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Preface

Nowadays one can hardly find any field where statistics is not used. With a given
sample, one can infer about the population. The role of estimation and inferential
statistics remains pivotal in the study of statistics. Statistical inference is concerned
with problems of estimation of population parameters and test of hypotheses. In
statistical inference, drawing a conclusion about the population takes place on the
basis of a portion of the population. This book is written, keeping in mind the need
of the users, present availability of literature to cater to these needs, their merits and
demerits under a constantly changing scenario. Theories are followed by relevant
worked-out examples which help the user grasp not only the theory but also
practice them.

This work is a result of the experience of the authors in teaching and research
work for more than 20 years. The wider scope and coverage of the book will help
not only the students, researchers and professionals in the field of statistics but also
several others in various allied disciplines. All efforts are made to present the
“estimation and statistical inference”, its meaning, intention and usefulness. This
book reflects current methodological techniques used in interdisciplinary research,
as illustrated with many relevant research examples. Statistical tools have been
presented in such a manner, with the help of real-life examples, that the fear factor
about the otherwise complicated subject of statistics will vanish. In its seven
chapters, theories followed by examples will make the readers to find most suitable
applications.

Starting from the meaning of the statistical inference, its development, different
parts and types have been discussed eloquently. How someone can use statistical
inference in everyday life has remained the main point of discussion in examples.
How someone can draw conclusions about the population under varied situations,
even without studying each and every unit of the population, has been discussed
taking numerous examples. All sorts of inferential problems have been discussed, at
one place supported by examples, to help the students not only in meeting their
examination need and research requirement, but also in daily life. One can hardly
get such a compilation of statistical inference in one place. The step-by-step
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procedure will immensely help not only the graduate and Ph.D. students but also
other researchers and professionals. Graduate and postgraduate students,
researchers and the professionals in various fields will be the user of the book.
Researchers in medical and social and other disciplines will be greatly benefitted
from the book. The book would also help students in various competitive
examinations.

Written in a lucid language, the book will be useful to graduate, postgraduate
and research students and practitioners in diverse fields including medical, social
and other sciences. This book will also cater the need for preparation in different
competitive examinations. One can find hardly a single book, in which all topics
related to estimation and inference are included. Numerous relevant examples for
related theories are added features of this book. An introduction chapter and an
annexure are special features of this book which will help readers in getting basic
ideas and plugging the loopholes of the readers. Chapter-wise summary of the
content of the proposed book is presented below.

Estimation and Inferential Statistics

e Chapter 1: The chapter relates to introduction to the theory of point estimation
and inferential statistics. Different criteria for a good estimator are discussed.
The chapters also present real-life worked-out problems that help the reader
understand the subject. Compared to partial coverage of this topic in most books
on statistical inference, this book aims at elaborate coverage about the subject of
point estimation.

e Chapter 2: This chapter deals with different methods of estimation like least
square method, method of moments, method of minimum y* and method of
maximum likelihood estimation. Not all these methods are equally good and
applicable in all situations. Merits, demerits and applicability of these methods
have been discussed in one place, which otherwise have remained mostly dis-
persed or scattered in the competing literature.

e Chapter 3: Testing of hypotheses has been discussed in this chapter. This
chapter is characterized by typical examples in different forms and spheres
including Type A1l testing, which is mostly overlooked in many of the available
literature. This has been done in this book.

e Chapter 4: The essence and technique of likelihood ratio test has been discussed
in this chapter. Irrespective of the nature of tests for hypotheses (simple and
composite), this chapter emphasizes how easily the test could be performed,
supported by a good number of examples. Merits and drawbacks have also been
discussed. Some typical examples are discussed in this chapter that one can
hardly find in any other competing literature.
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e Chapter 5: This chapter deals with interval estimation, techniques of interval
estimation under different situations, problems and prospects of different
approaches of interval estimation has been discussed with numerous examples
in one place.

e Chapter 6: This chapter deals with non-parametric methods of testing
hypotheses. All types of non-parametric tests have been put together and dis-
cussed in detail. In each case, suitable examples are the special feature of this
chapter.

e Chapter 7: This chapter is devoted to the discussion of decision theory. This
discussion is particularly useful to students and researchers interested in infer-
ential statistics. In this chapter, attempt has been made to present the decision
theory in an exhaustive manner, keeping in mind the requirement and the
purpose of the reader for whom the book is aimed at. Bayes and mini-max
method of estimation have been discussed in the Annexure. Most of the
available literature on inferential statistics lack due attention on these important
aspects of inference. In this chapter, the importance and utilities of the above
methods have been discussed in detail, supported with relevant examples.

e Annexure: The authors feel that the Annexure portion would be an asset to
varied types of readers of this book. Related topics, proofs, examples, etc.,
which could not be provided in the text itself, during the discussion of various
chapter for the sake of maintenance of continuity and flow are provided in this
section. Besides many useful proofs and derivations, this section includes
transformation of statistics, large sample theories, exact tests related to binomial,
Poisson population, etc. This added section will be of much help to the readers.

In each chapter, theories are followed by examples from applied fields, which
will help the readers of this book to understand the theories and applications of
specific tools. Attempts have been made to familiarize the problems with examples
on each topic in a lucid manner. During the preparation of this book, a good number
of books and articles from different national and international journals have been
consulted. Efforts have been made to acknowledge and provide these in the bib-
liography section. An inquisitive reader may find more material from the literature
cited.

The primary purpose of the book is to help students of statistics and allied fields.
Sincere efforts have been made to present the material in the simplest and
easy-to-understand form. Encouragements, suggestions and help received from our
colleagues at the Department of Agricultural Statistics, Bidhan Chandra Krishi
Viswavidyalaya are sincerely acknowledged. Their valuable suggestions towards
improvement of the content helped a lot and are sincerely acknowledged. The
authors thankfully acknowledge the constructive suggestions received from the
reviewers towards the improvement of the book. Thanks are also due to Springer
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for the publication of this book and for continuous monitoring, help and suggestion
during this book project. The authors acknowledge the help, cooperation, encour-
agement received from various corners, which are not mentioned here. The effort
will be successful, if this book is well accepted by the students, teachers,
researchers and other users to whom this book is aimed at. Every effort has been
made to avoid errors. Constructive suggestions from the readers in improving the
quality of this book will be highly appreciated.

Mohanpur, Nadia, India Pradip Kumar Sahu
Santi Ranjan Pal
Ajit Kumar Das
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Introduction

In a statistical investigation, it is known that for reasons of time or cost, one may
not be able to study each individual element of the population. In such a situation, a
random sample should be taken from the population, and the inference can be
drawn about the population on the basis of the sample. Hence, statistics deals with
the collection of data and their analysis and interpretation. In this book, the problem
of data collection is not considered. We shall take the data as given, and we study
what they have to tell us. The main objective is to draw a conclusion about the
unknown population characteristics on the basis of information on the same char-
acteristics of a suitably selected sample. The observations are now postulated to be
the values taken by random variables. Let X be a random variable which describes
the population under investigation and F be the distribution function of X. There are
two possibilities. Either X has a distribution function of Fy with a known functional
form (except perhaps for the parameter , which may be vector), or X has a
distribution function F' about which we know nothing (except perhaps that F is, say,
absolutely continuous). In the former case, let ® be the set of possible values of
unknown parameter 0, then the job of statistician is to decide on the basis of
suitably selected samples, which member or members of the family {Fy,0 € @}
can represent the distribution function of X. These types of problems are called
problems of parametric statistical inference. The two principal areas of statistical
inference are the “area of estimation of parameters” and the “tests of statistical
hypotheses”. The problem of estimation of parameters involves both point and
interval estimation. Diagrammatically, let us show components and constituents of
statistical inference as in chart.

Xiii
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‘ Statistical Inference ’

| l

[ Estimation (Parametric) 1 [ Testing of Hypothesis ]
I

[ I

{ Point Estimation ‘ [ Interval Estimation ]

Problem of Point Estimation

The problem of point estimation relates to the estimating formula of a parameter
based on random sample of size n from the population. The method basically
comprises of finding out an estimating formula of a parameter, which is called the
estimator of the parameter. The numerical value, which is obtained on the basis of a
sample while using the estimating formula, is called estimate. Suppose, for an
example, that a random variable X is known to have a normal distribution N (, 6?),
but we do not know one of the parameters, say p. Suppose further that a sample

X1,Xs,...,X, is taken on X. The problem of point estimation is to pick a statistic
T(X1,X,,...,X,) that best estimates the parameter u. The numerical value of T
when the realization is x1, x3, . . ., X, is called an estimate of p, while the statistic T is

called an estimator of p. If both u and ¢ are unknown, we seek a joint statistic
T = (U, V) as an estimate of (u,d?).

Example Let X1, X3, . .., X,, be a random sample from any distribution F for which
the mean exists and is equal to 6. We may want to estimate the mean 0 of distri-
bution. For this purpose, we may compute the mean of the observations
X1,X2,5 oy Xp, 1.€., SQAY

This X can be taken as the point estimate of 6.

Example Let X{,X>, ..., X, be a random sample from Poisson’s distribution with
parameter /, i.e., P(1), where A is not known. Then the mean of the observations
X1,X2, ..., Xp, 1.€.,

1
X:—E Xi
n<

i=1

is a point estimate of /.
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Example Let X1, X5, ...,X, be a random sample from a normal distribution with
parameters u and 62, i.e., N(i, 6*), where both y and ¢ are unknown. p and o2 are
the mean and variance respectively of the normal distribution. In this case, we may
take a joint statistics (X,s?) as a point estimate of N(u, a2), where

1 n
X=- E x; = sample mean
n4
i=1

and

1 n
§2 = — ; (x; —x)* = sample mean square.

Problem of Interval Estimation

In many cases, instead of point estimation, we are interested in constructing of a
family of sets that contain the true (unknown) parameter value with a specified
(high) probability, say 100(1 — «)%. This set is taken to be an interval, which is
known as confidence interval with a confidence coefficient (1 — a) and the tech-
nique of constructing such intervals is known as interval estimation.

Let X;,X,,...,X, be a random sample from any distribution Fy. Let 6(x) and
0(x) be functions of x;,xy, . . ., x,. If P[0(x) <0< 0(x)] = 1 — «, then (0(x), 0(x)) is
called a 100(1 — 2)% confidence interval for 0, whereas 0(x) and 0(x) are,
respectively, called lower and upper limits for 6.

Example Let X{,Xa, ..., X, be random sample from N(u,c?), whereas both u
and ¢? are unknown. We can find 100(1 — «)% confidence interval of p. To esti-
mate the population mean u and population variance 62, we may take the observed

sample mean
1 Z”
X =— Xi
n<
i=1

and the observed sample mean square
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respectively. 100(1 — o)% confidence interval of x is given by

_ N
X+ l‘%ynfl —

N

where #;,,1 is the upper § point of the #-distribution with (n — 1) d.f.

Problem of Testing of Hypothesis

Besides point estimation and interval estimation, we are often required to decide
which value among a set of values of a parameter is true for a given population
distribution, or we may be interested in finding out the relevant distribution to
describe a population. The procedure by which a decision is taken regarding the
plausible value of a parameter or the nature of a distribution is known as the festing
of hypotheses. Some examples of hypothesis, which can be subjected to statistical
tests, are as follows:

1. The average length of life i of electric light bulbs of a certain brand is equal to
some specified value u.

2. The average number of bacteria killed by tests drops of germicide is equal to
some number.

3. Steel made by method A has a mean hardness greater than steel made by
method B.

4. Penicillin is more effective than streptomycin in the treatment of disease X.

5. The growing period of one hybrid of corn is more variable than the growing
period for other hybrids.

6. The manufacturer claims that the tires made by a new process have mean life

greater than the life of a tire manufactured by an earlier process.

Several varieties of wheat are equally important in terms of yields.

Several brands of batteries have different lifetimes.

The characters in the population are uncorrelated.

The proportion of non-defective items produced by machine A is greater than

that of machine B.

© 0N

The examples given are simple in nature, and are well established and have
well-accepted decision rules.

Problems of Non-parametric Estimation

So far we have assumed in statistical inference (parametric) that the distribution of the
random variable being sampled is known except for some parameters. In practice, the
functional form of the distribution is unknown. Here, we are not concerned to the
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techniques of estimating the parameters directly, but with certain pertinent hypothesis
relating to the properties of the population, such as equalities of distribution, tests of
randomness of the sample without making any assumption about the nature of the
distribution function. Statistical inference under such a setup is called non-parametric.

Bayes Estimator

In case of parametric inference, we consider density function f(x/0), where 0 is a
fixed unknown quantity which can take any value in parametric space ©®. In
Bayesian approach, it is assumed that 6 itself is a random variable and density f(x/6)
is the density of x for a given 0. For example, suppose we are interested in estimating
P, the fraction of defective items in a consignment. Consider a collection of lots,
called superlots. It may happen that the parameter P may differ from lot to lot. In the
classical approach, we consider P as a fixed unknown parameter, whereas in
Bayesian approach, we say that P varies from lot to lot. It is random variable having
a density f(P), say. Bayes method tries to use this additional information about P.

Example Let X1, X3, ...X, be a random sample from PDF

[ b-1
f(x;a,b) = ¥ 11 —=x"" 0<x<l;a,b > 0.
) = gy
Find the estimators of a and b by the method of moments.
Answer
We know
+1)
E(x) = ! = d E(2) = 4 = a(a
() =m =, and E(¥) = (a+b)(a+b+1)

Hence

1 1<
a =X, ala+1) :fo?

a+b (a+b)(a+b+1) ni

Solving, we get

- 2_ — -7
(x—1)(>xF — nx) and G- xb

(S -1 I

Example Let X1, X3, ...X, be a random sample from PDF

/b\:

e 0% x>0:0>0,r>0

f(x;0,r) =

G
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Find estimator of § and r by

(i) Method of moments
(i) Method of maximum likelihood

Answer
Here

1 n
E(x)=p = rB,E(xz) == r(r+1)0° and m| =%, my=— E xi2
n
i=1

Hence

Solving, we get

2
nx? -~ Z(xi—x)
7= and 0 ==
> (6 — %) "
i=1
) —(—I)i:xi n
W L=grzre = Ila™
(i) logL = —nrlogt —nlog\/n— 3> xi+ (r—1)> wex;
i i=1
Now,
dlogL nr  nx ~ X
0 0 e Tl
Or

dlogL dlog\r
P —nlogf —n o + ;logxi
) _

\/;

=nlogr—n nlogx+ Zlogxi

It is, however, difficult to solve the equation

OlogL

0
or
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and to get the estimate of r. Thus, for this example, estimators of # and r are more

easily obtained by the method of moments than the method of maximum likelihood.
Example Find the estimators of a and f by the method of moments.

Proof We know

o+ B (B—2)
E(x) = ==~ and V(x)=p~—0
Hence
a+f (/3—“)271 - —\2
5 =X and 7 7”,:1 (xi — X)
Solving, we get
- 33 (x—%)° ~ 33 (5 — %)’
o=X- 2 (% — %) and f=x+ 72()6 %)
n n

Example If a sample of size one be drawn from the PDF f(x,f) =
ﬁ—zz(ﬁ —x), 0<x<f find B, the MLE of 8 and f§* the estimator of § based on

method of moments. Show that B is biased but * is unbiased. Show that the
efficiency of f with respect to * is 2/3.

Solution
Here suppose

L= 509
Then
LogL = Log2 — 2log i + log(ff — x)
Or
algéll:—%+ﬁf:0:>ﬁ:2x
Now,
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Hence
g =x= f=3x

Thus the estimator of  based on method of moments is given as * = 3x. Now,

E(ﬁ) :2XE=%75ﬁ

3 3
E(F)=3x 0=
Hence E is biased but * is unbiased.
Again
2 [ >
E(x2) = E/ (ﬁx2 —x3) dx = %
0
Therefore,
2 2 2
v B _F_F
6 9 18
Solving, we get
ﬁZ
V() =9V ="
~ 2 5
V(B) =4vi =58

Hence

M(B) =v(5) + [£(7) -]
=§ﬁ?+(§ﬁ—ﬁ)2

:532

Thus the efficiency of ﬁ with respect to * is 2/3.

Example Let (x1,xz,...x,) be a given sample of size n. It is to be tested whether
the sample comes from some Poisson distribution with unknown mean x. How do
you estimate ¢ by the method of modified minimum chi-square?
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Solution
Let x1, x2, . .. x,, be arranged in K groups such that there are ni observations with
x=1ii=r+1,....,r+k —2, ny observations x<r, and n, observations with

x>r+k—1, so that the smallest and the largest values of x that are fewer are
pooled together and

r+k=2
np+ Z ni+n, =n
i=r+1
Let
e u'ui
m(n) = Plx = i) =

Now, by using

We have

Since there is only one parameter, i.e., p = 1 we get the only above equation.
Solving,we get

Zi”z( ) k2 > imi(p)

n,u—nL - + Z ln,—i—nul h;k !
domi(p) =t > m(p)
i=0 i=r+k—1

= sumof allx’s

Hence [1 is approximately the sample mean X
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Example In general, we consider n uncorrelated observations y;, ys, . ..y, such that
E(y;) = Bixti+Poxai+ovvee - Bxand V(y) = 62,i=1,2,...... I, Xpp =
1Vi, where 8, By............ B, and ¢* are unknown parameters. If ¥ and " stand
for column vectors of the variables y; and parameters f§; and if X = (xj;) be an
(n x k) matrix of known coefficients x;; the above equation can be written as

E(Y)=Xp* and V(e) = E(ee') = o*I

Wheree = Y — Xff" isan (n x 1) vector of error random variable with E(e) = 0 and
Lis an (n x n) identity matrix. The least square method requires that §'s be calculated
such that ¢ = ee’ = (Y — X*)' (¥ — X*)be the minimum. This is satisfied when

¢

o / . A
8ﬂ*70 on 2X'(Y—-Xp")=0

The least square estimators f's is thus given by the vector f* = (xX'X)"'x'y.

Example Let Vi=PixtitPoxoit e Py, i=1,2, N or
E(yi) = P1x1i + Poxai, x1; = 1 for all i. Find the least square estimates of f3; and f,.
Prove that the method of maximum likelihood and the method of least square are
identical for the case of normal distribution.

Solution
In matrix notation, we have

1 xp "
E(Y) = X" where X = 1 X?Z B = (’g;) and ¥ = y:z
e "
Now,
B=xx)'xy
Here

1 X21

x%(l Lo 1)1 2 (rz Zm)
X21 X2 ... Xopn Zx2i Zx%,

1 X2n
X’Y—( Zyi )
> XoiVi
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Then

Py - () (szz _ Z) (zzyy)
_ 1 DX YV — D Xai 2 XY
B nyoxs; — (ZXZL')Z (— sziZyi+an2iZy,->

Hence

B = N X0 DS Yi— DXy Vi
”Zx%i - (ZXZI)Z
_ %) yi— nX%y
Ex%i - ”5‘%
_ > (i — %) (vi — ¥)
> (i — %)

and

31 _ SOx% Do Vi — DX D Xaii
nyoxy — (X x)
_Y DXy — X 3o Xy
Soxd — nx?
> X5 — Ny

=y—Xp,

Let y; be an independent N(fB, + fB,x;,02) variate, i =1,2,...... ,n so that
E(y:) = B, + Bx;. The estimators of f#; and f3, are obtained by the method of least
square on minimizing

b= (vi—Bi— i)
i=1

The likelihood estimate is

n
L< 1 )eﬁZm—m—ﬁM

V2no
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n
L is maximum when > (yi — B, — fox;)* is minimum. By the method of
i=1 n
maximum likelihood we choose f; and f8, such that > (yi — f; — fox:)> = ¢ is
i=1
minimum. Hence both the methods of least square and maximum likelihood esti-
mator are identical.



Chapter 1
Theory of Point Estimation

1.1 Introduction

In carrying out any statistical investigation, we start with a suitable probability
model for the phenomenon that we seek to describe (The choice of the model is
dictated partly by the nature of the phenomenon and partly by the way data on the
phenomenon are collected. Mathematical simplicity is also a point that is given
some consideration in choosing the model). In general, model takes the form of
specification of the joint distribution function of some random variables
X1, X5, ... X, (all or some of which may as well be multidimensional). According
to the model, the distribution function F is supposed to be some (unspecified)
member of a more or less general class [F of distribution functions.

Example 1.1 In many situations, we start by assuming that X;, X», ... X,, are iid
(independently and identically distributed) unidimensional r.v’s (random variables)
with a common but unspecified distribution function, F, say. In other words, the
model states that F is some member of the class of all distribution functions of the
form

n
F()Cl,)Cz7 .o .,x,,) = HF] ()C,‘).
i=1

Example 1.2 In traditional statistical practice, it is frequently assumed that
X1, X, ... X, have each the normal distribution (but its mean and/or variance being
left unspecified), besides making the assumption that they are iid r.v’s.

In carrying out the statistical investigation, we then take as our goal, the task of
specifying F' more completely than is done by the model. This task is achieved by
taking a set of observations on the r.v’s X, X», ..., X,. These observations are the
raw material of the investigation and we may denote them, respectively, by
X1, X2, ... ,Xx,. These are used to make a guess about the distribution function F,
which is partly unknown.

© Springer India 2015 1
P.K. Sahu et al., Estimation and Inferential Statistics,
DOI 10.1007/978-81-322-2514-0_1



2 1 Theory of Point Estimation

The process is called Statistical Inference, being similar to the process of inductive
inference as envisaged in classical logic. For here too the problem is to know the
general nature of the phenomenon under study (as represented by the distribution of
the r.v’s) on the basis of the particular set of observations. The only difference that in a
statistical investigation induction is achieved within a probabilistic framework.
Probabilistic considerations enter into the picture in three ways. Firstly, the model used
to represent the field of study is probabilistic. Second, certain probabilistic principles
provide the guidelines in making the inference. Third, as we shall see in the sequel, the
reliability of the conclusions also is judged in probabilistic terms.

Random Sampling

Consider a statistical experiment that culminate in outcomes x which are the values
assumed by ar.v. X. Let F be the distribution function of X. One can also obtain n
independent observations on X. This means that the n values observed as
X1, X2, ... ,X, are assumed by the r.v. X [This can be obtained by replicating the
experiment under (more or less) identical conditions]. Again each x; may be
regarded as the value assumed by a r.v. X;, i = 1 (1)n, where X, X5, ... X,, are
independent random variables with common distribution function F. The set
X1, X2, ... X, of iid r.v’s is known as a random sample from the distribution
function F. The set of values (x1, x2, ... ,x,) is called a realization of the sample
X1, X2y - vy X))

Parameter and Parameter Space

A constant which changes its value from one situation to another is knownpa-
rameter. The set of all admissible values of a parameter is often called the parameter
space. Parameter is denoted by € (§ may be a vector). We denote the parameter
space by ©.

Example 1.3
(a) Lety = 2x + 0. Here, 6 is a parameter and
0 = {0 —x <0< «}.
(b) Let x~b(1, n). Here, n is a parameter and
O = {n,0<n<l}
(c) Let x~ P(%) Here, A is a parameter and
e = {4, 1> 0}

(d) Let x~N(uy, 6%), uo is a known constant.
Here, o is a parameter and ® = {g, ¢ > 0}.
(e) Let x~N(u,0c?), both u and o are unknown.

Here, 6 = (Z) is a parameter and © = { (%), —oco < u < 00,6 > 0}
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Family of distributions
Let X ~ Fy where 0 ¢ ©. Then the set of distribution functions {Fy, 0 ¢ ®} is called
a family of distribution functions.

Similarly, we define family of p.d.f’s and family of p.m.f’s.

Remark

(1) If functional form of Fy is known, then € can be taken as an index.
(2) In the theory of estimation, we restrict ourselves to the case ® C R* when k is
the number of unknown functionally unrelated parameters.

Statistic

A statistic is a function of observable random variable which must be free from
unknown parameter(s), that is a Borel measurable function of sample observations
X = (x1, %2, ... ,X,) €R"f: R" — R* is often called a statistic.

Example 1.4 Let X;, X ...X, be a random sample from N(u, ¢2). Thus
S Xi, X7, (X X;, Y- X?) each of these is a statistic.

Estimator and estimate

Any statistic which is used to estimate (or to guess) 7(d), a function of unknown
parameter 6, is said to be an estimator of 7(d). The experimentally determined value
of an estimator is called an estimate.

Example 1.5 Let X1, X5, ..., X5 be a random sample from P()).

An estimator of Z is X =137 | X,.

Suppose the experimentally determined values are X; =1, X, =4, X5 =2,
X4 = 6andX5 =0.

Then the estimate of A is w =2.6.

1.2 Sufficient Statistic

In statistics, the job of a statistician is to interpret the data that he has collected and to
draw statistically valid conclusion about the population under investigation. But, in
many cases the raw data, which are too numerous and too costly to store, are not
suitable for this purpose. Therefore, the statistician would like to condense the data by
computing some statistics and to base his analysis on these statistics so that there is no
loss of relevant information in doing so, that is the statistician would like to choose
those statistics which exhaust all information about the parameter, which is contained
in the sample. Keeping this idea in mind, we define sufficient statistics as follows:

Definition Let X = (X;,X»,...,X,) be a random sample from {Fy, 0 € ©}.
A statistic 7(X) is said to be sufficient for @ [or for the family of distribution

~

{Fy, 0 € ©}] iff the conditional distribution of X given T is free from 6.
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Ilustration 1.1 Suppose we want to study the nature of a coin. To do this, we
want to estimate p, the probability of getting head in a single toss. To estimate p,
n tosses are performed. Suppose the results are X, X»,...,X, where

X — 0 if tail appears
"7 11 if head appears (in ith toss).

Intuitively, it sums unnecessary to mention the order of occurrences of head. To
estimate p, it is enough to keep the record of the number of heads. So the statistic
T = ZX; should be sufficient for p.

Again, conditional distribution of X; = x;, X5 = x5,...,X,, = x, given T(X) =

~

twheret = T (X; =x,X> =x2, ..., X, =x,) is given by
P(X1:quzP:(;z;[»;Xn:me:f) if T = ¢
0 otherwise

if T =1t

pzx"(lfp)"fz”
n
p(l-p)"”
t

0 otherwise
1 if T=r1

()

t
0 otherwise

which is free from parameter p.

So from definition of sufficient statistics, we observe that Xx; is a sufficient
statistic for p.

Ilustration 1.2 Let X;, X», ..., X, be a random samples from N(u, 1) where u
is unknown. Consider an orthogonal transformation of the form

_X1+X2+ +Xn

Y1 \/I’l
k—DXp — (X1 +Xo0+ -+ + X
and yk:( X — (X1 + X2+ + k1)7k:2(1)n.
k(k—1)
Clearly, y, ~N(y/n u,1) and each of y, ~N(0, 1).
Again, y;, ¥, ., ¥, are independent.
Note that the joint distribution of y», ys, .. ., y, does not involve i, i.e. y, ,..., ¥,
do not provide any information on x. So to estimate u, we use either the obser-
vations on X, X, ... X, or simply the observed value of y;. So any analysis based

on yy, is just as effective as the analysis that is based on all observed values on
X1, X2, ... X,. Hence, we can suggest that y; is a sufficient statistic for u.
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From the above discussion, we see that the conditional distribution of

(2, ¥3,--+, ¥,) given y; is same as the unconditional distribution of
(2,3, ---,yn)- Hence, the conditional distribution of X given y,; will be free from
u

Thus according to the definition of sufficient statistics, y; will be a sufficient
statistic for u.
However, this approach is not always fruitful. To overcome this, we consider a
necessary and sufficient condition for a statistic to be sufficient.
We first consider the Fisher—Neyman criterion for the existence of a sufficient
statistic for a parameter.
Let X = (X1,X5,...,X,) be a random sample from a population with contin-

uous distribution function Fy, 0 € ©. Let T(X) be a statistic whose probability
density function is {g{7'(x);0}}. Then T(X) iNs a sufficient statistic for 0 iff the
joint probability density function f(x, 6) (:f X1,Xs,...,X, can be expressed as
J(X,0) = g{T(x); 0}h(x) whose, foNr every fixed value of T(x), h(x) does not
de;end upon 6.

Example 1.5 Let X1, X>,...,X, be a random sample from the distribution that has
probability mass function

fx,0) =671 —60)", x=0,1;0 < 6 < 1. The statistic T(X) =", X;has
the probability mass function

n!
8(1:0) = (n—1)!

Thus the joint probability mass function of X1, X», ..., X, may be written

0(1—0)""t=0,1,2,....n

f(f,@) —gateteta (1 - 0)"7("1+x2+'"+xn)

t'(n —1)!
n!

__n 0'(1—0)"..
~tl(n—1)!

By Fisher—Neyman criterion, T(X) =X +Xp+ .- +X, is a sufficient

~

statistic for 0. In some cases, it is quite tedious to find the p.d.f or p.m.f of a certain
statistic which is or is not a sufficient statistic for 6. This problem can be avoided if
we use the following

Fisher-Neymann factorization theorem
Let X = (X1, X2, ... X,) be a random sample from a population with c.d.f.

Fy, 0 ¢ ©. Furthermore, let all X|, X», ... X, are of discrete type or of continuous
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type. Then a statistic 7(x) will be sufficient for 6 or for {Fy, 0 ¢ @} iff the joint
p.m.f. or p.d.f. f(X, 0), of X;, X5, ... X, can be expressed as

£(X,0) = g{T(X), 0} - h(x)

where the first factor g{7T(x ), 0} is a function of # and x only through 7(x) and for
fixed T(x) the second factor i(x) is free from # and is non-negative.

Remark 1.1 When we say that a function is free from 6, we do not only mean that
does not appear in the functional form but also the domain of the function does not

involve 6.
e.g. the function

Y 0-1<x< 041
S = {0 otherwise

does depend upon 6.

Corollary 1.1 Let T (X) be a sufficient statistic for 6 and T’ (X) =y {T (X) }

~

be a one-to-one function of T. Then T’ (X) is also sufficient for the same
parameters 6.

Proof Since T is sufficient for 6, by factorization theorem, we have

F(x.,0) = g{T(x),0} - h(x)

Since the function 7’ (x) is one-to-one

~

F(x.0) = g[y T (x)}, 0] h(x).
O

Clearly, the first factor of R.H.S. depends on 0 and x only through 7'(x) and
the second factor h(f) is free from @ and is non-negative.

Therefore, according to factorizability criterion, we can say that 7'(x) is also
sufficient for the same parameter 6.

Example 1.6 Let X;, X», ... X, be arandom sample from b(1, 7). We show that s
2X; is a sufficient statistic for z.
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P.m.f. of x is

0 otherwise

) = {GX(I -0 ifx=0,1 [0 = 7]

where 0 < 0 < 1, i.e. the parameter space is @ = (0, 1). Writing fp(x) in the
form

. . 1 ifx=0,1
folx) = C (x)0°(1 — 0)1 with C(x) = { 0 Otherwise.
We find that joint p.m.f. of X, X5, ... X,, is
M fo(xi) = 0¥X(1 = )™ TIC(x)
=80 (t) h (.X], X2, -~~xn) (Say)

where t = Zx;, go(t) = /(1 — 0)" " and h (x1, x2, ..., x,) = [[; C(x:).

Hence, the factorization criterion is met by the joint distribution, implying that
T = ZX; is sufficient for 6. So is T/n, the sample proportion of successes being
one-to-one correspondence with 7.

Example 1.7 Let Xy,..., X,, be a random sample from P(1). We show that 1/n ZX; is
a sufficient statistic for A.
The p.m.f. of the Poisson distribution is

e o —
_ - ifx=0,1,2...[0 = /]
folx) { Ox otherwise

where 0 < 0 «, i.e. ® = (0, x)
Let us write the p.m.f. in the form fj(x) = C(x)e " 6*

1 5f =
with C(x) = {x; if x=0,1,2,...

0 otherwise
We may represent the joint p.m.f. of X;, X5, ... X, as
() =™ 022X 11 C(x;)
=go()h(x1,x2. . X)), (Say)

where ¢ = " x;, gy(t) = 00" and h(x;,x2, .. .x,) = I1 C(x;).

l
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The factorizability condition is thus observed to hold, so that T = ZX; is sufficient
for 0; so is T/n = X, the sample mean.

Example 1.8 Let X;, X3, ..., X, be a random sample from N(u, ¢%). Show that
(i) if o is known, XZX; is a sufficient statistic for g, (ii) if u is known X(X; — ,u)2 is a
sufficient statistic for o°, and (iii) if both w1 and o are unknown (EX i ZX%) is a

sufficient statistic for (u, ¢?).
Ans. (i) we may take the variance to be ¢ and the unknown mean to be s,
varying over the space ® = (— o, ). Here, the joint p.d.f. of X, X5, ..., X, is

1 2
| | 1 - 2(/“’*“-)
L — = 20
’{a Zne

1 b
— e i
(O’\/ 27I)
- Z ()2
- : 202

—n(x—p) 1
=e 262 e . 7’1
(av/2n)
:gll(t)h(-xla x27...7xn)7 (Say)
where 1 =%, g, (1) = e n(X-w?/20”
and h(xl, X2, ,xn) = ;ﬂe—ﬁzbﬂ,_)—c)z

(V)

Thus the factorizability condition holds with respect to T = X, the sample mean,
which is therefore sufficient for . So the sum is ), X;

(ii) The unknown variance ¢” = 6, say, is supposed to vary over @ = (0, x).
The joint p.d.f. of X, X», ... X, may be written as

1 , 1 =3 (-’
H{ em<xf”)2} = (7 e ZZ = go(0) h(x1, x2... x,), say,

aV2n oV 2n)"

where 1 = 37 (x; — p)?, o (1) = (# 27

i
62 =0 and h(x) = 1.Hence, T =) (X; — ,u)2 is a sufficient statistic for 6. So
is

S3 = %Z; (xi — ,u)z, which is in this situation commonly used to estimates ¢”.
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(iii) Taking the unknown mean and variance to be #; and 6,, respectively, we

now have for 6 a vector 8 = (6;, 6,) varying over the parameter space (which is a

half-plane) ® = {(0y, 0,) /— x <0; < x, 0 <0, < }.
., X, may now be written as

The jt. p.d.f. of Xy, X, ..
1 A n(E3=0,) + (1—1)s]

20,

! eiﬁoﬁiol)z } = n
(27‘502)7

H{\/2n92
=gy(t1, 1) h(x), say, wheret) =%, t = 5* = Z (i —)_c)z/(n -1

L orshbteo = 0-0%) ang () = 1.

t B t - n
go(t, ©) (220,)"
The factorizability condition is thus observed to hold with regard to the statistics

T, = X, the sample mean and T, = s, the sample variance.
Hence, X and s> are jointly sufficient for 6, and 65, i.e. (XX;,ZX?) is a joint

sufficient statistic for (i, 0°).
., X, be a random sample from R(0, 6).

Example 1.9 Let X1, X,
Show that X(,) = max X; is a sufficient statistic for 6.
1<i<n

Ans.: The jt. p.d.f. of x1, x,..., x, is

f(x 0)_{# if0<x; <0 Vi
~ 0 otherwise
g f0<x;,) <0
N { 0 otherwise
1 ifa<x<f
B { 0 otherwise

I
giloo(xe)  where I (x)

= g{x(n), 0} - h(f), say

where g{x(,) 0} = g L0, {x(n)} & h(x) =1
Note that g{x,, 0} is a function of & and x only through x,, whereas for fixed

X(n)s h(f) is free from 6.
Hence, x, is a sufficient statistic for 6.
Example 1.10 Let X, X»,...,X, be a random sample from R(6;, 6,). Show that
{X(1), X} is a sufficient statistic for 6 = (6,, 6,) where X(;) = min X,
1<i<n
max X;.

X(n)zlgign
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Solution Joint p.d.f. of X;, X5, ..., X, is
f(x 9) o (92 =0 if 01 <x < 02 Vi
~ 0 otherwise

(= 91) if 0 <xq) <xp <6
1o otherwise

1
= Wll(Hl,oo){X(l)}[z(_ocﬂz){x(n)}

where

1 if 0 <x) < x
Lo, 00 {x)} = {0 otherwisé )

1 if —x <x,<0, .
and 12(_ O(aOZ){x(n)} = {0 otherwise : , 1.e. f(f? 0) = g[{x(l)v x(n)}7

(91,92)]h(f) where  g[{x(), X}, (01,02)] = g5 110,00 15(1) Ha(-oc.0,)

{x<n>} and h(f) =1.

Note that g is a function of (¢;, 6,) and x only through {x, x(,)} where as for

fixed {xq), X}, h(x) is free from 0.

Hence, {x(1), x(,)} is a sufficient statistic for (6, 6,).

Example 1.11 Let X, X5, ..., X, be a random sample from a population having
p.d.f.
—(x—0) > 0
o) —Je€ , X
fx:0) { 0 otherwise

Show that X(;) = min X; is a sufficient statistic for .
1<i<n

Solution The p.d.f. can equivalently be written as

~(x-0) 0
0) — e » X(1) >
F(x) { 0 otherwise
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Now, the joint p.d.f. of X;, X5, ..., X, is
-3 o)
flx0)=4e " ;X >0
- 0 otherwise
*Z()‘i*(’) 1 ifx<1) > 0
x,0)=e L where [ g o =
f(x,0)=e 00 txm } 0o {xm } {o otherise

=g {xq),0} . h(f), say

where g{x<1>, 9} =e Zf ('xi79)1(070(> {X(l)} and h(x) =1.
Note that g{x;, 0} is a function of § and x only through x;, and for fixed xy), i

(x) is free from 6. Hence, according to factorizability criterion, x(;) is a sufficient
statistic for 6.

Note In the above three problems the domain of the probability density depends
upon the parameter 6. In this situation, we should aware to apply Fisher—Neyman
factorization theorem and we should give proper consideration to the domain of the

function h(x) for every fixed value of T(X ) . In these situations, it is better to use

~ ~

Fisher—Neyman criterion. Let us solve Example 1.10 by using Fisher—Neyman
criterion:

1
=—F 0 <x<?0
f(‘x) 02 — 01 s U1 X 2
Let X() = min X; =y, X( = max X; =y,

The joint p.d.f. of y,,y, is

nn—1 e
8y, y2: 01, 02) Zﬁ()’z —y)" 0 <y <y <0,

The joint p.d.f. of X, X5, ..., X,, is

1
7(2:0002) = gy
-1
= —(Zin_ Hl;" () = x))

=& (), x5 01, 602) h(f>

n(n — 1) (xgy — x)""
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By the Fisher—Neyman criterion, {x(1>,x(,,)} is a sufficient statistic for
0= (01,0,)

Example 1.12 Let X ~N(0,0?), show that |X| is sufficient for o.
Solution

1 x2
flx,0) = e 22 >0
2.0
1 ,% |
= e 20
V2o
=g(t,0) h(x), h(x) =1

where g(t, 0) is a function of ¢ and x only through 7 = |x| and for fixed ¢, h(x) = 1 is
free from o.
Hence, by Fisher-Neymam factorization theorem, |X]| is sufficient for o.

Example 1.13 Let X, X», ... X, be a random sample from a double-exponential
distribution whose p.d.f. may be taken as fj(X) =1exp (—|x; — 0]), and the
unknown parameter @ varies over the space ® = (— x, ).

In this case, the joint p.d.f. is [T, fo(x;) = srexp(— >, |xi — 0]).

For no single statistic 7, it is now not possible to express the joint p.d.f. in the
form go(t) h(xy, x2, ... X,,).

Hence, there exists no statistic 7 which taken alone is sufficient for 6. The whole
set Xy, X, ..., X, or the set X1y, X(2), ... X@), is of course sufficient.

Remarks 1.2 A single sufficient statistic does not always exist.
e.g. Let Xy, X5,..., X, be a random sample from a population having p.d.f.

L kO<x<(k+1)0, k>0
— 0 )
f(x0) { 0 otherwise

Here, no single sufficient statistic for 6 exists. In fact, {xq), x,,} is sufficient for
6.

Remark 1.3 Not all functions for sufficient statistic are sufficient. For example, in

random sampling from N(i, 6?), o* being known, X~ is not sufficient for x. (Is X
sufficient for x4 ?)

Remark 1.4 Not all statistic are sufficient.
Let X, X; be a random sample from P(4). Then X; + 2X, is not sufficient for 4,
because in particular, say

P{X, =0,X, =1 X,+2X, =2}

P{X; =0, X, = 1| X,+2X, =2} = P, T3, = 2]
1 2 —
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B P{X, =0, X, =1}
CP{X; =0, Xo =1}+P{X;, =2, X, =0}
e et )

) P A 2
e*/v,ef/y‘/h_i_e*A,e*A,/z;‘

= 735 which depends upon 2.

Remarks 1.5 Let 8 = (04, 05, ..., 6) and T = (T4, T2, ... Ty). Further, let T
be a sufficient statistic for 6. Then we cannot put any restriction on m, i.e. m > k,

the number of parameters involved in the distribution. Even if m = k, then we
cannot say that 7; of T is sufficient for ; of 0. It is better to say that (T, T>, ... T,,)

are jointly sufficient for (0, 6,, ... 6)).
Let X, X5,..., X,, be a random sample from N(u, 0‘2). Here, XX; and ZX,2 are
jointly sufficient for x and o”.

Remarks 1.6 The whole set of observations X = (X1, X, ..., X,) is always
sufficient for 6. But we do not consider this to be real sufficient statistic when

another sufficient statistic exists. There are a few situations where the whole set of
observations is a sufficient statistic. [As shown in the example of
double-exponential distribution].

Remarks 1.7 The set of all order statistics T{X,, X, ..., Xpn}, Xy < X(2)
..oy < Xy, 18 sufficient for the family.
Conditional distribution of (X /T = ) = 1 because for each T =1, we have n-

tuples of the form (xy, xo, ... Xx,,).
Remarks 1.8: Distribution admitting sufficient statistic Let X, X5, ..., X,, be a
random sample from f (x , 0) and T(X ) be a sufficient statistic for 8 (6 is a scalar).

According to factorization theorem,
> logf(xi,0) = log g(T,0)+ log h(x)
Differentiating w.r.t. 8, we have

Za log f(xi,0) _ Olog g(T,0)
a0 - a0

= G(T,0), (say) (L.1)

i

Put a particular value of 0 in (1.1).
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Then we have Zu(xi) = G(T) (1.2)
i=1
Now differentiating (1.1) and (1.2) w.r.t. x;, we have

d?log f(x;, 0)  OG(T, 0) or

900x; or  Ox (1.3)
Ou(x;)  OG(T) g
Bx,» o or 8x,- (14)
(1.3) and (1.4) give us
O logf(x;,0) Ou(x)  OG(T,0)/0T (15)

00 Ox; ox;  0G(T)/oT
Since the R.H.S. of (1.5) is free from x;, we can write

dG(T,0) 9 G(T)
oT —  OT #(0)

= G(T,0) = G(T)i1(0) + 22(0)

:‘W — G(T)21(0) + 7(0)

where A(x) = a function of x

~

6, = a function of 6, and
6, = another function of 6.

Thus if a distribution is to have a sufficient statistic for its parameter, it must be
of the form

f(x, 0) _ eB[(@)M(X) + B,(0) + R(x)' (16)

(1.6) is known as Koopman form.

Example Show, by expressing a Poisson p.m.f. in Koopman form, that Poisson
distribution possesses a sufficient statistic for itsparameter A.
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Here f(x )u) — e )r _ e—l+xlog A—log x!
’ ’ x!
which is of the form 51 (0)u() +B2(0) +R(x)
Hence, there exists a sufficient statistic for A.
Completeness A family of distributions is said to be complete

ifE[g(X)] =0 voOeco
= P{glx) =0} =1 voOeo
A statistic 7 is said to be complete if family of distributions of T is complete.

Examples 1.14 (a) Let X;, X,...., X,, be a random sample from b(1, ), 0 <7 < 1.
Then T = >"!_, X, is a complete statistic.

As E[g(T)] = 0 Ve (0,1)
= y g(n'(1—n)""=0
t=0
= (1-n) g(t)(;)(lfn)’:o Ve (01)
t=0
=g(t)=0 fort=0,1,2...n Vre(0,1)
= P{g(r) = 0} =1 v

(b) Let X ~ N (0, 0‘2). Then X is not complete

as, E(X)=0%PX =0) =1 v o?

(©) If X~ U(0, 6), then X is a complete statistic [or R(0, 6)].

A statistic is said to be complete sufficient statistic if it is complete as well as
sufficient.

If (X1, X»,..., X,,) is a random sample from b (1, 7), 0 <z < 1,then T = > X; is
also sufficient. So T is a complete sufficient statistic where T = > X;.

Minimal Sufficient Statistic
A statistic T is said to be minimal sufficient if it is a function of every other
sufficient statistics.

The sufficiency principle

A sufficient statistic for a parameter 0 is a statistic that, in a certain sense, captures
all the information about 6 contained in the sample. Any additional information in
the sample, besides the value of sufficient statistic, does not contain any more
information about . These considerations lead to the data reduction technique
known as sufficiency principle.

~

If T(X ) is a sufficient statistic for 0, then any inference about 0 should depend

on the sample X only through the value T< X > that is, if x and Yy are two sample

~
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points such that T x) =T(Yy ), then the inference about 0 should be the same
= Y is observed.

whether X = x or X

~

Definition (Sufficient statistic) A statistic T( X ) is a sufficient statistic for 0 if the

conditional distribution of the sample X given the value of T ( X ) does not depend

~

on 0.

Factorization theorem: Let f ( x|0) denote the joint pdf/pmf of a sample X.

~

A statistic T < X > is a sufficient statistic for 6 iff 3 functions g(¢|@) and h (x) such

~

that for all sample points X and all parameter values 6,

~

£(x10) = g(0yn(x)

Result: If T X ) is a function of T’( X |, then T’ (X ) is sufficient which

~ ~

implies that T(X ) is sufficient.

{i.e. sufficiency of 7" < X ) = sufficiency of T(X > ,a function of 7’ ( X )}

~ ~

~

Proof Let {By|t' € 7'} and {A|r € 7} be the partitions induced by T’ <X> and

T ( X ) , respectively. O

~

Since T(X) is a function of T’ (X), fort € v . By CA,, for some Vt € 1.

~ ~

Thus Sufficiency of T’ (X )

~

< Conditional distribution of X = x given T’ (X) = ¢ is independent of 0,

v et

< Conditional distribution of X = x given X € By is independent of 0, V¢ € 7/
= Conditional distribution of X = x given X € A, (for some V¢ € 1) is inde-
pendent of 0, Vr € 1

< Conditional distribution of X = x given T(X) = t is independent of 0,

Vt € 1.
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< Sufficiency of T(X >

Sufficient statistic for an Exponential family of distributions:
Let X}, Xs, ..., X, be ii.d. observations from a pdf/pmf f <x|0) that belongs to

an exponential family given by

(i) < so{) o35 (o))

where 0 = (01,0,,...0;), d<k. Then

T(X) = (ifl(xj)w-vifk(xj))

~ j=1 j=1
is a (complete) sufficient statistic for 6.

Minimal sufficient statistic

When we introduced the concept of sufficiency, we said that our objective was to
condense the data without losing any information about the parameter. In any
problem, there are, in fact, many sufficient statistics. In general, we have to consider
the choice between alternative sets of sufficient statistics. In a sample of n obser-
vations, we always have a set of n sufficient statistics [viz., the observations X =

(X1,X2,...,X,) themselves or the order statistics (X(1),X2),...,X(»)] for the
k(> 1) parameters of the distributions. For example, in sampling from N(u, ¢?)

distribution with both p and o2 unknown, there are, in fact, three sets of jointly
sufficient statistic: the observations X = (Xi,Xa,...,X,), the order statistics

(X( 1), X@2)s - - .,X(,,)) and (X, s?). We naturally prefer the jointly sufficient statistic
(X, s?) since they condense the data more than either of the other two. Sometimes,
though not always, there will be a set of s(<n) statistics sufficient for the
parameters. Often s = k but s may be <k also.

The question that we might ask is as follows: Does 3 a set of sufficient statistic
that condenses the data more than (X, s?)? The answer is there does not. The notion
that we are alluding to is of minimum set of sufficient statistics, which we label
minimal sufficient statistic. In other words, we have to ask: what is the smallest
number s of statistics that constitute a sufficient set in any problem? It may be said
in general that a sufficient statistic 7 may expected to be minimal sufficient if it has
the same dimensions (i.e. the same number of components) as 6.



18 1 Theory of Point Estimation

Statistics and partition
It may be noted that every statistic induces a partition of x The same is true for a set
of statistics; a set of statistics induces a partition of x Loosely speaking, the
condensation of data that a statistic or a set of statistics exhibits can be measured by
the number of subsets in the partition induced by the statistic or a set of statistics. If
a set of statistics has fewer subsets (co-sets) in its induced partition than the induced
partition of another set of statistics, then we say that the first statistic condenses the
data more than the later. Still loosely speaking, a minimal sufficient set of statistics
is then a sufficient set of statistics that has fewer subsets (co-sets) in its partition
than the induced partition of any other set of sufficient statistics. So a set of
sufficient statistic is minimal if no other set of sufficient statistics condenses the data
more without losing sufficiency.

Thus T is minimal sufficient if any further reduction of data is not possible
without losing sufficiency, i.e. T is minimal sufficient if there does not exist a
function U = (T) such that U is sufficient.

Definition (Minimal sufficient statistic) A sufficient statistic 7(X) is called minimal

~

sufficient if, for every other sufficient statistic 7'(X), T(X) is a function of T'(X).

~ ~

To say that T(X) is a function of 7'(X) simply means that if T/(x) = T'(¥),
then T(x) = T(Y). In terms of the partition sets, if B/|f' € 7’ are the partition sets
for T'(X) and A,|t € T are the partition sets for T(X), then the above definition of

~ ~

minimal sufficient statistic states that every By is a subset of some A,. Thus, the
partition associated with a minimal sufficient statistic is coarsest possible partition
for a sufficient statistic, and a minimal sufficient statistic achieves the greatest
possible data reduction for a sufficient statistic.

Example Let X;(i = I,2,...,n)~ independent P(0) distribution. Then T =
>'_ X; is sufficient for 0 and, in fact, it is minimal sufficient.

Since T = Zf: 1 X is minimal sufficient; therefore, any further reduction of the
data is not possible without losing sufficiency, i.e. there does not exist a function
U = (T) such that U is sufficient. Suppose that T is sufficient and if possible, 3 a
function

U=y@)¢t) = =yH) = u
Then

(nd)'i

1!
i

[
PyT = t|U = u] = Yt
i=1

if +t=18G=12,...,k)

0 otherwise

— depends on 0 ,
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so that U is not sufficient retaining sufficiency. Hence, T = ) "_, X; is minimal
sufficient statistic.

Remark 1 Since minimal sufficient statistic is a function of sufficient statistic,
therefore, a minimal sufficient statistic is also sufficient.

Remark 2 Minimal sufficient statistic is not unique since any one-to-one function of
minimal sufficient statistic is also a minimal sufficient statistic.

Definition of minimal sufficient statistic does not help us to find a minimal
sufficient statistic except for verifying whether a given statistic is minimal sufficient
statistic. Fortunately, the following result of Lehman and Scheffe (1950) gives an
easier way to find a minimal sufficient statistic.

Theorem Let f (x|0) be the pmflpdf of a sample X. Suppose 3 a function
T(X) S for every two sample points x and Y , and the ratio 0ff<x \9) /f <y |9>
is constant as a function of 0 (i.e. independent of 0) iff T(x) = T( y>. Then

T(X > is minimal sufficient statistic.

~

~

Proof Let us assumef(x |0> > 0, x € xand 0. First, we show that T<X> is a

sufficient statistic. Let 1 = {t/t =T(x),x¢€ 3&} be the image of x under T'(x).

Define the partition sets induced by T(X) as A, = {x|T(x> = t}. For each

A;, choose and fix one element x € A;. Forany x € % x is the fixed element
~ ~ ~T(x)

that is in the same set A,, as x. Since x and x ) are in the same set A,
- - ~r( «

T(f) =T fT(x) and, hence, f(f|6)/f fr(x)le is constant as a

f xlo
function of 6. Thus, we can define a function on * by h(x) =——"7 —and h
flx 10
( () >

~

does not depend on 0. O
Define a function on 7 by g(¢|0) = f(x 9). Then
~t
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fl x flx
(o))
f(x10) = m

is sufficient for 0. Now to show that 7(X) is minimal, let 7(X) be any other

= g(¢|0)h(x) and by factorization theorem, T(X)

~ ~

sufficient statistic. By factorization theorem, 3 functions g’ and /' such that
F(x10) = ¢ (T'(x)10) # (x)

Let x and ¥ be any two sample points with T'(x) = T’(¥). Then

~ ~

fxl0) g xlow(x) o (x)

FOT0) = T yIow ‘h,(y>'

Since this ratio does not depend on 6, the assumptions of the theorem imply
T(x) = T(Y). Thus T(x) is a function of 7’(x) and T(x) is minimal.

Example (Normal minimal sufficient statistic) Let X;,X5,...X, be iid N(u, 62),
both  and ¢? unknown. Let x and ¥ denote two sample points, and let (¥,s2 ) and

(3, s2\) be the sample means and variances corresponding to the x and Y samples,

respectively. Then we must have

f( x| 02) ) (2r02) Pexp (_ [n(x — 1)+ (n— 1)S§J / (2&))
(i) . (2nt) ey~ |ty -+ 0~ 1)53| /207

= equ—n(xz — ) +2npu(x —y) — (n — 1)(% - s%)} /20’2>

This ratio will be constant as a function of y and ¢% iff x = yand 2 = 53, i.e.

(x,5%) = (y,53). Then, by the above theorem, (X,s?) is a minimal sufficient

X

statistic for (u, 6?).

Remark Although minimal sufficiency = sufficiency, the converse is not neces-
sarily true. For a random sample X;,Xp,...X, from N(u,u) distribution,
(371 X;, >0 X?) is sufficient but not minimal sufficient statistic. In fact,
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S X; and Y_7_ | X? are each singly sufficient for x, > _, X? being minimal.
(This particular example also establishes the fact that single sufficiency does not
imply minimal sufficiency.)

1.3 Unbiased Estimator and Minimum-Variance
Unbiased Estimator

Let X be a random variable having c.d.f. Fy, 0 € ©. The functional form of Fy is
known, but the parameter 6 is unknown. Here, we wish to find the true value of 8 on
the basis of the experimentally determined values xj, x»,..., X,, corresponding to a
random sample X;, X,,..., X,, from Fy. Sine the observed values x;, x, ..., X,
change from one case to another, leading to different estimates in different cases, we
cannot expect that the estimate in each case will be good in the sense of having
small deviation from the true value of the parameter. So, we first choose an esti-
mator T of € such that the following condition holds:

P{T -0 <c}>P{T'— 0] <c} VOc®and V¢ (1.7)

where T’ is any rival estimator.

Surely, (1.7) is an ideal condition, but the mathematical handling of (1.7) is very
difficult. So we require some simpler condition. Such a condition is based on mean
square error (m.s.e.). In this case, an estimator will be best if its m.s.e. is least. In
other words, an estimator 7 will be best in the sense of m.s.e. if

E(T — 0)* <E(T' — 0)* V 0 and for any rival estimator T’ (1.8)

It can readily be shown that there exists no T for which (1.8) holds. [e.g. Let 6,
be a value of 6 and consider 7" = 6. Note that m.s.e. of T’ at @ = 6 is ‘0’, but m.s.
e. of T’ for other values of # may be quite large.]

To sidetrack this, we introduce the concept of unbiasedness.

Actually, we choose an estimator on the basis of a set of criteria. Such a set of
criteria must depend on the purpose for which we want to choose an estimator.
Usually, a set consists of the following criteria: (i) unbiasedness; (ii) mini-
mum-variance unbiased estimator; (iii) consistency, and (iv) efficiency.

Unbiasedness
An estimator T is said to be an unbiased estimator (u.e.) of 0 [or y(0)] iff
E(T) = 0 [or y(0)] V0 € 6.

Otherwise, it will be called a biased estimator. The quantity b(8, T) = E, (T) — 6
is called the bias. A function y(6) is estimable if it has an unbiased estimator.
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Let X;, X5,..., X,, be a random sample from a population with mean x and
variance ¢”. Then X and s> = 'sz;':l(xi—)?)z are ue’s of u and o7
respectively.

Note

(1) Every individual observation is an unbiased estimator of population mean.
(i) Every partial mean is an unbiased estimator of population mean.

(iii) Every partial sample variance | e.g. ﬁzlf (X; ka)z X = %ZI{ X; and
k < n] is an unbiased estimator of .
Example 1.15 Let X;, X>,..., X,, be a random sample from N(u, 02). Then X and

st = L5 (X — X)* are u.e’s for 4 and ¢, respectively. But estimator s =

LS (X — X)? is a biased estimator of o.

The bias b(s, ) = 0[\/%1“@/2){1“(%)}71—1]

Remark 1.9 An unbiased estimator may not exist.

Example (a) Let X~b (1, 1), O0<m<]l.
Then there is no estimator T(X) for which E {T(X)} = n*> V =€ (0, 1)
i.e. 7’ is not estimable. Similarly, % has no unbiased estimator.

@6
(b) For f(x,0) = (2) , x=0,1,2.

..n
0=m m+1,...
then there is no unbiased estimator for 6.

Remark 1.10 Usually, unbiased estimator is not unique. Starting from two unbiased
estimators, we can construct an infinite number of unbiased estimators.

Example Let X;, X»,..., X, be a random sample from P(%). Then both X and

s* = LS (X; — X)” are unbiased estimators of 4 as mean = variance = / for P(2).
Let T, = X+ (1 —a)s*> ; 0<a < 1. Here, T, is an unbiased estimator of /.

Remark 1.11 An unbiased estimator may be absurd.
Example Let X ~ P(J). Then T(X) = (—2)" is an unbiased estimator of ¢ >* since

e )"

x!

E{T(X)} = ) —(-2)
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Note that T(X) > 0 for even X
< 0 for odd X.

 T(X) which is an estimator of a positive quantity (6’37' > 0) may occasionally be
negative.

Example Let X ~ P(J). Construct an unbiased estimator of e~*.
lifx =0

Ans Let T(x) = {0 otherwise

SLE{TX)} =1-P(X=0)+0-P(X#0) = e* VL

5
A

~ T(X) is an unbiased estimator of e™*.

Remark 1.12 Mean square error of an unbiased estimator (i.e. variance of unbiased
estimator) may be greater than that of a biased estimator and then we prefer the
biased estimator.

E(T — 0)* = E[T — E(T) + {E(T) — 0}]?
V(T) 4 b*(T, 0) where b(T,0) = E (T) — 0.

Let T, be a biased estimator and T» an unbiased estimator, i.e. E(T}) # 6 but
E(T,) = 6.

. MSE (T)) = V (T}) +b*(T},0)
MSE (T2) = V (T3)
if V (T2) > V (T))+b*(Ty,0), then we prefer T.

e.g. Let X;, X5,..., X, be a random sample from N(, 02). Then s*> =
—LS™. (X, — X)” is an unbiased estimator of o”. Clearly, X - X)? = nls?
is a biased estimator of ¢”.

~r V[(”_aizl)sz} =2(m-1)

LV (s?) = ni 104 = MSE of 5’
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2
On the other hand, MSE of h;llsz =V ("’1 s2) + ("’11 g% — 0'2>

n+1 n
n—1\> 2 4ot 204 20% 20%
() e o = - 14 = 2
n+1) n—1 (n+1) (n+1) n+1 n—1

= MSE of s> > MSE of r’:—;llsz, i.e. MSE (Unbiased estimator) > MSE (biased
estimator).

Remark 1.13: Pooling of information Let T; be an unbiased estimator of ¢ obtained
from the ith source, i =1, 2 ..., k. Suppose 7;’s are independent and V(T;) = 0,2 <
Vi. Then Ty = = (Ty+ T2+ --- +Ty) is also an unbiased estimator of 6 with
V(Ty) = LY Vo2 <% — 0ask —cx.

The implication of this statement is that 7 gets closer and closer to the true
value of the parameter as k — & (k becomes larger and larger).

On the other hand if T;’s are biased estimator with common bias S, then T}
approaches to the wrong value # + £ instead of the true value 6 even if k — o,

Problem 1.1 Let X}, X5, ..., X,, be a random sample from b(1, A).
Show that

(1) % is an unbiased estimator of A’

(ii) }flgz:)f)) is an unbiased estimator of A(1 — A)

where X = number of success in n tosses = » ;| X;.

Minimum-VarianceUnbiased Estimator (MVUE)
Let U be the set of all w.e’s (T) of @ with E(T?)< o V0 € ©, and then an

estimator T € U will be called a minimum-variance unbiased estimator (MVUE) of
O{or p(0)} if V(Ty) < V(T) VO and for every T € U.

Result 1.1 Let U be the set of all u.e’s (T) of 6 with E(T?) < «, VO € O.
Furthermore, let U, be the class of all u.e’s (v) of ‘0’ {Zero} with E(*) < & V4, i.e.
Uy = {v: E(v) = 0 V0 and E(*) < «].

Then an estimator Ty € U will be an MVUE of 6 iff

Cov(Ty, v) = E (Tov) = 0V 0,Vv € Up.
Proof Only if part Given that T is an MVUE of 6, we have to prove that
E(T()V) = ng, Yv € Uy (19)

Suppose the statement (1.9) is wrong.
~ E(Tyv) # 0 for some 6, and for some v, € U,. O
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Note that for every real 1, Ty + Avg is an u.e. of 6.

Again, Ty + Avg € U, as E(Ty + Avg)* < 0

Now VOO(TO + /F{Vo) = Voo(To) + /12 Eoo(vg) + Z/IE(VoTo)

Choose a particular setting 1 = i)[’((rov‘s) assuming Eoo(v3) > 0
(If EO()(V%) = 0 then POO(VO = O) =1, and hence EOO(TOVO) = O)

We have Voo(To + Avo) = Voo(To) — % < Voo(Top) which contradicts the

fact that T} is a minimum-variance unbiased estimator of 6.

(if part) It is given that Cov(Tyv) =0V 6, V v € U,. We have to prove that T is
an MVUE of 6. Let T be an estimator belonging to U, then (T — T) € U,.

~ From the given condition, Cov(Ty, To — T) = 0

= V(To)—Cov(Ty, T) = 0 = Cov (To,T) = V(Ty) (1.10)

Now, V(To—T) > 0

= V(To)+ V(T) =2 Cov(Ty, T) >0
= V(To)+ V(T) =2 V(To) > 0 (by (1.10))
= V(T) > V(Ty) V0 € ©.

Since T is an arbitrary member of U so that result.
Result 1.2 Minimum-variance unbiased estimator is unique.

Proof Suppose T, and T, are MVUE’s of 6.
Then

E{T{(T\-T>)} = (from Result 1.1)
= E(T}) = E(Tng) = prr, =1

as V(Ty) = V(T,) V8 = T, = ST, + a with probability 1.

Now V(Ty) = fV(T2) Y0 = =1=f = 1(as pr,p, = 1).

Again E(T,) = PE (T2)+o V0 =a=0

as E(T]) = E(TQ) = Qandﬂ =1 P(Tl = Tg) =1 |
Remark Correlation coefficient between T and T, (where T} is an MVUE of 6 and
T, is any unbiased estimator of #) is always non-negative.

E{T, (T\-T2)} = 0 ... (from Result 1.1)
= Cov (Tl, Tz) = V(Tl) > 0.
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Result 1.3 Let 77 be an MVUE of y;(¢) and T, be an MVUE of y,(6). Then
aT; + ST, will be an MVUE of ay(6) + fy»(0).

Proof Let v be an u.e. of zero.
Then

E(Tyv) = 0 = E(Tyv)
Now

E{(OCT] —|—ﬁT2)V} = dE(T]V)+ﬂE(T2V) =0

= (aT; + BT3) is an MVUE of ay, (0) + By,(6).
O
Result 1.4: (Rao-Cramer inequality) Let X, X,,..., X,, be a random sample from

a population having p.d.f. f(x, 0),0 € ©. Assume that € is a non-degenerate open
interval on the real line. Let T be an unbiased estimator of y(6). Again assume that
the joint p.d.f. f(x, 0) [: [T fx, 0)] of X = (X1,X,,...,X,) satisfies the

following regularity conditions:

of(x.0)
(a) —55— exists

‘ f(x,0
®) 4[5 0dx = 25 s
‘ of(x.,0
© df T(x)x 0z = [7(0) T
and
d 0<I®) <

alog f(x.0)]% . . .
where I(0) = E [TN] , information on 6 supplied by the sample of size n.
Then
(/(0)°
V(T) > V0.
= "1)

Proof Since 1 = [, f(x,0)dx
~ We have from the condition (b)

o0 X T 90

R" R

0= /Md - /Mf(x,e)dx (1.11)

~ ~
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~

Again, since T(X ) is an u.e. of p(#), we have from condition (c)

£(x,0)dx (1.12)

dlog f(x,0)
IR e (CU

i
Now, (1.12)—(1.11). y(#) gives us

dlogf(x,0)
710 = [ 110) = 90—~ —fx,0)ax

~ ~

R"

= COV{T(X),TN

~

0 logf(X,())}

From the result, [Cov(X, Y)]2 < V(X) V(Y), we have

dlog f(X,011°

HOY = Cov{wp,ag}
dlog f(X,0)

<V{T( )} V{}

c’?longH 0 log f(X, 0)
= E( ) <asfrom (LN E————— = O>

= a0
_vy {T 16)
V() > {V;((Zi} , Vo =

Remark 1 If the variables are of discrete type, the underlying condition and the
proof of the Cramer—Rao inequality will also be similar, only the multiple integrals
being replaced by multiple sum.

Remark 2 For any set of estimators 7, having expectation y(6),

MSE = E(T — 0)* = V(T)+B*(T,0) > ”;Eg;f +BX(T,0) =

BT 52,0y futere 5(0) = 0.+ B(T,0).

1(6)
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Remark 3 Assuming that f ( X, 0) is differentiable not only once but also twice, we

have

& log f(x,0) d log f(x,0))?
O/Tf(f,ﬁ)d§+/{T} f(x,0)dx

R" R"

& log f(x,0)
o6? }

= I(0) = —E{
Remark 4 Since X, X,..., X,, are iid random variables,

& logf({,ﬁ)}

I1(0) = —n E{ 50

Remark 5 An estimator T for which the Cramer—Rao lower bound is attained is
often called a minimum-variance bound estimator (MVBE). In this case, we have

9 log f(x,0)
——gg = HO{T —(0)}.

Note that every MVBE is an MVUE, but the converse may not be true.

Remark 6 Distributions admitting an MVUE
A distribution having an MVUE of A(8) must satisfy

%}(3(&0) = MO{T — y(0)}. It is a differential equation. So

log f(x,0) = /) ) dO — / (0)d0 + c(x)
= f(x,0) = AeTh +0

where 0;,i = 1,2 are functions of 0 and A = &)
Note If T be a sufficient statistic for 6, then
L=g(T, 0) h(x;, x2,...,%,)

dlog L Olog g(T,0)
20 00

or,

(1.13)

which is a function of T and 0.
Now the condition that T be an MVB unbiased estimator of 6 is that ¢ =

% = B(T—0) which is a linear function of 7 and 0 and V(T) = 1/B. Thus if there
exists an MVB unbiased estimator of 0 it is also sufficient. The converse is not
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necessarily true. Equation (1.13) may be a non-linear functions of 7 and 0 in which
case T is not an MVB unbiased estimator of 0. Thus the existence of MVB unbiased
estimator implies the existence of a sufficient estimator, but the existence of suf-
ficient statistic does not necessarily imply the existence of an MVB unbiased
estimator. It also follows that the distribution possessing an MVB unbiased esti-
mator for its parameter can be expressed in Koopman form. Thus, when
L= NT+BO)+R0x.x) T js an MVB unbiased estimator of 0 with variance
1/(%), which is also MVB.

Example x1,x,,...,x, is a random sample from N (g, 1)

i=1

Vo
Take A'T = nuit  where T =% MVB = 1/(%2)) = L

n

n n
L\ R —%{Z (6= + ns + nuZ—zw}—%log 2n
Here,L:( )e =1 =e

Example x1,x3,...,x, is a random sample from b(1, x) distribution.

Here, L= TEZ,X;(I _ n)"_ztx‘ — e(;L) logn+(n—2x,v)lng(l—n) — em’c logﬁwtnlog(l—n).

Take = A'T = nlogZ-x where T = X = %, k = number of successes in 7 trials.

MVB — 1/(3n10gm> _ n(l — 7[).
on n

Remark 7 A necessary condition for satisfying the regularity conditions is that the
domain of positive p.d.f. must be free from 6.

N2
Example 1.16 Let X ~UJ0,0], let us compute nE (%M) which is %. So

Cramer—Rao lower bound, in this case, for the variance of an unbiased estimator of

0 is %2 (apparant).

Now, we consider an estimator. T = ”ZlX(,,),X(n) = max(Xy, X,,...,X,). P.d.f.

of Xy is fy,, (1) =n(3)"-§,0<x<0.

0
n n x't1 n
E(X() =2 [ Xdr=— | =
o ( <")) 9"/ 0" n+1 n+1
0 0

= T:”,%'X(n) is an unbiased estimator of 6. It can be shown that

2 2
V(T) = n(n6+2) < %
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This is not surprising because the regularity conditions do not hold here.

Actually, here w exists for 6 # x but not for 6 = x since

Result 1.5: Rao-Blackwell Theorem Let {Fy,0 € ®} be a family of distribution
functions and A be any estimator of y(0) in U which is the class of unbiased
estimators (h) with Ey (hz) < o0 V0.. Let T be a sufficient statistic for the family
{Fy,0 € ®}. Then E(h/T) is free from 0 and will be an unbiased estimator of y(0).
Moreover, V{E(h/T)} <V(h) V0,0 c ©.

The equality sign holds iff 4 = E(h/T) with probability ‘1°.

Proof Since T is a sufficient for the family {Fy, 0 € ®}, conditional distribution of
h given T must be independent of 0.
.E(h/T) will be free from 6.

Now, 7(0) = E(h) = Er[Eyr(h/T)] V0
ie. y(0) = E{E(h/T)} V0

= E(h/T) is an unbiased estimator of y(6).
Again we know that V(h) = V{E(h|T)}+ E{V(h|T)}

= V(h) > V{E(W|T)} (since V(h|T)>0)

‘=’ holds iff V(h|T) = 0., i.e. iff h = E(h|T) with probability ‘1’

V(HT) = Eyp{h— E(T)Y
O
Result 1.6: Lehmann-Scheffe Theorem If T be a complete sufficientstatistic for 6
and if h be an unbiased estimator of y(6), then E(h|T) will be an MVUE of y(0).

Proof Let both hy,hy € U = [h : E(h) = y(0), E(h*) < oc].
Then E{E(h|T)} = y(0) = E{E(h2|T)} (from Result 1.5).
Hence, E{E(h{|T) — E(h,|T)} =0...Y0

= P{E(h||T) = E(h,|T)} =1 (.- T is complete).

.E(h|T) is unique for any h € U.
Again, applying Result 1.5, we have V{E(h|T)} <V(h)V h € U. Now since
E(h|T) is unique, it will be an MVUE of y(0). d

Remark 1.14 The implication of Result 1.5 is that if we are given an unbiased
estimator 4, then we can improve upon A by forming the new estimatorE(h|T)
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based on & and the sufficient statistic 7. This process of finding an improved
estimator starting from an unbiased estimator has been called Blackwellization.

Problem 1.2 Let X;, X, ..., X, be a random sample from N(y, %), ¢> known. Let

y(u) = 1.

(a) Show that the variance of any unbiased estimator of y”> cannot be less than
4p2a?

(b) Show that T = X~ — ”72 is an MVUE of p? with variance 4”7 + 2,%4
1 ifX=0
0 otherwise
unbiased estimator of y(1) = e~*. Is it an MVUE of ¢~ ?

Example 1.17 Let X ~ P(%), then show that o(x) = { is the only

Answer

Let h(x) be an unbiased estimator of e~* = 0, say.
Then E{h(x)} =0 V0

00 1\~
= Zh(x)M: 0 o

= x!
1ifx=0
= h(x) =1 .
0ifx#0

= h(x),i.e., d(x) is the only unbiased estimator of e~*.
Here, unbiased estimator of ¢~ is unique and its variance exists. Therefore, &(x)
will be an MVUE of y(1)= e™*.

E{h(x)}*= 1.P(x = 0) +0. iP(x =i)=e’ <00

Remark 1.15 MVUE may not be very sensible.

Example Let X1,X3,...,X, be a random sample from N(u, 1), and then T =
X - Lis an MVUE of 2. Note that (Yz - %) may occasionally be negative, so that
an MVUE of 42 is not very sensible in this case.

Remark 1.16 An MVUE may not exist even though an unbiased estimator does
exist.

Example Let
P{X=—1}=0and P{X=n}=(1-0)0",n=0,1,2,...,0< 0 < 1.
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No MVUE of @ exists even though an unbiased estimator of € exists.

1 ifX=-1
eg. T(X)= {0 otherwise
Bhattacharya system of Lower Bounds (Sankhya A (1946))
(Generalization of Cramer—Rao lower bound)
Regularity conditions
A family of distribution P = {f,(x),0 € Q} is said to satisfy Bhattacharya
regularity conditions if

1. 6 lies in an open interval Q of real line R. Q may be infinite;
2. 5)—0 o(x) exists for almost all x and VO, i = 1,2,.. .k;

3. %/fg(x)dx: %fe(x)dx 0, i=1,2.. k and
kxk _ B l: 1,2,]{
4 V0 = o)), 23

exists and is positive definite V0 where

1o o
3(0) = | 000 00 o)

For i = 1, Bhattacharya regularity conditions = Cramer—Rao regularity
conditions.

Theorem 1.1 Ler P ={f,(x),0 € Q} be a family of distributions satisfying
above-mentioned regularity conditions and g(0) be a real valued, estimable, and
k times differentiable function of 0. Let T be an unbiased estimator of g(0) satisfying

5. 100 o(0)dx = [ 1(x) 5y (x)dx
Then

Vary(T) > g'V'g VO

where

Zwé’(@)
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Proof
1o
 folx) o0
E[By(x.0)] = / ﬁ%fm Fole)de =

1 2
VI (x0)] = E[f(x0)= E [/ - 6H,f(m )] —(0)

COV(ﬂ”ﬁ) Vl]( )

Cov(T ) = [ 1) = lfe() fodr = 2 [ ipra@ar = g9(0)
fo(x) 90 a0

Define f;(x,0) fo(x)

T
B
B>
Let Z(k+l)x(k+l) _ DlSp
B
vo(T) gM(0) ¢2(0) g (0)
g(1)(@) Vi1 V12 Vik
_ g<2)(9) V21 V22 Va1 _ (V()(T) g’)
g 1%
g(k>(0) Vil Vi2 e Vick
| = [VI{Va(T) —¢g'V "¢}
as [£]>0, |V|>0
= Vy(T)— gV 'g>0 ie Vo(T)>g'V'g V0.
Cor: Fork=1 Vy(T)> {"Eif({fﬁ =L ((i,;} = Cramer-Rao lower bound.

Case of equality holds when |> | =0
R(Z) <k+1or R(Z) <kR(V)=k [R(Z) =rank of Z}
R(Z) >R(V) = R(Z) =k
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/

Lemma 1.1 Let X =(x1,x,...,%,), D(X)=Y""

>~ is of rank r( <p) iff xi,x2,...,x, satisfies (p — r) linear restrictions of the
form

an {0 E(0)} +anto — B} + -+ ap{y - E5)} =0

an{xi —E(x)} +an{x —E@x)}+ - +a2p{xp — E(xp)} =0

ay=ra {1 — E(xy) } + ag=r2{n — E(xy) } + - +apT,vp{x,, - E(xp)} =0

with probability 1.

Putp=k+ 1, r=kxi=T,x=8...% =P

Then R(X) =k iff T, f;, By, - - -, B satisfy one restriction with probability ‘1’ of
the form

a{T —E(T)} +a{py —EPB)}+ - +as1{f —EP)} =0
= a{T —g0)}+ap+ - +a1p =0
=T—g0)=bp+brfy+ - +bif = 13/6

Where 2/: (bl7b27" '7bk) and ﬁ = (ﬁlaﬁ27~. .7ﬁk7)l‘

Result
T — g(0) = b'B with probability ‘1’ = T — g(0) = g’V B with probability ‘1°.

Proof
T—g(0)=bp=Vo(T)=g'V'g

Consider Vy(b'B —g'V'B) =Vo(T —g'V ')
=Vo(T)+gV'V(B)V g —2¢'V-'Cov(T, )

=g V9lg g Vlg —24'Vlg =0 = b'B = g'V~!B with probability ‘1°. O
g
g?®
A series of lower bounds: g'V~lg = {g(l),g<2), .. .,g<k)}V‘l . gives
g®

nth lower bound = g(,,/V, '8y = Auyn = 1,2,..,k
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Theorem 1.2 The sequence {A,} is a non-decreasing sequences, i.e. A, 11> A,Vn

Proof The  (n+1)th  lower bound A, =g, ‘1 Vi1 g, T where

&1 = {8(1)(0)ag(2)(0),--~,g(")(0)ag(”+l)(0)} ={en """}

Vi1 Vi2 Vin vl‘n+l

Va1 V22 Von Vourl

. . . . Va Vi
Vir1= =\ oy [

: : : : n n+1ln+1

Vnl Vn2.. Vin vn,n+ 1

v

n+1,1 vt1+1,2" vn+l‘n vn+1,n+1

/o — —
where v), = (Vn+171 Voo vn+1’n).

) —1
Now A"+1 *gnﬁ»annngnJrl

=g ., C(C) 'V, c'Cg,,, for any non symmetric matrix Ccrtimtl
= (C8y1) (CVut1C) (1)

Choose C =

B Cg11+1 =

(e
R 0 )=( )
’ —yvito1 )\ttt v,
0 Vo —V,
= D )6 T)
0 Va 4 Va o
(—vV1 1><V; Vm’m—vnvnvn>:<0 En+1,n+1>

Since V,, 1 is positive definite, CV, +1C’ is also +ve definite O

-1 V;l o
Eiir, > 0, (CVuiC) = ~
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Then

V;l 0 g
A+1: g,gn+l_v/vflg ~ ( n - )
n { n n'n n} g,1+1 —V:lV,,lgn

2 Q
i

/
_ —1 n+1 _ 1y —1 —1 gn
—{8nvn 7(g VnVn gn)EnJanJrl}(gnJrl _V:,angn>

2
B g"“—\/V’lg B
:g;Vn lgn + ( Jo] - n) Zg;vn lgn =A,

n+1ln+1

i.e. An+1 Z An.

If there exists no unbiased estimator T of g(0) for which V(T) attains the nth
Bhattacharya’s Lower Bound (BLB), then one can try to find a sharper lower bound
by considering the (n + 1)th BLB. In case the lower bound is attained at nth stage,
then A, ; = A,. However, A, ;| = A, does not imply that the lower bound is
attained at the nth stage.

Example 1.18 X1,Xz,...,X, is a random sample from iid N(0, 1)

E(By) =0, E(B,)=0,E(B}) =n,
BB = B3 (i~ 0)} —nE{Y (s~ 0)} =0
E(f2) = E{Z (x; — 9)}4 + nz—ZnE{Z (x; — 9)}2

=3 4+n® —2n-n=2m"
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w2
n  n%
v2 .2 2 o2 2 (o2 2 467
nX"~yi,, 4 =n0 ;V(nX ) =2+44n0 ;V(X ) == +—
” n n
Lower bound is attained if ¥’ =T — g(0) = g'V!p.
10 S (x—0)
r-s0 -2 | ) }
0 2 JUIS (v — 0)F—n
= (20,2 0 —20(x— 0) + (x— 0)—
~ (20,2) %(X_Q)Zﬁ} =200~ 0) + (x— 0 - |
=x—-0)20+x—0)—-=x—0* 3
n
Theorem 1.3 Let fy(x) is of the exponential, i.e.
fo(x) = h(x)ea @ +&0) guch that £, (0) # 0. (1.14)

Then the variance of an unbiased estimator of g(0), say g(x), attains the kth lower
bound but not (k — 1)th if g(x) is a polynomial of degree k in t(x).

Proof If fy(x) is of form (1.14), then

) = Fox) [ (0)e(x) + K5 (0)]

b= ﬁ%ﬁ)(ﬂ = K (0)i(x) + 4(0)

Hzfo Sol) [{410)r(x) + Ky( >}2+{k1’<e>r<x>+k;’<e>}}

b= 6022f0 = (K(00() + BOF + (KO + K©)
Generally, f; = -2 fy(x) = {K(0)r(x) + K5(0)}' + P {1(x), 0} =

where P;_;{#(x), 0} polynom1al in t(x) of degree at most (i — 1).



38 1 Theory of Point Estimation

Let Pi_l{t(x), 0} = lz:i)Ql,(())l](x)

Then

B; = {k{(0)1(x) + K5(0 }‘f'ZQU

i—1 o i —1 . (115)
Z ( >{’</ (O} () {ky(0)} + ZQij(())-fj(x)
j= j=0
= a polynomial in 7(x) of degree i since k{(6) # 0
Condition of equality in BLB
Variance of g(x) attains the kth BLB but not the (k — 1)th BLB iff
k
g(x 0)+ Y al0); (1.16)
i=1

with a(0) # 0.

Proof Only if part Given that g(x) is of the form (1.16), we have to show that
&(x) is a polynomial of degree k in #(x). From (1.15), f3; is a polynomial of degree
i in #(x). So by putting the value of f§; in (1.16), we get g(x) as a polynomial of
degree k in #(x) since o = 0.

if part Given that O

k
= G-
po (1.17)
[Cr # 0] =a polynomial of degree & in #(x)
It is sufficient to show that we can write g(x) in the form of (1.16)

k k i—1

ap(0) + § ai(0)p; = ao(0) + § a;(0) E 0;i(0) - t/(x
i=0 i=0 =0
N Zaz jj (J) (KO)VI () (K(0)}

j=0
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from (1.15)

=Y IW{K(0)}Y a (0><’.>{k;<0>}"" ij ) D al0)0;
=0 J= i=j+1

= F(0){K(0) Zzl AU }Za, <j){k ij(x) > a(0)0;(0)

j=0 =0 i= + 1

Z ((){k’ }f'v{k;w)}’“’#Q,;,-(e)ﬂ

(1.18)

F(x){K; (0 sz (x) {{k’ (0)Ya;(0) +

Jj=0

Equating coefficients of #/ from (1.17) and (1.18), we get

Cr = ar(0){K;(0)}"

= a;(0) :Lk;«éo and

{Ki(0)}

q—ZLHm@<C>WwHW%@Ff+%wQ
a;(60) = ! .
k(0

forj=0,1,..., k—1

As such a choice of g;(0) exists with a;(0) # 0, the result follows.

Result 1 If there exists an unbiased estimator of g(0) say g(x) such that g(x) is a
polynomial of degree k in #(x), then
Ay = kth BLB to the variance of an unbiased estimator of g(0) = Var{g(x)}.

Result 2 If there does not exist any polynomial in #(x) which is an unbiased
estimator of g(0), then it is not possible to find any unbiased estimator of g(6)
where variance attains BLB for some %.

1.4 Consistent Estimator

An estimation procedure should be such that the accuracy of an estimate increases
with the sample size. Keeping this idea in mind, we define consistency as follows.

Definition An estimator 7, is said to be (weakly) consistent for y(6) if for any two
positive numbers € and ¢ there exists an ny (depending upon €, §) such that
Pr{|T, —y(0)| < €} > 1—0 whenever n > ny and for all 0 € @®, ie. if

Tniﬂ/(G) as n — 0o
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Result 1.7 (Sufficient condition for consistency):
An estimator T, will be consistent for y(0) if E(T,) — y(0) and V(T,) — 0 as
n — oQ.

Proof By Chebysheff’s inequality, for any €’ > 0

Pe{|T, —E(T,)|< €'} > 1— Vg;”).
Now ‘Tn - V(0)| < |Tn - E(Tn)l + |E(Tn) - V(0)|
Ty — E(Ty)| < €'= [Ty —9(0)| < € + |E(T,) —(0)|

Hence, L

Pr{|T, —y(0)| < € + |E(T\) —y(0)|} > Pr{|T, — E(T,)| < €} > 1
v(T,)
6/2 :

(1.19)

Since E(T,) — y(0) and V(T,) — 0 as n — oo, for any pair of two positive
numbers (€”, §), we can find an ny (depending on (€”, §)) such that

E(T,) — y(0)| < €" (1.20)
and
V(T,) < €%6 (1.21)
whenever n > ng. For such ny

Ty —(0)| < € +|E(T,) —7(0)| = T —(0)| < € + €

1.22
V(T,) 51— (1.22)
612

and 1—

Now from (1.19) and (1.22), we have Pr{|T, — y(0)| < € + €"}
> Pr{|T, —9(0)| < € + |E(T,) —7(0)[} > 1—0.

Taking e=€¢’ + €”

o P{|T, —y(0)| < €} > 1 — 6 whenever n>ny

Since, €' €” and ¢ are arbitrary positive numbers, the proof is complete.
(It should be remembered that consistency is a large sample criterion)

Example 1.19 Let X,X5,...,X, be a random sample from a population mean u
and standard deviation ¢. Then X,, = %Zl X; is a consistent estimator of u.

Proof E(X,) = 11, V(X,) =% — 0asn — oc. Sufficient condition of consistency
holds. .*. X, will be consistent for . O
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Alt
By Chebysheft’s inequality, for any €

0_2

n €2

Pr{|X,—pu|< €} > 1-
Now for any ¢, we can find an ng so that

Pr{|Yn - /l} < 6} > 1 — 6 whenever n > ng (here 6 = %)

Example 1.20 Show that in random sampling from a normal population, the sample
mean is a consistent estimator of population mean.

Proof For any € (>0), Pr{|X, —pu|< €} = Pr{|z| < %}

1 X, —
e dt where Z = o Vn~N(0,1)
¢

Nex:

Il
\qE‘

<

—€vn
a

O

Hence, we can choose an ny depending on any two positive numbers € and ¢
such that
Pr{|X, — u|< €} > 1 — 6 whenever n>ngy

v Pr o - .
s Xp—uas n — oo ' X, is consistent for p.

Example 1.21 Show that for random sampling from the Cauchy population with
density function

Slou) = %m, — 00 < x< 00, the sample mean is not a consistent esti-

mator of ¢ but the sample median is a consistent estimator of .

Answer

Let X1,X>, ..., X, be a random sample from f(x, u) = 1 L__ Tt can be shown

; Tt ()
that the sample mean X is distributed as x.

S
o Pe{|X, - < €} :% / ﬁdz = %tanf1 € (taking Z =X — p)
—€
which is free from n.
Since this probability does not involve n, Pr{ |X_n — ,u‘ < E} cannot always be
greater than 1 — J, and however large n may be.
It can be shown that for the sample median X,,,

E(X,) =p+ OG>7 V(X)) = 0<l) M %

n
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.. Since E (X,l) — p and V(f(n) — 0 as n — oo, sufficient condition for consistent
estimator holds. .- X,,, is consistent for p.

Remark 1.17 Consistency is essentially a large sample criterion.

Remark 1.18 Let T, be a consistent estimator of y(0) and }{y} be a continuous
function. Then Y{T,} will be a consistent estimator of y{y(0)}.

Proof Since T, is a consistent estimator of (), for any two +ve numbers €, and 9,
we can find an ng such that O
Pr{|T, —y(0)| < €1} > 1 — 6 whenever n > ny.
Now y{T,} is a continuous function of T,,. Therefore, for any €, we can choose
an €; such that

T —=2(0)| < 1= AT} =y {2(0)} < €.

SPr{Y{T,} —y{y(O)} < €} >Pr{|T, —y(0)|< €1} > 19 whenever
n>n
i.e.OPr{W{Tn} —y{y(0)}| < €} > 1— 9 whenever n> ny.

Remark 1.19 A consistent estimator is not unique
For example, if T, is a consistent estimator of 0, then for any fixed a and b
T, ="=4T, is also consistent for 0.

Remark 1.20 A consistent estimator is not necessarily unbiased, e.g. U : f(x,0) =
%,0 <x< 0, consistent estimator of 0 is X(,) = max;<;<,X;. But it is not
unbiased.

Remark 1.21 An unbiased estimator is not necessarily consistent, e.g.
fx) =1e 0 —00 < x < .

W) + X
2

. . ¢ . .
An unbiased estimator of 0 is , but it is not consistent.

Remark 1.22 A consistent estimator may be meaningless,

;[0 if n<10"
e.g.LetTn—{Tn if 0> 100

If T, is consistent, then T,’1 is also consistent, but T,Q is meaningless for any practical
purpose.
Remark 1.23 If Ty and T, are consistent estimators of y,(6) and 7,(6), then

(i)(Ty + Ty) is consistent for y,(0) + 7,(0) and
(ii)T | T, is consistent for y,(0)y,(0).

Proof (i) Since T and T, are consistent for y,(6) and y,(60), we can always choose
an np much that
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Pr{[Ty =y, (0)| < €1} > 16
and
PI‘{|T2—’}}2(0)|§ 62} >1-6,

whenever n > ny
€1, €,01, 0, are arbitrary positive numbers.

Now [Ty + T2 — 71(0) — 9,(0)| < [T1 — 7, (0)] + |T2 — y,(0)]
< € + & =¢€, (say)

SPH{|T 4+ T = 91(0) = 72(0)| < €} > Pr{|Th —,(0)| < €1,|T2 = 1,(0)| < &2}
> Pr{|T1 —,(0)| < €1} + Pr{|T2 = 0,(0)| < &} —1

[-P(AB) > P(A) + P(B) — 1]
>1—-01+1-0,—1=1—(61 + 02)=1—0forn>ng
SPr{|Ty + Tr — 91(0) — 9,(0)| < €} > 1= forn>ny

Hence, Ty + T is consistent estimator of y,(0) + 7,(0).
(il) Again [T} —y,(0)| < €1 and [T, — 1,(0)| < &

= [T\ Ty — 7, (0)92(0)| = |{T1 — p1 (O)H{T2 — 7, (0)} + T2y, (0) + Tip,(0) — 29, (0)y,(0)]
<SHTE = 91OV HT2 — 120} + 21 (O1T2 — 72 ()] + [22(O)| T — 71 (0)]
< €€ + [n0)] € + [7(0)] €1=€ (say)

SP{IT T =91 (0)02(0)] < €32 Pr{|Ti =, (0)| < €1, [T =1 (0)| < &}
2 P{|Ti =0 (0)| < €1} + Pr{|T =, (0)[ < &} -1
>1-0+1—-0,—1=1— (6, + d) =1— 5 whenever n > ny
.. T\ T, is consistent for y,(0)y,(0). d
Example 1.22 Let X;, X5, ..., X;, be a random sample from the distribution of X
for which the moments of order 2r (1)) exist. Then show that
n
(@) m, =1%"XI'is a consistent estimator of 1/, and
1

(b) m, = %Z (X; — X)" is a consistent estimator of y,. These can be proved using
the following results.
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/ 2
— lu2r - lu’r

As E(m.) = i, and V (m.,) -

~V(m.) — 0 as n — oo ."m is consistent for 1. and E(m,) = p, + 0(})

1 1
V(mr) = ; [lqu - :uf - 2r#r_1ﬂ;-+ 1 + 7’2#371”2] + O<n_2> —0asn— o0
.".m, is consistent for u,.

2
(c) Also it can be shown that b; and b, are consistent estimators of ff; = Z—é and
2

.y
pr=14.

1.5 Efficient Estimator

Suppose the regularity conditions hold for the family of distribution
{f(x,0); 0 € ®}. Let an unbiased estimator of () be T. Then the efficiency of T is
given by

{7’/(9)}2/[(9)
V(T)

It is denoted by eff. (T)/or e(T). Clearly, 0 <e(T) < 1.
An estimator 7 will be called (most) efficient if eff(T) = 1. An estimator T of 7(0)
is said to be asymptotically efficient if E(T) — 7(0) and eff (T) — 1 as n — oc.
Let T and T» be two unbiased estimators of y(6). Then the efficiency of T}

V(D)
V(T) -

relative to T, is given by eff. (Tl/Tz) =

Remark 1.24 An MVBE will be efficient.

Remark 1.25 In many cases, MVBE does not exist even though the family satisfies
the regularity conditions. Again in many cases, the regularity conditions do not
hold. In such cases, the above definition fails. If MVUE exists, we take it as an
efficient estimator.

Remark 1.26 The efficiency measure has an appealing property of determining the
relative sample sizes needed to attain the same precision of estimation as measured
by variance.

e.g.: Suppose an estimator T; is 80 % efficient and V(T) = ¢, where ¢ depends
upon 0. Then, V(Ty) = 0.8 <. Thus the estimator based on a sample of size 80 will
be just as good as an estimator 77 based on a sample of size 100.
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Example 1.23 Let T| and T, be two unbiased estimators of 6 with efficiency e; and
e, respectively. If p denotes the correlation coefficient between T} and 7, then

Veier — /(I —e)(l —ex) <p<ferex + /(1 —er)(l —e2)

Proof For any real ‘a’, T = aT; + (1 — a)T, will also be an unbiased estimator of
0. Now

V(T) = d®V(T)) + (1 —a)*V(T) + 2a(1 — a)p/V(T\)V(T>).
Suppose Ty be an MVUE of 6 with variance Vy. Then V(T) >V

Vi Vi

2 Yo 20

sa— 4+ (1—a)— + 2a(l —a
" ( )e2 (I—a)p o

: : - ) (1 ; ) (1 )
2
= da — + —— —2a(—— + (—— 20
(61 ey \Jeier e L/e1ep €2

1__» 2 1 1__r_ \?
N TR T i e B e e1es >0
141 2p 14 1 2p 14 1 2p
el (%) veiez (4] € veiex (g (&) Vveiez

1__»
1 — €2 1€
Taking a = Iy, we get

ep e Ve
1 11 2 1 :
)+ - ()
(%) (4] e e|en () e e
e e
:—p2+2p\/e1—ez—e—l+(l—ez)(l+—l)>0
2

épszpw/elezfquel + e <0
= (p—ere) —(1—e)(1 —e) <0

= {p — ./elez‘ < /(1 —e1)(1 — e3) Hence, the result. O

>Vo

Remark 1.27 The correlation coefficient between T and the most efficient estimator
is /e where e is the efficiency of the unbiased estimator T. Put e; = ¢ and ¢; = 1 in

the above inequality; |p — \/erez| < /(1 —e1)(1 —e;) and easily we get the

result.



Chapter 2
Methods of Estimation

2.1 Introduction

In chapter one, we have discussed different optimum properties of good point
estimators viz. unbiasedness, minimum variance, consistency and efficiency which
are the desirable properties of a good estimator. In this chapter, we shall discuss
different methods of estimating parameters which are expected to provide estima-
tors having some of these important properties. Commonly used methods are:

1. Method of moments

2. Method of maximum likelihood
3. Method of minimum %>

4. Method of least squares

In general, depending on the situation and the purpose of our study we apply any
one of the methods that may be suitable among the above-mentioned methods of
point estimation.

2.2 Method of Moments

The method of moments, introduced by K. Pearson is one of the oldest methods of
estimation. Let (X;, X5,...X),) be a random sample from a population having p.d.f.
(or p.m.f) fix,0), 6 = (61, 0-,..., 6;). Further, let the first k population moments about
zero exist as explicit function of 6, i.e. .= .(01,0,,...,0¢), r=1, 2,....k. In the
method of moments, we equate k sample moments with the corresponding popu-
lation moments. Generally, the first K moments are taken because the errors due to
sampling increase with the order of the moment. Thus, we get k equations
w(01,0,,...,0k),=m, r=1,2,.., k. Solving these equations we get the method
of moment estimators (or estimates) as m, = 13" | X7 (or m) = 13" x7).

n i=1
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If the correspondence between 1. and 0 is one-to-one and the inverse function is

0: =f;(K 1y, .. 1), i =1, 2,.., k then, the method of moment estimate becomes

0; = fi(m),mh,...,m). Now, if the function f}) is continuous, then by the weak
law of large numbers, the method of moment estimators will be consistent.
This method gives maximum likelihood estimators when f(x, 6) = exp
(by + b1x + b2x2 + ....) and so, in this case it gives efficient estimator. But the
estimators obtained by this method are not generally efficient. This is one of the
simplest methods. Therefore, these estimates can be used as a first approximation to
get a better estimate. This method is not applicable when the theoretical moments
do not exist as in the case of Cauchy distribution.

Example 2.1 Let X;,X>, .. .X, be a random sample from p.d.f.

fxia,b) = ghmxt 1 (1 - x)"', 0<x<1;a,b > 0. Find the estimators of a and

b by the method of moments.

Solution
+1
We know E(x) = uj = %5 and E(x*) = pj = %'
. @+1) 1 2
Hence, 4 = x,m =2 X

F-D(Q o —m) b

By solving, we get =" " g

D o—x)

o
Q>
Il

2.3 Method of Maximum Likelihood

This method of estimation is due to R.A. Fisher. It is the most important general
method of estimation. Let X = (X, X5, ..., X,) denote a random sample with joint

p.d.f or p.m.f. f(x, 9),6 € © (0 may be a vector). The function f(x,@), con-

sidered as a function of 6, is called the likelihood function. In this case, it is denoted
by L(6). The principle of maximum likelihood consists of choosing an estimate, say
(9, within the admissible range of 6, that maximizes the likelihood. 0 is called the
maximum likelihood estimate (MLE) of 6. In other words, 0 will be an MLE of @ if

L(é) >LIOV 0 € ©.

In practice, it is convenient to work with logarithm. Since log-function is a
monotone function, 0 satisfies
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logL(Z)) > logL(O)V 0 € O.

Again, if log L(0) is differentiable within ® and 0 is an interior point, then 0 will
be the solution of

!

M:o, i=1,2,... k 0 =(0,,0,,....0,).

00;
These equations are known as likelihood equations.

Problem 2.1 Let (X;,X,,...,X,) be a random sample from b(m, 7 ), (m known).
Show that #=-L5~" X, is an MLE of 7.

Problem 2.2 Let (X{,X,,...,X,) be a random sample from P (1). Show that
L =15 X;is an MLE of 4.

Problem 2.3 Let (X;,X,,...,X,) be a random sample from N(y,s?). Show that
()_(, sz> is an MLE of (i, ¢%), where X =1%"" | X; and s?=1%""  (X; - X)%

Example 2.2 Let (X1,X,,...,X,) be a random sample from a population having
p.dff(x, 0) = %e"x";', —00<x< 0.
Show that the sample median X is an MLE of 6.

Answer
L(0) = Const. e~ 2 e bt

Maximization of L(6) is equivalent to the minimization of ) ., [x; — 0|. Now,
Yoy |x — 0] will be least when 6 = X, the sample median as the mean deviation
about the median is least. X will be an MLE of 6.

Properties of MLE
(a) If a sufficient statistic exists, then the MLE will be a function of the sufficient
statistic.

Proof Let T be a sufficient statistic for the family {f (X , 0) ,0 € @}

By the factorisation theorem, we have ﬁ f(x;,0) = g{T(X ) , Q}h(X )

i=1 ~

To find MLE, we maximize g{T(x) , 0} with respect to 0. Since g{T(X) , 9}

~

is a function of 0 and x only through T(X ) , the conclusion follows immediately.[]
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Remark 2.1 Property (a) does not imply that an MLE is itself a sufficient statistic.

Example 2.3 Let X;, X5,...,X,, be a random sample from a population having p.d.f.
1 VO<x<0+1
f(i(’g) - {O Otherwise :
1 if 0 <MinX; < MaxX; <9+1

Then, L(0) = {0 Otherwise

Any value of 6 satisfying MaxX; — 1 <0 <MinX; will be an MLE of 6. In
particular, Min X; is an MLE of 6, but it is not sufficient for 6. In fact, here
(MinX;, MaxX;) is a sufficient statistic.

(b) If T is the MVBE, then the likelihood equation will have a solution 7.

dlogf <X,0)
Proof Since T is an MVBE, ——~~ = (T — 0)A(0)

00
0logf<)N(,())
NOW, — 0 - 0

= 0="T[. 2(0) #0].

(c) Let T be an MLE of 6 and 6 =y(0) be a one-to-one function of 6. Then,
d =1y (T) will be an MLE of 0. d

Proof Since T is an MLE of 6, L{T(X) } > L(0)V0,

~

Since the correspondence between 6 and J is one-to-one, inverse function must
exist. Suppose the inverse function is 0 =1~ (J).

Thus, L(0) = L{y"(9)} = Li() (say)

Now,

—1{y '@} =Ly u | 1(x) | p|=£{T(x)} 2 L0) = L1(0).

~

Therefore, ‘d’ is an MLE of 6.

(d) Suppose the p.d.f. (or p.m.f.) fix, 0) satisfies the following regularity
conditions:

(i) For almost all x, £ gé %) ,02’;((;‘2’ 9 ,03’;((;‘; 9

Lo 0) Pf(x,0 P(x,0)
(i) ‘f{;{) ‘<A ; fa(ng ) < Ay( and’ g;ﬁ ‘<B(x)

where A(x) and A,(x) are integrable functions of x and

exists V 0 € ©.

f B(x)f(x, 0)dx < M, a finite quantity
cee 0 Ologf(x,e) . . .. .
i) [ (=R f (x, B)dx is a finite and positive quantity.

If 0, is an MLE of 6 on the basis of a sample of size n, from a population having
p.d.f. (or p.m.f) f(x,f) which satisfies the above regularity conditions, then
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ﬁ(@,, —0) is asymptotically normal with mean ‘0’ and variance

0o 2 -1 .
{ S (dk’%(;x’e)) fx, H)dx} . Also, 6, is asymptotically efficient and consistent.
(e) An MLE may not be unique.

O
Example 2.4 Let f(x, 0) = { (1) gtiegrv)\czifeg—i— !

1 if0<min x; < max x; <0+1
Then, L(6) = {0 Otherwise

. 1 ifmax x; — 1 <0< min x;
ie.L(0) = {O Otherwise

Clearly, for any value of 0, say T, = a(Maxx; — 1)+ (1 — o)Minx;, 0<a <1,

L(0) will be maximized. For fixed a, T, will be an MLE. Thus, we observe that an
infinite number of MLE exist in this case.

(f) An MLE may not be unbiased.
Example 2.5

.
_ 4 if0<x<0
f(x, 0) {0 Otherwise -
L
_ [ if maxx; <0
Then, L(0) {0 Otherwise

L(o)

Max Xi 0

From the figure, it is clear that the likelihood L(6) will be the largest when

0 = Max X;. Therefore Max X; will be an MLE of 6. Note that E(Max X;) =
n fr ; 0 # 0. Therefore, here MLE is a biased estimator.
(g) An MLE may be worthless.
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Example 2.6

N 13
fyn)=n(1—-=n) " x=0,1,n € (4,4)

if x = -3
Then, L(n) = { ] f i :ii _ (1) i.e. L(m) will be maximized at { Z_%

Thus, T = 21 will be an MLE of 6.
Now, E(T) =21 5 7. Thus, T is a biased estimator of 7.

MSE of T = E(T — n)?

2x+1 2 1 2
—E( 2 —n) —1—6E{2(x—n)+1—27t}

- %E{m — )%+ (1 -21) + 4(x — n)(1 — 27‘5)}

:1—16{47:(1 —n)+( —2n)2} :11—6

Now, we consider a trivial estimator 6(x) = 1.
MSE of 6(x) = (A —7)’ < L =MSE of TV € (,3)

Thus, in the sense of mean square error MLE is meaningless.
(h) An MLE may not be consistent

Example 2.7

_ [ (1—6)"" if 0is rational
flx, 0) = { (1 — 00" if Qisrational 0<0<1,x=0,1.

An MLE of 6 is (9,, = X. Here, 9n is not a consistent estimator of 0.
(1) The regularity conditions in (d) are not necessary conditions.

Example 2.8

1 —00<Xx< 00
x,0) = ~e 0
fx0) 2 —oco<f<oo

Here, regularity conditions do not hold. However, the MLE (=sample median) is
asymptotically normal and efficient.

Example 2.9 Let X;,X»,...,X, be a random sample from f(x,o,f)=
Be P9 5 < x<oo and B > 0.
Find MLE’s of a, £.
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Solution

-B Xi—
L e T

log, L(x, B) = nlog, f— B> (xi —
i=1

algﬁL:%fZ(xifa) andalo—gL:nﬁ.

Now, mgfL 0 gives us f = 0 which is nonadmissible. Thus, the method of
differentiation fails here.

Now, from the expression of L(a, f), it is clear that for fixed f(>0), L(a, S)
becomes maximum when a is the largest. The largest possible value of a is
Xy = Min x;.

Now, we maximize L{X (1), B } with respect to f. This can be done by consid-
ering the method of differentiation.

dlog L{xq1y, B} n n
= i S0 L S y BN ;—minx;) =0 = f=F—"—"""—
o5 5 Z (x; — min x;) l; S (x; — min x;)
So, the MLE of (a, p) is {minxi,M}.
Example 2.10 Let Xi;,Xa,...,X, be a random sample from f(x,a,f)=

0, Otherwise
(a) Show that the MLE of (¢, f) is (Min X;, Max X;).
(b) Also find the estimators of « and f§ by the method of moments.

{ﬁ, a<x<p

Proof

(a)L(a, f8) if o < Minx; <Maxx; < f8 (2.1)

o
(B

It is evident from (2.1), that the likelihood will be made as large as possible
when (f — a) is made as small as possible. Clearly, a cannot be larger than Min x;
and f cannot be smaller than Max x;; hence, the smallest possible value of (f — a) is

(Max x; — Min x;). Then the MLE’S of a and f are & = Minx; and ﬁ = Max x;,
respectively.

(b) We know E(x) = uf =27 andV()—uzzw
8= and LA =13 (g — %)

Hence,
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i—x)2 - 3 xi—x)*
By solving, we get & = X — \/32# and f =x+ \/%Z<f>

Successive approximation for the estimation of parameter

It frequently happens that the likelihood equation is by no means easy to solve.
A general method in such cases is to assume a trial solution and correct it by an
extra term to get a more accurate solution. This process can be repeated until we get
the solution to a sufficient degree of accuracy.

Let L denote the likelihood and 0* be the MLE.

Then BlogL‘ = 0. Suppose 6 is a trial solution of % =0
0=0"

Then
0= allc)gL‘ _ Bl’()gL‘
N No—g- 90 g,
with powers higher than unity.

~ OlogL * 9*logL
= 0= ’0:00 (07 = 60) S5¢:

(0" — 0p) with powers higher than unity.

S0 Dot (g 0)1(00), where 1(0) = —E(8L).

*log L
+ (6" — 0y) a—gzg .

.t terms involving (0 — 0p)
=Vo

, neglecting the terms involving
—0,

’0:00
Thus, the first approximate value of @ is

DlogL‘
6(1) _ 90+ 0=0,

1
n{l + (x—('))z}

>; and so the likelihood equation is >} lﬁ =0;

Example 2.11 Let X,X>,...,X, be a random sample from f(x, 0) =

dlogf(x,0) _  2(x—0)
Here, == =i 0)
clearly it is difficult to solve for 6.
So, we consider successive approximation method.

In this case, 1(0) = 5.
Here, the first approximation is 0" = 0y + £ 377

— o)
i= 11+ x,fen)

0y being a trial solution.
Usually, we take 0y = sample median.



2.4 Method of Minimum 2 55

2.4 Method of Minimum »>

This method may be used when the population is grouped into a number of mu-
tually exclusive and exhaustive class and the observations are given in the form of
frequencies.

Suppose there are k classes and 7;(6) is the probability of an individual
belonging to the ith class. Let f; denote the sample frequency. Clearly,
Zf:l m;(0) =1 and Zi'{:lfi =n

The discrepancy between observed frequency and the corresponding expected
frequency is measured by the Pearsonian »?, which is given by

S o N () S o W i
X = Zi:l nm; (0) - Znn;((?) —n.
The principle of the method of minimum #? consists of choosing an estimate of

6, say 0, we first consider the minimum y* equations g—’g =0,i=12,..,rand
0; = ith component of 6.

It can be shown that for large n, the min y> equations and the likelihood
equations are identical and provides identical estimates.

The method of minimum 2, is found to be more troublesome to apply in many
cases, and has no improvement on the maximum likelihood method. This method
can be used when maximum likelihood equations are difficult to solve. In particular
situations, this method may be simple. To avoid the difficulty in minimum >

method, we consider another measure of discrepancy, which is given by y? =

S %, % is called modified Pearsonian y>. Now, we minimize, instead

of %, with respect to 6.

It can be shown that for large n the estimates obtained by min %> would also be
approximately equal to the MLE’s. Difficulty arises if some of the classes are
empty. In this case, we minimize

)

2
X//Z _ Z {fz _ nni(e)} + oM
if #0 fi
where M = sum of the expected frequencies of the empty classes.

Example 2.12 Let (x1,x3,...,X,) be a given sample of size n. It is to be tested
whether the sample comes from some Poisson distribution with unknown mean .
How do you estimate u by the method of modified minimum chi-square?

Solution
Let x1,x2,...,x, be arranged in k groups such that there are
n; observations with x =i, i=r+1,...,r+k—2

n;, observations x < r
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n, observations with x > r+k — 1 so that the smallest and the largest values of

x, which are fewer, are pooled together andn; + ert]ir 12 n;,+n, = n.

Let m(p) =Px=1i)= ei;l”i, n(p) =Px<r)=> i m(n) and m,(p) =
Pz rk—1) =X, ml).

Now using S5 ) 8130 =0,j=1,2,...p0 we have ng

rtk-2 (i D D)
. i L __ 1) u Ldizrakm1 ) (),
Zz_r+ L7 (M o Zi:r+k—] mi(k)

Since there is only one parameter, i.e. p = 1 we get the only above equation. By
solving, we get

Tafiten

im( ) i i im()

n,u—nL — + Z m,—|—nu =
2omi(p) =l > m(p)
i=0 i=r+k—1

= sum of all x’s
Hence, 1 is approximately the sample mean X.

2.5 Method of Least Square

In the method of least square , we consider the estimation of parameters using some
specified form of the expectation and second moment of the observations. For
fitting a curve of the form y :f(x, Bos By - ﬁp) to the data (x;,y;),i=1, 2,...n,
we may use the method of least squares. This method consists of minimizing the
sum of square%

S=3"" ¢, where &= (xl,ﬁo,ﬁl, . 7[313), i =1, 2,...,n with respect to
Bos Brs -5 By Sometlmes, we minimize > w;e? instead of Y &2. In that case, it is
called a weighted least square method.

To minimize S, we consider (p + 1) first order partial derivatives and get (p + 1)
equations in (p + 1) unknowns. Solving these equations, we get the least square
estimates of fs.

In general, the least square estimates do not have any optimum properties even
asymptotically. However, in case of linear estimation this method provides good
estimators. When f (xi, Bos b1y /3[,) is a linear function of the parameters and the
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x-values are known, least square estimators will be BLUE. Again, if we assume that
¢}s are independently and identically normally distributed, then a linear estimator of

the form c/z p will be MVUE for the entire class of unbiased estimators. In general,

~

we consider n uncorrelated observations yi,yz,...y, such that E(y;) =
Bixii + Boxai+ - + Brxi.

V(y,) = 62, = 1,2, ...... sy, X1 = 1Vl,

where B, B,.........p, and ¢* are unknown parameters. If ¥ and B stand for
column vectors of the variables y; and parameters f3; and if X = (xj‘) be an (n X k)
matrix of known coefficients x;; then the above equation can be written as

V(e) = E(ee) = a*I

where e = Y — Xf8* is an (n x 1) vector of error random variable with E(e) =0
and Iis an (n x n) identity matrix. The least square method requires that f's be such
calculated that ¢ = ¢'e = (Y — Xf*)' (Y — XB*) be the minimum. This is satisfied
when

o
a5 =Y

Or, 2X' (Y — Xf*) = 0.

The least square estimators 3's is thus given by the vector ﬁ* = (X’X)le’ Y.

Example 2.13 Let y; = fix1;i+ foxoi+ei, i=1,2,...... ,n or E(y)=pxi+
ﬁ2x2i, X1i = 1 for all i.

Find the least square estimates of ; and f3,. Prove that the method of maximum
likelihood and the method of least square are identical for the case of normal
distribution.

Solution

In matrix notation we have
1 X21 J1

1 x 2
E(Y)=Xp", where X = | . ?2 ) *:<ﬁ1>andY: )

1 Xon Yn
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Now,
B=xx)"'x'y
I x2
1 1 ... 1 1 x» n szi>
H X’X: . . e
e <X21 X ... x2n> S (szi >x;
1 Xon
X'y = Z)’i )
(EXZiyi
. 1 ( >, Zm)( v )
B "ZX%Z-*(ZX%)Z =D X n > X2
_ 1 ( ZX%ZM = DX )L X2 )
33— (N ) \ =X v+ n > X Y i
Hence,

B, = RO IX2D Vi = DM Vi 2 Xai ) Vi f_m’czy
ny x5 — (sz,»)z Do — N
_ 2 (i = %) (i —y)
> (i — %)

_ DX DO Vi — D Xai D Xaii

o aYg - Cn)

_ VI x — X D X

>3 — nx?

Ynx; — Xp > Xoii
D05 — N

=y —Xpb

B

+

Il
<
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Let y; be an independent N(f; + B,xi, 6°) variate, i =1,2,...... ,n so that
E(yi) = B, + Byx;. The estimators of §; and 3, are obtained by the method of least
square on minimizing

6= (vi— By — Bxi)

i=1

The likelihood estimate is

1 n )
L= < ) e‘ﬁZ(}'i—/ﬁl—ﬂsz

2no

L is maximum when Y7 (v; — f; — f>x;)” is minimum. By the method of

maximum likelihood, we choose f3; and f8, such that 3" | (v — f; — Boxi)’ = ¢ is
minimum. Hence, both the methods of least square and maximum likelihood
estimator are identical.

Example 2.14 Let X;,X»,...X, be a random sample from p.d.f.
flx;0,r) = ﬁme’x/gx”l, x>0;0>0,r>0.
Find estimator of 0 and r by
(i) Method of moments
(ii)) Method of maximum likelihood

Answer

(i) Here, E(x) = pl = r0, E(®) = 1 = r(r + 1)0°

|—

Hence, r =%, r(r+1)0* =

> i xi2

By solving, we get 7 = "
Zi:l (xi

0" (r(r)"

o AR -
(i) L = et Hlx;
i

logL = —nrlog0 —nlogI'(r) — > 7 xi+ (r — 1) 31, logx;

1
Now, 2L — _nr H=0=>0=1
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OlogL 8logF
5 = —nlogf —n g log x;
F/
:nlogr—nr((:))—nlog)_c+ gi log x;

It is, however, difficult to solve the equation dlgg L — 0and to get the estimate of 7.

Thus, for this example estimators of 6 and r are more easily obtained by the method
of moments than the method of maximum likelihood.

Example 2.15 If a sample of size one is drawn from the p.d.f f(x,f) =
%(ﬁ—x),0<x</)’.

Find B ,the MLE of 8 and f*, the estimator of 8 based on method of moments. Show
that f3 is biased, but §* is unbiased. Show that the efficiency of f w.r.t. § is 2/3.

Solution
2
L‘ﬁ(ﬁ—x)
logL =1log2 —2log f+ log(f — x)
OlogL 2 1
——+—=0=p=2
o~ BTE- /

Thus, the MLE of f is given by f = 2x.
Now, E(x) =% 7 Jo P (px— =4
Hence, ﬁ—x:>ﬂ—3x

Thus, the estimator of  based on method of moment is given by f* = 3x.
Now,

Hence, Zf is biased but * is unbiased.
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Again,
2/ B
B(W) =4 O/ (b~ )ar=".
BB
V=755 =

Thus, the efficiency of ,Z? with respect to f* is %



Chapter 3
Theory of Testing of Hypothesis

3.1 Introduction

Consider a random sample from an infinite or a finite population. From such a
sample or samples we try to draw inference regarding population. Suppose the form
of the distribution of the population is Fy which is assumed to be known but the
parameter 0 is unknown. Inferences are drawn about unknown parameters of the
distribution. In many practical problems, we are interested in testing the validity of
an assertion about the unknown parameter 6. Some hypothesis is made regarding
the parameters and it is tested whether it is acceptable in the light of sample
observations. As for examples, suppose we are interested in introducing a high
yielding rice variety. We have at our disposal a standard variety having average
yield x quintal per acre. We want to know whether the average yield for the new
variety is higher than x. Similarly, we may be interested to check the claim of a tube
light manufacturer about the average life hours achieved by a particular brand.
A problem of this type is usually referred to as a problem of testing of hypothesis.
Testing of hypothesis is closely linked with estimation theory in which we seek the
best estimator of unknown parameter. In this chapter, we shall discuss the problem
of testing of hypothesis.

3.2 Definitions and Some Examples

In this section, some aspects of statistical hypotheses and tests of statistical
hypothesis will be discussed.

Let p = {p(x)} be a class of all p.m.f or p.d.f. In testing problem p(x) is
unknown, but p is known. Our objective is to provide more information about p(x)
on the basis of X = x. That is, to know whether p(x) € p* C p.

© Springer India 2015 63
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Definition 1 A hypothesis is a conjecture or assertion about p(x). It is of two types,
viz., Null hypothesis (H) and alternative hypothesis (K).

Null hypothesis (H): A hypothesis that is tentatively set up is called null
hypothesis. Alternative to H is called Alternative hypothesis.

H and K are such that HNK = ¢ and HUKCp. We also write H as

H:p(x)€py Cp

= C
andK asK : p(x) € px C p}pyﬂpK @ and py UpgCp

Labeling of the distribution

Write p = {p(x) = p(¥p),0 € ©}. Then ‘0" is called the labelling parameter of the
distribution and ‘@’ is called the parameter space.

Example 3.1 X ~bin(m,p) < X1,Xs,...X, are iid Bernoulli (p) = X =
S, Xi~bin(m,p), m is known, O0=p, O =][0,1], outcome space
x=1{0,1,2,...m} = {0,1}Xx{0,1}X.. .X{0, 1}

p(x/0) = (T)p"u —p)"orp(x/0) A"

p= {<l;1)p‘(1 —p)m—x’p S [07 1]} is known but (’:)px(l _p)m—x is
unknown if p is unknown.

Example 3.2 Let X1,X5,...X,, are i.i.d P(y) and Y;,Ys,...Y,, are i.i.d P(4y).
Also they are independent and n; and n, are known.
Now,

X = (Xl,XQ, .. .X,,],Yl, Ys,.. .Ynz)7 n=mny+n
= [{0,1,...00" X[{0, 1,.. .c0}]"
0= (/11,22);@ = (0,00)X(0,00) = {(21,/12) : 0<;L1,/12 <OO}

n no Xi Yi
I

p(x/0) = Hp(xi/)vl) Hp(y,-/ig) = me*(mm +n2la)

0= {p (x/()) L,0< A, < oo} is known but p(x/()) is unknown if 0 is unknown.
Example 3.3 Xi,Xa,...X, areiid N(u,0?). X = (X1,Xa,...X,),n>1,0 = (u,0?)
or {u} (f o> is known) or {02} Gf @ is known), O = {(u, d?):
—co<p<00,0> >0} or {u: —co<u<oo} =R or {0'2 to? > 0}.

*= R": n-dimensional Euclidean space.
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- Z: (Xi*ll)z

p(x/0) = (2n)_n/2<f”e 2"2 or
Y
= (27n) "2, 221: ;0> =1or
L Y x2
= (2n)_n/za’”e 2“22 S u=0.o0r

0= {p(x/g);—oo<,u<oo,62 > 0} or
{p(x/g); foo<,u<oo} or

{p (x/g) (02 > O} all are known but unknown is p(x/g) for fixed @ (Unknown).

Parametric set up

p(x) =p(x/0); 0 € O. Then we can find @y (C ©) and Ok (C ®) such that
Oy NOk = ¢pandpy = {p(x/0); 0 € O}, px = {p(x/0); 0 € Ok}
So,

H:pcepy< H:0€0y
K:pepxk & K:0e€ 0.

Definition 2 Now a hypothesis H* is called

i. Simple if H* contains just one parametric point, i.e. H* specifies the distribution
{p(x/6)} completely.

ii. Composite if H* contains more than one parametric point, i.e. H* cannot
specify the distribution {p(x/0)} completely.

Example 3.4 X{,X,.. X, are ii.d N(u,o?). Consider the following hypothesis
(H"):
l. H :u=0,0>=1:H = H~N(0,1)
2. H : n<0,0> =1
3. H :u=0,0>>0
4. H* : 6> =7}
5. H :u+a=0

The first one is a simple hypothesis and the remaining are composite hypotheses.
Definition 3 Let x be the observed value of the random variable X with probability
model p(x/60); 6 unknown. Wherever X = x is observed, p(x/6) is a function of 6

only and is called the likelihood of getting such a sample. It is simply called the
likelihood function and often denoted by L(6) or L(0/x).
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Definition 4 Test It is a rule for the acceptance or the rejection of the null
hypothesis (H) on the basis of an observed value of X.

Definition 5 Non-randomized test

Let w be a subset of x such that

X € w = Therejection of H
X € ¥— w = The acceptance of H.

Then o is called the critical region or a test for H against K. Test ‘w’ means a
rule determined by . Note that @ does not depend on the random experiment (that
is on X). So it is called a non-randomized test.

Definition 6 Randomized test:

It consists in determining a function ¢(x)
such that

i) 0<op(x)<1lVxe=x
(i) H is rejected with probability ¢(x) whenever X = x is observed.

Such a ‘¢(x)’ is called ‘Critical function’ or ‘test function’ or simply ‘test’ for
H against K. Here the function ¢(x) depends on the random experiment (that is on
X). So that name ‘randomised’ is justified.

e.g. (i) and (ii) = whenever X = x is observed, perform a Bernoullian trial with
probability of success ¢(x). If the trial results in success, reject H; otherwise H is
accepted. Thus ¢(x) represents the probability of rejection of H.

[P

If ¢(x) is non-randomized with critical region ‘w’, then we have
o= {x:d(x) =1}

¥— o = {x:¢(x) = 0} (Acceptance region).
Detailed study on Non-randomized test

If w is Non-randomized test then it implies H is rejected iff X € w. In many cases,
we get a statistic T = T(X) such that for some C or C; and Cy,

Xeow<[X:T>C|] or [X:T<C] or [X:T<Cyor:T>GC,, C;<C,.
Such a ‘T is called ‘test statistic’.

The event [T > (] is called right tail test based on 7.
The event [T < (] is called left tail test based on T.
The event [T <Cyor T > (] is called two tailed test based on ‘7.

Sometimes C; and C; are such that P{T <C,/0} = P{T > C,/0}V0 € @y then
the test [T <CjorT > C,] is called equal-tail test based on T.
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Definition 7 Power Function
Let X be a random variable with p(x/0) as p.d.f or pmfof X, 0 € ®, x € »

Testing problem
H:0c€ Oy versus K : 0 € Ox{Oy N Ok = 0}

Let w be a test for H against K.
Then the function given by

P, (0) = Probability{rejecting H under 0}.
=P{Xcw/0},0c06

is called power function (a function of 6) of the test ‘o’

For a given 0 € Ok, P, (0) is called the power of ‘w’ at 0. For continuous case,
we have P, (0) = [ p(x/0)dx and for discrete case we have P,,(0) = Y, p(x/0).

A test ‘w’ is called size-a if

P,(0)<a V0 € Ogla:0<a<l] (3.1)
and it is called strictly size-a if
P,(0) <a V0 € Oy and P, (0) = o forsome 0 € Oy (3.2)

(3.1) & Sup P,(0) <« and (3.2) & Sup P,(0) =o.
0Oy 0Oy

The quantity Sup{P,(0),0 € Oy} is called the size of the test. Sometimes ‘o’ is
called the level of the test ‘w’

Some Specific cases

(i) 0: Real-valued; testing problem H:60=20, (Simple) or H:0<6,
(Composite) against K : 0 > 0p; w: A test; P, (0): Power function; Size of the

test: P,(0y) or Sup P,(0)
0<0o

(i) 0 = (0,,0,) : 2 component vector
Testing problem: H: 0, = 0? (given) against K : 0; > 9? (composite)
w: A test
P,,(8): power function = P,,(0;,6,) = P, (0?, 92) (at H) = A function of 6,.

Thus, the power function (under H) is still unknown. The quantity sup
{P,,(0,0,),0, € Space of 0} is known and is called the size of the test. For, e.g.

take N(u, 02) distribution and consider the problem of testing H: u = 0 against K:
w > 0, then the size of the test is
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Sup{ wips o /,u—O 0<q? <oo}

Example 3.5 X1,Xo,...,X, are11dN(,u,aO) H : u <y, against K : u > .

wg{(Xl,Xz,...,Xn):X>'“0+%}

Pu(0) = Py () = {X>“°+f }

=[P P )

:P{Z>1 e = ”°)|Z’“N(°’”}
o0

{ (lio Ho) 1}

Sizeof = Sup P,(1) = Sup {@{M— 1”

n<py 1< g 00
= ®(—1) = sizeof wfortesting H : it = p,.
Example 3.6

X1,Xs,...,X, are i.i.d N(u, 0'02).
H : p =, against K : u > uy.

— X o |, 2€(0,1)
_{(Xl,Xz,...,Xn).X>’u0+\/ﬁfx}7q)(_ra):a

P,.(1) = size of w for testing H

—P{X>uo+ffaluo} P{M >ch|#0}

0
=P{Z>1,|Z~N(0,1)} =

= Testis exactly sizeo'.
Example 3.7 Xi,Xa,...,X, are i.i.d. N(u, ¢?)
H : p =y against K : u >y,
o:{(X1,X2,..,X,); X >c} (3.3)

where ‘c’ is such that the test is of size 0.05.
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P,,(1y) = size of o for testing H = P{Y = C/ﬂo}

_P{ﬁ(X—uo) g (C—ﬂo)\/'_l/luo}

4] 00

= P{Z S ez Vi o v, 1)} = 0.05(given)
a0

— 1.645
= w =T905 ~ 1.645 =c = g+ %

() \/r_l

(3.4)
Test given (3.3) and (3.4) is strictly (exactly) of size 0.05.
(or, level of significance of the test is 0.05).

Example 3.8 X; and X, are i.i.d. according to (< Bernoulli (1, p)).
f(x/p) =p(1-p)x=0,1

Testing problem, H : p = % against K : p > %
Consider the test o = {(X1,X2) : X1 + Xo =2}
Accept H if (X,X;) € w

Test statistic: T = X; + X, ~bin(2,p)

. . _ 1\*
SlZGOftthCStlSP{(Xl,XQ) € (U/p %} = P{T Z/p %} = (E) =025

If we take w = {(X1,X2) : X; + X, = 1,2} i.e. accept H if (X, X,) & w. We get
size = 2.(4)* + (1)°= 0.75.
Let us take another test of the form:

o : Reject Hif X +X, = 2
wp : Reject H if X; + X, = 1 with probability §
A: Accept Hif X +X, = 0

Sample space = {0,1,2} = w+wp+A
. 1
Size = 1.P{(Xi +X;) = 2} + EP(XI +X=1)+0.P(X;+X,=0)
=0.254+0.25=0.50

The test given above is called a randomized test.

Definition 8 Power function of a randomized test:
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Consider ¢(x) as a randomized test which is equivalent to probability of
rejection of H when the observed value of (X = x) and E as an Event of rejection of
H. Then P(E|X = x) = ¢(x). Power function of ¢ is

P4(0) = Probability {Rejection of H under 0 using the function ¢ }

= P{Ep}

= /P{E/x,f)} - p{¥p}dx; when X is continuous (3.5)

*

= ZP{E/x, 0} -p{¥p}; when X is discrete (3.6)
In case of (3.5), we get:
Py(0) = / o) p{Yp}ax (asp(EL o) = P(FL) = o)

= Eg¢(x)

In case of (3.6), we get: Py(0) = > ¢(x).p(Yp) = Eog(x)
In either case we have Py(0) = Ey¢(x)V0 € O.

Special cases

1. Suppose ¢(x) takes only two values, viz. 0 and 1. In that case, we say ¢(x) is
non-randomized with critical region o = {x: ¢(x) = 1}.
In that case

Py(0) = 1.Pg{¢(x) = 1} +0. Po{¢(x) = 0}
= Py{X € w} = P,(0).
.. ¢ is generalization of .

2. Suppose ¢(x) takes three values, viz 0, a and [ according as
x €A, x € wgandx € . In that case ¢(x) is called randomized test having the
boundary region Wpg. The power function of this test is
P(p(g) = Po{X S CO} + an{X S WB}.

(1) = no need of post randomization: Non-randomised test.
(2) = requires post randomization: randomized test.

Example 3.9 X,X,,...,X, are i.i.d. Bernoulli (1, p), n = 25. Testing problem:
H:p:%againstK:p;é%.
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Consider the following tests:

25
d(x) = Lif Sx; > 12
1

(1) 1
=0if S <12
1

Non-randomized

25
o(x) =1if > x; > ¢
l

25
) =aif Y x;=c
1
25
=0if Y x<c

I
Find ¢ and a such that E,_i¢(x) =0.05. Randomized if a € (0,1) and
In case of (1), size = E,_1p(x)=

Non-randomized if a =0orl.

25
P{in > 12p = %} = 0.50001.
1
In case of (2), we want to get (¢, a) such that Ep:%

25 25
= PP%{Z)@- > c} —&-asz {in = c} =0.05
1 1

find that Pp:%{ ?5 x; > 17} =0.02237 and

¢(x) = 0.05.

(S

By inspection  we

P, {SF % > 16} = 0.0546. Hence, ¢ = 17.

005-7 {3 "xi>c}
N — L) ! _ 0.05-0.02237 __ 0.8573.
ow, a S 0.03223

Thus the test given by

25
$(x) = 1if Y x> 17
1

25
= 0.8573if Zx,- =17
1

25
=0if Y x<17
1

is randomized and of size 0.05.
But the test given by
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25
px) =1 if Zx,-217
1
25
=0 if Zx,-<l7
1

is non-randomized and of size 0.0546 (at the level 0.06).

Performance of o

Our object is to choose w such that P,(0)V0 € Oy and (1 — P, (0))V0 € Ok are as
small as possible. While performing a test @ we reach any of the following
decisions:

I. Observe X = x, Accept H when 6 actually belongs to ®p: A correct decision.

II. Observe X = x, Reject H when 6 actually belongs to ®g: An incorrect
decision.

III. Observe X = x, Accept H when 6 actually belongs to ®@k: An incorrect
decision.

IV. Observe X = x, Reject H when 6 actually belongs to ®g: A correct decision.

An incorrect decision of the type as stated in II above is called type-I error and
an incorrect decision of the type as stated in III above is called type-II error. Hence,
the performance of w is measured by the following:

(a) Size of type-l error = Probability {Type-I error} = Sup P{X € w/0} =
0e®y

Sup P, (6)
0e®y

(b) Size of type-II error = Probability { Type-II error } = P{X € x— w} V0 € O

= 1—P,(0) V0 € O.

So we want to minimize simultaneously both the errors. In practice, it is not
possible to minimize both of them simultaneously, because the minimization of one
leads to the increase of the other.

Thus the conventional procedure: Choose ‘w’ such that, for a given o €
(0,1), P,(0) <o VO € Ogandl — P,(0) V0 € Ok is as low as possible, i.e.,
P, (0) VO € Ok is as high as possible. ‘o’ satisfying above (if it exists) is called an
optimum test at the level a.

Suppose ®f = {0y} a single point set and @k = {0,} a single point set.

The above condition thus reduces to: P, (0;) = maximum subject to P,,(6y) < .

Definition 9

1. For testing H : 0 € Oy against K: 0 = 0, ¢ Oy, a test ‘m(’ is said to be most
powerful (MP) level ‘a’ € (0,1) if
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P, (0) <a¥0 € Og (3.7)
and

P, (01) > P,(0)) Yo satisfying (3.7) (3.8)
In  particular, if H:60=40, (3.7 and (3.8) reduce to
Py, (00) <aand P, (0,) > P,(01) Yo satisfying first condition.

2. A test ‘wy’ is said to be MP size-a, if Supyce, Pu,(0) =
aand Py, (01) > P,(0)) Yo satisfying P, (0) <oVl € Oy. Again if Oy = {0p},
we get the above condition as Py, (0y) = o and P, (0;) > P, (0,)Vw satisfying
Pw(eo) <a.

3. Fortesting H : 0 € Oy againstK : 0 € Ok, Ox N Oy = ¢, atest ‘@’ is said to
be Uniformly Most Powerful (UMP) level ‘a’ if

Py, (0) <avl € Oy (3.9)

Py, (01) > Py,(01)¥0, € O and Yo satisfying (3.9). i.e. ‘wy’is said to be UMP

size-a if Sup P, (0) = aand P, (0;) > P, (0,) V0, € Og andVw satisfying
0€Qy

Sup P, (0) <a. Again if ®y = {0y}, the aforesaid conditions reduce to
0eQy

(@) Py {00} <aand Py, {0,}>P,{0:} V0, € Ok and Vo satisfying P, {0y} < a.
(b) Pyy{00} =« and P, {0,} > P,{0,} V0, € O and Vo satisfying P, {0} <o.

4. A test " is said to be unbiased if (under testing problem: H : 6 = 0, against
K:0=0y (0, #0o))
P, (01) > P, (6y) (=power = size), i.e. it is said to be unbiased size-a if
Py (0p) = and Py (0)) >a. If K : 0 € Ok is composite, the above relation
reduces to (A) P, (0;) > P, (00) VO, € Ok (B) Py (0,) > aV0, € Ok where
o= P(u* (60)

5. For testing H:0 =0y against K: 0 € Og 50, a test o* is said to be
Uniformly Most Powerful Unbiased (UMPU) size-a if
(1) Pu)*(BO) = (11) Pw* (61) Z o vel € ®K and (111) Pw’(Ol) ZP(/)(OI) V@l S
Ok Vo satisfying (i) and (ii).

3.3 Method of Obtaining BCR

The definition of most powerful critical region, i.e. best critical region (BCR) of
size a does not provide a systematic method of determining it. The following
lemma, due to Neyman and Pearson, provides a solution of the problem if we,
however, test a simple hypothesis against a simple alternative.

The Neyman—Pearson Lemma maybe stated as follows:
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For testing H : 0 = 6 against K : 0 = 0y, 0y, 0, € ®, 0; # O,
for some o € (0, 1), let wy be a subset of x Suppose wy satisfies the following
conditions:

@) Ifx € wo, p ( Xy ) Ip (X/go) (Inside )
(i) Ifx € x—wp, p (X/g ) </p (x/g ) (Outside wy)

(x: observed value of X) where A( >0) is such that P, (0y) = «. Then
Py, (01) > P, {0, }Vo satisfying P, (0p) < o. That means ‘wp’ is a MP size-a test.

Proof (Continuous case)

P (0 = Pul0) = [ p(%, )0 / p(¥,)ax

on

/ x/()1 dx+ /p /I’(x/ol)dx—/ p(X/()l)dx

wy—w wpNw w—wgy ®Nwy
= / x/e dx / Py
wo—w w—wp
(3.10)
U

Now, x € wg — @ < x € inside wy = p( ¥ > Ap( %
0, 0o

= / p(x/el)dxzi / p(x/g())dx

wo—w wy—w

X € w— wy < x € outside wy = p(x/gl) <),P<x/00)

= /p(x/()l)dx</l / P(x/()())dx
Hence R.H.S of (3.10)

] o f ]

Wo— w—my

[ fron [rn)e]

o w

-1 [a — /p(x/g())dx} = Al — Py, (69)]

]

> Mo—oa) =0asP,(0y) <o
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Hence we get P, (01) — P, (0;) >0

ad P(/)U(()l) ZP(/)(OI)

(Similar result can be obtained for the discrete case replacing [ by X)

Notes

1.

Define Y = ﬁ E;‘}gé; If the random variable Y is continuous, we can always find a

/ such that, for « € (0,1) P[Y > 4] = «. If the random variable Y is discrete, we
sometimes find A such that P[Y > 1] = a.

But, in most of the cases, we have (assuming that P[Y > 1] # a)
Po,(Y>21)<oand P, (Y > Ay) > o, 4y > (= P(Y> 1) =a has no
solution).

In that case we get a non-randomized test ‘g’ of level o given by

Wy = {x : p(X|01) Z;Ll}, P(UO(HO) S o.
p(x[6h)

In order to get a size-o test, we proceed as follows:

(1) Reject Hif Y > 1
(i) Accept Hif Y <4,
(iii) Acceptance (or Rejection) depends on the random experiment whenever
Y =/,
Random experiment: when Y = 4, is observed, perform a random experiment
with probability of success

Peu— O(—POO{YAZ)vl}'
P{Y: /Lz}

If the experiment results in success reject H; otherwise accept H. Hence, we get
the following randomized test:

oo
00 = 1) =
P Y2} pf0)
Po{Y =12  p(x/00)
o PO
=0 o) <

Test ¢°(x) is obviously of size-o.

. A=0= Py (01) =1= wp is a trivial MP test.
. If the test (wg) given by N-P lemma is independent of 0; € ®; that does not

include 6y, the test is UMP size-a.

. Test () is unbiased size-o.
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Proof wog = {X : p(x]0y) > Ap(x]|0y)} we want to show P,,)O(Q ) >o. Take 2 =0.
Then wo={X:p(x/0;)>0}. In that case P, (0)) = [ p(x|0;)dx=

o
[ ple)dx = [p(elfr)dr = 1> o
{x:p(x|01) > 0} *
*. Test is trivially unbiased.
So throughout we assume that A > 0.

Now
p(x]61) > Ap(x|6o) [Asinside wy : p(x|61) > Ap(x|600)]

:>/ (x]0, dx>/1/ (x|0)dx = Aot

@PU)O(HI)EM (3.11)
Again

p(x]01) < p(x]0y) [As outside wg : p(x|0;) < ip(x]0o)]

= [ ptloar<s [ plidoas

S 1= Py, (0)) <A1 —a) (3.12)
(3.11) + (3.12) = % > % e p, (0)>0

= Test is unbiased.
Conclusion MP test is unbiased. Let wg be a MP size-a test. Then, with

probability one, the test is equivalent to (assuming that i g}gg; has continuous dis-

tribution under 0yand 0,) wo = {x:p(x]|0;) > Ap(x|0y)} where L is such that
Py, (00) = a € (0,1). O

Example 3.10 Xy, Xz, .. X, are i.id. N(u, 63), —0o<pu<oo, 6o = known. (without
any loss of generality take gop = 1).

X = (X1,Xa,...X,) observed value of X =x = (x1,x2,...,%,). To find UMP
size-o. test for H : p = i, against K : u > u,. Take any u; > u, and find MP
size-o test for

H :u=puyagainst K : u = p;

Solution
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Then

DN (i—p)?
x/,ul) ezZ ’ I (=) (2xi— 41— p1o)
1

— ni(uruo)f%(uffu&) Sy :l .
e oX anl

Hence, by N-P lemma, the MP size-a test is given by

.. (x x
wy = {x .p( /H1> > ip( /ﬂo)} (3.13)
where 4 is such that
Pon(ttg) = (3.14)
(3.13) < {x )=o) S ;L} (3.15)
@{ X > log. 2 +1(u Jr,u)}as,u > U
XX —— =
n(w —pg) 2700 UL
& {x:X>c}, say (3.16)

By (3.16),

(3.14) & P()‘c > C/uo) _

N P{\/ﬁ(xl— o) - \/ﬁ(cl— o)

Ho}“

(X1, X2, ...X, are i.i.d N(pp, 1) under H = X ~N(py, 1) under H)

& P{Z > \/n(c— 1y)|Z~N(0,1)} = o
= Viile ~ ) = %, | [ N(z|(0.1))dz =

To

1
i

Test given by (3.16) and (3.17) is MP size-a for H :u = u, against
K:p=m(>p).

Sce=py+ (3.17)
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The test is independent of any u;(>u). Hence it is UMP size-a for H : u = p,

against K : u > .

Observations

1. Power function of the test given by (3.16) and (3.17) is

Pwo(ll)=P(X€wo|ﬂ):Pf~{X>Mo+ n

=P{Z > /n(uy — 1) + t,|Z~N(0,1)}

= / N(Z](0, 1))dz
fv*ﬁ(ll*ﬂo)

(Under any p: (X1,Xs,...,X,) are i.i.d. N(u,1) = /n(x — p) ~N(0,1))
=1-®(t, — Va(u— ).
Hence, for any fixed p( > y)
Py, (1) — lasn — oo (3.18)
and for any fixed u(<py)
P, (1) — 0asn — oo (3.19)

(3.18) = test is consistent against any f > fi,.

Definition 10

1.

For testing H : 0 = 0y against K : 0 = 0, a test w (based on n observations) is
said to be consistent if the power P,,(6;) of the test tends to ‘1’ as n — oo.
Py, (1) =1 — (1, — v/n(p — 1y)) which increases as u increases for fixed n.

= Py, (n) > 1 — @(t,) forall u > u,
=1-(l—-0)=ua
= m is unbiased.
Py (1) <Poyy (o) for all < g
=0
= Power <« for any pu<p,,
That is, test @y is biased for testing H : u = u, against K : < .
From (3.15), if pu; <y, we get wg to be equivalent to

{x:x<c} (3.20)
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and P, (1) is equivalent to P{X <c'|uy} = o

T

:>c’=u0—7“h. (3.21)
(by the same argument as before while finding ¢)
Test given by (3.20) and (3.21) is independent of any yu; < u,. Hence it is UMP

size-o for H : pt = p, against K : u<py.

(i) UMP size-o for H : p = p against K : > gy is wg = {x 1X > U+ f/—%}
(i) UMP size-o test for H : u = p against K : p1<py

is wg :{x DX<fg — \T/—g}

Clearly, wo # o] (o, is biased for H against u< g, and ; is biased for
H against u > p).

There does not exist any test which is UMP for H : u = u, against
K :p# py.

Example 3.11 X,X,,...X, are i.i.d. N(ug,0?), 6> > 0 and p, is known (without
any loss of generality we take u, = 0)

X = (X1,Xs,...,X,), observed value = x = (x1,x2, .. .,X,)

Testing problem: H : ¢ = g against K : ¢ > ay.

To find UMP size-a test for H against K : ¢ > gy we take any a; > ay.

Solution

L\ A2
Here p(x/a) = (U 2x> e i
Hence

P(Y) _ (@inxg (L%LQ (3.22)

(3.23)

where A( > 0)
is such that

Pwo (O'()) = (324)
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Now, l . 1) >le (ﬁ)ne E ’2 ("5 Uf) > J [from (3.22)]

Asa; > 0y (3.25)

Hence (3.23) and (3.24) are equivalent to

wo = {x : ixlz > c} (3.26)

andP{zn:xf > C/O'()} =0 (3.27)

Under any 62, X1, X, . .., X, are i.id. N(0,d?)

n
XX
i

2
=1~y
o2 "

Hence (3.27)

o

= i ~ 72 / 71 g%y%ildy = ¢
7 | ) T
Tno

Sc= a(z)xi’a (3.28)

Thus the test given by

wy = {x : lez > aéxia} (3.29)

is MP size-o for H : ¢ = g against K : ¢ = g;. Test is independent of any
o1 > ady. Hence it is UMP size-o for H : ¢ = 0 against K : 0] > 0y



3.3 Method of Obtaining BCR 81

Observations

1. Under any o3,

0'2 Z i ~ o

= E(Y,) =nV(Y,) =2n

Hence, from the asymptotic theory of y2, for large n under H

Yy—n ;

e is asymptotically N (0, 1).

2
_ Y,—n Tna— N
So, for large n, wy = {x > }

2
Tng

and \'/5}1" ~ 1, ie. ﬁu ~ 1, V2n+n
Thus, (3.29) can be approximated by

{ Zx >00( \/2_n+n>}

2. UMP size-a test for H : 6% = a7 agamst K:d>>a}is

n
. 2 2.2
wo = {x. E x; >O’0,{n71}
i

UMP size-o test for H : 6> = ¢} against K : 0> <a} is

v oS et [ iz =1

T (1-2)

Clearly, wy # w.. Hence there does not exist UMP test for H : ¢ = O'% against
K : 0 # a}.
The power function of the test wy is

00
n
PWO (0’2) = P{lez > G()an } / f /(n d}’i
i

Jz/m

Clearly, P,,(c?) increases as ¢ increases.

Also Py, (6%) < Py, (0}) = aVo* : 6? < 7}

Test is biased = w( cannot be recommended for H :o” = o} against
K :o? <00.

Similarly w, is biased (Here Pw*(az) increases as ¢® decreases) and hence it
cannot be recommended for H : ¢° = 0(2) against K : 6% > o%.
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n
Next observe that 1 Z x? is a consistent estimator of ¢2. That means, for fixed 62,

as n — oolzx — ¢ in probability and 0/” — ‘70 Thus if ¢ > Uo» we get

n—oo

Lt P{Zx > 0'0,(,, o / } = 1 implying that the test wy is consistent against

K : 6% > a}.
Similarly the test w, is consistent against K : ¢*> <03

2
Example 3.12 Find the MP size-x test for H:X N\/#z—nefx 2 against
K:X~Le X

Answer MP size-« test is given by (Using N-P lemma)

wo = {x:p(x/K) > ip(x/H)} (3.30)
where / is such that
Py, (H) = (3.31)

Now,

2
< log, \/§—|— % — |x| > log,
o2 = 2x| + {loge (g) ~2log, ;L} >0
& =2x[+C>0 (3.32)

Using (3.32), (3.31) is equivalent to
P{x* —2]x|+C>0/H} =« (3.33.)

Test given by (3.32) and (3.33.) is MP size-a.
To find ‘C’ we proceed as follows:

P{x* =2|x|+C > 0/H} = Py{x* = 2|x| + C > 0nx <0} + Py {x* — 2|x| + C > 0nx > 0}
=Pp{x® +2x+ C > 0nx<0} + Py {x* —2x+C > 0nx > 0}
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Now, under H, X ~ N(O, 1)

= Py{ +2x+C > 0x<0} = Py{x* —2x+C > 0Nx >0}

Thus (3.33) is equivalent to

Pufs —2x+C>0Nx>0} =2

Writing g(x) = x> —2x+C = ¢"(x) =2 and g'(x) =0 at x = 1
.. g(x) is minimum at x = 1

= [¥* = 2x+C > 0nx > 0] & x<x;(c) orx > x,(c)

g(x)

x<0 I x‘(c)wxg () x>0

where x;(c) <x(c) are the roots of

X—-2x+C=0
2+ VA—4
x:%:li\/l—c

So, xi(¢c)=1—+v1—-cand x(c) =1+vV1—c¢
Hence (3.34)

@PH{0<x<1—\/l —c}—l—PH{x> 1+\/1_c} :%

@(D(l—m)—%ﬂ—(b(um):g
@(D(lJr\/m)—(I)(l—\/m): _%_%:1;“

Test given by (3.32) and (3.35) is MP size-a.
Example 3.13 Let X be a single observation from the p.d.f. p(¥) = ¢

Find the UMP size-« test for H : 6 = 0y againstK : 6 > 0,

1
+

83

(3.34)

(3.35)

~,0 > 0.

¥2
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Answer Take any 0; > 0y and consider the ratio

p(-x/ol)_ol 03"’)(2_01 0%—|—x2
p(x/0) 0o 024+x2 0o (07— 03)+ (03 +2)
0 1
61 WOEAY which is a strictly increasing function of x*(i.e., |x|).
0 1+ (92+x2)

Since 07 > 6y, hence we can find a ‘C” such that

plx/61) _
>l x| >C 3.36
plxf00) (336)
where C is such that
Pl|x| > C/0o] == (3.37)
@/ N R
T 62—|—x2 2 b a 0o C_2
1 |m (€ o 2 _/(C
— ==t —)l=Z2e1-=t —) = )
@n{z an (Qoﬂ 5® —tan <00> o (3.38)

Test given by (3.36) and (3.38) is MP size-a. As the test is independent of any
01 > 0y, it is UMP size-o for H : 0 = 0y against K : 6 > 6y. Power function is
given by

C
e
c

Example 3.14 X is a single observation from Cauchy p.d.f .f(x/6) = e

+1}
we are to find MP size-« test for H : 0 = 0y against K : 0 = 0;( > 0y).
Answer X ~ Couchy(0) = Y = X — 0y ~Couchy(0 — 0y = ). Hence H:0 =
0o < H : 6 = 0 using Y-observation. So, without any loss of generality we take
H : 0 =0 and for the sake of simplicity we take 0; = 1.
Here, by N-P Ilemma, MP test has the critical region o =
{x:p(x/61) > Ap(x/00)} with Py, (X € w) =a € (0,1)
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Here

p(x/0y) - 142
p/00) =7 T 14 (x—1)?
S 1+ > A1+ —2x+1)
(1= +2x+1-22.>0 (3.39)

>

Several cases

(@)
(b)

(©)

4 =14 x>0, hence the size of the test is P(X > 0/0 = 0) = 1.

0< <1 if we write g(x) = (1 — x> +24x + (1 — 22),

we have, g'(x) =2(1 — A)x+24=0=x=— %

g"(x) =2(1 — A) > 0, this means that the curve y = g(x) has a minimum at
x=—-t

Ya

y=g(x)

Shape of the curve is:
X, (/1) = X,

x=-2/(1-2)

Here x; < x; are the roots of g(x) = 0. Clearly, test is given by x <x; or x > x,
such that

P{X<x,/0 =0} +P{X > x,/0 = 0} = o (3.40)

We take those values of x;, x, that satisfies (3.40). Eventually, it is not possible
to get x1,x, for any given o. It exists for some specific values of o.

If A > 1, in that case g”(x) = 2(1 — 1) <0, thus y = g(x) has the maximum at
x = —(%;) > 0. As shown in (b) above here also we can find x; and x, the
two roots of g(x) =0 and the test will be given by x > x; or x<x, with
P{x; <X <x;/0 = 0} = 0. Taking 0; = 2, it can be shown that the MP test
for H : 0 = 0 against 0 = 2 is completely different. Hence based on single
observation there does not exist UMP test for H : § = 0 against K : 6§ >0
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Randomized Test Testing problem H : 6 = 0, against K : 0 = 0;. If the ran-

dom variable ¥ =2 g;g‘; is continuous under 6 = 6, we can always find A( > 0)
such that for a given o € (0,1), Py, (Y > 4) = o

On the other hand, if the random variable Y is discrete under 6 = 0, it may not be
always possible to find A such that, for a given o € (0, 1) Py, (Y > A) = . In that
case, we modify the non-randomized test wg = {x : p(x/0,) > Ap(x/0o)} by using

following functions:

=1, ifp(x/01) > Ap(x/0p) Y> 1
P (x)=a, if p(x/0,) = Ip(x/00) » = Y =1 (3.41)
=0, if p(x/0;) <p(x/6) Y<i

where ‘a’ and ‘A’ are such that
Pp{Y > A} +aPp{Y =2} =u (3.42)

The function given by (3.41) and (3.42) is called the randomized test corre-
sponding to non-randomized test wy. It states that, after observing Y (i.e, X)

Reject Hif Y > 2
AcceptHif Y <A

Perform random experiment with probability of success = a, if ¥ = 4.

Occurrence of success = Rejection of H and
Occurrence of failure = Acceptance of H.

Now we can show that the test given by (3.41) and (3.42) is MP size-o. among all
tests ¢ satisfying Eg,¢(x) < o. Observe that ¢°(x) = 0 = [¢"(x) — ¢(x)] > OVx:

p(x/01) > Ap(x/0,) and ¢°(x) = 0 = [d’o(x) — ¢(x)] <OVx : p(x/0,) <ip(x/6).
Hence, for all x, we have,

gl >] (/00) ~ 7p(x/00) 20
= / ¢° (] lp(e/00) — Fp(x/B0)ds> 0

A E91¢ ( ) - E(‘)ld)( ) - j'OC—’—;”E‘G()Q’)()C) >0
& Eg, ¢°(x) — Ep, (x) > (o — Eg,p(x)) >0, As 2 > Oand Eg, p(x) <o
P¢o(01) > Py(01)
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= ¢° is MP size-x among all ¢ : Egp(x) <a.

Example 3.15 X1, Xp,...... ,X, are i.i.d according to f(x/0) = *(1 — 0)' ¥, x =
0,1 To find UMP size-a test for H : 0 = 0y, against K : 6 > 0.

Answer Take any 60, > ). To get MP size-o test for H: 0 = 0y, against
K : 0 = 0,, we consider the ratio

y = P&/00) T f(/00) _ 02" (1 — 0,2
p(X/HO) Hizlf(x,»/eo) Hoz:x,(l _ 00)},’72

(=) (=t

where s = > x;. Observe that Y is a discrete r.v. under any 0.

X;

Hence by the N-P lemma, MP size-o test is given by

1,ifY > 4
do(x) =a,ifY =1
0,if Y <2
1—01\"[0:(1—00)" )
<or> .
@(1_00) {00(1_()1) <or>4, (3.43)
where ‘A’ and ‘a’ are such that Ey, ¢y (x) = o
& P {Y > i} +aPg{Y = i} =0, (3.44)
Now,
1—01\"[0:(1-06)°
<or>]
<1 — 90) {00(1 - 01) =or=
1-— 91 91(1 - 90) / !
—_— < > L =
¢>nlog1_90 +S10g{00(1—91) <or>7 [) logei}
' log =0
& s<or> / &1,

—n
= 0,(1—00) 0, (1—00)
tog {15} toe {7}

= C, (say), {AS, 0y > 0y = IOg{M} g 0}
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Hence (3.43) and (3.44) are equivalent to

l,ifs>C
Po(x) =< a,ifs=C (3.45)
0,ifs<C
and
Py, {s > C}+aPp{s=C}=u (3.46)

Under any 0, s =) ]X;~bin(n,0). Hence from (3.46) we have, either,
Pop{s>Cl=as > (101 —0)""'=a=a=0
c+1

or,

Py, {s>C}<a<Py{s>C}

0 S ()00~ 00" 547
(#)05(1 = 00)"¢

Test given by (3.45) and (3.47) is MP size-x for H:0 =0, against

K :0=0,(>6)h). Test is independent of any 6;( > 6y). Hence it is UMP size-a
for H : 0 = 0, against K : 6 > 6y

= a=

Observation

1. For 0, <0y = log{z(‘ﬁ:z(g} <0
In that case (3.43) and (3.44) are equivalent to

1,ifs<C.
d.(x) =< a,ifs=C, pand Py, {s<C.} +aPy,{s = C.} = .
0, if s > C,
We can get UMP for H: 0 = 0y against K : 0 <0, by similar arguments.

Obviously ¢, # ¢,.. So there does not exist a single test which is UMP for
H : 0 =0y against K : 0 # 0,

2. ByDe Moivre—Laplace limit theorem, for large , \/50:<’%0_~0)is approximately N(0, 1).
Hence, from (3.45) and (3.46), we get,
C —nb
L N Ty = C >~ nby + 1,/nbp(1 — o)
n90(1 — 90)

Then approximately size-o test is : Reject H if s > nly+ 1,1/n0o(1 — 0o),
Accept H otherwise.
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3. Power function of test given by (3.45) and (3.46) is:

P(0) = Egepo(X)
= Po{S > c} +aPy{S = ¢}

n

= (OFa-0"" +a()o1-0""

S=c+1
[Can be obtained using Biometrika table]

n

=(l-a) > Mea- ”+az )0°(1 — 0

S=c+1
=1 —-a)lhlc+1,n—c)+aly(c,n —c+1),
[Can be obtained using incomplete Beta function table].

Observe, as Iy(m,n) is an increasing function of 0, the Power function P(0)
increases with 0.

Example 3.16 Let X be a single observation. To find MP size-o test for H :
X~R(0,1) agalnst K:X~R(},3)

if 0 1
Answer p(x/H) =y Gpmres

Lif 12<x<32
p(x/K) :0, otherwise

As the ratio P(¥/K )/p(x /H) is discrete, MP test for H against K is given by:

= 1if, p(x/K) > Ap(x/H)

bo(x) = a, if p(x/K) = Ip(x/H) (3.48)
=0, if, p(x/K) <Ap(x/H)

where ‘a’ and ‘A’ are such that
Epgo(x) = o (3.49)
Taking
A<1;0<x< = :>p(x/K) =0andp(x/H) =1
x/k) < p(x/H) = o(x) = 0

=p(x/H) =)
> ip(x/H) = do(x) = 1
=landp(x/H) =0

1
3 <x<1=p(x/K

1<x< :>

= p(
pl
= p(x/K
p(x/K
= p(

)
)
)
)

x/K) > Ip(x/H) = do(x) = 1



90 3 Theory of Testing of Hypothesis

So, for 2<1, we get Ey¢y(X) = 1. Py (3 <X<1)+1.Py(X>1) =1 Thus it
is a trivial test of size 0.5.
Taking 1<1,
1
0<x< 5= Po(x) =0

% <x<1= ¢y(x) =0 pEndo(X) = Oanditis atrivial test of size 0.

3
1§x§5¢¢0(x):1

Taking 4 =1,

0<x< 3= ¢o(x) = 0: we always accept H.
1<x<3= ¢y(x) = 1: We always reject H.

;1 <x<1= p(x/K) = p(x/H) = We perform a random experiment with
probability of success ‘a’ determined by Ep¢(x) = a.
1
< a.Py §<X<1 =osa=2a

Thus the randomized test given by ¢, (x)

1
=0,if0<x< <
S 1 x< 5

= 2a, if% <x<1 pis MP size-a test.

3
=1,ifl<x< =
, 1l <x 5

3.4 Locally MPU Test

The optimum region is obtained by the use of the following:
Generalization of N-P lemma.

Theorem 2 Let go,g1,82,...8m be (m+ 1) non-negative integrable functions on
the sample space % . Let  be any region such that [ gi(x)dx = Ci,i = 1(1)m
where C;’s are all known numbers.

Suppose wg be a subset of x such that:

Inside g : go(x) > > Aigi(x),
1
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m
Outside g : go(x) < > Aigi(x), where Ay, Agy...... Am are so chosen that
1

J gi(x)dx = Cii = 1(1)m.

Then we have [ go(x)dx> [ go(x)dx.

@o

This is called generalized Neyman—Pearson Lemma.

Proof

/So(x)dx*/go(x)dx

o

wy — ® = my — wNwy = insidewy

_ / 20()dx — / go(x)dx..,......(l){

Wy— w—wg

W — Wy = w — wNwy = outsidewy

X € wy—w= go(x) > Z),,-gi(x)
1

= / go(x)dx > / {i)»ig(x,-)}dx

wWy— wWy—
m 3
= E /ll' / 8i (x)dx
i=1
Wo—®

XEwy—w = go(x)< Zﬂvigi(x)
1

= / go(x)dx < / {ﬁ:)vigi(x)}dxzzr::/li{ / gi(x)dx}

w—wo w—wo w—wo

Hence L.H.S of (1)

[ wte— [ s Z;{ / gi<x>dx}§'jjzi{ / gi<x>dx}

wo— w—wop wo— [ORION

—Zﬂ[ [ atoa- | g,.%
S [ [ et /g,,(x)dx] S (G- ) =0

o (0]

= Hence the proof. U
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Locally Best Tests

1. One-sided case: For the family {p(x/0),0 € ®}, sometimes we cannot find
UMP size-a test for H : 6 = 0 against K : 6 > 0y or 0 <0,.
For example, if X;,X,,...,X,(n>1) are i.i.d according to the p.d.f.

1

$6/0) =

(—oo< b <00, —00<x<00)

we cannot find UMP size-a test for H : 6 = 0, against 0 > 0y or 0 <0y.

In that case, we can find an ¢ > 0 for which there exists a critical region wy such
that P, (0p) = a and P, (0) > P, (0)V0 : 0y <0 <0y +¢ and Yo : P,(0y) = .

Construction Let p(x/6) be such that, for every o, %pw(e) exists and is

continuous in the neighborhood of 6y. Then we have, by mean value theorem, for
any 0 > 0

Po(0) = Po(09) + (0 — 05)

dQP‘”(Q) L0p< 0" <0

=P, (00) + (0 — 00)P,,(07), (say) (3.50)

Similarly,
Py (0) = Pay (00) + (0 = 00) P, (67), (say) (3.51)

Let @y be such that P, (0)) =« and P, (0p) is maximum, i.e.

P, (00) > P;,(00)¥e : Py, (0o) = . Then comparing (3.50) and (3.51), we get an

¢ >0, such that P, (0) > P, (0)V0 : 0p<0<0y+¢e. Such a wy is called locally
most powerful size-a test for H : 0 = 6, against 0 > 0.

Now our problem is to choose g such that

Puy(00) = 00 / p(x/00)dx = o (3.52)

and

op( x/@ (x/9
0o) > P, (0o)
(/)0( 0) (/) 0 <:>/ do, /

@/ (x/00)dx 2/ (x/00)dx

w

| \/

where o satisfies P,,(0p) = o < [ p(x/0)dx =
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In the generalized N-P lemma, take m = 1 and set go(x) =p'(x/0),
g1(x) =px/bo), Cr = o, Ay = 4.

Then we get,
Inside wy : p'(x/60) > Ap(x/6y) (3.53)
Outside mg : p'(x/00) < Ap(x/6y) '
Finally, [ p'(x/0o)dx> [p'(x/0p)dx
[on) w
where wy and w satisfy
Py (00) = Poy(00) = (3.54)

Thus the test given by (3.53) and (3.54) is locally most powerful size-o for
H : 6 = 0 against 0 > 0.

Note If UMP test exists for H : 0 = 0, against 6 > 6, = LMP test corre-
sponding to the said problem must be identical to the UMP test. But the converse
may not be true.

Example 3.17 X,X3,...X, are i.id N(0,1). H : 0 = 0, against 0 > 0.
LMP test is provided by

w0 = {x: 1/ (x/00) > p(x/00)} (3.55)

where Z is such that

/ p(x/0)dx = « (3.56)

It can be observed that

P'(x/00) > Jp(x/0o)
1, )
ép—(x 90)p (x/00) > 4 (3.57)

d
g a0, [log, p(x/00)] > 2

Here p(x/0) = (27-5)*"/267%2(&'*0)2

1 2
logp(x/0) = const. — EZI: (x;i — 6)

L8] — 37 (x; — 0p), hence by (3.57), (3.55)
0 1
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S o= {x:x>1}
and (3.56) & Py {x > '} =«

=4 Pgo{\/E(fcf 00) > \/I_l(/v - 00)} =0 = \/ﬁ(i/ — 00) =Ty

i.e, N = 0y + ﬁ‘(:x . Thus wg & wg = {XZX> 0y + \/L%‘L'a}
which is identical to the UMP test for H : 0 = 6, against 6 > 0.

General case: Let X1, X, .. .X,, be i.i.d with p.d.f f(x/0).
To find LMP for H : 6 = 0 against 6 > 0,

Here p(x/0) = ;llllf(xi/g);

LMP test is given by the critical region:
o= {x:p'(x/0y) > p(x/0)}, where A such that P, (6y) = o
Now,

P (e/00) > 7p(e/0o) < L% 5

p(x/6h)
1 0
o Ologp(x/0o) _ p(x/0) > 0]
dby
& Zf x’/UO 2, (say) & El:yi > J, where y; :J;&’//gg)).

Now, under H, y,’s is i.i.d with

Ep,{y }—/f 1/00 (xi/6p)dx = /f (x/00)dx
— i [ 76/ = o1 =0

v = [ LY 0
_/{mogcj;o(:/()o)} F(/09)dx

=1(6o) [Fisher's information].

Hence, by Central Limit Theorem, for large n, le ; ~N(0, 1), under H. So,

n 0)

for large n, the above test can be approximated by
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o= {x: Xn:% > rm/nl(Oo)}.
i=1 J \i

Locally Best test: Two-sided case

For testing H : 0 = 0 against 0 # 0y corresponding to the family {p(x/0),0 € ®},
it is being known that (expect some cases) there does not exist any test which is
UMP for both sided alternatives. e.g. taking u = 0 against y # 0 for N(u, 1) and
taking ¢ = 1 against o> # 1 for N(0, ¢?) etc.

In those cases, we can think of a test which is UMP in a neighbourhood of 6.
Thus a test ‘wy’ is said to be locally best (of size o) for H : 0 = 0y against K : 0 # 0,
if there exists an ¢ > 0 for which

(i) PW()(HO) =
(i) Py(0)>aV0:|0— 0y <t and Vw satisfying (i).

Let p(*p) be such that, for a chosen w

(i) P,,(0) exists in the neighbourhood of 0y;
(i) P/ (0) exists and is continuous at (in the neighbourhood) 6.

Then we have, by Taylor’s Theorem

(0 —6p)

P,.(0) = Py, (00) + (0 — 00) P, (60) + T

‘0* — 0()| <|9 — 0()|

P (0°);

Let wo be such that

(i) Py, (0p) = o (size condition)
(ii) P:VO(BO) = 0 (Locally unbiased condition)
(i) Py, (0o) is maximum

Then we can find an ¢>0 such that VO:|0— 0y <r, We have

P, (0) > P,,(0)Vw satisfying (i) and (ii).
2

Now P, (0) = P,,(00) + (6 — 00)P,,(00) + 52 P7(05)+ 1 and 75— 0 as
0— 6().

To get Py, (0) > P, (0)¥0 : |0 — 0g| <t we must have P} (0p) > Py,(0o) [due to
continuity of P,,(0)].

Then wy is called locally Most Powerful unbiased size-o test if

(1) PW()(OO) =
(i) P!, (6o) = 0.

(iii) P", (0p) > Pl (0p)Vw satisfying (i) and (ii).
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Construction

Puon) = [ p(a,)ax P00 = [ v (3,

w

P00 = [ " (o, )

w

Let us set in generalized N-P lemma

g0(0) =" (Y, ) 1) = p (Y, ) &2 = ' (Y, ).

Cl =10, = 0
Then

e () (i) 2 )

where 2; and /, are such that [ g;(x)dx =a, [ g2(x)dx =0

Wo

wo
Then we have [ go(x)dx> [ go(x)dx provided ‘w’ satisfies (i) and (ii).
wo w

& Py (00) > P, (0o)

Example 3.18 X,X5,.. X, are i.i.d. N(y, 1). To find LMPU test for H : u = g,
against K:u # po.

n 5 (Xi*li)z
Answer Here p(Yp) = (J%_n) e Z

P' () =
P" (%)

LMPU size-a test is

S
8-
G

) n(x — u)e%z R n(x — wp(Yp)
wI*p (V) — np (¥p)

[n

—
=

wo = {x :p” (X/QO) > ﬂulp(x/g()) + op (X/HO)} /p(x/@o)dx =o (3.58)

[N
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and

/ P (x/00)dx = 0 (3.59)

o

{ n(x— po)] —n>il+)~2”(5€—/40)}
{ {\/_x*llo} > 2+ A {vn(x - }}

{x 0y > /1/1 +}V2y};

y = v/n(x— py) ~N(0,1) under H
(3.59) &=

yN(p, 1)dy =0 (3.60)

¥ > i+ iy

Now the LHS of (3.60) is zero irrespective of choice of any (4}, 45) since
N(¥p,1) is symmetrical about ‘0’

Here, we can safely take 4, = 0 without affecting size condition. Then our test
reduces to wo : {x:y* > 21} = {x:|y| > c} and hence (3.58) is equivalent to

J NCp.Ddy == c=14p
yl>c¢
Then we obtain LMPU test for H : pt = y, against u # p.
A test which is locally most powerful and locally unbiased is called a Type A
test and corresponding critical region ‘wy’ is said to be Type-A critical region

3.5 Type A; (=Uniformly Most Powerful Unbiased) Test

Let p(Yp), 0 € © : Real parameter family of distributions.

Testing problem: H : 0 = ), against K : 0 # 0.
T(X) =T : Test statistic.

(i) Right tail test based on T is UMP for H : 0 = 6, against 6 > 6, (in most of the
cases)

(ii) Left tail test based on T is UMP for H : 0 = 0, against 0 <0y (in most of the
cases)

[As for example N(u,1), N(0,6?) .... T=Yx;, T=> x7 etc. and for
B(n,p),T = X etc.]

There does not exist a single test which is UMP for H : 6 = 0, against 0 # 0.

If p(%g) has monotone likelihood ratio in T(X); i.e.
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1 T(x) for 6 > 6o; then (i) and (ii) are satisfied.

P <x/ 0o )

In that case, we try to choose a test wy for which

(i) Py, (o) = o
(11) Pwo(g) > ovo 7& 00
(iii) Py, (0) > P, (0)VO # 0p¥w satisfying (i) and (ii)

Such a test is called UMPU size-o test for H : 6 = 6, against 0 # 0.
Let p(*Yp) be such that, for every test w,

L1p,(0)] exists;
and

de d@/ x/0)dx = /dpx/de / x/0)dx (3.61)

Then unbiasedness of a test

d

Thus, if a test wy satisfies (i), (ii) and (iii); under (3.61), wy also satisfies (i) and (iii).
Test satisfying (i), (iii) and (3.62) is called type-A; test.

For exponential distribution, if type-A; test exists, then it must be unbiased. But
this is not true in general.

Construction Our problem is to get wy such that
W f p(Yp,)dx =
() [p (x/ao)dx =0
(i) [ p(Yp)dx> [p(Yp)dx Vw satisfying (i) and (ii) and VO # 0y

In generalized N-P Lemma, put go = p(¥p), g1 = p(x/g()), =7 (x/go),
¢ =00, ¢ = 0.

Then, define wy = {x :p(Mp) > Aip (x/go) +Ap (x/go)} and  hence
[ p(¥p)dx> [ p(¥p)dxvw satisfying (i) and (i) and V6 # 0.

For exponential distribution, it is always possible to have such region wy (which
means type-A; test exists).

Example 3.19 X, X, ..., X, are iid. N(u,1). We test H:p=p, against
K # py
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() = (zn),n/ze%z (xi—p)

n A2
P (%) = (2m) " Z (xi — p)e 2 =Y (& — wpp)

Then type-A; region (test) is given by
wo = {x: p(Yp) > Lip(Mp,) + 22n(x — o) (Yp,) }

py) _ AT e

_ _ e%(#—#o){zx—(ﬂo +u)}

p(x/go) e%lz (1)’ e%"(X—Mo)z

cowp = {x: PR S 00 ) where £ = /n(X — )

= {x:e" > N+ 2t}
where 4/, and 4| are such that

/ p(Ypy)dx = 2, / n(x — 1p(Mp,)dx = 0

= /N(t/O,l)dt:ac (3.63)
& /tN(t/O,l)dtzo (3.64)

Writing g(r) = e — 1 — 25t we have g/(1) = de® — 2y and g" (1) = 6°e” > Oz

= y = g(¢) has a single minimum (global minimum).

Now if we take o< 0.5, because of (3.63) and since the distribution of ¢ is sym-
metric about O under Hj our shape of the curve will be like as shown below. From the
graph, we observe that ¢; <c¢;, g(t) > Ofort<cjandt > ¢; and g(¢) <0 otherwise.

py=ev

[
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Hence wy is equivalent to w, = {x: t<cjort > ¢}
(3.63)« [ N(t/0,1)dt = o and (3.64)

1<ci,t >
@/ tN(t/0,1)dr =0 (3.65)
t<cit>c
Now, as T~ N(0, 1), we take wy as
wo = {x:t< —candt > ¢} (3.66)

where c is such that

N(t/0,1)dt = o0 = c = 152 (3.67)

|t > ¢

Here (3.65) is automatically satisfied. Hence test given by (3.66) and (3.67) is
type-A; (which is UMPU).

Example 3.20
X, X0, ... , X, areiid. N(0, ¢%).

Testing Problem, H : ¢* = a% against K : ¢? # a%
n —

p(¥g) = (a \/lﬁ) A

PO = | = n | 530

Thus,

wo = {x :p(Yp) > 2ap(Mp,) + 2 (Zggx’z - n) ZLG%P (x/ﬁo)}
- {x: rCjp) > )+ Ast}, t:le

r™,) 5

n
i 2
i

X n _%
As p(x /0) _ (@) e atrd
r(Mp,) \o
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ago\" s
wo = {x: (—O) e > ] —&-IZZ}
o

Now as before the curve y = g(t) = (%)ne% — A} — 25t has a single minimum.
Here P{T > 0/9} =1

.. Shape of the curve g(¢) will be as shown below

y=g(t)

[ da\_/ t
which means there exists d; and d,

such that wy is equivalent to wo = {x : t<d; or ¢t > d»}
Here d, and d, are such that

dr
/ p(x/go)dx —ue /fﬁ (dr=1—-u (3.68)
d

o

and

/ I (X/HO)dx =0& / (t—n)fp(1)dr =0 (3.69)

Wy t<dyort>d,

B69 e [ afp(ydi=n [ fa()d = no by (3.68)

t<dyort>d, t<djord,

dy
& | tf,2(t)dt = (1 —a)n
/

dr
& [ £ (dr=(1-a) (3.70)
/

Thus UMPU (a type-A) size o test is
wo = {x:t<djort > d,} such that

P{di<y’ <d} =1 —aandP{di <y’ ,<d}=1—a

Note in this example = type A; test < type-A test.
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Example 3.21 X1,X,,...,X, are i.i.d with p(¥) = 0e~**. Find Type-A and Type-
A, test for H : 0 = 0 against 6 # 0.

Answer proceed as Examples 3.19 and 3.20 and hence get
wy = {x: Xn:Xi<c1 or ’lei > cz}
1 1
where ¢; and ¢, are such that
P{ZC—QIO 1<}52,21<20—0207 1} =1—o«aand

C1 2 (65
P{——1< <——-1;=1—0.
{200 X2n+2 200 } o



Chapter 4
Likelihood Ratio Test

4.1 Introduction

In the previous chapter we have seen that UMP or UMP-unbiased tests exist only
for some special families of distributions, while they do not exist for other families.
Further, computations of UMP-unbiased tests in K-parameter family of distribution
are usually complex. Neyman and Pearson (1928) suggested a simple method for
testing a general testing problem.

Consider X ~ p(x|6), where 0 is a real parameter or a vector of parameters,
0 € 0.

A general testing problem is

H: 0 € ®yAgainstK : 0 € ©;.

Here, H and K may be treated as the subsets of ®. These are such that HNK =
¢ and HUK C ©. Given that X = x, p(x|0) is a function of 0 and is called like-
lihood function. Likelihood test for H against K is provided by the statistic

%ugp(ﬂ@)
L __bed
(x) Sup p(x]0)’

0cHUK

which is called the likelihood ratio criterion for testing H against K. It is known that

(i) p(x|0) >0v0
(ii) Supp(x|0) < Sup p(x|0).
0cH 0cHUK
Obviously 0 <L(x) < 1. The numerator in L(x) measures the best explanation
that the observation X comes from some population under H and the denominator

© Springer India 2015 103
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measures the best explanation of X to come from some population covered under
HUK. Higher values of the numerator correspond to the better explanation of
X given by H compared to the overall best possible explanation of X, which results
in larger values in L(x) leading to acceptance of H. That is, L(x) would be larger
under H than under K. Indeed, smaller values of L(x) will lead to the rejection of
H. Hence, our test procedure is:

Reject H iff L(x) <C

and accept H otherwise,
where C is such that P{L(x)<C|H} =« € (0,1).

If the distribution of L(x) is continuous, then the size « is exactly attained and no
randomization on the boundary is needed. If the distribution is discrete, the size
may not attain « and one may require randomization. In this case, we have C from
the relation

P{L(x)<C|H} <o.

Here, we reject H if L(x) <C,

accept H if L(x) > C,

and reject with probability ‘a’ iff L(x) = C.

Thus, we have P{L(x) <C|H} +aP{L(x) = C|H} = o.

The likelihood ratio tests are useful, especially when 6 is a vector of parameters
and the testing involves only some of them. This test criterion is very popular
because of its computational simplicity. Moreover, this criterion proves to be a
powerful alternative for testing vector valued parameters that involve nuisance
parameters. Generally, the likelihood ratio tests result in optimal tests, whenever
they exist. An LR test is generally UMP, if an UMP test at all exists. In many cases
the LR tests are unbiased, although this is not universally true. However, it is
difficult to compute the exact null distribution of the test statistic L(x) in many
cases. Therefore, a study of large sample properties of L(x) becomes necessary
where maximum likelihood estimators follow normal distribution under certain
regularity conditions. We mention the following large sample property of the
likelihood ratio test statistic without proof.

Under H, the asymptotic distribution of —21log, L(x) is distributed as y* with
degrees of freedom equal to the difference between the number of independent
parameters in ® and the number in ©y.

Drawback: Likelihood ratio test is constructed completely by intuitive argu-
ment. So, it may not satisfy all the properties that are satisfied by a test obtained
from N-P theory; it also may not be unbiased.

4.1.1 Some Selected Examples

Example 4.1 Let X be a binomial b(n, ) random variable. Find the size-a likeli-
hood ratio test for testing H : 0 < 0 against K : 0 > 0,
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Solution Here, ®) = {0:0<0<0y} and ® = {0:0<0<1}.
The likelihood ratio test statistic is given as

Supp(x|0)  Sup p(x[0)
(x) = OcH 0<0o

~ Supp(x[0)  Supp(x|0)
HUK (€]

_0<0,
Sup( )Hx(l -0
o \x

TheMLEonforHE@isZ):ﬁ
For, 0 € ©y, we have

Sup (Z)é“(l _ g

Thus, we have

Sup (”)9*(1 - (

0<0, X

{ 1 if ¥ <0,
So, L(x) = G(1-0)"" e x o p
ORI

It can be observed that L(x) < 1 when x > nfy and L(x) = 1 when x < nfy. This
shows that L(x) is the decreasing function of x. Thus, L(x) <C iff x > C’ and the

likelihood ratio test rejects Hy if x > C’ where C’ is obtained as
Py,(X > C') = a. Since X is a discrete random variable, C' is obtained such that

Pyo,(X > C)<a<Py (X >C —1).

Example 4.2 Let X\, ..., X, be a random sample from a normal distribution with
mean p and variance ¢”. Find out the likelihood ratio test of

(a) H:u= pyaganistK : u # p, when o2 is known.
(b) H:u= pyaganistK : u # p, when ¢? is unknown.
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Solution

(a) Here, ®) = {yy}, ® ={p: —co<u<oo}

_ — *ﬁi(xifc)z
p(al6) = plali) = (2m) "2 () 2 T

The likelihood ratio test statistic is given as

Supp(x|u)  Supp(x|p)
H ©9

L(x) = =
) Sup p(x[p)  Supp(x|u)
HUK (€]

The maximum likelihood estimate of u for u € ® is x.

_ _ —1 > Ki—p)?
So, Supp(x|u) = (2m) 2 (0?) P e
(o)

_ P o
and Supp(x|p) = (2n) nﬂ(oz) 2, 2; :
)

This gives
Lix) = T
The rejection region L(x) <C gives
e mpec
or, ’M > (C,

Thus, the likelihood ratio test is given as

e | V(E—p)
o= 1 P 0‘.>cz
0 Otherwise

where the constant C, is obtained by the size condition

Ey[¢()] =
or, P, { M

>C2:| =
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Now, under H : u = y, the statistic @ follows N(0, 1) distribution. Since
the distribution is symmetrical about 0, C, must be the upper o/2—point of the
distribution. Finally, the test is given as

o) = ! if [t > g
0 Otherwise

(b) Here, ®9 = {(u,0?) : p = py, 0% >0}
0= {(u,az) L —00< U< 00,0° > O}

In this case,

< ! )nﬂ Y e

_ e i=1
2na?

Supp(x|g,o%) = Sup
@0 ®0

MLE of ¢? given u = p is given as

1 <& 2
S?):;Z(Xi—ﬂo) :
i=1

n/2
This gives Sup p(x|u, %) = (271132) e 2.
[N 0

Further, Sup p(x|u, 0%) = Sup p(x|g, 0%) = Supp(z,igz)nﬁ ¢ 73 2 K1
(€] 1,62 w02
The MLE of p and ¢? are given as x and 1377  (X; —X)?=1"Dg2 where

n
s = ﬁZLl (X; — X)z. We have,

n/2
1 "
Supp(xlp,0?) = | ———| e
> ( ) 2n(";1)sz

0,0

Hence, likelihood ratio test statistic is given as

1P n2

(27[52> €z (}’l — 1)S2

L(X) = : 1 = ( 2
(ﬁg) et

ns§
< (n—1)s? >n/2: |: (n—1)s? n2
Y (X — o)’ n(x— po)’ + Yo, (X - X)*
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The LR critical region is given as

L(x)<C

- 2
n(x — #o)
2

‘ﬁ&x 1)

or, > ()

> (C,.

The likelihood ratio test is given as

Vn(E—po)
dEs) =1 i >0,
0 0therw1se

where the constant C, is obtained by the size condition

P [ V(X — 1)

Now under H : pt = y, the statistic M is distributed as, # with (n — 1) d.f
which is symmetric about 0. Hence, C; = tx 1. Finally, the test is given as

> C2:| = .

e
N

> t%,n— 1

$(x,5) = { !

0 otherwise

Example 4.3 X1,X,...X, are i.i.d N(u, ?). Derive LR test for H : u < u, against
K:u>p.
Answer 0 = (1,6%), ® = {0: —co<u<oo,d* >0}

TR S s
Here, p(x/0) = p(x/p, %) = 27) 2(¢%) e ~ 21: !

Likelihood ratio criterion
Sup(x/m0?)  Sup (x/p, o>
up(x/mo%)  Sup (/. )

~ Sup(x/p,0%)  Sup(x/u, o2
HUK o

[HUK =0 = (1< po)U(1 > po)]
:p(x/ﬂH’612'-1)
p(x/it,6%)

where (,uH,oH) MLE (u, 6?) under H
(ft, 6*): MLE of (u, ¢?) under H UK (in the unrestricted case).
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For (u,0%) € HUK, i.e. ©, we have

IR T . 2 (n—=1),
U=3X,0 —nZ(x, X) = s

n

For (u,0?) € H, we have

~ e — ~ n
Hy zilfxgyoandoﬁl =

1
= pyif X > pyand 6% y = s} :—Z(xi — o) if X > .

Hence, we reject H if L(x) <C, where C(< 1) is such that

P{L(x) <)y = no} = o € (0,1) (4.1)
nol 2 n2
& ( ol > <CandXx >
50
n
(n—1)s? 2 _
& — 5 <CandXx > y,
(n = 1) +n(x — o)
- 2
& 1+M > C'andx > p
(n—1)s?
PN \/ﬁ(x — :u()) > " (42)

N

Thus, (4.1) is < P{M > €, = ,uo} _
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V(X — py)

>y ="
[ sy
lnfl

= (' = Ton—1

& P

Hence, reject H iff M > tyn-1
= Test can be carried out by using students’ t-statistic.

Example 4.4 X, X,.. X, are ii.d N(p, 0%); —oo<p<o0o,6* > 0. Find the LR test
for

L. H:06>= o% against K : % > o%
Il. H:¢*> = o} against K : % # o

Answer 1. 0 = (i, 0?)

_ — 5 3 (i—n)*
p(x/,u,az) = Likelihood function = (27) n/2(62) nﬂe 22;

= @2n) T2 (¢?) T el e e
Likelihood ratio is:

Supp—2p (¥/1.0%)  p(x/ity, 3)
Supy‘(iz za(z)p(X/ﬂ, 0-2) p(X/[l, 6-2) ’

where jt = (MLE of p overall 0 : 0> >03) = X

n—ls2’if n—ls2 20.(2)
"o ndo o
0, if =57 <0y

2 = MLE of ¢? :{

ity = MLE of p under

H
(n-1)s?
n/2 202
(@)
0 el 2 2
Hence we get, L(x) = (i) ,%Jf =857 >0y
1
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Now we apply LR technique: reject H iff
L(x)<C. (4.3)

where C (<1) is such that
P{L(x)<C/H} =o€ (0,1) (4.4)

n—1 2\ 5 (n-1)s? 5
el @2\E 2 ~1
(1)@<" g)e AT T Gl L

2
i) 0o

Suwet<C™ ifu>n (4.5)

Writing g(u) = e >, u>0

g'(u) :gu e

. .
S P

u
e 2 —

(S

=0

N' n:\n:

=n—u=0u=n

The curve y = g(u) has a maximum and the shape of the curve is

g(w=c'

From the graph, it is clear that g(u)<C* < u<u_joru>uy where
O<u_j<n<uyg.
Hence, (4.5) < u > up and (4.4) < Py(U > up) = «

@P{ 2 o } As under H,
) uyr = 0o
/(n—l 0 UNX%71
= Up = Xzzlfl,v,

Thus, LR test is: reject H if Y -, (x; — 56)2 > 03%%-1,«-
(n=1)s?

Sup“_’”z:”%p(x/‘u’a-z) _ (ﬂ%)fnﬁe 7
Sup, 2p(s/uc®) (k) e

S

=K - ute”

II. L(x) =

Our test is to reject H if ufe™ < C', where C’ is such that PH{U%e’% < C’} =a.

From the graph, we observe that the line y = C' cuts the curve y = g(u) at two
points: #_; and ug such that 0 < u_; <n< uy. Hence, the test is equivalent to reject
Hiff u<u_; or u > uy, where

Py (}(ﬁfl <u_1)+Py (Xi—l > ) = o
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Although »? is not symmetric, for the matter of simplicity, equal error proba-
bilities o/2 are attached to both left-and right-sided critical regions. Thus, u_;

2 )
Yo, and ug = Tn-1z:

Example 4.5 Let Xy, X,

(@) H:o? =03 against K : 07 > 03

4 Likelihood Ratio Test

...Xy and Yy, Vs, .. .Y,, be two independent samples drawn
from N (,ul , 0'%) and N (,uz, 0%), respectively. Find out the likelihood ratio test of

(b) H: 0'% = a% against K : 0'% #* 0%, when p; and p, are unknown

(a) Here, 0 = (i, 1y, 07,03)

®0: {(lulHqua%aG%) : _OO<MI,'L[2<OO’O'%:G§:O.2 >0}

0= {(,ul,uz,af,ag) : —oo<,ut-<oo,<7l-2 >0,i= 1,2}

ny

2
*ﬁ Z (Xi—m)"—
1

i=1

On )

ny +ny

p(x,y|0) = (2m)" =0 "0y e
Supp(x,y|0
S (e

L(x,y) = =
Sup p(x,y[0 0
0cHUK (v, 510) p(x |0
where Z)H = MLE of 0 under H
0 = MLE of Qunder HUK.
Under H, we obtain MLEs

ny )
ﬁz i—#a)
2 =1

e Y-

IV
—_ \.l
S}

S,

A

Q)

—~ _mtn 2\ T n n
Hence,p(x,y|9H) = (2n) 5 Z(GH) T e

_m

and p (x, y|§) =

_mitm /2 2 _mtm
(2n) 2 (GH) ez

y n
_mtm 2\ T 2\ T _mtm
: o
(2m) (‘71) (02) ez if
+n

if

) q>|Q)
o 19 o= o

|2

Q)
[

<1
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=2 NTI -2 %2 2
(5)7 () (ff)z if 4>1
Therefore, L(x,y) = (5:) ’ ”
2
1 if %<l
03
2 ny/2
(52 ni/. (1-5)? 2 e
{an } {2"2 } if Z(XL x) /nl >1
-2
B {Z(x;x)erZ(,\i,\)z}(n] +Vl2)ﬂ Z (yl - y) /i’lz
= ny +ny
> (= %)
1 if —2/’11 <1

X

S () e
Xi— _\2
("1 +nz)"142r"2 Z("f-‘)z} Zi(L - X) /nl >1

nnlﬂnnzﬂ . %)? w Z (yl - }—))2 N
1 2 1+Z(*‘ﬂ)2 /I’lz
Z(”"“)

1 if

Now, under the null hypothesis H : 67 = 63 = ¢?, consider the statistic

S,y

F = 2 - _é ~ ni—1ln—1-
PR Y] S :
DO fy—y ®
On writing L(x) in terms of F, we have
np—1 nlﬂ
(o ) (11 F12)2 (FF) £ ps min-
L(x y) = ni2 /2 ( . (I’ll +n2)/2 = m(m—1)
i '11 i’l2 l+lr:ﬂ]):1F)

. ny(na—1)
1 if F <n;(nffl)

Now we apply LR technique: reject

Hiff L (x,y)<C (4.6)

where C(<1) is such that
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P{L(x,y)<C|H} = o € (0,1). (4.7)
(m )”1/2
n—1 . nl(}’l2 — l)
4.6) = : <C, if F>-L12
(46) -1 (n1 +m)R2 ! T m(ng —1)
(1+347)
(nl—l /2
where C) is such that P ﬂ—(ﬁz)/z <C; and F> % = o

nyp—1
(1+“;71F)

w1\ 2
3 (2tr)
(1+""‘F)

1

u_171 _mtmp ny
—1 2 —1 —1 2 —1 2
...g/(F):nl n F m (1™ F (T F) At
2 nz—l n2—1 I’lg—l n2—1 2

1\ o1
ny — n —
<1 + - F) 1"

nz—l I’lz—l
nlfl nlfl
=m|l+ F —(n1+n2) F=0
I’lz—l n2—l
-1
jF:M
ny(ng — 1)

The curve g(F) has single maximum at F = % and the shape of the curve is

2 (r)

g(F)-c

ni(np—1)

From the graph, we observe that g(F) = C, and F > ey

= F > do( > M) The constant d is obtained by the size condition

ny(np—1)

PJ%:(,%{F >dy} =o
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This gives dy = Fp,—1,,—1:0

1 if
0 otherwise

> Fnl—lﬁnz—l:a

S5t

..LR test is given by ¢(x,y) = {

(b) Similarly, for testing H : 67 = 03 against K : o7 # o3 the LR test is equivalent

to
2 2
S s
—é <d jor —é > dp.
s 7 5

These constants d_; and dj are obtained by the size condition
PH{F<d_1} = PH{F > d()} = OC/2

This gives d_| = Fnl,lm,l;l,% and dy = Fn,71n271:a/2~ The LR test is, there-

fore, given as

. 52
1 if é<Fn171,n271;170€ﬂ
P(x,y) = 5
( ’ ) or g > Fnl—l,nz—l;O(/Z

0 otherwise

Example 4.6 Let X,,Xs,...,X,, and Y1,Ys,...Y,, be two independent samples
drawn from N (y;, 61) and N (i, 63) , respectively. Obtain the likelihood ratio test of

(@) H:u, =, against K : i, # p, when o7 and o3 are known

(b) H:pu = w, against K : i, # i, when 2 = g3 = g2 but unknown

(¢) H:pu, >, against K : i <, when g2 = g3 = ¢° but unknown

Solution

(a) Here, 0 = (u;, 115,07, 03)

©o = {(1 = 1y = p); —oo<p<oo}
© = {(1y, pp); —00 <y <o00,i = 1,2}

ny

)
I 1 Xi—u ) -1 Vi1 )
px0) = (2m) g rgyme 1 T IR

ML estimators of g, and u, under ® are given as
py=xand , =y
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711 772
1 —\2 1 —\2
mm ) (X)) (iY)

Sup p(x,y|0) = (2n)" 7 0,"0, e 1 2
(11:12)€©

Under u € Oy,

ny

B (2 M —ﬁz (Xi—p) ——Z yi—1)’

— ny -
)2 o, "o, e 1A

p(x,ylp)
On taking log, we get

1 1
logp(x,ylu) =k —5— Y- =55y i —w’
o1 203

where k is a constant which is independent of u.
The ML estimator for u is obtained as

P
5—10gp(x7y|u) =0
1
—ZZ W+
1 1 2

r 1 no
:>¥HIX+J—%n2y: p+—2 Hu

1 1 02
5 2 2
mx nyy o’ _ o5 _
oA 1 2
= 2 -1 =
PG Sl S
Uy = n n, 0.2 02 .
2 2
7] % n + ny

This gives

n ~ N2 m ~\2
1 - 1
_nptnp T2 (M—Hﬁ) 22 ()’i‘#ﬁ)
Sup p(x,y|0) = (2n) 2 0,"a, e T 2=
(11.12) €00

LR test L(x, y) is given as

, 2;% [Z (x—%7 +m (x;H)z] fi {Z(y, —9+m (y;,_,)z]

Ry 2
723,2 Z (xi=%) 72% E =)
e 1

~ 2 ~ 2
z (x ‘u ) = (y ‘u )
T2\ HH ) T2 H
—e 2{71 20‘2

L(x7y) =




4.1 Introduction

117
) M2 2
_ - (3-y)
Now (1= )"~ [ £
Lo Ty
r 2
(y 2 )2_ 2 (-3
— MH ) — o2 o2
L nll + nz
2 2\ 1
ny,_ - ny ~ - \2({07 | O3
(% += = (x- + 2
= i B0 = (=372 + )

> 2\ 7!
o ”_1+”_z) 3
ThuS, L(x7y) —e Z(rtl ny (X V)
The rejection region L(x,y) <C gives

(x-3)°
or, 2 2 > CZ
oy o
np + nyp
X-y
or, | —F/———| > C3
’ a2 a2
1 2
n + ny

We know that under H : iy = py, \/*% ~ N(0, 1). Hence, the likelihood ratio
i
n ny

test has critical region

o, 9 ’
o
where Cj3 is such that
P
Py Y >C3| =a

a2 o2
L + -2
np ny

This gives C3 = 1z
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Finally, the LR test is given as

¢()_C75)) =

(b) Here 0 = (:uh Ha, 0—%7 O—%)

Oy =
@ = {(,ulnuZa
For (Auluubaz) € ®a
p(x, vl o,

On taking log, we get

ny+ny
logp = ——

The ML estimators for (i, fty,

)= <27r10'2)

log (27w -——

4 Likelihood Ratio Test

[yl
a,7

n

0 Otherwise

1 if > Ta
2

{(,u,0'2);—oo<u<oo,a2 > 0}

<72);—oo<,ui<oo,<72 >0,i= 1,2}

1
2

1 1

%) € © are given as

=0+ -y

ologp 0oy =3
o :

ologp -
———=0=m;=y
Oy 2

ologp 0o Z(x
oa?

Sup  p(x, ¥, o

(t1,42,6%)€O
For (u,0%) € Oy,
1 2
p(x,ylp, 0%) = <2n02>
ny+np
" logp = —

23

ny+np
i A

(02 2 e —3(n1 +n2)

" "
—5 [Z -+ > (y,wz}
e

1 1

log(2na?) — % l”zl (6 — 1)+ ”ZZ (vi — H)Z]

1 1
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Now,
ol ﬁ X y
B8P _ 0=y = mx +nzy
ou ny+ny
dlogp ) 1 < N2 & ~\2
502 :0:>GH:n1—|—n2 Z(Xi*HH)ﬂLZ()’i*HH)
1 1

ny

:”fim{ﬁjﬁ””2+"%xmﬂz+§;oﬁw2+n4me1

1

2 nX+n§2 m(x—y) 2
=~ _ (= _m 5\ [ m(x—
Here, (X ‘uH) - ()C n +n2) - {nl +n2}

(7_A )2_ _ mX+my 2_ nm(y—x)>
Y e Y ny+ny ny +ny

This gives
2 e 2, [mE=I NS o (m -9
= X, —X)"+n + ; — +n
( H) ny+np 21:( ) 1{ ny+np le(y y) ny+n
1 ! R 2 mny
= Xi — X _|_ P — —
P Z( ) Z(y Wt s G-y

Therefore, Sup p(x,y|,u,02):(ﬁ)%(8f12) temilmtm)
(1,02)€0y

Hence we get,

Sup p(x,ylu, %)
(1,6%)€0q

Sup  p(x, ¥y, 1y, 02)
(11:442,0%)€O

L(x,y) =

_ () _ P -+ YR - 9)

Tl =07+ T -9 e )

2
Oy ny+ny

1
mmy(x — y)°

(m + n) {0 (= %7+ S (v — )7}

1+
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1

2
1+ -
(i ) (22 {Z 9 )’}

(ng +np— )

We know, XNN(MI,%) and YNN@Z,%)

X - f’wN(,ul — /12,0'2(1 + 1>>
n ny
Thus, £7=0=10)  N(0, 1)
o/ (+4)
Again, éz (X; — 5()2 ~ X%lq
and B30 (Y = V)~ 5,1
Therefore, {Z X — X))+ S (¥ — }7)2} o A
Thus, under H : p; = 1y,

X-Y
AR
= Ntn1+n2727
SIS w07+ S -1
or,t:&anJrnsz

1 1
(R+3)-»

2 _ Z(Xi*)?y + Z(.Vi*y)z _ (m = 1)s} + (ny—1)s3

where s ny + np—2 - n +n—2

SO, L()C7 y) H;

Thus, the rejection region L(x,y) <C gives

nFm—2

2

1+ —>(
ny+ny; — 2
or, >0
or, 1] > C3

Therefore, the LR test is given as [f| > C3,where C; is obtained as
PHHZ‘ > C3} = .
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This gives C3 = 1,,, 4 4,—2,4/2- Hence, LR test is given as
‘ > 202
Plxy) = (e t)
0 Otherwise

(c) Proceeding similarly as in (b), for testing H : pu; > u, against K : u; <u, the
LR test is given as

1 if ——< =ty 1m-24
o(x,y) = (1)
0 Otherwise

Example 4.7 Suppose x;; ~N(p;,6%),j = 1(1)n;,i = 1(1)k independently. This is
one-way classified data.
We are to find LR test for H : p; = p, = -+ - = 1, against K: i} are not all equal.
Answer Here, 0= (u;,1ty,...14,0%) and® = {0 : —oo<p;<oo,i = 1(1)k,
6> >0}. Observe that HUK =®. Likelihood functions = p(x/0)=

nj

k
—5 Xjj— ’
(2r) "o e 3 2 (o) n=>%n.

Supr(%p) 1 (%p,,)

~ Supp(Yg) (%)
where 0 and Oy are, respectively, the MLEs of 0(c ®) and 0(c H).

Likelihood ratio is L(x)

ni

Now, 0 € ®= MLEs are y; =%, =15

n; Xij
1

[as dlogp(Yp)

=0=u, =X
o i x}

k n; . .
o2 — EZZ (v — %)= within 5.5, _ E.(say).
n 1 1 n n

Again 0 € H = 0 = (1, 0?), where  is the common value of f;’s.
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Here, we have MLEs

=
Il
-~

ni (% — ):c)2 = Between(means) S.S} .

Hence, we getp(x/@)) = (2n)_nﬁ(0)_"e’§.
o) -

2\ 1/2
So, L(x)= ((‘T’—f) and therefore reject H iff L(x)<c,Py{L(x)<c}=
H

xe(0,)(0<c<1)

~2
On / B / B "
<:>?>C<:> > <:>W>C
<:>T*_B/k—1 <
W/nfk

The size condition now reduces to Py{T* > ¢} = o under H.
Under H, T* ~F(k — 1,n — k)
"

S =Fy 100

B
So, our LR test is % > Fy (k—1n-1) as rejection of H.
& J(k=1,
Note It is the same as ANOVA test.
Special case: (i) u = y, (given)

~2 nﬂ k n; -\2 n/Z
o D120 (xij - xi) ]
L(x) =\ =
<GH ) lzf S (x5 = #o)”
14 r/z
W+ Z]f ni(% — po)’
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Test reduces to reject H iff

%ZII ni(% — o)’
W/(n —k)

(ii) Common value is unknown (u) but ¢ = 63 is known.

T = > Fz,(k,n—k)

n;

(o5 — x)z} exp{ G(B—i—W)}

>
L(x) = .
Bi-n) ol

|-

k
ol st
07
X
-
B
= expl — —
P 203

Hence LR test is: reject H iff

o

2
2 > /{O(,kfl'
i)

(iii) If min (ny,ny,...,n;) is large, we can approximate the distribution of

—2log L(x)
Note The above hypothesis is equivalent to homogeneity of k univariate normal

population.

Example 4.8

Suppose x;; ~ N (u;, a?),j: 1(1)n;, i = 1(1)k independently.

Obtain the likelihood ratio test of H : 67 = 05 = 03 = --- = 07 against K: not
all g;’s are equal.

_ 2 2 2
Answer 0 = (u;, 1y, ..., 14, 07,03, ...,07)

©={0:—co<p<oo,07>0,i= 1(1)k}

n2 -4 3 Xij—H; ? k
Likelihood function = p(¥y) = H)—(/) F e 2 o) : |:n = Zn,]
i=1 0-2
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X
Now, (22000 _ g 250 (g — ) (1) =0 = jy =

i

and

dlogp(Mp —n; 1 & 2
%@202 —I—Z—OAZ(X,'J'—M) =0
i 1 rj=1

1 ni—1,
:—g le x,- S;
n; =1 n;

ni

Hence, for 0 € ® we getp(x/[g) = (Zﬂ)_n/znizl (67) 7

( Supp (Yo) )

Under H, p(¥p) reduces to

p(x/e) = (Zn)_n/zof"eiﬁzz(xru‘) 7
2 k n; .

where from we get jis = ¥ and 7, = 4373 (x5 = %)7 = £33 (1 — 137
Hence, SUPP x/@ (/@ ) n/z( ) ”/Ze—n/z

Hence, hkehhood ratio is

o2 na {<nf;_1>s%}%
TP A SR

[T, (7)™ 5 - 1] e

The distribution of the statistic obtained in L(x) is difficult to calculate.
Therefore, we could only say about its asymptotic distribution, i.e. —2log, L(x).

S - & (ni—1) ,
So, —2log, L(x) = nlog, ==t 20 - N "y :
0, —2log, L(x) = nlog, . 2 nilog, =5

is distributed as ng_( for large n;’s.

k+1)=k—1

It has been suggested by Bartlett (1937) that the above approximation to
Chi-square for large n can be improved if we replace the ML estimators of ¢>’s by
unbiased estimators, i.e. if we replace n; by n; — 1 and n by n — k in the above

expression. So,
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Zf: (n; — l)si2 k
~2log, L) = (1~ £)log, LS 1) o

2 : 2
K ; i — 1)ss
(n; — 1) loge%, where s* = M
Si >ic (mi—1)

Bartlett has also suggested that Chi-square approximation will hold goof for n; as
low as four or five if the above statistic is divided by v, where

k

1

4

Dl 1 Zk: 1 1
3k—1) |[&m—1 S (—1)

i=1 i=1

K 2
Yo (ni—1)log.%
Hence, T = —— ~ i1

So, we reject H approximately at level o iff
T> Xzfl,ot

It is noted that the rapidity of convergence for this statistic 7 towards > is
greater than that of —21log, L(x).

Example 4.9 X, X,...X, are i.i.d. with density ée’é(x”” for x > p. Find the LR
test for testing

I. H: u=p, against K: u # i
I. H: 0 = gy against K: ¢ # 0y
Solution

I. Likelihood function

1 =22 Gimm) .
p(x/u, 0) =€ if x; > uvi
= 0 otherwise
MLE:s of p and ¢ are given as
it =y1,y1 = lstorder statistic

n
6= %z:l (yi = y1), y1 <ya2--- <y are the order statistics of xy,x;. . ., X,.
=

Then

igfp(x/ﬂ, o-> =p(x/A a) = () "e™"
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Under H, p(x/ﬂ’ a) reduces to

_ *%Z(xf Ho)
p(x/#ma):a ¢ i
éMLEofalson%Z( ):%Z( o)
Then Sup p( /,u 0') = (/P‘O»O'H) = (6p) e

n,o€H
Then likelihood ratio is given as

Su%[’( /,u7 ) 6’ n
== (o)
Supp (Y q)
Now, reject H iff
> i—w) c
Lx)<C & S = 10) <
> i —y1) e M=) _
T a0 =) TS mi—w)
Under
H:p=pg
n( = Ho)y

~F30n5.
2 i=yh,
Hence, we reject H iff

"h(y1 — 1y)
2 (i _yl)/(Zn -2)

T =

> Foc;2,21172

II. As earlier, it can be shown that the test has acceptance region as

n

1
Cl<T:G_Z(yi_)’1)<CZ>
0
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where ¢, and c¢; are determined that

P[-]{C] <X§n72<62} =1—u

PH{cl <X§n<cz} =1—-«

Example 4.10 Let (X11,X21), (X12,X22)- - -, (X1n, X2,) be a random sample from a

bivariate normal distribution with means x, and p,, variances o7 and ¢3 and cor-
relation coefficient p. Find the likelihood ratio test of

H:p=0against K:p#0
Solution

Here, 0 = (i, 15, a1, U%ﬂp)

0= {(,ul,,uz,a%,oz,p) : —oo<,ul-<oo,c7i2 >0,—1l<p<l,i= 1,2}
®0 = {(:uh:u'%a]ao-%?p) : *OO<IU,-<OO7O'I-2 > 07p :07l = 172}
In ®, ML estimators for i, tt,, 07, a5 and p are
-2
Hy = X1, Uy = X2, O =

D (=) (=)

IS (e — 11)%, 05 = 1Y (o — %)’
3" i)Y (%)} ="

Thus,

and

)
I

5 52
-n ——L 1-‘rnjl—Zr.nAri|
Sup p(x|0) = (Znala—‘zm) e 2<1,,z)[
0cO

= (27[&182\/ 1-— r2) 7n67"

In ®,, ML estimators for p, i, O'% and O’% are

~ - _ 2 1 _ 2 1 _
Mg = X1, log = X2, Oy = ;Z (x1i — x1)27 Oy = ;Z (r2i — x2)2
62 net
=1
Thus, Supp(x]0) = (27’60’11-1(72[-1) e L7
0c®

“\u %2H

—n
= (27‘5&1[16’2[-1) e "
Hence, the LR is given as

Sup p(x|0)
L( _ 0€®,

n/2

P P ——

Sup p(x|0) ( )
0O
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The LR critical region is given as
L(x)<C
or, (1 — rz)n/Z<C
or, 1-— r?<C,

or, >0
or, |r]> Cs,

where C5 is obtained as
Pyllr| > C3] =u

Thus, the test of H : p = 0 against K : p # 0 is based on r, the distribution of the
sample correlation coefficient and its distribution for p = 0 is symmetric about 0.

Thus, PH[r< — C3} = PH[F > C3] = O(/Z

Equivalently, the critical region for H : p = 0 against K : p # 0 is

[rlvn —2

— >k

V1—r2

Since ’\/li_’)—f has the z-distribution with (n — 2) d.f. when p = 0, the constant & is

given as

This gives k = lLiaap
Note For example, if n = 4 and o = 0.05 then

—c 1

3
1 1

—1 3

gives C3 = 0.95. Hence, H is rejected at 5 % level of significance if r based on a
sample of size four is such that |r| > 0.95.

Example 4.11 Let X;,X5,...,X, be a random sample form density f(x) =
%e_x/’“,x > 0,4 > 0. Find the likelihood ratio test of H : 4 = A¢ against K : 4 # Jg.
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Solution Here, 0 = (1), = {41: 1 > 0}

@0:{/12/121()}

In ©, MLE of is 1 =&
Thus, the LR test is

Sup p(x|4) Lok

@0 —nx n
L = = ¢ = —e" .
™) = Sup Gl Ten 7397
(€]

The rejection region L(x) <C gives

)—CneﬂJC/;LO < 7
writing g(x) = e
It shows that the curve y = g(x) has single maximum at X = Jy and the shape of
the curve is

d, x=1 d,

The graph shows the critical regions 0 < X <dj or d; < X <oo corresponding to
the critical region L(x)<C. The constants dy and d; are obtained by the size
condition

PH[d0<5C<d1] =1-—oa.
In this problem, X ~ G(1, A)

My (1) = (1— )~
ML) = (1 - %) B

Thus, X ~G(n,%), i.e. f(X) = F(ln) ()" xL.

One can find the values of dj and d; from the gamma distribution table under H.




Chapter 5
Interval Estimation

5.1 Introduction

Inpoint estimation when a random sample (X, X>,...,X,) is drawn from a popu-
lation having distribution function Fy and 0 is the unknown parameter (or the set of
unknown parameter). We try to estimate the parametric function y(6) by means of a
single value, say ¢, the value of a statistic T corresponding to the observed values
(x1,x2,...,x,) of the random variables (X;,Xa,...,X,). This estimate may differ
from the exact value of y(6) in the given population. In other words, we take ¢ as an
estimate of y(0) such that |z —y(0)| is small with high probability. In the point
estimate we try to choose a unique point in the parameter space which can rea-
sonably be considered as the true value of the parameter. Instead of unique estimate
of the parameter we are interested in constructing a family of sets that contain the
true (unknown) parameter value with a specified (high) probability. In many
problems of statistical inference we are not interested only in estimating the
parameter or testing some hypothesis concerning the parameter, we also want to get
a lower or an upper bound or both, for the real-valued parameter. Here two limits
are computed from the set of observations, say #; and #, and it is claimed with a
certain degree of confidence (measured in probabilistic terms) that the true value of
v(0) lies between #; and #,. Thus we get an interval (#,#,) which we expect would
include the true value of y(6). So this type of estimation is called intervalestimation.
In this chapter we discuss the problem of interval estimation.

5.2 Confidence Interval

An interval depending on a random variable X is called a random interval. For
example, (X, 2X) is a random interval. Note that, % <X<leX<1L<2X.

© Springer India 2015 131
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A confidence interval (CI) of 0 is a random interval which covers the true value
of the parameter 0 with specified degrees of confidence (assurance). In other words,

a random interval 1(X) = [0(X),0(X)] satisfying
Prg{OeI(X)} >1-a¥0c® (7.1)

will be a confidence interval for 6 at confidence level (1 — a). If equality in (7.1)
holds then (1 — o) will be called confidence coefficient. (X) and 0(X) are the lower
and upper confidence limits respectively.

Let I(X) =[0(X),00] be a random interval such that Pro{0 € I(X)} =
Pro{0 > 0(X)} > 1 —aV 0 € ©. Then 0(X) is called the lower confidence bound
of 8 at confidence level (1 — a). Similarly we can define upper confidence bound
0(X) such that Pro{0 € I(X)} =Prg{0<0(X)} > 1 —aV0 € ©, corresponding
to a random interval I(X) = [—o, 0(X)].

Remark 1 In making the probability statement we do not mean € is a random
variable. Indeed, 6 is a constant. All that is meant here is that the probability is
(1 = o) that the random interval [0(X), 6(X)] will cover 6 whatever the true value
of 6 may be. More specifically, it is asserted that about 100(1 — a)% statements of
the form 0 € [0(X), 0(X)] should be correct.

Remark 2 In thepoint estimation, we choose an estimate, say a(x), on the basis of a

sample x such that the difference ‘a(x) — 0] is small with high probability. In other

words, in the point estimator we try to choose a unique point in the parameter space
which can reasonably be considered as the true value of theparameter. On the other

hand, in the interval estimation, we choose a subset of the parameter space, say / ( X ) ,

on the basis of a sample x which reasonably includes the true value of the parameter.

~

More specifically in interval estimation, we choose an interval 1 (x) , such that

Pr9{061<f)} >1—a V0.

5.3 Construction of Confidence Interval

Method I
A simple procedure for finding a confidence interval

Let T be a statistic and (7', 6) be a function of T and 6. Suppose the distribution of
W(T, 0) is free from 6. Then it is always possible to choose two constants K; and K,
(K1 < K3) such that
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Pr{y(T,0) <K} <oy and Pr{y(T,0) > K} <o, where ay,0, > 0 and
oy o = o.

Hence Pr{K, <yY/(T,0) <Ky} > 1 — (o + o) =1 — 0.

Suppose it is possible to convert the inequality K; < (T, §) <K, into the form
0(T) <0< (7).

Then Pr{0(T) <6 <0(T)} > 1 — o This fact gives us a (1 —a) level confidence
interval for 6.

Example 5.1 Let X,X,,...,X, be a random sample form N(u, ¢2). Find (1 — )
level confidence interval for u when (i) 62 is known and (ii) when o2 is unknown.
Solution (i) Suppose a? is known.
We take ¥/(T,0) = VIE=1) \hich is an N (0, 1) variate. Hence the distribution of
Y(T,0) is independent of 0. We can choose ky and k, from N(0, 1) such that

Vi(x — p)

P|:Tloc1 <
g

graz} = l—(uy+o,) = l-u«a

So, [}_C — Ty, \/iﬁ X — Ti—g, ﬁ} is a (1 — o) level confidence interval for p if o is
known.

(ii) Suppose ¢ is unknown:

We take (T, 0) = M which is student’s # statistic with d.f (n — 1) where

=L (- x)% The distribution of (7, 0) is independent of 0. Again we
choose k; and k; using a t-distribution with (rn — 1) d.f such that

2

n(x —
P|:tn—1,l—oc1 < M an—l,xz] = l—(y+mw) = l-u
_ s _ s
= Plx— In—1,0, 7ﬁ Su<xi-— n—1,1-o 7}; = (1 - OC).
So [ ~ bty e X~ 11 \H isa (1 — a) level confidence interval for y, if

62 is unknown.

Example 5.2 Let X1, Xa, ..., X, be a random sample from N(u, ¢?). Find (1 — )
level confidence interval for o> when (i) u is known and (i) u is unknown.
Solution (i) Suppose u is known.
2
We take (T, 0) = 2= which is distributed as 7* with n d.f. Thus its

distribution is independent of 6. We can choose k; and k;, from x? distribution with
n d.f such that
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Xi
p Xi,l*xl < Z( o2 lu) < Xﬁ712‘| = 1 - (al +[X2) = -«
2 2
jPZ(x,2 1) SO'ZSZ(); D
Yoy Xn1—o

i— 1)’ Xi— 2 . . .
Thus (Z(A’ # Zz( #) ) is 100(1 — o)% confidence interval of 6> when p is

2 I
x“-“z n,1—oy

known. (ii) Suppose u is unknown.

We take the function ¥/(7T, 0) = 26 which is distributed as ¥ with (n — 1)

2
d.f. This distribution is independent of 6. Proceeding as in (i),

'7)7(2 Xi*)?z . . .
(ZZ(X’ ) 2< >> is 100(1 — «)% confidence interval of ¢> when pu is

)
Xn—laz Xn—Ll—aq

unknown.

Example 5.3 Let X1, Xa, ..., X, be a random sample from density function f(x|0) =
(3), 0 <x < 0. Find 100(1 — o)% confidence interval of 0.

Solution The likelihood function is L = QL This is maximum when 0 is the
smallest; but 6 cannot be less than X(n)» the maximum of sample observations. Thus

@ = X(n).
The p.d.f of 6 is given by
~n—1

h(é) :”07,0<'é<0.

Let u ="4 = %. so that g(u) = "', 0 <u < 1.
Thus the distribution of u is independent of 6.

We find u; and u, such that

Puy<u<wu] = 1—-(y4+m) = 1-ua

uy 1
where [ g(u)du = oy, [ g(u)du =
0 u

u

i.e.P[u1<%<u2} :l—oc.:>P["2<9<%} =1-u0

Thus, (%,%) is a 100(1 — )% confidence interval for 0.

Example 5.4 X,,X,,...,X, is a random sample from a G (%9, 1) distribution having
p.d.f.
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1
ﬂywzaaﬂﬁxzo

Find 100(1 — «)% confidence interval of 6.

Solution Let ¢ = Z"O:‘x' =1 which is a G(l, n) variate having p.d.f. g
@ = ﬁe"t”_l ,0<t<00.
Thus the distribution of 7 is independent of 0. We find k; and k, such that

P|:k1<l:E<k2:| :1—(O(1+O(2):1—06

0
where
kl o0
/g(t)dt =0, / g(t)dt = oy
0 ka
ie.
P a <0< o 1
JE— — | = — o
ko ki

Method 2: Confidence based methods: A general approach:

Let T be a statistic and 7, (0) and #,(60) be two quantities such that Pr{7 <#,(0)} <«
and Pr{T > 1(0)} <on, a1,00 > 0, oy +ap = o. The equation T = #;(0) and
T = 1,(0) give us two curves as

Suppose t be the observed value of the statistic 7. Draw a perpendicular at
T = t. It intersects the curves at A and B. Suppose the co-ordinates of A and B are
(t,0(1)) and (2,0(t)) respectively. According to the construction

1(0)<T<1(0) < 0(1)<0<0(r).
S Pt (0) <T<0(0)] =Pr{0(<0<6(T)} > 1—o.

This fact gives us (1 — «) level Confidence Interval for 6.
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Note 1: To avoid the drawing one may consider inverse interpolation formula.
Note 2: If the L.H.S’s of the Eq. (7.1) can be given explicit expression in terms of
and if the equations can be solved for 0 uniquely, then roots are the confidence
limits for 6 at confidence level (1 — «).

Example 5.5 Let X;,Xa, . . ., X, be a random sample from density function f(x|0) =
5, 0<x<0. Find 100(1 — «)% confidence interval of 0.

Solution The likelihood function is L = ol This is maximum when 6 is the
smallest; but 0 cannot be less than x(,), the maximum of sample observations. Thus
0= 5.

The p.d.f of 0is given by

_n—1
h(é) - ”07,0<@<0.

We find & (0) and k»(0) such that
P{k1(9)<§<k2(0)} =1—(y+m)=1—u

where

ki(0)
/ h(é) b = (7.2)
0

and

0

/

k2 (0)

=

(é) 0 = a (7.3)

From (7.2), 218 = o, or, ky (0) = 0(ay)""
From (7.3), 3—2]22(6) =wor, 1 — ["25),,)]” =0 or, k(0) = 6(1 — az)l/". Therefore,
P[0 <0<0(1 — )" =1~ aor, P[(l b <0<+ H —1-o
—0 o
Note We can get the confidence interval of 0 by the Method I which is given in
Example 5.3.
Large sample confidence interval: Let the asymptotic distribution of a statistic

T, be normal with mean 0 and variance @, then Pr{rl,al < %; < raz} ~

1—a;+o0p=1—0a(say).
This fact gives us a confidence interval for 6 at confidence level (1 — )
approximately.
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Example 5.6 X1,X5,...,X, is a large random sample from P(X). Find the
100(1 — )% confidence interval for A.

R
eIy !

Solution Likelihood function is L = PR
1helix,!

MLE of 1 = 4 =%

Thus, *Z2 — N(0,1) as n — oo

\/Mn

Hence P{rlm < A <T12] =l—(u+m)=1—-«a

Vor
= P{X— Ty \V/X/M<p <X — Tl,alx/)’c/n} =1-u

using the approximation / = J =% in the denominator. So 100(1 — o)% confi-

dence interval for A is from X — 7,, 4 /X/n t0 X — Ty_y 1 /X/n.

Method 3 Method based on Chebysheff’s inequality:
By Chebysheff’s inequality, Pr[|T — E(T)| <¢or] > 1 —%. Now setting 1 —
Eiz = 1 — a, we can construct confidence interval.

Example 5.7 Consider the problem of Example 5.3. Find the 100(1 — «)% confi-
dence interval of 0 by using the method of Chebysheff’s inequality.
Solution

—~ ~ 2
n _ N2
WehaveE(Q)=n+19andE(0—0)—HW
By applying Chebysheff’s inequality we get

’5_9‘ [(n+1)(n+2) 1
o 0 > < €| > 1_3'

Since 6 0, we replace 0 by 0 and for moderately large n,

0—0
0 2 c

Choosing 1 —é: l—aoore= \/i& we have
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plom Lo V2 gy Lo V2 1o,
Ve /(n+1)(n+2) Ve /(n+1)(n+2)

Again ——1—— ~1 for large n and the fact that 0<0, we have
(n+1)(n+2) n

o

PP<0<5<1 + %\/%)} > 1 — . Thus (@ = maxx;, maxx,-(l +1 2)) is an
approximate 1 — o level confidence interval for 0.

5.4 Shortest Length Confidence Interval
and Neyman’s Criterion

From the above discussion, it is clear that (1 — o) level C.I is not unique. In fact,
infinite number of C.I’s can be constructed by simple method [Because the equation
ar +op =0, ap > 0, ap > 0 has infinite number of solution for (o, 0z)]. Again
for different choice of statistic, we get different confidence intervals. For example,
in r.s. from

1 .
f(x,0) zae_W,O <x< o0

{Z;Xi] is a (1 — a) level lower confidence bound for 0
“2n,00

[As 2 ~y2, :>2293Xi ~%2,, since Mgf. of X = (1—10)"" = M.gf of

2= (1-20)"" = Mgf. of x%,].
On the other hand, a(1 — «) level confidence bound for 0 based on X(;) = minX;

is 2")2((”.

XZa

So we need some optimality criteria to choose one of the (1 — o) level confi-
dence intervals.

1. Shortest length confidence interval [Wilk’s criterion]

A (1 —a) level confidence interval 1(0) = [0(T),0(T)] based on T will be of
shortest length if the inequality

0(T) — O(T) < 0*(T) — 0*(T), for all 0 holds for every other (1 — a) level C.I.
[0°(T),0°(T)] based on the same statistic T.

Example 5.8 On the basis of an r.s. from N(u, 6°), 6> being unknown, a (1 — )
level C.I for u based on X is given by
[5( — ruzﬁ,f( — Ty ﬁ}, 1,00 > 0 and o +or = . The length of the

interval is (7, — rl,al)\/%.
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To find the shortest length confidence interval, we minimize (T, — Tj_y,)
subject to oy + 0o = o5 oy, 00 > 0.

Owing to the symmetry of the distribution M about ‘0’, the quantity t,, —
Ti—y, Will be a minimum when Ty = —Ti-ap i.e., when oy = o = 0‘/2 Thus the

shortest length (1 — o) level C.I. for u based on X is [fc — r“/zjﬁ,fc—i— 12%) ﬁ}

Remarks Occasionally, the length of a C.I is a random quantity. In this case, we

minimize its expected length. e.g. In random sampling from N(u, ¢%), (both u and

o’ are unknown) a (1—a) level CI for pu is given by

{X e D G 1\/-} This length of the C.I is {

which is a random quantity.
So, to find the shortest (expected) length C.I, we minimize

|:t12,nj — tpoq.ﬁ} (Tr? subject to oy, > 0 and o) + o = «. Owing to the sym-

—_——t R
op,n—1 I—oyn—1| /n"

metry of f,_; distribution about ‘0°, the minimum is attained at o) = oy = O‘/2.
Therefore the required shortest expected length confidence interval is

Example 5.9 Consider the problem discussed in Example 5.2. On the basis of a
random sample from N(p, 6?), 1 being known, a (1 — «) level CI for 2 is given by

—1u)? Xi— 2 . .
{Z@’ # ,Zz( u)} ap,0 > 0 and oy +op = o. The length of the interval is

Xg-“z K-y
Lzl -7 ] S (X; — u)* which has the expected value
n,1—oy n,oy
1 1
= | ne
Xn,lfoq Xn.ﬁ(z
We wish to minimize [ S /%} )
Cn,1 -0y n oy
e
subject to [ f(x*)dy> = 1 — o, where %7 = %n | .5 5 = %, and f(°) is the
0

p.d.f. of a chi-square r.v. with n d.f.
Now let ¢ = %f% ff Ydy? — (1 — )

where / is a Lagrangian multlpller. We get
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5 1

- = - 2 =

oo #a) =0

op _ 1 2 _
-1 1

h= -
af(d) (o)
Hence %3 and 3 are such that the equation

2

72
i (11) = 15f (13) isto be satisfiedand/f(;(z)d;{2 =1-o.

%

It is very difficult to find the actual values of X% and /% In practice, the equal tails
i— 1)’ -’ .
interval, [Z (3 ) Zz( # } is used.

n,of2 ’ Xu,l—a{/2
Similarly if u is unknown, the equal tail confidence interval,

Fj =2 3 (o)

2 ) w2
Xn—l,x/Z Xn—l,l—x/l

] , is employed.

Example 5.10 Consider the problem discussed in Example in 5.3. A (1 — a) level
C.I for 0 is given by

(%,%); oy,0p >0, oq+op =o. The length L of the interval is

(l — l) max x;.
ui u

We minimize L subject to

U
/nu"ildu:ug—u'f =1—-a

uy
This implies 1 — o <uj
= (1-a <<

and
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oL (5L ouy 1)
~—— = maxux; — + =

2
oui dus  us

Lyt 1
=maxx| ——5-——5+ >

uy nuj u;
urlt+1 _ug+l

2. n+1
iy

= maxx; <0,
so that the minimum occurs at u, = 1. When up = 1, u; = oclm. Thus a1l — o level
confidence interval is given by (max X;, Max x; / ocl/n). This confidence interval has

the smallest length among all confidence intervals for 6 based on max x;

2. Neyman’s criterion

Let 7;(X) and I(X) be two (1 — o) levelconfidence intervals for 0. I;(X) will be
accurate (or shorter) than I (X) if

Py{0 € L(X)}<Py{0 € L(X)}V0,0' € ©,0+ 0(0' = true value)

A (1 — o) level CI. I(X) is said to be most accurate (UMA) (or shortest) if
Py{0 € I(X)} <Py{0 €I"(X)}V0,0' € ©,0 +# 0 for any other (1 — o) level C.L
I*(X).

A (1 — o) level C.I. I(X) is said to be unbiased if,

Py{0el(X)}<1—a=Py{0 €I(X)}V0,0 € ®,0£0

i.e. Probability (containing wrong value of #) < Probability (containing true
value of 6).

Implication An unbiased confidence interval includes true value more often than
it does contain wrong value.

A (1 — o) level unbiased C.I. I(X) is said to be most accurate amongst the class
of unbiased (1 — ) level if Py{0 € I(X)} <Py{0 € I"'(X)}V0,0 € ©,0 # ¢ for
any other (1 — «) level unbiased C.I. I*(X)

Relation between non randomized test and confidence interval

Theorem 5.1 Suppose A(8y) denoted the acceptance region of a level o test for
testing Hy : 0 = 6

Define S(x) = {0/)6 € A(Q)}
Then S (x) will be a (1 — o) level confidence interval for 0.

Proof By the construction of S (x), we have
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X €A0) = 0 es({)

.',Pg{@ € S(x)} = Pg{x € A(H)} > 1—avo.
Note The implication of this theorem is that for a fixed x, the confidence region

S (x) is that set of values 6, for which the hypothesis Hy : 6 = 6 is accepted when

x is the observed value of x

Theorem 5.2 Let S (x) be a (1 — a) level confidence interval for 0. Define A(0) =
{x/@ € S(x) } Then A(6y) will be an acceptance region of a level o
non-randomized test for testing Hy : 0 = 0y.

Proof By the construction of A(6), we have

~ ~

X 6A(0)<:)9€S(x)
.-.P(){f GA(H)} - PU{O e s(f)} > 1 — av0.

Relation between UMP non-randomized test and UMA confidence interval

Theorem 5.3 Suppose A(6y) denoted the acceptance region of an UMP, level-o
non-randomized test for testing Hy : 0 = 0y. Define S(x) = {O/x € A(O)}. Then

S(x) will be an UMA (1 — ) level confidence interval for 0.

Proof By Theorem 5.1, it is clear that the level of set S(x) is (1 — o).

Consider another acceptance region A*(6) of a level o non-randomized test for
testing Hy : 0 = 0

Let S*(f) = {9/{ € A*(@)}, then the level of S*(f) is also (1 — o).

Since A(6) is the acceptance region of a UMP non-randomized test, we can write,
Poi{x ea@)}<pu{xea©} ©0+0)
PQU{O € s(x)} gpgo{o e s*(x) }vw £ 00)0,00 € ©

Since S* (x) is arbitrary the proof follows immediately.

~
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Theorem 5.4 Let S (x) be an UMA (1 — a) level confidence interval for 0. Define

A(0) = {x/@ € S(x) } Then A(0y) will be an acceptance region of a level-o
UMP test for testing Hy : 0 = 0.

Proof According to the construction of A(6), A(0y) will be the acceptance region of
a level-o non-randomized test for testing Hy : 0 = 0.

Now corresponding to another (1 — «) level C.I. §* (x),

letA*(0) = {x 10 € S*(x) }
Then A*(6y) will be also an acceptance region of a level-a non-randomized test
for testing Hy : 0 = 0y
Now since S(x) is an UMA (1 — «) level C.L for 0,

~

Pgo{e e s(f> } ngo{e € s(f) }vw £ 00)0,0, € ©, 0 # 0

N Poo{f eA(H)} gPoo{f eA*(B)}

which implies that A(6y) will be the acceptance region of level-o UMP
non-randomized test for testing Hy : 6 = 6, since A*(0) is arbitrary.

Relation between UMPU non-randomized test and UMAU confidence interval
Theorem 3.5 Ler A(0y) be the acceptance region of an UMPU level-o
non-randomized test for testing Hy : 0 = 0y. Define S(x) = {Q/x € A(H)}. Then

S(x) will be an UMAU (1 — o) level confidence interval for 0.

~

Proof According to construction of S(x) it will be a (1 — ) level Confidence

Interval for 6. Let S* (x) = {9/ X € A*(@)} corresponding to any other accep-

tance region A* () of a level-o non-randomized test for testing Hy : 6 = 0.
Now since A(6y) is the acceptance region of a level-o UMPU non-randomized
testfor testing Hy : 0 = 6

Poo{f eA(H)}gPOO{)Nc eA*(@O)}g 1 —a¥0,00 € ®, 0 % 0,

=Py {0es(x)}<pfoes(x)}b<i-a

ie., S(x) is a UMAU (1 — «) level C.I for 0, since A*(p) is arbitrary.
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Theorem 5.6 Let S (x) be an UMAU (1 — a) level confidence interval for 0.
Define A(0) = {x/@ € S(x) } Then A(0y) will be an acceptance region of a
level-o. UMPU test for testing Hy : 6 = 6.

Proof According to the construction of A(6), A(0y) will be the acceptance region of
a level-o non-randomized test for testing Hy : 0 = 0.

Now, corresponding to any other (1 — o) level C.I. S* (x) for 0,

let A*(0) = {x/O es (x) }, then A*(0) will also be an acceptance region of a
level-o non-randomized test for testing Hy : 0 = 0.
Since S(x) is UMAU (1 — a) level C.I.

.~.P@0{9 c s(f)} gpgo{e c s*(x)} <1—a¥0,0, € ®, 0 £ 0,

= P {x ea)}<p{xea@)}<i-a

i.e. A(p) will be an acceptance region of a level-o UMPU test for testing
Ho 10 = 90.

Example 5.11 Let X{,X5,...,X, be a rs. from R(0,0). The UMP level-a
non-randomized test for testing Hy : 0 = 0y against 0 # 0y is given by the critical
region X, > Oy or x(,) < O/

Let A(0) = { |09z <x < 0}

DefineS()Nc) = {9|f EA(H)}
= {0|9 VoL <X(p) < 0}

= Oy <0<
(n) = \’V&

Thus, by Theorem 5.3, S(x) = {e|x(n) <0< ’Lf)} will be a (1 — o) level UMA

confidence interval for 0.




Chapter 6
Non-parametric Test

6.1 Introduction

In parametric tests we generally assume a particular form of the population dis-
tribution (say, normal distribution) from which a random sample is drawn and we
try to construct a test criterion (for testing hypothesis regarding parameter of the
population) and the distribution of the test criterion depends upon the parent
population.

In non-parametric tests the form of the parent population is unknown. We only
assume that the population, from which a random sample is drawn, is continuous
and try to develop a test criterion whose distribution is independent of the popu-
lation distribution under the hypothesis under consideration. A non-parametric test
is concerned with the form of the population but not with any parametric value.

A test procedure is said to be distribution free if the statistic used has a distri-
bution which does not depend upon the form of the distribution of the parent
population from which the sample is drawn. So in such procedure assumptions
regarding the population are not necessary.

Note Sometimes the term ‘distribution free’ is used instead of non-parametric. But
we should make some distinction between them.

In fact, the terms ‘distribution free’ and ‘non-parametric’ are not synonymous.
The term ‘distribution free’ is used to indicate the nature of the distribution of the
test statistic whereas the term ‘non-parametric’ is used to indicate the type of
hypothesis problem investigated.

Advantages and disadvantages of non-parametric method over parametric
method

Advantages

(i) Non-parametric methods are readily comprehensible, very simple and easy to
apply and do not require complicated sample theory.
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(ii)
(iii)

(@iv)

)

6 Non-parametric Test

No assumption is made about the form of frequency function of the parent
population from which the sample is drawn.

No parametric technique will be applicable to the data which are mere clas-
sification (i.e. which are measured in nominal scale), while non-parametric
method exists to deal with such data.

Since the socio-economic data are not, in general, normally distributed,
non-parametric tests have found applications in psychometry, sociology and
educational statistics.

Non-parametric tests are available to deal with data which are given in ranks
or whose seemingly numerical scores have the strength of the ranks. For
example, no parametric test can be applied if the scores are given in grades
such as A, B, C, D, etc.

Disadvantages

(i)

(i)
(iii)

Non-parametric test can be used only if the measurements are nominal and
ordinal. Even in that case, if a parametric test exists it is more powerful than
the non-parametric test.

In other words, if all the assumptions of a statistical model are satisfied by the
data and if the measurements are of required strength, then non-parametric
tests are wasteful of time and data.

No non-parametric method exists for testing interactions in ANOVA model
unless special assumptions about the additivity of the model are made.
Non-parametric tests are designed to test statistical hypothesis only but not for
estimating parameters.

6.2 One-Sample Non-parametric Tests

In this section we consider the following one-sample non-parametric tests:

(i)
(ii)
(iii)
(iv)
V)

Chi-square test
Kolmogorov—Smirnov test
Sign test

Wilcoxon signed-rank test
Run test

6.2.1 Chi-Square Test (i.e Test for Goodness of Fit)

Let n sample observations are continuous measurements grouped in k class intervals
or observations themselves are frequency of k mutually exclusive events
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A1,Ay, ..., A such that S = A; + A, + - - - + A is the space of the variable under
consideration. The form of the distribution is not known. We want to test H, :
F(x) = Fo(x) against: H, : F(x) # Fo(x). Here F,(x) is specified with all its
parameters.

Under H, we can obtain the probability (p;) of a random observation from F; to
belong in the ith class A;(i = 1,2,...k). The expected frequency in ith class is
e; =np; for i = 1,2,... k. These are compared with the observed frequencies x;.
Pearson suggested the statistic.

k

oy el
npi

i=1

If the agreement between the observed (x;) and expected frequencies (e;) is
close, then the differences (x; — np;) will be small and consequently x> will be
small. Otherwise it will be large. The larger the value of x> the more likely is that
the observed frequencies did not come from the population under Hy. This means
that the test is always right-sided. It can be shown that for large samples the
sampling distribution of > under H, follows chi-square distribution with (k — 1) d.
f. The approximation holds good if every e; > 5. In case there are some e; <5, we
have to combine adjacent classes till the expected frequency in the combined class
is at least 5. Then k will be the actual number of classes used in computing y2. Thus
the null hypothesis Hy is rejected if Cal 3> > Xi.k—r

6.2.2 Kolmogrov-Smirnov Test

Let X1, X5, ..., X, be a sample from continuous distribution function F(x). We are
to test Hy : F(x) = Fy(x) V x against H; : F(x) # Fo(x) for some x.

Suppose F,(x) is the sample (empirical) distribution function corresponding to
any given x; that is, if the number of observation <x is k, then

Test statistic under Hy is given by
D, = Sup |F,(x) — Fo(x)]
X
which is known as Kolmogorov—Smirnov statistic.

The distribution of D,, does not depend on Fy as long as Fy is continuous. Hy is
rejected if D, > D, ,.
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Similarly, the one-sided KS statistics for one-sided alternatives are the
following:

(i) for the alternative H ™ : F(x) > Fo(x) Vx the appropriate statistic is

D, = Sup[Fy(x) — Fo(x)]

(i) for the alternative H~ : F(x) < Fy(x) ¥ x the appropriate statistic is
D, = Sup[Fy(x) — Fy(x)]
X

The statistics D, and D, have the same distribution because of symmetry. The
test rejects Hy if D,” > D, when alternative is F(x) > Fy(x) Vx and rejects Hy if
D, > D, , when alternative is F(x) < Fo(x) Yx at the level a.

6.2.3 Sign Test

F(x) is continuous distribution function of the parent population, which is con-
tinuous. F(x) is unknown, from which we draw a random sample (xi,x7, .. .,X,).
We define {, = pth order population quantile.

S PrX<E=pie PrX—¢,<0]=p.

Assumption F(x) is continuous in the neighbourhood of {,. To test Hy : {, = CI,O.
Case 1 H;: ¢, > épo

To perform the test we consider the number of positive quantities among
(x1 = &), (02— &°), ..., (xa — ). Sample values equal to &,° are ignored.
Suppose S = total number of + signs, we note that, under Hy
PI'[X - épo SO} =D
:>Pr[X—fp0>O] =1-p=gq, say.
..Under Hy, S ~ B(n, q)
Also, under H,,Pr [Xg 62} <p, ie. Pr[X - ipo > 0] > g. Suppose, under

H1,Pr[X— fg > O} =4 where ¢ > q.
-.UnderH;, S~B(n,q') where ¢ > q.
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Hence a large value of S indicates the rejection of Hy.

1 if §S>s
So the testis ¢(S) = a if S =3
0 if S<s

where ‘s’ and ‘a’ are such that

(D) Pr[S>s/Hy|<a<Pr[S>s/H)
() Ep,¢(S) =«

From (I) we get s and from (I) & = Pr[S > s/HO] —l—aPr[S = s/HO]

o —Pr[S>s/H|
T T bes = 5/H,)

Hence test is given by S > s = Rejection of Hy

S <s = Acceptance of Hy

S =s5= To draw a random number with probability of rejection ‘a’ and
probability of acceptance 1 — a.

Case 2
Hy=¢,<g0 or &, =¢,/<¢&)
Under H,
PriX<¢'1=p
SPIX<E0 > p

or, Pr[X — fpo <0] > p, i.e. Pr[X — épo >0l<l—-p=gq.
Suppose under Hy,Pr[X — épo > 0] = ¢ where ¢' <gq.
.. Under H,,S~ B(n,q') where ¢’ <q.
So a small value of § indicates the rejection of Hy.
1 if S<s
So our testis ¢p(S) =< a if S ==
0 if S>z
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where ‘s’ and ‘a’ are such that

Pr[S<s/H,| <a< Pr[S<s/H,| and Ey,$(S) = o
ie. Pr[S<s/Hy|+aPr[S=s/Hy| =aor,
o —Pr[S<s/H,|
"~ Pr[S=s/H,)

ie. if S<s = reject Hy

S > s = accept Hy

S = s = draw a random number with probability of rejection ‘a’ and probability
of acceptance (1 — a).

Large sample test

Under Hy, S~ B(n, q)

c.under Hy 1 = S\/_n%’ ~N(0,1)

L T< =Ty

Case 3 H3: ¢, # fpo

Under H3, PriX <& #p=PriX — &> 0] #£4¢
Suppose under Hs, Pr[X —fpo > 0] = ¢’ where ¢’ # g
.. Under H3, S~ B(n,q') where ¢’ # q.
So a small or a large value of § indicates the rejection of Hy. Here the test is

1 if S<sy

a if S =

(f)(S): 0 ifs; <8 < s,
aj ifSZSZ

1 if §$ > s,

where s; and s, are such that

PI'[S<S|/H0] <o < PI'[SZS]/H()],
Pr(S > s5,/H,| <o < Pr[S>s,/H,|

and o) + op = . For simplicity we take o) +op = “/2.
‘a,” and ‘a,’ are such that

% = Pr[S<si/Hy| +a Pr[S = s1/H,]

z_ PI'[S<51/H0]
2

= =
@ Pr[S = s51]
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S = Pr[S > so/Hy| +a: Pr[s = s2/H, |

%— PT[S > SZ/HO]

— =
“2 = B[S = 55 /Ho]

Thus, we reject Hy if S<s; or S > s5.
We accept Hy if s; <S<s, and random or no conclusion if S = s; or § = s;.
Large sample test: Under Hy, S~ B(n,q),

.under Hy, T = f/;["_,z ~N(0,1)

w || > 1

Note p=1.¢, = ¢, = median.
Under Hy, S ~ B(n7 %) and then S is symmetric about 7. Therefore for two sided
test in case of Case 3,

n__

I=SI=s2—F=>si=n—5 and hence a; = a5.

6.2.4 Wilcoxon Signed-Rank Test

Another similar modification of the sign test is the Wilcoxon signed-rank test. This
is used to test the hypothesis that observations have come from symmetrical pop-
ulation with a common specified median, say, p,. Thus the problem is to test
Hy : = ptg. The signed-rank statistic 7+ is computed as follows:

. Subtract y, from each observation.

. Rank the resulting differences in order of size, discarding sign.

. Restore the sign of the original difference to the corresponding rank.
. Obtain T, the sum of the positive ranks.

AW N =

Similarly, T~ is the sum of the negative ranks. Then under Hy, we expect T
and 7~ to be the same. We also note that

< nn+1)
TH+7T = j=————.
+ ;1 3

The statistic T (or T-) is known as the Wilcoxon statistic. A large value of T
(or equivalently, a small value of 77) means that most of the large deviation from
Uo are positive and therefore we reject Hy in favour of the alternative Hy : u > uy.

Thus the test rejects Hy at the level o if 77 <C; when Hy : p<py,

if Tt > C, when Hy : >

if Tt <Cyor Tt > Cy when Hy : u # u

where Ci, C,,C3 and Cj are such that
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P[T" <C||=ua
PITT >C]=u

PITT <G]+P[TT > Cy] =0

6.2.5 Run Test

Suppose we have a set of observations (X1, Xa. . ., X,,). We are to test Hy: The set of
observations are random against H;: They are not random.

We replace each observation either by ‘+’ or ‘—’ sign according as it is larger or
smaller than the median of the sample observations. Any observation equal to
median is simply discarded. A run is defined to be a sequence of values of the same
kind bounded by the values of other kind. We compute the total number of runs ‘7’.
Too many values of ‘r’ as well as too small values of ‘#’ give an indication of
non-randomness. Thus the test rejects Hy at the level o if » < r| or r > r, where r;
and r, are such that

Plr<r)| =a/2,Plr > r] = uo/2.

The one-sample run test is based on the order or sequence in which the indi-
vidual scores or observations originally were obtained.

Example 6.1 The theory predicts that the proportion of peas in the four groups A,
B, C and D should be 9:3:3:1. In an experiment among 556 peas, the numbers in the
four groups were 315, 108, 101 and 32. Does the experimental result support the
theory?

Solution If P,, P,, P; and P, be the proportions of peas in the four classes in the
whole population of peas, then the null hypothesis to be tested is

9 3 3 1
Hy : Py :E’PZZE’% :E’P“:E

The test statistic under Hy is given by
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The expected frequencies are
9
ey = np) = 556X 1 = 312.75

3
ey =np) = 556XE =104.25

3
e3 = npi = 556X 1= = 104.25

1
ey = np = 556X 1 = 3475

_ 318 dog ot 32
731275 1 10425 ' 10425 ' 3475

= 556.47 — 556 = 0.47 with 3 d.f.

So, ¥ 556

From the table we have y3 s ; = 7.815. Since the calculated value of 2, i.e. 0.47
is less than the tabulated value, i.e. 7.815, it is not significant. Hence the null
hypothesis may be accepted at 5 % level of significance and we may conclude that
the experimental result supports the theory.

Example 6.2 Can the following sample be reasonably regarded as coming from a
uniform distribution on the interval (35,70): 36, 42, 44, 50, 64, 58, 56, 50, 37, 48,
52, 63, 57, 43, 39, 42, 47, 61, 53, 58? Use Kolmogorov—Smirnov test.

Solution Here we test Hy : F(x) = Fy(x) for all x, where Fy(x) is the distribution
function of the uniform distribution on the interval (35,70). Now
Fo(x) =0if x<35

~35
=7 o if35<x<70

=1if x>70

Rearranging the data in increasing order of magnitude, we have the following
results:

x Fo(x) Fy(x) |Fa0(x) — Fo(x)]
36 1/35 1/20 3/140
37 2/35 2/20 6/140
39 4/35 3/20 5/140
42 7/35 4/20 0

42 7135 5/20 7/140
43 8/35 6/20 10/140
44 9/35 7120 13/140
47 12/35 8/20 8/140
48 13/35 9/20 11/140
50 15/35 10/20 10/140

(continued)
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(continued)
50 15/35 1120 17/140
52 17/35 12/20 16/140
53 18/35 13/20 19/140
56 21/35 14/20 14/140
57 22/35 15/20 17/140
58 23/35 16/20 20/140
58 23/35 1720 27/140
61 26/35 18/20 22/140
63 28/35 19/20 21/140
64 29/35 20/20 24/140

27
D20 = Sup|F20(x) - Fo(x)‘ = m =0.1929.

Let us take o =0.05. Then from the table D05 = 0.294. Since
0.1929 < 0.294, we accept Hy at 5 % level of significance. So we can conclude that
the given data has come from a uniform distribution on the interval (35,70).

Example 6.3 The following data represent the yields of maize in g/ha recorded

from an experiment.
16.4, 19.2, 24.5, 15.4, 17.3, 23.6, 22.7, 20.9, 18.2
Test whether the median yield (M) is 20 g/ha.

Solution We test Hy : M = 20 against H, : M # 20. To test Hy, we find the dif-
ference (X — 20) and write their signs

——t+ ——+++-

Here n =9 and r = number of ‘+’ sign = 4. This r will be binomial variate with
parameters n = 9 and p = 0.5.

To test Hy against H; : M # 20 = H, : p # 0.5, the critical region o will be
given by r>r, and r < r, /20 where r,/; is the smallest integer and r, » is the

largest integer such that

00 /9N /1)’ «
Plr=r,p|Ho] = ) <X)(2> <5=0025

X=Ty

rat/27l 9 1 9
ie., >0.975
-5 (0)0G) 2

x=0

r;/z 9 1 9 a
el - 35 (0) () <5- 00
X

x=0
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From the table we have r,, —1=7, ie. r,, =28 and r;/z = 1. Here
r;/z =1<r=4<r,;y =38, 50 Hy is accepted at 5 % level of significance.

Example 6.4 For the problem given in Example 6.3, test Hy : M = 20 against
H; : M # 20 by using Wilcoxon signed-rank test.

Solution The differences X; — 20 are
-3.6, 0.8, 4.5, —4.6, —2.7, 3.6, 2.7, 0.9, —1.8

The order sequence of numbers ignoring the sign and their ranks with original
signs are as follows:

0.8 0.9 1.8 2.7 2.7 3.6 3.6 4.5 4.6
-1 2 -3 4.5 —4.5 6.5 —6.5 8 -9

Thus, T* = The sum of the positive ranks = 21 and 7~ = The sum of negative
ranks = 24.

We note that TT +7~ = "<"2+1) =45

To test Hy : M = 20 against H; : M # 20, the critical region @ will be given by
Tt > Cs and TT < Cj; at the level «. Here we take o = 0.05.

From the table we have P[T* > 39] <0.025 and

P[T* <6]<0.025

Since T = 21 lies between 6 and 39 (table values), we accept Hy. It means that
the median yield of maize is 20 g/ha.

Example 6.5 Test whether the observations
21, 19, 22, 18, 20, 24, 15, 32, 35, 28, 30 are random.

Solution We test Hy : The observation are random against H; : The observations
are not random.
The sample values are arranged in increasing order.

15, 18, 19, 20, 21, 22, 24, 28, 30, 32, 35

.. Median = 22

Each original observation is replaced by ‘+’ or ‘=’ sign according as it is larger
or smaller than the median, i.e. 22. Any observation equal to median is simply
discarded. Thus we have from the original observation

21 19 22 18 20 24 15 32 35 28 30
- - X - - + - + + + +
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Thus number of runs = r = 4, number of ‘+’ signs = n; = 5 and number of ‘-’
signs = n, = 5. From table for n; = 5, n, = 5 any observed r of 2 or less or of 10 or
more is in the region of rejection at 5 % level of significance. So Hj is accepted, i.e.
the observations are random.

Example 6.6 The males (M) and females (F) were queued in front of the railway
reservation counter in the order below

M F F MMMV FMV FFMMF M

Test whether the order of males and females in the queue was random.

Solution Here null hypothesis is
Hj : The order of males and females in the queue was random against
H; : The order of males and females in the queue was not random.
For the given sequence,

MFFMMMFMFFMMFM

n; = number of males = 8
n, = number of females = 6
r = number of runs = 9

Since the observed value of r = 9 lies between the critical values 3 and 12, we
accept Hy at 5 % level of significance. It means that the order of males and females
in the queue was random.

6.3 Paired Sample Non-parametric Test

In this section we consider the following paired sample non-parametric tests:

(i) Sign test.
(i) Wilcoxon signed-rank test.

6.3.1 Sign Test (Bivariate Single Sample Problem) or Paired
Sample Sign Test

Suppose we have a bivariate population with continuous distribution function
F(x,y) which is unknown but continuous. The ordinary sign test for the location
parameter of a univariate population is equally applicable to a paired sample
problem. This is the non-parametric version of paired ‘¢’ test.
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We draw a random sample (xi,y;), (x2,¥,), .., (X, y,) from F(x, ). To test
Ho:&(x—y) = ipo writing z=x—y = Ho:&,(2) = po’ ie. Ho:¢,=¢ 0
writing &,(z) = &,.

Assumption z = x —y is continuous in the neighbourhood of ¢,(z). Note that
Pr[z<¢&,| =p= Pr[z—¢, > 0] =¢,g =1 —p. We define S = total number of
positive signs among (z1 — &,°), (2 — &), .., (2 — &,°).

.. Under Hy, Pr [z—épo > 0] =q and S~ B(n,q). Proceed for Case 1, Case 2
and Case 3 as worked out already in Sect. 6.2

Note Since &,(x —y) is not necessarily equal to ,(x) — &,(y), the paired sample
sign test is a test for the quantile difference (but not for the difference of the
quantiles), whereas the paired ‘7’ test is a test for the mean difference (and also for
the difference of the means).

6.3.2 Wilcoxon Signed-Rank Test

This is another test used on matched pairs. It is more powerful than the sign test
because it gives more weight to large numerical differences between the members
of a pair than to small differences. Under matched-paired samples, the differences
d within n paired sample values (xy;,xy;) for i = 1,2,...,n are assumed to have
come from continuous and symmetric population differences. If M, is the median of
the population of differences, then the null hypotheses is that M; = 0 and the
alternative hypothesis is one of M; > 0,M; <0 or My # 0.

The observed differences d; = x;; — xp; are ranked in increasing order of abso-
lute magnitude and the sum of ranks is computed for all the differences of like sign.
The test statistic T is the smaller of these two rank-sums. Paris with d; = 0 are not
counted. On the null hypothesis, the expected value of the two ranks-sums would be
equal. If the positive rank-sum is the smaller and is equal to or less than the table
value, the null hypothesis will be rejected at the corresponding level of significance
o in favour of the alternative hypothesis that M; > 0. If the negative rank-sum is the
smaller, the alternative will be that M; <0. If a two-tailed test is required, the
alternative being that M, # 0, the given levels of significance should be doubled.

Example 6.7 For nine animals, tested under control conditions and experimental
conditions, the following values of a measured variable were observed:

Animal 1 2 3 4 5 6 7 8 9
Control (x) 21 24 26 32 55 82 46 55 88
Experimental (x,) 18 9 23 26 82 199 42 30 62
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Test whether a significant difference exists between the medians, using (i) the
sign test and (ii) the Wilcoxon signed-ranks test.

Solution Let 0 be the median of the distribution of differences. Our null hypothesis
will be Hy : 6 = 0 against H, : 0 # 0.

(i) Let d; = x1; — x; be the difference of the values under control and experi-
mental conditions.

di: 3,15, 3,6, =27, —117, 4, 25, 26

Here we have 7 ‘+’ signs among 9 non-zero values. Under H,, number(r) of ‘+’
signs will follow a binomial distribution with parameters n =9 and p = 0.5. To test
Hy:0=0=Hy:p=0.5against H; : 0 # 0= H, : p # 0.5, the critical region @
will be given by r>r,,; and r < r, 2 where r,/, is the smallest integer and r, 2 is

the largest integer such that.

Ed 9 1\’ o
P[r>r,p|Hy| = Z < )(2> < 5 =0025

X
X=Ty))

rg—l
2

i Z<9>(1)9>0975
ie., >0.
= \x 2
r;/z 9 1 9 a
andP[rgr;ﬂ’Ho] Z<x><2> <2 =0.025

x=0

From the table we getr, ), —1=7 = r,;; = 8 and r, /2 = 1. For our example
r =7 which lies between r,/,(=8) and ', /5(=1). So Hy is accepted.

(i) The observed differences d; = x; — xp; are ranked in increasing order of
absolute magnitude and the sum of the ranks is computed for all the difference of
like sign. Thus

d; 3 15 3 6 =27 -117 4 25 26
Rank 1.5 5 1.5 4 8 9

W
o)}
N

The test statistic T is the smaller of these two rank-sums (one for positive d; and
one for negative d;). Here T = 17. From the table, we reject Hy at « = 0.05 if either
T>39 or T<6. Since T > 6 and < 39, we accept Hy.
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6.4 Two-Sample Problem

Case 1 The two populations differ in location only:
We take two univariate populations with continuous distribution functions F(x)
and F,(x) which are unknown but continuous.

Assumption The two populations differ only in location.

To test Hy : F(x) = F»(x) against Hy : F(x) is located to the right of F (x) <
Hy: Fl(x) = FZ(.X) against H; : Fl(x) ZFQ(X)

We draw a random sample (x,xz,...,X,,) of size n; from the first population
and another sample (X, 4 1,%n, +2, - - -, X, +n,) Of size n, from the second popula-
tion. We write, Fi(x) = F» (x) and F(x) = F(x —0), 6 is unknown location
parameter. So we are to test Hy : = 0 against H, : § > 0.

A. Wilcoxon—-Mann Whitney Rank-Sum Test

We pooled the two samples and give them ranks. Suppose (Ri,R,...,R,, ) and
(Ru,+1,Rn; +25 -+ -y Ru, +1,) be the ranks of the 1st and 2nd sample observations
respectively.

[Example (10,7,9,11,3), n; = 5 is sample 1 and (20,5,17,8), n, = 4 is the sample 2.

3I<S5<KT<
! 1
1 2

W—

<9<10<1l<17<20
! 1 ! 1 1
5 6 7 8 9

~—00

Ranks

o.(Ri=6,Ry =3,R; =5,Ry =7,Rs = 1) are the Ist sample ranks and (Rs =
9,R; = 2,Rg = 8, Ry = 4) are the 2nd sample ranks.]

If there is any tie then the corresponding observation is ignored. Let
S1,82,...,8, be the ordered ranks of the 2nd sample observations, i.e.
S <81 <...<8,.

[In the example above 2 <4 <8 <9 - R; = S|,Ry = S3,Rg = S3,R¢ = S4]

12

1y
Define T = sum of the ranks of the 2nd sample observations = > R, +; = > S,
=1 j=1

If H, is true, then it is expected that the second sample observations are gen-
erally of higher ranks and hence T will be large. So a right tail test will be
appropriate here.

Hence for testing Hy : 0 = 0 against Hy : 6 > 0, wg : T > t, where ¢, is such
that Pr[T > t,/Hy] <o. Similarly for Hy: 6 =0 against Hy : <0, g : T <t
where 1,/ is such that Pr[T <t,’/Ho] <o, and for Hy: =0 against H3 : 6 #
0; w9 : T<t;,T > t, where t; and t, are such that

P[T<l1/H0]+P[T > t2/H0} <a.

Null distribution of 7: Under H, all the n(=n,+n), observations
X1y X2y« oy Xnys Xy + 1, Xny +25 - - -3 Xn, +n, are 1.1.d. so that the second sample ranks can
be considered as a random sample of size n, without replacement from (1, 2,...,n).
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— : —_n+l 2 _ : _n*—1
= population mean = "*5— and ¢~ = Variance = "3~

~.E<n1/HO> :,J:”‘;l = E(T/H,) = man+1)

> 2
v E/Ho :n—nZ.a2 n n -1 nl(n—i—l)
ny n—1 n n-—1 12 ny 12 - ny
1
= V(T/H,)= %

Hence, if n is large, under Hy
)
T= m asymptotically ~N(0,1)
. For Hy:d=0against H; : 6 > 0= wg: 1T > 1,
Hy:0=0against Hy : <0 = g : 1< — 14
and Hy : 0 =0 against H3 : 0 # 0 = wp : |7 > Ty

Mann-Whitney

An  alternative  description of the test is more convenient.

1 if Xny +j = Xi
Let g(x;,x, ;) = 0 otherwise i= 1(1)n,
j=11)n,

U = no. of pairs in which 2nd sample observation is greater than 1st sample
observation

noom

= Z Zg(xivxm +j)
=1 =

ny ny
=5 Z g(R;,R,, +;), [no. of pairs in which 2nd sample ranks are greater than
j=li=
Ist sample ranks]

np  m

_Zzg i J

ny
Z{Zg( " 1)} [Zg( ;»S;) =no. of 1st sample ranks which are less than S]
Jj=1

S0 G-y = 0 =7t
=1 1

E(U/H,) = E(T/H,)— ”2(”22+ 1) _ n12n2
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mny(n—+1
V(U /Hy) = V(T/Hy) =2
Hence, for large n, under H
U-—mm
T=—no—2_<N(0,1)
mna(n+1)

12
Therefore
(1) For Hy: 0= 0 against H; : 6 > 0,wg : T > 1,
(2) For Hy: 0 =0 against Hy : 6<0,m¢ : 1< — 14
(3) For Hy : 6 = 0 against Hz : 0 # 0,0 : |t| > 752
B. Mood’s Median Test
Here we test Hy : F(x) = F,(x) against H; : Fy(x) > F»(x), i.e. Hy : 6 = 0 against

H, : 6 > 0.
We draw a sample (x,x2, . . ., X, ) of size n; from the 1st population and another
sample (X, 1, % 125 -« -y Xn, +n,) Of size ny from the 2nd population.

We mix the two samples and arrange them in ascending order of magnitude. Say
X(1) <Xy < -+ < X(n) & X(;y) = combined sample median.

Define T = total no. of 2nd sample size > x(,,

= total no. of 2nd sample ranks > m

Here T is the test statistic.

Under Hy, T would be too large and hence a right tail test is appropriate.

So for Hy : 0 >0 = wg : T > t, where, 1, is such that Py [T >1,] <«

for H : <0 = wy : T<t,’ where Py [T <t,] <o and

for H;:0#0=wy:T<t;jandT>t, where t, t, are such that
PHO[TSZI] +PH0[TZf2] <a.

Null distribution of T: We want to get P(T = t/Hy).

Note that the totality of the pooled ranks (1, 2,.., n) is comprised of two subsets:
{1,2,...,m} and {m + 1,m + 2,...,n}. Under Hy, the second sample ranks
represent a random sample without replacement of size n, from the entire set. Since
T = no. of 2nd sample ranks exceeding m, the probability that there will be just
¢t number of members from 2nd subset in the random sample of size n, is given by

the hypergeometric law:
(n —m ) (m >
t n, —t

()
and V(T /Ho) = %

. E(T/Hy) = M
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As n — 00, ~ 1 and then E(T/Ho) ~"% and V(T /Hy) ~ "%
.. For large n, under H

T-m
‘L'Z—/Za N(0,1)
/i
4n
cforH :0>0= wy:7T>1,
forH; : 0<0= wp:7< — 1y
and for H3 : 6 # 0 = wo : [t > 14p.

Case II The two populations differ in every respect, i.e. with respect to location,
dispersion, skewness, kurtosis, etc.

C. Wald-Wolfowitz Run test

Hy : F1(x) = F2(x) against H; : Fy(x) # Fa(x)
Here also we arrange the combined sample in ascending order x() <
X2y < ... < X(p)-

Suppose (Rj,...,R, ) be the ranks of the Ist sample observation and
(Ruy+15- - -y Ruy +n,) be the ranks of the 2nd sample observation. According to the
ordered arrangement,

we write z, = 0 if x(;) comes from 1st sample

= 1 if x(,) comes from 2nd sample.

We note that, Ist sample can be written as {x(Rl),x(R2), .. .,x(Rnl)} and the 2nd

sample can be written as {x(Rn1+1>vx(Rnl+z)> . .,x<R”1+”2)}.

Sz =0if o € (R17R27.. -Rnl)
=lifa e (Rm +17an +25-- -Rnl+nz)~

So zi1,22,...,2, 1S a sequence of 0’s and 1’s and are determined by
(R1,R2,...,R,). Let U = number of ‘0’ runs and V = number of ‘1’ runs and
W = U + V = total number of runs.

Here W is our test statistic.

The idea is that if the populations are identical, then the 1st sample and 2nd
sample ranks would get thoroughly mixed up, i.e. the runs of ‘0’ and ‘1’ would be
mixed up thoroughly, i.e. W would be too large. On the other hand, if the two
populations are not identical, i.e. if Hy is not true, then the arrangement of runs
will be patching. So w would be too small. Hence a left tail test would be
appropriate.
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Hence wp : W < w, where w, is such that Py, [W < w,] <a. It can be shown
that under H,
0if [u — v|>2
np -1y (ny—1
GO iflu—v|=1
n

PrlU=u,V=v]= n
26D 4, — =0
n

n

2 ni—1\ (np—1
c Py W =2m] = Py {u = m,y = m} :W and
(n)

Py W =2m+ 1) =Py {lu=myv=m+1}+Py{u=m+1,v=m}

o)) (G

N n
ni
It can be shown that E(W/H,) = 2"#”2 +1;

V(W/Hp) = % (2”’11"2 - 1).

For large n; and n,, under H

_W—Ey(W) o
= et N(0,1). (6.1)

(Note: Since U and V are not independent, so the traditional CLT for W= U + Vis
not applicable here. Still (6.1) is true here as shown by Wald and Wolfowitz using
Strilings” approximation). We write 4; ="t and/, =" A; +/2 = 1

o E(W/Hp) = 2nlyJg +1 =~ 2ni Jyand V(W /Hy) ~ 4ni3}3.

Then © = Y=2"4% 4 N (0,1
vV 4"112122 ~ ( )

wo T — T,
D. Kolmogorov—Smirnov test

Let X1, X, ..., X,, be from Fy and X,,, 41, Xy, +2,...,X, be from F,. We are to test
Hy : Fi(x) = F>(x)Vx against



164 6 Non-parametric Test

H, : F|(x) > F2(x)Vx, Fi(x) > Fa(x) for some x

Or, H; : F(x) < F2(x)Vx, Fi(x) <F(x) for some x

Or, Hs : Fi(x) # F2(x)Vx, for some x.

Let ‘# symbol implies the number of cases satisfying a stated condition.

X, <x,0=1,2,...,n
Flnl(x):# oo A, . )< 1

< = 1 2,..
anz(x):#xﬁ_x7ﬁ n+1Ln+2,.,n

ny
Test statistic

ny,ny

D! =Sup{Fi, (x) — Fa,,(x)} for H,
D, =Sup{Fa,(x) — Fi,, (x)} for H,

ny,ny

Dn1.n2 = Sup |Fln1 (x) - F2n2 (‘x)|

ny,ny? T ng,Nng

:max{D+ D> }for H;

Let 2nd sample ranks be R,, 11, ..., R, and ordered ranks be S; <S; <..<S§,,.
Similarly for Ist sample ranks are Ry, R,, . . ., R,, and ordered ranks are §} <S,.. <, .
Then D:[]_nz = Sup{F,, (x) — Fap,(x)} = max Sup  {Fin (x) = Fan, (%)}

’ X 1:0.1,4..n1 X.;’_ §~’C<S{+1

i Si—i
= maxq max (—— ,05.
i=1,..,n \ N ny

Similarly, D, ,, = max{O, ‘max (}{_2 _ Sjn_l—f) }

j=1,..ny
Dy, =maxyD D~
ny,ny T ny,p? ~npng |

Under Hy, D is uniform and D ,D™~ and D are distribution free. [Under H,,
distribution of {(sl,sz, Sy, (s’l,s’z,sg,...sgl)} is independent of (F; = Fy)].

Critical region: under Hy, we expect that D*, D™ and D are very small. Hence right
tailed test based on D’s would be appropriate.

Asymptotic distribution

1 2 _22 .
For one-sided test Py, [ /niif;zzD':"z <z} — 1 —¢ % asmin (n1,np)— 00,z >0

Practically we find a z such that e 2 = o and reject Hy if , /"2~ (observed
ny+ny
D, ,) =z

ny,ny
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x i 22 .
For two sided test PHO[ S DN gz} —1-2%(=1)"'e 27 as min

- i=1
(ny,n) — oc.
Advantages of K-S test over Homogeneity ;> test are as follows

1. K-S test is applicable to ungrouped data, while y? is applicable to grouped data
only.

2. Under Hy K-S is exactly distribution free, while y? is asymptotically distribu-
tion free.

3. K-S test is consistent against any alternative, while y? is so for specific alter-
native only.

Example 6.8 Twelve 4-year-old boys and twelve 4-year-old girls were observed
during two 15 min play sessions and each child’s play during these two periods was
scored as follows for incidence and degree of aggression:

Boys : 86,69,72,65,113,65, 118,45, 141, 104,41, 50
Girls : 55,40,22,58,16,7,9, 16,26, 36,20, 15

Test the hypothesis that there were sex differences in the amount of aggression
shown, using (a) the Wald-Wolfowitz runs test, (b) the Mann—Whitney—Wilcoxon
test and (c) the Kolmogorov—Smirnov test.

Solution We want to test Hy : incidence and degree of aggression are the same in
four-year olds of both sexes against H; : four-year-old boys and four-year-old girls
display differences in incidence and degree of aggression.

(a) Wald—Wolfowitz runs test

We combine the scores of boys (B’s) and girls (G’s) in a single-ordered series, we
may determine the number of runs of G’s and B’s. The ordered series is given below.

Score 7 |9 |15 |16 |16 (20 |22 |26 |36 |40 |41 |45 |50 |55 |58
Groups |G |G |G |G |G |G G G G G |[B |[B [B (G |G
Runs 1 ___2 3
Score 65 |65 |69 |72 |86 [104 |113 |118 |141

Groups |[B |[B |B (B |B |B B B B

Runs 4

Each run is underlined and we observe that r = 4.

From the table for n; = 12, n, = 12, we reject Hy at o = 0.05 if » <7. Since our
value of r is smaller than 7, we may reject Hy. So we can conclude that boys and
girls display differences in aggression.
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(b) Mann—-Whitney—Wilcoxon test

The pooled sample and the ranks are given below:

The sum of the ranks for the observations corresponding to the boys is

R =11+124+134+165+16.5+18+19+4+20+4+21+22+423 424 =216

and that for girls is
Ry=1+4+2+4+34+45+454+6+7+8+9+10+14+15=284

The smaller rank-sum is 84. This corresponds to girls.
Hence

nz(l’lz —+ 1)
2
— 144+ 78 — 84 — 138

U=nn,+ — Ry

Or, equivalently,

nl(nl +1)
2
— 144478 —216 = 6

U=nn,+ — Ry

The test statistic is given by the smaller of the two quantities. Here U = 6. The

other value of U can be obtained from the relation U’ = njny, — U = 144 — 6 = 138.
The critical value of U for a two-tailed test at o« = 0.05 and n; = ny = 12 is 37. The
observed U = 6 is less than the table value. Hence it is significant at 5 % level.
Hence H, is rejected.

(c) Kolmogorov-Smirnov test

The scores of the boys and girls are presented in two frequency distributions shown

below:

Score (x) No. of boys No. of girls Fia(x) Gia(x) |[Fia(x) — Gia(x)]
7-20 0 6 0 6/12 6/12
21-34 0 2 0 8/12 8/12
35-48 2 2 2/12 10/12 8/12
49-62 1 2 3/12 12/12 9/12
63-76 4 0 7/12 12/12 5/12
77-90 1 0 8/12 12/12 4/12
91-104 1 0 9/12 12/12 3/12
105-118 2 0 11/12 12/12 1/12
119-132 0 0 11/12 12/12 1/12
133-146 1 0 12/12 12/12 0
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Dip12 = Sup|Fi2(x) — Gia(x)| = 9/12. From the table, the critical value for
nG = npy = 12 atlevel « = 0.05 is D12712105 = 6/12 Since D12,12 > D12"12;0,5, we
reject Hy.

6.5 Non-parametric Tolerance Limits

We draw a random sample (X;,X;,...,X,) from a distribution with distribution
function F(x) which is continuous. We define functions of sample observations
L=L(x,x,...,x,) and U = U(x,x2,...,%,) such that L < U.

If PrPr(L<X<U)>f]=y (6.2)

then the interval (L,U) is called 100 f% tolerance interval with tolerance coefficient
y. L and U are called lower and upper tolerance limits respectively. If the deter-
mination of y does not depend upon F then the limit (L,U) are called non-parametric
(distribution free) tolerance limits. We note that, (6.2) can be written as,

Pr{F(U) — F(L) > f} =7 (6.3)

that is a tolerance interval (L,U) for a continuous distribution having c.d.f. F
(x) with tolerance coefficient y is a random interval such that the probability is y that
the area between the endpoints of the interval (L,U) is at least a certain pre-assigned
quantity ‘f’.

If L and U are two-order statistics say x( and x), (r < s), then (6.3) is
equivalent to Pr{F(x)) — F(x)) > B} = 7.

Wilks has shown that the order statistics provide non-parametric tolerance limits,
while it is Robbins who has shown that it is only the order statistics which provide
distribution free tolerance limits.

Determination of Tolerance Limits

Joint distribution of x(,, x(y is

n!

sl o} = (r—Ds—r—D!(n—s) [F(xm)yil

[Fx) = Foen)]™ [0 = Fx)]™™ £ ) (e %) <o)

Putting U = F(x(,)) and V = F(x(;)) we get,

n!

r—Dis—r—Dln— s)l”r_l(v —u) T 1= 0<u<v<l,

g(u,v) = (
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U=w U=Ww 0<y<l

Agaimwe put o LTy Wy 0<W<l—y.

r—1,s—r—1 n—s

Wy (L= w—y)

1—
cogly) = . y ! / w1 —w— )" dw
0
1

ey e Tl NI A (R R IER

o

1
n!

— : y.v—r—l(l _ y)n+r—x tr—l(l _ t)n—xdt
(r=Dls—r—1)!n—s" b/

r(n+ 1) s—r—1 n+r—s
_ S—r 1—
F(s—r)r(n+r—s+1)y (=)

1 —r—1 n+r—s
=" (1 - S 0<y<l.
ﬁ(sfr,n+rfs+l)y (=) Uy

< Pr[F(xg) = Flxg) 2 f] =
SPry>fl=yePry<fl=1-y

B
ie. / gy)dy=1-7

0

b 1 n—+r—s
Sy =) T dy
0

—1—
e s—rn+r—s+1) 7

ie. p(s—rn+r—s+1)=1—y (6.4)

For given f3, y and n we choose r and s satisfying (6.4) such that r + s =n + 1
that is x,y and x5 are symmetrically placed.
Particular case: r = 1, s = n; Then (6.4) = Iy(n —1,2) =1 —y

B
S (1 —t)dt

. 0
T )
(P T TR
te.1=7= (n1_7>/ I'n+1)

nnfl_ n— n
= n(n(_l)l)ﬁ nin=1)

S 1=y =np (1= )+ f"
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that is 1 —y~np" '(1—p) as 0<f<1 and n — oco. So for large ‘n’,

L=y ~nf""'(1 - B).

For given f and 7, one can find n from this relationship.

Alternative

For Bin(n,p), we know

< n
g =l(n—c,c+1)
x=0 X

=1—1I,(c+1,n—c)

Then (64) = y=1—Ig(s—r,n+r—s+1)

-y Qﬂx L gy

x=0

So for given n, f and y we can find s and r such that x,) and x(, are sym-
metrically placed.

6.6 Non-parametric Confidence Interval for &,

Suppose F(x) is continuous and a random sample (x,x,,...,%,) is drawn from it.
» is the p-th order quantile. So P[X < ¢,| = p. Define X, and X, as the rth and

sth order statistics, r < s. Then (X(,.),X (S>> is said to be 100(1 — a)% confidence

interval for ¢, if

PriX, <& <Xyl=1-u (6.5)

Now, Pr[X(y <& <X(y] =Pr[, <X(y] —Pr[¢, <Xy
=Pr[X() > &) — PrX() > &)]
=1 =Pr[Xy<&] — 1+PrlX) <]
=Pr[X()<&] = Pr[X(y <§)]
=Pr/[at least r of the observations <¢,]

—Pr [at least s of the observations < ép]
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371 n n—x r71 n n—x
=z( )pm—p) —2( )pxa—p)
x=0 X

=1—-I,(s,n—s+1)—1+1,(r,n—r+1)
=l,(rn—r+1)—I,(s,n—s+1)

Since, Pr[X(,) <&, <X(y] =1 — o, so r and s are such that
l—a=1I(rin—r+1)—I,(s,n—s+1) (6.7)

Given o and n, the selection of r and s satisfying (6.7) is not unique. We select
that pair of r and s for which (s — r) is minimum.

For symmetrically placed order statistics x(,) and x(5), we select that pair of (r,
s)ysuchthat r+ s=n+1=s—1=n-r.

. From (6.7) 1 —a = nif (:)p’c(l —

r

From this relation one can find r and hence s=n + 1 — r.

Note If in (6.7) the exact probability (1 — a) is not attained then we choose that
pair of 7 and s such that

PriX) <& <X >1—aie L(r,n—r+1)—I(ssn—s+1)>1—a

Non-parametric confidence interval for & p) (=median) using sign test

The sign test technique can be applied to obtain a class interval estimate for the
unknown population median &4 2 Suppose X (1), X(2), - - -, X(n) be the order statis-

tics. We consider the testing problem Hy : & n= & against H : ¢ n# &,

Define, S = total no. of + ve signs among (X;) — éO)Vi =1(n

The ordinary sign test is

1 ifs<s
a; ifs=s
P(s) =40 ifs;<s<s,

ay ifs = S2
1 ifs>s
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where s; and s, are such that

| R

Pr-[s<s;1/Ho)< = < Pr-[s <s;/Hy]

Pr-[s > s5/Hp| < = < Pr-[s >s,/Hy]

ol ™

Also a; and ay are such that a; = % and a, = %
We accept H if s; <s<s, and so
Prlsi<s<s]=1-—u
ie, Prsj+1<s<s, —1]=1—ua (6.9)

In order to obtain a confidence interval for &; 2 we need only to translate the

inequality in the LHS of (6.9) to an equivalent statement involving the order
statistics and élﬂ' We have seen earlier that lfoc:Pr[Xmgéng(S)]

5 (par

Now, for

1 s—1 n 1 n
p=51-ua =Pr[X(,) <& p <Xy = Z < ) (5)

xX=r X
1
=Pr[r<S<s—1]as SwB(n,z) under Hy.
S Pr[X) <8 p <X =Pr<S<s—1]=1-u (6.10)
Comparing (6.9) and (6.10), we can write
PF{X(MH) <& SX(SQ)} =1l-u

100(1 — O()% C.I for fla using Sign test is [X(s] +1),X(_92)] = [X(sl 4 1),X(,,,s])]

{since S is symmetric about 75,4 —s; = 5, — "}
For large samples, (6.9) is equivalent to
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Sl-l-l—"/z S—% Sz—l—%
Pr < < =1—-a
/n/y /n/4 4/n/4
1—n1,—-0.5 —1-2405
or, Pr St 2 §‘c§s2 2 =1—uq

/n/4
Cs4l-1h-05

NaA

NGA

ie. sy = "/2 — 05—+ "/4‘[0(/2 & 59 = "/2+0.5 + v/ "/4‘[1/2 (6.11)

So, 100(1 — )% C.I. for <1/ using sign test is
(X(5+1): X(s2)] = [X(51 1) X(n—sy) ] Where s and s, are given by (6.11).

6.7 Combination of Tests

When several tests of the same hypothesis Hy are made on the basis of independent
sets of data, it is quite likely that some of the tests will dictate rejection of the
hypothesis (at the chosen level of significance) while the others will dictate its
acceptance. In such a case, one would naturally like to have a means of combining
the results of the individual tests to reach a firm, overall decision. While one may
well apply the same test to the combined set of data, what we are envisaging is a
situation where only the values of the test statistics used are available.

Let us denote by T; the statistic used in making the ith test (say, for i =1, 2,...,k).
Commonly Tj, T, ..., T; will be statistics defined in the same way (like >
statistics or z-statistics), but with varying sampling distributions simply because
they are based on varying sample sizes. To fix ideas, let us assume that in each case
the test requires that Hy be rejected if, and only if, the observed value of the
corresponding statistic be too large. Consider, in this situation, the probabilities
yi = PI’[T,' > ti/Ho], fori=1,2,....k

Provided T; has a continuous distribution under Hy, say with probability density

o0
function g;(z), so that y; = [ g;(¢)dz, where f; is a randomly taken value of 7;, y; has
4

the rectangular distribution over the interval [0,1] under Hy and hence —2log, y;
k

has the X2 distribution with df = 2. Consequently P; = —2 > log, y; has, under Hy,
i=1

the y* distribution with 2k degrees of freedom. This statistic is used as the test

statistic for making the combined test. One would reject Hy if, and only if, the

observed value of P; exceeds y2 ;.
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The case where each individual test requires rejection of Hy if, and only if, the
observed value of the corresponding test statistic is too small, or the case where
each individual test requires rejection of Hy if, and only if, the observed value of the
test statistic is either too large or too small, is to be similarly dealt with. The reason
is that, if 7; have continuous distributions under Hy, then u; = Pr[T; <#;/Ho] and
v; = Pr[|Ti| > |#]/Ho| are also rectangularly distributed over (0,1). This implies

k

that the statistic P, to be appropriate to these situations, viz., P, = =2 log, u;
i=1

k
and P, = =25 log, v;, are also distributed as +? statistics with df = 2k under Hy. In
i=1
each of these cases also, the overall decision will be to reject H if, and only if, the
observed value of the respective P, exceeds 12721«

Example 6.9 In order to test whether the mean height (i) of a variety of paddy
plants, when fully grown, is 60 cm, or less than 60 cm, five experimenters made
independent (student’s) t-tests with their respective data. The probabilities of the #-
statistics (with the appropriate df in each case) to be less than their respective
observed values are 0.023, 0.061, 0.07, 0.105 and 0.007. If the tests are made at 5 %
level, then the hypothesis Hy : p = 60 cm, has to be accepted in three cases out of
the five.

In order to combine the results of the 5 tests, we note that log y;, fori=1, 2, 3, 4
and 5, are 2.36173,2.78533,2.23045, 1.02119 and 3.84510, respectively. Hence for

the data, iloge u; = —10+42.24380 = —7.75620, so that P, = — 25:210g6 u =
i=1 1
2.30259 x 15.5124 = 35.719.

This is to be compared with y%s = 18.307and x%, ,, = 23.205. Since the
observed value of P; exceeds the tabulated values, the combined result of the
experimenter’s tests leads to the rejection of Hy at both 5 % and the 1 % level. In
other words, in the light of all 5 experimenters’ data, we may conclude that the
mean height at the variety of paddy plant is less than 60 cm.

6.8 Measures of Association for Bivariate Samples

A. Spearman’s rank correlation coefficient

In many situations, the individuals are ranked by two judges or the measurements
taken for two variables are assigned ranks within the samples independently. Now it
is desired to know the extent of association between the ranks. The method of
calculating the association between ranks was given by Charles Edward Spearman
in 1906 and is known as Spearman’s rank correlation.

Let (X1, Y1), (X2, Y2),..., (X, Yy,). be a sample from a bivariate population. If
the sample values X, X5,...,X, and Y1,Y>,...,Y, are each ranked from 1 to n in
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increasing order of magnitude separately and if the X’s and Y’s have continuous
distribution functions, we get a unique set of rankings. The data will then reduce to
n pairs of ranking. Let us write

Ry, =Rankof X,, «a =1,2,...,n.
Ry, =Rankof Y,, « =1,2,...,n.

Pearsonian coefficient of correlation between the ranks R;,’s and R»,’s is called
the Spearman’s rank correlation coefficient r; which is given by

> i (Rix — R1)(Ray — Ry)

ry =

12
{30 Ria = R Y (Res — R2)

1230 (Rix =5) (Rox —*57)
o=1

n(n? —1)
If for n individuals, D, = Ry, — R»,, is the difference between ranks of the ath
individual for « = 1,2, ..., n, the formula for Spearman’s rank correlation is
6> D2
rp=1-—2L
* nn?—1)"

The value of r, lies between —1 and +1. If X, Y are independent then E(r,) = 0.
Also Population Spearman’s rank correlation coefficient, i.e. p, =0 = E(r;) = 0.
Kendall in 1962 derived the frequency function of r; and gave exact critical value
ry. But the approximate test of r; which is the same as #-test for Pearsonian cor-
relation coefficient is good enough for all practical purposes. Here we test Hy :
p, = 0 against H, : p, # 0. The test statistic

t= ’\/7_1"73 has (n — 2) d.f. The decision about Hy, is taken in the usual way. For

>
large samples under H,, the random variable Z = rgv/n — 1 has approximately a
standard normal distribution. The approximation is good for n > 10.

B. Kendall’s rank correlation coefficient
Kendall’s rank correlation coefficient 7 is suitable for the paired ranks as in case of
Spearman’s rank correlation. Let (X1, Y1), (X2, Y2), .. ., (X,, ¥,) be a sample from a
bivariate population.

For any two pairs (X;,Y;) and (X], Y]) we say that the relation is perfect con-
cordance if
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X;<X; whenever Y;<Y; or X; > X; whenever ¥; > Y; and that the relation is
perfect discordance if X; > X; whenever Y; <Y or X; <X; whenever Y; > Y.

Let 7. and m,; be the probability of perfect concordance and of perfect discor-
dance respectively defined by

o]

me =P[(X; — Xi)(¥; = Yi)
Y; - Y;) <0].

and 7y :P[(Xj —Xi)( i)

The measure of association between the random variables X and Y defined by

>
<

T =T, — Ty

is known as Kendall’s tau (7)
It is noted that

7 =0 if X and Y are independent.
= +1 if X and Y be in prefect concordance.
= —1if X and Y be in prefect discordance.

We now need to find an estimate of t from the sample.
Using sample observations, Kendall’s measure of association becomes

1

( Z > sl —x)s(y — i) (6.12)
n\j<i<j<a
)

T =

where s(r) =1if r >0
=0ifr=0
=—1if r<0
Naturally E[s(xj - x,-)s(yj - yi)} =M. —Ty =1
The statistic T defined in (6.12) is known as Kendall’s sample tau (t) coefficient.
The procedure for calculating T consists of the following steps:

Step 1: Arrange the rank of the first set (X) in ascending order and rearrange the
ranks of the second set (Y) in such a way that n pairs of rank remain the same.

Step 2: After operating Step 1, the ranks of X are in natural order. Now we are left
to determine how many pairs of ranks on the set Y are in their natural order and how
many are not. A number is said to be in natural order if it is smaller than the
succeeding number and is coded as +1 and also if it is greater than its succeeding
number then it will not be taken in natural order and will be coded as —1. In this

way all <;> pairs of the set (Y) will be considered and assigned the values +1
and —1.
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Step 3: Find the sum ‘S’ of all the coded values.
Step 4: The formula for Kendall’s rank correlation coefficient-T is

T N Actual value 28
B (n) ~ Maximum possible value  n(n — 1)
2

Here we test Hy : T = 0 against H; : t # 0. Thus we reject Hy if the observed
value of |T| > t,/, where P|[|T > t,/5|Ho| = a. The values of #, are given in the
table for selected values of n and «. Values for 4 <n < 10 are tabulated by Kendall.

It can be shown that E(T) =1 and V(T) = 22 4 =% |f 4 — 0o under

~ 9n(n—-1) n
2

Hy:7t=0, %’ETMN(O7 1) and we can test the independence of x and y.

Remark An important difference between T and r; is that T provides an unbiased
estimate of 7, whereas r; is not an unbiased estimate of p,.

Example 6.10 Following are the ranks awarded to seven debators in a competition
by two judges.

Debators A B C D E F G
Ranks by judge I (x) 3 2 1 6 7 5
Ranks by judge II () 5 6 3 7 4 2 1

Compute (i) Spearmen’s rank correlation coefficient (r;) and Kendall’s sample
tau coefficient (7)) and test their significance.

Solution (i) First we find d; = x; — y;Vi which are
d:—2-4-2-1324
Also, Y7 d? = 54

2
thus 7y = 1 — 2= = 1 — 03— 0,036

To test Hy : p, = 0 against Hy : p, # 0, the statistic

. rWn—2 _ 0.036v7-2 _ 0,080

Ve V1 - (0.036)°

From the table, 75,5 = 2.571. Calculated value of |¢| = 0.080 < 2.571, hence we
accept Hy. It means there is a dissociation between the ranks awarded by two
judges.
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(i) We write below ranks of x in natural order and ranks of y correspondingly

X 1 2 3 4 5 6 7
3 6 5 2 1 7

For this problem, n =7

For S, take the rank 3 and give +1 or —1 value for all pairs with subsequent ranks
of y. 3 < 6, give a number +1; 3 <5, again +1; 3 > 2, give a number —1 and so on.
Then choose 6 and take the pairs (6,5), (6,2), (6,1), (6,7) and (6,4) and continue the
process till we reach the last pair (7,4). Proceeding in this manner,

S =1 +1 -1 =1 +1 +1) + (-1 =1 -1 +1 -1) + (-1 -1 +1 -1) + (-
1+1 +1) + (+1 +1) + (1)

=2-3-2+1+2-1=-1

Thus T = 5 = =X2 = _0.048

o

To test the significance of T, we test

Hy : =0 against H; : 7 # 0.

From the table, for n = 7 we have 75 = 0.62. Since |T] = 0.048 < 0.62, we
accept Hy. It reveals that there is no association between the ranks awarded by two
judges.

Example 6.11 A random sample of 12 couples showed the following distribution of
heights (in inches):

Couple no. 1 2 3 4 5 6 7 8 9 10 |11 12
Husband 80 |70 (73 |72 |62 |65 |74 |71 |63 |64 |68 |67
height

Wife height 72 |60 |76 |62 |63 |46 |68 |71 |61 |65 |66 |67

(a) Compute ry and T.
(b) Test the hypothesis that the heights of husband and wife are independent using
ry as well as 7. In each case use the normal approximation.

Solution (a) The heights of husband and wife are each ranked from 1 to 12 in
increasing order of magnitude separately and let us denote their ranks by x; and y;
respectively (i = 1,2, ..., 12).

X; 2127 10 9 1 4 11 8 2 3 6 5
Vi (11 2 12 4 5 1 9 10 3 6 7 8
di=xi—y; :1 5 -2 5 -432 -2 -1 -3 -1 -3

> d? =108.
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Thus 7, = 1 — 2= = 1 — S2105  0.6224

We write below the ranks of x in natural order and ranks of y correspondingly

7 8 9 10 11 12
2 10 4 12 9 11

Xi

12 4 5 6
yi 5 3 1 8 7

3
6

Total number of scores = <g) =1xll — 66

Actual score=S=3+6+3+8+1+2+5+0+3-2+ 1=30 (procedure for
calculations of S is explained in Example 6.10 (ii))

Thus, T = 27 = 0.4545

(b) To test Ho p, = 0 against H; :

Z=rvn—1

=0.6224 x V11 = 2.06 ~N(0, 1)

p, # 0, the approximate test statistic is

Since Cal |Z], i.e., 2.06 > Zy 925 = 1.96, hence we reject Hy.
It means that the heights of husband and wife are not independent.
To test Hy : T = 0 against H, : T # 0, the approximate test statistic is

zZ= % (V)T = % (x/ﬁ)o.4545 — 236~ N(0,1)

Since Cal |Z], i.e., 2.36 > Zy s = 1.96, hence we reject Hy. Hence we can
conclude that there is an association between the heights of husband and wife.



Chapter 7
Statistical Decision Theory

7.1 Introduction

In this chapter we discuss the problems of point estimation, hypothesis testing and
interval estimation of a parameter from a different standpoint.

Before we start the discussion, let us first define certain terms commonly used in
statistical inerence problem and decision theory. Let X, X5, ..., X, denote a ran-
dom sample of size n from a distribution that has the p.d.f. fix, ), where 8 is an
unknown state of nature or an unknown parameter and ® is the set of all possible
values of 0, i.e. parameter space (known).

To make some inference about 6, i.e. to take some decisions or action about 0,
the statistician takes an action on the basis of the sample point (x,xz, .. ., X,).

Let us define

(E = the set of all possible actions for statistician (action space)

= to choose an action a from (E.

So, 8 = true state of nature and a = action taken by the statistician.

The value L(6, a) is the loss incurred by taking action ‘a’ when @ is true.
Equivalently, it is a measure of the degree of undesirability of choosing an action
‘a’ when 6 is true and this gives a preference pattern over & for given 6, i.e. the
smaller the loss the better the action under 6. L(6, a) is a real-valued function on ® x
& = Loss function. Thus (@, &, L) is the basic element in our discussion.

Example 7.1 Let 6 = average life length of electric bulbs produced in a factory and
® = (0,00).

Point estimation of ¢

To estimate the value of € = to choose one value from (0, c0); so a = (0, 00).
Observe life lengths of some randomly selected bulbs.

Define L(f, a) = (0 — a)* = squared error loss function

© Springer India 2015 181
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(or) = |0 — a| = absolute error loss function

(or) = w(0)(0 — a)* = weighted squared error loss function where
w(0) = a known function of 6.

Desired nature of (L, 8) graph should be a convex function with minimum at
and increasing in |6 — a.

Testing of hypothesis of 6

To test Hy : 0 <0y (a given value of 6) against
H, 0> 90

(E = {ap, a1} where ay = accept Hy and a; = accept H,. Here, simple (0-1) loss
function is as

ap dai

0<0, 0 1

0 > 0() 1 0
apy a

loo <lo1

or, assigned value loss function is as 0 <6y 1y log L <1
11 <lo

0>00 lLo 1

ap aj .
or, a (0 — ) type loss function is as <0, 0 w;(0) ngg; } iE 307—90
0>0, w(0) 0o " 0

Interval estimation

Here, we are to choose one interval from (0, co).

So, (E = The set of all possible intervals of (0, 00)

= (a1, a2).

[1if0¢a B B .
L(0,a) = {0 i 0 eq Ob may be L(0,a) = a; — a; = length of the interval.
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Let R = A random experiment performed
X = Random outcomes of the experiment = Random variable or vector
x = Observed value of X

*= Sample space
The probability distribution of X depends on 6, (say)

Py : Py[X € Alor, Fy(x) = Py[X <x]
or, fo(x) = p.d.for pm.f of X.

The statistician observes the value x of X to take his decision. If X = x is observed
the statistician takes an action d(x) € (E, d(x) : *— E
where

d(x) = A decision rule in its simplest form

= A non-randomized decision rule.

If d(x) = action taken; loss incurred under 0 = L(0,d(x)). If d(x) = decision rule,
then loss incurred (under 8) = L(0,d(x)) (random quantity) = a real-valued random
variable. Expected loss (under 6) = EyL(6,d(x)) = R;(0) = risk of d(x) under 6.

.. Ry(0) : 0 € ® — Risk function of d(x).

Let us restrict to rule d(x) for which R;(0) <ooV6 and let D = the set of all such
d(x)’s. Ry(0) gives a preference pattern D for given 6. The smaller the risk the better
is the decision rule d(x).

Thus, (®, (&,L) > (®, D,R)

Example 7.2 Point estimation of real 6 : (E = ®
d(x): ¥ — &(@); d(x) = point estimator of 6.
For squared error loss Ry(0) = Eg(d(x) — 0)*= MSE of d(x) under 6.

Example 7.3 (B = {ag,a,}; a; = accept H;, i =0, 1,

Y

(x): 2— {aoa}
x% = {x:d(x) =ap} = acceptance region

# = {x:d(x) =a;} = rejection region

cdx) =apifx € x
a ifx € x

xp and x; are disjoint and xy, *_ *
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For (0—1)loss if 0 € ®g, R;(0) = Pp{d(x) = a,}
= P(){X S 9&1}
= Probability of first kind of error.

If 0€®,Ri(0)=Py{d(x) =ao} =Pp{X € %}
=1— Py{X € %} = Probability of type 2 error.
Interval estimation of real 8

@& = set of all possible intervals of ©.
dx): x— @&
d(x) = (di(x), da(x))

1if0ea

L(0,a) =
(0.4) {OifOea

Then R;(0) = Py{0 ¢ d(x)} = 1 — Pp{0 € d(x)}

If L(O, a) =dp; — daj

then R,;(0) = Ey[d>(x) — di(x)] = Expected length of d(x).

Thus, (®, &, L) = Basic element of a statistical decision problem.

X = observable random variable; for each x, d(x) € (B, i.e. d: x— (B
d(x) = a non-randomized decision rule.

R4(0) = Ep(L(6,d(x))) = Risk of d(x)
D = the set of all non-randomized decision rules (with finite risks V0)
Randomized Decision Rules

Randomized action

Example 7.4 Let ©® = {6,,0,}, & = {a1,a2,a3} and
aq ay as
Loss function as 0; 1 4 3
0, 4 1 3
Neither a; nor a, is better than a3 for every value of 0. Now define an action

1
a* : a* = a; with probability 3

1
= a, with probability 3
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The expected loss for a* is

1 1
L(@l,a*) = EL(B[,CI]) + EL(QMCIZ) =25

1 1
L(@z,a*) = EL(HQ,CZ]) + EL(927a2) =25

Thus a* is to be preferred to az both under 0; and 0,. Such an «* is called
randomized action.

Generally, by randomized action a* we mean actually a probability distribution
over & and loss due to a randomized action a* is

L(0,a*) = EL(0, z) where z is a random variable with probability distribution a*
over .

Advantages of considering randomized actions

1. Extends the class of actions, i.e. allows more flexibility for the statistician.

2. The set of all randomized actions is convex, i.e. if af,a; are two randomized
actions, then for every 0 <o <1; aaj + (1 — a)d} is also a randomized action
with L(0,0a} + (1 — a)a3) = aL(0,a}) + (1 — 2)L(0, d3).

We shall consider only randomized actions " for which L(0,a") is finite V0 and
shall denote by @& the set of all such randomized actions.

Note Clearly @ C & because a non-randomized action ‘a’ = A probability dis-
tribution over & degenerate at the point ‘a’.

First definition of randomized decision rule

Let X = observable random variable

x = observed value of X

For each x, let 6(x) € &,ie d:x— &

0 = d(x) = a (behavioural) randomized decision rule.

R5(0) = Risk of ¢ at 0 = EgL(0, 5(x))

We shall consider only behavioural rules ¢ for which R;s(0) is finite V6 and shall
denote by & as the class of all such behavioural rules. Clearly, D C Z.

Example 7.5 Test of hypothesis problem Hj : 0 € ®, against H; : 0 € ©.
(E = {ap,a1},a; = acceptH;,i=0,1,...

A typical randomized action a* = ¢
where ¢ = probability of accepting H,
1 — ¢ = probability of accepting Hy,0 < ¢ < 1.

A typical behavioural decision rule: 6 = d(x) = ¢(x)
where ¢(x) = probability of accepting H; for X = x
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1 — ¢(x) = probability of accepting Hy for X = x
0<¢(x)<1.For 0-1 loss, L(0,a*) =¢ - 1+ (1 —¢) - 0= ¢forf € O
LO,a)=¢ -0+(1—¢) - 1=1—¢ford € ©

Ry(0) =Eg¢(x)for0 € O
=Ep[l — ¢(x)]for6 € ©,

Second definition of randomized decision rule

Let X = observable random variable; x = observed value of X.
D = the set of all non-randomized decision rules.

0 = A probability distribution over D
= A randomized (mixed) decision rule with R;(0) = ER,(0) = Risk of d at @ where
Z = A random variable with probability distribution  over D.

Example 7.6 (B = {a;, a2} ®*= {x1,x2}
D = {d17d27d3ad4}

di:di(x1) = a1, d\(x2) = a
dy : dy(x1) = ar,dr(x2) = ay
ds 1 d3(x1) = a1,d3(x) = a
dy 1 da(x1) = ar,da(2) = ay

A typical mixed decision rule is 6 = (py, P2, P3:P4)
4

p;>0Vi=1(1)4, > p; =1 where
1

p; = probability of choosing non-randomized rule d;
4
R5(0) = piRa,(0).
i=1

We shall consider only mixed rules ¢ for which Rs(6) is finite V0 and shall
denote by D* as the class of all such mixed decision rules. Clearly, D C D* since a
non-randomized rule d = a probability distribution over D degenerate at d.

First mode of randomization:

(0, @, L) — (0,E",L) (0, 7,R)
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Second mode of randomization:
(®,@E,L) 5(0,D,L) — (0,D",R)

Note The two modes of randomization can be considered to be equivalent in the
sense that given any 6 € D* one can find a 6* € & with Rs(0) = Ry (0) VO and
conversely.

Example 7.7 (B = {aj, a2}, *= {x1,x2}
D ={dy,d,ds,ds} as defined earlier.

4
A typical 6 € D* is 0 = (py,ps,P3,P4), p; =0 for i = 1(1)4, > " p; = 1, where
1
p; = probability of choosingd;.
D" = {(Pupz,ps,m)/piZOVi,Zpi = 1}

A typical 6" € D is 6" = (¢, $,),0< by, b, <1, where ¢p; = ¢(x;) = probabil-
ity of taking action a; if X = x;,

1 — ¢, = probability of taking action a; if X = x;.
7 ={(¢1,¢2)/0< 1, <1}

If one chooses a 0 € D,

ay is chosen with probability p, + p; for X = x;
ay is chosen with probability 1 — (p; +p3) = p, +pa
a; is chosen with probability p, + p, for X = x;
ay is chosen with probability 1 — (p, +p4) = p> +p3

Thus, ¢ can be considered to be equivalent to a 6" € 9 with ¢, = p, +ps,
$2 =py +ps

Similarly, a 6" € 9 can be considered to be equivalent to a 6 = D* with
p1+p3=¢1, 0 TPy = ¢

Advantages of considering randomized rules

1. Extends the class of decision rules, i.e. allows more flexibility to the statistician
2. The set of all randomized rules is convex, i.e. if 6;,0, € D (or D*) then
w01 + (1 — a)d, € D (or D*).

For every 0 <o <1 and Rys, 4 (1-5)5,(0) = aRs, (0) + (1 — a)Rs, (0)V0.
Thus, 0 € ©, a € (E; L(0,a); (0, E, L)

X = observable random variable

P ={Py/0 € ®} = family of probability distribution of X
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d(x) = a non-randomized decision rule

D = the class of all non-randomized decision rules
0(X) = a behavioural or randomized decision rule
92 = the class of all behavioural rules

D* = the class of all randomized rules

2 and D* are equivalent classes.

We shall hereafter denote both & and D* as Z.

Note D C ¥
Let 0 € &, Rs5(0) = risk function of J; 6 € ©.
Goodness of a J is measured by risk function.

A natural ordering of decision rules
Let 0, R heD

1. 9, is said to be equivalent to 6,(d; = 0;) if Rs,(0) = R;,(0) V8 € O

2. 0y is at least as good as 0,(0; > d2) if Rs, (0) <Rs,(0) V0 € ©

3. 0y is said to be better than (5 > 0) if Rs, () <Rj;,(0) VO € O with strict
inequality for at least one 6.

Note

1. 81 > 0, = either §; > 0, or 6; = O»
51 >52:>51252

2. 01 > 8,02 > 93 = J; > 03, similarly for > case
3. It may so happen that neither d; > (or > )d, nor d, > (or > )J;. In such case 9;

and J, are non-comparable. Thus > (or>) gives a partial ordering of rules
€9

Example 7.8 X ~N(6,1)
To estimate 0,® = (E = (—o0, 00).

L(0,a) = (0 — a)*= squared error loss. For any real constant C, let d.(X) =
CX = Anon-randomized rule (Fig. 7.1).

Rae(X) = Eg[CX — 0= Eg[C(X — 0) — 0(1 - C))*
= CPEy(X — 0)> + 0*(1 — C)*—2C(1 — C)0 - Eg(X — 0)
=C+0°(1-C)

Fig. 7.1 R,(0)4

\ \,/ Rd‘;edl)(m
NG :

R, (6)
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For C =1, Ry, (0) =1 V0.

For C> 1, Ry (0) > 1 =Ry (0) VO = d, > d.
IfC =1, Ry,(0) =1 +2

Here neither dy > d,, nor d,, > d;

Hence d; and d,, are non-comparable.

Admissibility of Decision Rules

Definition A § € & is said to be an admissible decision rule if there does not exist
any &' € & such that ' > §. Otherwise J is said to be inadmissible, i.e. § is said to
be an inadmissible rule if there exists a §' € & such that §' > 6.

In the above example, for any C > 1, d. is inadmissible as d; > d..

Note Admissibility is the minimum requirement for any reasonably good decision
rule though the criterion is of negative nature.

7.2 Complete and Minimal Complete Class of Decision
Rules

Definition Let C(C2) be a class of decision rules. C is said to be a complete class
of decision rule if given any J ¢ C such that a &' € C exists such that &' > &
(Fig. 7.2).

C is said to be minimal complete if
Fig. 7.2

[CIY)

5>8
(i) C is complete and
(i) No proper sub-class of C is complete.

Significance

If a complete class of C is available one can restrict to this class only for finding a
reasonable decision rule and thus reduce the problem.
A minimal complete class, if exists, provides maximal reduction to this extent.

Note A minimal complete class does not necessarily exist.

Some relationship between a complete (or a minimal complete) class and the
class of all admissible rules

Let A = the class of all admissible rules.

Result 1 For any complete class C, A C C, i.e. any complete class C contains all
admissible rules.
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Proof Let § € A. If possible let § & C. So there exists a ¢’ € C such that ' > § =
J is inadmissible, which is a contradiction as we have assumed 0 is an admissible
rule. Sod €cA=0€C,ie. ACC. O

Result 2 If A is complete, then A is minimal complete.

Proof Assume A is complete. Result 1 = No proper sub-class of A can be com-
plete. Hence A is minimal complete. O

Result 3 If a minimal complete class C exists, then C = A.

Proof Let C be a minimal complete class. Then C is complete. By Result 1, A C C.
So it is enough to prove that C C A. Suppose this is not true. Then there exists a dg
such that §y € C but

0o € A (7.1)
This will imply that there exists a 0; € C such that
o1 > 50 (72)

(Since 9y € A, i.e. g is inadmissible. Hence, there exists a d such that 6 > . If
0 € C,take 0 = 1. If § & C, there exists a 01 € C such that §; > § > Jy. Thus, in
all cases there exists a §; € C such that 6; > dy).

Let us define C; = C — {dp}.

Letus define C; = C — {00 }. Then it follows that C; is also complete (7.3)

(Let 5 € C, O

Case 1 6 = §p. By (7.2), there exists a 0; € C and hence 0; € C; such that
51 > 50.

Case 2 & # . Then & ¢ C, so there exists a &' € C such that §' > 6.

A: ¢ =8p. By (7.2), there exists a J, € C and hence € C; such that
51 > 50 > 0.

B: &' # . §' € Cy. Hence, there exists a 8’ € C; such that §' > §.

Thus, given any § € C in all cases there will exist a &' € C; such that §' > § =
C; is complete)

Now (7.3) contradicts that C is minimal complete and hence (7.1) must be false
= CCA. So C =A.

Result 2 + Result 3 gives us = A minimal complete class exists iff A is complete
and in this case C = A.
Corollary 1 A minimal complete class, if it exists, is unique.

Proof Let C = a minimal complete class. C = A which is unique. O
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Corollary 2 Let C be a minimal complete class and let 5 € C. Then if &' ~6, &
also € C.

Proof C=A,0cC& dcA §~5= & also € A and hence € C. O
Corollary 3 If § is admissible and &' ~ & then §' is also admissible.

Essential complete class and minimal essential complete class

Definition Let C(C2) be a class of decision rules. Then C is said to be an essential
complete class if given any & ¢ C there exists a & € C such that §' > 9.

C is said to be minimal essential complete class if

(1) Cis essential complete; and (ii) No proper sub-class of C is essential complete.

Note A complete class C is also essential complete since &' > § = §' > 6.

Result 1 Let A = the class of all admissible rules and C = an essential complete
class.
If 5 € A but & C, then there exists a &' ~ ¢ such that ' € C (and hence € A).

Proof Let 5 € Abut € C. Then there exists a ' € C such that §' > 6. Butas § € A,
it is impossible that &' > J. So, &' ~ 4. O

Result 2 Let C be minimal essential complete and let 6 € C. If &' ~5,then &' ¢ C.

Proof If possible, let 8’ € C. Define C' = C — {§'} then C’ will be also essential
complete. This contradicts that C is minimal essential complete. Hence ¢’ ¢ C. [

Note Let 2,(C2) be a class of decision rules. Dy is said to be an equivalent class
if all rules € &, are equivalent to each other, but no rule € & — 9, is equivalent to
arule € 7, Then Z can be considered as the disjoint union of some equivalent
classes.

Then,

(i) If C = a min. complete class then C does or does not entirely contain an
equivalent class (by Corollary 2)

(i) If C = a minimal essential complete class then C contains at most one rule
from each equivalent class (by Result 2)

Further if 6 € C and in C, § is replaced by &' ~ &, then resultant class is also
minimal essential complete.
So,

(a) A minimal complete class O A minimal essential complete class (by (i) and
(ii) above)

(b) A min. essential complete class is not necessarily unique. (by 2nd part of
(i) above).
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If C be a complete class such that C contains no proper essentially complete

sub-class, then C is minimal complete and is also minimal essential complete.

Example 7.9 Examples of complete and essential complete class

(1) Essential completeness of the class of rules based on a sufficient statistic:

Let § = d(x) € D. For such x, 6(x) is a probability distribution over @&. T = 1(x) = a
statistic. 0 is said to be based on T if d(x) is a function of #(x), i.e. d(x) = o(x')
whenever #(x) = t(x').

Such a rule can be denoted by 6(T). T is said to be a sufficient statistic if the
conditional probability distribution of X given T is the same V0.
Let T = a sufficient statistic and %, = the class of rules based on 7.

Lemma 1 For any 6 € 9, there exists a dy € Dy such that éy ~ . [Cor. Dy is an
essential complete class]

Proof Let 6 € &

For each given value 7 of T we define a probability distribution dy(f) over @ as
follows:

Observe the value of a random variable X’ having the probability distribution the
same as the conditional probability distribution of X given T = ¢ (which is inde-
pendent of 0) and then if X’ = x’ choose an action a € & according to the proba-
bility distribution 6(x’). O

Clearly, 0o(T) = a decision rule based on 7, i.e. € .
Also, L(0,¢(t)) = E{L(0,0(x))/T =t}

= Rs,(0) = EoL(0, 8(T)) = EsE{L(0, 60(x))/T}
= E@L(@7 5(x)) = R(;(Q) i.e., 50 ~0

Thus, given any § € & we can find a dg € Yy Dy such that §y ~ 9.

(2) Essential completeness of the class of non-randomized rules for convex
(strictly convex) loss. Let R, = k-dimensional real space. S C Ry.

S is said to be a convex subset if for any two x,y € § and for any 0 <o <1,

ox + (1 —oa)y also € S (Fig. 7.3).
Fig. 7.3 (a) (b)
s

Convex Non-Convex
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Let S = a convex subset of Ry.
f (x) = a real-valued function defined on § (Fig. 7.4).

~

Fig. 7.4

AH(I—Q)J"(%)

flax+(1-ay)

ox+(1Fa)y

(x) is said to be a convex function if for any two x,y € S and for any

\ /\

f<<x§ +(1—oc)z)§ocf<f)+(l—a)f(z> (7.4)

If strict inequality holds in (7.4) whenever x # y, f (x) is said to be strictly
convex.

2 x
= ) b ) 6 R
Examples 7.10 ) )ive—/ C(‘:IC\|/SX ¥ l

Strictly convex

Lemma 2 (Jensen’s inequality) Let S = a convex subset of Ry; f (x) =a

~

real-valued convex function defined on S. Let Z = a random variable, such that

P[Z c S] - 1andE(Z) exists. Then (i) E(z) e S; (ii) Ef(z) zf(E z)
If fis strictly convex, then strict inequality holds in (ii) unless the distribution of
Z is degenerate.

Let & = a convex subset of Ry. The loss function L(0, a) is said to be convex (or
strictly convex) if for each given 0, L(0,a) is a convex (or strictly convex) function
of a.
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Example 7.11

E =R, L(0,a) = (0—a)* or|0—aq
! !

Strictly convex convex

Let 6 € &. For each x, J(x) is a probability distribution over @. Let Z, = a
random variable with probability distribution d(x) over .
We assume that Ez, exists for each

xXeEx (7.3)
Let D = the class of all non-randomized rules D C D.

Lemma 3 Let @ = a convex subset of Ry and the loss function be convex. Then for
each 6 € @ satisfying (7.5) there exists a dy € D, viz, do(x) = EZ, such that
do > 0. If the loss function is strictly convex, then dy > J unless 0 itself € 9.

Corollary 1 Let & = a convex subset of Ry, the loss function be strictly convex and
every 0 € 9 satisfying (7.5), then D (=the class of all non-randomized rules) is
essential complete.

Proof of Lemma 3 Let 6 € 9

0(x) = a probability distribution over @. For each x, Z, = a random variable
with probability distribution J(x). Define do(x) = EZ,. By (i) of Lemma 2, do(x) €
@ Vx, i.e. do = do(x) € D. Also, by (ii) of Lemma 2 L(6,do(x)) = L(0,EZ,) <
EL(0,Z,) = L(0,0(x)).

= Ry, (0) = E9L(0,do(x)) <Ep(L,0,5(x)) = Rs(0)V0 (7.6)

If the loss function is strictly convex, strict inequality holds in (7.6) for at least
one 0 unless Z,-distribution is degenerate, i.e. Vx except possibly for x € A such
that Pylx € A] = 0 V0, in which case it means that ¢ itself € D = dy > J unless ¢
itself € D O

Corollary 2 Let & = a convex subset of Ry, the loss function is strictly convex and
every 0 € 9 satisfying (7.5). Let T be a sufficient statistic and Dy = the class of
non-randomized rules based on T, DyCD. Then Dy is essential complete
(complete).

Proof Let 6 € 4.

9 = the class of all randomized decision rules based on 7. By Lemma 1, there
exists a 09 = 0o(T) € Py such that oy ~ J. For each ¢, 5o(T) is a probability dis-
tribution over @. Define Z, = a random variable with probability distribution J(z)
and dy(t) = EZ,. As in proof of Lemma 3, dy(t) € &, i.e. do = do(T) € Dy and
do > do( > ¢ for strictly convex loss function unless dy € D, ~9). Thus, given
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any 0 € D, there exists a dy € Dy such that dy >0 (> ¢ for strictly convex loss
function unless 6 € Dy).
..Dy is essential complete (complete). O

Note On the condition stated by (7.5)

Let 0 € &, Z, = a random variable with probability distribution d(x) over .
L(0,6(x)) = EL(0,Z,) which exists for each x and 0. This in many cases implies
(7.5) holds.

Example 7.12 k=1, L(0,a) = (0 —a)* & = R,
EL(0,Z,) = E(0 — Z,)* exists Vx and V0
= EZ, exists Vx.

L(0,a) = |0 — 4
EL(0,Z,) = E|Z, — 0| > E|Zy| — 0

ie. E|Z,|<0+E|Z,— 0.
Thus E|Z, — 0] exists Vxand V0 = (7.5) holds.
ForK>2 &€a==R;, =Q

Hee) = oo a-of

Zx_e

which exists Vx and V0 = (7.5) holds.

EL(G,ZX> =E

Proposition Suppose for some 0

L(0,a) > C\la| + C; for some C( > 0),Cs. Then EL(0,Z,) exists ¥x = (7.5)
holds.

This fact gives a sufficient condition on loss function for (7.5) to hold (Fig. 7.5).

\\ _/ - clal+e,
\/

~

Fig. 7.5

Rao-Blackwell Theorem

Let T = a sufficient statistic.

9 = the class of random values.

9, = the class of random vales based on T.
D = the class of non-random values.
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Dy = the class of non-random values based on T.

Letd € Dsatisfy E(d(x)/T = t) exists (7.7)

Lemma 4 (Rao-Blackwell Theorem) Let & be a convex subset of Ry and let the
loss function be convex. For any d € D satisfying (7.7), there exists a dy € Dy, viz,
do(t) = E(d(x)/T = t). If the loss function be strictly convex dy > d unless d itself
€ Dy.

Proof do(t) = E(d(x)/T = t) is independent of 0.

L(0,do(1)) = L(0, E(d(x)/T = 1))
<E{L(0,d(x)/T =t)} by Lemma 2.

= Rdo ) = E()L(Q do( )) < E()E{L(@7 d(x)/T = I)}
= EyL(0,d(x)) = Rs(0) V0O

=do>d

3

If L is strictly convex, ‘=" in the above inequality V6
iff d is a function of ¢, i.e. d itself € Dy implying that dy > d unless d itself
€ Dy. O

Corollary Let & be a convex subset of R, and the loss function be convex. Let
every d € @ satisfy (7.6) and every d € D satisfy (7.7), then Dy is essential com-
plete. If the loss function be strictly convex, Dy is complete.

Proof Let 6 € D

By Lemma 3, there exists a d € & such that d > §. Also, by Lemma 4 there exists a
doy € & such that dy > d > 9. Thus given any d € &, there exists a dy € Dy such
that dy > = Dy is essentially complete. If the loss function is strictly convex
do > 0 unless ¢ itself € Dy = Dy is complete. O

Note on condition (7.7) For every d € D, R;(0) = E9L(0,d(x)) exists V0.
This generally implies that Ey(d(x)) exists V6.
= E(d(x)/T =1t) exists, i.e. (7.7) holds.

Example 7.13 To estimate a real parameter 0,Q = & = (—00, 00)
L(0,a) = (0 — a)*

R4(0) = Ey(d(x) — 0)* exists VO = Ey(d(x)) exists Y0 = (7.7) holds.
Similarly, it can be shown for absolute error loss L(0,a) = |0 — a|

Proposition Let for some 0, L(0,a) > C\|a| + C; for some constant C{( > 0) and
Cs.
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Then R;(0) exists Y0 = Ey(d(x)) exists = (7.7) holds. Thus the proposition
gives a sufficient condition on loss function for (7.7) to hold.

7.3 Optimal Decision Rule

01 > 07 if Rs,(0) <Rs,(0) V0 and it is a natural partial ordering of decision rules.
do € Z is said to be best or optimal if 9 > V 6 € &, but generally such an optimal
rule does not exist.

Example To estimate a real parameter 0, Q=(E = (—00,00). Let
L(0,a) = (0 — a)*. If possible, suppose there exists a best rule, say dy. Consider
any given value of 0, say 0y and define dy(x) = 0y Vx. Clearly, Ry, (6p) =0 =
Rs,(00) =0 where 0y >dy. Since 0y is arbitrary we must have R, (0) = 0,V0
which is generally impossible.

= generally there does not exist a best rule.
So to find a reasonably good decision rule we need some additional principles.
Two such principles are generally followed:

(1) Restriction principle
(i) Linear ordering principle

Restriction principle Put some reasonable restrictions on decision rules, i.e.
consider a reasonable restricted sub-class of decision rules having good overall
performances and then try to find a best in this restricted sub-class.

Two restriction criteria often used are

(1) Unbiasedness and
(i1) Invariance

Linear ordering principle

For every 0 replace the risk function by a representative number and then compare
the rules in terms of these representative numbers.

If representative number of d; < representative number of J,, then we prefer o,
to d;. dy is considered to be optimal if representative number of dy < representative
number of § V § € 2.

Thus a linear ordering principle = is a way of specifying representative number

Note Any linear ordering principle should not disagree with partial ordering
principle, i.e. if §; >, we must have representative number of ¢; < as repre-
sentative number of 0,.

Two linear ordering principles that are used in general are

(i) Bayes principle
(i) Minimax principle
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Bayes Principle Let Q may be finite or countable

7(0) : 0 € Q — a suitable weight function over Q. 7(0) >0V0 and ) 7(0) = 1.
0eQ
Take representative number as weighted average risk

= ZI(H)R(s(H) =r(1,0)
0eQ
7(0) =a p.m.f of a (discrete) distribution over Q
= prior p.m.f of 0.
r(t,0) = Bayes risk of J with respect to 7.

If Q = a non-degenerate interval of Ry,
7(0) = p.d.f of a (continuous) distribution over Q.
Bayes risk of 6 =r(t,9) = [ Rs(0)7(0)do.

Q

'S are compared with respect to r(t,d), i.e. if r(r,d;) <r(t,d,), then J; is
preferred to d,. A §p € Z is considered to be optimum if it minimizes r(z, §) with
respect to 6 € Z. Such a Jy is called a Bayes rule with respect to prior 7.

Definition A rule §) € & is said to be a Bayes rule with respect to a prior 7 if it
minimizes Bayes risk (w.r.t. 7) r(t,d) w.r.t. € Z, i.e. if 1(z,d0) = 5inf r(z,9).
Seoe}

Note

1. A Bayes rule may or may not exist. If it exists, inf = min.

2. A Bayes rule depends on prior .

3. A Bayes rule, even if exists, may not be unique.

4. Bayes principle does not disagree with partial ordering principle, i.e.

Rs,(0) <Rs,(0) VO = 1(1,6,) <r(r, ) whatever be 7.
Minimax principle

For a 6 € 9, representative number is taken as
Sup R;(0) = Max. Risk that may be incurred due to choice of d. ; is preferred
0eQ

to d, if Sup Rj,(0) < Sup Rs,(0).
0eQ 0eQ
0o is considered to be optimum if it minimizes Sup R;(6) with respectto 6 € 2.
0eQ
Such a § is called a “Minimax Rule”.

Definition A rule dyp € 2 is said to be a minimax rule if it minimizes Sup R;s(0)
0cQ
with respect to § € 2, i.e. if
Sup Rs,0 = inf Sup R;0.

0eQ RELZA0)
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Notes

1. A minimax rule may or may not exist.

2. A minimax rule does not involve any prior 7.

3. A minimax rule, even if exists, may not be unique.

4. Minimax principle doesn’t disagree with partial ordering principle

ie. R, (0) <Rs(0) VO
= Sup R(;I(O) < Sup R52(0)
0eQ 0eQ

7.4 Method of Finding a Bayes Rule

T = a given prior.
To find a Bayes rule dy with respect to T = to find a rule J( that minimizes Bayes
risk r(t, 0) with respect to 0.

Proposition If a Bayes rule oy with respect to a given prior T exists, then there
exists a non-randomized rule dy which is Bayes with respect to 1.

Implication For finding a Bayes rule, we can without any loss of generality con-
sider non-randomized rules only.

Proof Let §y be a Bayes rule with respect to 7. 9 may be considered as a prob-
ability distribution over D (=the class of non-randomized rules).
Let Z = a random variable with probability distribution ¢ over D. Then

r(t,00) = Er(1,2) (7.8)
[Let Q be finite or countable. r(t,d9) = > t(0)Rs,(0) = > 1(0)E.R(0)
0eQ 0eQ
=E, Z 7(0)R,(0)(assuming that it is permissible)
0eQ
=E.r(t,2)

Similarly, we can show if when Q = a non-degenerate interval of Ry].

Now dy is Bayes = r(t,0¢) <r(1,0)Vo € @
= r(1,00) <r(t,d)Vd € DasDC %
= r(t, ) <r(t,z)Vvalues of z.

(7.9)
<
= r(1,00) <E.r(t,z) = r(t, o)
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by (7.8).
We must have equality in (7.9), and consequently Z must € Dy with probability
1, where Dy = {d/d € D,r(t,d) = r(z,d)}. O

Consider any dy € Dy,
then r(t,dy) = r(t,d¢) = in£ r(z,8) (since dy is Bayes)
o€

= d is also Bayes. This proves the Proposition.
Note It is clear from the proof that

(1) A randomized Bayes rule = A probability distribution over Dy, i.e. the class of
non-randomized Bayes rules.

(2) If anon-randomized Bayes rule is unique, i.e. Dy consists of a single dy, then a
Bayes rule is unique and is dp.

Method of finding Bayes rule

7(0) = a prior distribution of 0.

To minimize r(t,d) with respect to ¢ € D,

Without any loss of generality we may restrict to non-randomized rules only. So
we are to minimize r(t,d) with respect to d € D.

Let Q be countable and * be also countable (If x is an open interval of Ry,
replace X by [).

Then for any d € D

r(r,d) = t(0)R4(0) = Z ©(0) Y p(x/0)L(0,d(x))

0€Q 0eQ Xex
S OO0 (7.10)
xex 0eQ

assuming it is permissible.
Suppose there exists a dy = dyp(x) such that for each x, dy(x) minimizes
> t(0)p(x/0)L(0,d(x)) with respect to d(x) € .

0eQ

Then clearly, dy minimizes (7.10) w.r.t. d € D = dj is Bayes rule with respect
to 7.

p(x/0) = conditional p.m.f of X given 6.

7(0) = marginal p.m.f of 0.

p(x/0)t(0) = Joint p.m.f of X and 0.

= Zp(x/@)r(Q) = marginal p.m.f of X.
0eQ

p(x/0)z(0)

q(0/x) = ot = conditional (Posterior) p.m.f. of § givenX = x
p(x

if p(x) >0 [p(x) =0 < t(O)p(x/0) = OVH € Q).
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To minimize Z 7(0)p(x/0)L(0,d(x)) with respect to d(x) € @
< to min. p(x ) Z q(0/x)L(0,d(x)) with respect to d(x) € .
< min ) q(@/x) ( ,d(x)) wrt. d(x) € @.

0eQ

(It is conditional (posterior) loss given X = x), i.e. E{L(0,d(x))/X = x}.

Thus if there exists a dy = dp(x) such that for each x, dyp(x) gives min
E{L(0,d(x))/X = x} = Conditional (posterior) loss givenX = x w.r.t.d(x) € (E.

Then d, is a Bayes rule.

If the minimizing dy(x) is unique for each x, then dj is the unique Bayes rule.

[Let Q be an open interval of R, and x be also an open interval of Ry

(If *is countable, replace X by [)

Then for any d € D

rz,d) = / (0)Ra(0)d(0)

:/T(e) /p(x/@)L(H,d(x))dx a0 (7.11)

://r(@)p(x/@)L(@,d(x))d@dx
Q

(assuming this to be permissible)

Suppose there exists a dy = dp(x) such that for each x, dyp(x) minimize
[ ©(0)p(x/0)L(0,d(x))d0 with respect to d(x) € (E.
Q

s

Then clearly, dy minimizes (7.11) with respect to d € D = d is Bayes rule with
respect to 7.
p(x/0) = conditional p.d.f of Xgiven 6.
7(0) = marginal p.d.f of 0
p(x/0)t(0) = Joint p.d.f of Xand 0.
p(x) = f (0)p(x/0)d0 = marginal p.d.f of X.

q(0/x) = x/?))c)< ) — conditional (posterior) p.d.f of 0 given X = x, if p(x) > 0.

To minimize [ 7(0)p(x/0)L(0,d(x))d0 with respect to d(x) € (B
Q

< min. p(x) [q(0/ ,d(x))d0 with respect to d(x) € (E
Q

< min. fq (0/x)L(0,d(x))d0 with respect to d(x) € (B

which is to min conditional (posterior) loss given X = x.

ie. E(L(0,d(x))/X = x).
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Thus if there exists a dy =do(X) such that for each x, do(x) min
E{L(0,d(x))/X = x} = conditional (posterior) loss given X = x with respect to
d(x) € @ then dj is a Bayes rule.

If the minimizing dy(x) is unique for each x, then dj is unique Bayes rule]
Summary To min r(t,d) with respect to d € D

r(t,d) = EgRy(0)
= EpExgL(0,d(x) | "Ra(0)ExoL(0, d(x))]
= EXEQ/XL(O, d(x)) min for each X = x with respect tod(x) € (B

If dy(x) is the minimizing, then dy = dy(x) is Bayes rule.

Applications

1 Estimation of a real parameter 6 for squared error loss. To estimate a real
parameter 6 where Q2 = & = R; or an open interval of it.

L(0,a) = (0 — a)?, 1(0) = a prior p.d.f of 0

To min. E{L(0,d(x))/X =x} = [ (0 — d(x))*q(0/x)d0 wrt. d(x) € B,
o
Clearly, minimizing dy(x) is given by

) gOp(O/x)T(O)dO
do(x) = E( Ix — x) = /Oq(O/X)dO = T O0)p(0/x)do
Q

Q
Thus, here unique Bayes rule is dy where

dp(x) = Mean of the posterior distribution of 0 given X = x.

Example 7.14
X ~R(0,0),0<0<0c0

To estimate 0 under squared error loss
Let 7(0) = prior p.d.f of 0 = 0=, 0 > 0

p(x/0) :é,0<x<0
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q(0/x) = conditional P.d.f of 0 givenX = x
-0

e
- S— s X < 6 <0
f e~ 0do
X
_ 670/67‘(
f@e’”df)
Mean of the posterior distribution of 6 given (X = x) =*—
Qe ()|x+ f -0dg
= =Xt — x .

= X

Thus unique Bayes estimator of 6 w.r.t. T is do(x) = X + 1.

Example 7.15 X ~Bin(n, 0), n given, 0<6<1
To estimate 6 under squared error loss.

p(x/0) = (Z)Qx(l -0 x=0,1,....n
Let t(0) = prior p.d.f of 6

' 1-0"" up>0

(0C p)
= Beta prior
q(0/x) = posterior distribution of § given X = x
n
—0 n—x+f—1
(M) adme=a-0

HX-HX l( 0)n7x+ﬂ71d0

(s

+o—1 1— n—x+ f—1 1.
B(ija?nierﬁ)E)" (1-10) ,0<0<

do(x) = mean of posterior distribution of 0 given (X = x)

1
_ 1 ‘o pg\p—x+p-1

B(x+oc,n—x+ﬂ)/0x (1-9) d0
0

_Bxtat+ln—x+p)  x+a
 B(x+on—x+p)  at+p+n’

X+o
n+o+f

Thus the unique Bayes estimator of 0 w.r.t. Beta (o, f§) prior is do(x) =
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Particular case if « = 1, =1 7(0) = 1 VO<0< 1, i.e. uniform prior.

X+1
Unique Bayes estimator is ;7 .

Example 7.16 Let X ~ Poisson (0), 0<0<oo
To estimate 0 under squared error loss.
To find Bayes estimator w.r.t. ) prior.
ie. 7(0) coe 0P 9>0
Let 7(0) = Ke 0/~ 9>0

as [ () d0—1:>K)’i_1:»K
s )ﬁ

p(x/0) =e g',x— 0,1,.
,()0): O(ﬁ 7‘100[371
_)L|
4(0/x) = o

o((/f fe (1+2)0gr+F-14p

/31
S 0

x+p 7
do(x) :&/e*(ﬂraﬂ)gﬂrﬁdg
(x+B)

0
(1+2)™ " Ja+p+1) _x+p
) +B)  (I4ay Pt Lta

\_/

~—

*. Unique Bayes estimator of 0 w.r.t. ) prior is

x+p
14+a’

d()(x) =

Notes

1. do(x) is also (unique) Bayes if L(0,a) = c(0 —a)*co(0 —a)?, ¢ = a given
constant

2. If a sufficient statistic T exists we may consider rules based on T only (because
of essential completeness of rules based on 7) and then may find Bayes rule
based on T.

Example 7.17 X = (X1,X2,..,X»), X1,X2, .., X, 1.id. ~N(6,1) —oco<O<o00
To estimate 6 under squared error loss.
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T =X = min. Sufficient statistic ~N(0,1).
7(0) := 0 ~N(0,0?%), a*( > 0) is known.

N 2 2 2
p(1/0)1(0) = Cont.e =0 . ¢=07/20

2
—Cont.e ¥ . T (n+5) +ntn

2
2522 2 2
ng2 nca“t no- 41 0 ne<_4
o 7L2(,m2+1) e ( no? +1

= cont. e
q(0/r) = Posterior p.d.f of 0 given ¢

2
2522 2 2
n2 n“ocr no” 41 ne-__,
22 4 0
2 2(no2 +1) .e 262 ( n02+1”)

Const.e

= 2
152 n2q2i2 no? +1 ne
b +2(n52+1) j‘e 242 0 no +1

2
2 2
not +1 0 no
_no+1{ g t
252 ( no? +1 )

no g

2 2
= gi t,0~N|{——-t,————
givent, <n02+1 "no? + 1)

Const.e

= Const.e

. = __ ne?
Posterior mean = K¥, K = .57

.. (Unique) Bayes estimator of § = Kx = dy(X)
Also, Min. Bayes risk = Bayes risk of do = EgEz/9(do — 6)2

6 2 0'2 O'2
= E3Eyzx(dy — 0)"= Ex =

ore(do = ) no2+1 no+1
Applications

2. Estimation of a real 6 under weighted squared error loss: 6 = a real parameter.
To estimate 0, Q = (E = some interval of R,

Let L(0,a) = w(0)(0 — a)*, w(0) >0
dy be Bayes if for each x, dy(x) minimizes

Egyxow(0)(0 — d(x))*= / w(0)(0 — d(x))%g(0/x)d0

with respect to d(x) € e
[ ow(0)g(0/xdo

Clearly, do(x) = [w0)g(0/0do”
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Example 7.18 X ~Bin (n, 0), n known, 0<0<1

To estimate 0 with L(0,a) = é{();—fg = w(0)(0 —a)*
where w(0) = ﬁ

Let 7(6) = 1 YO<6<1; i.e. uniform prior.

()ra=o g

0/x) = = 0<0<1
" <n>f9)‘(1—6)”*’d9 Bix+1,n—x+1)’
X
1
0 CU-0"" 40
dox) = J Ow(0)g(6/x)do { 9(1 0) "B+ TLn—x+1)
0lX

Jw(0)q(0/x)d0

O (1-0)"
fﬂ(l 0) Bx+ln x+1)d0

1
0 (1 —0)""""do
{ B(x+1,n—x)

B(x,n — x)

¢ (1 —0)"""do

:|><o%_

,forx=1,2,..n—1

Forx = 0, / w(0)(0 — do(0))? g(0/x = 0)d0oo / (0— )P0 (1 — 0)"do
0

= finiteif c = 0 [by taking do(0) = ¢]
= ooif c#0

X

= / )(0 — do(0)) g(0/x = 0)d0 is min for do(0) = 0 =
n

S =

Similarly, for x = n, [w(0)(0 — do(0))*q(0/x = n)d0is min fordo(n) =
Thus for every x = 0, 1,2,...,n; do(x) = % minimizes
[w(0)(0 — do(x))*q(0/x)d0 with respect to d(x) € a
= do(x ) * (= minimum variance unbiased estimator or maximum likelihood

estimator of 6) is unique Bayes rule.

Application

3.

Estimation of a real 0 under absolute error loss. To estimate 0 = a real
parameter, Q) = & some interval of R;

Let L(0,a) = |0 — 4

dy = do(X) be Bayes if for each x do(x) minimizes Eg/x_.|0 — d(x)| with respect

to d(x) € &
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Clearly, do(x) = median of the posterior distribution of 6 given X = x. If the
median of the posterior distribution is unique, then dj is the unique Bayes rule.
Example 7.19 X = (X1,X2,...,Xy), X1,X2,.. ., X, 1.id. ~N(6,1); —a<0<o

To estimate 6 under absolute error loss, without loss of any generality we restrict
to rules based on T = X. Let t(0) : 0 ~N(0,0?), ¢*>( > 0) known.

Median of posterior distribution of 0 given t = kX, k = _no”

ne?+1
= (Unique) Bayes estimator of 0 is kx.

Application

4. Estimation of function of 0:

To estimate g(6) = a real-value function of 6.

& = Q" = the set of possible values of g(6)

Let L(0,a) = (g(0) — a)*— squared error loss.

dy be Bayes if it minimizes Eg/x—.{g(0) —d (x)}* with respect to d(x) € @ for
each given x. Clearly, do(x) = Ep/—.{g(0)}

= do(x) = Eg/x{g(0)} is (unique) Bayes.

Similarly, we can find it for weighted squared error loss or for absolute error
loss.

Example 7.20 X = (X1,X>); X;’s independent and X; ~ Bin(n;, 6;), where ny,n,
known, 0<91, 02< 1; 0= (01, 02)

To estimate g(0) = 0, — 0, under squared error loss.

7(0) : 0, 0, independent, 0; ~R(0,1),i = 1,2

("1 )91*‘ (1= 0" ("2 ) 0, (1 — 0y)" "
X1 X2

11
fj’(x > 0% (1 — 0, )"‘x'<zz>92ﬂ(1 0, d0,d0,
00 1 2

(1—

Hxl )nl —X1 6’(?;( _ 02)7127)(2
_B(X1—|—1,l’l] — X1 +1) (X2—|—1,}’l2—)€2—|—1)

q(0/x) =

,0<0y,0,<1.

i.e. posterior distribution of 6 is, 6,0, independent and 6;~ B(x;+ 1,
n —Xx;i+ 1)712 1,2

do(x) = Eg/x(01 — 02) = Eg, /(01) — Eg,/x(02)
_x 1 x+1
o m+2 n+2
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Thus (unique) Bayes estimator of 6; — 0, is
X1+l X+ 1

do(X) = .
oX) nm+2 np+2

7.5 Methods for Finding Minimax Rule

1. Geometric or Direct Method

We find geometrically or directly a rule dy such that

Sup R;,(0) = inf Sup Rs(0).

0eQ 92 geq
Let Q= {0,05,...,0¢},6 € 9, S = risk set

= risk point of ¢

L=

7 Statistical Decision Theory

1 2
Two risk points y( ), y( ) may be considered to be equivalent if

~

max yj(l) = max yj<2).
1<j<k 1<j<k

A risk point yj is said to be a minimax point if jmax yj = inf max y
~ <j<k™

vesi<j<k™’’

If y, is a minimax point and Jy is a rule with risk point y,, then ¢ is minimax.

~

For any real C, let Q. = Q(c..c) = {y/yj <cvj=1,2, k}

~

All risk points lying on the boundary of a Q.. are equivalent points (Figs. 7.6 and

7.7).

Fig. 7.6

Equalizer line z,=z,

(P4 (c,0)
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Fig. 7.7

Equivalent points

Minimax Point

(For any such point y, max y; = ¢)

Let Cy = inf{C/Q.NS # ¢}.
Any risk point € boundary of Q,, is a minimax point. Any rule do with risk point

Yo 1s minimax.

Notes

1. If S does not contain its boundary points, a minimax rule may not exist.
2. A minimax point may not be unique

(LD : @1

All Minimax -
Points

(1,0) (2,0)
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3. A minimax point does not necessarily lie on the equalizer line (Figs. 7.8 and 7.9).
Example 7.20 Let Q = {6;,0,} & = {a;,ax}

Loss is (0-1). #={0,1,2,...}
Py [X=x]=0ifx=0

1
=—ifx>1
le x>
.. S
All Minimax — 5
1,0
0 (2,0)
S
....... N /
Y
v Co

Minimax Points

Fig. 7.8
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Vs, Y1 =¥

A

v, +2y, =2

/ Co B 41
=1

5 5 L 1 2y
(;, ;) =Minimax Point

v

Fig. 7.9

1

P()z[X:x] :2X+1ax

=0,1,...

Letd € . d(az/x) = d(x) olay[x) =1 —9(x)
0<d(x)<1
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Thus, a minimax rule is given as
3(ar)0) =1 (a;/0) =0

o(ay/x) _! o(ay /x) :%; x=12,...

Example 7.21

ar ap
Loss matrix: 6; 1 4
0, 3 2

Let X = 0 with probability 0
= 1 with probability (1 — 6)
Then D = {dl,d27d3,d4}
dl(O) = dl(l) =ay; dz(O) = dz(l) = ay; d3(0) =a; but d3(1) =a, and
d4(0) = a, but d4(l) =a;
Rdl(Hl) == 1,Rd1(02) == 3; Rd2(01) == 4—7 Rdz(ez) =2

}9=91,92

Rds((?l):%.1+%.4:3%
Rd3(92):%'3+%-2:2%
Rd4(91):%~4+;1:1;1
Ry, (02) =3 2+% 3= %

.".So = the set of risk points of all non-randomized rules

= {(1,3),(4,2), (3%,21) <1§,2%>}.

If y, = my, + C using = lined points m = —3, c =%

Here to find a minimax rule means to find a rule with risk point (%—?,%)
(Fig. 7.10)
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Fig. 7.10

Letd € . For X =x

0 = a; with probability 6 (x)
= ap with probability 1 — d(x)

Let 6(0) = u,0(1) =v, 0 = (u,v),0<u,v<1
0(a1/0) =u,é(a1/1) =v

0(az/0) =1 —u,0(ay/1) =1—v.

R;5(01) =

(16 — 3u — 9v)

A==

¥i=¥;
2 26
e ghtrn=yj
S ,1) -
........................... Minmax point=

(

26 26
11711

{u-1+(1—u)-4}+§{v-1+(1—v)4}

R(;(Qg):%{u 34 (1—u) - 2}+%{v 34 (1 —v)2}

Z%(u+v+4)
Ra(01) = Ro(0) = 32
:%(16—?»{—9\)):% :u+3v:%
and %(u+v+4) :% =>M—|-V=%

)

213

(7.12)

(7.13)
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(7.12), (7.13) gives the unique solution u = 0, v = %
Thus, the unique minimax rule is given as

5ar/0) = 0, 6(a/0) = 1, (@ /1) = = 3(as/1) = -

Note The unique minimax rule is purely randomized. Thus, unlike Bayes rules, a
minimax rule may be purely randomized, i.e. although a minimax rule exists, no
non-randomized rule is minimax.

Alternative (direct/or Algebraic approach)

Let us take the same Example 7.21 (Fig. 7.11)

Fig. 7.11

uy——>

Sup Rs(0) = max{R;s(0,),Rs(02)} = %(16 — 3u — %)
0cQ

if $(16 —=3u—9v)>1(u+v+4), ie if Su+11v<8 and =3 (u+v+4) if
Tu+v+4)>1(16 —3u—9v), ie. if Su+11v>8
Let 2y = {0 = (u,v)/5u+ 11v <8}

2, =46 = (u,v)/5u+11v > 8} =Di+D,=D

For 6 € 21, Sup Rs(0) = 16=31=>»
0cQ
Now Inf SupR;s(0) = Inf 16—3u—9v
0€D1 gc@ () OSM,VSI ( 4 )
Su+11v<8

— inf inf (W) — inf<

Oguglogvg% 4 _OSu

1 9(8 — 5u)
) T PR St
14{ 6= 3u=— }



7.5 Methods for Finding Minimax Rule 215

1 104 26
— inf -(12u+104) = — =2
odnf 2 (12u+104) =7 =17

and inf attained for u = 0, v =820 =&
Similarly, inf SupRs(0) = 3%, which is for u =0, v =%
9€%2 00

Finally, gggfj %ug R;(0)
S

26

= min{ inf SupRs(0), inf SupR(;(O)} =17

0€D1 gc® 0€ED) e

and inf is attained if u = 0, v = %
Thus, the unique minimax rule is given as u = 0, v

_8
ie. (a1 /0) =0,0(az/0) =1, 6(ar/1) =&, 6(az/1)

11
_3

i1

II. Use of Bayes rule

A rule dy is said to be an equalizer rule if Rs,(0) = Const V0 € Q.

Result 1 If an equalizer rule § is Bayes (w.r.t some prior 1), then g is minimax. If
J is unique Bayes (w.r.t. 7), then g is unique minimax (and hence admissible).

Proof R;,(0) = ¢¥0 = SupR;,(0) = ¢ and r(t,09) =c
0c®

Minimaxiety: If possible let dp be not minimax, so there exists a ¢; such that

Sup R, (0) < Sup R, (0) = ¢

0c® 0cO
= R;, (6) < Sup R;, (6) = cvo
0c®

= r(1,01)<c =r(z,d)
But this contradicts that dy is Bayes w.r.t. 7. Hence, dy is minimax.

Unique minimaxiety

If possible let dp be not unique minimax. So there exists another J; which is also
minimax, i.e. there exists another §; such that

SupR;, (0) = SupR;, (0) = ¢
0c® 0c®

= R;, (9) < SupRs, (0) = Vo
0c®

= r(1,01) <c =r(z,d)

i.e. r(t,01) = r(t,00) (. dp is Bayes w.r.t. 1)
= 0; is also Bayes w.r.t 7, but this contradicts that d is unique Bayes w.r.t. 7.
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Hence dy is unique minimax.

X =1 with probability
Example 7.22 Let .
= 0 with prob 1 — 6. 0<b<l1
To estimate & under squared error loss.

Let d(x) = a non-randomized rule.
Let d(1) = u, d(0) = v, O<u,v<]1.

d= (u,v)
Equalizer rule Ry(0) = 0(u — 0)* + (1 — 0)(v — 0)?

= 0*(1+2v — 2u) +0(u* — v —2v) +1
The rule is equalizer iff 14 2v — 2u = 0, or,
1+4+2v
T

(7.14)

and u> —v? —2v=0 or%—v2 —2v =0 (using 7.14)
Ori—v:O:>v:%:>u:%
Thus, the only equalizer non-randomized rule is

d(1) =2, d(0) =~

4’ 4

Bayes rule: Let t = a prior distribution
E(0) = m; and E(92) =m

c.r(t,d) = ERy(0) = mp(142v — 2u) +my (u2 — - 2v) +v?

NOWM:O:—ng—I-Zmlu:Oi”:%

Ou

or(t,d
rg-, ) 0= 2my — 2mrv— 2my £ 20 =0
v
L, mmm
l—ml

Thus, the unique Bayes rule w.r.t. 7 is

ny — ny 2
1) =— =———wh =F =F
d(1) - ,d(0) p— (0),m, = E(0°)

Hence, the equalizer non-randomized rule is unique Bayes w.r.t. a t such that
m 3 gnd Mi=m _ 1

m ~ 4 1—my 4

:>m1:%andm2:3

3
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[For example, let ‘EZB(%,%) prior o = B my

% :% and the equalizer non-randomized rule is unique Bayes w.r.t.

B(4,4) prior].
Thus the non-randomized rule do(1) =3,do(0) = ; is equalizer as well as
unique Bayes (w.r.t some prior) = dy(X) is minimax (unique).

Example 7.23

_ a1 _
= 152 and my =

X ~Bin(n,0),n known and 0<0<1
To estimate 0 under squared error loss.
T, = B(a, ) prior o, f > 0

The unique Bayes rule w.r.t. 7,5 is

X+o
d“ﬂ(X) :m
2
quﬁ(e) ZEH{m—H}
_ Ep{(x—nb) — 0(z+ ) + 2}’
(n+a+p)’
2 2
['.'EH(X—I?()) _ O] - EH()C*I’I@) + 02(0(4»‘3) +20(2 *2906(06+ﬁ)
(n+o+p)
- E 0V n0(1 — 0 ()2{(d+ﬁ)2_n}—|—(){n—2a(o(_|_[)’)}+a2
[ ot = 0P = o1 - 0)] = (n+ o+ )

d,p is equalizer iff

Thus the rule

dnlX) x4
ST n4n

N
X:Jr \/1-1/2 is the

is equalizer as well as unique Bayes (w.r.t B(@ , 4) prior). Hence

unique minimax estimator of 6.
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Example 7.24 Let X ~Bin(n, 0),n be known 0<0<1
(0-a)

To estimate 6 under loss function L(0,a) = )

X EE-0)
Let do(X) = RdO(H) = 90— —n Vo
i.e. dp is an equalizer rule.
Also, dj is unique Bayes w.r.t. R(0,1) prior.

Hence dy(X) =% is the unique minimax estimator of 0.
Result 2 If an equalizer rule dy is extended Bayes, then it is minimax.
Example 7.25 X,X,,...,X, 1id~N(0,1), —oo<f<o0

To estimate 0 under squared error loss. Let dy = X, R, 6) = % V0, i.e. dy is
equalizer. Also, dy is extended Bayes. Hence X is minimax.

Proof of Result 2
R50 (0) =c V0

So, Sup Rs (0) = ¢ = r(t,00) =c V1.
0e® °
Also, J is extended Bayes

= given any € > 0, there exists a prior ¢ such that

¢ =r(te,00) < inf r(1e,0) + €
oeD

_ (7.15)
or, inf r(te,0) >c— €
seD

if possible let dyp be not minimax.
So there exists a §; such that

SupR; (0) < SupR; (0) =c (7.16)
0c® 0c®

(7.16) implies there exists an € such that
SupRs (0)<c— €
0c®

= Rs, (0) <c— € V0, since R;(0) < Sup R;(0)
0 (7.17)
= r(1,01) <c— € whatever be 7.

= inf r(7,0) <c— € whatever be 1
0

- inf r(z,0) <r(z, 1)

€9

(7.17) contradicts (7.15). Hence oy must be minimax. D
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Result 3 Let dy be such that

(i) Rs,(0) <cV0 for some real constant c.
(ii) dp is Bayes (unique Bayes) w.r.t. a prior 7o such that r(zg, do) = ¢
Then Jy is minimax (unique minimax).
Corollary 1 Let oy be such that
(i) Rs,(0) = ¢ V0 (This is in fact Result 1)
(i)' &y is Bayes (unique Bayes) w.r.t. a prior 1.
Then & is minimax (unique minimax). (i)', (i)’ = (i), (ii)

Corollary 2 Let 30 be such that
~ Rs,(0) = c VO € Bp(CO)
(@) <c Y0e® -0,
(ii)" 8¢ is Bayes (unique Bayes) w.r.t. a T such that Pr{0 € @y} = 1
Then ¢ is minimax (unique minimax)

@), i)', = (i), (id)
Note For ®) = ®, Corollary 2 = Corollary 1
Proof of Result 3 For any 6 and any 7,

Sup Rs(0) > r(z, )
0cQ

As Rs(0) < SupR;(0)VO = r(1,5) < SupRs(0)
0e® 0e®

For 6 = 0y and 1 = 19, (7.18)

= r(70,90) < SupRs,(0) by (ii)
0c®

Also (i) = SupRs,(0) <c
0c®

(7.19), (7.20)

= SupR;,(0) =c¢
0c®

219

(7.18)

(7.19)

(7.20)

(7.21)
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So, minimaxiety of Jy:

For any, 0, SupRs(0) > r(zo, ) by (7.18)
0c®

> r(70, o) (Since, dy is Bayes w.r.t. 79)

— c(by(ii))

= SupR;,(0) by (7.21)
0€®

= 0p iS minimax.
Unique minimaxiety of dy: For any (% 0o)

Sup R;(0) >r(t,9) (by(7.18))
0eQ

> r(19, do) (Since dy is unique Bayes w.r.t.7g)

= c (by (i)
= Sup Ry, (0) by (7.21)
0cQ

Thus Sup Rs(0) > Sup Rs,(0)
0eQ 0eQ
Vo(# dg) = Jp is unique minimax. d

Example 7.26 Let X ~Bin(n, 6;) n be known.
Y ~Bin(n, 0,) 0<0y,0,<1;0y, 0, are unknown.

To estimate 0; — 0, under squared error loss, we can expect a rule of the form
aX + bY + ¢ to be minimum. However, no rule of this form is an equalizer rule. So
Result 1 (or Corollary 1) cannot be applied. But Corollary 2 can be applied as
follows:

Step 1: To find an equalizer Bayes rule in some ©y(C®). Let
Q) = {91,92/0<01, 0,<1,0,+0, = 1}. Restricting to @y, let us write 6, = 0,
0, =1-0.

Thus, we have,

X ~Bin(n, 0)

Y ~Bin(n, 1 — 0)

or n — Y ~Bin(n, 6)

Without any loss of generality we may restrict ourselves to rules based on
Z =X+ (n—7Y)~Bin(2n,0) (Sufficient statistic)

vn n

If X ~Bin(n,0), an equalizer and unique Bayes (w.r.t. Bin (Ta?) prior)

independent.

. . X4+
estimator of 6 under squared error loss is Z
n+/n

If Z~Bin(2n,0), an equalizer and unique Bayes (w.r.t. Bin (@,@) prior)
Nen

. . Z+
imator of 6 under red error loss i 2
estimator of 6 under squared error loss S 5o
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To estimate now 0; — 6, = 20 — 1, consider the following:

Lemma Under squared error loss, if §g is an equalizer Bayes (unique) estimator of
g(0), then dy=ady+b is an equalizer Bayes (unique) estimator of
g"(0) = ag(0) +b.
Proof For any estimator 6 of g(0) we can define an induced estimator, viz. 6* =
ady+ b of g*(0) = ag(0) + b and vice versa.

Under squared error loss, Rs(0) = a*Ry(0)

r(t,0) = a®r(t, ")

Hence, dy is equalizer = 6" = ady + b is equalizer. O
0o is Bayes (unique) w.r.t. T = d; = ady + b is Bayes (unique).
By the Lemma, an equalizer Bayes (unique) estimator of 26 — 1 is

2(Z+ @) 2(X —Y)

2n++vV2n N 2n++v2n

Thus, if we restrict to @y, an equalizer Bayes (unique) estimator of 0; — 60, is
2L = do(say)
Step 2: Rd0(01,02) <c V(O],Oz) € O where ¢ = Rd0(01,02) for (01,02) € 0y.

Proof For (01,0,) € ©

2(X —Y) }2
Ray(01,05) = Eg 0,0 22— 1) (9, — 0
4 (01, 02) 01,0 {2n+\/§; (01 — 02)

- E9{2(X —n0y) — 2(Y — nby) — v2n(0; — 02)}2/(2n—|— \/ﬂ)z
_AE(X — n0,)* +4Eo(Y — nbs)* +2n(0; — 6,)*
(2n+v2n)’

20,(1 — 0,) +20,(1 — 0,) + (0, — 0,)* _ Numerator
(1+ m)z ~ Dinominator

Now Numerator = 20, + 26, — 012 - 922 — 20,0,
=1-{1-0,—-0,}°<1
" =" holds iff 0, +0, =1

1
Ry (01,0,) =———=c V(01,0,) € Qg
Hence, (1 + \/2-5)2 O

<c V(91,92> €0 -0,
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2X-Y)

By Corollary 2, Step 1 + Step 2 gives us dy = i Ton is the unique minimax

estimator of 0; — 0,.
Result 4 Let dy be such that

(i) Rs,(0)<c V0 € O, ¢ = areal constant
(ii) There exists a sequence of Bayes rules {0,} w.r.t. sequence of priors {7,}
such that r{t,, J,} — c. Then Jy is a minimax.

Proof For any 0 and any T,

Sup Rs(0) > r(z, ) (7.22)
0cO®
(as was in the Proof of Result 3) U

(7.22) = For any 0,

Sup R5(6) > r(t,,0) > r(t,, 0,) — ¢ by (ii)

0c®
(Since, 0, 1is Bayes w.r.t. 7, prior) (7.23)
For 6 = 50
(7.23) = SupRs,(0) > c and also condition (i) = SupRs,(0) <c
0cO 0O
= SupR;,(0) =c¢ (7.24)

0c®
Then (7.23), (7.24) = for any 9,

Sup Rs(0) > ¢ = Sup R, (0)
0cO 0cO

i.e. 0¢ is minimax.

Example 7.27 Let X1,X,,..,X, i.id ~N(0,1),—oco<l<o0
To estimate 0 under squared error loss,
Let dy = )_(, RdO(G) = % Vo

(i) is satisfied with ¢ =1,

Let 7, : N(0, 6?) prior

,
_ . i no-
d, = Bayes estimator of 0 w.r.t. 7, = 5 .
_ a2 1 _ 2
r(ts,ds) = T = € 88 07 — 00

Thus (ii) is satisfied.
Hence dy = X is minimax.
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Example 7.28 Let X ~ Poisson (6), 0 < 6 < a.

To estimate 6 with L(0,a) = @.

(Apply Result 4 to prove that dy = X is minimax)
Hint R, (0) =2X-0"_ | = () is satisfied with ¢ = 1. Take
Typ(0)00e™ - 0¥ 0<0<oo0. d,p(X) = Bayes estimator of 0 wurt. 7,5=
x+p-1

s r(ra/;,do,ﬁ) —1=casa— 0, § — 1. Hence dy = X is minimax.

Other Methods: Use of Cramer-Rao inquality.

Result 1 If an equalizer rule J¢ is admissible, then dy is minimax.
Proof R;,(0) = cV0 = SupRy,(0) = c.
0c®
If possible let 6y be not minimax. Then there exists a J; such that

Sup Rs, (0) < SupR;,(0) = ¢
0c® 0c®

= Ry, (0) <C = Ry, (0) V0 (7.25)

(7.25) = 61 > 0y, which contradicts that d is admissible. Hence, d is minimax.
To estimate a real-valued parameter 6 under squared error loss. ® = an open
interval of R;. Without any loss of generality we can restrict ourselves to
non-randomized rules only (since the loss function is convex). U

Let d(X) = a non-randomized rule.

ba(0) = Eg(d(X)) — 0 = Bias of d(X)

By C--R inequality R;(0) = MSEy(d(X))
= b (0) + Vo(d(X))
> B3(0) + {1+5,(0)} /1(0) V0
= Ca(0) (say)

I(0) = Fisher's information function.

Result 2 Let dy be a non-randomized rule such that

(i) MSE of d attains C-R lower bound, i.e.

Ry, (0) = Cyy(0) VO
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(i) For any non-randomized rule d;,
Cyq,(0) < Cy,(0) VO
= by, (0) = by, (0) V0O

Then dy is admissible.
If further, dj is equalizer, then dj is minimax.

Proof Result I = proves that it is minimax O

Proof of admissibility If possible let dy be inadmissible.
Then there exists a d; such that

Ry, (0) <Ry, (0) VO with strict inequality for at least one 0 (7.26)
(7.26) =

Cdl (0) < Rdl (9) < Rdo(g) = Cdo(g) Vo (727>

by C-R inequality and by (i)
(1.27) =

ba,(0) = by, (0) VO by (i)
= Cg,(0) = Cyy(0) VO (7.28)

(7.27) and (7.28) =
Cuy(0) < Ry, (0) <Ry (0) = Cyy(0) V0 (7.29)

We must have equality in (7.29) everywhere, implying that Ry, (0) = R4, (0)¥0.
Thus, strict inequality in (7.26) cannot hold for any 0, i.e. there cannot be any d;
such that dy > d.

Hence d is admissible. O

Example 7.29 Let x1,x;...x, iid ~N(60,1),—co<6<oo. To estimate 6 under
squared error loss.

X is sufficient = it is enough to restrict to n.r. rules based on X only.

Let dy = do(X) =X.

R4, (0) =1v0, ie. dy is equalizer.

Also, by,(0) =0V 0, i.e. dy is unbiased.

1
Rdo(e) = Cdo(e) = ; Vo
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i.e. condition (i) of Result 2 is satisfied [Here 1(0) = n].
Let d = d(X) be any n.r rule based on X.

Lemma C,;(0) <Cy,(0) V 6.
= by(0) =0V 0, i.e. d is also unbiased.
Lemma = Condition (ii) of Result 2 is also satisfied.
Hence, (i) dy is admissible.
(ii) dy is minimax.
Also, (iii) dy is unique minimax.
[Proof of (iii): Let di = dy(x) be another minimax rule.
Then

1
Sup Ry, (0) = Sup Ry, (0) = — = Cy,(0)
0cO 0cO n

= Cd1 (0) < Rd1 (0) < Sup Rd1 (0) = CdU(O)VO
S— 0€®

By C-R inequality

= Cy,(0) < Cy(0)V 0 = by, (0) =0V 0 (By Lemmay).

. dy is an unbiased estimator of 0. But since X is complete d is the unique
unbiased estimator of 0, i.e., d\ = dy, Hence dy = X is the unique minimax esti-
mator of 0]

Proof of Lemma Writing b, (0) = b(6)
Let C4(0) < Cqy(0) =1 V0

ie., b2(0)+ {1 +b’(0)}2/n <1/ vo (7.30)
(7.30) = b'(0) <OV Oi.e., b(0)is non-increasing (7.31)
s (730) - + Zb;fg) <B(0) + (14 5(0)) /n< ),
=20 <oy <o)
Also (7.30) = b*(0) +2b'(0) <0 (7.32)

[As (7.30)=nb>(0) + b (0) +2b'(0) <0
=b%(0) + 20/ (0) < nb?(0) + ' (0) +25'(0) < 0]

Now (7.32) = —bb,;((o(;) > 1V 0 such that b(0) # 0
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Or %b*(m > % V Osuch thatb(0) # 0 (7.33)
(7.31),(7.33) = b(0) — 0 as 0 — +tco (7.34)
Finally (7.31), (7.34) = b(6) = 0 V 6, which proves the Lemma. O

7.6 Minimax Rule: Some Theoretical Aspects

A statistical decision problem = A game between statistician and nature.
® = the set of possible actions for nature.
(E = the set of possible actions for statistician.

L(0,a) = Loss (to the statistician) if the statistician chooses an action ‘a’ and
nature chooses an action “0’.

A randomized action for the statistician = a probability distribution over .

The statistician observes the value of a r.v. X. If X = x is observed, the statistician
chooses a randomized action J(x).

0(x) = a randomized rule for statistician.

T = a prior distribution. = a probability distribution over ®.

= a randomized action for the nature.
If the statistician chooses a randomized rule 6 and the nature chooses a ran-
domized action T, then the statistician’s expected loss is
y(t,0) = Bayes risk of d w.r.t. t.

Result 1 For any é € 2,
Sup Rs5(0) = Sup y(t,0) where @ = the set of all possible 7’s.
0cO

€0

Proof

Rs(0) < SupRy(0)¥ 0
6cO®

= 7(7,0) < SupR;(0) V7 (7.35)
0<®

= Sup y(t,0) < SupR;(0)
7€@" 0O

Consider a prior 7y which chooses a particular value 0 with probability 1.
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Then r(t9, ) = Rs(0)
Hence, Sup r(z, ) > r(19,0) = Rs(0) V 0

€®”
Thus Rs5(0) < Sup r(z,0) V 0
7€@"
= SupR;(0) < Sup r(z,0) (7.36)
0O 7€@"

(7.35), (7.36) = Sup R;(0) = Sup r(z, d), hence the proof.
0c® €0
A rule dy is minimax if it minimizes

Sup Rs(O)w.rt 6 € @
0eQ

Or, Sup y(t,d)w.rt 6 € Z[ by Result 1]
€@*

i.e. if Sup r(1,0) = gnf Sup r(1,0) =V (say)

€@* €7 1c®"
v = Upper value of the game.

Thus, if a statistician chooses a minimax rule dy, his expected loss is at most v
whatever be the action chosen by nature.
Similarly, a prior 7 is said to be a maximum rule for the nature or a least
favourable prior for the statistician if 7y maximizes ir%f r(t,0)w.rt t, ie. if
[¢

iI;f r(t9,0) = Sup iI;f r(t,0) = v (Say)

v = Lower value of the game.

If nature chooses a least favourable 7, then expected loss (of the statistician) is
at least v whatever be the rule the statistician chooses. O

Result 2 v <V
Proof

r(t,0) < Supr(t,0) V1,0

= iI;f r(r,ré) < ir(%f Slrlp r(t,0)=v V1
= Sl:p irgf r(t,0) <¥v

= vV

The statistical game is said to have a value vif vy =v =, O
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Result 3 if the statistical game has a value and a least favourable prior 7o and a
minimax rule dy exists, then dy is Bayes w.r.t. 1.

Proof v = ifblfr(foaé) <r(t9,00) < Supr(t,dp) =V
T
If v =79, then ‘=" must hold every where implying
ir(%f r(to,0) = r(to,00) = Jo is Bayes w.r.t. 7. O

Minimax theorem Let ® be finite and the risk set S be bounded below. Then the
statistical game will have a value and a least favourable prior 7( exists.

If further, S is closed from below an admissible minimax rule d¢ exists and dy
Bayes w.r.t. 19.

Thus if @ is finite and S is bounded below as well as closed from below, then

(i) A minimax rule exists
(ii) An admissible minimax rule exists and
(iii) A minimax rule is Bayes (w.r.t least favourable prior 7).

Result 4 Suppose there exists a rule Jy such that

() Rs,(0)<c ¥V 0
(ii) do is Bayes w.r.t. some 7o and r(79,d0) = c,

then
(a) Jp is minimax
(b) 19 is least favourable prior.
Proof

(a) Proved earlier
(b) To show irb;f r(to,0) > irb;f r(t,0) V 1 ()
Now (i) = r(t1,00)<c V 7
= ir(%f r(t,0) <r(t,d0) <c = r(t0,d0) = ilgf r(19,0) V 1 by (ii)

This proves (b). U

7.7 Invariance

Many statistical decision problems are invariant w.r.t. some transformations of X. In
such case it seems reasonable to restrict to decision rules, which are also invariant
w.r.t. similar transformations. Such a decision rule is called an invariant decision
rule and in many problems a best rule exists within the class of invariant rules.
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Example 7.30 X ~N(0,1), —o0 <0 <00

We are to estimate 0 under the squared error loss.

Suppose one considers a transformation of X, viz., X' =X +¢, ¢ = a given
constant and considers the problem of estimating ¢’ = 0 +c on the basis of
X'~ N(0',1) under the squared error loss.

For an action ‘a’ for the first problem, there is an action @’ = a + ¢ for the second
problem and vice versa with L(0,a) = L(0',d’). Thus the two problems may be
considered to be equivalent in the sense that (O, &, L)= (®’, &, L.

Now let d = d(X) = a reasonable estimator of 6 on the basis of X. Then
d(X') = d(X + c) should be a reasonable estimator of 6’ on the basis of X’. Also, if
d(x) = a reasonable estimate of 0 on the basis of X = x then d(x) + ¢ should be a
reasonable estimate for 0. The two estimates are identical if

dx+c)=d(x)+c (7.37)

An estimator d(X) is said to be a location invariant or an equivariant if (7.37)
holds VxVe.

d(X) is an equivariant estimator iff d(X) = X+ K = dg(X) (say) for some
constant K.

[If d(X) = X + K, then (7.37) is satisfied VxVec. Let (7.37) be satisfied VxVc. For
c=—x, ({)=dy=dx)—x; or dx)=x+K, K=d(0) Ry(0)=
E(X+K —0)>=1+K> which is minimum when K = 0. Thus
R4, (0) <Ry (0)VOVK.

= dy(X) = X is the best within the class of equivariant estimators.]

Invariant statistical decision problems

(®, ® L) X = ar.v. and x = observed value of X € x (=sample space)

Py = A probability distribution over * depending on 0.

P ={Py/0 € O} = family of probability distribution.

A statistical decision problem = (®,a,L)and P,

Groups of transformation of X(or %)

Y = g(X) = a transformation of X

g(x) = a single valued function of x.

g ¥ — x*, g = a transformation on x

We assume that g is measurable so that g(x) is an r.v. g is said to be an onto
transformation if the range of g(x) is % i.e. ¥ is %

g is said to be 1:1 if g(x;) = g(x2) = x; = x2.

Example 7.31 %= Ry;g(x) = x+¢,c = a real constant. This g is 1:1 and onto.
The identity transformation e is defined as e(x) = x. Let g, g> be two trans-
formations on x Then the composition of g,,g;, denoted by g»g; is defined as
8281(x) = g2[g1(x)].
Example 7.32 =R,
g1(x) =x+c¢; and g»(x) = ¢, ¢y, ¢ are real constants. gi1g2(x) = x+c¢; + ¢
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Clearly, g1g283 = 81(8283) = (8182)83

Also ge =eg =g

If g is a transformation on x; then the inverse transformation of g, denoted by
g~ ', is the transformation g such that

g8l =g 'g=e

In the example, g;!(x) = x — c;.

Note g~ ! exists iff g is 1:1 and onto.

Let G = a class of transformation on x

Definition G is called a group of transformations if G is closed under the com-
positions and inverses, i.e. if

1. gl,gzeG:>g2g1€G
ii. gecG=g'lecG.

Note Let G be a group of transformations, then every g € G is 1:1 and onto (since

g~ ! exists).

Also, the identity transformation e always € G [if g€ G, then g~! € G,
e=glgeGl

Example 7.33 =R,
gc(x) = x4+ ¢, c = a real constant.
Let G = {g./ — oo <c<oo}

8c1: 8, € G = 8¢, 8¢, € GlAsge,8c,(x) =x+c1+ 301+ =]

g €G =g € GAsg,'(x) = x+(—0)]

Hence, G is a group of transformation which is Additive or Location group.

Example 7.34 %= Ry, g.(x) = cx where ¢ = a positive real constant
8c18cx (X) = 102X

1
-1 _ 1
gc (X)—C)C

Let G = {g./0<c<o0}
8ci:8 € G= 808, €G

gCEG:>gC_l€G
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Thus G is a group of transformations.
These are multiplicative or group under scale transformation.
Example 7.35 =R\, g, = a-+bx
G = {gap/ — 00 <a<oo,0<b<oo}
G is a group transformation.
It is a group under both location and scale transformation.
Example 7.36 %= {0,1,2...n}
Let g(x) =n—x
G={e g}
eg=g€Gg'(x)=x=ex) €G
Also e~! € G [Trivially]
Hence, G is a group of transformation.
Example 7.37 %= (X1,X2,X3, . .. .. Xn)

xp = The set of possible values of x;

X = XoXXX. . ... ..... XK

Let i = (i1,i2, i3, .. .... i,) be a permutation of 1,2...n
Let g;(x) = (i, Xipe « oo - x; )

G = {g;/i € the set of all possible permutation of (1,2...n)}

G is a group of transformations. It is a permutation group.
The invariance of a statistical decision problem is considered to be w.r.t a given
group transformations G on .

Invariance of P Let G = a given group of transformations on x

Definition P = {Py/0 € ©®} is said to be invariant w.r.t G if for any g € G and any
0 € O (i.e., any Py € P) there exists a unique 0’ € © (i.e. a unique Py € P) such
that probability distribution of y = g(x) is Py when the probability distribution of
X is Py.

This unique 0" determined by g and 0 is denoted by g(0).

Example 7.38 X ~N(0,1), —co<f<o0
P={N(0,1)/ —oco<lO<o0}

Let G = {g./ — co<c<oo} where g, (x) =x+¢
If X~N(0,1) then Y = g. (x) ~N(0+c=01)
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¢’ is uniquely determined by c and 6.
Thus P is invariant under G with
g.(0) =0+c.

Example 7.39 X ~ exp(0),0<0<oc0
P.d.f of X under 0 is je77,x > 0

P = {exp(0)/0<0<o0}

Let G = {g./0<c<oo} where g.(x) = cx
If X ~ exp(0), then g.(x) ~ exp(ch), i.e. c0 = 0. 0 is uniquely determined by
c and 0. Thus P is invariant under G with g.(0) = c0.

Example 7.40 Let X ~Bin(n, 0), n known, 0<60<1
P = {Bin(n,0)/0<0<1}

Let G = a group of transformations on * = {e, g} where g(x) =n —x

If X ~Bin(n, 0) then e(x) ~Bin(n,0 = (') and g(x) ~Bin(n,1 — 0 = 0)

0 is uniquely determined by 0 and member of G. Thus P is invariant under
G with e(0) = 0,g(0) =1—0.

Invariance of loss function

Let G = a group of transformations on *
Let P be invariant w.r.t G with induced group of transformations on ® as

G ={g/¢ € G}.

Definition The loss function L is said to be invariant w.r.t G if for each g € G and
each a € (B, there exists a unique @' € (E such that

L(0,a) = L(3(0),d) V0 € ©.

This unique o' determined by g and ‘a’ is denoted by g(a).
Example 7.41 X ~N(0,1), —o0o <0 <0

G={g./—oo<c<oo};g.=x+c

P is invariant w.r.t

G with G = {g./ — oo <c<oo},g.(0) = c+0.

To estimate 0 under L(0,a) = (0 — a)*

For any g. € G,a € (E, thereisand =a+c € (E

such that L(0,a) = L(g.(0),d’) V0 € Q.

' is uniquely determined by a and c. Hence the loss function is invariant w.r.t G.
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Example 7.42 X ~ exp(0),0<0< o0
G={g./0<c<oo},g.(x) =cx

P is invariant w.r.t. G with

G ={g./0<c<cxc}, g.(0) = cb.

To estimate 0 with L(0,a) = (1 — %)2

For @' = ca, L(0,a) = L(g.(0),d’) V0 € Q.

This &' is uniquely determined by a and c. Hence the loss function is invariant w.
r.t. G.

Example 7.43 X ~Bin(n,0), 0<0<1
G= {evg},e(x) = x7g(x) =n—x

P is invariant w.r.t. G with
G=1{ezg},e0)=0,2g0)=1-0.

To estimate 6 under squared error loss.

Then L(0,a) = L(e(0),d') where d’ = a

and L(0,a) = L(g(0),d') where ¢’ =1 —a. & is uniquely determined by a
member of G. Thus L is invariant w.r.t. G.

Invariance of a statistical decision problem:

A statistical decision problem = (®, (E,L) and P

G = A group of transformation of x

Definition A Statistical decision problem is said to be invariant under G if
(i) P is invariant under G
and (ii) L is invariant under G.
Thus as already shown

i. X~N(0,1) to estimate 6 under squared error loss

G={g./ —oco<c<oo},g(x) =x+c
the problem is invariant under G.

ii. X ~ exp(0),0<0<oc0

To estimate 0 under L(0,a) = (1 — 3)2, g.(x) = cx the problem is invariant
under G.
iii. X ~Bin(n,#), n is known, 0<6<1
To estimate  under squared error loss with G = {e, g}
e(x) = x, g(x) = n — x, the problem is invariant under G.

Example 7.44 X ~N(u, ), —00 <u<00,0> > 0
To test Hy : £ <0 against H; : u > 0, i.e. 0 € ® against 0 € O,
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Oy = {0 = (,0°)/u<0}
O,={0=(u,d")/u>0},0=0y+0,

Let G = {g./0<c<oo}, g.(x) = cx
= A group of transformation on *

X~N(u,a%)
= g.(x) ~N(cp,c*a*) € P

P is invariant under G with g.(0) ~ (c u,c*a?) 0 € ©; &

Note g.(0) € ©;,i =0,1,2,.......(1)
i.e. both Py and P; are invariant under G
where P; = {Py/0 € ©,},i =0, 1.
Also, L(0,a) = L(g.(0),d.),i = 0,1V0 € © by (i)
= Loss is invariant under G

Note To test H, : 0 € O against H, : 0 € O, 0y, O, disjoint, @y +O; = O

a ={ag,a},a; = acceptH,.

o ap
0 € 0 0 Ly
0 €0, Ly 0

Let the loss function be 0-L;
Let G = a group of transformation on *

P=1{Py/0 € ®}; P, = {Py/0 € O;}

Let both Py and P; be invariant under G, then P is invariant under G.

Also, 0 € ©; & g(0) € ©,,i =0,1

Hence, L(0,a;) = L(g(0),a;),i = 0,1V0 € ®

L is invariant under G

A test of hypothesis problem (with 0—L; loss) is said to be invariant under G if
both Py and P, are invariant under G.

Invariant decision rule

Let G = a group of transformation on x The problem is invariant under G with
corresponding group of induced transformations on ® and a.
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Letge G
Original problem Transformed problem
(in term of X) (in terms of g(X)
0eB,ac 0 =3(0)e®,a =g(a)e
L(0,a) L(0,a)=L(0,a)
={P,/10<0} P={p,/0 6}

Equivalent Problem.

Let d(X) = a be reasonable n.r. rule for the original problem. d(g(x)) should be
a reasonable rule for the transformed problem. Also if for X = x, d(x) € (E is a
reasonable action for the original problem, then for g(X) = g(x), g(d(X)) should be
a reasonable action in the transformed problem.

These two agree if d(g(x)) = g(d(x)).. ... ..(i)

A non-randomized rule is said to be an invariant non-randomized rule if
(ii) holds Vx € *Vg € G.

We thus get a class of n.r. decision rules as

Dy = the class of invariant n.r. rules.
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A.1 Exact Tests Related to Binomial Distribution

A.1.1 We have an infinite population for which = = unknown proportion of indi-
viduals having certain character, say A. We are to test Hy : = = my.

For doing this we draw a sample of size n. Suppose x = no. of individuals in the
sample have character A. The sufficient statistic x is used for testing Hy : m = 7.
Suppose xg is the observed value of x. Then x ~ bin(n, «).

X > X0

n
(a) Hy ZTC>7'E();(U()IP[XZ)C()/H()}SOCLC., Z < >7T:EC)(1_TCO)"X<O€
X

(b) Hy : m<mp; g : Px<xo/Hp) <o ie., Y, <n>n’6(l —m)" <«
x

x <Xxo

(¢) H3 : m # my; where myp = % may be of our interest.

CO()ZPH)C*%‘ 2d0/H0i| <ua

. n n
ie., P[xz . +d0/H0} +P{x§ 3

- X ()62 (0)6) :
i.e., - + — | <awhere dy = ’xo — —‘
xzzz’-;do <x> (2 xﬁzé—:do <x> 2 2

(1) For other values of 7y the exact test cannot be obtained as binomial distri-

bution is symmetric only when . = %

(2) For some selected n and z the binomial probability sums considered above are
given in Table 37 of Biometrika (Vol. 1)

- do/Ho} <a

Note

© Springer India 2015 237
P.K. Sahu et al., Estimation and Inferential Statistics,
DOI 10.1007/978-81-322-2514-0
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A.1.2 Suppose we have two infinite populations with 7z; and 7, as the unknown
proportion of individuals having character A. We are to test Hy : m; = mp.

To do this we draw two samples from two populations having sizes n; and n,.
Suppose x; and x, as the random variables denoting the no. of individuals in the 1st
and 2nd samples with character A.

To test Hy : m; = 7, we make use of the statistics x; and x, such that x; +x, = x
(constant), say.

Under Hy : my = my = 7 (say),

X1

flx1) = pmf. of x; = (nl >71—X1(1 e

np

f(x2) = pmf. of x, = < >77,’X2(1 —p)ym

X2

ny+ny

f(x) = pmf of x = < >7Tx(l o n)nlJrnz—x.

X

The conditional distribution of x; given x has p.m.f.

n \ [ na
f(x1/x) W

Suppose the observed values of x; and x are xjy and x( respectively.

, which is hypergeometric and independent of 7.

(a) Hy:m > T, wO:P[Xlzxm/x:xO]ga

n ny
X1 Xo — X1
<
X1 > X10 ny+np
X0

(b) H2 : 7T1<TC27 g P[XI leo/x:xo]ga
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(c) H; : my # mp, exact test is not available.
Note The above probabilities can be obtained from the tables of hypergeometric
distributions (Standard University Press).

A.2 Exact Tests Related to Poisson Distribution

A.2.1 Suppose we have a Poisson population with unknown parameter 4. We draw
a random sample (x,xz,...,x,) of size n from this population. Here, we are to test
Ho A= /10.

To develop a test we make use of the sufficient statistic y = >\ x;, which is

itself distributed as Poisson with parameter n4. The p.m.f. of y under Hj is therefore
fly)=en 4l y=0,1,2...

Suppose yy is the observed value of y.

(a) H; : A > /l(), wo : P[yzy()/)u = )Lo] <ua

y
ie., Z e (nl?)

y2Yo Y

<a.

(b) Hy : A<y, wo : Ply<yo/i=lo|<u

<.

y
ie., Z e o (ni?)

y<¥yo y

(c) H3 : A # Jy: exact test is not available.

Note These probabilities may be obtained from Table 7 of Biometrika (Vol. 1)

A.2.2 Suppose we have two populations P(1;) and P(4;). We draw a random
sample (x11,X12,...,X1,) of size n; from P(l;) and another random sample
(221, %22, - - -, X2n,) Of size ny from P(/,). We are to test Hy : 41 = A, = A (say).
Here we note that vy = 27;1 X1i NP(I’l[).]) and V2 = E:il X2i NP(nZ/IQ).

To develop a test we shall make use of the sufficient statisticsy; and y, but shall
concentrate only on those for which y = y; +y, = constant. Under Hj the p.m.f. of
y1,y2 and y are

2))2

A ) = et O ) = gt oo L T ra2Y

=e
fou vi! ! y!
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The conditional distribution of y; given y has the p.m.f. as

—nmpA(ma ) _py a2
=) yi!
e~ (1 +n2)a {( JFI"Z))-}’V
!

e

fon/y) =
_ 0 m'ny
yilya! (ny 4+ na)”

y Y1 Y2
= ( i ) (l B ) Nbin<y, n ) free of A.
yi ny+np ny+ny ny+np

So this may be regarded as sufficient statistic. Suppose the observed values of y,
and y are yjo and yo respectively. We consider the conditional p.m.f. f(y;/yo) for
testing Hy.

(@) Hy : A1 > Ao 00 : Pyt > y10/y = yo| <

n Vi n Yo—=)1
ie., Z Yo < ! > ( 2 > <u
1= Yo 3 n+m n+m

(b) Hy : 21 <725 o : Ply1 <yi0/y = yo| <

e ¥ )G G =
o Y1<yio N mtn mtn T

(c) H; : 4 # Ap: exact test is not available.

A.3 A Test for Independence of Two Attributes

In many investigations one is faced with the problem of judging whether two
qualitative characters, say A and B, may be said to be independent. Let us denote the
forms of A by A;{i = 1(1)k} and the forms of B by B;{j = 1(1){}, and the prob-
ability associated with the cell A;B; in the two-way classification of the population
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by p;;. The probability associated with A; is then p;y = Zj pi; and that associated
with B; is poj = >, pij. We show the concerned distribution in the following table:

A B Total
B, B, B; B

Ay P P12 Pij pu P1o

Ay P21 P2 e D2j e )21 D20

Al Pil P2 Pij DPil Pio

Ag Dkl P2 e Dij feee D Do

Total Pol1 P02 e Poj e Poi 1

where p; = P[A = A, B = B}] - V(i,))
pio = P(A = A;) andpy; = P(B = B;)

We are to test Hy : A and B are independent < Hy : p; = p;y X p; V(i,])

To do this we draw a random sample of size n. Let n;; = observed frequency for
the cell A;B;. The marginal frequency of A; is njp = ZJ. n; and that of B; is
ng; = »_,; n;j. Note that the joint p.m.f. of n;; is multinomial, i.e.

i=1(1)k i=1(DkY n!
(52000 /7 5200 T e L0
Under Hy 1D = Dip X PajV(iJ)
i=10k\ e
1 1<1>z>‘mn(""”) [T
f(no) = (n0) ,H(Plo )"vi = 1(1)k

f(ng) = H (1) ,H(poj )N = 1(1)1

The conditional distribution of n; keeping marginals fixed is, under
f(nl) - H nio IH nO/
Ho, oot = "] [T e
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This may be used for testing Hy. Keeping marginal frequencies fixed we change
the cell-frequencies and calculate the corresponding probabilities. If the sum of the
probabilities < o, then we reject Hy.

A.4 Problems Related to Univariate
Normal Distribution

Suppose we have a normal population with mean p and standard deviation o. We
draw a random sample (xi,xp,...,X,) of size n from this population. Here X =

o Xiy P =030 (% — %)* and 52 = e (i — %)%,
A.4.1 To test Hy : u = yp.
Case I ¢ known: we note that @ ~N(0,1)

Under Hy, t :M ~N(0,1).

Hy:p>py,mo:t> 1,
Hy:p<ppg;wo:t<—14
H3:p # po; oo : |t] > 740

100(1 — a)% confidence interval for u (when H is rejected) is ()_c F \/i;ra /2)

Case II ¢ unknown: Here we estimate ¢ by s’ and @ ~ty_1.

Under Hy t = M ~ta].

Hy: > fy; 00 > [O(,l‘lfl

Hy o p<pg; oo : t<—ty -1

Hj o # pio; 00 |t] > 1,021
100(1 — a)% confidence interval for u is (fc F 57;[@/2, n— 1)
A.4.2 To test Hy : 0 = 0.

Y Y]
Case I u known: we know W ~ 2, under Hy, 3> = E(Z—%“) ~ 2.

. : C2 2
Hy:0>00; 001" > Yy

. . )
Hy 1 0<00; 0o X" <Jti_yn

2.2
Hj 0 # 005 W02 "> Lo
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or,

22
X <Xi-u/2n

2
Xi— H
P [X%—x/Z,n < Z(O_iz) <Xi/2,r;| =1l-u

mwﬂzm—w : zw—mjzhﬂ

5 <0t < =
Loj2n Li—u/on

-100(1 — )% confidence interval for o> when p is known is

[Z (- > (xi—ll)2:|

2 I 2
)Co(/Zﬂ J(l—at/ln

PR 2 —X 2
Case II p unknown: we know w ~y2_, under Hy, * = Z(::Z S 2

. . . ’\2 2
Hy:0>00; wo:y > Aon—1
2 =2
H2 c0<0p, Wo:Y </Cl—o:‘n71

) . ) 2
H3:0# 0p; wo: ) > Laj2,n—1°
or,
2o 2
x> /Cl—oc/Z,n—l

—\2
X —X)
P |}&x/2.n1 <Z( 2 <Xi/2,nl‘| =l-u

Y% zw—mjzhﬂ
2

ie., P

<o < 5
La/2,n-1 Li—a/2n-1

-.100(1 — %)% confidence interval for o> when u is unknown is

St 3 <xi—x>2]

2 9 o2
11/2.11—1 Xl—x/l‘n—l

A.5 Problems Relating Two Univariate Normal
Distributions

Suppose we have two independent populations N (i, 07) and N (i, 03). We draw a
random sample (x11,X12, .. .,X1,,) Of size ny; from the first population and another
random sample (x1, X2, . . ., X2,,) Of size n, from the second population.
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Now, we have for the 1st and the 2nd samples

1 ny l n
xX] = — E X1i and Xy = — E X2i
m i=1 m i=1
ny 1 ny 5
2 2 : 2 =
S = X1 — X1 Sy = X2i — X2
1 n — 1 4 ( i ) ny — 1 g ( 1 )

respectively.
M) Ho : 1ity + o, = 15
Case I o1, 0, known:

Lix) + 1ox — (Lipg + Lopsy) ~N(

We find that 0,1)
1262 1262
1%, 2%
ni np
1% + X, — 1
Under Hy, = bt o -1 ~N(0,1)
Ifot 1303
ni ny

CSHy Ly 1y > 13m0 i T > 1,
Hy: 1ip 4+ lhw,<lz;mp : 1< —14
His Ly + Loy # 13500 @ [t] > 140

Also, (1 — «)100 % confidence interval for (13, + lop,) is

1262  1%62
L%+ L F il Bl ﬁ.%/z
n ny

Case Il o, 0, unknown:
Fisher’s t-test: We assume 0, = g, = g, say.

_ 2 _ 72
¢? is estimated by % = s say
Lixp + 1axp — (Lipy + lop
Also, - ( 12 2) ~lny -2
S/ h + h
n ny

LX)+ 1oX — 13

> > ~ tnl +ny—2
1 1
sha-L a2
np np

This ¢ is known as Fisher’s t when 1, = 1, 1, = —1.

Under Hy, t =



Appendix 245

Hy: 11,Uv1 + 12/12 > 13; wo 1> to:,n1+n2—2
Ho 1y + lopy <13 @0 t< —typ +ny—2
Hi: Ly + Loy # 135 oo @ |t > L, +ny—2

Also 100(1 — a)% confidence interval for 1y, + lou, is

2 2

- - TR
Lixi +1oXo F 54| —+—=ty20 4 m—2
np m

Note-I The above procedure may also be applicable when ¢; and ¢, are not

< 0.4—theoretical investigation in this area verifies this.

equal provided ‘l -4
2

Note-II when homoscedasticity assumption ¢; = 0, is not tenable then we
require the alternative procedure and the corresponding problem is known as the
Fisher-Behren problem.

Note-III For 1; = 1 and 1, = —1 we get the test procedure for the difference
between the two means. Also for testing the ratio of the means, i.e. for testing
H, :Z—; = k, say, we start with (X; — kXp).

(II)HO:“—;:fO:

[

,% (x1i—n )2
Case I u,, 1, known: % (1) ~Fuin,

o
L 2
. Under Hy, F _M% ~Fy

o Z (xzi—ﬂz)z/’lz <o

YR

g1

Hy:— >¢&; wo:F>Fyun
02
g1

H2 : ; <£0; o - F<Flfoc‘n1‘n2
2

gl
Hs : 6_2 #* &y, wo: F > F“/z’nl’nz or, F<F1,“/21nhn2.

2 2
Also, P|:F1a/2,n1,n2 < M.JZ <F9:/2,111.,112:| =1—-ua

E (Xzi—#z)z/nz ”_%

n Z (i = 1) Fappmyy 02 ny Z (%2 — 1) F 1 /20, my

o P|: nzZ(Xli*ﬂl)z —a o nzZ(xu*M)z J 1y

This provides the 100(1 —«)% confidence interval for 2 when u,u, are

known.
Case IT y;, ity unknown:

1 -2
P DT ~
We have nzl—lz T ( ) Fri—10,-1

W=
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12 2
st 03 .
L = F, i
T s a2 o

S/Z 1
under Ho, F=1%.5 ~Fy_12,-1
282

0] ¢
oHy :O'— > o, w0 1 F > fo,nl—l,nz—l
2

01
H2 : ; <§0,(D0 : F<F17m,n|71,n271
2

01
H3 :0__ 7& 507000 F > Fot/Z,n]fl,nzfl or F<F171/2;n171,n271'
2

572 1
AISO’ P Flfo:/2,nlfl,n271 < 712 ( )7 <F1/2,n171,11271 =1-ua
a

Or, P <% L < =1-u
> YQZFa/znl Ly—1 SZF | pant 1yt 7/7n1 L1

i.e., 100(1 — )% confidence interval for 2, when p;, i, are unknown, is

/ /
S S
l/s'2 l/s’2
)
\/FO(Q,nlfl,nzfl \/Flf(xﬂ,nlfl,nzfl

A.6 Problems Relating to Bivariate Normal
Distributions

Suppose in a given population the variables x and y are distributed in the bivariate
normal form N (g, fiy; 0x, 5 p). Let (x1,y1), (x2,2); - - -, (Xa,,) be the values of
x and y observed in a sample of size n drawn from this population. We shall
suppose that the n pairs of sample observations are random and independent. We
shall also assume that all the parameters are unknown.

We have for the sample observations

-1 -2
) SRR S R

1 _ nTZi (xi — x)z()’i - y)z
5;2 = Z (v, —¥)?, and ry ="t

n—14 xSy
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(1) To test Hy : p = 0:

We know when p =0, = ’V—Vl”_‘j ~ o

H1:p>0, (O A PR
H22p<0, Wy 1> —lypo2
Hy:p #0, wo:lt|>1,,,,

Note For testing p = p,(#£0), exact test is difficult to get as for p # 0 the
distribution of r is complicated in nature. But for moderately large n one can use the
large sample test which will be considered later.

(2)H0::ux_.uy:é()
Define z=x—y= pu,=u, —u, ie, we are to test Hp:p, = ¢yp. Also
note  that @ ~tyoy  where s =L (7 - ) =52+ s;z - 25,

S;ry = ﬁz:z (‘xi_.Y)z(yi_y)z' Under HO) = @ ~iIp-q.

For Hy @ pu,—p, > Eo, 0 1>ty

Hy o po—py,<Coy, @0 1< — 1y,
Hj - He— 1y # 507 o : |t| > tu/Z,n—l

Also, 100(1 — a)% confidence interval for y, = p, — p, is (Z F %ta /27,,,1)
3)Hy : Z— =1, : We write n:%.

To test HO N =My, We take 7=x—ny = B, = He — 'I,Uy — 0.
Z =X — yy = a function of #.
s = s+ n’s — 28, = a function of .
s

nz

~Ip-1. i~e~7 % Ntnfl(..',uz = 0)
Under Hy, t = ‘/,ﬁz“
%

s

Now,

~t,_; where zop =X — gy

2

Sz =

2 2 /
Sy +1oSy — 21psy,
So for H, % > Moy W it >ty

3

U
Hy: = <ny; o :t<—tyu1

y

u
H; 'u—x# Nos o - |l| > tu/2,n71'
y
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Again P|: 0,/2,7 ]< <toc/2n |:| =1—-u

i.e., P[

/20— 1} =1-—aorPy(n)<0]=1-o.
% - (1, /2,,,,1)2: 0 which is a quadratic equation
in 17, one can get two roots #; and n,( > ;). Now if /(#) is a convex function and
1, and 1, are real, then P[n, <n<u,] =1 —a. If () is a concave function, then
Ply<n;,n > n,] = 1 — a. Butif n,and 5, be imaginary then from the given sample
100(1 — o) %Confidence interval does not exist.

(4) Test for the ratio ¢ ==

Solving the equation /() =

We write u =x+¢y, v=x-—2E&

~.Cov(u,v) = % — 620 = Py =0

Then, '\/..._;”_ ~ty_o
re
% (ui—ﬁ)("i_lj') . P .
where r,, =*~————— = a function of {. We are to test Hy: 2= ¢, , i.e.
Hy: ¢ =&
Y
- under Hy, t = =¥"2 ¢

1-r?
0 _ _
where r,), = value of r,, under & = &.
For Hy : £ > om0 1 t > typn

<o i t<—typ
Hs:E&# Epimp : |t > Tyj2n—2

Also, P _toc/Z,n—Z < % <to'/2n 2 = l—o

Solving the equation (&) = % ti Jona = = 0, (which is a quadratic in &)
one can get two roots &; and &,( > ;). If these roots are real and /(&) is a convex
function, then P(&<é<&)=1— o Again if (&) is concave,
P((<¢,E>&)=1— o But if ¢ and & are not real, then 100(1 — a)%
Confidence interval does not exist so far as the given sample is concerned.

(5) ox, 0y, p are known:

HO:,uX:yg, uy:,ug against H; : Hy is not true. We know that

1 x— )\ X — —u —1,\?
0(ry) = —— [(“) ,Zp( ux) (y :Ly)+(y u}) }N%i
I—p Ox Oy oy ay
2
(1?)~N2 Ky Hys u_)7p
n
2

-2
Q
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Under Hy,

N2 N /= ,0 —_ 0\ 2
n X0 x— 0\ (Y- u y—u
X2:1 5 ( )—Zp( >< y>+< y> ~
—p oy oy oy oy

Hence, the critical region is @y : x> > Xi 5

A.7 Problems Relating to k-Univariate Normal
Distributions

Suppose there are k-populations N(u;,d%), N(p,03), .. .N(py, 07). We draw a
random sample of size n; from the ith population with n; (> 2 for at least one 7).
Define

x; = jth observation of ith sample, i = 1,2,...k; j=1,2,..., n;
1N

X; = ith sample mean = .-» ", x;
. . ; _\2
s/? = ith sample variance = n,l—l i (xj — X;)
() We are to test Hy : y = up = - -~ = py,(=p), say against H,. There is at least
one inequality in Hy.
Assumption g; = 0, = - -+ = oy(=0) say.

Note that x; ~ N (,ui, ‘;—2)
) (0,1) Vi and are independent.

I3
ni—1)

2
Also, <TS ~_y (%; and s are independent.)

Under Hy

k - 2
ni(x; — u
E l(l ) NX%

2
i1 o

k ”
d (ni — 1)s; 2
an = Tnk
i=1

But the unknown u is estimated by
1 o
o= ;Znix, = X(say);n = Zn,

. Under Ho, Y% ni(% — %)> ~ %2, and SF | (n; — 1)s? ~ 272,
-2
2 il — %) Jk=1
!
Zi (n; — l)si In—k
o : F > Fop—1 -1 If Hy is rejected, then we may be interested to test Hy: i; =
1; against Hy @ p; 7 wv(i,j).

> these two > are independent.

. Under Hy, F = ~Fr_tp—k-
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= —— ~N(0,1)
g n + n—]
. . . i—1)s? %% )= (i~ 1y
Unknown ¢? is estimated by G2 = Z:ST)A =52, say .. W ~ty k.
(;Ci,xj) ERVATRET
c.under Hy, t= ~ k-

o 1,1
S noong

cowq ¢ |t > 1,0, . Also, 100(1 — «)% confidence interval for (u; — p;) is

{()7(57Xj) F s /nli —+ ita/Z,n—k}'

(ID)Bartlett’s test To test Hy : 61 = g, = - -+ = ox(= 0), say against H;: There
is at least one inequality in Hy.
Definey;, =n; — landy = Zf: 1 i = n — k. Bartlett’s test statistic M is such that

k ” k
M = yloge{zyl%} — Z)}ilogesgz
i=1 i=1

Under Hy M ~ y;_, (approximately) provided none of y; is small. For small

M ko1 1

samples M’ = —} ~y: . under Hy where ¢ =5, ,1-1 and

i=ly, 7y
] Ll
1+3(k—1)

) 2
wo: M > Yok 1-

A.8 Test for Regression

Suppose the sample values of x and y are arranged in arrays of y according to the
fixed values of x as given below:

X1 X2 e X oo X
V1 Ya oo Y1 oo Y
Yizoo Y2 oo Y2 Yi2

ylnl y2n1 yin,- te yknk
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R | i v o—1 Y. — v
Define y;, = ,,_,.Z;l:1 Vi Yoo = 5 2_iMiVio =¥

1
X:—g nix;, n:E n;
n i

i
_ - \2

2 = > 1i(Yio — Yoo)
= — — \2

" > Zj (yij_yOO)

B 5 . .
ey = + /e, = sample correlation ratio.

w2 2 (v = Joo) (% — )
\/{;112, Zj (v — 5’00)2}{% Somi(x — x)z}

We assume y; /x; ~ N1 (1, 6%) , ie. E(y;/xi) = ;.

(D Test for regression: Hy There does not exist any regression of y on x.
SHo: === iy

Define 13, = V(f,% éx)) ; Ny = =+ /12, = population correlation ratio.

.. To test Hy is equivalent to test H : nix = 0 against H; : ;7}2,){ >0

We note that

E E (v —Yoo)* = E E (v —¥)*+ E ni(io — Yoo)”
i i i
Under Hy

_ 2 _ _
SSp = eixzz (v = Yoo)” = Z"i(Yio —Yoo) ~ 0 1,
i

i

SS, = (1 - eix) Z Z (v — Yoo)® = Z Z (v — Vi) ~ 0 s
i J i J

. , e/ (k=1) SSp/(k—1)
.. Under H() F :W NFk*l,Vl*k' |:F = S;gw/nfk:|

S F > Fog ke

(I) If Hy is rejected then we may be interested in testing whether the regression
is linear, i.e. we are to test

Ho:u =o+px; Vi
Hl :,u,-#ochﬁxi
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o - o\
We note that, €5, >, > (v — Yoo)~ = >_; (Vi — Yoo)

2
B {Z:1 Z ()'U7y00)<xi7})} ~ _
AISO, }’2 Z Z (ylj — y00)2 = E:l_n,’(x,'ﬁ’_C)z = ﬁz Z ni(-xi_x)2

where ﬁ — %

'.'<e}2'x - r2> 22 g — Yoo)” = 2imi(io — Yoo)® — B Xoimi(xi—%)* ~ 62 13_, under
Hy.
Also, €5, 3, >y — Yoo)* and (efx - r2) Do i — Yoo) are independent.

%A (k—2)
‘. under Hy, F :% ~Fr onk

o F>Fyponk

A.9 Tests Relating to Simple Linear
Regression Equation

Regression of y on x is established and it is linear, i.e. E(y/x) =a+ fx, say

E(y/x=1x;) = o+ fx;,i = 1(1)n.
y/x~N(a+ px, %)

Least square (LS) regression line is given by Y = a + bx, where a, b are the LS

D NN s,

estimates of @ and f, i.e. a=y —bx and b = Z(* 7 S

"y NN(oH—ﬁ_,%z) and b ~ N(ﬁ ) Also they are independent.
*. ‘@’ is normal with E(a) = E(y) — XE(b) =

o2 o2
Via) =V Vo)=L R T (5 ) = ( 2)
(a) = V() +3V(b) = + S nsH(M+n ) . Zx,
i.e., awN(oc,az(% + g—a))
XX a_ao
Hy :oao=o0p:under Hyj, t = ——— ~1,_»
. 1+5c2
O' p— —
no Sy

where 62 = 5 (v; —a — bx;)*/(n — 2)
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Hy:o>oap,w0:t> tan—2
Hyp :a<ag, g : 1<—typ-2
H31 Lo 75 oo, o - ‘l| > l1/27n72.
Also, 100(1 — )% confidence interval for o is (a Fo/t+ g—zta/z, n— 2)
Hoy : f = Py : under Hp,, ¢ =1

b—f3 Sie
BNV g

H12 : ﬁ > ﬁO,
Hy : f<fo,
Hiy : f # Py,

Wy t>1typ-2
o 1< _ta,n—Z

Wo : |t| > tu/z,an'

Also, 100(1 — )% confidence interval for f§ is

(b= o)
:F\/E o/2,n—2

Hos : o0 = o, f=f : Cov(a,b) = Cov (¥ — bx, b)

PN L nx
o adiy e\ px Exlz
Now, >, = DO
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nSyx n nx 1 /n nx
"~ 6218, \ nx Sox? T2 \nx Sox?

(604006 260

= {n(a—oc) +2nx(a — a)(b— ) + (b — p)? Z }Na b

Again, 31 (v, —a—bx;) ~ 0> 12,
.. under Ho;3,

{na—a0)’ +2n5(a — o) (b — o) + (b — o)’ S} /2

F = NFZ,n—Z
> Oy —a—bx) [(n—2)
wo . F > Fot;Z.,n72-
A.10 Tests Relating to Multiple and Partial
Correlation Coefficient
Suppose x”*! ~N, <u, Z”’“p>
P1.23., = population multiple correlation coefficient of X; on X5, X3,...,X),
71.23.., = sample multiple correlation coefficient of X on X5, X3, ..., X, based on
a sample of size n (>p+1)
1 ri2 113 e rlp
1/2 1 ro3 e T
= ( —1‘%) where R = ... ... | and R; = cofactor of ry;
1
in R.
r? (p—1)
If :0thenF:%~F,n,.
Pr23.p o) P Ln—p
To test

Ho:pia3., =0against Hy : pyp3 , >0
W F > F%;p—l,n—p~

P1234..p = population partial correlation coefficient of X; and X» eliminating the
effect of X3,...,X,,.
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712.34..p = sample partial correlation coefficient of X;andX, eliminating the effect

of X3, .. .,Xp
Rip

T I prosg then
f = F1234.p\/HT— D

= Ntn—p

/ 2
1 =riys4.,

p = 0 against

Hi:posa p, >0 wo:t>1l
Hy:ppsa <0 o :t< —tyuyp

H;: P1234..p 7& 0; o ‘t| > tu/Z,n—p'

A.11 Problems Related to Multiple Regression

We consider a set of variables (y;xl s X2y .,x,,), where y is stochastic and
(xl JXDy ey xp) are nonstochastic. Let the multiple regression of y on x1, x2, .. ., x, be
E(y/xl7x27 <o Xp ) = ﬁO + ﬁlxl +B2X2.. + ﬂp'xp (Al)
where f, B, B, B, are constants. In fact,
p; = partial regression coefficient of y on x; eliminating the effects of
X, j#Fi=1,2,...p.
Define  a;, = Cov(x;,y),0 = Cov(x;,x;), 0y, = v(y), p;, = correlation of
(xi,y), p; = correlation of (x;,%;),i =1,2,..pandj= 1(1)p
. !/
We write 01(’1‘)1 = (1y, 02y, - - -, Opy, )
011 Jg12 ... le
pxp 021 02 ... Oy . . .
S PP = = variance-covariance matrix of x;,xs, .., x,
Opl Op2 ... Opp
We write
Oyy Oyl 0y)... Oyp
- Gy 011 012 a
TTToTT ly 011 012 1p
E 0 = | 02y 021 022. 02p
Opy  Opl  Opp... Opp
i
o 2y
= 4 S = variance—covariance matrix of y, xi, X, ..., X,.
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Similarly, we write

pyy
PESTTES] Py
D+ Lxp —
Po - p2y
pP,V
X1, X2, -y Xp.

Now,

22|

N ’|p0| - (Jy)lelez...(Tl,p)'

.". Cofactor of p, in

pyl
P11
P21

ppl

Py2...
P12
P22...

Pp2...

Pyp
P1 P
P2p = correlation

p[’l’

S| = (product of the diagonal element of >)|p|

= (0yy011022- - .0pp) | po |

matrix

Appendix

of y,

Also, |y | = (611022. . .0, )x Cofactor of p,, in py.

ol

Po =

.2 _
ce py.lZ...p -

~ Cofactor of pyy 10 pg

>

011022...0pp

1 120/ (001102 . 0p) 1— 120

|Z‘/(011622~~‘7pp) Uy,v|z|
oy—a S'a / -1 o
=1- M N(l)zal)z w_ ¢ asﬁ:ZﬂG )
Oyy Oyy Oyy ~ ~ (1)
A,
2 ~ ~ ~ ~
Py = , p = c = f=06 =o0
y.12..p Oy Oy |: Z (1) Z - ~(1) ~

Suppose we are given the set of observations

(yomxlotaxZaa .. '7xp9£) , U= 1(1)’1)
S = ey (i — i) (3 — %))

(xiot _)_Ci)(ya _)_]j)' Vl,] = l(l)p

Define x; =137 x;

Sy =

S Sz
»v — S S»
Sp1 Sp2

Estimated regression

ig2xz+ . +Bpxp

oy

n

=1

Sip
Sop

SI’I’

which is positive definite.

n>p+1.

equation of y on xi,x,...,x, is y:ﬁo—i—ﬁlxl—&—
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where 307 ﬁl, B2, ..+, B, are the solutions of the following normal equations:

Sty =BSu PS4+ + BPSIP
Sy =BSa BSn 4+ BSy (A2)

Spy = /Aglspl BZSPZ +ot BI’SPP

and fo =y — fix1 — oo — - — B,
We write y'”‘l - (yl,yz, .. '7yn)/

)C]lf)_Cl X217)_C2 xpl—)_cp
KM — Xpp—X1 Xn—X2 ... Xpp—Xp
Xipn — X1 Xop— X2 oo Xpn—Xp

~ pxl PO A\

B = (Bibos By

Note that Si, = Y| (Xix — i)y, (A.2) reduces to
Sp=Ky=p=5"'Ky

= Bl, Zf2, R Bp are linear functions of y,,y,,...,y, which are normal.

Aen(e(0).2(2))

Now, B =S'K'y = S—IK’(y —?§>

where € = (1,1,...,1) andK’'€ = 0

we(p) =sxE(y -5¢)

E(yx) = ﬁ0+/31xlcx+ to +ﬁpxpoc
E®y) = Bo+Bix1+ -+ +B,%
E(y, = ¥)=Bi(x1q — %) + -+ +ﬁp<xpo¢ — Xp)

y =y
E(y—ye>=E 2 - Y| =kp
Yo — Y
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[3) =ST'KKB=S"'Sp=p [-KK=5]

~ ~

=S'K'¢ 1,KS™' = ?ST'K'KS™! = 625718s7! = 257!

o
o(7)

=S5"'K'y ~N, (ﬁ, a2sl>

Z.h>

We write S~! = ((87)) V(B = oS
and

cOv(Bi,Bj) =251 Wij=1(1)p
BN (B ST T=1(0p

Again, fy =y — Bix1 — fra — B,

E(Bo) =E(y)- i:E(ﬁi)xi = </30 + zp;ﬂixi> - zp;ﬁixi =By

= (y—f[%); = (%1, 50 %)
=< + X/D<ﬁ ) X (as y and [3 are independent)
2 1
=L 1 x¥Psx =0 [— + x'Slx].
n ~ ~ n ~ ~
Thus ZSO is also a linear combination of normal variables.
7 2 1 —ro—1=
S Bo~Ni| Py, o . + xS x
. r_.
Again ¥ = fo+ > i, Y ~N(E(Y), V(Y))
1

where E(Y) = E(,f)’()) + ZE(,B,-)XZ‘ = Po+ X Bxi = &, (say)
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v +Z,§l(xl x,)l —VE) +V Z_:B,(x, xJ)
2, ZZ (3= %) (5 — 5)Cov (. )
YN <ﬁ0+ S B = 6o [,11 H(x-x)s "‘)D

2

To get different test procedures ¢~ is estimated as

5 1 2
n—p—lz(y“ Bo— Bixia+ .. +ﬁxpv)

2
Y {m -5~ Y b —m}

1 PN .
H—_I[SV} ZZZﬁﬁ Xix — Xi xiax])]

1 oy
pre— [Sw ZZWSU —_7_1[%—555}
B> B
(Note that p; , , == az: ~)
(1) Hos : By :ﬁzz"':ﬁpzo
= X1,X2,...,X, are not worthwhile in predicting y.
N ~
. BT i
Sy = o < by :Bz:“.:BP:O:pMUwP:O
yy

So the problem is to test Ho : pilzmp = 0 against H; : p%{lzmp >0

N A~
Now S}*y(l - r,%.lz...p) =Sy—B 2B

N 2.2
=3 (oo B B~



~ A~ Al A
Also, Syyriiy , = B SP =Sy — <Syy - BSp )

oSy = ﬁSﬁ)—i—Syy y12.p
Syy ~ 02%;2171 Sery 12.p7 O—ZX[2J
'.Fl _ ry4124..p/p

~ Fp,nfpfl
(1-70,)/(1=1-p)

Sz By o> Fot;p,nfpfl

2 Hoiﬁ():ﬁagairjst Hi:fy#p
Bo—B

1— Ntnfpfl
oy/-+x'S'x
n ~ ~

where 6% = n_p%[syy - B,Sﬂ 5;212 p> Sy

Under Hy, t =

and By =y— > Bx =y-%'B
o - |l| >ty n—p-1
(3)Hy: f; = ﬁ? against H, : f§; # ﬁ? Vi=1(1)p
Bi~ N1 (Bi, o°S")
0
Under Hy, t—% Tn—p—1.

g |t| > Z(x/Z,n—p—l

100(1 — o)% confidence interval for f3; is
(B[ Fov Siitoc/Z,nfp71>
(4) Ho : B; — B; = 0o against Hy : f; — B; # do. Vi#j=1(1)p

B — 3 Ni(B; = Bj.0° (S"+ 87 — 287))
-

(hb)s0_ _,
s ]

.under Hy, t =

Appendix
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o : |t| > ty/2n—p-1

100(1 — o)% confidence interval for (B; — f;) is
((Bz — B]) F 6’ Sii +S’j - 2Sljta</2<n—p—l)

(5)Ho:E(Y)=¢,=¢&

0
Under Hy, = Y_§, ~ly_poi
f‘f\/ﬁ (f—i) 5"(5-5)

o - |l‘| > t1/2,n7p71'

100(1 — )% confidence interval for &, is

(oo (o) (- )

where Y = ,30 + Zi):] Bixi

A.12 Distribution of the Exponent
of the Multivariate Normal Distribution

Let xP ~N, < Pt S ), > is positive definite.
The p.d.f. of x is

—1
1 —% x—p) > 5—#) —00 <X; <00

f(f) (2n)P/2m o —oo< <

and 0 <o, <o

0(x) = (x — g)’Zil(f )

~

Since Y is positive definite, there exists a nonsingular matrix VP such that
Sl=wv.
2 0(x) = (x = p)VWW'(x — ) = y'y where y = V'(x — p)

~ ~ ~
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Now y;,¥,,...,¥, are i.i.d N(0, 1)

P
Zy,z ~ 0 ie., O(x)~ e
T

If we now want to find the distribution of Q*(x ) =

’Z X, smce > is
positive definite, there ex1sts a non-singular matrix VP such that Z =VV.
S0 (x) = x’VV’x* z z where Z = V’

Here also |J| = +/|>_|.

.'.21,22, - - -, Zp are normal with common variance unity but with means given by
E ( z ) =Vu.

!
> P72 ~ non-central xﬁ with non-centrality parameter <V’u) (V’ ,u>
-1
wWWu=p'>
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A.13 Large Sample Distribution of Pearsonian

Chi-Square
Events Aq Ay e A | Ax Total
Probablhty Pl P2 ceen Pi ...... Pk 1
Frequency ny no n | . Ny n

n! )
cfng, ) = P

nj~ Bin(nvpi)

Pearsonian chi-square statistic is 7> = >~ %
Using Stirling’s approximation to factorials

1
2ne "'ty £ n,-
_)(‘(71137’127"',}1/()Z ali
[T V2me 2
1
Lk
nn+2H1p?z
1

- T
(2m) T TT}

o L)

k
1 .
.'.lOgJ(nl,nz, .. .,I’lk) ~C+ Z (ni+ E) IOgC <%> (A3)

here C = log, |— 14—
where 0og, LM%HT \/’77"}

We write 5,~=$%”qi,qi: 1—p,
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n:
= n; = np;+0p/npig; = — = 1+, |-
np; np;

-1
n; np;
k 1 7
.._logef(nl,nz, .. .,nk): C — Z <i’lpl+ E + 51’\’”]’1“11‘) 10gc<1 +5i1 l;)
1 i
i e g

k
1
=c-)> 4=y ovmp ) | oy A 4 0idi )
1 (”Pl+2+ np,q,) 2”Pi+

np; 3(np,) Y
1 2

k 3
q; 2 0;

=C- (5\/rﬂ+ 51/———5, ——5,2 +5 +—’(---)+~-->
21: np;, 2 4 N

Provided <1

k 3

1 Q‘ 1o 2 4di 9;
—CT (5"V”Pi61i+—5u/ ~+ 5014 — 5 4+ —=()) (A4
Z 2"\ np;, 2 np; \/n

Note that 3 8;\/ip,q; = St (i —np;) =n—n =0,
we assume that ) = 0(y/n) i.e., \/3——>O,\j-—>0:> -0
*. All the terms in the R.H.S of (A.4) tends to zero except 55?% , thus (A.4)

implies
1<, ¢ avts
IOgefZC—525iqi:>fze Le 2200
éfw# 2Zk <ntn,}:p

1
) 7 IT} VP
= ¢ ZZ, 1 ”,”;’m % (AS)
(27t) z \/p_k 1 np;
We note that % (n; p,-) =0
ie., ng —np, = Zl (ni — np;)

>~

—1 2 2
(=), (= npy)

np; npy

k 2
(n —np)* _
=1 np; i

Il
-

i
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k—1

(i —np) Y

k—1
1

We use the transformation (ny,ny, .

2
(n; —np,) i { !
np;

o (A.6)

"ank—l) - (xl;XZa"'axk—l)

— |Diag (v/py. - /1) |

where x; = "2k i = 1()k — L.
6(”17”27"')"1{—1)
W=
a(xl,)Cz, .- 'axkfl)

k—1
=T v,
(1 )

2
(A.6) = lec(”t;—;’f’l) — lec—l xi2+

Py
k-1 1 [t k-1
=D 4D opa D D>\ pbp
1 Pr |7 iA=1
k-1 » k-1 JPD;
=3 (12 2
1 Py =1
= x'Ax
where
1+ P VP1P2 VP1P3 VP1Pi-1
Pk Pk |/ )43
eI IR =
D1
1+ Pk
1 +a% aia,  a1az... apai—q
2
aa  l4a ... 6e where a; = 1% Vi=1(1)k—1
a1 ma-y  aza-  l+ai
Now

1
a1+a—l ar as. .. ag—1
1 R
a a+ — as... ap—1 . ows
Al = (a1az..ax—1) a ; p
... .. .« e l
a a a3 G+ -

-1
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I+ 1 1 1
1
1 I+ 1 1
2 2
(araz - a-1)7| 1 1 1+4 1
a3
1 1 1 1+a+
k—1
aj+1 a a
2 2 2
_| & atl .. % (ith row X a?)
2 2 2
a a, ... a  +1
1+Z"1 2 1+Z"1 2 1+Z“ 2
= Z +a @ (Ist row R;
2 2 2
a a . l+a
sum of all rows)
1 1 1
I B A
afil aszl 1+af,1
1 1 1
0 0 1
k—1 sz 1
SEDIEIED S-SR
Pk
lx'Ax
(AS) = (X dt) = —dr—e 2 1|

(2m)'7

ﬁ
=

|
Ti [T
)
S
B
k\
b
=

|A

(2n) >

~—

—1
b Y Ghere ATl =
T e 2

Appendix

=R =
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Since S 7! is positive definite therefore there exists a non-singular V such that

Trew

’Z x'wx =1y'y where y =V x.
Using transformatlon (1,20, - Xk1) = V1, Yoy -0 Viee1)
bl = \Z\
'y .
SO Y, Vi) = (2711)’%]6 ST =y, Ve, Yy are iid. N(O, 1)
Yy~
k 2
-1 n; — np;
= X infl N (ni — np;) in—l
~ ~ =1 np;
o ’ <1
ie., 5ql<npl:>1f52 , L.e. 11”Max52
Again 6, = '\'};p%, using normal approximation the effective range of d; is (=3, 3)
S07<9
ie.,

Maxd; =9

So the approximate distribution will be valid if 9<%, i.e. if np; > 9(1 —p;) ,
ie. if np; > 9. So the approximation is valid if the exp'ected frequency for each
event is at least 10.

Again, if we consider the effective range of J; as (=2, 2), then the approximation
is valid if the expected frequency for each event is at least 5.

It has been found by enquiry that if the expected frequencies are greater than 5
then the approximation is good enough.

If the expected frequencies of some classes be not at least 5 then some of the
adjacent classes are pooled such that the expected frequencies of all classes after
coalition are at least 5. If k* be the no. of classes after coalition, then

2
Ef:l % ~ i k=1

where n; = observed frequency after coalition,

np; =expected frequency after coalition.

Uses of Pearsonian-y?:

(1) Test for goodness of fit:
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Classes Probability Frequency

A, P ny

Ay P2 n

A Pi n;

A Pk N

Total 1 n

We are to test Hy : p; = p? - Vi
Under Hy, expected frequencies are np?. We assume np? > 5Vi.

.. Under Hy, Y

i=1

k (ni

2
0
0 L1

; koon 2
e Doy ) Y L1

. 2

e =02 —n~p,
where O = observed frequency (n;)

E = Expected frequency (np?)

S I
BN RY S Y

Note Suppose the cell probabilities p,,p,, .. .,p; depend on unknown parame-
ters 0°*' = (0,,0,,...,0,) and suppose 0 be an efficient estimator of 0. Then

2
M (1)
2ic1 ) ~ Xlk—1-s)"
nI’ig

(2) Test for homogeneityof similarly classified populations

Classes Population

P, P, | P P,
A 1 P11 P12 | e Pij e P
Ay P21 P22 e P2i et P2
A; Pi1 Pi2 Pij Pij
Ax D1 P2 Dij Pu
Total 1 ) 1 1
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where p;; = the probability that an individual selected from jth population will
belong to ith class.

We are to test Hy : pjy =pp = -+ =py (=p;say) Vi = 1(1)k. To do this we
draw a sample of size n and classify as shown below:

Classes Population Total
Pl Pz e P/ e P]

Ay np npp ny; ny nio

A, n1 n22 )] o1 20

A iy nj> 1 ny nio

Ak Ny 117%) Hij Ny o

Total nop nop ceen no; ceen noy n

For the jth population the Pearsonian chi-square statistic is

Z{”” il = 1)

anp 1]

14

%

2
1 k i —no;p;
. Under Hy, y* = Zj:l > it MN X%(kfl)

noip;

- {”t/ ”011’11} ~ 7
2 nopy 1(k—1)

p;’s are unknown and they are estimated by p; =2Vi = 1(1)k.

n

oy
. _ 1 k T _
. under Hy, X2 = Zj:] Zi:1 { o }NX%(k_l)_(k_l) = X%k_l)(l_l)
as the d.f. will be reduced by (k — 1) since we are to estimate any (k — 1) of
k
P1>P2s- - Px a8 Y p; = L.

R -
S0 L YT Ky (k—1)(1-1)
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(3) Test for independenceof two attributes

A B Total

B, B, . B . B,

Al P11 P12 | e Pij e Pu Pio

A2 P21 P22 | e P2j | eeeeeenns P2 P20

A; Pi1 Pi2 Pij Pi1 Pio

Ay Pkl Pr2 Pij Pk Pio

Total Pot Po2 | el Poj | eeeeeeenns Dot 1

We are to test

Hy : A and B are independent, i.e. to test

Ho : p; = pioxpo; V(i j)

To do this we draw a sample of size n and suppose the sample observations be

classified as shown below:

A B Total
B, By | B | B,
Al ny Ny | e OV R ny nyo
A2 Ny 1% . Ngj | eeeeeennns ny;y 1500
A; niy Nio n;; i Nio
Ag N1 2 Ny N %)
Total Ny 1470 7 O, Noj | e noy; n
n!
P(nit, ..., nu)
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i=1(1)k,j=1(1)1.

2
”l] ”Pl/ a 2
E ,E : ~ Tk1-1

np;;

2
Under H,), Z Z (s ,,;I:;](:Oj) < ~ i

Now, unknown p;, and Py; are estimated by
Pio =" and pg; = "

n

Tji— IO:OJ
". under H, X = ZZ< - :0"0, ) N X%k1_1)_(k+1—2)
a

K11y

ie, 7’ _”ZZ ,Ono,_"N X(k D(1-1)

R -
SO0 L > L k) (1-1)

Particular cases: (i) [ = 2

A B Total
Bl B2

A] a; bl Tl

AZ ar b2 TZ

Ai a; bi Tt

Ag a by Ty
Total T, T, n

Here,

T,-T,,)2

I e o I
£=Y =+
1 1
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n

k 2
T,T 1 1\ 1
. "2: § : o tita L 1
-t " (a’ n ) (Ta * Th) Ti

TiTa T,‘Ta
=Ti—a—T;+ =*(ai*7)
n

2 k2 2
n a; a Ta
= & p ey _nley
T.T, [ZTi’L My }
AN )
TaTb 1 T,' }12

. . . 272 .
This formula or its equivalent > = T”ZTb [ ’f};—’ - n—f} will be found more con-
venient for computational purpose.

.2 2
o ) > X“7k71

() k=2,1=2:
A B Total
B, B,
Ay a b a+b
A, c d c+d
Total a+c b+d n=a+b+c+d
Here,

{Q_W}Z {b_(a+b)<b+d)}2 {C_(c+d)(a+c)}2 fu- esgeay
T R Ty ] A Y R oy R

NOW,G—W:l[a(a—i—b+c+d)—(a+b)(a+c)] — ad=be

n n

(ct+d)a+c) — _ad—bc

(atb)(btd) _

Similarly; b — - -

and d — b+t d) _ ad—be

_adfbc; c —
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.72_(“dbc)2{ 1 n 1 N 1 N 1
n (a+b)a+c) (a+b)(b+d) (c+d)(a+c) (c+d)(b+d)
_ (ad — be)? { n N n
n (@a+b)(a+c)(b+d) (a+c)(c+d)(b+4d)
B (ad — be)*n
~ (a+b)(c+d)(a+c)(b+d)

This turns out to be much easier to apply.

Corrections for continuity

We know that for the validity of the y?-approximation it is necessary that the
expected frequency in each class should be sufficiently large (say > 4). When
expected frequencies are smaller we pool some of the classes in order to satisfy this
condition. However, it should be apparent that this procedure should be ruled out in
case of 2 x 2 table. For 2 x 2 table the following two methods of correction may be

applied.

(D Yates’ correction: Yates has suggested a correction to be applied to the
observed frequencies in a 2 x 2 table in case any expected frequency is found to be

too small. This is done by increasing or decreasing the frequencies by half (1/2) in

such a way that the marginal totals remain unaltered.

Case 1 Say ad < bc
A B Total
By B,
Ay a+% b*% a+b
Ay c—1 d+3 c+d
Total a+c b+d a+b+c+d

Here, (a+ 1) (d+ 1) - (b-1
= —|ad — bc|+ %

Case 2 If ad > bc

2

e~ = (ad —be)+ 4

—[lad — be| — 4] (since ad — be < 0)

A B Total
B, B,
Ay a—% b+% a+b
A c+1 i c+d
Total a+c b+d a+b+c+d
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Here, (a—4)(d—3) = (b+ e+ )

n
= (ad — bc) — =
(a c) 5
n

= |ad — bc| — =
ad — be] "

n“adfbc\f%]z
a+b)(c+d)(a+c)(b+d) "

.. For both the cases 3> = T

(ii) Dandekar’s correction: A slightly different method suggested by V.N.
Dandekar involves the calculation of y3,73 and z*, for the observed 2 x 2
configuration

n(ad—bc)*
a+b)(c+d)(a+c)(b+d)

;(% = the chi-square obtained by decreasing the smallest frequency by ‘1’ keeping
marginal totals fixed and

7>, = the chi-square obtained by increasing the smallest frequency by ‘I’
keeping the marginal totals fixed.

Then the test statistic is given by

where ;{% =1

2 2
2 2 Yo — X172 2
X =% 7 Ul —Xo)-

0 X%*Xa(l 0)

A.14 Some Convergence Results

Definition 1 A sequence of random variables {X,}, n=1,2,..., is said to be
convergent in probability to a random variable X if for any € > 0, however small,

P{|X, —X|< €} —1 as n— oo
.. P . . .
and we write it as X,,—X. If X is degenerate, i.e. a constant, say c, then this
convergence is known as WLLN.

Definition 2 Let {X,},n=1,2,... be a sequence of random variables having
distribution functions {F,(x)} and X be a random variable having distribution
functionF (x). If F,,(x) — F(x) as n — oo at all continuity points of F(x) , then we

. . L . .
say X, converges in law to X and we write it as X,—X. i.e., the asymptotic

distribution of X,, is nothing but the distribution of X.
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Result 1(a): If X,,LX and g(x) be a continuous function for all x, then
P

8(Xn)—g(X).

Result 1(b): If X, i C and g(x) is continuous in the neighbourhood of C, then

g(X,) - 2(C).
Result 2(a):

X, ==X = X,—=X
X, == C & X,~C
Result 2(b): X,, Lix = g(Xn)Lg(x) if g be a continuous function.
Result 3: Let {X,,} and {Y,} be sequences of random variables such that X, X
and Y,,L>C7 where X is a random variable and C is a constant, then
(@) X, + ¥, ==X + C; (b) X, ¥,—-XC;
©% 5% if C#0 and
) X,,¥,—>0, if C = 0.
Theorem 1 Ler {T,}be a sequence of statistics  such  that
Va(T, — Q)LXNN(O, a*(0)).If g(é)be a function admitting g'(&)in the neigh-
bourhood of 0, then \/n(g(T,) — g(0))—=Y ~N(0, 5*(0)g”(0)).

Proof By mean value theorem

g(T,)=g(0)+ (T, — 0){g'(0)+ €,}... (A) where €,— 0 as T, — 0. Since
€,— 0 as T,, — 0, we can determine a ¢ > 0, for any small positive quantity #,
such that |T,, — 0] <y = |€,| <.

S P{T, — 0] <y} <P{le, <0} (A7)
ie., P{|€,| <0} >P{—n<T,—0<n}

= P{—nm</n(T, — 0) <\/nn}

2
2062 (0)

—>£ me
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S P{|€y]<d} = lasn — o0
L En 50 (A.8)
Again, /a(T, — 0)—=X ~N(0,°(0)) (A.9)

Combining (A.8) and (A.9) and using result 3(d), we can write

P

Va(T, — 0) €, 250 (A.10)

Again, (A) gives

ie. Xy — Yy = /0Ty — 0) €, -0

where X, = vn(g(T,) — g(0)) and ¥, = /n(T, — 0)g'(0) i.e. X, — ¥, —0
(A.11)
Also, ¥, = /a(T, — 0)g'(0)—=Y ~N(0,6*(0)g(0)) (A.12)

Combining (A.11) and (A.12) and using result 3(a),
Yot Xy — Y,)—=Y +0, e X,—Y
ice.. /a(g(T,) — g(0)) =Y ~N(0,g%(0)0%(0))

e V(g(Ty) = £(0)) - N(0,87(0)a(0))
Note 1 If T, ~ N( ) then g(T,) ~ N(g(O) g%(0)° iU >) provided g(¢)

be a continuous function in the neighbourhood of 6 admitting thelst derivative.

Note 2 ‘/.4>)) < N(0,6%(0)), provided g'(¢) is continuous.

Proof fi) L N(0,02(0))

Since Ty——0 and g'(&) is continuous
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As first part of the R.H.S converges in law to X ~N(0,62(0)) and the second
part converges in probability to 1,

-, their product converges in law to N(0, a2(0)).

Note 3 Further if ¢(¢) is continuous, then

(0,1)
&' (Tn)a(Tn)
\/ﬁ(g(Tn)fg(G)) — Vn(e(Tn)—g(0)) o(0)
Proof Rty " e o)
( 5(0))
By note- 2 W (0 1)
Also, Tn—>0 and ¢ (&) is continuous
0
o(T,) 20 (0) = G"((T”)) N
T, —g(0
Vle(T) —8(0)) & o q)
g/(Tn o Tn)
Generalization of theorem 1
Theorem 2
Tln
T2n
Let ¢ T = : for n=1,2.... ) be a sequence of statistics such that
Tkn
\/E(Tln - 01)
Vi(Toy — 02)
vi(r <o) = | L em (0.5 (o) Jaere 5(0) -
\/ﬁ(Tkn - Hk)

(=(2))
Let g(...) be a function of k variables such that it is totally differentiable. Then
vas(r,) ~s(2)) Fxm(0.v(0)

k g 0g L 0g ()g
where V(0) = S en(0) =4,

~n o~
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Proof Since g is totally differentiable, so by mean value theorem

k

~n ~

i=

(A.13)
where €,— 0 as T, — 0; Vi=1(1)K

For any given small 7 > 0 we can find a 6 > 0, however small, such that
|Tin — i <n = |€a <

= P{|€,| <0} > P{|Tin — 0i|<n} — 1
as /n(Ty, — 0;) ~ N
Tpt50; and €, -0
Again \/n(Tj, — 0;) N

1/2
n||T — 6 H = {n Z]f (Tin — 0,-)2} has an asymptotic distribution.

all T —G)HLY
L -v

AT — 0 =, 0
. (A13)  implies ﬁ{g(T > —g( )} N )(%:
~n
Vi, ||T — 0]
ie., Y, —Xn—>0
where Y, = ﬁ{g(T ) —g(@)} and X, = \/h'zlf (T — )gog
We note that X,,, being linear function of normal variables /n(T;, — 6;), i =
I(1)K, will be asymptotically normal with mean O and variance =
k
X 3% au(0) = v(0)

ie.,

anx~N<0,v(g))
(Y — Xy) +Xni>X~N(o, V(g))
ie., Y,,i>X~N<O,V(g))
e vals(r,) e(0)} £ ¥(0.v(0))
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A.15 Large Sample Standard Errors
of Sample Moments
We have F(x) a continuous c.d.f. We draw a random sample (x;,x,, . . ., x,) from it.

We have

{ w=EX b =n
w=EX— ) =EX—p)

and the sample moments as

n
m, =15 m =x
1
m; :%Z(xi—ﬂ)'
m, =15 (x; — x)"

(i) To find E(m.), V(m,), Cov(m,,m,)

1 1
E(ml) == E())=-> 1, =u
1 1

Cov{m m) = E(min) — i1t
1

k| (0) () i
SEW)+ S E{(0)(6)}

i7j

!

1
= 2 — MM

/ 1o
_ Hygs — Bl
n

1

2V m) =, = 17)
r

LVl ) Ly

Vo, — 1P

This fact can be used for testing of hypothesis related to ..
Forr=1,

va(my — ) _VaGE-p) Lo
N A
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1

Since the sample s.d s = /23" | (x; — x)? is consistent estimator of o,

P . g P
s—a, 1.e. ;—>1

(ii) To find E(m(r)), V(m(r))7 Cov(m(r),mg):

m@w9éf(ixﬂm)(§xnmﬁ

i=1

- [Z Eo— 0™+ 303 Bl — w)VE(y - u)S]
1

i#=1

| =

[n:urJﬁs + I’L(Vl - 1)”7‘”?}

_3
5}

[t 4y + (0 — D]

n

1
..Cov (m(r)’m(v)) = E [:ur+s + (I’L - 1)[1,#& — Myl

1
= ; [:urer - :ur:ux]
1
V) = [, 18]

We note that, m) =1%% | (x; —p)" =137,
where Z; = (x; — n)", E(Z;) = g, and V(Z) = i, — 15}

For x1,x3,...x, 1id = Z;,72,,...Z, are also i.i.d

V(Z - )
V=12

~ N(0,1)

LLN(0,1).

Vi1,

That is,
v Mo —H}
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(i) To find E(m,), V(m,), Cov(m,,m;)

O DI Ly Sl )

We have observed that \/ﬁ<m]0 — ,uj> < N(O, thoj — ,uf) Vji=11r

mg—ﬂl
0 m—Hk]
\/ﬁ(;:\/n M)\/ﬁ . NNF(Q,Z””)
m(r)_,ur

where 327 = (a]@)) and 01@) = Cov(Va(m? = ), va(m — 1))

= nCov (’"?’ m; ) = (ki = tuty)

So by Theorem 2,
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r

1)/1,_1#1 +e (=D =,

g,y pty) = 1y — (

. () g\’ 38\ ( 98
”V(t‘) _(5_111) G“(E)Jr(éur 7\ #) 2\ ) \ow, ) 7o\ 2
=y (o — 13) + (o — 1) +2(=rp,—y) (1 — ity

=15 o+ (o — 17) = 27t 1

it =) <8 (0.v(1))
()

my ~ ry

In particular,
a —12 . a —g*
forr=2, m=s>~ N(,uz = 02,%) ,ie 2 A N(JZ,M>

n
a 9183 + ptg— 13 —6p
for r = 3, ms ~ N(ﬂ3,4ﬂ2 a n’l} Halla

a 164814 + 15— 15 =83 s
for r =4, my N(ub%

Again, if sampling is from normal distribution N(u, 6?) then py = pis = --- = 0
and p,, = (2r — 1)(2r — 3)...3.1 6>
ie.,

ty = 30*, ue = 150°, ug = 1050%.
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n(s?—a? a n(s*—a> a :
Thus, w ~ N(0,2) and as 2L a2, \/_(S—ZU) ~ N(0,2) and this can be
used for testing hypothesis regarding ¢”.
Note For testing Hy : 61 = 0>

a 0'2 a 0'2
~ L ~ -2
51 N(al,m and s, ~ N|{ 0z, T

2 2

a g g
.'.Sl—SzNN 0] — 0, — 1 +—2
2ny  2np

Under H, % A N(0, 1) where unknown ¢ is estimated as

2ny T 2ny

POSROL + 1282
ny+np

(iv) Cov(m,,x) = Cov(m,,m + p) [ = %Z( Wtu=m +,u]

= Cov(m?,m?) — i, ( )

=l = Ty = [ = T ]

Cov(my,x) ~ 13 = 0 if the sampling is from N(y, 6%).
Note The exact expression for Cov(m,,X) = %51 ;.

(v) Large sample distribution of C.V.

™
1

= 8(Tun, Ton) = g(T > where T = (?”) = <Z/2>
Writing o ~n 2n 1
0 Hz)
0 - =
- <92> <u’1
we observed that \/_< @) — n(zlz : ,u/2> < Ny (0,50)
_N'u 1

gl 1)) = u—‘/’? V, Population C.V., then by Theorem 2,

)=
vile(1) ~2(0)) £ ¥(0.v(0)) e vt v) fiN(o,V(g))



284 Appendix
og — 2
NOW»% 2\/—/1’7 O-ll(g) = Mg — I

575': 7\/5’ 022(9) = [y, 612(9) = U3

00, Hy
1 Hy 1 Vi
V(G):—u—u2+—u— m
~ 4#2;/12( '~ 1) Wi o Wl

e A

A u’f
(#4 #2 +V2— ) V2
4.“2 oy

If the sampling is from N (i, 62), g, = 6%, p3 =0, p, = 30*, then

_ (30 2\ 12 1 2\ VO +2V?)
V(Q)—(T—i-v)v (§+V>V ==

a v2(1+2v2)
Thus /n(v — V) ~ N(O, f)
(vi) Large sample distribution of skewness

Sample skewness = g; = 55 = g(m3, my) = g( T) = g<T1”)
le ~n

where Ty, = mz and T, = m,.
0 2] — M
We define, 9—(02> (ﬂz) g(g)—ﬁ—h
We know, \/r—z(T - 0) = \/ﬁ( ) N>(0,37)
~n o~ my — i

where S27% = (gi](g)) (#6 — 14913 — 6y ps — 4.“22/13 >
~ fs — 43 Hy —

‘. By Theorem 2,

(s(r) ~+(0)) £ o (1)

ie.,

Vagi =) A N(0.v(0))
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e () () (1) + () (0) () () o)

1. 0% _ _3
Now, 3 501 70 80, — T2

- Hy Wy
Mo — 15+ 915 = Opapy 945 (1a — 1) 33 (s — 4pats)
5 3

It 4 15

1 9132
.'.V(G)zu—%(us—u§+9u§—6u4uz) Z—g(u y—15) — 37/27/2( — 4, 115)
1)

If the sampling is from N(u,0?) then u, = 6%,u3 = s = 0,uy = 30*,
te = 150°.

.~.V(9) :“*i—glg)"(’: 6

V(g —71) ~ N(0,6)

(vii) Large sample distribution of Kurtosis

Sample Kurtosis = g =4 — 3 = g(my4,m;) = g<T ) - g(?n>
2 n 2n

where T, = my4 and Ty, = my.

Let 0 = (S;) = (Z‘;) g(0) =t-3=1,
We know, \/ﬁ(zn— g) :\/ﬁ<m2 0 ) N2(0 Z)

where 2 = (GU(GD _ (Hs — g+ 161511 — ?ﬂs#s He — Haly S 4#%)
~ He — Hally — 43 Mg — 145
‘. By Theorem 2,

i viilg2 —7,) < N(0,v(0)

where v (0) = (3) o )_ + (38) o(0) +2(38) () o (0)

Now 2% — lz and 28 =

00, 00,
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V(0> _ s =G+ 16180 — Bispts 4 (s — 18)  4ata (6 — tabty — 4153)
- 4 6 5
Ky U w

~

Now, if the sampling is from N(u, 6?)

= a, My = s =7 =0, uy = 3¢°, He = 156° and Hg = 1050°
.-.V(()) —96+49(3— 1) —43(15 — 3) = 24

~V/n(ga —7,) ~ N(0,24)
(viii) Large sample distribution of bivariate moments

Let F(x,y) be c.d.f from which a random sample(x;,y1), (x2,¥2), .. .(Xn, yn) 18
drawn.
We define, m), = 13" xlyi; il = E(X"Y?)

1 ,
Mg =D %=1 thy = E(X) = u,
1 _
== wi=¥ iy =E(Y) =,

1 ;1 S

my == (6= t0) (= tor)” =D (i — 1) (v — 1)

o =3 =0 57 = 23 (o ) (5 )’
1

My = E(X — ,“x)r(Y - Ny) = E(X - :“10) (Y - '“01)

=lzn:Exy, Zum i,
n
1
E<m'mm;v> = LE{(X ) (Z))
{Zxr+u A+V+ Z Z xry }

i#j=1
1
nz |:n:ur+us+v +n(n - l)ulsﬂuv:|
_ :ur+u.s+v + (I’l - 1>lursluuv
n
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. Cov (myy,m,,) = % (K e = DR, ) = bt
= % [
V() = % (K — 122)
= %ZE(M — thho) (i — 11)" = I
Enlm,) = E( (= stio) (i = 1)) (3 (s = 1) (v — )"
= n_12 [ 41540 F 00 = D,
= % [ sr + (0 = D]

1
-.Cov (m(r)ﬂ mgv) = ;

[lur-&-u,s-&-v - :urs:uuv}
1
V(m(r)v) == (:u2r 2s ﬂzx-)

:%zl: i —X) (i —y)°
li .U1o /“‘10)}r{(y"_'u61)_()_)_Ngl)}s

3

Since ¥ — o = 5 221 (xi — tyg) = mly and 3 — pioy =3 371 (vi — mpy) = mg

1 ;
M :;Z {(x; - /‘110) _m?O}r{(yf _ﬂ:)l) _mgl}‘
T
1< e [T ;-1 o oo
:;Z{(xi_ﬂm) _(1)(’9_!‘10) LT +<_1)m10}
[
(0=t =(}) 0= s by 1
1¢ ;o\ Y r ;-1 7 \S. 0 s Y s \s=1 o
:;Z (o = #o)" (i = 1or)"— 1 (v — pi0)" (i — sigy) 'y — 1 (i — tio)" (vi — wy)™ iy
T
() () st = ) oty -+ 1 o) '}

1

0 ™\ o 0 SN 0 0 NS o 00 s 0\ (, 00\
=My = <1 My Mg — 1 m, My + 1 1 my_y gy + -+ (=1)" ((ml()) (’"01)

= g(mysi = 0(1)r.j = 0(1)s, (i,)) # (0,0))

=),
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0 {r+1)(s+1)—1}X1

, say where m® =

mm

Using the expansion in Taylor’s series
Mys = g(’ng‘; i= O(l)rJ = O(I)Sa (17]) # (07 0))

= 811 = 0(1)r,] = 0(1)s, (i) # (0,0) + D5 (mh — 1) (;%) o

where 1 = (f1, Hots** s Hys)|
it X =) () (@ =100 =0)
ij !
(i) #(0,0)

rs

Og g . .
(W) mo:'u: 1 and (8—]/;/12) 0 =0Vi= O(I)r,] = O(I)S
= H m=p

(i) = (0,0), (r,5), (0, 1), (1,0).
oMy = + (m(l)O - :u10) (_rﬂrfl,hv) + (’”81 - :u01) (_Siur,sfl) + (m(r)s - :urs)l
Sy = m(r)s - r:urfl,sm(l)o - S:u'r,sflmgl

E(mrs) = E(mo ) - r:urfl,xE(m(l)O) - sﬂr‘sflE(mgl)

rs

= Hys
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_ 0 _ . 0 0 0 0 0
Cov (i, muy) = Cov{ (my, — rpp,_y sy — S o_ymoy ), (my, — upt,_y ymy — V:uu.v—lnl()])}
_ 0 0 0 .0 0 0 0 .0
= Cov (mr:7 muv) - uul‘*I,VCOV (mr:7 mlO) - Vuu-V*ICOV (mrs‘r’nOl) - rur*I-VCOV (m107m14|')
. 0 0 0 0 0
+ ruu,,l_su,,,l7‘,V(mlo) + rvu,,lvsuu_yﬂCov(mlo, ""01) - S[J,_A,ICOV(m()I7

)
sty 1,y COV (MG, m0) Vi gyt V(G )

1 {uw,m = Mgy = Uy b+ 1s = VRt B4 1 = TH—1 sBy 4 1w T Uy gl yHg + rvﬂr—l,sﬂu,v—l#llj|
ML = Syt My 1 T USHy gy by SV 1 By Ho2

s Vimy) = p [:ulrlx o e TR (o Ty TV TN TR TR TR 2”%45%,;4#11}

1 1
~V(my) = . (a0 — 1), Cov(mao, mog) = » (122 — Haokton]

1
V(mp) = 5 (Htos — 185,], Cov(mag, myy) = ; (131 — Hoot1]
1 ) 1
Vimn) = (122 = 11,], Cov (moz, miy) = " (113 — Hoattiy]
: _ mip J—
Sample correlation r = N g(rf) = g(Tn), say

= (mag, moz, m11)’

()2 (o)

/ /
where m = (mao, moz,my1) and T,, = (T1,, Ton, T3n)

a 0 Hao
ie., \/ﬁ(m— ,u) ~ N3<0,Z) where 0 = | O | =ty | = 1
- h 03 Hia -

Hao — ﬂ%o Hop — /J202M()2 U3y — Mool
and ) = ((Uij(o)) = Hoa — Hop M3 — Hoo My
2
Hop — U7y
M1

— = (1) =)

~

ils(r,) ~5(0)) £ w(0.v(0))

ie., va(r—p) & N(O, V(G))

~

where V(g) = Z?:l Z;:l (3—&) (3—5})@(2)

0,
and (a—g)
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ieV(H): %Y, (0)+ AW ( )+ A (9)+2 g\ (08 (9)
AL 90,) “M\2 90,) "% 905) “P\< 20, ) \a0,)""
g\ ( Og 0g\ [ Og
+2(80><603> <6>+2(802 90, 5(0)
:pz{@+l<ﬂ4u+ll +2 Hao )_( Hay + Hi3 )}
#%1 4 #zo H(z)z HaoHon Hitloo  Hi1Moz

If the sampling is from N, (,ul, Uy, 01,02, p) then

D

Q

LD

Hyo = 361, oy = 363, juy) = PO162, [y = 0%0'5(1 +2P2)

M3 = 39‘71‘727/131 = 3/0‘71‘727#20 017#02 = ‘72

Using these values in the expression of V(O), we get

v(0)=(1-p

= p) A N(0,(1-p2)?)

_2)?
e, r s N(p,%)

This result can be used for testing hypothesis regarding p.
() Ho : p = po; underHO:r:MfL N(0, 1)

N (1=rt) m) . (1-03)°
(i) Ho : py = pa(= p,say);r ~ N p,istt | & N py, -

(1-p})° L= p§)2>

L= iN(Pl = P2,

ni n;
Under Hy,t = —222 £ N(0,1)
-/ (+)
: P : A __mrt+mn
If p is unknown then it is estimated by p = R

If p is known, then the efficiency of the test will be good enough, but if it is
unknown then the efficiency will be diminished. We can use the estimate of p only
when the sample sizes are very very large. Otherwise, we transform the statistic so
that its distribution is independent of p.
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A.16 Transformation of Statistics

If a sequence of statistics {7,} for estimating 0 are such that /n(T, — 0) <
N(0,6%(0)), then for large samples the normal distribution can be used for testing
hypothesis regarding 0 if ¢2(0) is independent of 0. Otherwise, it may be necessary
to transform the statistic 7,, such that the new statistic g(7,) has an asymptotic
variance independent of 6. This is known as transformation of statistics. Another
important advantage of such transformation is that in many cases the distribution of
g(T,) tends more rapidly to normality than T, itself, so that large sample tests can
be made even for moderately large sample sizes. Also, in analysis of variance,
where the assumption of homoscedasticity is made, such transformation of statistics
may be useful.

A general formula We know that, if {7,} is a sequence of statistics
VA(T, — 0) & N(0,6(0)), then V(g(T,) ~ £(0))  N(0,g°(0)0%(0)) provided
g(+) is a function admitting Ist derivative and g’'(6) # 0.

By equating the standard deviation g'(6)c(6) to a constant ¢, we get the dif-
ferentiated equation

Solving this equation we get, g(0) = f ﬁd()ﬁ—k, where k is the constant of
integration. Using this formula and suitably choosing ¢ and k we can obtain a
number of transformations of statistics of different important cases.

I. sin! transformationof the square root of the binomial proportion

We know /n(p — P) ~ N(0,P(1 — P) = ¢*(P)). We like to have a function g(-)
such that /n(g(p) — g(P)) ~ N(0,c?) where ¢ is independent of P.
From the differentiated equation, we have

§(P) = / Pk

=c2sin” ' VP+k [Where sin? 0 = P]

Now selecting ¢ =1 and k = 0, we have g(P) =sin™' /P
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...g(p) - Sin71 P and \/5(511‘171 \/I_) - Sin71 \/ﬁ) EJ N(O7 C2 = i)
ie.,

(sin™! yp) & N<sin1 VP, ﬁ)

This fact can be used for testing hypothesis regarding P.
Note Ascomble (1948) has shown that a slightly better transformation assuming
1 [pte

3
L+

more stability in variance is sin™
Uses: (i) Hy : P = Py
Under Hy, ©= (sin”' \/p —sin™' /Py)2y/n ~ N(0,1)
wo : |t > 1,/, where H; : P # Py.

. . . l
which has asymptotic variance z,—— .

Interval estimate of P

P, [f‘ca/z < 2\/ﬁ(sin’1 N sin~! \/F) < Toc/2:| =1—ua

ie., P, [Sin2 (sin’1 N 21%) <P< sin® (sin’1 P+ ;\}zﬁ)} =1—0
(11) Ho : P1 = P2(:P)say
sin~! /p; ~ N|(sin~! /P L
P 1’4n1
1
.1 a .1
s ~ N| s Py,—
sin” /p (sm 2’4n2>
a . . 1 1
.'.(sin*1 VP1 — sin”! ,/pz) & N sin™! v/P; — sin ! Pyy— + —
4n1 4”2

Under Hy,

(sin”! \/p1 —sin”! \/p2) £ N (O, 1)

T =

SoWo |‘L'| > Ta/2 if H : P, #Pg.
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If Hy is accepted then to find the confidence interval for P:

sn-1VP = 4ny x sin”! VP14 sin~! P m gin-! JP+m ! i
4n1 +an ny+ny
\/1) sin~! /P
(gm 1\/_> e : inz sin Vs =sin"' VP [AsP; = P, = P]
ni ny

€L

2 1 2
— ny X +n5 X 1
V(sinflx/p> 17 22 -
(n1+m2) 4(ny +ny)

sm 1\/‘ N(sm 1f )
4(my +"2)
P,[frmg <sin’l\/ﬁfsin’l\/l_3>2 (n1+n2)§‘cm/2] =1—-ua

= P, [sin® sin VP - 2 ) <p<sin?(sin WPy 2
24/ (n1 +ny) 2+/(n1 +ny)

If Hy is rejected, then to find the confidence interval for the difference (P; — P,):
. .1 a -1 1
Since sin~ " /p] ~ N(sm Pl’ﬁ)

=1-oa

~.P, {sin2 (sin1 N Fa/2 > <P, < sin? <sin1 VP + To/2 )] =1-u

2 N
ie., P(A) =1 — o where A = {L; <P; <U;} having L; = sin®(sin"' \/p; — ;\“//;—1)

Tu/2
U =
1 sin (sm \/P1+ nl)

Similarly, sin~! VP2 & N(Sin’1 P274n ) and P{L, <P, <U}=1—-u
where

T
L, = sin? (sin_1 N/ %2 )

2\/712

. . Ta/2

U, — sin? 1 o/
H = sin (sm «/p2+2\/n_2

i.e.,, P(B) =1 — o where B = {L, <P, <U,}
As P(AB) > P(A) + P(B) — 1

SPAL P SULLEP,<U > (1 —a)+ (1 —a) -1
S PAL — Uy, <Py —P,<U; — L} > (1 —20a).
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(111) H() : Pl = P2 == Pk(: P) say
1 a I Ly .
in"" \/p; ~ N| sin Pi’E =1k
. under Hy, SF | (sin_1 Vpi —sin”! \/13)24n,~ ~

1 o 2
sin' VP = Zﬂg “andthus® = Y01 (Sin_l vPi = Si“_l\/ﬁ) i~ i

If Hy is accepted, then to find the interval estimate of P:

S P; jsin” ' VP
<51n"\/_> SongsinT'\/P; > nysin \/':SIH*I\/F'A‘[Pl:Pzz"':Pk:P]

22”! B Z"f
-~ _ donix
V(sm \/]_3): (Zni)z 4(21:'11)
PN (s VP s

Pr[sm ( 1\/_ \//27>§P§ sin2<si/\n1\/ﬁ+2\;%)} =1—-a

II Square root transformation of Poisson variate

If X ~P(2), then E(X) =V(X) =4

We know, (X — 1) ~ N(0,1 = ¢2(4)). We would like to have a function g(.)
such that g(X)—g(4) ~ N(0,c?) where ¢> is independent of A.
g(A) :cf%+k:cf%+k:02f+k.

Taking k = 0 and ¢ = 1/2, g(A) = V4

-.g(X) =X and 2 . (\/_ ﬂ) ~ N(O,%)
ie. VK L N(VZ %).

Uses: () Hy : A= 4y

Under Hy, ©=2(vVX — V) ~ N(0,1)

wo : |‘E| > Ta/2 where H, : A 7é i()

Interval estimate of A:

P[—ra/zgz(\/)_(—ﬂ) §'Ea/2} —1—u
(x/)?—%ru/z>2§x§<\/-+ T“/2>21:l—<x

P
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(i) Ho : 1y = Jo(= 1),Say
mw(m,g), VE: izv(m,i)
VI - VE) AN (VA - Vi)

. Under Hy, ©= (\/Xl — \/X2)2 & N(0,1)
wo : |‘E| > Ty)2 if Hy : Ay 7é 2.
If Hy is accepted, then to find the confidence interval for A:

T xR Hax VR RV

A

= 444 2
E@)Wﬁ [+VE = Vi = Vi)
y(vi)=iti_!

(%)

So Vi A N(VEL{)
.. Probability |:—T1/2 < (\/Z — \/Z)\/gg Ta/z] =1—0a

— 2 — 2
Jn To/2 = T1/2
= Probabilit ﬂ/> </1<<\/Z+ > =1—g
y[( v8) T T V38

If Hy is rejected, then to find the confidence interval for the difference (4; — 43) :

Since v/X; ~ N(v71,1)

o Ty/2 2 Ty /2 2
= Probability (\/Xl — 2 ) <iH < (\/Xl + ) =1—q
ie. P(A)=1—a where A={L; <. <U;} where L = (1/}(1 _%)2 and
2\ 2
0 = (VEi+ %)
Similarly, /X> ~ N(v72,3)

2
. Probability {(\/)? - T“Zﬂ) <a< (ﬁ(} + T"‘z/z

)1:1—05

ie. PB)=1—oa where B={L,<1,<U,} having L,= (,/X — %)27
2
U, = (\/)Tz—i— TT/)
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As, P(AB)>P(A)+P(B) — 1

= Probability{L; <1 U, L,< L <U}>(1—-o)+ (1 —a)—1
= Probability{Ll — U, <l — A <U; — Lz} >1-—2x

(lll) Ho : il = iz == ik(: )L)say

\/X‘iiN(\/Z,i),i:m)k

.. under Hy, Zf»;l (\/Z - \/2)2 '4NX%

\71 = Zk\/z and then

) 2
Wo X~ > Xa,k—l‘

If Hy is accepted, then to find the interval estimate of A: E (\/Z) =

Zk\/;j:zkﬂ:ﬂ[As)q == =k=1
F\_XV(VE) 1
V(ﬂ) T e %
.-.VHN@Z@

cT= (xﬁ - \/Z> Vak ~N(0,1)
- Probability |:—‘Ca/2 < (7 — ﬁ) Wk < rm] =1-o

—~ 7 \2 —~ 1 \2
= Probabilit Vi — “—/2> <A< (\/14- “—/2> =1—g
y[( k) =07 2k

Note It can be shown that

E(\/)_() = \/I+0(%)
V(\/)_() %‘FO(%)

whereas £( X+ %) =i+ B r0(1) ana v (/x4 ) =1 +0(1).
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Comparing V(vX) and V(\/ X +3/8> we observe that /X +3/g is better

transformation than v/X.

III Logarithmic transformation of sample variance for N(y, ¢*)

1
2 _ Y
s_n—lg (xi — %)

E(s*) = ¢ and V(s?) ~ 22
Also E(5?) — 62 and V(§?) ~ 22 for §? = %

n

a 20*
st R N(oz,i>
n

We like to get a function g(-) such that g(s?) < N(g(c?),c?) where ¢? is
independent of 2.

SN NI S L
g(a)—/ _ﬁda =c 2/02
:c\/glogeaz—&-k

Choosing £k = 0 and ¢ = \/% We get g(6?) = log, 6?
2 2 a 2 2
_',g(s ) =log,s" ~ N|{log,o -

Uses: (i) Hy : 6% = o]

Under Hy, © = /3(log s* —log o) ~N(0,1)
wo © [t| > 1,0 if Hy : 6% # a3,

Interval estimate of ¢ is given as

Probability [—rap < \/g(log s> — log 0_2) < T%/z] =1—u

i.e., Probability {el‘)g /22 <g?< o8 s+ \/%Tm} =1-oa
(ii) Hy : 0 = o5(=0")say
Under H) : © — logsilogs g N(0,1)

2.2
T

wo : |t =1y if Hy 2 07 # 03,
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2

If Hy is accepted, thus the interval estimate of the common variance ¢~ can be

obtained by the

log o where logo? — Wlog st + %logs3 _ mlog 57+ ny log 53

E(log 02) = log ¢® and V(log 02> =

— 2
logo ~ N|loga?,
R ey

—

. logo2—, /—2— I/-\Z /2
.'.PI'Obabl]lty |:€ o8 \/“_1::;’[’(/2 S 62 S e 0g o~ + n1+112T1/2:| =1—aq.

If Hy is rejected, then the confidence interval for (G% — G%) can be obtained in

the following way:

J ! 2 /2 - 1 2 4 2.
Probability |:e o8 51\ /e <@ <e BTV — ] g

2 /T
ie., P(A)=1— o where A = {Ll <ol < Ul} having L; = o8 \/;T’/2

Ul _ elog sf + \/%11/2

o logs2— 4 /21 logs2 + 4 /21,
Also, Probability |e ™ \/_2 " <gi<e €% nH =1 — g

ie., P(B) =1 — o where B = {Lz < G% < U2}
As P(AB) > P(A) + P(B) — 1

- Probability{L; < o] <U;, Ly <5 <Up} > (1 —a) + (1 —a) — 1

Or Probability{L; — U, <0} — 03 <U; — Ly} > 1 —2u
(iii) Hoy : 62 = 03 = - -- = g2(=0>)say

2
log, 12 o= N(loge o,.z,—)
n;
N2
. under Hy, S| (loge 2 — log 02) 1l 2,
where log, 2 = M;

S

. .52 2
SoWo i > Kok—1
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If Hy is accepted, then the interval estimate of a2 can be obtained as follows:

— a 2
log, 6% N(loge az,ﬁ)

1’\ 2 2
. Probability | —7,/, < 080 — 089 <typ| =1-a

logeozf 22: Ty/2 logeaer /Z Ty)2
So, Probability | e ' <€ ' =1-—oa.

IV Logarithmic transformation of sample s.d.

2
AN
e (e3)
We like to get a g(-) such that g(s) < N(g(a),c?) where ¢? is independent of o.
fa/\/_da = v2nclog, 6 + k. Choosing ¢ = \/127 and k = 0. We have

() log,

~.g(s) =log,s ~ N(log,a,5).
We may use this result for testing hypothesis related to o.

V Z-transformation of sample correlation coefficient from N> (uy, 1, 61,03, p):

E(r)~p and V(r)~ @

a 1-p?)’
#rwN(p,%).

We like to get a function g(-) such that g(r) is asymptotically normal with
variance independent of p.

1+p

f/ sdp = \/_c loge - +k
We choose ¢ = ﬁ and k = 0 and then
1 1
:ﬂm=§b&T§%=mm”p=@ (say)

. _2 LI S
..g(r)—zlogel_r—tanh r=27, (say)
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~Z=g(r)~ N(f,%).

Note Putting Z — & =y, the distribution of y may be derived using the distri-
bution of r. The first four moments were found by Fisher and later they were revised
by Gayen (1951).

In fact E(Z) = ¢+ 55 +0()

n?

SR O I S
—1 n—1 (n—1)2 n3
1 2 1
= 0
n—1+(n 1)2+ <n3>
. 2
Again, 1, (Z2) = ﬁ + (’:l)z — 2<in>z —|—0(n—13)
1 2 1
S e
n-3 2(n-1) n
1
Z) ~
1(2) n_3

In fact, V(Z) ~ 1 for large n
~ ﬁ for moderately large n.

.. For moderately large n,

1 1 a 1
Z:tanhflrzilog +rNN(€7 )
r

‘1 — n—73

where ¢ =tanh™'p = %logellf—p”.
Uses: (i) Ho : p = p, against H; : p # py

& Hy: &= & against Hy : & # &y where &) = %loge 114:/,:;
. Under Hy, 1= (Z— &)vVn—3~ N(0,1)

wWo |‘L'| Z Tog/2
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Also, the 100(1 — «)% confidence interval for p is given as

Probability | —2.y» < Vi = 3(Z — &) < t,0| = 1 -

Ta/2

vn—73 n—23

Probability {Z —

2
.. Probability | e

2(2711/2)
e "3) 1 <

i.e., Probability | £ r———1 e /o1
2<27 /2 2(Z+ /2 )
e e +1

(ii) Ho : p; = po(= p),say

& Hy: & =6 (=¢) say

a 1
Z; =tanh~'r 2 N<§1, )
ny — 3

n2—3
1 1
A2 =7 & <51 62’nl——3+n2—3>

Under Hy, 1=—22— X N(0,1), ~wo : |t| > 1, if Hy : p; # p,

1
Z, =tanh™ ', < N<§2,)

If Hy is accepted 100(1 — )%confidence interval for ¢ is given as

(I’l] — 3)21 + (}’lz - 3)22 _ (nl - 3)Z1 + (n2 — 3)Z2

7=

(}’l[ —3)+(}’l2—3) o n1+n2—6
N .1 1+p
E(Z) =¢=3lo &1,

- 1
( ):n1+n2—6

.‘.Probability{ Ta/Z/W< loge— <Z+4Ta2 \/m} =1-oa.

We can get 100(1 — «)% confidence interval from this.
If Hy is rejected, then 100(1 — 22)% confidence interval can be obtained as

follows:
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T2 Ta/2
- ez(z, m) . ez(z,+m> _1
Probability <

— S0 <— | = 1—a
a2 Ta/2
pla) T alee)

-3

2(717 "/2>
Or, P(A) = 1 — o where A = {L; < p; < U} having L; = £ >———~1

2(21, TQ‘/24)
e m—/ 41

Ty /2
2z + ‘/')
e (l Vvm3) 1

1
0/2
62 (Zl + Pﬁn2—3> 4 1

Similarly we get P(B) = 1 — o where B = {L, < p, < U} and

2(227—1“/2 ) 2<zz+ fa/2 )
N N
L, =¢>—""3<— 2 =1L and Uy=4r—""—" 2 =
2 zy-—22 ) 2<z o2 )
e <2 V3 e RV +1

As P(AB) > P(A)+ P(B) — 1

s Probability{L; < p, < U, L, <p, <} >(1—a)+ (1 —a) — 1
s Probability{L; — Uy <p; — p, <U; — Ly} > (1 — 20a).

(111) H() P =Py == pk(:p)
SHy: & =86 = =&(=¢)
1 147 4 1
Z’ 1 ~ N i)
3 0g, 1— ; <§ i 3)

2\ 2 p ni—>3)4;
Under Ho,z* = S% (n; — 3) (Zi — 5) X 2 where & = M
Wo L > Logt

If Hy is accepted, then 100(1 — «)%confidence interval for ¢ (Subsequently for
p) can be obtained as follows:

£ =& V() =5
. Probability {—r“/z < (Z n; — 3k) (E - 5) < ra/z} —1—¢

This will provide us for interval estimate of ¢ and thus for p.
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