Statistics and Computing

Pierre Lafaye de Micheaux
Rémy Drouilhet
Benoit Liquet

Fundamentals of Programming
and Statistical Analysis

@ Springer

Statistics and Computing

Series Editors:
J. Chambers
D. Hand

W. Hirdle

For further volumes:
http://www.springer.com/series/3022

http://www.springer.com/series/3022

Pierre Lafaye de Micheaux « Rémy Drouilhet
Benoit Liquet

The R Software

Fundamentals of Programming
and Statistical Analysis

@ Springer

Pierre Lafaye de Micheaux
Department of Mathematics and Statistics

Université de Montréal
Montréal, QC, Canada

Benoit Liquet

Rémy Drouilhet

B.SSHM

Grenoble, France

School of Mathematics and Physics

The University of Queensland

Brisbane, Australia

Series Editors:

J. Chambers

Department of Statistics
Sequoia Hall

390 Serra Mall

Stanford University
Stanford, CA 94305-4065

D. Hand

Department of Mathematics
Imperial College London
South Kensington Campus
London SW7 2AZ

United Kingdom

W. Hirdle

C.AS.E. Centre for Applied
Statistics and Economics
School of Business and
Economics
Humboldt-Universitét zu

Berlin
Unter den Linden 6
10099 Berlin
Germany

ISSN 1431-8784

ISBN 978-1-4614-9019-7

DOI 10.1007/978-1-4614-9020-3
Springer New York Heidelberg Dordrecht London

ISSN 2197-1706 (electronic)
ISBN 978-1-4614-9020-3 (eBook)

Library of Congress Control Number: 2013953875

© Springer Science+Business Media New York 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (Www.springer.com)

www.springer.com

To the open-source community

To all those who have contributed, are contributing and will
contribute
to the awakening of our consciousness

To our colleagues from Montpellier, Grenoble, Bordeaux and
ISPED

Foreword

This book has been translated from French by Robin Ryder, who is assistant profes-
sor in the CEREMADE (Centre De Recherche en Mathématiques de la Décision) at
Université Paris Dauphine (France). We are very pleased that he has agreed to make
this translation.

This book is based on notes from a series of lectures given for a few years at
the Institut Universitaire de Technologie Grenoble 2 in the Department of Statistics
and Business Intelligence (STID, Statistique et informatique décisionnelle). It has
therefore been “digested” first, in a very imperfect form, by the students of this
department, whom we thank here. Had they not shown so much interest, this book
would probably never have existed. We also thank our colleague and friend Michel
Lejeune, who managed to talk to us about writing a manuscript and submitting it
to Springer. It is worth pointing out the role of chance, which made the paths of
the three authors cross in the same place for a few years. The human and scientific
experience of this encounter was very enriching, and each author provided comple-
mentary skills which made it possible to overcome the tremendous amount of work
necessary for this book. Finally, we wish to warmly thank our colleague and friend
Matthieu Dubois, who is a researcher in experimental psychology and addicted to
R and to Macintosh and who was the first to read the French version of the book in
its almost finalized version and gave us many ideas for improvement.

The contents of this book were chosen and organized in the best possible way
for them to be not only exhaustive but also easy to assimilate by the reader. This
book can be used as support material for lectures on R at any level from beginner to
advanced. We have paid particular attention to the form of the book, which we think
should aid understanding. It can also be used as a support for self-teaching. Note
that most of this book can be useful to users of any operating system. However, a
few chapters are mostly meant for users of Microsoft Windows. We have also felt it
useful to give, occasionally, complements aimed at users of Linux or Macintosh.

vii

viii Foreword

All chapters follow the same structure. A chapter begins with a small insert
listing the prerequisites necessary for the chapter and a short description of the
contents. All theoretical notions are explained with numerous examples and include
breaks so that the reader can put into practice on a computer the recently introduced
notions. Each chapter ends with an assessment section: memorandum of most im-
portant terms, followed by a section of theoretical exercises (to be done on paper),
which can be used as questions for a test. A practical sheet is also given at the end
of each chapter. It can be used to check that the practical aspects of the chapter have
been taken in. Note that all exercises and practicals only require the contents of the
previous chapters.

The structure of the book is sequential. After a short introduction (see the first
part), aimed at getting the reader interested, and a description of a few data sets
which will be used throughout the book to illustrate how to use R, the second part
of the book is dedicated to the fundamental concepts of R: data organization, import
and export, various manipulations, documentation, plots, programming and mainte-
nance. This part should help you “learn the ropes” of R.

The third part of the book is dedicated to using R in a few mathematical and
statistical settings. You should read the second part before moving on to this part,
although it can be understood by users who already have a few notions in R. It cov-
ers R instructions for some of the main statistics and mathematics courses up to
third-year undergraduate (e.g., it covers the baccalaureate in statistics and actuarial
sciences curriculum at Université de Montréal, as well as the French IUT curriculum
in statistics and business intelligence): matrix operations, integration, optimization,
descriptive statistics, simulations, confidence intervals and hypothesis testing, sim-
ple and multiple linear regression and analysis of variance.

Finally, note that each statistical chapter in the third part relies on one or sev-
eral real data sets, kindly made available by ISPED (Institut de santé publique,
d’épidémiologie et de développement in Bordeaux) and described at the begin-
ning of the book. These make learning more concrete and more attractive. We take
this opportunity to thank all the teaching staff from the Public Health School of
ISPED. These data, as well as several functions developed specially for this book
and which are described or used here, are available in an R package associated with
this book, called TheRSoftware. We also thank Mohamed El Methni and Taghi
Barumandzadeh for the material they gave us for the chapter on ANOVA and Hubert
Raymondaud for many comments he has made on our French version which allowed
us to significantly improve several sections of this book.

Montréal, Canada Pierre Lafaye de Micheaux
Grenoble, France Rémy Drouilhet
Brisbane, Australia Benoit Liquet

Alternative Order of Reading

We have used the symbol § to make explicit more difficult or less fundamental sec-
tions, which you can skip at first read without prejudicing your understanding or
mastering of R.

Note that this book was conceived for students from a mathematical or statistical
background. However, students or scientists from a more “applied” background can
also use it: for these readers, we propose a different order of reading, as follows; the
difficult sections should also be omitted.

Part A: The Basics of R

(a) Basic concepts; data organization (Chap. 3)
(b) Import—export and data production (Chap. 4)
(c) Data manipulation (Chap.5)

(d) R and its documentation (Chap. 6)

(e) Techniques for plots (Chap.7)

(f) Maintaining sessions (Chap.9)

Part B: Elementary Statistics

(a) Random variables, distributions and simulation (Chap. 12)
(b) Descriptive statistics (Chap. 11)

(c) Confidence intervals and hypothesis testing (Chap. 13)

(d) Simple and multiple linear regression (Chap. 14)

(e) Elementary analysis of variance (Chap. 15)

Part C: Advanced Concepts

(a) Basic mathematics: matrix operations, integration, optimization (Chap. 10)
(b) Programming in R (Chap. 8)

ix

Inserts

We have tried to be careful with the presentation of the book (the form), to make
the information (the content) more easy going. Inserts are located at strategic points
in the book, to help bring out some of the important information and make notions
easier to understand. These inserts are distinguished by icons in the margin.

-

Additional information about the topic under study. l Y J)
Important point you should pay attention to. l Q
Advice and practical tricks. l \‘B

Refers to another chapter or a website. ' @

xi

xii Inserts

G{ Advanced elements. You can omit these at first. '

Q Information for Linux users. '

4

6 Information for Macintosh users. '

Solutions to Exercises and Practicals

Solutions to exercises and practicals are given on the book’s website (http://www.
biostatisticien.eu/springeR).

Other projects, more ambitious than the practicals, will be made available on the
same website.

Font Conventions

The letter R refers to the R software.

We use italics for words borrowed from Latin or French or for abbreviations.
We use a fixed width font (Verbatimenvironment) for R instructions.

We use SMALL caps for data sets and sans serif for the name of the file including
these data sets. This font will be used for all file names and folder names used in
this book.

Xiii

http://www.biostatisticien.eu/springeR
http://www.biostatisticien.eu/springeR

Contents

Foreword vii
Listof Figures i i XXVil
Listof Tables i XXXi
Mathematical Notations XXXiil

PartI Preliminaries

1 Imtroducing R....... 3
1.1 Presentation of the Software 3
LIT 0 Origins. ... e 3
1.1.2 WhyUseR? oo 3
1.2 Rand Statisticsueuuuuiniiiiiiiiiinnnn. 5
1.3 RandPlots ...t 5
1.4 The R Graphical User Interface 7
1.5 FirstStepsin R 7
1.5.1 UsingRCommandercoouuunneeenn. 7
1.5.1.1 Launching RCommander 8
1.5.1.2 Handling Data with RCommander 8
1.5.1.3 A Few Statistical Tasks with RCommander ... 13

1.5.1.4 Adding Functionalities to the RCommander
Interface............cooiiiiiiiiiiiia. 18
1.5.2 Using Rwiththe Console 19

1.5.2.1 The Strength of R Shown on an Example 19
1.5.2.2 A Brief Introduction of R Syntax Through

Some Instructions to Type 23

2 A Few Data Sets and Research Questions 29
2.1 BodyMassIndex of Children 29

22 WeightatBirth 30

XV

XVi Contents

2.3 Intima—Media Thickness oo iiiii.. 31
24 Dietof Elderly People............. oo i 32
2.5 Study Case of Myocardial Infarction 33
2.6 Summary Table of Use of Data Sets 33

Part II The Bases of R

3 Basic Concepts and Data Organisation 37
3.1 Your First Sessioncouuniiinniie i 37
3.1.1 RlIsaCalculator............coiiiiiiiiiiinennn... 38
3.1.2 Displaying Results and Variable Redirecting 39
3.1.3 Work Strategyt 40
3.1.4 UsingFunctions it 43
32 DatainR 46
3.2.1 Data Nature (or Type,orMode) 46
3.2.1.1 Numeric Type (numeric) 46
3.2.1.2 1 Complex Type (complex) 47
3.2.1.3 Boolean or Logical Type (logical) 48
32.14 MissingData(NA) ..., 48
3.2.1.5 Character String Type (character)......... 49
32.1.6 fRawData(raw)............ccovvevn.... 50
SUMMATY oottt e e 50
322 DataStructuresc.coouiiieineinna... 50
3.2.2.1 Vectors (VeCtOTr)vvieiinnnennnnn.. 51
3.2.2.2 Matrices (matrix) and Arrays (array)...... 52
3223 Lists(list)........cooiiiiiiiiiin.. 53
3.2.2.4 The Individualx Variable Table

(data.frame).............ociiiiin... 55

3.2.2.5 Factors (factor), Ordinal Variables
(ordered) i 56
3226 Dates ...t e 57
3227 TiMeSeriesouvurieeunneunneennnnnn. 57
SUMMATY . .ttt 58
Memorandum it 59
EXETCISES . .ottt e 59
WOrKSheeto e e 60
4 Importing, Exporting and ProducingData 63
4.1 ImportingData....... ... 63
4.1.1 Importing Data from an ASCII TextFile 63
4.1.1.1 Reading Data with read.table() 64
4.1.1.2 Reading Data with read. ftable(Q) 67

4.1.1.3 Reading Data with the Function scan() 68

Contents

4.1.2 Importing Data from Excel or the Open Office
Spreadsheet
4.1.2.1 Copy-Pasting...................ooiiaa..
4.1.2.2 Using an Intermediary ASCII File
4.1.2.3 Using Specialized Packages
4.1.3 Importing Data from SPSS, Minitab, SAS or Matlab. . .
414 LargeDataFiles i,
4.2 ExportingData...........c.ii i
4.2.1 Exporting Data to an ASCII TextFile
4.2.2 Exporting Data to Excel or OpenOffice Calc..........
43 CreatingData........
43.1 EnteringToyData.................cooiiiiiiii..
4.3.2 Generating Pseudo-Random Numbers
4.3.3 Entering Data from a Hard Copy
4.4 7 Reading/Writing in Databasesooouuu..
4.4.1 Creating a DatabaseandaTable
4.4.2 Creating a Data Source Compatible with MySQL
443 WritinginaTable................. ... o ..
444 ReadingaTable oo,
Memorandum
EXEIrCISes . ..ottt
Worksheet ...
5 Data Manipulation, Functions
5.1 Operations on Vectors, Matrices and Lists
5.1.1 Vector Arithmetico,
5.1.2 Recycling........coouiiiiiiiii i
5.1.3 BasicFunctionsot
5.1.4 Operations on Matrices and Data.Frames
5.1.4.1 Information on Architecture
5.1.42 MergingTables
5.1.4.3 The Function apply ()
5.1.4.4 The Function sweep()
5.1.4.5 The Function stack()
5.1.4.6 The Function aggregate()
5.1.47 The Function transform()
5.1.5 Operationson Lists.ccooiiiiiiiiiin..
5.2 Logical and Relational Operations
5.3 Operations On SetS.ouuiut ettt
5.4 Extracting and Inserting Elements..........................
5.4.1 Extracting from/Inserting into Vectors
5.4.2 Extracting from/Inserting into Matrices
5.4.3 Extracting from/Inserting into Arrays
5.4.4 Extracting from/Inserting into Lists
5.5 Manipulating Character Strings

XVvii

69
69
70
70
70
71
72
72
72
73
73
74
74
76
76
76
78
79
80
80
81

85
85
85
86
87
88
88
89
93
94
94
95
95
96
97
98
99
100
102
106
106
108

xviii

5.6 Manipulating Dates and Time Units
5.6.1 Displaying the CurrentDate
5.6.2 ExtractingDates i,
5.6.3 OperationsonDatescooviin...
5.7 Control Flow e
5.7.1 Conditional Instructions.couuuu..
5.7.2 LoopInstructionsooiiiiuinneion..
5.8 Creating Functions oot
5.9 1 Fixed-Point and Floating Point Number Representation
5.9.1 Representinga NumberinaBase...................
5.9.2 Floating Point Representations
5.9.2.1 Definitions..........couuiiiiiinnn..
5.9.2.2 Limitations of This Representation due to the
Significand oL
5.9.2.3 Avoiding Some Numerical Pitfalls
5.9.2.4 Limitations of This Representation due to the
Exponent i
Memorandum
EXEICISES . oottt ettt
Worksheet
6 RandIts Documentation.....................................
6.1 IntegratedHelp o i
6.1.1 The Commandhelp(),
6.1.2 Some Complementary Commands
6.2 TfHelpontheWeb......... ... i
6.2.1 SearchEngines i i,
6.2.2 MessageBoards i,
6.23 Mailing Lists. ... i
6.2.4 Internet Relay Chat (IRC)
6.25 Wiki ...
6.3 T Literature AboutR
6.3.1 Onlineouuiii
6.3.2 Printed Material
Memorandum
EXEIrCISes . ..ottt
Worksheet
7 Drawing Curvesand Plots
7.1 Graphics Windows it
7.1.1 Basic Graphics Windows, Manipulation and Saving ...
7.1.2 Splitting the Graphics Window: layout()
7.2 Low-Level Drawing Functions
7.2.1 The Functions plot() and points(Q

7.2.2 The Functions segments(), lines()
and abline () ...

Contents

111
111
112
113
115
116
118
120
127
127
128
128

129
130

132
134
134
136

141
141
141
143
145
145
146
146
147
147
147
147
148
149
149
149

151
151
151
153
156
156

158

Contents
7.2.3 The Function arrows()ouiiiiininninnnn.
7.2.4 The Function polygon()
7.2.5 TheFunctioncurve()coiiiiiiiinnnnn.
7.2.6 TheFunctionbox()o,
7.3 ManagingColours......... i
7.3.1 The Function colors()coiiiiiiiinnnnnn.
7.3.2 Hexadecimal Colour Coding
7.3.3 The Functionimage() i,
74 Adding Text ...t i
7.4.1 TheFunctiontext().........oiiiiiii.
7.4.2 The Functionmtext()
7.5 Titles, Axes and Captionsovvettiiinee e
7.5.1 The Function title()
752 TheFunctionaxis()coviiiiiinnnnnnn.
7.5.3 The Functionlegend(),
7.6 Interacting withthePlot
7.6.1 The Function locator()ccoviiiiuinnn.
7.6.2 The Function identify ()
7.7 7 Fine-Tuning Graphical Parameters: par()
7.8 1 Advanced Plots: rgl, lattice and ggplot2
Memorandum it
EXerCISeS .« ottt
Worksheet

8 Programming in R
Preamble
8.2 Developing Functions

8.1

8.3

8.2.1

8.2.2

8.2.3
8.2.4
8.2.5

8.3.1

8.3.2

8.3.3
8.34

Quick Start: Declaring, Creating and Calling

Functions........ i
Basic Concepts on Functions
8.2.2.1 BodyofaFunction.......................
8.2.2.2 List of Formal and Effective Arguments
8.2.2.3 Object Returned by a Function
8.2.2.4 Variable Scope in the Body of a Function
Application to the Practical Problem
(0155 110 4P
R Seen as a Functional Language
T Object-Oriented Programming
How the Internal Object-Oriented Mechanism Works . .
8.3.1.1 Class of an Object and Declaring an Object . .
8.3.1.2 Declaring Objects and Using Methods.
Back to the Practical Problem
Information About Methods
Inheriting Classes,

Xix

160
161
162
162
163
163
164
166
169
169
170
171
171
172
173
175
175
175
176
187
188
188
189

193
193
194

194
195
195
195
198
200
202
202
204
204
205
205
206
209
211
213

Contents

8.4 1 Going Further in R Programming 216
84.1 RAMributesooii e 216
8.4.1.1 Attributeclasscoiiii. 218

8.4.1.2 Attributedim......... ool 218

8.4.1.3 Attributes names and dimnames............ 221

8.4.2 OtherRObjectsc.coiiiiiiiiiiiiiiinnan 224
8.4.2.1 REXPIressionsc..uuuueieeuunnnnnn 224

84.22 RFormulae 226

8.4.23 TheREnvironment....................... 228

8.5 f InterfacingRand C/C++orFortran...................... 230
8.5.1 Creating and Running a C/C++ or Fortran Function .. 231

8.5.2 Calling C/C++ (or Fortran)fromR 237

8.5.3 Calling External C/C++ or Fortran Libraries 242
853.1 TheRAPI........ o .. 243

8.5.3.2 Thenewmat Library 246

8.5.3.3 The BLAS and LAPACK Packages............ 248

8.5.3.4 Mixing C/C++ and Fortran Packages....... 250

8.5.4 Calling R Code from a C/C++ Program Calledby R ... 252

8.5.5 Calling R Code fromFortran 255
8.5.6 Some Useful Functions 255

8.6 { Debugging Functions................. oL, 255
8.6.1 Debugging FunctionsinPure R 255

8.62 ErrorinRCode..............coiiiiiiiiiiii 257
8.6.3 Errorinthe C/C++or FortranCode................ 258

8.6.4 DebuggingwithGDB................... ... 259
8.6.4.1 Debugging withEmacs 262

8.6.4.2 DebuggingwithDDD...................... 264

8.6.4.3 Debugging with Insight 265

8.6.4.4 Detecting Memory Leaks.................. 270

8.7 Parallel Computing and Computation on Graphical Cards 273
8.7.1 Parallel Computing...........coovviuivininennn .. 273

8.7.2 Computation on Graphical Cards 274
Memorandum 276
EXEICISES v vt ettt e 276
Worksheet 278
Managing Sessions i 283
9.1 R Commands, Objects and Storagec...ooooon.. 283
9.2 Workspace: RDataFiles 285
9.3 Command History: .Rhistory Files 287
9.4 SavingPlots 288
9.5 Managing Packages.............. .. . i, 290
9.6 Managing Access Paths to RObjects 290

9.7 Other Useful Commands...............ooiiiiineennn... 292

Contents

9.8 7 Problems in Memory Management
9.8.1 Organizationof RAM

9.8.2 Accessingthe Memoryccoooiiiii...
9.8.2.1 Problems Caused by Memory Management of

Integers ...

9.8.2.2 Successive Allocation of Memory

9.83 ObjectSizeinR i
9.8.4 Total Memoryusedby R

9.8.5 A Few Recommendations

9.9 +UsingRinBATCHModecooviiiiiiiinniiennnn.
9.10 t Creating a Simple RPackage
Memorandum
EXEICISES .ottt
Worksheet

Part III Elementary Mathematics and Statistics

10 Basic Mathematics: Matrix Operations, Integration,

Optimization i
10.1 Basic Mathematical Functions
10.2 Matrix Operationsuuuunt ettt
10.2.1 Basic Matrix Operationsc.c.ooouueeen..
10.2.2 OuterProduct i i
10.2.3 Kronecker Product
10.2.4 Triangular Matricesooveeiiunnneeon..
10.2.5 Operators vecand Halfvec
10.2.6 Determinant, Trace and Condition Number...........
10.2.7 Scaling and Centring Data.........................
10.2.8 Eigenvalues and Eigenvectors
10.2.9 Square Root of a Hermitian Positive-Definite Matrix. . .
10.2.10 Singular Value Decomposition
10.2.11 Cholesky Decomposition.....................oo...
10.2.12 QR DecompoSItioncovvevie et
10.3 Numerical Integration,
10.4 Differentiationttt
10.4.1 Symbolic Differentiation
10.4.2 Numerical Differentiation
10.5 Optimizationcouuniiieenin e,
10.5.1 Optimization Functions
10.5.2 RootsofaFunction
Memorandum
EXEICISES .o vttt ettt
Worksheet

XXi

293
293
294

295
296
298
299
301
302
303
306
306
307

313
313
315
316
318
319
319
320
320
321
321
322
323
323
324
325
326
326
327
327
327
331
333
333
334

XXii

11 Descriptive Statistics
11.1 Introduction
11.2 Structuring Variables According to Type

Structuring Qualitative Variables

Structuring Ordinal Variables

Structuring Discrete Quantitative Data.

Structuring Continuous Quantitative Variables

11.3 Data Tables

Individual Data Tables

Tables of Counts and Frequency Tables

Tables of Grouped Data

Cross Tabulation it

11.3.4.1 Contingency Tables

11.3.4.2 Joint Distribution
11.3.4.3 Marginal Distributions
11.3.4.4 Conditional Distributions.................

11.4 Numerical Summaries

Summaries of the Location of a Distribution.........

11.4.1.1 Modes ...

11412 Median. ...,

11413 Mean ..ottt

11414 Quantiles ...,

Summaries of the Dispersion of a Distribution

Summaries of the Shape of a Distribution

11.5 Measures of Association

11.2.1
11.2.2
11.2.3
11.2.4
11.3.1
1132

1133
11.3.4

11.4.1

11.4.2
11.4.3

11.5.1

11.5.2

11.5.3

11.5.4

11.6.1

Measures of Association Between Two Qualitative

Variables i
11.5.1.1 Pearson’s y2 Statistic

11.5.1.2 @2, Cramér’s V and Pearson’s Contingency

Coefficient it

Measures of Association Between Ordinal Variables

(orRanks) ...
11.52.1 Kendall’standtpccovvveinn..
11.5.2.2 Spearman’s Rank Correlation Coefficient p. . .

Measures of Association Between Two Quantitative

Variables

11.5.3.1 Covariance and Pearson’s Correlation

Coeflicient,

Measures of Association Between a Quantitative

Variable and a Qualitative Variable.................
11.5.4.1 Correlation Ratio n%‘ P
11.6 Graphical Representations
Plotting Qualitative Variables
11.6.1.1 CrossChart,
11.6.1.2 BarCharts ...,

Contents

339
339
340
341
342
342
343
343
343
343
344
344
344
345
346
346
347
348
348
348
350
350
350
351
352

352
352

353

354
354
355

355

355

356
356
357
357
357
359

Contents

12

11.6.2

11.6.3

11.6.4

11.6.5

Memorandum
Exercises ..

Worksheet

11.6.1.3 ParetoChart.cooinna..
11.6.1.4 Stacked BarChart........................
11.6.1.5 PieChart,
Plotting Ordinal Variables
11.6.2.1 Bar Chart with Cumulative Frequencies

Line ...
Plotting Discrete Quantitative Variables
11.6.3.1 CrossChart ...,
11.632 BarChart,
11.6.3.3 Plotting the Empirical Distribution Function . .
11.6.3.4 Stemplot
11.6.3.5 Boxplot ...
Plotting Continuous Quantitative Variables...........
11.6.4.1 Empirical Distribution Function
11.6.4.2 Stemplot o ..
11.6.4.3 Boxplots ...,
11.6.4.4 Density Histogram with Identical or Different

ClassRanges ...,
11.6.4.5 Frequency Polygon.................... ...
11.6.4.6 Cumulative Frequency Polygon
Graphical Representations in a Bivariate Setting
11.6.5.1 Two-Way Plots for Two Qualitative Variables .
11.6.5.2 Two-way Plots for Two Quantitative

Variables
11.6.5.3 Two-Way Plots for One Qualitative and One

Quantitative Variable

A Better Understanding of Random Variables, Distributions

and Simulations Using R Specificities
12.1 Notions on Random Number Generation
12.2 The Notion of Random Variables

12.2.1

12.2.2
12.2.3

12.2.4

Law .

Characterizing the Distribution of a Random Variable . .

12.2.3.1 Density Function, Distribution Function and
Quantile Function

Parameters of the Distribution of a Random Distribution

12.3 Law of Large Numbers and Central Limit Theorem

12.3.1
12.3.2

Law of Large Numbers
Central Limit Theorem

XXiii

360
361
361
362

362
363
363
363
363
365
365
367
367
367
368

368
369
370
371
371

374

375
371
377
378

381
381
383

383
384
385

387
390
392
392
393

XX1V

13

12.4 Inferential StatisticS.ot
12.4.1 Point Estimate of Parameters
12.4.2 Empirical Cumulative Distribution Function..........
12.4.3 Maximum Likelihood Estimation
12.4.4 Sampling Variation and Properties of an Estimator

12.5 A Few Techniques to Draw from a Distribution
12.5.1 Simulating from Another Distribution
12.5.2 Inverse Transform Method
12.5.3 Rejection Sampling
12.5.4 Simulation of Discrete Random Variables

12.6 BOOLSIAP ..o ottt ettt e e e

12.7 Standard and Less Standard Distributions
12.7.1 Standard Distributions,
12.7.2 1 Less Standard Distributions

12.8 Modelling a Phenomenon.................................

Memorandum it

EXCICISeS . oottt

Worksheet e

Confidence Intervals and Hypothesis Testing

13.1 NOtationSttt e e e ettt

13.2 Confidence Intervalso,
13.2.1 Confidence Intervals forthe Mean
13.2.2 Confidence Intervals for a Proportion p..............
13.2.3 Confidence Intervals for a Variance
13.2.4 Confidence Intervals foraMedian
13.2.5 Confidence Intervals for a Correlation Coeficient
13.2.6 Summary Table for Confidence Intervals.............

13.3 Standard Hypothesis Testing
13.3.1 ParametricTestsccouiiiiiinninnann.

13.3.1.1 TestsoftheMean
13.3.1.2 Testsof Variance.........................
13.3.1.3 Tests of Proportion
13.3.1.4 Tests of Correlation
13.3.2 Independence Testscc.oooooii...
13.3.2.1 x? Test for Independence..................
13.32.2 Yates” 32 Test ..o,
13.3.2.3 Fisher’'s ExactTest
13.3.3 Non-parametric Tests,
13.3.3.1 Goodness-of-FitTests
13.3.3.2 Testsof Position
13.3.4 Memorandum of Standard Tests

13.4 Other Tests . ..ottt

Memorandumt

EXeICISeS .« ottt et

Worksheet e

Contents

394
394
396
397
399

Contents

14 Simple and Multiple Linear Regression........................
14.1 IntroduCtionovitttn e
14.2 Simple Linear Regression................ccooiiiiiin...

15

14.2.1

AimandModel

1422 FittingDatao i i

14.2.3
14.2.4
14.2.5
14.2.6

Confidence and Prediction Intervals for a New Value ..
Analysisof Residuals...............
Student’s Tests for Means and Linear Model
Summary ...t

14.3 Multiple Linear Regression

14.3.1
14.3.2
14.3.3
14.3.4
14.3.5

14.3.6
14.3.7
14.3.8
14.3.9
14.3.1
14.3.1

AimandModel,
FittingData o i
Confidence and Prediction Intervals for a New Value . .
Testing a Linear Sub-hypothesis: Partial Fisher Test ...
Qualitative Variables with More Than Two

Modalities ..ot

Issues with Collinearityccoooviooo...
Variable Selection..............cooiiiiiiiiinna..
Analysisof Residuals.............................
0 Polynomial Regression
I Summary ...t

Memorandumt

Exercises .
Worksheet

Elementary Analysis of Variance..............................
15.1 Analysis of Variance with One Factor.......................

15.1.1
15.1.2
15.1.3
15.1.4
15.1.5
15.1.6

Aims, DataandModel
Example and Graphical Inspection..................
ANOVA Table and Parameter Estimation
Validation of Assumptions
Multiple Comparisons and Contrasts
SUMMATY .. .ve e

15.2 Analysis of Variance with Two Factors......................

15.2.1
15.2.2
15.2.3
15.2.4
15.2.5
15.2.6

Aims, DataandModel
Example and Graphical Inspection..................
ANOVA Table, Tests and Parameter Estimation
Validating Assumptionsccoeuuuneeeon..
CONTASES « v vttt et e e e et et
SUMMATY . ..ot

15.3 Repeated Measures Analysis of Variance

15.3.1
15.3.2

One-Way Repeated Measures ANOVA
Two-Factor Model with Repeated Measures for Both
Factors ...

XXV

455
455
456
456
457
461
463
466
468
468
468
469
473
473

474
478
481
482
490
496
496
497
497
498

503
503
503
504
505
509
510
512
513
513
514
516
519
519
521
521
522

523

XXVi Contents

15.3.3 Two-Factor Model with Repeated Measures for One

Factor. ... 525

Memorandum 527
EXETCISES . .ottt e 527
Worksheeto 527
Appendix: Installing R and R Packages 531
A.1 Installing R Under Microsoft Windows 531

A.2 Installing Additional Packages............................. 532
A.2.1 Installing from a File on Your Disk 532

A.2.2 Installing Directly from the Internet................. 533

A.2.3 Installing from the Command Line.................. 535

A.2.4 Installing Packages Under Linux 535

A.3 Loading Installed Packages 536
References............. ... 539
General Index 541
Index of R Commands and Symbols 549
Index of Authors 561
List of R Packages Mentioned inthe Book 563
Solutions to EXercisesuuuuuitiiiiiiiina. 565

Solutions to Worksheet 577

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

3.1
32
33

7.1

7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16

A few of the graphical possibilities offeredby R
The RCommander graphical interface
Entering data with the RCommander graphical interface
Basic statistics with RCommander
Manipulating a data set with RCommander
Mean comparison test with RCommander
Independence test with RCommander
Leastsquaresplanet neennna.n.

The script window and the command console
Characteristics of a complex number
Mustration of anarray iiiiiiiiiian...

Effect of argument mfrow of function par (). Numbers have been

added to gain a better understanding of where future plots will be

AraWn .o
Potential of the function layout()
The function layout () and its arguments widths and heights ..
The function plot () ...
The function points() ...t
The functions segments() and lines()
The function abline() i,
The function arrows ()ovi it
The function curve ()t
The function box () ..o oot
The argument col of functionplot()
The argument alpha of functionrghb()
An example using function rainbow ()
The function display.brewer.all()
The function image ()ot
The function image () with a coherent display of the data

10
11
12
15
16
18

41
47
53

154
155
156
157
158
159
159
161
162
163
164
165
166
167
168
168

XXVii

XXViii

7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26
7.27
7.28
7.29
7.30
7.31

8.1
8.2
8.3

9.1

9.2

10.1

11.1
11.2
11.3
11.4
11.5
11.6
11.7

List of Figures

The function text () ...t
The functionmtext () ...ttt
The function title() ...
Plot title on several lines
The function axis()coiiiiiiiiiiii i
The function legend () with squares
The function legend () with line segments
Figure illustrating the fine management of graphical parameters. . .
Managing the coloursof aplot
Example of use of the argumentsadj and srt
Using different fontsonaplot
Labelsonaplotiiiiiii i
The arguments lendand 1join
The argumentpch
The arguments 1tyand lwd.........

Result of the call of the function mydisplay.regl()
Emacsand GDB
DDDand GDBottt e

Ilustration of storage of values in memory. Each little box contains
a binary number (0 or 1). Each green number gives the decimal
representation of the number in binary form in the block above. Each
red number gives the address (expressed here in decimal notation)
of the 8-box block above. Note that the same memory addresses
could have been written in hexadecimal notation (b = 16), giving
3C,3D,3Eand3F ...
Illustration of R storage in memory of a (signed) integer. Each little
box contains a binary digit (0 or 1). The green number gives the
decimal notation of the integer expressed in binary notation in the
four blocks above. The red number gives the address (expressed
here in decimal base) of the first 8-box memory block above. Note
that here, a number is stored over 32 boxes and not over 8 as in
Fig. 9.1. Furthermore, the first box is used to specify the sign of the
number, negative here i i

Modified sinc function i

Algorithm to determine the type of a variable
Cross chart for a qualitative variable
Dot chart for a qualitative variable
Bar chart for a qualitative variable.
Pareto chart for a qualitative variable
Stacked bar chart for a qualitative variable
Bar chart with cumulative frequencies line for an ordinal

variable

169
170
171
172
173
174
174
178
179
181
182
184
185
186
186

211
263
265

294

295

329

340
358
358
359
360
361

363

List of Figures

11.8
11.9
11.10
11.11

11.12
11.13
11.14
11.15
11.16
11.17
11.18
11.19
11.20

11.21

12.1
12.2

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10

14.11
14.12
14.13

15.1
15.2
15.3
15.4

Bar chart for a discrete quantitative variable
Empirical distribution function for a discrete quantitative variable. .
Boxplot and explanationst
Plot of the empirical distribution function for a continuous

quantitative variable. o L
Density histogram with identical or different class ranges
Frequency polygonoi i
Cumulative frequency polygonccooiiiiiiinn..
Bar plot for two qualitative variables
Mosaic plot for two qualitative variables
Cohen-Friendly association plot for two qualitative variables
table.cont plot for two qualitative variables
Plot of two quantitative variables........................... ..
Box plots of a quantitative variable as a function of the levels of a
qualitative variable
stripchart plot for a quantitative and a qualitative variable.

Plot approximating the density of X
Convergence in distribution in action on an example with simulated

Scatter plot of child weight against mother weight...............
Least squares regression line on a scatter plot...................
Visualization of confidence and prediction intervals
Graphical inspection of normality of residuals..................
Plot of residuals as a function of predicted values
Scatter plot of all pairs of variables
Effect of age on BWT in a model without interaction
Effect of age on BWT in a model with interaction
Selecting variables withthe BIC
Checking the assumptions of homoscedasticity (/eft) and normality
(FIRME) o et e
Residuals as a function of explanatory variables
Visualizing outliers: studentized residuals against fitted values
Visualizing influential observations: Cook’s distance

Box plot of scarring times for each treatment.
Analysing the residuals in single-factor ANOVA................
Exploration of interaction in two-way ANOVA
Residual analysis in two-way ANOVA

XXIX

364
364
366

367
369
370
371
372
372
373
374
375

376
376

388

394

457
458
463
464
465
470
479
480
484

490
491
492
494

506
509
516
520

List of Tables

3.1 ThevariousdatatypesinR 50
3.2 The various data structuresin R 58
4.1 Dataimportation functions, 64
4.2 Main arguments to read.table() oo 64
4.3 Packages and R importation functions from common software. 71

5.1 Operators and functions which take logical values as input or

OULPUL « ottt et ettt e e e et e e e e e e e e 98
5.2 OperationS ON SELSottt ettt ettt 99
5.3 Codes for the function strptime()............ ... 113
5.4 Correspondence between BMI and weight categories 124
7.1 Parameters to manage the graphics window....................... 177
7.2 Colour management parameters.ouuuneeeennnnnn.n 179
7.3 Managing text displayedonaplot. 180
7.4 Parameters t0O Manage aXes.ceuuuneeeennnnneeeennnnnnnn 183
7.5 Parameters for lines and symbols........... oL 185
8.1 Conventions on argument typPes.oveeeurmnneeeennnnnnnn 238
10.1 Table of basic mathematical functions 314
12.1 Standard discrete distributions.ol 405
12.2 Standard continuous distributions.cooieiiii... 406
12.3 Less standard distributions I. i i 408
12.4 Less standard distributions IL. oo i 409
13.1 Some notation for standard parameter estimation 417
13.2 Notation of various quantilesof order p 418
13.3 Summary for confidenceintervals 424
13.4 Standard teststtt 447

XXXi

XXXii List of Tables

14.1 Main R functions for simple linear regression 468
14.2 Main R functions for multiple linear regression 496
15.1 Main functions for single-factor ANOVA 513

15.2 Main functions for two-way ANOVA 521

Mathematical Notations

@]

ac A
ACB
ADB
ANB
AUB
A\B

(AU B)\(AN B)

fi
|x|
x!

(»)
re)
4
40

vec(A)
vech(A)

Symbol indicating different notations for a single object
Table fusion

a belongs to set A

A is included in B

A includes B

Intersection of sets A and B

Union of sets 4 and B

Complement of set B in set 4

Symmetric difference of sets A and B

Frequency of a modality

Absolute value of number x

Factorial of number x

Binomial coefficient: number of ways of picking p elements
outof n

Gamma function

Euler’s constant

Digamma function

Number 7

Scalar number

Matrices

Identity matrix

Indicates the size of a matrix

Transpose of matrix A

Inverse of matrix B

Conjugate of complex matrix C

Column vector

Transpose of vector x

Kronecker product of matrix .4 with matrix B

Vector resulting from the stacking of columns of matrix A
Vector resulting from the stacking of columns of matrix A,
but excluding elements above the diagonal

XXXiii

XXX1V

A*
AI/Z
T (x)
[a, D]
det(A)
&)

Me = (q1/2
PFCx (")

Hx

qp Or Xp
q1/4-493/4
cr%,op(x)
CTPop(x)
Cy

Y1

B2

J2%]

Ha

¥2
2,12
T,Tp

0

”%/\X
X,Y, €
Xi, Vi, €
X,Y, €
Xn

Xn

X

L
N(,1)
N(u,02)
U(a,b)
Bin(n, p)
ER)

Mathematical Notations

Adjunct matrix (conjugate transpose) of matrix A

Square root of matrix A

Equals 1 if x € 4 and 0 otherwise

Interval of values between a and b

Determinant of matrix A

Cumulative distribution function of a standard normal random
variable A/(0, 1)

Matrix given by centring the columns of matrix X

Vector (1,...,1)7 of length n

Non-random variables (descriptive statistics)

Population size

Sample size

Median

Value of the polygon of cumulative frequencies of X
Expected value of random variable X, or population mean in
descriptive statistics

Fractile (quantile) of order p of a variable

First and third quartiles (also noted ¢g; and g3)

Population variance (descriptive statistics)

Population standard error (descriptive statistics)
Population coefficient of variation (descriptive statistics)
Skewness

Kurtosis

Centred moment of order 3

Centred moment of order 4

Pearson’s y? statistic

Cramér’s @2 and V2

Kendall’s T and 13

Theoretical Pearson coefficient of correlation
Correlation ratio

Random variables

Realizations of random variables X, Y, €
Random vectors

Sample (random)

Sample (observed)

Random matrix

Generic distribution of a random variable
Standard normal distribution

Normal distribution with mean w and variance o
Uniform distribution over the interval [a, b]
Binomial distribution with parameters n and p
Exponential distribution with parameter A

2

Mathematical Notations XXXV

P Poisson distribution with parameter A

T(n) Student distribution with n degrees of freedom

x2(n) or x> x? distribution with n degrees of freedom

F(n,m) Fisher distribution with # and m degrees of freedom

Ix©) Probability density function of random variable X

Fy () Cumulative distribution function of random variable X

Fy 1) Inverse cumulative distribution function of random variable X

7 Expected value of a random variable

o? Variance of a random variable

E(Y) Theoretical expectation of random variable Y

Var(Y) Theoretical variance of random variable Y

X, Empirical mean %ZLI X; of sample X, = (X1,....Xn)",
estimator of fiy

Xn Realization of the empirical mean % Z;l=l X; of sample X,, =
(X1, Xn)T, estimate of p1y

r Convergence in probability

Fu() := Bx, () Empirical cumulative distribution function of sample X,

0 Unknown parameter (the true unknown value of the parameter
will sometimes be noted 6°)

é(xl, ..., Xy) or ® Estimator of unknown parameter 6 based on the sample X, =
(X1yee s Xn)T

é(xl yee.,Xp)OT 0 Estimate of unknown parameter 6 based on the observed sam-
plex, = (x1....,x,)T7

B(é (X1,...,Xy); 60) Bias of estimator é(Xl, ..., Xp) to estimate unknown param-
eter 0

P[A] Probability of set A

V(O;X1,...,Xn) Likelihood function of sample X,, evaluated at 0

x* = (x},...,x})T Bootstrap sample generated from the observed sample x, =
(X1, x0)T

o Estimator of o

6 Estimate of o

p Proportion

p Estimator of a proportion (or of a probability)

p Estimate of a proportion (or of a probability)

m, Estimator of a median

7 Estimate of a median

M Number of iterations (of generated samples) in a Monte Carlo
simulation

B Number of generated bootstrap samples

B(,"), () Beta function, gamma function

I.(-) Derivative of incomplete beta function

XXXVi

1()
Iot(')
Up
tﬂ
n
"
Cli—q (9)
ci1—q(0)
1l—«o
(X@)s -+ X))

PIi—4(Yo, Xo)
B=Bo.....Bp)T"

B=@xTx)laTy

>

VIF
AlIC
BIC
hii

1

t*
(i)

Mathematical Notations

Modified Bessel function

Modified Bessel functions

Quantile of order p of a A/(0, 1)

Quantile of order p of a T (n)

Quantile of order p of a y2(n)

Quantile of order p of a F(n, m)

Random confidence interval at confidence level 1 — o for 6
Realized confidence interval at confidence level 1 — « for 8
Level of a confidence interval

Observed sample, sorted from smallest to largest value
Assertion of interest in hypothesis testing

“Null” hypothesis, opposite of H;

Significance level or risk of the first kind in hypothesis testing
Random Pearson empirical coefficient of correlation
Realized Pearson empirical coefficient of correlation
Unknown coefficients of a simple linear regression model
Estimates of unknown coefficients of a simple linear regres-
sion model

Observed residuals in a simple linear regression model
Adjusted observed values in a simple linear regression model
Random coefficient of determination in regression

Realized coefficient of determination in regression

Random adjusted coeflicient of determination in regression
Realized adjusted coefficient of determination in regression
Predictor of random variable Y for a new value of the explana-
tory variable X in regression

Prediction interval at level 1 — « for random variable Y asso-
ciated with a new value x¢ of the explanatory variable

Vector of the p 4+ 1 unknown coefficients in a multiple linear
regression model with p explanatory variables

Estimator of the vector of unknown parameters f for the
matrix X of observed explanatory variables and for the ob-
served vector of explained values in a muliple linear regres-
sion model

Estimate of

Variance inflation factor

An Information Criterion

Bayesian information criterion

Leverage of i th observation in regression

Standardized residuals

Studentized residuals

Estimate of o excluding ith observation

Mathematical Notations

Hie
o)

Cook’s distances
Prediction of y;, not using the i th observation

Estimate of 8, not using the i th observation
Number of levels of a factor in ANOVA
Mean general effect in ANOVA

Effect of level i of a factor in ANOVA
Effect of level j of a factor in ANOVA

XXXVil

Part 1
Preliminaries

Chapter 1
Introducing R

Prerequisites and goals of this chapter

e You may find it useful to read the chapter on installing R in the Appendix first.
e This chapter presents the origins, objectives and specificities of R.

SECTION 1.1
|7 Presentation of the Software

1.1.1 Origins

R is a piece of statistical software created by Ross Ihaka and Robert Gentleman
[21]. R is both a programming language and a work environment. Commands are
executed using descriptive code. Results are displayed as text and the plots are vi-
sualized directly in their own window. R is clone of the statistical software S-plus.
S-plus is an object-oriented programming language S developed by AT&T Bell Lab-
oratories in 1988 [3]. S-plus is used to manipulate data, draw plots and perform
statistical analyses of data.

1.1.2 Why Use R?

First of all, R is free and open-source. It works under UNIX (and Linux), Microsoft
Windows and Macintosh Mac OS: it is cross-platform. It is being developed in the

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming 3
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3_1,
© Springer Science+Business Media New York 2013

4 1 Introducing R

free software movement by a large and growing community of eager volunteers.
Anyone can contribute to and improve R by integrating more functionalities or
analysis methods. It is thus a quickly and constantly evolving piece of software.

R is a very powerful statistical tool. The learning curve in R is steeper than other
statistical software on the market such as SPSS, SAS or Minitab. R is not the kind of
statistical package, which you can use with a few clicks of the mouse in the menus.
In order to use it, you need to understand the statistical method that you are trying to
implement, so R is a didactic program. R is also very efficient and easy to implement
once you have mastered it. You will be able to create your own tools and you will
be able to handle and work on very sophisticated data analyses.

R is harder to comprehend than other software on the market. You need to
spend time learning the syntax and commands.

R is especially powerful for data manipulation, calculations and plots. Its features
include:

an integrated and very well-conceived documentation system (in English)
Efficient procedures for data treatment and storage;

a suite of operators for calculations on tables, especially matrices;

a vast and coherent collection of statistical procedures for data analysis;
advanced graphical capabilities;

a simple and efficient programming language, including conditioning, loops,
recursion, and input-output possibilities.

For the readers already used to SAS, SPSS or Stata, we advise to read the
books [32, 33] and also to consult the two following Internet websites:

e http://rforsasandspssusers.com
e http://www.statmethods.net

Note also that it is possible to call R functions directly from Matlab using
the R.matlab package and from Excel using the RExcelInstaller pack-
age. Reading of [20] might be useful in this context. Finally, a similar tool
for OpenOffice, called ROOo, exists; see the Internet website http://rcom.
univie.ac.at.

http://rforsasandspssusers.com
http://www.statmethods.net
http://rcom.univie.ac.at
http://rcom.univie.ac.at

1.3 R and Plots 5

SECTION 1.2
(R and Statistics

Many classical and modern statistical techniques are implemented in R. The most
common methods for statistical analysis, such as

e descriptive statistics;
e hypothesis testing;

e analysis of variance;

e linear regression methods (simple and multiple)

are directly included at the core of the system. It should be noted that most
advanced statistical methods are also available through external packages. These
are easy to install, directly from a menu. They are all grouped and can be browsed
on the website of the comprehensive R archive network (CRAN) (http://cran.
r-project.org). This website also includes, for some large domains of interest,
a commented list of packages associated with a theme (called Task View). This
facilitates the search for a package on a specific statistical method. Furthermore,
detailed documentation for each package is available on the CRAN.

It should also be noted that recent statistical methods are added on a regular basis
by the statistics community itself.

Section A.2, p. 532, gives details on the procedure to install a new package. \()/

SECTION 1.3
(R and Plots

One of the main strengths of R is its capacity (much greater than that of other
software on the market) to combine a programming language with the ability to
draw high-quality plots. Usual plots are easily drawn using predefined functions.
These functions also include many parameters, for example to add titles, captions
and colours. But it is also possible to create more sophisticated plots to represent
complex data such as contour lines, volumes with a 3D effect, density curves, and
many other things. It is also possible to add mathematical formulae. You can arrange
or overlay several plots in the same window and use many colour palettes.

http://cran.r-project.org
http://cran.r-project.org

6 1 Introducing R

Fig. 1.1: A few of the graphical possibilities offered by R

You can get a demonstration of the graphical possibilities in R by typing in the
following instructions:

demo (image)

example (contour)

demo (graphics)

demo (persp)

demo (plotmath)

demo (Hershey)

require("lattice") # Load the package, which you must have
previously installed by using the menu
Packages/Install packages.

=

demo (lattice)

example (wireframe)

require("rgl") # Same remark as above.

demo (rgl) # You can interact by using your mouse.
example (persp3d)

Figure 1.1 above shows a few of these plots.

1.5 First Steps in R 7

SECTION 1.4
|7 The R Graphical User Interface

The R graphical user interface (GUI) (i.e. its set of menus) is very limited, and com-
pletely nonexistent on some operating systems, when compared to other standard
software. This minimality can set back some new users. However, this drawback is
limited since:

e it has the didactic advantage that it incites users to know well the statistical pro-
cedures they wish to use;
o there are additional tools which extend the GUL

In the next section, we present the package Rcmdr, which can be installed from
the menu Packages and which allows standard graphical and statistical analyses
with a more user-friendly interface, which includes drop-down menus. Furthermore,
the R instructions for the analysis chosen from the RCommander menus are displayed
in dedicated panel. This can be useful if you do not know (or remember) the R
instruction for a specific task.

Note that after you have learnt R thoroughly, you will be able to develop
yourself tools similar to Rcmdr, made for a final users who do not desire to
learn R but only to use, in the most user-friendly way, a procedure created by
you. To this end, you can use the package tcltk.

Note that by using RCommander, we are distancing ourselves from what
makes the strength and flexibility of R. We therefore advise against using such
a tool if you wish to become an advanced user.

SECTION 1.5
|7 First Steps in R

1.5.1 Using RCommander

In this section, we offer a brief introduction to the package Rcmdr. We then present
some functionalities given by this interface for statistical manipulations. We con-
clude by explaining how to add functionalities to the RCommander interface.

8 1 Introducing R

1.5.1.1 Launching RCommander

Follow these steps to start RCommander.

» Double-click on the R icon on your Desktop.

» In the console, type install.packages("Rcmdr™). Choose a nearby mirror.

» In the console, type require("Rcmdr"). Answer Yes to all the questions you
may be asked. The RCommander graphical interface then opens. Another option
is to click on the menu Packages, then Load package. . ., then Rcmdr.

» In the Messages panel, you should see WARNING: the Windows version of
R Commander works better under RGui with the single document
interface (SDI).

» To remedy this issue, close RCommander.

» In RGui, go to Edit, then Preferences. Check SDI then click on Save. .. and
on Save. You can take this opportunity to customize R.

» Close R and save an image of the session.

» Restart R, then RCommander by typing require ("Rcmdr™) in the R console.

We refer the reader to Sect. A.2 which details how to install the package

\(7 Rcmdr.

3 Macintosh users may find useful the instructions at http://socserv.
r " mcmaster.ca/jfox/Misc/Rcmdr/installation-notes.html, after in-
stalling package tcltk which is available on the CRAN.

The graphical interface of RCommander includes four parts as shown on Fig. 1.2:

(a) Drop-down menus to perform specific tasks

(b) A Script window which presents the code executed thanks to click on a drop-
down menu

(c) AnOutput window which gives the output of the executed code

(d) A Messages window giving a message on the last task

1.5.1.2 Handling Data with RCommander
To perform statistical analyses, you need data.
¢ Entering data by band

Follow these steps to enter data by hand.

http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/installation-notes.html
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/installation-notes.html

1.5 First Steps in R 9

74 R Commander =@]

File Edit Data Statistics Graphs Models Distributions Tools Help FactoMineR

EJ.: Data set:| <No active dataset> [Edit data sst”\ﬁew data set] Model: | <No active model>
Script Window

' | »

Output Window [_ —

4 b

Messages
[1] NOTE: R Commander Version 1.8-4: Sun Aug 12 12:57:01 2012 =

Fig. 1.2: The RCommander graphical interface

» In the menu Data, choose New data set....

» In the window New data table, choose a name for your data set, for example
Datal.

» A data editor appears. Click on var1 and replace it with Name. Enter a few names
for this variable: Peter, Jack, Ben (see Fig. 1.3).

» Create a variable Height of type numeric with the following values: 182, 184,
190.

» Click on the cross (X) at the top-right corner of the active window to close the
data editor.

» You can visualize your data set by clicking on View.

We can now calculate some basic statistics.

10 1 Introducing R

f

74 R Commander EI

File Edit Data Statistics Graphs Models Distributions Tools Help FactoMineR

E& Data set:| <No active dataset> | | Edit data set "Vie‘w data set‘ Model: | <No active model>
Script Window

IR pata editor

File Edit _Help varisble name

Name var2 varé
Pierre type O numeric @ character

Remy

Benoit

Output Wir

W | ~d ||| W M|

[
(=]

(=
[

-
L8]

[
w

[
b

[
w

=
o

[
=3

[
w

"
o

+ [

< | | »
Messages
[1] NOTE: R Commander Version 1.8-4: Sun Aug 12 12:57:01 2012

T

Fig. 1.3: Entering data with the RCommander graphical interface

o Basic statistics

Follow these steps to get some basic statistics on your data set:

» In the menu Statistics, choose Summary, then Descriptive stati-
stics

» A window called General statistics opens up; the only numeric variable
in our data set is the variable Height.

» Choose the statistics Mean, Standard deviation and Quantiles and click on
OK.

» The result is displayed in the Output window. Note that you can check the R
instruction which was used for this task in the Script window (see Fig. 1.4).

1.5 First Steps in R 11

Té R Commander T Numerical Summaries =]
File Edit Data Statistics Graphs Models Distributions Tools Hell

R, Dataset| Datat | [Edit data set|[Viewdata set] Model: | <

Variables (pick one or more)

CET | |
Seript Window _'
Datal <- edit(as.daca.frams (NULL)) Mean W
library(abind, pos=4) e
library(e1071, pos=4) Standard Deviation

numSummary (Datal[, "Height™], scaciscics=c("mean”, " Coefficient of Variation ™
quantiles=¢(0,.25,.5,.75,1)) Skewmess = Type 10
Kutosis [~ 1/Pe28@
Type 3
Quantiles W quantiles: 0, 25, 5 75.1

Cutput Window Summarize by groups. .. I

oK | cancal Resat Help |
> Datal <- edit(as.data.frame (NULL}) [] | l] | P 4
> libzary(abind, pos=4) RMEE E' "El.-—.)
> library(el071, pos=4) File Edit Help
Hame Height E‘\urs
> o 1 a ca=c ("mean” d”, "quantiles"), S e
& .5, .75,1)) 1 |pierre |180
mean sd 0% 50% 75% 100% n 2 [Remy [182
184 5.291503 180 181 182 186 190 3 3 |Benoic [190

4

5

[

7

8

3

10
. i » 11

12
[1] NWOTE: R Commander Version 1.8-4: Sun Aug 12 12:57:01 2012 13
[2] NOTE: The dataset Datal has 3 rows and 2 columns. 14

15

Fig. 1.4: Basic statistics with RCommander

Note that it is also possible to type an instruction directly in the Script window
without using a menu. Here is an example.

» Type in the Script window:
numSummary (Datall[, "Height"] ,statistics=c ("mean", "sd"))

» Click on that line so that the cursor is displayed there, then click on Submi t.
» You have just computed the mean and standard deviation of variable Height
which contains 3 observations. The result appears in the Output window:

mean sd n
184 5.291503 0 3

o°

e Manipulating the data set

In our toy example, suppose that we also have the weight and wish to compute
the body mass index: BM I = Weight/Height> (height in metres).

12 1 Introducing R

74 R Commander o | ®

File Edit Data Statistics Graphs Models Distributions Tools Help FactoMineR

g 5, Data set:! Datat Edit data set "\.ﬁaw data set] Model: | <No active model>

Script Window

Datal <- edit(as.data.frame (NULL)) -

library(abind, - = ——
x

library(e1071, 74 Compute New Variable

numSummary (Dat]

: Current variables (double-click to expression)
quantiles=c ((

fix (Datal) e
library(relimp, MName [factor] R |

showData (Datal,| Wweight =
maxheight=30) New variable name Expression to compute
- BMI weight/ ((Height/100) **2)|
) I <] ¢
Output Window
_ [OK] [Cancel] [Reset] I Help]

> Datal <- edid

> library(abind, pos=4)
> library(el071, pos=4)
> numSummary (Datal[, "Height"™], statistics=c("mean", "sd", "quantiles"),
+ gquantiles=c (0, .25,.5,.75,1))
mean sd 0% 25% 50% 75% 100% n
184 5.291503 180 181 182 186 190 3
> fix(Datal)

> library(relimp, pos=4)

> showData (Datal, placement='-20+200', font=getRcmdr('logFont'), maxwidt
+ maxheight=30)

< | L} L;

Messages

[2] NOTE: The dataset Datal has 3 rows and 2 columns.
[3] NOTE: The dataset Datal has 3 rows and 3 columns.

m, »

1

Fig. 1.5: Manipulating a data set with RCommander

» Click on Edit (below the RCommander menus).

» The data editor opens up and you can add the numeric variable Weight, with the
following values: 70, 72 and 75. Now close the data editor.

» In the Data menu, choose Manage variables in the active data set,
then Calculate a new variable.... A window opens.

» For Name of new variable, type BMI and for Expression to calculate:
Weight/((Height/100)**2) (see Fig. 1.5). Click on OK to complete the calcu-
lation.

» Click on View to see the result for your data set.

1.5 First Steps in R 13

You are starting to feel tired and need a coffee break! But before you take one, follow
these steps to save your data set.

» In the Data menu, choose Active dataset,then Save active dataset....

» A window opens. You can choose a location to save your data set. We shall call
it BMI and by default it has the .RData extension.

» Close RCommander and answer OK to the questionDo you wish to quit?, No
to Save script file? and No to Save output file?.

» You can now close R and answer No to the question Save session image?.

After a well-deserved break, you wish to add new data to your file BMI.RData.

» Open an R session. Type library("Rcmdr™).

» In the Data menu, choose Load data set....

» A window opens. Navigate to and open the file BYI.RData.

» Click on View to display your data set.

» Add the information for a new person ("Julia", Height=150, Weight=52) by
clicking on Edit.

» After closing the editor, you can check the changes by clicking on View. You
then see the value NA (not available) for Julia’s BMI.

» To get Julia’s BMI, you need to go through the steps of section manipulating the
data set again. We shall see later on how to create a function which calculates
the BMI in a more user-friendly fashion.

You now wish to send your data set to a colleague who does not use R yet.

» In the Data menu, choose Active dataset, then Export active data
set

» A first window opens. Uncheck the box Write names of individuals
(rows) since we have not defined these. Choose Spaces for the field
separator.

» Click on OK. A second window opens. You can choose a place to save your data
set. We shall call it BMI and it has the default extension . txt.

» You can now send your data set BMI. txt to your colleague and use this opportu-
nity to mention the wonderfulness of R, which has a rather user-friendly interface
for data manipulation.

1.5.1.3 A Few Statistical Tasks with RCommander

In this section, we present a brief overview of how to use RCommander for statistical
tasks. We start with a mean comparison test and a chi-square test of independence.
We then show how to use RCommander to visualize the standard distributions
(binomial, poisson, normal, gamma, etc.). We conclude with a linear model fit.

14 1 Introducing R

e Mean comparison test

We propose to use data already available in R. Follow these steps to load a data
set:

» In the Data menu, choose Data in packages, then Read data from an
attached package....

» A window opens. Double-click on datasets in the Package section, then on
sleep in the right column.

» sleep appears in the box Enter a dataset name (see Fig. 1.6).

» You can now click on Help on the selected dataset to have some infor-
mation about it.

» Click on OK to close the previous window, then visualize the data set by clicking
on View.

These data are used to compare the effect on sleep of a soporific drug, compared to
a control group. We shall first visualize the distribution of sleep gain in both groups,
then do a mean comparison test to see whether there is any statistical significant
difference between the drug and the control.

» In the Graphs menu, choose Box plot....

» A window opens. Click on Plot by group. .., then on the variable group,
then on OK twice.

» You can now see two box plots representing the sleep time gain in both groups.

» You can save this plot by clicking on File, then Save as. Several formats are
possible.

You can also enhance this plot, for example, by adding colours. In the script window,
type

boxplot (extra~group,ylab="extra",xlab="group",data=sleep,
col=c("red", "blue"))

then click on Submit.

\(}/ Chapter 7 is dedicated to plots in R.

We now perform a mean comparison test.

» In the Statistics menu, choose Means, then independent t-test....

» Click on group in section Groups (one). You now see specified the difference
1-2 (group 1 vs. group 2).

» Click on OK to see the result in the Output window (see also Fig. 1.6).

The p-value of this test (greater than 5 %) does not allow us to conclude that
there is a significant difference between the sleep gains given by the drug and the
control.

1.5 First Steps in R

15

File Edit Data Statistics Graphs Models Distributions Tools Help FactoMineR

g 1 Data set:é sleep l. [Edil data set "\ﬁew data setl Model: <No active model> .

7% R Commander = s

—

Script Window g P e e —

t.test(extra~group, a

| -
var.equal=FALSE, da| C2f = |sunspot.yeaf

sunspots

iMASS 3 SWISS

isurvival - treering

OR

Enter name of data set: sleep
< | [Help on selected data set]

Output Window [oK][Cancel]

data(sleep, package="| p,.yaqe (Double-click to select) Data set (Double-click to select)

-

1

(==

> data(sleep, package="datasets")

> t.test (extra~group, alternative='two.sided', conf.level=.95,
+ var.equal=FALSE, data=sleep)

Welch Two Sample t-test

data: extra by group
t = -1.8608, df = 17.776, p-value = 0.07939
alternative hypothesis: true difference in means is not equal to
95 percent confidence interval:
-3.3654832 0.2054832
sample estimates:
mean in group 1 mean in group 2
0.75 2.33

P

1

Messages

[4] NOTE: The dataset sleep has 20 rows and 3 columns.

(] »

1

Fig. 1.6: Mean comparison test with RCommander

e Test on a double entry table

In a therapeutic test, the underlying question is whether a treatment on HIV-
positive mothers has an effect on the HIV status of the child. If it does not, then the
HIV status of the child is independent of the treatment taken by the mother. In this

test, out of 391 children, 100 are HIV negative, 193 have mothers under treatment
and 41 are HIV positive and have mothers under treatment. To know whether the

treatment has an effect, follow these steps:

16 1 Introducing R

Té R Commander o [@[=

File Edit Data St

stics Graphs Models Distributions Tocls Help FactoMineR

:Bd_[Data set:| <No active dataset> |Ed¢t data set || View data set| Model: | <No acthe model>
Script Window (54 Enter Two-Way Table =
zownames (.Table) <- o('Treat', 'Contz') =
colnames(.Table) <- o('HIV+', "HIV-') Number of Rows [| 2

-Table & Counts

Ni f o |
totPercents(.Table) # Percentage of Total umber of Columas: (1| Z
.Test <- chisg.cvesc(.Table, correct=FALSE) Enter counts:
JTest HIV+ HIV- E
.TestSexpected # Expected Counts
remove (. Test) Treat 41 152
remove (.Table) Contr 59 139
Compute Percentages =
Row percentages
Output Window Column percentages
Percentages of total @ -
9 R el No percentages

Hypothesis Tests

Chi-square test of independence W
Pearson's Chi-squared test P T
Components of chi-square statistic [

data: .Table

Print expected frequencies 2
X-squared = 3.7574, df = 1, p-value = 0.05257
Fisher's exact test r
oK | [cancet | [Rest | [Hep

[1] NOTE: R Commander Version 1.8-4: Sun Aug 12 13:16:33 2012

Fig. 1.7: Independence test with RCommander

» In the Statistics menu, choose Contingency tables, then Fill and
analyse a double entry table....

» A window opens. Fill the table as indicated in Fig.1.7. Choose
Total percentagesand Print expected frequencies.

» Click on OK to see the result in the Output window.

At the 5 % risk level, we cannot conclude that the treatment has an effect on the
child’s HIV status.

¢ Exploring distributions

RCommander can be used to visualize standard distributions.

» In the Distributions menu, choose Continuous distributions, the
Normal distribution,thenPlot of normal distribution....

» A window opens. Specify a mean of 4 and a standard deviation of 2. Click on OK.

» The curve of the density of a normal distribution centred at 4 and with standard
deviation 2 appears in a graphical window.

You can follow the same steps for other probability distributions.

1.5 First Steps in R 17

o Fitting a linear model

RCommander can be used to easily fit standard regression models. We illustrate
this with the linear model. We shall first download a data set from an Internet
address (URL). It contains the measures, for 80 patients with a disabling illness,
of the variables GENDER (1 = Male, 2 = Female), WEIGHT (in kg), HEIGHT (in
cm), PAIN (ordinal variable: a=least pain), DISTANCE (number of metres walked),
MOBILITY (self-evaluation of mobility; 1=most mobile) and STAIRS (number of
steps climbed).

» In the Data menu, choose Import data, then from a text file, the
clipboard or a URL....

» A window opens. Call the data table I11lness. Check the box Internet link
(URL) in Data file and the box Tabulations for Field separator; click
on OK.

» In the field Internet 1link (URL), type
http://biostatisticien.eu/springeR/illness.txt.

» Click on OK and you should see the following in the Messages window: The
illness data set contains 80 rows and 8 columns.

We shall fit a multiple regression model. Follow these steps.

» In the Statistics menu, choose Model fitting,then Linear regression

» Choose for example Model .1 as your model name in the field Enter a name
for the model.

» Choose variable DISTANCE as the response variable, and variables WEIGHT and
HEIGHT as the explanatory variables (keep the CTRL key pressed).

» Click on OK. The result of your linear model adjustment appears in the Output
window. This result corresponds to the instructions

Model.l <- 1lm(DISTANCE~WEIGHT+HEIGHT,data=Illness)
summary (Model.1)

which are shown in the Script window.

Chapter 14 presents the linear model in further detail. \('/

We now visualize the least squares plane corresponding to the fitted model.

» In the P1lot menu, choose 3D plot, then 3D scatterplot....

» Choose variable DISTANCE as the response variable and the variables WEIGHT
and HEIGHT as explanatory variables (use the CTRL key).

» Choose Ordinary least squares as the surface to fit. Click on OK.

http://biostatisticien.eu/springeR/illness.txt

18 1 Introducing R

DISTANCE [}
500

HETGHT
200

Fig. 1.8: Least squares plane

You can now see the 3D scatterplot (shown in Fig. 1.8) and the least squares
plane. You can move the image with your mouse.

1.5.1.4 Adding Functionalities to the RCommander Interface

Some packages available on the official R website can also be integrated to
the RCommander menus. They are easy to identify: their names start with
RcmdrPlugin. We now illustrate how to use such a package.

You can read the article [17] which explains how to build a package for
\/ RCommander integration.

e The TeachingDemos package

The RemdrPlugin. TeachingDemos package can be used to illustrate some sta-
tistical concepts.

» Type install.packages("RcmdrPlugin.TeachingDemos") in the Script
window. Click on Submit and choose a nearby mirror. Once the installation is
complete, close and reopen RCommander using the instruction Commander ().

» In the Tools menu, choose Load Rcmdr plug-ins...,click on OK and answer
Yes to the question Restart now?.

» There is a new menu called Demos. In this menu, you can choose for example the
submenu Simple Correlation and explore the notion of correlation.

1.5 First Steps in R 19

This plug-in also adds submenus to pre-existing menus. For example, in the
Distributions menu, you can now choose Visualize distributions, then
t distributions. By checking Show Normal Distribution, and by playing
with the d. f. (degree of freedom) cursor, you can visualize the closeness of the
Student distribution and the normal distribution.

e The sos package

The RcmdrPlugin. sos package can be used to ease the search for help on a
given concept or function. Follow the same steps as before to install this plug-in. A
new submenu called Search R Help ... (sos) appears in the Help menu. Ex-
plore this new Rcommander functionality, for example, by typing linear model.

Chapter 6 describes how to search for information about R.

1.5.2 Using R with the Console

In the previous subsection, we saw how to use R through menus. In fact, this way
of proceeding is far from optimal, since it imposes many limitations on the possi-
bilities offered by R. Many analyses, either deeper or more recent and innovative,
are not available in the RCommander menus. It is thus very useful to escape from
the “button clicking” approach and master the R programming language. You will
then be able to perform simulations and to code repetitive tasks. We have already
encountered a few R instructions when using RCommander, which is itself a tool
written in the R language. We now propose a brief introduction to a few elements
of the R syntax, first through an analysis of complex data arising from a functional
magnetic resonance imaging (MRI) experiment, then by letting the reader type a
few R commands and think about the output.

1.5.2.1 The Strength of R Shown on an Example

Some neuroscientists work on finding which part of the brain deals with visual
information on colour. To this end, a visual stimulus, consisting in an alternance
of coloured and non-coloured moving patterns, is shown to a subject. During this
time, volumic images of the subject’s brain are acquired at time t = 1,...,7T with
an MRI scanner. Each 3D image is in fact a large (Rubik’s!) cube made of many
voxels, the 3D equivalents of 2D pixels. At time t = 1,...,T, each voxel con-
tains an electromagnetic measurement value x(¢). We can thus consider that in
each voxel, we have observed a time series {x(¢);t = 1,...,T} representing

20 1 Introducing R

electromagnetic variations. The acquired data (given in file Mond4D.nii, produced
during a Mondrian experiment performed by M. Dojat and J. Huppé) thus consist in
a 4-dimensional array, the concatenation of several volumic brain images measured
through time.

We used R to find, in each brain slice, which voxel had temporal variations
most correlated with the stimulus signal. The code below can be downloaded from
http://biostatisticien.eu/springeR/brain-code.R and opened, thanks
to the submenu Open script... of the File menu in R. The key combination
CTRL+R then executes one by one the instructions of this script. You can try to
execute these instructions to visualize the results. This will help you familiarize
yourself with some of the possibilities offered by R.

We first download the data files we need (the files Mondanat.img and
Mondanat.hdr contain an anatomical image of the subject’s brain).

> getfile <- function(myfile)

+ download.file(paste("http://biostatisticien.eu/springeR/",
+ myfile,sep=""),paste(getwd(),"/", myfile,sep=""),mode="wb")
> getfile("Mond4D.nii")

> getfile("Mondanat.hdr")

> getfile ("Mondanat.img")

We then install the package to read the data.

> install.packages ("AnalyzeFMRI") # Choose a mirror.

> # File names.
> file.func <- paste(getwd(),"/","Mond4D.nii", sep="")
> file.anat <- paste(getwd(),"/","Mondanat.img", sep="")

> # Brain slice number.
> slice <- 10

The next instructions read the data.

> anat.slice <- f.read.nifti.slice(file.anat,slice,1)

> class(anat.slice)

[1] "matrix"

> dim(anat.slice)

[1] 128 128

> func.slice <- f.read.nifti.slice.at.all.timepoints(file. func,
slice)

> class (func.slice)

[1] "array"

> dim(func.slice)

[1] 128 128 125

We now create the coding of the visual stimulus signal (1=colour, 0=no colour).

> stimulus <- c¢(rep(c(1,1,1,1,1,0,0,0,0,0,0,0,0,0,0),8),1,1,1,1,1)
> plot(stimulus, type="1")

http://biostatisticien.eu/springeR/brain-code.R

1.5 First Steps in R 21

o
~ 1 7 M M M | | | M —

0.8
|

stimulus
0.4

0.2

g_ 4 b Jb rJbrJbrJr_J L]

I I I I I I
0 20 40 60 80 100 120

Index

We compute correlations between the observed time series in each voxel and the
stimulus series.

> corMat <- matrix(NA,nrow=128,ncol=128)

> for (i in 1:128) {

+ for (j in 1:128) {

+ corMat[i,j] <- cor(func.sliceli,j,],stimulus)
+)

+ }

We can now compute the coordinates of the voxel most strongly correlated with
the stimulus

> which (abs (corMat) ==max (abs (corMat) ,na.rm=TRUE) , arr.ind=TRUE)
row col
[1,] 67 117

and the correlation value of this voxel

> corMat[67,117]
[1] -0.6675017

We can then plot the time series observed in this voxel.

> par (mfrow=c(2,1))
> plot(stimulus, type="1")
> plot(func.slicel67,117,],type="1",ylab="Intensity")

1 Introducing R

22
g o]
5 © 4
£ 7
» o]
S T T T T T T
0 20 40 60 80 100 120
Index
>
g -
g 87
€ o]
= o T T T T T T
0 20 40 60 80 100 120
Index

We are now able to identify on the anatomical image of the brain the most active
voxel for the visual stimulus.

> image (as.matrix(rev(as.data.frame (t(anat.slice)))),

col=gray((0:32)/32))
> points(117/128,67/128,col="red",cex=2,pch=19)

o

0.8

0.6

0.4

0.2

0.0

0.0

0.2 04 0.8

0.6

1.0

Note that you can also visualize these data in 3D. The following instructions,
taken from the help file for the function contour3d() from package misc3d, give
an interactive 3D view of the brain.

> install.packages ("misc3d")

> require ("misc3d")

>
+
>a<- al,,,1]

a <-

> contour3d(a,1l:64,1:64,1.5%(1:21),lev=c(3000,
alpha=c(0.2,0.5,1) ,color=c("white", "red", "green"))

+

package="AnalyzeFMRI"))

8000,

f.read.analyze.volume (system.file ("example.img",

10000),

1.5 First Steps in R

23

You can try to move the image with your mouse.

1.5.2.2 A Brief Introduction of R Syntax Through Some Instructions to Type

e Basic operations

We advise the reader to play with these commands and try to understand how

they work.

> 1%2%3%4

[1] 24

> factorial (4)

[1] 24

> cos(pi)

[1] -1

> x <- 1:10

> x
[1] 1 2 3 4 5 6 7 8 9 10

> exp (x)
[1] 2.718282 7.389056 20.085537
[5] 148.413159 403.428793 1096.633158
[9] 8103.083928 22026.465795

> x72
[1] 1 4 9 16 25 36 49 64 81 100

> chain <- "R is great!"

> chain

[1] "R is great!”

> nchar (chain)

[1] 11

> ?nchar

54.598150
2980.957987

24

> M <- matrix(x,ncol=5,nrow=2)

> M

[,1] [,2] [,3] [,4] [,5]
[1,1 1 3 5 7 9
[2,1 2 4 6 8 10
> M[2,3]
[1] 6

> L <- list(matrix=M,vector=x,chain=chain)
> L[[3]1]

[1] "R is great!"

> while (TRUE) {

+ toguess <- sample(1l:2,1)

1 Introducing R

; value <- readline()}

+ {cat("Guess a number among 1, 2, 3: ")

+ if (value == toguess) {print("Well done!") ;
+ else print("Try again.")

+

> 1s()

[1] "chain" "L" "M nxn

> rm(chain)

The following commands perform matrix operations:

> A <- matrix(runif (9),nrow=3)
> 1/A

[,1] [,2] [,3]
[1,] 2.270797 1.546875 1.422103
[2,] 1.268152 1.957924 1.057803
[3,] 1.642736 5.273120 2.174020

> A * (1/A)
[,11 [,2] [,3]
[1,] 1 1 1
[2,] 1 1 1
[3,] 1 1 1
> B <- matrix(1l:12,nrow=3)
> A *B

Error in A * B : non-conformable arrays
> A %*% B

[,1] [,2] [,3] [,4]
[1,] 3.842855 9.212923 14.582990 19.95306
[2,] 4.646105 11.380053 18.114001 24.84795
[3,] 2.367954 6.143031 9.918107 13.69318
> (invA <- solve(a))

[,1] [,2] [,3]
[1,] 1.145642 -3.376148 5.187347
[2,] 4.379786 -4.641906 2.844607
[3,] -3.321872 6.381822 -5.863772
> A %*% invA

[,1] [,2] [,3]
[1,] 1.000000e+00 0.000000e+00 0
[2,] 0.000000e+00 1.000000e+00 0

[3,] -2.220446e-16 4.440892e-16 1

break ()}

1.5 First Steps in R

> det(A)
[1] 0.04857799
> eigen(A)
Svalues
[1] 1.6960690+0.000000i -0.1424863+0.0913191
[3] -0.1424863-0.0913191
Svectors
[,1] [,2]

[,31

[1,] 0.5859852+0i 0.6140784-0.1816841i 0.6140784+0.18168411i
[2,] 0.7064296+0i 0.2234155+0.2505528i 0.2234155-0.25055281i
[3,] 0.3969616+0i -0.6908020+0.0000000i -0.6908020+0.00000001

o Statistics

Here are a few statistical calculations.

> weight <- ¢ (70,75,74)

> mean (weight)

[1] 73

> height <- <(182,190,184)

> mat <- cbind(weight,height)

> mat

weight height
[1,] 70 182
[2,1 75 190
[3,] 74 184

> apply (mat,MARGIN=2, FUN=mean)
weight height
73.0000 185.3333
> ?apply
> colMeans (mat)
weight height
73.0000 185.3333
> names <- c("Peter","Ben","John")
> data <- data.frame (Names=names,height,weight)
> summary (data)

Names height weight
Ben :1 Min. :182.0 Min. :70.0
John :1 1st Qu.:183.0 1st Qu.:72.0
Peter:1 Median :184.0 Median :74.0

Mean :185.3 Mean :73.0
3rd Qu.:187.0 3rd Qu.:74.5
Max. :190.0 Max. :75.0

¢ Some plots

> £ <- function(x) x72-2%x-2
> curve (f,xlim=c(-5,2)) ;abline (h=0)

> locator(l) # Click on the intersection of the two curves.

26

f ()

10 15 20 25 30

0 5

T T T T
-5 4 3 -2 -1 0 1

> uniroot(£f,c(-5,2))
Sroot

[1] -0.7320503
Sf.root

[1] -1.874450e-06
Siter

[1] 8

Sestim.prec

[1] 6.103516e-05

> plot(cars)
> abline(lm(dist~speed,data=cars),col="blue")
> points(cars[30,],col="red",pch=20)

100 120
| |
o]

dist
20 40 60 80

0
1

> par (mfrow=c(1,2))
> hist (cars$speed,main="Histogram")
> boxplot (cars$dist,col="orange")

1 Introducing R

1.5 First Steps in R

Histogram °
& o
wn _
- o
o —
h
1
o 1
o | 1
o_ 1
-l !
5 g8
=]
o
o
. Q-
o _| |
N 1
1
1
o~ o —_
05 15 25
cars$speed

This link points to a reference card of the most useful R functions http://
cran.r-project.org/doc/contrib/Short-refcard.pdf

27

http://cran.r-project.org/doc/contrib/Short-refcard.pdf
http://cran.r-project.org/doc/contrib/Short-refcard.pdf

Chapter 2
A Few Data Sets and Research Questions

Goals of this chapter

This chapter presents a few data sets from epidemiological studies analyzed by
various teams at the Bordeaux School of Public Health (Institut de Santé publique,
d’Epidémiologie et de Développement—ISPED). Each data set comes with a short
research question, which will help understand the context of the study. They will
be used throughout this book to show how to use the functionalities of R for im-
porting and manipulating data and performing appropriate statistical analyses. For
each data set, we give a table with a description, the variables and the coding. The
reader should refer to this chapter when the data sets are mentioned later in the
book. A table at the end of the chapter indicates in which chapters each data set
is used. All these data sets are available online on the website associated with the
book: http://www.biostatisticien.eu/springeR.

SECTION 2.1
|7 Body Mass Index of Children

Presentation

A sample of 152 children (3 or 4 years old) in their first year of kindergarten in
schools in Bordeaux (Gironde, SouthWest France) underwent a physical check-up
in 1996-1997.

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming 29
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3_2,
© Springer Science+Business Media New York 2013

http://www.biostatisticien.eu/springeR

30 2 A Few Data Sets and Research Questions

Variables and Coding

Description Unit or coding Variable
Gender F for female; M for male = GENDER
School in an underprivileged area (zone d’éducation Y for yes; N for no zep
prioritaire, ZEP)

Weight Kg (to the nearest 100g) weight
Age at date of examination Years years
Age at date of examination Months months

Height Cm (to the nearest 0.5 cm) height

Data Set: BMI-cHILD File: bmichild.xls

SECTION 2.2

Weight at Birth

Presentation

This study focused on risks associated with low weight at birth; the data were
collected at the Baystate Medical Centre, Massachusetts, in 1986. Physicians have
been interested in low weight at birth for several years, because underweight ba-
bies have high rates of infant mortality and infant anomalies. The behaviour of the
mother-to-be during pregnancy (diet, smoking habits) can have a significant impact
on the chances of having a full-term pregnancy, and thus of giving birth to a child
of normal weight. The data file includes information on 189 women (identification
number: ID) who came to the centre for consultation. Weight at birth is categorized
as low if the child weighs less than 2,500 g.

Variables and Coding

Description Unit or coding Variable
Age of mother Years AGE
Weight of mother at last menstrual period Pounds LWT
Race of mother 1 = white; 2 = black; 3 = other RACE
Smoking during pregnancy Yes=1;n0=0 SMOKE
Number of premature births in medical history 0 = none; 1 = one; 2 = two; etc. PTL
Medical history of hypertension Yes=1;n0=0 HT
Uterine irritability Yes=1;n0o=0 UI
Numbf:r of medical consultations during 0 = none: 1 = one; etc. FVT
first trimester

Weight at birth Grams BWT
Weight at birth less than 2,500 g Yes=1;No=0 LOwW

Data Set: WEIGHT-BIRTH

File: Birth_weight.xls

2.3 Intima-Media Thickness 31

SECTION 2.3

Intima—-Media Thickness

Presentation

Atherosclerosis is the main cause of death for men above 35 and women above
45 in most developed countries. It is a thickening and hardening of internal artery
walls. One of its consequences is myocardial infarction. An artery wall is made of
three layers; innermost to outermost, they are called intima, media and adventitia.
Intima—media thickness is a marker of atherosclerosis. It was measured by ultra-
sonography on a sample of 110 subjects in 1999 in Bordeaux hospitals. Information
on the main risk factors was also collected.

Variables and Coding

Description Unit or coding Variable

Gender 1 = male; 2 = female GENDER

Age at date of consultation Years AGE

Height Cm height

Weight Kg weight
0 = non-smoker

Smoking status 1 = former smoker tobacco
2 = smoker

Estimation of tobacco consumption

for smokers and former smokeI;s Number of packs/year packyear

Physical activity 0=no; 1 =yes SPORT

Intima—media thickness Mm measure
0 = non-drinker

Alcohol consumption 1 = occasional drinker ~ alcool

2 = regular drinker

Data Set: INTIMA-MEDIA

File: Intima_Media_Thicness.xls

32

SECTION 2.4

2 A Few Data Sets and Research Questions

Diet of Elderly People

Presentation

A sample of 226 elderly people living in Bordeaux (Gironde, South-West France)
were interviewed in 2000 for a nutritional study.

Variables and Coding

Description Unit or coding Variable
Gender 2 = female; 1 = male gender
1 = single

Family status

Daily consumption of tea
Daily consumption of coffee
Height

Weight

Age at date of interview

Consumption of meat

Consumption of fish
Consumption of raw fruits
Consumption of cooked
fruits and vegetables
Consumption of chocolate

Type of fat used
for cooking

2 = living with spouse

3 = living with family situation
4 = living with someone else
Number of cups tea
Number of cups coffee
Cm height
Kg weight
Years age
0 = never
1 = less than once a week
2 = Once a week
3 =2/3 times a week meat
4 = 4/6 times a week
5 = every day
Idem fish
Idem raw_fruits
Idem cooked_fruits_veg
Idem chocol
1 = butter
2 = margarine
3 = peanut oil
4 = sunflower oil
fat

5 = olive oil

6 = mix of vegetable oils (e.g., Isio4)
7 = colza oil

8 = duck or goose fat

Data Set: NUTRIELDERLY

File: nutrition_elderly.xls

2.6 Summary Table of Use of Data Sets 33

SECTION 2.5

Study Case of Myocardial Infarction

Presentation

The study for which the following data were collected aimed at examining
whether women who use or have used oral contraceptives are at a higher risk of my-
ocardial infarction. The sample includes 149 women who had myocardial infarction
(cases) and 300 women who did not (controls). The main exposure factor is usage of
oral contraceptives; the data also include age, weight, height, tobacco consumption,
hypertension and family history of cardiovascular diseases.

Variables and Coding
Description Unit or coding Variable
Myocardial infarction 0 = controls; 1 = cases infarct
Usage of oral contraceptives 0 = never; 1 = yes co
0=no
Tobacco usage 1 = smoker tobacco
2 = former smoker
Age Years age
Weight Kg weight
Height Cm height
Family history of cardiovascular diseases 0=no; 1 =yes atcd
Hypertension 0 =no; 1 =yes hta
Data set: INFARCTION File: Infarction.xls
SECTION 2.6

Summary Table of Use of Data Sets

Methods
Import-— Manipulation Descpptlve Tests ANOVA Regression
export statistics
BMI-
X X X
CHILD
WEIGHT-
X X X
o BIRTH
2 INTIMA-
z X X X X X
& MEDIA
5
NutrIELDERLY X X X X

INFARCTION X X

Part 11
The Bases of R

Chapter 3
Basic Concepts and Data Organisation

Goals of this chapter

This chapter introduces the basic concepts of the R software (calculator mode,
assignment operator, variables, functions, arguments) and the various data types
and structures which can be handled by R.

SECTION 3.1

Your First Session

Launch R by double-clicking its icon on the Windows Desktop (or from the Start
menu). At the end of the text displayed in the R console, you can see the prompt
symbol >, inviting you to type in your first instruction in the R language.

R version 2.14.1 (2011-12-22)
Copyright (C) 2011 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ’‘license()’ or ’licence()’ for distribution details.

R is a collaborative project with many contributors.
Type ‘contributors ()’ for more information and
‘citation()’ on how to cite R or R packages in publications.

Type ’‘demo ()’ for some demos, ’help()’ for on-line help, or
‘help.start ()’ for an HTML browser interface to help.
Type ‘q()’ to quit R.

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming 37
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3_3,
© Springer Science+Business Media New York 2013

J

38 3 Basic Concepts and Data Organisation

For example, type "R is my friend", then validate by hitting the ENTER key
(or RETURN). You will then get

> "R is my friend"
[1] "R is my friend"

As you can see, R is well behaved and kindly proceeds with your request. This will
usually be the case—maybe R is trying to compensate for its lack of conviviality.
We shall explain later on why R’s reply starts with [1].

3.1.1 R Is a Calculator

Like many other similar languages, R can easily replace all the functionalities of
a (very sophisticated!) calculator. One of its major strengths is that it also allows
calculations on arrays. Here are a few very basic examples.

> 5%(-3.2) # Careful: the decimal mark must be a point (.)
[1] -16

> 5%(-3,2) # otherwise, the following error is generated:
Error : ’,’ unexpected in "5%(-3,"

> 572 # Same as 5%*¥2.

[1] 25

> sin(2%pi/3)
[1] 0.8660254

> sqrt(4) # Square root of 4.

[1] 2

> log(1) # Natural logarithm of 1.

[1] 0

> c(1,2,3,4,5) # Creates a collection of the first five
integers.

[1] 1 2 3 4 5

> c(1,2,3,4,5)*%2 # Calculates the first five even numbers.

[1] 2 4 6 8 10

Any R code after the symbol “#” is considered by R as a comment. In fact,
R does not interpret it.

You can now exit the R software by typing the following instruction: q().

You are asked whether you wish to save an image of the session. If you answer
yes, the commands you typed earlier will be accessible again next time you open R,
by using the “up” and “down” keyboard arrows.

3.1 Your First Session 39

3.1.2 Displaying Results and Variable Redirecting

As you have probably noticed, R responds to your requests by displaying the result
obtained after evaluation. This result is displayed, then lost. At first, this might
seem sensible, but for more advanced uses, it is useful to redirect the R output to
your request, by storing it in a variable: this operation is called assigning the result
to a variable. Thus, an assignment evaluates an expression but does not display the
result, which is instead stored in an object. To display the result, all you need to do
is type the name of that object, then hit ENTER.

To make an assignment, use the assignment arrow <-. To type the arrow <-,
use the lesser than symbol (<) followed by the minus symbol (-).

To create an object in R, the syntax is thus
Name.of.the.object.to.create <- instructions

For example,

> x <- 1 # Assignment.
> x # Display.
[1] 1

We say that the value of x is 1, or that we have assigned 1 to x or that we have
stored in x the value 1. Note that the assignment operation can also be used the other
way around ->, as in
> 2 -> X

> x
[1] 2

The symbol = can also be used, but its use is less general and is therefore
not advised. Indeed, mathematical equality is a symmetrical relation with a L'>
specific meaning, very different to assignment. Furthermore, there are cases -
where using the symbol = does not work at all.

Note that a pair of brackets allows you to assign a value to a variable and
display the evaluation result at the same time:

> (x <- 2+3) ’
[1] 5

If a command is not complete at the end of a line, R will display a different
prompt symbol, by default the plus sign (+), on the second line and on following
lines. R will continue to wait for instructions until the command is syntactically
complete.

40 3 Basic Concepts and Data Organisation

> 2%8*10+exp (1)
[1] 162.7183

> 2%g*

+ 10+exp(

+ 1)

[1] 162.7183

Here are the rules for choosing a variable name in R: a variable name can
only include alphanumerical characters as well as the dot (.); variable names
are case sensitive, which means that R distinguishes upper and lower case; a
variable name may not include white space or start with a digit, unless it is

enclosed in quotation marks "".

3.1.3 Work Strategy

e Take the habit of storing your files in a folder reserved to this effect (you could
call it Rwork). We also advise you to type all your R commands in a script win-
dow called script or R editor, accessible through the “File/New script” menu.
Open a new script window, click on the “Windows/Side by side” menu, then
copy the script below:

X <- 5%(-3.2)

572

sin(2%pi/3)

sqgrt (4)
c(1,2,3,4,5)

z <- c(1,2,3,4,5)%2

On a Mac, the menu is “File/New Document”, and it is not possible to lay
the windows side by side.

At the end of your session, you can save this script in the folder Rwork, for
example, as myscript.R, and reopen it during a later session from the menu
“File/Open a script” (or on a Mac “File/Open Document”).

e You can then use the key combinations CTRL+A (COMMAND+A on a Mac) to select
all the instructions, then CTRL+R (COMMAND+ENTER on a Mac) to paste and exe-
cute them in one step in the R console. You can also execute a single line of R
instructions from the script by hitting CTRL+R when the blinking cursor is on the
relevant line of the script window.

3.1 Your First Session

41
R Rgui (54-6it) o)
File Edit View Misc Packages Windows Help
BaAE
R Untitied - R Editor = =l (= ey
x <= 5% (=3) -

52

sin(2°pi/3)

aqzT(4)
e(1,2,3,4,5)

z <= e(1,2,3,4,5)"2

Fig. 3.1: The script window and the command console

Note in Fig. 3.1 the presence of the red STOP button that lets you interrupt
a calculation that would last too long.

You can also use the function source () from the R console to read and execute
the content of your file. This helps prevent overloading the console, as we will
see later. You may find it useful to proceed as follows:

(a) Clicking once in the R console window.

(b) Going to the menu “File/Change current directory” (“Misc/Change work
directory” on a Mac).

(c) Exploring your file system and selecting the folder Rwork.

(d) Typing in the console source("myscript.R"). Note that for the above
example, the use of this instruction will not produce any output. The
following Do it yourself will clarify this point.

42 3 Basic Concepts and Data Organisation

Do it yourself

Begin to create a folder called Rwork in your home directory. Then, type in
and save in an R script the preceding instructions. The file containing the R
script will be called myscript.R and will be put in Rwork. Now close then
reopen R. Next, type the following instructions in the R console:
rm(list=1s()) # Delete all existing objects.

1sO # List existing objects.
source("myscript.R")

1sO

X

z

Note that the source () function has permitted to execute the preceding in-
structions. You may have noticed that the computations which have not been
redirected into variables have not been printed. So their result is lost. Change
your script and add the following instructions at the end of it:

print(2*3)

print(x)
Save it, then source it. What happened?

e Take the habit of using the online R help. The help is very complete and
in English. You can reach it with the function help(). For example, type
help(source) to get help about the function source().

\(>/ All these notions will be examined in further detail in Chaps. 6 and 9.

Two good code editors are RStudio, available at http://www.rstudio.

com, and Tinn-R (Windows only), available at http://www.sciviews.org/

Tinn-R. They offer a better interaction between a script’s code and its execu-
tion. They also provide syntactic colouring of the code.

A Under Linux, note that the editors JGR and Emacs/ESS are available.

http://www.rstudio.com
http://www.rstudio.com
http://www.sciviews.org/Tinn-R
http://www.sciviews.org/Tinn-R

3.1 Your First Session

You can consult the list of R editors on the webpage http://www.

sciviews.org/_rgui/projects/Editors.html.

43

Do it yourself

The body mass index (BMI) is used to determine a person’s corpulence. It is

calculated using the formula

_ Weight (kg)

BMI = ————.
Height” (m)

Calculate your BMI. You simply need to type the following lines in your

script window:

You can type 2 instructions

on the same line thanks to the symbol ;
My.Weight <- 75 ; My.Height <- 1.90
My.BMI <- My.Weight/My.Height"2

My . BMI

Execute this script by using the work strategy mentioned earlier. You can

then modify this script to calculate your own BMI.

We propose a function to visualize your corpulence type. Execute the fol-

lowing instructions:
source ("http://www.biostatisticien.eu/springeR/BMI.R",
encoding="ut£f8")

display.BMI (My.BMI)

You will learn how to program this kind of result in later chapters.

3.1.4 Using Functions

We have already encountered a few functions: sin(), sqrt(), exp() and log().
The base version of R includes many other functions, and thousands of others can

be added (by installing packages or by creating them from scratch).

Note that a function in R is defined by its name and by the list of its parameters.

Most functions output a value, which can be a number, a vector, or a matrix.

\%

http://www.sciviews.org/_rgui/projects/Editors.html
http://www.sciviews.org/_rgui/projects/Editors.html

44 3 Basic Concepts and Data Organisation

Using a function (or calling or executing it) is done by typing its name followed,
in brackets, by the list of (formal) arguments to be used. Arguments are separated by
commas. Each argument can be followed by the sign = and the value to be given to
the argument. This value of the formal argument will be called effective argument,
call argument or sometimes entry argument.

We will therefore use the instruction

functionname (argl=valuel, arg2=value2,arg3=value3)

where argl, arg2, ... are calledthe arguments of the function, whereas valuel
is the value given to the argument arg1l, etc. Note that you do not necessarily need
to indicate the names of the arguments, but only the values, as long as you follow
their order.

For any R function, some arguments must be specified and others are optional
(because a default value is already given in the code of the function).

Do not forget the brackets when you call a function. A common mistake for
beginners is forgetting the brackets:

> factorial

function (x)

gamma (x + 1)

<environment: namespace:base>
> factorial (6)

[1] 720

The output to the first instruction gives the code (i.e. the recipe) of the func-
tion, whereas the second instruction executes that code. This is also true for
functions which do not require an argument, as shown in the following exam-
ple:

> date()

[1] "Wed Jan 9 16:04:32 2013"
> date

function ()

.Internal (date())
<environment: namespace:base>

Obviously, this is not the place to comment the code of these functions.

To better understand how to use arguments, take the example of the function
log(x,base=exp(1)).It can take two arguments: x and base.

The argument x must be specified: it is the number of which we wish to calculate
the logarithm. The argument base is optional, since it is followed with the symbol =
and the default value exp(1).

3.1 Your First Session 45

An argument which is not followed with the symbol = must be specified. A
parameter is optional if it is followed with =. s

In the following code, R will calculate the natural logarithm of the number 1,
since the base argument is not specified:

> log(1)
[1] o

For some functions, no argument needs to be specified, for example, \
matrix, which we shall encounter later on.

Y

One last important note is that you can call a function by playing with the
arguments in several different ways. This is an important feature of R which
makes it easier to use, and you will find it useful to understand this principle.
To calculate the natural logarithm of 3, any of the following expressions can be
used:

log(3) log(3,base=exp(1))
log(x=3) log(3,exp(1))
log(x=3,base=exp(1)) log(base=exp(1),3)
log(x=3,exp(1)) log(base=exp(1),x=3)
Note that calling

log(exp(1),3) Q

will calculate the logarithm of exp(1) in base 3.

Finally, recall that we have been able to see the code for the function
factorialQ:
> factorial
function (x)

gamma (x + 1)
<environment: namespace:base>

This function was defined by the R developers with the following instructions:
> factorial <- function(x) gamma (x+1)

It is very easy to code a new function in R, by using the function function().
For example, here is how to code a function which takes two arguments n and p and

calculates the binomial coefficient (;) = p!(’:’—ip)!:

46 3 Basic Concepts and Data Organisation

> binomial <- function(n,p) factorial(n)/(factorial(p)*
+ factorial (n-p))

You can then use this new function as any other R function:

> binomial (4, 3)
[1] 4

We shall study in much further detail how to create more elaborate functions in
Sect. 5.8 and in Chap. 8.

In fact, there already exists an R function to compute the Newton binomial
coefficient. This is the function choose() that works more efficiently, espe-
cially for big numbers.

SECTION 3.2
|7 Data in R

R, like most computer languages, can handle classical data types. R is actually able
to automatically recognize data types according to the format of the input. One of
the main strengths of R is its ability to organize data in a structured way. This will
turn out to be very useful for many statistical procedures we will study later on.

3.2.1 Data Nature (or Type, or Mode)

Data “types” can be handled using the functions mode () and typeof (), which only
differ in very subtle ways which we shall ignore.

The function class () is more general: it is used to handle both data type
and structuring. We shall study it later on. For ease of understanding, we shall
use the command typeof().

The various types (or modes) of data are now presented.

3.2.1.1 Numeric Type (numeric)

There are two numeric types: integers (integer) and real numbers (double).
If you enter

3.2 Datain R 47

Complex numbers

0 |
(3]
o
N »Z
0 _|
= »
Eoll &
=] S
Lr)_
S v
A
9%
T\
o >
e T T T T T

0.0 0.5 1.0 1.5 2.0 25

Fig. 3.2: Characteristics of a complex number

a<-1

b <- 3.4

c <- as.integer(a)
> typeof (c)

[1] "integer"

vV V. V

the variables a and b are of the type "double", and the variable c has the same
value as a, except that it has been forced to be of the type "integer". This is
useful because a vector of "integer"s takes up less memory space than a vector of
"double"s of the same length. Instructions starting with as. are very common in
R to convert data into a different type. We will see in the Sect. 3.2.2.1 how to check
that an object’s type is numeric.

3.2.1.2 § Complex Type (complex)

A complex number is created, thanks to the letter i. The functions Re() for real
part, Im() for imaginary part, Mod () for modulus and Arg() for argument can be
used (Fig.3.2).

Here are a few examples:

> 1i

[1] 0+1i

> z <- 1+2i

> typeof (z)

[1] "complex"

> is.complex(z) # To know whether an object is of the complex
type.

[1] TRUE

> Re(z)

[1] 1

48 3 Basic Concepts and Data Organisation

> Im(z)

[1] 2

> Mod (z)

[1] 2.236068
> Arg(z)

[1] 1.107149

3.2.1.3 Boolean or Logical Type (1ogical)

The type logical () is the result of a logical operation. It can take the values TRUE
or FALSE. Here are a few instructions to create logical values:

> b>a

[1] TRUE

> a==

[1] FALSE

> is.numeric(a)
[1] TRUE

> is.integer(a)
[1] FALSE

> x <- TRUE

> is.logical (x)
[1] TRUE

TRUE and FALSE can also be entered in a more condensed form by typing T
and F, respectively. But this should not be encouraged.

When needed, this data type is naturally converted to numeric without having
to specify the conversion: TRUE is worth 1 and FALSE is worth 0. The following
example illustrates this point:

> TRUE + T + FALSE*F + T*FALSE + F
[1] 2

3.2.1.4 Missing Data (NA)

A missing or undefined value is indicated by the instruction NA (for non-available).
Several functions exist to handle this data type. In fact, R considers this data type as
a constant logical value. Strictly speaking, it is therefore not a data type. Here are a
few examples which use the instruction NA:

> x <- c¢(3,NA,6)

> is.na(x)

[1] FALSE TRUE FALSE

> mean (x) # Trying to calculate the mean of x.

3.2 Datain R 49

[1] NA

> mean (x,na.rm=TRUE) # The na.rm argument means that NA’s
should be ignored (NA.remove).

[1] 4.5

This is a very important notion when it comes to reading statistical data files. We
shall examine it in further detail in Chap. 5.

Do not mistake NA for the reserved word NaN, which means not a number:

> 0/0
[1] NaN

Note also that the following instruction does not output NaN but infinity,
represented in R with the reserved word Inf.

> 3/0
[1] Inf

3.2.1.5 Character String Type (character)

Any information between quotation marks (single
character string:

or double ") corresponds to a

> a <- "R is my friend"
> mode (a)

[1] "character"

> is.character(a)

[1] TRUE

Conversions into a character string from another type are possible. Converting a
character string into another type is possible as long as R can correctly interpret the
content inside the quotations marks. Note that some conversions are done automat-
ically. Here are a few examples:

> as.character(2.3) # Conversion into a character string.
[1] "2.3"

>b <- "2.3"

> as.numeric (b) # Conversion from a character string.
[1] 2.3

> as.integer("3.4") # Conversion from a character string.
[1] 3

> c(2,"3") Automatic conversion.

[l] "2" "3"
> as.integer ("3.four")
[1] NA

Impossible conversion.

50 3 Basic Concepts and Data Organisation

The differences between single and double quotation marks are given in
Chap. 5.

3.2.1.6 T Raw Data (raw)

In R, it is possible to work directly with bytes (displayed in hexadecimal format).
This can sometimes be useful when reading certain files in binary format. We shall
see examples in Chap. 7.

> X <- as.raw(1l5)
> x

[1] Of

> mode (x)

[1] "raw"

Summary

Table 3.1: The various data types in R

Data type Type in R Display

Real number (integer or not) numeric 3.27

Complex number complex 3+2i

Logical (true/false) logical() TRUE or FALSE
Missing logical() NA

Text (string) character "text"
Binary raw 1c

The function storage.mode () get or set the type or storage mode of an
J object.

3.2.2 Data Structures

In R, you can organize (structure) the various data types defined above (Table 3.1).
The structures we are about to present can be accessed or created with the function
class() (Table 3.2).

3.2 Datain R 51

3.2.2.1 Vectors (vector)

This is the simplest data structure. It represents a sequence of data points of the
same type. A vector can be created with the function c() (for collection or con-
catenation). Other functions such as seq() or a colon : can also be used to create a
vector. Note that when creating a vector, it is possible to mix data of different types.
R will then make an implicit conversion into the more general data type, as shown
in the following example:

> c(3,1,7)
[1] 3 17
> c(3,TRUE,7)
[1] 3 17
> c(3,T,"7")
[l] "3 n "TRUE" "7"
> seq(from=0,to=1,by=0.1)
[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
> seqg(from=0, to=20,length=5)
[1] 0 5 10 15 20
> vec <- 2:36
> vec
[1] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
[20] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

The indications [1] and [20] give the rank in the vector vec of the element @
they precede. -

Note that it is possible to “name” the elements of a vector using the function
names ().

> vec <- ¢(1, 3, 6, 2, 7, 4, 8, 1, 0)

> names (vec) <- letters[1l:9] # 9 first letters of the alphabet.
> vec

abcde fghi

1362174810

> is.vector (vec)
[1] TRUE

> x <- 1:3

> x

[1] 1 2 3

>y <- c(1,2,3)
>y

[1] 1 2 3

> class(x)

[1] "integer"
> class(y)

[1] "numeric"

52 3 Basic Concepts and Data Organisation

One would actually expect to see appear "vector of doubles" or "vector
of integers" instead of "numeric" or "integer", but no software is perfect!

Note that the instructions c() and : give the same output, but that x and
.y are stored internally in different ways. The type integer uses less memory
than the type numeric.

p

3.2.2.2 Matrices (matrix) and Arrays (array)

These two notions are generalizations of the vector notion: they represent sequences
with two indices for matrices and with multiple indices for arrays. As with vectors,
elements must be of the same type, otherwise implicit conversions will occur.

The following instruction

> X <- matrix(l:12,nrow=4,ncol=3,byrow=TRUE)

> X

[,1] [,21 [,3]
[1,1]1 1 2 3
[2,1] 4 5 6
[3,1 7 8 9

[4,1 10 11 12

creates (and stores in the variable X) a matrix with four rows and three columns,
filled by row (byrow =TRUE) with the elements of the vector 1:12 (e.g., the twelve
first integers).

Similarly, a matrix can be filled by column (byrow=FALSE).

> Y <- matrix(l:12,nrow=4,ncol=3,byrow=FALSE)

> Y

[,1] [,21 [,3]
[1,1 1 5 9
[2,1] 2 6 10
[3,1 3 7 11
[4,1 4 8 12

> class (Y)
[1] "matrix"

The function array() is used to create multidimensional matrices with more
than two dimensions, as shown in the following figure (for a three-dimensional
array) (Fig.3.3):

> X <- array(1:12,dim=c(2,2,3))
> X
;s 1
[,11 [,2]
[1,1] 1 3

3.2 Datain R 53

(1.1.33‘ | | (1,5,3)

(1,1,1) (@ 15 1% D Bl I—
(4,5,3)

(4,1,1)

Fig. 3.3: Illustration of an array

[2,1 2 4
s s 2

[,11 [,2]
[1,1 5 7
[2,1 6 8
;s 3

[,11 [,2]
[1,1 9 11

[2,1] 10 12
> class (X)
[1] "array"”

Arrays with more than three dimensions can be created, thanks to the argu- Q
ment dim, which can be of length greater than 3. -

3.2.2.3 Lists (1ist)

The most flexible and richest structure in R is the list. Unlike the previous structures,
lists can group together in one structure data of different types without altering
them. Generally speaking, each element of a list can thus be a vector, a matrix, an
array or even a list. Here is a first example:

> A <- list(TRUE,-1:3,matrix(1:4,nrow=2),c(1+21i,3),

+ "A character string")
> A

@

54 3 Basic Concepts and Data Organisation

[[1]]
[1] TRUE
[r211]1
[1] -1 0o 1 2 3
[[3]]

[,1]1 [,2]
[1,] 1 3
[2,1] 2 4
[[4]]
[1] 1+2i 3+0i
[[5]]
[1] "A character string"
> class(a)
[1] "list"

In such a structure, with heterogeneous data types, element ordering is often

completely arbitrary. Elements can therefore be explicitly named, which makes the
output more user-friendly. Here is an example:

> B <- list(my.matrix=matrix(l:4,nrow=2),

+ my .complex.numbers=c(1+21i,3))
> B
Smy.matrix
[,1] [,2]
[1,] 1 3
[2,] 2 4

$my.complex.numbers

[1] 1+2i 3+0i

> listl <- list(my.complex.number=1+1li,my.logical.value=FALSE)
> list2 <- list(my.string="I am learning R",my.vector=1:2)
> C <- list("My first list"=listl,My.second.list=1ist2)

> C

$'My first list®

$'My first list‘'$my.complex.number

[1] 1+1i

S$'My first list‘'$my.logical.value

[1] FALSE

SMy.second.list

$My.second.list$my.string

[1] "I am learning R"

$My.second.list$my.vector

[1] 1 2

Naming elements will make it easier to extract elements from a list (see
Chap. 5, p. 106).

3.2 Datain R 55

3.2.2.4 The IndividualxVariable Table (data. frame)

The individualxvariable table is the quintessential structure in statistics. In R, this
notion is expressed by a data.frame. Conceptually speaking, it is a matrix with each
line corresponding to an individual and each column corresponding to a variable
measured on the individuals. Each column represents a single variable, which
must be of the same type across all individuals. The columns of the data matrix
can have names. Here is an example of a data.frame creation:

> BMI <- data.frame (Gender=c("M","F", "M", "F",6"M", "F"),

+ Height=c(1.83,1.76,1.82,1.60,1.90,1.66),
+ Weight=c(67,58,66,48,75,55),
+ row.names=c ("Jack", "Julia", "Henry", "Emma", "William", "Elsa"))
> BMI
Gender Height Weight
Jack M 1.83 67
Julia F 1.76 58
Henry M 1.82 66
Emma F 1.60 48
wWilliam M 1.90 75
Elsa F 1.66 55
> is.data.frame (BMI)
[1] TRUE
> class (BMI)
[1] "data.frame"
> str (BMI)
‘data.frame’ : 6 obs. of 3 variables:

$ Gender: Factor w/ 2 levels "F","M": 2 1 2 1 2 1
$ Height: num 1.83 1.76 1.82 1.6 1.9 1.66
$ Weight: num 67 58 66 48 75 55

The str () function enables one to display the structure of each column of \‘E,
a data.frame. :

A data.frame can be seen as a list of vectors of identical length. This is
actually how R stores a data.frame internally.

> is.list (BMI) \

[1] TRUE

56 3 Basic Concepts and Data Organisation

3.2.2.5 Factors (factor) and Ordinal Variables (ordered)

In R, character strings can be organized in a more astute way, thanks to the function
factor():

> x <- factor(c("blue","green", "blue", "red",

+ "blue", "green", "green"))
> x

[1] blue green blue red blue green green
Levels: blue green red

> levels (x)

[1] "blue" "green" "red"

> class (x)

[1] "factor"

The function cut() enables one to recode a continuous variable into a
factor.

> Poids <- c¢(55,63,83,57,75,90,73,67,58,84,87,79,48,52)
> cut (Poids, 3)
[1] (48,62] (62,76] (76,90] (48,62] (62,76] (76,90] (62,76]
[8] (62,76] (48,62] (76,90] (76,90] (76,90] (48,62] (48,62]
Levels: (48,62] (62,76] (76,90]

Factors can of course be used in a data.frame.
R indicates the different levels of the factor. The function factor () should thus be
used to store qualitative variables. For ordinal variables, the function ordered() is
better suited:

> z <- ordered(c("Small","Tall", "Average","Tall", "Average",
+ "Small","Small"),levels=c("Small", "Average","Tall"))
> class(z)

[1] "ordered" "factor"

The levels argument of the function ordered is used to specify the order of
the variable’s modalities.

Examples of uses of these two functions are given in Chap. 11, pp. 341 and
342.

3.2 Datain R 57

The function g1 () generates factors by specifying the pattern of their levels:

> gl(n = 2,k = 8,labels = c("Control", "Treat"))
[1] Control Control Control Control Control Control Control
[8] Control Treat Treat Treat Treat Treat Treat
[15] Treat Treat
Levels: Control Treat

In the above instruction, n and k are two integers, the first one giving the
number of levels and the second one the number of replications.

A vector of character strings can be organized in a more efficient way by
taking into account repeated elements. This approach allows better manage-
ment of the memory: each element of the factor or of the ordinal variable is in
fact coded as an integer.

3.2.2.6 Dates

R can be used to structure the data representing dates, using the as.Date () function
for example.

> dates <- c("92/27/02", "92/02/27", "92/01/14",

+ "92/02/28", "92/02/01")

> dates <- as.Date(dates, "%y/%m/%d")

> dates

[1] NA "1992-02-27" "1992-01-14" "1992-02-28"

[5] "1992-02-01"
> class(dates)
[1] "Date™"

We will return in detail on the functions for manipulating dates in Chap. 5.

3.2.2.7 Time Series

When data values are indexed by time, it may be useful, using the ts () function, to
organize them into an R structure that reflects the temporal aspect of these data.

> ts(1:10, frequency = 4, start = c(1959, 2)) # 2nd Quarter of

1959.
Qtrl Qtr2 Qtr3 Qtr4
1959 1 2 3
1960 4 5 6 7

1961 8 9 10

\ﬁ\

58 3 Basic Concepts and Data Organisation

The reader may consult with profit the book [40] which outlines the basic
techniques for modelling time series, present the R functions to use for these

models and give applications of these functions on several real data sets.

Summary

Table 3.2: The various data structures in R

Data structure

Instruction in R

Description

Vector

Matrix

Multidimensional table

List

Individual X variable table

Factor

Dates
Time series

cO

matrix()

array()

listQO

data.frame()

factor(), ordered()

as.Date()
tsQ

Sequence of elements of the
same nature

Two-dimensional table of
elements of the same
nature

More general than a matrix;
table with several
dimensions

Sequence of R structures of
any (and possibly
different) nature

Two-dimensional table
where a row represents
an individual and a
column represents a
variable (numerical or
factor). The columns can
be of different natures,
but must have the same
length

Vector of character strings
associated with a
modality table

Vector of dates

Time series, containing the
values of a variable
observed at several time
points

Exercises

<-, ->:variable assignment arrows

Memorandum

mode(), typeof(): gives the nature of an object

is.numeric(): determine whether an object is numerical

TRUE, FALSE, is.logical(): True, False, determine whether an object is a Boolean
is.character(): determine whether an object is a character string

NA, is.na(): missing value, determine whether a value is missing

class(): determine the structure of an object

c(): create a sequence of elements of the same nature
matrix(), array(): create a matrix, a multidimensional table
list(): create alist (collection of different structures)

data.frame(): create an individual X variable table

factor(): create a factor

ES

59

Exercises

3.1-
3.2-
3.3-
34-
3.5-

3.6-
3.7-
3.8-
3.9-
3.10-
3.11-

3.12-
3.13-
3.14-

3.15-

What is the output of this instruction: 1:372 ?

What is the output of this instruction: (1:5)%*2 ?

What is the output of these instructions: var<-3? Var*2?

What is the output of these instructions: x<-2? 2x<-2%*x7?

What is the output of these instructions: root.of. four <- sqrt(4)?

root.of. four?

What is the output of these instructions: x<-1? x< -17

What is the output of this instruction: An even number <- 167?
What is the output of this instruction: "An even number" <- 167
What is the output of this instruction: "2x" <- 14?

What is the output of this instruction: An even number?

Two symbols have been removed from this R output. What are they?

> 2
+
[1] 6

What is the output of this instruction: TRUE + T +FALSE*F + T*FALSE +F?
Name the five data types in R.

Give the R instruction which gives the following output:

> X

[,11 [,2]
[1,1 1 5
[2,1] 2 6
[3,1 3 7
[4,1]1 4 8

Name the data structures (classes) available in R.

[,31
9

10
11
12

60 3 Basic Concepts and Data Organisation

Worksheet

Study of Body Mass Index

We wish to analyze the characteristics of a sample of children. These children went
through a medical examination in their first year of kindergarten in 1996-1997 in
schools in Bordeaux (South West France). The sample below contains information
on ten children between the ages of 3 and 4.

The following information is available for each child:

gender: G for girls and B for boys;

whether their school is in a ZEP (zone d’éducation prioritaire: area targeted
for special help in education, recognized as socially deprived): Y for yes and
N for no;

age in years and months (two variables: one for years and one for months);
weight in kg, rounded to the nearest 100 g;

Height in cm, rounded to the nearest 0.5 cm.

Name Edward Cynthia Eugene Elizabeth Patrick John Albert Lawrence Joseph Leo

Gender G G B G B B B B B B
ZEP Y Y Y Y N Y N Y Y Y
Weight 16 14 13.5 154 16.5 16 17 14.8 17 16.7
Years 3 3 3 4 3 4 3 3 4 3
Months 5 10 5 0 8 0 11 9 1 3
Height 100.0 97.0 95.5 101.0 100.0 98.5 103.0 98.0 101.5 100.0

In statistics, it is of the utmost importance to know the type of the variables under
study: qualitative, ordinal or quantitative. These types can be specified in R, thanks
to the structure functions we introduced earlier in this chapter.

Try the following manipulations under R. Remember to use the work strategy we
presented at the beginning of the chapter.

3.1- Choose the best R function to save the data from each variable in vectors
which you will call Individuals, Weight, Height and Gender.

3.2- Where possible, calculate the mean of the variables.

3.3- Calculate the BMI of the individuals. Group the results in a vector called BMI
(be careful of the units).

Worksheet 61

3.4- Group these variables in the R structure which seems most appropriate.

3.5- Use R’s online help to get information on the plot () function.

3.6- Make a scatter plot of Weight as a function of Height. Remember to add a
title to your graph and to label your axes.

Chapter 4
Importing, Exporting and Producing Data

Prerequisites and goals of this chapter

e Chapter 3.

e This chapter describes the instructions to enter data in R. It presents the various
possibilities R offers to import or export data, to and from software as different
as Excel, SPSS, Minitab, SAS or Matlab. It also shows how to interact with
databases (SQL queries). You may benefit from reading the (very complete)
manual http://cran.r-project.org/doc/manuals/R-data.pdf.

SECTION 4.1
|7 Importing Data

4.1.1 Importing Data from an ASCII Text File

Either your data are already available in a text file in the ASCII format or you can
enter them by hand using a text editor such as Wordpad under Microsoft Windows
or Emacs under Linux.

Entering data by hand can be done for a small number of values. If you are
dealing with large amounts of data, it is more convenient to use a spreadsheet
(see the next section).

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming 63
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3_4,
© Springer Science+Business Media New York 2013

http://cran.r-project.org/doc/manuals/R-data.pdf

64 4 Importing, Exporting and Producing Data

The three main R functions to import data from a text file are presented in the
following table (Table 4.1).

Table 4.1: Data importation functions

Function name Description

read.table() Best suited for data sets presented as tables, as it is often the case in statistics
read.ftable() Reads contingency tables

scan() Much more flexible and powerful. Use this in all other cases

4.1.1.1 Reading Data with read.table()

The following R instruction will read the data present in a file (to be chosen in a
dialogue window) and import them into R as a data.frame which we have chosen to
callmy.data.

my.data <- read.table(file=file.choose(),header=TRUE, sep="\t",
dec=".",row.names=1)

The function read.table() accepts many arguments; the most common are
described in the following table (Table 4.2).

Table 4.2: Main arguments to read. table()

Argument name Description

file=path/to/file Location and name of the file to be read

header=TRUE Logical value indicating whether the variable names are given on the first
line of the file

sep="\t" The values on each line are separated by this character ("\t"=Tab
character; ""=whitespace; ", "=,; etc.)

dec="." Decimal mark for numbers ("." or ",")

row.names=1 The first column of the file gives the individuals’ names. If this is not the

case, simply omit this argument

When using the function read.table(), you will need to specify the value of
the argument file which must contain, in a character string, the name of the file
and possibly its complete path. You might have noticed that we used the function
file.choose(), which opens up a dialogue window to select a file and returns the
required character string. This is an easy method to get the path to a file, but the path
can also be specified explicitly:

my.data <- read.table(file="C:/MyFolder/data.txt")

4.1 Importing Data 65

Note that file paths are specified using slashes (/). This notation comes from
the UNIX environment. In R, you cannot use backslashes (\), as you would in
Microsoft Windows, unless you double all the backslashes (\\).

Another option is using the function setwd() to change the work directory
(equivalent to using the menu “File/Change current directory”). The argument file
will then accept the file name alone, without its path.
setwd ("C: /MyFolder")

my.file <- "mydata.txt"
data <- read.table(file=my.file)

Your data are now available in the R console: they are stored in the object which
you have chosen to call data. You can visualize them by typing data; you can also
type head(data) or tail(data) to display only the beginning or the end of the
data set.

e The function attach() (see Chap.9) gives direct access to the variables
(columns) of a data.frame by typing the name of a variable as it is written
on the first line of the file in ASCII format (assuming this is the case).

attach(data)

o If your file contains completely empty lines, or incomplete lines, use the
two arguments £il1=TRUE and blank.lines.skip=FALSE.

66

Do it yourself

4 Importing, Exporting and Producing Data

Create a folder called DataFolder. Now download the file http://www.
biostatisticien.eu/springeR/Intima_Media_Thickness.txt and
save it in the folder DataFolder.

Use the function readLines () to visualize the beginning of the data file, to
get an idea of how it is structured and thus to determine which arguments of
the function read.table() you will need.

setwd ("path/to/DataFolder/")

Replace path/to/ with your
path.

readLines ("Intima Media Thickness.txt",n=5)

You will get the following output:

[1] "GENDER

[2]
[31
[4]
[5]

"1l 33
"2 33
"2 53
"2 42

AGE height weight tobacco packyear SPORT measure alcohol”

170
177
164
169

701 1 0 0,52 1"
67 2 20 0 0,42 1"
63 1 30 0 0,65 0"
76 1 26 1 0,48 1"

You will notice that the first line gives the variables names. Fields are sep-
arated by simple whitespace, and the decimal mark is a comma. Therefore,

you need to use the arguments header=TRUE, sep=

and dec=",".

mydata <- read.table("Intima Media Thickness.txt",sep=" ",
header=TRUE, dec=",")

mydata
head (mydata)

To display the content of mydata.
Only displays the first few rows
of the data.frame.

Note that some data points are missing, as indicated by the symbol NA.

Let us now verify the structure of the object mydata and the types of its
columns:

class (mydata)
str (mydata)

The function attach() is used to enable a direct access to the variables of
the table.

attach (mydata)

The command names (mydata) outputs variable names. You can use these
to make calculations with the variables, for example,

mean (AGE)

var (taille)

Mean of age.

Variance of the heights.

Note that case (upper/lower) is important.

http://www.biostatisticien.eu/springeR/Intima_Media_Thickness.txt
http://www.biostatisticien.eu/springeR/Intima_Media_Thickness.txt

4.1 Importing Data 67

The function read.table() takes many arguments. However, since many data
sets come in a standard format, a few functions exist to read these easily. Such
functions are in fact equivalent to calling read.table() with some arguments
filled in by default.

For example, if you have a file in the .csv format (csv stands for comma-
separated values), created for example using OpenOffice’s spreadsheet, you can
also use the following function:

read.csv(file.choose()) # To read comma-separated data
(with a . as decimal mark).
read.csv2 (file.choose()) # To read semi-colon-separated data
(with a , as decimal mark).

To read Tab-separated data, it is better to use

read.delim(file.choose()) # (with a . as decimal mark).
read.delim2 (file.choose())# (with a , as decimal mark).

4.1.1.2 Reading Data with read. ftable()

Sometimes, individual data are not available: instead, we only have a contingency
table. In this case, the relevant import function is read. ftable().

For instance, suppose that the contents of the file Intima_ftable.txt come in the
following form:

"alcohol" "nondrinker" "occasional drinker" "regular drinker"
"GENDER" "tobacco"

"M "non-smoker" 6 19 7
"former smoker" 0 9 0
"smoker" 1 6 5

"F" "non-smoker" 12 26 2
"former smoker" 3 5 1
"smoker" 1 6 1

The following functions can be used to read and display these data in R:

Intima.table <- read.ftable("Intima ftable.txt",row.var.names
=c ("GENDER", "tobacco") ,col.vars=1list("alcohol"=
c ("nondrinker", "occasional drinker",
"regular drinker")))
ftable (Intima.table)

The output will then be

alcohol nondrinker occasional drinker regular drinker
GENDER tobacco

M non-smoker 6 19 7
former smoker 0 9 0
smoker 1 6 5

F non-smoker 12 26 2
former smoker 3 5 1
smoker 1 6 1

68 4 Importing, Exporting and Producing Data

We shall present a descriptive analysis of this type of data in Chap. 11,
pp- 345, 352 and 371. Note that standard statistical tests on contingency tables
are possible, such as the chi-squared independence test presented in Chap. 13,
p- 435. You may also be interested in the article http://www.jstatsoft.
org/v17/i03/paper which presents several tools to analyse such data.

4.1.1.3 Reading Data with the Function scan()

The function scan() takes many arguments. It is useful when the data are
not organized as a rectangular table. We recommend you read the documenta-
tion help(scan).

For example, suppose your data file, called Intima_Media2.txt, contains the
following lines:

File description:

The individual data are registered for nine variables
in the following order:
GENDER AGE height weight tobacco packyear SPORT measure alcohol

133170701 100,52 12 33 177 67 2 20 0 0,42 1
2 53 164 63 1 30 0 0,65 0 2 42 169
76 1 26 1 0,48 1

Here are the commands we suggest you use to read this file. The argument
skip=n is used to omit reading the first n lines of the file.

Reading variable names:

variable.names <- scan("Intima Media2.txt",skip=4,nlines=1,what="")
Reading data:

data <- scan("Intima Media2.txt",skip=7,dec=",")

mytable <- as.data.frame (matrix(data,ncol=9,byrow=TRUE))

colnames (mytable) <- variable.names

Here is the output of variable mytable:

GENDER AGE height weight tobacco packyear SPORT measure alcohol

1 1 33 170 70 1 1 0 0.52 1
2 2 33 177 67 2 20 0 0.42 1
3 2 53 164 63 1 30 0 0.65 0
4 2 42 169 76 1 26 1 0.48 1

http://www.jstatsoft.org/v17/i03/paper
http://www.jstatsoft.org/v17/i03/paper

4.1 Importing Data 69

Note that the functions read. table () and scan() can also be used to read
online ASCII files directly from the Internet.

read.table ("http://www.biostatisticien.eu/springeR/
temperature.dat")

4.1.2 Importing Data from Excel or the Open Office Spreadsheet

4.1.2.1 Copy-Pasting

Using the mouse, select the range of the data (in the spreadsheet) which you wish to
incorporate into R. Once the data are selected, copy them to the clipboard (from the
Edit menu, or with the keyboard shortcuts CTRL+C on Windows or COMMAND+C on a
Mac).

All you need to do now is type the following instructions in the R console to
transfer the data from the clipboard:

x <- read.table(file("clipboard"),sep="\t",header=TRUE, dec=",")

The instruction £ix (x) opens a small spreadsheetin R, which can be used to
visualize and edit the data stored in x. It is more useful than the command edit,
which only allows modifications. Similarly, the function View() displays the
data in a small spreadsheet, but cannot be used to edit them.

Be aware that the Excel file might include formulae or other hidden char-
acters in the data range which you wish to copy. A possible workaround is to
first copy and then do a special paste of this data range in a new sheet of the
Excel file. You can then use the function read.table () on this new sheet, as
indicated above.

é

70 4 Importing, Exporting and Producing Data

4.1.2.2 Using an Intermediary ASCII File

Save your file in an ASCII format, then refer to the previous section.

e Under Excel, go to File / Save as ... and choose Data type:
Text (tab-separated) (*.txt) (*.txt),then save.

e Under OpenOffice, go to File / Save as ... and choose File type: CSV
text (.csv; .txt), then save.
In the next window, choose:

— field separator: Tab
— text separator: "

then click OK.

4.1.2.3 Using Specialized Packages

A few packages exist to read .x1s files directly in R. One function worth mention-
ing is read. x1s() from the package gdata, which works very well, as long as your
computer has PERL installed (this free software can be obtained by installing the file
http://www.biostatisticien.eu/springeR/Rtools29.exe). You can also
use the package x1sReadlirite.

4.1.3 Importing Data from SPSS, Minitab, SAS or Matlab

The following table gives the packages and R functions you can use to import data
from common proprietary software (Table 4.3).

The function lookup . xport () outputs (as a list) information on the SAS library
of a SAS XPORT file (extension *.xpt).

First, note that if you use Windows, the package foreign is pre-installed
(but not loaded) in R and that you cannot install another version from the
CRAN (only Linux and Mac versions are available).

Also note the following caveats. The function read. spss () can require the
argument reencode="utf8" under Linux. The function read.mtp() works
on files containing only numeric data. At the time of writing, the function
read.xport () cannot be used to read files directly from the Internet.

http://www.biostatisticien.eu/springeR/Rtools29.exe

4.1 Importing Data 71

Table 4.3: Packages and R importation functions from common software

Software Package R function File extension Output format
SPSS foreign read.spss() *. sav list
Minitab foreign read.mtp() *.mtp list
SAS foreign read.xport() *.xXpt data. frame
Matlab R.matlab readMat () * . mat list

4.1.4 Large Data Files

R can handle large data sets. For this, you need to specify explicitly the type of
each column. If you do not, R will have to read the entire file to check that numeric
columns are indeed numeric (it could be the case that a column contain numbers at
the beginning, then character strings later on). The following example illustrates this
point with genomic data, well known for their large size. You will need to down-
load the 50MB file http://www.biostatisticien.eu/springeR/dbsnpl23.
dat to your computer, then try the instructions below.

Be careful that if you issue the commands below, this may freeze your R ﬁ'}
session for a few minutes. -

tm <- Sys.time() # Gets the current time.
dbsnp <- read.table("dbsnpl23.dat")
Sys.time () -tm

Time difference of 5.063645 mins

tm <- Sys.time ()

dbsnp <- read.table("dbsnpl23.dat",colClasses=rep ("character",3))
Sys.time() -tm

Time difference of 13.75810 secs

Very big data sets can thus be handled by R relatively quickly, when the correct
instructions are given. The main limit is how much RAM you have available. Note
also that using the function scan() instead of read.table() in the previous
example would give similar execution times.

Large data sets are sometimes stored in binary format. In that case, the function
readBin() can be used to read the data. We shall see an example in the practical of
Chap. 7.

If R displays a message indicating a failure of memory, you could consult (¢
with profit Sect. 9.8.

http://www.biostatisticien.eu/springeR/dbsnp123.dat
http://www.biostatisticien.eu/springeR/dbsnp123.dat

72 4 Importing, Exporting and Producing Data

If the function scan() is used correctly, a text file can be read very quickly
(as quickly as with the SAS software, for example).

If your file is really big, you should consider storing your data in a data
base (e.g., MySQL) and accessing them piece by piece. See Sect. 4.4 for more
details.

Also note that a few packages exist to handle large data sets, such as R. huge
and filehash. The latter is more general than the former: with the filehash
package, the limit to the size of data which can be handled is the size of the
hard disk.

SECTION 4.2

Exporting Data

4.2.1 Exporting Data to an ASCII Text File

The relevant function is write.table().

Suppose you have a data.frame called mydata, containing data that you wish to
save in a text file. You would then use the instruction:

write.table (mydata, file = "myfile.txt", sep = "\t")

There also exists a function write (), which is used on vectors and matrices.
This function has an interesting argument: ncolumns allows you to specify the
number of columns in the resulting file. Note however that the file will contain
the transpose of the matrix or vector you are writing.

4.2.2 Exporting Data to Excel or OpenOlffice Calc

For example, type the following instructions in the R console:

X <- data.frame (Weight=c(80,90,75),Height=c(182,190,160))
write.table(X,file("clipboard"), sep="\t",dec=",", row.names=FALSE)

4.3 Creating Data 73

The data have now been copied to the clipboard. You can now paste them in your
spreadsheet, for example, by typing CTRL+V.

You can also use the package x1sReadWrite (only under Windows).

SECTION 4.3

Creating Data

4.3.1 Entering Toy Data

This section shows how you can quickly create some data. This is useful when you
need to test various R functions on small data sets.

The main functions are c(), seq(), : () and rep():

e The function c () is used to create a vector by concatenating its arguments:

> ¢(1,5,8,2.3)
[1] 1.0 5.0 8.0 2.3

e The function seq() generates a sequence of values as a vector.

> seq(from=4, to=5)
[1] 4 5
> seq(from=4,to=5,by=0.1)
[1] 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
> seqg(from=4, to=5,length=8)
[1] 4.000000 4.142857 4.285714 4.428571 4.571429 4.714286
[7] 4.857143 5.000000

The functions c() and rep () can also be used to create character strings. -

e The function ": " () generates a sequence of integers.

> 1:12
[1] 1 2 3 4 5 6 7 8 9 10 11 12

e The function rep () replicates the values of its first argument in several smart
ways. We leave it to the sagacity of the reader to understand all the following in-
structions:
> rep(1,4)

[1] 1111
> rep(l:4, 2)
[1] 1 2 3 4123 4

74 4 Importing, Exporting and Producing Data

> rep(l:4, each = 2)
[1] 1 1 2 2 3 3 4 4
> rep(l:4, c(2,1,2,3))
[1] 1 1 2 3 3 4 4 4
> rep(l:4, each = 2, len = 4)
[1] 11 2 2
> rep(l:4, each = 2, len = 10)
[1] 1 1 2 2 3 3 4 4 11
> rep(l:4, each = 2, times = 3)
[1] 1 1 2 2 3 3 4 4112233441122 3344

4.3.2 Generating Pseudo-Random Numbers

The function runif() generates a sequence of randomly generated numbers
(at uniform).

> runif (5)

[1] 0.4344968 0.7153407 0.4561363 0.9580362 0.7260245
> runif (5,min=2,max=7)

[1] 5.634204 4.046403 5.415685 5.251441 2.209174

The function rnorm() generates a sequence of random numbers from a normal
distribution.

> rnorm(5)

[1] 0.13585341 -0.09483162 -2.12326103 0.45974393 1.29587671
> rnorm(5,mean=2, sd=3)
[1] -0.8673785 3.5660222 0.9401026 3.4794672 4.2175481

We shall encounter many other similar functions in Chap. 12, p. 405. '

4.3.3 Entering Data from a Hard Copy

¢ Creating a vector with the function scan()

In this context, scan() is more user-friendly than c(). It can be used to easily
enter data as you go.

> z <
1: 4
2: 5
3: 8.
1
2

scan() # R is waiting for you to enter data.

4:

5:

6: # Press ENTER after an empty line
to halt the procedure.

4.3 Creating Data 75

Read 5 items
> z
[1] 4.2 5.6 8.9 1.0 2.3

¢ Creating several vectors of different lengths

The function data.entry() is useful for this purpose. This function does not
output anything. The variables you enter by hand are stored in the small spreadsheet
which is displayed.

The following instruction (which is explained later on)
can be used to delete all the objects in the session.
rm(list=1s())

data.entry("")

You can now change the names of the variables (columns) and enter data. Columns
can contain different numbers of observations. If you leave the mini spreadsheet and
type in the instruction 1s (), you will see the variables you have created.

The way this function works can vary on different operating systems.

¢ Creating an individualxvariables table

To enter data directly into R’s mini spreadsheet (as if using Excel), simply use
the function de () (for data entry), as shown in the following instruction.

X <- as.data.frame(de(""))

Remember to change the names of the variables, as well as the types of the
columns (numeric or character), by clicking on the cells on the first row of
the table (the row with the variable names). Once you have finished entering
your data, you need to close that window to return to the R console.

If you need to make small modifications to your data table X, simply use the
function £fix(): fix(X).

The following (optional) function is used to name the rows of X:

rownames (X) <- paste("ind",l:nrow(X), sep="")

The names of the individuals will then appear in the first column of the mini
spreadsheet (called row.names).

=

76 4 Importing, Exporting and Producing Data

SECTION 4.4
|7 T Reading/Writing in Databases

R is capable of communicating with most database management systems (DBMS).
In this section, we briefly look at the main operations for the DBMS MySQL.

EasyPHP is an environment with two servers (an Apache web server and a
MySQL database server), a script interpreter (PHP) and an SQL administration tool
(phpMyAdmin). Download, install and run the latest version of EasyPHP (http://
Www.easyphp.org).

You may need to configure your firewall so that it allows services started by
EasyPHP (mysqld and Apache).

4.4.1 Creating a Database and a Table

Start EasyPHP and right-click on the icon Ek on the right side of the task bar (you
may need to check on the small white triangle Show hidden icons), then select
Administration. Your web browser should then open (if it does not, try using the
browser firefox and configuring Apach by right-clicking on the EasyPHP icon
and then Configuration: Listen 127.0.0.1:80). On the page that opens up,
check on the open button in section MODULES to get to the phpMyAdmin admin-
istration page. Then click on the tab Databases and create a new database called
BMI. Click on the icon Create table which appears in the left panel.

Then give a name to the table: mytable.

Define four fields for your table (one per line), and fill them as follows:

Name = FirstName, Type = VARCHAR and Length/Values = 20;
Name = Weight, Type = FLOAT and Length/Values = 3;

Name = Height, Type = FLOAT and Length/Values = 3;

Name = BMI, Type = FLOAT and Length/Values = 5.

Click on Save.

4.4.2 Creating a Data Source Compatible with MySQL

The functions odbcConnect(), sqlQuery() and odbcClose() from package
RODBC are useful to handle databases from different systems (PostgreSql, MySQL,

http://www.easyphp.org
http://www.easyphp.org

4.4 T Reading/Writing in Databases 77

etc.) through R, thanks to an ODBC (open database connectivity) link created with
an existing database. Under Windows, here is how you create an ODBC data source
compatible with MySQL.

First install MyODBC (MySQL Connector/ODBC) (http://dev.mysql.com/
downloads/connector/odbc). Next, in order to display the window data source
(ODBC), you will have to execute the file C:\Windows\System32\odbcad32.
exe.

For a 64-bit computer, you may need to use file C:\Windows
\Syswow64\odbcad32.exe.

Click on Add and select entry MySQL ODBC 5.1 Driver. In the windows which
opens up, enter the following fields:
Data Source Name: dsnBMI
TCP/IP Server: 127.0.0.1 Port: 3306
User: root
Database: BMI

Then click on button Test. The message Connection successful should appear
if everything happened correctly. Then click on OK (twice) to close the dialogue
boxes.

= CDBC Data Source Administrator x4

[userDSN | Sysem DS [F DS | Davers | Tracng | Conmecon Posing [About |

User Data Sources:
Cennection successiul IT]
| dsnIMC MySQL ODBC 5.1 - L — L
| Create New Data Source W
|
Selact a driver for which you want 1o sel up a data source.
MySQL Connector/ODEC Data Source Configuration Homo, Version Company
- 5011100 OracleCog
Y - SQL Server 6.01.7600.16385 Microsch C
MySal s
Connector/ODBC X
Cornection Parameters.
Data Source Name: G8nIMC - ;
Description:
© TCPIP Server: 127.0.0.1 Port: 3306
e s [) (G)
User: root
Password:
Database: TH - Test
Detais >> [Lox J[conce |[neo |

http://dev.mysql.com/downloads/connector/odbc
http://dev.mysql.com/downloads/connector/odbc

78 4 Importing, Exporting and Producing Data

We have thus configured an ODBC link which will allow R to communicate with
MySQL.

Check that the file /etc/odbcinst.ini includes references to the
drivers of the MySQL database. You also need to modify (as root) the file
/etc/odbc. ini so that it includes the following lines:

[dsnBMI] # name of the data source.
& Description =

Driver = MySQL

Server = localhost

Database = BMI

C e

Port = 3306

4.4.3 Writing in a Table

We shall now write information in table mytable of base BMI. The following in-
structions are used to add the weight, height and BMI (temporarily set at 0) for an
individual named Peter:

require ("RODBC")

Connection <- odbcConnect (dsn="dsnBMI",uid="root",pwd="")
request <- "INSERT INTO mytable VALUES ('Peter',72,182,0)"
result <- sqglQuery(Connection, request)

odbcClose (Connection)

V V V VYV

Here is now a multiple insertion example:

FirstNames <- c("Ben","John")
Weight <- ¢(70,75)
Height <- c¢(190,184)
BMI <- round(Weight/ (Height/100) "2,3)
mat <- cbind(FirstNames,Weight,Height, BMI)
insertmult <- function(vect)
paste (" (", toString(c (encodeString(vect[1l],quote=""'"),
vect[-1])),")",sep="")
tobeinserted <- toString(apply(mat,l,insertmult))
tobeinserted
1] "('Ben', 70, 190, 19.391), ('John', 75, 184, 22.153)"
require ("RODBC")
Connection <- odbcConnect (dsn="dsnBMI",uid="root",pwd="")
request <- paste ("INSERT INTO mytable (FirstName,Weight,
Height, BMI) VALUES ", tobeinserted, sep="")
result <- sqglQuery(Connection, request)
odbcClose (Connection)

VV+VVV~—~=VV+ +VVVVVYV

4.4 T Reading/Writing in Databases 79

You can return to phpMyAdmin to check that the table mytable has indeed (%
been modified (tab Browse). J/

4.4.4 Reading a Table

To read from R information in the table mytable, you can use the following
instructions:

> require ("RODBC")
> Connection <- odbcConnect (dsn="dsnBMI",uid="root",pwd="")
> request <- "SELECT * FROM mytable"
> data <- sgqlQuery(Connection,request)
> odbcClose (Connection)
> data
FirstName Weight Height BMI
1 Peter 72 182 0.000
2 Ben 70 190 19.391

3 John 75 184 22.153

80

4 Importing, Exporting and Producing Data

Memorandum

read.table(): read a rectangular data file

scan(): read data line by line

read. ftable(): read a contingency table

ftable(): display a contingency table

readLines(): read and display a few lines of a file

file.choose(): open a dialogue window to select a file

file, header, sep, dec, row.names, skip: main arguments of read.table()
read.spss(), read.mtp(), read. xport (), readMat (): import data from other software
write.table(): write a data file

file("clipboard"): copy from or paste to the clipboard

c(): create a sequence of elements of the same nature

seq(): create a sequence of numbers or a character string

rep(): repeat the values of the first argument

de(), data.entry(): enter data using a mini spreadsheet

fix(): modify a data.frame or a matrix in a mini spreadsheet

ES

Exercises

4.1-
4.2-

4.3-
44-
4.5-

4.6-
4.7-
4.8-
4.9-
4.10-
4.11-

4.12-
4.13-

4.14-

Name the three main R functions to import data from an ASCII text file.

One of the usual data reading functions takes the following arguments:
header, sep, dec, row.names, skip, nrows. Explain their purpose. Give
an example of a value each argument can take.

What is the purpose of the function readLines()?

What is the purpose of the function £ix()?

Give the specificities of the functions read.csv(), read.csv2(),
read.delim() and read.delim2().

What is the purpose of the function read. ftable() ?

What is the difference between the functions scan() and read. table()?
Explain how you would import data from an Excel spreadsheet. Give details.
Which package includes several functions to import data from commercial
statistical software?

When reading a large data file, which argument to the function
read.table() can speed up the reading?

Which R function should be used to write to a file a data set contained in a
data.frame? Which other function do you know?

Name the four basic functions to create a vector.

Explain how the function seq() can be used to get the following vector:
[111.01.11.21.31.41.51.61.71.81.92.0

Give the shortest R instruction which outputs the following vector:

112233

Worksheet 81
4.15- Give the shortest R instruction which outputs the following vector:
123123

4.16- Name two R functions which can be used to enter data by hand in a mini
spreadsheet.

——
Worksheet

Reading Various Data Sets
A- Entering Data from a Hard Copy

e Cold sore: A total of 30 patients have been randomly assigned to one of five
treatments against cold sore, including one placebo (there are six patients in each
treatment group). For each patient, the number of days between the apparition of the
first blisters and complete healing has been recorded.

Treatments
trtl (placebo) trt2 trt3 trt4 trt5
5 4 6 7 9
8 6 4 4 3
7 6 4 6 5
7 3 5 6 7
10 5 4 3 7
8 6 3 5 6

We would like to know whether there is a difference between the treatments
by comparing the mean healing time in each independent random sample (treat-
ment group). The relevant statistical method is called ANOVA; we shall present it
in Chap. 15. In this practical, we shall simply see how to enter these data in R to
compute the sample mean for each treatment.

4.1- Enter the data in R directly, using the function de ().

4.2- Use the function attach() and then the function mean () to compute the mean
for each treatment.

4.3- Compute the means of all treatments simultaneously, thanks to the function
colMeans ().

4.4- Use the function write.table() to save your data.frame in a file called blis-
ters.ixt.

4.5- Open your file in a text editor and check that there was no problem.

4.6- Use the function rm() to delete all the R objects you have created in your work
environment.

4.7- Import the file blisters.txt with the function read.table() and display the
data.

82 4 Importing, Exporting and Producing Data

e Risk factors for atherosclerosis: As part of a study on risk factors for atheroscle-
rosis, data were collected and are summed up in this contingency table:

alcohol nondrinker occasional-drinker regular-drinker

GENDER tobacco
M non-smoker

former smoker

smoker
F non-smoker 1

former smoker

smoker

HFWMbDKFEOO
FEMDUOS

It would be interesting to know whether there is a dependence between smoking and
drinking, according to gender. To enter these data in R, there are several steps:

4.1- Use the function scan() to get a matrix X of size 6x3. This matrix will contain
the data only.

4.2- Use the instruction class(X) <- "ftable" to specify that it is a contin-
gency table.

4.3- Type the two instructions:

attributes (X) $col.vars <- list (alcohol=c ("nondrinker",
"occasional-drinker", "regular-drinker"))
attributes (X) $row.vars <- list (GENDER=c ("M","F"),b tobacco=
c("non-smoker", "former smoker", "smoker"))

4.4- Display the contingency table you have created.

4.5- Use the function write.ftable() to save the contingency table in a file
called athero.txt.

4.6- Open the file in a text editor and check that there was no problem.

4.7- Use the function rm() to delete all the R objects you have created in your work
environment.

4.8- Import the file athero.txt with the function read.table() and display the
data.

B- Importing from Other Software

During a study of BMI (body mass index) of children, a team of statisticians
collected data in different formats. As an exercise, we are going to read these various
formats. There are several files called bmichild, but with different file extensions:

4.1- Import the file bmichild.xls into a data.frame called bmi . XLS.

4.2- Import the file bmichild.xpt into a data.frame called bmi . SAS.

4.3- Import the file bmichild.sav into a data.frame called bmi . SPSS.

4.4- Import the file bmichild.mat into a data.frame called bmi .MAT. The procedure
is trickier for this file, so here are detailed instructions:

X <- readMat ("bmichild.mat")

class(x) # x is a list

x # you can see that the data are in $bmil[,,1]
x <- x$bmil[,,1]

Note that the elements of GENDER and zep

Worksheet 83

are recorded in a list.

X$GENDER

class (x$GENDER) <- "character"
X$GENDER

class (x$zep) <- "character"

bmi.MAT <- as.data.frame (x)

4.5- To check that there was no problem during importation, use the function
summary () on all these data.frames. This will display a few numerical sum-
maries.

4.6- All these data.frames are identical. Save one of them in a file called
bmichild.txt.

C- Importing More Complex Data Files

Statisticians often encounter data files in non-standard formats. This section
therefore provides training in reading several non-standard files on which we wish
to perform statistical analysis.

4.1- Import the file raf98.gra into the most relevant structure. To this end, you will
need to read the associated file geoidformat.txt which describes the file format.

4.2- Import the file Infarction.xIs into a data.frame. Make sure you handle missing
values correctly.

4.3- The file nutrition_elderly.txt contains 13 variables measured on 226 indi-
viduals. Import the file into a data.frame (hint: use the functions t() and
as.data.frame()).

4.4- The file Birth_weight.ixt contains ten variables measured on 189 individuals.
Import it into a data.frame, which will contain the names of the variables as
well as the names of the individuals (these are available in the column Id).
Remember that you can use the online help!

Chapter 5
Data Manipulation, Functions

Prerequisites and goals

e First, read Chaps. 3 and 4.

o In this chapter, we shall present elementary data manipulation functions. We
shall also describe the main control structures and show how to use the extrac-
tion tool of the components of an object. This is a very powerful method, which
you will need in order to use R in the most efficient way. We shall present direct
extraction and extraction by logical mask. We shall also explain how to handle
character strings and dates in R.

SECTION 5.1
(Operations on Vectors, Matrices and Lists

5.1.1 Vector Arithmetic

One of the advantages of R is that it can operate on vectors and matrices. For exam-
ple, the third instruction below

> x <- c(1,2,4,6,3)
>y <- c(4,7,8,1,1)
> x4y

[1] 5 912 7 4

returns, in a single operation, the vector of sums (x1 + y1,...,Xn + Vn).

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming 85
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3_5,
© Springer Science+Business Media New York 2013

86 5 Data Manipulation, Functions

This is one of the main strengths of R. It is called vectorization. You
ﬂ} should get used to working in this fashion. Thus, you should avoid using

programming loops, as is often done in other languages: such code would
run much slower.

R operates in a similar fashion for many functions, such as +, *, -, /, exp,
log, sin, cos, tan, sqrt and so on.

For example, the following instruction calculates the exponential of all the ele-
ments of the matrix M:

> M <- matrix(1l:9,nrow=3)
> exp (M)

[,1] [,2] [,3]
[1,] 2.718282 54.59815 1096.633
[2,] 7.389056 148.41316 2980.958
[3,] 20.085537 403.42879 8103.084

5.1.2 Recycling

At this stage, it is important to note how R behaves when given an operation on two
vectors of different lengths. R will complete the shortest vector, reusing the values
of this vector. The following example should help understand this concept:

>x <- c¢(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) # Vector of length

15.

>y <- c(1,2,3,4,5,6,7,8,9,10) # Vector of length
10.

> X+y # Vector of length
15.

[1] 2 4 6 8 10 12 14 16 18 20 12 14 16 18 20

R has completed the vector y thus c(1,2,3,4,5,6,7,8,9,10,1,2,3,4,5)
by reusing its values, in a circular fashion.

5.1 Operations on Vectors, Matrices and Lists 87

This behaviour is called recycling. It is important that you be aware of this
behaviour, since it can provoke hard-to-detect errors. As a matter of fact, R
usually displays a warning:

Warning message:
In x + y :

the length of the longest object is not a multiple
of the length of the shortest object

Here is another example of recycling, this time used to create a matrix. The vector
1:4 is reused in a circular fashion to fill in the matrix, which is declared to be of
size 3 x 3.

> matrix(l:4,ncol=3,nrow=3)

[,11 [,21 [,3]

[1,1]1 1 4 3
[2,1 2 1 4
[3,1 3 2 1

5.1.3 Basic Functions

Here are a few basic data manipulation functions. These are used very often; it is
essential that you know them.

e length(): returns the length of a vector.

> length(c(1,3,6,2,7,4,8,1,0))
[1] 9

e sort(): sorts the elements of a vector, in increasing or decreasing order.

> sort(c(1,3,6,2,7,4,8,1,0))

[1] 01 12 3 46 7 8

> sort(c(1,3,6,2,7,4,8,1,0),decreasing=TRUE)
[1] 8 7 6 4 3 21 1 0

e rev():rearranges the elements of a vector in reverse order.

> rev(ec(1,3,6,2,7,4,8,1,0))
[1] 01 8 4 7 2 6 3 1

e order(), rank() : the first function returns the vector of (increasing or decreas-
ing) ranking indices of the elements. The second function returns the vector of
ranks of the elements. In case of a tie, the ordering is always from left to right.

> vec <- ¢(1, 3, 6, 2, 7, 4, 8, 1, 0)
> names (vec) <- 1:9

88

> vec
123456 738
136217481
> sort (vec)
91842635
01123467
> order (vec)
[1] 91 8 4 2 6
> rank (vec)

1 2 3 4

2.5 5.0 7.0 4.0

%)

8

5 Data Manipulation, Functions

57

5 6 7 8 9
.0 6.0 9.0 2.5 1.0

unique(): as the name suggests, this function removes the duplicates of a vector.

> unique(c(1,3,6,2,7,4,8,1,0))
[1] 1 3 6 2 7 4 80

duplicated():indicates elements which have already been encountered earlier

in the vector (read from left to right).

> duplicated(c(1,3,6,2,7,4,8,1,0))
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

5.1.4 Operations on Matrices and Data.Frames

We shall describe several specialized R functions which give information on a matrix
(or a data.frame) or help manipulate its rows and columns.

Standard matrix operations (product, decomposition, Jacobian, ...) are de-
N/ scribed in Chap. 10, page 316.

5.1.4.1 Information on Architecture

Here are a few functions which give information on a matrix or a data.frame:

dim(): size of the matrix or data.frame

nrow(): number of rows

ncol (): number of columns

dimnames (): names of rows and columns (as a list)
names (), colnames (): names of columns
rownames (): names of rows

5.1 Operations on Vectors, Matrices and Lists 89

Do it yourself

Import, into an R object called X, the data from the file http://www.
biostatisticien.eu/springeR/Weight_birth.xls, and use the
above functions on X. Note that the first column of the file gives the pa-
tient identifier.

5.1.4.2 Merging Tables

It is often very useful to combine (merge) several matrices or data.frames. The basic
functions to this end are cbind () to merge columns and rbind() to merge rows.

e Merging columns

The generic function is cbind ().

> cbind(1:4,5:8)

[,11 [,21
[1,1 1 5
[2,] 2 6
[3,1 3 7
[4,1 4 8

However, this function is not optimal, as the following example shows. Let us try
to merge in columns the two following tables:

Id|GENDER |Weight 1d|GENDER |Height
I M 75 I M 182
Xl=2| F 68 U X2=2| F 165
3| F 48 3| F 160
4] M 72 4| M 178
> X1 <- data.frame(Id=1:4,GENDER=c("M","F","F","M"),
+ Weight=c(75,68,48,72))
> X2 <- data.frame(Id=1:4,GENDER=c ("M","F","F", "M"),
+ Height=c(182,165,160,178))
> cbind (X1, X2)
Id GENDER Weight Id GENDER Height
1 1 M 75 1 M 182
2 2 F 68 2 F 165
3 3 F 48 3 F 160
4 4 M 72 4 M 178

http://www.biostatisticien.eu/springeR/Weight_birth.xls
http://www.biostatisticien.eu/springeR/Weight_birth.xls

90 5 Data Manipulation, Functions
This works, but it is a shame that the columns Id and GENDER are duplicated. A
very useful function in this context is merge ():

> merge (X1,X2)
Id GENDER Weight Height

1 1 M 75 182
2 2 F 68 165
3 3 F 48 160
4 4 M 72 178

Now suppose that the individuals are not sorted in the same way in both tables.

Id|GENDER |Weight 1d| GENDER |Height
I M 75 2| F 165
X1=2| F 68 Uu x3=1| M 182
3] F 48 4 M 178
4] M 72 3| F 160

In this case, you cannot use the function cbind (), but the function merge () still
works:

> X3 <- data.frame(Id=c(2,1,4,3),GENDER=c("F",6 "M", "M","F"),
+ Height=c(165,182,178,160))
> merge (X1,X3)

Id GENDER Weight Height

1 1 M 75 182
2 2 F 68 165
3 3 F 48 160
4 4 M 72 178

You will have noticed that, by default, the function merge() combines two
data.frames. Let X and Y be the two data.frames we wish to merge, and let Z be
the data.frame resulting from the merge of X and Y. The merge is based upon the
columns of these two data.frames which have the same names. These columns will
be called “common columns”. The argument by can be used to specify (force)
which columns are common. The value of this argument can be a vector of names, a
vector of indices or a vector of logical values. All other columns will then be treated
as different columns by merge (), even if they bear the same name. The function
merge () then works in the following way:

e For every row (individual) of the data.frame X, the function merge () compares
the elements of this row to those of every row of Y, but only over the subset of
common columns

5.1 Operations on Vectors, Matrices and Lists 91

V W R V. N O U i V AR WNhR vV + + VvV + V

aua N W R

If it finds a perfect match, it considers that it is the same individual: this individual
is added to Z, then completed with the values from the non-common columns of
X, then with the values from the non-common columns of Y.

If no perfect match is found, the individual is either added to Z and completed
with NA’s (if the argument al1l () takes the value TRUE) or removed (if the argu-
ment all() takes the value FALSE, which is the default value).

The operation is repeated for the next row, until the last row.

This example should help clarify things:

X <- data.frame (GENDER=c ("F","M", "M","F") ,Height=c (165,182,
178,160) ,Weight=c(50,65,67,55),Income=c(80,90,60,50))
Y <- data.frame (GENDER=c ("F","M", "M","F") ,Height=c (165,182,
178,160) ,Weight=c(55,65,67,85),Salary=c(70,90,40,40),
row.names=4:7)
X
GENDER Height Weight Income
F 165 50 80
M 182 65 90
M 178 67 60
F 160 55 50
Y
GENDER Height Weight Salary
F 165 55 70
M 182 65 90
M 178 67 40
F 160 85 40

merge (X, Y,by=c ("GENDER", "Weight"))
GENDER Weight Height.x Income Height.y Salary

F 55 160 50 165 70
M 65 182 90 182 90
M 67 178 60 178 40

merge (X, Y,by=c ("GENDER", "Weight") ,all=TRUE)

GENDER Weight Height.x Income Height.y Salary

F 50 165 80 NA NA
F 55 160 50 165 70
F 85 NA NA 160 40
M 65 182 90 182 90
M 67 178 60 178 40

92 5 Data Manipulation, Functions

You will have noticed that, by default, the function merge () does not take
into account the names of the individuals in the data.frames X and Y, when
determining the common individuals. The names of the individuals can be in-
cluded either by adding a column Id to X and Y to identify the individuals or
by using the name "row.names" as the value of the argument by:

> merge (X,Y,by=c("row.names", "Weight"))
Row.names Weight GENDER.x Height.x Income GENDER.y Height.y
1 4 55} F 160 50 F 165
Salary
1 70
merge (X,Y,by=c ("row.names", "Weight") ,all=TRUE)
Row.names Weight GENDER.x Height.x Income GENDER.y Height.y

\"

1 1 50 F 165 80 <NA> NA
2 2 65 M 182 90 <NA> NA
3 3 67 M 178 60 <NA> NA
4 4 515] F 160 50 F 165
5] 5 65 <NA> NA NA M 182
6 6 67 <NA> NA NA M 178
7 7 85 <NA> NA NA F 160

e Merging lines

The generic function is rbind ().

> rbind(1:4,5:8)

[,11 [,2] [,3] [,4]
[1,] 1 2 3 4
[2,1] 5 6 7 8

The function smartbind () from the package gtools is more sophisticated, as
shown in the following example:

> require ("gtools™")

> dfl <- data.frame(A=1:5, B=LETTERS[1:5]) # The square

brackets [] to
extract

elements are

described in

#

section 5.5.

> df2 <- data.frame(A=6:10, E=letters[1l:5])

> smartbind (dfl, df2)
A B E
A <NA>

1.1 1
1.2 2 B <NA>

5.1 Operations on Vectors, Matrices and Lists 93

1.3 3 C <NA>
1.4 4 D <NA>
1.5 5 E <NA>
2.1 6 <NA> a
2.2 7 <NA> b
2.3 8 <NA> c
2.4 9 <NA> d
2.5 10 <NA> e

The package gdata includes several very interesting functions to manipu-
late data.

5.1.4.3 The Function apply ()

An oft-used function is apply (), which applies a given function (specified as the
value of the argument FUN) to all rows (MARGIN=1) or to all columns (MARGIN=2) of
a matrix or data.frame.

> X <- matrix(c(l:4, 1, 6:8), nr = 2)

> X
[,1] [,2] [,3] [,4]
[1,1 1 3 1 7
[2,1] 2 4 6 8
> apply (X, MARGIN=1, FUN=mean)
[1] 3 5

> apply (X, MARGIN=2, FUN=sum)
[1] 3 7 7 15

When the operation is summing or calculating the means of rows or
columns, other possible functions are rowSums (), colSums (), rowMeans (),
colMeans ().

Do it yourself

We are going to see how to calculate the sum of squares of all rows of a ma-
trix. First, create a matrix M of size 5 x 2 containing numbers of your choos-
ing. Next, use the function apply () on the rows of the matrix M. You will
take the argument and associated value FUN=function(x) {sum(x"2)}.

94 5 Data Manipulation, Functions

In this do it yourself, we saw in passing how to use a self-created function
(sum(x"2)) when calling apply(), by using the reserved word function.
In Chap. 8, we shall explore in further detail how to create more elaborate
functions.

5.1.4.4 The Function sweep()

The function sweep () is very useful. It is used to “sweep out” (in a sense defined by
the value of the argument FUN) a certain statistic (given by the value of the argument
STATS) from every row (MARGIN=1) or from every column (MARGIN=2) of a table.
The two next examples should help you understand this function.

> X
[,11 [,2] [,3] [,4]
[1,1]1 1 3 1 7
[2,] 2 4 6 8
> # Substract 3 from row 1, and 5 from row 2.
> sweep (X,MARGIN=1, STATS=c(3,5) ,FUN="-")
[,11 [,2]1 [,3] [,4]
[1,] -2 0 -2 4
[2,1]1 -3 -1 1 3

> # Divide the first two columns by 2, and the last two columns
by 3.
> sweep (X,MARGIN=2, STATS=c (2,2,3,3) ,FUN="/")
[,1] [,2] [,3] [,4]
[1,] 0.5 1.5 0.3333333 2.333333
[2,] 1.0 2.0 2.0000000 2.666667

5.1.4.5 The Function stack()

The function stack() concatenates into a single vector the values of certain
columns of a data.frame. This function outputs a data.frame, with the stacked vector
in its first column and a second column containing a factor which indicates the ori-
gin of each observation. The function unstack() performs the reverse operation.
This function is very useful for analysis of variance (ANOVA).

> X <- data.frame(trtl=c(1,6,3,5),trt2=c(8,8,3,1))
> X

trtl trt2
1 1 8
2 6 8
3 3 3
4 5 1
> stack (X)

values ind

5.1 Operations on Vectors, Matrices and Lists 95

trtl
trtl
trtl
trtl
trt2
trt2
trt2
trt2

N W R
R WoouLiwoa Rk

5.1.4.6 The Function aggregate()

The function aggregate () splits a data.frame into subpopulations according to a
factor (specified by the argument by) and applies a given function to each subpopu-
lation.

> X<-data.frame (Weight=c(80,75,60,52) ,Height=c(180,170,165,150),

+ Cholesterol=c(44,12,23,34),
+ Gender=c ("Male","Male", "Female", "Female"))
> X
Weight Height Cholesterol Gender
1 80 180 44 Male
2 75 170 12 Male
3 60 165 23 Female
4 52 150 34 Female
> aggregate (X[, -4],by=1list (Gender=X[,4]), FUN=mean)

Gender Weight Height Cholesterol
Female 56.0 157.5 28.5
Male 77.5 175.0 28.0

N R

The instruction X[,-4] is used to extract all the columns of X except the \1:\/
fourth column. Extraction instructions are explored in further detail in Sect. 5.4. -

5.1.4.7 The Function transform()

This function makes transformations on the columns of a data.frame. For example,
the following example transforms the height in centimetres into the height in metres
and adds to the data.frame a column with the BMI.

> X <- transform(X,Height=Height/100,BMI=Weight/ (Height/100) "2)
> X

Weight Height Cholesterol Gender BMI
1 80 1.80 44 Male 24.69136
2 75 1.70 12 Male 25.95156
3 60 1.65 23 Female 22.03857
4 52 1.50 34 Female 23.11111

96 5 Data Manipulation, Functions

<(>> The package plyr can be used to manipulate data tables in a simple and
efficient way.

5.1.5 Operations on Lists

The functions lapply () and sapply () are similar to the function apply (): they
apply a function to every element of a list. The former outputs a list; the latter
outputs a vector if possible.

> x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE, FALSE,

+ FALSE, TRUE))

> lapply(x,mean) # Mean of each element of the list.

Sa

[1] 5.5

Sheta

[1] 4.535125

Slogic

[1] 0.5

> lapply(x,quantile,probs=(1:3)/4) # Median and quartiles of the
elements of the list.

Sa

25% 50% 75%

3.25 5.50 7.75

Sheta

25% 50% 75%
0.2516074 1.0000000 5.0536690
Slogic

25% 50% 75%

0.0 0.5 1.0

> sapply(x, quantile) # Quantiles of the elements of the list.
a beta logic

0% 1.00 0.04978707 0.0

25% 3.25 0.25160736

50% 5.50 1.00000000

75% 7.75 5.05366896

100% 10.00 20.08553692 .

> i36 <- sapply(3:6, seq) # Creates a list of vectors.

> 136

[[1]]

[1] 1 2 3

[r211]1

[1] 1 2 3 4

[[3]]

[1] 1 2 3 4 5

[[4]]

[1] 1 2 3 4 5 6

N koo
oo uwo

5.2 Logical and Relational Operations 97

> sapply(i36, sum) # Sum of every vector in the list.
[1] 6 10 15 21

The function do.call() takes two arguments: the first is the name of a
function and the second is the name of a list. It executes the function, taking as
input the elements of the list. We shall see an example of use in the practical. 4
‘We should also mention the existence of the function mapply ().

SECTION 5.2
Logical and Relational Operations

The two logical values are TRUE (or T) and FALSE (or F). Also note that in R, NA
is considered to be a logical constant. Logical vectors are very useful in R, for
example, for extracting elements by logical mask, as we shall see later on.

Table 5.1 on next page gives operators and functions which take logical values
as input or output.

Note that the two following instructions give different results:

> all.equal(0.2-0.1,0.3-0.2)
[1] TRUE
> (0.2-0.1) == (0.3-0.2)

[1] FALSE ﬂ}

This stems from the fact that a computer has a limited precision for its cal-
culation. The function all.equal () takes an optional tolerance argument for
rounding errors. We shall discuss this further in Sect. 5.7.1. See also Sect. 5.9
that explains why the second instruction above returns FALSE.

98

Table 5.1: Operators and functions which take logical values as input or output

5 Data Manipulation, Functions

Operator in R Description Example Output

logical(Q) Create a vector of logical(2) FF
logical values

as.logical(Q Transform into as.logical(c(0,1)) FT
logical values

is.logical() Is the argument a is.logical(F) T
logical value?

X<y Isx; <y;? c(1,4)<c(2,3) TF

X >y Isx; > yi? c(1,4)>c(2,3) FT

X <=y Isx; <=y;? c(1,4)<=c(1,3) TF

X >=y Isx; >=y;? c(1,4)>=c(1,3) TT

X ==y Isx; = y;? c(1,4)==c(1,3) TF

xl=y Is x; # y;? c(1,4)!=c(1,3) FT

Ix Negation of x 1c(T,F) FT

X &y Term-by-term c(T,T) & c(T,F) TF
conjunction
(AND)

X &y Sequential F& T && T F
conjunctions

x|y Term-by-term c(T,T) | c(T,F) TT
disjunction (OR)

x|y Sequential FI|TI||F T
disjunction (OR)

xor() Exclusive xor(c(T,T),c(T,F)) FT
disjunction (XOR)

any () TRUE if at least any(c(T,F)) T
one of the x; is
TRUE

allQ) TRUE if all of the all(c(T,F)) F
x; are TRUE

all.equalQ) Isx;i ~ y;? all.equal(0.2-0.1,0.3-0.2) T
(see the argument
tolerance)

identical () TRUE if identical(l,as.integer(1)) F
Vi, x; = yi

SECTION 5.3

Operations on Sets

R can handle all usual operations on sets (Table 5.2).

5.4 Extracting and Inserting Elements 99

(e
P

A

> A <- c(4,6,2,7) # A first set.
> B <- ¢(2,1,7,3) # A second set.
> vec <- ¢(2,3,7) # A few elements.

Table 5.2: Operations on sets

Operation R Instruction Output
Membership: a € A is.element(vec,A) TFT
Inclusion (subset): A C B all(A %in% B) F

Superset: A D B all(B %in% A) F
Intersection: A N B intersect(A,B) 27

Union: AU B union(A,B) 462713
Complement: A\ B setdiff(A,B) 46
Symmetric difference: setdiff(union(A,B),intersect(A,B)) 4613

(AU B)\(AN B)

It is very easy in R to define its own set functions, such as functions of
inclusion, containment and symmetric difference.
> "%subset%" <- function(A,B) all(A %in% B)

> "%superset%" <- function(A,B) B %subset% A
> "$symdiff%"<-function(A,B) setdiff (union(A,B),intersect(A,B))

SECTION 5.4
Extracting and Inserting Elements

In this section, we shall see how to extract part of a vector, matrix or list. Indeed, R
includes very specific mechanisms to this effect, which can be confusing at first, but
are very powerful tools.

100 5 Data Manipulation, Functions

5.4.1 Extracting from/Inserting into Vectors

e Extraction

To extract components from a vector, use the function "[" (). It can take the
following arguments:

A vector of indices of elements to extract
A vector of indices of elements not to extract
A vector of logical values TRUE/FALSE indicating which elements to extract

A few examples will make this easier to understand.

> vec <- c(2,4,6,8,3)

> vec[2]

[1] 4

> "["(vec,2) # Note: "[" is indeed a function.
[1] 4

> vec[-2] # All elements except the second.

[1] 2 6 8 3

> vec[2:5]

[1] 4 6 8 3

> vec[-c(1,5)]

[1] 4 6 8

> vec[c(T,F,F,T,T)] # Extraction by logical mask.
[1] 2 8 3

> vec>4

[1] FALSE FALSE TRUE TRUE FALSE

> vec[vec>4] # Extraction by logical mask.
[1] 6 8

It is important to note here the syntactical simplicity of an instruction such
as x[y>0], which extracts from x all elements of index i such that y; > 0.
> x <- 1:5
>y <- c(-1,2,-3,4,-2)
> x[y>0]
[1] 2 4

You need to learn to use as often as possible such constructions, which are
called logical masks. There are two advantages: the code is easy to read and
execution is very fast.

Also note the functions which(), which.min() and which.max(), which are
often very useful.

5.4 Extracting and Inserting Elements 101

> mask <- c(TRUE, FALSE, TRUE,NA, FALSE, FALSE, TRUE)

> which (mask) # Outputs the indices corresponding to the values
TRUE.

[1] 1 3 7

> x <- c(0:4,0:5,11)

> which.min(x) # Outputs the index of the smallest value.

[1] 1

> which.max(x) # Outputs the index of the largest value.

[1] 12

It is important to note that R does not handle index 0, unlike some other
programming languages.

¢ Replacement

Replacing elements in a vector is done in a similar fashion to extraction. All
you need to do is select the elements as if you wanted to extract them, then use the
affectation symbol <- followed by the replacement elements. Of course, you need
to specify the same number of replacement elements as of selected elements.

Let us examine a few examples of this principle.

> z

[1] 0 0 0 2 0

> z[c(1,5)] <- 1

> z

[1] 1 0 0 2 1

> z[which.max(z)] <- 0

> z

[1] 1 0 0 0 1

> z[z==0] <- 8 # The Z; such that
Z; is worth 0 are replaced with
8.

> z

[1] 1 8 8 8 1

e Insertion

Inserting or adding elements to a pre-existing vector uses the function c().

> vecA <- c¢(1, 3, 6, 2, 7, 4, 8, 1, 0)

> vecA

[1] 1 3 6 27 4810

> (vecB <- c(vecA, 4, 1))
[1] 1 3 6 27 4 810 41

> (vecC <- c(vecA[l:4]1, 8, 5, vecA[5:9]))
[1] 1 3 6 2 857 4810

102 5 Data Manipulation, Functions

This mechanism provides the ability to complete a vector whose size is not fixed
at first.

a <- c()

a <- c(a,2)
a <- c(a,7)
a

1]

~ V V. V V

27

Do it yourself

e Create the vector height <- ¢(182,150,160,140.5,191) and the
vector gender <- c(0,1,1,1,0) containing the height (in cm) and the
gender (coded as 0=M/1=F) of five people. Extract from the vector height
the heights of the men. Use the method of extracting by indices, then repeat
the task with a logical mask.

e Extract from the following vector all numbers between 2 and 3:

> X <- ¢(0.1,0.5,2.1,3.5,2.8,2.7,1.9,2.2,5.6)

5.4.2 Extracting from/Inserting into Matrices

e Extraction

Two methods are possible to extract elements from a matrix X. Each method has
its own syntax.

(a) Extracting by indices: X[indr,indc], where indr is the vector of indices of
rows and indc is the vector of indices of columns to extract. Omitting indr
(respectively indc) means that all rows are selected (respectively all columns).
Note that indr and indc can be preceded by a minus sign (-) to indicate
elements not to extract.

(b) Extracting by logical mask: X[mask], where mask is a matrix of logical values
TRUE/FALSE of the same size as X, indicating which elements to extract.

Here are a few examples of the first method:

> Mat <- matrix(1l:12,nrow=4,ncol=3,byrow=TRUE)

> Mat

[,11 [,2] [,3]
[1,1]1 1 2 3
[2,1 4 5 6
[3,1 7 8 9

[4,1 10 11 12

5.4 Extracting and Inserting Elements 103

> Mat[2, 3] # Extracting the element at the intersection
of row 2 and column 3.
[1] 6
> Mat[,1] # All rows, and only column 1.
[1] 1 4 7 10
> Mat[c(1,4),] # All columns, and rows 1 and 4.
[,1] [,2] [,3]
[1,1] 1 2 3

[2,1] 10 11 12

> Mat[3,-c(1,3)] # Row 3 and column 2.
[1] 8

Here is an example with a logical mask:

> MatLogical <- matrix(c(TRUE,FALSE) ,nrow=4,ncol=3)
> MatLogical # Is of the same size as Mat.
[,11 [,2] [,3]
[1i,1] TRUE TRUE TRUE
[2,] FALSE FALSE FALSE
[3,1 TRUE TRUE TRUE
[4,] FALSE FALSE FALSE
> Mat[MatLogical] # Make sure that you understand this
instruction.
[1] 1 7 2 8 3 9

It so happens that a matrix is stored in R as a long vector, the concatenation
of all columns. Try for example the command as.vector (Mat). Elements of
a matrix can thus be extracted without using the form [rows, columns], but
instead by using vector extraction [ind] where ind is a vector of indices (or a
vector of logical values) of elements to extract from the long vector.

> ind

[1] 2 4 6 8 3

> Mat [ind]

[1] 4 10 5 11 7

104 5 Data Manipulation, Functions

Using the function " [" () sometimes leads to a change in the structure of
the manipulated object. Let us see this on the example below.

> m <- matrix(l:6,nrow=2) ; m
[,1] [,2]1 [,3]

[1,] 1 3 5
[2,1 2 4 6
> m[,1]
[1] 1 2

> class(m[,1])
[1] "integer"

It is found that the extraction has transformed our result into a simple one
row vector. This can be annoying since here one could expect to get a one

column matrix. But there is a solution to this problem as the following code
shows:

> m[,1,drop=FALSE]

[,1]
[1,1 1
[2,] 2

Do it yourself

Try to automatically alternate the vectors c(0,2,3,4) and c(1,0,0,0), so

as to get the vector c(1,0,0,2,0,3,0,4) (hint: use the functions cbind (),
t() and as.vector()).

As with vectors, the function which() can be used to return the indices of the
elements of a matrix which verify some condition. For example,

> m <- matrix(ec(1,2,3,1,2,3,2,1,3),3,3)

>m
[,1] [,2] [,3]
[1,1]1 1 1 2
[2,] 2 2 1
[3,1]1 3 3 3
> which(m == 1) # m is seen as the concatenation of
its columns.
[1] 1 4 8
> which(m == 1,arr.ind=TRUE) # Outputs the indices as couples.

row col
[1,1]1 1 1
[2,] 1 2
[3,1]1 2 3

5.4 Extracting and Inserting Elements 105

e Insertion

Inserting elements into a matrix is done as with vectors. Elements are selected
either by indices or with a logical mask and are then replaced with other elements,
thanks to the affectation symbol <-.

> m

[,1] [,2] [,3]
[1,] 1 1 2
[2,1] 2 2 1
[3,] 3 3 3
> m[m!=2] <- 0
> m

[,1]1 [,2] [,3]
[1,] 0 0 2
[2,1] 2 2 0
[3,1] 0 0 0

> Mat <- Mat[-4,] ; Mat
[,11 [,2] [,3]

[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
> m[Mat>7] <- Mat[Mat>7]
> m
[,11 [,2] [,3]
[1,] 0 0 2
[2,1] 2 2 0
[3,] 0 8 9

Another function can be used to extract (and therefore also to insert) el-
ements: subset(). For example, try subset(airquality, Temp > 80,
select = c(Ozone, Temp)).

Do it yourself

> ml <- matrix(c(0,22,0,23,34,0,0,0,28) ,ncol=3)
> m2 <- matrix(c(10,1,4,10,9,9,2,6,4) ,ncol=3)

> ml

[,11 [,2] [,3]
[1,] 0 23 0
[2,1] 22 34 0
[3,1] 0 0 28
> m2

[,11 [,2] [,3]
[1,] 10 10 2
[2,1] 1 9 6
[3,1] 4 9 4

Replace all non-zero values of m1 with the corresponding values in m2.
Remove the second column from m1.

106 5 Data Manipulation, Functions

5.4.3 Extracting from/Inserting into Arrays

Extracting from and inserting into arrays is done as with matrices, except that there
can be more than two dimensions. We shall therefore only list a few examples and
leave it to the reader to check that they understand everything.

> A <- array(1:12,dim=c(2,2,3))

> A
;s 0 1

[,11 [,2]
[1,] 1 3
[2,1 2 4
;s 2

[,11 [,2]
[1,] 5 7
[2,1 6 8
s s 3

[,11 [,2]
[1,] 9 11
[2,1]1 10 12
> A[2,2,1]
[1] 4

> A[1,2,3] <- 4 # Replaces 11 with 4.
> which(A==4,arr.ind=TRUE)
diml dim2 dim3

[1,1]1 2 2 1

[2,] 1 2 3

> A[which(A==4,arr.ind=TRUE)]
[1] 4 4

> length(A[A>4])

[11 7

5.4.4 Extracting from/Inserting into Lists

e Extraction

Extracting from lists is slightly more complicated than with matrices, because
each element of a list is a list itself. Using the function "[" () on a list therefore
outputs another list.

> L <- list(12,c(34,67,8),Mat,1:15,1ist(10,11))
> class (L)

[1] "list"

> L

[[1]]

[1] 12

[r211

[1] 34 67 8

5.4 Extracting and Inserting Elements 107

[[3]]

[,1] [,2] [,3]
[1,] 1 2 3
[2,1 4 5 6
[3,1] 7 8 9
[[4]]

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[[5]]
[[5]11[[1]]
[1] 10
[[5]11[[2]]
[1] 11
> L[2]
[[1]]

[1] 34 67 8
> class(L[2])

[1] "list™
> L[c(3,4)]
[[1]]

[,11 [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,1] 7 8 9
[[2]]

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Because lists are used to store elements of different natures, the function "[[")
must be used to access the elements of a list.

> L[[2]]

[1] 34 67 8
> ll[[ll (L'2)

[1] 34 67 8
> class(L[[2]1])
[1] "numeric"

> L[[5]1]1[[2]]
[1] 11

The following instructions generate an error:

> L[2,3] 4
Error in L[2, 3] : incorrect number of dimensions 4
> L[[2,3]] b
Error in L[[2, 3]] : incorrect number of subscripts

108 5 Data Manipulation, Functions

R defines what is called recursive indexing. For example, the next example
starts by retrieving the content of the second element of the list L (i.e. the vector
k-\\ c(34,67,8)) and then extracts the third element of this vector.

> L[[c(2,3)]] # Recursive indexing.
[1] 8

Furthermore, there is a mechanism in R to explicitly name the various elements
of a list. The symbol $ can then be used to extract elements by name.

> L <- list(cars=c("FORD", "PEUGEOT") ,climate=

+ c("Tropical", "Temperate"))
> L[["cars"]]

[1] "FORD" "PEUGEOT"

> L$cars

[1] "FORD" "PEUGEOT"

> L$climate

[1] "Tropical" "Temperate”

o Insertion

Inserting elements is done as previously with the arrow <-.

> L$climate[2] <- "Continental"

> L

Scars

[1] "FORD" "PEUGEOT™"
Sclimate

[1] "Tropical" "Continental"

A column name can include spaces. To access it, you will then need to use
quotation marks.

> L <- list("pretty cars"=c("FORD", "PEUGEOT"))
> L

$'pretty cars'

[1] "FORD" "PEUGEOT"

> L$"pretty cars"

[1] "FORD" "PEUGEOT"

SECTION 5.5

Manipulating Character Strings

Manipulating character strings is very useful when dealing with many statistical
files and when annotating graphs. We shall therefore present the major R functions
in this context.

5.5 Manipulating Character Strings 109

As we have seen, creating a character string is done with quotation marks "" or
with the function as.character().

> string <- c("one","two","three")
> string

[l] "one nEwo" n three n

> as.character(1:3)

[l] nyjmn "2" n3mn

The function noquote () can be used to suppress the display of quotation
marks in the R output.

> noquote (string)
[1] one two three

The functions sQuote () and dQuote () are used for different styles of quo-
tation marks.
The function format () is used to produce a personalized display, for example,
data.frames.

> zz <- data.frame("First names"=c ("Pierre", "Benoit", "Rémy"),
check.names=FALSE)

vV +

ZZ
First names

Pierre

Benoit

Rémy

format (zz, justify = "left")
First names

Pierre

Benoit
3 Rémy

V W R

N R

Other interesting functions to manage the display are cat(), sprintf()
and print ().

The function nchar () counts the number of symbols in a string. It can be used
on a vector of strings.

> stringl <- c("a","ab","B","bba","one","!@","brute")

> nchar (stringl) # Counts the number of symbols in each string.
[1] 1 213 325

> stringl[nchar (stringl) >2]

[1] "bba™" "one" "brute"

110 5 Data Manipulation, Functions

The commands letters and LETTERS return the 26 letters of the alphabet
in lower and upper case.

> letters
[l] "a n "b n "c n "d n "e n "f" "g" "h n "i n "j n "k n "l n "m n "n n
[15] "o n "p" "q" "r" "S" "t" "u n "V" "W" "x" "Y" "z n
> stringl[stringl %in% c(letters,LETTERS)]
[1] ngn npn

The function paste() is used to concatenate several strings.

> string2 <- c("e","D")
> paste(stringl, string2) # Concatenates the strings.

[l] "a e" "ab D" "B e" "bba D" "one e" "!@ D"

[7] "brute e"

> paste(stringl,string2,sep="-") # A separator can be included
between the strings.

[l] "a_e" "ab_D" "B_e" "bba_D" "one_e" "!@_D"

[7] "brute-e"

> paste(stringl,string2,collapse="",sep="") collapse is used

#

to concatenate
the elements

into a single
string.

[1] "aeabDBebbaDonee!@Dbrutee”

The function substring() is used to extract sub-strings from a string.

> substring("abcdef", first=1:3,last=2:4)
[l] "ab n "bc n "cd"

The function strsplit() is used to split a string.

> strsplit(c("05 Jan","06 Feb"), split=" ")
[[1]]

[1] "05" nJan"®

[r211

[l] "06" "Feb"
The function grep() is used to search for a pattern in a vector of strings. It
returns the indices of the elements of the vector containing this pattern.

> grep("i",c("Pierre", "Benoit", "Rems"))
[1] 1 2

The function gsub () replaces all occurrences of a pattern found in a string with
another string.

> gsub("i","L",c("Pierre", "Benoit", "Rems"))
[1] "PLerre" "BenoLt" "Rems"

The function sub () only replaces the first occurrence.

> sub("r","L",c("Pierre", "Benoit", "Rems"))
[1] "PieLre" "Benoit" "Rems"

5.6 Manipulating Dates and Time Units 111

The functions tolower () and toupper () are used, respectively, to put a
string into lower or upper case.

> tolower ("1loWER")

[1] "lower"
> toupper ("UPper")
[1] "UPPER"

Do it yourself

Input the following data.frame:

> X <- data.frame(date=c("03 JANUA","02 SEPTE","1l5 NOVEM"),
+ sun=c (10,15,12))
> X
date sun
1 03 JANUA 10
2 02 SEPTE 15
3 15 NOVEM 12

Remove the first column from X and add in two new columns: one called
day, containing the day number coded as an numeric (1 or 2 digits), and the
other called month, containing the month coded as four letters in lower case
(hint: use the function transform()).

SECTION 5.6
Manipulating Dates and Time Units

5.6.1 Displaying the Current Date

In R, there are two functions to display the current date: Sys.time() and date().

> Sys.time ()

[1] "2013-01-09 16:04:35 EST"
> date()

[1] "Wed Jan 9 16:04:35 2013"

The year, month, day, hours, minutes and seconds can be extracted as follows:

> as.numeric (substring(Sys.time(),c(1,6,9,12,15,18),
+ c(4,7,10,13,16,19)))
[1] 2013 1 9 16 4 35

112 5 Data Manipulation, Functions

The function system.time() is used to find the execution time of an in-
struction. The function Sys.sleep() is used to halt the execution of a list of
instructions for a given number of seconds.

5.6.2 Extracting Dates

In statistics, one often needs to extract dates from files. There are several functions
in R to handle these data, which would otherwise be very difficult to manipulate.

The first useful instruction is strptime (), which is used to retrieve a date from
a string of characters and to put it into an R object of class POSIXIt (named list of
vectors containing informations on date and time).

> strptime("27/mar/73", format="%d/%b/%y")
[1] "1973-03-27"

In the preceding instruction, you will have noted the argument format, which
is used to describe how the date and/or time is coded in the character string. Many
codes are available; we describe them in Table 5.3 on next page.

If the previous instruction outputs NA, you may need to use the following
instruction to change the regional parameters (locale) used by default by R:

> Sys.setlocale("LC TIME","C")

Under Linux, the instruction man strptime typed into a terminal window
4 can give you more codes.

Do it yourself

Try to read the following dates with the function strptime():

> datesl
[1] "3jan1948" "4janl950" "30aprl961l" "18sepl990"

> dates2
[1] "01/21/99 21:04:22" "03/28/99 22:19:55"
[3] "07/15/99 03:01:32"

5.6 Manipulating Dates and Time Units 113

Table 5.3: Codes for the function strptime (). The examples have been created with
format(Sys.time(), "%letter'")

Code Description Example

%a Day of the week, abbreviated Mon

%A Day of the week, full name Monday

%b Month, abbreviated Dec

%B Month, full name December

%C Date and time, locale-specific Mon 20 Dec 2010 13:06:24 CEST

%d Day of the month (01-31) 20

%H Hours (0-24) 13

%I Hours (0-12) 01

%3 Day of the year (001-366) 354

%m Month (01-12) 12

%M Minutes (00-59) 06

%S Seconds (00-61), with 2 “leap seconds” 24

%U Week of the year (00-53); the 1% Sunday is 51
counted as day 1 of week 1

% Day of the week (0-6); Sunday is O 1

FAUl Week of the year (00-53); the 1% Monday is 51
counted as day 1 of week 1

%X Date, locale-specific 2010-12-20

%X Time, locale-specific 13:06:24

%y Year without the century 10

%Y Year with the century 2010

%Z Time offset from Greenwich; ’—0800’ is 8 h West +0100
of Greenwich

%Z Time zone as a character string (output only) CEST

Note that the functions weekdays () and months () can be used to retrieve the
day and month of a date in the POSIXIt format.

5.6.3 Operations on Dates

Before manipulating dates, you should always start by converting dates and times
into objects of the class POSIX1t or POSIXct. There are two functions in R to this
effect: as.POSIXct (), which gives the number of seconds elapsed since 1% January
1970 as a numeric vector, and as.POSIX1t (), which is a list of vectors representing

sec 0-61: seconds

min 0-59: minutes
. hour 0-23: hours
" mday 1-31: day of the month

mon 0-11: number of months since the 15 month of the year

year : number of years since 1900

114 5 Data Manipulation, Functions

wday 0-6: day of the week, starting on Sunday
yday 0-365: day of the year
isdst : Daylight Saving Time (DST) flag. Positive if DST is ob-
served, zero otherwise (negative if unknown)
Here are a few instructions using these functions:

> z <- Sys.time() # In the POSIXct format.
> class(z) ; is.double(z)

[1] "POSIXt" "POSIXct"
[1] TRUE
> z

[1] "2013-01-09 16:04:35 EST"

> as.numeric(z) # Number of seconds since 1°% January 1970.
[1] 1357765476

> # The origin can be changed:

> as.POSIXct (as.numeric(z), origin="1960-01-01")
[1] "2003-01-09 21:04:35 EST"

> # About fourty years have elapsed:

> as.numeric(z)/60/60/24/7/c(53,52)

[1] 42.35816 43.17274

> z <- as.POSIX1lt(z) # In the POSIX1lt format.

> class(z) ; is.list(z)

[1] "POSIXt"™ "POSIXIt™"
[1] TRUE
> Z

[1] "2013-01-09 16:04:35 EST"

> names (z)

[1] "sec" "min" "hour" "mday" "mon" "year" ‘"wday"
[8] "yday" "isdst"

> z$year # Number of years since 1900.

[1] 113

Note that the functions as.POSIXct() and as.POSIX1t() can be used either
on vectors of numeric values or on vectors of character strings. In the former case,
you will need to give a value to the argument origin, as a character string repre-
senting a date. In the latter case, each character string must be in a format such as
"2001-02-03"or "2001/02/03", optionally followed by a space and a time in the
format "14:52" or "14:52:03". It might be useful to use the function strptime ()
to get a format compatible with these functions (see Table 5.3 for a description).

> as.POSIXct("2001/02/03")

[1] "2001-02-03 EST"

> as.numeric(as.POSIXct("2001/02/03"))

[1] 981176400

> as.POSIX1t("2001/02/03") $wday

[1] 6

> lct <- Sys.getlocale("LC TIME")

> Sys.setlocale("LC TIME","C") # See Note on page 112.
[1] »cn

> as.POSIXlt(strptime("27/mar/73", format="%d/%b/%y"))
[1] "1973-03-27"

> Sys.setlocale("LC TIME",lct) # To recover the locale.
[1] "fr FR.UTF-8"

5.7 Control Flow 115

The class Date can also be used to represent dates.

> z <- as.Date(c("2006-06-01", "2007-01-01"))

> class(z)

[1] "Date™

> z[1] + 100 # Add 100 days. -
[1] "2006-09-09" \t’

> z[2]-z[1]

Time difference of 214 days
> z[2] < z[1]

[1] FALSE

The advantage of storing dates in objects with one of the classes described above,
apart from the pretty display, is that operations can then be made on these dates
(difference between two dates, anteriority test,...), as illustrated in the following
examples:

> date2 <- as.POSIX1t("2009-04-15")

> datel <- as.POSIX1t("2000-11-24")

> date2-datel

Time difference of 3063.958 days

> difftime (date2,datel,units="hours")
Time difference of 73535 hours

> datel <= date2

[1] TRUE

The package chron includes many functionalities to handle dates. ' \

SECTION 5.7

Control Flow

Like all programming languages, R includes the necessary control structures to
direct the execution flow of a program.

-

116 5 Data Manipulation, Functions

5.7.1 Conditional Instructions

o Instruction switch()
It is used in the following way:

switch(<expr:test>,<expr:casel>=<codel>,<expr:case2>=<code2>,
etc.)

In the instruction above, <expr:test> is either a number or a character string.
This instruction outputs <codel> if <expr:test> is equal to <expr:casel>,
<code2> if <expr:test> is equal to <expr:case2> and so on. If <expr:test>
is not equal to any of the <expr: casei>, the function switch() outputs NULL.

Here is an example:

> x <- rcauchy(10) # Generate ten random numbers from a Cauchy
distribution.

> my.input <- "mean"

> switch(my.input,mean = mean(x),median = median (x))

[1] -0.5472605

> my.input <- "median"

> switch(my.input,mean = mean(x),median = median (x))

[1] -0.3508165

> my.input <- "variance"

> switch(my.input,mean = mean(x),median = median (x))

You can also include a single unnamed value, i.e. a <codei> without the as-
sociated <expr:casei>=. This value will then be output instead of NULL when
the value of the argument EXPR is not equal to any of the cases.

> switch(EXPR = "b", a=4, b=2:3, "Else: nothing")
[1] 2 3
> switch(EXPR = "QQ", a=4, b=2:3, "Else: nothing")

[1] "Else: nothing"

o Instructions 1f() and else

The conditional instruction 1£() can be used in the two following ways:

if (<cond>) <expr:true>
or
if (<cond>) <expr:true> else <expr:false>

The argument <cond> must be a logical value, which therefore takes one of the val-
ues TRUE or FALSE. Note that <cond> is first transformed by
as.logical(<cond>), so that real numbers are allowed (0 is the only number
to be transformed into FALSE) as well as character strings "T" or "TRUE" and "F"

5.7 Control Flow 117

or "FALSE". Also note that <cond> must be of length 1. Otherwise, only the first
element of <cond> will be taken into account, and R will display a warning.

In practice, of course, <cond> is often the result of an elaborate logical operation,
computed with the logical operators we described above. Here is an example of
how these instructions can be used. Make sure you understand them well.

> if (TRUE) 1+1

[1] 2

> x <- 2

>y <- -3

> if (x <= y) {

+ zZ <- y-X

+ print ("x smaller than y")
+ } else {

+ Z <- X-Yy

+ print ("x larger than y")
+ z

+ }

[1] "x larger than y"

[1] 5

The function ifelse () is used to execute one or the other of two functions
applied to a vector, depending on the values of a logical condition. For example,

> X <- c(3:-2)
> sqgrt(ifelse(x >= 0, x, NA))
[1] 1.732051 1.414214 1.000000 0.000000 NA NA

o Preferred logical operators

Make sure you use logical operators well. For conditional instructions, we advise
you to use:

e x && yratherthanx & y
e x || yratherthanx | y

This next example shows why. If you use the long form &&, the logical conditions
after the if are evaluated from left to right, until a FALSE is found.

> as.logical(x <- 2) # as.logical(x, non-zero real number)
outputs TRUE.

[1] TRUE

> x

[1] 2

> rm(x) # Remove x.

> if (FALSE & as.logical(x <- 2)) 4%7 <cond> is evaluated to

be FALSE. Both parts

of <cond> are

evaluated.

3 3 3 W

118 5 Data Manipulation, Functions

> x

[1] 2

> if (FALSE && (x <- 3)) 4*7 # If you use &&, only the first
part of <cond> is evaluated.

> x

[1] 2

When you use the long form | |, the logical conditions after if are evaluated
from left to right until a TRUE is found. You should therefore use the long form,
since it will make your code run faster.

e The function all.equal () for the i£() instruction

When using the i £() instruction (above all for real values), you should:

use isTRUE(all.equal(x,y)) ratherthanx ==y
use !isTRUE(all.equal(x,y)) ratherthanx !=y

This point is illustrated in the following example, in which x and y are not exactly
equal, because of machine precision:

> x <- 0.1

>y <- 0.1

> X==y

[1] TRUE

> x <- 0.2-0.1 # It seems that
>y <- 3-0.2 # x is equal to y.

0
> X ==Yy # This is not the case, because the computer
has a limited precision. See Sect. 5.9.
[1] FALSE
> all.equal(x,y,tolerance=10"-6) # The function all.equal()

solves this issue.
[1] TRUE

The function all.equal () takes an optional argument tolerance, used to
fix the tolerance limit below which the difference between two values is taken
to be zero.

5.7.2 Loop Instructions

A loop is a control structure which allows a portion of code to be executed several
times in a row, until an exit condition is satisfied or until a pre-specified number of
loops has been reached.

There are three loop instructions in R: for, while() and repeat. In addition,
the reserved words next and break give extra control on code execution. The
instruction break immediately exits the current loop. The instruction next takes
the program execution back to the beginning of the loop, so that the next iteration

5.7 Control Flow

119

(if it exists) of the loop is then executed. For the current iteration, no instruction

after next is executed.

e Instruction for
The syntax for this instruction is as follows:
for (i in vect) <Instructions>

Here are two examples:

> for (i in 1:3) print(i)

[1] 1

[1] 2

[1] 3

> x <- c(1,3,7,2)

> for (var in x) print (2*var)
[1] 2

[1] 6

[1] 14

[1] 4

The following list of instructions prints a decreasing counter:

n<-100;

for (i in 1:n) {flush.console();cat(n-i,"\r");Sys.sleep(0.1)}

e Instruction while ()
The syntax for this instruction is as follows:
while(<condition>) <expression>

For example,

> X <- 2

>y <- 1

> while (x+y<7) x <- x+y
> x

[1] 6

e Instructions next and break

> for (i in 1:4) {

+ if (i == 3) break
+ for (j in 6:8) {
+ if (j==7) next

120 5 Data Manipulation, Functions

j o<- i+43
}
}
i
[1] 3
> j
[1] 10

V o+ + o+

¢ Instructions repeat and break

i<-0
repeat {
i<-i+1
if (i==4) break

}

+ + + VvV V

Whenever possible, it is better to avoid loops in R, since they often slow
down the execution (as measured by the function system.time()). Indeed,
most operations in R are vectorized, which means that they can operate on
vectors, and these calculations are done in a compiled language, which is much
faster:

‘$> > system.time(for (i in 1:1000000) sgrt(i))
- user system elapsed
0.342 0.001 0.343
> system.time (sqrt(1:1000000))
user system elapsed
0.018 0.004 0.022

Moreover, functions such as apply (), tapply () and sapply () give a way
to use loops in an implicit, and often very useful, manner.

SECTION 5.8

Creating Functions

We saw in Sect. 3.1.4, page 43, some brief notions on executing functions in R. The
R language can also be used to create your own functions. We propose an overview
in this section. The reader should linger on all the code given in this section, to
ensure it is well understood.

\(’/ A more formal presentation of function writing is given in Chap. 8.

5.8 Creating Functions 121

To illustrate simply the function creation process, we shall focus on the compu-
tation of the body mass index (BMI), from the weight (in kg) and the height (in m),
using the well-known formula

Weight

BMI = —————.
Height?

This is easily programmed in R as follows:

BMI <- function(weight,height) {
bmi <- weight/height”2

names (bmi) <- "BMI"

return (bmi)

}

+ 4+ + + vV

The function return() is optional in the code above, but you should take
the habit of using it. Indeed, there are contexts where it is essential:

f <- function(x) {
res <- vector ("numeric",length(x))

>
+
+ for (i in 1:10) { ﬂ}
+ res[i] <- rnorm(1l) + xI[il] -
+ }

+

+

>

Forgot to include return(res)

}

£(1:10) # Does not output anything!

We can now execute the function BMI () we just created:

> BMI(70,1.82)

BMI
21.13271
> BMI(1.82,70) # Note that it is not possible to swap the

arguments of a function,
BMI
0.0003714286
> BMI (height=1.82,weight=70) # unless they are preceded by their
names.

BMI

21.13271

This function only outputs a single value. The code below outputs a list of several
variables.
> BMI <- function(weight,height) {
+ bmi <- weight/height”2
+ res <- list(weight,height,bmi)
+ return(res)
+

}

The next instruction shows that the new function BMI () returns a list of unnamed
elements.

122 5 Data Manipulation, Functions

> BMI(70,1.82)
[[1]1]1

[1] 70

[r2j1

[1] 1.82

[[3]]

[1] 21.13271

Do it yourself

Write a function called biroot () which calculates the roots of a polynomial
of order 2, i.e. the values x which solve the equation ax? + bx + ¢ = 0.
Recall that they can be complex and are given by

b+ JA
X=———

2a

with
A =b% —4aqc.

If A = 0, there is only one solution; return only that value. If A < 0, then
the square root of A is the complex number z such that z> = A (hint: use
the instruction as.complex(Delta)).

Compare the results of your function with those given by the func-
tion polyroot() (remember to use the online help for this function:
?polyroot).

To name the elements of the list, you can use the following code:

BMI <- function(weight,height) {

bmi <- weight/height”2

res <- list(Weight=weight, Height=height, BMI=bmi)
return (res)

}

which gives the following result:

+ 4+ + + vV

> BMI(70,1.82)
Sweight

[1] 70
SHeight

[1] 1.82

$BMT

[1] 21.13271

Now assume we wish to calculate the BMI of several individuals, for example,
John and Peter:

> John <- c(74,1.90)
> Peter <- c(70,1.82)
> mydata <- rbind(John, Peter)

5.8 Creating Functions 123
We might use the following code:

> for (i in 1:2) {
+ print (BMI (mydatali,1l],mydatali,2]))
+)
Sweight
John
74
SHeight
John
1.9
$BMT
John
20.49861
SWeight
Peter
70
SHeight
Peter
1.82
$BMI
Peter
21.13271

But the attentive reader will have noticed that many R functions (including the
division, multiplication and exponentiation operators) work very well with vectors.
The following output is thus not surprising:

> BMI(c(70,74),c(1.82,1.90))
Sweight

[1] 70 74

SHeight

[1] 1.82 1.90

$BMT

[1] 21.13271 20.49861

The following code illustrates the use of an argument with a default value, as
well as the function stop () which can handle some input errors.

BMI <- function(weight,height,height.unit="m") {

if (length(weight) != length(height))

stop ("The vectors weight and height must have the same length.")
if (height.unit == "cm") height <- height/100

bmi <- weight/height”2

res <- list(Weight=weight,Height=height, BMI=bmi)
return (res)

}

+ 4+ + + 4+ oV

L}

124 5 Data Manipulation, Functions

Using the function stop() can lead to annoyances. For example, in a
simulation study, one often has to call a function repeatedly. If, in one of the
calls, the function returns an error, the simulation is stopped. It is advisable to
use the function try (). If the function encounters an error, the error message
is stored in an object without stopping the simulation.

> set.seed(123)

> x <- rnorm(50)

> doit <- function(x) {

+ X <- sample(x,replace=TRUE)

+ if(length(unique(x)) > 30) mean (x)

+ else {stop("too few unique points")}

+

> res <- lapply(1:100, function(i) try(doit(x), TRUE))
> res[8:10]

[[1]]

[1] 0.2030573

[[2]]

[1] "Error in doit(x) : too few unique points"

attr(,"class")
[1] "try-error"
[[3]]

[1] 0.235046

It is possible to classify individuals into weight categories depending on their
BMILI. The correspondence between BMI and categories is given in Table 5.4.
The next function outputs a user’s weight category given their BMI.

> weight.category <- function (bmi) {

+ if (bmi<16.5) category <- "severely underweight" else {
+ if (bmi<18.5) category <- "underweight" else {
+ if (bmi<25) category <- "normal weight" else {
+ if (bmi<30) category <- "overweight" else {
+ if (bmi<35) category <- "moderate obesity" else {
+ if (bmi<40) category <- "severe obesity" else {
+ category <- "morbid obesity"}}}}}}
+ cat(paste("Your BMI is: ",round(bmi,3),".\n
+ This corresponds to category: ",category,".\n",sep=""))
+)
Here is an example of use:
Table 5.4: Correspondence between BMI and weight categories
Severely . Normal . Moderate Severe Morbid
. Underweight . Overweight R . .
underweight welg weight verwelg obesity obesity obesity

[15;16.5] [16.5;18.5] [18.5;25] [25;30] [30;35] [35,40] [40;41]

5.8 Creating Functions 125

> weight.category (BMI (70,1.82) $BMI)
Your BMI is: 21.133.
This corresponds to category: normal weight.

The code of the function weight.category () can be simplified with the func-
tion switch(), as can be seen below:

weight.category <- function(bmi) {
intervals.BMI <- c¢(15,16.5,18.5,25,30,35,40,41)
code <- as.character (rank(c(bmi,intervals.BMI),
ties.method="max") [1])
category <- switch(code,"2"="severely underweight",
"3n="uynderweight","4"="normal weight","5"="overweight","6"=
"moderate obesity","7"="severe obesity","8"="morbid obesity")
cat (paste("Your BMI is: “,round(bmi,3),“.\n
This corresponds to weight category: ",category,".\n",sep=""))

}

> weight.category (BMI(70,1.82) $BMI)
Your BMI is: 21.133.
This corresponds to weight category: normal weight.

>
+
+
+
+
+
+
+
+
+

However, this function outputs wrong results when used on a vector:

> weight.category (BMI (c(70,74),c(1.82,1.90)) $BMI)
Your BMI is: 21.133.

This corresponds to weight category: overweight.
Your BMI is: 20.499.

This corresponds to weight category: overweight.

Our function can be improved so that it works on several individuals simulta-
neously. Note the use of the reserved word NULL and of the function is.null()
which handles shrewdly the parameter names.

weight.category <- function (bmi,names=NULL) {
intervals.BMI <- c¢(15,16.5,18.5,25,30,35,40,41)
n <- length (bmi)
if (is.null (names)) names <- paste("Subject number",1l:n)
if (length(names) != n) stop(paste("The vector of ’'names’
must be of length",n))
code <- vector("integer",length=n)
category <- vector ("character",length=n)
for (i in 1:n) {
code[i] <- as.character(rank(c(bmi[i],intervals.BMI),
ties.method="max") [1])
category[i] <- switch(code[il],"2"="severely underweight",
"3n="underweight", "4"="normal weight","5"="overweight","6"=
"moderate obesity","7"="severe obesity","8"="morbid obesity")
cat (paste (names[i], ":\nYour BMI is: ",round(bmi[il,3),".\n
This corresponds to weight category: ,categoryl[i],".\n", sep=""))
}
}

Here is an example of use.

>
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

126 5 Data Manipulation, Functions

> weight.category (BMI (c(70,74),c(1.82,1.90)) $BMI)
Subject number 1:

Your BMI is: 21.133.

This corresponds to weight category: normal weight.
Subject number 2:

Your BMI is: 20.499.

This corresponds to weight category: normal weight.

In the previous function, we declared, directly with the correct length, the
vectors code and corpulence, thanks to the function vector (). However, it
is also possible to handle a vector without a predefined dimension (ever because
we do not know its length initially or for another reason). This is illustrated on
the next example, where we compute the first terms of the Fibonacci sequence,
which is defined by

ay =0,a2 =1,a; =a;—1 +a;—,Vi = 3.

> a <- c(0, 1)
> for (i in 3:10) a <- c(a, ali-1l+ali-2])
> a

[1] 0 1 1 2 3 5 8 13 21 34

We could also use the function while() to display all the terms of the Fi-
bonacci sequence until the first term is greater than 1000.

> a <- c(0,1)
> i <- 3
> while(a[i-11<1000) {
+ a <- c(a, ali-1]l+ali-2]1)
+ 1 <- i+l
+ }
> a
[1] 0 1 1 2 3 5 8 13 21 34 55

[12] 89 144 233 377 610 987 1597

We could also have used the instruction break for a slightly different func-
tion.

> a <- c(0,1)
> i <- 3
> while (TRUE) { # Create un infinite loop.
+ a <- c(a, ali-1]l+ali-2]1)
+ 1if (a[il>1000) break; # Stops the loop.
+ i <- i+l
+ }
> a
[1] 0 1 1 2 3 5 8 13 21 34 55

[12] 89 144 233 377 610 987 1597

5.9 t Fixed-Point and Floating Point Number Representation 127

The programming method presented in the previous Tip is not necessarily
optimal in terms of memory allocation, as we shall see in Chap. 8.

SECTION 5.9
T Fixed-Point and Floating Point Number
Representation

This (rather technical) note aims to help the R user to identify and prevent some
mistakes due to use of the so-called floating point numbers.

5.9.1 Representing a Number in a Base

Given a base b (integer value, greater than or equal to 2), any real number x € R
can be written in fixed-point representation as follows:

i=—00

X = Z mibi,

i=+o00

where the coeflicients m; (also called the digits) belong to the set {0, 1,...,5 — 1},
Vi € Z.

For example, the number x = 10.625 can be written in decimal notation
(b = 10) as

x=1x10"4+0x10°+6x107' +2x1072+5x 1073,

hence the notation 10.625 which gives the coefficients of the representation (or
digits). By noting that 10.625 = 8 + 2 + 0.5 4 0.125, this same number can be
written in binary notation (b = 2; hence the only digits are 0 and 1) as

x=1x224+0x224+1x2' +0x2°+1x27 1 +0x22+1x273.

We thus have the representation of the number 10.625 in binary form 1010.101,
which makes explicit the coefficients of the binary representation.

A

128 5 Data Manipulation, Functions

The package associated with this book includes the functions dec2bin()
and bin2dec () which can be used to switch from decimal to binary represen-
tation and vice versa:
> bin2dec(1010.101)

[1] 10.625

> dec2bin(10.625,3)
[1] "1010.101"

A number with finite base 10 expansion (finite number of digits after the
decimal separator) is called a decimal number. A number with finite base 2 ex-
pansion is called a dyadic number. Obviously, some numbers are neither dec-
imal nor dyadic. Note that a dyadic number is always also a decimal number,
but the converse is false. Thus a loss of information is always possible when
switching from one representation to another. Furthermore, dyadic decimal
fractions have the same number of digits as their binary equivalents whereas
non-dyadic decimal values have infinite binary equivalents.

A computer is a machine built to work with binary numbers, because the two
digits 0 and 1 are easily translated as the presence or absence of an electric current.
Because fixed-point representations are often very costly in bits (a bit is a binary
digit, i.e. 0 or 1), computers generally use floating point representations. These are
described in the next subsection.

5.9.2 Floating Point Representations

5.9.2.1 Definitions

Given a base b (e.g., b = 2 for the binary system or » = 10 for the decimal system,
to cite only the two most classical systems), any real number x € R can be written
as

x = (=1)*mb®
where
e s is called the sign bit (of x) and is worth O or 1;
e m is the significand or mantissa and can be written m = mj.myms - - - Mo, Where

eachm; € {0,1,...,b — 1} is called a digit;
e ¢ € 7 is called the exponent.

5.9 t Fixed-Point and Floating Point Number Representation 129

This notation is called the floating point representation of x in base b. The integer
m is the integer part of the significand and the other digits m, ---mo, are the
fractional part of the significand. Note that we must impose a constraint that the
first digit be non-zero (m; # 0), so as to insure that the representation is unique. Of
course, this constraint cannot be applied for the particular case x = 0.

Let us give a first example. In the decimal system, the number —0.6345 can be
written in floating point representation by taking s = 1, m; = 6, mp = 3, m3 = 4,
ms=5m; =0,Vi >4,b=10and e = —1:

—0.6345 = (—1)'6.345 x 1071

This explains the name “floating point”: the decimal point has been moved,
to express the same number in a different way.

Actually, in a computer, any real number x is represented in a binary base, with
bits (0 or 1), using the slightly different formula:

x = (=1)°(1 4 f)2(e-1023 (5.1)

where s is an integer coded on a single bit (called sign bit), e is a non-negative
integer coded on 11 bits (thus taking the values from 0 to 2!! — 1 = 2047) and
f €1]0;1) is a number coded on 52 bits, thus written

=52

f=) k2™ (5.2)

i=1

where the k;’s take the values O or 1. By convention, the value ¢ = 0 means that
x = 0, and the value e = 2047 means that x = +Inf or x = —Inf, depending on
the value on s. The following two examples illustrate this:

> 8 <- 1; e <- 2047; £ <- 0; x <- (-1)"s * 27 (e-1023) * (1l+£f); x
[1] -Inf
> 8 <- 0; e <- 2047; £ <- 0; x <- (-1)"s * 27 (e-1023) * (1l+£f); x
[1] Inf

5.9.2.2 Limitations of This Representation due to the Significand

The vast majority of modern computers use the floating point representation. How-
ever, it is essential to note that because of physical limitations, this representation is
not perfect. Indeed, the significand m can only have a limited (finite) number of dig-
its, and the relative integer e is bounded, e € [emin, €max], Since it is not possible to
code an infinite number of integers on a physical machine made of a finite number
of components.

130 5 Data Manipulation, Functions

Here is a simple example, which should help understand this limitation. The
floating point representation in base 10 of the real number 1/3 is written:

1/3 = (—-1)° x 3.33333...333...x 107!,

It is of course not possible to store an infinite number of 3s on a computer. A more
striking example is the number m = 3.14159265358979 - -- for which there is no
pattern in the digits after the decimal point. But it is also true for numbers which
appear simpler, such as 0.1 or 0.9.

This is illustrated in the output below, for the number 0.9, which can be written
in floating point representation as 0.9 = (—1)° x 271 x (1 + f) with f = 0.8.
However, since f is coded on “only” 52 bits (see (5.2)), the computer only keeps
an approximation. The display function formatC() gives an idea of the value used
by R.

> dec2bin(0.8,52)

[1] "0.1100110011001100110011001100110011001100110011001101"

f<- 27(-1)+27(-2)+27(-5)+27(-6)+27(-9)+27 (-10) +2" (-13) +

27 (-14)+27(-17)+27 (-18)+27 (-21)+27 (-22)+2" (-25) +27 (-26) +

27(-29)+27 (-30)+27(-33)+27 (-34)+27 (-37)+2"7 (-38) +27 (-41) +

27 (-42)+27(-45)+27 (-46)+27 (-49)+27 (-50)+2" (-52)

f # Careful: the display is in fact truncated.

[1] 0.8

> formatC(f,50) # Fractional part of the closest significand to
0.8 that the computer can get on 52 bits.

[1] "0.80000000000000004440892098500626161694526672363281"

> formatC(0.8,50)

[1] "0.80000000000000004440892098500626161694526672363281"

V 4+ + + vV

We can now display the value stored and used by the computer instead of the
value 0.9:

> formatC(0.9,50)

[1] "0.90000000000000002220446049250313080847263336181641"
> formatC((-1)"0 * 27(-1) * (1+£),50)

[1] "0.90000000000000002220446049250313080847263336181641"
> formatC((-1)"0 * 27(-1) * (1+0.8),50)

[1] "0.90000000000000002220446049250313080847263336181641"

5.9.2.3 Avoiding Some Numerical Pitfalls

First, we shed light on a numerical oddity.

> identical(1.0-0.9,0.1)
[1] FALSE

> (1.0-0.9) == 0.1

[1] FALSE

5.9 t Fixed-Point and Floating Point Number Representation 131

We can now understand this output. Indeed, the numbers 1.0 — 0.9 and 0.1 are
represented in different ways, because even though 1 is perfectly represented, 0.1
and 0.9 are not.

> formatC(1.0,50)

[l] " inm

> formatC(0.9,50)

[1] "0.90000000000000002220446049250313080847263336181641"
> formatC(1.0-0.9,50)

[1] "0.099999999999999977795539507496869191527366638183594"
> formatC(0.1,50)

[1] "0.1000000000000000055511151231257827021181583404541"

and we thus have

> formatC(1.0 -

+ 0.90000000000000002220446049250313080847263336181641,50)
[1] "0.099999999999999977795539507496869191527366638183594"
> # which is different from:

> formatC(0.1,50)

[1] "0.1000000000000000055511151231257827021181583404541"

It is better to use the function all.equal() to compare two numbers,
because it includes a numerical tolerance argument.

> all.equal(1.0-0.9,0.1,tol=10"(-6)) 4
[1] TRUE

Do not use constructions such as while(x != 0) or if (x != 0). In-
deed, if x happens to take a value such as 1.0 — 0.9 — 0.1 when your code runs, Q
those two instructions will not behave as expected. You should use instead -
isTRUE(all.equal(x,0)) and isTRUE(all.equal(x,0)).

We leave it to the reader to understand the output below.
> as.integer (100%(1-.34))

[1] 65
> floor (100%(1-.34))
[1] 65
> round (100%(1-.34))
[1] 66

> 100%(1-.34)-66

[1] -1.421085e-14

> floor (100%(1-.38))
[1] 62

> round (100*%(1-.38))
[1] 62

> 100%(1-.38)-62

[1] ©

132 5 Data Manipulation, Functions

\(’/ You may find [7] useful in this context.

5.9.2.4 Limitations of This Representation due to the Exponent
e Smallest and largest numbers which can be represented

Another problem due to the floating point representation is as follows. Since the
exponent e of the representation

x = (=1)°(1 4 f)2-1023 (5.3)

is necessarily bounded (since it is coded on 11 bits), there exist a smallest and largest
real number which can be represented on a given computer. Trying to represent
a number out of this range should lead to an underflow or overflow. R is rather
well conceived and will return the value -Inf or +Inf. The following R commands
illustrate this point:

> .Machine$double.xmin # Smallest real number which can be coded:
[1] 2.225074e-308

> # which can also be found by:

> 8 <- 0; e <- 0; £ <- sum(27(-(1:52)))

> x <- (-1)"s * 27 (e-1023) * (1+f); x

[1] 2.225074e-308

> .Machine$double.xmax # Largest real number which can be coded:
[1] 1.797693e+308

> # which can also be found by:

> 8 <- 0; e <- 2046; f <- sum(2”(-(1:52)))

> x=(-1)"s * 27 (e-1023) * (1+f); x

[1] 1.797693e+308

7 The package Brobdingnag allows handling much larger numbers.

e Gaps between two numbers
One last warning may be useful: it is important to note that it is not possible to get
some numbers between .Machine$double.xmin and .Machine$double.zxmax

(even integers).

For example, take the number 213, which is represented as

(_1)0(1 + 0)2(1173—1023)'

5.9 t Fixed-Point and Floating Point Number Representation

133

The next number that the computer can code is given by the values s = 0,e = 1173

and f = 27°2 (smallest non-zero fractional part of the significand), i.e.
(—1)°(1 4 2752)p150 — 9150 4 H150-52 _ 5150 | 798,

There can thus be a huge “gap” (of length

“successive” numbers!

298

This explains the following oddity:

> a <- 27150; b <- a +
[1] TRUE
> a <- 27150; b <- a +
[1] FALSE

More information on the computer’s limitations in representing numbers are

2797; b == a

2798; b == a

given by the instruction .Machine:

> noquote (unlist (format (.Machine)))

double. eps
2.220446e-16
double.xmin
2.225074e-308
double.base

2

double.rounding

5
double.ulp.digits
-52
double.exponent
11

double.max.exp
1024

sizeof.long

8
sizeof.longdouble
16

We refer the interested reader to the document What Every Computer Sci-
entist Should Know About Floating-Point Arithmetic, available at the URL:
http://biostatisticien.eu/springeR/FloatingPoint.pdf.

double.neg.eps
1.110223e-16
double.xmax
1.797693e+308
double.digits
5%

double.guard

0
double.neg.ulp.digits
-53
double.min.exp
-1022
integer.max
2147483647
sizeof.longlong
8
sizeof.pointer
8

~ 3.2e+29 here) between two

<%

http://biostatisticien.eu/springeR/FloatingPoint.pdf

134 5 Data Manipulation, Functions

Memorandum

length(): length of a vector

sort(): sort the elements of a vector

rev(): rearrange the elements of a vector in reverse order
order (): return the vector of order ranks of the elements of its effective argument
unique (): remove the duplicates from a vector

dim(): size of a matrix or data.frame

nrow(), ncol(): number of rows and columns
dimnames (): names of rows and columns

rownames (), colnames(): names of rows andcolumns
rbind(), cbind(): merge rows and columns of a matrix
merge (): smart merge of columns

apply): apply a function to the rows or columns of a matrix
lapply (), sapply(): apply a function to the elements of a list
<, <=, >, >=, ==, l=:comparison logical operators

1, &, &&, |, ||:term-wise logical operators

any (x): return TRUE if one of the Xx; is true

all(x): return TRUE if all the x; are true

if(), else, switch: conditional instructions

for, while(), repeat: loop instructions

"[" (: extraction operator for vectors and matrices

"[["Q: extraction operator for lists

which(): indices of the values TRUE of a logical object
nchar (): number of characters in a string

paste(): concatenate two strings

substring(): extract sub-strings

strsplit(): split strings

grep(): search for a pattern in a string

sub(), gsub(Q): replace occurrences of a pattern in a string
Sys.time(): display the date

strptime(): extract dates from a string

as.POSIX1t(): convert to the POSIXIt format
difftime(): calculate the difference between two dates

A5

Exercises

5.1- What is the output of this instruction: c(1,4)*c(2,3)?

5.2- What is the output of this instruction: matrix(1l:2,ncol=2,nrow=2)?
5.3- How can you retrieve the names of rows and columns of a data.frame?
5.4- Give the instruction to merge these two tables:

> X

Gender Weight
Jack M 80
Julia F 60
> Y

Eyes Height

Exercises 135

5.5-

5.6-

5.7-

5.8-

5.9-

5.10-
5.11-

5.12-

5.13-

5.14-
5.15-

5.16-
5.17-
5.18-

5.19-
5.20-

Jack Blue 180
Julia Green 160

Give the instruction to calculate the product of all the elements (respectively,
of all the elements of each column) of a numerical matrix X.

What is the output of this instruction: vec<-c(2,4,6,8,3);
vec[2];vec[-2]?

The height and weight of several men were measured. The measurements are
stored in the vectors weight and height. Give the R instruction to get the
weight of the men whose height is greater than 180 cm.

What is the output of this instruction:
Mat<-matrix(1:12,nrow=4,byrow=TRUE) ;Mat[3,];Mat[2,2:3]?
How could you replace the fourth component of the following list with 1: 10?
L<-1ist(12,c(34,67),Mat,1:15,1ist(10,11))

What is the output of this instruction: L[[2]][2]?

Give the R instruction which outputs the weights and heights of all women in
the following table (you can use the function attach()):

> X

weight height gender
1 79 163 M
2 90 163 F
3 87 198 M
4 63 164 F
5 90 168 F
6 71 178 F
7 58 191 M
8 80 194 F
9 91 185 F
10 89 176 M

What is the output of this instruction: (1:3) [any(c(T,F,T))]? And this
one: (1:3)[all(c(T,F,T))]1?

What is the output of this instruction: c(T,T,F) | c(F,T,F)?And this one:
c(T,T,F) || c(F,T,F)?

What is the output of this instruction: nchar (c("abcd","efgh"))?

What is the output of this instruction:
paste(c("a","b"),c("c","d"),collapse="",sep="")?

What is the output of this instruction: strsplit(c("ab;cd™),";")?
What is the output of this instruction: substring("abcdef",3,c(2,4))?
How could you transform the upper case into lower case in the following
vector?

c("Jack","Julia","William")

Which function is used to retrieve a date from a character string?

Can you explain why the second number of the last output is not equal to
36.21313?

> logp <- function(x) log(max(x,exp(1l)))
> X <- -2.4
> delta <- 0.1

136

5 Data Manipulation, Functions

> (abs(x)) " (4+delta)/(logp(abs(x))) "2
[1] 36.21313

> x <- seq(from=-2.8,to=-2,length=3)
> x

[1] -2.8 -2.4 -2.0

> (abs(x)) " (4+delta)/(logp(abs(x))) "2
[1] 64.26795 34.15959 16.17594

Propose a solution to this problem.

Worksheet

Manipulating Various Data Sets

A- Manipulating a Few Data Sets Presented at the Beginning of the Book

These files can be downloaded from the URL http://www.biostatisticien.
eu/springeR/. Note that you can also append the file name at the end of this URL
to download the file directly from R (e.g., http://www.biostatisticien.eu/
springeR/nutrienl.xls):

o Data set NutriElderly:

The data file nutrition_elderly.xls, described earlier in this book, is in fact the
merge of two initial files, entered by different operators. We propose to reconstruct
the file for the following cases. You will only use R and will not edit the file by hand.

5.1-

54-

5.5-

5.6-

5.7-

The individuals are initially listed separately in two files (nutrien1.xls and
nutrien2.xls). Note that the variable names are in upper case in the first file
and in lower case in the second.

Some individuals are listed in both files (nutrien3.xls and nutrien4.xls). The
variable names are identical.

Same question as 5.2, but errors have slipped in and you will need to detect
the corresponding individuals, for example, those with a weight greater than
200 kg (nutrien5.xls and nutrien6.xls).

The variables are split between two files (nutrien7.xls and nutrien8.xls),
which contain the same individuals.

Same question as 5.4, but for one variable, too many values are missing. Re-
move that variable (nutrien9.xIs and nutrien10.xIs).

Same question as 5.4, but for one individual, too many values are missing.
Remove that individual (nutrien11.xls and nutrien12.xls).

In the file nutrition_elderly.xls, how many people are vegetarians (no meat, no
fish)?

http://www.biostatisticien.eu/springeR/
http://www.biostatisticien.eu/springeR/
http://www.biostatisticien.eu/springeR/nutrien1.xls
http://www.biostatisticien.eu/springeR/nutrien1.xls

Worksheet 137

e File Intima_Media_Thickness.xls:

5.1- Add a column BMI to the data.frame, with the BMI of each individual in the
data file.

5.2- Retrieve the thickness of intima for the people with a BYI>30.

5.3- Extract the “athletic” women.

5.4- Extract the “non-obese” people aged 50 or over (obese=BMI>30).

e File bmichild.xls:

5.1- Add a column BMI.
5.2- Extract the children with a BUI < 15 and an age <= 3.5 years.
5.3- How many such children are there?

e File Birth_weight.xIs:

5.1- Add a variable PTL1 (number of children born before term), with three modal-
ities (where the third modality, coded 2, corresponds to “2 or more” preterm
births).

5.2- Same question with FVT (number of visits to a physician), to add FVT1.

5.3- Sort the file by increasing weight at birth (BWT).

5.4- Extract the individuals whose mothers are black or white and smoke.

B- Handling Missing Values

Import into a data.frame the following file:
http://www.biostatisticien.eu/springeR/Infarction.xls

5.1- Which rows include missing values?

5.2- Which individuals have more than one missing value?

5.3- Which variables include missing values?

5.4- Give at least one solution to remove all rows of this data.frame which include
at least one missing value. In addition to logical operators and the extracting
function, you are only allowed to use:

(a) The functions is.na(), prod(), apply() and as.logical)
(b) The functions is.na(), apply () and any ()

(c) The functions is.na(), apply() and all1l()

(d) The function complete.cases()

(e) The function na.omit()

http://www.biostatisticien.eu/springeR/Infarction.xls

138

5 Data Manipulation, Functions

C- Handling Character Strings

5.1-

5.2-

Import the file www.biostatisticien.eu/springeR/dept-pop.csvinto
a data.frame called dept.

Replace the first column with two new columns: one called numdep with the
French département numbers and another with the names.

D- Influenza Epidemics in France Since 1984!

5.1-

5.2-

5.3-

5.5-

5.6-

5.7-

5.9-
5.10-

5.11-

Import the file http://www.biostatisticien.eu/springeR/flu.csv
into a data.frame called £1u. Make sure that you are handling missing val-
ues correctly.

Type names (£f1u). As you can see, flu$Date includes dates in the format
year (with century; for example, 2003) followed by the week number (two
digits).

Determine the list of possible week numbers (hint: use the functions sort (),
substring () and unique()).

First, you need to retrieve these dates in R in an object of class POSIX1t, for
example, with the function strptime (). Using Table 5.3, and this function,
transform the first (oldest) date into the POSIX format.

The data are in fact updated every Monday, since the first week. Determine
which is the oldest date (Day, Month, Year) for which observations exist (hint:
use the calendar http://sentiweb.fr/calendrier.php).

You should notice that there is a difference with the answer to question 5.4. To
solve this problem, try adding “1” at the end of the first date and transforming
it again with the function strptime().

Display the ten first dates from the data files. Use the hint from the previous
question to transform them with the function strptime(). Is the last date
correct? If not, do you have an idea to solve this problem?

At this point, you should realize that the format of the dates in this file is not
compatible with the POSIX format (which takes week numbers between 00
and 53). It is therefore not possible to directly use the function strptime ()
or as.POSIX1t () to transform these dates into an object type easy to handle
by R. Type in the instruction

datel <- as.POSIX1t("Day,Month,Year",format="to be specified")
where you will replace Day, Month and Year with the oldest date and fo be
specified with the relevant date format.

Type in the instruction datel then datel+7. What do you notice?

Find a way to add seven days to datel (hint: how many seconds are there in
a day?).

Now, create the vector dates containing all the dates in the POSIX format,
sorted from most ancient to newest (hint: use the function nrow()).

' Source: http://www.sentiweb. fr/?lang=en

www.biostatisticien.eu/springeR/dept-pop.csv
http://www.biostatisticien.eu/springeR/flu.csv
http://sentiweb.fr/calendrier.php
http://www.sentiweb.fr/?lang=en

Worksheet 139

5.12- Use the function substring() on the vector dates to replace the first col-
umn of the data.frame f1u with dates in the format "year-month-day" (for
example, "1992-12-07").

5.13- Use the vector dates and what you have learnt about extraction to select only
the portion of the data.frame f1u for dates between September 15, 1992 and
November 3, 1993. Store this sub-table in an object called portion.

5.14- Calculate the number of cases of influenza over this period for each French
region (hint: pay attention to missing values; use the argument na . rm). Store
the results in a vector called flucases.

E- Combining Tables or Lists; Other Manipulations

5.1- Inputinto R the two following tables (check the row names):

> a

[,11 [,2]
1 1 4
2 2 5
6 3 6
> b

[,1]1 [,2]
3 1 5
4 2 6
5 3 7
7 4 8

5.2- Combine a and b into a new table called ab containing

> ab

[,11 [,2]
1 1 4
2 2 5
3 1 5
4 2 6
5 3 7
6 3 6
7 4 8

(hint: use rbind () and order ()).

5.3- Concatenate the elements of 1ist1 as columns of one matrix:

> listl <- list()

> 1istl[[1]] <- matrix(runif (25),nr=5)
> listl[[2]] <- matrix(runif(30),nr=5)
> 1istl[[3]] <- matrix(runif (15),nr=5)

(hint: use the function unlist () or the function do.call()).

140

5 Data Manipulation, Functions

5.4- Concatenate the elements of 1ist2 as rows of one matrix:

> list2 <- list()

> list2[[1]] <- matrix(runif (25),nc=5)
> 1ist2[[2]] <- matrix(runif (35),nc=5)
> 1list2[[3]] <- matrix(runif (15),nc=5)

(hint: use the function unlist () or the function do.call()).

5.5- Automatically select the diseases which have tobacco as a risk factor:

> tmp

Disease RiskFactors
1 Infarction tobacco, alcohol
2 Hepatitis alcohol
3 Lung cancer tobacco

(hint: use the function grep()).

Creating Functions

F- The French Chevalier de Méré

The French chevalier de Méré was a keen gambler. He was particularly fond of
two gambles. In the first one, he would throw a die four times and bet that a 6 would
come out at least once. In the second one, he would throw two dice 24 times and bet
that a double-6 would come out. He had noticed that the first gamble is “beneficial”:
there is more than a 50 % chance that a 6 will come out at least once. He thought
that the second gamble is also beneficial.

Propose code for a function called fourthrows () which returns 1 if there is
at least one 6 out of 4 throws of a die and 0 otherwise. Do not use any loops.
Propose code for a function called twentyfourthrows () which returns 1 if
there is at least one double-6 out of 24 throws of two dice and O otherwise.
Do not use loops.

Propose code for a function called meresix() to confirm the chevalier de
Méré’s intuition. It should use the first two functions and take a formal pa-
rameter nsim which gives the number of repetitions of the gamble.

Hint: use function sample().

Chapter 6
R and Its Documentation

Prerequisites and goals of this chapter

e Chap. 3.
e This chapter presents the various ways to get help on the R software.

SECTION 6.1
|7 Integrated Help

6.1.1 The Command help()

R includes an online help. It is very complete and very well structured for all func-
tions and for the various symbols in the language. There are several ways to access
the help files; the main method is help (). It is used in command line mode.

For example, type:

help (help)
There is an alias for the command help(): the question mark ?.

?sum
?sd
?II+II

PU[m

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming 141
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3_6,
© Springer Science+Business Media New York 2013

142 6 R and Its Documentation

Sometimes, this alias will not work. In those cases, you will need to use the
function help () with quotation marks.

?function # Does not work.
help (function) # Returns an error.
help ("function") # Correct call.

Let us look at the help of the function mean().

?mean

® mean package:base R Documentation
@ Arithmetic Mean
@ Description:
Generic function for the (trimmed) arithmetic mean.
@ Usage:
mean(x, ...)

Default S3 method:
mean(x, trim = 0, na.rm = FALSE, ...)

® Arguments:

x: An R object. Currently there are methods for
numeric dataframes, numeric vectors and dates.
A complex vector is allowed for ’‘trim = 0’, only.

trim: the fraction (0 to 0.5) of observations to be trim-
med from each end of ’'x’ before the mean is computed.

na.rm: a logical value indicating whether ’‘NA’ values
should be stripped before the computation proceeds.

...: further arguments passed to or from other methods.
® value:

For a data frame, a named vector with the appropriate
method being applied column by column.

If 'trim’ is zero (the default), the arithmetic mean of
the values in ’‘x’ is computed.

If 'trim’ is non-zero, a symmetrically trimmed mean is
computed with a fraction of ’trim’ observations deleted
from each end before the mean is computed.

@ References:

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)
_The New S Language . Wadsworth & Brooks/Cole.

® See Also:
‘weighted.mean’, ’‘mean.POSIXct’
©® Examples:

x <- c¢(0:10, 50)
Xm <- mean (x)
c(xm, mean(x, trim = 0.10))

mean (USArrests, trim = 0.2)

6.1 Integrated Help 143

Here are the sections of this help file:

@ The header of the file, with:
The name of the function: mean
The name of the package in which the function is included: base
The origin of the help file: R Documentation
@ An explicit title for the function: Arithmetic Mean
® A brief description of what the function does: Description
@ How to use the function; in particular, the compulsory and optional arguments:
Usage
® A description of the function’s arguments: Arguments
® Explanations on the output of the function: Value
@ References (statistical articles or books) related to the function’s application
domain: References
The See Also section, which lists similar or related functions
©® Examples of use: Examples

Most help files follow this format. Make sure you understand and remem-
ber the structure of help files. You should also take the habit of checking the
online help whenever you meet an unknown function, so as to understand its
arguments and use.

Note that help files do not include graphs, for example, those that could be
produced with the code in the section Examples @. This would be interesting,
especially for all the graphical functions. One way to get them is the function
example (). You can also browse the website R Graphical Manual: http://
bm2.genes.nig.ac. jp/RGM2/index . php which includes all R help files in
HTML. In those files, when there are graphs, they are directly included in the
section Examples.

6.1.2 Some Complementary Commands

In addition to the main command, help(), a few other complementary functions
can be useful when looking for help on a given command. They are listed here:

e help.start(): this function opens a web browser with links to handbooks
in HTML, help on functions included in all R packages (also HTML), a FAQ

http://bm2.genes.nig.ac.jp/RGM2/index.php
http://bm2.genes.nig.ac.jp/RGM2/index.php

O

144 6 R and Its Documentation

(Frequently Asked Questions), and a search engine of the help files. There are
also other more technical documents.

Under Linux, once you have entered the command help.start(), using
the command help () will always result in the help being displayed in the
web browser, rather than in the command line. To cancel this behaviour, use
the instruction options (htmlhelp = FALSE). To change browser (e.g.,
firefox), use the instruction options (browser="£firefox").

e help.search() or ??7(): this function is useful when you do not know the

name of a command. It returns a list of functions (and the package in which they
are included) related to your request. Try: help.search("mean™).

apropos (): this instruction returns the names of functions which are a (poten-
tially partial) match to the calling argument. For instance, apropos("'mean')
returns the names of functions containing the word mean.

Note also that the function methods () returns all the methods (functions)
associated with an object. For instance, try methods (summary).

library (help=package): this command lists all functions included in a pack-
age. It gives the same results as the command help (package="package"). We
advise you to try the following instructions to list the main functions in R:

library(help=base)
library(help=utils)
library(help=datasets)
library(help=stats)
library(help=graphics)
library(help=grDevices)

The function 1ibrary(lib.loc = .Library) returns the list of all pack-
ages (or libraries) installed on the system.

Conversely, the instruction find ("function") indicates in which package a func-
tion is included.

> find("t.test")
[1] "package:stats™"

6.2 T Help on the Web 145

e vignette(): vignettes are small PDF files which explain some notions in
further detail. Type vignette() to get a list of vignettes, and for exam-
ple vignette("xtableGallery") to open the PDF vignette of the package
xtable.

All vignettes can also be read in a special vignette browser, from the menu
“Help/Vignettes”. In this browser, you can open PDF files as well as R (“*
source code (as .R files) and consult directly the code of examples included J
in the vignette.

These three other functions might also be useful:

e data(): this command lists all datasets included in R.

e example(): this instruction lists examples of use of a function. For example,
example (mean) executes the instructions included in the section Examples of
the help file help (mean).

e demo(): this instruction is similar to example (), but is only available for a small
number of functions. When it is available, it shows the range of possible uses of
a function. For example, try demo (graphics).

SECTION 6.2
|7 T Help on the Web

The official R website (http://www.r-project.org) includes a huge amount of
information about this software. You should spend some time exploring it. The fol-
lowing sections list other sources of information.

6.2.1 Search Engines

There are two main search engines for R:

e http://search.r-project.org/nmz.html

http://www.r-project.org
http://search.r-project.org/nmz.html

146 6 R and Its Documentation

The command RSiteSearch() can be used to send a request on this web-
7 site directly from R. The information is then displayed in your browser.

e http://www.rseek.org

There is also a very interesting collaboratively edited question and answer site
for programmers available at URL http://stackoverflow.com/questions/
tagged/r.

6.2.2 Message Boards

There are many message boards about R, where you can ask your questions. One
message board with a lot of trafficis http://r.789695.n4 .nabble. com.

6.2.3 Mailing Lists

A mailing list is a specific kind of e-mail, which sends messages to a large number
of subscribers.

There are several mailing lists about R. The main ones are:

https://stat.ethz.ch/mailman/listinfo/r-help
http://blog.gmane.org/gmane.comp.lang.r.general
http://www.r-project.org/mail.html

R-announce: https://stat.ethz.ch/mailman/listinfo/r-announce

The website http://r-project.markmail.org can be used to search the
archives of these lists.

You need to follow a few rules to post a message on these lists, as described here:
http://www.r-project.org/posting-guide.html.

C‘"? A list dedicated to Mac users: https://stat.ethz.ch/mailman/
' listinfo/r-sig-mac.

http://www.rseek.org
http://stackoverflow.com/questions/tagged/r
http://stackoverflow.com/questions/tagged/r
http://r.789695.n4.nabble.com
https://stat.ethz.ch/mailman/listinfo/r-help
http://blog.gmane.org/gmane.comp.lang.r.general
http://www.r-project.org/mail.html
https://stat.ethz.ch/mailman/listinfo/r-announce
http://r-project.markmail.org
http://www.r-project.org/posting-guide.html
https://stat.ethz.ch/mailman/listinfo/r-sig-mac
https://stat.ethz.ch/mailman/listinfo/r-sig-mac

6.3 T Literature About R 147

6.2.4 Internet Relay Chat (IRC)

IRC (Internet relay chat) is a real-time messaging service. You can use it to chat
with other Internet users on predefined themes. The IRC channel on the R software
is called (#R) on the freenode server.

To access it, you can either use client-side software such as xchat (www.xchat.
org) or use your browser through websites such as https://webchat. freenode.

net.

To connect to this channel using xchat, type in these instructions:

/server irc.freenode.net
/join #R

6.2.5 Wiki

A wiki is a website where pages can be freely edited by visitors. Wikis are used to
aid collaborative writing with minimal constraints.

There is a wiki about R here: http://rwiki.sciviews.org.

SECTION 6.3
(1 Literature About R

6.3.1 Online

Literature about R is available online in many forms:

e Task Views: lists of packages useful in a given domain, grouped by themes.
A website describing Task Views is available at the URL http://cran.
r-project.org/web/views.

o Frequently Asked Questions (FAQ): Frequently Asked Questions about R are
listed here: http://cran.r-project.org/fags.html.

e Specialized journals: two online journals deal with the R software: the R Jour-
nal, previously known as R News (http://journal.r-project.org), and
the Journal of Statistical Software (http://www. jstatsoft.org).

www.xchat.org
www.xchat.org
https://webchat.freenode.net
https://webchat.freenode.net
http://rwiki.sciviews.org
http://cran.r-project.org/web/views
http://cran.r-project.org/web/views
http://cran.r-project.org/faqs.html
http://journal.r-project.org
http://www.jstatsoft.org

148 6 R and Its Documentation

e Handbooks: many handbooks are available as a PDF on the R website: http://
cran.rproject.org/other-docs.html

6.3.2 Printed Material

Many books have been published about R recently. We find the following to be the
most interesting:

Data Analysis and Graphics Using R: An Example-Based Approach [26]
The R Book [12]

Statistics and Data with R [10]

Software for Data Analysis: Programming with R [8]

Lattice: Multivariate Data Visualization with R [306]

R for SAS and SPSS Users [32]

Introductory Statistics with R: An Applied Approach Through Examples
[13]

A First Course in Statistical Programming with R [6]

A Handbook of Statistical Analyses Using R [15]

A Beginner’s Guide to R [42]

R Cookbook [39]

R in a Nutshell [1]

The Art of R Programming [28]

The R Inferno [7]

http://cran.rproject.org/other-docs.html
http://cran.rproject.org/other-docs.html

Worksheet 149

Memorandum

help(), ?(): get help on a function or a symbol

help.search(): list of functions relevant to your request

apropos (): list of function names which include the request

library (help=package): list of all functions in a package

data(): list of all datasets available in R

example (): execute the Examples section of the corresponding help file
demo (): launch a small demonstration of the possible uses of a function
vignette(): open a PDF file with details on a function
help.start(): open the HTML version of the R help files
RSiteSearch(): start a request on the official R website search engine

A5

Exercises

6.1- Which R instruction should you type to get help on the function mean()?

6.2- Explain the purpose of the command apropos().

6.3- Explain the purpose of the command example().

6.4- Explain the purpose of the command RSiteSearch().

6.5- How is a help file structured?

6.6- Which command would you use to get the list of functions available in the
package stats?

6.7- Explain how to display a dataset available in R.

—
Worksheet
Where to Find Information

6.1- Find the R function which lists all combinations of k elements out of 7.

6.2- Use this function to list all combinations of three elements out of
c(5,8,2,9).

6.3- Find the dataset available in R which gives the rates of violent crimes in the
USA.

6.4- Describe the contents of this dataset.

6.5- Subscribe to the mailing list https://stat.ethz.ch/mailman/
listinfo/r-help.

6.6- Read the rules to follow before asking a question (http://www.
r-project.org/posting-guide.html).

6.7- Find out how to unsubscribe from the mailing list.

6.8- Using the method of your choice, join the IRC channel R and start a polite

conversation with channel members.

https://stat.ethz.ch/mailman/
listinfo/r-help
http://www.
r-project.org/posting-guide.html

150 6 R and Its Documentation

6.9- Register on the message board http://r.789695.n4.nabble. com.
6.10- Read the R FAQ for Microsoft Windows. Try to understand the meaning of
TAB completion.
6.11- Use TAB completion to list all files in the current directory.

http://r.789695.n4.nabble.com

Chapter 7
Drawing Curves and Plots

Prerequisites and goals of this chapter

e Reading previous chapters.

e This chapter describes the graphical possibilities of R, but does not go as far as
expert graphical functions such as hist (), barplot () and so on. These func-
tions are described in Chap. 11. We show generic ways to make adjustments to
most plots you can draw.

SECTION 7.1
|7 Graphics Windows

7.1.1 Basic Graphics Windows, Manipulation and Saving

All plots created in R are displayed in special windows, separate from the console.
They are called “R graphics: Device device-number”, where device-number is an
integer giving the number of the window (or device).

To open a graphics window, use the command windows () or win.graph().

This command takes several arguments. Some are briefly described in the fol-
lowing table:

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming 151
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3_7,
© Springer Science+Business Media New York 2013

152 7 Drawing Curves and Plots

width Width of the graphics window, in inches

height Height of the graphics window, in inches

pointsize Default font size

xpinch, ypinch|Double. Pixels per inch, horizontally and vertically

Xpos, ypos Integer. Position of the upper left corner of the window, in pixels

A Under Linux, the command is X11 () instead of windows ().

F

C _ On a Macintosh, the command is quartz().

When several graphics windows are open, only one is “active”. This is the win-
dow in which all graphical events occur. Each window is associated with a device
number; the console is number 1.

Here are a few functions to manipulate graphics windows, using their device
number.

dev.off(device-number) |Close window device-number (if no device number is specified, the
current active window is closed).

graphics.off() Close all open graphics windows.

dev.list(Q) Return the device numbers of open graphics windows.

dev.set (device-number) |Activate window device-number.

dev.cur(Q) Return the device number of the active window (1 for the console).

Note that once a plot has been drawn, it can be saved to a file with the command
savePlot () as follows:

savePlot (filename="Rplot",
type=c (IIWIanI , llpngll , Iljpegll , Iljpgll , llbmpll ,
"ps", "pdf"),device=dev.cur())

The argument filename is the name of the file under which the plot should be
saved; type is the file type (Windows metafile, PNG, JPEG, BMP, PostScript or
PDF) and device is the device number of the window with the plot to be saved (by
default, the active window). Note that the available file types may depend on your
operating system.

> hist (runif (100))
> savePlot (filename="mygraph.png", type="png")

7.1 Graphics Windows 153

Histogram of runif(100)

< _ —
—

Frequency

[I I I I 1
00 02 04 06 08 10
runif(100)

Two other instructions can be used in this context:

e dev.copy2eps(file="mygraph.eps")
e dev.copy2pdf(file="mygraph.pdf")

which respectively create Postscript and PDF files.

There are other functions to save your plots under useful formats:
postscript(), pdf(), pictex(), xfig(), bitmap(), bmp(), jpegQ),
png O, tiff(). However, they are used in a slightly different way: first, type
the name of one of these instructions, then draw your plot, and finish by calling
dev.off(). Note that using these commands does not display the plot on the
screen.
> pdf (file="mygraph.pdf")
> hist (runif (100))
> g <- dev.off()

7.1.2 Splitting the Graphics Window: layout ()

If you want to draw several plots in the same window, R offers the possibility of
splitting that window in as many boxes as needed.

A first possibility is the function par () with the argument mfrow (read the warn-
ing in Sect. 7.7 about the function par ()). For instance, the following example splits
the graphics window into three rows and two columns. Every time you call the

154

7 Drawing Curves and Plots

drawing of a function, one of the small boxes is filled, row by row (the command
mfcol is used to fill column by column), as shown in Fig. 7.1 below.

> par (mfrow=c(3,2))

Fig. 7.1: Effect of argument mfrow of function par (). Numbers have been added to
gain a better understanding of where future plots will be drawn

The function layout () is used to get a more sophisticated split than with the
function par (). The following example shows how this splitting is specified in an
intuitive way, thanks to the argument mat, to draw five separate plots (Fig. 7.2).

> mat <- matrix(c(2,3,0,1,0,0,0,4,0,0,0,5),4,3,byrow=TRUE)

[,11 [,21 [,3]

> mat

[1,1 2
[2,1 1
[3,1 0
[4,1 0

3

0
4
0

0

0
0
5

7.1 Graphics Windows 155

> layout (mat)

Fig. 7.2: Potential of the function layout ()

To display the previous figure in R, use the instruction layout.show(5).

Every time you call the drawing of a function, the plots are displayed in order in
the numbered boxes, in increasing order of the box numbers (Fig. 7.3).

Also, note that with the argument widths, you can specify the respective relative
widths of the columns of mat. The same can be done for the heights of rows with
the argument heights.

156 7 Drawing Curves and Plots

> layout (mat,widths=c(1,5,14) ,heights=c(1,2,4,1))
> layout.show(5)

Fig. 7.3: The function layout () and its arguments widths and heights

SECTION 7.2
(Low-Level Drawing Functions

7.2.1 The Functions plot() and points()

The function plot () is the generic function to draw plots. It takes as input argument
the coordinates of the points to draw (Fig. 7.4).

4} You can also use the function plot() on an R object for which a graphical
- method is defined. Examples are given in Chaps. 14 and 15.

7.2 Low-Level Drawing Functions 157

Here are the most useful arguments of this function.

Argument

Description

X

Vector of x coordinates of points to draw.

y Vector of y coordinates of points to draw.
type Specify the type of plotting: "p" for points, "1" for lines, "b" for both, "c" for
empty points joined by lines, "o" for overplotted points and lines, "h" for vertical
lines, "s" for stair steps and "n" to plot nothing (but to display the window, with
axes).
main Specify the main title.
sub Specify the subtitle.
xlab Specify the label of the x axis.
ylab Specity the label of the y axis.
xlim Vector of length 2. Specify the lower and upper bound for the x axis.
ylim Vector of length 2. Specify the lower and upper bound for the y axis.
log Character string which contains "x" (respectively "y", "xy" or "yx") if the x axis
(respectively the y axis, both) is to be logarithmic.
> plot(1l:4,c(2,3,4,1),type="b",main="Main title",
+ sub="Subtitle",xlab="Label for x",ylab="Label for y")
Main title
o
< o]
0
o
o
> | °
S
= 10
R
3o
T [¢]
w0 _|
Q o

T T T T T T T
1.0 1.5 2.0 2.5 3.0 3.5 4.0
Label for x
Subtitle

Fig. 7.4: The function plot ()

Note that successive calls of the function plot () create a new plot every time,
which replaces the previous one (unless the graphics window has been split, as

explained

above). The function points() can remediate this issue by overlaying

the new plot on top of the old one. It takes the same arguments as plot () (Fig.7.5).

158 7 Drawing Curves and Plots

> points(1:4,c(4,2,1,3),type="1")

Main title

Label fory
15 20 25 30 35 40

1.0

T T T T T T T
10 15 20 25 30 35 40

Label for x
Subtitle

Fig. 7.5: The function points ()

The function approx() provides a linear or constantwise interpolation
between points.

7.2.2 The Functions segments (), 1ines() and abline()

The functions segments () and 1ines() are used to join points with line segments,
added on to a pre-existing plot (Fig. 7.6).

7.2 Low-Level Drawing Functions 159

> plot(0,0,"n")
> segments (x0=0,y0=0,x1=1,yl=1)
> lines(x=c(1,0),y=c(0,1))

o

~—

-1.0 -0.5 0.0 0.5 1.0

Fig. 7.6: The functions segments() and lines()

The function abline() is used to draw a straight line of equation y = a +
bx (specified by the arguments a and b) or a horizontal (argument h) or vertical
(argument v) line (Fig. 7.7).

> plot(0,0,"n") ;abline (h=0,v=0) ;abline (a=1,b=1)

C

—

o]
o

-1.0 -0.5 0.0 0.5 1.0

Fig. 7.7: The function abline ()

160 7 Drawing Curves and Plots

Do it yourself

Reproduce this plot.
Q

—

o]
o

0.0

1.0

-1.0 -0.5 0.0 0.5 1.0

7.2.3 The Function arrows()

This function is used to draw arrows between pairs of points. It takes an argument
length to indicate the size of the arrowhead (Fig. 7.8):.

7.2 Low-Level Drawing Functions 161

> x <- runif(12); y <- runif (12)

> i <- order(x,y); x <- xI[i]l; vy <- ylil

> plot(x,y)

> 8 <- seqg(length(x)-1)

> arrows (x[s], ylIs]l, xI[s+1l], ylIs+1l], length=0.1)

y
03 04 05 06 0.7 08 0.9
1 1

0.2 0.4 0.6 0.8 1.0

Fig. 7.8: The function arrows ()

7.2.4 The Function polygon()

As the name suggests, this function is used to draw polygons and to fill in a polygon
with a specified colour.

Do it yourself ‘

Enter the following command in the R console:

example (polygon)

The command polygon(locator(10,"1")) is used to draw a ten-edge
polygon by clicking in the graphics window on the points where the polygon
vertices should be.

162 7 Drawing Curves and Plots

7.2.5 The Function curve()

This function is used to draw a curve in a Cartesian coordinate system, on the inter-
val specified by the bounds from and to.

> curve (x"3-3*%x, from=-2, to=2)

Fig. 7.9: The function curve ()

Note that the argument add=TRUE can be used to indicate that the curve should
be overlaid on a pre-existing plot (Fig.7.9).

Do it yourself

Use the following instruction to draw the density histogram of 10,000 ran-
dom values from a normal distribution:

hist (rnorm(10000) ,prob=TRUE,breaks=100)

Use the function curve() to overlay on top of this histogram the density
function of a A (0, 1) distribution, given by the function dnorm().

7.2.6 The Function box()

This function is used to add a box around the current plot. The argument bty man-
ages the type of box; the argument 1ty manages the type of line used to draw the
box. Note that by default, the function plot() adds a box, unless it is given the
argument axes=FALSE (Fig.7.10).

7.3 Managing Colours 163

> plot(runif(7), type = "h", axes = FALSE)

> box(lty = "1373")
| |
i [
i |
i |
i |
i i
S !
= |
S !
i |
i |
i [
i |
i |
i !
[1__ 1__ 11 _ .1 _ _. |
Index
Fig. 7.10: The function box ()
SECTION 7.3

Managing Colours

7.3.1 The Function colors()

This function returns the names of the 657 colours known to R.

If you want to get the different shades of orange, you can use the instruction

> colors () [grep ("orange",colors())]

[1] "darkorange" "darkorangel" "darkorange2" "darkorange3" ;
[5] "darkorange4" "orange" "orangel" "orange2" ¥
[9] "orange3" "orange4" "orangered" "orangeredl"

[13] "orangered2" ‘'"orangered3" '"orangered4"

These colours can be used in your plots, for example, with the argument col of
the function plot () (Fig.7.11).

164 7 Drawing Curves and Plots

> plot(1:10,runif (10),type="1",col="orangered")

runif(10)
02 03 04 05 06 07
!

0.1

Fig. 7.11: The argument col of function plot ()

Note that you can also change the colour of the other elements of the plot,
such as the axes or the title. To this end, refer to Sect. 7.7, page 176, which
deals with the function par().

7.3.2 Hexadecimal Colour Coding

R gives the possibility of using hexadecimal colour coding, for example, with
the argument col of the function plot(). Each colour is coded as its decom-
position into three base colours: red, green and blue. Each component can take
a value between 0 and 255 (0: complete absence of the colour; 255: saturation of
the colour). Hexadecimal coding of these 256 values gives codes between 00 and FF.

Here are few examples of colours:

Black: #000000
White: #FFFFFF
Almond green: #82C46B
Lemon yellow: #F7FF3C
Peacock blue: #048B9A
Midnight blue: #10076B

7.3 Managing Colours 165

Note that you can use the function rgb () to get the hexadecimal code of a colour
from its decomposition into red, green and blue.

> rgb(red=26,green=204,blue=76,maxColorValue = 255)
[1] "#lAcCc4c"

> rgb(red=0.1,green=0.8,blue=0.3)

[1] "#1ACC4D"

The function col2rgb () does the reverse operation:

> col2rgb ("#1AcCC4C")

[,1]
red 26
green 204
blue 76

You can even get transparency, with the argument alpha of the function rgb (),
as seen in Fig. 7.12:

> curve(sin(x),1lwd=30,col=rgb(0.8,0.5,0.2),x1lim=c(-10,10))
> curve(cos(x),1wd=30,col=rgb(0.1,0.8,0.3,alpha=0.2),add=TRUE)

sin(x)

Fig. 7.12: The argument alpha of function rgb)

If your graphics card allows it, R can thus handle up to 256 colours or over 16
million colours. The next example uses the function rainbow() and should give
you an idea of this range (Fig. 7.13).

166

> pie(rep(l, 200), labels = "",

7 Drawing Curves and Plots

rainbow(200), border = NA)

Fig. 7.13: An example using function rainbow ()

You can also add to R the package RColorBrewer. This package can be used
to automatically create ideal colour palettes for beautiful presentations: shades of a

colour, complementary or diverging colours (Fig. 7.14).

7.3.3 The Function image ()

This function creates and displays a grid of coloured or greyscale rectangles. The
rectangles are also called pixels (picture elements). It can be used to display 3D or

spatial data, i.e. images (Fig.7.15).

> X <- matrix(l:12,nrow=3)

> X

[,11 [,2] [,3] [,4]
[1,] 1 4 7 10
[2,1 2 5 8 11
[3,1] 3 6 9 12

The numbers in the boxes were added using the function text () which is intro-

duced later on (Fig.7.16).

7.3 Managing Colours 167

Beware of how the coloured rectangles are organized in Fig.7.15: left to
right and bottom to top. It is therefore an anticlockwise 90 degrees rotation of
the display of the contents of the matrix X.

> require ("RColorBrewer")
> display.brewer.all()

YIOrRd [I D S N
YIOrBr D]
YIGnBu i T e N N R
YIGn []
Reds © [I S
RdPu D |]
Purples [) e
PuRd [[I e D
PuBuGn B]
PuBu ~ P I
OrRd [) I
Oranges [I D
Greys]
Greens C I I
GnBu b | |]
BuPu B]
BuGn B]
Blues © I D N
Set3 | | []
Set2 NN N I i
Set1 I I D I . ! 1 |
Pastel2
Pastell
Paired | = [E—]] |
Dark2 I I D D I Y I
Accent [e
Spectral I N |]
RAYIGn []
RAYIBu | B]
RdGy | I B]
RdBu I I b | |
PuOr I ~ T
PRGN I I ; B]
PiYG | I | |
BrBG NN []

Fig. 7.14: The function display.brewer.all() from package RColorBrewer

You can get a display coherent with how the data are organized in the matrix X
as follows:

168 7 Drawing Curves and Plots

> colours <- c("orange", "orangered", "red","lightblue",

+ "blue", "white","lightgrey", "grey",

+ "darkgrey", "yellow", "green", "purple")

> image (X, col=colours)

> text(rep(c(0,0.5,1),4),rep(c(0,0.3,0.7,1),each=3),1:12,cex=2)

1.0

0.6 0.8

0.4

0.2

0.0

-02 00 02 04 06 08 10 12

Fig. 7.15: The function image ()

> image (as.matrix(rev(as.data.frame(t(X)))),col=colours)
> text(rep(c(0,0.33,0.67,1),each=3),rep(c(1,0.5,0),4),1:12,cex=2)

1.2

1.0

10

-0.2 0.0 02 04 06 08

00 02 04 06 08 1.0

Fig. 7.16: The function image () with a coherent display of the data

7.4 Adding Text 169

Do it yourself

Install and load the package caTools. Use the function read.gif() of this
package to read the file http://www.biostatisticien.eu/springeR/
R.gif. Use the function image() to display it in R. Use the colours given
by read.gif() and display the image in the correct orientation.

SECTION 7.4

Adding Text

7.4.1 The Function text()

This function is used to add text to a plot. A very interesting feature is that it can also
be used to add mathematical formulae. In addition to the string itself, you need to
specify the x and y coordinates of the centre of the string. To display a mathematical
expression, use the function expression(). The bquote() function can also be
useful (Fig.7.17).

plot(1:10,1:10,xlab=bquote(x[i]) ,ylab=bquote(y[i]))
text (3,6, "some text")
text (4,9, expression(widehat (beta) == (X"T * X)"{-1} * X"T * y))
P <- 4; text(8,4,bquote(betal.(p)])) # Combining "math" and
numerical variables.

V V VYV

Q o
B=(XTx)"'XTy °
00 — o]
o)
© some text o
<
(o)
< ° Ba
o]
Al — (o)
(o)
T T T T I
2 4 6 8 10
Xi

Fig. 7.17: The function text ()

http://www.biostatisticien.eu/springeR/R.gif
http://www.biostatisticien.eu/springeR/R.gif

170 7 Drawing Curves and Plots

Use the command demo(plotmath) to see the various possibilities of
adding mathematical expressions to a plot. This will also show the relevant
commands.

Do it yourself ‘

Plot a point at the coordinates (1, 1). Then use the function text () to add the
text "ABC", also at the coordinates (1, 1). Observe the effect of the argument
pos, which takes the values 1 (below), 2 (left), 3 (above) or 4 (right).

7.4.2 The Function mtext ()

This function is used to add text in the margins of the graphics window. It can also
be used to add mathematical formulae.

It takes an argument side (1=bottom, 2=left, 3=top or 4=right) to specify which
margin the text should be added in (Fig.7.18).

> plot(1:10,1:10)
> mtext ("bottom",side=1)
> mtext ("left",side=2)
> mtext ("top",side=3)
> mtext (expression(x"2+3*y+hat (beta)),side=4)
top
o o
o
o o
o
=Y
o © o <;
b = ()
~— @ o (\l+
x
< o
o
I\ o
o
T T T
bottom
2 4 6 8 10
1:10

Fig. 7.18: The function mtext ()

7.5 Titles, Axes and Captions 171

SECTION 7.5
(Titles, Axes and Captions

7.5.1 The Function title()

This function is used to add titles to a plot: a main title above the plot with the
argument main, a subtitle below the plot with the argument sub, a label for the x
axis with the argument x1ab and a label for the y axis with the argument ylab. Note
that these arguments can also be specified directly when calling graphical functions
such as plot) (Fig.7.19).

> plot.new()
> box ()
> title(main = "Main title", sub = "Subtitle",
+ xlab = "x label", ylab = "y label")
Main title
©
Q
<
>
X label
Subtitle

Fig. 7.19: The function title()

172 7 Drawing Curves and Plots

A title can be written on several lines, thanks to the carriage return character
"\n" (Fig.7.20).

> plot(1:10,main="Title on\n three\n lines",xlab="",ylab="")

Title on
three
lines
=5 o
(o)
0 — o
(o)
© — (o)
o]
< — (o)
(o)
AN — (o)
(o)
T T T T T
2 4 6 8 10

Fig. 7.20: Plot title on several lines

7.5.2 The Function axis()

This function adds an axis to a pre-existing plot. You can specify on which side to
draw the axis, the position of ticks and several other arguments.

In general, you will only need the function axis when you wish to control
the details of the axes. To this end, you can first draw a plot (e.g., with the
function plot ()) without the axes, with the argument axes=FALSE.

7.5 Titles, Axes and Captions 173

Here are a few of the main arguments of the function axis () (Fig.7.21).

Argument|Description

side Specify on which side to draw the axis: side=1 (below), side=2 (left), side=3
(above), side=4 (right).
at Specify where to draw the ticks.

labels |Either a Boolean to specify whether the ticks should be annotated or a character
string specifying the annotation at the ticks.

tick Boolean specifying whether the ticks should be drawn.

col Colour of the axis.

Other arguments are available and are described in the online help.

> plot.new()
> lines(x=c(0,1) ,y=c(0,1),col="red")
> axis(side=1,at=c(0,0.5,1),labels=c("a","b","c"),col="blue")

Fig. 7.21: The function axis ()

7.5.3 The Function legend()

This function is used to add a caption to a pre-existing plot (Figs. 7.22, 7.23).
Here are a few of its arguments:

Argument|Description

X, ¥ Specify the coordinates of the position of the caption on the plot.
legend |Vector of character strings or expressions to display in the caption.
fill Vector of colours to fill the background of the caption box.

1ty,lwd |Integer. Line type or line width for lines in the legend. You must specify one of these
arguments to get lines in the legend.
col Vector of colours of points or lines in the legend.

174 7 Drawing Curves and Plots

> plot(1l:4,1:4,col=1:4)
> legend(x=3,y=2.5,legend=c("a", "b","c","d") ,£ill=1:4)

o
< (0]
|
I
o
P (0]
DAL
- o
Ha
o | o mb
N Ec
o | md
-
4o
-

T T T T T T T
10 15 20 25 30 35 40

1:4
Fig. 7.22: The function 1egend () with squares

> plot(1l:4,1:4,col=1:4,type="b")
> legend(x=3,y=2.5,legend=c("a", "b","c","d") ,col=1:4,1ty=1)

o
< (0]
o _|
(2]
o
i o

Y 0|

- A

—a

o _| o —b
N —cC
0 | —d
-
Cdo
=

T T T T T T T
10 15 20 25 30 35 40

1:4
Fig. 7.23: The function 1legend () with line segments

Many other arguments are available and are described in the online help.

7.6 Interacting with the Plot 175

SECTION 7.6

Interacting with the Plot

7.6.1 The Function locator()

Itis used to place a point on a plot or to get its coordinates with a click of the mouse.
It can also be useful to add text (or a caption) at a specific location, thanks to the
mouse.

Do it yourself ‘

Enter the following instructions, then click anywhere on the plot you get:

plot(1,1)
’ text (locator(l) ,labels="Here") # Click on the graphics window.‘

7.6.2 The Function identify ()

It is used to identify and mark points already present on a plot. The following prac-
tical should help you understand this function.

Do it yourself

Enter the following instructions, then click next to points on the plot. Use a
right click to exit the interactive mode.

> plot(swiss[,1:2])
> X <- identify(swiss[,1:2],labels=rownames (swiss))
> x

176 7 Drawing Curves and Plots

SECTION 7.7
1 Fine-Tuning Graphical Parameters: par ()

The function par () takes many arguments to fine-tune your plots. Use this function
to set (or query) general graphical parameters.

Here is how to use this instruction:

e par (arg-name) outputs the default value of the parameter arg-name of the func-
tion par().

e par (arg-name=val) changes the value of the parameter arg-name to the value
val.

e par () returns the list of all graphical parameters currently in use, as well as the
current values.

Before changing the values of parameters of the function par (), you should
save the old values. That way, you can restore them later if needed.

Save the default values of par().

save.par <- par (no.readonly = TRUE)

Now we can change some parameters.
par (bg="red")

Then restore the old values.

par (save.par)

Before we present the detailed use of this function, it is worth noting that the
graphics window (also called device region) includes the figure region, which in
turn includes the plot region. Figure 7.24 illustrates this.

Here is an (almost complete) list of the various parameters of the function par (),
along with a short description. We have organized them in groups to make it easier
to find relevant parameters (Table 7.1).

7.7 ¥ Fine-Tuning Graphical Parameters: par () 177

e Managing the graphics window

Table 7.1: Parameters to manage the graphics window

Name Description

ask Boolean. If TRUE, the user is prompted to press ENTER before a new plot is drawn. Use
devAskNewPage () instead.

din* Dimensions c(width,height) of the graphics window, in inches (stands for device
region inches).

fig A numeric vector of the form c(x1, x2, yl, y2) giving the normalized device coor-
dinates of the figure region, in which the plot will be drawn.

fin A numeric vector of the form c(width, height) giving the size of the figure region,
in inches (stands for figure region inches).

mai A numeric vector of the form c(bottom, left, top, right) giving the size of the
margins, in inches.

mar A numeric vector of the form c(bottom, left, top, right) giving the number of
margin lines on the four sides of the plot. The default value is c(5, 4, 4, 2) + 0.1.

mex mex is an expansion factor for the size of the font used to describe the coordinates in
the plot margins. Note that this does not change the font size, but rather specifies, as a
multiple of csi, the font size to convert between mar and mai and between oma and omi.
Its value is 1 when the device is opened and is reinitialized when the layout is changed
(cex is also reinitialized).

mfcol, A vector of the form c(nl, nc). The successive plots (or multi-figures) will be

mfrow drawn in a matrix of size nl-by-nc in the graphics window, filled respectively by
-columns- (mfcol) or by -rows- (mfrow). Consider the alternatives: layout() and
split.screen().

mfg A numeric vector of the form c(i, j) where i and j indicate the cell of the figures ma-
trix in which the next plot should be drawn. The figures matrix must have been predefined
with one of the parameters mfcol or mfrow.

mgp The margin line (in units of mex) for the axis titles, labels and lines. The default value is
c(3, 1, 0.

new Boolean, by default FALSE. If set to TRUE, the next high-level graphical command (in
fact plot.new()) will not erase the old plot and will overlay the new plot.

oma A vector of the form c(bottom, left, top, right) giving the size of the external
margins (units: lines of text).

omd A vector of the form c(x1, x2, yl, y2) giving the region inside the external margins,
in NDC (= normalized device coordinates), i.e. as a proportion (in [0,1]) of the graphics
window.

omi A vector of the form c(bottom, left, top, right) giving the size of the outer mar-
gins, in inches.

pin The dimensions of the plot region, in inches c(width, height).

plt A vector of the form c(x1, x2, yl, y2) giving the coordinates of the plot region as
fractions of the current figure region.

pty A character specifying the plot region type: "s" generates a square plot region and "m"
generates the maximal plot region.

usr A vector of the form c(x1, x2, yl, y2) giving the extreme values of the user coordi-
nates of the plot region. If a log scale is used (i.e. par("x1log") is TRUE), then the limits
in x are 10P2rC"'usr™ [1: 27 The same goes for the limits in y.

xpd A Boolean or NA. If FALSE, all plots are attached to the plot region. If TRUE, all plots
are attached to the figure region. If NA, all plots are attached to the plot window. See also
clipQ.

* An asterisk has been added to parameters which cannot be modified by the user (read only)

178 7 Drawing Curves and Plots

(ndc)

i

Fig. 7.24: Figure illustrating the fine management of graphical parameters

7.7 ¥ Fine-Tuning Graphical Parameters: par () 179

The previous plot should help you better understand some of these parameters
(Fig.7.24).

e Managing colours

Table 7.2: Parameters to manage colours

Name Description
bg Background colour of device region.
col Colour of plot.

col.axis Colour of axis annotations.

col.lab Colour of x and y labels.

col.main Colour of main title.

col.sub Colour of subtitles.

fg Colour of foreground (axes and box around the plot). Sets
col to the same value.

See how the parameters in Table 7.2 can be put in use (Fig. 7.25):

> par (bg="lightgray",col.axis="darkgreen",col.lab="darkred",
+ col.main="purple",col.sub="black", fg="blue")

> curve(cos (x) ,xlab="xlab in darkred",main="Title in purple",
+ xlim=c(-10,10),sub="sub in black")

> curve(sin(x),col="blue",add=T)

Title in purple
QS |
To]
]
Xo
3 o
[&]
To]
d —
T
S
1|_ | I I I I
-10 -5 0 5 10
xlab in darkred
sub in black

Fig. 7.25: Managing the colours of a plot

180 7 Drawing Curves and Plots
e Managing text
Table 7.3: Managing text displayed on a plot

Name Description

adj The value of adj determines how character strings are adjusted in text(),
mtext() and title(). A value of 0 leads to left-adjusted text, 0.5 to centred
text and 1 to right-adjusted text. Any value in [0, 1] is allowed, and some val-
ues outside this interval sometimes also work. Note that the argument adj to the
function text() also allows adj = c(x, y) for different adjustments in x and
in y. Note that for text (), the text is adjusted relatively to a point, whereas for
mtext() and title(), it is adjusted relatively to the plot region or graphical
window.

ann If set to FALSE, high-level graphical functions will not add annotations to plots
they produce (axes and main title). By default, annotations are added.

cex A numeric value giving the character expansion coefficient for text and symbols
on the plot, relatively to a reference value.

cex.axis Character expansion coefficient for axes annotations.

cex.lab Expansion for x and y labels.

cex.main Expansion for main title.

cex.sub Expansion for subtitles.

cinx Size of characters in inches c(width, height).

crax Size of characters in pixels c(width, height).

crt Numeric value specifying (in degrees) how various characters must be rotated.
Must be a multiple of 90. Compare with srt which rotates character strings.

csix Height of characters in inches. Identical to par("cin") [2].

CXY* Size of the characters c(width, height) in units expressed relatively to
the user coordinates. par("cxy") is equal to par("cin")/par("pin")
times a scaling factor in the user coordinates. Note that c(strwidth(ch),
strheight(ch)) for a given character string ch is usually much more accurate.

family Name of a font family. Maximal size is 200 bytes. Each plot device puts this name
in relation with a description of the font specific to the device. The default value
is "", which means that the default font is used (see the device help file for further
details). Other oft-used values are serif, sans and mono; Hershey fonts are also
available. This can be specified in the function text().

font An integer specifying the font to use for text. In general, 1 corresponds to ordinary
text, 2 to bold, 3 to italics and 4 to bold italics. 5 should be symbol font (Adobe
encoding).

font.axis Font for axis annotations.

font.lab Font for labels of x and y axes.

font.main Font for main title.

font.sub Font for subtitles.

ps Integer. Size of text, in points (but not of symbols).

srt Character string rotation, in degrees. See the comment on crt. Only supported

by text Q).

* An asterisk indicates arguments which cannot be modified by the user (read only)

7.7 ¥ Fine-Tuning Graphical Parameters: par () 181

VVV+++++++VVYV

VVVV + + VYV

Here is an example of use of the arguments adj and srt (Fig.7.26, Table 7.3):

par (mfrow = c(1, 3))

vals <- c(0, 0.5, 1)

for (adj in vals) {

par(adj = adj)

plot (0, main = paste("adj =", adj), col.lab = "red",
col.main = "red",type = "n")

text (1, 0, "abc", col = "red", cex = 2)

abline(h = 0, 1lty = 2)

abline(v = 1, 1lty = 2)

}

abline(v=0.8,h=-0.5,1ty=2)

text (0.8, -0.5, "abc", col = "red", cex = 2,adj=c(0,1))

abline (h=0.5,v=0.5,1ty=2)

text(0.8,0.5,"ABC",col="red",cex=2,adj=c(0.5,0.5),srt=120)

adj=0 adj=0.5 adj=1

o | ' o | ' © Sl

- | -) - Vo

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1
3 ol P A NS

1 1 1%

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

o 1 o 1 o 1 1
o------:abc e o----abc-- o--abe:—---

: : Vo

1 1 1 1

1 1 1 1

1 1 1 1

(2} ' T2} ' [Te) [
o 1 o 1 o+ -k - -

T ! T I T abc

)) Lo

1 1 1 1

1 1 1 1

)))) ol 11

- l - ' -
o ! b N B b
06 1.0 14 06 1.0 14 06 1.0 14
Index Index Index

Fig. 7.26: Example of use of the arguments adj and srt

This second example shows how to use different fonts (Fig. 7.27, Table 7.3):

par (cex.axis=1.5)

plot(1l:5,y=rep(1,5),type="n", font.axis=2, font.lab=3,xlab=
"xlab in italics",ylab="",font.main=4,main="Title in bold

italics", font.sub=5,sub="Subtitle in symbol font")

text(2,1.2,"Normal text")

par (ps=30)

text(3,1,"A Hershey font", family="HersheyScript")

par (ps=14)

182 7 Drawing Curves and Plots
+ family="HersheyGothicEnglish")

Title in bold italics

v —
-
N Ordinary text
-
o
- }4_ %QM}W,%/ M
@ Anoilyer BHersley font
pt y fon
Q|
© 5 T T T 1
1 2 3 4 5
xlab in italics
Tufritie v oyupoAc dovt

Fig. 7.27: Using different fonts on a plot

To see all symbols and fonts available in R, use the following command:

,j demo (Hershey)

7.7 ¥ Fine-Tuning Graphical Parameters: par () 183

e Managing axes

Table 7.4: Parameters to manage axes

Name Description

bty Character string to specify the type of box around the plot (the axes). If bty is one of
"0" (default value), "1", "7", "c", "u" or "]", the box looks like the corresponding
character. A value of "n" hides the box.

lab Numeric vector of the form c(x, y, len) modifying how the axes are annotated. The
values of x and y (approximately) specify the number of ticks on the x and y axes. len
specifies the size of the labels. The default value is c(5, 5, 7). Note that this only
affects the values of the arguments xaxp and yaxp when the coordinates system is put in
place and is not used when the axes are drawn. len is not implemented yet.

las Number in the set {0,1,2,3}. Style of the axis labels. O=always parallel to the axis (de-
fault), 1=always horizontal, 2=always orthogonal to the axis, 3=always vertical. Note
that the argument srt of par(), which manages the rotation of character strings, does
not affect axis labels.

tck Length of tick marks on axes, as a fraction of the minimum of the height and width of the
drawing region. If tck >= 0.5, then it is interpreted as a fraction of the relevant side,
and if tck=1, then a grid is drawn. The default (tck = NA) sets tcl = -0.5.

tcl Length of the tick marks as a fraction of the height of a line of text. The default value is
-0.5. Entering tcl = NAsets tck = -0.01.

xaxp A vector of the form c(x1, x2, n) giving the coordinates of the extreme ticks and the
number of intervals between ticks, when par("xlog") is FALSE. Otherwise, when the
scale is logarithmic, the three values have different meanings. See the online help for
details. See also axTicks().

xaxs Style for the intervals on the x axis. Possible values: "r", "i", "e", "s", "d". The style
is usually controlled by the data range or by x1imif it is specified. The style "r" (regular)
first enlarges the data range by 4 % on both sides and then finds an axis with pretty labels
which fits in the range. The style "i" (internal) only finds an axis with pretty labels which
fits the original data range. The style "s" (standard) finds an axis with pretty labels in
which the original data range is included. The style "e" (extended) is similar to the style
"s", but it also leaves space to draw symbols inside the bounding box. The style "d"
(direct) specifies that the current axes must be used for subsequent plots. As of writing,
only the styles "r" and "i" are implemented.

xaxt A character to specify the type of x axis. A value of "n" implies that an axis is created,
but not drawn. The standard value is "s".

xlog Boolean (see log in plot.default()). If TRUE, a logarithmic scale is used (e.g., after
plot(*, log = "x")). For a new graphics window, the default is FALSE, i.e. a linear
scale.

yaxp A vector of the form c(yl, y2, n) giving the coordinates of the extreme tick marks
and the number of intervals between these ticks, except for the logarithmic scale. See
xaxp above.

yaxs Style for the intervals on the y axis. See xaxs above.

yaxt Character to specify the type of y axis. A value of "n" implies that the axis is created,
but not drawn.

ylog Boolean; see x1og above.

184 7 Drawing Curves and Plots

A few of these parameters are used in the following example (Fig. 7.28):

> # Enlarge the bottom margin to leave space for the x
labels.
> par(mar = c(7, 4, 4, 2) + 0.1)
> # Define a box style, ten ticks in x and Yy,
horizontal labels, and graduations of length 1 (which gives
a grid)
> par (bty="7",col="blue",lab=c(10,10,1),las=1, tck=1)
Create a plot without the x axis and without
x labels.
plot(1l : 8, xaxt = "n", xlab = "")
Add the x axis with ticks only.
axis(l, labels = FALSE)
Create the label vector.
labels <- paste("Label", 1:8, sep = " ")
Add the x labels to the default ticks.
text(1:8, par("usr")[3] - 0.25, srt = 45, adj = 1,
labels = labels, xpd = TRUE)
Add a subtitle at the bottom, on the sixth margin line (out
of 7).
> mtext (1, text = "Labels for the X axis", line = 6)

\"

V+VVVVYV VYV

1:8
A
o

Labels for the X axis

Fig. 7.28: Labels on a plot

7.7 ¥ Fine-Tuning Graphical Parameters: par () 185

e Lines

and symbols

Table 7.5: Parameters for lines and symbols

Name

Description

lend

lheight

ljoin

Imitre

1ty

1wd
pch

End-of-line style. Can be specified with an integer or a character string: 0 or "round"
means that a semicircle is added at the end of a line; 1 or "butt" means that lines end
straight; 2 or "square" means that a small square is added at the end of a line.

Line height multiplier. When a text extends over several lines, the height of the space
between lines is found by multiplying the height of characters both by the current
character expansion factor and by the line height multiplier. The default value is 1.
Used in text () and strheight().

Line join style. Can be specified with an integer or a character string: ® or "round"
means a round join (default); 1 or "mitre" means a straight join; 2 or "bevel" means
bevelled line joins.

Controls when straight joins are automatically converted to pointy joins. Must be
greater than 1 and the default value is 10. Does not work on some peripherals.

Line type. Can be specified by an integer (O=blank, 1=solid, 2=dashes, 3=dots, 4=dots
and dashes, 5=long dashes, 6=two dashes) or by one of the character strings "blank",
"solid", "dashed", "dotted", "dotdash", "longdash" or "twodash". Note that
"blank" uses invisible lines (so does not draw them). You can also give a character
string (of length no more than 8) giving the length of the solid and empty segments.
See the section Line type specification of the online help.

Line width in the plot (positive number), defaults to 1.

Either an integer specifying a symbol or a character to replace small circles in point
plots.

The following plot should help you better understand the arguments lend and
1ljoin (Fig.7.29, Table 7.5).

- .)
g z g
o o
2 f ' 3
Il
© c el
C [0} o
o - @
ljoin="round" lijoin="round" ljoin="round"
= N =0)
g & g
o o
3 I ¥
Il
© = el
C [0} C
° - @
ljoin="mitre" ljoin="mitre" lijoin="mitre"
E < [
E S
3
8 s 5
Tt i) £
I
© c el
C [V} c
o - K]
lijoin="bevel" ljoin="bevel" ljoin="bevel"

Fig. 7.29: The arguments 1end and 1join

186 7 Drawing Curves and Plots

The figure below shows the different symbols you can obtain with the argument
pch. The type of points in a plot is controlled with the argument pch. Points 0 to
20 are of the same colour, controlled with the argument col. Points 21 to 25 also
have a filling colour, controlled with the argument bg of the function points()
(Fig.7.30).

Values of the argument pch : points (... pch =*, cex=2)
o0 e/ 120 1e 24A 0o()
10 7K 1B 19@ 257 ++
2/\ 8k 14N 20 x -—
s+ o 1sm 210 - o]
4X 100 16@ 220 o0 %%

5O 11XX 174 230 o) +#

Fig. 7.30: The argument pch
Figure 7.31 shows how to use the arguments 1ty and 1wd:

> plot (1,1, type="n")
> for (i in 0:6) abline(v=0.6+i*0.1,1lty=1i,1lwd=1i)
> abline(v=1.3,1lty="92",1lwd=10)

<

-

1.2

1.0

T
0.6 0.8 1.0

1
Fig. 7.31: The arguments 1ty and 1wd

-
(V)

1.4

7.8 T Advanced Plots: rgl, lattice and ggplot2 187

SECTION 7.8
(1 Advanced Plots: rgl, lattice and ggplot2

There are other R packages to manage plots in a more advanced way. Space does
not allow us to describe these packages in much detail. We shall simply give a few
striking examples, in the hope that the advanced reader will want to find out more.

e Package rgl

This package is used to create pretty 3D plots, with interactive viewpoint navi-
gation using the mouse. Try the following commands to get an idea:

require ("rgl")
demo (rgl)
example (rgl)

e Package lattice

An entire book is dedicated to this package: [36]. The following example shows
that in the package lattice, plots can be considered as objects (as in object-
oriented programming), which some readers might find pleasing. For example, sup-
pose that you have used the following commands to draw a graph and that you
realize you made a mistake in the title.

X <- 1:100
y <- sin(x)
plot(x,y,type="1",main="Cosine plot")

The way to resolve this issue would be to redraw the entire figure, this time with the
correct title.

With the package lattice, you can avoid this hassle.

require ("lattice")
xyplot (y~x, type="1",main="Cosine plot")

The following instruction can be used to change the title without redrawing the plot!
update (trellis.last.object () ,main="Sine plot")

e Package ggplot2

We shall only mention the package ggplot2, which makes explicit the concep-
tual links between plots and statistical analyses. You can visit the website of this
package at http://ggplot2.org and the website of the book devoted to it at
http://ggplot2.org/book.

http://ggplot2.org
http://ggplot2.org/book

188 7 Drawing Curves and Plots

Memorandum

dev.off(): close the active graphics window

savePlot (): save the contents of the active graphics window to a file
layout (): split the graphics window into boxes

plot (): draw points and optionally lines between them

points(): add points to a pre-existing plot and optionally lines between them
segments(), lines(), abline(): add lines to a plot

arrows(): add an arrow to a plot

polygon(): draw a polygon

curve(): draw a curve, specified by its equation

box(): add a box around the active plot

colors(): return the list of colour names known to R

text(): add text or mathematical symbols to a plot

mtext(): add text to the margins of a plot

title(): manage the titles of a plot

axis(): add an axis to a plot

legend(): add a caption to a plot

locator(): detect the coordinates of a point on a plot with a click of the mouse
identify(): identify a pre-existing point on a plot

par(): advanced management of all graphical parameters

ESY

Exercises

7.1- What is the command windows () used for? And the command dev.off()?

7.2- Suppose you drew a plot with the command

curve(cos(x)). Which R instruction would you use to save this plot as a

PDF in a file called myplot.pdf?

Give a detailed explanation of the effect of the instruction

par (mfrow=c(3,2)).

7.4- What is the function layout () used for?

7.5- Which command would you use to add a scatter plot to a pre-existing plot?

7.6- Which argument of the function plot() would you use to get points with
dashes between them?

7.7- Name a function which draws a straight line.

7.8- What is the function curve () used for?

7.9- Which argument would you use to manage the colours in a plot?

7.10- Which function would you use to display an image? Give an instruction to
display an image, the values of which are given in a matrix X, so that the
output is coherent with the way X is displayed in the console.

7.11- Which function would you use to add text to a plot?

7.12- Which function would you use to find the coordinates of a point in a plot with
a click of the mouse?

7.13- Give a detailed explanation of the effect of the instruction par (ask=TRUE).

7.3

Worksheet 189

7.14- Which argument of the function par () would you use to specify the type of
line drawn by the function curve ()?

7.15- Which argument of the function par () would you use to display other sym-
bols instead of small circles in a scatter plot?

7.16- Give a list of instructions to display the following plot. The central axis sys-
tem must be displayed in red. The cosine curve must be displayed in blue.

Sine and cosine plots

sin(x)
0 1
!
e
/

(\Il]
I I I |
-10 -5 0 5 10
X axis
Worksheet

Creating Various Plots

A- Complex Numbers

7.1- Reproduce the plot on complex numbers in Chap. 3 (page 47).

B- Flag of Canada

7.1- Install the package caTools.

7.2- Use the function read.gif () to read the image http://www.
biostatisticien.eu/springeR/canada.gif.

7.3- Display the image with the function image ().

7.4- Redraw this flag in another window using the functions plot (), rect() and
polygon() (hint: use the function locator()).

http://www.
biostatisticien.eu/springeR/canada.gif

190

7 Drawing Curves and Plots

C- Frequency Tables

The following table represents scores of burning sensation for 16 subjects in a
study to test a new hydrogel bandage. The first column gives the subject number.
The next columns give the score of burning sensation (on a scale from 1 to 4) for
weeks 1 (W1) to 7 (W7).

o Noaukh wNhRE
R

HRERBERERRBERREO
oAUl WNh R O

w1l w2 w3 w4 W5 w6 w7
1 1 1 1 1 1 1
1 1 1 1 1 1 2
1 1 1 1 1 2 3
1 1 1 1 1 3 4
1 1 1 1 2 3 3
1 1 1 1 1 1 1
1 1 1 3 4 2 2
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 4
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 2 1 3 2 3 4
1 1 1 2 2 4 4
1 1 1 1 1 1 1
1 1 1 1 1 1 1

We shall propose an interesting way to display these data.

7.1-

7.2-

7.3-

For week W7, calculate the vector (f1, 1— f1, f2, 1— f2, f3, 1— f3, fa, 1 — f4)
where f; is the frequency of modality i (1 < i < 4) observed in week W7
over the 16 subjects. (Hint: use the functions tabulate(), cbind(), t(
and as.vector()).

Now, use the function apply () to do the same calculation for all other weeks.
Store the result in a matrix.

Use the function barplot () and the argument col=c("black", "white")
on this matrix. The plot you get gives an overview of the evolution of the
variable Burning sensation over time.

Change the previous plot so that the bars representing frequencies are in red.
Week numbers should be in blue and at the top of the plot instead of the
bottom. Modality numbers should be on the left, in blue. Add a title to the
plot.

D- Anatomic Images of the Brain

Data acquired during magnetic resonance imaging (MRI) of the brain are usually
stored as a binary file with extension *.img. We shall see how to read and display
such data.

7.1-

Import the file http://www.biostatisticien.eu/springeR/anat.
img, which contains the image of a single brain section of 256 x 256 pixels,

http://www.biostatisticien.eu/springeR/anat.img
http://www.biostatisticien.eu/springeR/anat.img

Worksheet 191

7.2-

7.3-

7.4-

7.5-

7.6-

using the function readBin(). These data can be treated as a sequence of
256 x 256 byte pairs (raw). Store these data in an object called bytes.
When the data were recorded, each pair of bytes was in fact written in reverse
(e.g., the pair 02 56 was recorded as 56 02). You therefore need to permute
each byte pair. Store the result of this operation in x.

This sequence of byte pairs now needs to be transformed into numeric values
which can be displayed graphically. With two bytes (such as 2 56), you can
use the instruction

as.numeric("0x0256") to get the corresponding decimal value (in this
case, the result is 598). Transform x into decimal values and store the result
in an object called values (hint: use the functions matrix(), apply () and
paste()).

Recreate the matrix of size 256 x 256 containing the observations stored in
values. Call this matrix X.

Use the function image () on X. Use a colour gradient of shades of grey with
about one hundred shades, using the function gray ().

Note that the R package AnalyzeFMRI does exactly that. After download-
ing the two files http://www.biostatisticien.eu/springeR/anat.
img and http://www.biostatisticien.eu/springeR/anat.hdr, and
after installing package AnalyzeFMRI, you could have got the exact same
result by typing

require ("AnalyzeFMRI")

Y <- f.read.volume ("/path/to/anat.img") # Replace path.
image (X, col=gray (0:1000 / 1000))

E- Drawing the Map of a Region of France

The package maps includes maps of various countries. We shall use it to draw
the borders of a French département.

7.1-
7.2-
7.3-

7.4-

7.5-
7.6-

7.7-

7.8-

Install and load the packages maps and mapdata.

Draw the map of France: map (" france").

Get the data on borders of French regions:

france <- map("france",plot=FALSE)

Display the contents of the object france and make sure you understand how
it is organized. For example, note that latitude and longitude data are stored
in france$x/france$y for each département in france$names (until the
next NA).

Create a vector indNA containing the indices of missing values.

Create an object containing the name of the département of your choice (e.g.,
depname <- "Gard").

Create an object called inddept containing the département index depname
in the vector france$names.

Draw the map of your département.

http://www.biostatisticien.eu/springeR/anat.img
http://www.biostatisticien.eu/springeR/anat.img
http://www.biostatisticien.eu/springeR/anat.hdr

192 7 Drawing Curves and Plots

7.9- Add a point for a place on the map. You can get the coordinates (latitude and
longitude) of a place on the website http://www.gpsvisualizer.com/
geocode.

F- Representation of the Geoid in France

A geoid can be seen as a gravitation equipotential surface, going through the
average sea level datum.

7.1- Import the file http://www.biostatisticien.eu/springeR/raf98.
gra in a matrix, using the function scan(). First, read the associ-
ated file http://www.biostatisticien.eu/springeR/geoidformat.
txt which gives a description of the file format.

7.2- Try to reproduce the plot available at
http://www.biostatisticien.eu/springeR/geoid.png. Do not try to
superpose the map of France yet (hint: use the functions scan(), layout(),
par(), image(), axis(), contour (), legend() and rainbow()).

http://www.gpsvisualizer.com/geocode
http://www.gpsvisualizer.com/geocode
http://www.biostatisticien.eu/springeR/raf98.gra
http://www.biostatisticien.eu/springeR/raf98.gra
http://www.biostatisticien.eu/springeR/geoidformat.txt
http://www.biostatisticien.eu/springeR/geoidformat.txt
http://www.biostatisticien.eu/springeR/geoid.png

Chapter 8
Programming in R

Prerequisites and goals of this chapter

e Read all previous chapters first. A neophyte user can skim through this chap-
ter on first reading. Indeed, it is well known that programming in a language
requires a more advanced level than using a language.

e The aim of this chapter is to give the user the opportunity to develop new func-
tions; in R, this corresponds to extending the language. The user can thus com-
plete his comprehension of how R works.

SECTION 8.1

Preamble

The strength of the R system is that it includes a real programming language. We
shall see that it offers very original programming concepts. The concept of objects
is very present in R. Object-oriented programming as used in R is transparent for
the user, in the sense that you do not need to understand the theory in order to use
it. The same cannot be said for the developer who wishes to respect the spirit of R.

Practical Problem

As an example, this chapter will tackle the resolution of the following practical
problem. Suppose that some users, beginners in R, wish to discover programming in
R by developing a few functions relative to the well-known least squares methods,
in the context of simple linear regression. He soon realizes that two specific tasks

! See for example http://en.wikipedia.org/wiki/Ordinary_least_squares.

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming 193
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3_8,
© Springer Science+Business Media New York 2013

http://en.wikipedia.org/wiki/Ordinary_least_squares

194 8 Programming in R

are of interest to him: first, output a summary with estimations and the coefficient
of linear correlation; second, draw a scatter plot with the regression line. With his
experience from previous chapters, this user finds it easy to produce these results
from the command line. However, he/she would like to avoid having to type in
several lines of commands every time he/she wishes to see the result of these two
tasks, and so would like to develop two functions, easier to apply in a daily use of
R. To this end, he/she will have the help of a more advanced user who can advise
him/her every time he/she encounters a difficulty.

This practical problem should help the reader understand the use of the notions
presented in this chapter.

SECTION 8.2
Developing Functions

First of all, let us introduce some basic theoretical elements to explain how to create
a function in R.

8.2.1 Quick Start: Declaring, Creating and Calling Functions

Declaring a function is done with the following general form:
function(<list of arguments>) <body of the function>
where

<list of arguments>is alist of named (formal) arguments.
<body of the function> represents, as the name suggests, the contents of
the code to execute when the function is called.

Here is an example of function declaration:

> function(name) cat("Hello",name,"!")
function (name) cat("Hello",name,"!")

For R, a function is a specific object. Creating a function thus corresponds to
affecting the object “R function” to a variable, the name of which corresponds to
the function itself. For example, to create the function hello(), you can proceed as
follows:

> hello <- function(name) cat("Hello",name,"!")
> hello
function (name) cat("Hello",name,"!")

For this function to be executed, the user needs to call the function, followed by
the effective arguments listed in brackets. Recall that an effective argument is the

8.2 Developing Functions 195

value affected to a formal argument. We will use the terms calling argument and
input argument as synonyms of effective argument.

> hello("Peter")
Hello Peter !

8.2.2 Basic Concepts on Functions

8.2.2.1 Body of a Function

The body of a function can be a simple R instruction, or a sequence of R instructions.
In the latter case, the instructions must be enclosed between the characters { and }
to delimit the beginning and end of the body of the function. Several R instructions
can be written on the same line as long as they are separated by the character ;.
When the body of the function includes several R instructions written on the same
line, do not forget to enclose them between characters { and }. Recall that on a line,
any code written after the character # is not interpreted by R and is taken to be a
comment.

hello <- function (name) {

Convert the name to upper case.

name <- toupper (name)
cat ("Hello",name,"!")
}
hello("Peter")
Hello PETER !

>
+
+
+
+
>

8.2.2.2 List of Formal and Effective Arguments

In this section, we describe how to declare the list of formal arguments when
defining a function and how to input the list of effective arguments when calling a
function.

Declaring a Function

When declaring a function, all arguments are identified by a unique name.
Each argument can be associated with a default value. To specify a default value,
use the character = followed by the default value, as when declaring a list object
(1ist (). When the function is called with no effective argument for that argument,
the default value will be used. We have used this functionality many times in previ-
ous chapters, but we now know how to include it when developing new functions.
Here is an example:
> hello <- function(name="Peter") cat("Hello",name,"!")

> hello()
Hello Peter !

196 8 Programming in R

It seems useful to explain the difference between calling the name of the function
hello and calling the function followed by brackets: hello(). The first form will
display the contents of the function, as with any other R object, whereas the second
form will call the function (in this case, with no argument specified). To execute a
function, you always have to add brackets and list the effective arguments if neces-
sary.

Naming Effective Arguments

In R, an effective argument can be entered by adding the name of the formal
argument. Of course, this is of little interest when the function only depends on
a single formal argument. Let us add to our function hello() the possibility of
choosing a language, and see a few calls of this function.

> hello <- function (name="Peter",language="eng") {

+ cat (switch(language, fr="Bonjour", sp="Hola",eng="Hello"),
name, "!")

+

> hello()

Hello Peter !

> hello (name="Ben")
Hello Ben !

> hello(language="£fr")
Bonjour Peter !

This functionality, combined with the ability to specify default values,” allows
the developer to define a function with an important list of formal arguments corre-
sponding to call options. Users can then call this function without needing to input
all effective arguments. For example, they can affect a value to the last formal argu-
ment without having to type in all the other effective arguments. This way, a single
function can be used for what would have otherwise required several functions.
This is a true specificity’ of R, which allows an innovative programming mode. For
example, read the help file on the functionalities of the function seq() with the
various arguments by, length.out and along.with.

Partial Naming of Effective Arguments

In the same context, a second functionality of R is that it allows calling a function
without typing in the complete name of a formal argument. Consider the following
calls of the function hello():

> hello(lang="eng")
Hello Peter !

> hello(l="eng")
Hello Peter !

> hello(l="e")
Peter !

2 The function missing() is also very useful for this kind of programming.
3 It should be noted that many programming languages do not have this functionality.

8.2 Developing Functions 197

The rule for determining the formal argument corresponding to a partial name is:
in the ordered list of formal arguments of the function, the selected formal argument
is the first formal argument for which there is a match between the first letters of
the argument name and the partial name given by the user.

List of Supplementary Arguments . ..”

You can give a list of supplementary arguments with the syntax When call-
ing the function, all “named” arguments which are not in the list of formal arguments
are grouped in the structure In the body of the function, the user can then use
the syntax . .. as if copy-pasting the list of supplementary named arguments. This
begs for an example:

> test.3points <- function(a="foo",...) print(list(a=a,...))
> test.3points("bar",b="foo")

Sa

[1] "bar"

$h

[1] "foo™"

Generally speaking, a rule of thumb for using the list of supplementary arguments
. in the body of a function is that it should be used as an argument of one or
several internal function calls.

When . .. is included in a list of arguments and is not in last position, “par-
tial naming of arguments” will not work for all arguments after Indeed, a
partial formal argument name is then considered as a formal argument in the
supplementary list.

> test.3points <- function(aa="foo",...,bb="bar") {
+ print (list (aa=aa, ...,bb=bb))}

> test.3points(a="bar",b="foo")

Saa

[1] "bar"

sb

[1] "foo"

Shb

[1] "bar"

Note that the value of the formal argument aa has been modified, but that
bb did not change its value. The formal argument b was created. To change the
value of the second formal argument bb, you need to use the complete name.

> test.3points(a="bar",bb="foo")
Saa

[1] "bar"

Shb

[1] "foo"

198 8 Programming in R

A keen user of partial names might be surprised by the following output
when using the function paste(..., sep = " ", collapse = NULL) if
he/she had taken the liberty of using the partial name (col) of the formal argu-

ment collapse:

> paste(c("foo","bar"),col=", ")
[l] "foo , "bar , "

Since partial naming is ineffectual, col is considered as a second vector to
paste, and the default options of the function paste() are used (i.e. sep=" "
and collapse=NULL). To get the desired output, you need to use the complete
name of the formal argument collapse.

> paste(c("foo","bar"),collapse=", ")
[1] "foo, bar"

Generally speaking, when you call a function, you need to specify the value
of all formal arguments for which no default value is defined. If you do not,
an error occurs. There are however two exceptions. The first corresponds to the
case where the argument is not used in the body of the function; this is of course
useless and is probably due to a programming mistake. The second exception
is when the developer allowed for this case in the body of the program, with
the function missing().

> hello <- function (name) {

+ if (missing("name")) name <- "Peter"
+ cat ("Hello",name,"!")
+
>

¥
hello ()
Hello Peter !

8.2.2.3 Object Returned by a Function

The function hello() above does not return any object. It simply produces a
display on the screen.

> res <- hello()

Hello Peter !

> res
NULL

In previous chapters, we have often used R functions and saved the result as a
variable (e.g., x <- c(1,5,3), where the result of the base function c () is affected
to the variable x). Since we are now interested in developing functions, let us exam-
ine how to create a function which returns an object (a result that is not ephemeral).

8.2 Developing Functions 199

A general rule to return an object is to use the function return(). This instruc-
tion halts the execution of the code of the body of the function and returns the object
between brackets. Here is an example:

> hello <- function(name="Peter") {

+ return (paste ("Hello",name,"!",collapse=" "))}
> hello()

[1] "Hello Peter !I"

> message <- hello()

> message

[1] "Hello Peter !"

The first call of the function returns the string of characters object without
affecting it to a variable. The result is thus displayed on the screen, as if the user
had entered in the command line the object returned by the function. The second
call does not produce any display: the result of the function is redirected to the
variable message, as the last instruction above shows.

It is possible to return an object without using the function return(). The
rule is then that the returned object is the last object manipulated in the last
instruction of the body of the function (i.e. just before exiting the function). In
the previous example, we could therefore have omitted the function return()

> hello <- function(name="Peter") {

+ paste ("Hello",name,"!",collapse=" ")}
> hello()

[1] "Hello Peter !"

However, we discourage this practice because it does not always work, as
shown below where we would expect that the function returns 10:

> function.without.return <- function() {
+ for (i in 1:10) x <- i}
> function.without.return ()

Can you tell whether the following function returns an object? If yes, what is the
content of this object?

> hello <- function (name="Peter") {
+ msg <- paste("Hello",name,"!",collapse=" ")}

What do you think when you see the output below?
> hello()

There is no display, so it seems that no object is returned. But are you certain
when you see the following example?

> message <- hello()
> message
[1] "Hello Peter !I"

-

200 8 Programming in R

The last manipulated object is indeed the variable msg. Affecting the output to
the variable message does store the contents of the variable msg from the body of
the function. R can sometimes be unsettling, but you will agree that this kind of
usage is not rational and a developer would probably never find it useful.

If you wish to get the same behaviour as in the last example, i.e. that the
function does not display anything when called but does return an object, it is
more direct to use the function invisible () —the name of this function is
clear enough.

> hello <- function(name="Peter")

+ invisible (paste("Hello",name,"!",collapse=" "))
> hello()

> message <- hello()

> message

[1] "Hello Peter !"

8.2.2.4 Variable Scope in the Body of a Function

The notion of variable scope is very important for a language which allows to
develop functions. The main point is that variables defined inside the body of a
function have a local scope during function execution. This means that a variable
inside the body of a function is physically different from another variable with the
same name, but defined in the workspace of your R session. Generally speaking, lo-
cal scope means that a variable only exists inside the body of the function. After the
execution of the function, the variable is thus automatically deleted from the mem-
ory of the computer. We are now going to modify our function hello() by inserting
controls of the contents of variables.

> message <- "hello Pierre !"

> message # Workspace initialization.

[1] "hello Pierre !"

> hello <- function (name="Peter",message="hello") {
+ print (message)

+ message <- paste(message,name,"!",collapse=" ")
+ print (message)

+ invisible (message)

+)

> hello()

[1] "hello"

[1] "hello Peter !"

> message # Workspace has not been modified!
[1] "hello Pierre !"

> message <- hello()

[1] "hello"

[1] "hello Peter !"

8.2 Developing Functions 201

> message # Workspace has been modified!

[1] "hello Peter !"

> message <- hello(message="Welcome")

[1] "Welcome™"

[1] "Welcome Peter !"

> message # Workspace has been modified again!
[1] "Welcome Peter !"

A quick comment on the arguments of the function: contrary to what you might
think, the variables name and message are not directly evaluated (initialized to the
calling value or to the default value) before the execution of the body of the func-
tion. They are only initialized when they are first used in the body of the function.
Recall that the function missing() is used to test whether a formal argument has
been defined when calling the function. The only way for this functionality to be
operational is by not evaluating the list of formal arguments at the beginning of the
body of the function. Similarly, at the beginning of the body of the function, it is
possible to get the effective call (with the completed list of arguments) by using the
functionmatch.call().

> test.call <- function(aa="bar",... ,bb="foo") {
+ print (match.call())}

> test.call(a="foo",b="bar")

test.call(aa = "foo", b = "bar")

The last function creation may not seem very useful, but once you are
an advanced R developer, you might find a use to the result of the function
match.call (). We shall not give details, but only a taste of what can be done
in R. We shall modify the last function so that it returns the arguments split into
two lists: one (called function) of effective arguments associated with formal
arguments and one (called misc) of supplementary effective arguments. Note
how partial naming of arguments is managed.

> test.call <- function(aa="bar",...,bb="foo") {
+ args <- as.list(match.call()) [-1]

+ inside <- names (args) %in% names (list(...))
+ list (funct=args[!inside] ,misc=args[inside])
+ }

> test.call (a="foo",b="bar")

$funct

$funct$aa

[1] "foo"

$Smisc

Smiscs$b

[1] "bar"

A few lines of code are enough to get the result: introspection is easy in R
and has many other features in the same context. We are not trying to get you
to delve straight away into this kind of development, but wish to point out the
possibilities of the language.

202 8 Programming in R

8.2.3 Application to the Practical Problem

After these theoretical explanations, our beginner user tries the following function
codes for simple linear regression.

mysummary .regl <— function(y,x) {

aEst <— cov(x,y)/var(x)

bEst <— mean(y)—aEstxmean(x)

return(list (aEst=aEst, bEst=bEst,cor=cor(x,y)))

mydisplay .regl <— function(y,x) {
aEst <— cov(x,y)/var(x)

1
2
3
4
5|}
6
7
8
9 bEst <— mean(y)—aEstxmean(x)

10 plot(x,y)
11 abline (a=bEst ,b=aEst)

; Note that in old versions of R, you could write
\%#’ return(aEst=aEst, bEst=bEst,cor=cor(x,y))
but that this usage will be deprecated in future versions.

After loading these functions with a copy—paste or with the command source(),
the user tests an uninteresting example.

> y <- rnorm(1l0);x <- 1:10
> mysummary.regl (y,x)

SaEst
[1] -0.1019453
SbEst
[1] 0.7822879
Scor

[1] -0.4198245

The instruction mydisplay.regl(y,x) produces Fig. 8.1 on page 211.
We shall see later on how these functions can be enriched.

8.2.4 Operators

Calling a function under the form <function>(<list of call arguments>) is
not always easy. An example is the function seq(). Of these two equivalent forms,
which one do you prefer?

> seq(1,3)
[1] 1 2 3

8.2 Developing Functions 203

You probably prefer the second form, since it is more synthetic (no brackets) and
is thus easier to manipulate, for example, when using indices (of vectors, matrices,
etc.). This form corresponds to an operator. R uses operators internally.

There are two forms of operators:

e Unary operator (one argument) : <operator> <argumentl>
e Binary operator (two arguments) : <argumentl> <operator> <argument2>

where <operator> is the operator, and <argumentl> and <argument2> are the
effective arguments of the operator. Here is a partial list of operators used internally
by R:

+, =, *, /., , %%, %/%, &, |, 1, ==, 1=, <, <=, >=, >.

A priori, these operators cannot be modified by the user.* It is however possible to
define extra operators. They are of the form %<operator>% and some are already
available in the base system, for example, %in% and %o0% (seen in Chap. 5).

To display the source of the function (the operator) %in%, use the instruction
get ("%in%"). You can see that it uses the function match() which you may
find useful.

Suppose we wish a more synthetic way to concatenate strings of characters,
which is normally done with the function paste().

> "%+%" <- function(chl,ch2) paste(chl,ch2,sep="")

> name <- "Peter"

> "The life of " %+% name %+% " is beautiful!"

[1] "The life of Peter is beautifull"

> # This is a simplification of:

> paste("The life of ", name ," is beautiful!",sep="")
[1] "The life of Peter is beautifull!"

Note that since the name of the function is not alphanumeric, it has to be put
between quotation marks. It is of course up to you whether you prefer one or the
other form. We are not trying to diminish the usefulness of the function paste(),
which is a much richer function than the simple operator %+% we have created (the
creation actually used the function paste()). We are rather trying to show the flex-
ibility of R which allows, with a simple function definition, a simplification of the
calling syntax.

4 In fact, this group of operators can be used by a user when developing a new class of objects. But
this matter is too advanced for this book!

4

204 8 Programming in R

You can use operators to define operations on sets, such as those presented
on p. 99. For example, the union between two sets A and B can be defined as

> "%union%" <- function(A,B) union (A, B)
> A %union% B
[1] 4 6 2 7 1 3

8.2.5 R Seen as a Functional Language

R is a functional language in the sense that almost any code execution in R is done
by calling functions, possibly scattered with control structures. In fact, you may be
surprised to learn that the following features of R are also controlled by functions.
We have seen that simply calling an R object results in the display of its contents. In
fact, in such an instruction, R calls (without notifying the user) the function print ()
with effective argument the name of the object. Because this function is often used
in R, it has a particular status; we shall discuss this further later on. All affectation
operations (i.e. instructions with <-) are handled by functions whose names include
(no surprise here) the distinctive sign <-°. Developing and maintaining the R system
can be summarized as the construction of a range of functions. First are the basic
functions, included in the basic installation of R. Usually, they cannot be modified
by the user®, and even when they can be, we strongly advise against it; let your
system become unusable. Second are the functions developed directly in R7 by any
user. Many functions are made available by the community of R developers through
a system of packages (more on this later).

SECTION 8.3

T Object-Oriented Programming

In this section, we shall view an object as more than a quantity that can be saved
and reused. We shall come closer to the spirit of the R language by looking at the
internal object-oriented mechanism which governs most of its use. The incredible
part is that the user does not need to worry about knowing the internal workings
of R. According to us, this is a strong point of R. Nonetheless, this section should

5 To see this, type in the command line apropos ("<-").

6 The core of R is developed in the C language for obvious reasons of speed of execution, which
makes it rather reactive when used in the command line.

7 To speed up execution, it is usually possible to convert an R function into C and then to call it
from R via the C APL

8.3 T Object Oriented Programming

205

help users better understand how R proposes results. We expect this will lead to a

less “random” and more controlled use of R.

8.3.1 How the Internal Object-Oriented Mechanism Works

8.3.1.1 Class of an Object and Declaring an Object

What matters in R is specifying the class of an object with the function

"class<-"(). Recall that the function class() is used to

an object.

> obj <- 1:10
> class(obj)
[1] "integer"
> class(obj) <- "MyClass"
> class (obj)
[1] "MyClass™"
> class(obj) <- "OtherClass"
> obj
[1] 1 2 3 4 5 6 7 8 9 10
attr(,"class")
[1] "OtherClass™"

check the class of

The object obj of class integer is now an object of class OtherClass. The last
display of the object obj indicates the class of the object, where attr stands for
attribute. We shall come back to the notion of attributes at the end of this chapter.
For now, it is enough to understand the meaning of the display attr(, "class")

which is literally the “class attribute”.

That said, the above is not quite true: the object obj has kept the character-
istic of also being of the integer class, as the following output shows:

> obj*2

[1] 2 4 6 8 10 12 14 16 18 20

attr(, "class")
[1] "OtherClass"

Indeed, all the elements of the vector obj have been multiplied by 2. We

hope that in future versions of R, the output of the function class () applied
to such an object will be similar to [1] "OtherClass" "integer", which
would better show the true nature of the object.

There are two ways of knowing whether an object is of a given class:

> class (obj)=="MyClass"
[1] FALSE

206 8 Programming in R

> inherits(obj,"MyClass")
[1] FALSE

The function inherits () should be preferred, as we shall see when we consider
polymorphic objects with several classes.

To see the class of the function function(), you can use this instruction:

> class (function() {})
¥, [1] "function"

For the function ":" () , use class(get(":")).

8.3.1.2 Declaring Objects and Using Methods

The mechanism for object-oriented programming is rather simple and original in R,
compared to many other languages. To illustrate this mechanism, examine the most
used example in R: the display of an object with the function print (). Examine
the following R outputs:

> vect <- 1:10
> class(vect)
[1] "integer"
> vect
[1] 1 2 3 4 5 6 7 8 9 10
> print (vect)
[1] 1 2 3 4 5 6 7 8 9 10

No surprises so far, although it is worth pointing out that simply entering an R
object in the command line seems to provoke a call to the function print () with
the given object as effective argument. The next example confirms this idea®: it dis-
plays an object of the class formula, characterized by the tilde symbol (~). In this
example, we save in the variable form the formula expressing the relationship be-
tween y and x. Note that the objects y and x do not need to exist, since no evaluation
is done when a formula is defined.’

> form <- y~x
> class (form)
[1] "formula"
> form
y ~ x
> print (form)
y ~ x

8 In fact, for auto-printing base objects (vectors, matrices, lists, etc.) in the console, R does not
use the print () function, but calls a C function named PrintValueEnv, which is not directly
available to the user.

9 No further details are needed for now; we shall come back to this very original class of objects.

8.3 T Object Oriented Programming 207

Note that the function print() works differently for different classes of ob-
jects. For the variable form (of class "formula"), print () returned y~x, which
is the instruction to the right of the affectation arrow. For the variable vect, calling
print(Q) returns [1] 1 2 3 4 5 6 7 8 9 10 when we might have expected it
to display 1:10. Here is the code of the function print():
> print
function (x, ...)

UseMethod ("print")
<environment: namespace:base>

The body of this function indicates that the function UseMethod () must be exe-
cuted. This function is a generic function in R. Like an airport traffic control tower,
it is used to redirect the object, according to its class, to the correct function call.
In the last example, this corresponds to calling the display function associated with
the class formula of the form print.formula().In the object-oriented program-
ming vernacular, such functions, of the general type <method>.<class>,are called
methods. This explains the name of the function UseMethod() in the body of the
generic function print Q).

Here is what happens in the backstage to simply display the object form :

> form # Calls the function print(),
which calls the function print.formula().
y~x
> print.formula (form)
y~x

To check how easy it is to change the general behaviour of R by chang-
ing one function, we are going to redefine the display function for the class
formula. We are simply going to keep the standard display and add the string
of characters "formula:".

print.formula <- function(obj,...) {

cat (paste("formula:",paste (sapply(objlc(2,1,3)],
as.character) ,collapse="")))

invisible (obj)

¥

y~x

formula: y~x

V + + + + Vv

If you are a beginner in R, you should not try to understand the details of the
R code leading to this result. Although the code seems simple, understanding it
requires notions which we cannot go into in this book. Once again, the aim is
rather to reveal the introspective power of R, since even its base elements can
be manipulated.

To restore the initial behaviour of R for displaying formulae, you will have
guessed that it suffices to delete the new function print . formula() with the
command line instruction rm(print. formula). We shall not delete it yet,
because we need this behaviour later on.

208 8 Programming in R

If you have understood the way the function print () works, you might expect
that there exists a function print.integer (). We can check this:

> print (vect)
[1] 1 2 3 4 5 6 7 8 9 10

> print.integer (vect)

Error in eval (substitute(expr), envir, enclos)
could not find function "print.integer"

The function print.integer () does not exist. In fact, when there is no method
associated with a class, R executes the default method, which is of general form
<method>.default; in this case, print.default(). Here is the output of this
function for our two examples:

> print.default (vect)

[1] 1 2 3 4 5 6 7 8 9 10
> print.default (form)
y ~ x
attr(, "class")

[1] "formula"
attr(,".Environment")
<environment: R GlobalEnv>
> # Compare with:
> form
formula: y~x

We now have a complete explanation of what happens behind the scenes. We also
see that the display of a formula does not use the default method, as the last output
suggests.

Also note that the function print.default() is used to display all base
objects (or structures) of R when these objects are taken as effective arguments
of the function print().

In summary, to define a new family of methods, denoted here by <method>
(name of the family of methods you wish to create), which can be applied to any
type of object, you need to:

o First declare the generic function in the following form:
<method> <- function(obj,...) UseMethod("<method>")

e Then create a method <method> for a class <class>:
<method>.<class> <- function(obj,<list of arguments>) <body
of the method>
where <list of arguments>and <body of the method> are, respectively,
an optional list of formal arguments and the contents of this method, which is
nothing else than a function when called in its long version.

~N O AR W N =

8.3 T Object Oriented Programming

Note that when declaring a family of methods, you can dissociate the name
of the generic function and the argument of the function UseMethod () corre-
sponding to the name of the method to call. Thus, it is easy to define an alias,
called <alias>, of the last family of methods by simply defining a new generic
function:

<alias> <- function(obj,...) UseMethod("<method>")

As a result, the two command line calls <method>(<object>) and
<alias>(<object>) for an object <object> of class <class> are equiv-
alent to <method>.<class>(<object>). A rather surprising application is
that a method can be translated like this. In the next example, the French voir
is used as an alias of print:

> voir <- function(obj,...) UseMethod("print")
> voir (vect)
[1] 1 2 3 4 5 6 7 8 9 10
> voir (form)
formula: y~x
> rm(print.formula) # Remove our method to return
to the normal mode.
> voir (form)
y ~ X
> form
y ~ X

8.3.2 Back to the Practical Problem

209

The user realizes that he/she has repeated the execution of the estimations of a and
b twice when creating the functions mydisplay.regl() and mysummary.regl()
introduced in Sect. 8.2.3 (lines 2 and 3, and lines 8 and 9). He asks advice from a
more advanced user, who suggests using the concept of object-oriented program-

ming. He/she proposes to create a function'? to return an object of class regl,

SO

that it can be reused thereafter as first calling argument for any method of the said

class.

reglin <— function(y,x) {
aEst <— cov(x,y)/var(x)
bEst <— mean(y)—aEstxmean(x)
reg <— list(y=y,x=x,aEst=aEst,bEst=bEst)
class(reg) <— "regl"
return(reg)

10 This kind of function is often called a constructor in object-oriented programming.

AN N AW N —

210 8 Programming in R

They now define the method mydisplay.regl() which can be used on any
object of class reg1l.

mydisplay .regl <— function(reg) {
plot(regy ,regx)
abline (a=reg$bEst ,b=reg$aEst)

mysummary .regl <— function(reg) return(reg)

They try a few tests:

> reg <- reglin(y,x)

> mysummary (reg)

Error in eval (substitute(expr), envir, enclos)
could not find function "mysummary"

> mydisplay (reg)

Error in eval (substitute(expr), envir, enclos)
could not find function "mydisplay"

The user did not expect such errors, so he/she checks that the function is well
defined:

> mysummary.regl (reg)

5
[1] 1.8920106 0.3978771 -0.3970281 -0.2799578 0.7851185
[6] -0.2103208 0.1921150 -0.2647256 -0.5013911 0.6021898

Sx
[1] 1 2 3 4 5 6 7 8 9 10
sSaEst
[1] -0.1019453
SbEst

[1] 0.7822879
attr(,"class")
[l] "regl n

The advanced user points out the mistake: the generic functions mysummary and
mydisplay have not been declared and are not standard, unlike a few others such
as print () and summary ().

mysummary <— function(x,...) UseMethod("mysummary")
mydisplay <— function(x,...) UseMethod("mydisplay")

The previous instructions now work:

> mysummary (reg)
5
[1] 1.8920106 0.3978771 -0.3970281 -0.2799578 0.7851185
[6] -0.2103208 0.1921150 -0.2647256 -0.5013911 0.6021898
Sx
[1] 1 2 3 4 5 6 7 8 9 10
sSaEst
[1] -0.1019453

8.3 T Object Oriented Programming 211

SbEst

[1] 0.7822879
attr(,"class")
[1] "regl™

> mydisplay (reg)

Fig. 8.1: Result of the call of the function mydisplay.regl()

Since the method print.regl() has not been defined, you may wonder what
would happen when we simply enter the name of the object.
> reg

sy
[1] 1.8920106 0.3978771 -0.3970281 -0.2799578 0.7851185
[6] -0.2103208 0.1921150 -0.2647256 -0.5013911 0.6021898
Sx
[1] 1 2 3 4 5 6 7 8 9 10
SaEst
[1] -0.1019453
SbEst
[1] 0.7822879
attr(,"class")
[1] "regl"

We already knew that the method print.default() is called in such cases.

8.3.3 Information About Methods

To get information about methods, R has the function methods ():

> methods ("formula") # Or more directly methods (formula) .
[1] formula.character* formula.data.frame* formula.default*
[4] formula.formula* formula.glm*
[7] formula.nls* formula. terms*

formula. lm*

212

8 Programming in R

Non-visible functions are asterisked
> methods (class="formula")

[1]

[3]

[5]

[71

[9]
[11]
[13]
[15]
[17]
[19]
[21]
[23]
[25]
[27]
[29]
[31]
[33]
[35]

[. formula¥*
alias.formula*
ansari.test.formula*
boxplot.formula*
cor. test. formula*
deriv3. formula
formula. formula¥*
ftable. formula*
kruskal.test.formula*
mood. test. formula*
pairs.formula*
points. formula*
prcomp. formula*
print.formula
selfStart. formula*
stripchart. formula*
terms. formula

var. test. formula®*

aggregate. formula*
all.equal. formula
bartlett. test.formula*
cdplot. formula*

deriv. formula
fligner. test. formula*
friedman. test. formula*
getInitial. formula*
lines. formula*
mosaicplot. formula*
plot. formula*
ppr.formula*

princomp. formula*
quade. test. formula*
spineplot. formula*
t.test.formula*
update. formula
wilcox.test.formula*

Non-visible functions are asterisked

Do not confuse the two uses. The first instruction outputs all methods (of
the form <method>.<class>) associated with the generic function formula.
The second instruction gives all methods for the class formula.

Here are a few examples to better understand the distinction between the two
uses of the function methods ().

> class (y~x)

[1]

"formula”
> update (y~x,

.~.+z) # Apply the method update() to an

object of class formula.

y~ X+ zZ
> update. formula
function (old, new,...)

{

out <- formula (terms.formula (tmp,
return (out)

tmp <-.Internal (update.formula(as.formula(old),

as.formula (new)))
simplify = TRUE))

<environment: namespace:stats>
> form <- "y~x"

> class(form)

[1]

"character"

> formula (form)
y ~ X
> formula.character

Error: object

"formula.character" not found

8.3 T Object Oriented Programming 213

Functions followed with an asterisk can be executed, but the body
of the function cannot be visualized. You can however use the function
getAnywhere().

> getAnywhere (formula.character)
A single object matching ‘formula.character’ was found
It was found in the following places
registered S3 method for formula from namespace stats
namespace:stats
with value
function (x, env = parent.frame(), ...)

{
ff <- formula(eval (parse(text = x)[[1L]]))
environment (ff) <- env
ff

}

<environment: namespace:stats>

8.3.4 Inheriting Classes

In the context of our practical problem, the advanced user informs the beginner user
that R already has a set of functions to manage linear models. Indeed, the function
Im(Q) is dedicated to this kind of treatment (as we shall see in Chap. 14). However,
he/she adds that to his knowledge, no functions exist to perform the specific treat-
ment they propose. The two users work together to develop an extension; they want
to avoid “reinventing the wheel” and make the most of existing functions in R.

In object-oriented programming, the notion of class inheritance seems appropri-
ate for this kind of extension. Inheritance expresses the fact that an object of a certain
class can also behave like all objects of supplementary classes. Such a mechanism
is available in R, by associating a sequence of classes with an object. Thus, when
a method is applied to an object which has a hierarchy of classes, the first class is
solicited first. If the method exists for this class, it is executed. Otherwise, R tests
whether there is an executable method in the class hierarchy. If there is, that method
is executed; otherwise, the default method is executed, as long as it is defined. Fi-
nally, if none of the above apply, an execution error is generated. Let us illustrate this
notion with the problem of our two users. First, we need to declare the constructor
function of the new class 1m1, which inherits directly from the existing class 1m.

~N O R W N =

1

4}

214 8 Programming in R

Iml <— function (...) {
obj <—Im¢(...)
if (ncol (model. frame (obj))>2) stop("more than one
independent variable")
class(obj) <— c("lml1",class(obj)) # Or c("Im1","Im")
obj

}

Apply this to the same variables as before.

> reg <- 1lml(y~x)

> reg

Call:

Im(formula = ..1)

Coefficients:

(Intercept) x
0.7823 -0.1019

We can see inheritance in action. No method print.1ml() is defined, and yet
the object is not displayed as with print.default(). This is because R already
knows the method print.1m() and the object reg inherits methods from the class
Im. There are several ways of checking that this object is indeed inheriting from
this class; the simplest is visualizing the contents of the class attribute with the
function class (). A developer might prefer the more direct function inherits().

> class(reg)

[1] "Imi" "Im"

> inherits(reg, "1lm")

[1] TRUE

> print.lm(reg)

Call:

Im(formula = ..1)

Coefficients:

(Intercept) x
0.7823 -0.1019

Line 3 (which we shall not comment) in function 1m1() tests whether the for-
mula is a simple regression model formula. See what happens in this next example:

> 1lml (y~x+log(x))
Error in Iml(y ~ x + log(x)) : more than one
independent variable

We continue developing functions in the same spirit as

plot.lml <— function(obj,...) {
plot(formula(obj) ,...)
abline (obj)

8.3 T Object Oriented Programming 215

> summary (reg)

Call:
Im(formula = ..1)
Residuals:

Min 1Q Median 30 Max
-0.8735 -0.3772 -0.2060 0.4153 1.2117
Coefficients:

Estimate Std. Error t value Pr(>[t])

(Intercept) 0.78229 0.48348 1.618 0.144
x -0.10195 0.07792 -1.308 0.227
Residual standard error: 0.7077 on 8 degrees of freedom
Multiple R-squared: 0.1763, Adjusted R-squared: 0.07328

F-statistic: 1.712 on 1 and 8 DF, p-value: 0.2271
> plot(reg,main="An example of simple regression")

An example of simple regression

o

In the call of summary () above, the method summary.1ml() has not been de-
veloped; hence, the standard method summary . 1m() is executed. Indeed, the object
reg of class 1m1 then inherits from the class 1m for all standard methods proposed
by R to manage linear models. For the call of the method plot (), the freshly created
method plot.1ml is invoked.

Note that R has a standard method plot.1lm() which creates a set of plots
for a more detailed analysis of the results (see Chap. 14). We have intentionally
changed the default behaviour of R for simple linear regression, but can still
access this method by calling it explicitly (plot.1lm(reg)).

216 8 Programming in R

Object-oriented programming is extremely simple in its conception. There
are many object-oriented programming languages. An important difference
is that the vast majority offer an encapsulation of object fields and meth-
ods; one of the points of this encapsulation is that the fields of an object
can be modified within a method. This is not directly possible in R because
of the strict local scope of variables inside the code of an R function. The
users can however adopt this kind of programming if they want to. Any
method <method>.<class>() which needs to modify the fields of an object
<object> (of class <class>) must then return the object itself. The user of
the generic function <method>() can then affect the result to the initial object,
as follows:
<object> <- <method>(<object>).However, this risks to slow down exe-
cution, all the more if the contents of the object fields are large. This is because
the object is completely duplicated. We hope that R developers will one day
offer a more elegant standard functionality (analogous to what the majority of
object-oriented programming languages offer), whereby only the relevant fields
(of which there are usually few) are modified inside the body of the method.
When you become an advanced user (as we hope), you will notice that the no-
tion of pointers (which is very common in programming) is not directly offered
to R developers (see however the function tracemem() as well as Sect. 9.8.2.2,
p- 296).

SECTION 8.4
|7 T Going Further in R Programming

Before you start programming in a language, it is good to know the spirit in which it
was conceived. In this section, we shall explore structures of the R language which
you do not need to know when you start using R, but which you will find very useful
when you decide to go deeper in your use of R. These elements make R an original
and powerful tool. We advise beginner users to skim through this section without
trying to master the concepts. All the information in this section is second level, in
the sense that a very powerful use of R is possible without it.

8.4.1 R Attributes

An R object includes primary information, conveyed by the basic structures pre-
sented in this book. There is another level of information, which we call secondary
information. It is attached to an object with attributes and can be accessed with the
function attributes().

8.4 T Going Further in R Programming 217

> mat <- matrix(1:10,nrow=2)

> mat

[,1] [,2] [,3] [,4] [,5]
[1,1 1 3 5 7 9
[2,1 2 4 6 8 10

> class (mat)

[1] "matrix"

> attributes (mat)
Sdim

[1] 2 5

‘We shall comment on this output later. For now, let us insist again on the fact that
this mechanism is supposed to be transparent for the user, who usually cares more
about the contents of the R object. For day-to-day use, we advise you not to change
attributes directly. This stand is justified by the existence of many functions to ma-
nipulate attributes indirectly. However, a developer who wishes to learn more about
the internal workings of R will discover a few supplementary characteristics which
usually enlighten the behaviour of the object. We have already indirectly manipu-
lated the attribute class with the functions class() and "class<-"(). We shall
also manipulate the three other main attributes: dim, names and dimnames. These
are used a lot in the internal management of R. The next example is only interesting
to present how to handle attributes. The complementary function attr () is used to
manipulate a single attribute at a time, whereas the function attributes() returns
all attributes as an R list.

> vect <- 1:10
> attr(vect,"test") # Returns NULL, because vect has no
attribute test.
NULL
> attributes(vect) # NULL because vect has no attributes.
NULL
> # Affecting an attribute "attribl" containing the character
string "TEST1".
> attr(vect,"attribl") <- "TEST1"
> attr(vect,"attribl")
[1] "TEST1"
> # Affecting an attribute "attrib2" containing the vector c(1,3)
> attributes(vect) $attrib2 <- c(1,3)
> attributes (vect)
Sattribl
[1] "TEST1"
Sattrib2
[1] 1 3
> attr(vect,"attrib2")
[1] 1 3
> # Modifying attribute "attribl" and deleting attribute
"attrib2"
> attributes(vect) $attribl <- 3:1
> attr(vect,"attrib2") <- NULL
> attributes (vect)
Sattribl
[1] 3 2 1

218 8 Programming in R

> # Deleting all attributes at once
> attributes(vect) <- NULL

> attributes (vect)

NULL

The attribute access mechanism is simple to use. This example has shown how
to change attributes using the functions "attr<-"() and "attributes<-"().The
value of an attribute can be any R object. Affecting NULL to an attribute deletes it.

8.4.1.1 Attribute class

In Sect. 8.3, we have manipulated the attribute class using the functions class()
and "class<-"(). This shows that you do not need to know how to manipulate
attributes directly. We return to the example we used, to show that manipulating this
attribute is equivalent to using the utility functions class() and "class<-"().

> form <- y~x

> attributes (form)

Sclass

[1] "formula"

S.Environment

<environment: R GlobalEnv>

> class (form)

[1] "formula"

> obj <- 1:10

> attr(obj,"class") # No class attribute.

NULL

> class(obj) # And yet!

[1] "integer"

> attr(obj,"class") <- "MyClass" # Equivalent to class(obj) <-
"MyClass".

> class (obj)

[1] "MyClass"

There is nothing left to say about this attribute, even though it plays a central role
in object-oriented programming in R.

8.4.1.2 Attribute dim

The attribute dim plays an important role in the behaviour of matrix and array
objects. Here is an example with a matrix:

> mat <- matrix(l:12,nrow=2)

> mat

[,11 [,21 [,3]1 [,4] [,5] [,6]
[1,1 1 3 5 7 9 11
[2,1 2 4 6 8 10 12

> attr (mat, "dim")
[1] 2 6

8.4 T Going Further in R Programming 219

> attributes (mat)

Sdim

[1] 2 6

> attr (mat,"dim") <- c(3,4) # Changing shape: 3 rows and 4
columns.

> mat

[,11 [,2] [,3] [,4]
[1,] 1 4 7 10
[2,1] 2 5 8 11
[3,1]1 3 6 9 12

> attributes (mat) $dim <- c(2,6) # Back to the initial shape.
> mat
[,11 [,2] [,3] [,4] [,5] [,6]
[1,] 1 3 5 7 9 11
[2,] 2 4 6 8 10 12

In this example, changing the attribute dim allowed us to change the shape of
the matrix. We have already mentioned that attribute management is meant to be
transparent for the user, so you might expect there exist similar functions with more
user-friendly names. For this example, we could have used the functions dim() and
"dim<-"Q:
> dim(mat)

[1] 2 6
> dim(mat) <- c(1,12) # Changing shape: 1 row and 12 columns.
> mat

[,11 [,2]1 [,3] [,4]1 [,5]1 [,6]1 [,7] [,8] [,91 [,10] [,11]

[1,] 1 2 3 4 5 6 7 8 9 10 11
[,12]
[1,] 12

> dim(mat) <- c(2,6) # Back to the initial shape.

To really understand how R represents objects such as matrices and arrays, let us
analyse the following output:

> mat

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 3 5 7 9 11
[2,1] 2 4 6 8 10 12

> class (mat)
[1] "matrix"
> dim(mat) <- NULL # Or attributes (mat) $dim<-NULL or
attributes(mat) <- NULL.
> mat
[1] 1 2 3 4 5 6 7 8 9 10 11 12
> is.vector (mat)
[1] TRUE
> class (mat)
[1] "integer"
> dim(mat) <- c(2,2,3)

> mat
;0 1

[,11 [,2]
[1,1]1 1 3

[2,1 2 4

8 Programming in R

[,11 [,2]
[1,1 5 7
[2,1 6 8

[,1] [,2]
[1,1]1 9 11
[2,1]1 10 12
> is.vector (mat)
[1] FALSE
> class (mat)
[1] "array"

When we delete the attribute dim, the object mat becomes a simple vector. When
we affect a vector of three integers to this attribute, the object mat becomes an array
of dimension 3. The different behaviours of vectors, matrices and arrays thus stem
from the value of the attribute dim.

Although the display is the same, a vector and a single-index array are
treated differently by R, as shown by these few lines of code:

> dim(mat) <- 12
> mat
[1] 1 2 3 4 5 6 7 8 9 10 11 12
> is.vector (mat)
[1] FALSE
> class (mat)
[1] "array"
> identical (mat,1:12)
[1] FALSE
> dim(mat) <- NULL
> mat
[1] 1 2 3 4 5 6 7 8 9 10 11 12
> is.vector (mat)
[1] TRUE
> class (mat)
[1] "integer"
> identical (mat,1:12)
[1] TRUE

It looks like we have said everything about the attribute dim, but there is one
last application worth noting. The only difference between a vector and a list is that
the elements of a vector must all have the same type. Matrices and arrays usually
contain elements of the same nature as well; this constraint is very important for
matrix operations. But as storage structures, you could imagine extending the matrix
and array concepts to lists, by affecting the dim attribute, as is done with vectors.
The documentation files for the matrix() and array () instructions show that this
is the case, since the first calling argument of these functions can be a list instead of

8.4 T Going Further in R Programming 221

a vector. The next example applies this to a matrix; the same could be done with an
array, as long as the number of elements in the list agrees with the dimension.

> lmat <- matrix(list(7,1:2,1:3,1:4,1:5,1:6) ,nrow=2)

> lmat # Returns the structure and not the contents, which
are too difficult to display.
[,1] [,2] [,3]
[1,1 7 Integer,3 Integer,5

[2,] Integer,2 Integer,4 Integer,6
> dim(1lmat)
[1] 2 3
> is.list(1lmat)
[1] TRUE
> lmat[1l,2] # Extract the element at row 1 and column 2.
[[1]]
[1] 1 2 3
> lmat[,-2] # Extract the submatrix with the second column
removed.
[,1] [,2]
[1,1 7 Integer, 5
[2,] Integer,2 Integer,6
> dim(lmat) <- NULL
> lmat # This is just a list now.
[[1]]
[1] 7
[[2]1]
[1] 1 2
[[3]]
[1] 1 2 3
[[4]]
[1] 1 2 3 4
[[5]]
[1] 1 2 3 4 5
[[6]]
[1] 1 2 3 4 5 6
> is.list(1lmat)
[1] TRUE

8.4.1.3 Attributes names and dimnames

The attribute names plays an important role in naming elements of a list.

> 1li <- list(1l:3,letters[1:3])
> 11

[[1]]

[1] 1 2 3

[r211

[l] "a n "b n "c n

> attributes (1i)

NULL

> attributes (li) $names <- c("numbers","letters")
> 11

Snumbers

222 8 Programming in R

[1] 1 2 3
Sletters
[l] ngn nmpn o nen

The first and fourth instructions are thus equivalent to the following, more com-
mon declaration:

> 1li <- list(numbers=1:3,letters=letters[1:3]))

It is a less useful and lesser known fact that this attribute can also be used on any
type of vector.

vect <- 1:3

attr (vect, "names") <- letters[1l:3]
vect

b ¢

2 3

Or directly

vect2 <- c(a=1,b=2,c=3)

vect2

b c

2 3

M ®»® VYV VRNV VYV

You do not need to manipulate the attribute names directly. Accessing and chang-
ing its value can be done explicitly:

> names (1i)

[1] "numbers" "letters"

> names (li) <- c("num","lett")
> 1i

Snum

[1] 1 2 3

slett

[1] maw wpw wgw

> names (vect)

[1] m™am™ "bm" nen

> names (vect) <- toupper (names (vect))
> vect

A B C

12 3

For objects with several indices, such as matrices and arrays, index name man-
agement is done internally by modifying the attribute dimnames, as shown in this
quick example.

> mat <- matrix(l:6,nr=2)

> mat
[,11 [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
> attributes (mat) # Can be modified as an attribute.
Sdim
[1] 2 3
> rownames (mat) # Row names.
NULL

> colnames (mat) # Column names.

8.4 T Going Further in R Programming 223

NULL
> dimnames (mat) # Row and column names as a list.
NULL
> colnames (mat) <- paste("V",1l:3,sep="")
> rownames (mat) <- c("a","b")
> mat
Vi v2 V3
a 1 3 5
b 2 4 6

For an array with more than two dimensions, the functions rownames and
colnames are meaningless. You can either modify the attribute dimnames directly
or use the function "dimnames<-"().

Data frames have a special status. They are defined as lists and are usu-
ally manipulated as matrices. The attributes for row and column names are
row.names and names (instead of col .names) :

> df <- data.frame(a=1,b=1:2)
> df
ab
111
212
> attributes (df)
Snames
fralj] gl Tipt
Srow.names
[1] 1 2
Sclass
[1] "data.frame"
> names (df) # As a list.
fralj] gl Tl
> dimnames (df) # As an array: list of two vectors.
[[1]]
[1] nim non
[[2]]
[1] "a" "b"
> rownames (df) # As a matrix: accessing the row names.
[1] "1" "2"
> colnames (df) # As a matrix: accessing the column names.
[1] "a" "b"

The last four lines give calls to access these attributes without manipulating
them directly. Corresponding forms exist to change their values. Note that the
attribute class () gives the class of the object.

224 8 Programming in R

8.4.2 Other R Objects

It could be said that one of the specificities of R is that the vast majority of quantities
manipulated by R are allocated to variables and can thus be reused later on. There are
a few exceptions, mostly control structures. R objects are of different types, called
classes. We have already encountered object classes used to store common data.
There are three other object types we chose to explore as well. Surprisingly, formu-
lae and environments are also objects in R; we shall also introduce R expressions,
which are objects in which R code can be stored to be executed at a later time.

8.4.2.1 R Expressions

So far, we have said nothing on structures used to described the syntactic bases of R.
Following its philosophy of managing as many components as possible, R can ma-
nipulate an R expression and split it into a sequence of atomic entities (such as call,
name. ..). We only mention these capacities, without going into the details. We shall
focus on R expressions which are truly of interest to an R developer. It is difficult
to give a rigorous definition of R expressions. We propose the following definition,
inspired by command line use of R. An R expression can be seen as R code entered
in sequence as command lines until it is executed by the R interpreter (i.e. until the
character > is displayed, inviting a new command). This expression can spread over
several lines. The function expression() is used to declare an R expression when
it is used with a single calling argument. It is however possible to give a sequence
of expressions, each expression corresponding to one effective argument in the call
of a function. An expression object is not evaluated by the R interpreter but can be
saved to be evaluated later, as many times as needed. Evaluating an R expression is
done with the function eval (). All of this is illustrated in this example:

> expression (v<-"value") # The expression v<-"value"
is not evaluated.

expression (v <- "value")

> v

Error in eval (substitute(expr), envir, enclos)
object ‘v’ not found

> expression(v<-"value") -> expr # Saved in the object expr.
> expr
expression (v <- "value")
> eval (expr) # Evaluating expr.
> v # Here is the expected
result.
[1] "value"

> expression(v<-"value2",v) -> expr # Equivalent to 2 lines of
unevaluated commands.

> expr

expression (v <- "value2", v)

> eval (expr) # The second instruction
displays the contents of
v.

[1] "value2"

8.4 T Going Further in R Programming 225

A developer will find it useful to convert a character string describing R code into
an R expression to be evaluated at another time. The function parse() is used to
this effect:

> parse(text='v<-"value"’) -> expr
> expr

expression (v<-"value")
attr(,"srcfile")

<text>

> eval (expr)

> v

[1] "value"

The formal argument text is used here to read a character string, but the first use
of the function is to read a file containing R code; the name of the file is given as the
first effective argument.

Here is an example using the functions eval () and parse():

> for (i in 1:3) eval (parse(text=paste("a",i," <- i",sep="")))
> a2
[1] 2

We are now going to manipulate the function expression() to describe some
of the internal behaviour of R. This will help understand why R is said to be a
functional language (i.e. which makes an intensive use of functions). It is surprising
how true this is. This first point shows that upon execution, affectation is considered
as an operator (a function with two arguments). The first argument corresponds to
the variable, the second to the contents.

> foo <- "foo"

> foo

[1] "foo"

> "<-"(foo,"foo2") # Equivalent to: foo <- "foo2"

> foo

[1] "foo2"

> expression("<-"(foo,"foo2")) # as shown by the output of this
expression.

expression(foo <- "foo2")

We continue our exploration with brackets. One of the uses of brackets is to order
execution priorities in an R expression. Again, R treats them as a function.

> 30%(10+20)

[1] 900

> 30*" (" (10+20) # This is what is executed behind the scenes.
[1] 900

> expression(30%10+20))

expression (30 * (10 + 20))

> expression (30*" (" (10+20))

expression (30 * (10 + 20))

226 8 Programming in R

The same is true for the notion of expression blocks. An expression block is
defined as a sequence of R expressions, grouped between curly bracket delimiters
"{"and "}".
> {

+ print("linel™")
+ print("line2")

+

[1] "linel™

[1] "line2"

> "{" (print("linel") ,print ("line2"))
[1] "linel™

[1] "line2"

> expression ({

+ print ("linel") # This comment is not interpreted.
+

+ # Neither is this comment.

+ print("line2")

+)

expression ({
print("linel™)
print("line2")
})
> expression("{"(print("linel"),print("line2")))
expression ({
print("linel")
print("line2")

1)

Note that comments and spaces are ignored by the R interpreter. Note also that
to make your code easier to read, you can add as many carriage returns as you wish
in a block without any effect on its execution.

8.4.2.2 R Formulae

The formula object is one of the specificities of R. It is mainly used to establish
a relationship between two parts, separated with a tilde ~. Both parts must be R
expressions. Keeping in mind what we have learnt about the function expression(),
we can see how R converts a formula into a "~" () function upon execution.

> y~x
y ~ x

> "~ (y,x) # Equivalent expression,

y ~ x

> expression("~"(y,x)) # as this expression proves.

expression(y ~ x)

For developers, formula objects can be used to offer a more user-friendly inter-
face, since they are closer to the human language. For example, the R formula y~x
can express that y and x are linked or that y is a function of x. Generally speak-
ing, the developer bears the responsibility of interpreting the formula to perform the

8.4 T Going Further in R Programming 227

necessary tasks. This is very advanced; we refer the interested reader to the R docu-
mentation files. Here are a few examples with no particular meaning, but which will
help become familiar with this new object:

y~x

~ x

y~ (x+y:z) *t|v

~ (x +y:z) ¥t | vV

yl+y2|w ~ (x+y:z)*t|v

vl +y2 [wn~ (x + y:2z) ¥t [v

VKOV N Y

It is worth pointing out that even if the quantities mentioned in the formulae
above are not existing R objects, no error is thrown. However, remember that a
syntax error results in an error message:

> y~x+y) *t|v
Error : ‘)’ not expected in "y~x+y)"

We now focus on usage of formulae in the R system. Since formulae are not common
objects, the user may not realize that they are saved like any other R object.
> form <- y~x

> form
y ~ X

The two main uses are for plots and for statistics.
For plots, this is an alternative to what we introduced in Chap. 7.

x <- runif (10)
y <- runif (10)
plot (x,y)
plot (y~x)

V V V V

The resulting plot is not shown here, since the only interest is in showing that
the instructions with or without the formula are equivalent. Note that the variables x
and y are inverted between the two forms. The version with the formulaplot (y~x)
expresses more literally the action we want: plot y as a function of x. This version,
which we find elegant, is of course also available for the complementary functions
points() and lines().

In a statistical context, a function relative to the specific treatment of a statistical
model takes as input argument a formula establishing the relationship between the
variables of the model (the formula is often the first argument). The most simple
example is the linear model; here is an example'!:

> 1m(y~x) # x and y must be defined (and they are in this
casel!)
Call:
Im(formula = y ~ x)
Coefficients:
(Intercept) x
0.46290 -0.06904

1 This section does not give details on handling linear models in R; this will be the focus of
Chap. 14.

228 8 Programming in R

> Im(form) # Recall that: form <- y~x

Call:

Im(formula = form)

Coefficients:

(Intercept) x
0.46290 -0.06904

Besides the pleasant syntax, the formula object also offers a very efficient inter-
face with the user to describe the model. This is confirmed by the fact that, unlike
for plots, there is no other way of describing the relationship between the variables
in the model. You might think that the syntax 1m(y,x) could have been used. But
then how would you write as a list of input arguments the formula y~ (x+z) %t ,
which is perfectly valid (see Chap. 15)?

For operations on formulae, you can use the function update () which modifies
a formula, using another one.

update (y~x, .~.+z) # Change y~x into y~x+z.

~ X + z

form <- y~x # The same procedure with a saved model.
form2 <- update(form, .~.+z)

form2

~ X + z
update (form2, .~.-x) # You can also delete a variable.
~ z

MOVN OV V VNV

These examples show the syntax of the function update(). The first formal
argument is the formula you wish to modify; the second formal argument gives
the operations to perform on the formula, using a specific syntax. All that remains
to be done is to analyse the syntax of the second formula. Any dot “” before the
tilde character “~” is replaced with the left expression of the initial formula (before

the tilde). Similarly, any dot “-” after the tilde is replaced with the right expression
of the initial formula (after the tilde).

8.4.2.3 The R Environment

The notion of environment is necessary in any programming language. It can be seen
as a storage space of R objects. When you open your R session, a first environment
.GlobalEnv is created by R. It is called the workspace and all objects manipulated
with the command line during this session are stored there. Although we only wish
to give an overview of this concept, it is worth mentioning that the notion of func-
tion depends intrinsically on the notion of environment. Here is a glimpse of this
fact. When you create a new object in the body of a function, R takes care of declar-
ing it internally in an environment specific to this function, to store the contents of
the object. The reason for this is that if the object has the same name as an object
of the environment .GlobalEnv, this last object will not be overwritten with the
value defined in the body of the function. To better understand what an environment
is, note that the value of an object defined in the environment .GlobalEnv can be

8.4 T Going Further in R Programming 229

accessed in the body of the function. However, its value cannot be modified by an
affectation with the same object name. The reason why you can access an object
which was defined in another environment than the one associated with the function
is that a parent environment is specified when declaring a new environment. It is al-
lowed that an environment has no parent, as is the case with the initial environment
.GlobalEnv. When an object is not directly available in the environment of a func-
tion, R searches for the object in the parent environment. If it is still not available,
there are two possibilities: either there exists a “grandparent” environment, and the
search continues, or there is no such environment and an error is thrown indicating
that the object could not be found. This exploration process is repeated recursively
until the object is found. Most environment declarations are done internally and in-
visibly by R. We shall return to this notion when we give more details on developing
functions. A very surprising feature is that an environment is considered as an R ob-
ject. A new environment can thus be declared to execute a specific block of code
without changing the workspace .GlobalEnv. The function local (), which takes
as first argument the code to execute and as second argument the environment for
the execution, is very useful to this end:

> a <- 12; b <- 13

> space <- new.env() # By default, the parent is the environment
from which new.env is called.

> local ({

+ a <- b+2

+ a

+ },space)

[1] 15

> a # The value of a has not changed in .GlobalEnv.

[1] 12

> space$a # Value of a in the environment space.

[1] 15

The function’s name is well chosen: the value of a in the workspace .GlobalEnv
has been preserved. As stated in the comment, the parent of space (generated by
new.env()) is .GlobalEnv, but the parent could have been specified by giving a
value to the formal argument parent. Here are two examples of parent declaration:

> space2 <- new.env(parent=emptyenv())

> local (a<-b+2,space2) # Error!!!

Error in eval (expr, envir, enclos) : could not find function "<-"
> space2$a # Unsurprisingly, the object a does not exist!

NULL

The environment space2 is useless, since its parent environment is an empty
environment (i.e. no parent; declared with the function emptyenv()). The execu-
tion error in the local code is because even the affectation function <- cannot be
accessed: the empty environment knows absolutely nothing about R; in particular,
it does not know the basic functions. The function globalenv () returns the global
environment . GlobalEnv which is always first in the access list of R environments.

230 8 Programming in R

> space3 <- new.env(parent=parent.env(globalenv()))

> local (a<-b+2,space3) # Error, because .GlobalEnv cannot be
accessed!

Error in eval (expr, envir, enclos) : object ’b’ not found

> local (a<-15, space3)

> a

[1] 12

> space3$a

[1] 15

Environments are rather convenient-they are used like a list.

> space3$b <- b-1
> b

[1] 13

> space3$b

[1] 12

For further details, we refer the reader to the online help, which is rather com-
plete, but aimed at advanced users.

SECTION 8.5
1 Interfacing R and C/C++ or Fortran

You may be wondering why you should consider writing parts of your code in C/C++
or Fortran. There are several reasons, such as:

e To use from R a pre-existing routine, formerly coded in C/C++ or Fortran

e To speed up the runtime of your R code

e To use the graphical capabilities of R or some R functions on numerical output
from C/C++ or Fortran code

The last version of R includes a byte compiler which speeds up
some computations. You can also use the R version distributed by the
company Revolution Analytics (http://www.revolutionanalytics.
com). It has been optimized to speed up some computations, for example, by
relying on a multi-core architecture when available.

Interfacing R and C/C++ or Fortran is much more convenient under Linux
(or MacOS) than under a Microsoft Windows OS for which several necessary
tools lack. Note that the authors of this book use Linux on a daily basis!

http://www.revolutionanalytics.com
http://www.revolutionanalytics.com

8.5 T Interfacing R and C/C++ or Fortran

We assume that the reader already has some notions of C/C++ and/or
Fortran programming. If that is not the case, the books [22, 38] for C and
C++, and [9] for Fortran may be of use.

In this section, we do not claim exhaustivity. We shall only present a few simple
examples which illustrate the points made above. Along the way, we shall provide

some basics which we hope will allow you to get by on your own afterwards.

Before you start, you need to install C/C++ and Fortran compilers,
since Microsoft Windows does not have any by default. The free software
Rtools, containing several tools from the Linux world, has been created to
this end. You can download it from http://cran.r-project.org/bin/
windows/Rtools. Choose Full installation to build 32 or 64
bit R 2.14.2+ if you have a 64 bit processor. Tick the appropriate box
when installing Rtools, so that the variable PATH is correctly configured.
You also need to change the system environment variable Path so that it
contains the path to the R installation folder (one way to find the path is
to right-click on the R icon of the desktop, then choose properties). This
will allow you to call R from an MS-DOS command window, as we shall
mention later on. To do this, right-click on the Windows Desktop, select
New/Shortcut, then enter the following instruction in the window that opens:
control.exe sysdm.cpl,System,3
Once this shortcut has been created on the desktop, double-click on it,
and in the window that opens, click on Environment Variables...
Change the value on the system variable Path to add at the beginning
(using ; as separator) the path to the folder containing the R executable
(which should look like C:\Program Files\R\R-3.1.0\bin\i386
or C:\Program Files\R\R-3.1.0\bin\x64) and the path to the
folders of Rtools (which should look like C:\Rtools\bin and
C:\Rtools\gcc-4.6.3\bin), if they are not already present.

8.5.1 Creating and Running a C/C++ or Fortran Function

231

The next example shows how to speed up a program by using C/C++ or Fortran.

The R function combn () is able to handle all combinations of a given number of

elements taken from a given vector. For example, this instruction generates all com-

binations of size 3 from the vector 1:5.

\ %

http://cran.r-project.org/bin/windows/Rtools
http://cran.r-project.org/bin/windows/Rtools

232 8 Programming in R

> combn (5,3)
[,11 [,2]1 [,3] [,4] [,5]1 [,6] [,7] [,8] [,9]1 [,10]

[1,] 1 1 1 1 1 1 2 2 2 3
[2,1] 2 2 2 3 3 4 3 3 4 4
[3,1] 3 4 5 4 5 5 4 5 5 5

If we attempt to get all choose(n,m) combinations (e.g., 1,313,400 combina-
tions if n = 200 and m = 3) from a vector of larger size n, the computation time
can increase drastically.
> system.time(x <- combn(200,3))

user system elapsed
14.959 0.227 15.188

The command system. time () shows that the above computation takes several
seconds on the computer used to write this book (if your computer is faster, take a
value greater than 200).

The function permn() of package combinat can be used to generate all
permutations of the elements of a vector.

A simplified version of the original R function combn () is given below:

> combnR <- function(n,m) {

+ ac<-1lmm; e<-0; h<-m

+ combmat <- matrix(0,nrow=m,ncol=choose(n,m))
+ combmat[,1] <- 1:m

+ 1<- 2

+ nmmpl <- n - m + 1

+ mpl <- m + 1

+ while (all] != nmmpl) {

+ if (e<n-h) {

+ h<-1; e <- alm] ; alm-h+l] <- e + 1
+ combmat[,i] <- a

+ i<-1i+1

+ } else {

+ h<-h+1; e <- almpl-h]

+ al[(m-h+1l) :m] <- e + 1:h

+ combmat[,i] <- a

+ i<-1i+1

+)

+ return (combmat)

+ }

We now propose two functions coded in C/C++, and another two coded in
Fortran, to make the same computation in much shorter time.

o Creating the C/C++ function

C++ code for function combnC, downloadable from http://biostatisticien.
eu/springeR/combn. cpp:

http://biostatisticien.eu/springeR/combn.cpp
http://biostatisticien.eu/springeR/combn.cpp

—_
[« RNeRNCLEEN B Y N

DO BB DD DN DD DD M = e et et e e
O ANEAE W~ OOV IONWN B WN -

—_
[« RN=RRLREN B Y N N S

e e N
AN R W=

8.5 1 Interfacing R and C/C++ or Fortran 233

#include <math.h>
extern "C" {
void combnC(int *combmat, int *n, int *m) {
int i, j, e, h, nmmpl, mpl;
int *a;
a=new int[m[0]];
for (i=1;i<=m[0];i=i+1) a[i—1]=1i;
e=0;
h=m[0];
for (i=1;i<=%@m+0);i=i+1) combmat[i—1]=1i;
i=2;
nmmpl=n[0] — m[O0] + 1;
mpl=m[O0] + 1;
while (a[0] != nmmpl) {
if(e < n[0] — h) {
h=1;
e=a[m[0] —1];
a[m[0] — h]=e + 1;
for (j=1;j<=m[O0];j=j+1) combmat[(i—1)*m[0]+j—1]=a[j—1];
i=i+1;
} else {
h=h + 1;
e=a[mpl — h—1];
for (j=1;j<=h;j=j+1) a[m[0] — h + j—1]=e + j;
for (j=1;j<=m[O0];j=j+1) combmat[(i—1)*m[0]+j—1]=a[j—1];
i=i + 1; } }
delete [] a;

3

Code for the main function, downloadable from http://biostatisticien.
eu/springeR/main. cpp:

#include <iostream>
using namespace std;
extern "C" {
int main() {
void combnC(int *kcombmat, int *n, int *m);
int *n, *xm, *combmat, j;
double Cnm;
n=new int[1];
m=new int[1];
n[0]=5;
m[0]=3;
Cnm=10;
combmat=new int[(int)Cnm*m[0]];
combnC (combmat ,n,m);
for (j=1;j<=Cnm*m[0];j++) cout << combmat[j—1] <<

non,
>

Note that all indices start at zero in C/C++, unlike R where they start at 1.

http://biostatisticien.eu/springeR/main.cpp
http://biostatisticien.eu/springeR/main.cpp

—_ =
— O O 00 N NN R W -

W LW W W L W WL WD NN R === = =
S O 0NN R WD = O 0O 0NN R WD = O V0O 0NN R W N

234 8 Programming in R

o Creating the Fortran function

Fortran code for the subroutine combnF, downloadable from http://
biostatisticien.eu/springeR/combn. £90:

SUBROUTINE combnF (combmat ,n,m)

integer , intent(in) :: n,m
integer :: i,j,e,h,nmmpl,mpl
integer ,dimension(m) :: a

integer ,dimension (%), intent(out)::combmat

do i=1m

a(i)=i
end do
e=0
h=m

do i=1m

combmat(i)=1i

end do

i=2

nmmp l=n—m+1

mpl=m+1

do while (a(l) .ne. nmmpl)
if (e < n—h) then

h=1

e=a(m)

a(m-h+1)=e+1

do j=1m
combmat((i—1)*m+j)=a(j)
end do

i=i+1

else

h=h+1

e=a(mpl-h)

do 40 j=1,h
a(m-h+j)=e+j

40 continue

do j=1,m
combmat((i—1)xm+j)=a(j)
end do

i=i+1

endif

enddo

END SUBROUTINE combnF

http://
biostatisticien.eu/springeR/combn.f90

—_ =
— O O 0 N NN R W~

—_
[\S]

8.5 t Interfacing R and C/C++ or Fortran 235

Code for the main function, downloadable from http://biostatisticien.
eu/springeR/main. £90:

PROGRAM main

integer :: n,m,Cnm,j ,k

integer , allocatable ,dimension (:) :: combmat
n=>5

m=3

Cnm=10

k=Cnmsx*m

allocate (combmat(k))

CALL combnF(combmat,n,m)

write (x ,*%) (combmat(j) ,j=1,k)
deallocate (combmat)

end PROGRAM main

e Compiling and running the C/C++ or Fortran function

In order to use the C++ or Fortran code given above, it needs to be compiled, i.e.
transformed into an executable file. To do this, simply open an MS-DOS terminal
window, for example, from the Windows menu Start/Run (or with the keyboard
combination [WINDOWS+R]) and type the instruction cmd followed by ENTER. In this
black window, type the two instructions below.

You may need to move to the directory where your files were saved, using
the MS-DOS command cd (for change directory). For example, if you created
your files on the Windows Desktop, use L}
1

cd Desktop

Note that under MS-DOS, the command dir is used to list the contents of the
current directory.

:: To compile C/C++ code:

g++ -0 mycombn.exe combn.cpp main.cpp

:: To compile Fortran code:

gfortran -o mycombn.exe combn.f90 main.f90
:: To run the function:

mycombn. exe

The first instruction compiles our C++ or Fortran code to produce the executable
file mycombn.exe. The second instruction launches this executable file and dis-
plays, though with no formatting, the result of the computation.

http://biostatisticien.eu/springeR/main.f90
http://biostatisticien.eu/springeR/main.f90

236 8 Programming in R

The function system() is used to execute a DOS command outside of R. For
example, in R, type:

> system("mycombn.exe")
123124125134 135145234235245345>

Note that you must of course first change the current R directory, using func-
tion setwd (), for example, to change to the directory containing the file my-
combn.exe.

ion 6.1.7608@1 : :
oft Corporation. Tous droits réservés.

The compilation flag -Wall is used to display all compilation warnings or
errors (if there are any!):

g++ -0 mycombn.exe combn.cpp main.cpp -Wall

We shall now produce the (220) = 1,313, 400 sub-vectors made of all possible

combinations of three elements in vector 1:200. For the C/C++ version, modify
lines 11, 13 and 16 of the code of function main given p. 233. These lines become

n[0]=200;
Cnm=1313400;
// for (j=1;j<=Cnmm[0];j++) cout << combmat[j-1] << " ";

For the Fortran version, modify lines 4, 6 and 10 of the code of function main
given p. 235. These lines become

n=200
Cnm=1313400
lwrite(*,*) (combmat(j) ,j=1,k)

O 00 N N W AW N

—
(=)

8.5 t Interfacing R and C/C++ or Fortran 237

We commented out the last line (using // in C/C++and ! in Fortran) so that a call
of mycombn. exe no longer displays the (now very large) result of the computation,
which would take a lot of time. But the calculation is made. We are thus coherent
with the previous computation done in R, for which the result was not displayed but
stored in variable x. After saving your changes, recompile and run your code:

:: To compile C/C++ code:

g++ -0 mycombn.exe combn.cpp main.cpp

:: To compile Fortran code:

gfortran -o mycombn.exe combn.f90 main.f90
:: Execute the function:

mycombn. exe

You can see that the calculation (without displaying the result) is done very quickly.

8.5.2 Calling C/C++ (or Fortran) from R

We shall now see how to call the C++ code from file combn.cpp (or rather a com-
piled version of this code) directly from R, without using a main function. To this
end, we create an R wrapper containing a call of the C++ function.

R can only call C/C++ or Fortran functions which do not return any output.
All C/C++ functions must thus be of type void and all Fortran routines must
be subroutines. The results will go in the arguments of the calling function.

Download the file http://biostatisticien.eu/springeR/combn.R,
which includes the code given below:

combnRC <— function(n,m) {
combmat <— matrix (0,nrow=m, ncol=choose (n,m))
lib <— paste ("combn" ,. Platform$dynlib.ext,sep="")
dyn.load (1lib)
out <— .C("combnC",res=as.integer (combmat),

as.integer(n),as.integer (m))

combmat <— matrix (out$res ,nrow=m, byrow=F)
dyn.unload (1lib)

return (combmat)

}

http://biostatisticien.eu/springeR/combn.R

238 8 Programming in R

To call the Fortran code, replace line 5 by

out <- .Fortran('combnF",6res=as.integer (combmat),

The functions dyn.load() and dyn.unload() allow respectively to load and
unload from R’s memory the resources from a DLL (dynamic link library) file. A
DLL includes functions which can be called during the execution of a program,
without being included in its executable. Here, it is the file combn.dll (which in-
cludes only one function), which will be created further on.

The functions .C() and .Fortran() (which output a list) are used to send
values from R to a C/C++ or Fortran function, respectively. Use the instructions
as.integer(), as.double() or as.character() in R to declare objects made
of integer values, decimal (numeric) values or character strings, so that they are
“received” correctly by the arguments of the C/C++ or Fortran function.

For a C/C++ function, all arguments must be pointers, for example, integer

pointers (int *), real pointers (double *) or character pointer pointers (char **).
Table 8.1 gives the equivalent types in R, C/C++ and Fortran.

Table 8.1: Conventions on argument types. Type ?.Fortran for further detail

[R [C/C++ [Fortran |
integer |int * INTEGER

numeric |double * |DOUBLE PRECISION
numeric |float * REAL

complex |Rcomplex *(DOUBLE COMPLEX

logical |int * integer
character|char ** CHARACTER*255
list SEXP * not allowed
other type |SEXP not allowed

Unlike R, where it is very easy to get the length of vector x with the in-
struction length(x), in C/C++ it is not possible to know the length of x. It
can sometimes be useful to give to the function .C() both the vector x and its
length, for example, as follows for some hypothetical function functionC:

X <- c(1.2,0.7,3,2,4,1,0.9)
.C("functionC",as.double(x),as.integer(length(x)))

The arguments of the C/C++ function functionC are double *x and int *n.
The same remark applies to Fortran functions.

8.5 T Interfacing R and C/C++ or Fortran 239

The C/C++ function combnC returns void: it does not have any direct out-

put. However, the value of its arguments, which are pointers, can be modified
during execution. It is then possible to access directly (thanks to their address)
to the value of these pointers. This is how R works, using the function .C(Q) (in
a transparent way for the user).
You may have noted at line 5 of the code of function combnRC() above
that we used res= when calling function .C(). This allows us to use
out$res directly, instead of out[[1]]. You can use another name than res,
and for any argument of function .C(). For example, we could have used
val=as.integer (m), which we did not do because that value was not modi-
fied by combnC and is thus already known (as m). A similar remark applies to
Fortran functions.

We shall now create the file combn.dll, which will be called by R. To this end,
type the following instructions in an MS-DOS window:

i1 In C/C++:

g++ -c combn.cpp -o combn.o

g++ -shared -o combn.dll combn.o
:: In Fortran:

gfortran -c combn.f90 -o combn.o
g++ -shared -o combn.dll combn.o

Equivalently (or almost equivalently, since optimization arguments could be
used by the compiler, which might by the way hinder debugging), this dynam-
ical library could be created (after deleting if necessary the files combn.o and
combn.dll) with one instruction:

R CMD SHLIB combn.cpp -o combn.dll

The first instruction creates the object file combn. o, which contains the machine
code for the function included in file combn . cpp. The second instruction creates the
dynamic library combn.dl1. At this step, the compiler informs us of any errors to
correct in the program (with the corresponding line number).

240 8 Programming in R

Note that it is possible to include several object files in the same library,
which will then contain several functions. For example, if we had a file
choose.o containing the machine code for a function which calculates bino-
mial coefficients, we could include both functions in a DLL as follows:

g++ -shared -o combn.dll combn.o choose.o

Under Linux, DLL files usually have a .so extension (for shared object).
You should thus replace all occurrences of extension .d11 by extension . so.

Under MacOS, DLL files usually have a .dylib extension (for dynamic
library). You should thus replace all occurrences of extension .d11 by exten-
sion .dylib. Also note that under MacOS, you must replace g++ -shared
with g++ -dynamic.

In R, after changing to the correct directory, we can now execute the following
instructions:

> combn(5,3)
[,11] [,21 [,3] [,4] [,5] [,6] [,7]1 [,8] [,9]1 [,10]

[1,] 1 1 1 1 1 1 2 2 2 3
[2,] 2 2 2 3 3 4 3 3 4 4
[3,1] 3 4 5 4 5 5 4 5 5 5

> source ("combn.R")
> combnRC(5,3)

[,11 [,21 [,3] [,4] [,5]1 [,6]1 [,7] [.,8] [,91 [,10]

[1,] 1 1 1 1 1 1 2 2 2 3
[2,] 2 2 2 3 3 4 3 3 4 4
[3,1] 3 4 5 4 5 5 4 5 5 5

> system.time(x <- combn(200,3))
user system elapsed

14.803 0.229 15.035

> system.time(x <- combnRC(200,3))
user system elapsed
0.158 0.023 0.181

There is an important speed-up, thanks to this new R function using code written
in C/C++.

8.5 T Interfacing R and C/C++ or Fortran 241

Do it yourself

Code in R alone, and then in hybrid R-C/C++ (or R-Fortran), the functions
arlsimR() and arlsimRC()-arlsimC (or arlsimRF () -arlsimF). These
functions take three input arguments: n € N, ¢ € (—1,1) and M € N. They
do the following computations.

Form=1,..., M:

(a) Simulate random vector € = (€q,... ,e,,)T with distribution
Na(0: Z,).
(b) Create vector x = (x1,...,X,)', with x; = €, and such that for all
t =2,...,n,wehave x; = ¢px;—1 + €.
(c) Calculate the conditional least squares estimator ¢, of ¢:
I Z?:z Xt—1X¢
om =" ——> -
D=2 %11

The functions you create should output the value qg = ﬁ Zrﬂnl=l ng — ¢,
thus allowing a numerical evaluation of the bias of estimator ¢ of ¢.

Compare the speed of execution of the pure R version with the version call-
ing C/C++ (or Fortran) code. To this end, plot the values (M, timeyy) for
M = 1,000, 2,000,...,100,000. Take n = 1,000 and ¢p = 0.75.

Note: The function arima.sim() performs parts (a) and (b) above, and
function arima () performs part (c). Do not use these two pre-existing func-
tions for this exercise: they are very fast because they are coded in C, but are
not limited to the previous computations.

To ease code development, a good editor is always useful. An editor should
at least include indentation and syntactical colouring. You may wish to use the
following free software:

e An R code editor such as RStudio, Tinn-R or Emacs
e A source code editor for C/C++ and Fortran such as Emacs or
Code: :Blocks (available at http: //www.codeblocks.org)

http://www.codeblocks.org

242 8 Programming in R

The package rbenchmark can be used to easily calculate the expected gain
in computation time by using an R-C/C++ or R-Fortran function rather than
a pure R function. For example, try to verify the results we got in the previous
practical using the following code:

n <- 1000
phi <- 0.75
M <- 2000

dyn.load("arlsim.dl1")
benchmark (Rcode=arlsimR(n,phi,M),
Ccode=.C("arlsimC",as.integer(n),phi,
as.integer(M) ,res=0.0)$res,
replications=1000)

Fortran and R store matrices (tables) in the same way: the rows of a
given column are stored sequentially in memory. In C/C++, the opposite holds;
columns of a given line are stored sequentially. Be careful when sending a
matrix from R to C/C++. For example, the element with index [i,j] in an
R matrix corresponds to the element with index [(j-1)*number-of-rows +
(i-1)] in C/C++ (in C/C++, indices start at 0).

8.5.3 Calling External C/C++ or Fortran Libraries

It is possible to use a function from an external library, thanks to the R functions
.CQO (for C/C++ libraries) and .Fortran() (for Fortran libraries).

Here is an amusing application of this approach, which locks the Windows
session:

Select file C:/windows/system32/user32.dll:
dyn.load(file.choose())
.C("LockWorkStation")

It is also possible to call an external library directly from your C/C++ or Fortran
code. Here are some scientific libraries which we find interesting:

8.5 t Interfacing R and C/C++ or Fortran 243

e The R API (application programming interface)
e The C++ library newmat
e The Fortran libraries BLAS and LAPACK

Other libraries exist; some are free of charge, or even open-source, such as:
In C/C++:

— http://www.gnu.org/software/gsl
— http://www.math.uiowa.edu/~dstewart/meschach
— http://www.nrbook.com/a/bookcpdf.php

In Fortran:

http://calgo.acm.org

— http://www.nrbook.com/a/bookfpdf.php
http://www.nrbook.com/a/bookf90pdf. php
http://math-atlas.sourceforge.net

Others are not free:

In C/C++:

— http://www.nag.co.uk/numeric/CL/CLdescription.asp
— http://www.vni.com/products/imsl/c/imslc.php

In Fortran:

http://www.nag.co.uk/numeric/RunderWindows.asp

— http://www.nag.co.uk/numeric/fl/FLdescription.asp
http://www.nag.co.uk/numeric/fn/FNdescription.asp
http://www.vni.com/products/imsl/fortran/overview.php

8.5.3.1 The R API

The R API is a library created by the R developers. It can be used from a C/C++
program without even using R (it is then called standalone R API). It can also be
used in C/C++ code which will itself be called from R, as introduced in the previous
section. This allows the use of existing routines without having to rewrite them.
To use this library, you must include in your C/C++ source code the two header
files R.h and Rmath.h, which are necessary to declare or define some mathematical
functions and constants.

http://www.gnu.org/software/gsl
http://www.math.uiowa.edu/~dstewart/meschach
http://www.nrbook.com/a/bookcpdf.php
http://calgo.acm.org
http://www.nrbook.com/a/bookfpdf.php
http://www.nrbook.com/a/bookf90pdf.php
http://math-atlas.sourceforge.net
http://www.nag.co.uk/numeric/CL/CLdescription.asp
http://www.vni.com/products/imsl/c/imslc.php
http://www.nag.co.uk/numeric/RunderWindows.asp
http://www.nag.co.uk/numeric/fl/FLdescription.asp
http://www.nag.co.uk/numeric/fn/FNdescription.asp
http://www.vni.com/products/imsl/fortran/overview.php

—_ =
— O O 0 NN R W=

[NO TN S TN NG I N R NS I & e e e e e
N A W= O 0O X 3N N A W

244 8 Programming in R

The documentation for this library, which includes the list of functions and
constants contained in it, is available at http: //cran.r-project.org/doc/
manuals/R-exts.html#The-R-API.

You may also find interesting to consult the contents of the directory nmath/
in the R sources; it is available at http://svn.r-project.org/R/trunk/
src/nmath.

We present below C/C++ code available at http://biostatisticien.eu/
springeR/integ. cpp which allows to compute the integral

T
/ D(t + e)dt,

1

where €; and €, are realizations of two independent random variables (respectively,
normal and uniform) and where @(-) is the cumulative distribution function of the
N(0, 1) distribution. The only point of this example is to illustrate the use of the
R API to simulate random variables, calculate a probability and perform numerical
integration.

#include <R.h>
#include <Rmath.h>

extern "C" {

typedef void integr_fn(double *x, int n, void *xex);
void f(double *t, int n, void xex);
void testintegral (double *res) {

// R API numerical integration function

void Rdqags(integr_fn f,void xex,double xa,
double *xb,double xepsabs,
double xepsrel ,double *result ,
double *abserr ,int xneval,
int xier ,int *xlimit ,int *xlenw,
int xlast ,int xiwork , double *xwork);

GetRNGstate (); // Read the R generator seed
double xa, xb, *xepsabs, xepsrel, xresult,
* eXx, % abserr , * work;

int %last, *limit, *lenw, xier, *xneval, xiwork;

ex = new double[1]; a = new double[1];
b = new double[1]; epsabs = new double[1];

http://cran.r-project.org/doc/manuals/R-exts.html#The-R-API
http://cran.r-project.org/doc/manuals/R-exts.html#The-R-API
http://svn.r-project.org/R/trunk/src/nmath
http://svn.r-project.org/R/trunk/src/nmath
http://biostatisticien.eu/springeR/integ.cpp
http://biostatisticien.eu/springeR/integ.cpp

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

8.5 1 Interfacing R and C/C++ or Fortran 245

epsrel = new double[1]; result = new double[1];
abserr = new double[1]; neval = new int[1];

ier = new int[1]; limit = new int[1];

lenw = new int[1]; last = new int[1];

limit [0] = 100;

lenw[0] = 4 % limit[O];

iwork new int[limit[0]];
work = new double[lenw[0]];

a[0] = rnorm (0.0 ,1.0); // epsl from N(O0,1)
b[0] = M_PI; // The constant \pi (3.141593...)
ex[0] = runif (0.0,1.0); // eps2 from Unif(0,1)

// Calculate the integral
Rdqags(f, ex, a, b, epsabs, epsrel,
result , abserr , neval, ier,
limit , lenw, last,
iwork , work);

// The result is stored in res[O0]
res[0] = result[0];

PutRNGstate (); // Write the generator seed

// Free up some memory
delete [] ex, a, b, epsabs, epsrel, result, abserr,
neval , ier , limit , lenw, last , iwork, work;

}

// Define the function to integrate
void f(double xt, int n, void *xex) {
int 1i;
double eps2;
eps2 = ((doublex)ex)[0];
for (i=0;i<n;i++) {
t[i] = pnorm(t[i]+eps2,0.0,1.0,1,0);}

The instructions to compile this function in order to get a DLL file are

g++ -C integ.cpp -o integ.o -I"C:\Program Files\R\R-3.1.0
\include"

g++ -shared -o integ.dll integ.o ~
-L"C:\Program Files\R\R-3.1.0\bin\i386" -1R

O

O 00 1 O N R W=

246 8 Programming in R

Note that we had to indicate the paths to the folders containing the files
R.h, Rmath.h and R.dll. Modify these as needed depending on your system
configuration. In MS-DOS, the symbol " indicates an incomplete line.

g++ -c integ.cpp -o integ.o -I"/usr/lib/R/include" -fPIC
g++ -shared -o integ.so integ.o -I"/usr/lib/R/include" \
-L"/usr/1ib" -1R

Now, to perform the calculation in R, use the following instructions:

> dyn.load(paste("integ", .Platform$dynlib.ext,sep=""))
> # i.e. dyn.load("integ.dll") under Windows.

> .C("testintegral",val=0.0)$val

[1] 3.707762

Of course, the result of this computation varies, depending on the realizations of
€1 and €;.

8.5.3.2 The newmat Library
The newmat library is used to manipulate various types of matrices and to

perform classical operations such as multiplication, transposition, inversion, eigen-
value computation and decompositions.

The complete documentation for this library is available at http://www.
robertnz.net/nmll.htm.

The code below, available at http://biostatisticien.eu/springeR/inv.
cpp, is C/C++ code using this library to invert a matrix and can be called from R.

#define WANT_STREAM
#define WANTMATH
#include "newmatap.h"
#include "newmatio.h"
#ifdef use_namespace
using namespace NEWMAT;
#endif

extern "C" {

void invC(double *values , int xnrow) {

http://www.robertnz.net/nm11.htm
http://www.robertnz.net/nm11.htm
http://biostatisticien.eu/springeR/inv.cpp
http://biostatisticien.eu/springeR/inv.cpp

10
11
12
13
14
15
16
17
18
19
20

8.5 t Interfacing R and C/C++ or Fortran 247

int i, j;

Matrix M(nrow[O],nrow[0]);

M << values;

M<<M.i(); // Calcul de 1’inverse de M

for (i=1l;i<=nrow[0];i++) {

for(j=1;j<=nrow[0];j++) {

values [nrow [0]*(i—1)+j —1] = M(i,]);
)

}

M. Release ();
return ;

Download file http: //www.robertnz.net/ftp/newmatll.zip and un-
zip it in C: /newmat. Then type the following instructions in an MS-DOS win-
dow:

cd \

cd newmat

g++ -02 -c *.cpp

ar cr newmat.a *.o
ranlib newmat.a

cp newmat.a newmat.dll

After a few minutes, the libraries newmat.a and newmat.dl1 are created in
folder C: \newmat.

You now need to create the library inv.dl1 (or inv. so under Linux) using the
following instructions:

cd folder containing file inv.cpp
g++ -IC:\newmat -o inv.o -c inv.cpp
R CMD SHLIB inv.cpp -IC:\newmat C:/newmat/newmat.a

g++ -I/usr/include/R -I/usr/local/include -Inewmat -fpic \
-c inv.cpp -o inv.o
R CMD SHLIB inv.cpp -Inewmat newmat/newmat.a

You can then use the C/C++ above from R as follows. First save the following
code in a file called inv.R:

O

http://www.robertnz.net/ftp/newmat11.zip

248 8 Programming in R

> inv <- function (M) {

+ n <- nrow(M)

+ return(matrix(.C("invC",Minv=as.vector (M) ,hn)$Minv,
+ nrow=n,ncol=n))}

Then execute the instructions:

\"

dyn.load(paste("inv", .Platform$dynlib.ext, sep=""))

A <- matrix(rnorm(9),nrow=3)

solve(A) # The R function solve() inverts a matrix.
[,1] [,2] [,3]

[1,] -0.09893572 0.04676191 1.155500

[2,] -0.47035376 1.10728717 -2.979609

[3,] 0.03415044 -1.07683806 1.456918

> inv(A)

vV Vv

[,1] [,2] [,31
[1,] -0.09893572 0.04676191 1.155500
[2,] -0.47035376 1.10728717 -2.979609
[3,] 0.03415044 -1.07683806 1.456918

The two functions solve() and inv() thus give the same result for matrix
inversion. As you can see, the speed-up for this operation is substantial.

> benchmark (Rcode=solve (A) ,Ccode=inv (A) ,replications=10000)
test replications elapsed relative user.self sys.self

2 Ccode 10000 0.255 1.000000 0.256 0.000

1 Rcode 10000 1.378 5.403922 1.351 0.025
user.child sys.child

2 0 0

1 0 0

8.5.3.3 The BLAS and LAPACK Packages

The BLAS (Basic Linear Algebra Subprograms) and LAPACK (Linear Algebra PACK-
age) packages are Fortran packages which perform many matrix operations. We
shall see how to use them on a simple example.

First download the archiver software 7-zip available at http://www.7-2zip.
org/download.html. Use this software (twice) to unzip (in two steps) the file
http://www.netlib.org/lapack/lapack.tgz. All files and subfolders (BLAS,
CMAKE, etc.) should be placed directly in a folder called C:\lapack. For example,
this folder will contain at its root a file called make.inc.example, which you must
rename to make.inc after changing the line SHELL = /bin/sh to SHELL = sh.
Then type the following instructions in an MS-DOS window:

cd C:\lapack
make lapacklib blaslib

After several minutes, the static packages librefblas.a and liblapack.a are
created.

http://www.7-zip.org/download.html
http://www.7-zip.org/download.html
http://www.netlib.org/lapack/lapack.tgz

—_ =
—_ O O 0 N NN R W

LW LW L W W NN NN NN NN NN = === = =
A WD = OO0 01NN WN=ROWOoKNNON WU & LW

8.5 t Interfacing R and C/C++ or Fortran 249

The documentation for these packages can be read at http://www.
netlib.org/lapack/lug.Itis also useful to read the source code of all BLAS
and LAPACK routines you wish to use, as they contain a detailed description of
the arguments the routines take.

Here is the Fortran code, also available at http://biostatisticien.eu/
springeR/inv. £90, for a subroutine which computes the inverse of a matrix. It
uses the subroutines external DGETRF and DGETRI from the Lapack package.

! Returns the inverse of a matrix calculated by finding
! the LU decomposition. Depends on LAPACK.
subroutine invF (A, Ainv,m)
double precision , dimension(m,m), intent(in) :: A
double precision , dimension(size(A,1),size(A,2)), &
intent (inout) :: Ainv
! work array for LAPACK
double precision , dimension(size(A,1)) :: work
integer , dimension(size(A,1)) :: ipiv ! pivot indices
integer :: n, info, m

! External procedures defined in LAPACK
external DGETRF
external DGETRI

! Store A in Ainv to prevent it from
! being overwritten by LAPACK

Ainv = A

n = size(A,1)

! DGETRF computes an LU factorization of
! a general M-by—N matrix A using partial
! pivoting with row interchanges.

call DGETRF(n, n, Ainv, n, ipiv, info)

if (info /= 0) then
stop ’Matrix is numerically singular!’
end if

! DGETRI computes the inverse of a matrix using
! the LU factorization computed by DGETRF.
call DGETRI(n, Ainv, n, ipiv, work, n, info)

http://www.netlib.org/lapack/lug
http://www.netlib.org/lapack/lug
http://biostatisticien.eu/springeR/inv.f90
http://biostatisticien.eu/springeR/inv.f90

250 8 Programming in R

35 if (info /= 0) then

36 stop ’Matrix inversion failed!’
37 end if

38 lend subroutine invF

To compile this code, execute the following instructions from an MS-DOS
window:

cd %HOMEPATH%/Desktop # To be changed to suit your needs.

gfortran -c inv.f90 -o inv.o -I"C:/lapack"

gfortran -shared -o inv.dll inv.o -I"C:/lapack" ~°
C:/lapack/liblapack.a C:/lapack/librefblas.a

Under Linux, use the following instructions:

gfortran -c inv.f90 -o inv.o -fPIC
gfortran -shared -o inv.so inv.o /usr/lib64/liblapack.so.3

After creating the file inv.dll (or inv.so under Linux) with the previous
instructions, you can start R and type the following instructions:
> dyn.load(paste("inv", .Platform$dynlib.ext,sep=""))
> A <- matrix(rnorm(4),nrow=2)
> B <- matrix(0,nrow=2,ncol=2)
> .Fortran("invF",A,res=B, 2L) $res
[,1] [,2]
[1,] -1.1812737 1.9822527
[2,] -0.1681507 -0.7224351
> solve ()
[,1] [,2]
[1,] -1.1812737 1.9822527
[2,] -0.1681507 -0.7224351

8.5.3.4 Mixing C/C++ and Fortran Packages

It is possible to call C/C++ functions from Fortran code, thanks to the instruction
F77_SUB(name). We illustrate this point in the next example, which generates two
independent observations: one from a A/(0, 1) distribution and the other from the
uniform distribution. The Fortran code below uses the C functions GetRNGstate,
PutRNGstate, rnorm and runif from the R API, which we have already used in
Sect. 8.5.3.1. Save it in a file called random. £.

SUBROUTINE random (X ,y)

real *8 normrnd, unifrnd, x, y
CALL rndstart ()

X = normrnd()

AW N =

0 N N W

AN kAW N =

8.5 1 Interfacing R and C/C++ or Fortran 251

y = unifrnd ()
CALL rndend ()
RETURN

END

Then create the file random. c containing

#include <R.h>

#include <Rmath.h>

void F77_SUB(rndstart)(void) { GetRNGstate ();}

void F77_SUB(rndend)(void) { PutRNGstate ();}

double F77_SUB(normrnd)(void) {return rnorm(0,1);}
double F77_SUB(unifrnd)(void) {return runif(0,1);}

To create your DLL file, compile using the instructions

gfortran -c random.f -o randomf.o

gcc -c random.c -o randomc.o -I"C:\Program Files\R\R-3.1.0

\include"gfortran -shared randomf.o randomc.o -o random.dll "
-L"C:\Program Files\R\R-3.1.0\bin\i386" -1R

Under Linux, use

gfortran -c random.f -o randomf.o -fPIC
gcc -c random.c -o randomc.o -I"/usr/lib/R/include" -fPIC
gfortran -shared randomf.o randomc.o -o random.so

You can now call your code from R using the instructions:

> dyn.load(paste ("random", .Platform$dynlib.ext,sep=""))
> .Fortran("random", as.double(l), as.double(l))

[[1]]

[1] 1.542474

[r211

[1] 0.59143

It is also possible to call Fortran functions from C/C++ code, using the follow-
ing instructions:

F77_NAME (name) to declare a Fortran routine in C

F77_CALL (name) to call a Fortran routine from C
F77_COMDECL (name) to declare a COMMON FORTRAN block in C
F77_COM(name) to access a COMMON FORTRAN block from C

Here is a small example (with Fortran77 for a change). Save the code below in
a file called combnCF . cpp:

O

—

252 8 Programming in R

#include <R.h>

#include <Rmath.h>

extern "C" {

void combnCF(int xcombmat, int xn, int *xm) {

// Caution! No upper case in the name of the subroutine
void F77.NAME(combnf)(int xcombmat, int %xn, int *m);
F77_CALL (combnf)(combmat,n,m);

}
}

O 0 9 QN AW~

Then type the following instructions in an MS-DOS command window to create
the package which will be called from R:

g++ -c combnCF.cpp -o combnCF.o -I"C:\Program Files\R

\R-3.1.0\include"gfortran -c combn.f90 -o combn.o

g++ -shared -o combnCF.dll combnCF.o combn.o
-L"C:\Program Files\R\R-3.1.0\bin\i386" -1R

Under Linux

g++ -c combnCF.cpp -o combnCF.o-I"/usr/lib/R/include"-fPIC
[\ gfortran -c combn.f90 -o combn.o -fPIC

g++ -shared -o combnCF.so combnCF.o combn.o \
-I"/usr/lib/R/include" -L"/usr/lib" -1R

Now modify the code of function combnRC() given p. 237:

e Change the name of this function to combnRCF ().
e Replace "combn" and "combnC" with "combnCF".

Save this new code in a file called combnCF . R. Then type the following instructions
in the R console:

> source ("combnCF.R")
> combnRCF (5, 3)

[,11 [,21 [,3] [,4]1 [,5] [,é6]1 [,7]1 [,8] [,9] [,10]

[1,1 1 1 1 1 1 1 2 2 2 3
[2,1] 2 2 2 3 3 4 3 3 4 4
[3,1]1 3 4 5 4 5 5 4 5 5 5

8.5.4 Calling R Code from a C/C++ Program Called by R

We have seen how to call a C/C++ (or Fortran) routine from R. It is also possi-
ble to use a type of pointer called SEXP (for Simple EXPression) and the function

—_ =
—_ O O 0 NN N R W N =

e e e e
0 N N R W

8.5 t Interfacing R and C/C++ or Fortran 253

.Call (). In this subsection, we only give a simple example. The reader can use this
as inspiration for more complex examples.

We refer the reader to the website http://cran.r-project.org/doc/
manuals/R-exts.html#Handling-R-objects-in-C.

In the following example, we shall see how to call function pmvt () of package
mvtnorm from C/C++ code, itself called from R. The function pmvt() computes
the probability that a random vector following a multivariate Student distribution
belongs to a specified hyperrectangle in R”.

Unlike the examples in the previous sections, which used the function .C(), we
shall need the function .Call (). Furthermore, our C/C++ code will have to be a
function (which we call pmvtC in the following) which returns a structure of type
SEXP and which also takes arguments of type SEXP. The code below, available from
http://biostatisticien.eu/springeR/pmvt.cpp, will be transformed into a
DLL file and then called by the function .Call().

#include <R.h>
#include <Rdefines .h>
#include "Rmath.h"
#include <R_ext/Rdynload.h>
extern "C" {
SEXP pmvtCR (SEXP Rupper,SEXP Rcorr ,SEXP Rdf,
SEXP Rpmvt,SEXP Renv,SEXP Rres) {
SEXP R _fcall;
if (!isFunction (Rpmvt) & (Rpmvt != R_NilValue))
error ("Rpmvt must be a function");
if (!isEnvironment (Renv))
error ("Renv must be an environment");
PROTECT (R _-fcall = lang4 (Rpmvt, Rupper,Rcorr,Rdf));
REAL(Rres)[0] = REAL(eval(R_fcall , Renv))[0];
UNPROTECT (1);
return (Rres);

To compile this file, use the following instructions:

g++ -c pmvt.cpp -o pmvt.o -I"C:\Program Files\R\R-3.1.0
\include"

g++ -shared -o pmvt.dll pmvt.o ~
-L"C:\Program Files\R\R-3.1.0\bin\i386" -1R

http://cran.r-project.org/doc/manuals/R-exts.html#Handling-R-objects-in-C
http://cran.r-project.org/doc/manuals/R-exts.html#Handling-R-objects-in-C
http://biostatisticien.eu/springeR/pmvt.cpp

254 8 Programming in R

Under Linux, use the instructions

g++ -m64 -I/usr/include/R -I/usr/local/include -fpic \
-Cc pmvt.cpp -0 pmvt.o

R CMD SHLIB pmvt.cpp

or:

g++ -m64 -shared -L/usr/local/lib64 -o pmvt.so pmvt.o \
-L/usr/1ib64/R/1ib -1R

You can now call this function from R. First download the file
http://biostatisticien.eu/springeR/pmvt.R which contains the following
code:

> pmvtRCR <- function (upper,corr,df) {

+ res <- 0.0

+ Rpmvt <- function (upper,corr,df) {

+ d <- length (upper)

+ pmvt (lower=rep (-Inf,d) ,upper=upper,delta=rep(0,d),

+ corr=matrix(corr,ncol=d) ,df=df)}

+ dyn.load(paste("pmvt",.Platform$dynlib.ext,sep=""))

+ res <- .Call("pmvtCR",as.double(upper), as.double(corr),
+ as.double (df) ,Rpmvt,new.env () ,as.double(res))
+ dyn.unload(paste("pmvt", .Platform$dynlib.ext,sep=""))

+ return(res)

+

Then type the following instructions:

require ("mvtnorm")

corr <- diag(3)

set.seed (1)

source ("pmvt.R")

> pmvtRCR(c(2,3,2),corr,c(1,1,1))

[1] 0.706062

> set.seed(1)

> pmvt (lower=rep (-Inf, 3) ,upper=c(2,3,2),corr=corr,df=c(1,1,1)) [1]
[1] 0.706062

V V V V

If an SEXP object contains a vector (e.g., SEXP x) or a matrix (e.g.,
SEXP M), you can use the instructions R_len_t n = length(x) and
R_len_t p = nrows(M) to create integers containing the length n of vec-
tor x or the number of rows p of matrix M. The file Rinternals.h contains the
list of many similar useful functions.

http://biostatisticien.eu/springeR/pmvt.R

8.6 T Debugging Functions 255

8.5.5 Calling R Code from Fortran

We recommend the open-source software RFortran available at http://www.
rfortran.org.

8.5.6 Some Useful Functions

Here are a few functions which you may find useful. The following functions are
used in an MS-DOS terminal window (or in Cygwin, see p. 258):

e nm: list of symbols of object files (e.g., nm random.dll).
e objdump: information about object files (e.g., objdump -x random.dll).
e 1dd: list dynamic dependencies if necessary (e.g., 1dd random.dll).

The following functions are used in R:

e getLoadDLLs(): list all DLLs loaded in the current session (e.g.,
getLoadDLLs())

e is.loaded(): checks whether a library is loaded (e.g., is.loaded
(random.dl11))

SECTION 8.6
|7 T Debugging Functions

In this section, we present various options which can be useful to debug a function
and find an error. The error could be either in the R code or in C/C++ or Fortran
code called from your R function.

We refer the reader to the website http: //www.stats.uwo.ca/faculty/ (
murdoch/software/debuggingR. \/

8.6.1 Debugging Functions in Pure R

We present some debugging functions, useful when writing R code.
The Function browser ()
A useful debugging function in R is the function browser (). If you insert the

instruction browser () in the source of your function, the program will stop at the
place where it was inserted.

http://www.rfortran.org
http://www.rfortran.org
http://www.stats.uwo.ca/faculty/murdoch/software/debuggingR
http://www.stats.uwo.ca/faculty/murdoch/software/debuggingR

256 8 Programming in R

Here is an example showing how to use browser () in a function called 1sq()
which calculates the least squares estimator of unknown arguments in a simple linear
model (see Chap. 14 for further details).

1|{lsq <— function(X,Y, intercept=TRUE){

2 X <— as.matrix (X)

3 Y <— as.matrix (Y)

4 plot(X,Y)

5 nbunits <— nrow (X)

6 [browser ()

7 if (intercept==TRUE) X <— cbind(rep(1,nbunits) ,X)
8 betahat <— solve (t (X)%*x%X)%*x%t (X)%*%Y
9 curve(betahat[1]+betahat[2]xx,add=TRUE)
10

11 [return (betahat)

12}

Source the file containing the previous code (e.g., with the instruction
source(file.choose())), then type:

lsqg(X=cars|[,2],Y=cars[,1])

As you can see, the program stops and you can examine the contents of all local
variables defined before browser (). For example, type nbunits.

j‘_\, By typing the letter n (for next), you can inspect the code and the contents
— of variables sequentially. To leave the inspection mode, type Q.

Here is an overview of a debugging session:

lsq(X=cars[,2],Y=cars[,1])
Called from: mc(X = cars[, 2], Y = cars/[, 1])
Browse [1]>nbunits
[1] 50
Browse[1]> betahat
Error: Object "betahat" not found
Browse[l]> n
debug: if (intercept == T) X <- cbind(rep(1l, nbunits), X)
Browse[l]> n
debug: betahat <- solve(t(X) %*% X) %*% t(X) %*%$ Y
Browse[l]> n
debug: curve (betahat[1l] + betahat[2] * x, add = T)
Browse[1]> betahat
[,1]
[1,] 8.2839056
[2,] 0.1655676
Browse[l]> Q
>

8.6 T Debugging Functions 257

If you enter the letter c (for continue), the code is executed until the end, N
unless a browser () command is met again.

)

The Function debug ()

Another interesting function is debug () which is equivalent to putting the in-
struction browser () at the top of a function. Thus debug(var) marks the func-
tions var as debuggable. Any subsequent call of this function will launch the online
debugger.

debug (var)
var(1l:3)

To get rid of this mark, use the function undebug().

undebug (var)

8.6.2 Errorin R Code

First change line 6 of file combn.R, replacing the affectation arrow <- by the symbol
<. We now have an error: an omitted symbol (the symbol -):

combmat<matrix (out$res,nrow=m,byrow=F)
Save the file, source it and type the following instruction:

> combnRC (5, 3)
[,11 [,2]1 [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,1 0 0 0 0 0 0 0 0 0 0
[2,1]1 0 0 0 0 0 0 0 0 0 0
[3,1 0 0 0 0 0 0 0 0 0 0

As you can see, there is an error in the result, and the error that we introduced
deliberately in the code could be difficult to detect if it were an accidental omission.
Here is how we could try to detect where the error comes from. First install and load
the package debug. Then use the function mtrace () of this package, as follows:

mtrace (combnRC)
combnRC(5,3)

You should then see a debugging window with the source code of function
combnRC(). Pressing the RETURN key repeatedly will evaluate your source code
line by line until the next display (which occurs upon evaluation of the line we
modified):

258 8 Programming in R

(,11 .21 [,31 [,4] [,51 [,6] [,7]1 [,8] [,9] [,10]
[1,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[3,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

This hints that there is an issue at this point. We can then correct the error, for
example, with the instruction £ix (combnRC).

Note that the function mtrace() did not allow us to delve into the details of the
following call:

.C("combnC" ,res=as.integer(combmat),as.integer(n),
as.integer(m))

8.6.3 Error in the C/C++ or Fortran Code

We shall now see how to perform the same kind of debugging for parts of the code
written in C/C++ or Fortran. It mostly boils down to using the compilation op-
tion -g to add information on the source code in the DLL file, and then to using a
specialized debugging tool.

You will need a debugging tool. We recommend the free software
GDB. Download version 7.4 (32 bits) from http://biostatisticien.eu/
springeR/32/gdb.exe and put it in the folder C:\Rtools\bin. This soft-
ware uses the command line and is rather austere. You may find useful to add
a graphical user interface (GUI), such as the Data Display Debugger (DDD) or
Emacs. Under Windows, another interesting avenue is the software Insight,
included in the set of tools MinGW, available from http://sourceforge.
net/projects/mingw/files/0OldFiles/insight.exe/download. How-
ever, this software seems to be becoming obsolescent. If you try to use it,
remember to change the system environment variable Path to add the path
to Insight (probably C:\insight\bin), as explained p. 231.

Under Microsoft Windows, you will have to install the version of Emacs avail-
able at http://vgoulet.act.ulaval.ca/en/emacs/windows. It is a bit
more complicated to use DDD under Windows. You need to launch the Cygwin

http://biostatisticien.eu/springeR/32/gdb.exe
http://biostatisticien.eu/springeR/32/gdb.exe
http://sourceforge.net/projects/mingw/files/OldFiles/insight.exe/download
http://sourceforge.net/projects/mingw/files/OldFiles/insight.exe/download
http://vgoulet.act.ulaval.ca/en/emacs/windows

8.6 T Debugging Functions 259

setup (available at http://cygwin.com/install.html), choose the in-
stallation directory C:\Rtools\bin and select the software Devel: ddd
and Math: gnuplot (and accept the required dependencies). Also note
that if the list of download sites is empty, you can try the URL http://
cygwin.mirrorcatalogs.com. To use DDD, you also need an imple-
mentation of the Linux X window system for Microsoft Windows. The
software Xming, available at http://biostatisticien.eu/springeR/
Xming-6-9-0-31-setup.exe, is a good choice. You could also use
MobaXterm (http://mobaxterm.mobatek.net), or Cygwin’s Xorg server
(select X11: xorg-server: X.0rg servers on installation).

8.6.4 Debugging with GDB

Start an MS-DOS command window from the Windows Start menu (type cmd) in
which you type

cd path to folder containing inv.cpp
g++ -IC:\newmat -o inv.o -c inv.cpp -g
g++ -shared -o inv.dll inv.o -IC:\newmat C:/newmat/newmat.a

This will create the file inv.d1l1l with debugging information (see p. 247 for the
creation of the library newmat).

In order to also debug the functions from library newmat, you need to first
create this library in a way that includes debugging information:

cd \

cd newmat

g++ -c *.cpp -Wno-deprecated -g
ar cr newmatdebug.a *.o

ranlib newmatdebug.a

cp newmatdebug.a newmatdebug.dll

Then type:

gdb Rgui

(gdb) run

This should start R, where you type

> setwd("path to file inv.dll")
> dyn.load("inv.d1ll")

http://cygwin.com/install.html
http://cygwin.mirrorcatalogs.com
http://cygwin.mirrorcatalogs.com
http://biostatisticien.eu/springeR/Xming-6-9-0-31-setup.exe
http://biostatisticien.eu/springeR/Xming-6-9-0-31-setup.exe
http://mobaxterm.mobatek.net

260 8 Programming in R

Then go to menu Misc/Break to debugger, which will allow you to return to
GDB (black window), where you can type

(gdb) info share
(gdb) break inv.cpp:1
(gdb) signal O

The first instruction (info share) shows that the library inv.d11 has been loaded;
the second instruction (break inv.cpp:1) allows you to add a break point on the
first (executable) line of the file inv . cpp; the last instruction (signal 0) exits GDB
and returns to R. In R, type:

> A <- matrix(rnorm(4),nrow=2)

> source("inv.R") # File created page 247.
> inv(a)

When the processor encounters the break point, the code execution is suspended.
You can now type the following instructions in GDB. The first instruction (1ist)
displays the next lines to execute, the second instruction (next) moves to the next
line, the third instruction (print nrow[0]) displays the value of nrow[0] and the
last instruction continues the code execution until the end or the next break point.

(gdb) list

(gdb) next

(gdb) print nrow[0]
(gdb) continue

You are back in R and you see the output of the call inv(A). You can type the
following instructions to verify that the result is the same as with function solve ()
and to exit R.

> solve(a)
> qf)

Under Linux, type in a terminal window the command
R -d gdb

instead of gdb Rgui.
Alternatively, you could use the following instructions:

export R_HOME=/usr/1ib64/R
gdb /usr/1ib64/R/bin/exec/R

To return to R from GDB, use the key combination CTRL+C. Note that to go from
GDB to R, after typing signal 0 (or equivalently c), you need to press RETURN.

8.6 T Debugging Functions

Note that GDB can be called with options. For example,

--directory=DIR Search for source files in DIR.
--pid=PID Attach to running process PID.

The documentation of GDB, available at http://sourceware.org/gdb/
current/onlinedocs/gdb, is worth reading.

You can install/compile a package (hereafter called PKG) with debugging
information (equivalent to using the flag -g mentioned above). First create a
file called Makevars.win (Makevars under Linux) in a subfolder called .R/ in
your %$HOME% directory. This file should include the following lines:

for C++ code
CXXFLAGS=-g

For this purpose, you can for example type WINDOWS+R, cmd,
ENTER, cd %HOME%, ENTER, mkdir .R, ENTER, cd .R, ENTER,
echo CXXFLAGS=-g > Makevars.win, ENTER. Next, build the
package PKG and install it (from the sources using the command
R CMD INSTALL --build --debug PKG), then use one of the debug-
ging methods presented above. Note that the file NAMESPACE of your
package PKG must include the line useDynLib("PKG") so that the DLL
(or .so) file is automatically loaded when you execute in R the instruction
require ("PKG"). If this procedure fails, you can always use the function
dyn.load() to load the package “by hand” from where it is installed.

It is also possible to display the contents of an object of type SEXP (call
this object s). To do this, you can include in your C/C++ code the instruction
PrintValue(s) ;. This way, when the instruction is encountered during code
execution, the contents of the object s will be displayed in the R console. An-
other solution is to use the instruction p Rf_PrintValue(s) from the GDB
console. Note that in this case, the display of object s in the R console may be
delayed until R takes over from GDB.

261

\ Y

http://sourceware.org/gdb/current/onlinedocs/gdb
http://sourceware.org/gdb/current/onlinedocs/gdb

O

262 8 Programming in R

8.6.4.1 Debugging with Emacs

We have seen how to debug code with GDB. We shall now show how to perform the
same kind of operations with the combination of Emacs (and its excellent module
ESS, Emacs Speaks Statistics) and GDB. Note that you need to have installed GDB as
explained in Sect. 8.6.3. Note also that you need to create, from an MS-Dos window,
the file combn.dll with debugging information (flag -g), thanks to the following
instructions:

g++ -g -c combn.cpp -o combn.o
g++ -shared -o combn.dll combn.o

Under Emacs, the notation M-x means you must press simultaneously the
keys ALT and X, whereas C-x means you must press simultaneously the keys
CTRL and X, and [RET] designates the carriage return (key RETURN).

First open Emacs (see p. 258 for how to install this software) then execute
the following commands. For example, the first line is executed by pressing si-
multaneously on ALT and X, then R (which will display M-x R at the bottom of
Emacs), then RETURN (which will display ESS [S(R): R (newest)] starting
data directory? ~/), then RETURN again (which will start R in Emacs).

M-x R [RET] [RET]
M-x gdb [RET] gdb -i=mi --annotate=3 [RET]

Your Emacs window should then be split in two, with R on top and GDB at the
bottom. If that is not the case, go to the menu File/Split Window or File/New
Window Below (C-x 2), then to the menu Buffer to select *R* *,

The system environment variable Path must include the entry
C:\Rtools\bin first, so that the version of GDB used is 7.4.

You then need the process ID of R. Under Windows, use the key combination
CTRL+ALT+Del to start the task manager. Then select the Processes tab. In the menu
View/Select Columns.. ., tick the box PID (Process Identifier), which
will add a column PID to the task manager. Then find the (PID) corresponding to
the name Rterm.exe *32 (e.g., 5404). An easier option is to type Sys.getpid()
in the upper R windows of Emacs.

Under Linux, you can get the PID of R directly by typing in Emacs:
M-! Shell command: pgrep R [RET]

8.6 T Debugging Functions 263

Then type in Emacs the following instructions:

(gdb) attach 5404 [RET]

(gdb) signal 0 [RET]
Click on the panel (or Buffer in Emacs) called *R*, and execute the following in-
structions:

> setwd("path to combn.R file")
> source ("combn.R")
> dyn.load(paste("combn", .Platform$dynlib.ext, sep=""))

Click on the bottom sub-window (Buffer *gud*).
C-c C-c
(gdb) b combn.cpp:1 [RET]
(gdb) c [RET]
Click on the top sub-window (Buffer *R*).
> combnRC (5, 3)
C-g
M-x gdb-many-windows
Put the Emacs window in full screen. Your Emacs window should now be divided

in six panels, as shown in Fig. 8.2. If needed, click on the relevant entries of the
Buffer menu.

e £ Optiorm Boffen Tooh 55 Compiets kwOut Sgnah Help

DeExmrR8XE

Brwakpeint 3
o

vt GmeRaNiAee: file combm.cpw, dine 1. - EeEAiN Fegisters
<o 3 i
[to Thresd 3818.0wdf0] U 3

!xul:(c]l:: L, embeC [combmateONATICNEY, meim4SEdeS0, meONASSAe30) AT combe.oppid . x ez
[= i

e e e

. Flatforaidyni ib. sxt, sep=""11

. Bet 13T [3ES3 [R]: sun Eibes)

Tisp Enb Address What
keep v OwHSGHI4 in combnClinks, inte, inT'} A% combni

breaipoint slresdy hit 1 Time

Fig. 8.2: Emacs and GDB

Click on the bottom right panel called *breakpoints of*. Select the menu
Buffers/*R* *,

Now click on the window combn. cpp. You will see new icons in the top part of
Emacs. For example, you can click on the symbol for Next Line (right of GO) to
execute your C/C++ line by line.

264 8 Programming in R

Do it yourself

e Change line 32 of file integ.cpp into 1imit[®] = -1;. Recompile
this code and call it from R as seen above:
.C("testintegral”,val = 0.0)$val. Your R session should crash.
Suppose you do not remember making the above change. Use the tech-
niques you just learnt to find the error.

e Debug the file pmvt.cpp seen in Sect.8.5.4. Type the instruction
p Rf_PrintValue(Rpmvt) from the GDB console to display (in the
R console) the contents of object Rpmv't.

8.6.4.2 Debugging with DDD

You first need to launch Xming (or an equivalent tool); its icon should appear in

the task bar. Then launch a Cygwin terminal window ==, and type the following
instructions:

$ export DISPLAY=localhost:0.0
$ cd path to directory containing the source and DLL files
$ ddd Rgui

You may need to wait a while before DDD starts.

A Under Linux, replace the last instruction with the commandR -d ddd.

Next, type the following instructions in GDB (lower panel):

(gdb) dir $cwd
(gdb) run

The first instruction tells GDB to search for source files in the current directory
(which would be given by the command pwd), thus avoiding issues due to path
management in Windows. The second instruction starts R (you could also tick the
box: Program/Run in Execution Window, and click on Program/Run, then on
Run); type in R:

> dyn.load("inv.d1ll")

Note that the file inv.dll was created with debugging information, as mentioned page
259. Now go to menu Misc/Break to debugger to return to DDD. Go to menu
File/Open source. .. and open file inv.cpp. Also tick the entry Data Window in
menu View (and possibly entry Display Local Variablesin menuData, if you

8.6 T Debugging Functions 265
are patient!). You can then put one or several breaking points in the code to debug
(by double-clicking at the beginning of the line or by right-clicking), for example,
at the instruction M << values;. This has the effect of displaying a stop symbol.
Then type continue (or just c) in the lower part (gdb). This returns to R, where
you type

> A <- matrix(rnorm(4),nrow=2)

> source("inv.R") # File created page 247.
> inv (a)

When the (first) breaking point is encountered by the processor, code execution is
suspended. You can now use the graphical tool DDD to debug your code.

Note that it is possible to display several values of an array. For example, you
can type in the lower window (gdb) the following instruction (Fig. 8.3):
graph display values[0] @ 4

to display the (first) four values of array values.

R At g2-0ig | & 000 garvec s TestiDeskiopinicop =W =
File B2 View Mac Package Windows Help Eile Edit View Fregram Comaeds Status Scrce Bata talp
] = e = -
B2LEO0EEE) o1 AR S i aka o B =
== e
R RComeie |
You are velcoms to edaatribute it Sonplr L L ke e ocalsirclie ~lomast fple 3 < ineicsp 2 i
Type ‘*license()’ or ‘licence()’ f & n P b ekl ey
Marural lasguage suppoct bu in an English locale | | Sdefine WHT_STRM))
adafire WHTHITH
R 13 a collaboracive pr th many contributors. Tt o O
y i ana Wifde s namespoie |
‘eitacien()® on hew to cite R or R packages in publicazis iy namedpace
st
Type ‘demal): for some demos, “helpl)® Sor on-line hels, or wl‘.M‘EMhMlm e
i
nwu IJ-hvwloi o)z
O << v
W SE AT Caleul do 1 irveres da M
For {i=1:icerre]I) {{
rer[m 0z
f uﬁd-ﬂnl = 1.0
}
7]
[~
€ /oypdriverc/zen TesDeskiop =1 | breskpoint 1. imC (valusestniBitact. rroustuliBi60) at imv.cppil5
| (g} g-nn displig values[0] @ 4
7]
3 export CISPLAYelocalhost 0.0 +|

4 Displing 1: valuea[0] @ 4 (erabled, scope i, address GudBilact)

5 ed C:/Usars Tast Deskton

5 ddd Rgut

Fig. 8.3: DDD and GDB

8.6.4.3 Debugging with Insight

Insight seems to have difficulties working on some Windows versions. Nonethe-
less, we present this software for those who have a compatible version of Windows,
or in case a new version of Insight is shipped after the publication of this book.

266 8 Programming in R
Recompile your file using flag -g (and possibly -£fPIC) which tells the C++ com-
piler to add information on the source code directly in the compiled file.

g++ -c combn.cpp -o combn.o -g
g++ -shared -o combn.dll combn.o

Then, from the MS-DOS window, execute insight Rgui.exe, then click on Run
Next type the following commands in the R console which opens:

> source ("combn.R")
> dyn.load(paste("combn", .Platform$dynlib.ext, sep=""))

Go to the R menu called Misc, then Break to debugger. You are now in the
Insight window.

Source Window
File Run Y¥iew Control Preferences Help

AV N SASH @1 rina] | o
=

0x6c7215a7 <{setupui+u647>: nov %eax,8x8(%ebp)

0x6c72153a <{setupui+4650>: leave

0x6c7215ab <{setupui+4651>: jmp 0x6c917d00 <{trio_sprintf+45
0x6c7215b0 <{setupui+4656>: nov Ox6c97F328 ,%eax

Bx6c7215b5 <{setupui+4661>: nov %eax, 0x8(%ebp)

0x6c7215b8 <{setupui+4664>: leave

Bx6c721509 <{setupui+4665>: jmp 0x6c9184b0 <trio_sprintf+u?
Ox6c7215be <{setupui+4670>: data1é

Ox6c7215bF <{setupui+4671>: nop

0x6c7215c0 <{setupui+L672>: push %ebp

0x6c7215¢c1 {setupui+4673>:
0x6c7215c3 <{setupui+4675

nov %esp,%ebp

(I R I I T T I I I I I D O I I I e B

0x6c7215¢5 <setupui+u677>: ret

Ox6c7215c6 <{setupui+h678>: lea 0x0(%esi) ,esi

Ox6c7215c? <(setupui+h681>: lea 0x0({%edi) ,%edi

0x6c7215d0 {setupui+4688>: push Zebp

0x6c7215d1 <{setupui+4689>: mov $0x5,%ecx

Bx6c7215d6 <setupui+4694>: mov %esp,%ebp

0x6c7215d8 <{setupui+4696>: sub $0x18,%esp

0x6c7215db <{setupui+4699>: nov 0x8(%ebp) ,%eax

Bx6c7215de <setupui+4702>: nov %esi,BnFFFFFFFB(%ebp)

Bx6c7215e1 <{setupui+4705>: nov %edi,BxFFFFFFFC(%ebp)

Ox6c7215el {setupui+4708>: nov $0x6c929266 ,%edi =

Ox6c7215e9 <{setupui+4713>: nov %ebx, BxFEFFFFF4(%ebp)

AL rTIICAr Fratunud abhTAEN - e AuATOI¥asus Fadu j

4| | i

"Program stopped at 0x6¢7215¢4 [6c7215cH| (]

In Insight, select menu View - Console [CTRL+N]. This opens the com-
mand window of debugger GDB. We can now add a breaking point to function
combnC by typing
break combnC
Then type:
continue
which returns to R. As soon as the function combn(is called, we will return to the
debugger.

8.6 T Debugging Functions 267

Console Window

(gdb) break moncombn
Breakpoint 1 at Bx28c11d6: file moncombn.cpp, line 7.

(gdb) continue

Continuing.

gdb: child_resume.SetThreadContext: thread 3408.0xd98
ContinueDebugEvent (cpid=3488, ctid=3480, DBG_CONTINUE);

Now type in R:

> debug (combnRC)
> combnRC (5, 3)

Use instruction n (for next) to skip to the next instruction of our R code, until reach-
ing the call to the function written in C++.

= RGui
Fichier Edition Vor Misc Packages Fenétres Aide

= R Console

setwd("C:\\Documents and Settings\\lafaye)Bureau”)
source ("moncombn.R")

dyn. load (paste ("moncombn®, .Platformidynlib.ext, sep="")})
debug (moncombn)

moncombn (S, 3)

bn(s, 3)

combmat <- matrix (0, nrow = m, ncol = choose(n, m))
dyn. load (paste ("monconbn”, .Platformidynlib.ext, sep = ""})
out <- .C{"moncombn”, res = as.integer (corbmat), as.integer(n),
as.integer (m))

corbmat <- matrix(out§res, nrow = m, byrow = F)
dyn.unload(paste ("moncorbn®, .Platforméidynlib.ext, sep = "))
recurn{combmac)

¥

actr (, "srcfile™)

moncombn. B

Browse[1]> n

debug: combmat <- matrix (0, nrow = m, ncol = choose(n, m))

Browse[1]> n

debug: dyn.load(paste ("moncorbn®, .Platformidynlib.ext, sep = ""))

Browse[l]> n

debug: out <- .C("moncombn", res = as.i ger |), am.d ger (n) ,
as.integer (m))

Browse[1] >

The breaking point we added is detected and we are back in Insight.

268 8 Programming in R

moncombn.cpp - Source Window

Fie Run View Control Preferences Help
FNTE0|VE | SA80 818 Fine:[| of o at
1 // Fonction moncombn i=
2 extern “C" {
3 void bn{int bmat, int =n, int =m)
- “ {
& inmt i, j, e, h, nAamp1, mpi;
6 int =a;
]
- 8 For (i=1;i<=#(m+0);i=i+1) =(a+i-1)=i;
- 9 e=0;
- 10 h=#{m+0);
= 11 for (i=1;i<{=#(m+0);i=i+1) »(combmat+i-1)=i;
- 12 i=2;
= 13 nanp1=#(n+8) - =*(A+@) + 1;
= 14 npl=={m+0) + 1;
- 15 while(=(a+0) *= namp1) {
= 16 if{e < =(n+0) - h) {
= 17 h=1;
= 18 e=x{a+*{m+0)-1);
- 19 #{a+=*{m+B) - h)=e + 1;
- 20 for (j=1;j<=#(m+0);j=j+1) =(combmat+(i-1)*=(m+0)+j-1)=%(a+j-1); -
- 21 i=i+1;
22 }
23 else {
- 24 h=h + 1;
- 25 e==(a+mp1 - h-1);
- 26 for (j=1;j<=h;j=j+1) =(a+=(m+0) - h + j-1)=e + j;
- 27 For (i=1zid<=wimeMzi=is1) wfconhmat+(i-11eeimeM+i-1V=nlasi-11: i
I]Program is running. | 20c1146| 7

Next click on icon o to execute line by line the C++ code and check the value of
the various variables.

moncombn.cpp - Source Window
File Run View Control Preferences Help

ADNT00 VO SA8H 418 | Fina: e

1 // Fonction moncombn -
2 extern "C" {
3 void bn(int t, int =n, int =n)

- oy

5 dint i, j, e, h, nmmp1, mp1;
6 int =a;
7 a=new int[=(m+0)];
8 for (i=1;i<{==(m+@);i=i+1) =(a+i-1)=i;
9 e=0;
18 h=={m+0);
11 for (i=1;i{=#(m+0);i=i+1) =(combmat+i-1)=i;
12 i=2;
nnapi=*(n+8) - =*(m+@) + 1;
pi=#{m+@) + 1;

+0) - h) {

17 h=1;
18 e=w(a+w(n+0)-1);

19 =(a+=(n+B) - h)=e + 1;

20 for (j=1;j<=#(m+0);j=j+1) #(combmat+(i-1)wx(m+@)+j-1)=»(a+j-1); o
21 i=i+1;

| I R O T R A R B A B BN |
-
3

23 else {

24 h=h + 1;

25 e==(a+mp1 - h-1);

26 for (j=1;j<=h;j=j+1) =(asx(m+0) - h + j-1)=e + j;

27 fFor (i=1:id{=#im+M zi=i+1) =icomhmat+{i-11*xeimeMI+i-1V=%a+i-11: ;J

{[Program stopped at fine 15 20c126a] 15

8.6 T Debugging Functions 269

The window Local Variables (shown by menu View -> Local Variable
[CTRL+L]) displays all local variables and their contents during code execution.

Local Variables E] @l [zl

B combmat = (int =) 0x1bd4968
Bn = (int *) Bx1fa7of0
—wn = (int) 5
Br = (int =) Bx1fa70d0
Lum = (int) 38
i= (int) 2
j = (int) 22722956
e = (int) @
h = (int) 3
namp1 = (int) 3
mp1 = (int) &
Ba = (int =) Bx21998F0
L«a = (int) 1

Note that to see the contents of an R matrix or vector, you simply need to go to the
GDB console and type for example:

x/30dw combmat

Console Window

gdb: child_resume.SetThreadContext: thread 4924.0x348 j
ContinueDebugEvent (cpid=4924, ctid=840, DBG_CONTINUE);

gdb: kernel event for pid=4924% tid=840 code=EXCEPTION_DEBUG_EVENT)
gdb: Target exception EXCEPTION_SINGLE_STEP at @x01bb1266

gdb: child_resume.SetThreadContext: thread 4924.0x348
ContinueDebugEvent (cpid=4924, ctid=840, DBG_CONTINUE);

gdb: kernel event for pid=4924 tid=840 code=EXCEPTION_DEBUG_EVENT)
gdb: Target exception EXCEPTION_SIMGLE_STEP at ©@x01bb1267

gdb: child_resume.SetThreadContext: thread 4924.0x348
ContinueDebugEvent (cpid=4924, ctid=840, DBG_CONTIHUE);

gdb: kernel event for pid=4924% tid=840 code=EXCEPTION_DEBUG_EVENT)
gdb: Target exception EXCEPTION_SIMGLE_STEP at @x@81bb126a

(gdb) x/30dw combmat

0x1bd4968: 1 2 3 [:]

6x1bd4978:]]]]

0x1bd4988: L] L]]]

Bx1bd4998: L] L]] L]

Gx1bd49a8: [:]]] [:]

0x1bd49b8 :]] I]

Bx1bd49c8: L] a e L]

Bx1bd49dB:] L]

(gdb) | =

270 8 Programming in R

You can also display graphically this table of values and select it by clicking on
plot.

You can now type the following instructions in the GDB console to add a breaking
point at line 32 of your C++ code, then reexecute the code. When the breaking point
is encountered, the code stops again and we can ask to display again the contents of
array x:

break 32
continue
x/30dw combmat

Console Window

(gdb) break 32 a
Breakpoint 2 at @x1bb13be: file moncombn.cpp, line 32.

(gdb) continue

Continuing.

gdb: child_resume.SetThreadContext: thread 4924.0x348
ContinueDebugEvent (cpid=4924, ctid=840, DBG_CONTIMUE);

gdb: kernel event for pid=4924 tid=840 code=EXCEPTION_DEBUG_EVENT)
gdb: Target exception EXCEPTION_BREAKPOINT at 08x81bb13be

Breakpoint 2, moncombn (combmat=0x1bd4968, n=0x1fa70f@, m=0x1Ffa70d0) at moncom

(gdb) x/38dw combmat

0x1bd4968: 1 2 3 1

Bx1bd4978: 2 L) 1 2

Ox1bd4988 : 5 1 3 4

0x1bd4998: 1 3 5 1

Bx1bd49a8: L 5 2 3

Bx1bd49b8 : 4 2 3 5

Ox1bd49c8: 2 4 5 3

0x1bd49d8: 4 5

(gdb) | j
‘| | il

8.6.4.4 Detecting Memory Leaks

The messages Segmentation fault (or segfault), invalid next size,
std: :bad_alloc (which you will certainly encounter under Linux!), incoherent
results or, more radically, a complete crash of R are often indications that there is
a memory issue (access to a non-reserved or non-initialized address, using freed
memory, etc.) These memory leaks often occur when you have forgotten to use the
instruction delete[] ptr; to delete from memory a pointer ptr introduced in a
C/C++ function. This problem can sometimes be noticed in the task manager when
you run a large simulation in R and realize that the R process is using more and more
memory even though it should not.

Under Linux, the display of memory usage by different processes is given
by the command (entered in a terminal window) watch -d free for global
usage or by top -p PID for a specific process (use ps au to find the PID of
the desired process). You can also use the graphical tool ksysguard.

—_ =
—_ O O 0 N NN R W N~

—_ = = = =
AN W

8.6 T Debugging Functions 271

Another common mistake is to try to manipulate the nth entry in an ar-
ray of size less than n (accessing undefined memory). It can then be difficult
to detect the origin of the problem. The software Dr Memory (http://code.
google.com/p/drmemory) and possibly the software electric-fence-win32
(http://code.google.com/p/electric-fence-win32) and duma (http://
duma. sourceforge.net) can be precious tools in such situations.

Under Linux, you can use the software Valgrind or Electric Fence.

We now show on an example how to use Dr. Memory which you should in-
stall in the directory C:\drmemory (choose the entry Add Dr. Memory to the
system PATH for all users upon installation).

The following piece of code includes several errors, which can be hard to find for
abeginner. You can download it fromhttp://biostatisticien.eu/springeR/
memory . cpp.

extern "C" {
void testmemory(int *M, double xa) {
double *xptrl , * ptr2;
int 1i;
ptrl = new double[10000];
ptr2 = new double [M[O]];
ptr1 [0] = 1.0;
for (i=1;i<10000;i++) {
ptrl1[i] = (double)i;
ptr2[i] = ptrl1[i—1] % (double)i;

}
delete [] ptr2;

for (i=0;i<10;i++) a[i] = ptr2[i];
return ;

First create the associated DLL file, using the following instructions in an Ms-Dos
window:

cd directory containing file memory.cpp
g++ -0 memory.o -C memory.cpp -g
g++ -shared -o memory.dll memory.o

http://code.google.com/p/drmemory
http://code.google.com/p/drmemory
http://code.google.com/p/electric-fence-win32
http://duma.sourceforge.net
http://duma.sourceforge.net
http://biostatisticien.eu/springeR/memory.cpp
http://biostatisticien.eu/springeR/memory.cpp

272 8 Programming in R

Under Linux, use the instructions:

g++ -0 memory.o -c memory.cpp -g -fPIC
g++ -shared -o memory.so memory.o

Next, type drmemory.exe -- Rgui in your command window (be patient),
then type the following instructions in the R console:
> dyn.load("memory.dll")

> .C("testmemory",10000L,3.0)
> q()

Now look for the instances of testmemory in the file which opened up. This will
indicate the lines which may contain errors. For example, this shows that there is
an error at line 13. In fact, we realize that the array a is of length 1 (and initially
contains only the value 3.0), whereas we are trying to write values in entries 0-9.
Furthermore, the pointer ptr2 was deleted on the preceding line.

You can also try the following R instruction, and note in the task manager that
the amount of RAM used by R increases greatly. This is because we forgot the
instruction delete[] ptrl; in the C/C++ code above:

> for (i in 1:10000) .C("testmemory",10000L,as.double(1:10))

The equivalent of Dr Memory under Linux is called Valgrind. To detect
where the leak comes from, you can use the instruction:

R -d ’valgrind --leak-check=full’

> dyn.load("memory.so")
> .C("testmemory",10000L,3.0)
> g()

In the output of valgrind, you then need to look for the errors and for the
corresponding line numbers in the source code of memory . cpp. The following
instructions give other error types displayed by R and detected by Valgrind:

Works only once!

Afterwards, R crashes with: "caught segfault":
.C("testmemory",10000L,c(3.0,5.0))

R closes: "invalid next size":
.C("testmemory",10000,c(3.0,5.0))

R closes: "std::bad alloc":
.C("testmemory",10712,¢c(3.0,5.0))

Works when ptr2 is no longer defined:
.C("testmemory",10000L, as.double(1:10))

VVVVVYVYVYVYV

8.7 Parallel Computing and Computation on Graphical Cards 273

SECTION 8.7
Parallel Computing and Computation on Graphical
Cards

8.7.1 Parallel Computing

You can speed up your calculations by having them run on several processors at
the same time; these processors can even be on different computers. There are
several specialized packages for this; they are listed in the CRAN Task View:
High-Performance and Parallel Computing with R, available at http://
cran.r-project.org/web/views/HighPerformanceComputing.html.

The easiest to use is package parallel with communication protocol PSOCK,
which we briefly describe below through an example.

The MPI protocol (Message Passing Interface), used by package Rmpi, is
more flexible than the PSOCK protocol, but it requires the installation of other
software (such as OpenMPI or mpich?2).

We refer the interested reader to the websites http: //www.divms.uiowa.
edu/~luke/R/cluster/cluster.html, http://www.sfu.ca/~sblay/ ()
R/snow.html and http://cran.r-project.org/web/packages/ N/
snowfall/vignettes/snowfall.pdf.

The following R code performs numerical evaluation (by Monte Carlo simula-
tion) of the empirical level of the Shapiro-Wilks normality test for a nominal level
of 5 %:

> myfunc <- function(M=1000) {

+ decision <- 0

+ for (i in 1:M) {

+ X <- rnorm(100)

+ if (shapiro.test(x)$p < 0.05) decision <- decision + 1
+)

+

+

return (decision)

}

Here is the computation time needed for this code with M = 60,000 Monte
Carlo iterations:

> system.time ({
+ M <- 60000

http://cran.r-project.org/web/views/HighPerformanceComputing.html
http://cran.r-project.org/web/views/HighPerformanceComputing.html
http://www.divms.uiowa.edu/~luke/R/cluster/cluster.html
http://www.divms.uiowa.edu/~luke/R/cluster/cluster.html
http://www.sfu.ca/~sblay/R/snow.html
http://www.sfu.ca/~sblay/R/snow.html
http://cran.r-project.org/web/packages/snowfall/vignettes/snowfall.pdf
http://cran.r-project.org/web/packages/snowfall/vignettes/snowfall.pdf

274 8 Programming in R

+ decision <- myfunc (M)
+ print(decision/M)
+ })
[1] 0.04893333
user system elapsed
18.124 0.331 18.457

We now show how this code can be parallelized using the package parallel
and the corresponding gain in computation time. We used six processors.

To know the number of processors on your computer, type the instruction
devmgmt .msc in the menu Start/Run. Then count the number of lines in
the Processors entry. Under Linux, type top in a terminal window, then 1.
This shows the number of processors. Another option is to use the function
detectCores() of package parallel.

> require ("parallel")

> system.time ({

+ mnbclus <- 6

+ M <- 60000

+ ¢l <- makeCluster (nbclus, type = "PSOCK")

+ out <- clusterCall(cl, myfunc, round(M/nbclus))
+ stopCluster(cl)

+ decision <- 0

+ for (clus in 1:nbclus) {

+ decision <- decision + out[[clus]]

+
+
+

}

print (decision/ (round (M/nbclus) *nbclus))
b
[1] 0.0501
user system elapsed
0.019 0.033 5.522

8.7.2 Computation on Graphical Cards

The processor, or CPU (central processing unit), is the computer component which
handles execution of software. However, it is now also possible to perform com-
putations on a GPU (graphical processing unit), or graphical card. Graphical cards
allowing such operations are marketed by Nvidia, and they can include hundreds of
processors working in parallel. The speed-up in computation time can be substan-
tial. To use this technology, however, you must know the programming language
CUDA, developed by Nvidia. A few R developers have delved into this language
and have grouped a few functions in the package gputools, which is only available
on Linux for now.

8.7 Parallel Computing and Computation on Graphical Cards 275

Here is a short example of use of this package. We used an NVIDIA GeForce
GTX 480 graphical card.

> require ("gputools")

> A <- matrix(runif (40000),nrow=200,ncol=200)

> B <- matrix(runif (40000) ,nrow=200,ncol=200)

> system.time(cor (A, B, method="kendall")) # Computation CPU.
user system elapsed

29.804 0.002 29.810

> system.time (gpuCor (A, B, method="kendall")) # Computation on

GPU.

user system elapsed
0.836 0.052 0.891

To find out more on this topic, go to http://cran.r-project.
org/web/packages/gputools/gputools.pdf and http://developer.
nvidia.com/object/cuda_training.html.

http://cran.r-project.org/web/packages/gputools/gputools.pdf
http://cran.r-project.org/web/packages/gputools/gputools.pdf
http://developer.nvidia.com/object/cuda_training.html
http://developer.nvidia.com/object/cuda_training.html

276 8 Programming in R

Memorandum

function(<parl>,<par2>,...,<parN>) <body> : declare a function object
"{" (): define a block of instructions and return the last evaluated instruction
class(), "class<-"(): extract, affect the class of an object

missing(): test whether an effective argument is defined

attributes(), "attributes<-"(): extract, affect all attributes as a list
attr(), "attr<-"(): extract, affect a single attribute

expression(): create an expression object

parse(): convert text to an expression

eval (): evaluate an expression

"~"(): create a formula object

new.env(): create an environment

local (): execute code locally in an environment

A5

Exercises

8.1- For each of the following command lines, indicate the class of the returned R
object. What is displayed upon execution of each of these command lines?

e function(name) {name}

e (function(name) {name}) ("Ben")

e (function(name) {cat(name,"\n")})("'Ben")
o (function(name) {invisible(name)})("Ben")

8.2- Is there a difference between

e name <- function(name) name and name <- function(name)
{name}

e name <- function(name) {name} and
name <- function(name) {return(name)}

e name <- function(name) {name} and
(function(name) {name}) -> name

8.3- Upon execution, is there a difference between name () and name ("Peter™)
when

e name <- function(name="Peter") name
e name <- function(name="Peter") name2 <- name

For these two declarations of the function name (), is there a difference in the
type of the R object res given by res <- name("Ben")?
8.4- What R object is returned upon execution of name () when

name <- function(name="Peter") {
name
The last instruction is a comment!

Exercises 277

8.5- When name <- function(firstname="Peter" ,name="L") {
paste(firstname,name)}, what R object is returned by

e name(firstname="Ben")
e name(fir="Ben")
e name(n="D",f="R")

8.6- Rewrite the following function declaration in one line, without using the com-
mand separator ““;”:
name <- function(name) { if(missing("name"))
name <- "Peter"; cat(name,"\n") }

8.7- What is the output of the execution of nameS("peteR", "Ben", "R") when

nameS <- function(...) c(...)

nameS <- function(...) list(...)

nameS <- function(...) for(name in c(...)) print(name)
nameS <- function(...) for(name in list(...))

print (name)

Same question upon execution of
nameS(c("peteR","L"),c("Ben","L"),c("R","D"))

8.8- WhennameS <- function(names=c("Ben","R"),...) c(names,...),
which R objects are returned by nameS ("PeteR"), nameS (name="PeteR")
and nameS (names="PeteR") ? Same question when
nameS <- function(...,names=c("Ben","R")) c(names,...).

8.9- Create a constructor function Male () generating an object of class "Male"
with fields firstname and name (in an object of type list). Create
the method hello.Male() which displays "Hello Mister FIRSTNAME
NAME!" (do not forget the "\n" at the end of the display!) for an object with
values "FIRSTNAME" and "NAME", respectively, for the fields firstname and
name. When man <- Male("Ben","L"), what is produced upon execution
of the following commands: hello.Male(man) and hello(man)? What
code should you execute in addition for the two results to be identical?

8.10- Create the analogous functions for the class "Female" (hint: do not forget to
update the gender in hello.Female()). When
woman <- Female("Elsa","R"), what is produced upon execution of the
following commands: hello.Male(woman), hello.Female(woman) and
hello(woman)?
8.11- When welcome <- function(...) for(person in list(...)){
hello(person)}, what is returned by welcome (man, woman) ?
And when welcome <- function(...) for(person in c(...)){
hello(person)}?
Same question when hello.default <- function(obj){
cat("hello",obj,"!'\n")}.

278

8 Programming in R

Worksheet

Programming Functions and Object-Oriented Programming in R

Before reading the practicals of this chapter, we strongly advise you to revise
those of the previous chapters (especially the one on “advanced plots”) and to reor-
ganize their solutions in as many functions as necessary.

A- Managing a Bank Account

The aim of this practical is to create three minimalist functions to manage bank
accounts. The accounts will be stored in data.frame objects all called accounts and
stored in different .RData files. All these files will be located in the same folder.
The path to this folder should be saved in the R variable . folder.accounts and
be accessible in all the functions you develop.

8.1-

8.3-

8.4-

8.5-

The instruction file.path(. folder.accounts,paste(name,".RData",
sep="")) gives the path of the file associated with the account Name. Create
the functions path.account(), which takes one formal argument name
(representing the name of the account) and returns the complete path to the
file (which contains the object account of class data. frame) with extension
.RData.

Given that factor(levels=c("Debit","Credit")), numeric(0®) and
character(0), respectively, give empty vectors of explicit types, which
expression would generate an empty data matrix with the predefined fields
amount, mode, date and remark? Create the function account () (not to
be confused with the variable account called in its body) which takes one
argument name and creates a new account.

Create the functions debit () and credit () to, respectively, debit and credit
an amount amount (second argument) from the account name (first argu-
ment). The third argument is any comment to put as remark. A fourth ar-
gument can represent the date; the default value is

format (Sys.time(), "\%d/\%m/\%Y") (i.e. the date of input). Remem-
ber to use the functions load() and save() to load and save the variable
account in the body of each function.

If account is the data matrix containing information on the account, what
is returned by sum(account[account$mode=="Credit", "amount"])?
Modify the function account() so that it returns the current state of the
account only when the file returned by path.account(name) exists (use
the function file.exists () to test whether a file exists).

Complete account management by creating any additional functions you
wish.

Optional question: Since most use of R is done with objects, adapt the pre-
vious functions in a way that respects the R object-oriented philosophy. You
can use the next practicals for inspiration.

Worksheet 279

B- Organizing Graphical Objects

When you think about it, plots in R do not really respect the object-oriented

spirit:

unlike most other entities, an R plot is not considered as an object which

can be saved (and possibly modified) and on which certain methods can be applied.
We shall attempt to propose a very basic prototype to draw a plot with circles and
rectangles (and hence squares). You can enrich this library with graphical objects as
you wish. Our aim is to maintain a list of graphical objects, with the possibility of
changing any of its elements at any time.

8.1-

8.3-

8.4-

8.5-

R functions plot.new() and plot.window() are used to initialize a plot.
The argument asp set to 1 creates plots with correct units for the x and y
axes. Propose an object Window which gives the user the option of saving the
dimensions of the graphics display window. The user can then call the con-
structor function (or method) Window () (which could have the same name as
the class), which takes as arguments x and y (the coordinates of the centre),
width, height (dimensions along the x and y axes, respectively) and option-
ally 1log (logarithmic transformation). All these quantities should be stored
in an object list, returned by the constructor function Window(), after
affecting its class to "Window".

Similarly, propose constructor functions for objects of classes Circle and
Rectangle. The fields x and y represent the coordinates of the centre of
the object, radius is the radius of a circle and width and height are the
dimensions of a rectangle.

Propose plotting methods plot.Window(),plot.Rectangle() and
plot.Circle(). You can find inspiration in the following R treatments used
to display a new plot with a circle and a square centred at the origin and of
diameter and side length set to 1:

plot.new()
plot.window(xlim=c(-1,1),ylim=c(-1,1),asp=1)
rect(-.5,-.5,.5,.5)
symbols(0,0,circle=.5,inches=FALSE, add=TRUE)

Test the code you have developed by executing the code:

mywindow <- Window(®,0,2,2)

mycircle <- Circle(90,0,.5)

myrectangle <- Rectangle(0,0,1,1)

plot (mywindow) ;plot(mycircle) ;plot(myrectangle)

If all goes well, you should see a graphics window with a circle inside a
square.

We now need to develop the methods associated with the class MyPlot which
will contain the list of all graphical objects. First, propose a constructor
function MyPlot () which initializes an object as 1ist(objects=1ist())
(where objects is the field containing the list of graphical objects), affects
the class "MyPlot" and returns the object.

—

280

8.6-

8.8-

8 Programming in R

Propose a method add.MyPlot () which adds graphical objects. Remember
to give a generic function add() to launch all associated methods. Use the
functionalities of the list of supplementary arguments ... and the function
c () so that the method add.MyPlot () can initialize as many graphical ob-
jects as the user wishes. Propose a method plot.MyPlot () which executes
the methods plot () for all graphical objects. The user can then enter the
following lines to get the same result as earlier:

myplot <- MyPlot()

myplot <- add(myplot,Window(®,0,2,2),Circle(0,0,.5),
Rectangle(0,0,1,1))

plot(myplot)

To display a plot, you need to initialize an object of type Window and put it
in first position of the list of graphical objects of the class MyPlot. It might
be useful to initialize it directly inside the constructor function MyPlot ().
The arguments of the function Window() can be proposed directly for the
function MyPlot (). Another idea is to propose a list of graphical objects to
the user upon creation of an object of class MyPlot. As we have done for the
method add.MyPlot (), we could use the list of supplementary arguments
. . ., which must be placed as first argument of the function MyPlot () so as
to get the previous result with only two lines:

myplot <- MyPlot(Circle(),Rectangle())
plot(myplot)

However, note that in the first line, it is assumed that the default values of
the arguments of the function Window(), Circle() and Rectangle() are
appropriate.

The project is launched with this first prototype. You can complete it as you
wish. If you need inspiration, you could try managing the list of graphical
objects (e.g., deleting or modifying an object), display styles, axes, etc.

C- Creating a Class 1m2 for Linear Regression with Two Regressors

The aim of this practical is to reproduce the procedure used by our two friends
for simple regression. Graphical display will be made possible by the excellent
package rgl, which is an OpenGL interface for R. Given the technical difficulty
of this chapter, we propose here to develop functions (actually methods). Given that
some aspects are very technical, the aim is only to get the reader to understand all
the development steps of the following functions. This practical is aimed at more
advanced users.

The following function returns an object of class 1m2 which inherits from the
standard class 1m.

Im2 <— function (...) {

obj <—Im¢(...)

~N N R W

—_
SOV AW —

el e e e
0NN W~

Worksheet

if (ncol(model. frame (obj))!=3)
stop("two independent variables are required!")

class(obj) <— c¢("Im2",class(obj)) # or c("Im2","Im")

obj

For example, execute the following commands:

n <- 20

x1 <- runif(n,-5,5)

x2 <- runif(n,-50,50)

y <- 0.3+2%x1+2*x2+rnorm(n,0,20)
reg2 <- 1m2 (y~xl+x2)

summary (reg2)

Call:

Im(formula = ..1)

Residuals:

Min 1Q Median 30 Max
-32.0767 -17.1529 0.9872 12.3298 35.5909
Coefficients:

Estimate Std. Error t value Pr(>[t])

(Intercept) -1.8708 5.0769 -0.368 0.717
x1 2.8400 1.9594 1.449 0.165
x2 1.8084 0.1952 9.263 4.7e-08 *¥%*

Signif. codes: 0 ‘¥¥%/ (0.001 ‘**’ 0.01 ‘*/ 0.05 ‘.’ 0.1
Residual standard error: 21.14 on 17 degrees of freedom
Multiple R-squared: 0.848, Adjusted R-squared: 0.8301

F-statistic: 47.42 on 2 and 17 DF, p-value: 1.112e-07

281

No surprises here: the R output of the summary is given by the method

summary.1lmQ).

The user now wishes a 3D scatter plot with the regression plane given by the

standard method of least squares.

plot3d.Ilm2 <— function(obj,radius=1,lines=TRUE,
windowRect ,...) {
matreg <— model. frame (obj)
colnames (matreg) <— c("y","x1","x2")
predlim <— cbind (c(range (matreg[,2]),
rev (range (matreg|[,2]))),
rep (range (matreg [,3]),c(2,2)))
predlim <— cbind (predlim , apply (predlim,1,
function(1l) sum(c(l,l)*coef(obj))

))
if (missing (windowRect)) windowRect=c(2,2,500,500)
open3d(windowRect=windowRect ,...)

bg3d(color = "white")
plot3d(formula (obj),type="n")

quads3d(predlim , color="blue",alpha=0.7,shininess=128)
quads3d(predlim, color="cyan",size=5,front="1lines",
back="1lines",lit=F)

spheres3d (formula (obj),radius=radius ,specular="green")

19
20
21
22
23
24
25
26
27

282 8 Programming in R

if (lines) {
matpred <— cbind (matreg[2:3],
model . matrix (obj)%*%coef (obj))
points3d (matpred)
colnames (matpred) <— c("x1","x2","y")
matlines <— rbind (matreg[,c(2:3,1)], matpred)
nr <— nrow (matreg)
matlines <— matlines[rep (l:nr,rep(2,nr))+c(0,nr),]
segments3d (matlines)

Here is a direct application of this method with four graphical illustrations for
four different viewing angles.

> require("rgl")
> plot3d(reg2)

Chapter 9
Managing Sessions

Prerequisites and goals of this chapter

e Reading previous chapters.

e This chapter describes various procedures to manage R sessions. You have to
follow a rather rigorous discipline and a methodology specific to R to make
sure you save your work efficiently. We present the commands to save your
work: objects you have created, instructions you have typed, plots you have
drawn. We also present a few other useful commands and offer a short intro-
duction to package creation.

SECTION 9.1
R Commands, Objects and Storage

¢ Storing objects

The basic commands are either expressions or affectations using the arrow <- or
->. If an expression is typed in, it is evaluated, and the result is displayed and then
lost. An affectation also evaluates an expression, but does not necessarily display
the result. The result is then stored in an object.

> 2*9 # The result is displayed then lost.

[1] 18

> My.Weight <- 75 ; My.Height <- 1.90 # These two results are
stored. They can be
re-used.

> My.BMI <- My.Weight/My.Height™2

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming 283
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3_9,
© Springer Science+Business Media New York 2013

\ﬂ\

284 9 Managing Sessions

> My .BMI
[1] 20.77562

o Listing objects

After you have created R objects, you can get the list of all objects with the
function 1s () or the synonymous function objects().

> 1s()
[l] "A" "B" "cl " "clusll
[5] "combnRC" "combnRCF" "corr" "decision"
[9] "e" "inV" "1m2 " "lsq"
[13] "M" "My .BMI" "My.Height" "My.Weight"
[17] "myfunc" "n" "nbclus" "out"
[21] "plot3d.lm2" "pmvtRCR" "reg2" "space"
[25] "space2" "space3" "x1" nx2m"
> objects()
[l] "A" "B" "cl " "clusll
[5] "combnRC" "combnRCF" "corr" "decision"
[9] "e" "inV" "1m2 " "lsq"
[13] "M" "My .BMI" "My.Height" "My.Weight"
[17] "myfunc" "n" "nbclus" "out"
[21] "plot3d.lm2" "pmvtRCR" "reg2" "space"
[25] "space2" "space3" "x1" nx2m"
e Deleting objects

To delete objects, use the function rm().

> rm(My.Height) # Delete the object My.Height.

> 1s()
[1] "A" "B" neln "clus"
[5] "combnRC" "combnRCF" "corr" "decision"
[9] "e" "inv" "lm2" "lsg"
[13] "M" "My .BMI" "My .Weight" "myfunc"
[17] "n" "nbclus" "out" "plot3d.lm2"
[21] "pmvtRCR" "reg2" "space" "space2"
[25] "space3" nxln nx2"

> rm(list=1s()) # Delete all objects in the current work
environment.

> 1s()

character (0)

You can use regular expressions to delete objects following a certain name
pattern. For example, the following instruction only deletes objects with a name
of the form a?b, where ? represents a single character:
rm(list=1s(pattern=glob2rx("a?b")))

We will not give further details and refer the interested reader to the online help
for the function glob2rx().

9.2 Workspace: .RData Files 285

SECTION 9.2
|7 Workspace: .RData Files

When working with R, objects are created: vectors, matrices, functions, etc. These
objects are physically saved in a file on the hard disk called workspace. The file
name extension must be .RData (or .rda in older versions of R).

It is possible (and highly advisable) to create several .RData files: one for each
project you are working on. You should create these .RData files in different ap-
propriate folders. For example, suppose you are working on two different statistical
projects: one related to cars and one related to climate events. You could then create
a folder called Cars containing a file cars.RData and another folder called Climate
containing a file called climevt.RData; these files will contain the R objects corre-
sponding to the two studies.

The function save.image() is used to save a workspace; you can use the func-
tion load() to load an existing workspace. Under Microsoft Windows, you can
access .Rdata files from the menus File/Save workspace... and File/Load
workspace.

Under MacOS, you can access .Rdata files from the menus
Workspace/Save workspace file and Workspace/Load workspace
file. The menu Workspace is also useful to explore the contents of the
workspace (you can open a window with a list of all objects including their
type and dimension) and to edit objects.

Note that the function save() will save only the objects you choose in the
workspace.

There is a default workspace in R. To find the path to the folder where it is
stored, type the instruction getwd () just after launching R.

It is worth noting that the command getwd () returns the current working direc-
tory. The command setwd () is used to change working directory.

Y

286 9 Managing Sessions

Do it yourself

Start R, then type

X <- 3 # Assigning a value to x; check the contents of x.
X <- 4 # Assigning a new value to x, overwriting the old value.

Now, outside of R, create two folders in the same directory: one called Cars,
the other Climate. Then type into R the following instructions:

rm(list=1s()) # Start by deleting all objects
in the current workspace.
1s() # Returns character(0), indicating that no
objects are left.

x<-c ("FIAT","VOLVO", "RENAULT", "PEUGEOT") # Assign a value to x.
1s() # Return x.
setwd ("/path/to/Cars") # Move to folder Cars.
save.image("cars.RData") # Create the file cars.RData

in the folder Cars.

You have created an object called x, containing a list of car manufacturers.
This object is saved (in binary form) in the workspace cars.RData in the
folder Cars.

Now, type the following instructions:

Affect a new value to x:

X <- c("storm", "hurricane", "tornado", "typhoon")

setwd ("/path/to/Climate") # Move to folder Climate.

save.image("climevt.RData") # Create the file climevt.RData
in the folder Climate.

You have created an object called x containing names of climate events. Note
that the old value of x has been overwritten in the current workspace. This
new object x is saved in the workspace climevt.RData in the folder Climate.
Exit R (you can use the function q("yes")). Start R again and type in the
following instructions:

1s() # Returns x; check the value of x

load(file.choose()) # Open the file cars.RData
in the folder Cars.

1s() # Returns x; check the value of x.

load(file.choose()) # Open the file climevt.RData
in the folder Climate.

1s() # Returns x; check the value of x.

g ("no") # Exit R.

This shows the point of having several workspaces: you can keep several
objects which have the same name but contain different information.
Otherwise, the second affectation of a value to x would overwrite the first!

9.3 Command History: .Rhistory Files 287

When exiting R with the command g () (or by clicking the cross at the top
right corner of the R window under Windows, or on the red button at the top
left corner for Macintosh users), the following question is asked:

Save an image of the session?

If you answer Yes (or y under Linux), a workspace file called .RData (contain-
ing all objects created during the session) and a command history file called
.Rhistory (which we explain in the next section) are saved in the current
directory.

The function attach() plays a similar role to the function load(). The
difference between these two functions is explained later on.

SECTION 9.3
|7 Command History: .Rhistory Files

R includes a mechanism to recall and reexecute old commands. The up and down
arrows on the keyboard can be used to go back and forward in the command history.
Once you have located a command using this method, you can move the cursor
using the right and left arrows, delete characters with the DEL key and add or
modify characters with the keyboard.

Just like all objects can be saved in a dedicated file with the command
save.image(), you can also save all commands you typed. The commands are
saved in a file which must have the extension .Rhistory (or .rhi in old versions
of R).

Here again, it is a good idea to save a .Rhistory file for each project you are
working on. You can then access these commands in an interactive fashion from the
R command line, using the keyboard arrows.

To save the command history of the current session, use the command
savehistory (). To load the command history from a previous session, use the
command loadhistory (). Under Microsoft Windows, the same operations can be
done from the menus File/Save History... and File/Load History...

288 9 Managing Sessions

£ Mac users can rely upon R.app which offers a lateral bar to view,
navigate and manipulate the history. It is activated by clicking the icon
Show/Hide history in the R console.

% The command history () opens a new window with a list of all commands
4 from the current session.

Do it yourself

Start R and type in the following instructions:

Mc <- "My car"

Use the up arrow and change the last command to:
Yc <- "Your car"

Save a file cars.Rhistory in the folder Cars.
savehistory("/path/to/Cars/cars.Rhistory")
g("no") # Exit R.

Open R again.

Note that the up arrow does not

give access to the last two commands.

Open the file cars.Rhistory in the folder Cars.
loadhistory(file.choose())

Now, the up arrow can be used

to find old commands.

q ("no")

SECTION 9.4

Saving Plots

You might also want to save plots you have produced with R. The instructions listed
in this section have already been introduced in Chap. 7, but we give them again as a
matter of interest. For example, to save the following plot:

> curve (cos(x),xlim=c(-10,10))

9.4 Saving Plots 289

1.0

0.5

cos(x)
0.0
|

-1.0

-10 -5 0 5 10

you simply need the command:
dev.print(png, file="myplot.png",width=480,height=480)

Another way of saving a plot is to first redirect the graphical device to a file, then
execute the command to generate the plot.
png(file="myplot2.png",width=480,height=480)

curve (cos (x) ,x1im=c(-10,10))
dev.off ()

closes the device and writes the plot to a file. Otherwise, the file will remain
empty.

Remember to use the function dev.off() at the end of the procedure: it 4
1

Other commands are available to save images in other formats: jpeg(), pngQ),
bitmap(), postscript(),pdf(),

Under Microsoft Windows, you can also use the menu
File/Save as... or copy-paste the plot to another software. You must first click
on the graphics window to make it active.

You can use the menus File/save. The saved/copied plot is in the PDF
format. Note that graphical windows have a “history”. You can explore the C"“‘
history of generated plots with the keystroke combination COMMAND + left and 4
right keyboard arrows.

290 9 Managing Sessions

SECTION 9.5
(Managing Packages

A package is a collection of data and functions belonging to a same theme.

When you install R, some basic functionalities come out of the box. But you can
extend the functionalities of R by adding libraries, also called packages. First, install
the package on the computer’s hard disk, then load (activate) it in the memory of R
only when needed (see Appendix on page 531 for further details).

First, you can use the function search() which gives the list of databases
(collections of R packages) attached to the system. The function searchpaths()
returns the same list, but adds the path to the corresponding file.

Recall that the function 1library () returns the list of all packages available in
the library C: /PROGRAM FILES/R/R-3.1.0/library.

Do it yourself

search() # Return the list of databases attached to the system.
library () # Return the list of packages saved on the disk.

Install package R2HTML and type in the following instructions:

library() # Package R2HTML is present on the disk.
search() # Package R2HTML is not loaded.

require ("R2HTML") # Activate package R2HTML.
search() # Package R2HTML is now loaded.

The instructions require("package™) and library("package™) have
a similar behaviour. The function require () is designed for use inside other
functions; it returns FALSE and gives a warning (rather than an error as
library() does by default) if the package does not exist.

SECTION 9.6
(Managing Access Paths to R Objects

In the previous section, we saw the use of the function search(), which lists and
numbers all databases attached to the system. We also saw how to load a package
with the function require(). A database can also be attached with the function

9.6 Managing Access Paths to R Objects 291

attach() and detached with the function detach(). These two functions will be
put to use in the practicals at the end of this chapter.

Suppose you have created a data.frame (individualsxvariables table) called
mydata. Then attach(mydata) attaches the data.frame mydata, giving ac-
cess to the variables of the data.frame data directly by typing their names in
the console.

The following instructions will help you understand how the function attach()
works.

Start R.
attach(file.choose()) # Open the file cars.RData from the folder
Cars.
1s() # x is not mentioned.
x # This is strange: the contents of x are displayed,
yet 1ls() does not mention it.
rm(x)

Warning message:
In rm(x): variable "x" cannot be found.
x # Yet x is there!

The command 1s(pos=n), where n is an integer, returns the list of objects in the
database at the nth position in the list given by search().

For example, 1s(pos=2) returns the objects for the module in second place,
1s(pos=3) for the module in third place and so on.

Note that position 1 is reserved. Thus 1s () is equivalent to 1s (pos=1) and gives
the list of all objects in the current workspace.

search ()
ls(pos=2) # List all objects from the database cars.RData.

Do it yourself

require ("datasets") # Load several datasets.

warpbreaks

mydata <- warpbreaks

fix (mydata) # Read the data and the variables names.

breaks # Returns an error message: this object
is not defined.

search () # Returns the list of databases attached
to the system.

searchpaths () # Same list, with the complete path.
position <- match("package:datasets",search())
Get the position of datasets in the list
output by search().
ls (pos=position) # Gives the list of all objects in datasets.
data() # Description of these datasets.

292 9 Managing Sessions

attach (mydata)

search ()

searchpaths ()

1s (pos=2)

breaks # No error message.

We now have direct access to the columns of mydata: breaks, wool and
tension.

(

SECTION 9.7

T Other Useful Commands

In

this section, we introduce a few other interesting commands to manage your

work:

Under Microsoft Windows, the menu File/Save to file... can be used to
save to a text file all the text displayed in the console (including error messages);
by default, the file is called lastsave.txt and is created in the current directory.
The size of the contents is limited by parameters which can be changed in the
menu Edit/Preferences....

The function sink(file="myoutput.txt") redirects all R output (which
would usually be displayed in the console) to the file myoutput.txt. To stop this
functionality, type sink () in the console.

The menu File/Source R code... is used to transfer a sequence of R ins-
tructions from a file directly to the console. This command also checks the syn-
tax of the R code in the file before transferring it. Equivalently, you can type
source(file.choose()) in the console.

R includes many functions to manage files and directories on the hard disk:
file.create(), file.exists(), file.remove(), file.rename(),
file.append(), file.copy(), file.symlink(),dir.create(),
Sys.chmod(), Sys.umask(), file.info(), file.access(), file.path(),
file.show(), list.files(),unlink (), basename(), path.expand().
For example, the command list.files() returns a vector of strings of
characters of the names of files in the specified directory. The command
file.exists() is used to find out whether a file exists in a given directory. We
refer the reader to the help files for the details of all these functions.

9.8 T Problems in Memory Management 293

SECTION 9.8
|7 T Problems in Memory Management

In this section, we shall focus on memory management by the computer in general
and by R in particular. We shall try to understand why messages occur such as

cannot allocate a vector of size xxx

We shall also see how to work with high-dimension vectors and matrices.

Before giving indications on memory management in R, we need to give a
short explanation of the internal workings of a computer. Upon execution of an R
program, the following internal components of the computer are used:

e The hard disk (which contains the code and data files)

e The processor (which performs the calculations; there are 32 bit and 64 bit
processors)

e And the RAM (for random access memory), which holds temporarily the data
which are used by the processor for the calculations

In what follows, we shall mostly focus on the RAM, though we will also mention
the processor. The main interest of the RAM as opposed to the hard disk is that it
can be accessed very quickly. In a computer, the processor accesses the instructions
of the program to execute and the data necessary to execution from the RAM.

9.8.1 Organization of RAM

The RAM is organized as an ordered sequence of boxes, and each box can contain
a binary digit: O or 1. The information contained in a box, the smallest quantity of
information that can be contained, is called a bit (for binary digit). At this point,
it is worth noting that information is actually often organized in blocks of 8 boxes.
Another unit has thus been introduced: the byte, which is worth 8 bits.

1 byte = 8 bits.

Also note that each block is numbered; the number of a (8 boxes) block is called
its memory address. A memory address is thus an identifier, which designates a
specific zone of memory where data (or instructions to run) can be read and stored.
This identifier is usually an integer, often expressed in hexadecimal notation (base
b = 16, see Sect. 5.9) (Fig.9.1).

294 9 Managing Sessions

9.8.2 Accessing the Memory

A process running on a computer does not usually have a direct access to the
RAM but rather to the so-called virtual memory. The memory addresses used
by R are thus addresses in the virtual memory; the operating system then puts
these addresses in correspondence with the actual RAM memory addresses.
We do not distinguish between the two types of memory.

To access a given zone of memory, R uses (in a transparent way hidden from the
user) what is called a pointer (a quantity which “points” to the desired memory
zone). A pointer is a variable containing a memory address. At the address contained
in a given pointer, we can find for example a data point. Note that each data point
has a specific type, such as integer, double, etc. (see Chap. 3). Note also that an
integer is coded on 4 bytes, a double on 8 bytes, a character on 1 byte, a logical on
4 bytes and a complex on 16 bytes, to cite the most common variable types. This is
true on a 32 bit processor and on a 64 bit processor. Examine now the following R
instructions:

> X <- 3L # create the value 3, of type integer,
> # or equivalently:
> X <- as.integer(3)

Given what we just explained, we can assume that at the same time, a memory
slot of 32 successive blocks (4 bytes of 8 bits each) is reserved (or allocated) and
a pointer is created containing the address of (the first of) these boxes. In fact, the
pointer must contain not only the address of variable x but also its type to know over
how many boxes the variable is stored. For this reason, the pointers are said to be
“typed”. When a typed pointer is incremented (i.e. when we need to add one unit to
the address it contains), it is not necessarily incremented by 1, but by the size of the
pointed type.

60 61 62 63
3 |(GT T (o7 (o7 (] o] (o] (o] (o1 [(o7 (o] T (2] (o0 (121 (o7 G2 1 (o1 [o] [o] (3 [e] [e] (o] I [T (eI (T e[%
L ol B 8 i 4 o

201 38 177 16

Fig. 9.1: [llustration of storage of values in memory. Each little box contains a binary
number (0 or 1). Each green number gives the decimal representation of the number
in binary form in the block above. Each red number gives the address (expressed
here in decimal notation) of the 8-box block above. Note that the same memory
addresses could have been written in hexadecimal notation (b = 16), giving 3C,
3D, 3E and 3F

9.8 T Problems in Memory Management 295

9.8.2.1 Problems Caused by Memory Management of Integers

Since a (signed) integer is coded over 4 bytes, i.e. 32 bits, the largest integer that
can be represented is 2,147,483,647. Indeed, if the first bit is reserved for the sign,
there are 31 remaining available boxes, or 23! possible arrangements. Counting 0,
the largest available integer is thus 23! — 1, or

> as.integer(2731-1)

[1] 2147483647

> .MachineS$integer.max
[1] 2147483647

The result below is thus not surprising.

> as.integer(2731)
[1] NA

The number 23! can thus only be handled by R as a double:

> 2731

[1] 2147483648

> is.double(2731)
[1] TRUE

The largest vector that can be allocated in R is of length 23! — 1 ~ 2.
10°, whether on a 32 bit or 64 bit processor. This is easy to understand: it
corresponds to the largest integer that R can define, and the length on a vector
(number of elements) is stored as a (signed) integer.

We note in passing that this knowledge on R’s behaviour helps understand the
output below.

> 46360%46360 # 46360 is stored as a double.

[1] 2149249600

> 46360L%46360L # 46360L is stored as an integer.
[1] NA

3] 1ulnlalllululnf ([ojojojojolslojo|sjalslnjajojojo|olojolnjojaloja)
\\%477 - - .,

Fig. 9.2: Illustration of R storage in memory of a (signed) integer. Each little box
contains a binary digit (0 or 1). The green number gives the decimal notation of
the integer expressed in binary notation in the four blocks above. The red number
gives the address (expressed here in decimal base) of the first 8-box memory block
above. Note that here, a number is stored over 32 boxes and not over 8 as in Fig. 9.1.
Furthermore, the first box is used to specify the sign of the number, negative here

4}

296

> sum(1:304) # 1:304 is stored as an integer.
[1] 46360
> sum(1:304)*sum(1:304)
[1] NA
Warning message :
In sum(1:304) * sum(1:304)
NA produced by overflow
> 4636072 # The result is stored as a double.
[1] 2149249600

> sum(1:304) "2 # The result is stored as a double.

[1] 2149249600

9 Managing Sessions

The Warning message above comes from the fact that sum(1:304) is an integer.
Note that the exponent function (") transforms its arguments into reals and returns

a real number.

9.8.2.2 Successive Allocation of Memory

In fact, the smallest block of memory that can be allocated (reserved) by R is 8 bytes
(=64 bits). Memory is thus allocated in R in blocks of 8 successive blocks (both on
32 and 64 bit processors). In the instruction x <- 3L, there are thus 64 reserved
boxes (of 1 bit each), of which the first 32 are used to store the integer value +-3.
All 64 boxes would be used to allocate a double, with the instruction:

> x <- 3.0

The 64 boxes are apportioned as follows: 1 box for the sign, 11 boxes for the
exponent and 52 boxes for the significand, in the floating point representation

(see Sect. 5.9.2).

The package associated with this book includes the functions getaddr() and
writeaddr () which can be used respectively to get the memory address of a vari-
able containing a number and to write a value at a memory address.

> x <- c(8L,9L)
> x
[1] 8 9

> addr <- getaddr (x)$addr.int # Gets the address of the first
box of the 64-box block where x

is stored.
> addr
[1] 53173920

> writeaddr (addr,6L) # Write the integer 6 at this address.

> x
[1] 6 9

> writeaddr (addr+4L,7L) # An integer is coded over 4 bytes,
hence increment the address by 4 to

get to x[2].

9.8 T Problems in Memory Management 297

> x
[1] 6 7

Now with a vector of doubles,

> x <- ¢(12.8,4.5)

> x

[1] 12.8 4.5

> addr <- getaddr(x)$addr.int # Get the address of the first box
of the 128-box block where x is
stored.

> writeaddr (addr,6.2)

> x

[1] 6.2 4.5

> writeaddr (addr+8L,7.1) # A double is coded over 8 bytes.

> x

[1] 6.2 7.1

R can only access memory boxes that have been allocated by R, and other
software cannot access the memory zones reserved by R. This is essential!
Otherwise, the data for our calculations could be modified by external software.
Even another R session cannot access the memory zones reserved by the first.
For example, type in a first R session:

> x <- 1L
> getaddr (x) $addr.int
[1] 37602112

which is the address of the memory block containing the integer value 1. Then
type in a second R session:

> writeaddr (37602112, 7L)

Then (if the second R session does not crash!) we can check that the value
of x in the first session has not been modified. Return to the first session and

type

> x # The attempt to modify the value of x in another R session
is doomed to failure.

[1] 1

> # Try the modification in the same session:

> writeaddr (37602112, 7L)

> # This time it works!

> x
[11 7

298 9 Managing Sessions

9.8.3 Object Size in R

A useful R function gives the size of an object: the function object.size().Given
the previous subsection, we expect the instruction object.size(3L) to output 8
bytes, but that is not the case.

> object.size(3L) # (On a 64 bit processor.)
48 bytes

In fact, each R object contains (even when declaring a simple integer by
X <- integer(3)) a header which takes up some space in the RAM: 24 bytes
on a 32 bit processor and 40 bytes on a 64 bit processor. This header is used to
save information of the created object: its type (integer, double, complex, etc.), its
length, etc.

To find out on what kind of processor R is running, use the instruction:

> .Machine$sizeof.pointer
[1] 8

The value 8 is returned for a 64 bit processor and the value 4 for a 32 bit
processor.

The values returned by the following instructions are rather clear now:

> # On a 32 bit processor:
> object.size(3L) - 24

8 bytes

> # On a 64 bit processor:
> object.size(3L) - 40

8 bytes

Memory allocation in R is done differently for small and large integer vec-
tors. Small vectors belong to one of 6 classes, depending on their length (lesser
than or equal to 2, 4, 8, 12, 16 or 32), and can store data of 8, 16, 32, 48, 64 or
128 bytes, respectively. Since an integer uses up only 4 bytes, these classes can
be used to store, respectively, 2, 4, 8, 12, 16 and 32 integers. An integer vector
of length n > 32 uses up space of size 4n + 40 if n is even and 4(n + 1) if n is
odd, to which we add a header of 2 bytes on a 32 bit processor and 40 bytes on
a 64 bit processor. The following code returns the size in memory of vectors of
increasing size.

9.8 T Problems in Memory Management 299

N <- 50

V <- vector(length = 50)

for (L in 1:N) {
z <- sample(N, L, replace = TRUE)
V[L] <- object.size(z)

+ + + VvV VvV Vv

}

>V - 24 # On a 32 bit processor.

[1] 8 8 16 16 32 32 32 32 48 48 48 48 64 64
[15] 64 64 128 128 128 128 128 128 128 128 128 128 128 128
[29] 128 128 128 128 136 136 144 144 152 152 160 160 168 168
[43] 176 176 184 184 192 192 200 200

>V - 40 # On a 64 bit processor.

[1] 8 8 16 16 32 32 32 32 48 48 48 48 64 64
[15] 64 64 128 128 128 128 128 128 128 128 128 128 128 128
[29] 128 128 128 128 136 136 144 144 152 152 160 160 168 168
[43] 176 176 184 184 192 192 200 200

9.8.4 Total Memory used by R

The total size of virtual memory allocated to R in a session includes:

e Memory used to store the values of objects (their contents)
e Memory used to store the headers of objects

This information can be accessed with the function gc (), in which Ncells repre-
sents the number of cells used for the header and Vcells the number of blocks for
the values.

Do it yourself

The following example illustrates this function:

> rm(list=1s()) # Delete all objects in the session.

Type three times gc (). Note that the values displayed stabilize. Now type
the instruction:

> X <- as.integer(3)

Type several times gc() until the results stabilize. Note that the value of
Vcells has increased by 1 unit, corresponding to 8 bytes (smallest possible
size of a block of data). Recall that an integer needs 4 bytes but is still stored
in a memory zone of 8 bytes.

300 9 Managing Sessions

The total amount of memory available to R depends on several factors:

The RAM physically present on the computer
The RAM already used by the operating system and the other software being run
on the system (such as a web browser if it is open)

e The type of processor (32 or 64 bit), since the RAM is limited to 4 GB (1 GB=

1024 kB) for 32 bit processors (and it is often closer to 3 GB or 2 GB), but is
(really!) much larger for 64 bit processors

On a 32 bit processor, an address is coded over 32 bits, and hence the ad-
dressable memory is limited at 232 bytes (=4 GB). On a 64 bit processor, an
address is coded over 64 bits, so theoretically, the addressable memory is “lim-
ited” at 264 bytes, a huge number. In fact, it is usually limited by the proces-
sor’s architecture. This information can be obtained from the manufacturer (it
is called ‘Max Memory Size’).

Note also that R allocates memory for the creation of large objects and clears

these objects from memory (when they are no longer used) by a process called
garbage collection. You can force garbage collection with the function gc ().

When creating a large object, the memory reserved by R must be contiguous
(it cannot be fragmented in several blocks).

It is therefore possible that there remains enough total memory for R, but no

“gap” large enough to fit the data of a single large object. Here is an illustration.
Beware that these commands may provoke a major slowdown of your system or
even a brutal crash of R.

>

>
>
E
>

>
>
>
>
>
1

First, type the instructions:

rm(list=1s()) ; gc() ; gc() # to empty the memory.
P <- 14000

D <- matrix(rep(0, P*P), nrow=P)
rror: cannot allocate a vector of size 1.5 GB.

But the next allocation is certainly possible,

after typing gc();gc() # to empty the memory.

Q <- round(sqgrt(P"2/2))

D1 <- matrix(rep(0, Q*Q), nrow=Q)

D2 <- matrix(rep(0, Q*Q), nrow=Q)

The sum of the sizes of D1 and D2 is approximatively 1.5 GB.
object.size(D1l) + object.size(D2)
567843440 bytes

In the example above, it was not possible to create a single object of size 1.5 GB,
but it was possible to create two objects of size 0.75 GB each.

9.8 T Problems in Memory Management 301

Note that on a 64 bit processor, we would probably not have encountered
this issue, even when creating an objects of size close to 3GB:

> # First we typed the instructions

rm(list=1s()) ; gc() ; gc() # to empty the memory.

P <- 20000 4
D <- matrix(rep(0, P*P), nrow=P)

object.size (D)

3200000200 bytes

V V V V

9.8.5 A Few Recommendations

An elementary understanding of memory management on a computer in general,
and in R in particular, will be very useful to help identify the origin of memory-
related issues. Our first recommendation is thus to read the previous sections. We
give here some extra recommendations.

For example, you could calculate the (approximative) size of a matrix before
creating it. Since a real number uses up to 8 bytes, a real-valued matrix of size n x p
needs 8np bytes. If you need to work with very large matrices, a 64 bit processor
will allow you to allocate larger memory blocks. Compare this to a 32 bit processor
which will usually not allow for more that 2 gigabytes. If you are not able to create
a large object, remember to remove (using the function rm()) other useless large
objects (the function object.size() gives the size of such objects) and to free up
some memory with the function gc (). You can also close other software running on
your computer to free up some memory and as a last resort purchase further physical
memory.

The software ksysguard can be used to visualize in real time the memory A
used by R and by the other processes on your system. —

Another option would be to split your matrix into several submatrices and find a
way to perform your analysis on those, before combining the results.

The packages bigmemory, £f and RevoScaleR may be useful.

Under Windows, the functions memory.size() and memory.limit() dis-
play some information on the memory used. You can also read the online help:
help("Memory-limits").

302 9 Managing Sessions

These problems, which stem from the conception of R, may be solved in the
future. We refer the interested reader to the document http://www.divms.
uiowa.edu/~luke/talks/uiowall.pdf.

SECTION 9.9
|7 1 Using R in BATCH Mode

It is possible to launch a sequence of R instructions in BATCH mode. In this mode, R
starts and automatically executes the instructions in the background and then closes
down when the work is done.

e To start this mode, use the following instruction in a DOS window (or a terminal
window under LINUX or Mac):

R CMD BATCH myfile.R myoutput.out

The file myfile.R should contain the list of R instructions to execute and the file
myoutput.out will contain any messages and output displayed by R.

Note that you will have to set the PATH system variable to contain the path
to the executable Rgui.exe. See the Warning frame on page 231.

e This mode is also useful when you want to start simulations on a remote
UNIX/LINUX station (through a simple ssh tunnel). In this case, you should
add the LINUX command nohup.

nohup /path/to/executable/R CMD BATCH myfile.R myoutput.out &

Under Linux, to find the /path/to/executable/R, you need to type in a
terminal the instruction: which R.

It is also possible to create an R script that can be run without having to open
R at first. To do this, download and modify to suit your needs the file http://
biostatisticien.eu/springeR/runthis.bat.

http://www.divms.uiowa.edu/~luke/talks/uiowa11.pdf
http://www.divms.uiowa.edu/~luke/talks/uiowa11.pdf
http://biostatisticien.eu/springeR/runthis.bat
http://biostatisticien.eu/springeR/runthis.bat

9.10 7 Creating a Simple R Package 303

The interested reader can consult with profit the web page http://cran. (¢
r-project.org/contrib/extra/batchfiles. \/

Under Linux, create a script named runthis and make it executable (chmod
u+x runthis). This script will contain the following lines:

#!/bin/bash
R --vanilla << "EOF" # Pipe all subsequent lines into R.

S Put all your R code here ##############

X110 ;plot(1:3);require("tcltk")

tkmessageBox (message="hello")

HHAHHHAAAAAAAAAAA AR end of R code #####H#H#HHH####
EOF

If you want to pass command line arguments to R CMD BATCH, use the fol-
lowing approach. First, create a file called test.R containing the following
lines:
args <- commandArgs (trailingOnly = FALSE)

print (args)
q(llnoll) ’

Next, from the command line run:

R CMD BATCH -q -4 -foo test.R
Finally, issue:

cat test.Rout

SECTION 9.10
|7 T Creating a Simple R Package

A package is a practical way of grouping data sets, functions and help files in a single
structure. This structure is stored in a . zip file (or . tar.gz under Linux). Nonethe-
less, this operation is complicated under Microsoft Windows, because it requires the
installation of many tools which are not present by default on this operating system.

http://cran.r-project.org/contrib/extra/batchfiles
http://cran.r-project.org/contrib/extra/batchfiles

304 9 Managing Sessions

-

i Specific documentation for Mac users will be made available on the website

associated with this book.

You will need to install the following software:

e Latest version of Rtools available here: http://cran.r-project.org/bin/
windows/Rtools.

e http://www.biostatisticien.eu/springeR/htmlhelp.exe.

e A complete version of Tex Live. Download the file http://mirror.ctan.
org/systems/texlive/tlnet/install-tl.zip and unzip it in a temporary
folder. Then double click on the file install-tl.advance.bat. A graphical installa-
tion interface pops open and will guide you through the installation of Tex Live.

Here is the procedure to create an R package:

e Start R.

e Import into the workspace the data sets and functions you want to include in your
package.

e Use the function package. skeleton() to create the structure of your package.
You should give a value to the following arguments:

e name: a string of characters containing the name of the package
list: a vector of strings of characters, specifying the various objects (data
sets and functions) to include in the package

e path: a string of characters containing the path to the directory where your
package structure will be created

e When you call this function, a folder is created in your current directory, con-
taining the files and subfolders of your package. You then need to modify some
of these files, as described in the file Read-and-delete-me which you will find
in that folder.

e The last step is to create a . zip file containing the package structure. To this end,
execute the following commands in an MS-DOS command window:

e R CMD check PackageName
e R CMD build --binary --use-zip PackageName

If your R code calls C/C++ or Fortran functions, the files containing the

source code for these functions need to be placed in a subdirectory called src/,

located in the folder whose name is specified by the argument name of the
function package.skeleton().

http://cran.r-project.org/bin/windows/Rtools
http://cran.r-project.org/bin/windows/Rtools
http://www.biostatisticien.eu/springeR/htmlhelp.exe
http://mirror.ctan.org/systems/texlive/tlnet/install-tl.zip
http://mirror.ctan.org/systems/texlive/tlnet/install-tl.zip

9.10 7 Creating a Simple R Package 305

The practical section at the end of this chapter gives an example of package
creation.

Linux users who do not have access to Microsoft Windows but wish
to build a package for that operating system can use the website http://
win-builder.r-project.org/, on which the Linux-created .tar.gz
package can be uploaded. A Windows-compatible .zip package is then sent
by e-mail to the address given in the Maintainer field of file DESCRIPTION.

http://win-builder.r-project.org/
http://win-builder.r-project.org/

306

9 Managing Sessions

Memorandum

1s(), objects(): list all objects available in the workspace

rm(): delete an object

.RData: extension for workspace files

save.image(): save all created objects in a file (name.RData)
load(): load a .RData file containing created objects

.Rhistory: extension for command history files

savehistory(): save the command history (.Rhistory file)
loadhistory(): load command history

dev.print(): save a plot

search(), searchpaths(): list of databases attached to the system
attach(): attach a database

detach(): detach a database

require(): load a package present on the disk

sink (): redirect R output to a .txt file

source (): import a sequence of R instructions from a file to the console
package.skeleton(): create a package structure

ES

Exercises

9.1-
9.2-
9.3-
9.4-
9.5-
9.6-
9.7-

9.8-
9.9-

9.10-
9.11-
9.12-

Name two R functions which return a list of objects in your session.

How would you delete the object foo?

Which R command gives the current directory?

Which R command changes the current directory?

What is the purpose of the function save.image()?

What are the four things you can save before closing an R session?

What is the purpose of the command history? Which keys are necessary to
use it?

What is the purpose of the function history()?

Give the list of R instructions you would use to get a file called myplot.png
containing a plot of the curve y = x2.

When is the function attach() useful for a data.frame?

Which R function is used to load an R package to the memory?

What is the purpose of the function source()?

Worksheet 307

Worksheet

Managing and Creating Packages

A- Using the Functions attach() and detach()

9.1-
9.2-
9.3-
94-
9.5-

9.6-
9.7-

9.8-

9.9-

9.10-

9.11-

9.12-

9.13-
9.14-

9.15-

Download the file http://www.biostatisticien.eu/springeR/
bmichild.xls.

Display the names of the variables of the data.frame.

Type GENDER. What do you observe?

Type 1s(). Can you see the variable GENDER?

Use the function attach() on your data.frame, then type GENDER. What do
you observe now?

Type 1s() again. What do you observe?

Use the function search() to find the position at which your data.frame is
attached.

Use the argument pos of the function 1s() to list the objects present at this
position.

Detach your data.frame and check (using the function search()) that it
worked. Now type GENDER again and observe that this object has disappeared.
Create an object called GENDER containing the string "Male". Display the
contents of this object.

Use the function attach() on your data.frame, then type GENDER. What do
you observe?

Can you display the contents of the object GENDER of your data.frame? How
about the object weight?

Type 1s(). What do you observe? How about with search()?

Use the argument pos of the function 1s() to check that the object GENDER
of the data.frame does exist.

Use the function get () and its argument pos to display the contents of the
object GENDER from your data.frame. Can you propose another approach?

B- Creating a mini-package

e Objects in the package

9.1-

9.2-

Start R, then change the current directory to the Windows Desktop, using the
instruction setwd(choose.dir()).

Create the following functions and data sets:

<- function(x,y) x+y

<- function(x,y) x-y

<- data.frame(a=1,b=2)

<- rnorm(1000)

® WQ rh

http://www.biostatisticien.eu/springeR/
bmichild.xls

308

9 Managing Sessions

e Package structure

9.3-

9.5-

9.6-

Use the function package . skeleton() to create the structure of your pack-
age.

package.skeleton (name="SmallRPkg", list=c("£", "g", "d","e"))

A folder called SmallRPkg is created on your desktop. It contains three sub-
folders (data, man and R) and two files (DESCRIPTION and Read-and-
delete-me).

The folder data contains the files d.RData and e.RData, which contain, re-
spectively, the data sets (in binary form) d and e, which you imported from
the R console.

The folder R contains the files f.R and g.R, which contain the source code of
the functions f and g defined earlier.

The folder man contains help files for all objects included in the package.
You must edit the help files (.Rd extension files), even if they are not empty.
Use the description of the help file for the function mean in Chap. 6. The
fields to fill in are made apparent in all help files by lines starting with % %.
Replace those lines (including the characters % %) with the appropriate infor-
mation. Do not change the sentences starting with a single %. Furthermore,
in fields of the form keyword ~ kwdl, you must replace ~ kwdl with a
reserved keyword; the list of reserved keywords is given by the instruction
file.show(file.path(R.home("doc"), "KEYWORDS")).

You should also change the file DESCRIPTION and fill in the relevant fields.
For example, it is very important that you give a valid e-mail address.

You can then read and delete the file Read-and-delete-me.

Your package structure has now been created.

¢ Creating the package file

9.7-

9.8-

You have one final operation to perform: building the .zip file which will
include your structure (modified by R). You first need to change a few system
environment variables. Use the key combination WINDOWS+PAUSE to open the
system properties window, go to the section System Variables and edit
the variable PATH. At the beginning of this long list of semi-colon-separated
paths, add the path to the executable Rgui.exe and the path to the executable
hhc.exe (be careful not to delete anything!).

Open an MS-DOS command menu (using the menu Start/Execute:
command) and execute the instructions

Worksheet 309

e cd "C:\Documents and Settings\johndoe\Desktop" (putsyouin
the folder containing the package structure).

e R CMD check SmallRPkg
Check that there are no error or warning messages here. If there are, make
the suggested changes.

e R CMD build --binary --use-zip SmallRPkg

If there were no errors, the package file SmallRPkg.zip is created.
9.9- Install it from the following menu:

Packages/Install package(s) from zip files...

Read the help files of your package.

You can follow this procedure to create more complex packages, which you can
then publicize.

Part 111
Elementary Mathematics and Statistics

Chapter 10

Basic Mathematics: Matrix Operations,
Integration and Optimization

Goals of this chapter

This chapter describes basic mathematical functions. It then gives some usual
operations on matrices and the most usual decompositions. We also present a
few numerical integration and differentiation functions and the main optimization
functions.

SECTION 10.1
|7 Basic Mathematical Functions

The following table is an almost exhaustive list of classical mathematical functions
(Table 10.1).

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming 313
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3_10,
© Springer Science+Business Media New York 2013

314 10 Basic Mathematics: Matrix Operations, Integration, and Optimization
Table 10.1: Table of basic mathematical functions

R name Description Example Result
X%%Y Remainder of the division of x by y 10%%3 1
ceiling() Smallest integer greater than or equal to x ceiling(2.3) 3
floor() Largest integer smaller than or equal to x floor(2.3) 2
round() Round the value of the first argument to the number of round(2.375,2) 2.38

digits specified by the second argument
signif() Round the value of the first argument to a given number of signif(2.375,2) 2.4

significant digits
trunc() Integer part of x, obtained by removing all digits after the trunc(1.37)

decimal separator
sign() Sign +1 sign(-2) -1
abs() Absolute value | x| abs(-2) 2
exp() Exponential e exp(0) 1
logO Natural logarithm log(1) 0
sqrtQ) Square root ﬁ sqrt(4) 2
range() Range range(2,5,1) 15
max() Maximum max(2,3) 3
min() Minimum min(2,3) 2
sum() Sum of effective arguments sum(2,3,4) 9
prod() Product of effective arguments prod(2,4,2) 16
cummax () Cumulative maxima cummax (c(2,4,3)) 244
cummin() Cumulative minima cummin(c(2,4,1)) 221
cumsum () Cumulative sums cumsum(c(2,3,4)) 259
cumprod() Cumulative products cumprod(c(2,4,3)) 2 8 24
cos() Cosine cos(pi) -1
sinQ) Sine sin(pi/2) 1
tan() Tangent tan(pi/4) 1
acos() Arccosine acos(1))
asin() Arcsine asin(®) 0
atan() Arctangent atan(0) 0
cosh() Hyperbolic cosine cosh(0) 1
sinh() Hyperbolic sine sinh(0) 0
tanh () Hyperbolic tangent tanh(0) [
acosh() Inverse hyperbolic cosine acosh(1) 0
asinh(Q) Inverse hyperbolic sine asinh(0) 0
atanh() Inverse hyperbolic tangent atanh(0) [
beta() Beta function beta(l,2) 0.5
lbeta() Logarithm of beta function B(a, b) lbeta(l,1) 0
factorial () Factorial x! factorial(6) 720
choose() Binomial coefficient (Z) = WLM‘ choose(5,2) 10
gamma () Gamma function I'(x) (I'(n) = (n — 1)!, ifn € N)) gamma(4) 6
lgamma () Logarithm of gamma function lgamma (2) 0
digamma() First derivative of gamma function digamma(2) 0.4227843
trigamma() Second derivative of gamma function trigamma(2) 0.6449341

Note that most of these functions can take a vector as argument.

Do it yourself

Check numerically for a few values that the following formula is correct:

(51

Compute the sum of the first n integers for the values n
Check that this corresponds to the formula
Compute the sum of the squares of the first n integers forn =1, ...
Check that this corresponds to the formula

For x

)+ ()

)

») =)

, 10.

1,...
n(n+1)
—s -

, 10.
n(n+1)(2n+1)
-

(xl,..

S xn)T = (0.83,0.13,-1.16,-1.14,-0.68,0.73,-1.27)T,

compute the value of

10.2 Matrix Operations 315

A n A 1

Gn = —-gn(e. 0)> where gn(me.0) =1~y ——% |yilog|yil
K ni—

with y; = 55, =Median(xy,....xn), 6 = Y0, |5 —],

K = ”Tz — 3,y = 1 —¢¥(2) (Euler’s constant) and v (-) the digamma

function. Use the function median(). .

Note: It is sufficient to check that the value G, is greater than the critical
value qchisq(l-«,df=1), for a given level a (usually 5 %), to decide,
at error level o, that the data were not generated following a Laplace
distribution. Such procedures are explored in detail in Chap. 13.

The number 7 can be used in R with the command pi.

SECTION 10.2
Matrix Operations

Several basic matrix operations are included in the base version of R. Before we
introduce them, let A be a scalar, let A and B be two real matrices and let C be a
complex matrix. We refer the interested reader to [29].

> lambda <- 2 # Creating scalar A.

> A <- matrix(c(2,3,5,4),nrow=2,ncol=2) # Real matrix.
> A

[,11 [,21
[1,1 2 5
[2,1 3 4

> B <- matrix(c(1,2,2,7),nrow=2,ncol=2) # Symmetric real matrix.
> B

[,1] [,2]
[1,] 1 2
[2,1 2 7

> C <- matrix(c(1,1i,-1i,3),ncol=2) # Hermitian complex matrix.
> C
[,1] [,2]
[1,] 1+0i 0-1i
[2,] 0+1i 3+0i
> I2 <- diag(rep(1l,2)) # Identity matrix of order 2.

316 10 Basic Mathematics: Matrix Operations, Integration, and Optimization

We shall use these objects to illustrate matrix operations.

i
h For more sophisticated matrix manipulation, use the package Matrix. l

10.2.1 Basic Matrix Operations

In R, the basic matrix operations are:

e Adding a scalar: A + A

> lambda+A
[,1] [,2]

[1,] 4 7

[2,1] 5 6

e Addition (entry-wise): A + B

> A+B

[,11 [,21
[1,] 3 7
[2,1]1 5 11

e Substraction (entry-wise): A — B

> A-B

[,11 [,2]
[1,] 1 3
[2,1] 1 -3

e Multiplying by a scalar: 1A

> lambda*A
[,1] [,2]

[1,] 4 10

[2,1] 6 8

e Transposition: A"

> t(a)

[,11 I[,2]
[1,] 2 3
[2,1 5 4

10.2 Matrix Operations

e Conjugation: C

> Conj (C)

[,1]1 [,2]
[1,] 1+0i 0+1i
[2,] 0-1i 3+01

e Entry-wise multiplication:

> A*B

[,1]1 [,2]
[1,1 2 10
[2,1 6 28

e Dot product: AB

> A%*%B

[,1] [,2]
[1,1 12 39
[2,1] 11 34

e Entry-wise division:

> A/B

[,1] [,2]
[1,] 2.0 2.5000000
[2,] 1.5 0.5714286

e Matrix inversion: B!

> solve(B)

[,1] [,2]
[1,1 2.3333333 -0.6666667
[2,] -0.6666667 0.3333333

e Matrix division: A™'B

> solve(A)%*%B # Identical to:

[,1] [,2]
[1,] 0.8571429 3.857143
[2,] -0.1428571 -1.142857

e Cross product: ATB

> crossprod(A,B) # t(A)%*%B
[,11 [,2]

[1,] 8 25

[2,1 13 38

solve (A,B)

317

318 10 Basic Mathematics: Matrix Operations, Integration, and Optimization

Do it yourself

Let M, N, O, P be the following matrices:

11 34 342 342
M=|[23]|, N=|13], o:[wz}andpz 132
41 41 121

Give the dimensions of the matrices M, N, @ and P. Calculate M + N/,
M — N, 3M, MO, OM, M7, P!, Check that PP~! = I; =
PP

1
Let Q and R be the following matrices: @ = [2 | and R = [341].
4
’ Calculate QR, RQ and QP Q.

10.2.2 Outer Product

The outer product of column vectors x and y is the matrix x y " of general element
XiYj-
> x <- seq(l,4)
>y <- seq(4,7)
> outer (x,y,FUN="%")
[,11 [,21 [,3] [,4]
[1,] 4 5 6 7
[2,1] 8 10 12 14
[3,]7 12 15 18 21
[4,] 16 20 24 28

The function outer () allows more general operations than simple entry-
wise multiplication. For example, the command outer(x,y,FUN=f) on vec-

torsx = (x1,....%z)", ¥ = (V1...., yn)T with the function f(x, y) produces
the following matrix:

S(x1. 1) f(x1.yn)

- fxi) e
S (xns y1) S (xns yn)

10.2 Matrix Operations 319

10.2.3 Kronecker Product

If Ais an m X n matrix and B is a p X ¢ matrix, then the Kronecker product of
auB cee alnB

matrix A by matrix B is the matrix A ® B = of dimensions

amiB - amnB
mp X nq.

> kronecker (A, B)

[,1] [,21 [,3] [,4]

[1,] 2 4 5 10
[2,1 4 14 10 35
[3,1]1 3 6 4 8
[4,1 6 21 8 28

10.2.4 Triangular Matrices

It can be useful to get the lower and upper parts of a matrix. This can be done with
the functions lower.tri() and upper.tri().

> M <- matrix(l:16,nrow=4)
> lower.tri (M)

[,11 [,2] [,3] [,4]
[1,] FALSE FALSE FALSE FALSE
[2,1 TRUE FALSE FALSE FALSE
[3,1 TRUE TRUE FALSE FALSE
[4,] TRUE TRUE TRUE FALSE
> upper.tri (M, diag=TRUE)

[,11 [,2] [,3] [,4]
[1,1 TRUE TRUE TRUE TRUE
[2,] FALSE TRUE TRUE TRUE
[3,] FALSE FALSE TRUE TRUE
[4,] FALSE FALSE FALSE TRUE
> M[lower.tri(M)] <- O

> M

[,11 [,21 [,31 [,4]
[1,] 1 5 9 13
[2,] 0 6 10 14
[3,1]1 0 0 11 15
[4,1 0 0 0 16

320 10 Basic Mathematics: Matrix Operations, Integration, and Optimization

10.2.5 Operators vec and Half vec

The matrix operator vec applied to a matrix A outputs the long column vector
vec(,A) made by concatenating the columns of \A. It is computed in R with the
following instruction:

> vec <- function(M) as.matrix(as.vector (M))
> # or equivalently, but outside a function call:
> # dim(A) <- c(prod(dim(a)),1)

> A

[,11 I[,2]
[1,1]1 2 5
[2,] 3 4
> vec (A)

[,1]
[1,1]1 2
[2,] 3
[3,1]1 5
[4,] 4

The matrix operator vech (for vec half) applied to a matrix .4 outputs the long
column vector vech(A) made by concatenating the columns of A, but excluding
elements above the diagonal of A. It is computed in R with the following instruction:

> vech <- function(M) as.matrix(M[lower.tri(M,diag=TRUE)])
> vech(a)

[,1]
[1,1] 2
[2,1 3
[3,1 4

10.2.6 Determinant, Trace and Condition Number

The function det () computes the determinant of a matrix.

> det (a)
[11 -7

There is no R function to compute the trace of a matrix directly, but it is very
easy to calculate:

> sum(diag(a))
[1] 6

Do not use the function trace() to compute the trace of a matrix. This
function is used to debug R code.

10.2 Matrix Operations 321

The condition number is the ratio of the largest and smallest non-zero singular
values. A large condition number is an indicator that the matrix has bad numerical
properties. It is computed with the function kappa Q).

> kappa (A, exact=TRUE)
[1] 7.582401

10.2.7 Scaling and Centring Data

The function scale () is used to centre and/or scale a matrix. Centring corresponds
to subtracting to each column the mean of that column. Scaling corresponds to di-
viding each column by its standard deviation.

Note that the function sd () calculates a standard deviation with n — 1 at the @
numerator. -

Centring Scaling
> scale (A, scale=FALSE) > scale(A,center=FALSE, scale=apply
[,1]1 [,2] (A,2,sd))
[1,] -0.5 0.5 [,1] [,2]
[2,] 0.5 -0.5 [1,] 2.828427 7.071068
attr(,"scaled:center") [2,] 4.242641 5.656854
[1] 2.5 4.5 attr(,"scaled:scale")

[1] 0.7071068 0.7071068

To use a scaling factor based on the standard deviation of the population, as
is done for example in the French school of data analysis, use the instruction:

> red <- sqrt((nrow(A)-1) /nrow(a))
> scale(A,center=FALSE, scale=apply (A, 2,sd)*red) # t(A/apply

(A,2,s8d)) /red @
[,1] [,2] -
[1,] 4 10
[2,1]1 6 8

attr(, "scaled:scale")
[1] 0.5 0.5

10.2.8 Eigenvalues and Eigenvectors

The eigenvalues and eigenvectors of a matrix are returned by the function eigen().

322 10 Basic Mathematics: Matrix Operations, Integration, and Optimization

> eigen(A)
Svalues
[1] 7 -1
Svectors

[,1] [,2]
[1,] -0.7071068 -0.8574929
[2,] -0.7071068 0.5144958

Note that if C is a Hermitian matrix (i.e. a complex matrix equal to its
own conjugate transpose), the function eigen() can be used to get the eigen-
decomposition of C, i.e. C =