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Foreword

It is a standard classroom exercise to assert that in a simple linear regression model
involving only one regressor [or, covariate] x, viz., y ¼ αþ βxþ error, the
covariate-values (x), assumed to be continuous and to lie in a finite nondegenerate
interval a� x � b, should allow for maximum dispersion in order that the
regression parameters can be estimated with the highest efficiency. This suggests a
50–50 split of the total number of observations, i.e., the set of observations are to be
generated by setting the covariate (x) at the two extreme values, viz., x ¼ a and
x ¼ b, equally often.

Going beyond this, there are basic results, when more than one covariate like this
are involved. On the other hand, in the absence of any such covariates, we have
available standard ANOVA models involving ‘design parameters’.

The ANCOVA models introduced in the textbooks and in the literature are based
on the study of models in situations wherein regression parameters and design
parameters are both present.

Naturally the question of the most efficient estimation of the regression
parameter(s) in the presence of design parameters needs to be studied in very
general terms, and also under very specialized experimental settings.

Lopes Troya initiated this study and BKS (Bikas Kumar Sinha) followed it up
with his research collaborators [Kalyan Das (KD), Nripes Kumar Mandal (NKM),
Premadhis Das (PD), Ganesh Dutta (GD), S.B. Rao, P.S.S.N.V.P. Rao, G.M. Saha
(GMS)]. It is amazing to note that so much was hidden in this topic of research, and
that their successful collaboration over these years had culminated in a Research
Monograph.

I had an opportunity to collaborate with BKS several years back and I am
thankful to the authors for approaching me to write this Foreword.
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This monograph aims at providing an up-to-date account of the research findings
in various experimental settings. As the authors describe and admit, mostly they
confine to ‘idealistic scenarios’ in order to develop and apply tools and techniques
for the study of optimal estimation of covariates’ parameters. In the introductory
chapter as also in Chapter 9, they discuss about ‘real life’ examples and provide a
detailed study of optimality.

The authors have taken up a thorough study of the problems associated with this
area of research. I personally thank them for their tremendous efforts and con-
gratulate them for this remarkable achievement.

June 2015 Gour Mohan Saha
Retired Professor of Statistics

Indian Statistical Institute
Kolkata

India
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Preface

Three of us are ‘Senior Citizens’ in the context of ‘Statistics Learning’ and we are
ever-grateful to our revered postgraduate teachers for highlighting the fundamental
and basic contributions of R.A. Fisher and Frank Yates in such areas as Design of
Experiments [DoE]. We had the opportunity to read their books, so much so that we
went through Fisher’s original book published in the 1930s. These are indeed
‘Treasured Collections’! Our fascination for DoE started from that point of time and
it has continued to be intriguing for more than 40 years! We thoroughly enjoy
reading, learning and discussing all aspects of DoE—theory and applications.

There are two incidences to be told in real-time experience underlying this
project.

First, around 2002 one of the co-authors was trying to make a ‘dent’ into a paper
on Optimal Covariates Designs [OCDs] with a colleague of him with very little
success primarily because the notations were difficult to follow. Fortunately for the
rest of us and for the optimal design community at large, they did not give up
altogether. Instead, at the earliest opportunity they approached one of the other
co-authors for looking into this paper. That was one positive development indeed
and together, they could digest the paper and go forward as a ‘high speed jet’! On
another occasion around 2003, again one of the co-authors was struggling with a
constructional problem involving OCDs and this time he was accompanied by one
enthusiastic graph-theorist and one matrix-specialist. While they were in ‘seemingly
deep’ trouble and in a ‘confused state of mind’, one of their colleagues—a design
specialist—suddenly ‘peeped in’ and made a very casual observation, ‘it seems …
you are discussing some aspects of Mixed Orthogonal Arrays’ and that was it to
give again another big push to this work.

In a nutshell, these two incidences gave a boost to our group and we did not have
to look back any more! We have enjoyed working on this project. We have derived
much pleasure working in a group discussing, arguing and counter-arguing, till the
time that we thought we came to understand enough of this fascinating topic of
research to prepare a Research Monograph.

We must hasten to add that the youngest member of our group [GD] kept the
others in toe with his frequent ‘claims’ and ‘counter-claims’ and ‘proofs’ and
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‘counter-examples’! Working with him was a matter of great pleasure for us. His
enthusiastic and provocative statements/claims frequently served as ‘make-belief’
prophecies which were to be verified by the other three; it was not easy all the time
anyway.

Finally, we are here with a comprehensive account of what we believe to be a
Treatise on OCDs, more from the viewpoint of ‘Idealistic Scenarios’ in different
experimental situations. The emphasis all through is about ‘optimal’ choice of what
are called ‘controllable covariates’ in continuous domain(s). Only in the last
chapter, we dwell on ‘realistic experimental situations’ and provide solutions to
some well-posed problems.

Confusion continued to follow us and it gave us a scope for generating argu-
ments and counter-arguments till we reached Clarity with our own understanding
of the findings.

Kolkata, West Bengal, India Premadhis Das
June 2015 Ganesh Dutta

Nripes Kumar Mandal
Bikas Kumar Sinha
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Chapter 1
Optimal Covariate Designs (OCDs):
Scope of the Monograph

1.1 Preamble: A Reflection on the Choice of Covariates

Most standard textbooks in the area of linear models and design of experiments
provide discussions on what are known as analysis of covariance models applied to
completely randomized designs (CRD), randomized block designs (RBD) and latin
square designs (LSD). It is a well-accepted practice in experimental design contexts
to use one or more available and meaningful covariates together with local control
to reduce the experimental error. Such a model comprises three components: local
control parameter(s) (if any), ‘treatment’ parameters, and the covariate parameter(s),
apart from the error. This generates a family of ‘covariate models’—serving as a
‘blend’ of ‘regression models’ (in the absence of treatment parameters) and ‘varietal
design models’ (in the absence of covariates). These are the so-called analysis of
covariance (ANCOVA) Models. Generally, for such models, emphasis is given on
analysis of the data. Inference-related procedures are fairly routine exercises and are
well discussed in the texts.

At times there lies a (possibly huge) potential for improving the experimental
results by suitably classifying/reclassifying the existing experimental units through
a study of the associated covariate values or by first suitably choosing the covariate
values from a larger lot and then, hopefully, identifying the associated experimental
units from a larger pool.

Here we cite a motivating example from Snedecor and Cochran (1989, p. 377),
suitably presented to explain our point. There are 30 patients for a study of lep-
rosy and there are three drugs (two antibiotics A and D, and one control F) to be
compared—each to be applied to 10 patients. For each patient we have available
a pretreatment score (count of bacilli) which may be used as a covariate. Table1.1
shows the allocation of the three treatments covering all the 30 patients as against
their covariate values. There is nothing wrong with this and the data analysis is fairly
routine using an ANCOVA Model, once the CRD is implemented.

We now ask an intriguing question: How was the allocation of treatments (A,
D and F) across the pool of 30 patients decided? Was it purely ‘ad hoc’? Could

© Springer India 2015
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2 1 Optimal Covariate Designs (OCDs): Scope of the Monograph

Table 1.1 Original allocation of patients based on covariate values (patient serial number, covariate
value)

1 Treatment A (P1, 3), (P2, 5), (P3, 6), (P4, 6), (P5, 8), (P6, 10), (P7, 11), (P8, 11),
(P9, 14), (P10, 19)

2 Treatment D (P11, 5), (P12, 6), (P13, 6), (P14, 7), (P15, 8), (P16, 8), (P17, 8),

(P18, 15), (P19, 18), (P20, 19)

3 Control F (P21, 7), (P22, 9), (P23, 11), (P24, 12), (P25, 12), (P26, 12),

(P27, 13), (P28, 16), (P29, 16), (P30, 21)

Table 1.2 ‘Improved’ allocation of patients based on covariate values

1 Treatment A (P1, 3), (P3, 6), (P4, 6), (P22, 9), (P6, 10), (P7, 11), (P24, 12),

(P9, 14), (P19, 18), (P10, 19)

2 Treatment D (P2, 5), (P12, 6), (P14, 7), (P5, 8), (P15, 8), (P8, 11), (P25, 12),

(P18, 15), (P28,16), (P20, 19)

3 Control F (P11, 5), (P13, 6), (P21, 7), (P16, 8), (P17, 8), (P23, 11), (P26, 12),
(P27, 13), (P29, 16), (P30, 21)

we do anything ‘better’? It would be an interesting exercise to compare different
conceivable allocations for say, ‘most efficient estimation’ of the covariate parameter
in the ANCOVA model underlying the CRD. A trial and error solution is given in
Table1.2 and it turns out that we can achieve 12.28% gain in efficiency by following
this plan.

There is much more to it. If we had a larger pool of patients to choose from, what
would have been our strategy formost efficient estimation of the covariate parameter?
It turns out that our optimal choice would necessarily accumulate all those patients
having equal split between the smallest and the largest pretreatment scores and that
would be needed for each treatment! If it turns out that in the pool, 3 and 21 are
the lowest and highest pretreatment counts of bacilli, then we would recruit five
patients with the lowest and five patients with the highest count for each of the three
treatments A, D and F. By doing so, we would have gained access over a group of 15
patients—each with the lowest count and another group of 15 patients—each with
the highest count! Then it would be a matter of dividing each group of 15 equally
into three so that there are five patients for each treatment from each group. This
would have resulted in the best possible allocation designwith 309.78% efficiency as
against the original allocation in Table1.1 above and 264.97% efficiency as against
the allocation indicated in Table1.2 above. We revisit this example in Chap.9.

We take up a second example now. The data in Table1.3 are from an experimental
piggery arranged for individual feeding of six pigs in each of five pens. From each of
five litters, six young pigs, three males (M) and three females (F), were selected and
allotted to one of the pens. Three feeding treatments denoted by A, B, C, containing
increasing proportions (pA < pB < pC ) of protein, were used and each was given
to one male and one female in each pen. The pigs were individually weighed each

http://dx.doi.org/10.1007/978-81-322-2461-7_9
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Table 1.3 Data for analysis

Pen Treatment Sex Initial weight Growth rate in
pounds per week

I A F 48 9.94

B F 48 10.00

C F 48 9.75

C M 48 9.11

B M 39 8.51

A M 38 9.52

II B F 32 9.24

C F 28 8.66

A F 32 9.48

C M 37 8.50

A M 35 8.21

B M 38 9.95

III C F 33 7.63

A F 35 9.32

B F 41 9.34

B M 46 8.43

C M 42 8.90

A M 41 9.32

IV C F 50 10.37

A M 48 10.56

B F 46 9.68

A F 46 10.90

B M 40 8.86

C M 42 9.51

V B F 37 9.67

A F 32 8.82

C F 30 8.57

B M 40 9.20

C M 40 8.76

A M 43 10.42

Data Source: Rao (1973), p. 291 and Scheffé (1999), p. 217

week for 16 weeks. For each pig the growth rate in pounds per week was calculated.
The weight at the beginning of the experiment is also given in Table1.3.

There are 15 female pigs and 15 male pigs available for this study and we arrange
their initial weights separately into two 5 × 3 arrays. The arrangements are shown
in Table1.4a, b respectively.

Now one may consider the standard covariate model (ANCOVA) for two-way
RBD Pen×Treatment layout with a single covariate (here covariate is initial weights
of pigs) separately for females and males. The notations are standard and we use
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Table 1.4 Initial weight distribution as per allocation of pigs

Pen Treatment Totals

A B C

(a) Female

1 48 48 48 144

2 32 32 28 92

3 35 41 33 109

4 46 46 50 142

5 32 37 30 99

Totals 193 204 189 586

(b) Male

1 38 39 48 125

2 35 38 37 110

3 41 46 42 129

4 48 40 42 130

5 43 40 40 123

Totals 205 203 209 617

γF and γM to, respectively, denote the covariate effect for female and male pigs.
These are routine computations and for the given allocation design in Table1.4, to
be denoted by d0, Id0(γF ) = 57.8667 and Id0(γM ) = 116.2667.

Again, we ask an intriguing question: For the given collection of 15 female/male
pigs, is it possible to identify an improved reallocation plan across the two-way Pen×
Treatment table in the sense of increased precision in the estimation of the covariate
parameters? Another related question also makes some sense: If the experimenter
is given a ‘free choice’ of the 15 pigs (both female and male) from a larger pool,
what would have been an ‘optimal choice’, given that initial weight distribution is
perfectly known for the pool of pigs? Note that this question has embedded in it (i)
selection of pigs with suitable initial weights and (ii) their distribution across the
two-way table.

Below we provide answers to the two questions raised above. In Table1.5a, b
we provide improved allocation designs (based on the given collection of pigs),
separately for female and male pigs with respective percent gain in efficiency given
by 1375.345 and 76.4908%. In Table1.6a, b, we provide optimal allocation designs
based on free choice of the experimenter, assuming that the initial weight distribution
for female pigs lies in the closed interval [28 lbs, 50 lbs] and for males it is in the
closed interval [35 lbs, 48 lbs].

We skip the details and will take up this example again in Chap.9.

Remark 1.1.1 Our purpose in this monograph is to give the readers a taste of such
comparative results in diverse experimental contexts and with one or more covariates
being encountered simultaneously.

http://dx.doi.org/10.1007/978-81-322-2461-7_9
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Table 1.5 Improved allocation designs

Pen Treatment Totals

A B C

(a) Improved allocation for female pigs

46 28 48 122

30 37 50 117

48 35 32 115

41 46 32 119

32 48 33 113

Totals 197 194 195 586

(b) Improved allocation for male pigs

A B C Totals

37 38 48 123

38 46 40 124

40 42 41 124

43 39 42 123

48 40 35 123

Totals 206 205 206 617

Table 1.6 Optimal initial weights for female and male pigs

Treatment Totals

A B C

(a) Female

28 50 50 128

50 28 50 128

50 50 28 128

28 50 50 128

50 28 28 106

Totals 206 206 206 618 = G

(b) Male

35 48 48 131

48 35 48 131

48 48 35 131

35 48 48 131

48 35 35 118

Totals 214 214 214 642 = G

Much of the theory of OCDs has grown out of the ‘convenient proposition/
supposition’ that the experimenters have a ‘free’ choice in the selection of the exper-
imental units with any preassigned covariate values whatsoever! Notwithstanding
the fact that such a situation rarely arises in practice, the published literature is vast
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and varied in respect of all kinds of experimental design settings, with the proviso
that the optimal design theorists/statisticians are the masterminds in the whole busi-
ness and they have the ‘ultimate say’ in the choice of the experimental units from a
conceivably larger ‘pool’ with designated covariate values.

We will dwell on the developments toward characterization and construction of
the OCDs as we have witnessed in the published literature, in the contexts of what
are identified as ‘ideal’ scenarios. This study will be taken up systematically in
Chaps. 2, 3, 4, 5, 6, 7 and 8. In Chap.9, we will consider application areas and discuss
some examples. Our understanding of the OCDs in the so-called ideal scenarios will
guide us towards identification of optimal/nearly optimal covariate designs in real-
life applications and some applications are discussed in Chap. 9.

We briefly trace the history of development of OCDs below.
The choice of experimental units possessing suitably defined/chosen values

of the covariates for a given experimental set-up so as to attain minimum vari-
ance/maximum precision for estimation of the regression parameters has attracted
the attention of researchers only in recent times. In the context of ANCOVA models
where both qualitative and quantitative factors are present, the problem of inference
on varietal contrasts corresponding to qualitative factors was studied by Harville
(1974, 1975), Haggstrom (1975) and Wu (1981). The problem of determining
optimum designs for the estimation of regression parameters corresponding to con-
trollable covariates was first considered by 1 Troya Lopes (1982a, b). She restricted
investigations in the set-up of completely randomized design (CRD).Das et al. (2003)
extended it to the block design set-up, viz. randomized block design (RBD) and some
series of balanced incomplete block designs (BIBDs) and constructed OCDs for the
estimation of covariate parameters. Rao et al. (2003) revisited the problem in CRD
and RBD set-ups and identified the solutions as mixed orthogonal arrays (MOAs),
thereby providing further insights and some new solutions. Dutta (2004, 2009) and
Dutta et al. (2007, 2009b, 2010a, c) considered optimal estimation of the regres-
sion coefficients under different experimental set-ups where the analysis of variance
(ANOVA) effects are non-orthogonally estimable. Dutta et al. (2009a) also consid-
ered optimal estimation of the regression coefficients in the set-ups of split-plot and
strip-plot designs where the ANOVA effects are orthogonally estimable. These were
subsequently generalized in Dutta and Das (2013a) to multi-factor set-up. For one-
way set-up, D-optimal designs were proposed by Dey and Mukerjee (2006) and,
these were further studied in Dutta et al. (2014). Dutta et al. (2010b) also considered
D-optimal covariate designs for estimation of regression coefficients in incomplete
block design set-up when global optimal designs do not exist. The other related

1LateProfessor JackKiefer pioneered the studyof optimal experimental designs in standardANOVA
models as well as in regression designs. He guided Lopes Troya for her Doctoral Dissertation in
a topic which was to bridge ANOVA and regression designs into what are known as ANCOVA
models. The unfortunate premature death of Professor Kiefer was a blow to the design theorists in
general. His expertise and insightful contributions could have gone a long way in this direction.

http://dx.doi.org/10.1007/978-81-322-2461-7_2
http://dx.doi.org/10.1007/978-81-322-2461-7_3
http://dx.doi.org/10.1007/978-81-322-2461-7_4
http://dx.doi.org/10.1007/978-81-322-2461-7_5
http://dx.doi.org/10.1007/978-81-322-2461-7_6
http://dx.doi.org/10.1007/978-81-322-2461-7_7
http://dx.doi.org/10.1007/978-81-322-2461-7_8
http://dx.doi.org/10.1007/978-81-322-2461-7_9
http://dx.doi.org/10.1007/978-81-322-2461-7_9
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references are Wierich (1984), Kurotschka and Wierich (1984), Chadjiconstantini-
dis and Moyssiadis (1991), Chadjiconstantinidis and Chadjipadelis (1996), Liski
et al. (2002), Dutta (2009), Sinha (2009) and Das (2011).

1.2 Basic Set-Up and Optimality Conditions

Let the following covariate model be considered:

Y = Xθ + Zγ + e (1.2.1)

where Yn×1 denotes the observation vector, Xn×p denotes the coefficient matrix for
the ANOVA effects parameters θ′ = (θ1, θ2, . . . , θp) andZn×c denotes thematrix of
the values given to c covariates, viz.Z= (

z1, z2, . . . , zc
)
. In the above,Z is also called

the covariate design matrix of the vector of covariate effects γ = (γ1, γ2, . . . , γc)
′.

As usual, e is the random error component with E(e) = 0, Disp(e) = σ2In , where
In is the identity matrix of order n. We represent the above set-up by the triplet:

(
Y, Xθ + Zγ, σ2In

)
. (1.2.2)

Here the observations are uncorrelated and variances of each of the observations are
equal to σ2. In addition to the comparison of ANOVA effects and in particular, of the
underlying treatment effects, interest lies in accommodating as many covariates as
possible, subject to these being optimally estimated. Situations where the covariates
are not under the control of the experimenter, were discussed by Harville (1974,
1975), Haggstrom (1975) and Wu (1981) in the context of comparison of treatment
effects. These are also briefly discussed in Shah and Sinha (1989). Traditionally, in
a study of linear regression design involving non-stochastic regressors, we tacitly
call for homogeneous experimental units so that the assumed model for the n × 1
observation vector Y is of the form

(
Y, μ1n + Zγ, σ2In

)
(1.2.3)

where μ represents the intercept term, γ is the vector of covariate effects, Z is, as
before, the design matrix of covariate values and 1n is a vector of order n with
all elements unity. Understandably, the homogeneous nature of the experimental
units safeguards the same intercept term as indicated in the model (1.2.3) for every
expectation.

Here Z ’s are assumed to be controllable/given non-stochastic covariates. The n
values zi1, zi2, . . . , zin , assumed by the i th covariate Zi are such that they belong
to a finite interval [ai , bi ] for each i and j , i.e.
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ai ≤ zi j ≤ bi

i.e. zi j = ai +bi
2 + bi −ai

2 z∗
i j

(1.2.4)

so that z∗
i j lies in [−1, 1] for each i, j . Then replacing zi j by z∗

i j ’s we get the
same covariate model in a reparameterized scenario, i.e. the regression coefficients
can be suitably adjusted and the constant part will be adjusted with μ. Thus this
transformation does not hamper our optimality study. So, without loss of generality,
we can assume in (1.2.3), the covariate values zi j ’s to vary within [−1, 1]. It is
well known that the experimental domain of the regressors being a c-dimensional
cube of the form: [−1, 1]c, the most efficient design for estimation of the regression
coefficients (i.e. the γ-parameters) is derived from a Hadamard matrix (defined in
Chap.2), whenever the latter exists. When n > c and n ≡ 0 (mod 4), it is enough
to start with a Hadamard matrix Hn of order n (in its standard form) and select any
c of its columns for the Z-matrix, leaving the first column which contains 1’s only.
This yields an optimum design for the (joint) estimation of μ and γ on the basis of
n observations. Optimality here, refers to attaining the least possible value σ2

n of
the individual variances simultaneously for all the covariate parameter estimates.
It is known that the maximum number of covariates (i.e. cmax) cannot exceed the
error degrees of freedom (d.f.) of a given set-up. Therefore cmax = (n − 1) under
the model in (1.2.3); cmax = n − v for a CRD set-up and for a block design set-up
cmax = n − b − Rank(C), where C is the characteristic matrix of a block design.

In general, the experimental set-ups are much more complicated and so are the
models much different from (1.2.3). Use of Hadamard matrices and other tools and
techniques has to be introduced in a systematic manner. The points to be noted are:

(i) We want optimal estimation of the covariates parameters.
(ii) We want to know how many covariates can be optimally accommodated.

We mostly confine to the ‘idealistic’ situations wherein there exist conceivably
larger pools of experimental units with experimenter’s choice of the covariates’ val-
ues. This should serve as a basis and a guideline for actual experimental situations.

1.3 Chapter-Wise Summary

In Chap.2, we study the choice of optimum covariate design in CRD set-up. Troya
Lopes (1982a, b) first studied the problem of choice of the Z-matrix in a CRDmodel
when the treatment allocation matrix X corresponds to an equal allocation number,
i.e. when n is a multiple of v. We will write as n = vb so that b is the common
allocation number of the v treatments under investigation. Here we discussed some
results from Troya Lopes (1982a) with reference to the W-matrices. If n is not an
integral multiple of v, this allows us to study situations where no equireplicate design
exists. In this situation, it is not possible to find designs attaining minimum variance
for the estimated covariate parameters. This problem has been considered by Dey

http://dx.doi.org/10.1007/978-81-322-2461-7_2
http://dx.doi.org/10.1007/978-81-322-2461-7_2


1.3 Chapter-Wise Summary 9

and Mukerjee (2006) and Dutta et al. (2014). They provided optimum designs with
respect to ANOVA effect and covariate effects using D-optimality criterion. We also
deal with this issue in this chapter.

In Chap.3, we discuss optimum covariate design in RBD set-up. For an RBD set-
up, (Das et al. 2003) studied for the first time, the problem of OCDs. They exploited
mutually orthogonal latin squares (MOLS) and Hadamard matrices to construct such
designs which attain the upper bound for the number of covariates which can be
incorporated in the covariatemodel for RBD. Rao et al. (2003) re-visited the problem
in CRD and RBD set-ups and identified the solutions as mixed orthogonal arrays
(MOAs) (defined in Chap.2), thereby providing further insights.

For BIBD set-up, Das et al. (2003) also initiated the construction of optimal
designs for covariates in some series of symmetric balanced incomplete block designs
(SBIBD) constructed through Bose’s difference technique and some BIBDs with
repeated blocks. Dutta (2004) dealt with the problem of constructing OCDs in some
other classes of BIBDs which may or may not have cyclic structure. However, he
dealt with the problem with the restriction n ≡ 0 (mod 4). But such designs cannot
always be obtained because of the restriction n ≡ 0 (mod 4). Dutta et al. (2010b)
found optimum designs with respect to covariate effects using D-optimality criterion
retaining orthogonality with the treatment and block effect contrasts, where n ≡ 2
(mod 4). Results given by Das et al. (2003), Dutta (2004) and Dutta et al. (2010b)
are included in Chap.4.

In aBIBD set-up,we have noticed that the scope of construction ofOCDs becomes
limited as the parametric relations do not always permit the existence of Hadamard
matrices.Also, the stringency of equal occurrence of each pair of treatments limits the
scope of OCDs. For this, Dutta et al. (2009b) extended their research to the partially
balanced incomplete block design (PBIBD) set-up. Moreover, PBIBDs are popular
among practitioners and OCDs in this set-up will be of help to them. However, in
Chap.5, we restrict to an important subclass of PBIBDs viz., the group divisible
designs (GDDs) and discuss about existence and constructional aspects of OCDs.
We have given a catalogue at the end of Chap.5 which shows that the method covers
a large number of GDDs obtained from Clatworthy (1973).

Binary proper equireplicate block designs (BPEBDs) form a rich class of block
designs and this class encompasses designs beyond those considered in the previous
chapters. In Chap.6, we venture into the constructional aspects of OCDs for such
designs. General cyclic and non-cyclic BPEBDs as also t-fold BPEBDs having OCD
structure have been studied and a catalogue has also been provided at the end.

In Chap.7, following Dutta and Das (2013b), we discuss the OCD problem in
balanced treatment incomplete block (BTIB) design set-up usingHadamardmatrices
and other techniques described in previous chapters.

InChap.8,we start with a discussion of theOCDproblems in crossover design set-
up and multi-factor set-up. For these designs, key references are Dutta and SahaRay
(2013) and Dutta and Das (2013a). Mixed orthogonal arrays and their generalized
version are very useful to construct OCDs in multi-factor set-ups.

In all the above cases so far discussed in various chapters, the observations are nat-
urally uncorrelated. But if they are not, then difficulty arises for the choice of OCDs.

http://dx.doi.org/10.1007/978-81-322-2461-7_3
http://dx.doi.org/10.1007/978-81-322-2461-7_2
http://dx.doi.org/10.1007/978-81-322-2461-7_4
http://dx.doi.org/10.1007/978-81-322-2461-7_5
http://dx.doi.org/10.1007/978-81-322-2461-7_5
http://dx.doi.org/10.1007/978-81-322-2461-7_6
http://dx.doi.org/10.1007/978-81-322-2461-7_7
http://dx.doi.org/10.1007/978-81-322-2461-7_8
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It becomes even more difficult for arbitrary variance-covariance matrix. However, if
the variance-covariance matrix has a nice structure, it is possible to construct OCDs.
In particular, Dutta et al. (2009a) considered the set-ups of the split-plot and strip-
plot designs where the correlations among the observations follow a definite pattern.
Further, they have seen that a generalized version of the mixed orthogonal array has a
close relationship with the OCDs for such set-ups. They have exploited it to construct
OCDs for such experimental contexts. In this Chap.8, we also discuss this aspect at
length.

In the concluding chapter (Chap.9), we turn back to the questions raised inChap.1
and deal with a number of application areas wherein optimality study in the context
of uses of covariates has a natural scope for enhancing the experimental results. We
rework on the two motivating examples and provide details of the computations.
We also take up four other examples arising in experiments involving covariates in
natural sciences.
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Chapter 2
OCDs in Completely Randomized
Design Set-Up

2.1 Introduction

We consider in this chapter the one-way linear model with v treatments, c covariates
and a total of n experimental units. We work under the linear model

yi j = τi +
c∑

t=1

γt z
(t)
i j + ei j , 1 ≤ j ≤ ni , 1 ≤ i ≤ v. (2.1.1)

where ni (> 1) is the number of times the i th treatment is replicated; clearly

v∑

i=1

ni = n. (2.1.2)

For 1 ≤ j ≤ ni , 1 ≤ i ≤ v, here yi j is the observation arising from the j th replication
of the i th treatment, τi effect due to the i th treatment.

In matrix notation the above model can be represented as

(
Y, Xτ + Zγ, σ2In

)
, (2.1.3)

where, Y is an observation vector and X is the design matrix corresponding to vector
of treatment effects τ v×1 and Z = ((z(t)i j )) is the design matrix corresponding to

vector of covariate effects γc×1 = (γ1, γ2, . . . , γc)
′. This is referred to as one-way

model with covariates (without the general mean).
Troya Lopes (1982a, b) studied the nature of optimal allocation of treatments and

covariates in the above set-up for simultaneous estimation of the (fixed) treatment
effects (in the absence of the general effect) and the covariate effects with maximum
efficiency in the sense of minimum generalized variance. This is to note that the
information matrix with respect to model (2.1.3) is given by σ−2I(η), where

© Springer India 2015
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I(η) =
(

X′X X′Z
Z′X Z′Z

)
(2.1.4)

and η′ = (τ ′,γ ′) .
The problem is to suggest an optimal allocation scheme (for given design parame-

ters n, v, c) for efficient estimation of the treatment effects as well as the covariate
effects by ascertaining the values of the covariates for each one of them, assuming
that each one is controllable and quantitative within a stipulated finite closed interval.

The information matrix of γ is given by

σ−2 I (γ) = Z′Z − Z′X(X′X)−X′Z (2.1.5)

where (X′X)− is a generalised inverse of X′X satisfying
X′X
(
X′X
)− X′X = X′X

(cf. Rao 1973, p. 24). It is evident that Z′X(X′X)−X′Z is a positive semi-definite
matrix. So from (2.1.5), it follows that

σ−2 I (γ) ≤ Z′Z (2.1.6)

in the Loewner order sense (vide Pukelsheim 1993) where for two non-negative
definite matrices A and B, A is said to dominate B in the Lowener order sense if
A − B is a non-negative definite matrix.

Equality in (2.1.6) is attained whenever

X′Z = 0. (2.1.7)

If Z satisfies (2.1.7), then treatment effects and covariate effects are orthogonally
estimated. Again under condition (2.1.7), the information matrix I(γ) reduces to
I(γ) = Z′Z. The z-values are so chosen that Z′Z is positive definite so that from
(2.1.6)

V ar (̂γt ) ≥ σ2

v∑

i=1

ni∑

j=1

z(t)2i j

≥ σ2

n
(2.1.8)

as z(t)i j ∈ [−1, 1]; ∀ i, j, t.
Now equality in (2.1.8) holds for all i if and only if the Z-matrix is such that

z(s)′z(t) = 0 ∀ s �= t. (2.1.9)

and

z(t)i j = ±1 (2.1.10)
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Condition (2.1.7) implies that the estimators of ANOVA effects parameters or para-
metric contrasts do not interfere with those of the covariate effects and conditions
(2.1.9) and (2.1.10) imply that the estimators of each of the covariate effects are such
that these are pairwise uncorrelated, attaining the minimum possible variance.

Thus the covariate effects are estimatedwith themaximumefficiency if and only if

Z′Z = nIc (2.1.11)

along with (2.1.7). The designs allowing the estimators with the minimum variance
are called globally optimal designs (cf. Shah and Sinha 1989, p. 143). Henceforth,
we shall only be concerned with such optimal estimation of regression parameters
and by optimal covariate design, to be abbreviated as OCD hereafter, we shall only
mean globally optimal design, unless otherwise mentioned.

It is clear that conditions (2.1.7) and (2.1.11) hold simultaneously if and only if
zi j ’s are necessarily +1 or −1 and that condition (2.1.7) is satisfied.

It is difficult to visualize theZ-matrix satisfying conditions (2.1.7) and (2.1.11). In
the set-up of the model (2.1.3), it transpires from Troya Lopes (1982a) that optimal
estimation of the treatment effects and the covariates effects is possible when the
treatment replications are all necessarily equal, assuming that n is a multiple of v,
the number of treatments. We set n = bv, where b is the common replication of
treatments, henceforth. Das et al. (2003) had represented each column of the Z-
matrix by a v×b matrix W with elements of±1, where the rows of W correspond to
the v treatments and the columns of W correspond to different replication numbers.
Condition (2.1.7) implies that the sum of each row of W should vanish. Again,
condition (2.1.11) implies that the sum of products of the corresponding elements,
i.e. the Hadamard product of W(s) and W(t), defined in (2.1.13) should also vanish,
1 ≤ s < t ≤ c. The above two facts can be represented in the following schematic
forms through the row totals and Hadamard product.

Row Totals:

W(s) =

Tr. Repl. no. → Row
↓ 1 2 . . . b Totals
1 0
2 0
... (±1)

...

v 0

(2.1.12)

Hadamard product of W(s) and W(t) (cf. Rao 1973, p. 30):

W(s) ∗ W(t) =

Tr. Repl. no. →
↓ 1 2 . . . b
1
2
... (w

(s)
i j w

(t)
i j )

v

(2.1.13)
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where ‘*’ denotes Hadamard product. For orthogonality of sth and t th columns of

Z, it is required that
v∑

i=1

b∑

j=1

w
(s)
i j w

(t)
i j = 0.

The schematic representation (2.1.12), (2.1.13) of Das et al. (2003) is a break-
through in the sense that handling of Z-matrix has been made much easier and it has
been followed throughout the monograph.

Troya Lopes (1982a) first studied the nature of optimal allocation of treatments
and covariates in the above set-upwhen n

v
is an integer. It may be noted that whenever

condition (2.1.7) is ensured, presence of the covariates in model (2.1.3) does not pose
any threat to the usual “optimal treatment allocation” problem. In Sect. 2.2, following
Troya Lopes, we intend to discuss about the availability of Z-matrices satisfying
(2.1.7) and (2.1.11) when the treatment allocation matrix X corresponds to equal
allocation number, i.e. in situations where n is a multiple of v. We will write n = vb
so that b is the common allocation number of the v treatments under investigation.
The situationswhere (2.1.7), (2.1.11) and b = n

v
= integer are satisfied, are identified

as regular cases. Otherwise it is called a non-regular case. If the situation is non-
regular, then it is not possible to allocate simultaneously the treatments and covariates
optimally. For non-regular situation, efficient allocation of treatments and covariates
simultaneously can be done by using other specific optimality criteria. Dey and
Mukerjee (2006) and Dutta et al. (2014) considered this problem in non-regular
situations and found D-optimal designs in this context. Details are presented in
Sect. 2.3.

It has been seen that Hadamard matrix plays a key role for constructing OCDs.
Definition of Hadamard matrix (cf. Hedayat et al. 1999, p. 145) is given below:

Definition 2.1.1 A Hadamard matrix Ht of order t is a t × t matrix with elements
±1 satisfying

Ht H′
t = tIt .

2.2 Covariate Designs Under Regular Cases

Consider the case when n is a multiple of v, that is n = vb where b is such that
Hb, Hadamard matrix of order b, exists. We shall also consider some cases where
b is even. Then ANOVA parameters as well as the covariate effect-parameters can
be estimated orthgonally and/or most efficiently. This holds simultaneously for c
covariates and one can deduce maximum possible value of c for this to happen. As
already mentioned, the most efficient estimation of γ-components is possible when
(2.1.7) and (2.1.11) are simultaneously satisfied and these conditions reduce, in terms
of W-matrices defined in above, to C1, C2 where
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C1. Each of the c W-matrices has all row-sums equal to zero;
C2. The grand total of all the entries in the Hadamard product

of any two distinct W-matrices reduces to zero.

⎫
⎬

⎭
(2.2.1)

Now we define optimum W-matrices for covariate designs in CRD set-up.

Definition 2.2.1 With respect to model (2.1.3), the c W-matrices corresponding to
the c covariates are said to be optimum if they satisfy conditionsC1 andC2 of (2.2.1).

In this context, the following results were deduced in Troya Lopes (1982a).

Theorem 2.2.1 Let c∗ be the maximum number of covariates that can be optimally
accommodated. Then a lower bound to c∗ is given by

(a) b–1 when v = odd, Hb exists;
(b) 2(b–1) when v ≡ 2 (mod 4), Hb exists;
(c) 4(b–1) when v ≡ 0 (mod 4), Hb exists;
(d) 3v when b ≡ 0 (mod 4), Hv exists;
(e) v when b ≡ 2 (mod 4), Hv exists.

Proof Hadamard matrix Hb is given to exist and we write it as

Hb = (h1, h2, . . . ,hb−1, 1) . (2.2.2)

The choice of optimum W-matrices is indicated below one by one. The verification
of (2.2.1) is immediate and we leave it to the reader. The Kronecker product of
two matrices is formally defined in Chap.5 (Definition5.1.1) and it is used in the
constructions below.

(a)
W( j) v×b = 1v ⊗ h′

j , 1 ≤ j ≤ b − 1; (2.2.3)

(b)
W( j) v×b = (1, 1)′ ⊗ 1 v

2
⊗ h′

j , 1 ≤ j ≤ b − 1;
W(b−1+ j) v×b = (1, − 1)′ ⊗ 1 v

2
⊗ h′

j , 1 ≤ j ≤ b − 1.

}

(2.2.4)

(c)

W( j) v×b = (1, 1, 1, 1)′ ⊗ 1 v
4

⊗ h′
j , 1 ≤ j ≤ b − 1;

W(b−1+ j) v×b = (1, − 1, 1, − 1)′ ⊗ 1 v
4

⊗ h′
j , 1 ≤ j ≤ b − 1;

W(2(b−1)+ j) v×b = (1, − 1, − 1, 1)′ ⊗ 1 v
4

⊗ h′
j , 1 ≤ j ≤ b − 1;

W(3(b−1)+ j) v×b = (1, 1, − 1, − 1)′ ⊗ 1 v
4

⊗ h′
j , 1 ≤ j ≤ b − 1.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(2.2.5)

(d) Let us represent a Hadamard matrix Hv of order v as

Hv = (h∗
1, h∗

2, . . . ,h∗
v

)
. (2.2.6)

http://dx.doi.org/10.1007/978-81-322-2461-7_5
http://dx.doi.org/10.1007/978-81-322-2461-7_5
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W( j) v×b = (1, − 1, 1, − 1) ⊗ 1′
b
4

⊗ h∗
j , 1 ≤ j ≤ v;

W(v+ j) v×b = (1, − 1, − 1, 1) ⊗ 1′
b
4

⊗ h∗
j , 1 ≤ j ≤ v;

W(2v+ j) v×b = (1, 1, − 1, − 1) ⊗ 1′
b
4

⊗ h∗
j , 1 ≤ j ≤ v.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(2.2.7)

(e)
W( j) v×b = (1, − 1) ⊗ 1′

b
2

⊗ h∗
j , 1 ≤ j ≤ v. (2.2.8)

�

Remark 2.2.1 In case (c), we can assume existence of Hv for all practical purposes
as v ≡ 0 (mod 4). So in this case, an optimal design for maximum possible v(b − 1)
optimum W-matrices can easily be constructed as

W((b−1)(i−1)+ j) = h∗
i ⊗ h′

j , i = 1, 2, . . . , v, j = 1, 2, . . . , b − 1. (2.2.9)

This was obtained in (Rao et al. 2003) where it was observed that OCDs in CRD
and RBD have one to one correspondences with mixed orthogonal array (MOA)
(definition given in Chap.3). This fact will be discussed in Sect. 3.3 of Chap.3 in
some further details.

2.3 Covariate Designs Under Non-regular Cases

Now we examine the situations where at least any one of the conditions (2.1.7),
(2.1.11) and b = n

v
= integer is violated. In that case, it is not possible to estimate

simultaneouslyANOVAparameters andγ-parameters orthogonally and/ormost effi-
ciently. Thus we consider D-optimality criterion to give an efficient allocation of
treatments and covariates in Set-up (2.1.1). Dey and Mukerjee (2006) and Dutta
et al. (2014) have considered this situation and found D-optimal design. Here we
discuss their contributions in this direction in details.

The vector of parameters θ, where

θ = (μ1, μ2, . . . ,μv, γ1, . . . , γc)
′ (2.3.1)

is assumed to be estimable.
The information matrix for θ is given by σ−2I(θ), where

I(θ) =
(

N T
T′ Z′Z

)
, (2.3.2)

N = Diag(n1, n2, . . . , nv), (2.3.3)

T = (T′
1,T′

2, . . . ,T′
v)

′, Ti = 1′
ni

Zi , (2.3.4)

http://dx.doi.org/10.1007/978-81-322-2461-7_3
http://dx.doi.org/10.1007/978-81-322-2461-7_3
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Zn×c = (Z′
1,Z′

2, . . . ,Z′
v)

′ (2.3.5)

and

Zni ×c
i =

⎛

⎜
⎜⎜⎜⎜
⎝

z(1)i1 z(2)i1 . . . z(c)i1

z(1)i2 z(2)i2 . . . z(c)i2
...

...
. . .

...

z(1)ini
z(2)ini

. . . z(c)ini

⎞

⎟
⎟⎟⎟⎟
⎠
. (2.3.6)

For D-optimality, we have tomaximize the determinant of I(θ), denoted as det(I(θ)),
with respect to the design variables {z(t)i j } satisfying z(t)i j ∈ [−1, 1], 1 ≤ j ≤ ni , 1 ≤
i ≤ v and ni ’s satisfying (2.1.2).

From (2.3.2) it is easy to see that

det(I(θ)) =
(

v∏

i=1

ni

)

det(Z′Z − T′N−1T)

=
(

v∏

i=1

ni

)

det(Z′Z −
∑

i

n−1
i T′

i Ti )

= det(N)det(C),

(2.3.7)

where

C = Z′Z −
∑

i

n−1
i T′

i Ti . (2.3.8)

Note that C is the information matrix for the regression coefficients γ1, γ2, . . . , γc.
The maximization of det(I(θ)) is done in two stages. In the first stage, the maxi-
mization is done for varying z-values for fixed ni ’s. This leads to an upper bound for
det(I(θ)) obtained through completely symmetric C-matrices. At the second stage,
maximization is done for varying ni ’s subject to

∑

i

ni = n, and this leads to a

sufficiently small classN of contending n = (n1, n2, . . . , nv)’s wherein the overall
upper bound to det(I(θ)) belongs.

2.3.1 First Stage of Maximization

Maximisation of I(θ) with respect to z(t)i j ∈ [–1, 1] is based on the following lemma.

Lemma 2.3.1 A necessary condition for maximization of det(C) of (2.3.8) with
respect to z(t)i j ∈ [−1, 1], for fixed ni ’s is that z(t)i j = ±1 ∀i, j and t.
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Proof From (2.3.8), C can be expressed as

C = Z′MZ = Z∗′Z∗ (2.3.9)

where

Z∗ = MZ, M = diag(M1,M2, . . . ,Mv), Mi = (Ini − n−1
i 1ni 1

′
ni
). (2.3.10)

It is known that (cf. Galil and Kiefer 1980; Wojtas 1964), det(Z∗′Z∗) is maximum
at the extreme entries of Z∗. Again, as z(t)∗i j ’s are linear in z(t)i j ’s, the determinant

is maximum at the extreme values of z(t)i j ’s for all i, j and t . Hence the lemma
follows. �

Theorem 2.3.1 For fixed {ni }’s satisfying (2.1.2),

det (I(θ)) ≤
(

v∏

i=1

ni

)

{a + (c − 1)b}(a − b)c−1 (2.3.11)

where
a = n − δ, b = |ξ − δ| (2.3.12)

δ =
v∑

i=1

n−1
i δi , δi = 1(0) if ni = odd(even) (2.3.13)

ξ = ξ(n, δ) =
⎧
⎨

⎩

δ� if both of n, δ� are odd or even

δ� + 1 if n = odd, δ� = even or n=even, δ� = odd
(2.3.14)

δ� = greatest integer less than equal to δ.

Proof Because of Lemma2.3.1, we restrict z(t)i j to the class χ = {z(t)i j : z(t)i j = ±1}.
From the Eq. (2.3.8), we note that, ct,t ′ , the (t, t ′)th element of the C-matrix is given
by

ct,t ′ =
∑

i

{∑

j

z(t)i j z(t
′)

i j −

⎛

⎝
∑

j

z(t)i j

⎞

⎠

⎛

⎝
∑

j

z(t
′)

i j

⎞

⎠

ni

}
, 1 ≤ t, t ′ ≤ c. (2.3.15)

It follows from Wojtas (1964) that det(C) is maximum when C is completely sym-
metric with all the diagonal elements equal to a and all off-diagonal elements equal
to b where a and b are given by max

1≤t≤c
ctt and min

1≤t �=t ′≤c
|ctt ′ | respectively. Again as
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z(t)i j = ±1 ∀i, j and t, for fixed ni ’s, it can be deduced that

max
1≤t≤c

ctt = n − δ = a, min
1≤t �=t ′≤c

|ctt ′ | = |ξ − δ| = b (2.3.16)

where δ and ξ are given in (2.3.13) and (2.3.14) respectively. Therefore the theorem
follows. �

2.3.2 Second Stage of Maximization

In view of Theorem2.3.1, we now consider the problem of maximizing

g(n) = g(n1, n2, . . . , nv) =
(

v∏

i=1

ni

)

{a + (c − 1)b}(a − b)c−1 (2.3.17)

with respect to ni ’s subject to
v∑

i=1

ni = n, where a and b are given by (2.3.12)–

(2.3.14), so as to find the overall upper bound of det(I(θ)). The following lemma
helps to reduce the class N of n’s where n = (n1, n2, . . . , nv), satisfying (2.1.2),
to a subclass in which maximum of g(n) lies.

Lemma 2.3.2 Let n∗ = (n∗
1, n∗

2, . . . , n∗
v

)
be a maximizer of g(n) of (2.3.17) subject

to the condition (2.1.2). Then n∗ cannot have

(i) two unequal odd elements;
(ii) two even elements that differ by more than 2;
(iii) an even and an odd element that differ by more than 1. �

Proof (i) Without loss of generality it is assumed that n∗
1 and n∗

2 be odd and n∗
1 ≤

n∗
2 − 2. Define ñ = (̃n1, ñ2, . . . , ñv), where ñ1 = n∗

1 + 1, ñ2 = n∗
2 − 1 and

ñi = n∗
i ∀i �= 1, 2. Note that ñi ’s satisfy condition (2.1.2). Then by Eq. (2.3.17),

g(̃n)
g(n∗) =

(
v∏

i=1

ñi

)

/

(
v∏

i=1

n∗
i

)( {̃a+(c−1)̃b}(̃a−b̃)c−1

{a∗+(c−1)b∗}(a∗−b∗)c−1

)

= (n∗
1+1)(n∗

2−1)
n∗
1n∗

2

{̃a+(c−1)̃b}(̃a−b̃)c−1

{a∗+(c−1)b∗}(a∗−b∗)c−1 ,

(2.3.18)

where,

ã = n −
v∑

i=1

ñ−1
i δ̃i = n −

v∑

i=1

n∗−1
i δ∗

i + 1

n∗
1

+ 1

n∗
2

= a∗ + 1

n∗
1

+ 1

n∗
2

(2.3.19)
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Again,

b̃ =
∣
∣∣∣ξ̃−

v∑

i=1

ñ−1
i δ̃i

∣
∣∣∣ ≤
∣
∣∣∣ξ

∗−
v∑

i=1

n∗−1
i δ∗

i +
(

1

n∗
1
+ 1

n∗
2

)∣∣∣∣ ≤ b∗+
(

1

n∗
1
+ 1

n∗
2

)
. (2.3.20)

We consider the two cases b̃ ≤ b∗ and b̃ > b∗ separately.
(a) Let b̃ ≤ b∗. Then, as by (2.3.19), ã > a∗, it follows that g(̃n) > g(n∗), which is
impossible.
(b) Let b̃ > b∗ and let b̃ assume the highest possible value given in (2.3.20). Then
from (2.3.18)–(2.3.20), it is seen that

g(̃n)
g(n∗)

>
(n∗

1 + 1)(n∗
2 − 1)

n∗
1n∗

2
> 1 (2.3.21)

which is again a contradiction. As the inequality (2.3.21) is true for the highest value
of b̃, it will be true for all values of b̃ in [b∗, b∗ + 1

n∗
1

+ 1
n∗
2
] as ã > a∗.

(ii) If possible, let n∗ have two even elements, say n∗
1 < n∗

2 which differ by more
than 2. Then as in (i) above, we reach at a contradiction by increasing n∗

1 by two and
decreasing n∗

2 by two.
(iii) If possible, let n∗ have an even element n∗

1 and an odd element n∗
2 which differ

by more than 1.

Case A: Let n∗
1 > n∗

2. Satisfying (2.1.2), define ñ = (̃n1, ñ2, . . . , ñv), where ñ1 =
n∗
1 − 2, ñ2 = n∗

2 + 2 and ñi = n∗
i ∀i �= 1, 2. Then by Eq. (2.3.17), we have

g(̃n)
g(n∗)

= (n∗
1 − 2)(n∗

2 + 2){̃a + (c − 1)̃b}(̃a − b̃)c−1

(n∗
1n∗

2){a∗ + (c − 1)b∗}(a∗ − b∗)c−1 (2.3.22)

where,

ã = n −
∑

i

ñ−1
i δ̃i =

(
n −
∑

i

n∗−1
i δ∗

i

)
+
(

1

n∗
2

− 1

n∗
2 + 2

)
= a∗+

(
1

n∗
2

− 1

n∗
2 + 2

)

(2.3.23)

b̃ = |ξ̃ − δ̃| ≤ |(ξ∗ − δ∗) +
(

1

n∗
2

− 1

n∗
2 − 2

)
| ≤ b∗ +

(
1

n∗
2

− 1

n∗
2 − 2

)
. (2.3.24)

We consider two cases when b̃ ≤ b∗ and b̃ > b∗. For b̃ ≤ b∗, it follows, from (2.3.22)
that g(̃n) > g(n∗) as ã > a∗. Again, for b̃ > b∗, we assume its highest value viz.
b∗ + ( 1

n∗
2

− 1
n∗
2−2 ) from (2.3.24) and use it in (2.3.22). It is seen that g(̃n) > g(n∗),

which obviously holds for all other values of b̃ > b∗ as ã > a∗.
So we reach at a contradiction that n∗ is a maximizer of g(n).



2.3 Covariate Designs Under Non-regular Cases 23

Case B: Let n∗
1 < n∗

2 (i.e. n∗
1 ≤ n∗

2 − 3), then we have the following two cases:

(a) n∗
2 is not the only odd element of n∗.

(b) n∗
2 is the only odd element of n∗.

For (a), let n∗ have another odd element n∗
3. Then by part (i) of this lemma, n∗

2=n∗
3.

Define ñ = (̃n1, ñ2, . . . , ñv), where ñ1 = n∗
1 + 2, ñ2 = ñ3 = n∗

2 − 1 and ñi =
n∗

i ∀ i �= 1, 2, 3. Then by (2.3.17)

g(̃n)
g(n∗)

= (n∗
1 + 2)(n∗

2 − 1)2

(n∗
1n∗

2n∗
3)

{̃a + (c − 1)̃b}(̃a − b̃)c−1

{a∗ + (c − 1)b∗}(a∗ − b∗)c−1 . (2.3.25)

where,

ã = n −
∑

i

ñ−1
i δ̃i =

(
n −
∑

i

n∗−1
i δi

)
+ 2

n∗
2

= a∗ + 2

n∗
2

(2.3.26)

b̃ = |ξ̃ − δ̃| ≤ |(ξ∗ − δ∗) + 2

n∗
2
| ≤ b∗ + 2

n∗
2
. (2.3.27)

If b̃ ≤ b∗, then from (2.3.25) and (2.3.26) g(̃n) > g(n∗) which is a contradiction.

If b̃ > b∗, the above contradiction also holds by the same reasons as given in
Case A.

For (b), let us define ñ = (̃n1, ñ2, . . . , ñv) satisfying (1.2) where ñ1 = n∗
1 + 2,

ñ2 = n∗
2 − 2 and ñi = n∗

i ∀ i �= 1, 2. Proceeding as before, it can be proved that

ã = a∗+
(

1

n∗
2

− 1

n∗
2 − 2

)
, b̃ =

(
1 − 1

n∗
2 − 2

)
. (2.3.28)

Using (2.3.28) in (2.3.17), it is seen that

g(̃n)
g(n∗)

= (n∗
1 + 2)(n∗

2 − 2)

n∗
1n∗

2

(
n + c − 1 − c

n∗
2−2

)

(
n + c − 1 − c

n∗
2

) > 1 as (n∗
2 − n∗

1) ≥ 3.

This is again a contradiction. Therefore the lemma follows. �

From Lemma2.3.2, we get the following theorem whose proof is immediate.

Theorem 2.3.2 Let o be an odd integer, where o =  n
v
� or  n

v
� + 1 according as

 n
v
� is odd or even and n∗ = (n∗

1, n∗
2, . . . , n∗

v

)
be a maximizer of g(n) of (2.3.17)

subject to
∑

i

ni = n. Then n∗
i ∈ {o − 1, o, o + 1}.
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Lemma 2.3.3 If f , f − and f + be the frequencies of o, o−1 and o+1 respectively,
then the following relations

f + f − + f + = v; o f + (o − 1) f − + (o + 1) f + = n, (2.3.29)

minimize considerably the search for optimum n, for which g(n) is a maximum.

LetN ∗ (⊂ N ) denote the class of n’s satisfying Theorem2.3.2 and Lemma2.3.2.

Remark 2.3.1 For given n, v and c, let g(n∗) be the maximum of g(n) of (2.3.17)
over n = (n1, n2, . . . , nv) subject to

∑

i

ni = n. Then by Theorem2.3.1

det(I(θ) ≤ g(n∗). (2.3.30)

If a choice of {z(t)i j } exists corresponding to n∗, such that equality in (2.3.30) holds,

then n∗ together with {z(t)i j } gives a D-optimal design.

Remark 2.3.2 If all ni ’s are even, so that all the Ti ’s of (2.3.4) may be made equal
to zero, then it is possible to estimate the regression parameters γ’s orthogonally to
the μi ’s. In that case, γ’s are estimated most efficiently with the minimum possible
variance when Z′Z = nIc.

Remark 2.3.3 If ni = n
v

= an even integer for all i , the situation reduces to regular
case and then Remark2.3.1 is in full agreement with Troya Lopes (1982a) and in
that case γ’s can be estimated most efficiently so that each estimator has minimum
possible variance when Z′Z = nIc.

Remark 2.3.4 If the v levels of the single factor set-up are assumed to be the v

level combinations of m factors F1, . . . ,Fm having s1, . . . , sm levels, respectively
(v =∏ si ), then the optimum design for the single factor set-up is also optimum for
the estimation of γ and all effects up to m-factor interactions which can be obtained
through an orthogonal transformation of γ and the mean vector μ corresponding to
the v level combinations.

2.3.3 Examples

Now we consider following examples to illustrate the above method.

Example 2.3.1 Let us consider the one-way set-up with n = 12, v = 4. It follows
that N ∗ = {(3, 3, 3, 3), (2, 3, 3, 4), (2, 2, 4, 4)} ≡ {(34), (2, 32, 4), (22, 42)}.
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(a) For c = 1, n∗ = (34) is the unique maximizer of g(n) and this n∗ together with
Z′
1 = (1, 1, − 1), Z′

2 = (1, 1, − 1), Z′
3 = (1, 1, − 1), Z′

4 = (1, 1, − 1) gives
a D-optimal design.
(b) For c = 2 both n∗ = (2, 32, 4) and (22, 42) are maximizers of g(n).

(i) n∗ = (22, 42) and

Z1 =
(

1 1
−1 −1

)
,Z2 =

(−1 1
1 −1

)
,Z3 =

⎛

⎜⎜
⎝

1 1
1 −1

−1 1
−1 −1

⎞

⎟⎟
⎠ ,Z4 =

⎛

⎜⎜
⎝

−1 1
−1 −1
1 1
1 −1

⎞

⎟⎟
⎠ ,

give a D-optimal design.
(ii) n∗ = (2, 32, 4) and

Z1 =
(

1 1
−1 −1

)
,Z2 =

⎛

⎝
−1 1
1 −1
1 1

⎞

⎠ ,Z3 =
⎛

⎝
1 −1

−1 1
−1 −1

⎞

⎠ ,Z4 =

⎛

⎜⎜
⎝

−1 1
−1 −1
1 1
1 −1

⎞

⎟⎟
⎠ , also

give a D-optimal design.
(c) For c = 3, 4, n∗ = (22, 42) is the unique maximizer of g(n).

Example 2.3.2 In one-way set-up with n = 9, v = 3, c = 3, D-optimal design
should be searched within the set {(2, 3, 4), (33)} of n. It is seen that for n = (33)
and

D1 : Z(1) =
⎛

⎝
−1 −1 −1
1 1 1
1 1 1

⎞

⎠ , Z(2) =
⎛

⎝
−1 + 1
1 −1 1
1 1 −1

⎞

⎠ and Z(3) =
⎛

⎝
−1 1 1
1 −1 1
1 1 −1

⎞

⎠ ,

C = diag(8, 8, 8) and g(n) = 33.83. But for n = (2, 3, 4), and

D2 : Z(1) =
(

1 1 1
−1 −1 −1

)
, Z(2) =

⎛

⎝
1 −1 1

−1 1 −1
1 1 1

⎞

⎠ and Z(3) =

⎛

⎜
⎜
⎝

1 1 −1
−1 −1 1
1 −1 −1

−1 1 1

⎞

⎟
⎟
⎠

It can be seen that C = 8I3 + 2
3J3, where J3 is a 3× 3 matrix containing elements

one only. Also g(2, 3, 4) which is equal to 15360, attains the upper bound in (2.3.14)
and g(2, 3, 4) > g(3, 3, 3) implying that D2 is D-optimal.

Again for n = 9, v = 3, c = 4, it is noted that n∗ = (2, 3, 4) together with

D3 : Z(1) =
(

1 1 1 1
−1 −1 −1 −1

)
, Z(2) =

⎛

⎝
1 −1 1 −1

−1 1 −1 1
1 1 1 1

⎞

⎠

and Z(3) =

⎛

⎜⎜
⎝

1 1 −1 −1
−1 −1 1 1
1 −1 −1 1

−1 1 1 −1

⎞

⎟⎟
⎠

maximizes g(n) of (2.3.17) and hence gives a D-optimal design.
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Remark 2.3.5 It is seen from the examples that the choice of optimum n depends on
the number of the covariates used apart from the number of cells v in the set-up.Again
it is noted from (2.3.7) that det(I(θ)) depends on two factors viz. det(N)(=

∏

i

ni ) and

det(C). Determinant of N increases as the homogeneity between the ni ’s increases
subject to

∑
i ni = n. On the other hand det(C) increases, apart from c, with the

largeness of a and the smallness of b, which again are achieved by inclusion of
maximum number of even ni ’s closed to  n

v
�. The number of odd ni ’s subject to∑

i

ni = n, in between the even ones with proper homogeneity, actually strikes a

balance between det(N) and det(C). It is also seen that, when c is small, det(N) is
the dominant factor, while, if c is large det(C) becomes the dominant factor.

Incidentally, the above analysis is based on the work in Dutta et al. (2014) and it
improves over what was achieved in Dey and Mukerjee (2006).
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Chapter 3
OCDs in Randomized Block Design Set-Up

3.1 Introduction

For two-way layout, the set-up can be written as

(
Y, μ1 + X1τ + X2β + Zγ, σ2In

)
(3.1.1)

where μ, as usual, stands for the general effect, τ v×1, βb×1 represent vectors of
treatment and block effects, respectively, and Xn×b

1 and Xn×v
2 are, respectively, the

corresponding incidence matrices. Y, Z as usual, represent an observation vector of
order n ×1 and the design matrix of order n × c corresponding to vector of covariate
effects γc×1 respectively. It should be noted that each column of Z-matrix has a
natural interpretation in terms of the correspondence of the covariate values with the
experimental units in the RBD set-up we start with.

We straightway compute the form of the information matrix for the whole set of
parameters η = (

μ, β′, τ ′, γ ′)′ underlying a design d with X1d , X2d and Zd as
the versions of X1, X2 and Z in (3.1.1):

Id(η) =

⎛
⎜⎜⎜⎝

n 1′X1d 1′X2d 1′Zd

X′
1dX1d X′

1dX2d X′
1dZd

X′
2dX2d X′

2dZd

Z′
dZd

⎞
⎟⎟⎟⎠ . (3.1.2)

For the covariates, as before, we assume, without loss of generality, the (location-
scale)-transformed version: |z(t)i j | ≤ 1; i, j, t .

It is evident from (3.1.2) that orthogonal estimation of treatment and block effect
contrasts on one hand and covariate effects on the other is possible when the condi-
tions

X′
1dZd = 0, X′

2dZd = 0 (3.1.3)

© Springer India 2015
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are satisfied. It is to be noted that under (3.1.3), 1′Zd = 0′ also holds. Further, as
before, most efficient estimation of γ-components is possible whenever, in addition
to (3.1.3), we can also ascertain

Z′
dZd = nIn . (3.1.4)

It is also true that, whenever (3.1.3) is ensured, presence of the covariates in (3.1.1)
does not pose any threat to the usual optimal design problem in a block design set-
up as the covariate parameters and the block design parameters are orthogonally
estimable.

As before for an RBD set-up, following Das et al. (2003), we recast each column
of the Zn×c = (±1) matrix by a W-matrix of order v × b. Corresponding to the
treatment × block classifications, conditions (3.1.3) and (3.1.4) reduce, in terms of
W-matrices, to C1 − C3 where

C1. Each W-matrix has all column-sums equal to zero;
C2. Each W-matrix has all row-sums equal to zero;
C3. The grand total of all the entries in the Hadamard product

of any two distinct W-matrices reduces to zero.

⎫⎪⎪⎬
⎪⎪⎭

(3.1.5)

Now we define optimum W-matrix for covariate design, in an RBD set-up.

Definition 3.1.1 With respect to model (3.1.1), the c W-matrices corresponding to
the c covariates are said to be optimum if they satisfy the conditions C1 − C3 of
(3.1.5).

We arrange the remaining sections of this chapter as follows. In Sect. 3.2, we
consider the constructional methods of optimum W-matrices given by Das et al.
(2003) and in Sects. 3.3 and 3.4, we discuss the relationships between OCDs and
MOAs and construction of optimum Zs given in Rao et al. (2003).

3.2 Construction of Optimum W-Matrices

Here we consider the following method for constructing optimum W-matrices given
in Das et al. (2003). They used mutually orthogonal latin squares (MOLS) for con-
struction of optimum Ws. The method is given in the following theorem.

Theorem 3.2.1 Suppose Hv and m MOLS of order v exist. Then m(v − 1) optimum
W-matrices can be constructed for an RBD with b = v blocks and v treatments.

Proof For the construction of the optimum W-matrices, we will proceed as follows:
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Step 1 We set the Hadamard Matrix Hv in the following form:

Hv = (
h1, h2, . . . , hv−1, 1

)
(3.2.1)

where h j denotes the j th column of Hv .
Step 2 We can construct the i th member Li of the set of m MOLS of order v by
using the symbols

ai1, ai2, . . . , aiv; 1 ≤ i ≤ m. (3.2.2)

Step 3 Take Li and replace the symbols ai1, ai2, . . . , aiv by the elements of h j

successively and we get a W-matrix. By varying i, j we get m(v − 1) W-matrices.
We can easily check from the properties of MOLS and Hadamard matrices that these
are optimum Ws. �
Remark 3.2.1 When b = v = 2p, p = integer, we have a complete set of MOLS of
order v. Then we can construct (b−1)(v−1) optimum W-matrices. In this situation,
it exhausts the error degrees of freedom in RBD model.

Example 3.2.1 We illustrate the above method of construction by citing an example.
Take b = v = 22 and replacing ai j by other suitable symbols, we write down the
MOLS of order 4 as follows:

L1 =

⎛
⎜⎜⎝

a b c d
b a d c
c d a b
d c b a

⎞
⎟⎟⎠ , L2 =

⎛
⎜⎜⎝

α δ β γ
β γ α δ
γ β δ α
δ α γ β

⎞
⎟⎟⎠ , L3 =

⎛
⎜⎜⎝

p s r q
q r s p
s p q r
r q p s

⎞
⎟⎟⎠ .

We write H4 as

H4 =

⎛
⎜⎜⎝

1 1 1 1
−1 −1 1 1
1 −1 −1 1

−1 1 −1 1

⎞
⎟⎟⎠ = (h1, h2, h3, 1) . (3.2.3)

Using h1, h2 and h3 in L1, we get the following three optimum W-matrices:

W(1) =

⎛
⎜⎜⎝

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1

−1 1 −1 1

⎞
⎟⎟⎠ , W(2) =

⎛
⎜⎜⎝

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

⎞
⎟⎟⎠ , W(3) =

⎛
⎜⎜⎝

1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1

⎞
⎟⎟⎠ .

Similarly, using h1, h2 and h3 in L2 and L3 respectively, we get six more optimum
W-matrices as

W(4) =

⎛
⎜⎜⎝

1 −1 1 −1
1 −1 1 −1

−1 1 −1 1
−1 1 −1 1

⎞
⎟⎟⎠ , W(5) =

⎛
⎜⎜⎝

1 −1 −1 1
−1 1 1 −1
1 −1 −1 1

−1 1 1 −1

⎞
⎟⎟⎠ , W(6) =

⎛
⎜⎜⎝

1 1 −1 −1
−1 −1 1 1
−1 −1 1 1
1 1 −1 −1

⎞
⎟⎟⎠ ,
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W(7) =

⎛
⎜⎜⎝

1 −1 1 −1
−1 1 −1 1
−1 1 −1 1
1 −1 1 −1

⎞
⎟⎟⎠ , W(8) =

⎛
⎜⎜⎝

1 −1 −1 1
1 −1 −1 1

−1 1 1 −1
−1 1 1 −1

⎞
⎟⎟⎠ , W(9) =

⎛
⎜⎜⎝

1 1 −1 −1
−1 −1 1 1
1 1 −1 −1

−1 −1 1 1

⎞
⎟⎟⎠ .

Remark 3.2.2 When b = pv, v = 0 (mod 4), p ≥1, Hv and m MOLS of order v
exist, then by writing the W-matrices of order v × b side by side p times, we can
get m(v − 1) optimum W-matrices. If in addition Hp exists, then we can construct
pm(v − 1) optimum W-matrices. Below in Theorem3.3.1 we provide non-trivial
generalization of these results using mixed orthogonal arrays.

3.3 Relationship Between OCDs and MOAs

Orthogonal arrays (OA) introduced by Rao (1947) were generalized by Rao (1973)
to Mixed orthogonal arrays (MOA) which have wide applications specially in the
construction of designs. There are various results on constructions ofOAs andMOAs.
We refer to the books of Hedayat et al. (1999) and Dey and Mukerjee (1999) for
details. Also a website of Sloane is available for ready reference and we also have
a catalogue of potential sources on OAs and MOAs (cf. http://neilsloane.com/oadir/
index.html). Definition of MOA (cf. Hedayat et al. (1999), p. 200) is given below:

Definition 3.3.1 An MOA(N , sk1
1 sk2

2 . . . skv
v , t) is an array of size k × N , where

k =
v∑

i=1

ki is the total number of factors, in which the first k1 rows have symbols

from {0, 1, . . . , s1 − 1}, the next k2 rows have symbols from {0, 1, . . . , s2 − 1}, and
so on, with the property that in any t × N sub-array every t-tuple occurs an equal
number of times as a column.

Rao et al. (2003) identifies the construction of OCDs to that of MOAs. In this
chapter, we will discuss the relationship between the OCDs in the set-ups of CRD,
RBD and MOAs. This was established in Rao et al. (2003).

We consider the following theorem given in Rao et al. (2003).

Theorem 3.3.1 A set of c optimum W-matrices of order v×b under the RBD set-up
co-exist with an MOA(vb, v × b × 2c, 2).

Proof For i = 1, 2, . . . , c, let W(i) matrix be written as

W(i) v×b =
(

w(i)
1 , w(i)

2 , . . . ,w(i)
b

)

where w(i)
j is the j th column of W(i). Now we consider an array A with 2 + c rows

and vb columns where the first two rows of A form the following 2 × vb sub-array

1 2 . . . v 1 2 . . . v . . . 1 2 . . . v

1 1 . . . 1 2 2 . . . 2 . . . b b . . . b
(3.3.1)

http://neilsloane.com/oadir/index.html
http://neilsloane.com/oadir/index.html
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corresponding to the vb level combinations of the treatment and block factors and

the (2+ i)th row of A is given by
(

w(i)′
1 , w(i)′

2 , . . . ,w(i)′
b

)
, i = 1, 2, . . . , c. Note that

first row and second row of A have v and b symbols respectively and the remaining
rows have two symbols +1 and −1. From the properties of optimum W-matrices it
can be easily proved that A is an MOA(vb, v × b × 2c, 2).

Conversely, given any MOA (vb, v × b × 2c, 2), we can take, without loss of
generality, the first two rows in the form (3.3.1).

WeconstructW(i)-matrix byusing the elements of (i+2)th rowofA,wherew(i)
m,m′ ,

the (m,m′)th element of W(i) = the element in the (i +2)th row of A corresponding
to the ordered pair (m,m′) in the first and second rows of A, m �= m′ = 1, 2, . . . , c.

�

Corollary 3.3.1 A set of c optimum W-matrices of order v×b under the CRD set-up
co-exist with an MOA(vb, v × 2c, 2).

Proof Given a set of c optimum W-matrices W(1), W(2), . . . , W(c) of order v × b
under the CRD set-up, observe that in this situation, the column sums, corresponding
to the blocks, of theW-matrices neednot be zero.Hence the arrayA in the above result
without the second row can be shown to be a mixed orthogonal array MOA(vb, v ×
2c, 2). �

Remark 3.3.1 Theorem3.3.1 and Corollary3.3.1 help us to construct OCDs for the
set-ups of CRDs and RBDs from the list of suitable orthogonal arrays.

3.4 Some Further Constructions of Optimum W-Matrices

In this subsection we exploit the properties of Hadamard matrices and conference
matrices to construct OCDs in CRD and RBD set-ups.

Theorem 3.4.1 If there exist Hb and Hv , then (b − 1)(v − 1) optimum W-matrices
can be constructed for an RBD with b blocks and v treatments.

Proof Write
Hv = (

h1, h2, . . . , hv−1, 1
)

(3.4.1)

and

Hb = (
h∗
1, h∗

2, . . . , h∗
b−1, 1

)
. (3.4.2)

Let us write

W((b−1)(i−1)+ j) = hi ⊗ h∗′
j , i = 1, 2, . . . , v − 1, j = 1, 2, . . . , b − 1. (3.4.3)



32 3 OCDs in Randomized Block Design Set-Up

We can easily check that these W-matrices satisfy conditions C1 − C3 of (3.1.5)
giving c = (b − 1)(v − 1) OCDs. These Ws exhaust the error degrees of freedom
of the RBD. �
Remark 3.4.1 We note that, by Theorems3.3.1 and 3.4.1 we can construct an MOA
(vb, v × b × 2(v−1)(b−1), 2) from these (v − 1)(b − 1) optimum W-matrices and
conversely for given this MOA(vb, v × b × 2(v−1)(b−1), 2), we can also construct
(b − 1)(v − 1) optimum W-matrices, Hv and Hb.

Corollary 3.4.1 If there exist Hb and Hv , then v(b − 1) optimum W-matrices can
be constructed for an CRD with v treatments, each being replicated b times.

Proof Thematrices defined in Eq. (3.4.3) can also be treated as optimumW-matrices
of CRD set-up considered in Corollary3.4.1. In this situation, we can construct an
additional number of (b − 1) optimum W-matrices for this CRD set-up given by

W((b−1)(v−1)+ j) = 1v ⊗ h∗′
j , j = 1, 2, . . . , b − 1. (3.4.4)

Thus in total,weget v(b−1)optimumW-matrices for thisCRDset-up.These exhaust
the error degrees of freedom of the CRD. As stated Corollary3.3.1 anMOA(vb, v×
2c, 2) can be constructed from the above W-matrices in usual way. �
Example 3.4.1 Let b = v = 4. Consider H4 of (3.2.3). From (3.4.3), we can con-
struct optimum W-matrices as follows:

W(1) = h1 ⊗ h′
1 =

⎛
⎜⎜⎝

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1

−1 1 −1 1

⎞
⎟⎟⎠ ; W(2) = h1 ⊗ h′

2 =

⎛
⎜⎜⎝

1 −1 −1 1
−1 1 1 −1
1 −1 −1 1

−1 1 1 −1

⎞
⎟⎟⎠ ;

W(3) = h1 ⊗ h′
3 =

⎛
⎜⎜⎝

1 1 −1 −1
−1 −1 1 1
1 1 −1 −1

−1 −1 1 1

⎞
⎟⎟⎠ ; W(4) = h2 ⊗ h′

1 =

⎛
⎜⎜⎝

1 −1 1 −1
−1 1 −1 1
−1 1 −1 1
1 −1 1 −1

⎞
⎟⎟⎠ ;

W(5) = h2 ⊗ h′
2 =

⎛
⎜⎜⎝

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

⎞
⎟⎟⎠ ; W(6) = h2 ⊗ h′

3 =

⎛
⎜⎜⎝

1 1 −1 −1
−1 −1 1 1
−1 −1 1 1
1 1 −1 −1

⎞
⎟⎟⎠ ;

W(7) = h3 ⊗ h′
1 =

⎛
⎜⎜⎝

1 −1 1 −1
1 −1 1 −1

−1 1 −1 1
−1 1 −1 1

⎞
⎟⎟⎠ ; W(8) = h3 ⊗ h′

2 =

⎛
⎜⎜⎝

1 −1 −1 1
1 −1 −1 1

−1 1 1 −1
−1 1 1 −1

⎞
⎟⎟⎠ ;
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W(9) = h3 ⊗ h′
3 =

⎛
⎜⎜⎝

1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1

⎞
⎟⎟⎠ .

Note that here h∗
j = h j for all j=1, 2, 3. Therefore, MOA(16, 4 × 4 × 29, 2) can be

constructed in the lines of Theorem3.4.1:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The above W-matrices are also optimum in CRD set-up with 4 treatments each
being replicated 4 times. However as mentioned in Corollary3.4.1 three additional
W-matrices can be constructed and these are given below:

W(10) = 13 ⊗ h′
1 =

⎛
⎜⎜⎝
1 −1 1 −1
1 −1 1 −1
1 −1 1 −1
1 −1 1 −1

⎞
⎟⎟⎠ ; W(11) = 13 ⊗ h′

2 =

⎛
⎜⎜⎝
1 −1 −1 1
1 −1 −1 1
1 −1 −1 1
1 −1 −1 1

⎞
⎟⎟⎠ ;

W(12) = 13 ⊗ h′
2 =

⎛
⎜⎜⎝
1 1 −1 −1
1 1 −1 −1
1 1 −1 −1
1 1 −1 −1

⎞
⎟⎟⎠ .

The corresponding MOA(16, 4 × 212, 2) for the CRD set-up is given below:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Theorem 3.4.2

(a) If H2b and H v
2

both exist, then v(b−1) optimum W-matrices can be constructed
for a CRD with v treatments and b replications.

(b) If H2b and H v
2

both exist, then (b − 1)(v − 1) − (b − 2) optimum W-matrices
can be constructed for an RBD with b blocks and v treatments.

Proof of (a) Write H2b as a 2b × 2b matrix with the last column as (1, 1, . . . , 1)′
and the last but one column as (1′

b,−1′
b)

′. Further write H v
2
as a matrix with the last

column as 1′
v
2
. Let H∗∗

2b be a matrix of order 2b × 2(b − 1) obtained from H2b by

deleting the last two columns. It follows that in each column of H∗∗
2b both the top

b elements and the bottom b elements have equal number of 1’s and -1’s. Now we
construct a matrix A1 of order v(b − 1) × vb as:

A1 = H∗∗′
2b ⊗ H v

2
.

We convert A1 into an MOA(vb, v × 2v(b−1), 2) by appending the row:
(1, 2, . . . , b, 1, 2, . . . , b, . . . , 1, 2, . . . , b) of length vb. This establishes the result
via Corollary3.3.1. �
Proof of (b) Let H∗

v
2
be a matrix of order v

2 × ( v2 −1) obtained from H v
2
ignoring the

last column consisting of all 1s. Now we construct A2 of order (v − 2)(b − 1)× vb
as follows:

A2 = H∗∗′
2b ⊗ H∗′

v
2
.

From A2, we can construct an MOA(vb, v × b × 2(v−2)(b−1)+1, 2) by adjoining
three more rows; the first two rows are used for coordinatisation and third row is
1′

v
2
⊗ (1, − 1)⊗ (−1′

b
2
, 1′

b
2
). The proof follows from the method of construction of

Theorem3.3.1. �
Remark 3.4.2 Theorem3.4.2(b) strengthens and generalises Theorem4.3.4, p. 54 in
Dey and Mukerjee (1999).

Example 3.4.2 Let b = 6, v = 4. We take H12 in accordance with the proof of
Theorem3.4.2:

H12 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 1 −1 −1 −1 1 1 1 −1 1 1
−1 1 1 −1 1 −1 −1 −1 1 1 1 1
1 −1 1 1 −1 1 −1 −1 −1 1 1 1
1 1 −1 1 1 −1 1 −1 −1 −1 1 1

−1 −1 −1 1 1 1 −1 1 1 −1 1 1
−1 1 −1 −1 −1 1 1 1 −1 1 1 1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1
1 1 −1 1 −1 −1 −1 1 1 1 −1 1
1 1 1 −1 1 1 −1 1 −1 −1 −1 1

−1 1 1 1 −1 1 1 −1 1 −1 −1 1
−1 −1 1 1 1 −1 1 1 −1 1 −1 1
1 −1 −1 −1 1 1 1 −1 1 1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (
H∗∗

12,h11, 1
)
,
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and

H2 =
(

1 1
−1 1

)
= (H∗

2, 1).

Therefore using A1 = H∗∗′
12 ⊗ H2, we can construct MOA(24, 4 × 220, 2) as

described in Corollary3.3.1. Using A2 = H∗∗′
12 ⊗H∗′

2 and the row (1, 1)⊗(1, −1)⊗
(−1,−1,−1, 1, 1, 1) = (−1,−1,−1, 1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1, 1,
1, 1, 1, 1, 1,−1,−1,−1), we can construct MOA(24, 4 × 4 × 211, 2) as described
in Theorem3.3.1. Now it is routine task to construct optimum W-matrices for CRD
and RBD from these MOAs.

For further construction of MOAs we need the concept of Conference Matrices
which is introduced below (cf. Hedayat et al. (1999), p. 152).

Definition 3.4.1 A symmetric matrix S of order n with elements +1, −1 and 0 is
said to be a conference matrix (CM) if it can expressed in the form

S =
(

0 1′
n−1

1n−1 A

)
(3.4.5)

satisfying SS′ = (n − 1)In .
In such a representation of S the matrix A in (3.4.5) is called the core matrix of

the CM. It can be easily checked that this A satisfies the conditions

AA′ = (n − 1)In−1 − 1n−11′
n−1, A = A′ and A1n−1 = 0.

Note that CMs are known to exist for the following values of n (cf. Wallis et al.
(1972)):

(1) n = ps + 1 where p is a prime and s is a positive integer such that ps ≡ 1
(mod 4).

(2) n = (h − 1)2 + 1 where h is the order of a Skew-Hadamard matrix.
(3) n = (h − 1)μ + 1 where h is the order of a CM and μ > 0 is an odd integer.

Set n − 1 = p and let A be as in (3.4.5) and let A∗ be the matrix of order p2 × p2

obtained by taking the Kronecker product of A with itself. Define a matrix X as

X = A∗ +

⎛
⎜⎜⎜⎝

Jp − Ip −Ip . . . −Ip

−Ip Jp − Ip . . . −Ip
...

...
...

...

−Ip −Ip . . . Jp − Ip

⎞
⎟⎟⎟⎠

where each block is of order p × p and Jp = 1p1′
p.

Theorem 3.4.3 X is a core matrix of a CM of order p2.
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The proof is given in the Appendix. In the following theorem we give a method
of constructing OCDs from CMs.

Theorem 3.4.4

(a) If b ≡ 2 (mod 4), (b − 1) is a prime or a prime power and Hv exists, then c =
v(b − 1) optimum W-matrices can be constructed for a CRD with v treatments
and b replications.

(b) If b ≡ 2 (mod 4), (b − 1) is a prime or a prime power and Hv exists, then
c = (b − 1)(v − 1) − (b − 2) optimum W-matrices can be constructed for an
RBD with b blocks and v treatments.

Proof We will construct OCDs through the following steps.

Step I: We start with S, a CM of order (p + 1) × (p + 1)where A = (ai j ) be the
core matrix of S of order p × p.
Step II: Define a matrix B of order (p + 1)× p such that the (i, j)th element bi j is
given by

bii = −β for i = 1, 2, . . . , p,
bi j = ai jα for i, j = 1, 2, . . . , p, and i �= j
b(p+1), j = β for j = 1, 2, . . . , p,

where α and β are elements satisfying 1.α = α; − 1.α = −α; 1.β = β; − 1.β =
−β; α.α = (−α).(−α) = β.β = (−β).(−β) = c a constant; α.β = β.α =
−(α).β = (−β).α = α.(−β) = β.(−α) = 0, α.(−α) = (−α).α = β.(−β) =
(−β).β = −c.

Define another a matrix C of order (p + 1)× p such that the (i, j)th element ci j

is given by
cii = α for i = 1, 2, . . . , p,
ci j = ai jβ for i, j = 1, 2, . . . , p, and i �= j
c(p+1), j = −α for j = 1, 2, . . . , p.

Now we construct a matrix D of order (p + 1) × 2p as

D = (B : C) .

It is observed that the columns of the matrix D of order (p + 1)× 2p are orthogonal
(cf. Theorem3.4.5 in the Appendix).

Example 3.4.3 For n = 6, let the core matrix A be

⎛
⎜⎜⎜⎜⎝

0 1 −1 −1 1
1 0 1 −1 −1

−1 1 0 1 −1
−1 −1 1 0 1
1 −1 −1 1 0

⎞
⎟⎟⎟⎟⎠
.
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From the definitions of B, C and D, we have

D = (B : C) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−β α −α −α α α β −β −β β
α −β α −α −α β α β −β −β

−α α −β α −α −β β α β −β
−α −α α −β α −β −β β α β

α −α −α α −β β −β −β β α
β β β β β −α −α −α −α −α

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3.4.6)

Step III: By assumption, Hv exists and we write it as

Hv = (h1, h2, . . . ,hv−1, hv = 1v) . (3.4.7)

Take one pair, say (hi , h j ) and replace the two symbols α,β by h′
i , h′

j respectively
in the matrix D of order b × 2(b − 1). Then each column of D will give a matrix
of order b × v and so we can get 2(b − 1) matrices using all the columns of D
for the fixed pair (hi , h j ). Now using i th column of D and j th pair (h2 j−1, h2 j ) of
columns ofHv , we get amatrix of order b×vwhich is denoted byU((i−1)v/2+ j). Now
varying i over 1, 2, . . . , 2(b − 1) and j over 1, 2, . . . , v

2 , we get v(b − 1) matrices
U(1), U(2), . . . , U(v(b−1)). We can easily check that W(1)=U(1) ′, W(2)=U(2) ′, . . . ,
W(v(b−1))=U(v(b−1)) ′ are v(b − 1) optimum W-matrices for CRD set-up.

However in RBD set-up, we cannot use the last column hv as the sum of elements
of the last column is not zero. So leaving it out we have only v−2

2 distinct pairs of
columns (h1,h2, . . . ,hv−2) and an extra column, hv−1. By using these distinct pairs
of columns we can construct (b − 1)(v− 2) W-matrices from D in the same manner
as described in above. Here we can also construct onemore optimumW-matrix using
the residual column hv−1 as

W((b−1)(v−2)+1) ′ =
(

1 b
2−1 b
2

)
⊗ h′

v−1.

Therefore for RBD set-up, we can construct (b−1)(v−2)+1 optimum W-matrices
in all. �

Now we illustrate the above method by considering the following example.

Example 3.4.4 Let b = 6 and v = 4. Then H4 is

H4 =

⎛
⎜⎜⎝

1 1 1 1
−1 −1 1 1
1 −1 −1 1

−1 1 −1 1

⎞
⎟⎟⎠ = (h1, h2, h3, h4 = 14) .

Then take α = h′
1 and β = h′

2 and using the first column of D of (3.4.6), we get the
following W-matrix:

http://dx.doi.org/10.1007/978-81-322-2461-7_3
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⎛
⎜⎜⎜⎜⎜⎜⎝

−1 1 1 −1
1 −1 1 −1

−1 1 −1 1
−1 1 −1 1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Similarly, using the above methods we get other W-matrices for CRD and RBD.

Appendix

Proof of Theorem3.4.3 It is observed thatX is a symmetric matrix. Now (i, i)th block
matrix of XX′ is

(XX′)i i =
p∑

k=1, k �=i

(aikA − Ip)(aki A − Ip) + (aii A + Jp − Ip)(aii A + Jp − Ip)

=
p∑

k=1 k �=i

(a2
ikA2 − 2aikA + I) + (Jp − Ip)(Jp − Ip) since ai j = a ji and aii = 0 ∀i

= (pIp − Jp)

p∑
k=1

a2
ik − 2A

p∑
k=1

aik + (p − 1)Ip + pJp − 2Jp + Ip

= (pIp − Jp)(p − 1) − 2A.0 + (p − 1)Ip + (p − 2)Jp + Ip

= (p(p − 1) + p)Ip + (p − 2)Jp − (p − 1)Jp

= p2Ip − Jp

(i, j)th block matrix of XX′ is

(XX′)i j =
p∑

k=1, k �=i, j

(aikA − Ip)(ak j A − Ip) + (aii A + Jp − Ip)(a ji A − Ip)

+ (ai j A − Ip)(a j j A + Jp − Ip)

=
p∑

k=1, k �=i, j

(aika jkA2 − aikA − a jkA + Ip + (Jp − Ip)(a ji A − Ip)

+(ai j A − Ip)(Jp − Ip)

= −(pIp − Jp) + ai j A + ai j A + (p − 2)Ip − Jp − ai j A − Ip − Jp − ai j A + Ip

= −Jp

ThusXX′ = p2Ip2 − Jp2 . �

Theorem 3.4.5 The columns of the matrix D are orthogonal.

Proof The cross product of i th and j th elements of B,
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p∑
k=1

bki bk j =
p∑

k=1, k �=i, j

bki bk j + bii bi j + b ji b j j + b(p+1),i b(p+1), j

=
p∑

k=1, k �=i, j

(akiα)(akjα) + (−β)(ai jα) + (a jiα)(−β) + β.β

=
p∑

k=1, k �=i, j

aki ak j (α.α) + ai j ((−β).α) + a ji (α.(−β)) + c

= c
p∑

k=1

aki ak j + 0 + 0 + c

= −c + c = 0.

Similarly, it can be shown that the columns of C are also orthogonal. Now
we want to show that any column of B is orthogonal to any column of C. For
this, we consider the cross product of i th column of B and j th column of C:

p∑
k=1

bki ck j =
p∑

k=1, k �=i, j

bki ck j + bii ci j + b ji c j j + b(p+1),i c(p+1), j

=
p∑

k=1, k �=i, j

(akiα)(ak jβ) + (−β)(ai j β) + (a ji α)(α) + β.(−α)

=
p∑

k=1, k �=i, j

aki bk j (α.β) + ai j ((−β).β) + a ji (α.(−α)) + 0 = 0 − c + c + 0 = 0

�
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Chapter 4
OCDs in Balanced Incomplete Block Design
Set-Up

4.1 Introduction

A balanced incomplete block design (BIBD) as an arrangement of v treatments into
b blocks each of k (< v) treatments, satisfying the conditions:

1. Every symbol occurs at most once in each block.
2. Every treatment occurs in exactly r blocks.
3. Every pair of symbols occurs together in exactly λ blocks.

Let us consider a BIBD (b, v, r , k, lambda) satisfying (3.1.3) and (3.1.4) where
X2d has a similar structure as in RBD. But now the structure of X1d is somewhat
different. In the W-matrix corresponding to the incidence matrix of the said design
the non-zero elements (±1) appear only in the r positions in every row and the k
positions in every column. So the situation is more complex than before in the sense
that in the case of an RBD, wewere to place±1’s in all the vb cells of theW-matrices
while here, we have to place ±1 in the non-zero cells of the incidence matrix Nv×b.
Thus, the construction of optimum W-matrix or equivalently the Z-matrix depends
on the method of construction of the corresponding BIBD.

The elements of optimum W-matrices for a BIBD set-up should satisfy following
conditions

v∑

i=1

w
(s)
i j = 0 ∀ j;

b∑

j=1

w
(s)
i j = 0 ∀i

and
v∑

i=1

b∑

j=1

w
(s)
i j w

(s′)
i j = 0 ∀s �= s.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(4.1.1)
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Condition (4.1.1) can be presented schematically as

W(s) =

Tr. bl. no. → Row
↓ 1 2 . . . b Totals
1 0
2 0
... (±ni j )

...

v 0
Column
Total 0 0 . . . 0

1 ≤ s ≤ c (4.1.2)

and

W(s)v×b ∗ W(t)v×b =

Tr. bl. no. →
↓ 1 2 . . . b
1
2
... (±ni j )

v

0 =
b∑

i=1

v∑

j=1

w
(s)
i j w

(s′)
i j

(4.1.3)

In the set-up of a binary design, we use the notations ni j s to indicate the incidence
pattern of the treatments across different blocks. Naturally, ni j = 1 or 0 according
as the (i, j) combination is present or absent. When ni j = 1, we need to ascertain
the value of wi j (+1 or −1). It is observed that the condition (4.1.1) does not require
any other property of BIBD other than that it is proper, binary and equireplicate.
So it follows that the above principle of constructing optimum W-matrices equally
applies for any binary proper equireplicate block design (BPEBD) not necessarily
for the BIBD set-up only. So in this context we shall consider also BPEBD set-up
whenever necessary.

In a BIBD set-up,W-matrices of order v×b can be constructed from the incidence
matrix of the BIBD by placing ±1’s in the non-zero r positions in every row and
in the non-zero k positions in every column such that W-matrices satisfy condition
(4.1.1). For the BIBD set-up, Das et al. (2003) initiated the construction of OCDs
in the following experimental designs:

(i) some series of SBIBDs constructed through Bose’s difference technique (cf.
Bose 1939),

(ii) some BIBDs with repeated blocks.

Later Dutta (2004) dealt with a number of classical series of BIBDs having inci-
dence matrices derived essentially through Bose’s difference technique which was
not covered in Das et al. (2003). With this, he covered a large class of existing
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BIBDs. Again Dutta et al. (2007) considered the problem of OCDs for a series of
complements of SBIBDs obtained through projective geometry.

It may be mentioned that in the series considered in Sect. 4.2, the layouts have
cyclical pattern which simplified the choice ofW-matrices. But the series of SBIBDs
considered in Sect. 4.3 does not possess the above cyclical property.

When n �= 0 (mod 4), it is impossible to find designs attaining minimum variance
for estimated covariate parameters. Dutta et al. (2010) considered this problem and
instead of using the criterion of attaining the lower bound (viz. σ2

n ) to the variance
of each of the estimated covariate parameters γ, they found optimum designs with
respect to covariate effects using D-optimality criterion retaining orthogonality with
respect to treatment and block effect contrasts, where n ≡ 2 (mod 4). We consider
their work in Sect. 4.4.

4.2 BIBDs Through Bose’s Difference Technique

In this section, we consider some series of BIBDs constructed by applying Bose’s
difference technique (Bose 1939) and present construction procedures given by Das
et al. (2003) and Dutta (2004) for W-matrices satisfying (4.1.2) and (4.1.3).

Theorem 4.2.1 Suppose a SBIBD (v = b, r = k, λ) is obtained by applying Bose’s
difference technique and a Hadamard matrix Hk of order k exists. Then (k − 1)
optimum W-matrices can be constructed.

Proof Hk exists by assumption and it can be represented as

Hk = (h1, h2, . . . , hk−1, 1) . (4.2.1)

Without loss of generality take the initial block of SBIBD as the first block and
transform it into the form of the first column vector of the incidence matrix. Then we
replace the non-zero positions of this column vector successively by the elements of
ht . This gives the first column vector of W(t). Now we develop this column into the
full form of W(t) cyclically. If the above method is carried out for each of the vectors
h1, h2, . . . , hk−1, then we get (k − 1) W-matrices. We can easily check that these
W-matrices satisfy condition (4.1.1) and are optimum. �

Example 4.2.1 Consider SBIBD (7, 4, 2) obtained by cyclical development of the
initial block (0, 3, 5, 6) mod 7. Note that the first column of the incidence matrix
is given by

(
1 0 0 1 0 1 1

)′ and others are obtained by cyclic permutations of this
column. As block size is 4 we consider the 3 columns of H4 viz. h′

1 = (
1 −1 1 −1

)
,

h′
2 = (

1 1 −1 −1
)
and h′

3 = (
1 −1 −1 1

)
excluding

(
1 1 1 1

)′. Let us consider
h1 and construct W(1) by replacing the non-zero elements of the first column of N
by the elements of h1 in that order and permute cyclically. W(1) is given by
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W(1) =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1 −1 1 0 −1 0 0
0 1 −1 1 0 −1 0
0 0 1 −1 1 0 −1

−1 0 0 1 −1 1 0
0 −1 0 0 1 −1 1
1 0 −1 0 0 1 −1

−1 1 0 −1 0 0 1

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

7×7

and the corresponding column of Z is (1,−1, 1,−1,−1, 1,−1, 1, 1,−1, 1,−1, 1,
−1, 1,−1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1).

Similarly, construct W(2) and W(3) by using h2 and h3 respectively and the
corresponding columns of Z accordingly. It can be seen that all the conditions in
(4.1.1) are satisfied by Ws. Z gives the OCD in the design format. Thus an OCD for
three covariates is obtained.

If the blocks of such BIBD is repeated m times each where Hm exists then we
can increase the number of covariates in the new BIBD with repeated blocks and the
result is represented in following corollary.

Corollary 4.2.1 Suppose an SBIBD (b, r,λ) is available as per the description in
Theorem4.2.1. Suppose further that Hm exists for some m. Then for the BIBD (v, B =
mb, R = mr, k, � = mλ) obtained by repeating the blocks of the SBIBD, we can
construct c∗ = m(k − 1) optimum W-matrices.

Proof Let us write Hm as

Hm = (h∗
1, h∗

2, . . . , h∗
m) = (h∗

r t ).

Denote the W(t)-matrices of Theorem4.2.1 by W(t)
v×b and the required W-matrices

by Gv×B-matrices as follows:

G(t,r)
v×B =

(
h∗
1t W

(t)
v×b, h∗

2t W
(t)
v×b, . . . , h∗

mt W
(t)
v×b

)
= h∗′

r ⊗ W(t)
v×b. (4.2.2)

It is now a routine task to verify the claim of the corollary. �

Example 4.2.2 Consider BIBD (7, 28, 16, 4, 8) obtained by repeating 4 times each
of 7 blocks of SBIBD (7, 4, 2) of Example4.2.1. H4 can be written as

H4 =

⎛

⎜⎜
⎝

1 1 1 1
−1 −1 1 1
1 −1 −1 1

−1 1 −1 1

⎞

⎟⎟
⎠ = (

h∗
1, h∗

2, h∗
3, h∗

4

) = (h∗
r t ).

Take W(1) of Example4.2.1 and the corresponding G-matrices are as follows:
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G(1,1)
v×B =

(
W(1)

7×7,−W(1)
7×7, W(1)

7×7,−W(1)
7×7

)
;

G(1,2)
v×B =

(
W(1)

7×7,−W(1)
7×7,−W(1)

7×7, W(1)
7×7

)
;

G(1,3)
v×B =

(
W(1)

7×7, W(1)
7×7,−W(1)

7×7,−W(1)
7×7

)
;

G(1,4)
v×B =

(
W(1)

7×7, W(1)
7×7, W(1)

7×7, W(1)
7×7

)
.

Similarly, we construct other G-matrices using other W-matrices of Example4.2.1
and the columns of H4.

Remark 4.2.1 If a BIBD (v, mv, mk, k, λ) is formed by developingm initial blocks
each of size k, then m(k −1) optimum W-matrices can be constructed whenever Hm

and Hk exist. The result follows by noting that the above principle may be applied
when the blocks are not repeated but are obtained by developing m initial blocks.

Remark 4.2.2 Let for a BIBD (v, b, r, k,λ) t optimum W-matrices be available.
Then for the BIBD (V = v, B = mb, R = mr, K = k,� = mλ) obtained by
repeating each block m times,mt optimumW-matrices can be constructed whenever
Hm exists. A similar but a more general result is discussed in Chap. 6.

When a BIBD is not necessarily cyclic, we can always accommodate c∗ = k − 1
covariates optimally if each block of the design is repeated twice and Hk exists.

Theorem 4.2.2 Suppose a BIBD (v, b, r, k,λ) exists which is not necessarily cyclic.
Then if Hk exists, we can construct c∗ = k − 1 optimum W-matrices for the BIBD
(V = v, B = 2b, R = 2r, K = k,� = 2λ).

Proof Let Nv×b denote the incidence matrix of the former BIBD. Let Hk =
(h1, h2, . . . , hk−1, 1). In order to construct W(t)

V ×B-matrix, we fill up the non-empty
positions in Nv×b, the incidence matrix, by placing the elements of ht successively
in each column and in the order the positions appear. We denote the resultant matrix
as Wv×b

t . Then
W(t)

V ×B = (Wv×b
t ,−Wv×b

t ).

It is now easy to assert the claim. �

Nowwe consider some other series of BIBDswhich are not necessarily symmetric
but are constructed byBose’s difference technique andgive the constructionalmethod
of OCDs as given in Dutta (2004). At first we consider the complementary designs
of the Steiner’s triple system (cf. Bose 1939) obtained by difference technique

BIBD(v = 3(2t + 1), b = (3t + 1)(2t + 1), r = 3t + 1, k = 3,λ = 1). (4.2.3)

Theorem 4.2.3 Let t be an even positive integer such that 2t +1 be a prime number
or a prime power and further let H2t and H6t exist. Then we can construct (2t − 1)
optimum W-matrices for the following complementary design of (4.2.3)

http://dx.doi.org/10.1007/978-81-322-2461-7_6
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BIBD(v′ = 3(2t + 1), b′ = (3t + 1)(2t + 1), r ′ = 2t (3t + 1), k′ = 6t,

λ′ = (3t + 1)(2t − 1) + 1). (4.2.4)

Proof Let 0, 1,…,2t be the elements of GF (2t + 1). To each element a of GF
(2t + 1), we associate three symbols 1, 2, 3 to have three treatments a1, a2, a3. It is
well known that the initial blocks for the series (4.2.3) are given by (cf. Bose 1939,
p. 373)

S′
1 = {(11, (2t)1, 02), (21, (2t − 1)1, 02), . . . , (t1, (t + 1)1, 02)};

S′
2 = {(12, (2t)2, 03), (22, (2t − 1)2, 03), . . . , (t2, (t + 1)2, 03)};

S′
3 = {(13, (2t)3, 01), (23, (2t − 1)3, 01), . . . , (t3, (t + 1)3, 01)};

S′
4 = (01, 02, 03).

We divide the initial blocks of the design (4.2.4) which is the complementary
design of (4.2.3) into the following four sets:

S1 = {(01, 21, 31, . . . , (2t − 1)1, 12, 22, . . . , (2t)2, 03, 13, . . . , (2t)3), (01, 11, 31, . . . , (2t − 2)1, (2t)1, 12, 22,

. . . , (2t)2, 03, 13, . . . , (2t)3), . . . , (01, 11, . . . , (t − 1)1, (t + 2)1, . . . , (2t)1, 12, 22, . . . , (2t)2, 03, 13, . . . , (2t)3)} ;
S2 = {(02, 22, 32, . . . , (2t − 1)2, 13, 23, . . . , (2t)3, 01, 11, . . . , (2t)1), (02, 12, 32, . . . , (2t − 2)2, (2t)2, 13, 23,

. . . , (2t)3, 01, 11, . . . , (2t)1), . . . , (02, 12, . . . , (t − 1)2, (t + 2)2, . . . , (2t)2, 13, 23, . . . , (2t)3, 01, 11, . . . , (2t)1)} ;
S3 = {(03, 23, 33, . . . , (2t − 1)3, 11, 21, . . . , (2t)1, 02, 12, . . . , (2t)2), (03, 13, 33, . . . , (2t − 2)3, (2t)3, 11, 21,

. . . , (2t)1, 02, 12, . . . , (2t)2), . . . , (03, 13, . . . , (t − 1)3, (t + 2)3, . . . , (2t)3, 12, 22, . . . , (2t)1, 02, 12, . . . , (2t)2)} ;
S4 = {(11, 21, . . . , (2t)1, 12, 22, . . . , (2t)2, 13, 23, . . . , (2t)3)} .

Let us assume the existence of Hk′ , where k′ = 6t and write it as

Hk′ = (h1, h2, . . . , hk′−1, 1). (4.2.5)

Consider the first t
2 initial blocks of the set Si (i = 1, 2, 3) and display them in the

form of column vectors of the incidence matrix. Let us replace the non-zero elements
of the j th column by the elements of hs , where hs is any one of the first (2t − 1)
columns of Hk′ . We develop this initial block by cyclically permuting the elements to
formamatrixU j

is of order v
′×(2t+1), j = 1, 2, . . . , t

2 .Using the sameprocedurewe
transform ( t

2+ j)th block of Si by -hs and develop in the samemanner.We denote this

matrix of order v′ × (2t +1) by U
t
2+ j
is (i = 1, 2, 3, j = 1, 2, . . . , t

2 ). In this way we

can constructU j
is andU

t
2+ j
is ( j = 1, 2, . . . , t

2 ) for different s (s = 1, 2, . . . , (2t −1)).
Again, for an even integer t , we assume that H2t exists and write it as

H2t = (h∗
1, h∗

2, . . . , h∗
2t−1, 1). (4.2.6)

Consider the single initial block S4. Note that the 2t elements except zero of S4
correspond to each of the symbols 1, 2 and 3. Transform the elements of this block
into the formof a columnvector of the incidencematrix. Thenwe replace the non-zero
elements of each class of this column by the elements of h∗

s (s = 1, 2, . . . , (2t − 1))

and develop this column into full form of U(4)
s as
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U(4)′
s = (V(4)′

1s , V(4)′
2s , V(4)′

3s ), (4.2.7)

where, for i = 1, 2, 3, V(4)
is (i = 1, 2, 3) is a matrix of order (2t + 1) × (2t + 1)

obtained by cyclical permutation of the elements of the column vector after replacing
the non-zero elements of i th class of the initial block of S4 by h∗

s .
Schematically, the form of the W(s)-matrix, s = 1, 2, . . . , 2t − 1, can be written

as

W(s)′ =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

U(1)′ (2t+1)×v′
1s

...

U
( t
2 )′ (2t+1)×v′

1s

⎫
⎪⎪⎬

⎪⎪⎭
Using hs

U
( t
2+1)′ (2t+1)×v′

1s
...

U(t)′ (2t+1)×v′
1s

⎫
⎪⎪⎬

⎪⎪⎭
Using − hs

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

= S1

U(1)′ (2t+1)×v′
2s

...

U
( t
2 )′ (2t+1)×v′

2s

⎫
⎪⎪⎬

⎪⎪⎭
Using hs

U
( t
2+1)′ (2t+1)×v′

2s
...

U(t)′ (2t+1)×v′
2s

⎫
⎪⎪⎬

⎪⎪⎭
Using − hs

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

= S2

U(1)′ (2t+1)×v′
3s

...

U
( t
2 )′ (2t+1)×v′

3s

⎫
⎪⎪⎬

⎪⎪⎭
Using hs

U
( t
2+1)′ (2t+1)×v′

3s
...

U(t)′ (2t+1)×v′
3s

⎫
⎪⎪⎬

⎪⎪⎭
Using − hs

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

= S3

U(4)′
s =

⎡

⎣
V(4)′
1s V(4)′

2s V(4)′
3s↑ ↑ ↑

Using h∗
s Using h∗

s Using h∗
s

⎤

⎦

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

So varying s = 1, 2, . . . , 2t − 1, we can construct (2t − 1) optimum W-matrices.
This establishes the claim. �

We shall illustrate the construction through the following example.

Example 4.2.3 For t = 2, BIBD (15, 35, 28, 12, 22) is the complementary design
of BIBD (15, 35, 7, 3, 1). Thus we have three optimum W-matrices, each of order
15 × 35. We exhibit the construction in detail.
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Note that the four sets are:

S1 = {(01, 21, 31, 12, 22, 32, 42, 03, 13, 23, 33, 43), (01, 11, 41, 12, 22, 32, 42, 03, 13, 23, 33, 43)};
S2 = {(02, 22, 32, 13, 23, 33, 43, 01, 11, 21, 31, 41), (02, 12, 42, 13, 23, 33, 43, 01, 11, 21, 31, 41)};
S3 = {(03, 23, 33, 11, 21, 31, 41, 02, 12, 22, 32, 42), (03, 13, 43, 11, 21, 31, 41, 02, 12, 22, 32, 42)};
S4 = {(11, 21, 31, 41, 12, 22, 32, 42, 13, 23, 33, 43)};
H12 is available in standard literature (cf. Hedayat et al. 1999, p. 151). Without loss
of generality, we take

h1 = (−1, 1, 1,−1, 1, 1, 1,−1,−1,−1, 1,−1)′;

h2 = (−1,−1, 1, 1,−1, 1, 1, 1,−1,−1,−1, 1)′;

h3 = (−1, 1,−1, 1, 1,−1, 1, 1, 1,−1,−1,−1)′.

H2t = H4 can be written as

H4 =

⎛

⎜
⎜
⎝

1 1 1 1
1 −1 −1 1

−1 1 −1 1
−1 −1 1 1

⎞

⎟
⎟
⎠ = (h∗

1, h∗
2, h∗

3, 1).

Then proceeding along the steps described in Theorem4.2.3, we obtainU(1)
11 ,U

(2)
11 ,

U(1)
21 , U(2)

21 , U(1)
31 and U(1)

31 each of order 15 × 5, where

U(1)′
11 =

01 11 21 31 41 02 12 22 32 42 03 13 23 33 43⎛

⎜⎜⎜
⎜
⎝

−1 0 1 1 0 0 −1 1 1 1 −1 −1 −1 1 −1
0 −1 0 1 1 1 0 −1 1 1 −1 −1 −1 −1 1
1 0 −1 0 1 1 1 0 −1 1 1 −1 −1 −1 −1
1 1 0 −1 0 1 1 1 0 −1 −1 1 −1 −1 −1
0 1 1 0 −1 −1 1 1 1 0 −1 −1 1 −1 −1

⎞

⎟⎟⎟
⎟
⎠

,

U(2)′
11 =

01 11 21 31 41 02 12 22 32 42 03 13 23 33 43⎛

⎜⎜⎜
⎜
⎝

1 −1 0 0 −1 0 1 −1 −1 −1 1 1 1 −1 1
−1 1 −1 0 0 −1 0 1 −1 −1 1 1 1 1 −1
0 −1 1 −1 0 −1 −1 0 1 −1 −1 1 1 1 1
0 0 −1 1 −1 −1 −1 −1 0 1 1 −1 1 1 1

−1 0 0 −1 1 1 −1 −1 −1 0 1 1 −1 1 1

⎞

⎟⎟⎟
⎟
⎠

,

U(1)′
21 =

⎛

⎜⎜⎜⎜
⎝

−1 1 1 −1 1 1 0 1 −1 0 0 −1 −1 1 −1
1 −1 1 1 −1 0 1 0 1 −1 −1 0 −1 −1 1

−1 1 −1 1 1 −1 0 1 0 1 1 −1 0 −1 −1
1 −1 1 −1 1 1 −1 0 1 0 −1 1 −1 0 −1
1 1 −1 1 −1 0 1 −1 0 1 −1 −1 1 −1 0

⎞

⎟⎟⎟⎟
⎠

,
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U(2)′
21 =

⎛

⎜⎜⎜⎜
⎝

1 −1 −1 1 −1 −1 −1 0 0 1 0 1 1 −1 1
−1 1 −1 −1 1 1 −1 −1 0 0 1 0 1 1 −1
1 −1 1 −1 −1 0 1 −1 −1 0 −1 1 0 1 1

−1 1 −1 1 −1 0 0 1 −1 −1 1 −1 1 0 1
−1 −1 1 −1 1 −1 0 0 1 −1 1 1 −1 1 0

⎞

⎟⎟⎟⎟
⎠

,

U(1)′
31 =

⎛

⎜⎜⎜⎜
⎝

0 −1 1 1 −1 1 1 1 −1 −1 −1 0 1 −1 0
−1 0 −1 1 1 −1 1 1 1 −1 0 −1 0 1 −1
1 −1 0 −1 1 −1 −1 1 1 1 −1 0 −1 0 1
1 1 −1 0 −1 1 −1 −1 1 1 1 −1 0 −1 0

−1 1 1 −1 0 1 1 −1 −1 1 0 1 −1 0 −1

⎞

⎟⎟⎟⎟
⎠

and

U(2)′
31 =

01 11 21 31 41 02 12 22 32 42 03 13 23 33 43⎛

⎜⎜⎜⎜
⎝

0 1 −1 −1 1 −1 −1 −1 1 1 1 −1 0 0 1
1 0 1 −1 −1 1 −1 −1 −1 1 1 1 −1 0 0

−1 1 0 1 −1 1 1 −1 −1 −1 0 1 1 −1 0
−1 −1 1 0 1 −1 1 1 −1 −1 0 0 1 1 −1
1 −1 −1 1 0 −1 −1 1 1 −1 −1 0 0 1 1

⎞

⎟⎟⎟⎟
⎠

Using h∗
1, the matrices V(4)

11 , V(4)
21 and V(4)

31 each of order 5 × 5 are obtained as

V(4)′
11 =

01 11 21 31 41⎛

⎜⎜⎜⎜
⎝

0 1 1 −1 −1
−1 0 1 1 −1
−1 −1 0 1 1
1 −1 −1 0 1
1 1 −1 −1 0

⎞

⎟⎟⎟⎟
⎠

, V(4)′
21 =

02 12 22 32 42⎛

⎜⎜⎜⎜
⎝

0 1 1 −1 −1
−1 0 1 1 −1
−1 −1 0 1 1
1 −1 −1 0 1
1 1 −1 −1 0

⎞

⎟⎟⎟⎟
⎠

,

V(4)′
31 =

03 13 23 33 43⎛

⎜⎜⎜
⎜
⎝

0 1 1 −1 −1
−1 0 1 1 −1
−1 −1 0 1 1
1 −1 −1 0 1
1 1 −1 −1 0

⎞

⎟⎟⎟
⎟
⎠

.

Thus W(1) is obtained by suitably arranging the U and V-matrices as

W(1)′ 35×15 = (U(1)′
11 , U(2)′

11 , U(1)′
21 , U(2)′

21 , U(1)′
31 , U(2)′

31 , U(4)′
1 ),

where

U(4)′
1 = (V(4)′

11 , V(4)′
21 , V(4)′

31 ).
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Similarly,W(2) andW(3) can be constructed by using (h2, h∗
2) and (h3, h∗

3) respec-
tively.

Dutta (2004) also constructedOCDs for the following series of BIBD. For detailed
discussion, readers are referred to the original paper.

v′ = 5(4t + 1), b′ = (5t + 1)(4t + 1), r ′ = 4t (5t + 1), k′ = 20t, λ′ = (5t + 1)(4t − 1) + 1,
(4.2.8)

and

v′ = 4(3t + 1), b′ = (4t + 1)(3t + 1), r ′ = 3t (4t + 1), k′ = 12t, λ′ = (4t + 1)(3t − 1) + 1.
(4.2.9)

4.3 BIBDs Through Projective Geometry

As mentioned earlier in the series considered in Sect. 2.2, the layouts had cyclical
patterns which simplified the choice of optimumW-matrices. Nowwe consider com-
plementary designs of the SBIBDs obtained through projective geometry. However,
by suitable partition of the blocks into different sets, and by judicious choice of
the covariate values, it is possible to construct OCDs for the series with parameters
v′ = b′ = s N + s N−1 + · · · + s + 1, r ′ = k′ = s N , λ′ = s N − s N−1.

4.3.1 Partitioning of the Blocks

With the help of the Galois field GF (s), we can construct the finite projective geome-
try of N dimensions, to be written as PG (N , s), where, s = pn , p is a prime number
and n is any positive integer. Any ordered set of (N + 1) elements (x0, x1, . . . , xN )
where the xi ’s belong to GF (s) and are not simultaneously zero, is called a point of
the projective geometry PG (N , s). (x0, x1, . . . , xN ) = x′ and ρx′ represent the same
point, where ρ( �= 0) ∈GF (s). It is known that the number of points in PG (N , s)

is equal to φ(N , m, s), where φ(N , m, s) = (s N+1−1)(s N −1)...(s N−m+1−1)
(sm+1−1)(sm−1)...(s−1)

. For more

detailed discussions in this respect one is referred to Bose (1939).
By making a correspondence between the points and the m-flats of PG (N , s)

with the varieties and the blocks respectively, we get a BIBD with parameters (cf.
Bose 1939, p. 362): v = φ(N , 0, s), b = φ(N , m, s), r = φ(N − 1, m − 1, s),
k = φ(m, 0, s), λ = φ(N − 2, m − 2, s). For m = N − 1, the following SBIBD is
obtained:

v = b = s N + s N−1 + · · · + s + 1, r = k = s N−1 + s N−2 + · · · + s + 1
λ = s N−1 + s N−2 + · · · + s + 1

(4.3.1)

http://dx.doi.org/10.1007/978-81-322-2461-7_2


4.3 BIBDs Through Projective Geometry 51

We consider the complementary design given in (4.3.1) which is also an SBIBDwith
the following parameters:

v′ = b′ = s N + s N−1 + · · · + s + 1, r ′ = k′ = s N , λ = s N − s N−1. (4.3.2)

It was mentioned earlier that the choice of the levels of the covariates in a BIBD set-
up depends on the method of construction of the BIBD and the maximum number of
covariates satisfying condition (3.1.5) varies from series to series. The blocks of the
SBIBD with parameters given in (4.3.2) are partitioned into (s N−1 + s N−3 + · · · +
s2 + 1)(=t , say) disjoint sets; each set contains (s + 1) blocks such that the portion
of the incidence matrix of the complementary design corresponding to these (s + 1)
sets conforms to that of the incidence matrix of an RBD with suitable parameters.
This fact has been used in the choice of the Z-matrix.

We note that the number of (N −1)-flats passing through a particular (N −2)-flat
is given by φ(1, 0, s) = s +1. Such (s +1), (N −1)-flats passing through a particular
(N − 2)-flat can be obtained as follows:

Consider an (N − 2)-flat, given by

a′x = 0, b′x = 0 (4.3.3)

where, a and b are two column vectors with elements from GF (s) such that rank
(A′) = rank(a, b) = 2.

The (s +1), (N −1)-flats containing the (N −2)-flat given in (4.3.3) are given by
(λ1a′ + λ2b′)x = 0; (λ1, λ2) �= (0, 0) and (λ1, λ2)≡ ρ(λ1, λ2) where, ρ is a non-
zero element of GF (s). If N is odd, then the full set of φ(N , N − 1, s), (N -1)-flats
can be partitioned into s N+1−1

(s−1)(s+1) = φ(N ,N−1,s)
s+1 = (s N−1+s N−3+· · ·+s2+1) sets

each containing (s +1), (N −1)-flats having a common (N −2)-flat, are disjoint. As
the blocks correspond to (N −1)-flats, so through one to one correspondence, we can
partition the blocks into (s N−1 + s N−3 + · · · + s2 + 1) disjoint sets each containing
(s + 1) blocks. It will be clear from the following two examples from Dutta et al.
(2007) covering both the situations where s is a prime number and a prime power.

Example 4.3.1 N = 3, m = 2, s = 2. There are 15 blocks which can be partitioned
into five sets each of size 3:

x0 = 0 x1 = 0 x2 = 0
S1 : x1 + x2 = 0 S2 : x0 + x3 = 0 S3 : x1 + x3 = 0

x0 + x1 + x2 = 0 x0 + x1 + x3 = 0 x1 + x2 + x3 = 0

x3 = 0 x0 + x1 = 0
S4 : x0 + x2 = 0 S5 : x2 + x3 = 0

x0 + x2 + x3 = 0 x0 + x1 + x2 + x3 = 0.

http://dx.doi.org/10.1007/978-81-322-2461-7_3
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It is to be noted that only two equations in each set Si are independent and these can
conveniently be represented as Ax = 0. It is clear that the choice of A-matrix in S1
is given by:

(
1 0 0 0
0 1 1 0

)
.

The choice of A-matrices for other S’s are obvious.

Example 4.3.2 N = 3, m = 2 and s = 22. There are 85 blocks which can be
partitioned into 17 sets each of size 5. Let the elements of GF (22) be α0 = 0,
α1 = 1, α2 = x, α3 = 1 + x , where x is a primitive root of GF (22). Then the 17
sets are:

x0 = 0 x2 = 0 x0 + x2 = 0
x1 = 0 x3 = 0 x1 + x3 = 0

S1 : x0 + x1 = 0 S2 : x2 + x3 = 0 S3 : x0 + x1 + x2 + x3 = 0
x0 + α2x1 = 0 x2 + α2x3 = 0 x0 + α2x1 + x2 + α2x3 = 0
x0 + α3x1 = 0 x2 + α3x3 = 0 x0 + α3x1 + x2 + α3x3 = 0

x0 + α2x2 = 0 x0 + α3x2 = 0
x1 + α3x3 = 0 x1 + α2x3 = 0

S4 : x0 + x1 + α2x2 + α3x3 = 0 S5 : x0 + x1 + α3x2 + α2x3 = 0
x0 + α2x1 + α2x2 + x3 = 0 x0 + α2x1 + α3x2 + α3x3 = 0
x0 + α3x1 + α2x2 + α2x3 = 0 x0 + α3x1 + α3x2 + x3 = 0

x0 + x3 = 0 x0 + α2x3 = 0
x1 + x2 + x3 = 0 x1 + α3x2 + α2x3 = 0

S6 : x0 + x1 + x2 = 0 S7 : x0 + x1 + α3x2 = 0
x0 + α2x1 + α2x2 + α3x3 = 0 x0 + α2x1 + x2 + x3 = 0
x0 + α3x1 + α3x2 + α2x3 = 0 x0 + α3x1 + α2x2 + α3x3 = 0

x0 + α3x3 = 0 x0 + x2 + x3 = 0
x1 + α2x2 + α3x3 = 0 x1 + x2 = 0

S8 : x0 + x1 + α2x2 = 0 S9 : x0 + x1 + x3 = 0
x0 + α2x1 + α3x2 + α2x3 = 0 x0 + α2x1 + α3x2 + x3 = 0
x0 + α3x1 + x2 + x3 = 0 x0 + α3x1 + α2x2 + x3 = 0

x0 + α2x2 + α3x3 = 0 x0 + α3x2 + α2x3 = 0
x1 + α2x2 = 0 x1 + α3x2 = 0

S10 : x0 + x1 + α3x3 = 0 S11 : x0 + x1 + α2x3 = 0
x0 + α2x1 + x2 + α3x3 = 0 x0 + α2x1 + α2x2 + α2x3 = 0
x0 + α3x1 + α3x2 + α3x3 = 0 x0 + α3x1 + x2 + α2x3 = 0
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x0 + α3x2 + α3x3 = 0 x0 + α2x2 + α2x3 = 0
x1 + α2x2 + x3 = 0 x1 + α3x2 + x3 = 0

S12 : x0 + x1 + x2 + α2x3 = 0 S13 : x0 + x1 + x2 + α3x3 = 0
x0 + α2x1 + x3 = 0 x0 + α2x1 + α3x2 = 0
x0 + α3x1 + α2x2 = 0 x0 + α3x1 + x3 = 0

x0 + x2 + α3x3 = 0 x0 + x2 + α2x3 = 0
x1 + α2x2 + α2x3 = 0 x1 + α3x2 + α3x3 = 0

S14 : x0 + x1 + α3x2 + x3 = 0 S15 : x0 + x1 + α2x2 + x3 = 0
x0 + α2x1 + α2x2 = 0 x0 + α2x1 + α3x3 = 0
x0 + α3x1 + α2x3 = 0 x0 + α3x1 + α3x2 = 0

x0 + α2x2 + x3 = 0 x0 + α3x2 + x3 = 0
x1 + x2 + α2x3 = 0 x1 + x2 + α3x3 = 0

S16 : x0 + x1 + α3x2 + α3x3 = 0 S17 : x0 + x1 + α2x2 + α2x3 = 0
x0 + α2x1 + α2x3 = 0 x0 + α2x1 + x2 = 0
x0 + α3x1 + x2 = 0 x0 + α3x1 + α3x3 = 0

where, (x0, x1, x2, x3) is a point of PG (3, 22).
As an illustration, the choice of A-matrix corresponding to S1 and S4 are given,

respectively, by
(
1 0 0 0
0 1 0 0

)
,

(
1 0 α2 0
0 1 0 α3

)
.

Similarly, A-matrices for other Si ’s can be written.

4.3.2 Optimum Covariate Designs

From (4.3.1), we see that any block of the design contains k = (s N−1+λ) treatments
and any two blocks have exactly λ treatments in common. As any two blocks of the
set Si (i = 1, 2, . . . , t; t = (s N−1 + s N−3 + · · · + s2 + 1)), have the same
λ treatments in common, without loss of any generality, we can write the portion
Ni , the incidence matrix corresponding to the blocks in Si (i = 1, 2, . . . , t) in the
following form (with some rearrangement of blocks if necessary):

N′
i =

⎛

⎜
⎜⎜
⎝

1′
s N−1 0′ . . . 0′ 1′

λ
0′ 1′

s N−1 . . . 0′ 1′
λ

...
...

...
...

...

0′ 0′ . . . 1′
s N−1 1′

λ

⎞

⎟
⎟⎟
⎠

(s+1)×v

. (4.3.4)

The part of the incidence matrix of the design with parameters in (4.3.2) correspond-
ing to the part Ni of the design with parameters in (4.3.1) is obtained by replacing



54 4 OCDs in Balanced Incomplete Block Design Set-Up

ones by zeros and zeros by ones in (4.3.4) and is given by:

Nc ′
i =

⎛

⎜⎜
⎜
⎝

0′ 1′
s N−1 . . . 1′

s N−1 0′
λ

1′
s N−1 1′

s N−1 . . . 1′
s N−1 0′

λ
...

...
...

...
...

1′
s N−1 1′

s N−1 . . . 0′ 0′
λ

⎞

⎟⎟
⎟
⎠

(s+1)×v

. (4.3.5)

Using the structure (4.3.5) above, we develop a method for choosing covariates
optimally for the series of complementary designs of (4.3.1). The precise statement
follows.

Theorem 4.3.1 If s = 2p where p is any positive integer, then (s N−1 − 1)(s − 1)+
(s − 1) optimum W-matrices can be constructed for the design with parameters in
(4.3.2), where N is an odd integer.

Proof Since s is a power of 2, Hs N−1 and Hs exist and we write them as

Hs N−1 = (
h1, . . . , hs N−1−1, 1

)

Hs = (
h∗
1, . . . , h∗

s−1, 1
)
.

Again, the matrix (4.3.5) can be written as

Nc ′
i = (

A1i , A2i , . . . , A j i , . . . , A(s+1)i , 0i
)

where A j i is the matrix in the j th column block of Nc ′
i , j = 1, 2, . . . , (s + 1).

We replace kth non-null row of A j i by the kth row of h∗
mh′

n ; k = 1, 2, . . . , s,
m = 1, 2, . . . , (s − 1) and n = 1, 2, . . . , (s N−1 − 1) and denote the resultant
matrix by A∗

j i . We repeat the procedure for each A j i with the same m, n. This
leads to a matrix W∗

i;m,n with elements ±1 satisfying the properties C1 and C2 of
condition (3.1.5). Using the same hm and h∗

n we get differentW∗
i;m,n’s corresponding

to different Nc′
i ’s. Therefore, for fixed m, n

W∗
m,n = (

W∗′
1;m,n, W∗′

2;m,n, . . . , W∗′
t;m,n

)

satisfies the properties C1 and C2 of condition (3.1.5). For different choices of hm

and h∗
n we get (s N−1 − 1)(s − 1), W∗

m,n-matrices which satisfy condition (3.1.5).
The transformation required to be applied on (4.3.5) to get back the corresponding
portion of the incidence matrix of the design may also be applied on the elements of
the above W∗-matrices to get the original W-matrices.

Again, note that the number of unit vectors in the rows of Nc ′
i is s which is the

same as that of the elements of h∗
m . We replace the qth vector 1′

s N−1 in the first
column block matrix of Nc ′

i by +1′
s N−1 or by –1′

s N−1 according as the qth element of
h∗

m is +1 or –1, respectively, to get A∗∗
1 . Now we permute +1′

s N−1 , –1′
s N−1 and 0′

s N−1

http://dx.doi.org/10.1007/978-81-322-2461-7_3
http://dx.doi.org/10.1007/978-81-322-2461-7_3
http://dx.doi.org/10.1007/978-81-322-2461-7_3


4.3 BIBDs Through Projective Geometry 55

in the rows of A∗∗
1 cyclically to get A∗∗

2 , A∗∗
3 , . . . , A∗∗

s+1 and hence can construct
a new W-matrix viz. W∗∗

m . By taking different h∗
m , we can construct (s − 1), W∗∗

m -
matrices. It is easy to show that theseW∗∗

m -matrices together with theW∗
m,n-matrices,

m = 1, 2, . . . , (s − 1), n = 1, 2, . . . , (s N−1 − 1) satisfy condition (3.1.5). Thus in
all, we get (s N−1 − 1)(s − 1) + (s − 1) optimum W-matrices. �

Example 4.3.3 We consider the SBIBD whose blocks are the 2-flats of PG (3,2), so
that the parameters of the SBIBD are v = b = 15, r = k = 7, λ = 3. Now for the
complementary design, the parameters are: v′ = b′ = 15, r ′ = k′ = 8, λ′ = 4.

According to Example4.3.1, the sets of blocks of the complementary design,
where the treatment corresponding to the point (x0, x1, x2, x3) is indexed by 23x0 +
22x1 + 2x2 + x3, are:

S1 = [(8, 9, 10, 11, 12, 13, 14, 15), (2, 3, 4, 5, 10, 11, 12, 13), (2, 3, 4, 5, 8, 9, 14, 15)]
S2 = [(4, 5, 6, 7, 12, 13, 14, 15), (1, 3, 5, 7, 8, 10, 12, 14), (1, 3, 4, 6, 8, 10, 13, 15)]
S3 = [(2, 3, 6, 7, 10, 11, 14, 15), (1, 3, 4, 6, 9, 11, 12, 14), (1, 2, 4, 7, 9, 10, 12, 15)]
S4 = [(1, 3, 5, 7, 9, 11, 13, 15), (2, 3, 6, 7, 8, 9, 12, 13), (1, 2, 5, 6, 8, 11, 12, 15)]
S5 = [(4, 5, 6, 7, 8, 9, 10, 11), (1, 2, 5, 6, 9, 10, 13, 14), (1, 2, 4, 7, 8, 11, 13, 14)]

We write H2 and H4 as

H2 =
(

1 1
−1 1

)
= (h1, 1) and H4 =

⎛

⎜⎜
⎝

1 1 1 1
−1 −1 1 1
1 −1 −1 1

−1 1 −1 1

⎞

⎟⎟
⎠ = (h∗

1, h∗
2, h∗

3, 1).

Using h1 and h∗
i (i = 1, 2, 3) and proceeding according to Theorem4.3.1 we

can construct three optimum W-matrices. Below we give W∗
1,1-matrix which is

constructed by using h1 and h∗
1.

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 1 −1 1 −1 0 0 0 0 −1 1 −1 1 0 0
0 −1 1 −1 1 0 0 −1 1 0 0 0 0 −1 1
0 0 0 1 1 −1 −1 0 0 0 0 1 1 −1 −1
1 0 −1 0 −1 0 1 1 0 −1 0 −1 0 1 0

−1 0 1 −1 0 1 0 −1 0 1 0 0 −1 0 1
0 1 1 0 0 −1 −1 0 0 1 1 0 0 −1 −1
1 0 −1 −1 0 1 0 0 1 0 −1 −1 0 1 0

−1 −1 0 1 0 0 1 0 −1 −1 0 1 0 0 1
1 0 1 0 −1 0 −1 0 1 0 1 0 −1 0 −1
0 1 −1 0 0 −1 1 1 −1 0 0 −1 1 0 0

−1 −1 0 0 1 1 0 −1 0 0 −1 1 0 0 1
0 0 0 1 1 −1 −1 1 1 −1 −1 0 0 0 0
1 −1 0 0 −1 1 0 0 −1 1 0 0 1 −1 0

−1 1 0 −1 0 0 1 −1 0 0 1 0 −1 1 0

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

′

.

http://dx.doi.org/10.1007/978-81-322-2461-7_3
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Similarly, by taking the combinations (h1, h∗
2) and (h1, h∗

3) we can construct W∗
1,2

and W∗
1,3 respectively. Using h1, we can get another matrix W∗∗

1 which is given
below:

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

0 0 0 0 0 0 0 −1 −1 1 1 1 1 −1 −1
0 1 1 1 1 0 0 0 0 −1 −1 −1 −1 0 0
0 −1 −1 −1 −1 0 0 1 1 0 0 0 0 1 1
0 0 0 −1 1 −1 1 0 0 0 0 1 −1 1 −1
1 0 1 0 −1 0 −1 1 0 1 0 −1 0 −1 0

−1 0 −1 1 0 1 0 −1 0 −1 0 0 1 0 1
0 −1 1 0 0 1 −1 0 0 −1 1 0 0 1 −1
1 0 −1 1 0 −1 0 0 1 0 −1 1 0 −1 0

−1 1 0 −1 0 0 1 0 −1 1 0 −1 0 0 1
−1 0 1 0 −1 0 1 0 1 0 −1 0 1 0 −1
0 1 −1 0 0 1 −1 1 −1 0 0 1 −1 0 0
1 −1 0 0 1 −1 0 −1 0 0 1 −1 0 0 1
0 0 0 −1 1 1 −1 −1 1 1 −1 0 0 0 0
1 1 0 0 −1 −1 0 0 −1 −1 0 0 1 1 0

−1 −1 0 1 0 0 1 1 0 0 1 0 −1 −1 0

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

′

.

Thus four optimum W-matrices are constructed.

Remark 4.3.1 In Sects. 4.2 and 4.3, OCDs have been constructed for BIBD set-
ups. The series of BIBDs considered here are either constructed through Bose’s
method of difference (cf. Bose 1939) or through projective geometry. As mentioned
earlier, it is very difficult to find OCDs for arbitrary BIBDs. But for the particular
case when b = mv, where m is any positive integer, OCDs can be constructed for
arbitrary BIBDs. More generally, in such situation, OCDs can be constructed for any
BPEBD which will be considered in Chap.6. The class of BPEBDs contains cyclic
designs which also contain a number of BIBDs. Though the method described in
Chap.6 covers a large class of BIBDs, but the methods applied in these sections are
illustrative and important in their own merit.

4.4 D-Optimal Covariate Designs in Block Design Set-Up

The optimal designs considered in previous sections of this chapter are necessarily
D-optimal. But such designs cannot always be obtained because of the restriction
n ≡ 0 (mod 4). When n �= 0 (mod 4), finding optimal design is very difficult. Dutta
et al. (2010) consider D-optimal design in this set-up when n ≡ 2 (mod 4). In this
case of a block design for given b and v, the reduced normal equation for estimation
of γ is given by

(Z′QZ)γ = Z′Qy

http://dx.doi.org/10.1007/978-81-322-2461-7_6
http://dx.doi.org/10.1007/978-81-322-2461-7_6
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which yields

γ̂ = (Z′QZ)−1Z′Qy

where

Q = (I − X(X′X)−X′), X = (X1, X2).

Hence, the information matrix for γ is given by I(γ) = Z′QZ. Since Q is non-
negative definite, it follows that

Z′QZ ≤ Z′Z (in Lowener order sense; Pukelsheim 1993)

‘=’ if and only if Z′X = 0, i.e., if and only if

Z′X1 = 0, Z′X2 = 0. (4.4.1)

Thus the problem is that of selecting Z-matrix with |z(t)
i j | ≤ 1 satisfying (4.4.1)

such that the covariate design is D-optimal, i.e., det (Z′Z) is maximum when Z∈ Z ,
Z = {Z : z(t)

i j ∈ [−1, 1] ∀ i, j}.

4.4.1 Conditions for D-Optimality

We have already observed that when n ≡ 2 (mod 4), it is impossible to estimate
γ-components most efficiently in the sense of attaining the lower bound σ2

n to the
variance of the estimated covariate parameters. Thus, in the case n ≡ 2 (mod 4), the
problem is that of choosing a matrix Zn×c = (z(t)

i j ) with z(t)
i j ∈ [−1, 1] ∀ i, j such

that det (Z′Z) is a maximum subject to the orthogonality condition (4.4.1). Towards
this, we state the following lemma giving a necessary condition for maximization of
det (Z′Z), Z ∈ Z (cf. Galil and Kiefer 1980; Wojtas 1964).

Lemma 4.4.1 A necessary condition for maximization of det (Z′Z) where Z∈ Z , is
that z(t)

i j = ±1 ∀ i, j, t .

From the above lemma, it is clear that we can restrict to the class Z∗ = {Z :
z(t)

i j = ±1 ∀ i, j, t} for finding the D-optimum design. In this direction, we have the
following theorem.

Theorem 4.4.1 A covariate design Z∗ ∈ Z∗ is D-optimal in the sense of maximizing
det (Z′Z) subject to the condition (4.4.1), if it satisfies

Z∗′Z∗ = (n − 2)Ic + 2Jc (4.4.2)
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where Ic is the identity matrix of order c and Jc is the matrix of order c with all
elements equal to unity.

Proof Because of Lemma4.4.1, we can restrict to the class Z∗ for maximization of
det (Z′Z). For any Z ∈ Z∗, we can write

det (Z′Z) = det

⎛

⎜
⎜⎜
⎝

n s12 . . . s1c

s12 n . . . s2c
...

...
...

...

s1c s2c . . . n

⎞

⎟
⎟⎟
⎠

, (4.4.3)

where stt ′ =
∑

i

∑

j

z(t)
i j z(t ′)

i j , t �= t ′ = 1, 2, . . . , c. Because of (4.4.1), each column

of Z is orthogonal to 1n , and hence orthogonality of any pair of columns of Z implies
that n ≡ 0 (mod 4) which violates our assumption that n ≡ 2 (mod 4). So, no off-
diagonal element of Z′Z can be zero. FromWojtas (1964) the determinant in (4.4.2)
is maximum if all si j ’s are equal to s, where

0 ≤ s ≤ min
i �= j

|si j |. (4.4.4)

As z(t)
i j = ±1 and n ≡ 2 (mod 4), |si j | can not be equal to 0 or 1 ∀i �= j . Therefore,

the minimum value of |si j | is 2. So the theorem is proved. �

Nowwe can represent any column of Z∗ (which is a column vector of order n ×1)
in the form of a matrix Uv×b corresponding to the v×b incidence matrix of the block
design.

With the conditions (4.4.1) and (4.4.2) in terms of U-matrix, the conditions
reduce to:

C1. Each U-matrix has all column-sums equal to zero;
C2. Each U-matrix has all row-sums equal to zero;
C3. The grand total of all the entries in the Hadamard product

of any two distinct U-matrices reduces to 2.

⎫
⎪⎪⎬

⎪⎪⎭
(4.4.5)

4.4.2 Construction of the D-Optimal Covariate Design
in a SBIBD Set-Up

In Sect. 4.4.1, we have established that a Z-matrix is D-optimal subject to condi-
tion (4.4.1) if it satisfies (4.4.2). Now in a BIBD set-up, the U-matrices defined in
Sect. 4.4.1 can be constructed by suitably replacing the non-zero elements of the inci-
dence matrix of BIBD by ±1 such that the conditions in (4.4.5) are satisfied. Here,
we consider the series of irreducible SBIBD (cf. Raghavarao 1971) with parameters
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v = b, r = k = v − 1, λ = v − 2, where k ≡ 2 (mod 4), b is an odd integer. To
start with, we consider the following lemma which gives a method of construction
for particular value of the parameters viz. v = b = 7, r = k = 6 and λ = 5. This
will help understand the method for the general case.

Lemma 4.4.2 Three U-matrices can be constructed for the irreducible SBIBD with
parameters v = b = 7, r = k = 6, λ = 5.

Proof Without loss of generality the incidence matrix N7×7 can be written in the
following partitioned form:

N =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

0 1 1 1 1 1 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 0 1 1
1 1 1 1 1 0 1
1 1 1 1 1 1 0

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

. (4.4.6)

Let us denote the 5 × 5 top left-hand matrix by N11; the 4 × 2 top right-hand
matrix by N12; the 2×4 bottom left-hand matrix by N21; the 3×3 bottom right-hand
matrix by N22. Then, we can write

N11 =

⎛

⎜
⎜⎜⎜
⎝

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

⎞

⎟
⎟⎟⎟
⎠

, N21 = N′
12 =

(
1 1 1 1
1 1 1 1

)
, N22 =

⎛

⎝
0 1 1
1 0 1
1 1 0

⎞

⎠ . (4.4.7)

We see that ‘0’ the element of 5th row and 5th column is common to both N11 and
N22. We shall see later on that this particular element always remains static in this
position during the process of construction. Such bordering of an element which
is common both in N11 and N22 does not, in any way, hamper the construction of
optimum Z-matrix. Consider a Hadamard matrix H4 of order 4, where the first two
columns are h1 = (1,−1, 1,−1)′ and h2 = (1, 1,−1,−1)′. Now we replace the
non-zero elements of the first column of N11 by the elements of h1 and through
cyclical development of this column we generate U(1)

11 of order 5 × 5 as

U(1)
11 =

⎛

⎜
⎜⎜⎜
⎝

0 −1 1 −1 1
1 0 −1 1 −1

−1 1 0 −1 1
1 −1 1 0 −1

−1 1 −1 1 0

⎞

⎟
⎟⎟⎟
⎠

. (4.4.8)
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Again with h2, we generate another matrix U(2)
11 in the same way. It can be checked

that the row sums and column sums of each of U(1)
11 and U(2)

11 are equal to zero
and the sum of all elements of the Hadamard product of these two matrices also
vanishes. Next, by replacing the non-zero elements in the first column of N22 in
(4.4.7) by (1,−1), we get a column vector (0, 1,−1)′. By cyclically permutation of
this column, we generate a 3 × 3 matrix U22 where

U22 =
⎛

⎝
0 −1 1
1 0 −1

−1 1 0

⎞

⎠ . (4.4.9)

Finally, we construct three 7 × 7 matrices U1, U2 and U3 corresponding to the
incidence matrix N, by replacing the matrices N11, N12, N21 and N22 in (4.4.7),
respectively, by:

(a) U(1)
11 , U(1)

12 , U(1)′
12 , U22;

(b) U(2)
11 , U(2)

12 , U(1)′
12 , -U22; and

(c) -U(2)
11 , U(2)

12 , U(1)′
12 , -U22.

Thus, finally, corresponding to (a)–(c) above, we have the following three
U-matrices:

U1 =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

0 −1 1 −1 1 1 −1
1 0 −1 1 −1 −1 1

−1 1 0 −1 1 1 −1
1 −1 1 0 −1 −1 1

−1 1 −1 1 0 −1 1
1 −1 1 −1 1 0 −1

−1 1 −1 1 −1 1 0

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

, (4.4.10)

U2 =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

0 −1 −1 1 1 1 −1
1 0 −1 −1 1 −1 1
1 1 0 −1 −1 1 −1

−1 1 1 0 −1 −1 1
−1 −1 1 1 0 1 −1
1 1 −1 −1 −1 0 1

−1 −1 1 1 1 −1 0

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

, (4.4.11)

U3 =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

0 1 1 −1 −1 1 −1
−1 0 1 1 −1 −1 1
−1 −1 0 1 1 1 −1
1 −1 −1 0 1 −1 1
1 1 −1 −1 0 1 −1
1 1 −1 −1 −1 0 1

−1 −1 1 1 1 −1 0

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

, (4.4.12)
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It can be easily checked that U1, U2 and U3 satisfy all of condition (4.4.5) and these
constitute the required D-optimal covariate design. �

Theorem 4.4.2 If a Hadamard matrix of order (v − 7) exists, then we can construct
three U-matrices for an irreducible SBIBD (v = b, r = k = v − 1, λ = v − 2)
where k is 2 (mod 4), k > 6.

Proof As in (4.4.6), we partition the incidence matrix N as

N =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

0 1 . . . 1 1 1 1 1 1 1 1
1 0 . . . 1 1 1 1 1 1 1 1
...

...
...

...
...

...
...

...
...

...
...

1 1 . . . 0 1 1 1 1 1 1 1
1 1 . . . 1 0 1 1 1 1 1 1

1 1
... 1 1 0 1 1 1 1 1

1 1
... 1 1 1 0 1 1 1 1

1 1
... 1 1 1 1 0 1 1 1

1 1
... 1 1 1 1 1 0 1 1

1 1
... 1 1 1 1 1 1 0 1

1 1
... 1 1 1 1 1 1 1 0

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

. (4.4.13)

As in Lemma4.4.2, we denote the (v − 6)× (v − 6) top left-hand matrix by N∗
11; the

(v − 7) × 6 top right-hand matrix by N∗
12; the 6 × (v − 7) bottom left-hand matrix

by N∗
21; the 7 × 7 bottom right-hand matrix by N∗

22. Then we can write

N∗
11 = Jv−6 − Iv−6, N∗

12 = J(v−7)×6 = N∗′
21, N∗

22 = J7 − I7, (4.4.14)

where I∗ is the identity matrix of order (*), J∗ is the matrix of order (*) with all
elements equal to unity.

Let the first three columns of a Hadamard matrix of order (v − 7) be h∗
1, h∗

2 and

h∗
3. Following the same steps as in Lemma4.4.1, we construct three matrices U(1)∗

11 ,

U(2)∗
11 and U(3)∗

11 each of order (v − 6) × (v − 6) corresponding to the matrix N∗
11 of

(4.4.14) with the help of h∗
1, h∗

2 and h∗
3, respectively. Again for N∗

12, we construct
three matrices V1, V2 and V3 each of order (v − 7) × 6 as

V1 = h∗
1 ⊗ a′, V2 = h∗

2 ⊗ a′ and V3 = h∗
3 ⊗ a′, where a′ = (1,−1, 1,−1, 1,−1).

Now using Ui from (4.4.10) to (4.4.12) for N∗
22 and U(i)∗

11 , Vi , V′
i for N∗

11, N∗
12

and N∗
21 of (4.4.14), respectively, i = 1, 2, 3, we get the D-optimal design. �
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Example 4.4.1 Let us consider a SBIBD with parameters v = b = 11, r = k =
10, λ = 9 where the initial block is (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) mod 11. The inci-
dence matrix can be displayed as

N =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

0 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 0

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

.

The first U-matrix is given by:

U1 =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

0 −1 1 −1 1 1 −1 1 −1 1 −1
1 0 −1 1 −1 −1 1 −1 1 −1 1

−1 1 0 −1 1 1 −1 1 −1 1 −1
1 −1 1 0 −1 −1 1 −1 1 −1 1

−1 1 −1 1 0 −1 1 −1 1 1 −1
1 −1 1 −1 1 0 −1 1 −1 −1 1

−1 1 −1 1 −1 1 0 −1 1 1 −1
1 −1 1 −1 1 −1 1 0 −1 −1 1

−1 1 −1 1 −1 1 −1 1 0 −1 1
1 −1 1 −1 1 −1 1 −1 1 0 −1

−1 1 −1 1 −1 1 −1 1 −1 1 0

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

.

Similarly, we can construct the other two.

Remark 4.4.1 The proposed design is also optimal with respect to any Type I criteria
in the class of Z∗ = {Z∗n×c : z(t)

i j = ±1 ∀ i, j, t}, rank(Z∗) = c (cf. Cheng 1980).
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Chapter 5
OCDs in Group Divisible Design Set-Up

5.1 Introduction

It is observed that the BIBDs are restrictive as every pair of treatments should occur
equal number of times. As a result the availability of OCDs in this set-up becomes
limited. In this context, it is observed that PBIBDs are less restrictive and at the same
time are popular among practitioners. So it is desirable to have OCDs involving these
set-ups. Dutta et al. (2009) have considered the problem of construction of OCDs in
the series of PBIBDs which are obtained not only through the method of differences
but also are obtained by other methods as described by Bose et al. (1953), Zelen
(1954) and Vartak (1954). In this chapter, we will only confine to GDDs and discuss
methods of construction of the OCDs based on GDDs.

To construct OCDs we have often applied two matrix-products, viz. Kronecker
product and Khatri-Rao product. The definitions of the matrix-products can be found
in Rao (1973), p. 29–30, where the Khatri-Rao product has been termed as ‘New
Product’. For completeness we reproduce the two definitions below:

Definition 5.1.1 (Kronecker-Product) Let A = (ai j ) and B = (bi j ) be two matrices
of orders m × n and p × q respectively. Then the Kronecker product of A and B,
denoted by A ⊗ B, is defined to be an mp × nq matrix expressible as a partitioned
matrix with ai j B as the (i, j)th partition, i = 1, 2, . . . ,m and j = 1, 2, . . . , n, i.e.

A ⊗ B = (ai j B). (5.1.1)

Definition 5.1.2 (Khatri-Rao Product) Let A = (A1, . . . ,Ak) and B = (B1, . . . ,

Bk) be two partitioned matrices with the same number of partitions. Then the Khatri-
Rao product of A and B, denoted as A � B, is defined by

A � B = (A1 ⊗ B1, . . . ,Ak ⊗ Bk). (5.1.2)

© Springer India 2015
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5.2 Optimum Covariate Designs

In this section, we mainly confine to the work in Dutta et al. (2009) and describe the
construction of OCDs described therein for different series of GDDs.

These designs are based on the concept of association scheme with respect to
PBIBDs, which is defined below for the sake of completeness.

Definition 5.2.1 Given v symbols 1, 2, . . . , v, a relation satisfying the following
conditions is said to be an association scheme with m classes:

1. Any two treatments are either 1st, 2nd, . . ., or mth associates, the relation of
association being symmetrical; that is, if the symbol α is the i th associate of the
symbol β, then β is the i th associate of α.

2. Each treatment α has ni i th associates, the number ni being independent of α.
3. If any two treatments α and β are i th associates, then the number of symbols that

are j th associates of α, and kth associates of β, is pi
jk and is independent of the

pair of i th associates α and β.

The numbers v, ni (i = 1, 2, . . . ,m) and pi
jk (i, j, k = 1, 2, . . . ,m) are called the

parameters of the association scheme.

Given an association scheme for the v treatments, we define a PBIBD as follows:

Definition 5.2.2 Given an association scheme with m classes and given parameters
as above, we get a PBIBD with m associate classes if the v symbols are arranged
into b blocks of size k (< v) such that

1. Every symbol occurs at most once in a block.
2. Every symbol occurs in exactly r blocks.
3. If two symbols α and β are i th associates, then they occur together in λi blocks,

the number λi being independent of the particular pair of i th associates α and β.

The numbers v, b, r, k,λi (i = 1, 2, . . . ,m) are called the parameters of the design.
Two-associate class PBIBDs were classified by Bose and Shimamoto (1952) in the
following types depending on the association schemes:

1. Group divisible (GD)
2. Simple (SI)
3. Triangular (T)
4. Latin-square type (Li )
5. Cyclic (C).

In the context of cyclic design, more refined definition has been suggested by Nandi
and Adhikari (1966). However, our consideration of OCDs will be based only on the
GDDs. For the other types, we refer to Dutta et al. (2009).

Definition 5.2.3 (GD association scheme and design) For integersm ≥ 2 andn ≥ 2,
consider v = mn treatments, which are divided in an m groups is containing n
treatments. Any two treatments of the same group are called first associate and any
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two treatments for different groups are called 2nd associate. The parameters of the
GD association scheme are as follows:

v = mn, n1 = n − 1, n2 = n(m − 1),

P1 = (p1i j ) =
(

n − 2 0
0 n(m − 1)

)
, P2 = (p2i j ) =

(
0 n − 1

n − 1 n(m − 1)

)
. (5.2.1)

A PBIBD is said to be group-divisible if it is based on the GD association scheme.

If N be the incidence matrix of GD design then the characteristic roots θi of the NN′
matrix and the respective multiplicity αi , i = 0, 1, 2 are given by

θ0 = rk, α0 = 1
θ1 = r − λ1, α1 = m(n − 1),
θ2 = rk − vλ2, α2 = m − 1.

(5.2.2)

A GD design is called

(a) singular if r = λ1;
(b) semi-regular, if r > λ1 and rk = vλ2;
(c) regular, if r > λ1 and rk > vλ2.

Note 5.2.1 In what follows, the incidence matrices of the relevant designs are repre-
sented in terms of their transposes, keeping the same style as in the case of BIBDs
followed in earlier chapters.

5.2.1 Singular Group Divisible Design (SGDD) Set-Up

It had been shown in Bose et al. (1953) that if in a BIBD with parameters
v∗, b∗, r∗, k∗ and λ∗ each treatment is replaced by a group of n treatments, an
SGDD can be obtained with parameters

v = nv∗, b = b∗, r = r∗, k = nk∗,λ1 = r∗, λ2 = λ∗, m = v∗, n = n. (5.2.3)

Here m stands for the number of groups in the corresponding association scheme. It
will be seen that W-matrices for such an SGDD with parameters in (5.2.3) can be
constructed and the construction of W in this case does not depend on the method
of construction of the corresponding BIBD.

Theorem 5.2.1 A set of t optimum W-matrices can be constructed for the SGDD
with parameters in (5.2.3), where

(i) t = c, if c optimum W-matrices exist for an RBD with n treatments and r
blocks;

(ii) t = v∗(n − 1)(r − 1), if Hv∗ , Hn and Hr exist;
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(iii) t = v∗((n − 1)(r − 1) − (n − 2)),

(a) if n ≡ 2 (mod 4), (n−1) is a prime or a prime power and Hv∗ and Hr exist;
or

(b) if Hv∗ , H2n and H r
2

exist;

(iv) t = v∗ if n = even, r = even and Hv∗ exists.

Proof Consider the SGDD with parameters in (5.2.3) obtained by replacing each
treatment of the BIBD(v, b, r, k,λ) by a group of n treatments. Let the n treatments
of the SGDD corresponding to the treatment θi (i = 1, 2, . . . , v∗) of the BIBD be
denoted by (θ1i , θ2i , . . . , θni ) and the transpose of the partitioned incidence matrix
of the SGDD be denoted by

N′ = (
N′
1, N′

2, . . . ,N′
i , . . . ,N′

v∗
)

(5.2.4)

where Ni is the incidence matrix corresponding to (θ1i , θ2i , . . . , θni ); i = 1,
2, . . . , v∗. If the rows of Ni containing the null elements only are omitted, then
the reduced matrix corresponds to the incidence matrix of an RBD with n treat-
ments arranged in r blocks. We denote an RBD with r blocks and n treatments by
RBD(n, r ). This is true for all i . For the time being, let it be assumed that c optimum
W-matrices for an RBD(n, r ) exist and let them be denoted by W1, W2, . . . ,Wc.
Putting the elements of W j of RBD(n, r ) in the corresponding non-zero positions
of each Ni , a matrix W∗

j is obtained and let its transpose be written as

W∗′
j = (W∗′

1 j , W∗′
2 j , . . . ,W∗′

v∗ j ). (5.2.5)

It is easy to verify that each of W∗
1, W∗

2, . . . ,W
∗
c give optimum W-matrices for the

SGDD (5.2.3) and thus (i) of the theorem follows.
Again if Hv∗ exists then the number of optimum W-matrices can be increased by

application of Khatri-Rao product. Let Hv∗ be written as

Hv∗ = (hlm), where hlm is the (l,m)th element of Hv∗ .

For l = 1, 2, . . . , v∗, a matrix W∗∗
l j is constructed by Khatri-Rao product where

the transpose of W∗∗
l j is

W∗∗′
l j = hl � W∗′

j = (hl1W∗′
1 j , hl2W∗′

2 j , . . . , hli W∗′
i j , . . . , hlv∗W∗′

v∗ j ), (5.2.6)

where hl is the lth row of Hv∗ . Now varying l and j , v∗c optimum W∗∗
l j -matrices can

be constructed and it can be easily checked that these matrices satisfy the condition
(3.1.5).

It is proved in Chap.3 that the values of c are (a1) (n − 1)(r − 1), if Hn and Hr

exist; (a2) (n − 1)(r − 1)− (n − 2), if n ≡ 2 (mod 4), (n − 1) is a prime or a prime
power and Hr exists and (a3) (n − 1)(r − 1) − (n − 2), if H2n and H r

2
exist. These

values imply, respectively, (i i), (i i i) of the theorem when Hv∗ exists.

http://dx.doi.org/10.1007/978-81-322-2461-7_3
http://dx.doi.org/10.1007/978-81-322-2461-7_3
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Again if n and r are even, we can write a n × r matrix W1 as

W1 =
(

J −J
−J J

)

where J is a n
2 × r

2 matrix with all elements unity. It is easy to see that W1 gives an
optimum W-matrix for an RBD(n, r ). Thus (iv) of the theorem follows. �

Remark 5.2.1 Exchanging the roles of r and n in (i i i) of Theorem5.2.1, we may
get t = v∗((n − 1)(r − 1) − (r − 2)) optimum W-matrices for the SGDD with
parameters in (5.2.3) if r ≡ 2 (mod 4), (r − 1) is a prime or a prime power, Hv∗ and
Hn exist or Hv∗ , H2r and H n

2
exist.

Remark 5.2.2 If v∗ is an even integer, then a set of t optimum W-matrices can be
constructed for the SGDD with parameters (5.2.3) by using 1′

v∗ and (1′
v∗
2

,−1′
v∗
2

)

respectively in place of the rows of Hv∗ in (5.2.6). Again from (i i)–(i i i) of
Theorem5.2.1 it follows that

(i) t = 2(n − 1)(r − 1) if Hn and Hr exist;
(ii) t = 2((n − 1)(r − 1)− (n − 2)) If n ≡ 2 (mod 4), (n − 1) is a prime or a prime

power and Hr exists or if H2n and H r
2
exist;

respectively.

Remark 5.2.3 It is easily seen that for the construction of optimum W-matrices for
RBD(n, r ), it is necessary that r and n must be even. If r , n and v∗ are even but none
of them are multiple of 4, then 2 optimum W-matrices can always be constructed for
the SGDDwith parameters (5.2.3) by using two orthogonal rows as in Remark5.2.2.

Remark 5.2.4 Suppose t1 optimum W-matrices exist for the BIBD(v∗, b∗, r∗,
k∗,λ∗); then additional t1 optimum W-matrices, orthogonal to the previous ones,
can be constructed for a SGDD with parameters given in (5.2.3).

We give some examples illustrating (i), (i i) and (iv) of Theorem5.2.1 and
Remark5.2.4.

Example 5.2.1 Consider a BIBD with parameters v∗ = b∗ = 3, r∗ = k∗ = 2,
λ∗ = 1 with the incidence matrix

N∗ =
⎛

⎝
1 1 0
0 1 1
1 0 1

⎞

⎠ .

Now for n = 2, the SGDD with parameters v = 6, b = 3, r = 2, k = 4,
λ1 = 2, λ2 = 1, m = 3, n = 2 has the transpose of the incidence matrix,

N′ =
⎛

⎝
1 1 1 1 0 0
0 0 1 1 1 1
1 1 0 0 1 1

⎞

⎠ =
⎛

⎝
1′
2 1′

2 0′
0′ 1′

2 1′
2

1′
2 0′ 1′

2

⎞

⎠ .
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H2 is written as

H2 =
(
1 1
1 −1

)
= (

h∗
1, h∗

2

)
.

Applying the method described in Theorem3.4.1 and using h∗
2, only one W-matrix

for RBD(2,2) can be constructed and it is given by

W1 =
(

1 −1
−1 1

)
=

(
h∗′
2−h∗′
2

)
.

Using W1, only one W-matrix for above SGDD can be constructed (vide Eq. (5.2.6))
and its transpose is given by

W∗′
1 =

⎛

⎝
1 −1 1 −1 0 0
0 0 −1 1 1 −1

−1 1 0 0 −1 1

⎞

⎠ =
⎛

⎝
h∗′
2 h∗′

2 0′
0′ −h∗′

2 h∗′
2−h∗′

2 0′ −h∗′
2

⎞

⎠ .

Again, there exists a W-matrix for the BIBD (cf. Chap. 4) which is given by

W(1) =
⎛

⎝
1 0 −1

−1 1 0
0 −1 1

⎞

⎠ .

UsingW(1), onemoreW-matrix for the SGDDcan be constructed throughKronecker
product and its transpose is given by

W∗′
(1) = W′

(1) ⊗ 1′
2 =

⎛

⎝
1′
2 −1′

2 0′
0′ 1′

2 −1′
2−1′

2 0′ 1′
2

⎞

⎠ =
⎛

⎝
1 1 −1 −1 0 0
0 0 1 1 −1 −1

−1 −1 0 0 1 1

⎞

⎠ .

It is easy to check that W∗
(1) is orthogonal to W∗

1.

Example 5.2.2 Consider a BIBD with parameters v∗ = 4, b∗ = 24, r∗ = 12,
k∗ = 2, λ∗ = 4 (this is obtained by repeating BIBD(4, 6, 3, 2, 1) 4 times) with the
transpose of the incidence matrix

N∗′ = 14 ⊗

⎛

⎜
⎜⎜⎜⎜⎜
⎝

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1
1 0 1 0
0 1 0 1

⎞

⎟
⎟⎟⎟⎟⎟
⎠

.

The SGDD with parameters v = 16, b = 24, r = 12, k = 8, λ1 = 12,
λ2 = 4, m = 4, n = 4 is obtained by replacing each treatment of the BIBD

http://dx.doi.org/10.1007/978-81-322-2461-7_3
http://dx.doi.org/10.1007/978-81-322-2461-7_4
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with n = 4 treatments. The transpose of the incidence matrix N16×24 of SGDD can
be written as

N′ = (N∗′ ⊗ 1′
4) = 14 ⊗

⎛

⎜⎜⎜
⎜⎜⎜
⎝

1′
4 1′

4 0′ 0′
0′ 1′

4 1′
4 0′

0′ 0′ 1′
4 1′

4
1′
4 0′ 0′ 1′

4
1′
4 0′ 1′

4 0′
0′ 1′

4 0′ 1′
4

⎞

⎟⎟⎟
⎟⎟⎟
⎠

=
(

N′ 24×4
1 ,N′ 24×4

2 ,N′ 24×4
3 ,N′ 24×4

4

)
.

H4 and H12 are written as follows:

H4 =

⎛

⎜⎜
⎝

1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

h1
h2
h3
h4

⎞

⎟⎟
⎠ = (

h∗
1, h∗

2, h∗
3, h∗

4

)
, (5.2.7)

H12 =

⎛

⎜
⎜⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜
⎝

1 1 −1 1 −1 −1 −1 1 1 1 −1 1
1 −1 1 1 −1 1 −1 −1 −1 1 1 1
1 1 −1 1 1 −1 1 −1 −1 −1 1 1
1 1 1 −1 1 1 −1 1 −1 −1 −1 1
1 −1 −1 −1 1 1 1 −1 1 1 −1 1
1 −1 1 −1 −1 −1 1 1 1 −1 1 1
1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 −1 1 −1 −1 −1 1 1 1 −1
1 1 1 1 −1 1 1 −1 1 −1 −1 −1
1 −1 1 1 1 −1 1 1 −1 1 −1 −1
1 −1 −1 1 1 1 −1 1 1 −1 1 −1
1 1 −1 −1 −1 1 1 1 −1 1 1 −1

⎞

⎟
⎟⎟⎟⎟
⎟⎟⎟⎟
⎟⎟⎟⎟
⎟⎟⎟
⎠

= (
h∗∗
1 ,h∗∗

2 , . . . ,h∗∗
11,h∗∗

12

)
,

Now we define the matrix: U(12×4)
i, j = h∗

i ⊗ h∗∗′
j ; ∀i = 2, 3, 4; j = 2, 3, . . . , 12.

It can easily be checked that these 33 Ui, j ’s give the optimum W-matrices for an
RBD(4, 12). We write U2,1 = W(1), U2,2 = W(2), . . . ,U4,11 = W(33) respectively.
Let us consider

W(1) = h∗
2 ⊗ h∗∗′

2

= (1,−1, 1,−1)′ ⊗ (1,−1, 1, 1,−1,−1,−1, 1, 1,−1,−1, 1)

=

⎛

⎜⎜
⎝

1 −1 1 1 −1 −1 −1 1 1 −1 −1 1
−1 1 −1 −1 1 1 1 −1 −1 1 1 −1
1 −1 1 1 −1 −1 −1 1 1 −1 −1 1

−1 1 −1 −1 1 1 1 −1 −1 1 1 −1

⎞

⎟⎟
⎠

= (a,−a, a, a,−a,−a,−a, a, a,−a,−a, a),

where a = h∗
2 is of order 4×1 (vide (5.2.7)).

By putting the elements of W(1) in the non-zero positions of each Ni (i =
1, 2, 3, 4), W∗

1 is obtained and its transpose is written as
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W∗′
1 = (

W∗′
11,W∗′

21,W∗′
31,W∗′

41

)
, (5.2.8)

where

W∗
11 = (a, 0, 0,−a, a, 0, a, 0, 0,−a,−a, 0,−a, 0, 0, a, a, 0,−a, 0, 0,−a, a, 0)

W∗
21 = (a,−a, 0, 0, 0, a, a,−a, 0, 0, 0,−a,−a, a, 0, 0, 0, a,−a,−a, 0, 0, 0, a)

W∗
31 = (0, a,−a, 0, a, 0, 0, a,−a, 0,−a, 0, 0,−a, a, 0, a, 0, 0,−a,−a, 0, a, 0)

W∗
41 = (0, 0, a,−a, 0, a, 0, 0, a,−a, 0,−a, 0, 0,−a, a, 0, a, 0, 0,−a,−a, 0, a).

In this way, by using the remaining 32 W-matrices of RBD(4, 12), we get another
32 W∗

j ’s, j = 2, 3, . . . , 33.
Now by taking the Khatri-Rao product of the h2 of (5.2.7) and the matrix W∗

1 in
(5.2.8), we get W∗∗

2,1 whose transpose is

W∗∗′
2,1 = h2 ⊗ W∗′

1 = (
W∗′

11,−W∗′
21,W∗′

31,−W∗′
41

)
.

Similarly, by taking the Khatri-Rao product of (h1,W∗
1), (h3,W∗

1) and (h4,W∗
1),

respectively, three other optimum W-matrices, i.e. W∗∗
1,1, W∗∗

3,1, W∗∗
4,1 can be con-

structed. As before, by using different rows of H4 and other 32 W∗
j ’s, we get addi-

tional 128 optimum W-matrices for the said SGDD.
Moreover, there exist three optimum W-matrices for the BIBD and these are

constructed by the method described in Chap.4 and are given by

(h1 ⊗ U∗)′; (h2 ⊗ U∗)′; (h3 ⊗ U∗)′;

where

U∗ =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

1 −1 0 0
0 1 −1 0
0 0 1 −1
1 0 0 −1
1 0 −1 0
0 1 0 −1

⎞

⎟⎟⎟
⎟⎟⎟
⎠

.

Using these three W-matrices of BIBD, we can construct three more optimum W-
matrices for the SGDD as described in Remark5.2.4 and it is easy to see that these
three are orthogonal to previous 132 optimum W-matrices. So we get 135 optimum
W-matrices in all for the said SGDD.

Example 5.2.3 Consider aBIBDwithparametersv∗ = 4, b∗ = 8, r∗ = 6, k∗ = 3,
λ∗ = 4 with the transpose of the incidence matrix

N∗′ =
(
1
1

)
⊗

⎛

⎜⎜
⎝

1 1 1 0
0 1 1 1
1 0 1 1
1 1 0 1

⎞

⎟⎟
⎠ .

http://dx.doi.org/10.1007/978-81-322-2461-7_4


5.2 Optimum Covariate Designs 73

An SGDD with parameters v = 8, b = 8, r = 6, k = 6, λ1 = 6, λ2 = 4,
m = 4, n = 2 is obtained by replacing each treatment of the BIBD with n = 2
treatments. The transpose of the incidence matrix N of SGDD can be written as

N′ = N∗′ ⊗ (1, 1).

H2 is written as

H2 =
(
1 1
1 −1

)
= (

h∗
1 h∗

2

)
.

It follows that the matrix W1 given below is the transpose of a W-matrix for an
RBD(2, 6):

W′
1 =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

1 −1
1 −1
1 −1

−1 1
−1 1
−1 1

⎞

⎟⎟
⎟⎟⎟⎟
⎠

=

⎛

⎜⎜
⎜⎜⎜⎜
⎝

h∗′
2

h∗′
2

h∗′
2−h∗′
2−h∗′
2−h∗′
2

⎞

⎟⎟
⎟⎟⎟⎟
⎠

.

Proceeding in the lines of Theorem5.2.1, we construct

W∗′
1 = (W∗′

11,W∗′
21,W∗′

31,W∗′
41),

where

W∗′
11 =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

h∗′
2
0′

h∗′
2

h∗′
2−h∗′
2
0′

−h∗′
2−h∗′
2

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

; W∗′
21 =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

h∗′
2

h∗′
2
0′

h∗′
2−h∗′
2−h∗′
2
0′

−h∗′
2

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

; W∗′
31 =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

h∗′
2

h∗′
2

h∗′
2
0′

−h∗′
2−h∗′
2−h∗′
2
0′

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

; W∗′
41 =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

0′
h∗′
2

h∗′
2

h∗′
2
0′

−h∗′
2−h∗′
2−h∗′
2

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.

and using W∗
1 and the second row of H4 of (5.2.7), one optimum W-matrix for the

SGDD can be constructed where its transpose is

W∗∗′
11 = h2 � W∗′

1 = (W∗′
11,−W∗′

21,W∗′
31,−W∗′

41),

Similarly by taking the Khatri-Rao product of (W∗
1, h1), (W∗

1, h3) and (W∗
1, h4),

three other optimum W-matrices can be constructed for the above SGDD, where h1,
h3 and h4 are, respectively, the first row, third row and 4th row of H4 in (5.2.7).
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5.2.2 Semi-Regular Group Divisible Design (SRGDD) Set-Up

According to Bose et al. (1953), it is known that the existence of an SRGDD with
parameters v = mn, b = n2λ2, r = nλ2, k = m, λ1 = 0, λ2, m, n implies the
existence of an orthogonal array, OA(n2λ2, m, n, 2) and conversely. The definition
of an orthogonal array (cf. Raghavarao 1971, p. 10) is given below:

Definition 5.2.4 A k × N matrix A with entries from a set of s (≥ 2) elements is
called an orthogonal array of size N , k constraints, s levels, strength t , and index λ
if any t × N sub-matrix of A contains all possible t × 1 column vectors with same
frequency λ. Such an array is denoted by OA(N , k, s, t).

In this case, using the properties of orthogonal array (cf. Raghavarao 1971) one can
find the optimum covariate designs which is stated in the following theorem.

Theorem 5.2.2 Let the existence of an OA(n2λ2, m, n, 2) and the existence of
Hadamard matrices of order n and m1 = k(2 ≤ m1 < m) be assumed. Then
(n − 1)(k − 1)m2 optimum W-matrices can be constructed for an SRGDD with
parameters v = m1n, b = n2λ2, r = nλ2, k = m1, λ1 = 0, λ2, m1, n where
m1 + m2 = m and m2 > 2.

Proof Let the orthogonal array OA(n2λ2, m, n, 2) be denoted by the matrix A with
n2λ2 columns and m rows. The n symbols in the pth row of the orthogonal array are
denoted as (p−1)n+1, (p−1)n+2, . . . , pn; p = 1, 2, . . . ,m. Let it be partitioned

into two sub-matrices A1 and A2, i.e.
(

A1
A2

)
where A1 corresponds to first m1 rows

and A2 corresponds to last m2 (m2 = m − m1) rows of A. Using A1, an SRGDD
with parameters v = m1n, b = n2λ2, r = nλ2, k = m1, m1, n, λ1 = 0, λ2,

where m1 + m2 = m and m2 > 2 can be constructed, where the n2λ2 columns of
A1 give the b = n2λ2 blocks of the SRGDD. Let a Hadamard matrix of order n be
written as

Hn = [h1,h2, . . . ,hn−1, 1]. (5.2.9)

Again let the n symbols in each row of A2 be replaced by (h j1, h j2, . . . , h jn),
where h ji ’s are the elements of h j , the j th column of Hn , j = 1, 2, . . . , (n − 1)
and the new array A∗′

2 ( j) = (a∗′
1 ( j), a∗′

2 ( j), . . . , a∗′
m2
( j)) thus obtained is still an

orthogonal array of strength 2, but with the two symbols +1 and −1 in each row.
Let the incidence matrix of the SRGDD corresponding to the orthogonal array A1
be denoted as Nv×b with the j th column as, n j = (n1 j , n2 j , . . . , nv j )

′, ni j = 0 or
1; 1 ≤ i ≤ v, 1 ≤ j ≤ b. The non-zero elements of each column of N (containing
k non-zero elements) are replaced by the k elements (±1) of h∗

u , the uth column
of Hk , u = 1, 2, . . . , (k − 1) in that order and thus N∗

u is obtained with the j th
column as n∗

j (u) = (n∗
1 j (u), n∗

2 j (u), . . . , n∗
v j (u))

′, j = 1, 2, . . . , b. Obviously the
element n∗

i j (u) assumes one of the three distinct values+1 or−1 or 0. Now, a matrix
W( j, u, q) is obtained by taking the Khatri-Rao product of a∗

q( j) and N∗
u . A matrix

W( j, u, q) is written as
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W( j, u, q) = a∗
q( j) � N∗

u =
⎛

⎜
⎝

a∗
1q( j)
...

a∗
bq( j)

⎞

⎟
⎠ � (

n∗
1(u) . . . n∗

b(u)
)

(5.2.10)

It is easy to see that the W( j, u, q), q = 1, 2, . . . ,m2, u = 1, 2, . . . , (k − 1), j =
1, 2, . . . , (n − 1) matrices given by (5.2.10) satisfy the condition (3.1.5). Thus the
theorem follows. �

Example 5.2.4 Consider SRGDD with parameters v = 8, b = 8, r = 4,
k = 4, m1 = 4, n = 2, λ1 = 0, λ2 = 1 which is obtained from OA(8, 7, 2,
2) as follows:

Let A = OA(8, 7, 2, 2) where

A′ =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

1 3 5 7 9 11 13
2 3 6 7 10 11 14
1 4 6 7 9 12 14
2 4 5 7 10 12 13
1 3 5 8 10 12 14
2 3 6 8 9 12 13
1 4 6 8 10 11 13
2 4 5 8 9 11 14

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

= (A1|A2).

Using A1, the SRGDD with above parameters is obtained and the incidence matrix
N corresponding to the design is written as in the form of its transpose

N′ =

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 0
1 0 0 1 0 1 1 0
0 1 0 1 1 0 1 0
1 0 1 0 1 0 0 1
0 1 1 0 0 1 0 1
1 0 0 1 0 1 0 1
0 1 0 1 1 0 0 1

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

.

H2 and H4 are written as

H2 =
(
1 1
1 −1

)
= (h1, 1); H4 =

⎛

⎜⎜
⎝

1 1 1 1
−1 −1 1 1
1 −1 −1 1

−1 1 −1 1

⎞

⎟⎟
⎠ = (h∗

1,h∗
2,h∗

3, 1).

http://dx.doi.org/10.1007/978-81-322-2461-7_3
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Replacing the elements in the columns of A2 by those of h1, A∗
2(1) can be written as

A∗
2(1) =

⎛

⎝
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎞

⎠ = (a∗
1(1), a∗

2(1), a∗
3(1)).

If the non-zero elements of each row of N are replaced by the four elements (±1)
of first column h∗

1 of H4 in that order, then the transpose of N∗
1 is obtained as

Block Treatment →
↓ 1 2 3 4 5 6 7 8

N∗′
1 =

1
2
3
4
5
6
7
8

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

1 0 −1 0 1 0 −1 0
0 1 −1 0 0 1 −1 0
1 0 0 −1 0 1 −1 0
0 1 0 −1 1 0 −1 0
1 0 −1 0 1 0 0 −1
0 1 −1 0 0 1 0 −1
1 0 0 −1 0 1 0 −1
0 1 0 −1 1 0 0 −1

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

Now using the Khatri-Rao product between the first column a∗
1(1) of A∗

2(1) and N∗
1,

the following the transpose of the W-matrix can be constructed as

⎛

⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1
−1
1

−1
−1
1

−1
1

⎞

⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

� N∗′
1 =

⎛

⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1 0 −1 0 1 0 −1 0
0 −1 1 0 0 −1 1 0
1 0 0 −1 0 1 −1 0
0 −1 0 1 −1 0 1 0

−1 0 1 0 −1 0 0 1
0 1 −1 0 0 1 0 −1

−1 0 0 1 0 −1 0 1
0 1 0 −1 1 0 0 −1

⎞

⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

= W′(1, 1, 1).

Note thatW′(1, 1, 1)matcheswithN∗′
1 . In thisway, altogether 9optimumW-matrices

can be constructed for different choices of columns of A∗
2(1) and first three columns

of H4 (excluding h1).

Remark 5.2.5 It follows from Theorem5.2.2 that the maximum number of W-
matrices that can be constructed depends on themaximumvalue ofm2(m1−1)(n−1)
where m1 > 0, m2 > 0, m1 + m2 = m and each of m1, n is such that Hm1 and Hn

exist.

Remark 5.2.6

(a) If n is even but Hn does not exist, then it is possible to construct (k − 1)m2
optimum W-matrices for the SRGDwith the above parameters by using a vector
of the form (1′

n
2
, −1′

n
2
)′ in place of the columns of Hn .
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(b) Similarly if k is even but Hk does not exist, then it is possible to construct
(n − 1)m2 optimum W-matrices for the SRGD with the above parameters by
using a vector of the form (1′

k
2
, −1′

k
2
)′ in place of the columns of Hk .

(c) Again if n, k are both even but Hn and Hk do not exist, then it is possible to
construct m2 optimum W-matrices for the SRGD with the above parameters by
using two vectors of the form (1′

n
2
,−1′

n
2
)′ and (1′

k
2
,−1′

k
2
)′ in place of the columns

of Hn and Hk .

5.2.3 Regular Group Divisible (RGD) Design Set-Up

It is known that if from a BIBD with parameters v∗, b∗, r∗, k∗,λ∗ = 1, all the r∗
blocks in which a particular treatment occurs are deleted, then a RGD design with
parameters v = v∗ − 1, b = b∗ − r∗, r = r∗ − 1, k = k∗, λ1 = 0, λ2 = 1,
m = r∗, n = k∗−1 can be obtained (Bose et al. (1953); also seeRaghavarao (1971)).
It is difficult to construct covariate design optimally for such GD design obtained
from arbitrary BIBD with the parameters v∗, b∗, r∗, k∗,λ∗ = 1. However, for
some series of BIBDs, it is possible to provide optimum covariate designs. Let the
series of BIBD designs with parameters:

b∗ = (4t + 1)(3t + 1), v∗ = 4(3t + 1), r∗ = 4t + 1, k∗ = 4,λ∗ = 1 (5.2.11)

be considered with the initial blocks:
(

x2i
1 , x2t+2i

1 , xα+2i
2 , xα+2t+2i

2

)

(
x2i
2 , x2t+2i

2 , xα+2i
3 , xα+2t+2i

3

)

(
x2i
3 , x2t+2i

3 , xα+2i
1 , xα+2t+2i

1

)

(01, 02, 03,∞); i = 0, 1, . . . , t − 1,

(5.2.12)

where 4t + 1 is prime or prime power and x is a primitive root of GF(4t + 1);
1, 2, 3 are the three symbols attached to x , α is an odd integer and ∞ the invariant
treatment symbol (cf. Bose 1939). If the initial block containing treatment symbol∞
in (5.2.12) is deleted and others are developed, then an RGD design with parameters:

b = 3t (4t + 1), v = 3(4t + 1), r = 4t, k = 4,λ1 = 0,λ2 = 1,m = 4t + 1, n = 3
(5.2.13)

is obtained. The (4t +1) groups obtained by developing (01, 02, 03) over GF(4t + 1)
give the association scheme for the above RGD design. The following theorem pro-
vides optimum covariate designs for the series with parameters given in (5.2.13).

Theorem 5.2.3 If Ht exists, then 3t optimum W-matrices can be constructed for
the RGD design with parameters given in (5.2.13).
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Proof Let the 3t initial blocks other than (01, 02, 03,∞) of (5.2.12) be divided into
t sets of 3 blocks each, the i th set being

Si+1 =
((

x2i
1 , x2t+2i

1 , xα+2i
2 , xα+2t+2i

2

)
,

(
x2i
2 , x2t+2i

2 , xα+2i
3 , xα+2t+2i

3

)

(
x2i
3 , x2t+2i

3 , xα+2i
1 , xα+2t+2i

1

))
, i = 0, 1, . . . , t − 1.

Also, let each of the initial blocks of Si+1 be displayed in the form of column vectors
of the incidence matrix and development of these initial blocks will give rise to the
sub-incidence matrix Ni of order 3(4t + 1)× 3(4t + 1), once more we restrict to the
transpose matrix where

N′
i =

⎛

⎜
⎝

N(i)′
1 N(i)′

2 0
0 N(i)′

1 N(i)′
2

N(i)′
2 0 N(i)′

1

⎞

⎟
⎠ .

It is easy to see that N(i)
1 and N(i)

2 matrices corresponding to two portions of the
initial blocks of Si , are obtained by cyclically permuting the column vectors of
each of the matrices. For j = 1, 2, the two non-zero positions of the first column
of N(i)

j is replaced by +1 and −1 successively and then this column is permuted

cyclically in the same way as N(i)
j was obtained. The resultant matrix is denoted by

W(i)
j . By replacing the N(i)

j by W(i)
j in Ni ’s one would get a matrix Wi1 of order

3(4t + 1) × 3(4t + 1) whose transpose can be displayed as

W′
i1 =

⎛

⎜
⎝

W(i)′
1 W(i)′

2 0
0 W(i)′

1 W(i)′
2

W(i)′
2 0 W(i)′

1

⎞

⎟
⎠ .

Then two other matrices, viz.Wi2 andWi3 are constructed fromWi1 andNi , respec-
tively, where their transpose matrices are respectively

W′
i2 =

⎛

⎜
⎝

W(i)′
1 −W(i)′

2 0
0 W(i)′

1 −W(i)′
2

−W(i)′
2 0 W(i)′

1

⎞

⎟
⎠ , W′

i3 =
⎛

⎜
⎝

N(i)′
1 −N(i)′

2 0
0 N(i)′

1 −N(i)′
2

−N(i)′
2 0 N(i)′

1

⎞

⎟
⎠ .

It can be easily checked that these three matrices satisfy the condition (3.1.5) for each
i , i = 1, 2, . . . , t . If Hadamard matrix Ht = (hml) exists, the number of W-matrices
can be increased t times. The 3t optimum W-matrices can be constructed and their
transpose can be displayed as

http://dx.doi.org/10.1007/978-81-322-2461-7_3
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W′
j (m) =

⎛

⎜⎜⎜
⎝

hm1
hm2
...

hmt

⎞

⎟⎟⎟
⎠

�

⎛

⎜⎜⎜
⎝

W′
1 j

W′
2 j
...

W′
t j

⎞

⎟⎟⎟
⎠

∀m = 1, 2, . . . , t; j = 1, 2, 3. (5.2.14)

It can be easily seen that these 3t matrices given in (5.2.14) satisfy the condition
(3.1.5) and give optimum W-matrices. �

Example 5.2.5 With t = 1 the RGD design with parameters v = 15, b = 15,
r = 4, k = 4,λ1 = 0,λ2 = 1,m = 5, n = 3 is considered and the initial blocks
forming the single set are {(11, 41, 22, 32),(12, 42, 23, 33), (13, 43, 21, 31)} and the
groups of the association scheme are generated from (01, 02,03). The transpose of
the incidence matrix of this design

N′ =

01 11 21 31 41 02 12 22 32 42 03 13 23 33 43⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 1 0 0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 1 0 0 0 0 0
0 1 0 1 0 1 0 0 0 1 0 0 0 0 0
0 0 1 0 1 1 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 1 0 1 0 0 0 1
0 0 0 0 0 0 0 1 0 1 1 1 0 0 0
0 0 0 0 0 1 0 0 1 0 0 1 1 0 0
0 0 1 1 0 0 0 0 0 0 0 1 0 0 1
0 0 0 1 1 0 0 0 0 0 1 0 1 0 0
1 0 0 0 1 0 0 0 0 0 0 1 0 1 0
1 1 0 0 0 0 0 0 0 0 0 0 1 0 1
0 1 1 0 0 0 0 0 0 0 1 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛

⎜
⎝

N(i)′
1 N(i)′

2 0
0 N(i)′

1 N(i)′
2

N(i)′
2 0 N(i)′

1

⎞

⎟
⎠

with

N(1)′
i =

⎛

⎜⎜⎜
⎜
⎝

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

⎞

⎟⎟⎟
⎟
⎠
, N(2)′

2 =

⎛

⎜⎜⎜
⎜
⎝

0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

⎞

⎟⎟⎟
⎟
⎠
.

The transpose matrices of the three optimum W-matrices are respectively

W′
11 =

⎛

⎜
⎝

W(1)′
1 W(1)′

2 0
0 W(1)′

1 W(1)′
2

W(1)′
2 0 W(1)′

1

⎞

⎟
⎠ .

http://dx.doi.org/10.1007/978-81-322-2461-7_3
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W′
12 =

⎛

⎜
⎝

W(1)′
1 −W(1)′

2 0
0 W(1)′

1 −W(1)′
2

−W(1)′
2 0 W(1)′

1

⎞

⎟
⎠ , W′

13 =
⎛

⎜
⎝

N(1)′
1 −N(1)′

2 0
0 N(1)′

1 −N(1)′
2

−N(1)′
2 0 N(1)′

1

⎞

⎟
⎠ .

where,

W(1)′
1 =

⎛

⎜⎜⎜⎜
⎝

0 1 0 0 −1
−1 0 1 0 0
0 −1 0 1 0
0 0 −1 0 1
1 0 0 −1 0

⎞

⎟⎟⎟⎟
⎠
, W(1)′

2 =

⎛

⎜⎜⎜⎜
⎝

0 0 1 −1 0
0 0 0 1 −1

−1 0 0 0 1
1 −1 0 0 0
0 1 −1 0 0

⎞

⎟⎟⎟⎟
⎠

and N(1)
1 and N(1)

2 as above.

Appendix

A list of OCDs for suitable subclasses of GDDs, viz. SGDDs, SRGDDs and RGDDs
divided as singular (S), semi-regular (SR), regular (R) is given below. These are
extracted from the catalogue prepared by Clatworthy (1973) and amenable to con-
struction of OCDs. See Dutta et al. (2009, 2010) in this context. In the constructional
method column, T stands for Theorem and R for Remark (Tables5.1, 5.2 and 5.3).
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Table 5.3 OCDs in RGDDs

v b r k λ1 λ2 m n t 3t Method of
construction

106 R114 15 15 4 4 0 1 5 3 1 3 Example5.2.5

107 R129 27 54 8 4 0 1 9 3 2 6 T 5.2.3
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Chapter 6
OCDs in Binary Proper Equireplicate Block
Design Set-Up

6.1 Introduction

In Chaps. 4 and 5, we have considered OCDs in the set-ups of BIBDs and PBIBDs,
which belong to the class of BPEBDs. It was observed earlier that the constructions
of OCDs on BIBDs and PBIBDs depend heavily on the method of constructions of
these designs and also that the designs having cyclic nature were more suitable for
constructing OCDs. Dutta et al. (2010) investigated the problem of construction of
OCDs for the general class of BPEBDs where b is a multiple of v. The cyclic designs
with ‘full sets’, a number of BIBDS, PBIBDs and a host of other designs belong to
this class of PBEBDs and consequently the construction of OCDs on these set-ups
will follow from the general method. The only restriction that the designs have to
follow is that b should be a multiple of v.

The cyclic designs with ‘partial sets’ do not have b as a multiple of v but as these
are BPEBDs we have considered the set-ups as a related discussion. In this chapter,
we mainly concentrate on Dutta et al. (2010) and describe the construction of OCDs
described therein.

6.2 BPEBDs with b = mv

It can be noticed that it is difficult to construct OCDs for any arbitrary block design.
The procedures depend heavily on the methods of construction of the corresponding
block designs and often optimum W-matrices are searched for designs which are
mainly constructed through the method of differences. But now we shall describe a
technique for constructing OCDs in BPEBDs with b = mv, m = positive integer,
which does not depend on the method of construction and hence can be widely
applied to a large class of commonly used block designs. The following lemma and
theorem will help us in the construction of OCDs in such set-ups.
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90 6 OCDs in Binary Proper Equireplicate Block Design Set-Up

Lemma 6.2.1 Let C be a k × b matrix with v elements t1, t2, . . . , tv where b = mv,
m= a positive integer, such that each element occurs at most once in each column
and an equal number of times in the whole matrix C. Then from C we can construct
a v × b matrix A with (k + 1) symbols a1, a2, . . . , ak and 0 such that each of the
non-null symbols occurs once and only once in each of the b columns and m times
in each of the v rows of A.

Proof From the properties of the matrix C it can be easily seen that the columns can
be identified with the b blocks of a BPEBD d with constant block size k and with
v treatments t1, t2, . . . , tv . We know from Agrawal (1966) that for a BPEBD with
b = mv, the k treatments in the b blocks of d can always be arranged such that each
treatment occurs m times in each of the k positions in the blocks. We denote such
an arrangement by a k × b matrix B. From the above matrix B, we can construct
a v × b matrix A by putting the element al in its (i, j)th cell if ti occurs in the lth
row and j th column of B, l = 1, 2, . . . , k, i = 1, 2, . . . , b, j = 1, 2, . . . , v. Other
positions are filled in with zeros. Obviously it follows from the property of B that
each of a1, a2, . . . , ak occurs once and only once in each of the b columns of A. As
every treatment occurs m times in each of the k rows of B, it is evident that each
of the symbols a1, a2, . . . , ak occurs m times in each row of A. Thus the lemma is
proved. �

Remark 6.2.1 It may sometimes be challenging to construct a B mentioned above.
But if a BPEBD with b = mv has a cyclic solution, it is very straightforward to
construct the B-matrix. When the block design with b = mv does not have a cyclic
solution, the construction of B seems to be difficult and a trial and error method is
used to get the desired configuration, whose existence is guaranteed by Lemma 6.2.1.

Now we prove the main theorem.

Theorem 6.2.1 For any BPEBD d(v, b, r, k) with b = mv; m (≥ 1) a positive
integer, (k − 1) optimum W-matrices can be constructed provided Hk , a Hadamard
matrix of order k, exists.

Proof We write the matrix Hk as

Hk = (1,h1,h2, . . . ,hk−1) (6.2.1)

From a BPEBD d(v, b, r, k), we can always, by Lemma 6.2.1, construct a v × b
matrix A where each of a1, a2, . . . , ak occurs m times in each row and once in each
column.We identify the k elements of hi with the symbols a1, a2, . . . , ak and replace
these symbols in A with their identified elements of hi ; i = 1, 2, . . . , k. Thus we
get (k −1) matrices W1, W2,…,Wk−1 corresponding to h1, h2,…,hk−1 respectively.
From the properties of the matrix A and those of Hk , it easily follows that the Wi ’s
satisfy the optimality condition (3.1.5). �

Example 6.2.1 Let us consider the symmetric BIBD with parameters v = b = 7,
r = k = 4,λ = 2 constructed heuristically by Nandi (1946). The blocks

http://dx.doi.org/10.1007/978-81-322-2461-7_3
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are: (1, 2, 3, 4), (1, 2, 5, 6), (1, 3, 6, 7), (1, 4, 5, 7), (2, 3, 5, 7), (2, 4, 6, 7), (3,
4, 5, 6). The B- and A-matrices of Lemma 6.2.1 can respectively be written as

B =

⎛

⎜⎜
⎝

1 2 3 4 5 7 6
2 1 6 5 7 4 3
3 5 1 7 2 6 4
4 6 7 1 3 2 5

⎞

⎟⎟
⎠ and A =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜
⎝

a1 a2 a3 a4 0 0 0
a2 a1 0 0 a3 a4 0
a3 0 a1 0 a4 0 a2
a4 0 0 a1 0 a2 a3
0 a3 0 a2 a1 0 a4
0 a4 a2 0 0 a3 a1
0 0 a4 a3 a2 a1 0

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟
⎠

.

Consider

H4 =

⎛

⎜⎜
⎝

1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1

⎞

⎟⎟
⎠ = (1,h1,h2,h3).

Using Lemma 6.2.1, we construct the following three W-matrices by using the iden-
tification a = h1, a = h2 and a = h3 respectively, where a′ = (a1, a2, a3, a4) and
they are as follows:

W1 =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

1 −1 1 −1 0 0 0
−1 1 0 0 1 −1 0
1 0 1 0 −1 0 −1

−1 0 0 1 0 −1 1
0 1 0 −1 1 0 −1
0 −1 −1 0 0 1 1
0 0 −1 1 −1 1 0

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

, W2 =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

1 −1 −1 1 0 0 0
−1 1 0 0 −1 1 0
−1 0 1 0 1 0 −1
1 0 0 1 0 −1 −1
0 −1 0 −1 1 0 1
0 1 −1 0 0 −1 1
0 0 1 −1 −1 1 0

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

,

W3 =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

1 1 −1 −1 0 0 0
1 1 0 0 −1 −1 0

−1 0 1 0 −1 0 1
−1 0 0 1 0 1 −1
0 −1 0 1 1 0 −1
0 −1 1 0 0 −1 1
0 0 −1 −1 1 1 0

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.

It is easy to observe that Wi -matrices satisfy the optimality condition (3.1.5).

Remark 6.2.2 If k is even, then it follows from Theorem 6.2.1 that at least one opti-
mum W-matrix can always be constructed by identifying the a’s with (1′

k
2
,−1′

k
2
).

In the following theorem, we shall see that the number of optimum W-matrices
can be increased substantially if the BPEBD obeys an additional condition of k-
resolvability. Now we give the definition of α-resolvability of a design (Raghavarao
1971, p. 59).

http://dx.doi.org/10.1007/978-81-322-2461-7_3
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Definition 6.2.1 A BPEBD with number of treatments = v, number of blocks = b,
number of replications of each treatment = r and block size = k is said to be α-
resolvable if the sets can be grouped into t classes S1, S2, . . . , St , each with β sets,
such that in each class every symbol is replicated α times.

We then have
vα = kβ, b = tβ, r = tα.

Thus a k-resolvable BPEBD with b = mv requires that the b = mv blocks can be
partitioned into m sets S1, S2, . . . , Sm each of which contains v blocks such that each
of the v treatments occurs k times in each Si , i = 1, 2, . . . ,m.

Theorem 6.2.2 For a k-resolvable BPEBD with b = mv, it is possible to construct
m(k − 1) optimum W-matrices, provided Hk and Hm exist.

Proof As the design is k-resolvable, then Lemma 6.2.1 is applicable to the blocks
of each Si and from these v blocks a matrix Av×v

i can be constructed where Ai

contains each of the symbols a1, a2, . . . , ak once and only once in each row and in
each column, i = 1, 2, . . . ,m. It is also to be noted that

A = (A1,A2, . . . ,Am) (6.2.2)

is the A-matrix of Lemma 6.2.1 corresponding to the b = mv blocks of BPEBD
where each of the symbols occurs m times in each row and just once in each column
of A.

According to the method described in Theorem 6.2.1, we can construct a matrix
W j i from A j by identifying a1, a2, . . . , ak with the elements of hi , the i th column of
Hk in (6.2.1). By juxtaposing W j i , j = 1, 2, . . . ,m, for fixed i , we obtain a matrix
Wi , where

Wi = (W1i ,W2i , . . . ,Wmi ), i = 1, 2, . . . , (k − 1). (6.2.3)

Varying i in (6.2.3), we get (k −1) matrices W1,W2, . . . ,Wk−1 which are optimum
W-matrices for the BPEBD. As the BPEBD is k-resolvable and Hm exists, we can
increase the number of optimalW-matrices. By taking theKhatri-Rao product among
h∗

j = (h∗
j1, h∗

j2, . . . , h∗
jm)

′, the j th column of Hm and Wi of (6.2.3), m(k − 1)
matrices W∗

j i can be constructed, where

W∗
j i = h∗′

j � Wi = (
h∗

j1W1i , h∗
j2W2i , . . . , h∗

jmWmi
)
,

∀i = 1, 2, . . . , (k − 1); j = 1, 2, . . . ,m. (6.2.4)

It is easy to verify that W∗
j i ’s satisfy the condition (3.1.5) and hence give m(k − 1)

optimum W-matrices for the k-resolvable BPEBD. �

Example 6.2.2 Let us consider the following 2-resolvable BIBD with parameters
v = 5, b = 10, r = 4, k = 2,λ = 1 where the blocks can be represented in the form
of a matrix B of order 2 × 10 as

http://dx.doi.org/10.1007/978-81-322-2461-7_3
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B =
(
1 2 3 4 5 1 2 3 4 5
2 3 4 5 1 3 4 5 1 2

)
= (B1,B2)

Now the A-matrix of order 10 × 5 can be constructed as

A =

T r.
↓
1
2
3
4
5

Bl. →
1 2 3 4 5 6 7 8 9 10⎛

⎜⎜
⎜⎜
⎝

a1 0 0 0 a2 a1 0 0 a2 0
a2 a1 0 0 0 0 a1 0 0 a2
0 a2 a1 0 0 a2 0 a1 0 0
0 0 a2 a1 0 0 a2 0 a1 0
0 0 0 a2 a1 0 0 a2 0 a1

⎞

⎟⎟
⎟⎟
⎠

= (A1,A2)

Considering the column (1,−1)′ of H2 and identifying 1 with a1 and −1 with a2,
one W-matrix can be constructed by using Theorem 6.2.1 as

W′
1 =

1 2 3 4 5⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

−1 0 0 0 1
1 0 −1 0 0
0 1 0 −1 0
0 0 1 0 −1

−1 0 0 1 0
0 −1 0 0 1

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

=
(

W′
11

W′
21

)
.

Since this is a resolvable design and m = 2, when H2 exists, two optimum
W-matrices can be constructed by using Theorem 6.2.2 as

W∗
11 = 1′

2 � (
W11, W21

) ; W∗
21 = (

1, −1
) � (

W11, W21
) = (

W11 −W21
)
.

Remark 6.2.3 Let Hk exist and m (>2) be even, then 2(k − 1) optimum W-matrices
can be obtained for a resolvable BPEBD by using (k−1) columns (except the column
of all 1’s) of Hk and using 1m and (1′

m
2
,−1′

m
2
)′ for the two choices of orthogonal

vectors in the Khatri-Rao product in Theorem 6.2.2.

Remark 6.2.4 If both of k (>2) and m (>2) are even, then two optimum W-matrices
can be constructed for a resolvable BPEBD by using the two pairs of vectors
((1′

k
2
,−1′

k
2
)′, 1m) and ((1′

k
2
,−1′

k
2
)′, (1′

m
2
,−1′

m
2
)′) for the columns of Hk and Hm

respectively in Theorem 6.2.2.

Remark 6.2.5 Let Hm exist and k(>2) be even. Then following Theorem 6.2.2,
m optimum W-matrices can be constructed for a resolvable BPEBD by using m
columns of Hm and (1′

k
2
,−1′

k
2
)′ as a column of fictitious Hk .
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Remark 6.2.6 If t optimumW-matrices exist for any BPEBD, then the same number
ofW-matrices exist for the dual of that design where the blocks of the original design
play the role of the treatments. This is because an optimum W-matrix for the dual
design is also optimum for the original design.

6.3 Cyclic Designs

Cyclic designs are BPEBDs obtained by developing m(≥1) initial blocks where the
v treatments are the elements of a module M . All cyclic designs belong to the class
of PBIBDs with at most v

2 associate classes. Many incomplete block designs may be
set out as cyclic designs.

If there are v treatments denoted by 0, 1, . . . , v − 1 which are elements of a
module M , and are arranged in blocks of size k so that each treatment is replicated
r times, then the cyclic design with these parameters is denoted by C(v, k, r ). Given
any initial block, another block is generated by adding α (mod v) to each treatment
of the initial block where α ∈ M . If all the v blocks thus obtained from the given
initial block are all distinct then this set of blocks is said to form a ‘full set’. If v
and k are relatively prime to each other then the v blocks generated from an initial
block always give a full set with parameters (v, k = r ). On the other hand if v and k
have a common divisor d, then for every value of d, there always exists at least one
initial block where all the v blocks generated from an initial block are not distinct;
only v

d of them are distinct. This set of blocks forms a ‘partial set’ with parameters
(v, k, r = v

d ). Full or partial sets can be used singly or in combination to construct
cyclic designs. For a detailed study, one is referred to John et al. (1972) and John
(1987).

According to John (1987), for given v and k, the
(
v
k

)
distinct blocks can be set

out in a number of cyclic sets where the sets are either ‘full sets’ consisting of v
blocks each or are ‘partial sets’. If v and k are relatively prime, then all the sets are
‘full sets’. On the other hand, if v and k are not relatively prime then ‘partial sets’
consisting of v

d distinct blocks arise, where d is any common divisor of v and k. For

example, for v = 7 and k = 3 the 35 = (7
3

)
all possible distinct blocks can be set

out in five cyclic ‘full sets’ each of 7 blocks and the five initial blocks can be taken
as (0, 1, 2), (0, 1, 3), (0, 1, 4), (0, 1, 5), (0, 2, 4) mod 7. On the other hand, for v = 8
and k = 4, the 70 = (8

4

)
all possible blocks can not be divided into all ‘full sets’ as

‘full sets’ because 8 does not divide 70. Moreover as 4 and 2 are common factors of
v = 8 and k = 4, there should be ‘partial sets’, one containing 4 blocks and another
containing 2 blocks. The seventy distinct blocks can be set out in 8 ‘full sets’ of 8
blocks each; one half-set of four blocks viz. (0, 1, 4, 5), (1, 2, 5, 6), (2, 3, 6, 7),
(3, 4, 7, 0) and one quarter-set of two blocks given by (0, 2, 4, 6), (1, 3, 5, 7).

If there exists a partial set consisting of k
d blocks in a cyclic design, then we see

that each treatment is replicated k
d times in these blocks. So the number of covariates

to be accommodated in a cyclic design depends on whether the sets are full or partial
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and also on the number of sets. When cyclic designs consist of ‘full sets’ only, then
a systematic way for assigning values to the covariates can be developed. However,
when a design contains ‘partial sets’, it is difficult to specify the number of covariates
to be accommodatedbeforehand. Someexamples of cyclic designs containing ‘partial
sets’ are considered in Dutta et al. (2010) where they have provided a solution for
OCDs through an ad hoc method.

It is to be noted that Das et al. (2003) and Dutta (2004) proposed OCDs on
some series of BIBD’s which belonged to the class of cyclic designs. Moreover, all
irreducible BIBDs can also be obtained by cyclically developing some sets of initial
blocks. So we can cover all these designs and a lot of other designs under a general
technique described in the following section.

6.3.1 Cyclic Designs Containing ‘Full Sets’ Only

It is proved in Theorem 6.2.2 that, for resolvable BPEBDs the number of covariates
can be increased over the number of covariates for ordinary BPEBD with the same
parameters. It can be easily noted that cyclic designs with m initial blocks giving
m full sets of blocks always give resolvable BPEBDs. The particular case when
the resolvable BPEBDs are cyclic designs, construction can be done more easily by
exploiting the circular nature of the blocks. The precise statement follows.

Theorem 6.3.1 Let a cyclic design with parameters v, b = mv, r = mk, k be
obtained by developing m initial blocks each of size k and also let Hk and Hm exist.
Then m(k − 1) optimum W-matrices can be constructed.

Proof Let Hk and Hm be written respectively in the following form:

Hk = (1,h1,h2, . . . ,hk−1) and Hm = (h∗
1,h∗

2, . . . ,h∗
m)

where
h∗′

i = (h∗
i1, h∗

i2, . . . , h∗
im); i = 1, 2, . . . ,m.

Also let the m initial blocks of the design be displayed in the form of column vectors
in the incidence matrix of that design. The k non-zero elements of the qth initial
block are replaced by the k elements of h j in that order and are cyclically permuted
to get a v × v matrix W jq . Again from h∗

i and W jq , q = 1, 2, . . . ,m, we construct
a v × b matrix W∗

j i by applying Khatri-Rao product, i.e.

W∗
j i = h∗′

i � W j = (
h∗

i1W j1, h∗
i2W j2, . . . , h∗

imW jm
) ; (6.3.1)



96 6 OCDs in Binary Proper Equireplicate Block Design Set-Up

where
W j = (W j1,W j2, . . . ,W jm), j = 1, 2, . . . , (k − 1). (6.3.2)

By varying j and i ,m(k−1) suchW∗
j i -matrices can be obtained. It can easily be seen

that these matrices satisfy the condition (3.1.5) and are optimum. Thus the theorem
follows. �

Note 6.3.1 It is to be noted that the cyclic design with ‘full sets’ is k-resolvable.
So m(k − 1) optimum W-matrices could have been constructed following Theorem
6.2.2. But as the design possesses cyclic nature, OCDs can be constructed more
easily through Theorem 6.3.1.

Example 6.3.1 Let a cyclic design with parameters v = 13, b = 26, r = 8, k = 4
with the initial blocks as (1, 4, 12, 13), (1, 4, 10, 13) mod 13, be constructed. Let H4
and H2 be written as

H4 =

⎛

⎜⎜
⎝

1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1

⎞

⎟⎟
⎠ = (1,h1,h2,h3); H2 =

(
1 1
1 −1

)
= (h∗

1,h∗
2).

We identify the elements of h1 with the non-zero elements of the first column of
N1, the part of the incidence matrix corresponding to the first initial block. Then we
permute cyclically this column in the same way as N1 was obtained and get matrix
W11. In the same way, by identifying the elements of h1 with non-zero elements
of the first column of N2, the part of the incidence matrix corresponding to the
second initial block and cyclically permuting it, we get W12. These matrices can be
visualized as

Treatments →
1 2 3 4 5 6 7 8 9 10 11 12 13

W′
11 =

(
1 0 0 − 1 0 0 0 0 0 0 0 1 − 1

and cyclic permutations

)
;

Treatments →
1 2 3 4 5 6 7 8 9 10 11 12 13

W′
12 =

(
1 0 0 − 1 0 0 0 0 0 1 0 0 − 1

and cyclic permutations

)
.

Then by Theorem 6.3.1, six optimum W-matrices for this design can be constructed
by using h1, h2, h3 and the two columns of H2. For instance, if h1 and h∗

1 are used,
then from (6.3.1), the two W-matrices W∗

11, W∗
12 are given by

W∗
11 = h∗′

1 � W1 = (
1, 1

) � (
W11, W12

) = (
W11, W12

)

http://dx.doi.org/10.1007/978-81-322-2461-7_3
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and
W∗

12 = h′
2 ∗ �W1 = (

1, −1
) � (

W11, W12
) = (

W11, −W12
)

Incidentally, it is seen that the cyclic design, discussed in Chap. 5, is a two-
associate class PBIBD with parameters v = 13, b = 26, r = 8, k = 4,λ1 = 1,
λ2 = 3, n1 = n2 = 6. The first associates of the treatment i are (i + 2, i + 5, i + 6,
i + 7, i + 8, i + 11) (mod 13).

Below we make some remarks regarding methods of construction of optimum
W-matrices where at least one of Hk and Hm does not exist so that Theorem 6.3.1
can not be applied.

Remark 6.3.1 If Hk exists but m is an odd integer, so that Hm does not exist, then
(k − 1) optimum W-matrices can be obtained for the said cyclic design and they are
given by 1m � W j , j = 1, 2, . . . , k − 1, where W j is obtained from (6.3.2).

Remark 6.3.2 If none of Hk and Hm exists and k ≡ 2 (mod 4) and m is an odd
integer, then one optimum W-matrix can be constructed as 1m � W∗, where W∗ is
a matrix analogous to W j of equation (6.3.2) obtained by using (1′

k
2
,−1′

k
2
)′ for the

cyclical permutation in the incidence matrix.

Remark 6.3.3 LetHk exist andm ≡ 2 (mod4),m > 2. In this case, 2(k−1) optimum
W-matrices given by h∗∗ � W j can be obtained, where h∗∗ is 1m or (1′

m
2
,−1′

m
2
)′.

Remark 6.3.4 If each of k, m is of the form 2 (mod 4) so that none of Hk and Hm

exists, then 2 optimum W-matrices can be constructed as h∗∗ � W∗ where h∗∗ is 1m

or (1′
m
2
,−1′

m
2
)′ and W∗ is the same as in Remark 6.3.2.

Remark 6.3.5 If Hm exists but Hk does not where k ≡ 2 (mod 4), k > 2, then m
optimum W-matrices can be constructed as h∗

i � W∗, i = 1, 2, . . . ,m where W∗ is
the same as Remark 6.3.2.

6.3.2 Cyclic Designs Containing Some Partial Sets

It was mentioned earlier that it is difficult to propose a systematic method for finding
OCDs for cyclic designs containing ‘partial sets’. It should benoted that the number of
optimumW-matrices depends on the properties of the ‘partial sets’ and consequently
on the nature of the columns of Hk whose elements are used to replace the non-zero
elements in the blocks of the incidence matrix. We consider the following example
illustrating an ad hoc method which depends on the nature of the partial set.

Example 6.3.2 Consider the irreducibleBIBDwith parameters v = 6, b = (6
4

)= 15;

r = (5
3

) = 10, k = 4,λ = (4
2

) = 6. The design can be obtained from the three initial
blocks: [(0, 1, 2, 3), (0, 2, 3, 4), (0, 2, 3, 5)] mod 6, where the first two give ‘full sets’

http://dx.doi.org/10.1007/978-81-322-2461-7_5
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containing six distinct blocks each and the last one gives a ‘partial set’ containing
only three distinct blocks. We consider H4 as

H4 =

⎛

⎜⎜
⎝

1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1

⎞

⎟⎟
⎠ = (1,h1,h2,h3). (6.3.3)

It is to be noted that, as in Theorem 6.3.1, all the three columns h1, h2 and h3 of
(6.3.3) cannot be used in each of the three subsets of blocks obtained by developing
cyclically the three initial blocks. The last three blocks obtained from the third initial
block are ‘partially cyclic’; only h1, h2 can be used to construct W-matrices but h3
cannot be used as it will not lead to zero column-sums. Using h1 and h2, we get two
W-matrices, namely W′

(1) and W′
(2) respectively by applying the method described

in Theorem 6.3.1:

Treatments →
0 1 2 3 4 5

Treatments →
0 1 2 3 4 5

W′
(1) =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

1 −1 1 −1 0 0
0 1 −1 1 −1 0
0 0 1 −1 1 −1

−1 0 0 1 −1 1
1 −1 0 0 1 −1

−1 1 −1 0 0 1
1 0 −1 1 −1 0
0 1 0 −1 1 −1

−1 0 1 0 −1 1
1 −1 0 1 0 −1

−1 1 −1 0 1 0
0 −1 1 −1 0 1
1 0 −1 1 0 −1

−1 1 0 −1 1 0
0 −1 1 0 −1 1

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

; W′
(2) =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

1 −1 −1 1 0 0
0 1 −1 −1 1 0
0 0 1 −1 −1 1
1 0 0 1 −1 −1

−1 1 0 0 1 −1
−1 −1 1 0 0 1
1 0 −1 −1 1 0
0 1 0 −1 −1 1
1 0 1 0 −1 −1

−1 1 0 1 0 −1
−1 −1 1 0 1 0
0 −1 −1 1 0 1
1 0 −1 −1 0 1

−1 1 0 1 −1 0
0 −1 1 0 1 −1

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

6.3.3 Cyclic Designs Where Each Element Corresponds
to a Number of Symbols

Here any treatment is denoted by α j where α is any element of the module M =
(0, 1, . . . ,m) and j is one of the n symbols 1, 2, . . . , n. The following is an example
of a design which is obtained by the classical method of difference (cf. Bose 1939)
where each symbol of the module M = (0, 1, 2, 3, 4) corresponds to two symbols
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1 and 2. If the blocks can be grouped into sets which have cycles, then optimum
W-matrices can be constructed by exploiting this property. The method is illustrated
through the following example.

Example 6.3.3 Consider the GD design with parameters v = 10, b = 20, r = 8,
k = 4,λ1 = 0,λ2 = 3,m = 5, n = 2 with the initial group (01, 02) mod 5.
The initial blocks are (01, 12, 22, 42), (02, 11, 21, 41), (01, 22, 32, 42), (02, 21, 31, 41)
mod 5. We divide the four initial blocks into two sets viz. S1 = {(01, 12, 22, 42),
(01, 22, 32, 42)} and S2 = {(02, 11, 21, 41), (02, 21, 31, 41)}. In the first five columns
of the incidence matrix corresponding to the initial block (01, 12, 22, 42) of S1, the
non-zero elements are replaced by the elements of h1 of (6.3.3) and in the last five
columns corresponding to (01, 22, 32, 42) of S1, the non-zero elements are replaced
by those of −h1. We denote this matrix, of order 10 × 10, by U(1)

1 . In the same way

by using h1 and −h1 in the two initial blocks of S2 we get a matrix U(2)
1 . U(1)

1 and

U(2)
1 are given by

U(1)
1 = T r.

↓

01
11
21
31
41
02
12
22
32
42

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 −1 0 0 0 0
0 1 0 0 0 0 −1 0 0 0
0 0 1 0 0 0 0 −1 0 0
0 0 0 1 0 0 0 0 −1 0
0 0 0 0 1 0 0 0 0 −1
0 −1 0 1 −1 0 1 −1 1 0

−1 0 −1 0 1 0 0 1 −1 1
1 −1 0 −1 0 1 0 0 1 −1
0 1 −1 0 −1 −1 1 0 0 1

−1 0 1 −1 0 1 −1 1 0 0

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

,

U(2)
1 = T r.

↓

01
11
21
31
41
02
12
22
32
42

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

0 1 0 −1 1 0 −1 1 −1 0
1 0 1 0 −1 0 0 −1 1 −1

−1 1 0 1 0 −1 0 0 −1 1
0 −1 1 0 1 1 −1 0 0 −1
1 0 −1 1 0 −1 1 −1 0 0

−1 0 0 0 0 1 0 0 0 0
0 −1 0 0 0 0 1 0 0 0
0 0 −1 0 0 0 0 1 0 0
0 0 0 −1 0 0 0 0 1 0
0 0 0 0 −1 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.

From U(1)
1 and U(2)

2 , we construct two optimum W-matrices as

W(1,1) = (U(1)
1 ,U(2)

1 ), W(1,2) = (U(1)
1 ,−U(2)

1 ).

Similarly we can get four more optimum W-matrices viz. W(2,1), W(2,2), W(3,1) and
W(3,2) by using h2 and h3.
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6.4 t-Fold BPEBDs

In Das et al. (2003) it was been seen that optimum W-matrices could be constructed
for BIBDs with repeated blocks. In this section, we propose to extend the result to
any BPEBD with repeated blocks. Thus the method will be applicable to BIBDs,
PBIBDs and a lot of others with repeated blocks. Also it has been seen that in our
method the number of optimum W-matrices can substantially be increased. Precise
statement follows.

Theorem 6.4.1 Let t repetitions of the blocks of a BPEBD d(v, b, r, k) be considered
where b = mv. Also let Hk and Ht exist. Then we can construct t (k − 1) optimum
W-matrices for the t-fold design BPEBD d(v, bt, r t, k).

Proof As Hk exists, according to the method described in Theorem 6.2.1, it is pos-
sible to construct (k − 1) optimum W-matrices for the lth BPEBD d(v, b, r, k) with
b = mv, m, a positive integer, where the nth optimum W-matrix for the lth BPEBD
be denoted as U(n)

l , l = 1, 2, . . . , t , n = 1, 2, . . . , k − 1.
For fixed n, the optimum W-matrix for the whole design considering all the folds

together is given by
U(n) = (U(n)

1 ,U(n)
2 , . . . ,U(n)

t ).

By assumption, Ht exists and it is written as

Ht = (h∗
1,h∗

2, . . . ,h∗
t−1,h∗

t ) (6.4.1)

where h∗
t = (1, 1, . . . , 1)′.

Then as the t-fold BPEBD is resolvable, then by Theorem 6.2.2

U jn = h∗′
j � (U(n)

1 ,U(n)
2 , . . . ,U(n)

t ), j = 1, 2, . . . , t; n = 1, 2, . . . , k − 1 (6.4.2)

gives t (k − 1) optimum W-matrices for the t-fold BPEBD d(v, tb, tr, k). �

Corollary 6.4.1 Let t repetitions of the blocks of a BPEBD d(v, b, r, k) be consid-
ered where b = mv where b = mv = ph + 1, m, h are positive integers, ph ≡ 1
(mod 4) and p is a prime odd number. Also let Hk and Ht exist. Then we can con-
struct (t − 1)(b − 1)(k − 2) optimum W-matrices in addition to t (k − 1) optimum
W-matrices constructed earlier.

Proof Additional (t − 1)(b − 1)(k − 2) optimum W-matrices for the BPEBD
d(v, bt, r t, k) can be constructed through the following steps:

Step 1:
Let, s be an odd prime power and let α0,α1, . . . ,αs−1 denote the elements of GF(s).
Consider, an s × s matrix Q = (qi j ), where qi j = χ(αi −α j ), i,j= 0, 1, . . . , (s −1)
and χ is the Legendre function satisfying
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χ(β) = 1 if β is a quadratic residue in GF(s)
= 0 if β = 0
= −1 otherwise.

This map satisfies χ(β1β2) = χ(β1)χ(β2). It is well known that Q satisfies the
following properties (cf. Hedayat et al. (1999), p. 150):

a. Q1s = 0, 1′
sQ = 0′

b. QQ′ = sIs − Js

c. Q is symmetric if s ≡ 1 (mod 4), skew−symmetric if s ≡ 3 (mod 4).

Under condition of the theorem it follows that b ≡ 2 (mod 4) and b − 1 is an odd
prime power and so a symmetric matrix Q = (qi j ) of order (b − 1)× (b − 1) exists.

Let u(n)
li be the i th row of the nth optimum W-matrix U(n)

l for the lth BPEBD

d(v, b, r, k), n = 1, 2, . . . , k − 1, l = 1, 2, . . . , t . Using the rows of U(n)
l and the

elements of Q(b−1)×(b−1), we define a matrix Al(n, n′) of order b × (b − 1)v where
the i th row is the partitioned into (b − 1) sub-vectors a(l)i j (n, n′) of order 1 × v, as

a(l)i j (n, n′) = u(n)
l j if i = j = 1, 2, . . . , b − 1

= qi j u
(n′)
l j if i �= j = 1, 2, . . . , b − 1, n �= n′ = 1, 2, . . . , k − 1

= −u(n)
lb if i = b, j = 1, 2, . . . , (b − 1).

Similarly we can define another matrix Bl(n, n′) of order b × (b − 1)v where sub-
vector b(l)

i j (n, n′) in Bl(n, n′) stands for a(l)i j (n, n′) of the Al(n, n′)-matrix. Actually

b(l)
i j (n, n′) = −u(n′)

l j if i = j = 1, 2, . . . , b − 1

= qi j u
(n)
l j if i �= j = 1, 2, . . . , b − 1, n �= n′ = 1, 2, . . . , k − 1

= u(n′)
lb if i = b, j = 1, 2, . . . , (b − 1).

This is to be noted that u(n)
li u(n)′

li = k =block size and u(n)
li u(n′)′

li = 0 for all l, i, n �=
n′. Now we construct the matrix Cl(n, n′) of order b × 2(b − 1)v as follows:

Cl(n, n′) = (Al(n, n′) : Bl(n, n′)).

Let Cl j (n, n′) denote the j th set of v columns of Cl(n, n′), j = 1, 2, . . . , 2(b − 1),
i.e.

Cl j (n, n′) =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

a(l)1 j (n, n′)
a(l)2 j (n, n′)

...

a(l)bj (n, n′)

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

, Cl,b−1+ j (n, n′) =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

b(l)1 j (n, n′)
b(l)2 j (n, n′)

...

b(l)bj (n, n′)

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

, j = 1, 2, . . . , b − 1.

(6.4.3)
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Using theproperties (b) and (c) of theQ-matrix,we can easily check that1′
b[Cl j (n, n′)

∗Cl j ′(n, n′)]1v = 0 ∀ j �= j ′ = 1, 2, . . . , 2(b−1), where ‘*’ denotes the Hadamard
product.

Step 3:
For fixed n �= n′, let us define the following v × bt matrix as

Wpi (n, n′) = h∗′
p � (

C′
1i (n, n′), C′

2i (n, n′), . . . , C′
ti (n, n′)

) ;
p = 1, 2, . . . , (t − 1), i = 1, 2, . . . , 2(b − 1). (6.4.4)

We show below that W′
lpi (n, n′) gives an optimum W-matrix for a BPEBD

d(v, bt, r t, k).
From the properties of Cli (n, n′) and h∗

p it can be proved that

(i) 1′
tbWpi (n, n′) = 0′ ∀i, p as 1tb = 1t ⊗ 1b

(ii) u(n)′
li 1v=0 ∀i = 1, 2, . . . , b, n = 1, 2, . . . , (k − 1), l = 1, 2, . . . , t,

(iii) 1′
mb[Wpi (n, n′) ∗ Wpj (n, n′)]1v=0 ∀l = 1, 2, . . . , (t − 1); i �= j = 1, 2, . . . ,
2(b − 1),

which imply conditions C1, C2 and C3 of (3.1.5) respectively.
Again for (n, n′) �= (n′′, n′′′), Wpi (n, n′) and Wpi (n′′, n′′′) are orthogonal in the

sense that sum of the elements of the Hadamard product of the above matrices is
zero. Thus we have only k−2

2 such distinct pairs of (n, n′). So using these k−2
2 distinct

pairs for each l and i , j , we can generate 2(t−1)(b−1)(k−2)
2 i.e. (t − 1)(b − 1)(k − 2)

optimum W-matrices for the BPEBD d(v, bt, r t, k). We can also easily check that
these W-matrices are orthogonal to the t (k − 1) optimum W-matrices of (6.4.2).

So in all, we get t (k − 1) + (t − 1)(b − 1)(k − 2) optimum W-matrices for the
BPEBD d(v, bt, r t, k). �

Example 6.4.1 We consider 2-fold of the BIBD(v = 9, b = 18, r = 8, k = 4,
λ = 3) with the initial blocks (x0, x2, x4, x6) and (x, x3, x5, x7), where x is a
primitive root of GF(32).

We write H4 as

H4 =

⎛

⎜⎜
⎝

1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1

⎞

⎟⎟
⎠ = (1,h1,h2,h3).

Applying Theorem 6.2.1 we construct U(1)
l for the lth fold of the design by using

h1 as

http://dx.doi.org/10.1007/978-81-322-2461-7_3
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U(1) 18×9
l =

0 1 x 2x + 1 2x + 2 2 2x x + 2 x + 1⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

0 1 0 −1 0 1 0 −1 0
1 0 −1 0 −1 1 0 0 0
0 −1 0 0 −1 0 0 1 1

−1 0 0 0 1 0 1 −1 0
0 −1 −1 1 0 0 1 0 0
1 1 0 0 0 0 −1 0 −1
0 0 0 1 1 −1 0 0 −1

−1 0 1 −1 0 0 0 0 1
0 0 1 0 0 −1 −1 1 0
0 0 1 0 −1 0 1 0 −1
0 0 0 1 0 0 −1 −1 1
1 0 0 −1 0 −1 1 0 0
0 1 −1 0 0 −1 0 0 1

−1 0 0 0 0 1 0 1 −1
0 0 −1 −1 1 0 0 1 0
1 −1 1 0 0 0 0 −1 0
0 −1 0 0 1 1 −1 0 0

−1 1 0 1 −1 0 0 0 0

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

=

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

u(1)
l,1

u(1)
l,2

u(1)
l,3

u(1)
l,4

u(1)
l,5

u(1)
l,6

u(1)
l,7

u(1)
l,8

u(1)
l,9

u(1)
l,10

u(1)
l,11

u(1)
l,12

u(1)
l,13

u(1)
l,14

u(1)
l,15

u(1)
l,16

u(1)
l,17

u(1)
l,18

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

; l = 1, 2.

Similarly using h2 we get U(2)
l as

U(2) 18×9
l =

0 1 x 2x + 1 2x + 2 2 2x x + 2 x + 1⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜
⎝

0 1 0 −1 0 −1 0 1 0
−1 0 1 0 −1 1 0 0 0
0 −1 0 0 1 0 0 −1 1
1 0 0 0 1 0 −1 −1 0
0 1 −1 −1 0 0 1 0 0
1 −1 0 0 0 0 −1 0 1
0 0 0 1 −1 1 0 0 −1

−1 0 1 1 0 0 0 0 −1
0 0 −1 0 0 −1 1 1 0
0 0 1 0 −1 0 −1 0 1
0 0 0 −1 0 0 −1 1 1

−1 0 0 1 0 −1 1 0 0
0 1 −1 0 0 1 0 0 −1
1 0 0 0 0 1 0 −1 −1
0 0 1 −1 −1 0 0 1 0
1 −1 −1 0 0 0 0 −1 0
0 −1 0 0 1 −1 1 0 0

−1 −1 0 1 1 0 0 0 0

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟
⎠

=

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

u(2)
l,1

u(2)
l,2

u(2)
l,3

u(2)
l,4

u(2)
l,5

u(2)
l,6

u(2)
l,7

u(2)
l,8

u(2)
l,9

u(2)
l,10

u(2)
l,11

u(2)
l,12

u(2)
l,13

u(2)
l,14

u(2)
l,15

u(2)
l,16

u(2)
l,17

u(2)
l,18

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

; l = 1, 2.
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In the same way, using h3 we can construct U(3)
l . Since b − 1 = 17, so we can

construct Q-matrix of order 17 × 17. From (6.4.3) we write the Cl(n, n′)-matrix by
using the appropriate elements of Q. To save space, below we show Cl,1(1, 2), Cl,2,
Cl,18(1, 2) and Cl,19(1, 2) only.

Cl,1(1, 2) = (u(1)′
l,1 , u

(2)′
l,2 , -u

(2)′
l,3 , u

(2)′
l,4 ,−u(2)′

l,5 , u
(2)′
l,6 ,−u(2)′

l,7 , u
(2)′
l,8 ,−u(2)′

l,9 , u
(2)′
l,10,−u(2)′

l,11,

u(2)′
l,12, −u(2)′

l,13, u(2)′
l,14, −u(2)′

l,15, u(2)′
l,16, −u(2)′

l,17, −u(1)′
l,18)

′,

Cl,2(1, 2) = (u(2)′
l,1 , u(1)′

l,2 , u(2)′
l,3 , u(2)′

l,4 , u(2)′
l,5 , −u(2)′

l,6 , u(2)′
l,7 , −u(2)′

l,8 , −u(2)′
l,9 , u(2)′

l,10, u(2)′
l,11,

−u(2)′
l,12, −u(2)′

l,13, −u(2)′
l,14, −u(2)′

l,15, u(2)′
l,16, −u(2)′

l,17, −u(1)′
l,18)

′,

Cl,18(1, 2) = (−u(2)′
l,1 , u(1)′

l,2 , −u(1)′
l,3 , u(1)′

l,4 , −u(1)′
l,5 , −u(1)′

l,6 , −u(1)′
l,7 , u(1)′

l,8 , −u(1)′
l,9 , u(1)′

l,10,

−u(1)′
l,11, u(1)′

l,12, −u(1)′
l,13, u(1)′

l,14, −u(1)′
l,15, u(1)′

l,16, −u(1)′
l,17, u(2)′

l,18)
′,

Cl,19(1, 2) = (u(1)′
l,1 ,−u(2)′

l,2 , u
(1)′
l,3 , u

(1)′
l,4 , u

(1)′
l,5 ,−u(1)′

l,6 , u
(1)′
l,7 ,−u(1)′

l,8 ,−u(1)′
l,9 , u

(1)′
l,10, u

(1)′
l,11,

−u(1)′
l,12, −u(1)′

l,13, −u(1)′
l,14, −u(1)′

l,15, u(1)′
l,16, −u(1)′

l,17, u(2)′
l,18)

′; l = 1, 2.

As t = 2, H2 exists and is written as

H2 =
(

1 1
−1 1

)
= (h∗

1,h∗
2).

From (6.4.4),

W1,1(1, 2)
36×9 = h∗

1 �
(

Cl,1(1, 2)
C2,1(1, 2)

)
=

(
Cl,1(1, 2)

−C2,1(1, 2)

)

can be constructed.
Similarly other W-matrices such as W1,2(1, 2), W1,18(1, 2), and W1,19(1, 2) can

be constructed. In this way we can construct (t −1)(b −1)(k −2) = 34 W-matrices
for BIBD(9, 36, 16, 4, 6) which is a 2-fold of the BIBD(9, 18, 8, 4, 3). Again
from (6.4.2) 6 additional optimum W-matrices can be obtained. So in all, we get 40
optimum W-matrices for BIBD(9, 36, 16, 4, 6).

So far we have we assume b = mv for the BPEBDs. Now we try to construct
optimum W-matrices for t-fold BPEBD d(v, b, r, k), where b �= mv, m(≥ 1), a
positive integer.

Theorem 6.4.2 Suppose a cyclic BPEBD d(v = b, r = k) exists. Again, if Hk , Ht

and Q of order (b −1)× (b −1) exist, then we can construct (t −1)(b −1)(k −2)+
(t − 1)(k − 1) optimum W-matrices for the t-fold of these BPEBD d(v = b, r = k).

Proof As Hk and Ht exist, (t − 1)(k − 1) optimum W-matrices can be constructed
using the cyclic property of the incidence matrix as in Theorem6.3.1 and the addi-
tional number (t − 1)(b − 1)(k − 2) optimum W-matrices can be constructed by
using properties of Q-matrix as in proof of Corollary 6.4.1. �
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Appendix

As mentioned earlier, BIBDs and PBIBDs form an important sub-class of BPEBDs
and the lists of BIBDs and PBIBDs are readily available (Tables6.1 and 6.2). So,
for OCDs in BPEBD set-up with b = mv we have considered BIBDs with b = mv

where v, b ≤ 100, r, k ≤ 15 from the list given in Raghavarao (1971) and the GDDs
with b = mv and r ≤ 10, k ≤ 10 from the same catalogue of Clatworthy (1973).
In this connection, we have to mention that in Chap.5, we have also prepared tables
for OCDs in GDDs set-up. However the readers need not get confused between the
tables of the two respective chapters. Here we can construct some more OCDs in
GDDs set-up and these are separated by using a ‘∗’ mark for additional designs,
which are not in Tables5.1, 5.2 and 5.3 of Chap. 5, in the 11th column in Table6.2.
A number of BIBDs and GDDs with b = mv are cyclic designs (Table6.3).

These designs have not been considered separately in cyclic design class. A sep-
arate list for the cyclic BIBDs having partial cycles has only been considered. Here
c denotes the number of optimum W’s for BPEBD. Other parameters have usual
significance.

Table 6.1 OCDs in BIBD with b = mv

Sl. no. Parameters c Design no. Method of
construction

v b r k λ

1 5 10 4 2 1 2 3 Theorem 6.2.2

2 5 5 4 4 3 3 4 Theorem 6.2.1

3 7 7 4 4 2 3 11 Theorem 6.2.1

4 7 21 6 2 1 1 12 Theorem 6.2.1

5 7 7 6 6 5 1 13 Theorem 6.2.1

6 9 36 8 2 1 4 18 Theorem 6.2.2

7 9 18 8 4 3 6 19 Theorem 6.2.2

8 9 9 8 8 7 7 21 Theorem 6.2.1

9 11 11 6 6 3 1 30 Theorem 6.2.1

10 11 55 10 2 1 1 31 Theorem 6.2.1

11 11 11 10 10 9 1 32 Theorem 6.2.1

12 13 13 4 4 1 3 37 Theorem 6.2.1

13 13 26 12 6 5 2 40 Remark 6.2.5

14 15 15 8 8 4 7 44 Theorem 6.2.1

15 16 16 6 6 2 1 47 Remark 6.2.2

16 16 16 10 10 6 1 49 Remark 6.2.2

17 19 19 10 10 5 1 56 Remark 6.2.2

18 19 57 12 4 2 3 57 Theorem 6.2.1

19 21 42 12 6 3 2 61 Remark 6.2.5

(continued)

http://dx.doi.org/10.1007/978-81-322-2461-7_5
http://dx.doi.org/10.1007/978-81-322-2461-7_5
http://dx.doi.org/10.1007/978-81-322-2461-7_5
http://dx.doi.org/10.1007/978-81-322-2461-7_5
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Table 6.1 (continued)

Sl. no. Parameters c Design no. Method of
construction

v b r k λ

20 23 23 12 12 6 11 Dual of 64 Theorem 6.2.1

21 23 50 8 4 1 6 66 Theorem 6.2.2

22 27 27 14 14 7 1 Dual of 71 Remark 6.2.2

23 31 31 6 6 1 1 75 Remark 6.2.2

24 31 31 10 10 3 1 76 Remark 6.2.2

25 45 45 12 12 3 11 85 Theorem 6.2.1

26 57 57 8 8 1 7 87 Theorem 6.2.1

27 91 91 10 10 1 1 91 Remark 6.2.2

Table 6.2 OCDs in GDDs

Sl. no. v b r k λ1 λ2 m n c Design no. Method of
construction

1 6 3 2 4 2 1 3 2 2 S1 Remark 6.2.6

2 6 6 4 4 4 2 3 2 3 S2 Theorem 6.2.1

3 6 12 8 4 8 4 3 2 6 S4 Theorem 6.2.2

4 10 10 4 4 4 1 5 2 3 S9 Theorem 6.2.1

5 10 20 8 4 8 2 5 2 6 S10 Theorem 6.2.2

6 18 36 8 4 8 1 9 2 6 S15 Theorem 6.2.2

7 8 8 6 6 6 4 4 2 1 S19 Remark 6.2.2

8 9 3 2 6 2 1 3 3 1 S21 Remark 6.2.2

9 9 9 6 6 6 3 3 3 1 S23 Remark 6.2.2

10 10 10 6 6 6 3 5 2 1 S26 Remark 6.2.2

11 12 12 6 6 6 2 4 3 1 S29 Remark 6.2.2

12 14 14 6 6 6 2 7 2 1 S33 Remark 6.2.2

13 21 21 6 6 6 1 7 3 1 S42 Remark 6.2.2

14 26 26 6 6 6 1 13 2 1 S44 Remark 6.2.2

15 10 5 4 8 4 3 5 2 6 S51 Remark 6.2.6

16 10 10 8 8 8 6 5 2 7 S52 Theorem 6.2.2

17 12 3 2 8 2 1 3 4 4 S53 Remark 6.2.6

18 12 6 4 8 4 2 3 4 6 S54 Remark 6.2.6

19 12 12 8 8 8 4 3 4 7 S56 Theorem 6.2.2

20 14 7 4 8 4 2 7 2 6 S59 Remark 6.2.6

21 14 14 8 8 8 4 7 2 7 S60 Theorem 6.2.2

22 18 18 8 8 8 3 9 2 7 S65 Theorem 6.2.2

23 20 10 4 8 4 1 5 4 6 S66 Remark 6.2.6

(continued)
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Table 6.2 (continued)

Sl. no. v b r k λ1 λ2 m n c Design no. Method of
construction

24 20 20 8 8 8 2 5 4 7 S68 Theorem 6.2.2

25 26 13 4 8 4 1 13 2 6 S71 Remark 6.2.6

26 26 26 8 8 8 2 13 2 7 S72 Theorem 6.2.2

27 36 36 8 8 8 1 9 4 7 S77 Theorem 6.2.2

28 50 50 8 8 8 1 25 2 7 S80 Theorem 6.2.2

29 12 12 10 10 10 8 6 2 1 S99 Remark 6.2.2

30 15 3 2 10 2 1 3 5 1 S100 Remark 6.2.6

31 15 15 10 10 10 5 3 5 1 S104 Remark 6.2.2

32 18 18 10 10 10 5 9 2 1 S105 Remark 6.2.2

33 22 22 10 10 10 4 11 2 1 S111 Remark 6.2.2

34 30 30 10 10 10 2 6 5 1 S115 Remark 6.2.2

35 42 42 10 10 10 2 21 2 1 S119 Remark 6.2.2

36 55 55 10 10 10 1 11 5 1 S123 Remark 6.2.2

37 82 82 10 10 10 1 41 2 1 S124 Remark 6.2.2

38 4 4 2 2 0 1 2 2 1 SR1 Theorem 6.2.1

39 4 8 4 2 0 2 2 2 2 SR2 Theorem 6.2.2

40 4 12 6 2 0 3 2 2 1 SR3 Theorem 6.2.1

41 4 16 8 2 0 4 2 2 4 SR4 Theorem 6.2.2

42 4 20 10 2 0 5 2 2 1 SR5 Theorem 6.2.1

43 6 18 6 2 0 2 2 3 1 SR7∗ Theorem 6.2.1

44 8 16 4 2 0 1 2 4 2 SR9 Theorem 6.2.2

45 8 32 8 2 0 2 2 4 4 SR10 Theorem 6.2.2

46 10 50 10 2 0 2 2 5 1 SR12∗ Theorem 6.2.1

47 12 36 6 2 0 1 2 6 1 SR13 Theorem 6.2.1

48 16 64 8 2 0 1 2 8 4 SR15 Theorem 6.2.2

49 20 100 10 2 0 1 2 10 1 SR17 Theorem 6.2.1

50 8 8 4 4 0 2 4 2 3 SR36 Theorem 6.2.1

51 8 16 8 4 0 4 4 2 6 SR39 Theorem 6.2.2

52 16 16 4 4 0 1 4 4 3 SR44 Theorem 6.2.1

53 16 32 8 4 0 2 4 4 6 SR45 Theorem 6.2.2

54 32 64 8 4 0 1 4 8 6 SR49 Theorem 6.2.2

55 12 12 6 6 0 3 6 2 1 SR67 Remark 6.2.2

56 12 12 6 6 2 3 3 4 1 SR68∗ Remark 6.2.2

57 18 18 6 6 0 2 6 3 1 SR72∗ Remark 6.2.2

58 16 16 8 8 0 4 8 2 7 SR92 Theorem 6.2.1

59 32 32 8 8 0 2 8 4 7 SR95 Theorem 6.2.1

(continued)
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Table 6.2 (continued)

Sl. no. v b r k λ1 λ2 m n c Design no. Method of
construction

60 64 64 8 8 0 1 8 8 7 SR97 Theorem 6.2.1

61 20 20 10 10 0 5 10 2 1 SR108 Remark 6.2.2

62 4 8 4 2 2 1 2 2 2 R1∗ Theorem 6.2.2

62 4 8 4 2 2 1 2 2 2 R1∗ Theorem 6.2.2

63 4 12 6 2 4 1 2 2 1 R4∗ Theorem 6.2.1

64 4 16 8 2 6 1 2 2 4 R8∗ Theorem 6.2.2

65 4 16 8 2 4 2 2 2 4 R9∗ Theorem 6.2.2

66 4 16 8 2 2 3 2 2 4 R10∗ Theorem 6.2.2

67 4 20 10 2 8 1 2 2 1 R14∗ Theorem 6.2.1

68 4 20 10 2 6 2 2 2 1 R15∗ Theorem 6.2.1

69 4 20 10 2 4 3 2 2 1 R16∗ Theorem 6.2.1

70 4 20 10 2 2 4 2 2 1 R17∗ Theorem 6.2.1

71 6 12 4 2 0 1 3 2 2 R18∗ Theorem 6.2.2

72 6 18 6 2 2 1 3 2 1 R19∗ Theorem 6.2.1

73 2 24 8 2 4 1 3 2 4 R22∗ Theorem 6.2.2

74 6 24 8 2 0 2 3 2 4 R23∗ Theorem 6.2.2

75 6 24 8 2 1 2 2 3 4 R24∗ Theorem 6.2.2

76 6 30 10 2 6 1 3 2 1 R28∗ Theorem 6.2.1

77 8 24 6 2 0 1 4 2 1 R29∗ Theorem 6.2.1

78 8 32 8 2 2 1 4 2 4 R30∗ Theorem 6.2.2

79 8 40 10 2 2 1 2 4 1 R32∗ Theorem 6.2.1

80 8 40 10 2 4 1 4 2 1 R33∗ Theorem 6.2.1

81 9 27 6 2 0 1 3 3 1 R34∗ Theorem 6.2.1

82 9 45 10 2 2 1 3 3 1 R35∗ Theorem 6.2.1

83 10 40 8 2 0 1 5 2 4 R36∗ Theorem 6.2.2

84 10 50 10 2 2 1 5 2 R37∗ Theorem 6.2.1

85 12 48 8 2 0 1 3 4 4 R38∗ Theorem 6.2.2

86 12 16 10 2 0 1 6 2 1 R40∗ Theorem 6.2.1

87 15 75 10 2 0 1 3 5 1 R41∗ Theorem 6.2.1

88 6 6 4 4 3 2 2 3 3 R94∗ Theorem 6.2.1

89 6 12 8 4 6 4 2 3 6 R95∗ Theorem 6.2.2

90 6 12 8 4 4 5 3 2 6 R96∗ Theorem 6.2.2

91 8 16 8 4 4 3 2 4 6 R98∗ Theorem 6.2.2

92 8 16 8 4 6 3 4 2 6 R99∗ Theorem 6.2.2

93 9 9 4 4 3 1 3 3 3 R104∗ Theorem 6.2.1

94 9 18 8 4 6 2 3 3 6 R105∗ Theorem 6.2.2

(continued)
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Table 6.2 (continued)

Sl. no. v b r k λ1 λ2 m n c Design no. Method of
construction

95 10 20 8 4 0 3 5 2 6 R106 Theorem 6.2.2

96 12 12 4 4 2 1 6 2 3 R109∗ Theorem 6.2.1

97 12 24 8 4 4 2 6 2 6 R110∗ Theorem 6.2.2

98 14 14 4 4 0 1 7 2 3 R112∗ Theorem 6.2.1

99 14 28 8 4 0 2 7 2 6 R113∗ Theorem 6.2.2

100 15 15 4 4 0 1 5 3 3 R114∗ Theorem 6.2.1

101 15 30 8 4 6 1 5 3 6 R115∗ Theorem 6.2.2

102 15 30 8 4 0 2 5 3 6 R116∗ Theorem 6.2.2

103 15 30 8 4 1 2 3 5 6 R117∗ Theorem 6.2.2

104 16 32 8 4 4 1 4 4 6 R120∗ Theorem 6.2.2

105 26 52 8 4 0 1 13 2 6 R128∗ Theorem 6.2.2

106 27 54 8 4 0 1 9 3 6 R129∗ Theorem 6.2.2

107 28 56 8 4 0 1 7 4 6 R130∗ Theorem 6.2.2

108 10 10 6 6 5 2 2 5 1 R166∗ Remark 6.2.2

109 15 15 6 6 5 1 3 5 1 R168∗ Remark 6.2.2

110 27 27 6 6 3 1 9 3 1 R170∗ Remark 6.2.2

111 28 28 6 6 2 1 7 4 1 R171∗ Remark 6.2.2

112 12 12 8 8 6 5 6 2 7 R186∗ Theorem 6.2.1

113 14 14 8 8 7 2 2 7 7 R187∗ Theorem 6.2.1

114 21 21 8 8 7 1 3 7 7 R188∗ Theorem 6.2.1

115 24 24 8 8 4 2 4 6 7 R189∗ Theorem 6.2.1

116 48 48 8 8 4 1 12 4 7 R190∗ Theorem 6.2.1

117 63 63 8 8 0 1 9 7 7 R191∗ Theorem 6.2.1

118 12 12 10 10 9 8 4 3 1 R203∗ Remark 6.2.2

119 14 14 10 10 8 6 2 7 1 R204∗ Remark 6.2.2

120 14 14 10 10 6 7 7 2 1 R205∗ Remark 6.2.2

121 18 18 10 10 9 2 2 9 1 R206∗ Remark 6.2.2

122 27 27 10 10 9 1 3 9 1 R207∗ Remark 6.2.2

123 32 32 10 10 6 2 4 8 1 R208∗ Remark 6.2.2

124 75 75 10 10 5 1 15 5 1 R209∗ Remark 6.2.2
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Table 6.3 OCDs in cyclic designs

Sl. no. Parameters Solution c Method of construction

v b r k λ

1 6 15 10 4 6 Two ‘full sets’ of blocks
each and the initial blocks:
[(0, 1, 2, 3), (0, 2, 3, 4)]
mod 6; the initial blocks
(0, 2, 3, 5) mod 6

2 Analogous to Example
6.3.2

2 19 37 12 4 2 Difference set:
(0, x0, x6, x12);
(0, x1, x7, x13);
(0, x2, x8, x14); x is a
primitive root of GF(19)

3 Remark 6.3.1

3 22 77 14 4 2 Difference set:
(x01 , x31 , xα

2 , xα+3
2 );

(x11 , x41 , xα+1
2 , xα+4

2 );
(x21 , x51 , xα+2

2 , xα+5
2 );

(x02 , x32 , xα
3 , xα+3

3 );
(x12 , x42 , xα+1

3 , xα+4
3 )

(x22 , x52 , xα+2
3 , xα+5

3 );
(x03 , x33 , xα

1 , xα+3
1 );

(x13 , x43 , xα+1
1 , xα+4

1 );
(x23 , x53 , xα+2

1 , xα+5
1 );

(∞, 01, 02, 03);
(∞, 01, 02, 03); x is a
primitive root of GF(7)

2 Analogous to Example
6.3.2 and Example 6.3.3
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Chapter 7
OCDs in Balanced Treatment Incomplete
Block Design Set-Up

7.1 Introduction

Here we deal with the balanced treatment incomplete block (BTIB) design set-up
with p + 1 treatments and c covariates and investigate the problem of most efficient
estimation of the covariate parameters in BTIB design set-ups. As a useful class of
designs for testing test treatments against control, Bechhofer and Tamhane (1981)
introduced BTIB design. Suppose in a test-control design d, the treatments are in-
dexed by c0, 1, . . . , vwith c0 denoting the control treatment and 1, 2, . . . , v denoting
the v(≥2) test treatments. Let k denote the common size of each block, and b denote
the number of blocks available for experimentation. Thus n = kb is the total number
of experimental units. According to Bechhofer and Tamhane (1981), the design d is
called a BTIB design if

(a) d is incomplete, i.e. no block contains all the v + 1 treatments,
(b) λc0i = λc0 , i = 1, 2, . . . , v and λi1i2 = λ, i1 �= i2 = 1, 2, . . . , v, where

λuu′ =
b∑

j=1

nu j nu′ j , u �= u′ = c0, 1, . . . , v and ni j denotes the number of times

the i th treatment appears in the j th block, i = c0, 1, . . . , v, j = 1, 2, . . . , b.

According to Bechhofer and Tamhane (1981), a BTIB design neither needs to satisfy

the condition that ri =
b∑

j=1

ni j , (1 ≤ i ≤ v), the number of replications of the i th test

treatment are all equal nor, does it require to be binary in the test/control treatments.
But as mentioned earlier Dutta and Das (2013) considered only those BTIB designs
which were constructed in Bechhofer and Tamhane (1981) and Das et al. (2005)
where the designs had all ri = r .

© Springer India 2015
P. Das et al., Optimal Covariate Designs, DOI 10.1007/978-81-322-2461-7_7
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So here the discussion is restricted to the set-up of BTIB design with parameters
v, b, k, r, rc0 , λ, λc0 which is denoted by BTIB(v, b, k, r, rc0 , λ, λc0 ), where

rc0 =
b∑

j=1

nc0 j is the replication of the control treatment.

Let yi jl be the response and z(t)i jl be the value of the t th covariate when the

treatment i is applied to the unit l of block j , i = c0, 1, . . . , v, j = 1, 2, . . . , b,
l = 1, 2, . . . , ni j (ni j = 0, 1, 2, . . .), t = 1, 2, . . . , c. The model which we work
with is

yi jl = μ + τi + β j +
c∑

t=1

γt z
(t)
i jl + ei jl , (7.1.1)

where μ is the general mean, τi is the effect of treatment i , β j the effect of block
j , γ1, γ2, . . . , γc are the regression coefficients associated with the c covariates Z1,
Z2, . . . ,Zc respectively and ei jl is the observational error corresponding to yi jl . As
usual, the random errors {ei jl} are assumed to be uncorrelated and homoscedastic
with common variance σ2. As in other chapters it is assumed that the values of each
covariate are in the interval [−1, 1], i.e.

z(t)i jl ∈ [−1, 1], i = c0, 1, . . . , v; j = 1, 2, . . . , b; l = 1, 2, . . . , ni j ; t = 1, 2, . . . , c.

(7.1.2)

In matrix notation Model (7.1.1) can be represented as

(Y, μ1n + X1τ + X2β + Zγ, Inσ2) (7.1.3)

where Y = (. . . , yi jl , . . .)
′ is the vector of observations of order n × 1, τ , β and

γ correspond, respectively, to the vectors of treatment effects, block effects and the
covariate effects;X1 andX2 are, respectively, the designmatrices of treatment effects
and block effects andZ = ((z(t)i jl)) is the design matrix corresponding to the covariate
effects. 1n is a vector of order n with all elements unity and In is the identity matrix
of order n.

With reference to the model (7.1.3), it is evident that for the estimation of the
covariate effects orthogonally to the treatment and block effects we will impose
the conditions as stated in (3.1.3) and the regression parameters are estimated with
maximum efficiency if additionally, (3.1.4) holds.

7.2 OCDs and W-Matrices

With respect to Model (7.1.3), γ is estimated most efficiently if Z-matrix satisfies
conditions (3.1.3) and (3.1.4). The choice of the Z-matrix is usually difficult under
the most general block design set-up. As mentioned in Chap.4 that in the binary

http://dx.doi.org/10.1007/978-81-322-2461-7_3
http://dx.doi.org/10.1007/978-81-322-2461-7_3
http://dx.doi.org/10.1007/978-81-322-2461-7_3
http://dx.doi.org/10.1007/978-81-322-2461-7_3
http://dx.doi.org/10.1007/978-81-322-2461-7_4
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design set-up Das et al. (2003) had represented each column of the Z-matrix by a
matrix W, where the rows of W corresponded to the treatments and the columns
of W corresponded to the blocks. This brought in some ease in construction of the
Z-matrix. But a BTIB design need not be binary; however, in the BTIB designs
which we are considering here, the portion for the test treatments is binary, but the
control treatment may occur more than once in a block. So to represent the columns
of an optimum Z-matrix by W-matrices, we convert the incidence matrix of a BTIB
design to one which is binary.

Let N = (
n′

C , N′
T

)′

be the incidence matrix of the BTIB design, where n 1×b
C indicates the incidence

vector of the control treatment and NT indicates the incidence matrix of the test
treatments. For our convenience in construction of OCDs, we replace the incidence
vector nC of the control treatment by a nc0 × b matrix N∗

C with elements 0 and 1
where the j th column ofN∗

C contains nc0 j unities in some order and (nc0 −nc0 j ) zeros
in other places, j = 1, 2, . . . , b, nc0 being the maximum of nc01 , nc02 , . . . , nc0b . To
fix ideas and to illustrate the technique we will use a definite order of 1s and 0s
where 1’s are followed by 0’s. Therefore, the incidence matrix N can be written in a
transformed form with the elements 0 and 1 as

N∗(nc0+v)×b = (
N∗′

C , N′
T

)′
(7.2.1)

where N
∗(nc0×b)
C is actually the incidence matrix corresponding to the control treat-

ment in the binary form.
Now we can make a correspondence between the elements of any column of Z

with the positive entries of N∗. Also, as the other entries of N∗ are zeros and the
z-values are ±1, we can get a matrix W(t) from N∗ by replacing n∗

i j ’s by ±n∗
i j

according to the values of t th column of Z. The W(t)-matrix precisely represents the
t th column of Z. Note from (7.2.1) that W(t) can be accordingly partitioned as

W(t) (nc0+v)×b =
(

W(t)′
C , W(t)′

T

)′
. (7.2.2)

Here optimum W-matrices are being constructed from N∗, the incidence matrix of a
BTIB design, by putting +1 or −1 in the non-zero positions of every row and every
column of N∗. From the definition of the W-matrix it follows that the conditions
(3.1.3) and (3.1.4) change to the following:

C1. W(t)-matrix has all column sums equal to zero;
C2. W(t)

T -matrix has all row sums equal to zero;
C3. The grand total of all the entries in the Hadamard product

of W(t) and W(t ′) is equal to nδt t ′, 1 ≤ t �= t ′ ≤ c.

⎫
⎪⎪⎬

⎪⎪⎭
(7.2.3)

http://dx.doi.org/10.1007/978-81-322-2461-7_3
http://dx.doi.org/10.1007/978-81-322-2461-7_3
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We may note in passing that (i) W(t)
C = (±1, 0) does not posses any such property

of its row total (ii) however, it is trivially true that
∑∑

w
(t)
C (i, j) is equal to zero.

Definition 7.2.1 With respect to model (7.1.3), the W-matrices corresponding to
the c covariates are said to be optimum if they satisfy the condition (7.2.3).

Remark 7.2.1 It is to be noted that if c = 1, only the conditions C1 and C2 are to be
satisfied by the W-matrix to be optimum.

7.3 Optimum Covariate Designs

As it has already been mentioned earlier that the construction of OCDs depends
on the methods of construction of the corresponding BTIB designs, we divide this
section into three subsections according to the methods of construction.

7.3.1 BTIB Design Obtained from Generator Designs

Following (Bechhofer and Tamhane 1981), we define generator designs which are
BTIB designs with v test treatments and b blocks of size k each such that no proper
subsets of blocks can give rise to a BTIB design. Suppose that there are s0 generator
designs D1, D2,…, Ds0 (say) and let λ

(i), λ(i)
c0 be the frequency parameters associated

with Di and let bi be the number of blocks required by Di (i = 1, 2,…, s0). Then a

BTIB design D =
s0⋃

i=1
fiDi obtained by forming unions of fi > 0 replications of Di

has the frequency parameters λ =
s0∑

i=1

fiλ
(i), λc0 =

s0∑

i=1

fiλ
(i)
c0 and b =

s0∑

i=1

fi bi

blocks cf. Bechhofer and Tamhane (1981). We consider the generator designs con-
structed by Bechhofer and Tamhane (1981) and construct OCDs for these BTIB
designs.
(i) For each v ≥ 2, k = 2 there are exactly two generator designs and these are

D1 =
{

c0 c0 . . . c0
1 2 . . . v

}
, D2 =

{
1 1 . . . v − 1
2 3 . . . v

}
. (7.3.1)

From these generator designs, implementable BTIB designs of the type D = f1D1∪
f2D2 canbe constructed for f1, f2 > 0.When f1 = f2 = f (say), the corresponding
design parameters for D are

v, b = f (v(v + 1)/2), k = 2, r = rc0 = f v, λc0 = f, λ = f. (7.3.2)
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For the construction of OCDs for BTIB design with v even and f = 1 the following
lemma will be helpful.

Lemma 7.3.1 Let v (≥2) be even and f = 1 in the parameters (7.3.2). Then a
W-matrix for the BTIB design with parameters v, b = v(v + 1)/2, k = 2, r =
rc0 = v, λ = 1, λc0 = 1 obtained by D = D1 ∪ D2, can always be constructed.

Proof The incidence matrix N∗ of the design D can be written as

N∗ =
(

1′
v 0′ 0′ . . . 0′ 0′

Iv A∗
1 A∗

2 . . . A∗
(v−2)/2 B

)
(7.3.3)

where A∗′
i of order v × v is obtained from cyclic permutation of the following row

1 2 . . . i i + 1 i + 2 . . . v(
1 0 . . . 0 1 0 . . . 0

); i = 1, 2, . . . , (v − 2)/2
. (7.3.4)

and
B = (

Iv/2, Iv/2
)′
. (7.3.5)

Corresponding toA′
i we construct amatrixW∗′

2,i by cyclical permutation of the vector

1 2 . . . i i + 1 i + 2 . . . v(
1 0 . . . 0 −1 0 . . . 0

); i = 1, 2, . . . , (v − 2)/2
(7.3.6)

obtained from (7.3.4) by replacing the non-null elements by 1 and −1 respectively,
i = 1, 2, . . . , (v − 2)/2. Thus we get the following matrix

W∗ v×v(v−2)/2
2 = (

W∗
2,1, W∗

2,2, . . . ,W∗
2,(v−2)/2

)
(7.3.7)

after juxtaposition of W∗
2,i ’s. Again corresponding to the matrices Iv of (7.3.3) and

B of (7.3.5) we define the two following matrices

W∗ v×v
1 =

(−Iv/2 0
0 Iv/2

)
, W∗ v×v/2

3 =
(

Iv/2
−Iv/2

)
. (7.3.8)

Using W∗
1, W∗

2 and W∗
3 in N∗ of (7.3.3), the following W-matrix of order (v + 1)×

v(v + 1)/2

W∗ =
(

1′
v/2 − 1′

v/2 0′ 0′
W∗

1 W∗
2 W∗

3

)
(7.3.9)

can be seen to satisfy conditions C1–C3 of (7.2.3). �

Example 7.3.1 Take v = 4. The incidence matrix N∗ of the design when v = 4
looks like
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N∗ =

⎛

⎜⎜⎜
⎜
⎝

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 0 0 1 1 0
0 1 0 0 1 1 0 0 0 1
0 0 1 0 0 1 1 0 1 0
0 0 0 1 0 0 1 1 0 1

⎞

⎟⎟⎟
⎟
⎠

=
(

1′
4 0′ 0′

I4 A∗
1 B

)
(7.3.10)

From (7.3.6), W∗′
2,1 can be written as follows:

W∗′
2,1 =

⎛

⎜⎜
⎝

1 −1 0 0
0 1 −1 0
0 0 1 −1

−1 0 0 1

⎞

⎟⎟
⎠ .

Therefore from (7.3.9), W∗-matrix is given by

W∗ =

⎛

⎜⎜⎜
⎜
⎝

1 1 −1 −1 0 0 0 0 0 0
−1 0 0 0 1 0 0 −1 1 0
0 −1 0 0 −1 1 0 0 0 1
0 0 1 0 0 −1 1 0 −1 0
0 0 0 1 0 0 −1 1 0 −1

⎞

⎟⎟⎟
⎟
⎠
. (7.3.11)

The following theorem gives method of construction of OCDs for the general form
of the above designs.

Theorem 7.3.1 Let v be even and a Hadamard matrix of order f exist. Then f
optimum W-matrices for the series of BTIB designs with parameters given in (7.3.2)
can be constructed.

Proof Incidence matrix of the design ( f D1 ∪ f D2) is actually f replications of N∗
of (7.3.3) and hence can be written as

N∗∗ (v+1)× f v(v+1)/2 = 1′
f

⊗
N∗ (7.3.12)

where N∗ is defined in (7.3.3) and
⊗

denotes Kornecker product. By assumption,
Hadamard matrix of order f exists and is written as

H f = (h1, h2, ...,h f ). (7.3.13)

Now we construct the matrix W∗∗
i as follows

W∗∗
i = hi

⊗
W∗; i = 1, 2, ..., f (7.3.14)

where W∗ is defined in (7.3.9). We can easily check that W∗∗
i ’s satisfy all properties

of optimum W-matrices. �
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Example 7.3.2 Let v = 4, f = 4. Considering N∗ from (7.3.10)

N∗∗ = 1′
f

⊗

⎛

⎜⎜⎜⎜
⎝

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 0 0 1 1 0
0 1 0 0 1 1 0 0 0 1
0 0 1 0 0 1 1 0 1 0
0 0 0 1 0 0 1 1 0 1

⎞

⎟⎟⎟⎟
⎠

(7.3.15)

H4, a Hadamard matrix of order 4, is written as

H4 =

⎛

⎜⎜
⎝

1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1

⎞

⎟⎟
⎠ = (h1, h2, h3, h4) (7.3.16)

where hl is the lth column of H4. Four optimum W-matrices can be constructed as
follows:

W∗∗
1 = h′

1

⊗
W∗ = (

W∗, W∗, W∗, W∗) ; W∗∗
2 = h′

2

⊗
W∗

= (
W∗,−W∗, W∗,−W∗) ;

W∗∗
3 = h′

3

⊗
W∗ = (

W∗,−W∗,−W∗, W∗) ; W∗∗
4 = h′

4

⊗
W∗

= (
W∗, W∗,−W∗,−W∗) ;

where W∗ is given in (7.3.11).

(ii) Following Bechhofer and Tamhane (1981), for given (v, k) and k ≥ 3, let a
generator design Dm have m + 1 plots assigned to the control treatment in each
block; the v test treatments be assigned to the remaining km = (k − m − 1)-plots
of the bm blocks (0 ≤ m ≤ k − 2) of the design in such away that they form a
BIBD. The incidence matrix of Dm can be transformed into N∗ of expression (7.2.1),
whereN∗

C looks like the incidence matrix of a RBDwith (m +1) treatments arranged
in bm blocks. This is denoted by RBD(m + 1, bm). NT is incidence matrix of the
BIBD with parameters v, bm, rm, km = k − m − 1, λm which is denoted by
BIBD(v, bm, rm, km, λm). Here three cases have been considered viz m = 0, m =
even and m = odd and in each of the three cases, OCDs can be constructed for
generator designs.

Case 1: When m = 0 one plot in each block is assigned to the control treat-
ment and the test treatments in the blocks each of size k0 = (k − 1) form a
BIBD(v, b0, r0, k0,λ0). Let N be the incidence matrix of the BTIB design D0 with
parameters v, b = b0, r = r0, k = k0 + 1, λ = λ0, λc0 = r and it can be
written as,

N = (1b0 , N′
T )

′ (7.3.17)
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where NT is the incidence matrix of a BIBD(v, b0, r0, k0, λ0). It is convenient
for the construction of OCD for D0, if NT is the incidence matrix of a k0-resolvable
BIBD with b0 = sv, s ≥ 1 being an integer. This requires that the b0 = sv blocks
can be partitioned into s sets T1, T2,. . .,Ts each of which contains v blocks such that
each of the v treatments occurs k0 times in each Ti , i = 1, 2, . . . , s. By exploiting
the properties of k0-resolvable BIBD, it is possible to construct OCD for D0. Precise
statement follows:

Theorem 7.3.2 If a k0-resolvable BIBD(v, b0 = sv, r0 = sk0, k0 = k − 1, λ0)
exists, then it is possible to construct sk0/2 optimum W-matrices for the generator
design D0 with parameters v, b = sv = b0, k, r = sk0 = r0, rc0 = sv, λ =
λ0, λc0 = sk0, provided Hk0+1 and Hs/2 exist.

Proof As the BIBD is k0-resolvable, then Lemma6.2.1 of Chap.6 is applicable to
the blocks of each Ti . According to Lemma6.2.1 of Chap.6, the k0 treatments in the
v blocks of Ti can always be arranged such that each treatment occurs exactly once
in each of the k0 positions in the blocks and this arrangement is denoted by a k0 × v

matrix Bi and from the matrix Bi , it is possible to construct a v × v matrix Av×v
i by

putting an element al in its (m, q) th cell if mth treatment occurs in the lth row and
q th column of Bi , l = 1, 2, . . . , k0, m, q = 1, 2, . . . , v. Other positions are filled
in with zeros. It is easily seen that Ai contains each of the symbols a1, a2, . . . , ak0
once and only once in each row and in each column, i = 1, 2, . . . , s. Now a matrix
A∗

i of order (v + 1) × 2v is defined by pairing the Ai ’s as follows

A∗
i =

(
1′
v 1′

v

A2i−1 A2i

)
; ∀i = 1, 2, . . . , s/2. (7.3.18)

It is given that Hk , a Hadamard matrix of order k, exists. Let it be written as:

Hk0+1 =
(

1 1′
k0

1k0 H∗
k0

)
. (7.3.19)

where
H∗

k0 = (h∗
1,h∗

2, . . . ,h∗
k0) = core matrix of Hk0+1, (7.3.20)

h∗
j is the j th column of H∗

k0
. Now a matrix W j,i can be constructed from A∗

i by
identifying the symbols a1, a2, . . . , ak0 of A2i−1 and A2i with the elements of h∗

j
and−h∗

j respectively and also replacing first row ofA∗
i by (1

′
v,−1′

v). By juxtaposing
W j,i , i = 1, 2, . . . , s/2, for fixed j , we obtain a matrix W j , where

W j = (W j,1,W j,2, . . . ,W j,s/2); j = 1, 2, . . . , k0. (7.3.21)

Varying j in (7.3.21), k0 optimumW-matrices,W1,W2,…,Wk0 , are obtained. Again
asHs/2 exists, it is possible to increase the number of optimumW-matrices. By taking
the Khatri–Rao product of hi = (hi1, hi2, . . . , hi,s/2), the i th row of Hs/2, with W j

of (7.3.21), sk0/2 matrices W j i can be constructed, where

http://dx.doi.org/10.1007/978-81-322-2461-7_6
http://dx.doi.org/10.1007/978-81-322-2461-7_6
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W j i = hi

⊙
W j = (hi1W j,1, hi2W j,2, . . . , hi,s/2W j,s/2),

∀i = 1, 2, . . . , s/2; j = 1, 2, . . . , k0. (7.3.22)

It is easy to verify that W j i ’s satisfy condition (7.2.3). �

Remark 7.3.1 If s = 2, then k0 optimum W-matrices, W1, W2,…,Wk0 , can be
constructed whenever Hk exists.

This is illustrated by considering the following example:

Example 7.3.3 Let us consider the following 3-resolvable BIBD(5, 10, 6, 3, 3)
obtained by cyclical development of two initial blocks (0, 1, 2) and (0, 1, 3) con-
structed from the module M = (0, 1, 2, 3, 4). The blocks with the treatments
renamed as (1, 2, 3, 4, 5) can be represented in the form of a matrix B of order 3×10
as

B =
⎛

⎝
1 2 3 4 5 1 2 3 4 5
2 3 4 5 1 2 3 4 5 1
3 4 5 1 2 4 5 1 2 3

⎞

⎠ = (B1, B2).

Now the A-matrix of order 5 × 10 can be constructed from B as

A =

⎛

⎜⎜⎜⎜
⎝

a1 0 0 a3 a2 a1 0 a3 0 a2
a2 a1 0 0 a3 a2 a1 0 a3 0
a3 a2 a1 0 0 0 a2 a1 0 a3
0 a3 a2 a1 0 a3 0 a2 a1 0
0 0 a3 a2 a1 0 a3 0 a2 a1

⎞

⎟⎟⎟⎟
⎠

= (A1, A2).

The core matrix H∗
3 obtained from Hadamard matrix H4 of (7.3.16) is given

H∗
3 =

⎛

⎝
−1 −1 1
1 −1 −1

−1 1 −1

⎞

⎠ = (h∗
1, h∗

2, h∗
3). (7.3.23)

Considering h∗
1 for A1 and then identifying −1 with a1, 1 with a2 and –1 with a3

of A1 and similarly identifying the elements of –h∗
1 with those of A2, W1 can be

constructed by using Theorem7.3.2 as

W1 =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

1 1 1 1 1 −1 −1 −1 −1 −1
−1 0 0 −1 1 1 0 1 0 −1
1 −1 0 0 −1 −1 1 0 1 0

−1 1 −1 0 0 0 −1 1 0 1
0 −1 1 −1 0 1 0 −1 1 0
0 0 −1 1 −1 0 1 0 −1 1

⎞

⎟
⎟⎟⎟⎟⎟
⎠

. (7.3.24)

Similarly W2 and W3 can be constructed by using h∗
2 and h∗

3 respectively. It is easy
to see that W1, W2 and W3 satisfy condition (7.2.3).
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Remark 7.3.2 If c∗ = sk0/2 optimum W-matrices for the generator design D0 with
parameters v, b = sv, k, r = sk0, rc0 = sv, λ = λ0, λc0 = sk0 exist, then it is
possible to construct c∗u optimum W-matrices for the BTIB(v, b = svu, k, r =
suk0, rc0 = suv, λ = uλ0, λc0 = suk0), which is obtained by repeating D0
u-times, provided Hu exists.

Case 2: m=even and N∗, the incidence matrix of Dm which is a BTIB design with
parameters v, b = bm, k, r = rm, rc0 = (m + 1)bm, λ = λm, λc0 = (m + 1)rm

can be written as

N∗ = (J′(m+1)×bm , N′
T )

′ = (Jbm×m, N∗′
0 )

′ (7.3.25)

where N∗
0 is the incidence matrix of D0, a BTIB design with parameters v, b =

bm, k −m, r = rm, rc = bm, λ = λm, λc0 = rm . Jm×bm , a matrix of order m ×bm

with all elements unity, can be considered as the incidencematrix of an RBD(m, bm).
From Theorem7.3.2 it follows that if the BIBD in D0 is km-resolvable, then OCDs
can be constructed for D0. By combining the optimum W-matrices for D0 with those
for RBD(m, bm) (cf. Chap. 3), it is possible to construct OCDs for Dm . The results
are stated in the following theorem.

Theorem 7.3.3 If u1 optimum W-matrices exist for D0 with parameters v, b = bm,

km + 1 = k − m, r = rm, rc0 = bm, λ = λm, λc0 = rm and u2 optimum W-
matrices exist for RBD(m, bm), then u = min{u1, u2} optimum Ws for Dm with
parameters v, b = bm, k, r = rm, rc0 = (m + 1)bm, λ = λm, λc0 = (m + 1)rm

can be obtained.

Proof Let the u1 optimum W-matrices for D0 and u2 optimum W-matrices for
RBD(m, bm) be denoted as W0,1, W0,2,...,W0,u1 and W(1)

m,R B D ,W
(2)
m,R B D ,…,

W(u2)
m,R B D respectively. It can be seen that the following u matrices

Wm,i =
(

W(i)′
m,R B D, W′

0,i

)′
, i = 1, 2, . . . , u (7.3.26)

satisfy the condition C and hence u optimum W-matrices are obtained for Dm . �
Example 7.3.4 Consider D2 with parameters v = 5, b2 = 10, k = 6, r = 6, rc0 =
30, λ = 3, λc0 = 18 and the incidence matrix of D2 is

N =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

3 3 3 3 3 3 3 3 3 3
1 0 0 1 1 1 0 1 0 1
1 1 0 0 1 1 1 0 1 0
1 1 1 0 0 0 1 1 0 1
0 1 1 1 0 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1

⎞

⎟
⎟⎟⎟⎟⎟
⎠

.

Here 3 optimum Ws exist for D0 (see Example7.3.3) but one optimum W-matrix
can be constructed for RBD(2, 10) which is given by

http://dx.doi.org/10.1007/978-81-322-2461-7_3
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W(1)
2,R B D =

(
1 1 1 1 1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 1 1 1 1 1

)
.

Therefore one optimum W can be constructed for D2 by using any one of 3 optimum
Ws for D0 given in (7.3.24) and W(1)

2,R B D as follows:
⎛

⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1 1 1 1 1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 1 1 1 1 1
1 1 1 1 1 −1 −1 −1 −1 −1

−1 0 0 −1 1 1 0 1 0 −1
1 −1 0 0 −1 −1 1 0 1 0

−1 1 −1 0 0 0 −1 1 0 1
0 −1 1 −1 0 1 0 −1 1 0
0 0 −1 1 −1 0 1 0 −1 1

⎞

⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

.

Case 3: When m = odd, then optimum W-matrices for Dm are obtained in the same
manner pairing the optimum W-matrices.

Theorem 7.3.4 Suppose u1 and u2 optimum W-matrices exist for RBD((m+1), bm)

and BIBD(v, bm, rm, km = k − m − 1, λm) respectively. Then u=min{u1, u2}
optimum W-matrices for Dm with parameters v, b = bm, k, r = rm, rc0 =
(m + 1)bm, λ = λm, λc0 = (m + 1)rm can be constructed.

Proof Let the W(1)
R B D , W(2)

R B D ,...,W
(u1)
R B D be u1 optimum W-matrices of RBD and the

W(1)
B I B D , W(2)

B I B D ,...,W
(u2)
B I B D be u2 optimum W-matrices of BIBD. Then u optimum

W matrices of Dm can be constructed as follows:

Wi = (W(i)′
R B D, W(i)′

B I B D)
′, i = 1, 2, ..., u. (7.3.27)

It can be easily checked that Wi s satisfy the condition (7.2.3). �
Remark 7.3.3 For given (v, k), it is possible to construct optimum Ws for D0,
D1,..., Dk−2 respectively by using Theorems7.3.2–7.3.4 and by imposing suitable
conditions. The generator design Dk−1 contains no control treatment; it is an RBD
or a BIBDwith the v test treatments if v = k or v > k respectively. Optimum Ws for
Dk−1 are the same as the optimum Ws for the corresponding RBD or BIBD as the

case may be. Hence the optimum Ws for the combined BTIB design, D =
k−1⋃

i=1
fi Di

with at least one fi > 0 (i = 1, 2, ..., k − 2) can be obtained by suitably using the
Ws of the generator designs Dm (0 ≤ m ≤ k −1). But it is difficult to say beforehand
how many Ws exist for D since the number of optimum W-matrices depends on the
parameters of the generator designs and the number of generator designs used.

Remark 7.3.4 Belowwe describe the construction ofOCDs for a BTIB designwhich
looks similar to that described in Remark7.3.3, but the constructional method de-
scribed therein is not applicable since the irreducible BIBD used here is not neces-
sarily resolvable. Let Gi be the set of

(
v
i

)
blocks formed by choosing all possible i
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treatments from a set of v test treatments and then by augmenting with (v − i) repe-

titions of the control treatment c0, i = 1, 2, . . . , v. It easily follows that
v⋃

i=1
Gi = G

forms a BTIB design with parameters v, b = 2v − 1, k = v, r = 2v−1, rc0 =
p(2v−1 − 1), λ = 2v−2 and λc0 = (v − 1)2v−2. For v = 4, k = 4, the construction
of OCDs for such BTIB design is illustrated bellow.

G1 =

⎧
⎪⎪⎨

⎪⎪⎩

c0 c0 c0 c0
c0 c0 c0 c0
c0 c0 c0 c0
3 4 1 2

⎫
⎪⎪⎬

⎪⎪⎭
, G2 =

⎧
⎪⎪⎨

⎪⎪⎩

c0 c0 c0 c0 c0 c0
c0 c0 c0 c0 c0 c0
1 2 3 4 1 2
2 3 4 1 3 4

⎫
⎪⎪⎬

⎪⎪⎭
,

G3 =

⎧
⎪⎪⎨

⎪⎪⎩

c0 c0 c0 c0
1 2 3 4
2 3 4 1
3 4 1 2

⎫
⎪⎪⎬

⎪⎪⎭
, G4 =

⎧
⎪⎪⎨

⎪⎪⎩

1
2
3
4

⎫
⎪⎪⎬

⎪⎪⎭
.

Using h2, h3 and h4 of (7.3.15), 3 optimum Ws can be constructed by exploiting the
inherent cyclic nature of the Gi ’s where

W1 =
(

W(1)′
C , W(1)′

T

)′ =
G1 G2 G3 G4

Control
Tr.
↓

Test
Tr.
↓

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 0
0 0 0 0 1 1 1 1 −1 −1 −1 1 −1 1 0
1 1 1 1 −1 −1 −1 −1 −1 −1 1 −1 1 −1 0

−1 0 −1 1 1 0 0 −1 1 0 −1 0 0 0 1
1 −1 0 −1 −1 1 0 0 0 1 0 1 0 0 −1

−1 1 −1 0 0 −1 1 0 1 0 0 0 −1 0 1
0 −1 1 −1 0 0 −1 1 0 1 0 0 0 1 −1

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

,

W2 =
(

W(2)′
C , W(2)′

T

)′ =
G1 G2 G3 G4

Control
Tr.
↓

Test
Tr.
↓

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
0 0 0 0 −1 1 1 −1 1 1 −1 −1 1 1 0
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0

−1 0 1 −1 1 0 0 1 −1 0 1 0 0 0 −1
−1 −1 0 1 1 −1 0 0 0 −1 0 1 0 0 1
1 −1 −1 0 0 1 −1 0 1 0 0 0 −1 0 1
0 1 −1 −1 0 0 1 1 0 1 0 0 0 −1 −1

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

,
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W3 =
(

W(3)′
C , W(3)′

T

)′ =
G1 G2 G3 G4

Control
Tr.
↓

Test
Tr.
↓

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

0 0 0 0 0 0 0 0 0 0 −1 1 −1 1 0
0 0 0 0 1 −1 −1 1 −1 −1 −1 1 1 −1 0
1 1 1 1 −1 −1 −1 −1 1 1 1 −1 1 −1 0
1 0 −1 −1 −1 0 0 1 −1 0 1 0 0 0 1

−1 1 0 −1 1 1 0 0 0 −1 0 −1 0 0 1
−1 −1 1 0 0 1 1 0 1 0 0 0 −1 0 −1
0 −1 −1 1 0 0 1 −1 0 1 0 0 0 1 −1

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

.

7.3.2 BTIB Designs Obtained from BIBDs

In this section, we consider two constructional methods of BTIB designs. Method
(i) was given by Bechhofer and Tamhane (1981) and Method (ii) was described in
Das et al. (2005). Both are based on BIBDs.

(i) From Bechhofer and Tamhane (1981), it is known that from a BIBD(v∗, b, r,
k, λ) where v∗ > v, a BTIB design with parameters v, b, k, r, rc0 = (v∗ −
v)r, λ, λc0 = (v∗ − v)λ can be obtained by replacing the treatments v + 1, v +
2, . . . , v∗ by the control treatment. Here v should be such that each of the new blocks
after replacement contains at least one test treatment. The optimum W-matrices for
BTIB design can be constructed by using optimum Ws for the corresponding BIBD.
The following theorem gives the results precisely:

Theorem 7.3.5 If c∗ optimum W-matrices exist for BIBD(v∗, b, r, k, λ), then an
equal number of optimum W matrices for BTIB design with parameters v, b, k, r,
rc0 = (v∗ − v)r, λ, λc0 = (v∗ − v)λ can be constructed.

Proof of the theorem follows from the fact that any optimum W-matrix for the BIBD
remains optimum for the corresponding BTIB design as the latter is obtained from
the first one by just renaming of the (v∗ − v) treatments.

The method will be clear from an example. Consider a symmetric BIBD (v∗ =
b = 7, r = k = 4,λ = 2). Here 3 optimum Ws for the BIBD can be constructed
(cf. Chap. 4) and these are denoted by W1,B I B D , W2,B I B D and W3,B I B D . These Ws
provide three OCDs for the BTIB design. Take v = 5 and Treatments 6 and 7 of the
BIBD are relabeled by the control treatment c of BTIB design. Using W1,B I B D , an
optimum W-matrix for the BTIB design can be constructed as

http://dx.doi.org/10.1007/978-81-322-2461-7_4
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Treatment −→
Test Control

W′
1,B I B D =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

1 2 3 4 5 6 7
1 0 0 −1 0 1 −1

−1 1 0 0 −1 0 1
1 −1 1 0 0 −1 0
0 1 −1 1 0 0 −1

−1 0 1 −1 1 0 0
0 −1 0 1 −1 1 0
0 0 −1 0 1 −1 1

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

= W′
1,BT I B D.

Similarly from W2,B I B D and W3,B I B D , two more optimum Ws for BTIB design
can be obtained.

Remark 7.3.5 It is to be noted that the number of optimum Ws for the BTIB design
considered above does not depend on the numbers of either the test treatments or the
control treatments used but depends only on the existence of optimum W-matrices
for the corresponding BIBD as the same W-matrixe for BIBD is used for the BTIB
design.

(ii) Consider a BIBD, d0, with the parameters v∗, b∗, r∗, k∗, λ∗. Replace a given
set of i (0 ≤ i ≤ v∗ − 2) of the treatments in d0 by the control treatment and call the
resultant designBIBi (v

∗, b∗, k∗). Finally, each block of the designBIBi (v
∗, b∗, k∗)

is augmented by u ≥ 0 replications of the control treatment, such that (i, u) �= (0, 0).
Denote this design by d. Then, it is easy to see that d is a BTIB designwith parameters
v = v∗ − i, b = b∗, k = k∗ + u, r = r∗, rc0 = ir∗ + b∗u, λ = λ∗, λc0 =
iλ∗ + r∗u, 0 ≤ i ≤ v∗ − 2, u ≥ 0. For convenience, the design d is denoted by
BIBi (v

∗, b∗, k∗, u). Note that a BIB0(v
∗, b∗, k∗, u) is a BTIB of the R-type while

a BIB1(v
∗, b∗, k∗, u) is a BTIB of the S-type. For a definition of R- and S-type

BTIB designs see Hedayat and Majumdar (1984). OCDs for such BTIB design can
be obtained by the following theorem:

Theorem 7.3.6 Suppose that c∗
1 and c∗

2 optimum W-matrices exist for RBD(b∗, u)
and BIBD(v∗, b∗, r∗, k∗, λ∗) respectively. Then c∗∗ = min{c∗

1, c∗
2} optimum

W-matrices exist for BTIB(v = v∗ − i, b = b∗, k = k∗ + u, r = r∗, rc0 =
ir∗ + b∗u, λ = λ∗, λc0 = iλ∗ + r∗u) for i= 0, 1, . . . , v∗–2.

Proof The proof is simple and follows along the lines of Theorems7.3.4 and
7.3.5. �

7.3.3 BTIB Designs Obtained from Group Divisible (GD)
Designs

In this section, again we deal with two methods of construction of BTIB designs
from GD designs where the first method was illustrated in Bechhofer and Tamhane
(1981) and the lastone in Das et al. (2005).
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(i) According to Bechhofer and Tamhane (1981), BTIB design can be constructed
from group divisible (GD) design with u treatments and b blocks of size k. The
association scheme of such a GD design can be obtained by representing the treat-
ments in the form of an m × w array (with mw = u). Any two treatments in the
same row of the array are first associates, and those in the different rows are second
associates. For OCDs in GD design set-up one is referred to Chap.5. Suppose that
m ≥ k. One can take v = m and relabel the entries in each of n1 > 0 columns of
the array by 1, 2, . . . , v and entries in the remaining n2 = w − n1 > 0 columns by
the control treatment c, thus obtaining a BTIB design. We shall only consider those
BTIB designs, no block of which contains the control treatment entirely. OCDs can
be constructed for such BTIB design and precise statement follows:

Theorem 7.3.7 If c∗∗∗ optimum W-matrices exist for a GD design then an equal
number of optimum W-matrices exists for the BTIB design obtained from the GD-
PBIBD.

Proof of the theorem is simple. The method is explained through an example by
considering the singular group divisible (SGD) design S2 (u = 6, b = 6, r = 4,
k = 4, λ1 = 4, λ2 = 2) in Clatworthy’s table (1973), page 83, given by

blocks −→

1 2 3 4 5 6
4 5 6 1 2 3
2 3 1 5 6 4
5 6 4 2 3 1

with the following association scheme:

⎧
⎨

⎩

1 4
2 5
3 6

⎫
⎬

⎭
.

By relabeling the treatments 4, 5 and 6 by c0’s, a BTIB design can be obtained where
no block contains the control treatment entirely. The blocks are:

blocks −→

b1 b2 b3 b4 b5 b6
1 2 1 1 2 1
2 3 3 2 3 3
c0 c0 c0 c0 c0 c0
c0 c0 c0 c0 c0 c0

.

For the given SGD design, 5 optimum W-matrices (cf. Chap.5) can be constructed
and using these W-matrices 5 optimum Ws for the BTIB design can also be con-

http://dx.doi.org/10.1007/978-81-322-2461-7_5
http://dx.doi.org/10.1007/978-81-322-2461-7_5
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structed by identifying the control treatment in different blocks with the original
treaments 4, 5, and 6. One of the W-matrix is given by

W1 =

control Tr.
↓

Test Tr.
↓

⎛

⎜⎜⎜
⎜⎜⎜
⎝

0 −1 1 0 1 −1
−1 1 0 1 −1 0
−1 0 1 1 0 −1
0 1 −1 0 −1 1
1 −1 0 −1 1 0
1 0 −1 −1 0 1

⎞

⎟⎟⎟
⎟⎟⎟
⎠

= (W(1)′
C , W(1)′

T )′.

Remark 7.3.6 In Chap.5, we provide a list of optimum Ws for a large number of
GD designs. These optimum Ws may be used to generate the optimum Ws for the
BTIB designs, obtainable from these GD designs.

(ii) Consider two GD designs d1 and d2. Suppose that the parameters of di are
v, bi , ri , ki , λ1i , λ2i , i =1, 2. Assume that k2 > k1 andλ11+λ12 = λ21+λ22 = λ.
Then the design obtained by taking the union of the blocks of d1 and d2, after adding
the control treatment k2 − k1 times to the blocks of d1, is a BTIB design (cf. Das
et al. 2005) with the following parameters:

v, b = b1 + b2, k = k2, r = r1 + r2, rc0 = b(k2 − k1), λ, λc0 = r1(k2 − k1).
(7.3.28)

Following theorem describes the construction of OCDs for such BTIB designs.

Theorem 7.3.8 Suppose c∗∗
i and c∗∗

3 optimum W-matrices exist for the GD designs
with parameters v, bi , ri , ki , λ1i , λ2i , i = 1, 2, k2 > k1 and λ11 + λ12 =
λ21 + λ22 = λ and the RBD(k2 − k1, b) respectively, then it is possible to construct
c∗∗∗∗ = min{c∗∗

1 , c∗∗
2 , c∗∗

3 } optimum W-matrices for the BTIB design with the
parameters given in (7.3.28).

Proof The proof is simple and hence omitted. �

Remark 7.3.7 Theorem7.3.8 also holds for any two 2-associate PBIB designs with
same association scheme. For details, we refer the original paper of Dutta and Das
(2013).

Remark 7.3.8 In this chapter, construction of OCDs in BTIB design set-up has been
considered and a large number of commonly used BTIB designs is covered. It is
expected that these designs will serve practical purposes to a large extent. As the
results are of varied nature, a summary of the BTIB design set-ups and the conditions
of existence of OCDs, etc. is presented in the following table which may be helpful
for ready reference (Tables 7.1, 7.2 and 7.3).

http://dx.doi.org/10.1007/978-81-322-2461-7_5
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Table 7.1 BTIB designs obtained from generator designs

Design Conditions No. of optimum
W-matrices

D0 ∪ D1 (Lemma7.3.1) m = 0, k = 2, v = even 1

f (D0 ∪ D1) (Theorem7.3.1) m = 0, k = 2, v = even and H f
exists

f

D0 (Theorem7.3.2) k > 2, m = 0, (k − 1)− resolvable
BIBD(v, sv, s(k−1), k − 1, λ0) Hk
and Hs/2 exist

s(k − 1)/2

Dm (Theorem7.3.3) k > 2, m(> 0) = even, u2 OCDs for
RBD(m, bm ) and u1 OCDs for
D0(v, bm , k − m, rm , bm , λm ,

λc = rm) exist

u = min{u1, u2}

Dm (Theorem7.3.4) k > 2, m(> 0) = odd, u1 OCDs for
RBD(m + 1, bm ) and u2 OCDs for
BIBD(v, bm , rm , k − m − 1, λm)

exist

u = min{u1, u2}

Table 7.2 BTIB designs obtained from BIBDs

Design Conditions No. of optimum W-matrices

BTIB design mentioned in
Theorem7.3.5

Existence of c∗ OCDs for
BIBD(v∗, b∗, r∗, k∗, λ∗)

c∗

BTIB design mentioned in
Theorem7.3.6

Existence of c∗
1 OCDs for

RBD(b∗, u) and c∗
2 OCDs for

BIBD(v∗, b∗, r∗, k∗, λ∗)

c∗∗ = min{c∗
1, c∗

2}

Table 7.3 BTIB designs obtained from GD designs

Design Conditions No. of optimum W-matrices

BTIB design mentioned in
Theorem7.3.7

Existence of c∗∗∗ OCDs for GD
design

c∗∗∗

BTIB design mentioned in
Theorem7.3.8

Existence of c∗∗
i OCDs for

GDDs(v, bi , ri , ki , λ1i , λ2i ),
i = 1, 2, k2 > k1, λ11 +λ12 = λ21
+ λ22 and existence of c∗∗

3 OCDs
for RBD(k2 − k1, b)

c∗∗∗∗ = min{c∗∗
1 , c∗∗

2 , c∗∗
3 }
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Chapter 8
Miscellaneous Other Topics and Issues

8.1 OCDs in the Crossover Designs

The problem of optimal choice of covariates in the set-up of crossover design or
repeated measurement design (RMD) has been considered by Dutta and SahaRay
(2013). A crossover design is used in an experiment in which a unit is exposed to
various treatments over different periods. In such an experiment, t treatments are
assigned to n experimental units each of which receives one treatment during each
of the p periods. Such designs are very often used in many industrial, agricultural
and biological experiments. Under the traditional model, it is assumed that each
treatment assigned to an experimental unit (e.u.) has a direct effect on the e.u. in the
same period and also carryover effects (residual effects) in the subsequent periods.
Efficient estimation and testing of the direct effects as well as residual effects are
of interest to practitioners from an application point of view. The reader is referred
to Stufken (1996) and Bose and Dey (2009) for a review on this topic. In practice,
situations arise when controllable covariates are used conveniently in this set-up to
control the experimental error. For example, in treating arthritis pain or prevention
of heart disease, the duration of daily exercise or walking plays a role, besides the
effects of medicines. Thus the duration of exercise or walking can be viewed as
a controllable covariate when formulating an appropriate model for the study of
the effects of different medicines in such cases. So the problem arises to propose
appropriate designs which will allow most efficient estimation of these covariate
effects on the response. The aim is to address this issue dealing with c covariates for
some classes of strongly balanced and balanced crossover designs which are known
to be universally optimal for the estimation of direct treatment effects and residual
treatment effects in an appropriate class of competing designs.

© Springer India 2015
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8.1.1 Preliminary Definitions and Notations

We assume t treatments, denoted by 1, 2, . . . , t are to be compared using n e.u.s over
p periods. Let�t,n,p denote the class of such crossover designs. A design d ∈ �t,n,p

is uniform on the periods if each treatment is assigned to an equal number of subjects
in each period. A design d ∈ �t,n,p is uniform on the subjects if each treatment is
assigned equally often to each subject. A design is said to be uniform if it is uniform
on the periods and uniform on the subjects. A crossover design is said to be balanced,
if no treatment is immediately preceded by itself and each treatment is immediately
preceded by every other treatment equally often. A crossover design is called strongly
balanced if each treatment is immediately preceded by every treatment (including
itself) equally often.

Here, we deal with a covariate model allowing c covariates under the crossover
design set-up. Let d(i, j) denote the treatment assigned by d ∈ �t,n,p in the i th
period to the j th e.u.; i = 1, 2, . . . , p, j = 1, 2, . . . , n. The model of response
for the observation yi j with z(l)

i j , the value of the lth covariate Zl received in the i th
period on the j th experimental unit is given by

yi j = μ + αi + β j + τd(i, j) + ρd(i−1, j) +
c∑

l=1

γl z
(l)
i j + ei j , (8.1.1)

where μ is the general mean, αi is the i th period effect, β j is the j th experimental
unit effect, τd(i, j) is the direct effect due to treatment d(i, j), ρd(i−1, j) is the first
order residual effect of treatment d(i −1, j)with ρd(0, j) = 0 for all j = 1, 2, . . . , n;
γl is the regression coefficient associated with the lth covariate, l = 1, 2, . . . , c. As
usual, the random errors {ei j }′s are assumed to be uncorrelated and homoscedastic
with the common variance σ2.

Writing the observations unit wise, in matrix notation the above model can be
represented as

(Y, μ1np + X1α + X2β + X3τ + X4ρ + Zγ, Inpσ
2) (8.1.2)

where Y is the observation vector of order np × 1, α, β, τ , ρ and γ correspond,
respectively, to the vectors of period effects, experimental unit effects, direct effects,
first-order residual effects and the covariate effects; X1, X2, X3, X4 and Z denote,
respectively, the part of the design matrix corresponding to the period effects, exper-
imental unit effects, direct effects, first-order residual effects and covariate effects,
1np is a vector of all ones of order np and Inp is the identity matrix of order np.

In model (8.1.2) each of the covariates Zl ’s, l = 1, 2, . . . , c is assumed to be a
controllable non-stochastic variable. Applying a location scale transformation of the
original limits of the values of the covariates, without loss of generality, it is assumed
that the np values z(l)

i j ’s taken by the lth covariate Zl can vary within the interval
[−1, 1], i.e.
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z(l)
i j ∈ [−1, 1], i = 1, 2, . . . , p; j = 1, 2, . . . , n; l = 1, 2, . . . , c. (8.1.3)

With reference to model (8.1.2), it is evident that orthogonal estimation of the
ANOVA effects and the covariate effects is possible whenever the following condi-
tions:

X′
i Z = 0, ∀i = 1, 2, 3, 4 (8.1.4)

are satisfied. Further, the covariate effects are estimatedwith themaximum efficiency
if and only if (cf. Pukelsheim 1993)

Z′Z = npIc. (8.1.5)

Therefore, optimal estimation of each of the covariate effects is possible while the
estimates of the ANOVA effects remain unaltered, if and only if Z satisfies the
conditions (8.1.4) and (8.1.5) simultaneously. In the sequel, any Hadamard matrix
of order R is written as

HR = (h(R)
1 , . . . , h(R)

R ). (8.1.6)

For aHadamardmatrix in the seminormal formwe assume,without loss of generality,
h(R)

R to be 1.
Note that undermodel (8.1.2) for any d ∈ �t,n,p, X1 = Ip⊗1n andX2 = 1p⊗In .

Thus for d, conditions (8.1.4) and (8.1.5) are equivalent to the following conditions:

(i) z(l)
i j = ±1 ∀ i = 1, 2, . . . , p; j = 1, 2, . . . , n; l = 1, 2, . . . , c,

(i i)
p∑

i=1

z(l)
i j = 0 ∀ j = 1, 2, . . . , n; l = 1, 2, . . . , c,

(i i i)
n∑

j=1

z(l)
i j = 0 ∀ i = 1, 2, . . . , p; l = 1, 2, . . . , c,

(iv)
∑

(i, j):d(i, j)=k

z(l)
i j = 0 ∀ k = 1, 2, . . . , t; l = 1, 2, . . . , c,

(v)
∑

(i, j):d(i−1, j)=k

z(l)
i j = 0 ∀ k = 1, 2, . . . , t; l = 1, 2, . . . , c,

(vi)
p∑

i=1

n∑

j=1

z(l)
i j z(l ′)

i j = 0 ∀ l �= l ′ = 1, 2, . . . , c.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.1.7)
Thus to obtain an OCD for any d ∈ �t,n,p it is required to construct the Z-matrix
satisfying the conditions laid down in (8.1.7). In general, for any arbitrary d this
problem of construction is combinatorially intractable. Dutta and SahaRay (2013)
handled this issue of construction by adopting the technique used byDas et al. (2003)
where each column of the Z-matrix can be recast to a W-matrix. Using this idea,
the lth column of Z-matrix, a vector of order np × 1 is represented in the form of
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the matrix W(l) of order p × n, where the columns correspond to the experimental
units in the order 1, 2, . . . , n and the rows correspond to the periods in the order
1, 2, . . . , p.

To elucidate the idea, the lth column of Z-matrix is written as W(l)-matrix in the
following way:

W(l) =

⎛

⎜⎜⎜⎜
⎝

z(l)
11 z(l)

12 . . . z(l)
1n

z(l)
21 z(l)

22 . . . z(l)
2n

...

z(l)
p1 z(l)

p2 . . . z(l)
pn

⎞

⎟⎟⎟⎟
⎠

, l = 1, 2, . . . , c. (8.1.8)

The requirement of the Z-matrix satisfying the conditions (ii) and (iii) of (8.1.7) is
equivalent to having zero row sums and zero column sums for each row and each
column of W(l), l = 1, 2, . . . , c. To visualize the conditions (iv) and (v) of (8.1.7) in
terms of the W-matrix we define two more matrices of order p × n as follows:

V1 =

⎛

⎜
⎜⎜
⎝

d(1, 1) d(1, 2) . . . d(1, n)

d(2, 1) d(2, 2) . . . d(2, n)

.

.

.

d(p, 1) d(p, 2) . . . d(p, n)

⎞

⎟
⎟⎟
⎠

, V2 =

⎛

⎜
⎜⎜
⎝

0 0 . . . 0
d(1, 1) d(1, 2) . . . d(1, n)

.

.

.

d(p − 1, 1) d(p − 1, 2) . . . d(p − 1, n)

⎞

⎟
⎟⎟
⎠

.

(8.1.9)
Recalling that d(i, j) denotes the treatment assigned to the j th unit in the i th period
of d ∈ �t,n,p, i = 1, 2, . . . , p, j = 1, 2, . . . , n, it is now easy to verify that the
requirement of the lth column of the Z-matrix satisfying the conditions (iv) and (v)
of (8.1.7) is equivalent to the requirement of the sums of z(l)

i j ’s corresponding to

the same treatment to be equal to zero after superimposition of W(l) on V1 and V2
respectively, l = 1, 2, . . . , c.

Thus the necessary and sufficient conditions in terms of the elements of W(l),
l = 1, 2, . . . , c for the existence of an OCD are summed up as follows:

(C1) Each of the elements of W(l) is either +1 or −1;
(C2) W(l)-matrix has all row sums equal to zero;
(C3) W(l)-matrix has all column sums equal to zero;
(C4) After superimposing W(l) on V1, for every treatment as specified in V1,

the sum of the elements of W(l)corresponding to the same treatment
is equal to zero;

(C5) After superimposing W(l) on V2, for every treatment as specified in V2

the sum of the elements of W(l) corresponding to the same treatment
is equal to zero;

(C6) The grand total of all entries in the Hadamard product of W(l) and
W(l ′) is equal to np or zero depending on l = l ′ or l �= l ′ respectively.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.1.10)
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It is worthwhile to note that a covariate design Z for c covariates is equivalent to c
W-matrices which are convenient to work with.

Definition 8.1.1 With respect to model (8.1.2), the c W-matrices corresponding to
the c covariates are said to be optimum if they satisfy the conditions laid down in
(8.1.10).

Remark 8.1.1 It is to be noted that if c = 1, only the conditions C1–C5 of (8.1.10)
are to be satisfied by the W-matrix for an OCD to exist.

Definition 8.1.2 The maximum number of covariates cannot exceed the error
degrees of freedom for the ANOVA part of a given set-up.

Here, our aim is to construct an OCD. In other words optimum W-matrices, with
as many W-matrices as possible for a crossover design which is uniform strongly
balanced or strongly balanced, uniform on the periods and uniform on the units in
the first p −1 periods or uniform balanced. The construction of W-matrices is much
dependent on the particular method of construction of the underlying basic crossover
design. We will denote by c∗ the maximum value of c, the number of covariates in
a given context as attained by a given method of construction. In reality, a limited
number of covariates turn out to be useful. Thus given the choice of c∗ optimum
W-matrices, the experimenter has the flexibility of selecting the optimum values of
the required number of covariates from a large pool of possible options, appropriate
to the experimental situation and availability of the resources.

8.1.2 Main Results

Here the construction of W-matrices satisfying (8.1.10) for different series of
strongly balanced and balanced crossover designs obtained through different con-
structional methods are given. We briefly discuss the method of construction of
the underlying basic crossover design to understand the construction of optimum
W-matrices as their interdependency has already been pointed out.

Strongly Balanced Crossover Design Set-up in �t,λ1t2,λ2t
It has been shown inStufken (1996) that a uniform strongly balanced crossover design
d∗ in �t,n,p is universally optimal for the estimation of direct treatment effects and
residual treatment effects and can always be constructed using latin squares and
orthogonal arrays whenever n = λ1t2 and p = λ2t for integers λ1 ≥ 1 and λ2 ≥ 2.
We start with this particular method of construction of d∗ assuming λ1 = 1 and
obtain an OCD. The construction of OCD with n = λ1t2, λ1 > 1 will be taken up
later.

Let At be an orthogonal array, denoted by OA (t2, 3, t, 2) with entries from
S = {1, 2, . . . , t}. Such an orthogonal array can easily be obtained from a latin
square L = ((li j )) of order t , t ≥ 2 as follows:
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At :
t times

︷ ︸︸ ︷
1 1 . . . 1

t times
︷ ︸︸ ︷
2 2 . . . 2 . . .

t times
︷ ︸︸ ︷
t t . . . t

1 2 . . . t 1 2 . . . t . . . 1 2 . . . t
l11l12 . . . l1t l21l22 . . . l2t . . . lt1lt2 . . . lt t

. (8.1.11)

Let Bt be an orthogonal array OA (t2, 2, t, 2), obtained from At by deleting the
third row in At . For i ∈ {1, 2, . . . , t − 1} let Ai = At + i and Bi = Bt + i , where i
is added to each element of At or Bt , modulo t . Let the two arrays A and B of order
3t × t2 and 2t × t2, respectively, be defined as

A =

⎛

⎜⎜⎜
⎝

A1
A2
...

At

⎞

⎟⎟⎟
⎠

, B =

⎛

⎜⎜⎜
⎝

B1
B2
...

Bt

⎞

⎟⎟⎟
⎠

. (8.1.12)

With λ2 ≥ 2, writing λ2 = 3δ1 + 2δ2 for non-negative integers δ1 and δ2, the p × t2

array d∗ defined by

d∗ = (A′, . . . , A′, B′, . . . , B′)′ (8.1.13)

consisting of δ1 copies of A and δ2 copies of B is a uniform strongly balanced
crossover design in �t,n,p.

We now present the actual construction of OCD, in other words optimum W-
matrices ford∗ in�t,t2,p under a variety of choices of t accommodating themaximum
number of covariates as attained by the given method of construction.

Case 1: t = 0(mod 4)

The following theorem relates to an OCD for d∗ in �t,t2,3t .

Theorem 8.1.1 Suppose Ht , H3t and further s(≥ 2) mutually orthogonal latin
squares (MOLS) of order t exist. Let d∗ in �t,t2,3t be constructed as described
in (8.1.13). Then there exists a set of (3t − 1)(t − 1)(s − 1) optimum W-matrices
d∗ ∈ �t,t2,3t .

Proof Without loss of generality we assume that Ht and H3t are in the seminormal
form. Let L1, L2, . . . , Ls be s MOLS of order t , based on the symbols 1, 2, . . . , t .
Suppose Ls is used for constructing At in (8.1.11) and L(q)

s = Ls + q, where q
is added to each element of Ls modulo t , is used to develop the third row of Aq ,
q = 1, 2, . . . , t − 1 in (8.1.12) to give rise to d∗ in �t,t2,3t as described in (8.1.13).
Now we proceed to construct the optimum W-matrices for d∗ in �t,t2,3t as follows.

In each of the Li , i = 1, 2, . . . , s − 1, replace the symbols 1, 2, . . . , t by the
elements of h(t)

j in order, for j = 1, 2, . . . , t − 1. Let di j ′
m denote the replaced mth

row of Li , m = 1, 2, . . . , t written with the symbols of h(t)
j . Now juxtaposing side

by side these t rows, we obtain a row vector D′
i j of order t2 given by
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D′
i j =

(
di j ′
1 : di j ′

2 : . . . : di j ′
t

)
. (8.1.14)

Now we construct Wijf of order 3t × t2 as follows:

W(l) = Wijf = h(3t)
f ⊗ D′

i j ;
i = 1, 2, . . . , s − 1, j = 1, . . . , t − 1, f = 1, . . . , 3t − 1,

l = (i − 1)(t − 1)(3t − 1) + ( j − 1)(3t − 1) + f.

(8.1.15)

Using the properties of latin square, Hadamard matrices and the fact that Li , i =
1, 2, . . . , s − 1 is orthogonal with L(q)

s , q = 1, 2, . . . , t − 1, defined above, it
is not hard to see that W(l)’s satisfy the conditions of (8.1.10) and the maximum
number of covariates in the given context attained by the method of construction is
c∗ = (3t − 1)(t − 1)(s − 1). �

An illustration of the above method of construction with t = 4 follows.

Example 8.1.1 t = 4, d∗ ∈ �4,16,12

L1 =

⎛

⎜⎜
⎝

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

⎞

⎟⎟
⎠ , L2 =

⎛

⎜⎜
⎝

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

⎞

⎟⎟
⎠ , L3 =

⎛

⎜⎜
⎝

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

⎞

⎟⎟
⎠

and

A =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

2 2 2 2 3 3 3 3 4 4 4 4 1 1 1 1
2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1
2 3 4 1 1 4 3 2 3 2 1 4 4 1 2 3
3 3 3 3 4 4 4 4 1 1 1 1 2 2 2 2
3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2
3 4 1 2 2 1 4 3 4 3 2 1 1 2 3 4
4 4 4 4 1 1 1 1 2 2 2 2 3 3 3 3
4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
4 1 2 3 3 2 1 4 1 4 3 2 2 3 4 1
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 4 3 2 1 2 1 4 3 3 4 1 2

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

.
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The forms of H4 and H12 for our use are

H4 =

⎛

⎜⎜
⎝

−1 1 −1 1
1 −1 −1 1

−1 −1 1 1
1 1 1 1

⎞

⎟⎟
⎠ (8.1.16)

H12 =

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

1 1 1 1 1 1 1 1 1 1 1 1
−1 1 −1 1 1 1 −1 −1 −1 1 −1 1
−1 −1 1 −1 1 1 1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 1 −1 −1 −1 1

−1 1 −1 −1 1 −1 1 1 1 −1 −1 1
−1 −1 1 −1 −1 1 −1 1 1 1 −1 1
−1 −1 −1 1 −1 −1 1 −1 1 1 1 1
1 −1 −1 −1 1 −1 −1 1 −1 1 1 1
1 1 −1 −1 −1 1 −1 −1 1 −1 1 1
1 1 1 −1 −1 −1 1 −1 −1 1 −1 1

−1 1 1 1 −1 −1 −1 1 −1 −1 1 1
1 −1 1 1 1 −1 −1 −1 1 −1 −1 1

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

. (8.1.17)

Now using h(4)
1 , the first column of H4 and L1, we construct D′

11 as

D′
11 = (−1 1 −1 1 : 1 −1 1 −1 : −1 1 −1 1 : 1 −1 1 −1

)
.

Hence using h(12)
1 , the first column of H12, W(1) = W111 = h(12)

1 ⊗ (
d11
1 , d11

2 ,

d11
3 , d11

4

)
takes the form

W(1) =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

−1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1

−1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1

−1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1
−1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1
−1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1

−1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.

Similarly 65 more choices of the optimum W-matrices can be constructed.

Remark 8.1.2 In practice in the above situation the experimenter has the flexibility
to choose the values of the required number of optimum covariates from the set of
66 possible optimum choices.
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Remark 8.1.3 In particular for t = 4, three more optimum W(l) for d∗ in �4,16,12
can be constructed by trial and error method as follows:

W(67) =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

1′
4 −1′

4 1′
4 −1′

4
1′
4 −1′

4 1′
4 −1′

4
1′
4 −1′

4 1′
4 −1′

4−1′
4 1′

4 −1′
4 1′

4−1′
4 1′

4 −1′
4 1′

4−1′
4 1′

4 −1′
4 1′

4−1′
4 1′

4 −1′
4 1′

4−1′
4 1′

4 −1′
4 1′

4−1′
4 1′

4 −1′
4 1′

4
1′
4 −1′

4 1′
4 −1′

4
1′
4 −1′

4 1′
4 −1′

4
1′
4 −1′

4 1′
4 −1′

4

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

, W(68) =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

1′
4 −1′

4 1′
4 −1′

4−1′
4 1′

4 −1′
4 1′

4
1′
4 −1′

4 1′
4 −1′

4−1′
4 1′

4 −1′
4 1′

4
1′
4 −1′

4 1′
4 −1′

4
1′
4 −1′

4 1′
4 −1′

4−1′
4 1′

4 −1′
4 1′

4
1′
4 −1′

4 1′
4 −1′

4−1′
4 1′

4 −1′
4 1′

4
1′
4 −1′

4 1′
4 −1′

4−1′
4 1′

4 −1′
4 1′

4−1′
4 1′

4 −1′
4 1′

4

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

,

W(69) =

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

1′
4 −1′

4 −1′
4 1′

4
1′
4 −1′

4 −1′
4 1′

4
1′
4 −1′

4 −1′
4 1′

4−1′
4 1′

4 1′
4 −1′

4−1′
4 1′

4 1′
4 −1′

4−1′
4 1′

4 1′
4 −1′

4
1′
4 −1′

4 −1′
4 1′

4
1′
4 −1′

4 −1′
4 1′

4
1′
4 −1′

4 −1′
4 1′

4−1′
4 1′

4 1′
4 −1′

4−1′
4 1′

4 1′
4 −1′

4−1′
4 1′

4 1′
4 −1′

4

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

.

Theorem 8.1.2 Suppose Ht , and further s(≥ 2) mutually orthogonal latin squares
(MOLS) of order t exist. Let d∗ in �t,t2,2t be constructed as described in (8.1.13).
Then there exists a set of (2t − 1)(t − 1)s optimum W-matrices d∗ ∈ �t,t2,2t .

Proof The proof is along the similar lines of the proof of Theorem3.1. Note that
d∗ ∈ �t,t2,2t as described in (8.1.13) can be constructed without requiring to use Ls .
So Ls can also be used to construct the row vector D′

i j (8.1.14) of order t2 as before,
i = 1, 2, . . . , s; j = 1, 2, . . . , t − 1. Since Ht and hence H2t exist, assuming both
of these in the seminormal form, we construct W(l) of order 2t × t2 as follows:

W(l) = Wijf = h(2t)
f ⊗

(
di j ′
1 : di j ′

2 : ... : di j ′
t

)
;

i = 1, 2, . . . , s, j = 1, . . . , t − 1, f = 1, . . . , 2t − 1,

l = (i − 1)(t − 1)(2t − 1) + ( j − 1)(2t − 1) + f

with c∗ = (2t − 1)(t − 1)s in the given context. �

http://dx.doi.org/10.1007/978-81-322-2461-7_3
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Remark 8.1.4 For t = 4, four more optimum W(l) for d∗ in �4,16,8 can be con-
structed by trial and error method as described below:

W(64) =

⎛

⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1′
4 −1′

4 1′
4 −1′

4
1′
4 −1′

4 1′
4 −1′

4−1′
4 1′

4 −1′
4 1′

4−1′
4 1′

4 −1′
4 1′

4−1′
4 1′

4 −1′
4 1′

4−1′
4 1′

4 −1′
4 1′

4
1′
4 −1′

4 1′
4 −1′

4
1′
4 −1′

4 1′
4 −1′

4

⎞

⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

, W(65) =

⎛

⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1′
4 −1′

4 1′
4 −1′

4−1′
4 1′

4 −1′
4 1′

4−1′
4 1′

4 −1′
4 1′

4
1′
4 −1′

4 1′
4 −1′

4−1′
4 1′

4 −1′
4 1′

4
1′
4 −1′

4 1′
4 −1′

4
1′
4 −1′

4 1′
4 −1′

4−1′
4 1′

4 −1′
4 1′

4

⎞

⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

,

W(66) =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

1′
4 −1′

4 −1′
4 1′

4
1′
4 −1′

4 −1′
4 1′

4−1′
4 1′

4 1′
4 −1′

4−1′
4 1′

4 1′
4 −1′

4
1′
4 −1′

4 −1′
4 1′

4
1′
4 −1′

4 −1′
4 1′

4−1′
4 1′

4 1′
4 −1′

4−1′
4 1′

4 1′
4 −1′

4

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

, W(67) =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

1′
4 −1′

4 −1′
4 1′

4−1′
4 1′

4 1′
4 −1′

4−1′
4 1′

4 1′
4 −1′

4
1′
4 −1′

4 −1′
4 1′

4
1′
4 −1′

4 −1′
4 1′

4−1′
4 1′

4 1′
4 −1′

4−1′
4 1′

4 1′
4 −1′

4
1′
4 −1′

4 −1′
4 1′

4

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.

Case 2: t = 2 (mod 4), t �= 2, 6

It is clear that Ht does not exist but if s MOLS of order t exist then (s − 1) optimum
W-matrices can be constructed for d∗ ∈ �t,t2,3t (vide 8.1.13) using the same steps

followed in the proof of Theorem3.1 and the vector a1 =
(

1′
t
2
,−1′

t
2

)′
and a2 =

(
1′

3t
2
,−1′

3t
2

)′
instead of the columns of Ht and H3t respectively. Similarly if H2t

exists, (2t − 1)s optimum W-matrices can be constructed for d∗ ∈ �t,t2,2t (vide

8.1.13) following the same steps of Theorem 8.1.2 using the vector a1 =
(

1′
t
2
,−1′

t
2

)′

instead of the columns of Ht .

Case 3: t = 2

Since a pair of MOLS does not exist for t = 2, the methods discussed in earlier cases
do not apply here to construct an OCD. We adopt trial and error method to construct
optimum W-matrices.

Theorem 8.1.3 Let d∗
1 in �2,4,6 and d∗

2 in �2,4,4 be constructed as described in
(8.1.13). Then there exist 2 optimum W-matrices for each of d∗

1 and d∗
2 .

Proof Recalling (8.1.12) it is easy to see that d∗
1 and d∗

2 given below represent the
strongly balanced design in �2,4,6 and �2,4,4 respectively.

http://dx.doi.org/10.1007/978-81-322-2461-7_3
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d∗
1 :

⎛

⎜⎜⎜⎜⎜
⎜
⎝

2 2 1 1
2 1 2 1
2 1 1 2
1 1 2 2
1 2 1 2
1 2 2 1

⎞

⎟⎟⎟⎟⎟
⎟
⎠

, d∗
2 =

⎛

⎜⎜
⎝

2 2 1 1
2 1 2 1
1 1 2 2
1 2 1 2

⎞

⎟⎟
⎠ . (8.1.18)

Optimum W-matrices denoted by W∗
1 and W∗

2 for d∗
1 and W∗∗

1 and W∗∗
2 for d∗

2 ,
respectively, can be constructed as

W∗
1 =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

1 1 −1 −1
1 −1 −1 1

−1 1 1 −1
−1 −1 1 1
−1 1 1 −1
1 −1 −1 1

⎞

⎟⎟⎟⎟⎟
⎟
⎠

, W∗
2 =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

1 −1 1 −1
1 1 −1 −1
1 −1 1 −1

−1 1 −1 1
−1 −1 1 1
−1 1 −1 1

⎞

⎟⎟⎟⎟⎟
⎟
⎠

W∗∗
1 =

⎛

⎜⎜
⎝

1 1 −1 −1
−1 1 −1 1
−1 −1 1 1
1 −1 1 −1

⎞

⎟⎟
⎠ , W∗∗

2 =

⎛

⎜⎜
⎝

1 −1 −1 1
−1 1 1 −1
1 −1 −1 1

−1 1 1 −1

⎞

⎟⎟
⎠ .

�

Case 4: t = 6

It is known that for t = 6 a pair of MOLS does not exist and hence we take up the
construction of OCD in this case separately.

We start with a uniform strongly balanced crossover design d∗ ∈ �6,36,18 con-
structed (vide 8.1.13) using the latin square L (say) given by

L =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

1 2 3 4 5 6
2 1 4 3 6 5
6 5 1 2 3 4
5 6 2 1 4 3
4 3 6 5 2 1
3 4 5 6 1 2

⎞

⎟⎟⎟
⎟⎟⎟
⎠

. (8.1.19)

Theorem 8.1.4 Let d∗
1 in �6,36,18 and d∗

2 in �6,36,12 be constructed (vide 8.1.13)
using L of (8.1.19). Then there exist an optimum W-matrix for d∗

1 and 11 optimum
W matrices for d∗

2 .

Proof Let D be a matrix of order 6 × 6 with elements ±1 as follows:
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D =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

1 1 1 −1 −1 −1
1 1 −1 −1 −1 1
1 −1 −1 −1 1 1

−1 −1 −1 1 1 1
−1 −1 1 1 1 −1
−1 1 1 1 −1 −1

⎞

⎟⎟⎟⎟⎟
⎟
⎠

=

⎛

⎜⎜⎜⎜⎜
⎜
⎝

d′
1

d′
2

d′
3

d′
4

d′
5

d′
6

⎞

⎟⎟⎟⎟⎟
⎟
⎠

. (8.1.20)

It is to be noted that the row sums and column sums ofD are zero.Moreover superim-
posing D on L , it can be seen that for each symbol in L , the sum of the corresponding
elements ofD is also zero. Thus an optimumW-matrix for d∗

1 in�6,36,18 (vide 8.1.13)
using L of (8.1.19) can be formed taking a = (

1′
9, − 1′

9

)′ and the rows of matrix
D as

W(1) = a ⊗ (
d′
1 : d′

2 :, d′
3 : d′

4 : d′
5 : d′

6

)
.

But for d∗
2 in �6,36,12 (vide 8.1.12), 11 optimum W-matrices can be formed using

H12 of (8.1.17) as follows:

W(l) = h(12)
l ⊗ (

d′
1 : d′

2 : d′
3 : d′

4 : d′
5 : d′

6

)
, l = 1, 2, . . . , 11.

�
So far we have discussed the construction of optimum W-matrices for uniform
strongly balanced crossover design d∗

1 in �t,t2,3t and d∗
2 in �t,t2,2t separately. Let

c∗
1 and c∗

2 denote the maximum number of optimum W-matrices for d∗
1 and d∗

2
respectively in the given context. Now we will consider the construction of optimum
W-matrices for a strongly balanced crossover design d∗ in�t,t2,p (vide 8.1.13)where
p = (3δ1 + 2δ2)t for non-negative integers δ1 and δ2. Write

d∗ = [
d∗′
1 , . . . , d∗′

1 , d∗′
2 , . . . , d∗′

2

]′ (8.1.21)

taking δ1 copies of d∗
1 and δ2 copies of d∗

2 .
Define

δ0 = min{δ1, δ2} and c0 = min{c∗
1, c∗

2}. (8.1.22)

Corollary 8.1.1 Suppose Hδ1 and Hδ2 exist. Let d∗ in �t,t2,p be constructed as
described in (8.1.21) for p = (3δ1 + 2δ2)t , δ1, δ2 ≥ 0, non-negative integers. Then
there exists a set of δ0c0 optimum W-matrices for d∗ where δ0 and c0 are defined in
(8.1.22).

Proof Let the c∗
1 optimum W-matrices for d∗

1 be denoted by W∗
1, . . . , W∗

c∗
1
and the

c∗
2 optimum W-matrices for d∗

2 be denoted by W∗∗
1 , . . . , W∗∗

c∗
2
. Then it can be easily

seen that W(l) defined as
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W(l) = Wi j =
(

W∗
i j

W∗∗
i j

)
; where W∗

i j = h(δ1)
i ⊗ W∗

j and W∗∗
i j = h(δ2)

i ⊗ W∗∗
j

(8.1.23)
i = 1, 2, . . . , δ0, j = 1, 2, . . . , c0, l = c0(i − 1) + j, are the required W-matrices
for d∗. �

Remark 8.1.5 Note that Hδ1 and Hδ2 are not necessarily assumed to be in the semi-

normal form. Thus h(δ1)
i and h(δ2)

i can as well be of the form of a vector all ones.

Remark 8.1.6 It is not hard to see that the set of δ0c0 W-matrices in Corollary 8.1.1
is not unique.

Remark 8.1.7 The construction of optimum W-matrices for a strongly balanced
design d∗ in �t,λ1t2,p for λ1 > 1 can easily be obtained by taking the Kronecker
product of the rows of Hλ1 and the corresponding optimum W-matrix of �t,t2,p
whenever Hλ1 exists. In case of non-existence of Hλ1 for λ1 even, the role of the
rows of Hλ1 above can be taken by the vectors 1′

λ1
and (1′

λ1
2

,−1′
λ1
2

)′. In case of λ1

odd, the vector of all ones serves the purpose.

Case 5: t odd

Whenever t is odd, it is easy to verify that an OCD for a uniform strongly balanced
crossover design d∗ in �t,t2,p as described in (8.1.13) does not exist as Condition
C2 of (8.1.10) is not attainable. Let a uniform strongly balanced crossover design
d∗∗ ∈ �t,λ1t2,p be defined as

d∗∗ = 1′
λ1

⊗ d∗ (8.1.24)

for some positive integer λ1. The following theorem relates to the construction of
OCD for d∗∗.

Theorem 8.1.5 Suppose Hλ1t , Hp and a pair of mutually orthogonal latin squares of
order t exist. Let d∗∗ be defined as in (8.1.24). Then there exists a set of (λ1t−1)(p−1)
optimum W-matrices for d∗∗.

Proof Suppose L1 and L2 are pairwise orthogonal latin squares of order t and L2 has
been used in (8.1.12) and (8.1.13) to construct a uniform strongly balanced crossover
design d∗ in �t,t2,p. Now we proceed to construct the optimum W-matrices for d∗∗.
Assuming Hλ1t and Hp in the seminormal form, for each i = 1, 2, . . . ,λ1t − 1,

partitioning h(λ1t)
i into λ1 parts as

h(λ1t)
i =

(
h(λ1t)′

i1 , . . . , h(λ1t)′
i j , . . . , h(λ1t)′

iλ1

)′
(8.1.25)

we construct a row vector D∗′
i j of order t2 considering L1 and h(λ1t)

i j , for every fixed
j ∈ {1, 2, . . . ,λ1}, following the steps as described in Theorem3.1. Thus

http://dx.doi.org/10.1007/978-81-322-2461-7_3
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D∗′
i j =

(
d∗i j ′
1 , d∗i j ′

2 , . . . , d∗i j ′
t

)
. (8.1.26)

Now we construct W( j)
i f of order p × t2 as follows:

W( j)
i f = h(p)

f ⊗
(

d∗i j ′
1 , d∗i j ′

2 , . . . , d∗i j ′
t

)′ ; i = 1, 2, . . . , λ1t − 1, f = 1, 2, . . . , p − 1.

(8.1.27)
Finally W(l) matrix of order p × λ1t2 is given by:

W(l) = (W(1)
i f , . . . , W( j)

i f , . . . , W(λ1)
i f ),

i = 1, 2, . . . ,λ1t − 1, f = 1, 2, . . . , p − 1, l = (i − 1)(p − 1) + f.

It can be easily checked that these W(l)’s are the required optimum W-matrices for
d∗∗ in �t,λ1t2,p and c∗ = (λ1t − 1)(p − 1) in this given context. �

Remark 8.1.8 If for p even, Hp does not exist, then a =
(

1′
p
2
,−1′

p
2

)′
can be used

instead of h(p)
f in the above theorem.

Strongly Balanced Crossover Design Set-Up in �t,λ1t,λ2t+1

It has been shown in Stufken (1996) that a strongly balanced crossover design that is
uniform on the periods and uniform on the units in the first p−1 periods is universally
optimal for the estimation of direct treatment effects as well as residual treatment
effects in�t,n,p. We now take up the construction of OCD for such design whenever
t is odd and λ1 is even, as otherwise an OCD fails to exist.

Whenever t is odd, a uniformbalanceddesignd∗
0 exists in�t,2t,t ,which is obtained

by juxtaposing two special latin squares of order t side by side (cf. Bose and Dey
2009; Williams 1949). A strongly balanced design d̃∗∗ obtained by repeating the last
period of d∗

0 is uniform on the periods and uniform on the units in the first t periods
(cf. Cheng and Wu 1980). Now for some positive integer λ, taking λ copies of this
design let a strongly balanced design d̃∗ in �t,2λt,t+1 be constructed as

d̃∗ = 1′
λ ⊗ d̃∗∗ (8.1.28)

Theorem 8.1.6 Suppose H2λ exists. Let d̃∗ be defined as in (8.1.28). Then there
exists a set of 2λ − 1 optimum W-matrices for d̃∗.

Proof Assuming H2λ in the seminormal form, the optimum W(l)-matrix for d̃∗ in
�t,2λt,t+1 can be constructed as:

W(l) = a∗ ⊗ h(2λ)
l ⊗ 1′

t , l = 1, 2, . . . , 2λ − 1,

where a∗ =
(

1′
t+1
2

, −1′
t+1
2

)′
. �
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It has been shown in Stufken (1996) that the above idea of (Cheng andWu 1980) to
construct a strongly balanced design from a uniform balanced design can be extended
to cover p = λ2t + 1. The required uniform balanced design d∗

0 in �t,λ1t,λ2t is a
λ2 × λ1 array of special latin square of order t . We refer to Stufken (1996) and Bose
and Dey (2009) for the details of the construction. Now repeating the last period of
this uniformly balanced design, we get a strongly balanced design d̃∗ in �t,λ1t,λ2t+1
which is uniform on the periods and uniform on the units in the first p − 1 periods.
The following theorem deals with the construction of OCD for this d̃∗.

Corollary 8.1.2 Suppose Hλ2t+1 and Hλ1 exist. Then there exists a set of λ2t (λ1−1)
optimum W-matrices for a strongly balanced d̃∗ in �t,λ1t,λ2t+1.

Proof It is readily verified that assuming Hp and Hλ1 in the seminormal form,

W(l) = Wi j = h(λ2t+1)
i ⊗ h(λ1)′

j ⊗ 1′
t ,

i = 1, 2, . . . ,λ2t, j = 1, 2, . . . ,λ1 − 1, l = (λ1 − 1)(i − 1) + j (8.1.29)

are the required optimum W-matrices. �

Balanced Crossover Design Set-Up

In this section we consider the construction of OCD for Williams square (1949) and
Patterson (1952) designs as the basic designs which are uniform balanced crossover
design with appropriate parameters.

It is known that for all even values of t , a uniform balanced design d∗
0 in �t,t,t

exists which is a balanced latin square and is referred to as a Williams Square in
the literature. There does not exist any optimum W-matrix for d∗

0 in �t,t,t as t − 1
being odd, Condition C5 is not attainable. Let for some positive integer λ, a uniform
balanced crossover design be constructed as

d∗∗
0 = 1′

λ ⊗ d∗
0 . (8.1.30)

We next deal with the construction of optimum W-matrices for d∗∗
0 in �t,λt,t .

Theorem 8.1.7 Suppose Ht and Hλ exist. Then there exist (t −1)2(λ−1) optimum
W-matrices for d∗∗

0 in �t,λt,t as defined in (8.1.30).

Proof Assuming Ht and Hλ in the seminormal form

W(l) = Wijf = h(λ)′
f ⊗ h(t)

i ⊗ h(t)′
j ; i, j = 1, 2, . . . , t − 1, f = 1, 2, . . . ,λ − 1,

l = (i − 1)(λ − 1)(t − 1) + ( j − 1)(λ − 1) + f (8.1.31)

are the required optimum W-matrices for d∗∗
0 in �t,λt,t . �

Remark 8.1.9 If Ht does not exist but Hλ exists then a set of λ − 1 optimum
W-matrices for d∗

0 can be constructed as
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W∗
l = h(λ)′

l ⊗ a∗ ⊗ a∗′, l = 1, 2, . . . ,λ

where a∗ =
(

1′
t/2,−1′

t/2

)′
.

Remark 8.1.10 An OCD for a uniform balanced crossover design in �t,t,t or �t,2t,t

cannot be constructed for t odd.

A popular choice of balanced crossover design is the one given by Patterson
(1952) for p ≤ t , as this often involves a moderate number of subjects while keeping
the number of periods small. For t a prime or prime power, consider {Li }, i =
1, 2, . . . , t − 1, a complete set of MOLS of order t where Li+1 can be obtained by
cyclically permuting the last t −1 rows of Li . Then the t × t (t −1) array P given by

P = (L1, L2, . . . , Lt−1) . (8.1.32)

yields a Patterson design in�t,t (t−1),t . Now, on deleting any t − p rows of P one gets
a Patterson design in�t,t (t−1),p with p < t (cf. Bose andDey 2009; Patterson 1952).
The construction of optimum W-matrices for a Petterson design in�t,t (t−1),p is very
much dependent on the existence of the optimumW-matrices for a randomized block
design (RBD) (cf. Chap.3).

Now we consider the following theorem which gives the optimum W-matrices
for a Patterson design.

Theorem 8.1.8 If there exists a set of c W-matrices of order p × (t −1) for an RBD
(p, t − 1), then there exists a set of c optimum W-matrices for a Patterson design in
�t,t (t−1),p.

Proof The optimum W-matrices for the Patterson design in �t,t (t−1),p can be
obtained by replacing 1 by 1′

t and –1 by –1′
t in the W-matrices of RBD

(p, (t − 1)). �

For t prime of the form 4u + 3, where u is a positive integer, a Patterson design
exists in �t,2t,(t+1)/2 which is formed by juxtaposing two RBDs((t + 1)/2, t) side
by side. For details of the method of construction we refer to Patterson (1952).

Theorem 8.1.9 Suppose H(t+1)/2 exists. Then there exists a set of (t −1)/2 optimum
W-matrices for a Patterson design in �t,2t,(t+1)/2.

Proof Assuming H(t+1)/2 in the seminormal form,

W(l) = h(t+1)/2)
l ⊗ (1, − 1) ⊗ 1′

t ; l = 1, 2, . . . , (t − 1)/2 (8.1.33)

�

http://dx.doi.org/10.1007/978-81-322-2461-7_3
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8.2 OCDs in Multi-factor Set-Ups

Rao et al. (2003) proposed optimum covariate designs (OCD) through mixed orthog-
onal arrays for set-ups involving at most two factors where the effects for the quali-
tative factors and those of the quantitative controllable covariates were orthogonally
estimable. In essence, completely randomised designs and randomized block designs
were studied in Rao et al. (2003). Dutta and Das (2013) extended these results and
proposed OCDs for the m-factor set-ups where the factorial effects involving at
most t (≤ m) factors and those of the covariates are orthogonally estimable. It is
seen that for such model specifications, optimum designs can be obtained through
extended mixed orthogonal arrays (EMOA, Dutta et al. 2009) which reduce to mixed
orthogonal arrays for the particular set-ups of Rao et al. (2003).

In this section, we will introduce extended mixed orthogonal arrays and cite
some applications. In the process, we will deal with the following simple illustrative
examples:

(i) RBD with b = v = 4 and two observations per cell; (ii) LSD of order 4; (iii)
Graeco LSD of order 4; (iv) LSD with 2 observations per cell; (v) LSD of order 6.

8.2.1 Model and Optimality Conditions

Let F1, F2, . . . ,Fm be m factors with s1, s2, . . . , sm levels, respectively (si ≥
2, 1 ≤ i ≤ m), and Z (1), Z (2), . . . , Z (c) denote c covariates. Also, let n com-

binations be chosen from all possible v =
m∏

α=1

sα level combinations and � denote

the set of n chosen level combinations. For a level combination ( j1, j2, . . . , jm) of
�, let (y j1 j2... jm , z(1)

j1 j2... jm
, z(2)

j1 j2... jm
, . . . , z(c)

j1 j2... jm
) denote the vector of observa-

tion and the values assumed by the covariates. As mentioned earlier, we assume the
location-scale transformed version of the covariate values, viz |z(l)

j1 j2... jm
| ≤ 1 for all

( j1, j2, . . . , jm) ∈ � and l = 1, 2, . . . , c.We also assume that the level combinations
in � are so chosen that the interactions, involving at most t factors (1 ≤ t ≤ m),
are orthogonally estimable and all the effects involving (t + 1) and higher order
interactions are negligible and contribute to the error.

The reader may note that we are now in the framework of a factorial design of
a very general nature. In the above we are referring to asymmetric factorial design.
The definition of main effects and interaction effects are very standard and excellent
expository article of Bose (1947) provides all the basic results in this direction (also
see Gupta and Mukerjee 1989 and Kshirsagar 1983).

The following linear model is assumed (cf. Kshirsagar 1983)

y j1 j2... jm = μ +
∑

1≤i1≤m

θi1
ji1

+
∑

1≤i1<i2≤m

θi1i2
ji1 ji2

+ · · · +
∑

1≤i1<i2<...<it ≤m

θi1i2...it
ji1 ji2 ... jit
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+
c∑

l=1

γl z
(l)
j1 j2... jm

+ e j1 j2... jm , (8.2.1)

where, ( j1, j2, . . . , jm) ∈ �, θi1
ji1

is the effect due to ji1th level of Fi1 , θ
i1i2
ji1 ji2

is the
interaction between ji1th level of Fi1 and ji2th level of Fi2 and so on, 1 ≤ t ≤ m.
Further, γl is the regression coefficient for the lth concomitant variable Z (l), l =
1, 2, . . . , c. The restrictions on the factorial effects are the following:

siα∑

jiα=1

θ
i1i2...iu
ji1 ji2 ... jiu

= 0 ∀ ji1 , ji2 , . . . , jiu ( �= jiα ), 1 ≤ i1 < i2 < . . . < iu ≤ m, 1 ≤ u ≤ t.

In matrix notations, the model (8.2.1) can be rewritten as

(Y, Xθ + Zγ, σ2In), (8.2.2)

where X and Z are suitably defined.
Therefore, for the model (8.2.2), the condition (3.1.3) for estimating the

γ-components orthogonally to the ANOVA effects reduces to

Z′X = 0. (8.2.3)

Further, from (3.1.3) and (3.1.4) it follows that the most efficient estimation of
γ-components independently of theANOVAeffects is possiblewhenever, in addition
to (8.2.3), we can also ascertain

Z′Z = nIc. (8.2.4)

The condition (8.2.4) implies that z(l)
j1 j2... jm

= ±1∀l and
∑

( j1, j2,..., jm )∈�

z(l)
j1 j2... jm

z(l ′)
j1 j2... jm

= nδll ′ ∀ 1 ≤ l �= l ′ ≤ c, where δll ′ = 1(0) when l = l ′ (l �= l ′).
Let us consider a fixed set of t factors viz. F1, F2, . . . ,Ft . Also, let X12...t denote

the coefficient matrix of order n × (

t∏

i=1

si ), corresponding to the factorial effects of

the factors F1, F2, . . . ,Ft . It is not difficult to verify that X12...t is a (0, 1)-matrix and
the condition X12...t ′ Z = 0 implies that Z is also orthogonal to any design matrix
corresponding to any sub-set of the factors F1, F2, . . . ,Ft . Again, it must be noted
that conditions such as above need to be satisfied for any choice of t factors out of
m factors.

Thus we get the following theorem.

Theorem 8.2.1 With respect to the linear model (8.2.2) for an m-factor set-up, the
following conditions:

http://dx.doi.org/10.1007/978-81-322-2461-7_3
http://dx.doi.org/10.1007/978-81-322-2461-7_3
http://dx.doi.org/10.1007/978-81-322-2461-7_3
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(i) z(l)
j1 j2... jm

= ±1 ∀ ( j1, j2, . . . , jm) ∈ �, l = 1, 2, . . . , c;
(ii)

∑′′ z(l)
j1 j2... jm

= 0; the summation
∑′′ is taken over all those level combi-

nations in � which contain any given level combination for the t factors
Fi1 , Fi2 , . . . , Fit , 1 ≤ i1 < i2 < . . . < it ≤ m;

(iii)
∑

( j1, j2,..., jm )∈�

z(l)
j1 j2... jm

z(l ′)
j1 j2... jm

= nδll ′ ∀ l, l ′ = 1, 2, . . . , c, where δll ′ = 1(0)

when l = l ′(l �= l ′),

are necessary and sufficient for the optimal estimation of each of the covariate effects

γl ’s, with the minimum variance Var (̂γl) = σ2

n ∀ l = 1, 2, . . . , c.
From data analysis point view, to attain simplicity and optimality, it is desirable

that a fractional factorial design should be such that all t and less factor effects would
be orthogonally estimable with balance. This requires that the fraction denoted by A,
should be anMOA (n, s1× s2×· · ·× st , u), u = min{2t, m} (cf. Dutta et al. 2009).
To construct an OCD on this set-up, we should search for z vectors with elements±1
such that condition (8.2.3) for orthogonality to the design matrix is satisfied. This, in
effect, implies that the elements, viz. ±1 of any z vector should occur orthogonally
to any choice of t rows of A, i.e. all the level combinations for the choice of any t
rows from A and any one row of Z should occur an equal number of times.

It thus transpires that a systematic study of OA, MOA and EMOA introduced
below, canbe profitably utilized for construction ofOCDs in factorial design contexts.

8.2.2 Extended Mixed Orthogonal Array (EMOA)
and Construction of OCDs

We describe a new type of array, called extended mixed orthogonal arrays (EMOA)
introduced in Dutta et al. (2009) in connection with OCDs in the set-ups of split- and
strip-plot designs. The definition of EMOA is as follows.

Definition 8.2.1 Let us consider a k × n array where the k rows corresponding to
the k factors be divided into p sets S1, S2, . . . ,Sp. The i th set Si contains ki (≥ 2)

factors Fi1, Fi2, . . . ,Fiki , with
p∑

i=1

ki = k, where Fi j has si j (≥ 2) levels. The array

is said to be an extended mixed orthogonal array (EMOA) if

(i) for the choice of any di (≥ 2) factors from Si , all possible level combinations
of these di factors occur equally often (say λ; λ may depend on the selected
factors), i = 1, 2, . . . , p;

(ii) for the choice of any d sets (d ≥ 2), say Si1 , Si2 , . . . ,Sid , the level combinations
arising out of any ti1 factors from Si1 , any ti2 factors from Si2 , . . . , any tid factors
from Sid , where 1≤ ti j ≤ di j , 1≤ i1 < i2 < · · · < id ≤ p, occur equally often
(say μ times; μ may depend on the selected factors).
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Such an array is denoted by EMOA [n, k,

p∏

i=1

ki∏

j=1

si j , (d1, d2, . . . , dp),

(d; t1, t2, . . . , tp)]. The frequency parametersλ andμ can be obtained from the para-

meters already included in the notation above. An EMOA [n, k,

p∏

i=1

ki∏

j=1

si j , (d1, d2,

. . . , dp), (d; t1, t2, . . . , tp)] is also an EMOA [n, k,
p∏

i=1

ki∏

j=1

si j , (d ′
1, d ′

2, . . . , d ′
p), (d ′; t ′1, t ′2, . . . , t ′p)], where d ′

i < di , t ′i < ti , ∀i

and d ′ < d. It is to be noted that a compound orthogonal array (cf. Hedayat et al.
1999, p. 230) and the array proposed by Chakravarti (1956) can also be seen as
EMOAs with particular parameters.

Remark 8.2.1 If di = t and ui be a non-negative integer such that 1≤ ui ≤ ti , 1 ≤
i ≤ p satisfying

q∑

j=1

ui j = t, where 2 ≤ q ≤ d and 1 ≤ i1 < i2 < . . . < iq ≤ p,

then the EMOA [n, k,
p∏

i=1

ki∏

j=1

si j , (d1, d2, . . . , dp), (d; t1, t2, . . . , tp)] is an MOA (n,

p∏

i=1

ki∏

j=1

si j , t).

Also it follows that an EMOA can always be looked upon as a MOA of strength 2.

Remark 8.2.2 From the above discussions it follows that the OCD on the factorial
set-up under consideration can be displayed in the form of an array; the chosen n
level combinations of the m factors form n columns of a m × n matrix denoted by A
and the z-values of the c covariates form c rows of a c × n matrix denoted by B. This

(m + c) × n array

(
A
B

)
is such that A forms an MOA(n, s1 × s2 × · · · × sm, u),

u = min{2t, m}, with elements in the i th row as the levels of Fi , i = 1, 2, . . . , m and
B forms an OA (n, c, 2, 2) with elements+1 or –1 in each row. From the discussion
after Theorem8.2.1, it follows that all the level combinations for the choice of any t
rows from A and any one row from B occur an equal number of times. This array is
actually an EMOA [n, m + c, s1 × s2 × · · · × sm × 2c, (u, 2), (2; t, 1)].

Thus we get the following theorem.

Theorem 8.2.2 The existence of an EMOA [n, m + c, s1 × s2 × · · · × sm ×
2c, (u, 2), (2; t, 1)] implies the existence of an OCD in a multi-factor set-up
where all the main effects and interactions up to t-factors are orthogonally estimable,
u = min{2t, m}.
Below we cite an example of an EMOA for clear understanding of the concepts and
definitions.
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Example 8.2.1 Let us consider the following orthogonal array D, with parameters
(16, 5, 4, 2)

⎛

⎜⎜⎜
⎜
⎝

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1
1 2 3 4 3 4 1 2 4 3 2 1 2 1 4 3
1 2 3 4 4 3 2 1 2 1 4 3 3 4 1 2

⎞

⎟⎟⎟
⎟
⎠

(8.2.5)

and another orthogonal array B with parameters (4, 3, 2, 2)

B =
⎛

⎝
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1

⎞

⎠ . (8.2.6)

Replacing the level j in the first row of D by the j th column of B, j = 1, 2, 3 and 4,
we construct an array B1 of order 3 × 16. Now let D1 be the 4 × 16 array obtained
from D after ignoring the first row. Then the 7 × 32 array C obtained as

C =
(

B1 B1

D1 D1

)

is an EMOA [32, 7, 23 × 44, (3, 2), (2; 3, 1)], where B1 is the array obtained from
B1 by interchanging –1 and 1. Let, S1 denote the set of three rows corresponding
to the B’s and S2 denote the set of four rows corresponding to D1’s. Then see that
each level combination arising out of three rows of S1 occurs four times, while any
level combination arising out of any two rows of S2 occurs twice. So λ123 = 4 while
λi1i2 = 2, 4 ≤ i1, i2 ≤ 7. Again, for the choice of the three rows of S1 and any row
from S2 all possible level combinations occur just once. So μ123i1 = 1, 4 ≤ i1 ≤ 7.

Some modified versions of this array have been used in the construction of OCDs
in the examples considered below.

8.2.3 Examples of OCDs

We undertake several examples for construction of OCDs in simple experimental
set-ups. Subsequently, in the sections to follow, we develop general results.

Example 8.2.2 RBD with b = v = 4 and 2 observations per cell.

Consider H16 and denote the columns of H16 by the vectors z(1), z(2), . . . , z(16).
Let y(1) denote the 16 × 1 observation vector arising out of the RBD involving

the first observation in each cell. Similarly, we also have y(2) available as the second
observation vector across the 16 cells. It does not matter if the observations are laid
down row-wise or column-wise.
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Let z(1), z(2), . . . , z(16) be associated with y(1) vector and let their ‘negations’
occupy the respective positions in y(2).

It is noted that U = vector of average of the two observations in each cell has, for
its expectation, exclusively the terms involving the general mean μ, the block effect
parameter(s) and the treatment parameter(s) and these are free from the covariate
parameter(s) represented by the z-components. On the other hand, V = vector of
differences [divided by 2] has, for its expectation, terms involving only the covariate
parameters and these are free from the ‘design parameters’. These covariate parame-
ters have associated with them the corresponding z vectors. Since the z vectors are
mutually orthogonal with elements (±1), we are in a position to optimally accom-
modate 16 covariates.

Remark 8.2.3 This approach is definitely very transparent and one can see how
orthogonalization of the twoobservationswithin each cell has resulted into separation
of the two sets of parameters: design parameters and covariates parameter.

Remark 8.2.4 It is not clear if this approachmight lead to the possibility of including
any more covariates optimally. Towards an affirmative answer for this we take a look
at the RBDwith v = b = 4 with one observation per cell. FromDas et al. (2003) and
Rao et al. (2003) it is known that for this set-up with single observation per cell there
are nine z vectors that can be accommodated optimally. Denote these vectors of order
16 × 1 by z∗

1, z∗
2, . . . , z∗

9. It is now enough to repeat these z∗ at both the positions
in each cell. These provide additional 9 covariates, besides the 16 outlined above,
thereby giving a total of 25 covariates, the maximum number that can be achieved
with 32 observations and v = b = 4.

Below we demonstrate an equivalent but unified method of arriving at the same
result by means of EMOA to ascertain the existence of an OCD with 25 covariates
optimally included.

Consider the array D defined in (8.2.5). By replacing the levels 1, 2, 3, 4 in the
kth row of D by the elements of the j th row of B defined in (8.2.6) successively,
j = 1, 2, 3, we can construct an array Ck of order 3 × 16, k = 1, 2, 3, 4, 5. Now
let A1 be the 2 × 16 array obtained from D after ignoring the last three rows. A1
provides the set-up for the RBD. Then the 27 × 32 array E is obtained as

E =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

A1 A1

1′
16 −1′

16
C1 −C1
C2 −C2
C3 −C3
C4 −C4
C5 −C5
C3 C3
C4 C4
C5 C5

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

= (ER1 , ER2).
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It is readily verified that E is an EMOA [32, 27, 42 × 225, (2, 2), (2; 1, 1)] which
provides 25 optimal covariates. The matrix E is displayed below in the partitioned
form with the observations separately shown in two cells.

ER1 =

Cell position 1

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
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ER2 =

Cell position 2

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1 1
−1 −1 −1 −1 1 1 1 1 1 1 1 1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1
−1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1
−1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1
−1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1
−1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1
−1 1 1 −1 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1
−1 −1 1 1 −1 −1 1 1 1 1 −1 −1 1 1 −1 −1
−1 1 −1 1 −1 1 −1 1 1 −1 1 −1 1 −1 1 −1
−1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1
−1 −1 1 1 1 1 −1 −1 1 1 −1 −1 −1 −1 1 1
−1 1 −1 1 1 −1 1 −1 1 −1 1 −1 −1 1 −1 1
−1 1 1 −1 −1 1 1 −1 1 −1 −1 1 1 −1 −1 1
−1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1

Remark 8.2.5 In the structure of the EMOA we can readily identify the two sets of
z-vectors arising out of the first Method. In D1, the rows of the three components
[C3, C3]; [C4, C4]; [C5, C5] represent the nine z∗s vectors of Remark8.2.4 while
the rest are identified as the z vectors.

Remark 8.2.6 Here we note that

ER1
1 =

⎛

⎜⎜
⎝

A1

C3
C4
C5

⎞

⎟⎟
⎠
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is an EMOA [16, 11, 42 ×29, (2, 2), (2; 1, 1)] and thus from Theorem8.2.2 it follows
that this EMOAprovides anOCD for RBD set-upwith 4 blocks and 4 treatments with
single observation per cell, i.e. a standard RBDwith b= v= 4 (this in agreement with
Dutta et al. 2009; Rao et al. 2003). Here we accommodate the maximum possible
number of 9 covariates optimally.

Example 8.2.3 LSD of order 4 with provision for formation of six z vectors
Define

ELSD =
⎛

⎝
A2

C4
C5

⎞

⎠ .

It is observed that ELSD is an EMOA [16, 9, 43 × 26, (2, 2), (2; 1, 1)], where A2
is the 3 × 16 array obtained from D after ignoring the last two rows. A2 gives the
set-up the 4 × 4 LSD. We can easily infer from Theorem8.2.2 that this EMOA gives
an OCD for LSD set-up with 4 rows, 4 columns and 4 treatments. ELSD is displayed
as follows:

ELSD =

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1

Thus we construct OCD with 6 covariates which is the maximum possible number
of covariates.

Example 8.2.4 Graeco LSD of order 4 with provision for formation of three
z vectors.

Define

EGLSD =
(

A3

C5

)
.
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It is observed that EGLSD is an EMOA [16, 7, 44 × 23, (2, 2), (2; 1, 1)], where A3 is
the 4 × 16 array providing the set-up for Graeco LSD and is obtained from D after
ignoring the last row. It easily follows from Theorem8.2.2 that this EMOA is the
OCD for Graeco LSD set-up. EGLSD is displayed as follows:

EGLSD =

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1
1 2 3 4 3 4 1 2 4 3 2 1 2 1 4 3
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1

Here we construct OCD with maximum possible number of 3 covariates.

Example 8.2.5 LSD of order 4 with 2 observations per cell.

By mimicking the arguments as in the case of an RBD of Example8.2.2 with two
observations per cell, we can immediately associate 6 covariates in an optimalmanner
since there are 6 error d.f. in the set-up of a latin square of order 4. These are analogous
to the z∗ vectors of Example8.2.2. The remaining 16 z components are obtained by
referring toH16 in the sameway as was done there. Thewhole analysis can be carried
out by referring to EMOA. This is explained below.

Define

F =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜
⎝

A2 A2

1′
16 −1′

16
C1 −C1
C2 −C2
C3 −C3
C4 −C4
C5 −C5
C4 C4
C5 C5

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟
⎠

= (FR1 , FR2),

which is readily verified to be an EMOA [32, 25, 43 × 222, (2, 2), (2; 1, 1)]. The
matrix F is displayed below in the partitioned form with the observations separately
shown in two cell positions.
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FR1 =

Cell position 1

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
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FR2 =

Cell position 2

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1 1
−1 −1 −1 −1 1 1 1 1 1 1 1 1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1
−1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1
−1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1
−1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1
−1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1
−1 1 1 −1 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1
−1 −1 1 1 −1 −1 1 1 1 1 −1 −1 1 1 −1 −1
−1 1 −1 1 −1 1 −1 1 1 −1 1 −1 1 −1 1 −1
−1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1
−1 −1 1 1 1 1 −1 −1 1 1 −1 −1 −1 −1 1 1
−1 1 −1 1 1 −1 1 −1 1 −1 1 −1 −1 1 −1 1
−1 1 1 −1 −1 1 1 −1 1 −1 −1 1 1 −1 −1 1
−1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1

Example 8.2.6 LSD of order 6.
It is very difficult to construct OCDs for latin square design when MOLS do not

exist. However, using some special structure of latin square it is possible to construct
at least one OCD in some case. We consider the following latin square (Sinha 2009,
p. 224)

L =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

1 2 3 4 5 6
2 1 4 3 6 5
6 5 1 2 3 4
5 6 2 1 4 3
4 3 6 5 2 1
3 4 5 6 1 2

⎞

⎟
⎟⎟⎟⎟⎟
⎠

. (8.2.7)

Using W-matrix given in Sinha (2009), we can construct the following EMOA [36,
4, 6 × 6 × 6 × 21, (2, 1), (2; 2, 1)]:
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⎛

⎜⎜
⎝

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
1 2 3 4 5 6 2 1 4 3 6 5 6 5 1 2 3 4
1 1 1 −1 −1 −1 1 1 −1 −1 −1 1 1 −1 −1 −1 1 1

4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
5 6 2 1 4 3 4 3 6 5 2 1 3 4 5 6 1 2

−1 −1 −1 1 1 1 −1 −1 1 1 1 −1 −1 1 1 1 −1 −1

⎞

⎟⎟
⎠ ,

which gives an OCD with one covariate.

8.2.4 OCDs on Some General Set-Ups

Following are some examples of general nature and the OCDs thereon follow from
direct application of Theorem8.2.2. In all the results stated above and below, c
denotes the number of covariates optimally included. This may be noted once and
for all.

Generalization 1 (main effects plan set-up): Let A be an MOA(n, s1 × s2 × · · · ×
sm, 2) giving an orthogonal main effects plan. Then, according to Theorem8.2.2,

the matrix

(
A
B

)
gives an OCD if

(
A
B

)
is an EMOA [n, m + c, s1 × s2 × · · · ×

sm × 2c, (2, 2), (2; 1, 1)]. It follows that this EMOA is an MOA(n, s1 × s2 ×
· · · × sm × 2c, 2).

Below we discuss a particular type of main effect plan obtained through hyper-
graecolatin square.

Hypergraecolatin square set-up: Let A be an m × s2 matrix giving an OA
(s2, m, s, 2) obtained from m mutually orthogonal latin squares (MOLS) of
order s. The columns of A actually give the set-up of a hypergraecolatin square

(cf. Raghavarao 1971). Then B gives an OCD in the above set-up if

(
A
B

)
= MOA

(s2, sm × 2c, 2), c ≤ (s − 1)(s + 1 − m).
If m = 3, then B gives an OCD for an s × s latin square set-up (compare

Example8.2.4).
The following theorem states a method of getting OCDs for this set-up with a

compromise on the error d.f. and pushing them to the covariates.

Theorem 8.2.3 Suppose Hs and (m − 2) MOLS of order s with symbols 1, 2, . . . , s
exist, m ≤ s + 1. Let A = OA (s2, m1 + 2, s, 2) be constructed from m1 MOLS
out of the (m − 2) (=m1 + m2) MOLS of order s. Then an OCD for the estimation
of c = m2(s − 1) regression coefficients in the set-up of an orthogonal main effects
plan involving (m1 + 2) factors can be constructed from the remaining m2 MOLS.
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Proof First we construct an orthogonal array, OA (s2, m, s, 2) using the (m − 2)
MOLS of order s (cf. Hedayat et al. 1999). Let this orthogonal array be denoted by
the following matrix E in a partition form as

E =
(

A(m1+2)×s2

Dm2×s2

)
.

Here D is a resolvable orthogonal array of strength one (cf. Raghavarao 1971). A
Hadamard matrix of order s is written as

Hs = (h1, h2, . . . , hs−1, 1). (8.2.8)

Let the symbol i ofD, be replaced by h ji , where h j i is the i th element of the vectorh j ,
i = 1, 2, . . . , s, and a newm2×s2 arrayB( j) is obtained fromD, j = 1, 2, . . . , s−1.
Note that B( j) is an orthogonal array of strength 2 with the two symbols +1 and –1,
j = 1, 2, . . . , s−1.Next we construct them2(s−1)×s2 arrayB by the juxtaposition
of B(1), B(2), . . . , B(s−1) row-wise, as

B =

⎛

⎜⎜⎜
⎝

B(1)

B(2)

...

B(s−1)

⎞

⎟⎟⎟
⎠

. (8.2.9)

We can easily check that

(
A
B

)
is an EMOA [s2, m1+2+c, sm1+2×2c, (2, 2), (2;

1, 1)] where c = m2(s − 1). So by Theorem8.2.2, the result follows. �
Remark 8.2.7 Ifm1 = 1, then B gives an OCD for an s ×s latin square design set-up
and in this case c = (s − 1)(m − 3).

Generalization 2 (Set-up of m-way classification with single observation per cell):

Let A be an m × v array containing all the v =
m∏

i=1

si level combinations of the m

factors.A is actually anMOAof strengthm and all the factorial effects (v in number),
together with the mean, are orthogonally estimable from the v observations. But as
there is no error degrees of freedom left, no covariate can be accommodated. For this,
according to the usual practice, we assume that the m-factor interactions are negli-
gible and contribute to error. As A is an MOA with strength m, then all the factorial
effects up to (m −1)-factor interactions are orthogonally estimable. So a c×v matrix
B with elements ±1, gives an OCD for the estimation of c regression coefficients if(

A
B

)
is an EMOA [v, m + c, s1 × s2 × · · · × sm × 2c, (m, 2), (2; m − 1, 1)],

where c ≤
m∏

i=1

(si − 1).
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Generalization 3 (Set-up of m-way classification with r (> 1) observations per
cell): Let in the above set-up each level combination be repeated r (> 1) times in
A. Then all the v factorial effects can be included in the model as the replications

provide with the error and a matrix B satisfying

(
A
B

)
= EMOA [vr, m + c, s1 ×

s2 × · · · × sm × 2c, (m, 2), (2; m, 1)] will give an OCD for the estimation of c
regression coefficients where c ≤ v(r − 1).

Generalizations 2 and 3 indicate how the OCDs can be obtained for this set-up
through EMOAs with suitable parameters. Constructions of such EMOAs can be
obtained by suitable adaptation of those for the MOAs given in Rao et al. (2003).
The results are stated in the following theorems.

Theorem 8.2.4 If r = 1 and,

(i) if there exists a Hadamard matrix of order si (i = 1, . . . , m), then an EMOA

[v =
m∏

i=1

si , m + c, s1 × s2 × · · · × sm × 2c, (m, 2), (2; m − 1, 1)] exists,

where c=
m∏

i=1

(si − 1);

(ii) if Hadamard matrices of orders s1/2, 2s2 and si (i = 3, . . . , m) exist, where s2

is even, then an EMOA [v =
m∏

i=1

si , m + c, s1 × s2 × · · · × sm × 2c, (m, 2),

(2; m − 1, 1)] exists, where c= {(s1 − 1)(s2 − 1) − (s2 − 2)}
m∏

i=3

(si − 1);

(iii) if Hadamard matrices of orders s1 and si (i = 3, . . . , m) exist and s2 = 2
(mod 4) and (s2 − 1) is a prime or prime power, then an EMOA [v =
m∏

i=1

si , m + c, s1 × s2 × · · · × sm × 2c, (m, 2), (2; m − 1, 1)] exists, where

c= {(s1 − 1)(s2 − 1) − (s2 − 2)}
m∏

i=3

(si − 1).

Theorem 8.2.5 If r > 1 and,

(i) if there exist Hadamard matrices of orders v =
m∏

i=1

si , r, then an EMOA [vr, m+
c, s1 × s2 × · · · × sm × 2c, (m, 2), (2; m, 1)] exists, where c = v(r − 1);

(ii) if Hadamard matrices of orders v/2, v ==
m∏

i=1

si and 2r exist, where r is even,

then an EMOA [vr, m + c, s1 × s2 ×· · ·× sm × 2c, (m, 2), (2; m, 1)] exists,
where c = v(r − 1);
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(iii) if a Hadamard matrix of order v =
m∏

i=1

si exists and r ≡ 2 (mod 4) and (r − 1)

is a prime or prime power, then an EMOA [vr, m + c, s1 × s2 × · · · × sm ×
2c, (m, 2), (2; m, 1)] exists, where c = v(r − 1). Below we cite an example
of an EMOA for clear understanding of Theorems8.2.4 and 8.2.5.

Example 8.2.7 Let us consider a 4 × 2 × 2 full factorial with one observation per
cell. Then EMOA [16, 6, 4 × 2 × 2 × 23, (2, 2), (2, 1, 1)] can be constructed as
follows:
⎛

⎜⎜⎜
⎜⎜⎜
⎝

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1

⎞

⎟⎟⎟
⎟⎟⎟
⎠

=
(

A3×16

Z′ 3×16

)
,

where Z16×3 = (z1, z2, z3) and z′
1 = (1,−1, 1,−1) ⊗ (1,−1) ⊗ (1,−1), z′

2 =
(1,−1,−1, 1)⊗ (1,−1)⊗ (1,−1), z′

3 = (1, 1,−1,−1)⊗ (1,−1)⊗ (1,−1). Here
we accommodate 3 covariates optimally in the factorial set-up when all the main
effects and two-factor interactions are orthogonally estimable.

Again let us consider the 4×2×2 full factorial with two observations per cell. Then
EMOA [32, 22, 4 × 2 × 2 × 219, (2, 2), (2, 1, 1)] can be constructed as follows:

⎛

⎝
First set of Second set of

16 observations 16 observations
H16 −H16

⎞

⎠ .

Here we accommodate 16 covariates optimally in the factorial set-up with two obser-
vations per cell when all themain effects and interactions are orthogonally estimable.

Remark 8.2.8 (RBD set-up as a particular case of Generalization 2): Let A2×s1s2
contain the all possible level combinations of an RBD with s1 blocks and s2 treat-
ments. Then by Remark8.2.1, B, a c × s1s2 matrix with elements ±1 gives an OCD

if

(
A
B

)
is an EMOA [s1s2, 2+c, s1×s2×2c, (2, 2), (2; 1, 1)], which is actually

an MOA (s1s2, s1 × s2 × 2c; 2). This is in full agreement with Rao et al. (2003)
(compare Example 3.4.1 of Chap.3).

Remark 8.2.9 (CRD set-up as a particular case of Generalization 3): If in partic-

ular, m = 1 in the set-up of Remark8.2.10, then a matrix B, where
(

A
B

)
= MOA

(vr, v × 2c; 2) gives an OCD for the estimation of the regression coefficients under
the CRD set-up with v treatments. This is also in agreement with Rao et al. (2003)
(compare Example 3.4.1 of Chap.3).

http://dx.doi.org/10.1007/978-81-322-2461-7_3
http://dx.doi.org/10.1007/978-81-322-2461-7_3
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Remark 8.2.10 (Incomplete block design set-up): Let m = 2 and the columns
of A give the set-up of an incomplete block design where the block and the treat-
ment effects are non-orthogonally estimable. The same conditions (i)–(iii) of The-
orem8.2.1 apply for an OCD, but no general result similar to Theorem8.2.2 can
be proposed. The OCDs are difficult to construct here unless some patterns in the
incidence matrices exist (cf. Chaps. 4, 5 and 6).

8.3 OCDs in Split-Plot and Strip-Plot Design Set-Ups

In the previous chapters we considered set-ups where the errors were assumed to
be uncorrelated. In this section, we consider the problem of finding OCDs for the
estimation of covariate parameters in the correlated set-ups of standard split-plot and
strip-plot designs with the levels of the whole-plot factor laid out in r randomized
blocks. An EMOA and Hadamard matrices play the key role for such construction.

8.3.1 Preliminaries

In the earlier chapters, we considered the set-up where the observations are uncor-
related. For the correlated model, the issue of finding the optimal covariate designs
was considered by Dutta et al. (2009) which we discuss in the present section. For
the general variance-covariance structure, it is difficult to construct the optimum Z-
matrix retaining orthogonality with effects related to the ANOVA part. Dutta et al.
(2009) dealt with standard split-plot and strip-plot design set-ups (cf. Cochran and
Cox 1950) for which variance–covariance matrices have special structures that can
be conveniently exploited to find the OCDs.

Consider the following non-stochastic controllable covariates model of a stan-
dard split-plot design set-up with the levels of the whole-plot factor (whole-plot
treatments) in r randomized blocks (cf. Chakrabarti 1962)

(Y, μ1r pq + X1α + X2β + X3τ + X4δ + Zγ, σ2�) (8.3.1)

whereY = (
y111, . . . , yi jk, . . . , yr pq

)′ is the r pq×1 observation vector correspond-
ing to the r pq level combinations of the three factors, viz. the block (R), the whole
plot factor (A), and the sub-plot factor (B) arranged lexicographically; X1, X2, X3,
X4, Z are the design matrices corresponding to the block effects vector αr×1, the
whole-plot effects vector β p×1, the sub-plot effects vector τ q×1, the whole-plot×
sub-plot interaction effects vector δ pq×1 and the covariate effects γc×1 respectively.
Obviously, 1r pq is the coefficient vector corresponding to the intercept term μ. It may
be noted that Xi j ’s are (0,1) incidence matrices. Z is the matrix of covariate values.
For convenience, we partition Xg (g = 1, 2, 3, 4) and Z as follows:

http://dx.doi.org/10.1007/978-81-322-2461-7_4
http://dx.doi.org/10.1007/978-81-322-2461-7_5
http://dx.doi.org/10.1007/978-81-322-2461-7_6
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X
r pq×ng
g =

(
X

(g)′ ng×q
11 , . . . , X

(g)′ ng×q
1p , . . . , X

(g)′ ng×q
i j , . . . , X

(g)′ ng×q
r p

)′

Zr pq×c =
(

Z′ c×q
11 , . . . , Z′ c×q

1p , . . . , Z′ c×q
i j , . . . , Z′ c×q

r p

)′

⎫
⎬

⎭

(8.3.2)

where ng stands for the number of parameters in the gth classification corresponding
to the block, thewhole-plot treatment and the sub-plot treatment, i.e. ng = r, p, q, pq

for g = 1, 2, 3, 4 respectively. X(1) q×r
i j , X(2) q×p

i j , X(3) q×q
i j , X(4) q×pq

i j and Zq×c
i j are

the portions of the designmatricesX1,X2,X3,X4 andZ, respectively, corresponding
to the observations of the i th block and the j th whole-plot treatment (i = 1, 2, . . . , r ;
j = 1, 2, . . . , p). Thus, if the structure ofX(1)

i j is investigated it is noted that in the i th
column, 1 corresponds to each of the q observations on the q levels of the sub-factor
B when R and A are fixed at i and j respectively. Other columns contain 0’s only. We
write 1 as q × 1 vector with all elements unity, ei as q × 1 unit vector with 1 at the
i th position, δ j = (δ j1, δ j2, . . . , δ jq), j = 1, 2, . . . , p, j th vector of interactions
of j th whole plot treatment with q sub-plot treatments, j = 1, 2, . . . , p. With these
notations we write the following X(g)

i j matrices.

X(1)
i j = (

α1 α2 . . . αi−1 αi αi+1 . . . αr

0 0 . . . 0 1 0 . . . 0
)q×r ∀ j; (8.3.3)

It is to be noted that the structure of X(1)
i j is independent of j . In this way, we can

write the other Xi j -matrices as follows:

X(2)
i j = (

β1 β2 . . . β j−1 β j β j+1 . . . βp

0 0 . . . 0 1 0 . . . 0
)q×p ∀i; (8.3.4)

τ1 τ2 . . . τq

X(3)
i j = (

e1 e2 . . . eq
)q×q ∀i, j; (8.3.5)

X(4)
i j = (

δ1 δ2 . . . δ j−1 δ j δ j+1 . . . δ p

0 0 . . . 0 Iq 0 . . . 0
)q×pq ∀i; (8.3.6)

Now we consider the following example which illustrates the above set-up and the
representations.

Example 8.3.1 Let us take r = 2, p = 2, q = 4. Then X1, X2, X3 and X4 are
written as follows.
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X1 =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

X(1)4×2
11

X(1)4×2
12

X(1)4×2
21

X(1)4×2
22

⎞

⎟⎟⎟
⎠

, X2 =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

X(2)4×2
11

X(2)4×2
12

X(2)4×2
21

X(2)4×2
22

⎞

⎟⎟⎟
⎠

,

X3 =

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

X(3)4×4
11

X(3)4×4
12

X(3)4×4
21

X(3)4×4
22

⎞

⎟⎟⎟
⎠

, X4 =

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

X(4)4×8
11

X(4)4×8
12

X(4)4×8
21

X(4)4×8
22

⎞

⎟⎟⎟
⎠

.

For a standard split-plot design, where intra-class correlation structure of the disper-
sion matrix is assumed, the elements of �-matrix (cf. Chakrabarti 1962) of (8.3.1)
are given by

1

σ2 Cov(yi jk, yi ′, j ′,k′) =
⎧
⎨

⎩

1 if i = i ′, j = j ′, k = k′
ρ if i = i ′, j = j ′, k �= k′
0 otherwise,

(8.3.7)
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and it can be expressed as

� = Ipr

⊗
�1; �1 = (1 − ρ)Iq + ρJq (8.3.8)

where ρ is the common intra-class correlation coefficient among the observations
corresponding to the sub-plot treatments within the same whole-plot treatment in
a block and Ju = 1u1′

u is the square matrix of order u with all elements unity.
Following Cochran and Cox (1950), p. 220, we assume ρ > 0 as the observations
corresponding to the different levels of the sub-plot treatments under the same level
of the whole-plot treatment are expected to be positively correlated.

In this correlated set-up, we are concerned with the optimum choice of Z for the
estimation of each of the regression parameters in the split-plot set-upwithmaximum
accuracy in the sense ofminimizing the variance of the best linear unbiased estimators
of regression parameters retaining orthogonality with the estimators of the ANOVA
effects.

The Optimality Conditions for the Split-Plot Design Set-Up
The information matrix for η = (μ, α′, β′, τ ′, δ′, γ ′)′ in the split-plot design
set-up (8.3.1) is given by

I(η) = (X, Z)′�−1(X, Z). (8.3.9)

where X = (1, X1, X2, X3, X4). From (8.3.8), �−1 can be written as

�−1 = Ipr ⊗ �−1
1

�−1
1 = 1

1−ρ

(
Iq − ρ

1+(q−1)ρJq

)
}

(8.3.10)

It is evident from (8.3.9) that γ is estimable orthogonally to the ANOVA effects if
and only if

X′
g�

−1Z = 0, g = 1, 2, 3, 4, (8.3.11)

where Xg is the design matrix of order r pq × ng corresponding to the gth ANOVA
effect described in (8.3.2), with ng = r, p, q, pq respectively for g = 1, 2, 3, 4.
Using (8.3.10), the orthogonality conditions in (8.3.11) can be reduced to

r∑

i=1

p∑

j=1

X(g)′
i j Zi j − ρ

1 + (q − 1)ρ

r∑

i=1

p∑

j=1

X(g)′
i j JqZi j = 0, (8.3.12)
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which is satisfied if
r∑

i=1

p∑

j=1

X(g)′
i j Zi j = 0, (8.3.13)

and

ρ

1 + (q − 1)ρ

r∑

i=1

p∑

j=1

X(g)′
i j JqZi j = 0. (8.3.14)

For g = 1, 2, 3 and 4, (8.3.3)–(8.3.6) imply that the left-hand side of (8.3.13)
becomes, respectively,
the r × c matrix

⎛

⎝
p∑

j=1

q∑

l=1

z(i j)
lm

⎞

⎠

i=1,2,...,r, m=1,2,...,c

, (8.3.15)

the p × c matrix
(

r∑

i=1

q∑

l=1

z(i j)
lm

)

j=1,2,...,p, m=1,2,...,c

, (8.3.16)

the q × c matrix
⎛

⎝
r∑

i=1

p∑

j=1

z(i j)
lm

⎞

⎠

l=1,2,...,q, m=1,2,...,c

, (8.3.17)

and the pq × c matrix

(
r∑

i=1

z(i j)
lm

)

j=1,2,...,p, l=1,2,...,q, m=1,2,...,c

. (8.3.18)

Again for g = 1, 2, 3 and 4, (8.3.3)–(8.3.6) imply that the left-hand side of (8.3.14)
becomes, respectively,

the r × c matrix

q

⎛

⎝
p∑

j=1

q∑

l=1

z(i j)
lm

⎞

⎠

i=1,2,...,r, m=1,2,...,c

, (8.3.19)
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the p × c matrix

q

(
r∑

i=1

q∑

l=1

z(i j)
lm

)

j=1,2,...,p, m=1,2,...,c

, (8.3.20)

the q × c matrix

1q ⊗
⎛

⎝
r∑

i=1

p∑

j=1

q∑

l=1

z(i j)
l1 , . . . ,

r∑

i=1

p∑

j=1

q∑

l=1

z(i j)
lm , . . . ,

r∑

i=1

p∑

j=1

q∑

l=1

z(i j)
lc

⎞

⎠ (8.3.21)

and the pq × c matrix

U =
(

U′
1, . . . , U′

j , . . . , U′
p

)′
, (8.3.22)

where

Uq×c
j = 1q ⊗

⎛

⎝
r∑

i=1

p∑

j=1

q∑

l=1

z(i j)
l1 , . . . ,

r∑

i=1

p∑

j=1

q∑

l=1

z(i j)
lm , . . . ,

r∑

i=1

p∑

j=1

q∑

l=1

z(i j)
lc

⎞

⎠ .

(8.3.23)

Therefore, from (8.3.15)–(8.3.23), a set of sufficient conditions for (8.3.13) to satisfy
is

r∑

i=1

z(i j)
lm = 0 ∀ j = 1, 2, . . . , p, l = 1, 2, . . . , q, m = 1, 2, . . . , c,

and
p∑

j=1

q∑

l=1

z(i j)
lm = 0 ∀i = 1, 2, . . . , r, m = 1, 2, . . . , c.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(8.3.24)

It is seen from (8.3.9) that the information matrix for γ under (8.3.24) when X(g)
i j ’s

follow the structure (8.3.3)–(8.3.6), is proportional to Z′�−1Z. Again, by virtue of
(8.3.10)

Z′�−1Z = 1
1−ρ

⎛

⎝
r∑

i=1

p∑

j=1

Z′
i j Zi j − ρ

1 + (q − 1)ρ

r∑

i=1

p∑

j=1

Z′
i j JqZi j

⎞

⎠

≤ 1
1−ρ

⎛

⎝
r∑

i=1

p∑

j=1

Z′
i j Zi j

⎞

⎠

(8.3.25)
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in the sense of Partial LoewnerOrder (PLO) dominance (cf. Pukelsheim (1993)) since

by assumption ρ > 0 and
r∑

i=1

p∑

j=1

Z′
i j JqZi j =

r∑

i=1

p∑

j=1

Z′
i j 1q1′

qZi j is non-negative

definite. Equality holds in (8.3.25) if Z′
i j 1q = 0 ∀i, j or, equivalently

q∑

l=1

z(i j)
lm = 0 ∀i = 1, 2, . . . , r, j = 1, 2, . . . , q, m = 1, 2, . . . , c. (8.3.26)

If, in addition to (8.3.24) and (8.3.26), Zi j satisfies

r∑

i=1

p∑

j=1

q∑

l=1

z(i j)
lm z(i j)

lm′ = 0 ∀ m �= m = 1, 2, . . . , c, (8.3.27)

then γm’s are estimated orthogonally among themselves and orthogonally to the
ANOVA effects. Under the above conditions (8.3.24), (8.3.26) and (8.3.27), γm can

be estimated with the minimum variance (1−ρ)σ2

r pq for each m if zi j
lm = ±1 ∀ i, j, l, m.

Hence we get the following theorem given in Dutta et al. (2009).

Theorem 8.3.1 In the standard split-plot design set-up (8.3.1) the following set of
conditions:

(i) z(i j)
lm = ±1 ∀i = 1, 2, . . . , r, j = 1, 2, . . . , p, l = 1, 2, . . . , q, m =
1, 2, . . . , c

(ii)
q∑

l=1

z(i j)
lm = 0 ∀i = 1, 2, . . . , r, j = 1, 2, . . . , p, m = 1, 2, . . . , c

(iii)
r∑

i=1

z(i j)
lm = 0 ∀ j = 1, 2, . . . , p, l = 1, 2, . . . , q, m = 1, 2, . . . , c

(iv)
r∑

i=1

p∑

j=1

q∑

l=1

z(i j)
lm z(i j)

lm′ = r pqδmm′ where δmm′ = 1 if m = m′; =0 if m �= m′,

is sufficient for the optimum estimation of each of the covariate effects with the

minimum possible variance Var (̂γm) = (1−ρ)σ2

r pq , m = 1, 2, . . . , c.

Note 8.3.1 It must be noted that the conditions laid down above are independent of
the actual value of ρ, assumed to be known and positive.

The Optimality Conditions for the Strip-Plot Design Set-Up

In a standard strip-plot design, as the levels of the sub-plot factor B are arranged
in strips, the dispersion matrix of the observation vector Y gets changed though the
mean vector remains the same as in (8.3.1). So the linearmodel (8.3.1) can be adapted
by replacing � by �∗, with the elements of �∗ as
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1

σ2 Cov(yi jk, yi ′, j ′,k′) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if i = i ′, j = j ′, k = k′
ρ1 if i = i ′, j = j ′, k �= k′
ρ2 if i = i ′, j �= j ′, k = k′
0 otherwise,

(8.3.28)

where yi jk , arranged lexicographically, is the yield of the plot belonging to the
kth column-strip and the j th row-strip in the i th block (i = 1, 2, . . . , r; j =
1, 2, . . . , p; k = 1, 2, . . . , q). Therefore, we can write (8.3.28) as

Disp(Y) = σ2Ir ⊗ �∗∗
�∗∗ = Ip ⊗ �∗

1 + Jp ⊗ �∗
2

�∗
1 = (1 − ρ1 − ρ2)Iq + ρ1Jq , �∗

2 = ρ2Iq .

⎫
⎬

⎭
(8.3.29)

Following the same arguments as in split-plot design, here it is also assumed that
ρ1 > 0, ρ2 > 0. In a standard strip-plot design, for estimation of the covariate effects
orthogonally to the ANOVA effects, we, in analogy to (8.3.11), have from (8.3.1)
and (8.3.29)

X′
g�

∗−1Z = 0, ∀g = 1, 2, 3, 4, (8.3.30)

where Xg’s and Z are defined in (8.3.2). By virtue of (8.3.29), the conditions in
(8.3.30) reduce to

r∑

i=1

X(g)′
i �∗∗−1Z(i) = 0, ∀g = 1, 2, 3, 4, (8.3.31)

whereX(g)
i andZ(i) are the portions ofXg andZ corresponding to the pq observations

in the i th block, i = 1, 2, . . . , r .
Again from (8.3.29),

�∗∗−1
1 = Ip ⊗ B1 − Jp ⊗ B2 (8.3.32)

where

B1 = �∗−1
1 = 1

1− ρ1 − ρ2

(
Iq − 1

1+ (q − 1)ρ1 − ρ2
Jq

)
,

B2 = (
�∗
1 + p�∗

2

)−1
�∗
2�

∗−1
1

= ρ2
(1− ρ1 − ρ2)(1+ ρ1 + (p − 1)ρ2)

(
Iq − ρ1(2+ (q − 2)ρ1 + (p − 2)ρ2)

(1+ (q − 1)ρ1 − ρ2)(1+ (q − 1)ρ1 + (p − 1)ρ2)
Jq

)
.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(8.3.33)

By virtue of (8.3.2) and (8.3.32), the condition (8.3.31) reduces to

r∑

i=1

p∑

j=1

X(g)′
i j B1Zi j −

r∑

i=1

p∑

j=1

X(g)′
i j B2(Zi1 + Zi2 + · · · + Zi p) = 0 (8.3.34)
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which is satisfied if

r∑

i=1

p∑

j=1

X(g)′
i j B1Zi j = 0 (8.3.35)

and

r∑

i=1

p∑

j=1

X(g)′
i j B2(Zi1 + Zi2 + · · · + Zi p) = 0. (8.3.36)

Since B1 is a completely symmetric matrix, it is seen that (8.3.24) is also sufficient
for (8.3.35) to hold. Again, using (8.3.33) in (8.3.36), a set of sufficient conditions
for (8.3.36) to satisfy is

r∑

i=1

p∑

j=1

X(g)′
i j (Zi1 + Zi2 + · · · + Zi p) = 0, (8.3.37)

and

r∑

i=1

p∑

j=1

X(g)′
i j 1q

⎛

⎝
p∑

j=1

q∑

l=1

z(i j)
l1 , . . . ,

p∑

j=1

q∑

l=1

z(i j)
lm , . . . ,

p∑

j=1

q∑

l=1

z(i j)
lc

⎞

⎠ = 0.

(8.3.38)

It is seen that the condition (8.3.38) holds if (8.3.24) holds. Similarly as before, for
g = 1, 2, 3 and 4, the left-hand side of (8.3.37) becomes, respectively,

the r × c matrix

p

⎛

⎝
p∑

j=1

q∑

l=1

z(i j)
lm

⎞

⎠

i=1,2,...,r, m=1,2,...,c

, (8.3.39)

the p × c matrix

1p ⊗
⎛

⎝
r∑

i=1

p∑

j=1

q∑

l=1

z(i j)
l1 , . . . ,

r∑

i=1

p∑

j=1

q∑

l=1

z(i j)
lm , . . . ,

r∑

i=1

p∑

j=1

q∑

l=1

z(i j)
lc

⎞

⎠ , (8.3.40)
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the q × c matrix

p

⎛

⎝
r∑

i=1

p∑

j=1

z(i j)
lm

⎞

⎠

l=1,2,...,q, m=1,2,...,c

(8.3.41)

and the pq × c matrix

1p ⊗
⎛

⎝
r∑

i=1

p∑

j=1

z(i j)
lm

⎞

⎠

l=1,2,...,q, m=1,2,...,c

. (8.3.42)

So (8.3.37) holds whenever (8.3.24) holds. Using X(g)
i j ’s from (8.3.3) to (8.3.6), and

following similar arguments as in a split-plot design, it can be concluded that a set
of sufficient conditions to satisfy (8.3.35) and (8.3.36) is

r∑

i=1

z(i j)
lm = 0 ∀ j = 1, 2, . . . , p, l = 1, 2, . . . , q, m = 1, 2, . . . , c,

p∑

j=1

q∑

l=1

z(i j)
lm = 0 ∀i = 1, 2, . . . , r, m = 1, 2, . . . , c.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(8.3.43)

These are the same as the conditions in (8.3.24) for orthogonality in a split-plot
design. The z-values satisfying (8.3.43) will ensure estimation of γ orthogonally
to the estimates of the ANOVA effects. Under (8.3.43), the information matrix for
γ in standard strip-plot design set-up will be proportional to Z′�∗−1Z. Now from
(8.3.32) and (8.3.33)

Z′�∗−1Z =
r∑

i=1

Z′
i�

∗∗−1Zi =
r∑

i=1

p∑

j=1

Z′
i j B1Zi j −

r∑

i=1

p∑

j=1

Z′
i j B2

⎛

⎝
p∑

j=1

Zi j

⎞

⎠ .

(8.3.44)

Here, as the observations in the same row-strip or in the same column-strip, are
subject to the influence of the same level of A and the same level of B, respectively,
it is expected that ρ1 > 0, ρ2 > 0 (cf. Cochran and Cox 1950) and B2 is assumed
to be a positive definite matrix. Because of this assumption and the structure of B1,
(8.3.44) implies that a design for which

q∑

l=1

z(i j)
lm = 0 ∀i, j, m;

p∑

j=1

z(i j)
lm = 0 ∀i, l, m (8.3.45)

hold, dominates any other design in the sense of PLO. If, in addition,
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z(i j)
lm = ±1 ∀i, j, l, m
r∑

i=1

p∑

j=1

q∑

l=1

z(i j)
lm z(i j)

lm′ = 0 ∀m �= m′ = 1, 2, . . . , c.

⎫
⎪⎪⎬

⎪⎪⎭
(8.3.46)

then

Z′�∗−1Z = r pq

1 − ρ1 − ρ2
Ic. (8.3.47)

So from (8.3.43), (8.3.45) and (8.3.46), we get the following theorem which gives
a set of sufficient conditions for optimum estimation (in the sense of the minimum
variance for the estimator of eachγ-component) of the covariate effects in a strip-plot
design.

Theorem 8.3.2 With respect to the linear model (8.3.1) for the standard strip-plot
design with variance structure (8.3.29), the following set of conditions:

(i) z(i j)
lm = ±1 ∀i = 1, 2, . . . , r, j = 1, 2, . . . , p, l = 1, 2, . . . , q, m =
1, 2, . . . , c

(ii)
r∑

i=1

z(i j)
lm = 0 ∀ j = 1, 2, . . . , p, l = 1, 2, . . . , q, m = 1, 2, . . . , c

(iii)
p∑

j=1

z(i j)
lm = 0 ∀i = 1, 2, . . . , r, l = 1, 2, . . . , q, m = 1, 2, . . . , c

(iv)
q∑

l=1

z(i j)
lm = 0 ∀i = 1, 2, . . . , r, j = 1, 2, . . . , p, m = 1, 2, . . . , c

(v)
r∑

i=1

p∑

j=1

q∑

l=1

z(i j)
lm z(i j)

lm′ = r pqδmm′

where δmm′ = 1 if m = m′; =0 if m �= m′,

are sufficient for the optimum estimation of each of the covariate effects with the

minimum variance Var (̂γm) = (1−ρ1−ρ2)σ
2

r pq , m = 1, 2, . . . , c.

Note 8.3.2 Comparing Var (̂γm) in split-plot with that in strip-plot set-up, it is
expected that Var (̂γm) under strip-plot is less than Var (̂γm) under split-plot as ρ
is expected to be less than ρ1 + ρ2. ρ is expected to be equal to ρ1 if the row-strips
are taken to be the strips in split-plot design. The reduction is due to introduction of
column strips in strip-plot design.

Note 8.3.3 Condition (iii) of Theorem8.3.2 for OCDs in strip-plot design is an
additional condition with those conditions for OCDs in split-plot design set-up. We
can still get an OCD for split-plot design set-up without satisfying this condition.
Condition (iii) is called for to meet the condition of orthogonality with respect to
row-strip.
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8.3.2 Optimum Covariate Designs

We can represent the sufficient conditions of Theorems8.3.1 and 8.3.2 in terms of a
(3 + c)× r pq rectangular array where the first three rows (forming the first group)
contain all possible combinations of the levels of the block (R), the whole-plot factor
(A) and the sub-plot factor (B), respectively, arranged lexicographically.The (3+ i)th
row of the second group which corresponds to the i th row of Z′ have elements ±1,
i = 1, 2, . . . , c. It is easy to verify that if the array satisfies the following conditions,
then both Theorems8.3.1 and 8.3.2 hold true:

(a1) Z′ is an orthogonal array of strength 2.
(a2) in any 3 × r pq sub-array containing any two rows from the first group and
any one row from the second group every level combinations occur equally often.

Conditions (a1)–(a2) imply that the array (3 + c) × r pq array is obviously an
EMOA[r pq, 3+c, r × p ×q ×2c, (3, 2), (2; 2, 1)]. Therefore, we get the following
theorem.

Theorem 8.3.3 The existence of an EMOA [r pq, 3+ c, r × p × q × 2c, (3, 2), (2;
2, 1)] implies the existence of an OCD for both split- and strip-plot set-ups.

Belowwe describe somemethods of getting an EMOA [r pq, 3+c, r × p×q×2c,
(3, 2), (2; 2, 1)] which gives an OCD for both split-plot and strip-plot set-ups.

Theorem 8.3.4

(1) If Hr , Hp and Hq exist, then an EMOA [r pq, 3+ c, r × p × q × 2c, (3, 2), (2;
2, 1)] can be constructed, where c = (r − 1)(p − 1)(q − 1).

(2) If H2r , Hp and H q
2

exist, where r is even, then an EMOA [r pq, 3+ c, r × p ×
q × 2c, (3, 2), (2; 2, 1)] can be constructed, where c = (r − 1)(p − 1)(q − 1)−
(r − 2)(p − 1).

(3) If r ≡ 2 (mod 4), (r − 1) is a prime or a prime power and Hp and Hq exist,
where r is even, then an EMOA [r pq, 3 + c, r × p × q × 2c, (3, 2), (2; 2, 1)]
can be constructed, where c = (r − 1)(p − 1)(q − 1) − (r − 2).

Example 8.3.2 Let us take r = 2, p = 2, q = 4. H2 and H4 can be, respectively,
written as

H2 =
(
1 −1
1 1

)
=
(

H∗
2

1′
)

,

H4 =

⎛

⎜⎜
⎝

1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1

⎞

⎟⎟
⎠ =

(
H∗

4
1′
)

For r = 2, p = 2, q = 4, X1, X2, X3 and X4 are written in Example8.3.1.
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The optimum Z′-matrix for split- and strip-plot designs with r = 2, p = 2, q = 4
is given by:
Z′ = H3×16 = H∗

2 ⊗ H∗
2 ⊗ H∗

4

=
⎛

⎝
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1

⎞

⎠ . (8.3.48)

Let us augment the matrix Z′ with a 3×16 matrix D whose columns denote the
coordinates of the cells of the z-values in lexicographic order. Then

(
D′, Z′)′ gives

the EMOA[16, 2, 2×2 × 4 × 23, (3,2), (2; 2,1)] which is as follows:
⎛

⎜⎜
⎜⎜⎜⎜
⎝

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1

⎞

⎟⎟
⎟⎟⎟⎟
⎠

.

Condition (iv) of Theorem8.3.2 is an additional condition with those conditions
for OCDs in split-plot design set-up. We can still get an OCD for split-plot design
set-up if we use H2 instead of instead of H∗

2. Therefore, the optimum Z′-matrix for
split-plot design with r = 2, p = 2, q = 4 is given by:
Z′ = H6×16 = H∗

2 ⊗ H2 ⊗ H∗
4

=

⎛

⎜⎜⎜⎜
⎜⎜
⎝

1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1

⎞

⎟⎟⎟⎟
⎟⎟
⎠

. (8.3.49)

It can be easily be verified that the above Z-matrices in (8.3.48) and (8.3.49)
satisfy all the conditions of Theorems8.3.1 and 8.3.2 respectively.
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Chapter 9
Applications of the Theory of OCDs

9.1 Introduction: Eye-Openers

In this concluding chapter, we propose to discuss at length several examples from
standard textbooks. All of these examples deal with ANCOVA models and related
analyses of data. We intend to capitalize on our understanding of OCDs in different
ANCOVAmodels as discussed inChaps. 2–8 and revisit these exampleswith a view to
suggest optimal/highly efficient designs for estimation of the covariate parameter(s).
As we will see, for some examples our task is very much routine but for others, it is
indeed a highly non-trivial exercise. Most of the material in this chapter is based on
Dutta and Sinha (2015).

Example 9.1.1 We started with this example in Chap. 1. It relates to a leprosy study
quoted from Snedecor and Cochran’s book (1989, p. 377). The point we made is
that there is ample scope of improvement in the efficiency of the estimates for the
covariates’ parameters if we have a ‘free’ hand in the recruitment of the patients and
if a ‘pool’ is made available to us. Since the basic design is a CRD and there are
three ‘treatments’ under consideration—with ten patients to be recruited under each
treatment—an OCD suggests the following scheme of recruitment of the patients in
terms of their possession of original pre-treatment score (count of bacilli)—under
the supposition that we have a ‘free choice’ of the patients from a conceivably larger
pool. Table9.1 shows the scheme.

It was further stated that as against the given patients’ ad hoc recruitment scheme
in Table1.1 (Chap.1), the above scheme provides more than 300% gain in efficiency
towards estimation of the covariate parameter. Even with the ‘given’ pool of 30
patients, a suitable reallocation of the patients across the three treatments, as indicated
inTable1.2 (Chap.1),wouldhaveprovided12%gain in efficiency against the ‘adhoc’
allocation in Table1.1 (Chap.1). The OCD given in Table9.1 is based on the theory
developed in Chap.2 with regard to the CRD. Recall the formation of W-matrix with
the coded covariate values. In applications, the code −1 (respectively, +1) is to be
replaced by xmin (respectively, xmax) which are ‘3’ and ‘21’ in the above example.

© Springer India 2015
P. Das et al., Optimal Covariate Designs, DOI 10.1007/978-81-322-2461-7_9
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Table 9.1 Recruitment of patients based on pre-treatment score in actual units (patient serial
number, covariate value)

1. Treatment A (P1, 3), (P2, 3), (P3, 3),
(P4, 3), (P5, 3), (P6, 21),
(P7, 21), (P8, 21), (P9, 21),
(P10, 21)

2. Treatment D (P11, 3), (P12, 3), (P13, 3),
(P14, 3), (P15, 3), (P16, 21),
(P17, 21), (P18, 21), (P19, 21),
(P20, 21)

3. Control F (P21, 3), (P22, 3), (P23, 3),
(P24, 3), (P25, 3), (P26, 21),
(P27, 21), (P28, 21), (P29, 21),
(P30, 21)

We will now carry out the non-trivial exercise of identifying the design indicated
in Table1.2 (Chap.1) as obtained through adequate re-allocation of the covariate
values of the given pool of 30 patients as in the given design, to be denoted by d0.
For the sake of completeness, we display the allocation of covariate-values over the
three treatments as in d0.

A : 3, 5, 6, 6, 8, 10, 11, 11, 14, 19
D : 5, 6, 6, 7, 8, 8, 8, 15, 18, 19
F : 7, 9, 11, 12, 12, 12, 13, 16, 16, 21

= d0, say.

It follows that, in terms of the Z-scores ranging in [−1, 1],

I(θ) =

⎛

⎜⎜
⎝

10 0 0 −3.0000
0 10 0 −2.2222
0 0 10 1.0000

−3.0000 −2.2222 1.0000 8.8148

⎞

⎟⎟
⎠ .

Routine computation yields: Information for γ, Id0(γ) = 7.3210.
Towards an ‘improved’ allocation, we arrange the data of pre-treatment scores of

all the 30 patients in ascending order: 3, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 10, 11, 11,
11, 12, 12, 12, 13, 14, 15, 16, 16, 18, 19, 19, 21.

Now by using the following algorithms, wemake an attempt to search for a design
for which the information of γ is maximum.

Algorithm 1
Step 1: We conveniently divide ordered Z-scores into three blocks. Block 1 consists
of the first nine observations of arranged data, i.e. (3, 5, 5, 6, 6, 6, 6, 7, 7); Block
2 consists of the next 12 observations, i.e. (8, 8, 8, 8, 9, 10, 11, 11, 11, 12, 12, 12);
Block 3 consists of the last 9 observations (13, 14, 15, 16, 16, 18, 19, 19, 21).

http://dx.doi.org/10.1007/978-81-322-2461-7_1
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Step 2: In Block 1 we allocate the first 3 observations i.e. (3, 5, 5) under treatment A,
the next 3 observations, i.e. (6, 6, 6) under treatment D and the last 3 observations,
i.e. (6, 7, 7) under treatment F.
Step 3: In Block 2 we allocate the first 4 observations, i.e. (8, 8, 8, 8) under treatment
D, the next 4 observations, i.e. (9, 10, 11, 11) under treatment F and the last 4
observations, i.e. (11, 12, 12, 12) under treatment A.
Step 4: In Block 3 we allocate the first 3 observations i.e. (13, 14, 15) under treat-
ment F, the next 3 observations, i.e. (16, 16, 18) under treatment A and the last 3
observations, i.e. (19, 19, 21) under treatment D.

Hence we get the following arrangement:

Block 1 Block 2 Block 3
A 3, 5, 5 11, 12, 12, 12 16, 16, 18
D 6, 6, 6 8, 8, 8, 8 19, 19, 21
F 6, 7, 7 9, 10, 11, 11 13, 14, 15

= d1, say.

The information of γ from d1 = Id1(γ) = 8.1852.
Step 5: Start with d1. Consider the left block, i.e. Block 1. Permute the rows and
generate 3! = 6 options for this block, while keeping the middle and the right block
intact. Work out I(γ) for all the 6 options generated from the left block. Identify the
best case scenario and hold this intact while passing into the middle block. Here the
best design is found to be d1.
Step 6: For the middle block, i.e. Block 2, we follow a similar step. Here the best
design using Step 6 is

Block 1 Block 2 Block 3
A 3, 5, 5 9, 10, 11, 11 16, 16, 18
D 6, 6, 6 8, 8, 8, 8 19, 19, 21
F 6, 7, 7 11, 12, 12, 12 13, 14, 15

= d2, say.

The information of γ for d2 = Id2(γ) = 8.2.
Step 7: For the last block, i.e. Block 3, we again follow similarly step. Ultimately we
get d2 as the best design.

We now consider other aspects towards improving d2.

Algorithm 2
Here we consider three allocations:

(I) (ADF—DFA—FAD—–ADF—DFA—FAD—ADF—–DFA—FAD—ADF)
(II) (ADF—DFA—FAD—–ADF—DFA—FAD—ADF—–DFA—FAD—DFA)
(III) (ADF—DFA—FAD—–ADF—DFA—FAD—ADF—–DFA—FAD—FAD)

and the the designs are respectively:

Block 1 Block 2 Block 3
A 3, 6, 7 8, 10, 11, 12 15, 16, 19
D 5, 6, 7 8, 8, 11, 12 13, 18, 19
F 5, 6, 6 8, 9, 11, 12 14, 16, 21

= d(I), say;
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Block 1 Block 2 Block 3
A 3, 6, 7 8, 10, 11, 12 15, 16, 21
D 5, 6, 7 8, 8, 11, 12 13, 18, 19
F 5, 6, 6 8, 9, 11, 12 14, 16, 19

= d(II), say;

Block 1 Block 2 Block 3
A 3, 6, 7 8, 10, 11, 12 15, 16, 19
D 5, 6, 7 8, 8, 11, 12 13, 18, 21
F 5, 6, 6 8, 9, 11, 12 14, 16, 19

= d(III), say.

For the above three designs, Id(I)(γ) = 8.2198, Id(II)(γ) = 8.2148 and Id(III)(γ) =
8.2148.

Algorithm 3
We may consider another allocation:

(AFD—FDA—DAF—–AFD—FDA—FDA—AFD—–DAF—FDA—–AFD)

and the corresponding design is

Block 1 Block 2 Block 3
A 3, 6, 7 8, 10, 11, 12 14, 18, 19
D 5, 6, 6 8, 9, 11, 12 13, 16, 21
F 5, 6, 7 8, 8, 11, 12 15, 16, 19

= d3, say.

Here also I(γ) = 8.2198.
Heuristic Search:

G1 G2 G3

A 3, 6, 6 9, 10, 11, 12 14, 18, 19
D 5, 6, 7 8, 8, 11, 12 15, 16, 19
F 5, 6, 7 8, 8, 11, 12 13, 16, 21

= d4, say.

This yields Id4(γ) = 8.2198 and d3 is equivalent to d4. Further, these are also
equivalent to d(I) in the sense of same information.

In the final analysis, we find that there is substantial gain in efficiency (more than
12%) in the performance of the design d(I) or d3, as against the original design d0.
This is the design (d(I) or d3) displayed in Table1.2 (Chap. 1).

Example 9.1.2 Wenowelaborate on the second example discussed inChap.1.Recall
that this refers to an RBDwith b = 5, v = 3. In Chap.3, we have discussed at length
OCDs under RBD set-ups but mostly the ‘regular’ cases, viz. both b and v being
multiples of 4 so that Hadamard matrices exist. Here is a deviation from that and
we take this rare opportunity to discuss the example in quite details. Note that we
have already provided solutions to two different aspects of the example: (i) For given
covariate-values, improved allocation of the available experimental units across the
RBD layout; (ii) For a ‘free’ choice of the covariate valueswithin certainwell-defined

http://dx.doi.org/10.1007/978-81-322-2461-7_1
http://dx.doi.org/10.1007/978-81-322-2461-7_1
http://dx.doi.org/10.1007/978-81-322-2461-7_3
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closed intervals, identification of the experimental units with covariate values of the
experimenter’s choice. Below we give detailed derivations of the above results. We
refer to Tables1.3, 1.4a, b, 1.5a, b and 1.6a, b in Chap.1.

Under anRBDANCOVAmodelwith a single covariate, recall the standard expres-
sion for information on γ, viz.

I(γ) =
5∑

i=1

3∑

j=1

z2ij − 1

3

5∑

i=1

R2
i − 1

5

3∑

j=1

C2
j + G2

15

=
5∑

i=1

3∑

j=1

z2ij − 1

3

5∑

i=1

R2
i − 5

3∑

j=1

(
z̄0j − z̄00

)2
(9.1.1)

Our aim is to maximize the information of γ given in (9.1.1) by properly allocating
the pigs in the two-way RBD layout. This applies to both female and male pigs. Note
that towards this, the row totals of the covariate-values should be as close as possible
and the same is true of the column totals. We start with the 5 × 3 table of covariate
values for the female pigs and proceed through the following steps:

Step 1: First, we arrange the rows in three sets where the first set consists of the
rows where all the covariate values are equal; in the second set, we consider those
rows where two of the three covariate values are not equal and the last set consists
of the rows where all the covariate values are unequal. The arrangement is shown in
Table9.2.
Step 2:We select the first row of second set (i.e., PenNo. 2) and permute the covariate
values keeping the other rows fixed. Next we compute the information of γF under
each permutation. Then we choose the design in which the information of γF will
be a maximum. We do the same for the second row of the second set (i.e., Pen No.
4) keeping the other rows of the new design intact. Similarly, we do the same for the
third set also (Pen No. 3 and 5).
Step 3: We repeat Step 2 until all CFj’s are as close as possible to

GF
3 . Finally, we

get the design where the information of γF is a maximum with CFj’s as close as
possible to GF

3 . We denote it by dF1 and IdF1(γF) = 81.0667, where dF1 is displayed
in Table9.3.

Table 9.2 Female Pen Treatment Totals

A B C

1 48 48 48 144

2 32 32 28 92

4 46 46 50 142

3 35 41 33 109

5 32 37 30 99

Totals 193 204 189 586

http://dx.doi.org/10.1007/978-81-322-2461-7_1
http://dx.doi.org/10.1007/978-81-322-2461-7_1
http://dx.doi.org/10.1007/978-81-322-2461-7_1
http://dx.doi.org/10.1007/978-81-322-2461-7_1
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Table 9.3 dF1 Pen Treatment Totals

A B C

1 48 48 48 144

2 32 28 32 92

4 46 46 50 142

3 41 35 33 109

5 30 37 32 99

Totals 197 194 195 586

Table 9.4 An alternate
arrangement

Treatment Totals

A B C

30 48 * 78

32 46 * 78

41 37 * 78

46 35 * 81

48 28 * 76

Table 9.5 dF2 Treatment Totals

A B C

30 48 48 126

32 46 33 111

41 37 32 110

46 35 32 113

48 28 50 126

Totals 197 194 195 586

Step 4: We arrange the initial weights under treatment A in ascending order and the
initial weights under treatment B in descending order. The arrangement is shown in
Table9.4.

Since the sum of the two entries in each of 5 rows are 78, 78, 78, 81, 76, we fill
the entries under treatment C as 48, 33, 32, 32, 50. Then we get the design dF2 and
here IdF2(γF) = 782.4. We display the design dF2 in Table9.5.

For another option, we arrange the initial weights under treatment A in ascending
order and the initial weights under treatment C in descending order. The arrangement
is shown in Table9.6.

Since the sum of the two entries in each of 5 rows are 80, 80, 74, 78, 80, we fill the
entries under treatment B as 37, 35, 48, 46, 28. Then we get the design dF3 displayed
in Table9.7 and here IdF3(γF) = 817.0667.
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Table 9.6 A second
alternative

Treatment Totals

A B C

30 * 50 80

32 * 48 80

41 * 33 74

46 * 32 78

48 * 32 80

Table 9.7 dF3 Treatment Totals

A B C

30 37 50 117

32 35 48 115

41 48 33 122

46 46 32 124

48 28 32 108

Totals 197 194 195 586

Table 9.8 A third alternative Pen Treatment Totals

A B C

1 * 28 50 78

2 * 35 48 83

4 * 37 33 70

3 * 46 32 78

5 * 48 32 80

Table 9.9 dF4 Treatment Totals

A B C

41 28 50 119

30 35 48 113

48 37 33 118

46 46 32 124

32 48 32 112

Totals 197 194 195 586

Lastly, we arrange the initial weights under treatment B in ascending order and
the initial weights under treatment C in descending order. The arrangement is shown
in Table9.8.

Since the sum of the two entries in each of 5 rows are 78, 83, 70, 78, 80, we fill the
entries under treatment A as 41, 30, 48, 46, 32. Then we get the design dF4 shown
in Table9.9 and here IdF4(γG) = 838.4.
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Table 9.10 dF5 Treatment Totals

A B C

41 28 48 117

30 35 50 115

48 37 33 118

46 46 32 124

32 48 32 112

Totals 197 194 195 586

Table 9.11 dF6 Treatment Totals

A B C

41 28 48 117

30 37 50 117

48 35 33 116

46 46 32 124

32 48 32 112

Totals 197 194 195 586

Table 9.12 dF7 Treatment Totals

A B C

46 28 48 122

30 37 50 117

48 35 33 116

41 46 32 119

32 48 32 112

Totals 197 194 195 586

Now we start with dF4 and proceed with Step 1 and Step 2. Then we observe
that dF4 is a better design. Next we can improve over dF4 by interchanging the first
element and the second element under Treatment C and denote the design by dF5
shown in Table9.10. Here IdF5(γF) = 843.7333.

Again we can improve dF5 by interchanging the second element and the third
element under treatment B and we denote the design by dF6 shown in Table9.11.
Here IdF6(γF) = 845.0667.

We can further improve dF6 by interchanging the first element and the fourth
element under Treatment A and denote the design by dF7 shown in Table9.12. Here
IdF7(γF) = 851.7333.

Lastly, we improve dF7 by interchanging the third element and the fourth element
underTreatmentCanddenote the designbydF8 shown inTable9.13.Here IdF8(γF) =
853.7333.
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Table 9.13 dF8 Treatment Totals

A B C

46 28 48 122

30 37 50 117

48 35 32 115

41 46 32 119

32 48 33 113

Totals 197 194 195 586

Table 9.14 dF9 Treatment Totals

A B C

46 28 48 122

30 37 50 117

46 35 32 113

41 48 32 121

32 48 33 113

Totals 195 196 195 586

Table 9.15 dM1 Pen Treatment Totals

A B C

5 43 40 40 125

1 38 39 48 110

2 37 38 35 129

3 41 46 42 130

4 48 42 40 123

Totals 207 205 205 617

Now we construct design dF9 shown in Table9.14 by interchanging the third
element under Treatment A and the fourth element under Treatment B of dF8. Here
IdF9(γG) = 846.5333 which is less than IdF8(γF) even though column sums are more
or less equal. We stop here and recommend the design dF8 for use.

As is indicated in the above, the designs dF6 to dF9 are displayed in Tables9.11,
9.12, 9.13 and 9.14 respectively. Similarly, for increasing the information of γM , we
follow the Steps 1, 2, 3 and get the design denoted by dM1 and shown in Table9.15.

Here IdM1(γH) = 119.4667.
In the same way as mentioned above for female pigs, to get three designs we

follow Step 4 and find dM2 shown in Table9.16 with IdM2(γM) = 195.4667, dM3
shown in Table9.17 with IdM3(γH) = 202.1333 and dM4 displayed in Table9.18 with
IdM4(γM) = 193.4667. Therefore, dM3 is a better design. Now we start with dM3 and
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Table 9.16 dM2 Treatment Totals

A B C

37 46 40 123

38 42 48 128

41 40 42 123

43 39 40 122

48 38 35 121

Totals 207 205 205 617

Table 9.17 dM3 Treatment Totals

A B C

37 38 48 123

38 46 42 126

41 42 40 123

43 40 40 123

48 39 35 122

Totals 207 205 205 617

Table 9.18 dM4 Treatment Totals

A B C

37 38 48 123

43 39 42 124

48 40 40 128

38 42 40 120

41 46 35 122

Totals 207 205 205 617

we improve it further and denote the design by dM5 with IdM5(γM) = 202.5333 using
Steps 1, 2, 3. This design dM5 is displayed in Table9.19. Again we improve dM5 by
interchanging the second element and the fourth element under Treatment C and
denote it by dM6 which is displayed in Table9.20. Here IdM6(γM) = 203.8667. Next
we improve dM6 by interchanging the third element and the fourth element under
treatment C and denote it by dM7. Here IdM7(γM) = 205.2. Lastly there is another
possibility to improve dM7 by interchanging the 4th element and the 5th element
under Treatment B. We denote it by dM8. Here IdM8(γM) = 204.5333.

We stop here and accept the design dM7 for the use of male pigs. It is a routine task
to compute the percent gain. The designs dM7 and dM8 are displayed in Tables9.21
and 9.22 respectively.

Now we consider the ‘hypothetical’ situation for female data wherein the row
totals are equal or nearly equal to each other and also the column totals are equal or
nearly equal to each other. For female data, that would amount to the row sums being
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Table 9.19 dM5 Treatment Totals

A B C

37 38 48 123

38 46 42 126

40 42 41 123

43 40 40 123

48 39 35 122

Totals 206 205 206 617

Table 9.20 dM6 Treatment Totals

A B C

37 38 48 123

38 46 40 124

40 42 41 124

43 40 42 124

48 39 35 122

Totals 206 205 206 617

Table 9.21 dM7 Treatment Totals

A B C

37 38 48 123

38 46 40 124

40 42 42 124

43 39 41 123

48 40 35 123

Totals 206 205 206 617

Table 9.22 dM8 Treatment Totals

A B C

37 38 48 123

38 46 40 124

40 42 42 124

43 40 41 124

48 39 35 122

Totals 206 205 206 617

117, 117, 117, 117 and 118 and column sums being 195, 195, 196 since the total is
fixed at GF = 586. In this hypothetical situation I(γF) = 870.5333. Therefore, the
relative efficiency of dF8 = 98.0702% whereas the relative efficiency of γF under
design d0 is 6.6473%. In other words, relative gain in efficiency by use of dF8 as
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against d0 is more than 1300%. Similarly, we consider the hypothetical situation for
male data where the row sums are meant to be 123, 123, 123, 124, 124 and column
sums are also meant to be 206, 206, 205. Here I(γM) = 205.2 which is equal to dM7.
Therefore, the relative efficiency of dM7 = 100% whereas the relative efficiency of
γM under design d0 is 56.6602%. In other words, relative gain in efficiency by the
use of dM7 as against d0 is more than 75%. Hence we can improve the information
of covariate parameter by properly allocating the covariate values in the rows and
columns separately.

Recall the expression for I(γ) given in (9.1.1) above. It is readily seen that

I(γ) ≤
5∑

i=1

3∑

j=1

z2ij − 1

3

5∑

i=1

R2
i (9.1.2)

equality holds if z̄0j = z̄00 for all j, where z̄0j = Cj
5 and z̄00 = G

15 and since we fix zij

at ±1, I(γ) ≤
5∑

i=1

3∑

j=1

z2ij − 1

3

5∑

i=1

R2
i ≤ 15 − 5

3
= 40

3
= 13.33.

Again,

I(γ) ≤
5∑

i=1

3∑

j=1

z2ij − 1

5

3∑

j=1

C2
j = I2(γ) (say) (9.1.3)

equality holds if z̄i0 = z̄00 for all i, where z̄i0 = Ri
3 and z̄00 = G

15 and I2(γ) ≤
15 − 3

5 = 72
5 = 14.4. Therefore, combining the two inequalities, we deduce that

I(γ) ≤ 13.33. We display a design in Table9.23 for which I(γ) attains the bound
13.33.

The above exercise suggests that if we have such flexibility to choose the initial
weights for males and females separately, then our suggestion is the design shown
in Table9.23 in terms of z-values and this applies to both males and females. For
female and male pigs, the arrangement of weights for OCD are already shown in
Table1.6a, b in Chap.1 in terms of original weights.

Table 9.23 Design where
I1(γ) is attained

A B C Totals

−1 1 1 1

1 −1 1 1

1 1 −1 1

−1 1 1 1

1 −1 −1 −1

Totals 1 1 1 3 = G

http://dx.doi.org/10.1007/978-81-322-2461-7_1
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9.2 Other Application Areas

In this section, we undertake four different types of examples of application of OCD.

Example 9.2.1 We consider the observations and the design (see Goos and Jones
(2011), p. 79) in Table9.24.

The response variable is peel strength, which measures the amount of force
required to open the package. Raw material from three suppliers (S1, S2 and S3)
is used in the sealing process. We consider temperature (Z1), pressure (Z2) and
speed (Z3) on the peel strength as covariates. These three covariates are controllable.
The range and unit of each covariate is given in Table9.25.

Note that the authors present a very general ANCOVA model in the book and
discuss some aspects of D-optimal designs. Instead, we will consider the simplest
model:

Table 9.24 Data for the robustness experiment

Run number Temperature Pressure Speed Supplier Peel strength

1 211.5 2.2 32 1 4.36

2 193.0 2.7 32 1 5.20

3 230.0 3.2 32 1 4.75

4 230.0 2.2 41 1 5.73

5 193.0 3.2 41 1 4.49

6 193.0 2.2 50 1 6.38

7 230.0 2.7 50 1 5.59

8 211.5 3.2 50 2 5.40

9 193.0 2.2 32 2 5.78

10 230.0 2.7 32 2 4.80

11 193.0 3.2 32 2 4.93

12 211.5 2.7 41 2 5.96

13 211.5 2.7 41 2 6.55

14 230.0 2.2 50 2 6.92

15 193.0 2.7 50 2 6.18

16 230.0 3.2 50 2 6.55

17 230.0 2.2 32 3 5.44

18 193.0 2.7 32 3 4.57

19 211.5 3.2 32 3 4.48

20 193.0 2.2 41 3 4.78

21 211.5 2.7 41 3 5.03

22 230.0 3.2 41 3 3.98

23 211.5 2.2 50 3 4.73

24 193.0 3.2 50 3 4.70
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Table 9.25 Range and unit
of covariates

Covariate Range Unit

Temperature 193–230 ◦C
Pressure 2.2–3.2 bar

Speed 32–50 cpm

E(yij) = si +
3∑

l=1

γlz
(l)
ij ,

where yij is the jth observation corresponding to ith supplier and si is the effect

due to ith supplier and γl is the lth covariate effect, z(l)ij is the lth covariate value

corresponding the (i, j)th observation and |z(l)ij | ≤ 1 for all i, j, l. Further, we will
take up the problem of estimating the three covariate parameters most efficiently by
selecting the design.With the replication numbers each equal to 8, it would have been
a trivial exercise in a CRDmodel with three covariates. Vide Chap.2. However, with
(7, 8, 9) as the replication numbers, standard theory breaks down and we run into
what has been termed as ‘non-regular case’. As usual, the covariates are all coded to
lie inside the closed interval [−1, 1]. From Theorem 2.3.1 in Chap.2, for fixed {ri},
i.e. r1 = 7, r2 = 9, r3 = 8,

det(I(θ)) ≤ (7 × 9 × 8) (a + 2b) (a − b)2

where a = 24 − δ, b = δ = 1
7 + 1

9 and ri is the number of times the ith supplier
replicated.

Therefore, det(I(θ)) ≤ 7× 9× 8× 13385.21. But it is very difficult to construct
Z-matrix where det(I(θ)) attains the upper bound. Here we construct the design (say
d∗) whose det(I(θ)) is very close to the upper bound and the Z-matrix is written as:

Z′ = (
Z′(S1),Z′(S2),Z′(S3)

)

where

Z′(S1) =⎛

⎝
1 −1 1 −1 −1 1 −1
1 −1 −1 1 −1 −1 1

−1 1 −1 1 −1 1 −1

⎞

⎠ ;

Z′(S2) =⎛

⎝
1 −1 1 −1 1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1 1

−1 1 −1 1 1 −1 1 −1 1

⎞

⎠ ;

Z′(S3) =⎛

⎝
1 −1 1 −1 1 −1 1 −1
1 −1 −1 1 1 −1 −1 1

−1 1 −1 1 1 −1 1 −1

⎞

⎠ .

http://dx.doi.org/10.1007/978-81-322-2461-7_2
http://dx.doi.org/10.1007/978-81-322-2461-7_2


9.2 Other Application Areas 191

The information matrix for θ = (s1, s2, s3, γ1, γ2, γ3)′ is given below:

Id∗(θ) =

⎛

⎜⎜⎜⎜
⎜⎜
⎝

7 0 0 −1 −1 −1
0 9 0 1 1 1
0 0 8 0 0 0

−1 1 0 24 0 0
−1 1 0 0 24 0
−1 1 0 0 0 24

⎞

⎟⎟⎟⎟
⎟⎟
⎠

whence the information matrix for γ is

Id∗(γ) =
⎛

⎝
23.746 −0.254 −0.254
−0.254 23.746 −0.254
−0.254 −0.254 23.746

⎞

⎠ .

Here det(Id∗(θ)) = 7× 9× 8×13385.14 and the relative D-efficiency = 13385.14
13385.21 ×

100 = 99.9995%. It is interesting to note that the three parts of the design d∗ are
derived essentially from H8.

Example 9.2.2 Here we consider the data given in van Belle et al. (2004) and repro-
duced below in Tables9.26 and 9.27. It relates to ‘exercise’ data for healthy active
males (44) and females (43). There are four covariates, viz. Heart Rate, Age, Height
and Weight. The response variable is the V02 Max, measured in a suitable unit.

As usual, we introduce coded covariates Z1,Z2,Z3,Z4, each in the range [−1, 1].
We reproduce the above tables only in terms of the four covariates in coded forms,
skipping the responses (vide Tables9.28 and 9.29).

It is a routine task to carry out data analysis using a 4-variate linear regression
model for each data set involving the four covariates. We skip that part. Instead, we
ask a non-trivial problem. If an experimenter is to design the survey to accommodate
10 males and 10 females out of the above ‘pool’ and to maximize information-
content for the joint estimation of the covariate parameters, whatwould have been our
recommendation? Again, if we had a ‘larger’ pool of healthy males and females with
specified Zmin and Zmax for each covariate, would our recommendation be far better
off? We propose to address both the problems below. We assume that the covariate
parameters are the same for both males and females for each of the characteristics.
In a way, we set γ1,M = γ1,F and so on.

For the first problem, we may use the following selection methods.

Method 1: Use of Heart Rate Data We start with the above data set and arrange
the data set separately for males and females both where the values of heart rate Z1
are in the ascending order. Then select 10 persons (5 males and 5 females) from the
smallest values of the Z1-scores and 10 persons (5 males and 5 females) from the
largest values of the Z1-scores and denote this design by d1. The data on covariates
of the selected persons are shown in Table9.30.
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Table 9.26 Exercise data for healthy active males
Sl. no. (VO2 max)/Duration Heart rate Age Height Weight

1 0.0588 192 46 165 57

2 0.0627 190 25 193 95

3 0.0694 190 25 187 82

4 0.0670 174 31 191 84

5 0.0670 194 30 171 67

6 0.0662 168 36 177 78

7 0.0579 185 29 174 70

8 0.0618 200 27 185 76

9 0.0670 164 56 180 78

10 0.0652 175 47 180 80

11 0.0604 175 46 180 81

12 0.0609 162 55 180 79

13 0.0656 190 50 161 66

14 0.0688 175 52 174 76

15 0.0603 164 46 173 84

16 0.0547 156 60 169 69

17 0.0655 174 49 178 78

18 0.0545 166 54 181 101

19 0.0615 184 57 179 74

20 0.0695 160 50 170 66

21 0.0621 186 41 175 75

22 0.0713 175 58 173 79

23 0.0615 175 55 160 79

24 0.0579 175 46 164 65

25 0.0632 174 47 180 81

26 0.0500 174 56 183 100

27 0.0695 168 82 183 82

28 0.0549 164 48 181 77

29 0.0490 146 68 166 65

30 0.0606 156 54 177 80

31 0.0566 180 56 179 82

32 0.0638 164 50 182 87

33 0.0628 166 48 174 72

34 0.0626 184 56 176 75

35 0.0619 186 45 179 75

36 0.0619 174 45 179 79

37 0.0717 188 43 179 73

38 0.0413 180 54 180 75

39 0.0642 168 55 172 71

40 0.0702 174 41 187 84

41 0.0712 166 44 185 81

42 0.0753 174 41 186 83

43 0.0672 180 50 175 78

44 0.0746 182 42 176 85

Data source van Belle et al. (2004), p. 294
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Table 9.27 Exercise data for healthy active females
Sl. no. (VO2 max)/Duration Heart rate Age Height Weight

1 0.0577 184 23 177 83

2 0.0611 183 21 163 52

3 0.0655 200 21 174 61

4 0.0583 170 42 160 50

5 0.0485 188 34 170 68

6 0.0398 190 43 171 68

7 0.0527 190 30 172 63

8 0.0552 180 49 157 53

9 0.0615 184 30 178 63

10 0.0566 162 57 161 63

11 0.0578 188 58 159 54

12 0.0597 170 51 162 55

13 0.0649 184 32 165 57

14 0.0594 175 42 170 53

15 0.0564 180 51 158 47

16 0.0590 200 46 161 60

17 0.0558 190 37 173 56

18 0.0488 170 50 161 62

19 0.0614 158 65 165 58

20 0.0552 186 40 154 69

21 0.0511 166 52 166 67

22 0.0495 170 40 160 58

23 0.0662 188 52 162 64

24 0.0480 190 47 161 72

25 0.0556 194 43 164 56

26 0.0540 190 48 176 82

27 0.0509 190 43 165 61

28 0.0520 188 45 166 62

29 0.0497 184 52 167 62

30 0.0560 170 52 168 62

31 0.0661 168 56 162 66

32 0.0634 175 56 159 56

33 0.0560 156 51 161 61

34 0.0525 184 44 154 56

35 0.0544 180 56 167 79

36 0.0555 184 40 165 56

37 0.0654 156 53 157 52

38 0.0508 194 52 161 65

39 0.0564 190 40 178 64

40 0.0587 188 55 162 61

41 0.0647 164 39 166 59

42 0.0575 185 57 168 68

43 0.0542 178 46 156 53

Data source van Belle et al. (2004), p. 341
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Table 9.28 Coded data for males
Sl. no. Heart rate Age Height Weight

1 0.7037 −0.2632 −0.6970 −1.0000

2 0.6296 −1.0000 1.0000 0.7273

3 0.6296 −1.0000 0.6364 0.1364

4 0.0370 −0.7895 0.8788 0.2273

5 0.7778 −0.8246 −0.3333 −0.5455

6 −0.1852 −0.6140 0.0303 −0.0455

7 0.4444 −0.8596 −0.1515 −0.4091

8 1.0000 −0.9298 0.5152 −0.1364

9 −0.3333 0.0877 0.2121 −0.0455

10 0.0741 −0.2281 0.2121 0.0455

11 0.0741 −0.2632 0.2121 0.0909

12 −0.4074 0.0526 0.2121 0.0000

13 0.6296 −0.1228 −0.9394 −0.5909

14 0.0741 −0.0526 −0.1515 −0.1364

15 −0.3333 −0.2632 −0.2121 0.2273

16 −0.6296 0.2281 −0.4545 −0.4545

17 0.0370 −0.1579 0.0909 −0.0455

18 −0.2593 0.0175 0.2727 1.0000

19 0.4074 0.1228 0.1515 −0.2273

20 −0.4815 −0.1228 −0.3939 −0.5909

21 0.4815 −0.4386 −0.0909 −0.1818

22 0.0741 0.1579 −0.2121 0.0000

23 0.0741 0.0526 −1.0000 0.0000

24 0.0741 −0.2632 −0.7576 −0.6364

25 0.0370 −0.2281 0.2121 0.0909

26 0.0370 0.0877 0.3939 0.9545

27 −0.1852 1.0000 0.3939 0.1364

28 −0.3333 −0.1930 0.2727 −0.0909

29 −1.0000 0.5088 −0.6364 −0.6364

30 −0.6296 0.0175 0.0303 0.0455

31 0.2593 0.0877 0.1515 0.1364

32 −0.3333 −0.1228 0.3333 0.3636

33 −0.2593 −0.1930 −0.1515 −0.3182

34 0.4074 0.0877 −0.0303 −0.1818

35 0.4815 −0.2982 0.1515 −0.1818

36 0.0370 −0.2982 0.1515 0.0000

37 0.5556 −0.3684 0.1515 −0.2727

38 0.2593 0.0175 0.2121 −0.1818

39 −0.1852 0.0526 −0.2727 −0.3636

40 0.0370 −0.4386 0.6364 0.2273

41 −0.2593 −0.3333 0.5152 0.0909

42 0.0370 −0.4386 0.5758 0.1818

43 0.2593 −0.1228 −0.0909 −0.0455

44 0.3333 −0.4035 −0.0303 0.2727
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Table 9.29 Coded data for females

Sl. no. Heart rate Age Height Weight

1 0.2727 −0.9091 0.9167 1.0000

2 0.2273 −1.0000 −0.2500 −0.7222

3 1.0000 −1.0000 0.6667 −0.2222

4 −0.3636 −0.0455 −0.5000 −0.8333

5 0.4545 −0.4091 0.3333 0.1667

6 0.5455 0.0000 0.4167 0.1667

7 0.5455 −0.5909 0.5000 −0.1111

8 0.0909 0.2727 −0.7500 −0.6667

9 0.2727 −0.5909 1.0000 −0.1111

10 −0.7273 0.6364 −0.4167 −0.1111

11 0.4545 0.6818 −0.5833 −0.6111

12 −0.3636 0.3636 −0.3333 −0.5556

13 0.2727 −0.5000 −0.0833 −0.4444

14 −0.1364 −0.0455 0.3333 −0.6667

15 0.0909 0.3636 −0.6667 −1.0000

16 1.0000 0.1364 −0.4167 −0.2778

17 0.5455 −0.2727 0.5833 −0.5000

18 −0.3636 0.3182 −0.4167 −0.1667

19 −0.9091 1.0000 −0.0833 −0.3889

20 0.3636 −0.1364 −1.0000 0.2222

21 −0.5455 0.4091 0.0000 0.1111

22 −0.3636 −0.1364 −0.5000 −0.3889

23 0.4545 0.4091 −0.3333 −0.0556

24 0.5455 0.1818 −0.4167 0.3889

25 0.7273 0.0000 −0.1667 −0.5000

26 0.5455 0.2273 0.8333 0.9444

27 0.5455 0.0000 −0.0833 −0.2222

28 0.4545 0.0909 0.0000 −0.1667

29 0.2727 0.4091 0.0833 −0.1667

30 −0.3636 0.4091 0.1667 −0.1667

31 −0.4545 0.5909 −0.3333 0.0556

32 −0.1364 0.5909 −0.5833 −0.5000

33 −1.0000 0.3636 −0.4167 −0.2222

34 0.2727 0.0455 −1.0000 −0.5000

35 0.0909 0.5909 0.0833 0.7778

36 0.2727 −0.1364 −0.0833 −0.5000

37 −1.0000 0.4545 −0.7500 −0.7222

38 0.7273 0.4091 −0.4167 0.0000

39 0.5455 −0.1364 1.0000 −0.0556

40 0.4545 0.5455 −0.3333 −0.2222

41 −0.6364 −0.1818 0.0000 −0.3333

42 0.3182 0.6364 0.1667 0.1667

43 0.0000 0.1364 −0.8333 −0.6667
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Table 9.30 Choice of males and females based on heart rate data

Sl. no. Heart rate Age Height Weight Sex

1 −1.0000 0.5088 −0.6364 −0.6364 M

2 −0.6296 0.2281 −0.4545 −0.4545 M

3 −0.6296 0.0175 0.0303 0.0455 M

4 −0.4815 −0.1228 −0.3939 −0.5909 M

5 −0.4074 0.0526 0.2121 0.0000 M

6 0.6296 −1.0000 1.0000 0.7273 M

7 0.6296 −1.0000 0.6364 0.1364 M

8 0.7037 −0.2632 −0.6970 −1.0000 M

9 0.7778 −0.8246 −0.3333 −0.5455 M

10 1.0000 −0.9298 0.5152 −0.1364 M = d1, say

1 −1.0000 0.3636 −0.4167 −0.2222 F

2 −1.0000 0.4545 −0.7500 −0.7222 F

3 −0.9091 1.0000 −0.0833 −0.3889 F

4 −0.7273 0.6364 −0.4167 −0.1111 F

5 −0.6364 −0.1818 0.0000 −0.3333 F

6 0.5455 0.0000 0.4167 0.1667 F

7 0.7273 0.0000 −0.1667 −0.5000 F

8 0.7273 0.4091 −0.4167 0.0000 F

9 1.0000 −1.0000 0.6667 −0.2222 F

10 1.0000 0.1364 −0.4167 −0.2778 F

The information matrix of γ under d1 is

Id1 (γ) = IMd1 (γ) + IFd1 (γ) =

⎛

⎜
⎜
⎝

5.0485 −3.4438 1.8097 0.6033
−3.4438 2.8317 −2.0649 −1.1962
1.8097 −2.0649 3.0785 2.4386
0.6033 −1.1962 2.4386 2.2241

⎞

⎟
⎟
⎠

+

⎛

⎜⎜
⎝

7.1085 −2.5908 1.5553 0.7469
−2.5908 2.6322 −1.4470 −0.1490
1.5553 −1.4470 1.6592 0.4199
0.7469 −0.1490 0.4199 0.5682

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

12.1570 −6.0346 3.3650 1.3502
−6.0346 5.4639 −3.5119 −1.3452
3.3650 −3.5119 4.7377 2.8585
1.3502 −1.3452 2.8585 2.7923

⎞

⎟⎟
⎠ ,

det(Id1) = 61.6096, 20−4 × det(Id1) = 0.0004.

Method 2: Use of Age Data Similarly as in Selection 1, we select 20 persons (10
males and 10 females ) by arranging the available reported information on age Z2 in
ascending order. The selected data set is shown in Table9.31.
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Table 9.31 Choice of males and females based on reported data on age

Sl. no. Heart rate Age Height Weight Sex

1 0.6296 −1.0000 1.0000 0.7273 M

2 0.6296 −1.0000 0.6364 0.1364 M

3 1.0000 −0.9298 0.5152 −0.1364 M

4 0.4444 −0.8596 −0.1515 −0.4091 M

5 0.7778 −0.8246 −0.3333 −0.5455 M

6 0.4074 0.1228 0.1515 −0.2273 M

7 0.0741 0.1579 −0.2121 0.0000 M

8 −0.6296 0.2281 −0.4545 −0.4545 M

9 −1.0000 0.5088 −0.6364 −0.6364 M

10 −0.1852 1.0000 0.3939 0.1364 M = d2, say

1 0.2273 −1.0000 −0.2500 −0.7222 F

2 1.0000 −1.0000 0.6667 −0.2222 F

3 0.2727 −0.9091 0.9167 1.0000 F

4 0.5455 −0.5909 0.5000 −0.1111 F

5 0.2727 −0.5909 1.0000 −0.1111 F

6 −0.4545 0.5909 −0.3333 0.0556 F

7 0.3182 0.6364 0.1667 0.1667 F

8 −0.7273 0.6364 −0.4167 −0.1111 F

9 0.4545 0.6818 −0.5833 −0.6111 F

10 −0.9091 1.0000 −0.0833 −0.3889 F

The information matrix of γ under d2 is

Id2 (γ) = IMd2 (γ) + IFd2 (γ) =

⎛

⎜
⎜
⎝

3.7360 −3.4305 1.9192 0.9087
−3.4305 4.9602 −1.5228 −0.6202
1.9192 −1.5228 2.5565 1.7466
0.9087 −0.6202 1.7466 1.5144

⎞

⎟
⎟
⎠

+

⎛

⎜⎜
⎝

3.2678 −3.0323 1.5652 0.0854
−3.0323 6.1191 −2.8871 −0.6283
1.5652 −2.8871 3.0063 1.3940
0.0854 −0.6283 1.3940 2.0522

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

7.0038 −6.4628 3.4844 0.9941
−6.4628 11.0793 −4.4099 −1.2485
3.4844 −4.4099 5.5628 3.1406
0.9941 −1.2485 3.1406 3.5666

⎞

⎟⎟
⎠ ,

det(Id2) = 196.608, 20−4 × det(Id2) = 0.0012.

Method 3: Use of Height Data Similarly for height Z3, we show the arranged data
in Table9.32.
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Table 9.32 Choice of males and females based on height data

Sl. no. Heart rate Age Height Weight Sex

1 0.0741 0.0526 −1.0000 0.0000 M

2 0.6296 −0.1228 −0.9394 −0.5909 M

3 0.0741 −0.2632 −0.7576 −0.6364 M

4 0.7037 −0.2632 −0.6970 −1.0000 M

5 0.0370 −0.4386 0.5758 0.1818 M

6 −1.0000 0.5088 −0.6364 −0.6364 M

7 0.6296 −1.0000 0.6364 0.1364 M

8 0.0370 −0.4386 0.6364 0.2273 M

9 0.0370 −0.7895 0.8788 0.2273 M

10 0.6296 −1.0000 1.0000 0.7273 M = d3, say

1 0.3636 0.1364 −1.0000 0.2222 F

2 0.2727 0.0455 −1.0000 −0.5000 F

3 0.0000 0.1364 −0.8333 −0.6667 F

4 0.0909 0.2727 −0.7500 −0.6667 F

5 −1.0000 0.4545 −0.7500 −0.7222 F

6 1.0000 −1.0000 0.6667 −0.2222 F

7 0.5455 0.2273 0.8333 0.9444 F

8 0.2727 −0.9091 0.9167 1.0000 F

9 0.2727 −0.5909 1.0000 −0.1111 F

10 0.5455 −0.1364 1.0000 −0.0556 F

The information matrix of γ under d3 is

Id3 (γ) = IMd3 (γ) + IFd3 (γ) =

⎛

⎜
⎜
⎝

2.3566 −1.4126 0.5880 0.3333
−1.4126 2.0137 −2.8538 −1.5551
0.5880 −2.8538 6.2519 3.3611
0.3333 −1.5551 3.3611 2.6572

⎞

⎟
⎟
⎠

+

⎛

⎜⎜
⎝

2.4000 −1.4396 2.2153 1.2949
−1.4396 2.2983 −2.5925 −1.1803
2.2153 −2.5925 7.7979 3.2704
1.2949 −1.1803 3.2704 3.6061

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

4.7566 −2.8522 2.8033 1.6282
−2.8522 4.3120 −5.4463 −2.7354
2.8033 −5.4463 14.0498 6.6315
1.6282 −2.7354 6.6315 6.2633

⎞

⎟⎟
⎠

det(Id3) = 267.4351, 20−4 × det(Id3) = 0.0017.

Method 4: Use of Weight Data Lastly for weight Z4, we show the arranged data in
Table9.33.
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Table 9.33 Choice of males and females based on reported weight data

Sl. no. Heart rate Age Height Weight Sex

1 0.7037 −0.2632 −0.6970 −1.0000 M

2 0.0741 −0.2632 −0.7576 −0.6364 M

3 0.6296 −0.1228 −0.9394 −0.5909 M

4 −0.4815 −0.1228 −0.3939 −0.5909 M

5 −1.0000 0.5088 −0.6364 −0.6364 M

6 0.3333 −0.4035 −0.0303 0.2727 M

7 −0.3333 −0.1228 0.3333 0.3636 M

8 0.6296 −1.0000 1.0000 0.7273 M

9 0.0370 0.0877 0.3939 0.9545 M

10 −0.2593 0.0175 0.2727 1.0000 M = d4, say

1 0.0909 0.3636 −0.6667 −1.0000 F

2 −0.3636 −0.0455 −0.5000 −0.8333 F

3 0.2273 −1.0000 −0.2500 −0.7222 F

4 −1.0000 0.4545 −0.7500 −0.7222 F

5 0.0000 0.1364 −0.8333 −0.6667 F

6 0.3636 −0.1364 −1.0000 0.2222 F

7 0.5455 0.1818 −0.4167 0.3889 F

8 0.0909 0.5909 0.0833 0.7778 F

9 0.5455 0.2273 0.8333 0.9444 F

10 0.2727 −0.9091 0.9167 1.0000 F

The information matrix of γ under d4 is

Id4 (γ) = IMd4 (γ) + IFd4 (γ) =

⎛

⎜
⎜
⎝

2.8050 −1.4000 0.1887 0.0062
−1.4000 1.3298 −1.0116 −0.5517
0.1887 −1.0116 3.6323 3.8410
0.0062 −0.5517 3.8410 5.1531

⎞

⎟
⎟
⎠

+

⎛

⎜⎜
⎝

1.9424 −0.6423 1.1352 1.9689
−0.6423 2.6365 −0.9936 −0.2254
1.1352 −0.9936 4.0618 3.5874
1.9689 −0.2254 3.5874 5.8422

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

4.7474 −2.0423 1.3239 1.9751
−2.0423 3.9663 −2.0052 −0.7771
1.3239 −2.0052 7.6941 7.4284
1.9751 −0.7771 7.4284 10.9953

⎞

⎟⎟
⎠

det(Id4) = 292.4578, 20−4 × det(Id4) = 0.00183.

Selection Method Based on Principal Component

Selection of 10 Males
A PCA is concerned with explaining the variance–covariance structure of a set of
responses through a few linear combinations of these responses. In this study, only
two eigenvalues were larger (14.6743 and 11.3163, respectively); so two components
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Table 9.34 Details for PCA for Male Data

Comp.1 Comp.2 Comp.3 Comp.4

Standard
deviation

0.5594 0.4865 0.2595 0.2102

Proportion of
variance

0.4733 0.3580 0.1018 0.0668

Cumulative
proportion

0.4733 0.8313 0.9332 1.0000

were extracted, based on Kaiser principle (cf. Kaiser 1960). The first component
(PCM1) accounts for about 47.33% and the second component (PCM2) accounts for
about 35.80% of the total variance in the data set. Therefore the first two components
account for 83.13% of the variance (vide Table9.34).

The eigenvalues of Z′
MZM are 14.6743 = λM1, 11.3163 = λM2, 3.4597 = λM3,

1.9446 = λM4; where Z44×4
M = (z(l)Mj) is design matrix for covariate parameters for

male data and the corresponding eigenvectors
(
ξM1, ξM2, ξM3, ξM4

)
are:

⎛

⎜⎜⎜⎜
⎝

ξM1 ξM2 ξM3 ξM4
−0.4520 0.5225 0.7182 −0.0828
0.5955 −0.3808 0.6107 −0.3569

−0.5887 −0.4745 −0.0998 −0.6468
−0.3074 −0.5973 0.3182 0.6689

⎞

⎟⎟⎟⎟
⎠

Therefore

PCM1 = −0.4520ZM1 + 0.5955ZM2 − 0.5887ZM3 − 0.3074ZM4
PCM2 = 0.5225ZM1 − 0.3808ZM2 − 0.4745ZM3 − 0.5973ZM4

Now we take a convex combination of PCM1 and PCM2 and get a new score and
denote it by PM = λM1

λM1 +λM2
PCM1 + λM2

λM1 +λM2
PCM2 = −0.0277ZM1 + 0.1704ZM2

− 0.5390ZM3 − 0.4336ZM4. Nowwe arrange PM score in ascending order and select
10 males where 5 are from the top and 5 are from the bottom. The data of the selected
males are shown in Table9.35.

Selection of 10 Females
A similar PCA is carried out for female data. In this study, three eigenvalues
were larger (21.3051, 10.9512 and 7.2187, respectively); so three components were
extracted, based on Kaiser principle. The first component (PCF1) accounts for about
51.29%, the second component (PCF2) accounts for about 22.92% and the third
component (PCF3) accounts for about 17.65% of the total variance in the data set.
Therefore, the first three components account for 91.86% of the variance (vide
Table9.36).

The eigenvalues of Z′
FZF are 21.3051 = λF1, 10.9512 = λF2, 7.2187 = λF3,

3.8364 = λF4; where Z44×4
F = (z(l)Fj ) is design matrix for covariate parameters for
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Table 9.35 Male data

Heart rate Age Height Weight

0.6296 −1.0000 1.0000 0.7273

0.6296 −1.0000 0.6364 0.1364

0.0370 −0.7895 0.8788 0.2273

−0.2593 0.0175 0.2727 1.0000

0.0370 0.0877 0.3939 0.9545 = dM5, say

0.7037 −0.2632 −0.6970 −1.0000

0.6296 −0.1228 −0.9394 −0.5909

0.0741 0.0526 −1.0000 0.0000

0.0741 −0.2632 −0.7576 −0.6364

−1.0000 0.5088 −0.6364 −0.6364

Table 9.36 Details of PCA for Female Data

Comp.1 Comp.2 Comp.3 Comp.4

Standard
deviation

0.6910 0.4618 0.4054 0.2753

Proportion of
variance

0.5129 0.2292 0.1765 0.0814

Cumulative
proportion

0.5129 0.7421 0.9186 1.0000

female data and the corresponding eigenvectors
(
ξF1, ξF2, ξF3, ξF4

)
are:

⎛

⎜⎜⎜⎜
⎝

ξF1 ξF2 ξF3 ξF4
0.4400 0.7258 −0.5234 −0.0753

−0.4615 −0.2532 −0.6623 −0.5333
0.6504 −0.3185 0.2000 −0.6599
0.4128 −0.5547 −0.4975 0.5239

⎞

⎟⎟⎟⎟
⎠

Therefore

PCF1 = 0.4400ZF1 − 0.4615ZF2 + 0.6504ZF3 + 0.4128ZF4
PCF2 = 0.7258ZF1 − 0.2532ZF2 − 0.3185ZF3 − 0.5547ZF4
PCF3 = −0.5234ZF1 − 0.6623ZF2 + 0.2000ZF3 − 0.4975ZF4

Now we take convex combination of PCF1, PCF2 and PCF3 and get a new score
and denote it by PF = λF1

λF1+λF2+λF3
PCF1 + λF2

λF1+λF2 +λF3
PCF2 + λF3

λF1 +λF2 +λF3

PCF3 = 0.3431ZF1 − 0.4404ZF2 + 0.2992ZF3 − 0.0220ZF4. Now we arrange PF

score in ascending order and select 10 females where 5 are from top and 5 are from
bottom. The data of the selected females are shown in Table9.37.
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Table 9.37 Female data

Heart rate Age Height Weight

−0.7273 0.6364 −0.4167 −0.1111

−0.9091 1.0000 −0.0833 −0.3889

−0.4545 0.5909 −0.3333 0.0556

−1.0000 0.3636 −0.4167 −0.2222

−1.0000 0.4545 −0.7500 −0.7222 = dF5, say

0.2727 −0.9091 0.9167 1.0000

1.0000 −1.0000 0.6667 −0.2222

0.5455 −0.5909 0.5000 −0.1111

0.2727 −0.5909 1.0000 −0.1111

0.5455 −0.1364 1.0000 −0.0556

Table 9.38 Selection of 10 males based on total scoring

Heart rate Age Height Weight

0.7037 −0.2632 −0.6970 −1.0000

−0.6296 0.2281 −0.4545 −0.4545

−0.4815 −0.1228 −0.3939 −0.5909

0.0741 −0.2632 −0.7576 −0.6364

−1.0000 0.5088 −0.6364 −0.6364 = dM6, say

0.6296 −1.0000 1.0000 0.7273

−0.2593 0.0175 0.2727 1.0000

0.0370 0.0877 0.3939 0.9545

−0.1852 1.0000 0.3939 0.1364

0.2593 0.0877 0.1515 0.1364

Therefore, d5 =
(

dM5
dF5

)
.

Therefore det(Id5(γ)) = det(IMd5(γ) + IFd5(γ)) = 255.4019 and 20−4 ×
det(Id5(γ)) = 0.00160.

Selection Method Based on Total Scoring
We may also adopt one more ad hoc method of selection. This time we select males
or females by use of total Z-scores from all the covariates. For males, we base on
the ZM = ZM1 + ZM2 + ZM3 + ZM4 values. We arrange ZM in ascending order and
select 10 males where 5 are from the top and 5 are from the bottom. The data of the
selected males are shown in Table9.38.

Likewise, we select 10 females based on ZF = ZF1 + ZF2 + ZF3 + ZF4 values.
We arrange ZF in ascending order and select 10 females where 5 are from the top
and 5 are from the bottom. The data of the selected females are shown in Table9.39.
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Table 9.39 Selection of 10 females based on total scoring

Heart rate Age Height Weight

0.2273 −1.0000 −0.2500 −0.7222

−0.3636 −0.0455 −0.5000 −0.8333

−0.3636 −0.1364 −0.5000 −0.3889

−1.0000 0.4545 −0.7500 −0.7222

0.0000 0.1364 −0.8333 −0.6667 = dF6, say

0.2727 −0.9091 0.9167 1.0000

0.5455 0.2273 0.8333 0.9444

0.0909 0.5909 0.0833 0.7778

0.5455 −0.1364 1.0000 −0.0556

0.3182 0.6364 0.1667 0.1667

Therefore, d6 =
(

dM6
dF6

)
. Consequently,det(Id6(γ)) = det(IMd6(γ)+IFd6(γ)) =

294.0333 and 20−4 × det(Id6(γ)) = 0.00184.
At the end, we conclude that d1 ≺ d2 ≺ d5 ≺ d3 ≺ d4 ≺ d6, since 20−4 ×

det(Id1(γ)) = 0.0004, 20−4 ×det(Id2(γ)) = 0.0012, 20−4 ×det(Id3(γ)) = 0.0017,
20−4×det(Id4(γ)) = 0.00183, 20−4×det(Id5(γ)) = 0.00160, 20−4×det(Id6(γ)) =
0.00184 and87−4×det(Id(γ)) = 0.0006,whered is a designbasedonwhole data set.

It thus transpires that the criterion of selection (d6) based on total scoring of the
participating males or females fares much better than the rest for efficient estimation
of the covariate parameters. It may be noted that implicitly we have exploited our
understanding of OCDs in carrying out this exercise.

Example 9.2.3 The data in Table9.40 are from a study to evaluate the effect of roll
gap and variety of wheat on the amount of flour produced (percent of total wheat
ground) during a run of a pilot flour mill (cf. Milliken and Johnson (2001), p. 406).
Three batches of wheat from each of three varieties were used in the study with
enough raw material for all where a single batch of wheat was used for all four roll
gap setting. The experiment was conducted on three different days.

For each variety type, there are three batches of wheat with fixed but varyingmois-
ture contents and the batches have been assigned across the 3 days of the experiment
as shown in Table9.40.

Our purpose is to revisit this data set and examine the possibility of improving
the design for increased information on the covariate parameter. We will examine
the possibility of re-allocation of the batches of wheats across different days of the
experiment. Towards this, we start with a model description.

Model for 3 way layout (Day × Variety × Roll Gap):

yijl = μ + βi + τj + δl + zijγ + eijl; i = 1, 2, . . . , r; j = 1, 2, . . . , p; l = 1, 2, . . . , q;
(9.2.1)
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Table 9.40 Data for amount of flour milled (percent) during the first break of a flour mill operation
from three varieties of wheat using four roll gaps

Day Variety Moist Roll gap

0.02in 0.04in 0.06in 0.08in

1 A 12.4 18.3 14.6 12.2 9.0

1 B 12.8 18.8 14.9 11.7 8.3

1 C 12.1 18.7 15.5 12.7 9.2

2 A 14.4 19.1 15.4 12.4 8.7

2 B 12.4 17.5 14.4 11.3 8.3

2 C 13.2 18.9 15.4 12.5 8.2

3 A 13.1 18.2 15.0 12.1 8.4

3 B 14.0 20.4 16.2 12.9 9.1

3 C 13.4 19.7 16.9 13.4 9.5

Source Milliken and Johnson (2001). Analysis of Messy Data: Volume III: Analysis of covariance,
Chapman and Hall/CRC

where μ is general effect, βi is effect due to ith day, τj is effect due to jth variety,
δl is effect due to lth roll gap, γ is the covariate effect and zij is the covariate value
corresponding to ith day and jth variety.Without loss of generality, we assume |zij| ≤
1 for all i, j. Note that zij’s are to be computed by using the standard transformation

of the original covariate values xij’s and it is given by zij = 2(xij−xmin)

xmax−xmin
− 1. These

xmin and xmax are to be based on the entire collection of xij values. In (9.2.1), eijls are
random errors with

V(eijl) = σ2 ∀i, j, l
Cov(eijl, eijl′) = ρσ2 ∀i, j, l �= l′
Cov(eijl, eij′l) = 0 ∀i, j �= j′, l
Cov(eijl, ei′jl) = 0 ∀i �= i′, j, l

Therefore, Disp(yij) = σ2((1− ρ)Iq + ρJq), ∀i, j where Iq is an identity matrix of
order q and Jq is a matrix of order q with all elements unity.

Since for each day×variety combination, there are four correlated observations,
observational contrasts would provide information on the contrasts involving effects
of roll gaps, eliminating the effects of all other parameters, including the covariate
parameter, viz. the effect of moisture content. The average of the four observations,
on the other hand, will provide information on all the three components, viz. day
effect, variety effect and covariate effect, as in a standard RBD set-up.

We will start from there and proceed to examine the possibilities of rearrange-
ment of the moist batches of wheat for extracting maximum information on the
covariate effect.

In a general RBD set-up involving q correlated observations, we would proceed
as follows:
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L =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎝

1√
q

1√
q

1√
q

1√
q . . . 1√

q
1√
q

1√
2

− 1√
2

0 0 . . . 0 0
1√
6

1√
6

− 2√
q 0 . . . 0 0

...
...

...
...

...
...

...
1√

q(q−1)
1√

q(q−1)
1√

q(q−1)
1√

q(q−1)
. . . 1√

q(q−1)
− q−1√

q(q−1)

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎠

such that LL′ = Iq.
Then

Disp(Lyij) = σ2L((1 − ρ)Iq + ρJq)L′ = σ2

⎛

⎜
⎜⎜
⎜
⎜
⎝

1 + (q − 1)ρ 0 0 . . . 0
0 1 − ρ 0 . . . 0
0 0 1 − ρ . . . 0
...

...
...

...
...

0 0 0 . . . 1 − ρ

⎞

⎟
⎟⎟
⎟
⎟
⎠

Now we take

M =

⎛

⎜⎜⎜⎜⎜⎜
⎜
⎝

1√
1+(q−1)ρ

0 0 . . . 0

0 1√
1−ρ

0 . . . 0

0 0 1√
1−ρ

. . . 0
...

...
...

...
...

0 0 0 . . . 1√
1−ρ

⎞

⎟⎟⎟⎟⎟⎟
⎟
⎠

Then Disp(MLyij) = σ2Iq. Let MLyij = y∗
ij. Now our Model (9.2.1) can be writ-

ten as:

1√
q(1 + (q − 1)ρ)

q∑

l=1

yijl = 1√
q(1 + (q − 1)ρ)

(

q(μ + βi + τj + zijγ) +
q∑

l=1

δl +
q∑

l=1

eijl

)

1√
2(1−ρ)

(yij1 − yij2) = 1√
2(1−ρ)

(δ1 − δ2) + 1√
2(1−ρ)

(eij1 − eij2)

1√
6(1−ρ)

(yij1 + yij2 − 2yij3) = 1√
6(1−ρ)

(δ1 + δ2 − 2δ3) + 1√
6(1−ρ)

(eij1 + eij2 − 2eij3)

.

.

.
.
.
.

1√
q(q − 1)(1 − ρ)

(yij1 + yij2 + · · · + yijq−1 − (q − 1)yijq)

= 1√
q(q − 1)(1 − ρ)

(
(δ1 + δ2 + · · · + δq−1 − (q − 1)δq) + (eij1 + eij2 + · · · + eijq−1 − (q − 1)eijq)

)

(9.2.2)

As explained above, the only source of information on the covariate parameter γ
is the set of rp subtotals or means on Day× Treatment with the roll gap observations
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averaged out. Hence the model is:

ȳij0 = μ∗ + βi + τj + zijγ + ēij0 (9.2.3)

where ȳij0 = 1
q

q∑

l=1

yijl, ēij0 = 1
q

q∑

l=1

eijl, μ∗ = μ + 1
q

q∑

l=1

δl with V(ȳij0) =
(1+(q−1)ρ)

q σ2 and ȳij0’s are uncorrelated. This is simply covariate model for RBD
with single covariate. The information of γ is

I(γ) =
r∑

i=1

p∑

j=1

z2ij − 1

p

r∑

i=1

R2
i − 1

r

p∑

j=1

C2
j + G2

rp
, (9.2.4)

where Ri =
p∑

j=1

zij, i = 1, 2, . . . , r and Cj =
r∑

i=1

zij, j = 1, 2, . . . , p, and

G =
r∑

i=1

p∑

j=1

zij =
r∑

i=1

Ri =
p∑

j=1

Cj. Now we transform the moisture values of

Table9.40 into z-values and the coded covariate values are shown in Table9.41.
Information of θ = (

μ,β′, τ ′, γ
)
is

Id1θ) =

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

9 3 3 3 3 3 3 −1.261
3 3 0 0 1 1 1 −2.130
3 0 3 0 1 1 1 0.217
3 0 0 3 1 1 1 0.652
3 1 1 1 3 0 0 0.13
3 1 1 1 0 3 0 −0.478
3 1 1 1 0 0 3 −0.913

−1.261 −2.13 0.217 0.652 0.13 −0.478 −0.913 3.707

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

Id1(γ) = 1.8533.

Table 9.41 Coded z-values Day Variety Moist

1 A −0.7391

1 B −0.3913

1 C −1.0000

2 A 1.0000 = d1, say

2 B −0.7391

2 C −0.0435

3 A −0.1304

3 B 0.6522

3 C 0.1304
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Now we consider the design given in Table9.42.
Information of θ = (

μ,β′, τ ′, γ
)
is

Id2θ) =

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

9 3 3 3 3 3 3 −3
3 3 0 0 1 1 1 −1
3 0 3 0 1 1 1 −1
3 0 0 3 1 1 1 −1
3 1 1 1 3 0 0 −1
3 1 1 1 0 3 0 −1
3 1 1 1 0 0 3 −1

−3 −1 −1 −1 −1 −1 −1 9

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

Id2(γ) = 8. The D-efficiency of d1 with respect to d2 is 23.1674%. Hence if we use
d2 instead of d1, then we improve the information of γ a lot. The moisture values of
d2 are given in Table9.43.

Here we conclude that the design which is optimum under uncorrelated model is
also optimum under correlated model.

Table 9.42 Coded z-values Day Variety Moist

1 A −1

1 B 1

1 C −1

2 A −1 = d2, say

2 B −1

2 C 1

3 A 1

3 B −1

3 C −1

Table 9.43 Uncoded z-values Day Variety Moist

1 A 12.1

1 B 14.4

1 C 12.1

2 A 12.1 = d2, say

2 B 12.1

2 C 14.4

3 A 14.4

3 B 12.1

3 C 12.1
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Remark 9.2.1 The reader may note that the allocation design d2 relates to a hypo-
thetical scenario under the assumption that there are indeed batches ofwheat varieties
available with the stipulated moisture contents coded ±1’s. The uncoded values are
shown in Table9.43. Naturally, d2 does not address the reality which is governed
by the given values of the moisture contents of nine bundles of the wheat. There-
fore, we turn back to the original collection of z-values as in d1 and try to suggest
improvements over the given allocation.

Now we want to improve d1 by reallocating the batches of wheat of each type

across the 3 days so that SSDays (= 1
p

r∑

i=1

R2
i − G2

rp
) is the least i.e. Ri’s are as equal

as possible. So we have three treatments A, B, C and each has three bundles of input
material with naturally given day specific moisture contents. Consider Treatment A
so that we have 3! = 6 ways of distributing the bundles across the days. Likewise
3! = 6 for those of B and 3! = 6 for those of C and all are independent. So in effect
given the experimental material and no further input, there are 6×6×6 = 216 ways
of distribution of the bundles across 3 days and the given design is just one of these
216 possible allocations. Now we rewrite d1 as in Table9.44 and follow certain steps
for reallocation of coded z-values in each column.
Step 1: We select the first column and permute the covariate values keeping the other
columns fixed. Next we compute the information of γ under each permutation. Then
we choose the design in which the information of γ will be a maximum. We denote
the design by d3 (Table9.45).

The information of γ is Id3(γ) = 3.1942.
Step 2: Now replace the second column by (−0.3913, 0.6522, −0.7391) and keep
the third column intact, and then permute the first column in all possible ways. Then
we get the design d4 which improves the information of γ and is equal to 3.2849
(Table9.46).
Step 3: Now replace the second column by (−0.7391, −0.3913, 0.6522) and keep
the third column intact, and then permute the first column in all possible ways. But

Table 9.44 d1
Day A B C Total

1 −0.7391 −0.3913 −1.0000 −2.1304

2 1.0000 −0.7391 −0.0435 0.2174

3 −0.1304 0.6522 0.1304 0.6522

Table 9.45 d3
Day A B C Total

1 1.0000 −0.3913 −1.0000 −0.3913

2 −0.1304 −0.7391 −0.0435 −0.913

3 −0.7391 0.6522 0.1304 0.0435
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Table 9.46 d4
Day A B C Total

1 1.0000 −0.3913 −1.0000 −0.3913

2 −0.7391 0.6522 −0.0435 −0.1304

3 −0.1304 −0.7391 0.1304 −0.7391

Table 9.47 d5
Day A B C Total

1 1.0000 −0.7391 −1.0000 −0.7391

2 −0.7391 0.6522 −0.0435 −0.1304

3 −0.1304 −0.3913 0.1304 −0.3913

Table 9.48 d6
Day A B C Total

1 1.0000 −0.3913 −1.0000 −0.3913

2 −0.1304 −0.7391 0.1304 −0.7391

3 −0.7391 0.6522 −0.0435 −0.1304

Table 9.49 d7
Day A B C Total

1 1.0000 −0.7391 −1.0000 −0.7391

2 −0.1304 −0.3913 0.1304 −0.3913

3 −0.7391 0.6522 −0.0435 −0.1304

we cannot improve the information of γ than d4 (since here we get the design where
the information of γ is 3.2345 and the design is best among the designs obtained
from all six permutations of the first column).
Step 4: Replace the second column by (−0.7391, 0.6522, −0.3913) and keep the
third column intact, and then permute the first column in all possible ways. But we
cannot improve the information of γ than d4 (since here we get the design where the
information of γ is 3.2849 and the design is best among the designs obtained from
all six permutations of the first column). We denote this design by d5 (Table9.47).
Step 5: Replace the second column by (0.6522, −0.3913, −0.7391) and keep the
third column intact, and then permute the first column in all possible ways. But we
cannot improve the information of γ than d4.

Now replace the third column of d1 by (−1.000, 0.1304,−0.0435) and by follow-
ing all the steps mentioned above we get the designs d6 and d7 where the information
of γ is the same as d4 (Tables9.48 and 9.49).
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Table 9.50 d8
Day A B C Total

1 −0.7391 0.6522 −0.0435 −0.1304

2 1.0000 −0.3913 −1.0000 −0.3913

3 −0.1304 −0.7391 0.1304 −0.1304

Table 9.51 d9
Day A B C Total

1 −0.7391 0.6522 −0.0435 −0.1304

2 1.0000 −0.7391 −1.0000 −0.7391

3 −0.1304 −0.3913 0.1304 −0.3913

Table 9.52 d10
Day A B C Total

1 −0.7391 0.6522 −0.0435 −0.1304

2 −0.1304 −0.3913 0.1304 −0.3913

3 1.0000 −0.7391 −1.0000 −0.7391

Table 9.53 d11
Day A B C Total

1 −0.7391 0.6522 −0.0435 −0.1304

2 −0.1304 −0.7391 0.1304 −0.7391

3 1.0000 −0.3913 −1.0000 −0.3913

Now replace the third column of d1 by (−0.0435,−1.000, 0.1304) and by follow-
ing all the steps mentioned above we get the designs d8, d9 where the information of
γ is the same as d4 (Tables9.50 and 9.51).

Now replace the third column of d1 by (−0.0435, 0.1304,−1.000) and by follow-
ing all the steps mentioned above we get the designs d10, d11 where the information
of γ is same as d4 (Tables9.52 and 9.53).

Now replace the third column of d1 by (0.1304,−1.000,−0.0435) and by follow-
ing all the steps mentioned above we get the designs d12, d13 where the information
of γ is same as d4 (Tables9.54 and 9.55).

Now replace the third column of d1 by (0.1304,−0.0435,−1.000) and by follow-
ing all the steps mentioned above we get the designs d14, d15 where the information
of γ is same as d4 (Tables9.56 and 9.57).

Therefore, d4 is the best design when the covariate values are given and the
relative efficiency of d1 with respect to d4 is 56.42%. Therefore, we are in a position
to improve the information of γ in the design d1 almost twice. But if we have such
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Table 9.54 d12
Day A B C Total

1 −0.1304 −0.3913 0.1304 −0.3913

2 1.0000 −0.7391 −1.0000 −0.7391

3 −0.7391 0.6522 −0.0435 −0.1304

Table 9.55 d13
Day A B C Total

1 −0.1304 −0.7391 0.1304 −0.7391

2 1.0000 −0.3913 −1.0000 −0.3913

3 −0.7391 0.6522 −0.0435 −0.1304

Table 9.56 d14
Day A B C Total

1 −0.1304 −0.3913 0.1304 −0.3913

2 −0.7391 0.6522 −0.0435 −0.1304

3 1.0000 −0.7391 −1.0000 −0.7391

Table 9.57 d15
Day A B C Total

1 −0.1304 −0.7391 0.1304 −0.7391

2 −0.7391 0.6522 −0.0435 −0.1304

3 1.0000 −0.3913 −1.0000 −0.3913

flexibility to choose covariate values then d2 is the best design. Here we note that we
continued our search till all Ri’s are same or almost the same.

Example 9.2.4 The data in Table9.58 are from an experiment on the effects of two
drugs onMental Activity (MA). The mental activity score is the sum of the scores on
seven items in a questionnaire given to each of 24 volunteer subjects. The treatments
are Morphine, Heroin and a Placebo (an inert substance) given in subcutaneous
injections. On different occasions, each subject received each drug in turn. The
mental activity is measured before taking the drug (Z) and at 1

2 , 2, 3 and 4h after.
The response data (Y) in Table9.58 are those at 2h after. As a common precaution
in these experiments, eight subjects took Morphine first, eight took Heroin first and
eight took the Placebo first, and similarly on the second and third occasions. These
data show no apparent effect of the order in which drugs were given, and the order
is ignored here.

Since each subject gets three treatments in three different time points in some pre-
determined order, we have a flexibility to allocate subjects to the three treatments at
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Table 9.58 Mental Activity scores before (Z) and 2h after (Y) a drug

Subject Morphine (M) Heroin (H) Placebo (P)

Z Y Z Y Z Y

1 7 4 0 2 0 7

2 2 2 4 0 2 1

3 14 14 14 13 14 10

4 14 0 10 0 5 10

5 1 2 4 0 5 6

6 2 0 5 0 4 2

7 5 6 6 1 8 7

8 6 0 6 2 6 5

9 5 1 4 0 6 6

10 6 6 10 0 8 6

11 7 5 7 2 6 3

12 1 3 4 1 3 8

13 0 0 1 0 1 0

14 8 10 9 1 10 11

15 8 0 4 13 10 10

16 0 0 0 0 0 0

17 11 1 11 0 10 8

18 6 2 6 4 6 6

19 7 9 0 0 8 7

20 5 0 6 1 5 1

21 4 2 11 5 10 8

22 7 7 7 7 6 5

23 0 2 0 0 0 1

24 12 12 12 0 11 5

Total 138 141 144

the first time point only. Thereafter, we repeat the allocation of the subjects of Time
point 1 for the next two time points. We analyse the data for each of the three time
points and employ CRD model for respective time points separately.

Although RBD analysis was carried out in the book, it is more appropriate to
treat this as an exercise in repeated CRD analysis and we may assume that the
covariate effect is the same across all the three time points. The point to be noted
is that the experimental subjects may be classified into three groups based on their
covariate values at Time Point 1 only. Subsequently, there is no scope to alter their
classifications to other groups.

We now proceed to objectively look into the given data on the covariates.
Towards this, we rearrange Z-values in Table9.59a–c corresponding to time point

1, time point 2 and time point 3, respectively, and denote it by d0.
Now we consider the CRD model for single covariate for each Time point.
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Table 9.59 Arrangement of the Z-values of the 24 subjects in the three different time points

(a) Time point 1

M H P

7 4 10

2 10 6

14 7 8

14 4 5

1 1 10

2 9 6

5 4 0

6 0 11

Totals 51 39 56

(b) Time point 2

H P M

0 6 11

4 8 6

14 6 7

10 3 5

4 1 4

5 10 7

6 10 0

6 0 12

Totals 49 44 52

(c) Time point 3

P M H

0 5 11

2 6 6

14 7 0

5 1 6

5 0 11

4 8 7

8 8 0

6 0 12

Totals 44 35 53

For Table9.59a–c, routine computations for a CRD yield, Id0(γ1) = 364.75,
Id0(γ2) = 330.875 and Id0(γ3) = 365.75. We assume that γ1 = γ2 = γ3 = γ (say),
i.e. there is no effect of time on the mental activity within the subject. Therefore
Id0(γ) = Id0(γ1) + Id0(γ2) + Id0(γ3) = 1061.375.

It is evident that we have some flexibilities in suggesting an OCD for a CRD
model based on the covariate-values at Time Point 1 and, naturally, we should utilize
that provision at least to maximize I(γ1). We have considered all possible permu-
tations of Z-values at Time point 1 (TP 1) and by computer search we have found
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I(γ1) = 383.75, which is the maximum among all and we get 162 OCDs for Time
point 1 where I(γ1) = 383.75. These constitute one ‘Equivalence Group’ for the
subjects. This exercise is very special. We recommend one member of this family
in the absence of any other information and that presumably is the end of our task.
What is the impact of our choice on subsequent TPs 2 and 3? For various choices
of the family members, we obtain a range of I(γ) values combining all the three
TPs. We should look at the entire spectrum of I(γ) and see if there is wide variation
among them. One acceptable criterion may be I(γ)min is within 2% of I(γ)max. If
that has been the case in this example as assessed by the covariate values at TP 2 and
TP 3, we need not worry about our specific recommendation. Otherwise, there is a
scope of introspection and dig into ‘possible relations’ among the covariate values
for each subject over the TPs.

Since the size of EG is very large, therefore we have considered one member of
this group and then found out the impact of our choice on subsequent Time Points 2
and 3.

We fix the same allocation of the subjects, shown in Table9.60, for Time point
2 and Time point 3. In Table9.61 we show the allocation of Z-values under each
treatment for Time point 1, Time point 2 and Time point 3. We denote the design
by d1.

If we look at Table9.60, then there is still chance to improve d1, i.e. if we permute
the allocation of the subjects where same covariate values appear in the rows of
Table9.60, then there is a possibility to improve the value of I2(γ) and I3(γ). Here the
possible rows areR2,R3,R4,R5,R7,R8.Wehave considered all 2!×3!×2!×2!×3!×
2! = 576 permutations. By computer search,we have found I(γ)max = 1102.875 and
I(γ)min = 1018.625 and the improvement of the design with I(γ)max (=1102.875)
over the design with I(γ)min (=1018.625) is 8.27% (= 1102.875−1018.625

1018.625 ×100%)
only. In Table9.62, we show the design with maximum I(γ) and denote the design
by d2.

Now we consider the design with Imin(γ) = 1018.625 and denote it by d3. This
design is shown in Table9.63.

Table 9.60 Allocation of subjects based on OCD for Time Point 1 [TP1]

M H P Allocation of subjects

M H P

0 0 1 16 23 5

2 2 1 2 6 13

4 4 4 9 12 15

6 5 5 8 7 20

6 6 7 18 22 1

7 8 9 11 19 14

10 10 10 10 17 21

14 14 11 3 4 24

Totals 49 49 48
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Table 9.61 Arrangement of the Z-values of the 24 subjects for Time point 1, Time point 2 and
Time point 3

(a) Time point 1

M H P

0 0 1

2 2 1

4 4 4

6 5 5

6 6 7

7 8 9

10 10 10

14 14 11

Totals 49 49 48

(b) Time point 2

H P M

0 0 4

4 5 1

6 3 10

6 6 5

6 7 0

6 7 10

8 11 4

14 10 12

Totals 50 49 46

(c) Time point 3

P M H

0 0 5

2 4 0

5 1 8

6 8 6

6 7 0

7 0 8

6 11 11

14 5 12

Totals 46 36 50

Here Id2(γ2) = 333.875, Id2(γ3) = 385.25, Id3(γ2) = 313.625 and Id3(γ3) =
321.25. It follows that the relative efficiencies of d2 and d3 with respect to d0 are
103.91% and 95.97%. Therefore, thoughwe start with optimal design for Time point
1, yet there might be a chance of getting less efficient design (viz., d3) than d0 at the
end of Time point 3. Fortunately, still d3 has a very high relative efficiency as against
d0. So our decision is not too bad to look for an optimal design with reference to
Time point 1 and follow it through.
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Table 9.62 Design d2 with maximum I (γ)

Time Point 1 Time Point 2 Time Point 3 Allocation

M H P M H P M H P M H P

0 0 1 0 0 4 0 0 5 16 23 5

2 2 1 4 5 1 2 4 0 2 6 13

4 4 4 6 3 10 5 1 8 9 12 15

6 5 5 6 6 5 6 8 6 8 7 20

6 6 7 6 7 0 6 7 0 18 22 1

7 8 9 6 7 10 7 0 8 11 19 14

10 10 10 11 4 8 11 11 6 17 21 10

14 14 11 10 14 12 5 14 12 4 3 24

Totals 49 49 48 49 46 50 42 45 45

Table 9.63 Design d3 with minimum I (γ)

Time Point 1 Time Point 2 Time Point 3 Allocation

M H P M H P M H P M H P

0 0 1 0 0 4 0 0 5 16 23 5

2 2 1 5 4 1 4 2 0 6 2 13

4 4 4 10 3 6 8 1 5 15 12 9

6 5 5 6 5 6 6 6 8 8 20 7

6 6 7 7 6 0 7 6 0 22 18 1

7 8 9 6 7 10 7 0 8 11 19 14

10 10 10 11 8 4 11 6 11 17 10 21

14 14 11 14 10 12 14 5 12 3 4 24

Totals 49 49 48 59 43 43 57 26 49
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