (exercises), 246–258, 275

basic concepts related to linear programming
problem, 249–250

basic ideas and concepts of Simplex method,
250–252

definition of standard linear programming
problem, 246–248

postoptimality analysis, 256–258
two phase Simplex method—artificial

variables, 253–256
Optimum design, numerical methods for

constrained, 339–377, 379–412
algorithms and constrained problems,

340–342
approximate step size determination, 388–399
basic concepts and ideas, 340–346
constrained quasi-Newton methods, 400–407
constrained steepest descent method,

363–369
constraint normalization, 343–345
constraint status at design point, 342–343
convergence of algorithms, 345–346
descent function, 345
engineering design optimization using Excel

Solver, 369–373
examples—constraint normalization and

status at point, 344–345
exercises, 373–377
linearization of constrained problem,

346–352
miscellaneous numerical optimization

methods, 407–411
potential constraint strategy, 379–382
QP problem, 383–388
QP subproblem, 358–363
SLP algorithm, 352–358

Optimum design, numerical methods for
constrained (exercises), 373–377

basic concepts and ideas, 373–374
CSD method, 377
engineering design optimization using Excel

Solver, 377
linearization of constrained problem, 374
quadratic programming subprogram, 

375–376

sequential linear programming algorithm,
374–375

Optimum design, numerical methods for
unconstrained, 277–304, 305–337

concepts related to numerical algorithms,
278–282

conjugate gradient method, 296–299
engineering applications of unconstrained

methods, 329–332
exercises, 300–304, 335–337
ideas and algorithms for step size

determination, 282–293
Newton’s method, 318–324
quasi-Newton methods, 324–328
scaling of design variables, 315–318
search direction determination, 293–296,

296–299, 318–324, 324–328
solution of constrained problems, 332–334
steepest descent method, 293–296, 310–315
step size determination, 305–310
unconstrained optimization methods,

332–334
Optimum design, numerical methods for

unconstrained (exercises), 300–304,
335–337

basic ideas and algorithm for step size
determination, 300–302

conjugate gradient method, 303
general concepts related to numerical

algorithm, 300
search direction determination, 302–303
steepest descent method, 302–303

Optimum design of three-bar structure, 483–491
Optimum design of two-member frame, 481–483
Optimum design problem formulation, 15–54

design of cabinet, 30–32
design of can, 18–20
design of coil springs, 36–38
design of two-bar bracket, 24–29
general mathematical model for optimum

design, 41–45
insulated spherical tank design, 20–22
minimum cost cylindrical tank design, 35
minimum weight design of symmetric 

three-bar truss, 38–41
minimum weight tubular column design,

32–35
problem formulation process, 16–18
saw mill operation, 22–23

Optimum design problem formulation
(exercises), 46–54

beam of rectangular cross-section, 50
beer mug, 46
can, 48
cantilever beam, 53–54
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Optimum design problem formulation
(continued)

circular tank, 48
cost transportation system, 49
crude oil refinery, 46
diet of bread and milk, 47
electric generators, 49
exercises, 46–54
hollow circular beam, 54
manufacturer’s products, 47
multistory office building, 46
parallel flow heat exchanger, 46–47
parking lot, 47
shipping container, 48
steel framework, 48
still in bathtub, 47
tonnage of iron ore, 52–53
top rectangular container to transport

materials, 48
two-bar truss, 49–50
vegetable oil stocks, 50–51
water canal, 53

Optimum design problems, classification of
mixed variable, 514–515

Optimum design problems, constrained,
119–143, 418–420

example—constrained minimization problem
using fmincon, 418–420

example—constrained optimum point, 120
example—cylindrical tank design, 127
example—equality constrained problem, 127
example—fmincon in Optimization Toolbox,

418–420
example—inequality constrained problem,

128–130
example—infeasible problem, 121
example—Lagrange multipliers and their

geometrical meaning, 122–125
example—solution of KKT necessary

conditions, 134–137, 137–140
example—solutions of KKT necessary

conditions, 132–134
example—unconstrained optimum point for

constrained problem, 120
example—use of Lagrange multipliers, 127
example—use of necessary conditions,

128–130
inequality constraints, 128–140
KKT, 128–140
necessary conditions, 128–140
necessary conditions: equality constraints,

121–128
role of constraints, 119–121
solution of KKT necessary conditions using

Excel, 140–141

solution of KKT necessary conditions using
MATLAB, 141–143

Optimum design problems, unconstrained,
103–119

Optimum design versus optimal control, 6–7
Optimum design with MATLAB, 413–432

constrained optimum design problems,
418–420

exercises, 429–432
Optimization Toolbox, 413–415
optimum design examples with MATLAB,

420–429
unconstrained optimum design problems,

415–418
Optimum designs, multiple, 66
Optimum solution, identification of, 63
Optimum solutions for LP problems, 201
Out-of-plane loads, 481–483

P
Parameters, ranging right side, 235–238
Pareto fitness function, 554
Pareto optimal set, generation of, 551–552
Pareto optimality, 548–549

weak, 549
Pareto-set filter, 554
Performance

numerical, 585–588
of stochastic zooming method, 586–587

Performance methods using unconstrained
problems, 586

Performance requirements, multiple, 
483–491

Phase I algorithm, 220
Phase I problem, definition of, 220
Phase II algorithm, 221
Physical meaning of Lagrange multipliers,

143–148
Physical programming, 551
Pivot step, 205–206
Plotting

of function contours, 64
functions, 61–62
of objective function contours, 63

Points
constraint status at design, 342–343
sets and, 7–9
utopia, 550

Points, irregular, 178–179
example—check for KKT conditions at

irregular points, 178–179
Polynomial interpolation, 306–309

alternate quadratic interpolation, 308–309
quadratic curve fitting, 306–308

Population defined, 532
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Postoptimality analysis, 143–148, 228–243
changes in coefficient matrix, 241–243
changes in resource limits, 229–230
constraint variation sensitivity result, 148
effect of scaling constraint on Lagrange

multiplier, 147–148
example—£ type constraints, 236–237
example—£ type constraints, 239–240
example—effect of scaling constraint,

147–148
example—effect of scaling cost function,

146–147
example—equality and ≥ type constraints,

237–238, 240–241
example—Lagrange multipliers, 146–147,

147–148
example—optimum cost function, 145
example—ranges for cost coefficients,

239–240, 240–241
example—ranges for resource limits,

236–237, 237–238
example—recovery of Lagrange multipliers

for £ type constraint, 230–232
example—variations of constraint limits, 145
ranging cost coefficients, 239–241
ranging right side parameters, 235–238
recovery of Lagrange multipliers for ≥ type

constraints, 232–234
scaling cost function on Lagrange multipliers,

146–147
Potential constraint strategy, 478
Practical design, issues in, 478–479
Practical design problems, example of, 467–472
Practical design problems, formulation of,

466–472
example—design of two-member frame,

469–472
example of practical design optimization

problem, 467–472
general guidelines, 466–467

Preferences and utility functions, 551
Preparation, interactive data, 448
Present worth (PW), 598

comparisons, 601
Problem formulation, optimum design, 15–54

design of cabinet, 30–32
design of can, 18–20
design of coil springs, 36–38
design of two-bar bracket, 24–29
general mathematical model for optimum

design, 41–45
insulated spherical tank design, 20–22
minimum cost cylindrical tank design, 35
minimum weight design of symmetric 

three-bar truss, 38–41

minimum weight tubular column design,
32–35

problem formulation process, 16–18
saw mill operation, 22–23

Problem formulation, optimum design
(exercises), 46–54

beam of rectangular cross-section, 50
beer mug, 46
can, 48
cantilever beam, 53–54
circular tank, 48
cost transportation system, 49
crude oil refinery, 46
diet of bread and milk, 47
electric generators, 49
exercises, 46–54
hollow circular beam, 54
manufacturer’s products, 47
multistory office building, 46
parallel flow heat exchanger, 46–47
parking lot, 47
shipping container, 48
steel framework, 48
still in bathtub, 47
tonnage of iron ore, 52–53
top rectangular container to transport

materials, 48
two-bar truss, 49–50
vegetable oil stocks, 50–51
water canal, 53

Problem formulation process, 16–18
Problems

classification of mixed variable optimum
design, 514–515

concepts related to algorithms for
constrained, 340–342

definition of Phase I, 220
example of practical design, 467–472
formulation of spring design, 454–455
graphical solutions for beam design, 69–72
infeasible, 67–69
integer programming, 32
interactive solution for spring design,

455–457
linear programming, 56, 191
minimum control effort, 503–505
minimum time control, 505–508
MV-OPT, 514
numerical methods for nonlinear

optimization, 277
optimum solution for spring design, 455
optimum solutions for LP, 201
profit maximization, 55–56
prototype optimal control, 493–497
solution of constrained, 332–334
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Problems (continued)
solution of LP, 243–246
sufficiency check for rectangular beam

design, 184–185
with unbounded solutions, 66–67
See also Subproblems

Problems, concepts related to linear
programming, 195–201

basic concepts, 195–196
example—characterization of solution for LP

problems, 196–198
example—determination of basic solutions,

199–200
example—profit maximization problem,

196–198
LP terminology, 198–200
optimum solutions for LP problems, 201

Problems, constrained optimum design,
119–143, 418–420

example—constrained minimization problem
using fmincon, 418–420

example—constrained optimum point, 120
example—cylindrical tank design, 127
example—equality constrained problem, 127
example—fmincon in Optimization Toolbox,

418–420
example—inequality constrained problem,

128–130
example—infeasible problem, 121
example—Lagrange multipliers and their

geometrical meaning, 122–125
example—solution of KKT necessary

conditions, 134–137, 137–140
example—solutions of KKT necessary

conditions, 132–134
example—unconstrained optimum point for

constrained problem, 120
example—use of Lagrange multipliers, 

127
example—use of necessary conditions,

128–130
inequality constraints, 128–140
KKT, 128–140
necessary conditions, 128–140
necessary conditions: equality constraints,

121–128
role of constraints, 119–121
solution of KKT necessary conditions using

Excel, 140–141
solution of KKT necessary conditions using

MATLAB, 141–143
Problems, convex programming, 153–156,

157–158
Problems, definition of standard linear

programming, 192–195

example—conversion to standard LP form,
194–195

linear constraints, 192–193
standard LP definition, 193–194
unrestricted variables, 193

Problems, formulation of practical design
optimization, 466–472

example—design of two-member frame,
469–472

example of practical design optimization
problem, 467–472

general guidelines, 466–467
Problems, GA for sequencing-type, 538–539

example—bolt insertion sequence
determination, 539

Problems, global optimization of structural
design, 587–588

Problems, linearization of constrained, 346–352
example—definition of linearized

subproblem, 348–350
example—linearization of rectangular beam

design problem, 350–352
Problems, performance methods using

unconstrained, 586
Problems, QP, 383–388

definition of QP problem, 383–384
example—solution of QP problem, 386–388
KKT necessary conditions for QP problem,

384
Simplex method for solving QP problem,

385–386
transformation of KKT conditions, 384–385

Problems, unconstrained design, 103–119,
415–418

concepts relating to optimality conditions,
103–104

example—adding constant to function, 111
example—cylindrical tank design, 113–114
example—determination of local minimum

points, 105–106
example—effects of scaling, 111
example—local minima for function of two

variables, 112–113, 115–116
example—local minimum points using

necessary conditions, 107–108
example—minimum cost spherical tank using

necessary conditions, 108–109
example—multivariable unconstrained

minimization, 416–418
example—numerical solution of necessary

conditions, 114–115
example—single-variable unconstrained

minimization, 415–416
example—using necessary conditions,

105–106, 113–114
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example—using optimality conditions,
112–113, 115–116

optimality conditions for functions of several
variables, 109–116

optimality conditions for functions of single
variables, 104–109

roots of nonlinear equations using Excel,
116–119

Procedures, Gaussian elimination, 621–625
Procedures, gradient evaluation requires special,

465
Process, design, 2–4
Process, problem formulation, 16–18

data and information collection, 16
identification/definition of design variables,

16–17
identification of constraints, 17–18
identification of criterion to be optimized, 17
project/problem statement, 16

Profit maximization problem, 55–56
Programming

duality in linear, 263–274
goal, 559
physical, 551

Programming, control of systems by nonlinear,
493–508

comparison of three formulations, 508
minimization of errors in state variables,

497–503
minimum control effort problem, 503–505
minimum time control problem, 505–508
optimal control of system motion, 508
prototype optimal control problem, 

493–497
Programming problems

convex, 153–156, 157–158
linear, 56, 191, 195–201

Programs, sample computer, 657–673
equal interval search, 657–660
golden section search, 660
modified Newton’s method, 669–673
steepest descent search, 660–669

Projection method, gradient, 409–410
Prototype optimal control problem, 493–497
Pure random search, 573
PW. See Present worth

Q
QP. See Quadratic programming
Quadratic curve fitting, 306–308
Quadratic forms and definite matrices, 96–102

example—calculations for gradient of
quadratic form, 102

example—calculations for Hessian of
quadratic form, 102

example—determination of form of matrix,
99, 100–101

example—matrix of quadratic form, 98
Quadratic interpolation, alternate, 308–309
Quadratic programming (QP) problem, 383–388

definition of QP problem, 383–384
example—solution of QP problem, 386–388
KKT necessary conditions for QP problem,

384
Simplex method for solving QP problem,

385–386
transformation of KKT conditions, 384–385

Quadratic programming (QP) subproblem,
358–363

definition of QP subproblem, 358–361
deviation of, 400–402
example—definition of QP subproblem,

359–361
example—solution of QP subproblem,

362–363
solution of QP subproblem, 361–363

Quasi-Newton Hessian approximation, 403–404
Quasi-Newton methods, 324–328

BFGS method, 327–328
DFP method, 324–327
direct Hessian updating, 327–328
example—application of BFGS method, 328
example—application of DFP method,

325–327
inverse Hessian updating, 324–327
observations on constrained, 406

Quasi-Newton methods, constrained, 400–407
descent functions, 406–407
deviation of QP subproblem, 400–402
example—use of constrained quasi-Newton

method, 404–405
modified constrained steepest descent

algorithm, 404–405
observations on constrained quasi-Newton

methods, 406

R
Random search, pure, 573
Ranging cost coefficients, 239–241
Ranging right side parameters, 235–238
Rectangular beam, design of, 162–166
Rectangular beam design problem, sufficiency

check for, 184–185
Recursive quadratic programming (RQP), 400
Reducing methods, interval, 286
Reduction algorithm, cost, 436–440
Regions

identification and hatching of infeasible, 
62

identification of feasible, 62–63
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Representation, design, 532
Reproduction defined, 534
Requirements, multiple performance, 

483–491
Right side parameters, ranging, 235–238
Robust algorithms, 478
Rounding-off method, dynamic, 524–525
Row matrix, 613
Row vector, 613

S
SA. See Simulated annealing
Saw mill operation, 22–23
Scalar matrix, 616
Scalar operation, 414
Scalarization methods, 551
Scaling of design variables, 315–318

example—effect of scaling of design
variables, 315–317, 317–318

Search direction determination, 318–324,
324–328

Search method, neighborhood, 525
Searches

alternate equal interval, 288–289
equal interval, 286–288, 657–660
golden section, 289–293, 660
inaccurate line, 309–310
pure random, 573
steepest descent, 660–669

Second-order information, 179
Second-ordered conditions for constrained

optimization, 179–184
Section search, golden, 660
Sequencing-type problems, GA for, 538–539
Sequential linear programming (SLP) algorithm,

352–358
basic idea—move limits, 352–353
example—sequential linear programming

algorithm, 354–355
example—use of sequential linear

programming, 356–357
SLP algorithm, 353–357
SLP algorithm observations, 357–358

Sequential linearization methods, 522
Sequential quadratic programming (SQP), 364,

400, 587
option, 482

Sequential unconstrained minimization
techniques, 333–334

Set, generation of Pareto optimal, 551–552
Sets and points, 7–9
Sets, convex, 149–151
SI units, U.S.-British versus, 12–14
Simplex algorithms, 211–212
Simplex in two-dimensional space, 202

Simplex method
basic steps of, 206–211
two-phase, 218–228

Simplex method, alternate, 262–263
example—Big-M method for equality and 

≥ type constraints, 262–263
Simplex method, basic ideas and steps of,

201–218
basic steps of Simplex method, 206–211
canonical form/general solution of Ax = b,

202–203
example—canonical form and tableau, 204
example—identification of unbounded

problem with Simplex method, 218
example—LP problem with multiple

solutions, 216–217
example—pivot step, 205–206
example—solution by Simplex method,

213–214
example—solution of profit maximization

problem, 214–216
interchange of basic and nonbasic variables,

205–206
pivot step, 205–206
Simplex, 202
Simplex algorithms, 211–212
steps of Simplex method, 207–211
tableau, 203–204

Simplex method, derivation of, 259–261
selection of basic variable, 259–261
selection of nonbasic variable, 260–261

Simplex method for solving QP problem,
385–386

Simulated annealing (SA), 522–524, 586, 
587

Single nonlinear equation, 647–650
Single variables, optimality conditions for

functions of, 104–109
SLP. See Sequential linear programming
Software, general-purpose, 479–481

integration of application into general
purpose software, 480–481

software selection, 480
Software, integration of application into general

purpose, 480–481
Software, interactive design optimization,

450–454
capabilities of IDESIGN, 453–454
user interface for IDESIGN, 451–452

Software selection, 480
Solution, compromise, 550
Solution concepts, 515–516, 548–550

compromise solution, 550
efficiency and dominance, 549–550
Pareto optimality, 548–549
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utopia point, 550
weak Pareto optimality, 549

Solution methods, basic concepts of, 565–567
Solutions

degenerate basic feasible, 226–228
design problem with multiple, 66
identification of optimum, 63
problem with unbounded, 66–67

Spaces
criterion, 546–548
design, 546–548
Simplex in two-dimensional, 202
vector, 639–641

Special procedures, gradient evaluation requires,
465

Spherical tank design, insulated, 20–22
Spring design problem

formulation of, 454–455
interactive solution for, 455–457
optimum solution for, 455

Springs, design of coil, 36–38
SQP. See Sequential quadratic programming
Square matrices, 616–617
Standard linear programming problem, definition

of, 192–195
Standard LP definition, 193–194
State variables, minimization of errors in,

497–503
discussion of results, 502–503
effect of problem normalization, 500–502
formulation for numerical solution, 

498–499
numerical results, 499–500

Steepest descent algorithm, modified
constrained, 404–405

Steepest descent directions, orthogonality of,
314–315

Steepest descent method, 293–296, 310–315
example—use of steepest descent algorithm,

294–295, 295–296
example—verification of properties of

gradient vector, 312–314
orthogonality of steepest descent directions,

314–315
properties of gradient vector, 310–314

Steepest descent method, constrained, 
363–369

CSD algorithm observations, 368–369
CSD algorithm, 368
descent function, 364–365
example—calculation of descent function,

365, 366–367
example—golden section search, 366–367
step size determination, 366–367

Steepest descent search, 660–669

Step size determination, 305–310
example—alternate quadratic interpolation,

308–309
example—one-dimensional minimization,

307–308, 308–309
inaccurate line search, 309–310
polynomial interpolation, 306–309

Step size determination, approximate, 388–399
basic idea, 388–389
CSD algorithm with appropriate step size,

393–399
descent condition, 389–393
example—calculations for step size, 391–393
example—constrained steepest descent

method, 391–393
example—effect of g on performance of CSD

algorithm, 396–397
example—minimum area design of

rectangular beam, 398–399
example—penalty parameter R and CSD

algorithm, 397–398
example—use of constrained steepest descent

algorithm, 393–396
Step size determination, ideas and algorithms

for, 282–293
alternate equal interval search, 288–289
analytical method to compare step size,

283–285
definition of one-dimensional minimization

subproblem, 282–283
equal interval search, 286–288
example—analytical step size determination,

284–285
example—minimization of function by

golden section search, 292–293
golden section search, 289–293
numerical methods and compute step size,

285–286
Steps

descent, 280–281
pivot, 205–206

Stochastic integration, 579
Stochastic methods, 572–579

A-R methods, 578
clustering methods, 573–575
CRS method, 575–578
multistart method, 573
pure random search, 573
stochastic integration, 579

Stochastic methods, two local-global, 579–585
conceptual local-global algorithm, 579–580
domain elimination method, 580–582
operations analysis of methods, 583–585
stochastic zooming method, 582–583

Stochastic zooming method, 582–583



726 Index

Stochastic zooming method, performance of,
586–587

Strategy, potential constraint, 379–382, 478
example—determination of potential

constraint set, 380–381
example—search direction and potential

constraint strategy, 381–382
Structural design problems, optimization of,

587–588
Structures

asymmetric three-bar, 484–490
symmetric three-bar, 483–484

Structures, optimum design of three-bar,
483–491

asymmetric three-bar structure, 484–490
comparison of solutions, 490–491
symmetric three-bar structure, 483–484

Subproblem, deviation of QP, 400–402
Subproblems, QP, 358–363

definition of QP subproblem, 358–361
example—solution of QP subproblem,

362–363
examples—definition of QP subproblem,

359–361
solution of QP subproblem, 361–363

Subscripts. See Superscripts/subscripts
Summation notation, superscripts/subscripts and,

9–10
Superscripts/subscripts and summation notation,

9–10
Symmetric three-bar structure, 483–484
Symmetric three-bar truss, minimum weight

design of, 38–41
System motion, optimal control of, 508
Systems, linear, 618–619
Systems, optimal control, 493–508

T
Tableau, defined, 203
Tangent hyperplane, constraint, 179
Tank design

cylindrical, 35
insulated spherical, 20–22

Taylor’s expansion, 93–96
Techniques

niche, 555
sequential unconstrained minimization,

333–334
Terminology and notation

basic, 7–14
Terminology and notations, basic

functions, 11–12
norm/length of vectors, 11
notation for constraints, 9
sets and points, 7–9

superscripts/subscripts and summation
notation, 9–10

U.S.-British versus SI units, 12–14
Terminology, LP, 198–200
Three-bar structure, asymmetric, 484–490
Three-bar structure, optimum design of, 483–491

asymmetric three-bar structure, 484–490
comparison of solutions, 490–491
symmetric three-bar structure, 483–484

Three-bar structure, symmetric, 483–484
Three-bar truss, minimum weight design of

symmetric, 38–41
Time control problem, minimum, 505–508
Time value of money, 593–598
Toolbox, Optimization, 413–415

array operation, 414
matrix operation, 414
scalar operation, 414
variables and expressions, 413–414

Triangle matrix
lower, 616
upper, 616

Truss, minimum weight design of symmetric
three-bar, 38–41

Tubular column design, minimum weight, 
32–35

Tubular column, graphical solution for minimum
weight, 69

Tunneling method, 571–572
Two-bar bracket, design of, 24–29

example—optimum design of two-bar
bracket, 28–29

Two-dimensional space, Simplex in, 202
Two-member frame, optimum design of,

481–483
Two-phase Simplex method, 218–228

U
Unbounded solution, problem with, 66–67
Unconstrained methods, engineering applications

of, 329–332
example—minimization of total potential

energy of two-bar truss, 330–331
example—roots of nonlinear equations,

331–332
example—unconstrained minimization,

331–332
minimization of total potential energy,

329–331
solution of nonlinear equations, 331–332

Unconstrained minimization techniques,
sequential, 333–334

Unconstrained optimization methods, 
332–334

augmented Lagrangian methods, 334
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multiplier methods, 334
sequential unconstrained minimization

techniques, 333–334
Unconstrained optimum design, numerical

methods for, 277–304, 305–337
concepts related to numerical algorithms,

278–282
conjugate gradient method, 296–299
ideas and algorithms for step size

determination, 282–293
Newton’s method, 318–324
quasi-Newton methods, 324–328
scaling of design variables, 315–318
search direction determination, 293–296,

296–299, 318–324, 324–328
solution of constrained problems, 

332–334
steepest descent method, 293–296, 

310–315
step size determination, 305–310
unconstrained optimization methods,

332–334
Unconstrained optimum design, numerical

methods for, engineering applications of
unconstrained methods, 329–332

Unconstrained optimum design, numerical
methods for (exercises), 300–304

Unconstrained optimum design, numerical
methods for, exercises, 335–337

Unconstrained optimum design, numerical
methods for (exercises)

basic ideas and algorithm for step size
determination, 300–302

conjugate gradient method, 303
exercises, 300–304
general concepts related to numerical

algorithm, 300
search direction determination, 302–303
steepest descent method, 302–303

Unconstrained optimum design problems,
103–119, 415–418

example—multivariable unconstrained
minimization, 416–418

example—single-variable unconstrained
minimization, 415–416

Unconstrained problems, performance methods
using, 586

Unknowns, solution of m linear equations in n,
628–635

Unrestricted variables, 193
Upper triangle matrix, 616
U.S.-British versus SI units, 12–14
User interface for IDESIGN, 451–452
Utility functions, preferences and, 551
Utopia point, 550

V
Variable optimization, continuous, 492
Variable optimization, discrete, 492–493
Variable optimum design, discrete, 491–493
Variables

binary, 513
discrete, 513
and expressions, 413–414
integer, 513
linked discrete, 513
methods for linked discrete, 525–526
unrestricted, 193

Variables, artificial, 218–228
artificial cost function, 219–220
definition of Phase I problem, 220
degenerate basic feasible solution, 226–228
example—feasible problem, 223–224
example—implications of degenerate feasible

solution, 226–228
example—unbounded problem, 225–226
example—use of artificial variables, 

225–226
example—use of artificial variables for 

≥ type constraints, 221–223
example—use of artificial variables for

equality constraints, 223–224
Phase I algorithm, 220
Phase II algorithm, 221

Variables, minimization of errors in state,
497–503

discussion of results, 502–503
effect of problem normalization, 500–502
formulation for numerical solution, 498–499
numerical results, 499–500

Variables, optimality conditions for functions of
single, 104–109

Variables, scaling of design, 315–318
example—effect of scaling of design

variables, 315–317, 317–318
Vector and matrix algebra, 611–646

concepts related to set of vectors, 635–641
definition of matrices, 611–613
eigenvalues and eigenvectors, 642–643
exercises, 645–646
norm and condition number of matrix,

643–644
solution of m linear equations in n unknowns,

628–635
solution of n linear equations in n unknowns,

618–628
type of matrices and their operations,

613–618
Vector evaluated genetic algorithm (VEGA), 

553
Vector, gradient, 90–91
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Vector methods, 551
Vector spaces, 639–641
Vectors, 613

column, 613
norm/length of, 11
properties of gradient, 310–314
row, 613

Vectors, concepts related to set of, 635–641
example—checking for linear independence

of vectors, 636–637
example—checking for vector spaces,

639–641
linear independence of set of vectors,

635–639

vector spaces, 639–641
VEGA. See Vector evaluated genetic 

algorithm

W
Wall bracket, design of, 158–162
Weighted global criterion method, 556–558
Weighted min-max method, 556
Weighted sum method, 555–556

Z
Zooming methods, 568–569

performances of stochastic, 586–587
stochastic, 582–583
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