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Foreword

This book has been translated from French by Robin Ryder, who is assistant profes-
sor in the CEREMADE (Centre De Recherche en Mathématiques de la Décision) at
Université Paris Dauphine (France). We are very pleased that he has agreed to make
this translation.

This book is based on notes from a series of lectures given for a few years at
the Institut Universitaire de Technologie Grenoble 2 in the Department of Statistics
and Business Intelligence (STID, Statistique et informatique décisionnelle). It has
therefore been “digested” first, in a very imperfect form, by the students of this
department, whom we thank here. Had they not shown so much interest, this book
would probably never have existed. We also thank our colleague and friend Michel
Lejeune, who managed to talk to us about writing a manuscript and submitting it
to Springer. It is worth pointing out the role of chance, which made the paths of
the three authors cross in the same place for a few years. The human and scientific
experience of this encounter was very enriching, and each author provided comple-
mentary skills which made it possible to overcome the tremendous amount of work
necessary for this book. Finally, we wish to warmly thank our colleague and friend
Matthieu Dubois, who is a researcher in experimental psychology and addicted to
R and to Macintosh and who was the first to read the French version of the book in
its almost finalized version and gave us many ideas for improvement.

The contents of this book were chosen and organized in the best possible way
for them to be not only exhaustive but also easy to assimilate by the reader. This
book can be used as support material for lectures on R at any level from beginner to
advanced. We have paid particular attention to the form of the book, which we think
should aid understanding. It can also be used as a support for self-teaching. Note
that most of this book can be useful to users of any operating system. However, a
few chapters are mostly meant for users of Microsoft Windows. We have also felt it
useful to give, occasionally, complements aimed at users of Linux or Macintosh.
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viii Foreword

All chapters follow the same structure. A chapter begins with a small insert
listing the prerequisites necessary for the chapter and a short description of the
contents. All theoretical notions are explained with numerous examples and include
breaks so that the reader can put into practice on a computer the recently introduced
notions. Each chapter ends with an assessment section: memorandum of most im-
portant terms, followed by a section of theoretical exercises (to be done on paper),
which can be used as questions for a test. A practical sheet is also given at the end
of each chapter. It can be used to check that the practical aspects of the chapter have
been taken in. Note that all exercises and practicals only require the contents of the
previous chapters.

The structure of the book is sequential. After a short introduction (see the first
part), aimed at getting the reader interested, and a description of a few data sets
which will be used throughout the book to illustrate how to use R, the second part
of the book is dedicated to the fundamental concepts of R: data organization, import
and export, various manipulations, documentation, plots, programming and mainte-
nance. This part should help you “learn the ropes” of R.

The third part of the book is dedicated to using R in a few mathematical and
statistical settings. You should read the second part before moving on to this part,
although it can be understood by users who already have a few notions in R. It cov-
ers R instructions for some of the main statistics and mathematics courses up to
third-year undergraduate (e.g., it covers the baccalaureate in statistics and actuarial
sciences curriculum at Université de Montréal, as well as the French IUT curriculum
in statistics and business intelligence): matrix operations, integration, optimization,
descriptive statistics, simulations, confidence intervals and hypothesis testing, sim-
ple and multiple linear regression and analysis of variance.

Finally, note that each statistical chapter in the third part relies on one or sev-
eral real data sets, kindly made available by ISPED (Institut de santé publique,
d’épidémiologie et de développement in Bordeaux) and described at the begin-
ning of the book. These make learning more concrete and more attractive. We take
this opportunity to thank all the teaching staff from the Public Health School of
ISPED. These data, as well as several functions developed specially for this book
and which are described or used here, are available in an R package associated with
this book, called TheRSoftware. We also thank Mohamed El Methni and Taghi
Barumandzadeh for the material they gave us for the chapter on ANOVA and Hubert
Raymondaud for many comments he has made on our French version which allowed
us to significantly improve several sections of this book.

Montréal, Canada Pierre Lafaye de Micheaux
Grenoble, France Rémy Drouilhet
Brisbane, Australia Benoit Liquet



Alternative Order of Reading

We have used the symbol � to make explicit more difficult or less fundamental sec-
tions, which you can skip at first read without prejudicing your understanding or
mastering of R.

Note that this book was conceived for students from a mathematical or statistical
background. However, students or scientists from a more “applied” background can
also use it: for these readers, we propose a different order of reading, as follows; the
difficult sections should also be omitted.

Part A: The Basics of R

(a) Basic concepts; data organization (Chap. 3)
(b) Import–export and data production (Chap. 4)
(c) Data manipulation (Chap. 5)
(d) R and its documentation (Chap. 6)
(e) Techniques for plots (Chap. 7)
(f) Maintaining sessions (Chap. 9)

Part B: Elementary Statistics

(a) Random variables, distributions and simulation (Chap. 12)
(b) Descriptive statistics (Chap. 11)
(c) Confidence intervals and hypothesis testing (Chap. 13)
(d) Simple and multiple linear regression (Chap. 14)
(e) Elementary analysis of variance (Chap. 15)

Part C: Advanced Concepts

(a) Basic mathematics: matrix operations, integration, optimization (Chap. 10)
(b) Programming in R (Chap. 8)
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Inserts

We have tried to be careful with the presentation of the book (the form), to make
the information (the content) more easy going. Inserts are located at strategic points
in the book, to help bring out some of the important information and make notions
easier to understand. These inserts are distinguished by icons in the margin.

Tip

Additional information about the topic under study.

Warning

Important point you should pay attention to.

Note

Advice and practical tricks.

See also

Refers to another chapter or a website.
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xii Inserts

Advanced users

Advanced elements. You can omit these at first.

Linux

Information for Linux users.

Mac

Information for Macintosh users.



Solutions to Exercises and Practicals

Solutions to exercises and practicals are given on the book’s website (http://www.
biostatisticien.eu/springeR).

Other projects, more ambitious than the practicals, will be made available on the
same website.

Font Conventions

� The letter R refers to the R software.
� We use italics for words borrowed from Latin or French or for abbreviations.
� We use a fixed width font (Verbatim environment) for R instructions.
� We use Small caps for data sets and sans serif for the name of the file including

these data sets. This font will be used for all file names and folder names used in
this book.
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Chapter 1
Introducing R

Prerequisites and goals of this chapter
� You may find it useful to read the chapter on installing R in the Appendix first.
� This chapter presents the origins, objectives and specificities of R.

SECTION 1.1

Presentation of the Software

1.1.1 Origins

R is a piece of statistical software created by Ross Ihaka and Robert Gentleman
[21]. R is both a programming language and a work environment. Commands are
executed using descriptive code. Results are displayed as text and the plots are vi-
sualized directly in their own window. R is clone of the statistical software S-plus.
S-plus is an object-oriented programming language S developed by AT&T Bell Lab-
oratories in 1988 [3]. S-plus is used to manipulate data, draw plots and perform
statistical analyses of data.

1.1.2 Why Use R?

First of all, R is free and open-source. It works under UNIX (and Linux), Microsoft
Windows and Macintosh Mac OS: it is cross-platform. It is being developed in the

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3 1,
© Springer Science+Business Media New York 2013
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free software movement by a large and growing community of eager volunteers.
Anyone can contribute to and improve R by integrating more functionalities or
analysis methods. It is thus a quickly and constantly evolving piece of software.

R is a very powerful statistical tool. The learning curve in R is steeper than other
statistical software on the market such as SPSS, SAS or Minitab. R is not the kind of
statistical package, which you can use with a few clicks of the mouse in the menus.
In order to use it, you need to understand the statistical method that you are trying to
implement, so R is a didactic program. R is also very efficient and easy to implement
once you have mastered it. You will be able to create your own tools and you will
be able to handle and work on very sophisticated data analyses.

Warning

R is harder to comprehend than other software on the market. You need to
spend time learning the syntax and commands.

R is especially powerful for data manipulation, calculations and plots. Its features
include:

� an integrated and very well-conceived documentation system (in English)
� Efficient procedures for data treatment and storage;
� a suite of operators for calculations on tables, especially matrices;
� a vast and coherent collection of statistical procedures for data analysis;
� advanced graphical capabilities;
� a simple and efficient programming language, including conditioning, loops,

recursion, and input-output possibilities.

Note

For the readers already used to SAS, SPSS or Stata, we advise to read the
books [32, 33] and also to consult the two following Internet websites:

� http://rforsasandspssusers.com
� http://www.statmethods.net
Note also that it is possible to call R functions directly from Matlab using
the R.matlab package and from Excel using the RExcelInstaller pack-
age. Reading of [20] might be useful in this context. Finally, a similar tool
for OpenOffice, called ROOo, exists; see the Internet website http://rcom.
univie.ac.at.

http://rforsasandspssusers.com
http://www.statmethods.net
http://rcom.univie.ac.at
http://rcom.univie.ac.at
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SECTION 1.2

R and Statistics

Many classical and modern statistical techniques are implemented in R. The most
common methods for statistical analysis, such as

� descriptive statistics;
� hypothesis testing;
� analysis of variance;
� linear regression methods (simple and multiple)

are directly included at the core of the system. It should be noted that most
advanced statistical methods are also available through external packages. These
are easy to install, directly from a menu. They are all grouped and can be browsed
on the website of the comprehensive R archive network (CRAN) (http://cran.
r-project.org). This website also includes, for some large domains of interest,
a commented list of packages associated with a theme (called Task View). This
facilitates the search for a package on a specific statistical method. Furthermore,
detailed documentation for each package is available on the CRAN.

It should also be noted that recent statistical methods are added on a regular basis
by the statistics community itself.

See also

Section A.2, p. 532, gives details on the procedure to install a new package.

SECTION 1.3

R and Plots

One of the main strengths of R is its capacity (much greater than that of other
software on the market) to combine a programming language with the ability to
draw high-quality plots. Usual plots are easily drawn using predefined functions.
These functions also include many parameters, for example to add titles, captions
and colours. But it is also possible to create more sophisticated plots to represent
complex data such as contour lines, volumes with a 3D effect, density curves, and
many other things. It is also possible to add mathematical formulae. You can arrange
or overlay several plots in the same window and use many colour palettes.

http://cran.r-project.org
http://cran.r-project.org
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Fig. 1.1: A few of the graphical possibilities offered by R

You can get a demonstration of the graphical possibilities in R by typing in the
following instructions:

demo(image)
example(contour)
demo(graphics)
demo(persp)
demo(plotmath)
demo(Hershey)
require("lattice") # Load the package, which you must have

# previously installed by using the menu
# Packages/Install packages.

demo(lattice)
example(wireframe)
require("rgl") # Same remark as above.
demo(rgl) # You can interact by using your mouse.
example(persp3d)

Figure 1.1 above shows a few of these plots.
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SECTION 1.4

The R Graphical User Interface

The R graphical user interface (GUI) (i.e. its set of menus) is very limited, and com-
pletely nonexistent on some operating systems, when compared to other standard
software. This minimality can set back some new users. However, this drawback is
limited since:

� it has the didactic advantage that it incites users to know well the statistical pro-
cedures they wish to use;

� there are additional tools which extend the GUI.

In the next section, we present the package Rcmdr, which can be installed from
the menu Packages and which allows standard graphical and statistical analyses
with a more user-friendly interface, which includes drop-down menus. Furthermore,
theR instructions for the analysis chosen from the RCommandermenus are displayed
in dedicated panel. This can be useful if you do not know (or remember) the R
instruction for a specific task.

Tip

Note that after you have learnt R thoroughly, you will be able to develop
yourself tools similar to Rcmdr, made for a final users who do not desire to
learn R but only to use, in the most user-friendly way, a procedure created by
you. To this end, you can use the package tcltk.

Warning

Note that by using RCommander, we are distancing ourselves from what
makes the strength and flexibility of R. We therefore advise against using such
a tool if you wish to become an advanced user.

SECTION 1.5

First Steps in R

1.5.1 Using RCommander

In this section, we offer a brief introduction to the package Rcmdr. We then present
some functionalities given by this interface for statistical manipulations. We con-
clude by explaining how to add functionalities to the RCommander interface.
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1.5.1.1 Launching RCommander

Follow these steps to start RCommander.

I Double-click on the R icon on your Desktop.
I In the console, type install.packages("Rcmdr"). Choose a nearby mirror.
I In the console, type require("Rcmdr"). Answer Yes to all the questions you

may be asked. The RCommander graphical interface then opens. Another option
is to click on the menu Packages, then Load package..., then Rcmdr.

I In the Messages panel, you should see WARNING: the Windows version of
R Commander works better under RGui with the single document

interface (SDI).
I To remedy this issue, close RCommander.
I In RGui, go to Edit, then Preferences. Check SDI then click on Save... and

on Save. You can take this opportunity to customize R.
I Close R and save an image of the session.
I Restart R, then RCommander by typing require("Rcmdr") in the R console.

See also

We refer the reader to Sect. A.2 which details how to install the package
Rcmdr.

Mac

Macintosh users may find useful the instructions at http://socserv.
mcmaster.ca/jfox/Misc/Rcmdr/installation-notes.html, after in-
stalling package tcltk which is available on the CRAN.

The graphical interface of RCommander includes four parts as shown on Fig. 1.2:

(a) Drop-down menus to perform specific tasks
(b) A Script windowwhich presents the code executed thanks to click on a drop-

down menu
(c) An Output window which gives the output of the executed code
(d) A Messageswindow giving a message on the last task

1.5.1.2 Handling Data with RCommander

To perform statistical analyses, you need data.

� Entering data by band

Follow these steps to enter data by hand.

http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/installation-notes.html
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/installation-notes.html
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Fig. 1.2: The RCommander graphical interface

I In the menu Data, choose New data set....
I In the window New data table, choose a name for your data set, for example
Data1.

I A data editor appears. Click on var1 and replace it with Name. Enter a few names
for this variable: Peter, Jack, Ben (see Fig. 1.3).

I Create a variable Height of type numeric with the following values: 182, 184,
190.

I Click on the cross (X) at the top-right corner of the active window to close the
data editor.

I You can visualize your data set by clicking on View.

We can now calculate some basic statistics.
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Fig. 1.3: Entering data with the RCommander graphical interface

� Basic statistics

Follow these steps to get some basic statistics on your data set:

I In the menu Statistics, choose Summary, then Descriptive stati-
stics ....

I A window called General statistics opens up; the only numeric variable
in our data set is the variable Height.

I Choose the statistics Mean, Standard deviation and Quantiles and click on
OK.

I The result is displayed in the Output window. Note that you can check the R
instruction which was used for this task in the Script window (see Fig. 1.4).
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Fig. 1.4: Basic statistics with RCommander

Note that it is also possible to type an instruction directly in the Script window
without using a menu. Here is an example.

I Type in the Script window:

numSummary(Data1[,"Height"],statistics=c("mean","sd"))

I Click on that line so that the cursor is displayed there, then click on Submit.
I You have just computed the mean and standard deviation of variable Height

which contains 3 observations. The result appears in the Output window:

mean sd % n
184 5.291503 0 3

�Manipulating the data set

In our toy example, suppose that we also have the weight and wish to compute
the body mass index: BMI D Weight=Height2 (height in metres).
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Fig. 1.5: Manipulating a data set with RCommander

I Click on Edit (below the RCommandermenus).
I The data editor opens up and you can add the numeric variable Weight, with the

following values: 70, 72 and 75. Now close the data editor.
I In the Data menu, choose Manage variables in the active data set,

then Calculate a new variable.... A window opens.
I For Name of new variable, type BMI and for Expression to calculate:
Weight/((Height/100)**2) (see Fig. 1.5). Click on OK to complete the calcu-
lation.

I Click on View to see the result for your data set.
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You are starting to feel tired and need a coffee break! But before you take one, follow
these steps to save your data set.

I In the Datamenu, choose Active dataset, then Save active dataset....
I A window opens. You can choose a location to save your data set. We shall call

it BMI and by default it has the .RData extension.
I Close RCommander and answer OK to the question Do you wish to quit?, No

to Save script file? and No to Save output file?.
I You can now close R and answer No to the question Save session image?.

After a well-deserved break, you wish to add new data to your file BMI.RData.

I Open an R session. Type library("Rcmdr").
I In the Data menu, choose Load data set....
I A window opens. Navigate to and open the file BMI.RData.
I Click on View to display your data set.
I Add the information for a new person ("Julia", Height=150, Weight=52) by

clicking on Edit.
I After closing the editor, you can check the changes by clicking on View. You

then see the value NA (not available) for Julia’s BMI.
I To get Julia’s BMI, you need to go through the steps of section manipulating the

data set again. We shall see later on how to create a function which calculates
the BMI in a more user-friendly fashion.

You now wish to send your data set to a colleague who does not use R yet.

I In the Data menu, choose Active dataset, then Export active data
set ....

I A first window opens. Uncheck the box Write names of individuals
(rows) since we have not defined these. Choose Spaces for the field
separator.

I Click on OK. A second window opens. You can choose a place to save your data
set. We shall call it BMI and it has the default extension .txt.

I You can now send your data set BMI.txt to your colleague and use this opportu-
nity to mention the wonderfulness of R, which has a rather user-friendly interface
for data manipulation.

1.5.1.3 A Few Statistical Tasks with RCommander

In this section, we present a brief overview of how to use RCommander for statistical
tasks. We start with a mean comparison test and a chi-square test of independence.
We then show how to use RCommander to visualize the standard distributions
(binomial, poisson, normal, gamma, etc.). We conclude with a linear model fit.
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�Mean comparison test

We propose to use data already available in R. Follow these steps to load a data
set:

I In the Data menu, choose Data in packages, then Read data from an
attached package....

I A window opens. Double-click on datasets in the Package section, then on
sleep in the right column.

I sleep appears in the box Enter a dataset name (see Fig. 1.6).
I You can now click on Help on the selected dataset to have some infor-

mation about it.
I Click on OK to close the previous window, then visualize the data set by clicking

on View.

These data are used to compare the effect on sleep of a soporific drug, compared to
a control group. We shall first visualize the distribution of sleep gain in both groups,
then do a mean comparison test to see whether there is any statistical significant
difference between the drug and the control.

I In the Graphsmenu, choose Box plot....
I A window opens. Click on Plot by group..., then on the variable group,

then on OK twice.
I You can now see two box plots representing the sleep time gain in both groups.
I You can save this plot by clicking on File, then Save as. Several formats are

possible.

You can also enhance this plot, for example, by adding colours. In the script window,
type

boxplot(extra�group,ylab="extra",xlab="group",data=sleep,
col=c("red","blue"))

then click on Submit.

See also

Chapter 7 is dedicated to plots in R.

We now perform a mean comparison test.

I In the Statisticsmenu, choose Means, then independent t-test....
I Click on group in section Groups (one). You now see specified the difference
1-2 (group 1 vs. group 2).

I Click on OK to see the result in the Output window (see also Fig. 1.6).

The p-value of this test (greater than 5%) does not allow us to conclude that
there is a significant difference between the sleep gains given by the drug and the
control.
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Fig. 1.6: Mean comparison test with RCommander

� Test on a double entry table

In a therapeutic test, the underlying question is whether a treatment on HIV-
positive mothers has an effect on the HIV status of the child. If it does not, then the
HIV status of the child is independent of the treatment taken by the mother. In this
test, out of 391 children, 100 are HIV negative, 193 have mothers under treatment
and 41 are HIV positive and have mothers under treatment. To know whether the
treatment has an effect, follow these steps:
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Fig. 1.7: Independence test with RCommander

I In the Statisticsmenu, choose Contingency tables, then Fill and
analyse a double entry table....

I A window opens. Fill the table as indicated in Fig. 1.7. Choose
Total percentages and Print expected frequencies.

I Click on OK to see the result in the Output window.

At the 5% risk level, we cannot conclude that the treatment has an effect on the
child’s HIV status.

� Exploring distributions

RCommander can be used to visualize standard distributions.

I In the Distributions menu, choose Continuous distributions, the
Normal distribution, then Plot of normal distribution....

I A window opens. Specify a mean of 4 and a standard deviation of 2. Click on OK.
I The curve of the density of a normal distribution centred at 4 and with standard

deviation 2 appears in a graphical window.

You can follow the same steps for other probability distributions.
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� Fitting a linear model

RCommander can be used to easily fit standard regression models. We illustrate
this with the linear model. We shall first download a data set from an Internet
address (URL). It contains the measures, for 80 patients with a disabling illness,
of the variables GENDER (1 = Male, 2 = Female), WEIGHT (in kg), HEIGHT (in
cm), PAIN (ordinal variable: a=least pain), DISTANCE (number of metres walked),
MOBILITY (self-evaluation of mobility; 1=most mobile) and STAIRS (number of
steps climbed).

I In the Data menu, choose Import data, then from a text file, the
clipboard or a URL....

I A window opens. Call the data table Illness. Check the box Internet link
(URL) in Data file and the box Tabulations for Field separator; click
on OK.

I In the field Internet link (URL), type
http://biostatisticien.eu/springeR/illness.txt.

I Click on OK and you should see the following in the Messages window: The
illness data set contains 80 rows and 8 columns.

We shall fit a multiple regression model. Follow these steps.

I In the Statisticsmenu, choose Model fitting, then Linear regression
....

I Choose for example Model.1 as your model name in the field Enter a name
for the model.

I Choose variable DISTANCE as the response variable, and variables WEIGHT and
HEIGHT as the explanatory variables (keep the CTRL key pressed).

I Click on OK. The result of your linear model adjustment appears in the Output
window. This result corresponds to the instructions

Model.1 <- lm(DISTANCE�WEIGHT+HEIGHT,data=Illness)
summary(Model.1)

which are shown in the Script window.

See also

Chapter 14 presents the linear model in further detail.

We now visualize the least squares plane corresponding to the fitted model.

I In the Plot menu, choose 3D plot, then 3D scatterplot....
I Choose variable DISTANCE as the response variable and the variables WEIGHT

and HEIGHT as explanatory variables (use the CTRL key).
I Choose Ordinary least squares as the surface to fit. Click on OK.

http://biostatisticien.eu/springeR/illness.txt
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Fig. 1.8: Least squares plane

You can now see the 3D scatterplot (shown in Fig. 1.8) and the least squares
plane. You can move the image with your mouse.

1.5.1.4 Adding Functionalities to the RCommander Interface

Some packages available on the official R website can also be integrated to
the RCommander menus. They are easy to identify: their names start with
RcmdrPlugin. We now illustrate how to use such a package.

See also

You can read the article [17] which explains how to build a package for
RCommander integration.

� The TeachingDemos package

The RcmdrPlugin.TeachingDemos package can be used to illustrate some sta-
tistical concepts.

I Type install.packages("RcmdrPlugin.TeachingDemos") in the Script
window. Click on Submit and choose a nearby mirror. Once the installation is
complete, close and reopen RCommander using the instruction Commander().

I In the Toolsmenu, choose Load Rcmdr plug-ins..., click on OK and answer
Yes to the question Restart now?.

I There is a new menu called Demos. In this menu, you can choose for example the
submenu Simple Correlation and explore the notion of correlation.
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This plug-in also adds submenus to pre-existing menus. For example, in the
Distributions menu, you can now choose Visualize distributions, then
t distributions. By checking Show Normal Distribution, and by playing
with the d.f. (degree of freedom) cursor, you can visualize the closeness of the
Student distribution and the normal distribution.

� The sos package

The RcmdrPlugin.sos package can be used to ease the search for help on a
given concept or function. Follow the same steps as before to install this plug-in. A
new submenu called Search R Help ... (sos) appears in the Help menu. Ex-
plore this new Rcommander functionality, for example, by typing linear model.

See also

Chapter 6 describes how to search for information about R.

1.5.2 Using R with the Console

In the previous subsection, we saw how to use R through menus. In fact, this way
of proceeding is far from optimal, since it imposes many limitations on the possi-
bilities offered by R. Many analyses, either deeper or more recent and innovative,
are not available in the RCommander menus. It is thus very useful to escape from
the “button clicking” approach and master the R programming language. You will
then be able to perform simulations and to code repetitive tasks. We have already
encountered a few R instructions when using RCommander, which is itself a tool
written in the R language. We now propose a brief introduction to a few elements
of the R syntax, first through an analysis of complex data arising from a functional
magnetic resonance imaging (MRI) experiment, then by letting the reader type a
few R commands and think about the output.

1.5.2.1 The Strength of R Shown on an Example

Some neuroscientists work on finding which part of the brain deals with visual
information on colour. To this end, a visual stimulus, consisting in an alternance
of coloured and non-coloured moving patterns, is shown to a subject. During this
time, volumic images of the subject’s brain are acquired at time t D 1; : : : ; T with
an MRI scanner. Each 3D image is in fact a large (Rubik’s!) cube made of many
voxels, the 3D equivalents of 2D pixels. At time t D 1; : : : ; T , each voxel con-
tains an electromagnetic measurement value x.t/. We can thus consider that in
each voxel, we have observed a time series fx.t/I t D 1; : : : ; T g representing
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electromagnetic variations. The acquired data (given in file Mond4D.nii, produced
during a Mondrian experiment performed by M. Dojat and J. Huppé) thus consist in
a 4-dimensional array, the concatenation of several volumic brain images measured
through time.

We used R to find, in each brain slice, which voxel had temporal variations
most correlated with the stimulus signal. The code below can be downloaded from
http://biostatisticien.eu/springeR/brain-code.R and opened, thanks
to the submenu Open script... of the File menu in R. The key combination
CTRL+R then executes one by one the instructions of this script. You can try to
execute these instructions to visualize the results. This will help you familiarize
yourself with some of the possibilities offered by R.

We first download the data files we need (the files Mondanat.img and
Mondanat.hdr contain an anatomical image of the subject’s brain).

> getfile <- function(myfile)
+ download.file(paste("http://biostatisticien.eu/springeR/",
+ myfile,sep=""),paste(getwd(),"/",myfile,sep=""),mode="wb")
> getfile("Mond4D.nii")
> getfile("Mondanat.hdr")
> getfile("Mondanat.img")

We then install the package to read the data.

> install.packages("AnalyzeFMRI") # Choose a mirror.

> # File names.
> file.func <- paste(getwd(),"/","Mond4D.nii",sep="")
> file.anat <- paste(getwd(),"/","Mondanat.img",sep="")

> # Brain slice number.
> slice <- 10

The next instructions read the data.

> anat.slice <- f.read.nifti.slice(file.anat,slice,1)
> class(anat.slice)
[1] "matrix"
> dim(anat.slice)
[1] 128 128
> func.slice <- f.read.nifti.slice.at.all.timepoints(file.func,

slice)
> class(func.slice)
[1] "array"
> dim(func.slice)
[1] 128 128 125

We now create the coding of the visual stimulus signal (1=colour, 0=no colour).

> stimulus <- c(rep(c(1,1,1,1,1,0,0,0,0,0,0,0,0,0,0),8),1,1,1,1,1)
> plot(stimulus,type="l")

http://biostatisticien.eu/springeR/brain-code.R
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We compute correlations between the observed time series in each voxel and the
stimulus series.

> corMat <- matrix(NA,nrow=128,ncol=128)
> for (i in 1:128) f
+ for (j in 1:128) f
+ corMat[i,j] <- cor(func.slice[i,j,],stimulus)
+ g
+ g

We can now compute the coordinates of the voxel most strongly correlated with
the stimulus

> which(abs(corMat)==max(abs(corMat),na.rm=TRUE),arr.ind=TRUE)
row col

[1,] 67 117

and the correlation value of this voxel

> corMat[67,117]
[1] -0.6675017

We can then plot the time series observed in this voxel.

> par(mfrow=c(2,1))
> plot(stimulus,type="l")
> plot(func.slice[67,117,],type="l",ylab="Intensity")
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We are now able to identify on the anatomical image of the brain the most active
voxel for the visual stimulus.

> image(as.matrix(rev(as.data.frame(t(anat.slice)))),
col=gray((0:32)/32))

> points(117/128,67/128,col="red",cex=2,pch=19)

Note that you can also visualize these data in 3D. The following instructions,
taken from the help file for the function contour3d() from package misc3d, give
an interactive 3D view of the brain.

> install.packages("misc3d")

> require("misc3d")
> a <- f.read.analyze.volume(system.file("example.img",
+ package="AnalyzeFMRI"))
> a <- a[,,,1]
> contour3d(a,1:64,1:64,1.5*(1:21),lev=c(3000, 8000, 10000),
+ alpha=c(0.2,0.5,1),color=c("white","red","green"))
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You can try to move the image with your mouse.

1.5.2.2 A Brief Introduction of R Syntax Through Some Instructions to Type

� Basic operations

We advise the reader to play with these commands and try to understand how
they work.

> 1*2*3*4
[1] 24
> factorial(4)
[1] 24
> cos(pi)
[1] -1
> x <- 1:10
> x
[1] 1 2 3 4 5 6 7 8 9 10
> exp(x)
[1] 2.718282 7.389056 20.085537 54.598150
[5] 148.413159 403.428793 1096.633158 2980.957987
[9] 8103.083928 22026.465795
> xˆ2
[1] 1 4 9 16 25 36 49 64 81 100
> chain <- "R is great!"
> chain
[1] "R is great!"
> nchar(chain)
[1] 11
> ?nchar
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> M <- matrix(x,ncol=5,nrow=2)
> M

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> M[2,3]
[1] 6
> L <- list(matrix=M,vector=x,chain=chain)
> L[[3]]
[1] "R is great!"
> while(TRUE) f
+ toguess <- sample(1:2,1)
+ fcat("Guess a number among 1, 2, 3: ") ; value <- readline()g
+ if (value == toguess) fprint("Well done!") ; break()g
+ else print("Try again.")
+ g
> ls()
[1] "chain" "L" "M" "x"
> rm(chain)

The following commands perform matrix operations:

> A <- matrix(runif(9),nrow=3)
> 1/A

[,1] [,2] [,3]
[1,] 2.270797 1.546875 1.422103
[2,] 1.268152 1.957924 1.057803
[3,] 1.642736 5.273120 2.174020
> A * (1/A)

[,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 1 1
[3,] 1 1 1
> B <- matrix(1:12,nrow=3)
> A * B
Error in A * B : non-conformable arrays
> A %*% B

[,1] [,2] [,3] [,4]
[1,] 3.842855 9.212923 14.582990 19.95306
[2,] 4.646105 11.380053 18.114001 24.84795
[3,] 2.367954 6.143031 9.918107 13.69318
> (invA <- solve(A))

[,1] [,2] [,3]
[1,] 1.145642 -3.376148 5.187347
[2,] 4.379786 -4.641906 2.844607
[3,] -3.321872 6.381822 -5.863772
> A %*% invA

[,1] [,2] [,3]
[1,] 1.000000e+00 0.000000e+00 0
[2,] 0.000000e+00 1.000000e+00 0
[3,] -2.220446e-16 4.440892e-16 1
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> det(A)
[1] 0.04857799
> eigen(A)
$values
[1] 1.6960690+0.000000i -0.1424863+0.091319i
[3] -0.1424863-0.091319i
$vectors

[,1] [,2] [,3]
[1,] 0.5859852+0i 0.6140784-0.1816841i 0.6140784+0.1816841i
[2,] 0.7064296+0i 0.2234155+0.2505528i 0.2234155-0.2505528i
[3,] 0.3969616+0i -0.6908020+0.0000000i -0.6908020+0.0000000i

� Statistics

Here are a few statistical calculations.

> weight <- c(70,75,74)
> mean(weight)
[1] 73
> height <- c(182,190,184)
> mat <- cbind(weight,height)
> mat

weight height
[1,] 70 182
[2,] 75 190
[3,] 74 184
> apply(mat,MARGIN=2,FUN=mean)

weight height
73.0000 185.3333
> ?apply
> colMeans(mat)

weight height
73.0000 185.3333
> names <- c("Peter","Ben","John")
> data <- data.frame(Names=names,height,weight)
> summary(data)

Names height weight
Ben :1 Min. :182.0 Min. :70.0
John :1 1st Qu.:183.0 1st Qu.:72.0
Peter:1 Median :184.0 Median :74.0

Mean :185.3 Mean :73.0
3rd Qu.:187.0 3rd Qu.:74.5
Max. :190.0 Max. :75.0

� Some plots

> f <- function(x) xˆ2-2*x-2
> curve(f,xlim=c(-5,2));abline(h=0)
> locator(1) # Click on the intersection of the two curves.
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> uniroot(f,c(-5,2))
$root
[1] -0.7320503
$f.root
[1] -1.874450e-06
$iter
[1] 8
$estim.prec
[1] 6.103516e-05

> plot(cars)
> abline(lm(dist�speed,data=cars),col="blue")
> points(cars[30,],col="red",pch=20)
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> par(mfrow=c(1,2))
> hist(cars$speed,main="Histogram")
> boxplot(cars$dist,col="orange")
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See also

This link points to a reference card of the most useful R functions http://
cran.r-project.org/doc/contrib/Short-refcard.pdf

http://cran.r-project.org/doc/contrib/Short-refcard.pdf
http://cran.r-project.org/doc/contrib/Short-refcard.pdf


Chapter 2
A Few Data Sets and Research Questions

Goals of this chapter
This chapter presents a few data sets from epidemiological studies analyzed by
various teams at the Bordeaux School of Public Health (Institut de Santé publique,
d’Epidémiologie et de Développement—ISPED). Each data set comes with a short
research question, which will help understand the context of the study. They will
be used throughout this book to show how to use the functionalities of R for im-
porting and manipulating data and performing appropriate statistical analyses. For
each data set, we give a table with a description, the variables and the coding. The
reader should refer to this chapter when the data sets are mentioned later in the
book. A table at the end of the chapter indicates in which chapters each data set
is used. All these data sets are available online on the website associated with the
book: http://www.biostatisticien.eu/springeR.

SECTION 2.1

Body Mass Index of Children

Presentation

A sample of 152 children (3 or 4 years old) in their first year of kindergarten in
schools in Bordeaux (Gironde, SouthWest France) underwent a physical check-up
in 1996–1997.

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3 2,
© Springer Science+Business Media New York 2013
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Variables and Coding

Description Unit or coding Variable
Gender F for female; M for male GENDER

School in an underprivileged area (zone d’éducation
prioritaire, ZEP)

Y for yes; N for no zep

Weight Kg (to the nearest 100 g) weight

Age at date of examination Years years

Age at date of examination Months months

Height Cm (to the nearest 0.5 cm) height

Data Set: BMI-child File: bmichild.xls

SECTION 2.2

Weight at Birth

Presentation

This study focused on risks associated with low weight at birth; the data were
collected at the Baystate Medical Centre, Massachusetts, in 1986. Physicians have
been interested in low weight at birth for several years, because underweight ba-
bies have high rates of infant mortality and infant anomalies. The behaviour of the
mother-to-be during pregnancy (diet, smoking habits) can have a significant impact
on the chances of having a full-term pregnancy, and thus of giving birth to a child
of normal weight. The data file includes information on 189 women (identification
number: ID) who came to the centre for consultation. Weight at birth is categorized
as low if the child weighs less than 2,500 g.

Variables and Coding

Description Unit or coding Variable
Age of mother Years AGE

Weight of mother at last menstrual period Pounds LWT

Race of mother 1 = white; 2 = black; 3 = other RACE

Smoking during pregnancy Yes = 1; no = 0 SMOKE

Number of premature births in medical history 0 = none; 1 = one; 2 = two; etc. PTL

Medical history of hypertension Yes = 1; no = 0 HT

Uterine irritability Yes = 1; no = 0 UI

Number of medical consultations during
0 = none; 1 = one; etc. FVT

first trimester
Weight at birth Grams BWT

Weight at birth less than 2,500 g Yes = 1; No = 0 LOW

Data Set: Weight-birth File: Birth weight.xls
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SECTION 2.3

Intima–Media Thickness

Presentation

Atherosclerosis is the main cause of death for men above 35 and women above
45 in most developed countries. It is a thickening and hardening of internal artery
walls. One of its consequences is myocardial infarction. An artery wall is made of
three layers; innermost to outermost, they are called intima, media and adventitia.
Intima–media thickness is a marker of atherosclerosis. It was measured by ultra-
sonography on a sample of 110 subjects in 1999 in Bordeaux hospitals. Information
on the main risk factors was also collected.

Variables and Coding

Description Unit or coding Variable
Gender 1 = male; 2 = female GENDER

Age at date of consultation Years AGE

Height Cm height

Weight Kg weight

Smoking status
0 = non-smoker

tobacco1 = former smoker
2 = smoker

Estimation of tobacco consumption
Number of packs/year packyear

for smokers and former smokers
Physical activity 0 = no; 1 = yes SPORT

Intima–media thickness Mm measure

Alcohol consumption
0 = non-drinker

alcool1 = occasional drinker
2 = regular drinker

Data Set: Intima–media File: Intima Media Thicness.xls
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SECTION 2.4

Diet of Elderly People

Presentation

A sample of 226 elderly people living in Bordeaux (Gironde, South-West France)
were interviewed in 2000 for a nutritional study.

Variables and Coding

Description Unit or coding Variable
Gender 2 = female; 1 = male gender

Family status

1 = single

situation
2 = living with spouse
3 = living with family
4 = living with someone else

Daily consumption of tea Number of cups tea

Daily consumption of coffee Number of cups coffee

Height Cm height

Weight Kg weight

Age at date of interview Years age

Consumption of meat

0 = never

meat

1 = less than once a week
2 = Once a week
3 = 2/3 times a week
4 = 4/6 times a week
5 = every day

Consumption of fish Idem fish

Consumption of raw fruits Idem raw fruits

Consumption of cooked
Idem cooked fruits veg

fruits and vegetables
Consumption of chocolate Idem chocol

1 = butter

fat

2 = margarine
3 = peanut oil

Type of fat used 4 = sunflower oil
for cooking 5 = olive oil

6 = mix of vegetable oils (e.g., Isio4)
7 = colza oil
8 = duck or goose fat

Data Set: NutriElderly File: nutrition elderly.xls



2.6 Summary Table of Use of Data Sets 33

SECTION 2.5

Study Case of Myocardial Infarction

Presentation

The study for which the following data were collected aimed at examining
whether women who use or have used oral contraceptives are at a higher risk of my-
ocardial infarction. The sample includes 149 women who had myocardial infarction
(cases) and 300 women who did not (controls). The main exposure factor is usage of
oral contraceptives; the data also include age, weight, height, tobacco consumption,
hypertension and family history of cardiovascular diseases.

Variables and Coding

Description Unit or coding Variable
Myocardial infarction 0 = controls; 1 = cases infarct
Usage of oral contraceptives 0 = never; 1 = yes co

0 = no
tobaccoTobacco usage 1 = smoker

2 = former smoker
Age Years age

Weight Kg weight

Height Cm height

Family history of cardiovascular diseases 0 = no; 1 = yes atcd

Hypertension 0 = no; 1 = yes hta

Data set: Infarction File: Infarction.xls

SECTION 2.6

Summary Table of Use of Data Sets

Methods
Import– Manipulation Descriptive Tests ANOVA Regression
export statistics

BMI- � � �
child

Weight- � � �
birth

D
at

a
se

ts

Intima- � � � � �
media

NutriElderly � � � �
Infarction � �



Part II
The Bases of R



Chapter 3
Basic Concepts and Data Organisation

Goals of this chapter
This chapter introduces the basic concepts of the R software (calculator mode,
assignment operator, variables, functions, arguments) and the various data types
and structures which can be handled by R.

SECTION 3.1

Your First Session

Launch R by double-clicking its icon on the Windows Desktop (or from the Start
menu). At the end of the text displayed in the R console, you can see the prompt
symbol >, inviting you to type in your first instruction in the R language.

R version 2.14.1 (2011-12-22)
Copyright (C) 2011 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ’license()’ or ’licence()’ for distribution details.

R is a collaborative project with many contributors.
Type ’contributors()’ for more information and
’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or
’help.start()’ for an HTML browser interface to help.
Type ’q()’ to quit R.

>

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3 3,
© Springer Science+Business Media New York 2013
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For example, type "R is my friend", then validate by hitting the ENTER key
(or RETURN). You will then get

> "R is my friend"
[1] "R is my friend"

As you can see, R is well behaved and kindly proceeds with your request. This will
usually be the case—maybe R is trying to compensate for its lack of conviviality.
We shall explain later on why R’s reply starts with [1].

3.1.1 R Is a Calculator

Like many other similar languages, R can easily replace all the functionalities of
a (very sophisticated!) calculator. One of its major strengths is that it also allows
calculations on arrays. Here are a few very basic examples.

> 5*(-3.2) # Careful: the decimal mark must be a point (.)
[1] -16
> 5*(-3,2) # otherwise, the following error is generated:

Error : ’,’ unexpected in "5*(-3,"

> 5ˆ2 # Same as 5**2.
[1] 25
> sin(2*pi/3)
[1] 0.8660254
> sqrt(4) # Square root of 4.
[1] 2
> log(1) # Natural logarithm of 1.
[1] 0
> c(1,2,3,4,5) # Creates a collection of the first five

# integers.
[1] 1 2 3 4 5
> c(1,2,3,4,5)*2 # Calculates the first five even numbers.
[1] 2 4 6 8 10

Tip

Any R code after the symbol “#” is considered by R as a comment. In fact,
R does not interpret it.

You can now exit the R software by typing the following instruction: q().

You are asked whether you wish to save an image of the session. If you answer
yes, the commands you typed earlier will be accessible again next time you open R,
by using the “up” and “down” keyboard arrows.
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3.1.2 Displaying Results and Variable Redirecting

As you have probably noticed, R responds to your requests by displaying the result
obtained after evaluation. This result is displayed, then lost. At first, this might
seem sensible, but for more advanced uses, it is useful to redirect the R output to
your request, by storing it in a variable: this operation is called assigning the result
to a variable. Thus, an assignment evaluates an expression but does not display the
result, which is instead stored in an object. To display the result, all you need to do
is type the name of that object, then hit ENTER.

To make an assignment, use the assignment arrow <-. To type the arrow <-,
use the lesser than symbol (<) followed by the minus symbol (-).

To create an object in R, the syntax is thus
Name.of.the.object.to.create <- instructions

For example,

> x <- 1 # Assignment.
> x # Display.
[1] 1

We say that the value of x is 1, or that we have assigned 1 to x or that we have
stored in x the value 1. Note that the assignment operation can also be used the other
way around ->, as in

> 2 -> x
> x
[1] 2

Warning

The symbol = can also be used, but its use is less general and is therefore
not advised. Indeed, mathematical equality is a symmetrical relation with a
specific meaning, very different to assignment. Furthermore, there are cases
where using the symbol = does not work at all.

Tip

Note that a pair of brackets allows you to assign a value to a variable and
display the evaluation result at the same time:

> (x <- 2+3)
[1] 5

If a command is not complete at the end of a line, R will display a different
prompt symbol, by default the plus sign (+), on the second line and on following
lines. R will continue to wait for instructions until the command is syntactically
complete.
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> 2*8*10+exp(1)
[1] 162.7183
> 2*8*
+ 10+exp(
+ 1)
[1] 162.7183

Warning

Here are the rules for choosing a variable name in R: a variable name can
only include alphanumerical characters as well as the dot (.); variable names
are case sensitive, which means that R distinguishes upper and lower case; a
variable name may not include white space or start with a digit, unless it is
enclosed in quotation marks "".

3.1.3 Work Strategy

� Take the habit of storing your files in a folder reserved to this effect (you could
call it Rwork). We also advise you to type all your R commands in a script win-
dow called script or R editor, accessible through the “File/New script” menu.
Open a new script window, click on the “Windows/Side by side” menu, then
copy the script below:

x <- 5*(-3.2)
5ˆ2
sin(2*pi/3)
sqrt(4)
c(1,2,3,4,5)
z <- c(1,2,3,4,5)*2

Mac

On a Mac, the menu is “File/New Document”, and it is not possible to lay
the windows side by side.

At the end of your session, you can save this script in the folder Rwork, for
example, as myscript.R, and reopen it during a later session from the menu
“File/Open a script” (or on a Mac “File/Open Document”).

� You can then use the key combinations CTRL+A (COMMAND+A on a Mac) to select
all the instructions, then CTRL+R (COMMAND+ENTER on a Mac) to paste and exe-
cute them in one step in the R console. You can also execute a single line of R
instructions from the script by hitting CTRL+R when the blinking cursor is on the
relevant line of the script window.
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Fig. 3.1: The script window and the command console

Tip

Note in Fig. 3.1 the presence of the red STOP button that lets you interrupt
a calculation that would last too long.

You can also use the function source() from the R console to read and execute
the content of your file. This helps prevent overloading the console, as we will
see later. You may find it useful to proceed as follows:

(a) Clicking once in the R console window.
(b) Going to the menu “File/Change current directory” (“Misc/Change work

directory” on a Mac).
(c) Exploring your file system and selecting the folder Rwork.
(d) Typing in the console source("myscript.R"). Note that for the above

example, the use of this instruction will not produce any output. The
following Do it yourself will clarify this point.
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Do it yourself Ï
Begin to create a folder called Rwork in your home directory. Then, type in
and save in an R script the preceding instructions. The file containing the R
script will be called myscript.R and will be put in Rwork. Now close then
reopen R. Next, type the following instructions in the R console:
rm(list=ls()) # Delete all existing objects.

ls() # List existing objects.

source("myscript.R")

ls()

x

z

Note that the source() function has permitted to execute the preceding in-
structions. You may have noticed that the computations which have not been
redirected into variables have not been printed. So their result is lost. Change
your script and add the following instructions at the end of it:
print(2*3)
print(x)

Save it, then source it. What happened?

� Take the habit of using the online R help. The help is very complete and
in English. You can reach it with the function help(). For example, type
help(source) to get help about the function source().

See also

All these notions will be examined in further detail in Chaps. 6 and 9.

Tip

Two good code editors are RStudio, available at http://www.rstudio.
com, and Tinn-R (Windows only), available at http://www.sciviews.org/
Tinn-R. They offer a better interaction between a script’s code and its execu-
tion. They also provide syntactic colouring of the code.

Linux

Under Linux, note that the editors JGR and Emacs/ESS are available.

http://www.rstudio.com
http://www.rstudio.com
http://www.sciviews.org/Tinn-R
http://www.sciviews.org/Tinn-R
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See also

You can consult the list of R editors on the webpage http://www.
sciviews.org/_rgui/projects/Editors.html.

Do it yourself Ï
The body mass index (BMI) is used to determine a person’s corpulence. It is
calculated using the formula

BMI D Weight (kg)

Height2 (m)
:

Calculate your BMI. You simply need to type the following lines in your
script window:

# You can type 2 instructions
# on the same line thanks to the symbol ;
My.Weight <- 75 ; My.Height <- 1.90
My.BMI <- My.Weight/My.Heightˆ2
My.BMI

Execute this script by using the work strategy mentioned earlier. You can
then modify this script to calculate your own BMI.

We propose a function to visualize your corpulence type. Execute the fol-
lowing instructions:

source("http://www.biostatisticien.eu/springeR/BMI.R",
encoding="utf8")
display.BMI(My.BMI)

You will learn how to program this kind of result in later chapters.

3.1.4 Using Functions

We have already encountered a few functions: sin(), sqrt(), exp() and log().
The base version of R includes many other functions, and thousands of others can
be added (by installing packages or by creating them from scratch).

Note that a function in R is defined by its name and by the list of its parameters.
Most functions output a value, which can be a number, a vector, or a matrix.

http://www.sciviews.org/_rgui/projects/Editors.html
http://www.sciviews.org/_rgui/projects/Editors.html
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Using a function (or calling or executing it) is done by typing its name followed,
in brackets, by the list of (formal) arguments to be used. Arguments are separated by
commas. Each argument can be followed by the sign = and the value to be given to
the argument. This value of the formal argument will be called effective argument,
call argument or sometimes entry argument.

We will therefore use the instruction

functionname(arg1=value1,arg2=value2,arg3=value3)

where arg1, arg2, ... are called the arguments of the function, whereas value1
is the value given to the argument arg1, etc. Note that you do not necessarily need
to indicate the names of the arguments, but only the values, as long as you follow
their order.
For any R function, some arguments must be specified and others are optional
(because a default value is already given in the code of the function).

Warning

Do not forget the brackets when you call a function. A common mistake for
beginners is forgetting the brackets:

> factorial
function (x)
gamma(x + 1)
<environment: namespace:base>
> factorial(6)
[1] 720

The output to the first instruction gives the code (i.e. the recipe) of the func-
tion, whereas the second instruction executes that code. This is also true for
functions which do not require an argument, as shown in the following exam-
ple:

> date()
[1] "Wed Jan 9 16:04:32 2013"
> date
function ()
.Internal(date())
<environment: namespace:base>

Obviously, this is not the place to comment the code of these functions.

To better understand how to use arguments, take the example of the function
log(x,base=exp(1)). It can take two arguments: x and base.

The argument xmust be specified: it is the number of which we wish to calculate
the logarithm. The argument base is optional, since it is followed with the symbol =
and the default value exp(1).
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Tip

An argument which is not followed with the symbol = must be specified. A
parameter is optional if it is followed with =.

In the following code, R will calculate the natural logarithm of the number 1,
since the base argument is not specified:

> log(1)
[1] 0

Note

For some functions, no argument needs to be specified, for example,
matrix, which we shall encounter later on.

One last important note is that you can call a function by playing with the
arguments in several different ways. This is an important feature of R which
makes it easier to use, and you will find it useful to understand this principle.
To calculate the natural logarithm of 3, any of the following expressions can be
used:

log(3)

log(x=3)

log(x=3,base=exp(1))

log(x=3,exp(1))

log(3,base=exp(1))

log(3,exp(1))

log(base=exp(1),3)

log(base=exp(1),x=3)

Warning

Note that calling

log(exp(1),3)

will calculate the logarithm of exp(1) in base 3.

Finally, recall that we have been able to see the code for the function
factorial():

> factorial
function (x)
gamma(x + 1)
<environment: namespace:base>

This function was defined by the R developers with the following instructions:

> factorial <- function(x) gamma(x+1)

It is very easy to code a new function in R, by using the function function().
For example, here is how to code a function which takes two arguments n and p and
calculates the binomial coefficient

�
n
p

� D nŠ
pŠ.n�p/Š

:
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> binomial <- function(n,p) factorial(n)/(factorial(p)*
+ factorial(n-p))

You can then use this new function as any other R function:

> binomial(4,3)
[1] 4

We shall study in much further detail how to create more elaborate functions in
Sect. 5.8 and in Chap. 8.

Note

In fact, there already exists an R function to compute the Newton binomial
coefficient. This is the function choose() that works more efficiently, espe-
cially for big numbers.

SECTION 3.2

Data in R

R, like most computer languages, can handle classical data types. R is actually able
to automatically recognize data types according to the format of the input. One of
the main strengths of R is its ability to organize data in a structured way. This will
turn out to be very useful for many statistical procedures we will study later on.

3.2.1 Data Nature (or Type, or Mode)

Data “types” can be handled using the functions mode() and typeof(), which only
differ in very subtle ways which we shall ignore.

Note

The function class() is more general: it is used to handle both data type
and structuring. We shall study it later on. For ease of understanding, we shall
use the command typeof().

The various types (or modes) of data are now presented.

3.2.1.1 Numeric Type (numeric)

There are two numeric types: integers (integer) and real numbers (double).
If you enter



3.2 Data in R 47

0.0 0.5 1.0 1.5 2.0 2.5
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0

0.
5

1.
0

1.
5

2.
0

2.
5

Complex numbers

Re(z)

Im
(z

)

z

M
od

(z
)

Arg(z)

Fig. 3.2: Characteristics of a complex number

> a <- 1
> b <- 3.4
> c <- as.integer(a)
> typeof(c)
[1] "integer"

the variables a and b are of the type "double", and the variable c has the same
value as a, except that it has been forced to be of the type "integer". This is
useful because a vector of "integer"s takes up less memory space than a vector of
"double"s of the same length. Instructions starting with as. are very common in
R to convert data into a different type. We will see in the Sect. 3.2.2.1 how to check
that an object’s type is numeric.

3.2.1.2 � Complex Type (complex)

A complex number is created, thanks to the letter i. The functions Re() for real
part, Im() for imaginary part, Mod() for modulus and Arg() for argument can be
used (Fig. 3.2).

Here are a few examples:

> 1i
[1] 0+1i
> z <- 1+2i
> typeof(z)
[1] "complex"
> is.complex(z) # To know whether an object is of the complex

# type.
[1] TRUE
> Re(z)
[1] 1
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> Im(z)
[1] 2
> Mod(z)
[1] 2.236068
> Arg(z)
[1] 1.107149

3.2.1.3 Boolean or Logical Type (logical)

The type logical() is the result of a logical operation. It can take the values TRUE
or FALSE. Here are a few instructions to create logical values:

> b>a
[1] TRUE
> a==b
[1] FALSE
> is.numeric(a)
[1] TRUE
> is.integer(a)
[1] FALSE
> x <- TRUE
> is.logical(x)
[1] TRUE

Warning

TRUE and FALSE can also be entered in a more condensed form by typing T
and F, respectively. But this should not be encouraged.

When needed, this data type is naturally converted to numeric without having
to specify the conversion: TRUE is worth 1 and FALSE is worth 0. The following
example illustrates this point:

> TRUE + T + FALSE*F + T*FALSE + F
[1] 2

3.2.1.4 Missing Data (NA)

A missing or undefined value is indicated by the instruction NA (for non-available).
Several functions exist to handle this data type. In fact, R considers this data type as
a constant logical value. Strictly speaking, it is therefore not a data type. Here are a
few examples which use the instruction NA:

> x <- c(3,NA,6)
> is.na(x)
[1] FALSE TRUE FALSE
> mean(x) # Trying to calculate the mean of x.
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[1] NA
> mean(x,na.rm=TRUE) # The na.rm argument means that NA’s

# should be ignored (NA.remove).
[1] 4.5

This is a very important notion when it comes to reading statistical data files. We
shall examine it in further detail in Chap. 5.

Warning

Do not mistake NA for the reserved word NaN, which means not a number:

> 0/0
[1] NaN

Note also that the following instruction does not output NaN but infinity,
represented in R with the reserved word Inf.

> 3/0
[1] Inf

3.2.1.5 Character String Type (character)

Any information between quotation marks (single ' or double ") corresponds to a
character string:

> a <- "R is my friend"
> mode(a)
[1] "character"
> is.character(a)
[1] TRUE

Conversions into a character string from another type are possible. Converting a
character string into another type is possible as long as R can correctly interpret the
content inside the quotations marks. Note that some conversions are done automat-
ically. Here are a few examples:

> as.character(2.3) # Conversion into a character string.
[1] "2.3"
> b <- "2.3"
> as.numeric(b) # Conversion from a character string.
[1] 2.3
> as.integer("3.4") # Conversion from a character string.
[1] 3
> c(2,"3") # Automatic conversion.
[1] "2" "3"
> as.integer("3.four") # Impossible conversion.
[1] NA
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Note

The differences between single and double quotation marks are given in
Chap. 5.

3.2.1.6 � Raw Data (raw)

In R, it is possible to work directly with bytes (displayed in hexadecimal format).
This can sometimes be useful when reading certain files in binary format. We shall
see examples in Chap. 7.

> x <- as.raw(15)
> x
[1] 0f
> mode(x)
[1] "raw"

Summary

Table 3.1: The various data types in R

Data type Type in R Display

Real number (integer or not) numeric 3.27

Complex number complex 3+2i

Logical (true/false) logical() TRUE or FALSE
Missing logical() NA

Text (string) character "text"

Binary raw 1c

Tip

The function storage.mode() get or set the type or storage mode of an
object.

3.2.2 Data Structures

In R, you can organize (structure) the various data types defined above (Table 3.1).
The structures we are about to present can be accessed or created with the function
class() (Table 3.2).
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3.2.2.1 Vectors (vector)

This is the simplest data structure. It represents a sequence of data points of the
same type. A vector can be created with the function c() (for collection or con-
catenation). Other functions such as seq() or a colon : can also be used to create a
vector. Note that when creating a vector, it is possible to mix data of different types.
R will then make an implicit conversion into the more general data type, as shown
in the following example:

> c(3,1,7)
[1] 3 1 7
> c(3,TRUE,7)
[1] 3 1 7
> c(3,T,"7")
[1] "3" "TRUE" "7"
> seq(from=0,to=1,by=0.1)
[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
> seq(from=0,to=20,length=5)
[1] 0 5 10 15 20
> vec <- 2:36
> vec
[1] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
[20] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Warning

The indications [1] and [20] give the rank in the vector vec of the element
they precede.

Note that it is possible to “name” the elements of a vector using the function
names().

> vec <- c(1, 3, 6, 2, 7, 4, 8, 1, 0)
> names(vec) <- letters[1:9] # 9 first letters of the alphabet.
> vec
a b c d e f g h i
1 3 6 2 7 4 8 1 0

> is.vector(vec)
[1] TRUE
> x <- 1:3
> x
[1] 1 2 3
> y <- c(1,2,3)
> y
[1] 1 2 3
> class(x)
[1] "integer"
> class(y)
[1] "numeric"
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One would actually expect to see appear "vector of doubles" or "vector
of integers" instead of "numeric" or "integer", but no software is perfect!

Advanced users

Note that the instructions c() and : give the same output, but that x and
y are stored internally in different ways. The type integer uses less memory
than the type numeric.

3.2.2.2 Matrices (matrix) and Arrays (array)

These two notions are generalizations of the vector notion: they represent sequences
with two indices for matrices and with multiple indices for arrays. As with vectors,
elements must be of the same type, otherwise implicit conversions will occur.

The following instruction

> X <- matrix(1:12,nrow=4,ncol=3,byrow=TRUE)
> X

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12

creates (and stores in the variable X) a matrix with four rows and three columns,
filled by row (byrow =TRUE) with the elements of the vector 1:12 (e.g., the twelve
first integers).
Similarly, a matrix can be filled by column (byrow=FALSE).

> Y <- matrix(1:12,nrow=4,ncol=3,byrow=FALSE)
> Y

[,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12
> class(Y)
[1] "matrix"

The function array() is used to create multidimensional matrices with more
than two dimensions, as shown in the following figure (for a three-dimensional
array) (Fig. 3.3):

> X <- array(1:12,dim=c(2,2,3))
> X
, , 1

[,1] [,2]
[1,] 1 3
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Fig. 3.3: Illustration of an array

[2,] 2 4
, , 2

[,1] [,2]
[1,] 5 7
[2,] 6 8
, , 3

[,1] [,2]
[1,] 9 11
[2,] 10 12
> class(X)
[1] "array"

Warning

Arrays with more than three dimensions can be created, thanks to the argu-
ment dim, which can be of length greater than 3.

3.2.2.3 Lists (list)

The most flexible and richest structure in R is the list. Unlike the previous structures,
lists can group together in one structure data of different types without altering
them. Generally speaking, each element of a list can thus be a vector, a matrix, an
array or even a list. Here is a first example:

> A <- list(TRUE,-1:3,matrix(1:4,nrow=2),c(1+2i,3),
+ "A character string")
> A
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[[1]]
[1] TRUE
[[2]]
[1] -1 0 1 2 3
[[3]]

[,1] [,2]
[1,] 1 3
[2,] 2 4
[[4]]
[1] 1+2i 3+0i
[[5]]
[1] "A character string"
> class(A)
[1] "list"

In such a structure, with heterogeneous data types, element ordering is often
completely arbitrary. Elements can therefore be explicitly named, which makes the
output more user-friendly. Here is an example:

> B <- list(my.matrix=matrix(1:4,nrow=2),
+ my.complex.numbers=c(1+2i,3))
> B
$my.matrix

[,1] [,2]
[1,] 1 3
[2,] 2 4
$my.complex.numbers
[1] 1+2i 3+0i
> list1 <- list(my.complex.number=1+1i,my.logical.value=FALSE)
> list2 <- list(my.string="I am learning R",my.vector=1:2)
> C <- list("My first list"=list1,My.second.list=list2)
> C
$‘My first list‘
$‘My first list‘$my.complex.number
[1] 1+1i
$‘My first list‘$my.logical.value
[1] FALSE
$My.second.list
$My.second.list$my.string
[1] "I am learning R"
$My.second.list$my.vector
[1] 1 2

See also

Naming elements will make it easier to extract elements from a list (see
Chap. 5, p. 106).
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3.2.2.4 The Individual�Variable Table (data.frame)

The individual�variable table is the quintessential structure in statistics. In R, this
notion is expressed by a data.frame. Conceptually speaking, it is a matrix with each
line corresponding to an individual and each column corresponding to a variable
measured on the individuals. Each column represents a single variable, which
must be of the same type across all individuals. The columns of the data matrix
can have names. Here is an example of a data.frame creation:

> BMI <- data.frame(Gender=c("M","F","M","F","M","F"),
+ Height=c(1.83,1.76,1.82,1.60,1.90,1.66),
+ Weight=c(67,58,66,48,75,55),
+ row.names=c("Jack","Julia","Henry","Emma","William","Elsa"))
> BMI

Gender Height Weight
Jack M 1.83 67
Julia F 1.76 58
Henry M 1.82 66
Emma F 1.60 48
William M 1.90 75
Elsa F 1.66 55
> is.data.frame(BMI)
[1] TRUE
> class(BMI)
[1] "data.frame"
> str(BMI)
’data.frame’: 6 obs. of 3 variables:
$ Gender: Factor w/ 2 levels "F","M": 2 1 2 1 2 1
$ Height: num 1.83 1.76 1.82 1.6 1.9 1.66
$ Weight: num 67 58 66 48 75 55

Note

The str() function enables one to display the structure of each column of
a data.frame.

Advanced users

A data.frame can be seen as a list of vectors of identical length. This is
actually how R stores a data.frame internally.

> is.list(BMI)
[1] TRUE
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3.2.2.5 Factors (factor) and Ordinal Variables (ordered)

In R, character strings can be organized in a more astute way, thanks to the function
factor():

> x <- factor(c("blue","green","blue","red",
+ "blue","green","green"))
> x
[1] blue green blue red blue green green
Levels: blue green red
> levels(x)
[1] "blue" "green" "red"
> class(x)
[1] "factor"

Tip

The function cut() enables one to recode a continuous variable into a
factor.

> Poids <- c(55,63,83,57,75,90,73,67,58,84,87,79,48,52)
> cut(Poids,3)
[1] (48,62] (62,76] (76,90] (48,62] (62,76] (76,90] (62,76]
[8] (62,76] (48,62] (76,90] (76,90] (76,90] (48,62] (48,62]
Levels: (48,62] (62,76] (76,90]

Factors can of course be used in a data.frame.
R indicates the different levels of the factor. The function factor() should thus be
used to store qualitative variables. For ordinal variables, the function ordered() is
better suited:

> z <- ordered(c("Small","Tall","Average","Tall","Average",
+ "Small","Small"),levels=c("Small","Average","Tall"))
> class(z)
[1] "ordered" "factor"

The levels argument of the function ordered is used to specify the order of
the variable’s modalities.

See also

Examples of uses of these two functions are given in Chap. 11, pp. 341 and
342.
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Tip

The function gl() generates factors by specifying the pattern of their levels:

> gl(n = 2,k = 8,labels = c("Control", "Treat"))
[1] Control Control Control Control Control Control Control
[8] Control Treat Treat Treat Treat Treat Treat
[15] Treat Treat
Levels: Control Treat

In the above instruction, n and k are two integers, the first one giving the
number of levels and the second one the number of replications.

Advanced users

A vector of character strings can be organized in a more efficient way by
taking into account repeated elements. This approach allows better manage-
ment of the memory: each element of the factor or of the ordinal variable is in
fact coded as an integer.

3.2.2.6 Dates

R can be used to structure the data representing dates, using the as.Date() function
for example.

> dates <- c("92/27/02", "92/02/27", "92/01/14",
+ "92/02/28", "92/02/01")
> dates <- as.Date(dates, "%y/%m/%d")
> dates
[1] NA "1992-02-27" "1992-01-14" "1992-02-28"
[5] "1992-02-01"
> class(dates)
[1] "Date"

We will return in detail on the functions for manipulating dates in Chap. 5.

3.2.2.7 Time Series

When data values are indexed by time, it may be useful, using the ts() function, to
organize them into an R structure that reflects the temporal aspect of these data.

> ts(1:10, frequency = 4, start = c(1959, 2)) # 2nd Quarter of
# 1959.

Qtr1 Qtr2 Qtr3 Qtr4
1959 1 2 3
1960 4 5 6 7
1961 8 9 10
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See also

The reader may consult with profit the book [40] which outlines the basic
techniques for modelling time series, present the R functions to use for these
models and give applications of these functions on several real data sets.

Summary

Table 3.2: The various data structures in R

Data structure Instruction in R Description

Vector c() Sequence of elements of the
same nature

Matrix matrix() Two-dimensional table of
elements of the same
nature

Multidimensional table array() More general than a matrix;
table with several
dimensions

List list() Sequence of R structures of
any (and possibly
different) nature

Individual�variable table data.frame() Two-dimensional table
where a row represents
an individual and a
column represents a
variable (numerical or
factor). The columns can
be of different natures,
but must have the same
length

Factor factor(), ordered() Vector of character strings
associated with a
modality table

Dates as.Date() Vector of dates
Time series ts() Time series, containing the

values of a variable
observed at several time
points
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Memorandum

<-, ->: variable assignment arrows
mode(), typeof(): gives the nature of an object
is.numeric(): determine whether an object is numerical
TRUE, FALSE, is.logical(): True, False, determine whether an object is a Boolean
is.character(): determine whether an object is a character string
NA, is.na(): missing value, determine whether a value is missing
class(): determine the structure of an object
c(): create a sequence of elements of the same nature
matrix(), array(): create a matrix, a multidimensional table
list(): create a list (collection of different structures)
data.frame(): create an individual�variable table
factor(): create a factor

✎
Exercises

3.1- What is the output of this instruction: 1:3ˆ2 ?
3.2- What is the output of this instruction: (1:5)*2 ?
3.3- What is the output of these instructions: var<-3? Var*2?
3.4- What is the output of these instructions: x<-2? 2x<-2*x?
3.5- What is the output of these instructions: root.of.four <- sqrt(4)?

root.of.four?
3.6- What is the output of these instructions: x<-1? x< -1?
3.7- What is the output of this instruction: An even number <- 16?
3.8- What is the output of this instruction: "An even number" <- 16?
3.9- What is the output of this instruction: "2x" <- 14?

3.10- What is the output of this instruction: An even number?
3.11- Two symbols have been removed from this R output. What are they?

> 2
+
[1] 6

3.12- What is the output of this instruction: TRUE + T +FALSE*F + T*FALSE +F?
3.13- Name the five data types in R.
3.14- Give the R instruction which gives the following output:

> X
[,1] [,2] [,3]

[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12

3.15- Name the data structures (classes) available in R.
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Ï
Worksheet

Study of Body Mass Index

We wish to analyze the characteristics of a sample of children. These children went
through a medical examination in their first year of kindergarten in 1996–1997 in
schools in Bordeaux (South West France). The sample below contains information
on ten children between the ages of 3 and 4.

The following information is available for each child:

� gender: G for girls and B for boys;
� whether their school is in a ZEP (zone d’éducation prioritaire: area targeted

for special help in education, recognized as socially deprived): Y for yes and
N for no;

� age in years and months (two variables: one for years and one for months);
� weight in kg, rounded to the nearest 100 g;
� Height in cm, rounded to the nearest 0.5 cm.

Name Edward Cynthia Eugene Elizabeth Patrick John Albert Lawrence Joseph Leo

Gender G G B G B B B B B B
ZEP Y Y Y Y N Y N Y Y Y
Weight 16 14 13.5 15.4 16.5 16 17 14.8 17 16.7
Years 3 3 3 4 3 4 3 3 4 3
Months 5 10 5 0 8 0 11 9 1 3
Height 100.0 97.0 95.5 101.0 100.0 98.5 103.0 98.0 101.5 100.0

In statistics, it is of the utmost importance to know the type of the variables under
study: qualitative, ordinal or quantitative. These types can be specified in R, thanks
to the structure functions we introduced earlier in this chapter.

Try the following manipulations under R. Remember to use the work strategy we
presented at the beginning of the chapter.

3.1- Choose the best R function to save the data from each variable in vectors
which you will call Individuals, Weight, Height and Gender.

3.2- Where possible, calculate the mean of the variables.
3.3- Calculate the BMI of the individuals. Group the results in a vector called BMI

(be careful of the units).
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3.4- Group these variables in the R structure which seems most appropriate.
3.5- Use R’s online help to get information on the plot() function.
3.6- Make a scatter plot of Weight as a function of Height. Remember to add a

title to your graph and to label your axes.



Chapter 4
Importing, Exporting and Producing Data

Prerequisites and goals of this chapter
� Chapter 3.
� This chapter describes the instructions to enter data in R. It presents the various

possibilities R offers to import or export data, to and from software as different
as Excel, SPSS, Minitab, SAS or Matlab. It also shows how to interact with
databases (SQL queries). You may benefit from reading the (very complete)
manual http://cran.r-project.org/doc/manuals/R-data.pdf.

SECTION 4.1

Importing Data

4.1.1 Importing Data from an ASCII Text File

Either your data are already available in a text file in the ASCII format or you can
enter them by hand using a text editor such as Wordpad under Microsoft Windows
or Emacs under Linux.

Note

Entering data by hand can be done for a small number of values. If you are
dealing with large amounts of data, it is more convenient to use a spreadsheet
(see the next section).

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3 4,
© Springer Science+Business Media New York 2013
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The three main R functions to import data from a text file are presented in the
following table (Table 4.1).

Table 4.1: Data importation functions

Function name Description

read.table() Best suited for data sets presented as tables, as it is often the case in statistics
read.ftable() Reads contingency tables
scan() Much more flexible and powerful. Use this in all other cases

4.1.1.1 Reading Data with read.table()

The following R instruction will read the data present in a file (to be chosen in a
dialogue window) and import them into R as a data.frame which we have chosen to
call my.data.

my.data <- read.table(file=file.choose(),header=TRUE,sep="nt",
dec=".",row.names=1)

The function read.table() accepts many arguments; the most common are
described in the following table (Table 4.2).

Table 4.2: Main arguments to read.table()

Argument name Description

file=path/to/file Location and name of the file to be read
header=TRUE Logical value indicating whether the variable names are given on the first

line of the file
sep="nt" The values on each line are separated by this character ("nt"=Tab

character; ""=whitespace; ","=,; etc.)
dec="." Decimal mark for numbers ("." or ",")
row.names=1 The first column of the file gives the individuals’ names. If this is not the

case, simply omit this argument

When using the function read.table(), you will need to specify the value of
the argument file which must contain, in a character string, the name of the file
and possibly its complete path. You might have noticed that we used the function
file.choose(), which opens up a dialogue window to select a file and returns the
required character string. This is an easy method to get the path to a file, but the path
can also be specified explicitly:

my.data <- read.table(file="C:/MyFolder/data.txt")
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Warning

Note that file paths are specified using slashes (/). This notation comes from
the UNIX environment. In R, you cannot use backslashes (\), as you would in
Microsoft Windows, unless you double all the backslashes (\\).

Another option is using the function setwd() to change the work directory
(equivalent to using the menu “File/Change current directory”). The argument file
will then accept the file name alone, without its path.

setwd("C:/MyFolder")
my.file <- "mydata.txt"
data <- read.table(file=my.file)

Your data are now available in the R console: they are stored in the object which
you have chosen to call data. You can visualize them by typing data; you can also
type head(data) or tail(data) to display only the beginning or the end of the
data set.

Tip

� The function attach() (see Chap. 9) gives direct access to the variables
(columns) of a data.frame by typing the name of a variable as it is written
on the first line of the file in ASCII format (assuming this is the case).

attach(data)

� If your file contains completely empty lines, or incomplete lines, use the
two arguments fill=TRUE and blank.lines.skip=FALSE.
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Do it yourself Ï
Create a folder called DataFolder. Now download the file http://www.
biostatisticien.eu/springeR/Intima_Media_Thickness.txt and
save it in the folder DataFolder.

Use the function readLines() to visualize the beginning of the data file, to
get an idea of how it is structured and thus to determine which arguments of
the function read.table() you will need.

setwd("path/to/DataFolder/") # Replace path/to/ with your
path.

readLines("Intima_Media_Thickness.txt",n=5)

You will get the following output:

[1] "GENDER AGE height weight tobacco packyear SPORT measure alcohol"

[2] "1 33 170 70 1 1 0 0,52 1"
[3] "2 33 177 67 2 20 0 0,42 1"
[4] "2 53 164 63 1 30 0 0,65 0"
[5] "2 42 169 76 1 26 1 0,48 1"

You will notice that the first line gives the variables names. Fields are sep-
arated by simple whitespace, and the decimal mark is a comma. Therefore,
you need to use the arguments header=TRUE, sep=" " and dec=",".

mydata <- read.table("Intima_Media_Thickness.txt",sep=" ",
header=TRUE,dec=",")

mydata # To display the content of mydata.
head(mydata) # Only displays the first few rows

# of the data.frame.

Note that some data points are missing, as indicated by the symbol NA.

Let us now verify the structure of the object mydata and the types of its
columns:

class(mydata)
str(mydata)

The function attach() is used to enable a direct access to the variables of
the table.

attach(mydata)

The command names(mydata) outputs variable names. You can use these
to make calculations with the variables, for example,

mean(AGE) # Mean of age.
var(taille) # Variance of the heights.

Note that case (upper/lower) is important.

http://www.biostatisticien.eu/springeR/Intima_Media_Thickness.txt
http://www.biostatisticien.eu/springeR/Intima_Media_Thickness.txt
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The function read.table() takes many arguments. However, since many data
sets come in a standard format, a few functions exist to read these easily. Such
functions are in fact equivalent to calling read.table() with some arguments
filled in by default.

For example, if you have a file in the .csv format (csv stands for comma-
separated values), created for example using OpenOffice’s spreadsheet, you can
also use the following function:

read.csv(file.choose()) # To read comma-separated data
# (with a . as decimal mark).

read.csv2(file.choose()) # To read semi-colon-separated data
# (with a , as decimal mark).

To read Tab-separated data, it is better to use

read.delim(file.choose()) # (with a . as decimal mark).
read.delim2(file.choose())# (with a , as decimal mark).

4.1.1.2 Reading Data with read.ftable()

Sometimes, individual data are not available: instead, we only have a contingency
table. In this case, the relevant import function is read.ftable().

For instance, suppose that the contents of the file Intima ftable.txt come in the
following form:

"alcohol" "nondrinker" "occasional drinker" "regular drinker"
"GENDER" "tobacco"
"M" "non-smoker" 6 19 7

"former smoker" 0 9 0
"smoker" 1 6 5

"F" "non-smoker" 12 26 2
"former smoker" 3 5 1
"smoker" 1 6 1

The following functions can be used to read and display these data in R:

Intima.table <- read.ftable("Intima_ftable.txt",row.var.names
=c("GENDER","tobacco"),col.vars=list("alcohol"=
c("nondrinker","occasional drinker",
"regular drinker")))

ftable(Intima.table)

The output will then be

alcohol nondrinker occasional drinker regular drinker
GENDER tobacco
M non-smoker 6 19 7

former smoker 0 9 0
smoker 1 6 5

F non-smoker 12 26 2
former smoker 3 5 1
smoker 1 6 1
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See also

We shall present a descriptive analysis of this type of data in Chap. 11,
pp. 345, 352 and 371. Note that standard statistical tests on contingency tables
are possible, such as the chi-squared independence test presented in Chap. 13,
p. 435. You may also be interested in the article http://www.jstatsoft.
org/v17/i03/paperwhich presents several tools to analyse such data.

4.1.1.3 Reading Data with the Function scan()

The function scan() takes many arguments. It is useful when the data are
not organized as a rectangular table. We recommend you read the documenta-
tion help(scan).

For example, suppose your data file, called Intima Media2.txt, contains the
following lines:

File description:
-----------------

The individual data are registered for nine variables
in the following order:
GENDER AGE height weight tobacco packyear SPORT measure alcohol

Data:
-----

1 33 170 70 1 1 0 0,52 1 2 33 177 67 2 20 0 0,42 1
2 53 164 63 1 30 0 0,65 0 2 42 169
76 1 26 1 0,48 1

Here are the commands we suggest you use to read this file. The argument
skip=n is used to omit reading the first n lines of the file.

# Reading variable names:
variable.names <- scan("Intima_Media2.txt",skip=4,nlines=1,what="")
# Reading data:
data <- scan("Intima_Media2.txt",skip=7,dec=",")
mytable <- as.data.frame(matrix(data,ncol=9,byrow=TRUE))
colnames(mytable) <- variable.names

Here is the output of variable mytable:

GENDER AGE height weight tobacco packyear SPORT measure alcohol
1 1 33 170 70 1 1 0 0.52 1
2 2 33 177 67 2 20 0 0.42 1
3 2 53 164 63 1 30 0 0.65 0
4 2 42 169 76 1 26 1 0.48 1

http://www.jstatsoft.org/v17/i03/paper
http://www.jstatsoft.org/v17/i03/paper
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Tip

Note that the functions read.table() and scan() can also be used to read
online ASCII files directly from the Internet.

read.table("http://www.biostatisticien.eu/springeR/
temperature.dat")

4.1.2 Importing Data from Excel or the Open Office Spreadsheet

4.1.2.1 Copy-Pasting

Using the mouse, select the range of the data (in the spreadsheet) which you wish to
incorporate into R. Once the data are selected, copy them to the clipboard (from the
Edit menu, or with the keyboard shortcuts CTRL+C on Windows or COMMAND+C on a
Mac).

All you need to do now is type the following instructions in the R console to
transfer the data from the clipboard:

x <- read.table(file("clipboard"),sep="nt",header=TRUE,dec=",")

Tip

The instruction fix(x) opens a small spreadsheet in R, which can be used to
visualize and edit the data stored in x. It is more useful than the command edit,
which only allows modifications. Similarly, the function View() displays the
data in a small spreadsheet, but cannot be used to edit them.

Warning

Be aware that the Excel file might include formulae or other hidden char-
acters in the data range which you wish to copy. A possible workaround is to
first copy and then do a special paste of this data range in a new sheet of the
Excel file. You can then use the function read.table() on this new sheet, as
indicated above.
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4.1.2.2 Using an Intermediary ASCII File

Save your file in an ASCII format, then refer to the previous section.

� Under Excel, go to File / Save as ... and choose Data type:

Text (tab-separated) (*.txt) (*.txt), then save.

� Under OpenOffice, go to File / Save as ... and choose File type: CSV
text (.csv; .txt), then save.
In the next window, choose:

– field separator: Tab
– text separator: "

then click OK.

4.1.2.3 Using Specialized Packages

A few packages exist to read .xls files directly in R. One function worth mention-
ing is read.xls() from the package gdata, which works very well, as long as your
computer has PERL installed (this free software can be obtained by installing the file
http://www.biostatisticien.eu/springeR/Rtools29.exe). You can also
use the package xlsReadWrite.

4.1.3 Importing Data from SPSS, Minitab, SAS or Matlab

The following table gives the packages and R functions you can use to import data
from common proprietary software (Table 4.3).

The function lookup.xport()outputs (as a list) information on the SAS library
of a SAS XPORT file (extension *.xpt).

Warning

First, note that if you use Windows, the package foreign is pre-installed
(but not loaded) in R and that you cannot install another version from the
CRAN (only Linux and Mac versions are available).

Also note the following caveats. The function read.spss() can require the
argument reencode="utf8" under Linux. The function read.mtp() works
on files containing only numeric data. At the time of writing, the function
read.xport() cannot be used to read files directly from the Internet.

http://www.biostatisticien.eu/springeR/Rtools29.exe
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Table 4.3: Packages and R importation functions from common software

Software Package R function File extension Output format
SPSS foreign read.spss() *.sav list

Minitab foreign read.mtp() *.mtp list

SAS foreign read.xport() *.xpt data.frame

Matlab R.matlab readMat() *.mat list

4.1.4 Large Data Files

R can handle large data sets. For this, you need to specify explicitly the type of
each column. If you do not, R will have to read the entire file to check that numeric
columns are indeed numeric (it could be the case that a column contain numbers at
the beginning, then character strings later on). The following example illustrates this
point with genomic data, well known for their large size. You will need to down-
load the 50MB file http://www.biostatisticien.eu/springeR/dbsnp123.
dat to your computer, then try the instructions below.

Warning

Be careful that if you issue the commands below, this may freeze your R
session for a few minutes.

tm <- Sys.time() # Gets the current time.
dbsnp <- read.table("dbsnp123.dat")
Sys.time()-tm
Time difference of 5.063645 mins

tm <- Sys.time()
dbsnp <- read.table("dbsnp123.dat",colClasses=rep("character",3))
Sys.time()-tm
Time difference of 13.75810 secs

Very big data sets can thus be handled by R relatively quickly, when the correct
instructions are given. The main limit is how much RAM you have available. Note
also that using the function scan() instead of read.table() in the previous
example would give similar execution times.

Large data sets are sometimes stored in binary format. In that case, the function
readBin() can be used to read the data. We shall see an example in the practical of
Chap. 7.

See also

If R displays a message indicating a failure of memory, you could consult
with profit Sect. 9.8.

http://www.biostatisticien.eu/springeR/dbsnp123.dat
http://www.biostatisticien.eu/springeR/dbsnp123.dat
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Advanced users

If the function scan() is used correctly, a text file can be read very quickly
(as quickly as with the SAS software, for example).

If your file is really big, you should consider storing your data in a data
base (e.g., MySQL) and accessing them piece by piece. See Sect. 4.4 for more
details.

Also note that a few packages exist to handle large data sets, such as R.huge
and filehash. The latter is more general than the former: with the filehash
package, the limit to the size of data which can be handled is the size of the
hard disk.

SECTION 4.2

Exporting Data

4.2.1 Exporting Data to an ASCII Text File

The relevant function is write.table().

Suppose you have a data.frame called mydata, containing data that you wish to
save in a text file. You would then use the instruction:

write.table(mydata, file = "myfile.txt", sep = "nt")

Note

There also exists a function write(), which is used on vectors and matrices.
This function has an interesting argument: ncolumns allows you to specify the
number of columns in the resulting file. Note however that the file will contain
the transpose of the matrix or vector you are writing.

4.2.2 Exporting Data to Excel or OpenOffice Calc

For example, type the following instructions in the R console:

X <- data.frame(Weight=c(80,90,75),Height=c(182,190,160))
write.table(X,file("clipboard"),sep="nt",dec=",",row.names=FALSE)
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The data have now been copied to the clipboard. You can now paste them in your
spreadsheet, for example, by typing CTRL+V.

You can also use the package xlsReadWrite (only under Windows).

SECTION 4.3

Creating Data

4.3.1 Entering Toy Data

This section shows how you can quickly create some data. This is useful when you
need to test various R functions on small data sets.

The main functions are c(), seq(), :() and rep():

� The function c() is used to create a vector by concatenating its arguments:

> c(1,5,8,2.3)
[1] 1.0 5.0 8.0 2.3

� The function seq() generates a sequence of values as a vector.

> seq(from=4,to=5)
[1] 4 5
> seq(from=4,to=5,by=0.1)
[1] 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
> seq(from=4,to=5,length=8)
[1] 4.000000 4.142857 4.285714 4.428571 4.571429 4.714286
[7] 4.857143 5.000000

Note

The functions c() and rep() can also be used to create character strings.

� The function ":"() generates a sequence of integers.

> 1:12
[1] 1 2 3 4 5 6 7 8 9 10 11 12

� The function rep() replicates the values of its first argument in several smart
ways. We leave it to the sagacity of the reader to understand all the following in-
structions:

> rep(1,4)
[1] 1 1 1 1
> rep(1:4, 2)
[1] 1 2 3 4 1 2 3 4
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> rep(1:4, each = 2)
[1] 1 1 2 2 3 3 4 4
> rep(1:4, c(2,1,2,3))
[1] 1 1 2 3 3 4 4 4
> rep(1:4, each = 2, len = 4)
[1] 1 1 2 2
> rep(1:4, each = 2, len = 10)
[1] 1 1 2 2 3 3 4 4 1 1
> rep(1:4, each = 2, times = 3)
[1] 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

4.3.2 Generating Pseudo-Random Numbers

The function runif() generates a sequence of randomly generated numbers
(at uniform).

> runif(5)
[1] 0.4344968 0.7153407 0.4561363 0.9580362 0.7260245
> runif(5,min=2,max=7)
[1] 5.634204 4.046403 5.415685 5.251441 2.209174

The function rnorm() generates a sequence of random numbers from a normal
distribution.

> rnorm(5)
[1] 0.13585341 -0.09483162 -2.12326103 0.45974393 1.29587671
> rnorm(5,mean=2,sd=3)
[1] -0.8673785 3.5660222 0.9401026 3.4794672 4.2175481

See also

We shall encounter many other similar functions in Chap. 12, p. 405.

4.3.3 Entering Data from a Hard Copy

� Creating a vector with the function scan()

In this context, scan() is more user-friendly than c(). It can be used to easily
enter data as you go.

> z <- scan() # R is waiting for you to enter data.
1: 4.2
2: 5.6
3: 8.9
4: 1
5: 2.3
6: # Press ENTER after an empty line

# to halt the procedure.
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Read 5 items
> z
[1] 4.2 5.6 8.9 1.0 2.3

� Creating several vectors of different lengths

The function data.entry() is useful for this purpose. This function does not
output anything. The variables you enter by hand are stored in the small spreadsheet
which is displayed.

# The following instruction (which is explained later on)
# can be used to delete all the objects in the session.
rm(list=ls())
data.entry("")

You can now change the names of the variables (columns) and enter data. Columns
can contain different numbers of observations. If you leave the mini spreadsheet and
type in the instruction ls(), you will see the variables you have created.

Mac

The way this function works can vary on different operating systems.

� Creating an individual�variables table

To enter data directly into R’s mini spreadsheet (as if using Excel), simply use
the function de() (for data entry), as shown in the following instruction.

X <- as.data.frame(de(""))

Warning

Remember to change the names of the variables, as well as the types of the
columns (numeric or character), by clicking on the cells on the first row of
the table (the row with the variable names). Once you have finished entering
your data, you need to close that window to return to the R console.

If you need to make small modifications to your data table X, simply use the
function fix(): fix(X).

Tip

The following (optional) function is used to name the rows of X:

rownames(X) <- paste("ind",1:nrow(X),sep="")

The names of the individuals will then appear in the first column of the mini
spreadsheet (called row.names).
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SECTION 4.4

� Reading/Writing in Databases

R is capable of communicating with most database management systems (DBMS).
In this section, we briefly look at the main operations for the DBMS MySQL.

EasyPHP is an environment with two servers (an Apache web server and a
MySQL database server), a script interpreter (PHP) and an SQL administration tool
(phpMyAdmin). Download, install and run the latest version of EasyPHP (http://
www.easyphp.org).

Note

You may need to configure your firewall so that it allows services started by
EasyPHP (mysqld and Apache).

4.4.1 Creating a Database and a Table

Start EasyPHP and right-click on the icon on the right side of the task bar (you
may need to check on the small white triangle Show hidden icons), then select
Administration. Your web browser should then open (if it does not, try using the
browser firefox and configuring Apach by right-clicking on the EasyPHP icon
and then Configuration: Listen 127.0.0.1:80). On the page that opens up,
check on the open button in section MODULES to get to the phpMyAdmin admin-
istration page. Then click on the tab Databases and create a new database called
BMI. Click on the icon Create table which appears in the left panel.

Then give a name to the table: mytable.

Define four fields for your table (one per line), and fill them as follows:

� Name = FirstName, Type = VARCHAR and Length/Values = 20;
� Name = Weight, Type = FLOAT and Length/Values = 3;
� Name = Height, Type = FLOAT and Length/Values = 3;
� Name = BMI, Type = FLOAT and Length/Values = 5.

Click on Save.

4.4.2 Creating a Data Source Compatible with MySQL

The functions odbcConnect(), sqlQuery() and odbcClose() from package
RODBC are useful to handle databases from different systems (PostgreSql, MySQL,

http://www.easyphp.org
http://www.easyphp.org
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etc.) through R, thanks to an ODBC (open database connectivity) link created with
an existing database. Under Windows, here is how you create an ODBC data source
compatible with MySQL.

First install MyODBC (MySQL Connector/ODBC) (http://dev.mysql.com/
downloads/connector/odbc). Next, in order to display the window data source
(ODBC), you will have to execute the file C:\Windows\System32\odbcad32.
exe.

Tip

For a 64-bit computer, you may need to use file C:\Windows
\Syswow64\odbcad32.exe.

Click on Add and select entry MySQL ODBC 5.1 Driver. In the windows which
opens up, enter the following fields:
Data Source Name: dsnBMI
TCP/IP Server: 127.0.0.1 Port: 3306
User: root
Database: BMI

Then click on button Test. The message Connection successful should appear
if everything happened correctly. Then click on OK (twice) to close the dialogue
boxes.

http://dev.mysql.com/downloads/connector/odbc
http://dev.mysql.com/downloads/connector/odbc
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We have thus configured an ODBC link which will allow R to communicate with
MySQL.

Linux

Check that the file /etc/odbcinst.ini includes references to the
drivers of the MySQL database. You also need to modify (as root) the file
/etc/odbc.ini so that it includes the following lines:

[dsnBMI] # name of the data source.

Description =

Driver = MySQL

Server = localhost

Database = BMI

Port = 3306

4.4.3 Writing in a Table

We shall now write information in table mytable of base BMI. The following in-
structions are used to add the weight, height and BMI (temporarily set at 0) for an
individual named Peter:

> require("RODBC")
> Connection <- odbcConnect(dsn="dsnBMI",uid="root",pwd="")
> request <- "INSERT INTO mytable VALUES ('Peter',72,182,0)"
> result <- sqlQuery(Connection,request)
> odbcClose(Connection)

Here is now a multiple insertion example:

> FirstNames <- c("Ben","John")
> Weight <- c(70,75)
> Height <- c(190,184)
> BMI <- round(Weight/(Height/100)ˆ2,3)
> mat <- cbind(FirstNames,Weight,Height,BMI)
> insertmult <- function(vect)
+ paste("(",toString(c(encodeString(vect[1],quote="'"),
+ vect[-1])),")",sep="")
> tobeinserted <- toString(apply(mat,1,insertmult))
> tobeinserted
[1] "('Ben', 70, 190, 19.391),('John', 75, 184, 22.153)"
> require("RODBC")
> Connection <- odbcConnect(dsn="dsnBMI",uid="root",pwd="")
> request <- paste("INSERT INTO mytable (FirstName,Weight,
+ Height,BMI)VALUES ",tobeinserted,sep="")
> result <- sqlQuery(Connection,request)
> odbcClose(Connection)
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Tip

You can return to phpMyAdmin to check that the table mytable has indeed
been modified (tab Browse).

4.4.4 Reading a Table

To read from R information in the table mytable, you can use the following
instructions:

> require("RODBC")
> Connection <- odbcConnect(dsn="dsnBMI",uid="root",pwd="")
> request <- "SELECT * FROM mytable"
> data <- sqlQuery(Connection,request)
> odbcClose(Connection)
> data

FirstName Weight Height BMI
1 Peter 72 182 0.000
2 Ben 70 190 19.391
3 John 75 184 22.153
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Memorandum

read.table(): read a rectangular data file
scan(): read data line by line
read.ftable(): read a contingency table
ftable(): display a contingency table
readLines(): read and display a few lines of a file
file.choose(): open a dialogue window to select a file
file, header, sep, dec, row.names, skip: main arguments of read.table()
read.spss(), read.mtp(), read.xport(), readMat(): import data from other software
write.table(): write a data file
file("clipboard"): copy from or paste to the clipboard
c(): create a sequence of elements of the same nature
seq(): create a sequence of numbers or a character string
rep(): repeat the values of the first argument
de(), data.entry(): enter data using a mini spreadsheet
fix(): modify a data.frame or a matrix in a mini spreadsheet

✎
Exercises

4.1- Name the three main R functions to import data from an ASCII text file.
4.2- One of the usual data reading functions takes the following arguments:

header, sep, dec, row.names, skip, nrows. Explain their purpose. Give
an example of a value each argument can take.

4.3- What is the purpose of the function readLines()?
4.4- What is the purpose of the function fix()?
4.5- Give the specificities of the functions read.csv(), read.csv2(),

read.delim() and read.delim2().
4.6- What is the purpose of the function read.ftable() ?
4.7- What is the difference between the functions scan() and read.table()?
4.8- Explain how you would import data from an Excel spreadsheet. Give details.
4.9- Which package includes several functions to import data from commercial

statistical software?
4.10- When reading a large data file, which argument to the function

read.table() can speed up the reading?
4.11- Which R function should be used to write to a file a data set contained in a

data.frame? Which other function do you know?
4.12- Name the four basic functions to create a vector.
4.13- Explain how the function seq() can be used to get the following vector:

[1] 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

4.14- Give the shortest R instruction which outputs the following vector:

1 1 2 2 3 3
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4.15- Give the shortest R instruction which outputs the following vector:

1 2 3 1 2 3

4.16- Name two R functions which can be used to enter data by hand in a mini
spreadsheet.

Ï
Worksheet

Reading Various Data Sets

A- Entering Data from a Hard Copy

� Cold sore: A total of 30 patients have been randomly assigned to one of five
treatments against cold sore, including one placebo (there are six patients in each
treatment group). For each patient, the number of days between the apparition of the
first blisters and complete healing has been recorded.

Treatments
trt1 (placebo) trt2 trt3 trt4 trt5
5 4 6 7 9
8 6 4 4 3
7 6 4 6 5
7 3 5 6 7
10 5 4 3 7
8 6 3 5 6

We would like to know whether there is a difference between the treatments
by comparing the mean healing time in each independent random sample (treat-
ment group). The relevant statistical method is called ANOVA; we shall present it
in Chap. 15. In this practical, we shall simply see how to enter these data in R to
compute the sample mean for each treatment.

4.1- Enter the data in R directly, using the function de().
4.2- Use the function attach() and then the function mean() to compute the mean

for each treatment.
4.3- Compute the means of all treatments simultaneously, thanks to the function

colMeans().
4.4- Use the function write.table() to save your data.frame in a file called blis-

ters.txt.
4.5- Open your file in a text editor and check that there was no problem.
4.6- Use the function rm() to delete all the R objects you have created in your work

environment.
4.7- Import the file blisters.txt with the function read.table() and display the

data.
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� Risk factors for atherosclerosis: As part of a study on risk factors for atheroscle-
rosis, data were collected and are summed up in this contingency table:

alcohol nondrinker occasional-drinker regular-drinker
GENDER tobacco
M non-smoker 6 19 7

former smoker 0 9 0
smoker 1 6 5

F non-smoker 12 26 2
former smoker 3 5 1
smoker 1 6 1

It would be interesting to know whether there is a dependence between smoking and
drinking, according to gender. To enter these data in R, there are several steps:

4.1- Use the function scan() to get a matrix X of size 6�3. This matrix will contain
the data only.

4.2- Use the instruction class(X) <- "ftable" to specify that it is a contin-
gency table.

4.3- Type the two instructions:

attributes(X)$col.vars <- list(alcohol=c("nondrinker",
"occasional-drinker","regular-drinker"))

attributes(X)$row.vars <- list(GENDER=c("M","F"),tobacco=
c("non-smoker","former smoker","smoker"))

4.4- Display the contingency table you have created.
4.5- Use the function write.ftable() to save the contingency table in a file

called athero.txt.
4.6- Open the file in a text editor and check that there was no problem.
4.7- Use the function rm() to delete all the R objects you have created in your work

environment.
4.8- Import the file athero.txt with the function read.table() and display the

data.

B- Importing from Other Software

During a study of BMI (body mass index) of children, a team of statisticians
collected data in different formats. As an exercise, we are going to read these various
formats. There are several files called bmichild, but with different file extensions:

4.1- Import the file bmichild.xls into a data.frame called bmi.XLS.
4.2- Import the file bmichild.xpt into a data.frame called bmi.SAS.
4.3- Import the file bmichild.sav into a data.frame called bmi.SPSS.
4.4- Import the file bmichild.mat into a data.frame called bmi.MAT. The procedure

is trickier for this file, so here are detailed instructions:

x <- readMat("bmichild.mat")
class(x) # x is a list
x # you can see that the data are in $bmi[,,1]
x <- x$bmi[,,1]
# Note that the elements of GENDER and zep
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# are recorded in a list.
x$GENDER
class(x$GENDER) <- "character"
x$GENDER
class(x$zep) <- "character"
bmi.MAT <- as.data.frame(x)

4.5- To check that there was no problem during importation, use the function
summary() on all these data.frames. This will display a few numerical sum-
maries.

4.6- All these data.frames are identical. Save one of them in a file called
bmichild.txt.

C- Importing More Complex Data Files

Statisticians often encounter data files in non-standard formats. This section
therefore provides training in reading several non-standard files on which we wish
to perform statistical analysis.

4.1- Import the file raf98.gra into the most relevant structure. To this end, you will
need to read the associated file geoidformat.txt which describes the file format.

4.2- Import the file Infarction.xls into a data.frame. Make sure you handle missing
values correctly.

4.3- The file nutrition elderly.txt contains 13 variables measured on 226 indi-
viduals. Import the file into a data.frame (hint: use the functions t() and
as.data.frame()).

4.4- The file Birth weight.txt contains ten variables measured on 189 individuals.
Import it into a data.frame, which will contain the names of the variables as
well as the names of the individuals (these are available in the column Id).
Remember that you can use the online help!



Chapter 5
Data Manipulation, Functions

Prerequisites and goals
� First, read Chaps. 3 and 4.
� In this chapter, we shall present elementary data manipulation functions. We

shall also describe the main control structures and show how to use the extrac-
tion tool of the components of an object. This is a very powerful method, which
you will need in order to use R in the most efficient way. We shall present direct
extraction and extraction by logical mask. We shall also explain how to handle
character strings and dates in R.

SECTION 5.1

Operations on Vectors, Matrices and Lists

5.1.1 Vector Arithmetic

One of the advantages of R is that it can operate on vectors and matrices. For exam-
ple, the third instruction below

> x <- c(1,2,4,6,3)
> y <- c(4,7,8,1,1)
> x+y
[1] 5 9 12 7 4

returns, in a single operation, the vector of sums .x1 C y1; : : : ; xn C yn/.

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3 5,
© Springer Science+Business Media New York 2013
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Warning

This is one of the main strengths of R. It is called vectorization. You
should get used to working in this fashion. Thus, you should avoid using
programming loops, as is often done in other languages: such code would
run much slower.

R operates in a similar fashion for many functions, such as +, *, -, /, exp,
log, sin, cos, tan, sqrt and so on.

For example, the following instruction calculates the exponential of all the ele-
ments of the matrix M:

> M <- matrix(1:9,nrow=3)
> exp(M)

[,1] [,2] [,3]
[1,] 2.718282 54.59815 1096.633
[2,] 7.389056 148.41316 2980.958
[3,] 20.085537 403.42879 8103.084

5.1.2 Recycling

At this stage, it is important to note how R behaves when given an operation on two
vectors of different lengths. R will complete the shortest vector, reusing the values
of this vector. The following example should help understand this concept:

> x <- c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) # Vector of length
# 15.

> y <- c(1,2,3,4,5,6,7,8,9,10) # Vector of length
# 10.

> x+y # Vector of length
# 15.

[1] 2 4 6 8 10 12 14 16 18 20 12 14 16 18 20

R has completed the vector y thus c(1,2,3,4,5,6,7,8,9,10,1,2,3,4,5)
by reusing its values, in a circular fashion.
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Note

This behaviour is called recycling. It is important that you be aware of this
behaviour, since it can provoke hard-to-detect errors. As a matter of fact, R
usually displays a warning:

Warning message:
In x + y :

the length of the longest object is not a multiple
of the length of the shortest object

Here is another example of recycling, this time used to create a matrix. The vector
1:4 is reused in a circular fashion to fill in the matrix, which is declared to be of
size 3 � 3.

> matrix(1:4,ncol=3,nrow=3)
[,1] [,2] [,3]

[1,] 1 4 3
[2,] 2 1 4
[3,] 3 2 1

5.1.3 Basic Functions

Here are a few basic data manipulation functions. These are used very often; it is
essential that you know them.

� length(): returns the length of a vector.

> length(c(1,3,6,2,7,4,8,1,0))
[1] 9

� sort(): sorts the elements of a vector, in increasing or decreasing order.

> sort(c(1,3,6,2,7,4,8,1,0))
[1] 0 1 1 2 3 4 6 7 8
> sort(c(1,3,6,2,7,4,8,1,0),decreasing=TRUE)
[1] 8 7 6 4 3 2 1 1 0

� rev(): rearranges the elements of a vector in reverse order.

> rev(c(1,3,6,2,7,4,8,1,0))
[1] 0 1 8 4 7 2 6 3 1

� order(), rank() : the first function returns the vector of (increasing or decreas-
ing) ranking indices of the elements. The second function returns the vector of
ranks of the elements. In case of a tie, the ordering is always from left to right.

> vec <- c(1, 3, 6, 2, 7, 4, 8, 1, 0)
> names(vec) <- 1:9
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> vec
1 2 3 4 5 6 7 8 9
1 3 6 2 7 4 8 1 0
> sort(vec)
9 1 8 4 2 6 3 5 7
0 1 1 2 3 4 6 7 8
> order(vec)
[1] 9 1 8 4 2 6 3 5 7
> rank(vec)

1 2 3 4 5 6 7 8 9
2.5 5.0 7.0 4.0 8.0 6.0 9.0 2.5 1.0

� unique(): as the name suggests, this function removes the duplicates of a vector.

> unique(c(1,3,6,2,7,4,8,1,0))
[1] 1 3 6 2 7 4 8 0

� duplicated(): indicates elements which have already been encountered earlier
in the vector (read from left to right).

> duplicated(c(1,3,6,2,7,4,8,1,0))
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

5.1.4 Operations on Matrices and Data.Frames

We shall describe several specialized R functions which give information on a matrix
(or a data.frame) or help manipulate its rows and columns.

See also

Standard matrix operations (product, decomposition, Jacobian, . . . ) are de-
scribed in Chap. 10, page 316.

5.1.4.1 Information on Architecture

Here are a few functions which give information on a matrix or a data.frame:

� dim(): size of the matrix or data.frame
� nrow(): number of rows
� ncol(): number of columns
� dimnames(): names of rows and columns (as a list)
� names(), colnames(): names of columns
� rownames(): names of rows
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Do it yourself Ï
Import, into an R object called X, the data from the file http://www.
biostatisticien.eu/springeR/Weight_birth.xls, and use the
above functions on X. Note that the first column of the file gives the pa-
tient identifier.

5.1.4.2 Merging Tables

It is often very useful to combine (merge) several matrices or data.frames. The basic
functions to this end are cbind() to merge columns and rbind() to merge rows.

�Merging columns

The generic function is cbind().

> cbind(1:4,5:8)
[,1] [,2]

[1,] 1 5
[2,] 2 6
[3,] 3 7
[4,] 4 8

However, this function is not optimal, as the following example shows. Let us try
to merge in columns the two following tables:

X1=

Id GENDER Weight
1 M 75
2 F 68
3 F 48
4 M 72

[ X2=

Id GENDER Height
1 M 182
2 F 165
3 F 160
4 M 178

> X1 <- data.frame(Id=1:4,GENDER=c("M","F","F","M"),
+ Weight=c(75,68,48,72))
> X2 <- data.frame(Id=1:4,GENDER=c("M","F","F","M"),
+ Height=c(182,165,160,178))
> cbind(X1,X2)

Id GENDER Weight Id GENDER Height
1 1 M 75 1 M 182
2 2 F 68 2 F 165
3 3 F 48 3 F 160
4 4 M 72 4 M 178

http://www.biostatisticien.eu/springeR/Weight_birth.xls
http://www.biostatisticien.eu/springeR/Weight_birth.xls
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This works, but it is a shame that the columns Id and GENDER are duplicated. A
very useful function in this context is merge():

> merge(X1,X2)
Id GENDER Weight Height

1 1 M 75 182
2 2 F 68 165
3 3 F 48 160
4 4 M 72 178

Now suppose that the individuals are not sorted in the same way in both tables.

X1=

Id GENDER Weight
1 M 75
2 F 68
3 F 48
4 M 72

[ X3=

Id GENDER Height
2 F 165
1 M 182
4 M 178
3 F 160

In this case, you cannot use the function cbind(), but the function merge() still
works:

> X3 <- data.frame(Id=c(2,1,4,3),GENDER=c("F","M","M","F"),
+ Height=c(165,182,178,160))
> merge(X1,X3)

Id GENDER Weight Height
1 1 M 75 182
2 2 F 68 165
3 3 F 48 160
4 4 M 72 178

You will have noticed that, by default, the function merge() combines two
data.frames. Let X and Y be the two data.frames we wish to merge, and let Z be
the data.frame resulting from the merge of X and Y. The merge is based upon the
columns of these two data.frames which have the same names. These columns will
be called “common columns”. The argument by can be used to specify (force)
which columns are common. The value of this argument can be a vector of names, a
vector of indices or a vector of logical values. All other columns will then be treated
as different columns by merge(), even if they bear the same name. The function
merge() then works in the following way:

� For every row (individual) of the data.frame X, the function merge() compares
the elements of this row to those of every row of Y, but only over the subset of
common columns
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� If it finds a perfect match, it considers that it is the same individual: this individual
is added to Z, then completed with the values from the non-common columns of
X, then with the values from the non-common columns of Y.

� If no perfect match is found, the individual is either added to Z and completed
with NA’s (if the argument all() takes the value TRUE) or removed (if the argu-
ment all() takes the value FALSE, which is the default value).

� The operation is repeated for the next row, until the last row.

This example should help clarify things:

> X <- data.frame(GENDER=c("F","M","M","F"),Height=c(165,182,
+ 178,160),Weight=c(50,65,67,55),Income=c(80,90,60,50))
> Y <- data.frame(GENDER=c("F","M","M","F"),Height=c(165,182,
+ 178,160),Weight=c(55,65,67,85),Salary=c(70,90,40,40),
+ row.names=4:7)
> X

GENDER Height Weight Income
1 F 165 50 80
2 M 182 65 90
3 M 178 67 60
4 F 160 55 50
> Y

GENDER Height Weight Salary
4 F 165 55 70
5 M 182 65 90
6 M 178 67 40
7 F 160 85 40
> merge(X,Y,by=c("GENDER","Weight"))

GENDER Weight Height.x Income Height.y Salary
1 F 55 160 50 165 70
2 M 65 182 90 182 90
3 M 67 178 60 178 40
> merge(X,Y,by=c("GENDER","Weight"),all=TRUE)

GENDER Weight Height.x Income Height.y Salary
1 F 50 165 80 NA NA
2 F 55 160 50 165 70
3 F 85 NA NA 160 40
4 M 65 182 90 182 90
5 M 67 178 60 178 40
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Warning

You will have noticed that, by default, the function merge() does not take
into account the names of the individuals in the data.frames X and Y, when
determining the common individuals. The names of the individuals can be in-
cluded either by adding a column Id to X and Y to identify the individuals or
by using the name "row.names" as the value of the argument by:

> merge(X,Y,by=c("row.names","Weight"))
Row.names Weight GENDER.x Height.x Income GENDER.y Height.y

1 4 55 F 160 50 F 165
Salary

1 70
> merge(X,Y,by=c("row.names","Weight"),all=TRUE)

Row.names Weight GENDER.x Height.x Income GENDER.y Height.y
1 1 50 F 165 80 <NA> NA
2 2 65 M 182 90 <NA> NA
3 3 67 M 178 60 <NA> NA
4 4 55 F 160 50 F 165
5 5 65 <NA> NA NA M 182
6 6 67 <NA> NA NA M 178
7 7 85 <NA> NA NA F 160

Salary
1 NA
2 NA
3 NA
4 70
5 90
6 40
7 40

�Merging lines

The generic function is rbind().

> rbind(1:4,5:8)
[,1] [,2] [,3] [,4]

[1,] 1 2 3 4
[2,] 5 6 7 8

The function smartbind() from the package gtools is more sophisticated, as
shown in the following example:

> require("gtools")
> df1 <- data.frame(A=1:5, B=LETTERS[1:5]) # The square

# brackets [] to
# extract

> df2 <- data.frame(A=6:10, E=letters[1:5]) # elements are
# described in
# section 5.5.

> smartbind(df1, df2)
A B E

1.1 1 A <NA>
1.2 2 B <NA>
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1.3 3 C <NA>
1.4 4 D <NA>
1.5 5 E <NA>
2.1 6 <NA> a
2.2 7 <NA> b
2.3 8 <NA> c
2.4 9 <NA> d
2.5 10 <NA> e

Tip

The package gdata includes several very interesting functions to manipu-
late data.

5.1.4.3 The Function apply()

An oft-used function is apply(), which applies a given function (specified as the
value of the argument FUN) to all rows (MARGIN=1) or to all columns (MARGIN=2) of
a matrix or data.frame.

> X <- matrix(c(1:4, 1, 6:8), nr = 2)
> X

[,1] [,2] [,3] [,4]
[1,] 1 3 1 7
[2,] 2 4 6 8
> apply(X, MARGIN=1, FUN=mean)
[1] 3 5
> apply(X, MARGIN=2, FUN=sum)
[1] 3 7 7 15

Tip

When the operation is summing or calculating the means of rows or
columns, other possible functions are rowSums(), colSums(), rowMeans(),
colMeans().

Do it yourself Ï
We are going to see how to calculate the sum of squares of all rows of a ma-
trix. First, create a matrix M of size 5 � 2 containing numbers of your choos-
ing. Next, use the function apply() on the rows of the matrix M. You will
take the argument and associated value FUN=function(x) {sum(xˆ2)}.



94 5 Data Manipulation, Functions

Warning

In this do it yourself, we saw in passing how to use a self-created function
(sum(xˆ2)) when calling apply(), by using the reserved word function.
In Chap. 8, we shall explore in further detail how to create more elaborate
functions.

5.1.4.4 The Function sweep()

The function sweep() is very useful. It is used to “sweep out” (in a sense defined by
the value of the argument FUN) a certain statistic (given by the value of the argument
STATS) from every row (MARGIN=1) or from every column (MARGIN=2) of a table.
The two next examples should help you understand this function.

> X
[,1] [,2] [,3] [,4]

[1,] 1 3 1 7
[2,] 2 4 6 8
> # Substract 3 from row 1, and 5 from row 2.
> sweep(X,MARGIN=1,STATS=c(3,5),FUN="-")

[,1] [,2] [,3] [,4]
[1,] -2 0 -2 4
[2,] -3 -1 1 3
> # Divide the first two columns by 2, and the last two columns

# by 3.
> sweep(X,MARGIN=2,STATS=c(2,2,3,3),FUN="/")

[,1] [,2] [,3] [,4]
[1,] 0.5 1.5 0.3333333 2.333333
[2,] 1.0 2.0 2.0000000 2.666667

5.1.4.5 The Function stack()

The function stack() concatenates into a single vector the values of certain
columns of a data.frame. This function outputs a data.frame, with the stacked vector
in its first column and a second column containing a factor which indicates the ori-
gin of each observation. The function unstack() performs the reverse operation.
This function is very useful for analysis of variance (ANOVA).

> X <- data.frame(trt1=c(1,6,3,5),trt2=c(8,8,3,1))
> X

trt1 trt2
1 1 8
2 6 8
3 3 3
4 5 1
> stack(X)

values ind
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1 1 trt1
2 6 trt1
3 3 trt1
4 5 trt1
5 8 trt2
6 8 trt2
7 3 trt2
8 1 trt2

5.1.4.6 The Function aggregate()

The function aggregate() splits a data.frame into subpopulations according to a
factor (specified by the argument by) and applies a given function to each subpopu-
lation.

> X<-data.frame(Weight=c(80,75,60,52),Height=c(180,170,165,150),
+ Cholesterol=c(44,12,23,34),
+ Gender=c("Male","Male","Female","Female"))
> X

Weight Height Cholesterol Gender
1 80 180 44 Male
2 75 170 12 Male
3 60 165 23 Female
4 52 150 34 Female
> aggregate(X[,-4],by=list(Gender=X[,4]),FUN=mean)

Gender Weight Height Cholesterol
1 Female 56.0 157.5 28.5
2 Male 77.5 175.0 28.0

Note

The instruction X[,-4] is used to extract all the columns of X except the
fourth column. Extraction instructions are explored in further detail in Sect. 5.4.

5.1.4.7 The Function transform()

This function makes transformations on the columns of a data.frame. For example,
the following example transforms the height in centimetres into the height in metres
and adds to the data.frame a column with the BMI.

> X <- transform(X,Height=Height/100,BMI=Weight/(Height/100)ˆ2)
> X

Weight Height Cholesterol Gender BMI
1 80 1.80 44 Male 24.69136
2 75 1.70 12 Male 25.95156
3 60 1.65 23 Female 22.03857
4 52 1.50 34 Female 23.11111
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See also

The package plyr can be used to manipulate data tables in a simple and
efficient way.

5.1.5 Operations on Lists

The functions lapply() and sapply() are similar to the function apply(): they
apply a function to every element of a list. The former outputs a list; the latter
outputs a vector if possible.

> x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,
+ FALSE,TRUE))
> lapply(x,mean) # Mean of each element of the list.
$a
[1] 5.5
$beta
[1] 4.535125
$logic
[1] 0.5
> lapply(x,quantile,probs=(1:3)/4) # Median and quartiles of the

# elements of the list.
$a
25% 50% 75%
3.25 5.50 7.75
$beta

25% 50% 75%
0.2516074 1.0000000 5.0536690
$logic
25% 50% 75%
0.0 0.5 1.0
> sapply(x, quantile) # Quantiles of the elements of the list.

a beta logic
0% 1.00 0.04978707 0.0
25% 3.25 0.25160736 0.0
50% 5.50 1.00000000 0.5
75% 7.75 5.05366896 1.0
100% 10.00 20.08553692 1.0
> i36 <- sapply(3:6, seq) # Creates a list of vectors.
> i36
[[1]]
[1] 1 2 3
[[2]]
[1] 1 2 3 4
[[3]]
[1] 1 2 3 4 5
[[4]]
[1] 1 2 3 4 5 6
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> sapply(i36, sum) # Sum of every vector in the list.
[1] 6 10 15 21

Tip

The function do.call() takes two arguments: the first is the name of a
function and the second is the name of a list. It executes the function, taking as
input the elements of the list. We shall see an example of use in the practical.
We should also mention the existence of the function mapply().

SECTION 5.2

Logical and Relational Operations

The two logical values are TRUE (or T) and FALSE (or F). Also note that in R, NA
is considered to be a logical constant. Logical vectors are very useful in R, for
example, for extracting elements by logical mask, as we shall see later on.

Table 5.1 on next page gives operators and functions which take logical values
as input or output.

Warning

Note that the two following instructions give different results:

> all.equal(0.2-0.1,0.3-0.2)
[1] TRUE
> (0.2-0.1) == (0.3-0.2)
[1] FALSE

This stems from the fact that a computer has a limited precision for its cal-
culation. The function all.equal() takes an optional tolerance argument for
rounding errors. We shall discuss this further in Sect. 5.7.1. See also Sect. 5.9
that explains why the second instruction above returns FALSE.
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Table 5.1: Operators and functions which take logical values as input or output

Operator in R Description Example Output

logical() Create a vector of
logical values

logical(2) F F

as.logical() Transform into
logical values

as.logical(c(0,1)) F T

is.logical() Is the argument a
logical value?

is.logical(F) T

x < y Is xi < yi ? c(1,4)<c(2,3) T F

x > y Is xi > yi ? c(1,4)>c(2,3) F T

x <= y Is xi <D yi ? c(1,4)<=c(1,3) T F

x >= y Is xi >D yi ? c(1,4)>=c(1,3) T T

x == y Is xi D yi ? c(1,4)==c(1,3) T F

x != y Is xi ¤ yi ? c(1,4)!=c(1,3) F T

!x Negation of x !c(T,F) F T

x & y Term-by-term
conjunction
(AND)

c(T,T) & c(T,F) T F

x && y Sequential
conjunctions

F && T && T F

x | y Term-by-term
disjunction (OR)

c(T,T) | c(T,F) T T

x || y Sequential
disjunction (OR)

F || T || F T

xor() Exclusive
disjunction (XOR)

xor(c(T,T),c(T,F)) F T

any() TRUE if at least
one of the xi is
TRUE

any(c(T,F)) T

all() TRUE if all of the
xi are TRUE

all(c(T,F)) F

all.equal() Is xi � yi ? all.equal(0.2-0.1,0.3-0.2) T

(see the argument
tolerance)

identical() TRUE if
8i; xi D yi

identical(1,as.integer(1)) F

SECTION 5.3

Operations on Sets

R can handle all usual operations on sets (Table 5.2).



5.4 Extracting and Inserting Elements 99

> A <- c(4,6,2,7) # A first set.
> B <- c(2,1,7,3) # A second set.
> vec <- c(2,3,7) # A few elements.

Table 5.2: Operations on sets

Operation R Instruction Output

Membership: a 2 A is.element(vec,A) T F T

Inclusion (subset): A � B all(A %in% B) F

Superset: A � B all(B %in% A) F

Intersection: A \ B intersect(A,B) 2 7

Union: A [ B union(A,B) 4 6 2 7 1 3

Complement: AnB setdiff(A,B) 4 6

Symmetric difference:
.A [ B/n.A \ B/

setdiff(union(A,B),intersect(A,B)) 4 6 1 3

Tip

It is very easy in R to define its own set functions, such as functions of
inclusion, containment and symmetric difference.

> "%subset%" <- function(A,B) all(A %in% B)
> "%superset%" <- function(A,B) B %subset% A
> "%symdiff%"<-function(A,B) setdiff(union(A,B),intersect(A,B))

SECTION 5.4

Extracting and Inserting Elements

In this section, we shall see how to extract part of a vector, matrix or list. Indeed, R
includes very specific mechanisms to this effect, which can be confusing at first, but
are very powerful tools.
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5.4.1 Extracting from/Inserting into Vectors

� Extraction

To extract components from a vector, use the function "["(). It can take the
following arguments:

� A vector of indices of elements to extract
� A vector of indices of elements not to extract
� A vector of logical values TRUE/FALSE indicating which elements to extract

A few examples will make this easier to understand.

> vec <- c(2,4,6,8,3)
> vec[2]
[1] 4
> "["(vec,2) # Note: "[" is indeed a function.
[1] 4
> vec[-2] # All elements except the second.
[1] 2 6 8 3
> vec[2:5]
[1] 4 6 8 3
> vec[-c(1,5)]
[1] 4 6 8
> vec[c(T,F,F,T,T)] # Extraction by logical mask.
[1] 2 8 3
> vec>4
[1] FALSE FALSE TRUE TRUE FALSE
> vec[vec>4] # Extraction by logical mask.
[1] 6 8

Warning

It is important to note here the syntactical simplicity of an instruction such
as x[y>0], which extracts from x all elements of index i such that yi > 0.

> x <- 1:5
> y <- c(-1,2,-3,4,-2)
> x[y>0]
[1] 2 4

You need to learn to use as often as possible such constructions, which are
called logical masks. There are two advantages: the code is easy to read and
execution is very fast.

Also note the functions which(), which.min() and which.max(), which are
often very useful.
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> mask <- c(TRUE,FALSE,TRUE,NA,FALSE,FALSE,TRUE)
> which(mask) # Outputs the indices corresponding to the values

# TRUE.
[1] 1 3 7
> x <- c(0:4,0:5,11)
> which.min(x) # Outputs the index of the smallest value.
[1] 1
> which.max(x) # Outputs the index of the largest value.
[1] 12

Warning

It is important to note that R does not handle index 0, unlike some other
programming languages.

� Replacement

Replacing elements in a vector is done in a similar fashion to extraction. All
you need to do is select the elements as if you wanted to extract them, then use the
affectation symbol <- followed by the replacement elements. Of course, you need
to specify the same number of replacement elements as of selected elements.

Let us examine a few examples of this principle.

> z
[1] 0 0 0 2 0
> z[c(1,5)] <- 1
> z
[1] 1 0 0 2 1
> z[which.max(z)] <- 0
> z
[1] 1 0 0 0 1
> z[z==0] <- 8 # The ´i such that

# ´i is worth 0 are replaced with
# 8.

> z
[1] 1 8 8 8 1

� Insertion

Inserting or adding elements to a pre-existing vector uses the function c().

> vecA <- c(1, 3, 6, 2, 7, 4, 8, 1, 0)
> vecA
[1] 1 3 6 2 7 4 8 1 0
> (vecB <- c(vecA, 4, 1))
[1] 1 3 6 2 7 4 8 1 0 4 1
> (vecC <- c(vecA[1:4], 8, 5, vecA[5:9]))
[1] 1 3 6 2 8 5 7 4 8 1 0
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This mechanism provides the ability to complete a vector whose size is not fixed
at first.

> a <- c()
> a <- c(a,2)
> a <- c(a,7)
> a
[1] 2 7

Do it yourself Ï
� Create the vector height <- c(182,150,160,140.5,191) and the
vector gender <- c(0,1,1,1,0) containing the height (in cm) and the
gender (coded as 0=M/1=F) of five people. Extract from the vector height
the heights of the men. Use the method of extracting by indices, then repeat
the task with a logical mask.

� Extract from the following vector all numbers between 2 and 3:

> x <- c(0.1,0.5,2.1,3.5,2.8,2.7,1.9,2.2,5.6)

5.4.2 Extracting from/Inserting into Matrices

� Extraction

Two methods are possible to extract elements from a matrix X. Each method has
its own syntax.

(a) Extracting by indices: X[indr,indc], where indr is the vector of indices of
rows and indc is the vector of indices of columns to extract. Omitting indr
(respectively indc) means that all rows are selected (respectively all columns).
Note that indr and indc can be preceded by a minus sign (-) to indicate
elements not to extract.

(b) Extracting by logical mask: X[mask], where mask is a matrix of logical values
TRUE/FALSE of the same size as X, indicating which elements to extract.

Here are a few examples of the first method:

> Mat <- matrix(1:12,nrow=4,ncol=3,byrow=TRUE)
> Mat

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
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> Mat[2,3] # Extracting the element at the intersection
# of row 2 and column 3.

[1] 6
> Mat[,1] # All rows, and only column 1.
[1] 1 4 7 10
> Mat[c(1,4),] # All columns, and rows 1 and 4.

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 10 11 12
> Mat[3,-c(1,3)] # Row 3 and column 2.
[1] 8

Here is an example with a logical mask:

> MatLogical <- matrix(c(TRUE,FALSE),nrow=4,ncol=3)
> MatLogical # Is of the same size as Mat.

[,1] [,2] [,3]
[1,] TRUE TRUE TRUE
[2,] FALSE FALSE FALSE
[3,] TRUE TRUE TRUE
[4,] FALSE FALSE FALSE
> Mat[MatLogical] # Make sure that you understand this

# instruction.
[1] 1 7 2 8 3 9

Tip

It so happens that a matrix is stored in R as a long vector, the concatenation
of all columns. Try for example the command as.vector(Mat). Elements of
a matrix can thus be extracted without using the form [rows,columns], but
instead by using vector extraction [ind]where ind is a vector of indices (or a
vector of logical values) of elements to extract from the long vector.

> ind
[1] 2 4 6 8 3
> Mat[ind]
[1] 4 10 5 11 7
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Warning

Using the function "["() sometimes leads to a change in the structure of
the manipulated object. Let us see this on the example below.

> m <- matrix(1:6,nrow=2) ; m
[,1] [,2] [,3]

[1,] 1 3 5
[2,] 2 4 6
> m[,1]
[1] 1 2
> class(m[,1])
[1] "integer"

It is found that the extraction has transformed our result into a simple one
row vector. This can be annoying since here one could expect to get a one
column matrix. But there is a solution to this problem as the following code
shows:

> m[,1,drop=FALSE]
[,1]

[1,] 1
[2,] 2

Do it yourself Ï
Try to automatically alternate the vectors c(0,2,3,4) and c(1,0,0,0), so
as to get the vector c(1,0,0,2,0,3,0,4) (hint: use the functions cbind(),
t() and as.vector()).

As with vectors, the function which() can be used to return the indices of the
elements of a matrix which verify some condition. For example,

> m <- matrix(c(1,2,3,1,2,3,2,1,3),3,3)
> m

[,1] [,2] [,3]
[1,] 1 1 2
[2,] 2 2 1
[3,] 3 3 3
> which(m == 1) # m is seen as the concatenation of

# its columns.
[1] 1 4 8
> which(m == 1,arr.ind=TRUE) # Outputs the indices as couples.

row col
[1,] 1 1
[2,] 1 2
[3,] 2 3
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� Insertion

Inserting elements into a matrix is done as with vectors. Elements are selected
either by indices or with a logical mask and are then replaced with other elements,
thanks to the affectation symbol <-.

> m
[,1] [,2] [,3]

[1,] 1 1 2
[2,] 2 2 1
[3,] 3 3 3
> m[m!=2] <- 0
> m

[,1] [,2] [,3]
[1,] 0 0 2
[2,] 2 2 0
[3,] 0 0 0
> Mat <- Mat[-4,] ; Mat

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
> m[Mat>7] <- Mat[Mat>7]
> m

[,1] [,2] [,3]
[1,] 0 0 2
[2,] 2 2 0
[3,] 0 8 9

Tip

Another function can be used to extract (and therefore also to insert) el-
ements: subset(). For example, try subset(airquality, Temp > 80,
select = c(Ozone, Temp)).

Do it yourself Ï
> m1 <- matrix(c(0,22,0,23,34,0,0,0,28),ncol=3)
> m2 <- matrix(c(10,1,4,10,9,9,2,6,4),ncol=3)
> m1

[,1] [,2] [,3]
[1,] 0 23 0
[2,] 22 34 0
[3,] 0 0 28
> m2

[,1] [,2] [,3]
[1,] 10 10 2
[2,] 1 9 6
[3,] 4 9 4

Replace all non-zero values of m1 with the corresponding values in m2.
Remove the second column from m1.
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5.4.3 Extracting from/Inserting into Arrays

Extracting from and inserting into arrays is done as with matrices, except that there
can be more than two dimensions. We shall therefore only list a few examples and
leave it to the reader to check that they understand everything.

> A <- array(1:12,dim=c(2,2,3))
> A
, , 1

[,1] [,2]
[1,] 1 3
[2,] 2 4
, , 2

[,1] [,2]
[1,] 5 7
[2,] 6 8
, , 3

[,1] [,2]
[1,] 9 11
[2,] 10 12
> A[2,2,1]
[1] 4
> A[1,2,3] <- 4 # Replaces 11 with 4.
> which(A==4,arr.ind=TRUE)

dim1 dim2 dim3
[1,] 2 2 1
[2,] 1 2 3
> A[which(A==4,arr.ind=TRUE)]
[1] 4 4
> length(A[A>4])
[1] 7

5.4.4 Extracting from/Inserting into Lists

� Extraction

Extracting from lists is slightly more complicated than with matrices, because
each element of a list is a list itself. Using the function "["() on a list therefore
outputs another list.

> L <- list(12,c(34,67,8),Mat,1:15,list(10,11))
> class(L)
[1] "list"
> L
[[1]]
[1] 12
[[2]]
[1] 34 67 8
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[[3]]
[,1] [,2] [,3]

[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[[4]]
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[[5]]
[[5]][[1]]
[1] 10
[[5]][[2]]
[1] 11
> L[2]
[[1]]
[1] 34 67 8
> class(L[2])
[1] "list"
> L[c(3,4)]
[[1]]

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[[2]]
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Because lists are used to store elements of different natures, the function "[["()
must be used to access the elements of a list.

> L[[2]]
[1] 34 67 8
> "[["(L,2)
[1] 34 67 8
> class(L[[2]])
[1] "numeric"
> L[[5]][[2]]
[1] 11

Warning

The following instructions generate an error:

> L[2,3]
Error in L[2, 3] : incorrect number of dimensions
> L[[2,3]]
Error in L[[2, 3]] : incorrect number of subscripts
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Advanced users

R defines what is called recursive indexing. For example, the next example
starts by retrieving the content of the second element of the list L (i.e. the vector
c(34,67,8)) and then extracts the third element of this vector.

> L[[c(2,3)]] # Recursive indexing.
[1] 8

Furthermore, there is a mechanism in R to explicitly name the various elements
of a list. The symbol $ can then be used to extract elements by name.

> L <- list(cars=c("FORD","PEUGEOT"),climate=
+ c("Tropical","Temperate"))
> L[["cars"]]
[1] "FORD" "PEUGEOT"
> L$cars
[1] "FORD" "PEUGEOT"
> L$climate
[1] "Tropical" "Temperate"

� Insertion

Inserting elements is done as previously with the arrow <-.

> L$climate[2] <- "Continental"
> L
$cars
[1] "FORD" "PEUGEOT"
$climate
[1] "Tropical" "Continental"

Tip

A column name can include spaces. To access it, you will then need to use
quotation marks.

> L <- list("pretty cars"=c("FORD","PEUGEOT"))
> L
$‘pretty cars‘
[1] "FORD" "PEUGEOT"
> L$"pretty cars"
[1] "FORD" "PEUGEOT"

SECTION 5.5

Manipulating Character Strings

Manipulating character strings is very useful when dealing with many statistical
files and when annotating graphs. We shall therefore present the major R functions
in this context.



5.5 Manipulating Character Strings 109

As we have seen, creating a character string is done with quotation marks "" or
with the function as.character().

> string <- c("one","two","three")
> string
[1] "one" "two" "three"
> as.character(1:3)
[1] "1" "2" "3"

Tip

The function noquote() can be used to suppress the display of quotation
marks in the R output.

> noquote(string)
[1] one two three

The functions sQuote() and dQuote() are used for different styles of quo-
tation marks.
The function format() is used to produce a personalized display, for example,
data.frames.

> zz <- data.frame("First names"=c("Pierre","Benoit","Rémy"),
+ check.names=FALSE)
> zz

First names
1 Pierre
2 Benoit
3 Rémy
> format(zz, justify = "left")

First names
1 Pierre
2 Benoit
3 Rémy

Other interesting functions to manage the display are cat(), sprintf()
and print().

The function nchar() counts the number of symbols in a string. It can be used
on a vector of strings.

> string1 <- c("a","ab","B","bba","one","!@","brute")
> nchar(string1) # Counts the number of symbols in each string.
[1] 1 2 1 3 3 2 5
> string1[nchar(string1)>2]
[1] "bba" "one" "brute"
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Tip

The commands letters and LETTERS return the 26 letters of the alphabet
in lower and upper case.

> letters
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n"
[15] "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"
> string1[string1 %in% c(letters,LETTERS)]
[1] "a" "B"

The function paste() is used to concatenate several strings.

> string2 <- c("e","D")
> paste(string1,string2) # Concatenates the strings.
[1] "a e" "ab D" "B e" "bba D" "one e" "!@ D"
[7] "brute e"
> paste(string1,string2,sep="-") # A separator can be included

# between the strings.
[1] "a-e" "ab-D" "B-e" "bba-D" "one-e" "!@-D"
[7] "brute-e"
> paste(string1,string2,collapse="",sep="") # collapse is used

# to concatenate
# the elements
# into a single
# string.

[1] "aeabDBebbaDonee!@Dbrutee"

The function substring() is used to extract sub-strings from a string.

> substring("abcdef",first=1:3,last=2:4)
[1] "ab" "bc" "cd"

The function strsplit() is used to split a string.

> strsplit(c("05 Jan","06 Feb"), split=" ")
[[1]]
[1] "05" "Jan"
[[2]]
[1] "06" "Feb"

The function grep() is used to search for a pattern in a vector of strings. It
returns the indices of the elements of the vector containing this pattern.

> grep("i",c("Pierre","Benoit","Rems"))
[1] 1 2

The function gsub() replaces all occurrences of a pattern found in a string with
another string.

> gsub("i","L",c("Pierre","Benoit","Rems"))
[1] "PLerre" "BenoLt" "Rems"

The function sub() only replaces the first occurrence.

> sub("r","L",c("Pierre","Benoit","Rems"))
[1] "PieLre" "Benoit" "Rems"
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Tip

The functions tolower() and toupper() are used, respectively, to put a
string into lower or upper case.

> tolower("loWER")
[1] "lower"
> toupper("UPper")
[1] "UPPER"

Do it yourself Ï
Input the following data.frame:

> X <- data.frame(date=c("03 JANUA","02 SEPTE","15 NOVEM"),
+ sun=c(10,15,12))
> X

date sun
1 03 JANUA 10
2 02 SEPTE 15
3 15 NOVEM 12

Remove the first column from X and add in two new columns: one called
day, containing the day number coded as an numeric (1 or 2 digits), and the
other called month, containing the month coded as four letters in lower case
(hint: use the function transform()).

SECTION 5.6

Manipulating Dates and Time Units

5.6.1 Displaying the Current Date

In R, there are two functions to display the current date: Sys.time() and date().

> Sys.time()
[1] "2013-01-09 16:04:35 EST"
> date()
[1] "Wed Jan 9 16:04:35 2013"

The year, month, day, hours, minutes and seconds can be extracted as follows:

> as.numeric(substring(Sys.time(),c(1,6,9,12,15,18),
+ c(4,7,10,13,16,19)))
[1] 2013 1 9 16 4 35
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Tip

The function system.time() is used to find the execution time of an in-
struction. The function Sys.sleep() is used to halt the execution of a list of
instructions for a given number of seconds.

5.6.2 Extracting Dates

In statistics, one often needs to extract dates from files. There are several functions
in R to handle these data, which would otherwise be very difficult to manipulate.

The first useful instruction is strptime(), which is used to retrieve a date from
a string of characters and to put it into an R object of class POSIXlt (named list of
vectors containing informations on date and time).

> strptime("27/mar/73",format="%d/%b/%y")
[1] "1973-03-27"

In the preceding instruction, you will have noted the argument format, which
is used to describe how the date and/or time is coded in the character string. Many
codes are available; we describe them in Table 5.3 on next page.

Note

If the previous instruction outputs NA, you may need to use the following
instruction to change the regional parameters (locale) used by default by R:

> Sys.setlocale("LC_TIME","C")

Tip

Under Linux, the instruction man strptime typed into a terminal window
can give you more codes.

Do it yourself Ï
Try to read the following dates with the function strptime():

> dates1
[1] "3jan1948" "4jan1950" "30apr1961" "18sep1990"

> dates2
[1] "01/21/99 21:04:22" "03/28/99 22:19:55"
[3] "07/15/99 03:01:32"
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Table 5.3: Codes for the function strptime(). The examples have been created with
format(Sys.time(),"%letter")

Code Description Example

%a Day of the week, abbreviated Mon

%A Day of the week, full name Monday

%b Month, abbreviated Dec

%B Month, full name December

%c Date and time, locale-specific Mon 20 Dec 2010 13:06:24 CEST

%d Day of the month (01–31) 20

%H Hours (0–24) 13

%I Hours (0–12) 01

%j Day of the year (001–366) 354

%m Month (01–12) 12

%M Minutes (00–59) 06

%S Seconds (00–61), with 2 “leap seconds” 24

%U Week of the year (00–53); the 1st Sunday is
counted as day 1 of week 1

51

%w Day of the week (0–6); Sunday is 0 1

%W Week of the year (00–53); the 1st Monday is
counted as day 1 of week 1

51

%x Date, locale-specific 2010-12-20

%X Time, locale-specific 13:06:24

%y Year without the century 10

%Y Year with the century 2010

%z Time offset from Greenwich; ’�0800’ is 8 h West
of Greenwich

+0100

%Z Time zone as a character string (output only) CEST

Note that the functions weekdays() and months() can be used to retrieve the
day and month of a date in the POSIXlt format.

5.6.3 Operations on Dates

Before manipulating dates, you should always start by converting dates and times
into objects of the class POSIXlt or POSIXct. There are two functions in R to this
effect: as.POSIXct(), which gives the number of seconds elapsed since 1st January
1970 as a numeric vector, and as.POSIXlt(), which is a list of vectors representing

:

sec 0–61: seconds
min 0–59: minutes
hour 0–23: hours
mday 1–31: day of the month
mon 0–11: number of months since the 1st month of the year
year : number of years since 1900
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wday 0–6: day of the week, starting on Sunday
yday 0–365: day of the year
isdst : Daylight Saving Time (DST) flag. Positive if DST is ob-

served, zero otherwise (negative if unknown)
Here are a few instructions using these functions:

> z <- Sys.time() # In the POSIXct format.
> class(z) ; is.double(z)
[1] "POSIXt" "POSIXct"
[1] TRUE
> z
[1] "2013-01-09 16:04:35 EST"
> as.numeric(z) # Number of seconds since 1st January 1970.
[1] 1357765476
> # The origin can be changed:
> as.POSIXct(as.numeric(z), origin="1960-01-01")
[1] "2003-01-09 21:04:35 EST"
> # About fourty years have elapsed:
> as.numeric(z)/60/60/24/7/c(53,52)
[1] 42.35816 43.17274
> z <- as.POSIXlt(z) # In the POSIXlt format.
> class(z) ; is.list(z)
[1] "POSIXt" "POSIXlt"
[1] TRUE
> z
[1] "2013-01-09 16:04:35 EST"

> names(z)
[1] "sec" "min" "hour" "mday" "mon" "year" "wday"
[8] "yday" "isdst"
> z$year # Number of years since 1900.
[1] 113

Note that the functions as.POSIXct() and as.POSIXlt() can be used either
on vectors of numeric values or on vectors of character strings. In the former case,
you will need to give a value to the argument origin, as a character string repre-
senting a date. In the latter case, each character string must be in a format such as
"2001-02-03" or "2001/02/03", optionally followed by a space and a time in the
format "14W52" or "14W52W03". It might be useful to use the function strptime()
to get a format compatible with these functions (see Table 5.3 for a description).

> as.POSIXct("2001/02/03")
[1] "2001-02-03 EST"
> as.numeric(as.POSIXct("2001/02/03"))
[1] 981176400
> as.POSIXlt("2001/02/03")$wday
[1] 6
> lct <- Sys.getlocale("LC_TIME")
> Sys.setlocale("LC_TIME","C") # See Note on page 112.
[1] "C"
> as.POSIXlt(strptime("27/mar/73",format="%d/%b/%y"))
[1] "1973-03-27"
> Sys.setlocale("LC_TIME",lct) # To recover the locale.
[1] "fr_FR.UTF-8"
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Note

The class Date can also be used to represent dates.

> z <- as.Date(c("2006-06-01", "2007-01-01"))
> class(z)
[1] "Date"
> z[1] + 100 # Add 100 days.
[1] "2006-09-09"
> z[2]-z[1]
Time difference of 214 days
> z[2] < z[1]
[1] FALSE

The advantage of storing dates in objects with one of the classes described above,
apart from the pretty display, is that operations can then be made on these dates
(difference between two dates, anteriority test,. . . ), as illustrated in the following
examples:

> date2 <- as.POSIXlt("2009-04-15")
> date1 <- as.POSIXlt("2000-11-24")
> date2-date1
Time difference of 3063.958 days
> difftime(date2,date1,units="hours")
Time difference of 73535 hours
> date1 <= date2
[1] TRUE

Advanced users

The package chron includes many functionalities to handle dates.

SECTION 5.7

Control Flow

Like all programming languages, R includes the necessary control structures to
direct the execution flow of a program.
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5.7.1 Conditional Instructions

� Instruction switch()

It is used in the following way:

switch(<expr:test>,<expr:case1>=<code1>,<expr:case2>=<code2>,

etc.)

In the instruction above, <expr:test> is either a number or a character string.
This instruction outputs <code1> if <expr:test> is equal to <expr:case1>,
<code2> if <expr:test> is equal to <expr:case2> and so on. If <expr:test>
is not equal to any of the <expr:casei>, the function switch() outputs NULL.

Here is an example:

> x <- rcauchy(10) # Generate ten random numbers from a Cauchy
# distribution.

> my.input <- "mean"
> switch(my.input,mean = mean(x),median = median(x))
[1] -0.5472605
> my.input <- "median"
> switch(my.input,mean = mean(x),median = median(x))
[1] -0.3508165
> my.input <- "variance"
> switch(my.input,mean = mean(x),median = median(x))

Note

You can also include a single unnamed value, i.e. a <codei>without the as-
sociated <exprWcasei>=. This value will then be output instead of NULL when
the value of the argument EXPR is not equal to any of the cases.

> switch(EXPR = "b", a=4, b=2:3, "Else: nothing")
[1] 2 3
> switch(EXPR = "QQ", a=4, b=2:3, "Else: nothing")
[1] "Else: nothing"

� Instructions if() and else

The conditional instruction if() can be used in the two following ways:

if (<cond>) <expr:true>

or
if (<cond>) <expr:true> else <expr:false>

The argument <cond>must be a logical value, which therefore takes one of the val-
ues TRUE or FALSE. Note that <cond> is first transformed by
as.logical(<cond>), so that real numbers are allowed (0 is the only number
to be transformed into FALSE) as well as character strings "T" or "TRUE" and "F"
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or "FALSE". Also note that <cond> must be of length 1. Otherwise, only the first
element of <cond> will be taken into account, and R will display a warning.
In practice, of course, <cond> is often the result of an elaborate logical operation,
computed with the logical operators we described above. Here is an example of
how these instructions can be used. Make sure you understand them well.

> if (TRUE) 1+1
[1] 2
> x <- 2
> y <- -3
> if (x <= y) f
+ z <- y-x
+ print("x smaller than y")
+ g else f
+ z <- x-y
+ print("x larger than y")
+ z
+ g
[1] "x larger than y"
[1] 5

Tip

The function ifelse() is used to execute one or the other of two functions
applied to a vector, depending on the values of a logical condition. For example,

> x <- c(3:-2)
> sqrt(ifelse(x >= 0, x, NA))
[1] 1.732051 1.414214 1.000000 0.000000 NA NA

� Preferred logical operators

Make sure you use logical operators well. For conditional instructions, we advise
you to use:

� x && y rather than x & y
� x || y rather than x | y

This next example shows why. If you use the long form &&, the logical conditions
after the if are evaluated from left to right, until a FALSE is found.

> as.logical(x <- 2) # as.logical(x, non-zero real number)
# outputs TRUE.

[1] TRUE
> x
[1] 2
> rm(x) # Remove x.
> if (FALSE & as.logical(x <- 2)) 4*7 # <cond> is evaluated to

# be FALSE. Both parts
# of <cond> are
# evaluated.
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> x
[1] 2
> if (FALSE && (x <- 3)) 4*7 # If you use &&, only the first

# part of <cond> is evaluated.
> x
[1] 2

When you use the long form ||, the logical conditions after if are evaluated
from left to right until a TRUE is found. You should therefore use the long form,
since it will make your code run faster.

� The function all.equal() for the if() instruction

When using the if() instruction (above all for real values), you should:

� use isTRUE(all.equal(x,y)) rather than x == y
� use !isTRUE(all.equal(x,y)) rather than x != y

This point is illustrated in the following example, in which x and y are not exactly
equal, because of machine precision:

> x <- 0.1
> y <- 0.1
> x==y
[1] TRUE
> x <- 0.2-0.1 # It seems that
> y <- 0.3-0.2 # x is equal to y.
> x == y # This is not the case, because the computer

# has a limited precision. See Sect. 5.9.
[1] FALSE
> all.equal(x,y,tolerance=10ˆ-6) # The function all.equal()

# solves this issue.
[1] TRUE

Tip

The function all.equal() takes an optional argument tolerance, used to
fix the tolerance limit below which the difference between two values is taken
to be zero.

5.7.2 Loop Instructions

A loop is a control structure which allows a portion of code to be executed several
times in a row, until an exit condition is satisfied or until a pre-specified number of
loops has been reached.

There are three loop instructions in R: for, while() and repeat. In addition,
the reserved words next and break give extra control on code execution. The
instruction break immediately exits the current loop. The instruction next takes
the program execution back to the beginning of the loop, so that the next iteration
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(if it exists) of the loop is then executed. For the current iteration, no instruction
after next is executed.

� Instruction for

The syntax for this instruction is as follows:

for (i in vect) <Instructions>

Here are two examples:

> for (i in 1:3) print(i)
[1] 1
[1] 2
[1] 3
> x <- c(1,3,7,2)
> for (var in x) print(2*var)
[1] 2
[1] 6
[1] 14
[1] 4

Tip

The following list of instructions prints a decreasing counter:
n<-100;

for (i in 1:n) { flush.console();cat(n-i,"\r");Sys.sleep(0.1)}

� Instruction while()

The syntax for this instruction is as follows:

while(<condition>) <expression>

For example,

> x <- 2
> y <- 1
> while(x+y<7) x <- x+y
> x
[1] 6

� Instructions next and break

> for (i in 1:4) f
+ if (i == 3) break
+ for (j in 6:8) f
+ if (j==7) next
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+ j <- i+j
+ g
+ g
> i
[1] 3
> j
[1] 10

� Instructions repeat and break

> i <- 0
> repeat f
+ i<-i+1
+ if (i==4) break
+ g

Warning

Whenever possible, it is better to avoid loops in R, since they often slow
down the execution (as measured by the function system.time()). Indeed,
most operations in R are vectorized, which means that they can operate on
vectors, and these calculations are done in a compiled language, which is much
faster:

> system.time(for (i in 1:1000000) sqrt(i))
user system elapsed
0.342 0.001 0.343

> system.time(sqrt(1:1000000))
user system elapsed
0.018 0.004 0.022

Moreover, functions such as apply(), tapply() and sapply() give a way
to use loops in an implicit, and often very useful, manner.

SECTION 5.8

Creating Functions

We saw in Sect. 3.1.4, page 43, some brief notions on executing functions in R. The
R language can also be used to create your own functions. We propose an overview
in this section. The reader should linger on all the code given in this section, to
ensure it is well understood.

See also

A more formal presentation of function writing is given in Chap. 8.
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To illustrate simply the function creation process, we shall focus on the compu-
tation of the body mass index (BMI), from the weight (in kg) and the height (in m),
using the well-known formula

BMI D Weight

Height2
:

This is easily programmed in R as follows:

> BMI <- function(weight,height) f
+ bmi <- weight/heightˆ2
+ names(bmi) <- "BMI"
+ return(bmi)
+ g

Warning

The function return() is optional in the code above, but you should take
the habit of using it. Indeed, there are contexts where it is essential:

> f <- function(x) f
+ res <- vector("numeric",length(x))
+ for (i in 1:10) f
+ res[i] <- rnorm(1) + x[i]
+ g
+ # Forgot to include return(res)
+ g
> f(1:10) # Does not output anything!

We can now execute the function BMI() we just created:

> BMI(70,1.82)
BMI

21.13271
> BMI(1.82,70) # Note that it is not possible to swap the

# arguments of a function,
BMI

0.0003714286
> BMI(height=1.82,weight=70) # unless they are preceded by their

# names.
BMI

21.13271

This function only outputs a single value. The code below outputs a list of several
variables.

> BMI <- function(weight,height) f
+ bmi <- weight/heightˆ2
+ res <- list(weight,height,bmi)
+ return(res)
+ g

The next instruction shows that the new function BMI() returns a list of unnamed
elements.
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> BMI(70,1.82)
[[1]]
[1] 70
[[2]]
[1] 1.82
[[3]]
[1] 21.13271

Do it yourself Ï
Write a function called biroot()which calculates the roots of a polynomial
of order 2, i.e. the values x which solve the equation ax2 C bx C c D 0.
Recall that they can be complex and are given by

x D �b ˙
p
�

2a

with
� D b2 � 4ac:

If � D 0, there is only one solution; return only that value. If � < 0, then
the square root of � is the complex number ´ such that ´2 D � (hint: use
the instruction as.complex(Delta)).
Compare the results of your function with those given by the func-
tion polyroot() (remember to use the online help for this function:
?polyroot).

To name the elements of the list, you can use the following code:

> BMI <- function(weight,height) f
+ bmi <- weight/heightˆ2
+ res <- list(Weight=weight,Height=height,BMI=bmi)
+ return(res)
+ g

which gives the following result:

> BMI(70,1.82)
$Weight
[1] 70
$Height
[1] 1.82
$BMI
[1] 21.13271

Now assume we wish to calculate the BMI of several individuals, for example,
John and Peter:

> John <- c(74,1.90)
> Peter <- c(70,1.82)
> mydata <- rbind(John,Peter)
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We might use the following code:

> for (i in 1:2) f
+ print(BMI(mydata[i,1],mydata[i,2]))
+ g
$Weight
John

74
$Height
John
1.9
$BMI

John
20.49861
$Weight
Peter

70
$Height
Peter
1.82
$BMI

Peter
21.13271

But the attentive reader will have noticed that many R functions (including the
division, multiplication and exponentiation operators) work very well with vectors.
The following output is thus not surprising:

> BMI(c(70,74),c(1.82,1.90))
$Weight
[1] 70 74
$Height
[1] 1.82 1.90
$BMI
[1] 21.13271 20.49861

The following code illustrates the use of an argument with a default value, as
well as the function stop() which can handle some input errors.

> BMI <- function(weight,height,height.unit="m") f
+ if (length(weight) != length(height))
+ stop("The vectors weight and height must have the same length.")
+ if (height.unit == "cm") height <- height/100
+ bmi <- weight/heightˆ2
+ res <- list(Weight=weight,Height=height,BMI=bmi)
+ return(res)
+ g
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Advanced users

Using the function stop() can lead to annoyances. For example, in a
simulation study, one often has to call a function repeatedly. If, in one of the
calls, the function returns an error, the simulation is stopped. It is advisable to
use the function try(). If the function encounters an error, the error message
is stored in an object without stopping the simulation.

> set.seed(123)
> x <- rnorm(50)
> doit <- function(x) f
+ x <- sample(x,replace=TRUE)
+ if(length(unique(x)) > 30) mean(x)
+ else fstop("too few unique points")g
+ g
> res <- lapply(1:100, function(i) try(doit(x), TRUE))

> res[8:10]
[[1]]
[1] 0.2030573
[[2]]
[1] "Error in doit(x) : too few unique points"
attr(,"class")
[1] "try-error"
[[3]]
[1] 0.235046

It is possible to classify individuals into weight categories depending on their
BMI. The correspondence between BMI and categories is given in Table 5.4.

The next function outputs a user’s weight category given their BMI.

> weight.category <- function(bmi) f
+ if (bmi<16.5) category <- "severely underweight" else f
+ if (bmi<18.5) category <- "underweight" else f
+ if (bmi<25) category <- "normal weight" else f
+ if (bmi<30) category <- "overweight" else f
+ if (bmi<35) category <- "moderate obesity" else f
+ if (bmi<40) category <- "severe obesity" else f
+ category <- "morbid obesity"gggggg
+ cat(paste("Your BMI is: ",round(bmi,3),".nn
+ This corresponds to category: ",category,".nn",sep=""))
+ g

Here is an example of use:

Table 5.4: Correspondence between BMI and weight categories

Severely
Underweight

Normal
Overweight

Moderate Severe Morbid
underweight weight obesity obesity obesity
Œ15I 16:5� Œ16:5I 18:5� Œ18:5I 25� Œ25I 30� Œ30I 35� Œ35I 40� Œ40I 41�
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> weight.category(BMI(70,1.82)$BMI)
Your BMI is: 21.133.
This corresponds to category: normal weight.

The code of the function weight.category() can be simplified with the func-
tion switch(), as can be seen below:

> weight.category <- function(bmi) f
+ intervals.BMI <- c(15,16.5,18.5,25,30,35,40,41)
+ code <- as.character(rank(c(bmi,intervals.BMI),
+ ties.method="max")[1])
+ category <- switch(code,"2"="severely underweight",
+ "3"="underweight","4"="normal weight","5"="overweight","6"=
+ "moderate obesity","7"="severe obesity","8"="morbid obesity")
+ cat(paste("Your BMI is: ",round(bmi,3),".nn
+ This corresponds to weight category: ",category,".nn",sep=""))
+ g
> weight.category(BMI(70,1.82)$BMI)
Your BMI is: 21.133.
This corresponds to weight category: normal weight.

However, this function outputs wrong results when used on a vector:

> weight.category(BMI(c(70,74),c(1.82,1.90))$BMI)
Your BMI is: 21.133.
This corresponds to weight category: overweight.
Your BMI is: 20.499.
This corresponds to weight category: overweight.

Our function can be improved so that it works on several individuals simulta-
neously. Note the use of the reserved word NULL and of the function is.null()
which handles shrewdly the parameter names.

> weight.category <- function(bmi,names=NULL) f
+ intervals.BMI <- c(15,16.5,18.5,25,30,35,40,41)
+ n <- length(bmi)
+ if (is.null(names)) names <- paste("Subject number",1:n)
+ if (length(names) != n) stop(paste("The vector of ’names’
+ must be of length",n))
+ code <- vector("integer",length=n)
+ category <- vector("character",length=n)
+ for (i in 1:n) f
+ code[i] <- as.character(rank(c(bmi[i],intervals.BMI),
+ ties.method="max")[1])
+ category[i] <- switch(code[i],"2"="severely underweight",
+ "3"="underweight","4"="normal weight","5"="overweight","6"=
+ "moderate obesity","7"="severe obesity","8"="morbid obesity")
+ cat(paste(names[i],":nnYour BMI is: ",round(bmi[i],3),".nn
+ This corresponds to weight category: ,category[i],".nn",sep=""))
+ g
+ g

Here is an example of use.
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> weight.category(BMI(c(70,74),c(1.82,1.90))$BMI)
Subject number 1:
Your BMI is: 21.133.
This corresponds to weight category: normal weight.
Subject number 2:
Your BMI is: 20.499.
This corresponds to weight category: normal weight.

Tip

In the previous function, we declared, directly with the correct length, the
vectors code and corpulence, thanks to the function vector(). However, it
is also possible to handle a vector without a predefined dimension (ever because
we do not know its length initially or for another reason). This is illustrated on
the next example, where we compute the first terms of the Fibonacci sequence,
which is defined by

a1 D 0; a2 D 1; ai D ai�1 C ai�2;8i � 3:
> a <- c(0, 1)
> for (i in 3:10) a <- c(a, a[i-1]+a[i-2])
> a
[1] 0 1 1 2 3 5 8 13 21 34

We could also use the function while() to display all the terms of the Fi-
bonacci sequence until the first term is greater than 1000.

> a <- c(0,1)
> i <- 3
> while(a[i-1]<1000) f
+ a <- c(a, a[i-1]+a[i-2])
+ i <- i+1
+ g
> a
[1] 0 1 1 2 3 5 8 13 21 34 55
[12] 89 144 233 377 610 987 1597

We could also have used the instruction break for a slightly different func-
tion.

> a <- c(0,1)
> i <- 3
> while(TRUE) f # Create un infinite loop.
+ a <- c(a, a[i-1]+a[i-2])
+ if (a[i]>1000) break; # Stops the loop.
+ i <- i+1
+ g
> a
[1] 0 1 1 2 3 5 8 13 21 34 55
[12] 89 144 233 377 610 987 1597
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Warning

The programming method presented in the previous Tip is not necessarily
optimal in terms of memory allocation, as we shall see in Chap. 8.

SECTION 5.9

� Fixed-Point and Floating Point Number
Representation

This (rather technical) note aims to help the R user to identify and prevent some
mistakes due to use of the so-called floating point numbers.

5.9.1 Representing a Number in a Base

Given a base b (integer value, greater than or equal to 2), any real number x 2 R

can be written in fixed-point representation as follows:

x D
iD�1X

iDC1
mib

i ;

where the coefficients mi (also called the digits) belong to the set f0; 1; : : : ; b � 1g,
8i 2 Z.

For example, the number x D 10:625 can be written in decimal notation
(b D 10) as

x D 1 � 101 C 0 � 100 C 6 � 10�1 C 2 � 10�2 C 5 � 10�3;

hence the notation 10:625 which gives the coefficients of the representation (or
digits). By noting that 10:625 D 8 C 2 C 0:5 C 0:125, this same number can be
written in binary notation (b D 2; hence the only digits are 0 and 1) as

x D 1 � 23 C 0 � 22 C 1 � 21 C 0 � 20 C 1 � 2�1 C 0 � 2�2 C 1 � 2�3:

We thus have the representation of the number 10.625 in binary form 1010:101,
which makes explicit the coefficients of the binary representation.
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Tip

The package associated with this book includes the functions dec2bin()
and bin2dec()which can be used to switch from decimal to binary represen-
tation and vice versa:

> bin2dec(1010.101)
[1] 10.625
> dec2bin(10.625,3)
[1] "1010.101"

Note

A number with finite base 10 expansion (finite number of digits after the
decimal separator) is called a decimal number. A number with finite base 2 ex-
pansion is called a dyadic number. Obviously, some numbers are neither dec-
imal nor dyadic. Note that a dyadic number is always also a decimal number,
but the converse is false. Thus a loss of information is always possible when
switching from one representation to another. Furthermore, dyadic decimal
fractions have the same number of digits as their binary equivalents whereas
non-dyadic decimal values have infinite binary equivalents.

A computer is a machine built to work with binary numbers, because the two
digits 0 and 1 are easily translated as the presence or absence of an electric current.
Because fixed-point representations are often very costly in bits (a bit is a binary
digit, i.e. 0 or 1), computers generally use floating point representations. These are
described in the next subsection.

5.9.2 Floating Point Representations

5.9.2.1 Definitions

Given a base b (e.g., b D 2 for the binary system or b D 10 for the decimal system,
to cite only the two most classical systems), any real number x 2 R can be written
as

x D .�1/smbe

where

� s is called the sign bit (of x) and is worth 0 or 1;
� m is the significand or mantissa and can be writtenm D m1:m2m3 � � �m1 where

each mi 2 f0; 1; : : : ; b � 1g is called a digit;
� e 2 Z is called the exponent.
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This notation is called the floating point representation of x in base b. The integer
m1 is the integer part of the significand and the other digits m2 � � �m1 are the
fractional part of the significand. Note that we must impose a constraint that the
first digit be non-zero (m1 ¤ 0), so as to insure that the representation is unique. Of
course, this constraint cannot be applied for the particular case x D 0.

Let us give a first example. In the decimal system, the number �0:6345 can be
written in floating point representation by taking s D 1, m1 D 6, m2 D 3, m3 D 4,
m4 D 5, mi D 0;8i > 4, b D 10 and e D �1:

�0:6345 D .�1/16:345 � 10�1:

Note

This explains the name “floating point”: the decimal point has been moved,
to express the same number in a different way.

Actually, in a computer, any real number x is represented in a binary base, with
bits (0 or 1), using the slightly different formula:

x D .�1/s.1C f /2.e�1023/ (5.1)

where s is an integer coded on a single bit (called sign bit), e is a non-negative
integer coded on 11 bits (thus taking the values from 0 to 211 � 1 D 2047) and
f 2 Œ0I 1/ is a number coded on 52 bits, thus written

f D
iD52X

iD1

ki2
�i ; (5.2)

where the ki ’s take the values 0 or 1. By convention, the value e D 0 means that
x D 0, and the value e D 2047 means that x D CInf or x D �Inf, depending on
the value on s. The following two examples illustrate this:

> s <- 1; e <- 2047; f <- 0; x <- (-1)ˆs * 2ˆ(e-1023) * (1+f); x
[1] -Inf
> s <- 0; e <- 2047; f <- 0; x <- (-1)ˆs * 2ˆ(e-1023) * (1+f); x
[1] Inf

5.9.2.2 Limitations of This Representation due to the Significand

The vast majority of modern computers use the floating point representation. How-
ever, it is essential to note that because of physical limitations, this representation is
not perfect. Indeed, the significandm can only have a limited (finite) number of dig-
its, and the relative integer e is bounded, e 2 Œemin; emax �, since it is not possible to
code an infinite number of integers on a physical machine made of a finite number
of components.
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Here is a simple example, which should help understand this limitation. The
floating point representation in base 10 of the real number 1=3 is written:

1=3 D .�1/0 � 3:33333 � � �333 � � � � 10�1:

It is of course not possible to store an infinite number of 3s on a computer. A more
striking example is the number 	 D 3:14159265358979 � � � for which there is no
pattern in the digits after the decimal point. But it is also true for numbers which
appear simpler, such as 0.1 or 0.9.

This is illustrated in the output below, for the number 0:9, which can be written
in floating point representation as 0:9 D .�1/0 � 2�1 � .1 C f / with f D 0:8.
However, since f is coded on “only” 52 bits (see (5.2)), the computer only keeps
an approximation. The display function formatC() gives an idea of the value used
by R.

> dec2bin(0.8,52)
[1] "0.1100110011001100110011001100110011001100110011001101"
> f <- 2ˆ(-1)+2ˆ(-2)+2ˆ(-5)+2ˆ(-6)+2ˆ(-9)+2ˆ(-10)+2ˆ(-13)+
+ 2ˆ(-14)+2ˆ(-17)+2ˆ(-18)+2ˆ(-21)+2ˆ(-22)+2ˆ(-25)+2ˆ(-26)+
+ 2ˆ(-29)+2ˆ(-30)+2ˆ(-33)+2ˆ(-34)+2ˆ(-37)+2ˆ(-38)+2ˆ(-41)+
+ 2ˆ(-42)+2ˆ(-45)+2ˆ(-46)+2ˆ(-49)+2ˆ(-50)+2ˆ(-52)
> f # Careful: the display is in fact truncated.
[1] 0.8
> formatC(f,50) # Fractional part of the closest significand to

# 0.8 that the computer can get on 52 bits.
[1] "0.80000000000000004440892098500626161694526672363281"
> formatC(0.8,50)
[1] "0.80000000000000004440892098500626161694526672363281"

We can now display the value stored and used by the computer instead of the
value 0.9:

> formatC(0.9,50)
[1] "0.90000000000000002220446049250313080847263336181641"
> formatC((-1)ˆ0 * 2ˆ(-1) * (1+f),50)
[1] "0.90000000000000002220446049250313080847263336181641"
> formatC((-1)ˆ0 * 2ˆ(-1) * (1+0.8),50)
[1] "0.90000000000000002220446049250313080847263336181641"

5.9.2.3 Avoiding Some Numerical Pitfalls

First, we shed light on a numerical oddity.

> identical(1.0-0.9,0.1)
[1] FALSE
> (1.0-0.9) == 0.1
[1] FALSE
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We can now understand this output. Indeed, the numbers 1:0 � 0:9 and 0:1 are
represented in different ways, because even though 1 is perfectly represented, 0:1
and 0.9 are not.

> formatC(1.0,50)
[1] " 1"
> formatC(0.9,50)
[1] "0.90000000000000002220446049250313080847263336181641"
> formatC(1.0-0.9,50)
[1] "0.099999999999999977795539507496869191527366638183594"
> formatC(0.1,50)
[1] "0.1000000000000000055511151231257827021181583404541"

and we thus have

> formatC(1.0 -
+ 0.90000000000000002220446049250313080847263336181641,50)
[1] "0.099999999999999977795539507496869191527366638183594"
> # which is different from:
> formatC(0.1,50)
[1] "0.1000000000000000055511151231257827021181583404541"

Tip

It is better to use the function all.equal() to compare two numbers,
because it includes a numerical tolerance argument.

> all.equal(1.0-0.9,0.1,tol=10ˆ(-6))
[1] TRUE

Warning

Do not use constructions such as while(x != 0) or if (x != 0). In-
deed, if x happens to take a value such as 1:0� 0:9� 0:1when your code runs,
those two instructions will not behave as expected. You should use instead
isTRUE(all.equal(x,0)) and isTRUE(all.equal(x,0)).

We leave it to the reader to understand the output below.

> as.integer(100*(1-.34))
[1] 65
> floor(100*(1-.34))
[1] 65
> round(100*(1-.34))
[1] 66
> 100*(1-.34)-66
[1] -1.421085e-14
> floor(100*(1-.38))
[1] 62
> round(100*(1-.38))
[1] 62
> 100*(1-.38)-62
[1] 0
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See also

You may find [7] useful in this context.

5.9.2.4 Limitations of This Representation due to the Exponent

� Smallest and largest numbers which can be represented

Another problem due to the floating point representation is as follows. Since the
exponent e of the representation

x D .�1/s.1C f /2.e�1023/ (5.3)

is necessarily bounded (since it is coded on 11 bits), there exist a smallest and largest
real number which can be represented on a given computer. Trying to represent
a number out of this range should lead to an underflow or overflow. R is rather
well conceived and will return the value -Inf or +Inf. The following R commands
illustrate this point:

> .Machine$double.xmin # Smallest real number which can be coded:
[1] 2.225074e-308
> # which can also be found by:
> s <- 0; e <- 0; f <- sum(2ˆ(-(1:52)))
> x <- (-1)ˆs * 2ˆ(e-1023) * (1+f); x
[1] 2.225074e-308
> .Machine$double.xmax # Largest real number which can be coded:
[1] 1.797693e+308
> # which can also be found by:
> s <- 0; e <- 2046; f <- sum(2ˆ(-(1:52)))
> x=(-1)ˆs * 2ˆ(e-1023) * (1+f); x
[1] 1.797693e+308

Tip

The package Brobdingnag allows handling much larger numbers.

� Gaps between two numbers

One last warning may be useful: it is important to note that it is not possible to get
some numbers between .Machine$double.xmin and .Machine$double.xmax
(even integers).

For example, take the number 2150, which is represented as

.�1/0.1C 0/2.1173�1023/:
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The next number that the computer can code is given by the values s D 0, e D 1173
and f D 2�52 (smallest non-zero fractional part of the significand), i.e.

.�1/0.1C 2�52/2150 D 2150 C 2150�52 D 2150 C 298:

There can thus be a huge “gap” (of length 298 	 3.2e+29 here) between two
“successive” numbers!

This explains the following oddity:

> a <- 2ˆ150; b <- a + 2ˆ97; b == a
[1] TRUE
> a <- 2ˆ150; b <- a + 2ˆ98; b == a
[1] FALSE

Tip

More information on the computer’s limitations in representing numbers are
given by the instruction .Machine:

> noquote(unlist(format(.Machine)))
double.eps double.neg.eps

2.220446e-16 1.110223e-16
double.xmin double.xmax

2.225074e-308 1.797693e+308
double.base double.digits

2 53
double.rounding double.guard

5 0
double.ulp.digits double.neg.ulp.digits

-52 -53
double.exponent double.min.exp

11 -1022
double.max.exp integer.max

1024 2147483647
sizeof.long sizeof.longlong

8 8
sizeof.longdouble sizeof.pointer

16 8

See also

We refer the interested reader to the document What Every Computer Sci-
entist Should Know About Floating-Point Arithmetic, available at the URL:
http://biostatisticien.eu/springeR/FloatingPoint.pdf.

http://biostatisticien.eu/springeR/FloatingPoint.pdf
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Memorandum

length(): length of a vector
sort(): sort the elements of a vector
rev(): rearrange the elements of a vector in reverse order
order(): return the vector of order ranks of the elements of its effective argument
unique(): remove the duplicates from a vector
dim(): size of a matrix or data.frame
nrow(), ncol(): number of rows and columns
dimnames(): names of rows and columns
rownames(), colnames(): names of rows andcolumns
rbind(), cbind(): merge rows and columns of a matrix
merge(): smart merge of columns
apply(): apply a function to the rows or columns of a matrix
lapply(), sapply(): apply a function to the elements of a list
<, <=, >, >=, ==, !=: comparison logical operators
!, &, &&, |, ||: term-wise logical operators
any(x): return TRUE if one of the xi is true
all(x): return TRUE if all the xi are true
if(), else, switch: conditional instructions
for, while(), repeat: loop instructions
"["(): extraction operator for vectors and matrices
"[["(): extraction operator for lists
which(): indices of the values TRUE of a logical object
nchar(): number of characters in a string
paste(): concatenate two strings
substring(): extract sub-strings
strsplit(): split strings
grep(): search for a pattern in a string
sub(), gsub(): replace occurrences of a pattern in a string
Sys.time(): display the date
strptime(): extract dates from a string
as.POSIXlt(): convert to the POSIXlt format
difftime(): calculate the difference between two dates

✎
Exercises

5.1- What is the output of this instruction: c(1,4)*c(2,3)?
5.2- What is the output of this instruction: matrix(1:2,ncol=2,nrow=2)?
5.3- How can you retrieve the names of rows and columns of a data.frame?
5.4- Give the instruction to merge these two tables:

> X
Gender Weight

Jack M 80
Julia F 60
> Y

Eyes Height
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Jack Blue 180
Julia Green 160

5.5- Give the instruction to calculate the product of all the elements (respectively,
of all the elements of each column) of a numerical matrix X.

5.6- What is the output of this instruction: vec<-c(2,4,6,8,3);

vec[2];vec[-2]?
5.7- The height and weight of several men were measured. The measurements are

stored in the vectors weight and height. Give the R instruction to get the
weight of the men whose height is greater than 180 cm.

5.8- What is the output of this instruction:
Mat<-matrix(1:12,nrow=4,byrow=TRUE);Mat[3,];Mat[2,2:3]?

5.9- How could you replace the fourth component of the following list with 1:10?
L<-list(12,c(34,67),Mat,1:15,list(10,11))

5.10- What is the output of this instruction: L[[2]][2]?
5.11- Give the R instruction which outputs the weights and heights of all women in

the following table (you can use the function attach()):

> X
weight height gender

1 79 163 M
2 90 163 F
3 87 198 M
4 63 164 F
5 90 168 F
6 71 178 F
7 58 191 M
8 80 194 F
9 91 185 F
10 89 176 M

5.12- What is the output of this instruction: (1:3)[any(c(T,F,T))]? And this
one: (1:3)[all(c(T,F,T))]?

5.13- What is the output of this instruction: c(T,T,F) | c(F,T,F)? And this one:
c(T,T,F) || c(F,T,F)?

5.14- What is the output of this instruction: nchar(c("abcd","efgh"))?
5.15- What is the output of this instruction:

paste(c("a","b"),c("c","d"),collapse="",sep="")?
5.16- What is the output of this instruction: strsplit(c("ab;cd"),";")?
5.17- What is the output of this instruction: substring("abcdef",3,c(2,4))?
5.18- How could you transform the upper case into lower case in the following

vector?
c("Jack","Julia","William")

5.19- Which function is used to retrieve a date from a character string?
5.20- Can you explain why the second number of the last output is not equal to

36.21313?

> logp <- function(x) log(max(x,exp(1)))
> x <- -2.4
> delta <- 0.1
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> (abs(x))ˆ(4+delta)/(logp(abs(x)))ˆ2
[1] 36.21313
> x <- seq(from=-2.8,to=-2,length=3)
> x
[1] -2.8 -2.4 -2.0
> (abs(x))ˆ(4+delta)/(logp(abs(x)))ˆ2
[1] 64.26795 34.15959 16.17594

Propose a solution to this problem.

Ï
Worksheet

Manipulating Various Data Sets

A- Manipulating a Few Data Sets Presented at the Beginning of the Book

These files can be downloaded from the URL http://www.biostatisticien.
eu/springeR/. Note that you can also append the file name at the end of this URL
to download the file directly from R (e.g., http://www.biostatisticien.eu/
springeR/nutrien1.xls):

� Data set NutriElderly:

The data file nutrition elderly.xls, described earlier in this book, is in fact the
merge of two initial files, entered by different operators. We propose to reconstruct
the file for the following cases. You will only use R and will not edit the file by hand.

5.1- The individuals are initially listed separately in two files (nutrien1.xls and
nutrien2.xls). Note that the variable names are in upper case in the first file
and in lower case in the second.

5.2- Some individuals are listed in both files (nutrien3.xls and nutrien4.xls). The
variable names are identical.

5.3- Same question as 5.2, but errors have slipped in and you will need to detect
the corresponding individuals, for example, those with a weight greater than
200 kg (nutrien5.xls and nutrien6.xls).

5.4- The variables are split between two files (nutrien7.xls and nutrien8.xls),
which contain the same individuals.

5.5- Same question as 5.4, but for one variable, too many values are missing. Re-
move that variable (nutrien9.xls and nutrien10.xls).

5.6- Same question as 5.4, but for one individual, too many values are missing.
Remove that individual (nutrien11.xls and nutrien12.xls).

5.7- In the file nutrition elderly.xls, how many people are vegetarians (no meat, no
fish)?

http://www.biostatisticien.eu/springeR/
http://www.biostatisticien.eu/springeR/
http://www.biostatisticien.eu/springeR/nutrien1.xls
http://www.biostatisticien.eu/springeR/nutrien1.xls
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� File Intima Media Thickness.xls:

5.1- Add a column BMI to the data.frame, with the BMI of each individual in the
data file.

5.2- Retrieve the thickness of intima for the people with a BMI>30.
5.3- Extract the “athletic” women.
5.4- Extract the “non-obese” people aged 50 or over (obese=BMI>30).

� File bmichild.xls:

5.1- Add a column BMI.
5.2- Extract the children with a BMI < 15 and an age <= 3.5 years.
5.3- How many such children are there?

� File Birth weight.xls:

5.1- Add a variable PTL1 (number of children born before term), with three modal-
ities (where the third modality, coded 2, corresponds to “2 or more” preterm
births).

5.2- Same question with FVT (number of visits to a physician), to add FVT1.
5.3- Sort the file by increasing weight at birth (BWT).
5.4- Extract the individuals whose mothers are black or white and smoke.

B- Handling Missing Values

Import into a data.frame the following file:
http://www.biostatisticien.eu/springeR/Infarction.xls

5.1- Which rows include missing values?
5.2- Which individuals have more than one missing value?
5.3- Which variables include missing values?
5.4- Give at least one solution to remove all rows of this data.frame which include

at least one missing value. In addition to logical operators and the extracting
function, you are only allowed to use:

(a) The functions is.na(), prod(), apply() and as.logical()
(b) The functions is.na(), apply() and any()
(c) The functions is.na(), apply() and all()
(d) The function complete.cases()
(e) The function na.omit()

http://www.biostatisticien.eu/springeR/Infarction.xls
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C- Handling Character Strings

5.1- Import the file www.biostatisticien.eu/springeR/dept-pop.csv into
a data.frame called dept.

5.2- Replace the first column with two new columns: one called numdep with the
French département numbers and another with the names.

D- Influenza Epidemics in France Since 19841

5.1- Import the file http://www.biostatisticien.eu/springeR/flu.csv
into a data.frame called flu. Make sure that you are handling missing val-
ues correctly.

5.2- Type names(flu). As you can see, flu$Date includes dates in the format
year (with century; for example, 2003) followed by the week number (two
digits).

5.3- Determine the list of possible week numbers (hint: use the functions sort(),
substring() and unique()).

5.4- First, you need to retrieve these dates in R in an object of class POSIXlt, for
example, with the function strptime(). Using Table 5.3, and this function,
transform the first (oldest) date into the POSIX format.

5.5- The data are in fact updated every Monday, since the first week. Determine
which is the oldest date (Day, Month, Year) for which observations exist (hint:
use the calendar http://sentiweb.fr/calendrier.php).

5.6- You should notice that there is a difference with the answer to question 5.4. To
solve this problem, try adding “1” at the end of the first date and transforming
it again with the function strptime().

5.7- Display the ten first dates from the data files. Use the hint from the previous
question to transform them with the function strptime(). Is the last date
correct? If not, do you have an idea to solve this problem?

5.8- At this point, you should realize that the format of the dates in this file is not
compatible with the POSIX format (which takes week numbers between 00
and 53). It is therefore not possible to directly use the function strptime()
or as.POSIXlt() to transform these dates into an object type easy to handle
by R. Type in the instruction
date1 <- as.POSIXlt("Day,Month,Year",format="to be specified")
where you will replace Day, Month and Year with the oldest date and to be
specified with the relevant date format.

5.9- Type in the instruction date1 then date1+7. What do you notice?
5.10- Find a way to add seven days to date1 (hint: how many seconds are there in

a day?).
5.11- Now, create the vector dates containing all the dates in the POSIX format,

sorted from most ancient to newest (hint: use the function nrow()).

1 Source: http://www.sentiweb.fr/?lang=en

www.biostatisticien.eu/springeR/dept-pop.csv
http://www.biostatisticien.eu/springeR/flu.csv
http://sentiweb.fr/calendrier.php
http://www.sentiweb.fr/?lang=en
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5.12- Use the function substring() on the vector dates to replace the first col-
umn of the data.frame flu with dates in the format "year-month-day" (for
example, "1992-12-07").

5.13- Use the vector dates and what you have learnt about extraction to select only
the portion of the data.frame flu for dates between September 15, 1992 and
November 3, 1993. Store this sub-table in an object called portion.

5.14- Calculate the number of cases of influenza over this period for each French
region (hint: pay attention to missing values; use the argument na.rm). Store
the results in a vector called flucases.

E- Combining Tables or Lists; Other Manipulations

5.1- Input into R the two following tables (check the row names):

> a
[,1] [,2]

1 1 4
2 2 5
6 3 6
> b

[,1] [,2]
3 1 5
4 2 6
5 3 7
7 4 8

5.2- Combine a and b into a new table called ab containing

> ab
[,1] [,2]

1 1 4
2 2 5
3 1 5
4 2 6
5 3 7
6 3 6
7 4 8

(hint: use rbind() and order()).

5.3- Concatenate the elements of list1 as columns of one matrix:

> list1 <- list()
> list1[[1]] <- matrix(runif(25),nr=5)
> list1[[2]] <- matrix(runif(30),nr=5)
> list1[[3]] <- matrix(runif(15),nr=5)

(hint: use the function unlist() or the function do.call()).
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5.4- Concatenate the elements of list2 as rows of one matrix:

> list2 <- list()
> list2[[1]] <- matrix(runif(25),nc=5)
> list2[[2]] <- matrix(runif(35),nc=5)
> list2[[3]] <- matrix(runif(15),nc=5)

(hint: use the function unlist() or the function do.call()).

5.5- Automatically select the diseases which have tobacco as a risk factor:

> tmp
Disease RiskFactors

1 Infarction tobacco, alcohol
2 Hepatitis alcohol
3 Lung cancer tobacco

(hint: use the function grep()).

Creating Functions

F- The French Chevalier de Méré

The French chevalier de Méré was a keen gambler. He was particularly fond of
two gambles. In the first one, he would throw a die four times and bet that a 6 would
come out at least once. In the second one, he would throw two dice 24 times and bet
that a double-6 would come out. He had noticed that the first gamble is “beneficial”:
there is more than a 50 % chance that a 6 will come out at least once. He thought
that the second gamble is also beneficial.

� Propose code for a function called fourthrows()which returns 1 if there is
at least one 6 out of 4 throws of a die and 0 otherwise. Do not use any loops.

� Propose code for a function called twentyfourthrows()which returns 1 if
there is at least one double-6 out of 24 throws of two dice and 0 otherwise.
Do not use loops.

� Propose code for a function called meresix() to confirm the chevalier de
Méré’s intuition. It should use the first two functions and take a formal pa-
rameter nsim which gives the number of repetitions of the gamble.

Hint: use function sample().



Chapter 6
R and Its Documentation

Prerequisites and goals of this chapter
� Chap. 3.
� This chapter presents the various ways to get help on the R software.

SECTION 6.1

Integrated Help

6.1.1 The Command help()

R includes an online help. It is very complete and very well structured for all func-
tions and for the various symbols in the language. There are several ways to access
the help files; the main method is help(). It is used in command line mode.

For example, type:

help(help)

There is an alias for the command help(): the question mark ?.

?sum
?sd
?"+"
?"[["

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3 6,
© Springer Science+Business Media New York 2013
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Warning

Sometimes, this alias will not work. In those cases, you will need to use the
function help() with quotation marks.

?function # Does not work.
help(function) # Returns an error.
help("function") # Correct call.

Let us look at the help of the function mean().

?mean

① mean package:base R Documentation

② Arithmetic Mean

③ Description:

Generic function for the (trimmed) arithmetic mean.

④ Usage:

mean(x, ...)

## Default S3 method:
mean(x, trim = 0, na.rm = FALSE, ...)

⑤ Arguments:

x: An R object. Currently there are methods for
numeric dataframes, numeric vectors and dates.
A complex vector is allowed for ’trim = 0’, only.

trim: the fraction (0 to 0.5) of observations to be trim-
med from each end of ’x’ before the mean is computed.

na.rm: a logical value indicating whether ’NA’ values
should be stripped before the computation proceeds.

...: further arguments passed to or from other methods.

⑥ Value:

For a data frame, a named vector with the appropriate
method being applied column by column.

If ’trim’ is zero (the default), the arithmetic mean of
the values in ’x’ is computed.

If ’trim’ is non-zero, a symmetrically trimmed mean is
computed with a fraction of ’trim’ observations deleted
from each end before the mean is computed.

⑦ References:

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)
_The New S Language_. Wadsworth & Brooks/Cole.

⑧ See Also:

’weighted.mean’, ’mean.POSIXct’

⑨ Examples:
x <- c(0:10, 50)
xm <- mean(x)
c(xm, mean(x, trim = 0.10))

mean(USArrests, trim = 0.2)
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Here are the sections of this help file:

① The header of the file, with:
� The name of the function: mean
� The name of the package in which the function is included: base
� The origin of the help file: R Documentation

② An explicit title for the function: Arithmetic Mean
③ A brief description of what the function does: Description
④ How to use the function; in particular, the compulsory and optional arguments:
Usage

⑤ A description of the function’s arguments: Arguments
⑥ Explanations on the output of the function: Value
⑦ References (statistical articles or books) related to the function’s application

domain: References
⑧ The See Also section, which lists similar or related functions
⑨ Examples of use: Examples

Warning

Most help files follow this format. Make sure you understand and remem-
ber the structure of help files. You should also take the habit of checking the
online help whenever you meet an unknown function, so as to understand its
arguments and use.

Tip

Note that help files do not include graphs, for example, those that could be
produced with the code in the section Examples⑨. This would be interesting,
especially for all the graphical functions. One way to get them is the function
example(). You can also browse the website R Graphical Manual: http://
bm2.genes.nig.ac.jp/RGM2/index.phpwhich includes all R help files in
HTML. In those files, when there are graphs, they are directly included in the
section Examples.

6.1.2 Some Complementary Commands

In addition to the main command, help(), a few other complementary functions
can be useful when looking for help on a given command. They are listed here:

� help.start(): this function opens a web browser with links to handbooks
in HTML, help on functions included in all R packages (also HTML), a FAQ

http://bm2.genes.nig.ac.jp/RGM2/index.php
http://bm2.genes.nig.ac.jp/RGM2/index.php
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(Frequently Asked Questions), and a search engine of the help files. There are
also other more technical documents.

Linux

Under Linux, once you have entered the command help.start(), using
the command help() will always result in the help being displayed in the
web browser, rather than in the command line. To cancel this behaviour, use
the instruction options(htmlhelp = FALSE). To change browser (e.g.,
firefox), use the instruction options(browser="firefox").

� help.search() or ??(): this function is useful when you do not know the
name of a command. It returns a list of functions (and the package in which they
are included) related to your request. Try: help.search("mean").

� apropos(): this instruction returns the names of functions which are a (poten-
tially partial) match to the calling argument. For instance, apropos("mean")
returns the names of functions containing the word mean.

Advanced users

Note also that the function methods() returns all the methods (functions)
associated with an object. For instance, try methods(summary).

� library(help=package): this command lists all functions included in a pack-
age. It gives the same results as the command help(package="package"). We
advise you to try the following instructions to list the main functions in R:

library(help=base)

library(help=utils)

library(help=datasets)

library(help=stats)

library(help=graphics)

library(help=grDevices)

Tip

The function library(lib.loc = .Library) returns the list of all pack-
ages (or libraries) installed on the system.

Conversely, the instruction find("function") indicates in which package a func-
tion is included.

> find("t.test")
[1] "package:stats"
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� vignette(): vignettes are small PDF files which explain some notions in
further detail. Type vignette() to get a list of vignettes, and for exam-
ple vignette("xtableGallery") to open the PDF vignette of the package
xtable.

Mac

All vignettes can also be read in a special vignette browser, from the menu
“Help/Vignettes”. In this browser, you can open PDF files as well as R
source code (as .R files) and consult directly the code of examples included
in the vignette.

These three other functions might also be useful:

� data(): this command lists all datasets included in R.

� example(): this instruction lists examples of use of a function. For example,
example(mean) executes the instructions included in the section Examples of
the help file help(mean).

� demo(): this instruction is similar to example(), but is only available for a small
number of functions. When it is available, it shows the range of possible uses of
a function. For example, try demo(graphics).

SECTION 6.2

� Help on the Web

The official R website (http://www.r-project.org) includes a huge amount of
information about this software. You should spend some time exploring it. The fol-
lowing sections list other sources of information.

6.2.1 Search Engines

There are two main search engines for R:

� http://search.r-project.org/nmz.html

http://www.r-project.org
http://search.r-project.org/nmz.html
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Tip

The command RSiteSearch() can be used to send a request on this web-
site directly from R. The information is then displayed in your browser.

� http://www.rseek.org
There is also a very interesting collaboratively edited question and answer site

for programmers available at URL http://stackoverflow.com/questions/
tagged/r.

6.2.2 Message Boards

There are many message boards about R, where you can ask your questions. One
message board with a lot of traffic is http://r.789695.n4.nabble.com.

6.2.3 Mailing Lists

A mailing list is a specific kind of e-mail, which sends messages to a large number
of subscribers.

There are several mailing lists about R. The main ones are:

� https://stat.ethz.ch/mailman/listinfo/r-help
� http://blog.gmane.org/gmane.comp.lang.r.general
� http://www.r-project.org/mail.html
� R-announce: https://stat.ethz.ch/mailman/listinfo/r-announce

The website http://r-project.markmail.org can be used to search the
archives of these lists.

You need to follow a few rules to post a message on these lists, as described here:
http://www.r-project.org/posting-guide.html.

Mac

A list dedicated to Mac users: https://stat.ethz.ch/mailman/
listinfo/r-sig-mac.

http://www.rseek.org
http://stackoverflow.com/questions/tagged/r
http://stackoverflow.com/questions/tagged/r
http://r.789695.n4.nabble.com
https://stat.ethz.ch/mailman/listinfo/r-help
http://blog.gmane.org/gmane.comp.lang.r.general
http://www.r-project.org/mail.html
https://stat.ethz.ch/mailman/listinfo/r-announce
http://r-project.markmail.org
http://www.r-project.org/posting-guide.html
https://stat.ethz.ch/mailman/listinfo/r-sig-mac
https://stat.ethz.ch/mailman/listinfo/r-sig-mac
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6.2.4 Internet Relay Chat (IRC)

IRC (Internet relay chat) is a real-time messaging service. You can use it to chat
with other Internet users on predefined themes. The IRC channel on the R software
is called (#R) on the freenode server.

To access it, you can either use client-side software such as xchat (www.xchat.
org) or use your browser through websites such as https://webchat.freenode.
net.

To connect to this channel using xchat, type in these instructions:

/server irc.freenode.net
/join #R

6.2.5 Wiki

A wiki is a website where pages can be freely edited by visitors. Wikis are used to
aid collaborative writing with minimal constraints.

There is a wiki about R here: http://rwiki.sciviews.org.

SECTION 6.3

� Literature About R

6.3.1 Online

Literature about R is available online in many forms:

� Task Views: lists of packages useful in a given domain, grouped by themes.
A website describing Task Views is available at the URL http://cran.
r-project.org/web/views.

� Frequently Asked Questions (FAQ): Frequently Asked Questions about R are
listed here: http://cran.r-project.org/faqs.html.

� Specialized journals: two online journals deal with the R software: the R Jour-
nal, previously known as R News (http://journal.r-project.org), and
the Journal of Statistical Software (http://www.jstatsoft.org).

www.xchat.org
www.xchat.org
https://webchat.freenode.net
https://webchat.freenode.net
http://rwiki.sciviews.org
http://cran.r-project.org/web/views
http://cran.r-project.org/web/views
http://cran.r-project.org/faqs.html
http://journal.r-project.org
http://www.jstatsoft.org
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� Handbooks: many handbooks are available as a PDF on the R website: http://
cran.rproject.org/other-docs.html

6.3.2 Printed Material

Many books have been published about R recently. We find the following to be the
most interesting:

� Data Analysis and Graphics Using R: An Example-Based Approach [26]
� The R Book [12]
� Statistics and Data with R [10]
� Software for Data Analysis: Programming with R [8]
� Lattice: Multivariate Data Visualization with R [36]
� R for SAS and SPSS Users [32]
� Introductory Statistics with R: An Applied Approach Through Examples

[13]
� A First Course in Statistical Programming with R [6]
� A Handbook of Statistical Analyses Using R [15]
� A Beginner’s Guide to R [42]
� R Cookbook [39]
� R in a Nutshell [1]
� The Art of R Programming [28]
� The R Inferno [7]

http://cran.rproject.org/other-docs.html
http://cran.rproject.org/other-docs.html
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Memorandum

help(), ?(): get help on a function or a symbol
help.search(): list of functions relevant to your request
apropos(): list of function names which include the request
library(help=package): list of all functions in a package
data(): list of all datasets available in R

example(): execute the Examples section of the corresponding help file
demo(): launch a small demonstration of the possible uses of a function
vignette(): open a PDF file with details on a function
help.start(): open the HTML version of the R help files
RSiteSearch(): start a request on the official R website search engine

✎
Exercises

6.1- Which R instruction should you type to get help on the function mean()?
6.2- Explain the purpose of the command apropos().
6.3- Explain the purpose of the command example().
6.4- Explain the purpose of the command RSiteSearch().
6.5- How is a help file structured?
6.6- Which command would you use to get the list of functions available in the

package stats?
6.7- Explain how to display a dataset available in R.

Ï
Worksheet

Where to Find Information

6.1- Find the R function which lists all combinations of k elements out of n.
6.2- Use this function to list all combinations of three elements out of

c(5,8,2,9).
6.3- Find the dataset available in R which gives the rates of violent crimes in the

USA.
6.4- Describe the contents of this dataset.
6.5- Subscribe to the mailing list https://stat.ethz.ch/mailman/

listinfo/r-help.
6.6- Read the rules to follow before asking a question (http://www.

r-project.org/posting-guide.html).
6.7- Find out how to unsubscribe from the mailing list.
6.8- Using the method of your choice, join the IRC channel R and start a polite

conversation with channel members.

https://stat.ethz.ch/mailman/
listinfo/r-help
http://www.
r-project.org/posting-guide.html
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6.9- Register on the message board http://r.789695.n4.nabble.com.
6.10- Read the R FAQ for Microsoft Windows. Try to understand the meaning of

TAB completion.
6.11- Use TAB completion to list all files in the current directory.

http://r.789695.n4.nabble.com


Chapter 7
Drawing Curves and Plots

Prerequisites and goals of this chapter
� Reading previous chapters.
� This chapter describes the graphical possibilities of R, but does not go as far as

expert graphical functions such as hist(), barplot() and so on. These func-
tions are described in Chap. 11. We show generic ways to make adjustments to
most plots you can draw.

SECTION 7.1

Graphics Windows

7.1.1 Basic Graphics Windows, Manipulation and Saving

All plots created in R are displayed in special windows, separate from the console.
They are called “R graphics: Device device-number”, where device-number is an
integer giving the number of the window (or device).

To open a graphics window, use the command windows() or win.graph().

This command takes several arguments. Some are briefly described in the fol-
lowing table:

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3 7,
© Springer Science+Business Media New York 2013
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width Width of the graphics window, in inches
height Height of the graphics window, in inches
pointsize Default font size
xpinch, ypinch Double. Pixels per inch, horizontally and vertically
xpos, ypos Integer. Position of the upper left corner of the window, in pixels

Linux

Under Linux, the command is X11() instead of windows().

Mac

On a Macintosh, the command is quartz().

When several graphics windows are open, only one is “active”. This is the win-
dow in which all graphical events occur. Each window is associated with a device
number; the console is number 1.

Here are a few functions to manipulate graphics windows, using their device
number.

dev.off(device-number) Close window device-number (if no device number is specified, the
current active window is closed).

graphics.off() Close all open graphics windows.
dev.list() Return the device numbers of open graphics windows.
dev.set(device-number) Activate window device-number.
dev.cur() Return the device number of the active window (1 for the console).

Note that once a plot has been drawn, it can be saved to a file with the command
savePlot() as follows:

savePlot(filename="Rplot",
type=c("wmf", "png", "jpeg", "jpg", "bmp",
"ps", "pdf"),device=dev.cur())

The argument filename is the name of the file under which the plot should be
saved; type is the file type (Windows metafile, PNG, JPEG, BMP, PostScript or
PDF) and device is the device number of the window with the plot to be saved (by
default, the active window). Note that the available file types may depend on your
operating system.

> hist(runif(100))
> savePlot(filename="mygraph.png",type="png")
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Histogram of runif(100)
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Two other instructions can be used in this context:

� dev.copy2eps(file="mygraph.eps")
� dev.copy2pdf(file="mygraph.pdf")
which respectively create Postscript and PDF files.

Tip

There are other functions to save your plots under useful formats:
postscript(), pdf(), pictex(), xfig(), bitmap(), bmp(), jpeg(),
png(), tiff(). However, they are used in a slightly different way: first, type
the name of one of these instructions, then draw your plot, and finish by calling
dev.off(). Note that using these commands does not display the plot on the
screen.

> pdf(file="mygraph.pdf")
> hist(runif(100))
> g <- dev.off()

7.1.2 Splitting the Graphics Window: layout()

If you want to draw several plots in the same window, R offers the possibility of
splitting that window in as many boxes as needed.

A first possibility is the function par()with the argument mfrow (read the warn-
ing in Sect. 7.7 about the function par()). For instance, the following example splits
the graphics window into three rows and two columns. Every time you call the
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drawing of a function, one of the small boxes is filled, row by row (the command
mfcol is used to fill column by column), as shown in Fig. 7.1 below.

> par(mfrow=c(3,2))

1 2

3 4

5 6

Fig. 7.1: Effect of argument mfrow of function par(). Numbers have been added to
gain a better understanding of where future plots will be drawn

The function layout() is used to get a more sophisticated split than with the
function par(). The following example shows how this splitting is specified in an
intuitive way, thanks to the argument mat, to draw five separate plots (Fig. 7.2).

> mat <- matrix(c(2,3,0,1,0,0,0,4,0,0,0,5),4,3,byrow=TRUE)
> mat

[,1] [,2] [,3]
[1,] 2 3 0
[2,] 1 0 0
[3,] 0 4 0
[4,] 0 0 5
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> layout(mat)

1

2 3

4

5

Fig. 7.2: Potential of the function layout()

Tip

To display the previous figure in R, use the instruction layout.show(5).

Every time you call the drawing of a function, the plots are displayed in order in
the numbered boxes, in increasing order of the box numbers (Fig. 7.3).

Also, note that with the argument widths, you can specify the respective relative
widths of the columns of mat. The same can be done for the heights of rows with
the argument heights.
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> layout(mat,widths=c(1,5,14),heights=c(1,2,4,1))
> layout.show(5)

1

2 3

4

5

Fig. 7.3: The function layout() and its arguments widths and heights

SECTION 7.2

Low-Level Drawing Functions

7.2.1 The Functions plot() and points()

The function plot() is the generic function to draw plots. It takes as input argument
the coordinates of the points to draw (Fig. 7.4).

Warning

You can also use the function plot() on an R object for which a graphical
method is defined. Examples are given in Chaps. 14 and 15.
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Here are the most useful arguments of this function.

Argument Description
x Vector of x coordinates of points to draw.
y Vector of y coordinates of points to draw.
type Specify the type of plotting: "p" for points, "l" for lines, "b" for both, "c" for

empty points joined by lines, "o" for overplotted points and lines, "h" for vertical
lines, "s" for stair steps and "n" to plot nothing (but to display the window, with
axes).

main Specify the main title.
sub Specify the subtitle.
xlab Specify the label of the x axis.
ylab Specify the label of the y axis.
xlim Vector of length 2. Specify the lower and upper bound for the x axis.
ylim Vector of length 2. Specify the lower and upper bound for the y axis.
log Character string which contains "x" (respectively "y", "xy" or "yx") if the x axis

(respectively the y axis, both) is to be logarithmic.

> plot(1:4,c(2,3,4,1),type="b",main="Main title",
+ sub="Subtitle",xlab="Label for x",ylab="Label for y")
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Fig. 7.4: The function plot()

Note that successive calls of the function plot() create a new plot every time,
which replaces the previous one (unless the graphics window has been split, as
explained above). The function points() can remediate this issue by overlaying
the new plot on top of the old one. It takes the same arguments as plot() (Fig. 7.5).
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> points(1:4,c(4,2,1,3),type="l")
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Fig. 7.5: The function points()

Tip

The function approx() provides a linear or constantwise interpolation
between points.

7.2.2 The Functions segments(), lines() and abline()

The functions segments() and lines() are used to join points with line segments,
added on to a pre-existing plot (Fig. 7.6).
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> plot(0,0,"n")
> segments(x0=0,y0=0,x1=1,y1=1)
> lines(x=c(1,0),y=c(0,1))
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Fig. 7.6: The functions segments() and lines()

The function abline() is used to draw a straight line of equation y D a C
bx (specified by the arguments a and b) or a horizontal (argument h) or vertical
(argument v) line (Fig. 7.7).

> plot(0,0,"n");abline(h=0,v=0);abline(a=1,b=1)
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Fig. 7.7: The function abline()
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Do it yourself Ï
Reproduce this plot.
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7.2.3 The Function arrows()

This function is used to draw arrows between pairs of points. It takes an argument
length to indicate the size of the arrowhead (Fig. 7.8):.
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> x <- runif(12); y <- runif(12)
> i <- order(x,y); x <- x[i]; y <- y[i]
> plot(x,y)
> s <- seq(length(x)-1)
> arrows(x[s], y[s], x[s+1], y[s+1], length=0.1)
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Fig. 7.8: The function arrows()

7.2.4 The Function polygon()

As the name suggests, this function is used to draw polygons and to fill in a polygon
with a specified colour.

Do it yourself Ï
Enter the following command in the R console:

example(polygon)

Tip

The command polygon(locator(10,"l")) is used to draw a ten-edge
polygon by clicking in the graphics window on the points where the polygon
vertices should be.
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7.2.5 The Function curve()

This function is used to draw a curve in a Cartesian coordinate system, on the inter-
val specified by the bounds from and to.

> curve(xˆ3-3*x,from=-2,to=2)
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Fig. 7.9: The function curve()

Note that the argument add=TRUE can be used to indicate that the curve should
be overlaid on a pre-existing plot (Fig.7.9).

Do it yourself Ï
Use the following instruction to draw the density histogram of 10,000 ran-
dom values from a normal distribution:

hist(rnorm(10000),prob=TRUE,breaks=100)

Use the function curve() to overlay on top of this histogram the density
function of a N .0; 1/ distribution, given by the function dnorm().

7.2.6 The Function box()

This function is used to add a box around the current plot. The argument bty man-
ages the type of box; the argument lty manages the type of line used to draw the
box. Note that by default, the function plot() adds a box, unless it is given the
argument axes=FALSE (Fig. 7.10).
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> plot(runif(7), type = "h", axes = FALSE)
> box(lty = "1373")
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Fig. 7.10: The function box()

SECTION 7.3

Managing Colours

7.3.1 The Function colors()

This function returns the names of the 657 colours known to R.

Tip

If you want to get the different shades of orange, you can use the instruction

> colors()[grep("orange",colors())]
[1] "darkorange" "darkorange1" "darkorange2" "darkorange3"
[5] "darkorange4" "orange" "orange1" "orange2"
[9] "orange3" "orange4" "orangered" "orangered1"
[13] "orangered2" "orangered3" "orangered4"

These colours can be used in your plots, for example, with the argument col of
the function plot() (Fig. 7.11).
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> plot(1:10,runif(10),type="l",col="orangered")
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Fig. 7.11: The argument col of function plot()

See also

Note that you can also change the colour of the other elements of the plot,
such as the axes or the title. To this end, refer to Sect. 7.7, page 176, which
deals with the function par().

7.3.2 Hexadecimal Colour Coding

R gives the possibility of using hexadecimal colour coding, for example, with
the argument col of the function plot(). Each colour is coded as its decom-
position into three base colours: red, green and blue. Each component can take
a value between 0 and 255 (0: complete absence of the colour; 255: saturation of
the colour). Hexadecimal coding of these 256 values gives codes between 00 and FF.

Here are few examples of colours:

Black: #000000
White: #FFFFFF
Almond green: #82C46B
Lemon yellow: #F7FF3C
Peacock blue: #048B9A
Midnight blue: #10076B
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Note that you can use the function rgb() to get the hexadecimal code of a colour
from its decomposition into red, green and blue.

> rgb(red=26,green=204,blue=76,maxColorValue = 255)
[1] "#1ACC4C"
> rgb(red=0.1,green=0.8,blue=0.3)
[1] "#1ACC4D"

The function col2rgb() does the reverse operation:

> col2rgb("#1ACC4C")
[,1]

red 26
green 204
blue 76

You can even get transparency, with the argument alpha of the function rgb(),
as seen in Fig. 7.12:

> curve(sin(x),lwd=30,col=rgb(0.8,0.5,0.2),xlim=c(-10,10))
> curve(cos(x),lwd=30,col=rgb(0.1,0.8,0.3,alpha=0.2),add=TRUE)
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Fig. 7.12: The argument alpha of function rgb()

If your graphics card allows it, R can thus handle up to 2563 colours or over 16
million colours. The next example uses the function rainbow() and should give
you an idea of this range (Fig. 7.13).
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> pie(rep(1, 200), labels = "", col = rainbow(200), border = NA)

Fig. 7.13: An example using function rainbow()

You can also add to R the package RColorBrewer. This package can be used
to automatically create ideal colour palettes for beautiful presentations: shades of a
colour, complementary or diverging colours (Fig. 7.14).

7.3.3 The Function image()

This function creates and displays a grid of coloured or greyscale rectangles. The
rectangles are also called pixels (picture elements). It can be used to display 3D or
spatial data, i.e. images (Fig. 7.15).

> X <- matrix(1:12,nrow=3)
> X

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

The numbers in the boxes were added using the function text() which is intro-
duced later on (Fig. 7.16).
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Warning

Beware of how the coloured rectangles are organized in Fig. 7.15: left to
right and bottom to top. It is therefore an anticlockwise 90 degrees rotation of
the display of the contents of the matrix X.

> require("RColorBrewer")
> display.brewer.all()
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RdYlBu
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Spectral
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Pastel1
Pastel2
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Blues
BuGn
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Greens
Greys

Oranges
OrRd
PuBu

PuBuGn
PuRd

Purples
RdPu
Reds
YlGn

YlGnBu
YlOrBr

YlOrRd

Fig. 7.14: The function display.brewer.all() from package RColorBrewer

You can get a display coherent with how the data are organized in the matrix X
as follows:
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> colours <- c("orange","orangered","red","lightblue",
+ "blue", "white","lightgrey","grey",
+ "darkgrey","yellow","green","purple")
> image(X,col=colours)
> text(rep(c(0,0.5,1),4),rep(c(0,0.3,0.7,1),each=3),1:12,cex=2)
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Fig. 7.15: The function image()

> image(as.matrix(rev(as.data.frame(t(X)))),col=colours)
> text(rep(c(0,0.33,0.67,1),each=3),rep(c(1,0.5,0),4),1:12,cex=2)

0.0 0.2 0.4 0.6 0.8 1.0

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1

2

3

4

5

6

7

8

9

10

11

12

Fig. 7.16: The function image()with a coherent display of the data



7.4 Adding Text 169

Do it yourself Ï
Install and load the package caTools. Use the function read.gif() of this
package to read the file http://www.biostatisticien.eu/springeR/
R.gif. Use the function image() to display it in R. Use the colours given
by read.gif() and display the image in the correct orientation.

SECTION 7.4

Adding Text

7.4.1 The Function text()

This function is used to add text to a plot. A very interesting feature is that it can also
be used to add mathematical formulae. In addition to the string itself, you need to
specify the x and y coordinates of the centre of the string. To display a mathematical
expression, use the function expression(). The bquote() function can also be
useful (Fig. 7.17).

> plot(1:10,1:10,xlab=bquote(x[i]),ylab=bquote(y[i]))
> text(3,6,"some text")
> text(4,9,expression(widehat(beta) == (XˆT * X)ˆf-1g * XˆT * y))
> p <- 4; text(8,4,bquote(beta[.(p)])) # Combining "math" and

# numerical variables.
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Fig. 7.17: The function text()
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Tip

Use the command demo(plotmath) to see the various possibilities of
adding mathematical expressions to a plot. This will also show the relevant
commands.

Do it yourself Ï
Plot a point at the coordinates .1; 1/. Then use the function text() to add the
text "ABC", also at the coordinates .1; 1/. Observe the effect of the argument
pos, which takes the values 1 (below), 2 (left), 3 (above) or 4 (right).

7.4.2 The Function mtext()

This function is used to add text in the margins of the graphics window. It can also
be used to add mathematical formulae.

It takes an argument side (1=bottom, 2=left, 3=top or 4=right) to specify which
margin the text should be added in (Fig. 7.18).

> plot(1:10,1:10)
> mtext("bottom",side=1)
> mtext("left",side=2)
> mtext("top",side=3)
> mtext(expression(xˆ2+3*y+hat(beta)),side=4)
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Fig. 7.18: The function mtext()
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SECTION 7.5

Titles, Axes and Captions

7.5.1 The Function title()

This function is used to add titles to a plot: a main title above the plot with the
argument main, a subtitle below the plot with the argument sub, a label for the x
axis with the argument xlab and a label for the y axis with the argument ylab. Note
that these arguments can also be specified directly when calling graphical functions
such as plot() (Fig. 7.19).

> plot.new()
> box()
> title(main = "Main title", sub = "Subtitle",
+ xlab = "x label", ylab = "y label")

Main title

x label
Subtitle

y 
la
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l

Fig. 7.19: The function title()
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Tip

A title can be written on several lines, thanks to the carriage return character
"nn" (Fig. 7.20).

> plot(1:10,main="Title onnn threenn lines",xlab="",ylab="")

2 4 6 8 10

2
4

6
8

10

Title on
three
lines

Fig. 7.20: Plot title on several lines

7.5.2 The Function axis()

This function adds an axis to a pre-existing plot. You can specify on which side to
draw the axis, the position of ticks and several other arguments.

Note

In general, you will only need the function axis when you wish to control
the details of the axes. To this end, you can first draw a plot (e.g., with the
function plot()) without the axes, with the argument axes=FALSE.
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Here are a few of the main arguments of the function axis() (Fig. 7.21).

Argument Description
side Specify on which side to draw the axis: side=1 (below), side=2 (left), side=3

(above), side=4 (right).
at Specify where to draw the ticks.
labels Either a Boolean to specify whether the ticks should be annotated or a character

string specifying the annotation at the ticks.
tick Boolean specifying whether the ticks should be drawn.
col Colour of the axis.

Other arguments are available and are described in the online help.

> plot.new()
> lines(x=c(0,1),y=c(0,1),col="red")
> axis(side=1,at=c(0,0.5,1),labels=c("a","b","c"),col="blue")

a b c

Fig. 7.21: The function axis()

7.5.3 The Function legend()

This function is used to add a caption to a pre-existing plot (Figs. 7.22, 7.23).
Here are a few of its arguments:

Argument Description
x, y Specify the coordinates of the position of the caption on the plot.
legend Vector of character strings or expressions to display in the caption.
fill Vector of colours to fill the background of the caption box.
lty,lwd Integer. Line type or line width for lines in the legend. You must specify one of these

arguments to get lines in the legend.
col Vector of colours of points or lines in the legend.
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> plot(1:4,1:4,col=1:4)
> legend(x=3,y=2.5,legend=c("a","b","c","d"),fill=1:4)
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Fig. 7.22: The function legend() with squares

> plot(1:4,1:4,col=1:4,type="b")
> legend(x=3,y=2.5,legend=c("a","b","c","d"),col=1:4,lty=1)
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Fig. 7.23: The function legend()with line segments

Many other arguments are available and are described in the online help.
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SECTION 7.6

Interacting with the Plot

7.6.1 The Function locator()

It is used to place a point on a plot or to get its coordinates with a click of the mouse.
It can also be useful to add text (or a caption) at a specific location, thanks to the
mouse.

Do it yourself Ï
Enter the following instructions, then click anywhere on the plot you get:

plot(1,1)
text(locator(1),labels="Here") # Click on the graphics window.

7.6.2 The Function identify()

It is used to identify and mark points already present on a plot. The following prac-
tical should help you understand this function.

Do it yourself Ï
Enter the following instructions, then click next to points on the plot. Use a
right click to exit the interactive mode.

> plot(swiss[,1:2])
> x <- identify(swiss[,1:2],labels=rownames(swiss))
> x
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SECTION 7.7

� Fine-Tuning Graphical Parameters: par()

The function par() takes many arguments to fine-tune your plots. Use this function
to set (or query) general graphical parameters.

Here is how to use this instruction:

� par(arg-name) outputs the default value of the parameter arg-name of the func-
tion par().

� par(arg-name=val) changes the value of the parameter arg-name to the value
val.

� par() returns the list of all graphical parameters currently in use, as well as the
current values.

Warning

Before changing the values of parameters of the function par(), you should
save the old values. That way, you can restore them later if needed.

# Save the default values of par().
save.par <- par(no.readonly = TRUE)
# Now we can change some parameters.
par(bg="red")
# Then restore the old values.
par(save.par)

Before we present the detailed use of this function, it is worth noting that the
graphics window (also called device region) includes the figure region, which in
turn includes the plot region. Figure 7.24 illustrates this.

Here is an (almost complete) list of the various parameters of the function par(),
along with a short description. We have organized them in groups to make it easier
to find relevant parameters (Table 7.1).
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�Managing the graphics window

Table 7.1: Parameters to manage the graphics window

Name Description
ask Boolean. If TRUE, the user is prompted to press ENTER before a new plot is drawn. Use

devAskNewPage() instead.
din* Dimensions c(width,height) of the graphics window, in inches (stands for device

region inches).
fig A numeric vector of the form c(x1, x2, y1, y2) giving the normalized device coor-

dinates of the figure region, in which the plot will be drawn.
fin A numeric vector of the form c(width, height) giving the size of the figure region,

in inches (stands for figure region inches).
mai A numeric vector of the form c(bottom, left, top, right) giving the size of the

margins, in inches.
mar A numeric vector of the form c(bottom, left, top, right) giving the number of

margin lines on the four sides of the plot. The default value is c(5, 4, 4, 2) + 0.1.
mex mex is an expansion factor for the size of the font used to describe the coordinates in

the plot margins. Note that this does not change the font size, but rather specifies, as a
multiple of csi, the font size to convert between mar and mai and between oma and omi.
Its value is 1 when the device is opened and is reinitialized when the layout is changed
(cex is also reinitialized).

mfcol,

mfrow

A vector of the form c(nl, nc). The successive plots (or multi-figures) will be
drawn in a matrix of size nl-by-nc in the graphics window, filled respectively by
-columns- (mfcol) or by -rows- (mfrow). Consider the alternatives: layout() and
split.screen().

mfg A numeric vector of the form c(i, j) where i and j indicate the cell of the figures ma-
trix in which the next plot should be drawn. The figures matrix must have been predefined
with one of the parameters mfcol or mfrow.

mgp The margin line (in units of mex) for the axis titles, labels and lines. The default value is
c(3, 1, 0).

new Boolean, by default FALSE. If set to TRUE, the next high-level graphical command (in
fact plot.new()) will not erase the old plot and will overlay the new plot.

oma A vector of the form c(bottom, left, top, right) giving the size of the external
margins (units: lines of text).

omd A vector of the form c(x1, x2, y1, y2) giving the region inside the external margins,
in NDC (= normalized device coordinates), i.e. as a proportion (in [0,1]) of the graphics
window.

omi A vector of the form c(bottom, left, top, right) giving the size of the outer mar-
gins, in inches.

pin The dimensions of the plot region, in inches c(width, height).
plt A vector of the form c(x1, x2, y1, y2) giving the coordinates of the plot region as

fractions of the current figure region.
pty A character specifying the plot region type: "s" generates a square plot region and "m"

generates the maximal plot region.
usr A vector of the form c(x1, x2, y1, y2) giving the extreme values of the user coordi-

nates of the plot region. If a log scale is used (i.e. par("xlog") is TRUE), then the limits
in x are 10par("usr")[1:2]. The same goes for the limits in y.

xpd A Boolean or NA. If FALSE, all plots are attached to the plot region. If TRUE, all plots
are attached to the figure region. If NA, all plots are attached to the plot window. See also
clip().

* An asterisk has been added to parameters which cannot be modified by the user (read only)
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Fig. 7.24: Figure illustrating the fine management of graphical parameters
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The previous plot should help you better understand some of these parameters
(Fig. 7.24).

�Managing colours

Table 7.2: Parameters to manage colours

Name Description
bg Background colour of device region.
col Colour of plot.
col.axis Colour of axis annotations.
col.lab Colour of x and y labels.
col.main Colour of main title.
col.sub Colour of subtitles.
fg Colour of foreground (axes and box around the plot). Sets

col to the same value.

See how the parameters in Table 7.2 can be put in use (Fig. 7.25):

> par(bg="lightgray",col.axis="darkgreen",col.lab="darkred",
+ col.main="purple",col.sub="black",fg="blue")
> curve(cos(x),xlab="xlab in darkred",main="Title in purple",
+ xlim=c(-10,10),sub="sub in black")
> curve(sin(x),col="blue",add=T)
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Fig. 7.25: Managing the colours of a plot
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�Managing text

Table 7.3: Managing text displayed on a plot

Name Description
adj The value of adj determines how character strings are adjusted in text(),

mtext() and title(). A value of 0 leads to left-adjusted text, 0.5 to centred
text and 1 to right-adjusted text. Any value in Œ0; 1� is allowed, and some val-
ues outside this interval sometimes also work. Note that the argument adj to the
function text() also allows adj = c(x, y) for different adjustments in x and
in y. Note that for text(), the text is adjusted relatively to a point, whereas for
mtext() and title(), it is adjusted relatively to the plot region or graphical
window.

ann If set to FALSE, high-level graphical functions will not add annotations to plots
they produce (axes and main title). By default, annotations are added.

cex A numeric value giving the character expansion coefficient for text and symbols
on the plot, relatively to a reference value.

cex.axis Character expansion coefficient for axes annotations.
cex.lab Expansion for x and y labels.
cex.main Expansion for main title.
cex.sub Expansion for subtitles.
cin� Size of characters in inches c(width, height).
cra� Size of characters in pixels c(width, height).
crt Numeric value specifying (in degrees) how various characters must be rotated.

Must be a multiple of 90. Compare with srt which rotates character strings.
csi� Height of characters in inches. Identical to par("cin")[2].
cxy� Size of the characters c(width, height) in units expressed relatively to

the user coordinates. par("cxy") is equal to par("cin")/par("pin")
times a scaling factor in the user coordinates. Note that c(strwidth(ch),
strheight(ch)) for a given character string ch is usually much more accurate.

family Name of a font family. Maximal size is 200 bytes. Each plot device puts this name
in relation with a description of the font specific to the device. The default value
is "", which means that the default font is used (see the device help file for further
details). Other oft-used values are serif, sans and mono; Hershey fonts are also
available. This can be specified in the function text().

font An integer specifying the font to use for text. In general, 1 corresponds to ordinary
text, 2 to bold, 3 to italics and 4 to bold italics. 5 should be symbol font (Adobe
encoding).

font.axis Font for axis annotations.
font.lab Font for labels of x and y axes.
font.main Font for main title.
font.sub Font for subtitles.
ps Integer. Size of text, in points (but not of symbols).
srt Character string rotation, in degrees. See the comment on crt. Only supported

by text().

� An asterisk indicates arguments which cannot be modified by the user (read only)



7.7 � Fine-Tuning Graphical Parameters: par() 181

Here is an example of use of the arguments adj and srt (Fig. 7.26, Table 7.3):

> par(mfrow = c(1, 3))
> vals <- c(0, 0.5, 1)
> for (adj in vals) f
+ par(adj = adj)
+ plot(0, main = paste("adj =", adj), col.lab = "red",
+ col.main = "red",type = "n")
+ text(1, 0, "abc", col = "red", cex = 2)
+ abline(h = 0, lty = 2)
+ abline(v = 1, lty = 2)
+ g
> abline(v=0.8,h=-0.5,lty=2)
> text(0.8, -0.5, "abc", col = "red", cex = 2,adj=c(0,1))
> abline(h=0.5,v=0.5,lty=2)

> text(0.8,0.5,"ABC",col="red",cex=2,adj=c(0.5,0.5),srt=120)
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Fig. 7.26: Example of use of the arguments adj and srt

This second example shows how to use different fonts (Fig. 7.27, Table 7.3):

> par(cex.axis=1.5)
> plot(1:5,y=rep(1,5),type="n",font.axis=2,font.lab=3,xlab=
+ "xlab in italics",ylab="",font.main=4,main="Title in bold
+ italics", font.sub=5,sub="Subtitle in symbol font")
> text(2,1.2,"Normal text")
> par(ps=30)
> text(3,1,"A Hershey font",family="HersheyScript")
> par(ps=14)
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+ family="HersheyGothicEnglish")
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Fig. 7.27: Using different fonts on a plot

Tip

To see all symbols and fonts available in R, use the following command:

demo(Hershey)
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�Managing axes

Table 7.4: Parameters to manage axes

Name Description
bty Character string to specify the type of box around the plot (the axes). If bty is one of

"o" (default value), "l", "7", "c", "u" or "]", the box looks like the corresponding
character. A value of "n" hides the box.

lab Numeric vector of the form c(x, y, len) modifying how the axes are annotated. The
values of x and y (approximately) specify the number of ticks on the x and y axes. len
specifies the size of the labels. The default value is c(5, 5, 7). Note that this only
affects the values of the arguments xaxp and yaxp when the coordinates system is put in
place and is not used when the axes are drawn. len is not implemented yet.

las Number in the set f0,1,2,3g. Style of the axis labels. 0=always parallel to the axis (de-
fault), 1=always horizontal, 2=always orthogonal to the axis, 3=always vertical. Note
that the argument srt of par(), which manages the rotation of character strings, does
not affect axis labels.

tck Length of tick marks on axes, as a fraction of the minimum of the height and width of the
drawing region. If tck >= 0.5, then it is interpreted as a fraction of the relevant side,
and if tck=1, then a grid is drawn. The default (tck = NA) sets tcl = -0.5.

tcl Length of the tick marks as a fraction of the height of a line of text. The default value is
-0.5. Entering tcl = NA sets tck = -0.01.

xaxp A vector of the form c(x1, x2, n) giving the coordinates of the extreme ticks and the
number of intervals between ticks, when par("xlog") is FALSE. Otherwise, when the
scale is logarithmic, the three values have different meanings. See the online help for
details. See also axTicks().

xaxs Style for the intervals on the x axis. Possible values: "r", "i", "e", "s", "d". The style
is usually controlled by the data range or by xlim if it is specified. The style "r" (regular)
first enlarges the data range by 4 % on both sides and then finds an axis with pretty labels
which fits in the range. The style "i" (internal) only finds an axis with pretty labels which
fits the original data range. The style "s" (standard) finds an axis with pretty labels in
which the original data range is included. The style "e" (extended) is similar to the style
"s", but it also leaves space to draw symbols inside the bounding box. The style "d"
(direct) specifies that the current axes must be used for subsequent plots. As of writing,
only the styles "r" and "i" are implemented.

xaxt A character to specify the type of x axis. A value of "n" implies that an axis is created,
but not drawn. The standard value is "s".

xlog Boolean (see log in plot.default()). If TRUE, a logarithmic scale is used (e.g., after
plot(�, log = "x")). For a new graphics window, the default is FALSE, i.e. a linear
scale.

yaxp A vector of the form c(y1, y2, n) giving the coordinates of the extreme tick marks
and the number of intervals between these ticks, except for the logarithmic scale. See
xaxp above.

yaxs Style for the intervals on the y axis. See xaxs above.
yaxt Character to specify the type of y axis. A value of "n" implies that the axis is created,

but not drawn.
ylog Boolean; see xlog above.
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A few of these parameters are used in the following example (Fig. 7.28):

> # Enlarge the bottom margin to leave space for the x

# labels.
> par(mar = c(7, 4, 4, 2) + 0.1)
> # Define a box style, ten ticks in x and y,

# horizontal labels, and graduations of length 1 (which gives
# a grid)

> par(bty="7",col="blue",lab=c(10,10,1),las=1,tck=1)
> # Create a plot without the x axis and without

# x labels.
> plot(1 : 8, xaxt = "n", xlab = "")
> # Add the x axis with ticks only.
> axis(1, labels = FALSE)
> # Create the label vector.
> labels <- paste("Label", 1:8, sep = " ")
> # Add the x labels to the default ticks.
> text(1:8, par("usr")[3] - 0.25, srt = 45, adj = 1,
+ labels = labels, xpd = TRUE)
> # Add a subtitle at the bottom, on the sixth margin line (out

# of 7).
> mtext(1, text = "Labels for the X axis", line = 6)
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Fig. 7.28: Labels on a plot
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� Lines and symbols

Table 7.5: Parameters for lines and symbols

Name Description
lend End-of-line style. Can be specified with an integer or a character string: 0 or "round"

means that a semicircle is added at the end of a line; 1 or "butt" means that lines end
straight; 2 or "square" means that a small square is added at the end of a line.

lheight Line height multiplier. When a text extends over several lines, the height of the space
between lines is found by multiplying the height of characters both by the current
character expansion factor and by the line height multiplier. The default value is 1.
Used in text() and strheight().

ljoin Line join style. Can be specified with an integer or a character string: 0 or "round"
means a round join (default); 1 or "mitre"means a straight join; 2 or "bevel"means
bevelled line joins.

lmitre Controls when straight joins are automatically converted to pointy joins. Must be
greater than 1 and the default value is 10. Does not work on some peripherals.

lty Line type. Can be specified by an integer (0=blank, 1=solid, 2=dashes, 3=dots, 4=dots
and dashes, 5=long dashes, 6=two dashes) or by one of the character strings "blank",
"solid", "dashed", "dotted", "dotdash", "longdash" or "twodash". Note that
"blank" uses invisible lines (so does not draw them). You can also give a character
string (of length no more than 8) giving the length of the solid and empty segments.
See the section Line type specification of the online help.

lwd Line width in the plot (positive number), defaults to 1.
pch Either an integer specifying a symbol or a character to replace small circles in point

plots.

The following plot should help you better understand the arguments lend and
ljoin (Fig. 7.29, Table 7.5).

ljoin="round"

le
nd

=
"r

ou
nd

"

ljoin="round"

le
nd

=
"b

ut
t"

ljoin="round"

le
nd

=
"s

qu
ar

e"

ljoin="mitre"

le
nd

=
"r

ou
nd

"

ljoin="mitre"

le
nd

=
"b

ut
t"

ljoin="mitre"

le
nd

=
"s

qu
ar

e"

ljoin="bevel"

le
nd

=
"r

ou
nd

"

ljoin="bevel"

le
nd

=
"b

ut
t"

ljoin="bevel"

le
nd

=
"s

qu
ar

e"

Fig. 7.29: The arguments lend and ljoin
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The figure below shows the different symbols you can obtain with the argument
pch. The type of points in a plot is controlled with the argument pch. Points 0 to
20 are of the same colour, controlled with the argument col. Points 21 to 25 also
have a filling colour, controlled with the argument bg of the function points()
(Fig. 7.30).
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Fig. 7.30: The argument pch

Figure 7.31 shows how to use the arguments lty and lwd:

> plot(1,1,type="n")
> for (i in 0:6) abline(v=0.6+i*0.1,lty=i,lwd=i)
> abline(v=1.3,lty="92",lwd=10)
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Fig. 7.31: The arguments lty and lwd
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SECTION 7.8

� Advanced Plots: rgl, lattice and ggplot2

There are other R packages to manage plots in a more advanced way. Space does
not allow us to describe these packages in much detail. We shall simply give a few
striking examples, in the hope that the advanced reader will want to find out more.

� Package rgl

This package is used to create pretty 3D plots, with interactive viewpoint navi-
gation using the mouse. Try the following commands to get an idea:

require("rgl")
demo(rgl)
example(rgl)

� Package lattice

An entire book is dedicated to this package: [36]. The following example shows
that in the package lattice, plots can be considered as objects (as in object-
oriented programming), which some readers might find pleasing. For example, sup-
pose that you have used the following commands to draw a graph and that you
realize you made a mistake in the title.

x <- 1:100
y <- sin(x)
plot(x,y,type="l",main="Cosine plot")

The way to resolve this issue would be to redraw the entire figure, this time with the
correct title.

With the package lattice, you can avoid this hassle.

require("lattice")
xyplot(y�x,type="l",main="Cosine plot")

The following instruction can be used to change the title without redrawing the plot!

update(trellis.last.object(),main="Sine plot")

� Package ggplot2

We shall only mention the package ggplot2, which makes explicit the concep-
tual links between plots and statistical analyses. You can visit the website of this
package at http://ggplot2.org and the website of the book devoted to it at
http://ggplot2.org/book.

http://ggplot2.org
http://ggplot2.org/book
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Memorandum

dev.off(): close the active graphics window
savePlot(): save the contents of the active graphics window to a file
layout(): split the graphics window into boxes
plot(): draw points and optionally lines between them
points(): add points to a pre-existing plot and optionally lines between them
segments(), lines(), abline(): add lines to a plot
arrows(): add an arrow to a plot
polygon(): draw a polygon
curve(): draw a curve, specified by its equation
box(): add a box around the active plot
colors(): return the list of colour names known to R

text(): add text or mathematical symbols to a plot
mtext(): add text to the margins of a plot
title(): manage the titles of a plot
axis(): add an axis to a plot
legend(): add a caption to a plot
locator(): detect the coordinates of a point on a plot with a click of the mouse
identify(): identify a pre-existing point on a plot
par(): advanced management of all graphical parameters

✎
Exercises

7.1- What is the command windows() used for? And the command dev.off()?
7.2- Suppose you drew a plot with the command

curve(cos(x)). Which R instruction would you use to save this plot as a
PDF in a file called myplot.pdf?

7.3- Give a detailed explanation of the effect of the instruction
par (mfrow=c(3,2)).

7.4- What is the function layout() used for?
7.5- Which command would you use to add a scatter plot to a pre-existing plot?
7.6- Which argument of the function plot() would you use to get points with

dashes between them?
7.7- Name a function which draws a straight line.
7.8- What is the function curve() used for?
7.9- Which argument would you use to manage the colours in a plot?

7.10- Which function would you use to display an image? Give an instruction to
display an image, the values of which are given in a matrix X, so that the
output is coherent with the way X is displayed in the console.

7.11- Which function would you use to add text to a plot?
7.12- Which function would you use to find the coordinates of a point in a plot with

a click of the mouse?
7.13- Give a detailed explanation of the effect of the instruction par(ask=TRUE).
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7.14- Which argument of the function par() would you use to specify the type of
line drawn by the function curve()?

7.15- Which argument of the function par() would you use to display other sym-
bols instead of small circles in a scatter plot?

7.16- Give a list of instructions to display the following plot. The central axis sys-
tem must be displayed in red. The cosine curve must be displayed in blue.
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Worksheet

Creating Various Plots

A- Complex Numbers

7.1- Reproduce the plot on complex numbers in Chap. 3 (page 47).

B- Flag of Canada

7.1- Install the package caTools.
7.2- Use the function read.gif() to read the image http://www.

biostatisticien.eu/springeR/canada.gif.
7.3- Display the image with the function image().
7.4- Redraw this flag in another window using the functions plot(), rect() and

polygon() (hint: use the function locator()).

http://www.
biostatisticien.eu/springeR/canada.gif
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C- Frequency Tables

The following table represents scores of burning sensation for 16 subjects in a
study to test a new hydrogel bandage. The first column gives the subject number.
The next columns give the score of burning sensation (on a scale from 1 to 4) for
weeks 1 (W1) to 7 (W7).

Nr W1 W2 W3 W4 W5 W6 W7
1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 2
3 1 1 1 1 1 2 3
4 1 1 1 1 1 3 4
5 1 1 1 1 2 3 3
6 1 1 1 1 1 1 1
7 1 1 1 3 4 2 2
8 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1
10 1 1 1 1 1 1 4
11 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1
13 1 2 1 3 2 3 4
14 1 1 1 2 2 4 4
15 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1

We shall propose an interesting way to display these data.

7.1- For week W7, calculate the vector .f1; 1�f1; f2; 1�f2; f3; 1�f3; f4; 1�f4/

where fi is the frequency of modality i (1 
 i 
 4) observed in week W7
over the 16 subjects. (Hint: use the functions tabulate(), cbind(), t()
and as.vector()).

7.2- Now, use the function apply() to do the same calculation for all other weeks.
Store the result in a matrix.

7.3- Use the function barplot() and the argument col=c("black","white")
on this matrix. The plot you get gives an overview of the evolution of the
variable Burning sensation over time.

7.4- Change the previous plot so that the bars representing frequencies are in red.
Week numbers should be in blue and at the top of the plot instead of the
bottom. Modality numbers should be on the left, in blue. Add a title to the
plot.

D- Anatomic Images of the Brain

Data acquired during magnetic resonance imaging (MRI) of the brain are usually
stored as a binary file with extension *.img. We shall see how to read and display
such data.

7.1- Import the file http://www.biostatisticien.eu/springeR/anat.
img, which contains the image of a single brain section of 256 � 256 pixels,

http://www.biostatisticien.eu/springeR/anat.img
http://www.biostatisticien.eu/springeR/anat.img
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using the function readBin(). These data can be treated as a sequence of
256 � 256 byte pairs (raw). Store these data in an object called bytes.

7.2- When the data were recorded, each pair of bytes was in fact written in reverse
(e.g., the pair 02 56 was recorded as 56 02). You therefore need to permute
each byte pair. Store the result of this operation in x.

7.3- This sequence of byte pairs now needs to be transformed into numeric values
which can be displayed graphically. With two bytes (such as 02 56), you can
use the instruction
as.numeric("0x0256") to get the corresponding decimal value (in this
case, the result is 598). Transform x into decimal values and store the result
in an object called values (hint: use the functions matrix(), apply() and
paste()).

7.4- Recreate the matrix of size 256 � 256 containing the observations stored in
values. Call this matrix X.

7.5- Use the function image() on X. Use a colour gradient of shades of grey with
about one hundred shades, using the function gray().

7.6- Note that the R package AnalyzeFMRI does exactly that. After download-
ing the two files http://www.biostatisticien.eu/springeR/anat.
img and http://www.biostatisticien.eu/springeR/anat.hdr, and
after installing package AnalyzeFMRI, you could have got the exact same
result by typing

require("AnalyzeFMRI")
Y <- f.read.volume("/path/to/anat.img") # Replace path.
image(X,col=gray(0:1000 / 1000))

E- Drawing the Map of a Region of France

The package maps includes maps of various countries. We shall use it to draw
the borders of a French département.

7.1- Install and load the packages maps and mapdata.
7.2- Draw the map of France: map("france").
7.3- Get the data on borders of French regions:

france <- map("france",plot=FALSE)

7.4- Display the contents of the object france and make sure you understand how
it is organized. For example, note that latitude and longitude data are stored
in france$x/france$y for each département in france$names (until the
next NA).

7.5- Create a vector indNA containing the indices of missing values.
7.6- Create an object containing the name of the département of your choice (e.g.,

depname <- "Gard").
7.7- Create an object called inddept containing the département index depname

in the vector france$names.
7.8- Draw the map of your département.

http://www.biostatisticien.eu/springeR/anat.img
http://www.biostatisticien.eu/springeR/anat.img
http://www.biostatisticien.eu/springeR/anat.hdr
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7.9- Add a point for a place on the map. You can get the coordinates (latitude and
longitude) of a place on the website http://www.gpsvisualizer.com/
geocode.

F- Representation of the Geoid in France

A geoid can be seen as a gravitation equipotential surface, going through the
average sea level datum.

7.1- Import the file http://www.biostatisticien.eu/springeR/raf98.
gra in a matrix, using the function scan(). First, read the associ-
ated file http://www.biostatisticien.eu/springeR/geoidformat.
txt which gives a description of the file format.

7.2- Try to reproduce the plot available at
http://www.biostatisticien.eu/springeR/geoid.png. Do not try to
superpose the map of France yet (hint: use the functions scan(), layout(),
par(), image(), axis(), contour(), legend() and rainbow()).

http://www.gpsvisualizer.com/geocode
http://www.gpsvisualizer.com/geocode
http://www.biostatisticien.eu/springeR/raf98.gra
http://www.biostatisticien.eu/springeR/raf98.gra
http://www.biostatisticien.eu/springeR/geoidformat.txt
http://www.biostatisticien.eu/springeR/geoidformat.txt
http://www.biostatisticien.eu/springeR/geoid.png


Chapter 8
Programming in R

Prerequisites and goals of this chapter
� Read all previous chapters first. A neophyte user can skim through this chap-

ter on first reading. Indeed, it is well known that programming in a language
requires a more advanced level than using a language.

� The aim of this chapter is to give the user the opportunity to develop new func-
tions; in R, this corresponds to extending the language. The user can thus com-
plete his comprehension of how R works.

SECTION 8.1

Preamble

The strength of the R system is that it includes a real programming language. We
shall see that it offers very original programming concepts. The concept of objects
is very present in R. Object-oriented programming as used in R is transparent for
the user, in the sense that you do not need to understand the theory in order to use
it. The same cannot be said for the developer who wishes to respect the spirit of R.

Practical Problem

As an example, this chapter will tackle the resolution of the following practical
problem. Suppose that some users, beginners in R, wish to discover programming in
R by developing a few functions relative to the well-known least squares methods,1

in the context of simple linear regression. He soon realizes that two specific tasks

1 See for example http://en.wikipedia.org/wiki/Ordinary_least_squares.

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3 8,
© Springer Science+Business Media New York 2013
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are of interest to him: first, output a summary with estimations and the coefficient
of linear correlation; second, draw a scatter plot with the regression line. With his
experience from previous chapters, this user finds it easy to produce these results
from the command line. However, he/she would like to avoid having to type in
several lines of commands every time he/she wishes to see the result of these two
tasks, and so would like to develop two functions, easier to apply in a daily use of
R. To this end, he/she will have the help of a more advanced user who can advise
him/her every time he/she encounters a difficulty.

This practical problem should help the reader understand the use of the notions
presented in this chapter.

SECTION 8.2

Developing Functions

First of all, let us introduce some basic theoretical elements to explain how to create
a function in R.

8.2.1 Quick Start: Declaring, Creating and Calling Functions

Declaring a function is done with the following general form:
function(<list of arguments>) <body of the function>

where

� <list of arguments> is a list of named (formal) arguments.
� <body of the function> represents, as the name suggests, the contents of

the code to execute when the function is called.

Here is an example of function declaration:

> function(name) cat("Hello",name,"!")
function(name) cat("Hello",name,"!")

For R, a function is a specific object. Creating a function thus corresponds to
affecting the object “R function” to a variable, the name of which corresponds to
the function itself. For example, to create the function hello(), you can proceed as
follows:

> hello <- function(name) cat("Hello",name,"!")
> hello
function(name) cat("Hello",name,"!")

For this function to be executed, the user needs to call the function, followed by
the effective arguments listed in brackets. Recall that an effective argument is the
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value affected to a formal argument. We will use the terms calling argument and
input argument as synonyms of effective argument.

> hello("Peter")
Hello Peter !

8.2.2 Basic Concepts on Functions

8.2.2.1 Body of a Function

The body of a function can be a simple R instruction, or a sequence of R instructions.
In the latter case, the instructions must be enclosed between the characters f and g
to delimit the beginning and end of the body of the function. Several R instructions
can be written on the same line as long as they are separated by the character ;.
When the body of the function includes several R instructions written on the same
line, do not forget to enclose them between characters f and g. Recall that on a line,
any code written after the character # is not interpreted by R and is taken to be a
comment.

> hello <- function(name) f
+ # Convert the name to upper case.
+ name <- toupper(name)
+ cat("Hello",name,"!")
+ g
> hello("Peter")
Hello PETER !

8.2.2.2 List of Formal and Effective Arguments

In this section, we describe how to declare the list of formal arguments when
defining a function and how to input the list of effective arguments when calling a
function.

Declaring a Function

When declaring a function, all arguments are identified by a unique name.
Each argument can be associated with a default value. To specify a default value,
use the character = followed by the default value, as when declaring a list object
(list()). When the function is called with no effective argument for that argument,
the default value will be used. We have used this functionality many times in previ-
ous chapters, but we now know how to include it when developing new functions.
Here is an example:

> hello <- function(name="Peter") cat("Hello",name,"!")
> hello()
Hello Peter !
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It seems useful to explain the difference between calling the name of the function
hello and calling the function followed by brackets: hello(). The first form will
display the contents of the function, as with any other R object, whereas the second
form will call the function (in this case, with no argument specified). To execute a
function, you always have to add brackets and list the effective arguments if neces-
sary.

Naming Effective Arguments

In R, an effective argument can be entered by adding the name of the formal
argument. Of course, this is of little interest when the function only depends on
a single formal argument. Let us add to our function hello() the possibility of
choosing a language, and see a few calls of this function.

> hello <- function(name="Peter",language="eng") f
+ cat(switch(language,fr="Bonjour",sp="Hola",eng="Hello"),

name,"!")
+ g
> hello()
Hello Peter !
> hello(name="Ben")
Hello Ben !
> hello(language="fr")
Bonjour Peter !

This functionality, combined with the ability to specify default values,2 allows
the developer to define a function with an important list of formal arguments corre-
sponding to call options. Users can then call this function without needing to input
all effective arguments. For example, they can affect a value to the last formal argu-
ment without having to type in all the other effective arguments. This way, a single
function can be used for what would have otherwise required several functions.
This is a true specificity3 of R, which allows an innovative programming mode. For
example, read the help file on the functionalities of the function seq() with the
various arguments by, length.out and along.with.

Partial Naming of Effective Arguments

In the same context, a second functionality of R is that it allows calling a function
without typing in the complete name of a formal argument. Consider the following
calls of the function hello():

> hello(lang="eng")
Hello Peter !
> hello(l="eng")
Hello Peter !
> hello(l="e")
Peter !

2 The function missing() is also very useful for this kind of programming.
3 It should be noted that many programming languages do not have this functionality.
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The rule for determining the formal argument corresponding to a partial name is:
in the ordered list of formal arguments of the function, the selected formal argument
is the first formal argument for which there is a match between the first letters of
the argument name and the partial name given by the user.

List of Supplementary Arguments “...”

You can give a list of supplementary arguments with the syntax .... When call-
ing the function, all “named” arguments which are not in the list of formal arguments
are grouped in the structure .... In the body of the function, the user can then use
the syntax ... as if copy-pasting the list of supplementary named arguments. This
begs for an example:

> test.3points <- function(a="foo",...) print(list(a=a,...))
> test.3points("bar",b="foo")
$a
[1] "bar"
$b
[1] "foo"

Generally speaking, a rule of thumb for using the list of supplementary arguments
... in the body of a function is that it should be used as an argument of one or
several internal function calls.

Advanced users

When ... is included in a list of arguments and is not in last position, “par-
tial naming of arguments” will not work for all arguments after .... Indeed, a
partial formal argument name is then considered as a formal argument in the
supplementary list.

> test.3points <- function(aa="foo",...,bb="bar") f
+ print(list(aa=aa,...,bb=bb))g
> test.3points(a="bar",b="foo")
$aa
[1] "bar"
$b
[1] "foo"
$bb
[1] "bar"

Note that the value of the formal argument aa has been modified, but that
bb did not change its value. The formal argument b was created. To change the
value of the second formal argument bb, you need to use the complete name.

> test.3points(a="bar",bb="foo")
$aa
[1] "bar"
$bb
[1] "foo"
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A keen user of partial names might be surprised by the following output
when using the function paste(..., sep = " ", collapse = NULL) if
he/she had taken the liberty of using the partial name (col) of the formal argu-
ment collapse:

> paste(c("foo","bar"),col=", ")
[1] "foo , " "bar , "

Since partial naming is ineffectual, col is considered as a second vector to
paste, and the default options of the function paste() are used (i.e. sep=" "
and collapse=NULL). To get the desired output, you need to use the complete
name of the formal argument collapse.

> paste(c("foo","bar"),collapse=", ")
[1] "foo, bar"

Tip

Generally speaking, when you call a function, you need to specify the value
of all formal arguments for which no default value is defined. If you do not,
an error occurs. There are however two exceptions. The first corresponds to the
case where the argument is not used in the body of the function; this is of course
useless and is probably due to a programming mistake. The second exception
is when the developer allowed for this case in the body of the program, with
the function missing().

> hello <- function(name) f
+ if(missing("name")) name <- "Peter"
+ cat("Hello",name,"!")
+ g
> hello()
Hello Peter !

8.2.2.3 Object Returned by a Function

The function hello() above does not return any object. It simply produces a
display on the screen.

> res <- hello()
Hello Peter !
> res
NULL

In previous chapters, we have often used R functions and saved the result as a
variable (e.g., x <- c(1,5,3), where the result of the base function c() is affected
to the variable x). Since we are now interested in developing functions, let us exam-
ine how to create a function which returns an object (a result that is not ephemeral).



8.2 Developing Functions 199

A general rule to return an object is to use the function return(). This instruc-
tion halts the execution of the code of the body of the function and returns the object
between brackets. Here is an example:

> hello <- function(name="Peter") f
+ return(paste("Hello",name,"!",collapse=" "))g
> hello()
[1] "Hello Peter !"
> message <- hello()
> message
[1] "Hello Peter !"

The first call of the function returns the string of characters object without
affecting it to a variable. The result is thus displayed on the screen, as if the user
had entered in the command line the object returned by the function. The second
call does not produce any display: the result of the function is redirected to the
variable message, as the last instruction above shows.

Note

It is possible to return an object without using the function return(). The
rule is then that the returned object is the last object manipulated in the last
instruction of the body of the function (i.e. just before exiting the function). In
the previous example, we could therefore have omitted the function return()

> hello <- function(name="Peter") f
+ paste("Hello",name,"!",collapse=" ")g
> hello()
[1] "Hello Peter !"

However, we discourage this practice because it does not always work, as
shown below where we would expect that the function returns 10:

> function.without.return <- function() f
+ for (i in 1:10) x <- ig
> function.without.return()

Can you tell whether the following function returns an object? If yes, what is the
content of this object?

> hello <- function(name="Peter") f
+ msg <- paste("Hello",name,"!",collapse=" ")g

What do you think when you see the output below?

> hello()

There is no display, so it seems that no object is returned. But are you certain
when you see the following example?

> message <- hello()
> message
[1] "Hello Peter !"
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The last manipulated object is indeed the variable msg. Affecting the output to
the variable message does store the contents of the variable msg from the body of
the function. R can sometimes be unsettling, but you will agree that this kind of
usage is not rational and a developer would probably never find it useful.

Tip

If you wish to get the same behaviour as in the last example, i.e. that the
function does not display anything when called but does return an object, it is
more direct to use the function invisible()—the name of this function is
clear enough.

> hello <- function(name="Peter")
+ invisible(paste("Hello",name,"!",collapse=" "))
> hello()
> message <- hello()
> message
[1] "Hello Peter !"

8.2.2.4 Variable Scope in the Body of a Function

The notion of variable scope is very important for a language which allows to
develop functions. The main point is that variables defined inside the body of a
function have a local scope during function execution. This means that a variable
inside the body of a function is physically different from another variable with the
same name, but defined in the workspace of your R session. Generally speaking, lo-
cal scope means that a variable only exists inside the body of the function. After the
execution of the function, the variable is thus automatically deleted from the mem-
ory of the computer. We are now going to modify our function hello() by inserting
controls of the contents of variables.

> message <- "hello Pierre !"
> message # Workspace initialization.
[1] "hello Pierre !"
> hello <- function(name="Peter",message="hello") f
+ print(message)
+ message <- paste(message,name,"!",collapse=" ")
+ print(message)
+ invisible(message)
+ g
> hello()
[1] "hello"
[1] "hello Peter !"
> message # Workspace has not been modified!
[1] "hello Pierre !"
> message <- hello()
[1] "hello"
[1] "hello Peter !"
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> message # Workspace has been modified!
[1] "hello Peter !"
> message <- hello(message="Welcome")
[1] "Welcome"
[1] "Welcome Peter !"
> message # Workspace has been modified again!
[1] "Welcome Peter !"

A quick comment on the arguments of the function: contrary to what you might
think, the variables name and message are not directly evaluated (initialized to the
calling value or to the default value) before the execution of the body of the func-
tion. They are only initialized when they are first used in the body of the function.
Recall that the function missing() is used to test whether a formal argument has
been defined when calling the function. The only way for this functionality to be
operational is by not evaluating the list of formal arguments at the beginning of the
body of the function. Similarly, at the beginning of the body of the function, it is
possible to get the effective call (with the completed list of arguments) by using the
function match.call().

> test.call <- function(aa="bar",... ,bb="foo") f
+ print(match.call())g
> test.call(a="foo",b="bar")
test.call(aa = "foo", b = "bar")

Advanced users

The last function creation may not seem very useful, but once you are
an advanced R developer, you might find a use to the result of the function
match.call(). We shall not give details, but only a taste of what can be done
in R. We shall modify the last function so that it returns the arguments split into
two lists: one (called function) of effective arguments associated with formal
arguments and one (called misc) of supplementary effective arguments. Note
how partial naming of arguments is managed.

> test.call <- function(aa="bar",...,bb="foo") f
+ args <- as.list(match.call())[-1]
+ inside <- names(args) %in% names(list(...))
+ list(funct=args[!inside],misc=args[inside])
+ g
> test.call(a="foo",b="bar")
$funct
$funct$aa
[1] "foo"
$misc
$misc$b
[1] "bar"

A few lines of code are enough to get the result: introspection is easy in R
and has many other features in the same context. We are not trying to get you
to delve straight away into this kind of development, but wish to point out the
possibilities of the language.
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8.2.3 Application to the Practical Problem

After these theoretical explanations, our beginner user tries the following function
codes for simple linear regression.

1 mysummary . r eg 1 <� f u n c t i o n ( y , x ) f
2 a E s t <� cov ( x , y ) / v a r ( x )
3 b E s t <� mean ( y)� a E s t�mean ( x )
4 r e t u r n ( l i s t ( a E s t=aEst , b Es t=bEst , c o r=c o r ( x , y ) ) )
5 g
6

7 m y d i sp lay . r e g 1 <� f u n c t i o n ( y , x ) f
8 a E s t <� cov ( x , y ) / v a r ( x )
9 b E s t <� mean ( y)� a E s t�mean ( x )

10 p l o t ( x , y )
11 a b l i n e ( a=bEst , b=a E s t )
12 g

Note

Note that in old versions of R, you could write
return(aEst=aEst, bEst=bEst,cor=cor(x,y))

but that this usage will be deprecated in future versions.

After loading these functions with a copy–paste or with the command source(),
the user tests an uninteresting example.

> y <- rnorm(10);x <- 1:10
> mysummary.reg1(y,x)
$aEst
[1] -0.1019453
$bEst
[1] 0.7822879
$cor
[1] -0.4198245

The instruction mydisplay.reg1(y,x) produces Fig. 8.1 on page 211.
We shall see later on how these functions can be enriched.

8.2.4 Operators

Calling a function under the form <function>(<list of call arguments>) is
not always easy. An example is the function seq(). Of these two equivalent forms,
which one do you prefer?

> seq(1,3)
[1] 1 2 3
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> 1:3
[1] 1 2 3

You probably prefer the second form, since it is more synthetic (no brackets) and
is thus easier to manipulate, for example, when using indices (of vectors, matrices,
etc.). This form corresponds to an operator. R uses operators internally.

There are two forms of operators:

� Unary operator (one argument) : <operator> <argument1>
� Binary operator (two arguments) : <argument1> <operator> <argument2>

where <operator> is the operator, and <argument1> and <argument2> are the
effective arguments of the operator. Here is a partial list of operators used internally
by R:

+, -, *, /, ˆ, %%, %/%, &, |, !, ==, !=, <, <=, >=, >.

A priori, these operators cannot be modified by the user.4 It is however possible to
define extra operators. They are of the form %<operator>% and some are already
available in the base system, for example, %in% and %o% (seen in Chap. 5).

Tip

To display the source of the function (the operator) %in%, use the instruction
get("%in%"). You can see that it uses the function match() which you may
find useful.

Suppose we wish a more synthetic way to concatenate strings of characters,
which is normally done with the function paste().

> "%+%" <- function(ch1,ch2) paste(ch1,ch2,sep="")
> name <- "Peter"
> "The life of " %+% name %+% " is beautiful!"
[1] "The life of Peter is beautiful!"
> # This is a simplification of:
> paste("The life of ", name ," is beautiful!",sep="")
[1] "The life of Peter is beautiful!"

Note that since the name of the function is not alphanumeric, it has to be put
between quotation marks. It is of course up to you whether you prefer one or the
other form. We are not trying to diminish the usefulness of the function paste(),
which is a much richer function than the simple operator %+% we have created (the
creation actually used the function paste()). We are rather trying to show the flex-
ibility of R which allows, with a simple function definition, a simplification of the
calling syntax.

4 In fact, this group of operators can be used by a user when developing a new class of objects. But
this matter is too advanced for this book!
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Tip

You can use operators to define operations on sets, such as those presented
on p. 99. For example, the union between two sets A and B can be defined as

> "%union%" <- function(A,B) union(A,B)
> A %union% B
[1] 4 6 2 7 1 3

8.2.5 R Seen as a Functional Language

R is a functional language in the sense that almost any code execution in R is done
by calling functions, possibly scattered with control structures. In fact, you may be
surprised to learn that the following features of R are also controlled by functions.
We have seen that simply calling an R object results in the display of its contents. In
fact, in such an instruction,R calls (without notifying the user) the function print()
with effective argument the name of the object. Because this function is often used
in R, it has a particular status; we shall discuss this further later on. All affectation
operations (i.e. instructions with <-) are handled by functions whose names include
(no surprise here) the distinctive sign <-5. Developing and maintaining the R system
can be summarized as the construction of a range of functions. First are the basic
functions, included in the basic installation of R. Usually, they cannot be modified
by the user6, and even when they can be, we strongly advise against it; let your
system become unusable. Second are the functions developed directly in R7 by any
user. Many functions are made available by the community of R developers through
a system of packages (more on this later).

SECTION 8.3

� Object-Oriented Programming

In this section, we shall view an object as more than a quantity that can be saved
and reused. We shall come closer to the spirit of the R language by looking at the
internal object-oriented mechanism which governs most of its use. The incredible
part is that the user does not need to worry about knowing the internal workings
of R. According to us, this is a strong point of R. Nonetheless, this section should

5 To see this, type in the command line apropos("<-").
6 The core of R is developed in the C language for obvious reasons of speed of execution, which
makes it rather reactive when used in the command line.
7 To speed up execution, it is usually possible to convert an R function into C and then to call it
from R via the C API.
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help users better understand how R proposes results. We expect this will lead to a
less “random” and more controlled use of R.

8.3.1 How the Internal Object-Oriented Mechanism Works

8.3.1.1 Class of an Object and Declaring an Object

What matters in R is specifying the class of an object with the function
"class<-"(). Recall that the function class() is used to check the class of
an object.

> obj <- 1:10
> class(obj)
[1] "integer"
> class(obj) <- "MyClass"
> class(obj)
[1] "MyClass"
> class(obj) <- "OtherClass"
> obj
[1] 1 2 3 4 5 6 7 8 9 10
attr(,"class")
[1] "OtherClass"

The object obj of class integer is now an object of class OtherClass. The last
display of the object obj indicates the class of the object, where attr stands for
attribute. We shall come back to the notion of attributes at the end of this chapter.
For now, it is enough to understand the meaning of the display attr(,"class")
which is literally the “class attribute”.

Advanced users

That said, the above is not quite true: the object obj has kept the character-
istic of also being of the integer class, as the following output shows:

> obj*2
[1] 2 4 6 8 10 12 14 16 18 20
attr(,"class")
[1] "OtherClass"

Indeed, all the elements of the vector obj have been multiplied by 2. We
hope that in future versions of R, the output of the function class() applied
to such an object will be similar to [1] "OtherClass" "integer", which
would better show the true nature of the object.

There are two ways of knowing whether an object is of a given class:

> class(obj)=="MyClass"
[1] FALSE
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> inherits(obj,"MyClass")
[1] FALSE

The function inherits() should be preferred, as we shall see when we consider
polymorphic objects with several classes.

Tip

To see the class of the function function(), you can use this instruction:

> class(function() fg)
[1] "function"

For the function ":"() , use class(get(":")).

8.3.1.2 Declaring Objects and Using Methods

The mechanism for object-oriented programming is rather simple and original in R,
compared to many other languages. To illustrate this mechanism, examine the most
used example in R: the display of an object with the function print(). Examine
the following R outputs:

> vect <- 1:10
> class(vect)
[1] "integer"
> vect
[1] 1 2 3 4 5 6 7 8 9 10
> print(vect)
[1] 1 2 3 4 5 6 7 8 9 10

No surprises so far, although it is worth pointing out that simply entering an R
object in the command line seems to provoke a call to the function print() with
the given object as effective argument. The next example confirms this idea8: it dis-
plays an object of the class formula, characterized by the tilde symbol (�). In this
example, we save in the variable form the formula expressing the relationship be-
tween y and x. Note that the objects y and x do not need to exist, since no evaluation
is done when a formula is defined.9

> form <- y�x
> class(form)
[1] "formula"
> form
y � x
> print(form)
y � x

8 In fact, for auto-printing base objects (vectors, matrices, lists, etc.) in the console, R does not
use the print() function, but calls a C function named PrintValueEnv, which is not directly
available to the user.
9 No further details are needed for now; we shall come back to this very original class of objects.
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Note that the function print() works differently for different classes of ob-
jects. For the variable form (of class "formula"), print() returned y�x, which
is the instruction to the right of the affectation arrow. For the variable vect, calling
print() returns [1] 1 2 3 4 5 6 7 8 9 10 when we might have expected it
to display 1:10. Here is the code of the function print():

> print
function (x, ...)
UseMethod("print")
<environment: namespace:base>

The body of this function indicates that the function UseMethod()must be exe-
cuted. This function is a generic function in R. Like an airport traffic control tower,
it is used to redirect the object, according to its class, to the correct function call.
In the last example, this corresponds to calling the display function associated with
the class formula of the form print.formula(). In the object-oriented program-
ming vernacular, such functions, of the general type <method>.<class>, are called
methods. This explains the name of the function UseMethod() in the body of the
generic function print().

Here is what happens in the backstage to simply display the object form :

> form # Calls the function print(),
# which calls the function print.formula().

y�x
> print.formula(form)
y�x

Advanced users

To check how easy it is to change the general behaviour of R by chang-
ing one function, we are going to redefine the display function for the class
formula. We are simply going to keep the standard display and add the string
of characters "formula:".

> print.formula <- function(obj,...) f
+ cat(paste("formula:",paste(sapply(obj[c(2,1,3)],
+ as.character),collapse="")))
+ invisible(obj)
+ g
> y�x
formula: y�x

If you are a beginner in R, you should not try to understand the details of the
R code leading to this result. Although the code seems simple, understanding it
requires notions which we cannot go into in this book. Once again, the aim is
rather to reveal the introspective power of R, since even its base elements can
be manipulated.

To restore the initial behaviour of R for displaying formulae, you will have
guessed that it suffices to delete the new function print.formula()with the
command line instruction rm(print.formula). We shall not delete it yet,
because we need this behaviour later on.
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If you have understood the way the function print() works, you might expect
that there exists a function print.integer(). We can check this:

> print(vect)
[1] 1 2 3 4 5 6 7 8 9 10
> print.integer(vect)
Error in eval(substitute(expr), envir, enclos) :

could not find function "print.integer"

The function print.integer() does not exist. In fact, when there is no method
associated with a class, R executes the default method, which is of general form
<method>.default; in this case, print.default(). Here is the output of this
function for our two examples:

> print.default(vect)
[1] 1 2 3 4 5 6 7 8 9 10
> print.default(form)
y � x
attr(,"class")
[1] "formula"
attr(,".Environment")
<environment: R_GlobalEnv>
> # Compare with:
> form
formula: y�x

We now have a complete explanation of what happens behind the scenes. We also
see that the display of a formula does not use the default method, as the last output
suggests.

Tip

Also note that the function print.default() is used to display all base
objects (or structures) of R when these objects are taken as effective arguments
of the function print().

In summary, to define a new family of methods, denoted here by <method>
(name of the family of methods you wish to create), which can be applied to any
type of object, you need to:

� First declare the generic function in the following form:
<method> <- function(obj,...) UseMethod("<method>")

� Then create a method <method> for a class <class>:
<method>.<class> <- function(obj,<list of arguments>) <body

of the method>

where <list of arguments> and <body of the method> are, respectively,
an optional list of formal arguments and the contents of this method, which is
nothing else than a function when called in its long version.
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Note

Note that when declaring a family of methods, you can dissociate the name
of the generic function and the argument of the function UseMethod() corre-
sponding to the name of the method to call. Thus, it is easy to define an alias,
called <alias>, of the last family of methods by simply defining a new generic
function:

<alias> <- function(obj,...) UseMethod("<method>")

As a result, the two command line calls <method>(<object>) and
<alias>(<object>) for an object <object> of class <class> are equiv-
alent to <method>.<class>(<object>). A rather surprising application is
that a method can be translated like this. In the next example, the French voir
is used as an alias of print:

> voir <- function(obj,...) UseMethod("print")
> voir(vect)
[1] 1 2 3 4 5 6 7 8 9 10
> voir(form)
formula: y�x
> rm(print.formula) # Remove our method to return

# to the normal mode.
> voir(form)
y � x
> form
y � x

8.3.2 Back to the Practical Problem

The user realizes that he/she has repeated the execution of the estimations of a and
b twice when creating the functions mydisplay.reg1() and mysummary.reg1()
introduced in Sect. 8.2.3 (lines 2 and 3, and lines 8 and 9). He asks advice from a
more advanced user, who suggests using the concept of object-oriented program-
ming. He/she proposes to create a function10 to return an object of class reg1, so
that it can be reused thereafter as first calling argument for any method of the said
class.

1 r e g l i n <� f u n c t i o n ( y , x ) f
2 a E s t <� cov ( x , y ) / v a r ( x )
3 b E s t <� mean ( y)� a E s t�mean ( x )
4 r e g <� l i s t ( y=y , x=x , a E s t=aEst , b Es t=b E s t )
5 c l a s s ( r e g ) <� " r eg1"
6 r e t u r n ( r e g )
7 g

10 This kind of function is often called a constructor in object-oriented programming.



210 8 Programming in R

They now define the method mydisplay.reg1() which can be used on any
object of class reg1.

1 m y d i sp lay . r e g 1 <� f u n c t i o n ( r e g ) f
2 p l o t ( reg$y , r eg $ x )
3 a b l i n e ( a= r eg$bEs t , b= r e g $ a E s t )
4 g
5

6 mysummary . r eg 1 <� f u n c t i o n ( r e g ) r e t u r n ( r e g )

They try a few tests:

> reg <- reglin(y,x)
> mysummary(reg)
Error in eval(substitute(expr), envir, enclos) :

could not find function "mysummary"
> mydisplay(reg)
Error in eval(substitute(expr), envir, enclos) :

could not find function "mydisplay"

The user did not expect such errors, so he/she checks that the function is well
defined:

> mysummary.reg1(reg)
$y
[1] 1.8920106 0.3978771 -0.3970281 -0.2799578 0.7851185
[6] -0.2103208 0.1921150 -0.2647256 -0.5013911 0.6021898
$x
[1] 1 2 3 4 5 6 7 8 9 10
$aEst
[1] -0.1019453
$bEst
[1] 0.7822879
attr(,"class")
[1] "reg1"

The advanced user points out the mistake: the generic functions mysummary and
mydisplay have not been declared and are not standard, unlike a few others such
as print() and summary().

1 mysummary <� f u n c t i o n ( x , . . . ) UseMethod ("mysummary" )
2 m y d i sp lay <� f u n c t i o n ( x , . . . ) UseMethod ("m y d isp lay" )

The previous instructions now work:

> mysummary(reg)
$y
[1] 1.8920106 0.3978771 -0.3970281 -0.2799578 0.7851185
[6] -0.2103208 0.1921150 -0.2647256 -0.5013911 0.6021898
$x
[1] 1 2 3 4 5 6 7 8 9 10
$aEst
[1] -0.1019453
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$bEst
[1] 0.7822879
attr(,"class")
[1] "reg1"
> mydisplay(reg)
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Fig. 8.1: Result of the call of the function mydisplay.reg1()

Since the method print.reg1() has not been defined, you may wonder what
would happen when we simply enter the name of the object.

> reg
$y
[1] 1.8920106 0.3978771 -0.3970281 -0.2799578 0.7851185
[6] -0.2103208 0.1921150 -0.2647256 -0.5013911 0.6021898
$x
[1] 1 2 3 4 5 6 7 8 9 10
$aEst
[1] -0.1019453
$bEst
[1] 0.7822879
attr(,"class")
[1] "reg1"

We already knew that the method print.default() is called in such cases.

8.3.3 Information About Methods

To get information about methods, R has the function methods():

> methods("formula") # Or more directly methods(formula).
[1] formula.character* formula.data.frame* formula.default*
[4] formula.formula* formula.glm* formula.lm*
[7] formula.nls* formula.terms*
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Non-visible functions are asterisked
> methods(class="formula")
[1] [.formula* aggregate.formula*
[3] alias.formula* all.equal.formula
[5] ansari.test.formula* bartlett.test.formula*
[7] boxplot.formula* cdplot.formula*
[9] cor.test.formula* deriv.formula
[11] deriv3.formula fligner.test.formula*
[13] formula.formula* friedman.test.formula*
[15] ftable.formula* getInitial.formula*
[17] kruskal.test.formula* lines.formula*
[19] mood.test.formula* mosaicplot.formula*
[21] pairs.formula* plot.formula*
[23] points.formula* ppr.formula*
[25] prcomp.formula* princomp.formula*
[27] print.formula quade.test.formula*
[29] selfStart.formula* spineplot.formula*
[31] stripchart.formula* t.test.formula*
[33] terms.formula update.formula
[35] var.test.formula* wilcox.test.formula*

Non-visible functions are asterisked

Warning

Do not confuse the two uses. The first instruction outputs all methods (of
the form <method>.<class>) associated with the generic function formula.
The second instruction gives all methods for the class formula.

Here are a few examples to better understand the distinction between the two
uses of the function methods().

> class(y�x)
[1] "formula"
> update(y�x,.�.+z) # Apply the method update() to an

# object of class formula.
y � x + z
> update.formula
function (old, new,...)
f

tmp <-.Internal(update.formula(as.formula(old),
as.formula(new)))

out <- formula(terms.formula(tmp, simplify = TRUE))
return(out)

g
<environment: namespace:stats>
> form <- "y�x"
> class(form)
[1] "character"
> formula(form)
y � x
> formula.character
Error: object "formula.character" not found
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Tip

Functions followed with an asterisk can be executed, but the body
of the function cannot be visualized. You can however use the function
getAnywhere().

> getAnywhere(formula.character)
A single object matching ‘formula.character’ was found
It was found in the following places

registered S3 method for formula from namespace stats
namespace:stats

with value
function (x, env = parent.frame(), ...)
f

ff <- formula(eval(parse(text = x)[[1L]]))
environment(ff) <- env
ff

g
<environment: namespace:stats>

8.3.4 Inheriting Classes

In the context of our practical problem, the advanced user informs the beginner user
that R already has a set of functions to manage linear models. Indeed, the function
lm() is dedicated to this kind of treatment (as we shall see in Chap. 14). However,
he/she adds that to his knowledge, no functions exist to perform the specific treat-
ment they propose. The two users work together to develop an extension; they want
to avoid “reinventing the wheel” and make the most of existing functions in R.

In object-oriented programming, the notion of class inheritance seems appropri-
ate for this kind of extension. Inheritance expresses the fact that an object of a certain
class can also behave like all objects of supplementary classes. Such a mechanism
is available in R, by associating a sequence of classes with an object. Thus, when
a method is applied to an object which has a hierarchy of classes, the first class is
solicited first. If the method exists for this class, it is executed. Otherwise, R tests
whether there is an executable method in the class hierarchy. If there is, that method
is executed; otherwise, the default method is executed, as long as it is defined. Fi-
nally, if none of the above apply, an execution error is generated. Let us illustrate this
notion with the problem of our two users. First, we need to declare the constructor
function of the new class lm1, which inherits directly from the existing class lm.
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1 lm1 <� f u n c t i o n ( . . . ) f
2 o b j <� lm ( . . . )
3 i f ( n c o l ( model . f rame ( o b j ) ) >2 ) s t o p ("more t h a n one
4 i n d e p e n d e n t v a r i a b l e " )
5 c l a s s ( o b j ) <� c ("lm1" , c l a s s ( o b j ) ) # Or c ("lm1" ,"lm" )
6 o b j
7 g

Apply this to the same variables as before.

> reg <- lm1(y�x)
> reg
Call:
lm(formula = ..1)
Coefficients:
(Intercept) x

0.7823 -0.1019

We can see inheritance in action. No method print.lm1() is defined, and yet
the object is not displayed as with print.default(). This is because R already
knows the method print.lm() and the object reg inherits methods from the class
lm. There are several ways of checking that this object is indeed inheriting from
this class; the simplest is visualizing the contents of the class attribute with the
function class(). A developer might prefer the more direct function inherits().

> class(reg)
[1] "lm1" "lm"
> inherits(reg,"lm")
[1] TRUE
> print.lm(reg)
Call:
lm(formula = ..1)
Coefficients:
(Intercept) x

0.7823 -0.1019

Line 3 (which we shall not comment) in function lm1() tests whether the for-
mula is a simple regression model formula. See what happens in this next example:

> lm1(y�x+log(x))
Error in lm1(y � x + log(x)) : more than one

independent variable

We continue developing functions in the same spirit as

1 p l o t . lm1 <� f u n c t i o n ( ob j , . . . ) f
2 p l o t ( f o r m u l a ( o b j ) , . . . )
3 a b l i n e ( o b j )
4 g
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> summary(reg)
Call:
lm(formula = ..1)
Residuals:

Min 1Q Median 3Q Max
-0.8735 -0.3772 -0.2060 0.4153 1.2117
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.78229 0.48348 1.618 0.144
x -0.10195 0.07792 -1.308 0.227
Residual standard error: 0.7077 on 8 degrees of freedom
Multiple R-squared: 0.1763, Adjusted R-squared: 0.07328
F-statistic: 1.712 on 1 and 8 DF, p-value: 0.2271
> plot(reg,main="An example of simple regression")
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In the call of summary() above, the method summary.lm1() has not been de-
veloped; hence, the standard method summary.lm() is executed. Indeed, the object
reg of class lm1 then inherits from the class lm for all standard methods proposed
by R to manage linear models. For the call of the method plot(), the freshly created
method plot.lm1 is invoked.

Note

Note that R has a standard method plot.lm() which creates a set of plots
for a more detailed analysis of the results (see Chap. 14). We have intentionally
changed the default behaviour of R for simple linear regression, but can still
access this method by calling it explicitly (plot.lm(reg)).
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Advanced users

Object-oriented programming is extremely simple in its conception. There
are many object-oriented programming languages. An important difference
is that the vast majority offer an encapsulation of object fields and meth-
ods; one of the points of this encapsulation is that the fields of an object
can be modified within a method. This is not directly possible in R because
of the strict local scope of variables inside the code of an R function. The
users can however adopt this kind of programming if they want to. Any
method <method>.<class>()which needs to modify the fields of an object
<object> (of class <class>) must then return the object itself. The user of
the generic function <method>() can then affect the result to the initial object,
as follows:
<object> <- <method>(<object>). However, this risks to slow down exe-
cution, all the more if the contents of the object fields are large. This is because
the object is completely duplicated. We hope that R developers will one day
offer a more elegant standard functionality (analogous to what the majority of
object-oriented programming languages offer), whereby only the relevant fields
(of which there are usually few) are modified inside the body of the method.
When you become an advanced user (as we hope), you will notice that the no-
tion of pointers (which is very common in programming) is not directly offered
to R developers (see however the function tracemem() as well as Sect. 9.8.2.2,
p. 296).

SECTION 8.4

� Going Further in R Programming

Before you start programming in a language, it is good to know the spirit in which it
was conceived. In this section, we shall explore structures of the R language which
you do not need to know when you start using R, but which you will find very useful
when you decide to go deeper in your use of R. These elements make R an original
and powerful tool. We advise beginner users to skim through this section without
trying to master the concepts. All the information in this section is second level, in
the sense that a very powerful use of R is possible without it.

8.4.1 R Attributes

An R object includes primary information, conveyed by the basic structures pre-
sented in this book. There is another level of information, which we call secondary
information. It is attached to an object with attributes and can be accessed with the
function attributes().
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> mat <- matrix(1:10,nrow=2)
> mat

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> class(mat)
[1] "matrix"
> attributes(mat)
$dim
[1] 2 5

We shall comment on this output later. For now, let us insist again on the fact that
this mechanism is supposed to be transparent for the user, who usually cares more
about the contents of the R object. For day-to-day use, we advise you not to change
attributes directly. This stand is justified by the existence of many functions to ma-
nipulate attributes indirectly. However, a developer who wishes to learn more about
the internal workings of R will discover a few supplementary characteristics which
usually enlighten the behaviour of the object. We have already indirectly manipu-
lated the attribute class with the functions class() and "class<-"(). We shall
also manipulate the three other main attributes: dim, names and dimnames. These
are used a lot in the internal management of R. The next example is only interesting
to present how to handle attributes. The complementary function attr() is used to
manipulate a single attribute at a time, whereas the function attributes() returns
all attributes as an R list.

> vect <- 1:10
> attr(vect,"test") # Returns NULL, because vect has no

# attribute test.
NULL
> attributes(vect) # NULL because vect has no attributes.
NULL
> # Affecting an attribute "attrib1" containing the character

# string "TEST1".
> attr(vect,"attrib1") <- "TEST1"
> attr(vect,"attrib1")
[1] "TEST1"
> # Affecting an attribute "attrib2" containing the vector c(1,3)
> attributes(vect)$attrib2 <- c(1,3)
> attributes(vect)
$attrib1
[1] "TEST1"
$attrib2
[1] 1 3
> attr(vect,"attrib2")
[1] 1 3
> # Modifying attribute "attrib1" and deleting attribute

# "attrib2"
> attributes(vect)$attrib1 <- 3:1
> attr(vect,"attrib2") <- NULL
> attributes(vect)
$attrib1
[1] 3 2 1
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> # Deleting all attributes at once
> attributes(vect) <- NULL
> attributes(vect)
NULL

The attribute access mechanism is simple to use. This example has shown how
to change attributes using the functions "attr<-"() and "attributes<-"(). The
value of an attribute can be any R object. Affecting NULL to an attribute deletes it.

8.4.1.1 Attribute class

In Sect. 8.3, we have manipulated the attribute class using the functions class()
and "class<-"(). This shows that you do not need to know how to manipulate
attributes directly. We return to the example we used, to show that manipulating this
attribute is equivalent to using the utility functions class() and "class<-"().

> form <- y�x
> attributes(form)
$class
[1] "formula"
$.Environment
<environment: R_GlobalEnv>
> class(form)
[1] "formula"
> obj <- 1:10
> attr(obj,"class") # No class attribute.
NULL
> class(obj) # And yet!
[1] "integer"
> attr(obj,"class") <- "MyClass" # Equivalent to class(obj) <-

# "MyClass".
> class(obj)
[1] "MyClass"

There is nothing left to say about this attribute, even though it plays a central role
in object-oriented programming in R.

8.4.1.2 Attribute dim

The attribute dim plays an important role in the behaviour of matrix and array
objects. Here is an example with a matrix:

> mat <- matrix(1:12,nrow=2)
> mat

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 3 5 7 9 11
[2,] 2 4 6 8 10 12
> attr(mat,"dim")
[1] 2 6
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> attributes(mat)
$dim
[1] 2 6
> attr(mat,"dim") <- c(3,4) # Changing shape: 3 rows and 4

# columns.
> mat

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
> attributes(mat)$dim <- c(2,6) # Back to the initial shape.
> mat

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 3 5 7 9 11
[2,] 2 4 6 8 10 12

In this example, changing the attribute dim allowed us to change the shape of
the matrix. We have already mentioned that attribute management is meant to be
transparent for the user, so you might expect there exist similar functions with more
user-friendly names. For this example, we could have used the functions dim() and
"dim<-"() :

> dim(mat)
[1] 2 6
> dim(mat) <- c(1,12) # Changing shape: 1 row and 12 columns.
> mat

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
[1,] 1 2 3 4 5 6 7 8 9 10 11

[,12]
[1,] 12
> dim(mat) <- c(2,6) # Back to the initial shape.

To really understand how R represents objects such as matrices and arrays, let us
analyse the following output:

> mat
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 3 5 7 9 11
[2,] 2 4 6 8 10 12
> class(mat)
[1] "matrix"
> dim(mat) <- NULL # Or attributes(mat)$dim<-NULL or

# attributes(mat) <- NULL.
> mat
[1] 1 2 3 4 5 6 7 8 9 10 11 12
> is.vector(mat)
[1] TRUE
> class(mat)
[1] "integer"
> dim(mat) <- c(2,2,3)
> mat
, , 1

[,1] [,2]
[1,] 1 3
[2,] 2 4
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, , 2
[,1] [,2]

[1,] 5 7
[2,] 6 8
, , 3

[,1] [,2]
[1,] 9 11
[2,] 10 12
> is.vector(mat)
[1] FALSE
> class(mat)
[1] "array"

When we delete the attribute dim, the object mat becomes a simple vector. When
we affect a vector of three integers to this attribute, the object mat becomes an array
of dimension 3. The different behaviours of vectors, matrices and arrays thus stem
from the value of the attribute dim.

Warning

Although the display is the same, a vector and a single-index array are
treated differently by R, as shown by these few lines of code:

> dim(mat) <- 12
> mat
[1] 1 2 3 4 5 6 7 8 9 10 11 12
> is.vector(mat)
[1] FALSE
> class(mat)
[1] "array"
> identical(mat,1:12)
[1] FALSE
> dim(mat) <- NULL
> mat
[1] 1 2 3 4 5 6 7 8 9 10 11 12
> is.vector(mat)
[1] TRUE
> class(mat)
[1] "integer"
> identical(mat,1:12)
[1] TRUE

It looks like we have said everything about the attribute dim, but there is one
last application worth noting. The only difference between a vector and a list is that
the elements of a vector must all have the same type. Matrices and arrays usually
contain elements of the same nature as well; this constraint is very important for
matrix operations. But as storage structures, you could imagine extending the matrix
and array concepts to lists, by affecting the dim attribute, as is done with vectors.
The documentation files for the matrix() and array() instructions show that this
is the case, since the first calling argument of these functions can be a list instead of
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a vector. The next example applies this to a matrix; the same could be done with an
array, as long as the number of elements in the list agrees with the dimension.

> lmat <- matrix(list(7,1:2,1:3,1:4,1:5,1:6),nrow=2)
> lmat # Returns the structure and not the contents, which

# are too difficult to display.
[,1] [,2] [,3]

[1,] 7 Integer,3 Integer,5
[2,] Integer,2 Integer,4 Integer,6
> dim(lmat)
[1] 2 3
> is.list(lmat)
[1] TRUE
> lmat[1,2] # Extract the element at row 1 and column 2.
[[1]]
[1] 1 2 3
> lmat[,-2] # Extract the submatrix with the second column

# removed.
[,1] [,2]

[1,] 7 Integer,5
[2,] Integer,2 Integer,6
> dim(lmat) <- NULL
> lmat # This is just a list now.
[[1]]
[1] 7
[[2]]
[1] 1 2
[[3]]
[1] 1 2 3
[[4]]
[1] 1 2 3 4
[[5]]
[1] 1 2 3 4 5
[[6]]
[1] 1 2 3 4 5 6
> is.list(lmat)
[1] TRUE

8.4.1.3 Attributes names and dimnames

The attribute names plays an important role in naming elements of a list.

> li <- list(1:3,letters[1:3])
> li
[[1]]
[1] 1 2 3
[[2]]
[1] "a" "b" "c"
> attributes(li)
NULL
> attributes(li)$names <- c("numbers","letters")
> li
$numbers
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[1] 1 2 3
$letters
[1] "a" "b" "c"

The first and fourth instructions are thus equivalent to the following, more com-
mon declaration:

> li <- list(numbers=1:3,letters=letters[1:3]))

It is a less useful and lesser known fact that this attribute can also be used on any
type of vector.

> vect <- 1:3
> attr(vect,"names") <- letters[1:3]
> vect
a b c
1 2 3
> # Or directly
> vect2 <- c(a=1,b=2,c=3)
> vect2
a b c
1 2 3

You do not need to manipulate the attribute names directly. Accessing and chang-
ing its value can be done explicitly:

> names(li)
[1] "numbers" "letters"
> names(li) <- c("num","lett")
> li
$num
[1] 1 2 3
$lett
[1] "a" "b" "c"
> names(vect)
[1] "a" "b" "c"
> names(vect) <- toupper(names(vect))
> vect
A B C
1 2 3

For objects with several indices, such as matrices and arrays, index name man-
agement is done internally by modifying the attribute dimnames, as shown in this
quick example.

> mat <- matrix(1:6,nr=2)
> mat

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
> attributes(mat) # Can be modified as an attribute.
$dim
[1] 2 3
> rownames(mat) # Row names.
NULL
> colnames(mat) # Column names.
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NULL
> dimnames(mat) # Row and column names as a list.
NULL
> colnames(mat) <- paste("V",1:3,sep="")
> rownames(mat) <- c("a","b")
> mat

V1 V2 V3
a 1 3 5
b 2 4 6

For an array with more than two dimensions, the functions rownames and
colnames are meaningless. You can either modify the attribute dimnames directly
or use the function "dimnames<-"().

Note

Data frames have a special status. They are defined as lists and are usu-
ally manipulated as matrices. The attributes for row and column names are
row.names and names (instead of col.names) :

> df <- data.frame(a=1,b=1:2)
> df

a b
1 1 1
2 1 2
> attributes(df)
$names
[1] "a" "b"
$row.names
[1] 1 2
$class
[1] "data.frame"
> names(df) # As a list.
[1] "a" "b"
> dimnames(df) # As an array: list of two vectors.
[[1]]
[1] "1" "2"
[[2]]
[1] "a" "b"
> rownames(df) # As a matrix: accessing the row names.
[1] "1" "2"
> colnames(df) # As a matrix: accessing the column names.
[1] "a" "b"

The last four lines give calls to access these attributes without manipulating
them directly. Corresponding forms exist to change their values. Note that the
attribute class() gives the class of the object.
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8.4.2 Other R Objects

It could be said that one of the specificities of R is that the vast majority of quantities
manipulated by R are allocated to variables and can thus be reused later on. There are
a few exceptions, mostly control structures. R objects are of different types, called
classes. We have already encountered object classes used to store common data.
There are three other object types we chose to explore as well. Surprisingly, formu-
lae and environments are also objects in R; we shall also introduce R expressions,
which are objects in which R code can be stored to be executed at a later time.

8.4.2.1 R Expressions

So far, we have said nothing on structures used to described the syntactic bases of R.
Following its philosophy of managing as many components as possible, R can ma-
nipulate an R expression and split it into a sequence of atomic entities (such as call,
name. . . ). We only mention these capacities, without going into the details. We shall
focus on R expressions which are truly of interest to an R developer. It is difficult
to give a rigorous definition of R expressions. We propose the following definition,
inspired by command line use of R. An R expression can be seen as R code entered
in sequence as command lines until it is executed by the R interpreter (i.e. until the
character > is displayed, inviting a new command). This expression can spread over
several lines. The function expression() is used to declare an R expression when
it is used with a single calling argument. It is however possible to give a sequence
of expressions, each expression corresponding to one effective argument in the call
of a function. An expression object is not evaluated by the R interpreter but can be
saved to be evaluated later, as many times as needed. Evaluating an R expression is
done with the function eval(). All of this is illustrated in this example:

> expression(v<-"value") # The expression v<-"value"
# is not evaluated.

expression(v <- "value")
> v
Error in eval(substitute(expr), envir, enclos) :
object ’v’ not found
> expression(v<-"value") -> expr # Saved in the object expr.
> expr
expression(v <- "value")
> eval(expr) # Evaluating expr.
> v # Here is the expected

# result.
[1] "value"
> expression(v<-"value2",v) -> expr # Equivalent to 2 lines of

# unevaluated commands.
> expr
expression(v <- "value2", v)
> eval(expr) # The second instruction

# displays the contents of
# v.

[1] "value2"
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A developer will find it useful to convert a character string describing R code into
an R expression to be evaluated at another time. The function parse() is used to
this effect:

> parse(text=’v<-"value"’) -> expr
> expr
expression(v<-"value")
attr(,"srcfile")
<text>
> eval(expr)
> v
[1] "value"

The formal argument text is used here to read a character string, but the first use
of the function is to read a file containing R code; the name of the file is given as the
first effective argument.

Tip

Here is an example using the functions eval() and parse():

> for (i in 1:3) eval(parse(text=paste("a",i," <- i",sep="")))
> a2
[1] 2

We are now going to manipulate the function expression() to describe some
of the internal behaviour of R. This will help understand why R is said to be a
functional language (i.e. which makes an intensive use of functions). It is surprising
how true this is. This first point shows that upon execution, affectation is considered
as an operator (a function with two arguments). The first argument corresponds to
the variable, the second to the contents.

> foo <- "foo"
> foo
[1] "foo"
> "<-"(foo,"foo2") # Equivalent to: foo <- "foo2"
> foo
[1] "foo2"
> expression("<-"(foo,"foo2")) # as shown by the output of this

# expression.
expression(foo <- "foo2")

We continue our exploration with brackets. One of the uses of brackets is to order
execution priorities in an R expression. Again, R treats them as a function.

> 30*(10+20)
[1] 900
> 30*"("(10+20) # This is what is executed behind the scenes.
[1] 900
> expression(30*10+20))
expression(30 * (10 + 20))
> expression(30*"("(10+20))
expression(30 * (10 + 20))
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The same is true for the notion of expression blocks. An expression block is
defined as a sequence of R expressions, grouped between curly bracket delimiters
"{" and "}".

> f
+ print("line1")
+ print("line2")
+ g
[1] "line1"
[1] "line2"
> "f"(print("line1"),print("line2"))
[1] "line1"
[1] "line2"
> expression(f
+ print ( "line1" ) # This comment is not interpreted.
+
+ # Neither is this comment.
+ print("line2")
+ g)
expression(f

print("line1")
print("line2")

g)
> expression( "f"(print("line1"),print("line2")) )
expression(f

print("line1")
print("line2")

g)
Note that comments and spaces are ignored by the R interpreter. Note also that

to make your code easier to read, you can add as many carriage returns as you wish
in a block without any effect on its execution.

8.4.2.2 R Formulae

The formula object is one of the specificities of R. It is mainly used to establish
a relationship between two parts, separated with a tilde �. Both parts must be R
expressions. Keeping in mind what we have learnt about the function expression(),
we can see how R converts a formula into a "�"() function upon execution.

> y�x
y � x
> "�"(y,x) # Equivalent expression,
y � x
> expression("�"(y,x)) # as this expression proves.
expression(y � x)

For developers, formula objects can be used to offer a more user-friendly inter-
face, since they are closer to the human language. For example, the R formula y�x
can express that y and x are linked or that y is a function of x. Generally speak-
ing, the developer bears the responsibility of interpreting the formula to perform the
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necessary tasks. This is very advanced; we refer the interested reader to the R docu-
mentation files. Here are a few examples with no particular meaning, but which will
help become familiar with this new object:

> y�x
y � x
> y�(x+y:z)*t|v
y � (x + y:z) * t | v
> y1+y2|w � (x+y:z)*t|v
y1 + y2 | w � (x + y:z) *t | v

It is worth pointing out that even if the quantities mentioned in the formulae
above are not existing R objects, no error is thrown. However, remember that a
syntax error results in an error message:

> y�x+y)*t|v
Error : ’)’ not expected in "y�x+y)"

We now focus on usage of formulae in the R system. Since formulae are not common
objects, the user may not realize that they are saved like any other R object.

> form <- y�x
> form
y � x

The two main uses are for plots and for statistics.
For plots, this is an alternative to what we introduced in Chap. 7.

> x <- runif(10)
> y <- runif(10)
> plot(x,y)
> plot(y�x)

The resulting plot is not shown here, since the only interest is in showing that
the instructions with or without the formula are equivalent. Note that the variables x
and y are inverted between the two forms. The version with the formula plot(y�x)
expresses more literally the action we want: plot y as a function of x. This version,
which we find elegant, is of course also available for the complementary functions
points() and lines().

In a statistical context, a function relative to the specific treatment of a statistical
model takes as input argument a formula establishing the relationship between the
variables of the model (the formula is often the first argument). The most simple
example is the linear model; here is an example11:

> lm(y�x) # x and y must be defined (and they are in this
# case!)

Call:
lm(formula = y � x)
Coefficients:
(Intercept) x

0.46290 -0.06904

11 This section does not give details on handling linear models in R; this will be the focus of
Chap. 14.
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> lm(form) # Recall that: form <- y�x
Call:
lm(formula = form)
Coefficients:
(Intercept) x

0.46290 -0.06904

Besides the pleasant syntax, the formula object also offers a very efficient inter-
face with the user to describe the model. This is confirmed by the fact that, unlike
for plots, there is no other way of describing the relationship between the variables
in the model. You might think that the syntax lm(y,x) could have been used. But
then how would you write as a list of input arguments the formula y�(x+z)�t ,
which is perfectly valid (see Chap. 15)?

For operations on formulae, you can use the function update() which modifies
a formula, using another one.

> update(y�x,.�.+z) # Change y�x into y�x+z.
y � x + z
> form <- y�x # The same procedure with a saved model.
> form2 <- update(form,.�.+z)
> form2
y � x + z
> update(form2,.�.-x) # You can also delete a variable.
y � z

These examples show the syntax of the function update(). The first formal
argument is the formula you wish to modify; the second formal argument gives
the operations to perform on the formula, using a specific syntax. All that remains
to be done is to analyse the syntax of the second formula. Any dot “�” before the
tilde character “�” is replaced with the left expression of the initial formula (before
the tilde). Similarly, any dot “�” after the tilde is replaced with the right expression
of the initial formula (after the tilde).

8.4.2.3 The R Environment

The notion of environment is necessary in any programming language. It can be seen
as a storage space of R objects. When you open your R session, a first environment
.GlobalEnv is created by R. It is called the workspace and all objects manipulated
with the command line during this session are stored there. Although we only wish
to give an overview of this concept, it is worth mentioning that the notion of func-
tion depends intrinsically on the notion of environment. Here is a glimpse of this
fact. When you create a new object in the body of a function, R takes care of declar-
ing it internally in an environment specific to this function, to store the contents of
the object. The reason for this is that if the object has the same name as an object
of the environment .GlobalEnv, this last object will not be overwritten with the
value defined in the body of the function. To better understand what an environment
is, note that the value of an object defined in the environment .GlobalEnv can be
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accessed in the body of the function. However, its value cannot be modified by an
affectation with the same object name. The reason why you can access an object
which was defined in another environment than the one associated with the function
is that a parent environment is specified when declaring a new environment. It is al-
lowed that an environment has no parent, as is the case with the initial environment
.GlobalEnv. When an object is not directly available in the environment of a func-
tion, R searches for the object in the parent environment. If it is still not available,
there are two possibilities: either there exists a “grandparent” environment, and the
search continues, or there is no such environment and an error is thrown indicating
that the object could not be found. This exploration process is repeated recursively
until the object is found. Most environment declarations are done internally and in-
visibly by R. We shall return to this notion when we give more details on developing
functions. A very surprising feature is that an environment is considered as an R ob-
ject. A new environment can thus be declared to execute a specific block of code
without changing the workspace .GlobalEnv. The function local(), which takes
as first argument the code to execute and as second argument the environment for
the execution, is very useful to this end:

> a <- 12; b <- 13
> space <- new.env() # By default, the parent is the environment

# from which new.env is called.
> local(f
+ a <- b+2
+ a
+ g,space)
[1] 15
> a # The value of a has not changed in .GlobalEnv.
[1] 12
> space$a # Value of a in the environment space.
[1] 15

The function’s name is well chosen: the value of a in the workspace .GlobalEnv
has been preserved. As stated in the comment, the parent of space (generated by
new.env()) is .GlobalEnv, but the parent could have been specified by giving a
value to the formal argument parent. Here are two examples of parent declaration:

> space2 <- new.env(parent=emptyenv())
> local(a<-b+2,space2) # Error!!!
Error in eval(expr, envir, enclos) : could not find function "<-"
> space2$a # Unsurprisingly, the object a does not exist!
NULL

The environment space2 is useless, since its parent environment is an empty
environment (i.e. no parent; declared with the function emptyenv()). The execu-
tion error in the local code is because even the affectation function <- cannot be
accessed: the empty environment knows absolutely nothing about R; in particular,
it does not know the basic functions. The function globalenv() returns the global
environment .GlobalEnvwhich is always first in the access list of R environments.
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> space3 <- new.env(parent=parent.env(globalenv()))
> local(a<-b+2,space3) # Error, because .GlobalEnv cannot be

# accessed!
Error in eval(expr, envir, enclos) : object ’b’ not found
> local(a<-15,space3)
> a
[1] 12
> space3$a
[1] 15

Environments are rather convenient-they are used like a list.

> space3$b <- b-1
> b
[1] 13
> space3$b
[1] 12

For further details, we refer the reader to the online help, which is rather com-
plete, but aimed at advanced users.

SECTION 8.5

� Interfacing R and C/C++ or Fortran

You may be wondering why you should consider writing parts of your code in C/C++
or Fortran. There are several reasons, such as:

� To use from R a pre-existing routine, formerly coded in C/C++ or Fortran
� To speed up the runtime of your R code
� To use the graphical capabilities of R or some R functions on numerical output

from C/C++ or Fortran code

Tip

The last version of R includes a byte compiler which speeds up
some computations. You can also use the R version distributed by the
company Revolution Analytics (http://www.revolutionanalytics.
com). It has been optimized to speed up some computations, for example, by
relying on a multi-core architecture when available.

Warning

Interfacing R and C/C++ or Fortran is much more convenient under Linux
(or MacOS) than under a Microsoft Windows OS for which several necessary
tools lack. Note that the authors of this book use Linux on a daily basis!

http://www.revolutionanalytics.com
http://www.revolutionanalytics.com
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See also

We assume that the reader already has some notions of C/C++ and/or
Fortran programming. If that is not the case, the books [22, 38] for C and
C++, and [9] for Fortranmay be of use.

In this section, we do not claim exhaustivity. We shall only present a few simple
examples which illustrate the points made above. Along the way, we shall provide
some basics which we hope will allow you to get by on your own afterwards.

Warning

Before you start, you need to install C/C++ and Fortran compilers,
since Microsoft Windows does not have any by default. The free software
Rtools, containing several tools from the Linux world, has been created to
this end. You can download it from http://cran.r-project.org/bin/
windows/Rtools. Choose Full installation to build 32 or 64

bit R 2.14.2+ if you have a 64 bit processor. Tick the appropriate box
when installing Rtools, so that the variable PATH is correctly configured.
You also need to change the system environment variable Path so that it
contains the path to the R installation folder (one way to find the path is
to right-click on the R icon of the desktop, then choose properties). This
will allow you to call R from an MS-DOS command window, as we shall
mention later on. To do this, right-click on the Windows Desktop, select
New/Shortcut, then enter the following instruction in the window that opens:
control.exe sysdm.cpl,System,3

Once this shortcut has been created on the desktop, double-click on it,
and in the window that opens, click on Environment Variables...
Change the value on the system variable Path to add at the beginning
(using ; as separator) the path to the folder containing the R executable
(which should look like C:\Program Files\R\R-3.1.0\bin\i386

or C:\Program Files\R\R-3.1.0\bin\x64) and the path to the
folders of Rtools (which should look like C:\Rtools\bin and
C:\Rtools\gcc-4.6.3\bin), if they are not already present.

8.5.1 Creating and Running a C/C++ or Fortran Function

The next example shows how to speed up a program by using C/C++ or Fortran.
The R function combn() is able to handle all combinations of a given number of
elements taken from a given vector. For example, this instruction generates all com-
binations of size 3 from the vector 1:5.

http://cran.r-project.org/bin/windows/Rtools
http://cran.r-project.org/bin/windows/Rtools
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> combn(5,3)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 1 1 1 1 1 2 2 2 3
[2,] 2 2 2 3 3 4 3 3 4 4
[3,] 3 4 5 4 5 5 4 5 5 5

If we attempt to get all choose(n,m) combinations (e.g., 1,313,400 combina-
tions if n D 200 and m D 3) from a vector of larger size n, the computation time
can increase drastically.

> system.time(x <- combn(200,3))
user system elapsed

14.959 0.227 15.188

The command system.time() shows that the above computation takes several
seconds on the computer used to write this book (if your computer is faster, take a
value greater than 200).

Tip

The function permn() of package combinat can be used to generate all
permutations of the elements of a vector.

A simplified version of the original R function combn() is given below:

> combnR <- function(n,m) f
+ a <- 1:m ; e <- 0 ; h <- m
+ combmat <- matrix(0,nrow=m,ncol=choose(n,m))
+ combmat[,1] <- 1:m
+ i <- 2
+ nmmp1 <- n - m + 1
+ mp1 <- m + 1
+ while (a[1] != nmmp1) f
+ if (e<n-h) f
+ h <- 1 ; e <- a[m] ; a[m-h+1] <- e + 1
+ combmat[,i] <- a
+ i <- i + 1
+ g else f
+ h <- h + 1 ; e <- a[mp1-h]
+ a[(m-h+1):m] <- e + 1:h
+ combmat[,i] <- a
+ i <- i + 1
+ gg
+ return(combmat)
+ g

We now propose two functions coded in C/C++, and another two coded in
Fortran, to make the same computation in much shorter time.

� Creating the C/C++ function

C++ code for function combnC, downloadable from http://biostatisticien.
eu/springeR/combn.cpp:

http://biostatisticien.eu/springeR/combn.cpp
http://biostatisticien.eu/springeR/combn.cpp
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1 # i n c l u d e <math . h>
2 e x t e r n "C" f
3 vo i d combnC ( i n t � combmat , i n t � n , i n t �m) f
4 i n t i , j , e , h , nmmp1 , mp1 ;
5 i n t � a ;
6 a=new i n t [m[ 0 ] ] ;
7 f o r ( i =1; i<=m[ 0 ] ; i= i +1 ) a [ i �1]= i ;
8 e=0;
9 h=m[ 0 ] ;

10 f o r ( i =1; i <=�(m+0) ; i= i +1 ) combmat [ i �1]= i ;
11 i =2;
12 nmmp1=n [ 0 ] � m[ 0 ] + 1 ;
13 mp1=m[ 0 ] + 1 ;
14 w hi l e ( a [ 0 ] ! = nmmp1 ) f
15 i f ( e < n [ 0 ] � h ) f
16 h=1;
17 e=a [m[0 ] �1] ;
18 a [m[ 0 ] � h]= e + 1 ;
19 f o r ( j =1; j<=m[ 0 ] ; j= j +1 ) combmat [ ( i �1)�m[0]+ j �1]=a [ j �1];
20 i= i +1;
21 g e l s e f
22 h=h + 1 ;
23 e=a [ mp1 � h �1];
24 f o r ( j =1; j <=h ; j= j +1 ) a [m[ 0 ] � h + j �1]=e + j ;
25 f o r ( j =1; j<=m[ 0 ] ; j= j +1 ) combmat [ ( i �1)�m[0]+ j �1]=a [ j �1];
26 i= i + 1 ; g g
27 d e l e t e [ ] a ;
28 gg

Code for the main function, downloadable from http://biostatisticien.
eu/springeR/main.cpp:

1 # i n c l u d e < i o s t r e a m>
2 u s i n g namespace s t d ;
3 e x t e r n "C" f
4 i n t main ( ) f
5 vo i d combnC ( i n t � combmat , i n t �n , i n t �m) ;
6 i n t � n , �m, � combmat , j ;
7 doub l e Cnm ;
8 n=new i n t [ 1 ] ;
9 m=new i n t [ 1 ] ;

10 n [ 0 ]=5 ;
11 m[ 0 ]=3 ;
12 Cnm=10;
13 combmat=new i n t [ ( i n t )Cnm�m[ 0 ] ] ;
14 combnC ( combmat , n ,m) ;
15 f o r ( j =1; j <=Cnm�m[ 0 ] ; j ++ ) c o u t << combmat [ j �1] << " " ;
16 gg

Note that all indices start at zero in C/C++, unlike R where they start at 1.

http://biostatisticien.eu/springeR/main.cpp
http://biostatisticien.eu/springeR/main.cpp
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� Creating the Fortran function

Fortran code for the subroutine combnF, downloadable from http://

biostatisticien.eu/springeR/combn.f90:

1 SUBROUTINE combnF ( combmat , n ,m)
2

3 i n t e g e r , i n t e n t ( i n ) : : n ,m
4 i n t e g e r : : i , j , e , h , nmmp1 , mp1
5 i n t e g e r , d im en s io n (m ) : : a
6 i n t e g e r , d im en s io n ( � ) , i n t e n t ( o u t ) : : combmat
7

8 do i =1 ,m
9 a ( i )= i

10 end do
11 e=0
12 h=m
13 do i =1 ,m
14 combmat ( i )= i
15 end do
16 i=2
17 nmmp1=n�m+1
18 mp1=m+1
19 do w h i l e ( a ( 1 ) . ne . nmmp1)
20 i f ( e < n�h ) t h e n
21 h=1
22 e=a (m)
23 a (m�h+1)=e+1
24 do j =1 ,m
25 combmat ( ( i �1)�m+ j )= a ( j )
26 end do
27 i= i+1
28 e l s e
29 h=h+1
30 e=a ( mp1�h )
31 do 4 0 j =1 ,h
32 a (m�h+ j )= e+ j
33 4 0 c o n t i n u e
34 do j =1 ,m
35 combmat ( ( i �1)�m+ j )= a ( j )
36 end do
37 i= i+1
38 e n d i f
39 enddo
40 END SUBROUTINE combnF

http://
biostatisticien.eu/springeR/combn.f90
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Code for the main function, downloadable from http://biostatisticien.
eu/springeR/main.f90:

1 PROGRAM main
2 i n t e g e r : : n ,m, Cnm, j , k
3 i n t e g e r , a l l o c a t a b l e , d im en s io n ( : ) : : combmat
4 n=5
5 m=3
6 Cnm=10
7 k=Cnm�m
8 a l l o c a t e ( combmat ( k ) )
9 CALL combnF ( combmat , n ,m)

10 w r i t e ( � , � ) ( combmat ( j ) , j =1 ,k )
11 d e a l l o c a t e ( combmat )
12 end PROGRAM main

� Compiling and running the C/C++ or Fortran function

In order to use the C++ or Fortran code given above, it needs to be compiled, i.e.
transformed into an executable file. To do this, simply open an MS-DOS terminal
window, for example, from the Windows menu Start/Run (or with the keyboard
combination [WINDOWS+R]) and type the instruction cmd followed by ENTER. In this
black window, type the two instructions below.

Warning

You may need to move to the directory where your files were saved, using
the MS-DOS command cd (for change directory). For example, if you created
your files on the Windows Desktop, use

cd Desktop

Note that under MS-DOS, the command dir is used to list the contents of the
current directory.

:: To compile C/C++ code:

g++ -o mycombn.exe combn.cpp main.cpp

:: To compile Fortran code:

gfortran -o mycombn.exe combn.f90 main.f90

:: To run the function:

mycombn.exe

The first instruction compiles our C++ or Fortran code to produce the executable
file mycombn.exe. The second instruction launches this executable file and dis-
plays, though with no formatting, the result of the computation.

http://biostatisticien.eu/springeR/main.f90
http://biostatisticien.eu/springeR/main.f90
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Tip

The function system() is used to execute a DOS command outside of R. For
example, in R, type:

> system("mycombn.exe")
1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 2 3 4 2 3 5 2 4 5 3 4 5 >

Note that you must of course first change the current R directory, using func-
tion setwd(), for example, to change to the directory containing the file my-
combn.exe.

Tip

The compilation flag -Wall is used to display all compilation warnings or
errors (if there are any!):

g++ -o mycombn.exe combn.cpp main.cpp -Wall

We shall now produce the
�

200
3

� D 1; 313; 400 sub-vectors made of all possible
combinations of three elements in vector 1:200. For the C/C++ version, modify
lines 11, 13 and 16 of the code of function main given p. 233. These lines become

n[0]=200;

Cnm=1313400;

// for (j=1;j<=Cnmm[0];j++) cout << combmat[j-1] << " ";

For the Fortran version, modify lines 4, 6 and 10 of the code of function main
given p. 235. These lines become

n=200

Cnm=1313400

!write(*,*) (combmat(j) ,j=1,k)



8.5 � Interfacing R and C/C++ or Fortran 237

We commented out the last line (using // in C/C++ and ! in Fortran) so that a call
of mycombn.exe no longer displays the (now very large) result of the computation,
which would take a lot of time. But the calculation is made. We are thus coherent
with the previous computation done in R, for which the result was not displayed but
stored in variable x. After saving your changes, recompile and run your code:

:: To compile C/C++ code:

g++ -o mycombn.exe combn.cpp main.cpp

:: To compile Fortran code:

gfortran -o mycombn.exe combn.f90 main.f90

:: Execute the function:

mycombn.exe

You can see that the calculation (without displaying the result) is done very quickly.

8.5.2 Calling C/C++ (or Fortran) from R

We shall now see how to call the C++ code from file combn.cpp (or rather a com-
piled version of this code) directly from R, without using a main function. To this
end, we create an R wrapper containing a call of the C++ function.

Note

R can only call C/C++ or Fortran functions which do not return any output.
All C/C++ functions must thus be of type void and all Fortran routines must
be subroutines. The results will go in the arguments of the calling function.

Download the file http://biostatisticien.eu/springeR/combn.R,
which includes the code given below:

1 combnRC <� f u n c t i o n ( n ,m) f
2 combmat <� m a t r i x ( 0 , nrow=m, n c o l=c h o o se ( n ,m) )
3 l i b <� p a s t e ("combn" , . P l a t f o r m $ d y n l i b . ex t , sep="" )
4 dyn . l o a d ( l i b )
5 o u t <� .C("combnC" , r e s=as . i n t e g e r ( combmat ) ,
6 a s . i n t e g e r ( n ) , a s . i n t e g e r (m) )
7 combmat <� m a t r i x ( o u t $ r e s , nrow=m, byrow=F )
8 dyn . u n lo a d ( l i b )
9 r e t u r n ( combmat )

10 g

http://biostatisticien.eu/springeR/combn.R
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Note

To call the Fortran code, replace line 5 by

out <- .Fortran("combnF",res=as.integer(combmat),

The functions dyn.load() and dyn.unload() allow respectively to load and
unload from R’s memory the resources from a DLL (dynamic link library) file. A
DLL includes functions which can be called during the execution of a program,
without being included in its executable. Here, it is the file combn.dll (which in-
cludes only one function), which will be created further on.

The functions .C() and .Fortran() (which output a list) are used to send
values from R to a C/C++ or Fortran function, respectively. Use the instructions
as.integer(), as.double() or as.character() in R to declare objects made
of integer values, decimal (numeric) values or character strings, so that they are
“received” correctly by the arguments of the C/C++ or Fortran function.

For a C/C++ function, all arguments must be pointers, for example, integer
pointers (int *), real pointers (double *) or character pointer pointers (char **).
Table 8.1 gives the equivalent types in R, C/C++ and Fortran.

Table 8.1: Conventions on argument types. Type ?.Fortran for further detail

R C/C++ Fortran

integer int * INTEGER

numeric double * DOUBLE PRECISION

numeric float * REAL

complex Rcomplex * DOUBLE COMPLEX
logical int * integer

character char ** CHARACTER*255
list SEXP * not allowed
other type SEXP not allowed

Warning

Unlike R, where it is very easy to get the length of vector x with the in-
struction length(x), in C/C++ it is not possible to know the length of x. It
can sometimes be useful to give to the function .C() both the vector x and its
length, for example, as follows for some hypothetical function functionC:

x <- c(1.2,0.7,3,2,4,1,0.9)

.C("functionC",as.double(x),as.integer(length(x)))

The arguments of the C/C++ function functionC are double *x and int *n.
The same remark applies to Fortran functions.
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Note

The C/C++ function combnC returns void: it does not have any direct out-
put. However, the value of its arguments, which are pointers, can be modified
during execution. It is then possible to access directly (thanks to their address)
to the value of these pointers. This is how R works, using the function .C() (in
a transparent way for the user).
You may have noted at line 5 of the code of function combnRC() above
that we used res= when calling function .C(). This allows us to use
out$res directly, instead of out[[1]]. You can use another name than res,
and for any argument of function .C(). For example, we could have used
val=as.integer(m), which we did not do because that value was not modi-
fied by combnC and is thus already known (as m). A similar remark applies to
Fortran functions.

We shall now create the file combn.dll, which will be called by R. To this end,
type the following instructions in an MS-DOS window:

:: In C/C++:

g++ -c combn.cpp -o combn.o

g++ -shared -o combn.dll combn.o

:: In Fortran:

gfortran -c combn.f90 -o combn.o

g++ -shared -o combn.dll combn.o

Tip

Equivalently (or almost equivalently, since optimization arguments could be
used by the compiler, which might by the way hinder debugging), this dynam-
ical library could be created (after deleting if necessary the files combn.o and
combn.dll) with one instruction:

R CMD SHLIB combn.cpp -o combn.dll

The first instruction creates the object file combn.o, which contains the machine
code for the function included in file combn.cpp. The second instruction creates the
dynamic library combn.dll. At this step, the compiler informs us of any errors to
correct in the program (with the corresponding line number).
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Tip

Note that it is possible to include several object files in the same library,
which will then contain several functions. For example, if we had a file
choose.o containing the machine code for a function which calculates bino-
mial coefficients, we could include both functions in a DLL as follows:

g++ -shared -o combn.dll combn.o choose.o

Linux

Under Linux, DLL files usually have a .so extension (for shared object).
You should thus replace all occurrences of extension .dll by extension .so.

Mac

Under MacOS, DLL files usually have a .dylib extension (for dynamic
library). You should thus replace all occurrences of extension .dll by exten-
sion .dylib. Also note that under MacOS, you must replace g++ -shared
with g++ -dynamic.

In R, after changing to the correct directory, we can now execute the following
instructions:

> combn(5,3)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 1 1 1 1 1 2 2 2 3
[2,] 2 2 2 3 3 4 3 3 4 4
[3,] 3 4 5 4 5 5 4 5 5 5
> source("combn.R")
> combnRC(5,3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 1 1 1 1 1 2 2 2 3
[2,] 2 2 2 3 3 4 3 3 4 4
[3,] 3 4 5 4 5 5 4 5 5 5
> system.time(x <- combn(200,3))

user system elapsed
14.803 0.229 15.035
> system.time(x <- combnRC(200,3))

user system elapsed
0.158 0.023 0.181

There is an important speed-up, thanks to this new R function using code written
in C/C++.
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Do it yourself Ï
Code in R alone, and then in hybrid R-C/C++ (or R-Fortran), the functions
ar1simR() and ar1simRC()-ar1simC (or ar1simRF()-ar1simF). These
functions take three input arguments: n 2 N, � 2 .�1; 1/ and M 2 N. They
do the following computations.

For m D 1; : : : ;M :

(a) Simulate random vector ε D .ε1; : : : ; εn/
T with distribution

Nn.0IIn/.
(b) Create vector x D .x1; : : : ; xn/

T, with x1 D �1, and such that for all
t D 2; : : : ; n, we have xt D �xt�1 C εt .

(c) Calculate the conditional least squares estimator O�m of �:

O�m D
Pn

tD2 xt�1xtPn
tD2 x

2
t�1

:

The functions you create should output the value O� D 1
M

PM
mD1

O�m � �,

thus allowing a numerical evaluation of the bias of estimator O� of �.

Compare the speed of execution of the pure R version with the version call-
ing C/C++ (or Fortran) code. To this end, plot the values .M; timeM / for
M D 1;000; 2;000; : : : ; 100;000. Take n D 1;000 and � D 0:75.

Note: The function arima.sim() performs parts (a) and (b) above, and
function arima() performs part (c). Do not use these two pre-existing func-
tions for this exercise: they are very fast because they are coded in C, but are
not limited to the previous computations.

Tip

To ease code development, a good editor is always useful. An editor should
at least include indentation and syntactical colouring. You may wish to use the
following free software:

� An R code editor such as RStudio, Tinn-R or Emacs
� A source code editor for C/C++ and Fortran such as Emacs or
Code::Blocks (available at http://www.codeblocks.org)

http://www.codeblocks.org
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Tip

The package rbenchmark can be used to easily calculate the expected gain
in computation time by using an R-C/C++ or R-Fortran function rather than
a pure R function. For example, try to verify the results we got in the previous
practical using the following code:

n <- 1000

phi <- 0.75

M <- 2000

dyn.load("ar1sim.dll")

benchmark(Rcode=ar1simR(n,phi,M),

Ccode=.C("ar1simC",as.integer(n),phi,

as.integer(M),res=0.0)$res,

replications=1000)

Tip

Fortran and R store matrices (tables) in the same way: the rows of a
given column are stored sequentially in memory. In C/C++, the opposite holds;
columns of a given line are stored sequentially. Be careful when sending a
matrix from R to C/C++. For example, the element with index [i,j] in an
R matrix corresponds to the element with index [(j-1)*number-of-rows +
(i-1)] in C/C++ (in C/C++, indices start at 0).

8.5.3 Calling External C/C++ or Fortran Libraries

It is possible to use a function from an external library, thanks to the R functions
.C() (for C/C++ libraries) and .Fortran() (for Fortran libraries).

Tip

Here is an amusing application of this approach, which locks the Windows
session:

# Select file C:/windows/system32/user32.dll:

dyn.load(file.choose())

.C("LockWorkStation")

It is also possible to call an external library directly from your C/C++ or Fortran
code. Here are some scientific libraries which we find interesting:
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� The R API (application programming interface)
� The C++ library newmat
� The Fortran libraries BLAS and LAPACK

See also

Other libraries exist; some are free of charge, or even open-source, such as:

� In C/C++:

– http://www.gnu.org/software/gsl
– http://www.math.uiowa.edu/ d̃stewart/meschach
– http://www.nrbook.com/a/bookcpdf.php

� In Fortran:

– http://calgo.acm.org
– http://www.nrbook.com/a/bookfpdf.php
– http://www.nrbook.com/a/bookf90pdf.php
– http://math-atlas.sourceforge.net

Others are not free:

� In C/C++:

– http://www.nag.co.uk/numeric/CL/CLdescription.asp
– http://www.vni.com/products/imsl/c/imslc.php

� In Fortran:

– http://www.nag.co.uk/numeric/RunderWindows.asp
– http://www.nag.co.uk/numeric/fl/FLdescription.asp
– http://www.nag.co.uk/numeric/fn/FNdescription.asp
– http://www.vni.com/products/imsl/fortran/overview.php

8.5.3.1 The R API

The R API is a library created by the R developers. It can be used from a C/C++
program without even using R (it is then called standalone R API). It can also be
used in C/C++ code which will itself be called from R, as introduced in the previous
section. This allows the use of existing routines without having to rewrite them.
To use this library, you must include in your C/C++ source code the two header
files R.h and Rmath.h, which are necessary to declare or define some mathematical
functions and constants.

http://www.gnu.org/software/gsl
http://www.math.uiowa.edu/~dstewart/meschach
http://www.nrbook.com/a/bookcpdf.php
http://calgo.acm.org
http://www.nrbook.com/a/bookfpdf.php
http://www.nrbook.com/a/bookf90pdf.php
http://math-atlas.sourceforge.net
http://www.nag.co.uk/numeric/CL/CLdescription.asp
http://www.vni.com/products/imsl/c/imslc.php
http://www.nag.co.uk/numeric/RunderWindows.asp
http://www.nag.co.uk/numeric/fl/FLdescription.asp
http://www.nag.co.uk/numeric/fn/FNdescription.asp
http://www.vni.com/products/imsl/fortran/overview.php
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See also

The documentation for this library, which includes the list of functions and
constants contained in it, is available at http://cran.r-project.org/doc/
manuals/R-exts.html#The-R-API.
You may also find interesting to consult the contents of the directory nmath/
in the R sources; it is available at http://svn.r-project.org/R/trunk/
src/nmath.

We present below C/C++ code available at http://biostatisticien.eu/
springeR/integ.cppwhich allows to compute the integral

Z �

�1

˚.t C �2/dt;

where �1 and �2 are realizations of two independent random variables (respectively,
normal and uniform) and where ˚.�/ is the cumulative distribution function of the
N .0; 1/ distribution. The only point of this example is to illustrate the use of the
R API to simulate random variables, calculate a probability and perform numerical
integration.

1 # i n c l u d e <R . h>
2 # i n c l u d e <Rmath . h>
3

4 e x t e r n "C" f
5

6 t y p e d e f v o id i n t e g r f n ( d o u b le �x , i n t n , v o id � ex ) ;
7 v o id f ( d o u b le � t , i n t n , v o id � ex ) ;
8 v o id t e s t i n t e g r a l ( d o u b le � r e s ) f
9

10 / / R API n u m e r i c a l i n t e g r a t i o n f u n c t i o n
11 v o id Rdqags ( i n t e g r f n f , v o id � ex , d o u b le � a ,
12 d o u b le � b , d o u b le � e p sab s ,
13 d o u b le � e p s r e l , d o u b le � r e s u l t ,
14 d o u b le � a b s e r r , i n t � neva l ,
15 i n t � i e r , i n t � l i m i t , i n t � lenw ,
16 i n t � l a s t , i n t � iwork , d o u b le �work ) ;
17

18 GetRNGstate ( ) ; / / Read t h e R g e n e r a t o r seed
19

20 d o u b le � a , � b , � e p sab s , � e p s r e l , � r e s u l t ,
21 � ex , � a b s e r r , � work ;
22 i n t � l a s t , � l i m i t , � lenw , � i e r , � neva l , � iwork ;
23

24 ex = new d o u b le [ 1 ] ; a = new d o u b le [ 1 ] ;
25 b = new d o u b le [ 1 ] ; e p s a b s = new d o u b le [ 1 ] ;

http://cran.r-project.org/doc/manuals/R-exts.html#The-R-API
http://cran.r-project.org/doc/manuals/R-exts.html#The-R-API
http://svn.r-project.org/R/trunk/src/nmath
http://svn.r-project.org/R/trunk/src/nmath
http://biostatisticien.eu/springeR/integ.cpp
http://biostatisticien.eu/springeR/integ.cpp
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26 e p s r e l = new d o u b le [ 1 ] ; r e s u l t = new d o u b le [ 1 ] ;
27 a b s e r r = new d o u b le [ 1 ] ; n e v a l = new i n t [ 1 ] ;
28 i e r = new i n t [ 1 ] ; l i m i t = new i n t [ 1 ] ;
29 lenw = new i n t [ 1 ] ; l a s t = new i n t [ 1 ] ;
30 l i m i t [ 0 ] = 1 0 0 ;
31 lenw [ 0 ] = 4 � l i m i t [ 0 ] ;
32 iwork = new i n t [ l i m i t [ 0 ] ] ;
33 work = new d o u b le [ lenw [ 0 ] ] ;
34

35 a [ 0 ] = rnorm ( 0 . 0 , 1 . 0 ) ; / / eps1 from N( 0 , 1 )
36 b [ 0 ] = M PI ; / / The c o n s t a n t n p i ( 3 . 1 4 1 5 9 3 . . . )
37 ex [ 0 ] = r u n i f ( 0 . 0 , 1 . 0 ) ; / / eps2 from Unif ( 0 , 1 )
38

39 / / C a l c u l a t e t h e i n t e g r a l
40 Rdqags ( f , ex , a , b , ep sab s , e p s r e l ,
41 r e s u l t , a b s e r r , neva l , i e r ,
42 l i m i t , lenw , l a s t ,
43 iwork , work ) ;
44

45 / / The r e s u l t i s s t o r e d i n r e s [ 0 ]
46 r e s [ 0 ] = r e s u l t [ 0 ] ;
47

48 PutRNGsta te ( ) ; / / Wri te t h e g e n e r a t o r seed
49

50 / / Free up some memory
51 d e l e t e [ ] ex , a , b , ep sab s , e p s r e l , r e s u l t , a b s e r r ,
52 n ev a l , i e r , l i m i t , lenw , l a s t , iwork , work ;
53 g
54

55 / / Def in e t h e f u n c t i o n t o i n t e g r a t e
56 v o id f ( d o u b le � t , i n t n , v o id � ex ) f
57 i n t i ;
58 d o u b le eps2 ;
59 eps2 = ( ( d o u b le � ) ex ) [ 0 ] ;
60 f o r ( i =0; i<n ; i ++ ) f
61 t [ i ] = pnorm ( t [ i ]+ eps2 , 0 . 0 , 1 . 0 , 1 , 0 ) ; g
62 g
63

64 g

The instructions to compile this function in order to get a DLL file are

g++ -c integ.cpp -o integ.o -I"C:\Program Files\R\R-3.1.0

\include"

g++ -shared -o integ.dll integ.o ˆ

-L"C:\Program Files\R\R-3.1.0\bin\i386" -lR
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Warning

Note that we had to indicate the paths to the folders containing the files
R.h, Rmath.h and R.dll. Modify these as needed depending on your system
configuration. In MS-DOS, the symbol ˆ indicates an incomplete line.

Linux

g++ -c integ.cpp -o integ.o -I"/usr/lib/R/include" -fPIC

g++ -shared -o integ.so integ.o -I"/usr/lib/R/include" \

-L"/usr/lib" -lR

Now, to perform the calculation in R, use the following instructions:

> dyn.load(paste("integ",.Platform$dynlib.ext,sep=""))
> # i.e. dyn.load("integ.dll") under Windows.
> .C("testintegral",val=0.0)$val
[1] 3.707762

Of course, the result of this computation varies, depending on the realizations of
�1 and �2.

8.5.3.2 The newmat Library

The newmat library is used to manipulate various types of matrices and to
perform classical operations such as multiplication, transposition, inversion, eigen-
value computation and decompositions.

See also

The complete documentation for this library is available at http://www.
robertnz.net/nm11.htm.

The code below, available at http://biostatisticien.eu/springeR/inv.
cpp, is C/C++ code using this library to invert a matrix and can be called from R.

1 # d e f i n e WANT STREAM
2 # d e f i n e WANT MATH
3 # i n c l u d e "newmatap . h"
4 # i n c l u d e "newmatio . h"
5 # i f d e f u se namesp ace
6 u s i n g namespace NEWMAT;
7 # e n d i f
8 e x t e r n "C" f
9 v o id invC ( d o u b le � v a l u e s , i n t � nrow ) f

http://www.robertnz.net/nm11.htm
http://www.robertnz.net/nm11.htm
http://biostatisticien.eu/springeR/inv.cpp
http://biostatisticien.eu/springeR/inv.cpp
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10 i n t i , j ;
11 Mat r ix M( nrow [ 0 ] , nrow [ 0 ] ) ;
12 M << v a l u e s ;
13 M <<M. i ( ) ; / / C a l c u l de l ’ i n v e r s e de M
14 f o r ( i =1; i<=nrow [ 0 ] ; i ++ ) f
15 f o r ( j =1; j<=nrow [ 0 ] ; j ++ ) f
16 v a l u e s [ nrow [ 0 ]� ( i �1)+ j �1 ] = M( i , j ) ;
17 g
18 g
19 M. R e l e a s e ( ) ;
20 r e t u r n ;
21 g
22 g

Tip

Download file http://www.robertnz.net/ftp/newmat11.zip and un-
zip it in C:/newmat. Then type the following instructions in an MS-DOS win-
dow:

cd n
cd newmat

g++ -O2 -c *.cpp
ar cr newmat.a *.o
ranlib newmat.a

cp newmat.a newmat.dll

After a few minutes, the libraries newmat.a and newmat.dll are created in
folder C:\newmat.

You now need to create the library inv.dll (or inv.so under Linux) using the
following instructions:

cd folder containing file inv.cpp

g++ -IC:\newmat -o inv.o -c inv.cpp

R CMD SHLIB inv.cpp -IC:\newmat C:/newmat/newmat.a

Linux

g++ -I/usr/include/R -I/usr/local/include -Inewmat -fpic \

-c inv.cpp -o inv.o

R CMD SHLIB inv.cpp -Inewmat newmat/newmat.a

You can then use the C/C++ above from R as follows. First save the following
code in a file called inv.R:

http://www.robertnz.net/ftp/newmat11.zip
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> inv <- function(M) f
+ n <- nrow(M)
+ return(matrix(.C("invC",Minv=as.vector(M),n)$Minv,
+ nrow=n,ncol=n))g

Then execute the instructions:

> dyn.load(paste("inv",.Platform$dynlib.ext,sep=""))
> A <- matrix(rnorm(9),nrow=3)
> solve(A) # The R function solve() inverts a matrix.

[,1] [,2] [,3]
[1,] -0.09893572 0.04676191 1.155500
[2,] -0.47035376 1.10728717 -2.979609
[3,] 0.03415044 -1.07683806 1.456918
> inv(A)

[,1] [,2] [,3]
[1,] -0.09893572 0.04676191 1.155500
[2,] -0.47035376 1.10728717 -2.979609
[3,] 0.03415044 -1.07683806 1.456918

The two functions solve() and inv() thus give the same result for matrix
inversion. As you can see, the speed-up for this operation is substantial.

> benchmark(Rcode=solve(A),Ccode=inv(A),replications=10000)
test replications elapsed relative user.self sys.self

2 Ccode 10000 0.255 1.000000 0.256 0.000
1 Rcode 10000 1.378 5.403922 1.351 0.025

user.child sys.child
2 0 0
1 0 0

8.5.3.3 The BLAS and LAPACK Packages

The BLAS (Basic Linear Algebra Subprograms) and LAPACK (Linear Algebra PACK-
age) packages are Fortran packages which perform many matrix operations. We
shall see how to use them on a simple example.

First download the archiver software 7-zip available at http://www.7-zip.
org/download.html. Use this software (twice) to unzip (in two steps) the file
http://www.netlib.org/lapack/lapack.tgz. All files and subfolders (BLAS,
CMAKE, etc.) should be placed directly in a folder called C:\lapack. For example,
this folder will contain at its root a file called make.inc.example, which you must
rename to make.inc after changing the line SHELL = /bin/sh to SHELL = sh.
Then type the following instructions in an MS-DOS window:

cd C:\lapack

make lapacklib blaslib

After several minutes, the static packages librefblas.a and liblapack.a are
created.

http://www.7-zip.org/download.html
http://www.7-zip.org/download.html
http://www.netlib.org/lapack/lapack.tgz
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See also

The documentation for these packages can be read at http://www.
netlib.org/lapack/lug. It is also useful to read the source code of all BLAS
and LAPACK routines you wish to use, as they contain a detailed description of
the arguments the routines take.

Here is the Fortran code, also available at http://biostatisticien.eu/
springeR/inv.f90, for a subroutine which computes the inverse of a matrix. It
uses the subroutines external DGETRF and DGETRI from the Lapack package.

1 ! R e t u r n s t h e i n v e r s e o f a m a t r i x c a l c u l a t e d by f i n d i n g
2 ! t h e LU d e c o m p o s i t i o n . Depends on LAPACK .
3 s u b r o u t i n e invF (A, Ainv ,m)
4 d o u b le p r e c i s i o n , d im e n s io n (m,m) , i n t e n t ( i n ) : : A
5 d o u b le p r e c i s i o n , d im e n s io n ( s i z e (A, 1 ) , s i z e (A, 2 ) ) , &
6 i n t e n t ( i n o u t ) : : Ainv
7

8 ! work a r r a y f o r LAPACK
9 d o u b le p r e c i s i o n , d im e n s io n ( s i z e (A , 1 ) ) : : work

10 i n t e g e r , d im en s io n ( s i z e (A , 1 ) ) : : i p i v ! p i v o t i n d i c e s
11 i n t e g e r : : n , i n f o , m
12

13 ! E x t e r n a l p r o c e d u r e s d e f i n e d i n LAPACK
14 e x t e r n a l DGETRF
15 e x t e r n a l DGETRI
16

17 ! S t o r e A i n Ainv t o p r e v e n t i t f rom
18 ! b e i n g o v e r w r i t t e n by LAPACK
19 Ainv = A
20 n = s i z e (A, 1 )
21

22 ! DGETRF computes an LU f a c t o r i z a t i o n o f
23 ! a g e n e r a l M�by�N m a t r i x A u s i n g p a r t i a l
24 ! p i v o t i n g wi th row i n t e r c h a n g e s .
25 c a l l DGETRF( n , n , Ainv , n , i p i v , i n f o )
26

27 i f ( i n f o / = 0 ) t h e n
28 s t o p ’ Mat r ix i s n u m e r i c a l l y s i n g u l a r ! ’
29 end i f
30

31 ! DGETRI computes t h e i n v e r s e o f a m a t r i x u s i n g
32 ! t h e LU f a c t o r i z a t i o n computed by DGETRF.
33 c a l l DGETRI ( n , Ainv , n , i p i v , work , n , i n f o )
34

http://www.netlib.org/lapack/lug
http://www.netlib.org/lapack/lug
http://biostatisticien.eu/springeR/inv.f90
http://biostatisticien.eu/springeR/inv.f90
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35 i f ( i n f o / = 0 ) t h e n
36 s t o p ’ Mat r ix i n v e r s i o n f a i l e d ! ’
37 end i f
38 end s u b r o u t i n e invF

To compile this code, execute the following instructions from an MS-DOS
window:

cd %HOMEPATH%/Desktop # To be changed to suit your needs.

gfortran -c inv.f90 -o inv.o -I"C:/lapack"

gfortran -shared -o inv.dll inv.o -I"C:/lapack" ˆ

C:/lapack/liblapack.a C:/lapack/librefblas.a

Linux

Under Linux, use the following instructions:

gfortran -c inv.f90 -o inv.o -fPIC

gfortran -shared -o inv.so inv.o /usr/lib64/liblapack.so.3

After creating the file inv.dll (or inv.so under Linux) with the previous
instructions, you can start R and type the following instructions:

> dyn.load(paste("inv",.Platform$dynlib.ext,sep=""))
> A <- matrix(rnorm(4),nrow=2)
> B <- matrix(0,nrow=2,ncol=2)
> .Fortran("invF",A,res=B,2L)$res

[,1] [,2]
[1,] -1.1812737 1.9822527
[2,] -0.1681507 -0.7224351
> solve(A)

[,1] [,2]
[1,] -1.1812737 1.9822527
[2,] -0.1681507 -0.7224351

8.5.3.4 Mixing C/C++ and Fortran Packages

It is possible to call C/C++ functions from Fortran code, thanks to the instruction
F77_SUB(name). We illustrate this point in the next example, which generates two
independent observations: one from a N .0; 1/ distribution and the other from the
uniform distribution. The Fortran code below uses the C functions GetRNGstate,
PutRNGstate, rnorm and runif from the R API, which we have already used in
Sect. 8.5.3.1. Save it in a file called random.f.

1 SUBROUTINE random ( x , y )
2 r e a l �8 normrnd , u n i f r n d , x , y
3 CALL r n d s t a r t ( )
4 x = normrnd ( )
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5 y = u n i f r n d ( )
6 CALL r n d e n d ( )
7 RETURN
8 END

Then create the file random.c containing

1 # i n c l u d e <R . h>
2 # i n c l u d e <Rmath . h>
3 v o id F77 SUB ( r n d s t a r t ) ( v o id ) f GetRNGstate ( ) ; g
4 v o id F77 SUB ( r n d e n d ) ( v o id ) f PutRNGsta te ( ) ; g
5 d o u b le F77 SUB ( normrnd ) ( v o id ) f r e t u r n rnorm ( 0 , 1 ) ; g
6 d o u b le F77 SUB ( u n i f r n d ) ( v o id ) f r e t u r n r u n i f ( 0 , 1 ) ; g

To create your DLL file, compile using the instructions

gfortran -c random.f -o randomf.o

gcc -c random.c -o randomc.o -I"C:\Program Files\R\R-3.1.0

\include"gfortran -shared randomf.o randomc.o -o random.dll ˆ

-L"C:\Program Files\R\R-3.1.0\bin\i386" -lR

Linux

Under Linux, use

gfortran -c random.f -o randomf.o -fPIC

gcc -c random.c -o randomc.o -I"/usr/lib/R/include" -fPIC

gfortran -shared randomf.o randomc.o -o random.so

You can now call your code from R using the instructions:

> dyn.load(paste("random",.Platform$dynlib.ext,sep=""))
> .Fortran("random", as.double(1), as.double(1))
[[1]]
[1] 1.542474
[[2]]
[1] 0.59143

It is also possible to call Fortran functions from C/C++ code, using the follow-
ing instructions:

F77_NAME(name) to declare a Fortran routine in C
F77_CALL(name) to call a Fortran routine from C
F77_COMDECL(name) to declare a COMMON FORTRAN block in C
F77_COM(name) to access a COMMON FORTRAN block from C

Here is a small example (with Fortran77 for a change). Save the code below in
a file called combnCF.cpp:
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1 # i n c l u d e <R . h>
2 # i n c l u d e <Rmath . h>
3 e x t e r n "C" f
4 v o id combnCF( i n t � combmat , i n t � n , i n t �m) f
5 / / C a u t i o n ! No u p p e r c a s e i n t h e name o f t h e s u b r o u t i n e .
6 v o id F77 NAME ( combnf ) ( i n t � combmat , i n t � n , i n t �m) ;
7 F77 CALL ( combnf ) ( combmat , n ,m) ;
8 g
9 g

Then type the following instructions in an MS-DOS command window to create
the package which will be called from R:

g++ -c combnCF.cpp -o combnCF.o -I"C:\Program Files\R

\R-3.1.0\include"gfortran -c combn.f90 -o combn.o

g++ -shared -o combnCF.dll combnCF.o combn.o ˆ

-L"C:\Program Files\R\R-3.1.0\bin\i386" -lR

Linux

Under Linux

g++ -c combnCF.cpp -o combnCF.o-I"/usr/lib/R/include"-fPIC

gfortran -c combn.f90 -o combn.o -fPIC

g++ -shared -o combnCF.so combnCF.o combn.o \

-I"/usr/lib/R/include" -L"/usr/lib" -lR

Now modify the code of function combnRC() given p. 237:

� Change the name of this function to combnRCF().
� Replace "combn" and "combnC" with "combnCF".

Save this new code in a file called combnCF.R. Then type the following instructions
in the R console:

> source("combnCF.R")
> combnRCF(5,3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 1 1 1 1 1 2 2 2 3
[2,] 2 2 2 3 3 4 3 3 4 4
[3,] 3 4 5 4 5 5 4 5 5 5

8.5.4 Calling R Code from a C/C++ Program Called by R

We have seen how to call a C/C++ (or Fortran) routine from R. It is also possi-
ble to use a type of pointer called SEXP (for Simple EXPression) and the function
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.Call(). In this subsection, we only give a simple example. The reader can use this
as inspiration for more complex examples.

See also

We refer the reader to the website http://cran.r-project.org/doc/
manuals/R-exts.html#Handling-R-objects-in-C.

In the following example, we shall see how to call function pmvt() of package
mvtnorm from C/C++ code, itself called from R. The function pmvt() computes
the probability that a random vector following a multivariate Student distribution
belongs to a specified hyperrectangle in R

n.

Unlike the examples in the previous sections, which used the function .C(), we
shall need the function .Call(). Furthermore, our C/C++ code will have to be a
function (which we call pmvtC in the following) which returns a structure of type
SEXP and which also takes arguments of type SEXP. The code below, available from
http://biostatisticien.eu/springeR/pmvt.cpp, will be transformed into a
DLL file and then called by the function .Call().

1 # i n c l u d e <R . h>
2 # i n c l u d e <R d e f i n e s . h>
3 # i n c l u d e "Rmath . h"
4 # i n c l u d e <R ex t / Rdynload . h>
5 e x t e r n "C" f
6 SEXP pmvtCR (SEXP Rupper , SEXP Rcorr , SEXP Rdf ,
7 SEXP Rpmvt , SEXP Renv , SEXP Rres ) f
8 SEXP R f c a l l ;
9 i f ( ! i s F u n c t i o n ( Rpmvt ) & ( Rpmvt != R Ni lVa lu e ) )

10 e r r o r ("Rpmvt must be a f u n c t i o n" ) ;
11 i f ( ! i s E n v i r o n m e n t ( Renv ) )
12 e r r o r ("Renv must be an e n v i r o n m e n t" ) ;
13 PROTECT ( R f c a l l = l a n g 4 ( Rpmvt , Rupper , Rcor r , Rdf ) ) ;
14 REAL( Rres ) [ 0 ] = REAL( e v a l ( R f c a l l , Renv ) ) [ 0 ] ;
15 UNPROTECT ( 1 ) ;
16 r e t u r n ( Rres ) ;
17 g
18 g

To compile this file, use the following instructions:

g++ -c pmvt.cpp -o pmvt.o -I"C:\Program Files\R\R-3.1.0

\include"

g++ -shared -o pmvt.dll pmvt.o ˆ

-L"C:\Program Files\R\R-3.1.0\bin\i386" -lR

http://cran.r-project.org/doc/manuals/R-exts.html#Handling-R-objects-in-C
http://cran.r-project.org/doc/manuals/R-exts.html#Handling-R-objects-in-C
http://biostatisticien.eu/springeR/pmvt.cpp
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Linux

Under Linux, use the instructions

g++ -m64 -I/usr/include/R -I/usr/local/include -fpic \

-c pmvt.cpp -o pmvt.o

R CMD SHLIB pmvt.cpp

# or:

g++ -m64 -shared -L/usr/local/lib64 -o pmvt.so pmvt.o \

-L/usr/lib64/R/lib -lR

You can now call this function from R. First download the file
http://biostatisticien.eu/springeR/pmvt.Rwhich contains the following
code:

> pmvtRCR <- function(upper,corr,df) f
+ res <- 0.0
+ Rpmvt <- function(upper,corr,df) f
+ d <- length(upper)
+ pmvt(lower=rep(-Inf,d),upper=upper,delta=rep(0,d),
+ corr=matrix(corr,ncol=d),df=df)g
+ dyn.load(paste("pmvt",.Platform$dynlib.ext,sep=""))
+ res <- .Call("pmvtCR",as.double(upper), as.double(corr),
+ as.double(df),Rpmvt,new.env(),as.double(res))
+ dyn.unload(paste("pmvt",.Platform$dynlib.ext,sep=""))
+ return(res)
+ g

Then type the following instructions:

> require("mvtnorm")
> corr <- diag(3)
> set.seed(1)
> source("pmvt.R")
> pmvtRCR(c(2,3,2),corr,c(1,1,1))
[1] 0.706062
> set.seed(1)
> pmvt(lower=rep(-Inf,3),upper=c(2,3,2),corr=corr,df=c(1,1,1))[1]
[1] 0.706062

Tip

If an SEXP object contains a vector (e.g., SEXP x) or a matrix (e.g.,
SEXP M), you can use the instructions R_len_t n = length(x) and
R_len_t p = nrows(M) to create integers containing the length n of vec-
tor x or the number of rows p of matrix M. The file Rinternals.h contains the
list of many similar useful functions.

http://biostatisticien.eu/springeR/pmvt.R
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8.5.5 Calling R Code from Fortran

We recommend the open-source software RFortran available at http://www.
rfortran.org.

8.5.6 Some Useful Functions

Here are a few functions which you may find useful. The following functions are
used in an MS-DOS terminal window (or in Cygwin, see p. 258):

� nm: list of symbols of object files (e.g., nm random.dll).
� objdump: information about object files (e.g., objdump -x random.dll).
� ldd: list dynamic dependencies if necessary (e.g., ldd random.dll).

The following functions are used in R:

� getLoadDLLs(): list all DLLs loaded in the current session (e.g.,
getLoadDLLs())

� is.loaded(): checks whether a library is loaded (e.g., is.loaded
(random.dll))

SECTION 8.6

� Debugging Functions

In this section, we present various options which can be useful to debug a function
and find an error. The error could be either in the R code or in C/C++ or Fortran
code called from your R function.

See also

We refer the reader to the website http://www.stats.uwo.ca/faculty/
murdoch/software/debuggingR.

8.6.1 Debugging Functions in Pure R

We present some debugging functions, useful when writing R code.

The Function browser()

A useful debugging function in R is the function browser(). If you insert the
instruction browser() in the source of your function, the program will stop at the
place where it was inserted.

http://www.rfortran.org
http://www.rfortran.org
http://www.stats.uwo.ca/faculty/murdoch/software/debuggingR
http://www.stats.uwo.ca/faculty/murdoch/software/debuggingR
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Here is an example showing how to use browser() in a function called lsq()
which calculates the least squares estimator of unknown arguments in a simple linear
model (see Chap. 14 for further details).

1 l s q <� f u n c t i o n (X, Y, i n t e r c e p t=TRUE) f
2 X <� as . m a t r i x (X)
3 Y <� as . m a t r i x (Y)
4 p l o t (X,Y)
5 n b u n i t s <� nrow (X)
6 b r o wse r ( )
7 i f ( i n t e r c e p t==TRUE ) X <� c b i n d ( r e p ( 1 , n b u n i t s ) ,X)
8 b e t a h a t <� s o l v e ( t (X)%�%X)%�%t (X)%�%Y
9 c u r v e ( b e t a h a t [1 ]+ b e t a h a t [ 2 ]�x , add=TRUE)

10

11 r e t u r n ( b e t a h a t )
12 g

Source the file containing the previous code (e.g., with the instruction
source(file.choose())) , then type:

lsq(X=cars[,2],Y=cars[,1])

As you can see, the program stops and you can examine the contents of all local
variables defined before browser(). For example, type nbunits.

Note

By typing the letter n (for next), you can inspect the code and the contents
of variables sequentially. To leave the inspection mode, type Q.

Here is an overview of a debugging session:

lsq(X=cars[,2],Y=cars[,1])
Called from: mc(X = cars[, 2], Y = cars[, 1])
Browse[1]>nbunits
[1] 50
Browse[1]> betahat
Error: Object "betahat" not found
Browse[1]> n
debug: if (intercept == T) X <- cbind(rep(1, nbunits), X)
Browse[1]> n
debug: betahat <- solve(t(X) %*% X) %*% t(X) %*% Y
Browse[1]> n
debug: curve(betahat[1] + betahat[2] * x, add = T)
Browse[1]> betahat

[,1]
[1,] 8.2839056
[2,] 0.1655676
Browse[1]> Q
>
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Note

If you enter the letter c (for continue), the code is executed until the end,
unless a browser() command is met again.

The Function debug()

Another interesting function is debug() which is equivalent to putting the in-
struction browser() at the top of a function. Thus debug(var) marks the func-
tions var as debuggable. Any subsequent call of this function will launch the online
debugger.

debug(var)
var(1:3)

To get rid of this mark, use the function undebug().

undebug(var)

8.6.2 Error in R Code

First change line 6 of file combn.R, replacing the affectation arrow <- by the symbol
<. We now have an error: an omitted symbol (the symbol -):

combmat<matrix(out$res,nrow=m,byrow=F)

Save the file, source it and type the following instruction:

> combnRC(5,3)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0 0 0 0 0 0 0 0 0 0
[2,] 0 0 0 0 0 0 0 0 0 0
[3,] 0 0 0 0 0 0 0 0 0 0

As you can see, there is an error in the result, and the error that we introduced
deliberately in the code could be difficult to detect if it were an accidental omission.
Here is how we could try to detect where the error comes from. First install and load
the package debug. Then use the function mtrace() of this package, as follows:

mtrace(combnRC)

combnRC(5,3)

You should then see a debugging window with the source code of function
combnRC(). Pressing the RETURN key repeatedly will evaluate your source code
line by line until the next display (which occurs upon evaluation of the line we
modified):
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[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[2,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[3,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

This hints that there is an issue at this point. We can then correct the error, for
example, with the instruction fix(combnRC).

Note that the function mtrace() did not allow us to delve into the details of the
following call:

.C("combnC",res=as.integer(combmat),as.integer(n),

as.integer(m))

8.6.3 Error in the C/C++ or Fortran Code

We shall now see how to perform the same kind of debugging for parts of the code
written in C/C++ or Fortran. It mostly boils down to using the compilation op-
tion -g to add information on the source code in the DLL file, and then to using a
specialized debugging tool.

Warning

You will need a debugging tool. We recommend the free software
GDB. Download version 7.4 (32 bits) from http://biostatisticien.eu/
springeR/32/gdb.exe and put it in the folder C:\Rtools\bin. This soft-
ware uses the command line and is rather austere. You may find useful to add
a graphical user interface (GUI), such as the Data Display Debugger (DDD) or
Emacs. Under Windows, another interesting avenue is the software Insight,
included in the set of tools MinGW, available from http://sourceforge.
net/projects/mingw/files/OldFiles/insight.exe/download. How-
ever, this software seems to be becoming obsolescent. If you try to use it,
remember to change the system environment variable Path to add the path
to Insight (probably C:\insight\bin), as explained p. 231.
Under Microsoft Windows, you will have to install the version of Emacs avail-
able at http://vgoulet.act.ulaval.ca/en/emacs/windows. It is a bit
more complicated to use DDD under Windows. You need to launch the Cygwin

http://biostatisticien.eu/springeR/32/gdb.exe
http://biostatisticien.eu/springeR/32/gdb.exe
http://sourceforge.net/projects/mingw/files/OldFiles/insight.exe/download
http://sourceforge.net/projects/mingw/files/OldFiles/insight.exe/download
http://vgoulet.act.ulaval.ca/en/emacs/windows
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setup (available at http://cygwin.com/install.html), choose the in-
stallation directory C:\Rtools\bin and select the software Devel: ddd
and Math: gnuplot (and accept the required dependencies). Also note
that if the list of download sites is empty, you can try the URL http://
cygwin.mirrorcatalogs.com. To use DDD, you also need an imple-
mentation of the Linux X window system for Microsoft Windows. The
software Xming, available at http://biostatisticien.eu/springeR/
Xming-6-9-0-31-setup.exe, is a good choice. You could also use
MobaXterm (http://mobaxterm.mobatek.net), or Cygwin’s Xorg server
(select X11: xorg-server: X.Org servers on installation).

8.6.4 Debugging with GDB

Start an MS-DOS command window from the Windows Start menu (type cmd) in
which you type

cd path to folder containing inv.cpp

g++ -IC:\newmat -o inv.o -c inv.cpp -g

g++ -shared -o inv.dll inv.o -IC:\newmat C:/newmat/newmat.a

This will create the file inv.dll with debugging information (see p. 247 for the
creation of the library newmat).

Tip

In order to also debug the functions from library newmat, you need to first
create this library in a way that includes debugging information:

cd n
cd newmat

g++ -c *.cpp -Wno-deprecated -g
ar cr newmatdebug.a *.o
ranlib newmatdebug.a

cp newmatdebug.a newmatdebug.dll

Then type:

gdb Rgui

(gdb) run

This should start R, where you type

> setwd("path to file inv.dll")
> dyn.load("inv.dll")

http://cygwin.com/install.html
http://cygwin.mirrorcatalogs.com
http://cygwin.mirrorcatalogs.com
http://biostatisticien.eu/springeR/Xming-6-9-0-31-setup.exe
http://biostatisticien.eu/springeR/Xming-6-9-0-31-setup.exe
http://mobaxterm.mobatek.net
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Then go to menu Misc/Break to debugger, which will allow you to return to
GDB (black window), where you can type

(gdb) info share

(gdb) break inv.cpp:1

(gdb) signal 0

The first instruction (info share) shows that the library inv.dll has been loaded;
the second instruction (break inv.cpp:1) allows you to add a break point on the
first (executable) line of the file inv.cpp; the last instruction (signal 0) exits GDB
and returns to R. In R, type:

> A <- matrix(rnorm(4),nrow=2)
> source("inv.R") # File created page 247.
> inv(A)

When the processor encounters the break point, the code execution is suspended.
You can now type the following instructions in GDB. The first instruction (list)
displays the next lines to execute, the second instruction (next) moves to the next
line, the third instruction (print nrow[0]) displays the value of nrow[0] and the
last instruction continues the code execution until the end or the next break point.

(gdb) list

(gdb) next

(gdb) print nrow[0]

(gdb) continue

You are back in R and you see the output of the call inv(A). You can type the
following instructions to verify that the result is the same as with function solve()
and to exit R.

> solve(A)
> q()

Linux

Under Linux, type in a terminal window the command

R -d gdb

instead of gdb Rgui.
Alternatively, you could use the following instructions:

export R_HOME=/usr/lib64/R

gdb /usr/lib64/R/bin/exec/R

To return to R from GDB, use the key combination CTRL+C. Note that to go from
GDB to R, after typing signal 0 (or equivalently c), you need to press RETURN.
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Tip

Note that GDB can be called with options. For example,

--directory=DIR Search for source files in DIR.

--pid=PID Attach to running process PID.

See also

The documentation of GDB, available at http://sourceware.org/gdb/
current/onlinedocs/gdb, is worth reading.

Tip

You can install/compile a package (hereafter called PKG) with debugging
information (equivalent to using the flag -g mentioned above). First create a
file called Makevars.win (Makevars under Linux) in a subfolder called .R/ in
your %HOME% directory. This file should include the following lines:

## for C++ code

CXXFLAGS=-g

For this purpose, you can for example type WINDOWS+R, cmd,
ENTER, cd %HOME%, ENTER, mkdir .R, ENTER, cd .R, ENTER,
echo CXXFLAGS=-g > Makevars.win, ENTER. Next, build the
package PKG and install it (from the sources using the command
R CMD INSTALL --build --debug PKG), then use one of the debug-
ging methods presented above. Note that the file NAMESPACE of your
package PKG must include the line useDynLib("PKG") so that the DLL
(or .so) file is automatically loaded when you execute in R the instruction
require("PKG"). If this procedure fails, you can always use the function
dyn.load() to load the package “by hand” from where it is installed.

Tip

It is also possible to display the contents of an object of type SEXP (call
this object s). To do this, you can include in your C/C++ code the instruction
PrintValue(s);. This way, when the instruction is encountered during code
execution, the contents of the object s will be displayed in the R console. An-
other solution is to use the instruction p Rf_PrintValue(s) from the GDB
console. Note that in this case, the display of object s in the R console may be
delayed until R takes over from GDB.

http://sourceware.org/gdb/current/onlinedocs/gdb
http://sourceware.org/gdb/current/onlinedocs/gdb


262 8 Programming in R

8.6.4.1 Debugging with Emacs

We have seen how to debug code with GDB. We shall now show how to perform the
same kind of operations with the combination of Emacs (and its excellent module
ESS, Emacs Speaks Statistics) and GDB. Note that you need to have installed GDB as
explained in Sect. 8.6.3. Note also that you need to create, from an MS-Doswindow,
the file combn.dll with debugging information (flag -g), thanks to the following
instructions:

g++ -g -c combn.cpp -o combn.o

g++ -shared -o combn.dll combn.o

Note

Under Emacs, the notation M-x means you must press simultaneously the
keys ALT and X, whereas C-x means you must press simultaneously the keys
CTRL and X, and [RET] designates the carriage return (key RETURN).

First open Emacs (see p. 258 for how to install this software) then execute
the following commands. For example, the first line is executed by pressing si-
multaneously on ALT and X, then R (which will display M-x R at the bottom of
Emacs), then RETURN (which will display ESS [S(R): R (newest)] starting
data directory?�/), then RETURN again (which will start R in Emacs).

M-x R [RET] [RET]

M-x gdb [RET] gdb -i=mi --annotate=3 [RET]

Your Emacs window should then be split in two, with R on top and GDB at the
bottom. If that is not the case, go to the menu File/Split Window or File/New
Window Below (C-x 2), then to the menu Buffer to select *R* *.

Warning

The system environment variable Path must include the entry
C:\Rtools\bin first, so that the version of GDB used is 7.4.

You then need the process ID of R. Under Windows, use the key combination
CTRL+ALT+Del to start the task manager. Then select the Processes tab. In the menu
View/Select Columns..., tick the box PID (Process Identifier), which
will add a column PID to the task manager. Then find the (PID) corresponding to
the name Rterm.exe *32 (e.g., 5404). An easier option is to type Sys.getpid()
in the upper R windows of Emacs.

Linux

Under Linux, you can get the PID of R directly by typing in Emacs:

M-! Shell command: pgrep R [RET]
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Then type in Emacs the following instructions:

(gdb) attach 5404 [RET]

(gdb) signal 0 [RET]

Click on the panel (or Buffer in Emacs) called *R*, and execute the following in-
structions:

> setwd("path to combn.R file")
> source("combn.R")
> dyn.load(paste("combn",.Platform$dynlib.ext,sep=""))

Click on the bottom sub-window (Buffer *gud*).

C-c C-c

(gdb) b combn.cpp:1 [RET]

(gdb) c [RET]

Click on the top sub-window (Buffer *R*).

> combnRC(5,3)

C-g

M-x gdb-many-windows

Put the Emacs window in full screen. Your Emacs window should now be divided
in six panels, as shown in Fig. 8.2. If needed, click on the relevant entries of the
Buffermenu.

Fig. 8.2: Emacs and GDB

Click on the bottom right panel called *breakpoints of*. Select the menu
Buffers/*R* *.

Now click on the window combn.cpp. You will see new icons in the top part of
Emacs. For example, you can click on the symbol for Next Line (right of GO) to
execute your C/C++ line by line.
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Do it yourself Ï
� Change line 32 of file integ.cpp into limit[0] = -1;. Recompile

this code and call it from R as seen above:
.C("testintegral",val = 0.0)$val. Your R session should crash.
Suppose you do not remember making the above change. Use the tech-
niques you just learnt to find the error.

� Debug the file pmvt.cpp seen in Sect. 8.5.4. Type the instruction
p Rf_PrintValue(Rpmvt) from the GDB console to display (in the
R console) the contents of object Rpmvt.

8.6.4.2 Debugging with DDD

You first need to launch Xming (or an equivalent tool); its icon should appear in

the task bar. Then launch a Cygwin terminal window , and type the following
instructions:

$ export DISPLAY=localhost:0.0
$ cd path to directory containing the source and DLL files
$ ddd Rgui

You may need to wait a while before DDD starts.

Linux

Under Linux, replace the last instruction with the command R -d ddd.

Next, type the following instructions in GDB (lower panel):

(gdb) dir $cwd

(gdb) run

The first instruction tells GDB to search for source files in the current directory
(which would be given by the command pwd), thus avoiding issues due to path
management in Windows. The second instruction starts R (you could also tick the
box: Program/Run in Execution Window, and click on Program/Run, then on
Run); type in R:

> dyn.load("inv.dll")

Note that the file inv.dll was created with debugging information, as mentioned page
259. Now go to menu Misc/Break to debugger to return to DDD. Go to menu
File/Open source... and open file inv.cpp. Also tick the entry Data Window in
menu View (and possibly entry Display Local Variables in menu Data, if you
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are patient!). You can then put one or several breaking points in the code to debug
(by double-clicking at the beginning of the line or by right-clicking), for example,
at the instruction M << values;. This has the effect of displaying a stop symbol.
Then type continue (or just c) in the lower part (gdb). This returns to R, where
you type

> A <- matrix(rnorm(4),nrow=2)
> source("inv.R") # File created page 247.
> inv(A)

When the (first) breaking point is encountered by the processor, code execution is
suspended. You can now use the graphical tool DDD to debug your code.

Note that it is possible to display several values of an array. For example, you
can type in the lower window (gdb) the following instruction (Fig. 8.3):

graph display values[0] @ 4

to display the (first) four values of array values.

Fig. 8.3: DDD and GDB

8.6.4.3 Debugging with Insight

Insight seems to have difficulties working on some Windows versions. Nonethe-
less, we present this software for those who have a compatible version of Windows,
or in case a new version of Insight is shipped after the publication of this book.
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Recompile your file using flag -g (and possibly -fPIC) which tells the C++ com-
piler to add information on the source code directly in the compiled file.

g++ -c combn.cpp -o combn.o -g

g++ -shared -o combn.dll combn.o

Then, from the MS-DOS window, execute insight Rgui.exe, then click on Run

.
Next type the following commands in the R console which opens:

> source("combn.R")
> dyn.load(paste("combn",.Platform$dynlib.ext,sep=""))

Go to the R menu called Misc, then Break to debugger. You are now in the
Insight window.

In Insight, select menu View - Console [CTRL+N]. This opens the com-
mand window of debugger GDB. We can now add a breaking point to function
combnC by typing
break combnC

Then type:
continue

which returns to R. As soon as the function combnC is called, we will return to the
debugger.
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Now type in R:

> debug(combnRC)
> combnRC(5,3)

Use instruction n (for next) to skip to the next instruction of our R code, until reach-
ing the call to the function written in C++.

The breaking point we added is detected and we are back in Insight.
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Next click on icon to execute line by line the C++ code and check the value of
the various variables.
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The window Local Variables (shown by menu View -> Local Variable
[CTRL+L]) displays all local variables and their contents during code execution.

Note that to see the contents of an R matrix or vector, you simply need to go to the
GDB console and type for example:

x/30dw combmat
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You can also display graphically this table of values and select it by clicking on
plot.

You can now type the following instructions in the GDB console to add a breaking
point at line 32 of your C++ code, then reexecute the code. When the breaking point
is encountered, the code stops again and we can ask to display again the contents of
array x:

break 32

continue

x/30dw combmat

8.6.4.4 Detecting Memory Leaks

The messages Segmentation fault (or segfault), invalid next size,
std::bad_alloc (which you will certainly encounter under Linux!), incoherent
results or, more radically, a complete crash of R are often indications that there is
a memory issue (access to a non-reserved or non-initialized address, using freed
memory, etc.) These memory leaks often occur when you have forgotten to use the
instruction delete[] ptr; to delete from memory a pointer ptr introduced in a
C/C++ function. This problem can sometimes be noticed in the task manager when
you run a large simulation in R and realize that the R process is using more and more
memory even though it should not.

Linux

Under Linux, the display of memory usage by different processes is given
by the command (entered in a terminal window) watch -d free for global
usage or by top -p PID for a specific process (use ps au to find the PID of
the desired process). You can also use the graphical tool ksysguard.
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Another common mistake is to try to manipulate the nth entry in an ar-
ray of size less than n (accessing undefined memory). It can then be difficult
to detect the origin of the problem. The software Dr Memory (http://code.
google.com/p/drmemory) and possibly the software electric-fence-win32
(http://code.google.com/p/electric-fence-win32) and duma (http://
duma.sourceforge.net) can be precious tools in such situations.

Linux

Under Linux, you can use the software Valgrind or Electric Fence.

We now show on an example how to use Dr. Memory which you should in-
stall in the directory C:\drmemory (choose the entry Add Dr. Memory to the
system PATH for all users upon installation).

The following piece of code includes several errors, which can be hard to find for
a beginner. You can download it from http://biostatisticien.eu/springeR/
memory.cpp.

1 e x t e r n "C" f
2 vo id te s tm emory ( i n t �M, d o u b le � a ) f
3 d o u b le � p t r 1 , � p t r 2 ;
4 i n t i ;
5 p t r 1 = new d o u b le [ 1 0 0 0 0 ] ;
6 p t r 2 = new d o u b le [M[ 0 ] ] ;
7 p t r 1 [ 0 ] = 1 . 0 ;
8 f o r ( i =1; i <10000; i ++ ) f
9 p t r 1 [ i ] = ( d o u b le ) i ;

10 p t r 2 [ i ] = p t r 1 [ i � 1 ] � ( d o u b le ) i ;
11 g
12 d e l e t e [ ] p t r 2 ;
13 f o r ( i =0; i <10; i ++ ) a [ i ] = p t r 2 [ i ] ;
14 r e t u r n ;
15 g
16 g

First create the associated DLL file, using the following instructions in an Ms-Dos
window:

cd directory containing file memory.cpp

g++ -o memory.o -c memory.cpp -g

g++ -shared -o memory.dll memory.o

http://code.google.com/p/drmemory
http://code.google.com/p/drmemory
http://code.google.com/p/electric-fence-win32
http://duma.sourceforge.net
http://duma.sourceforge.net
http://biostatisticien.eu/springeR/memory.cpp
http://biostatisticien.eu/springeR/memory.cpp
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Linux

Under Linux, use the instructions:

g++ -o memory.o -c memory.cpp -g -fPIC

g++ -shared -o memory.so memory.o

Next, type drmemory.exe -- Rgui in your command window (be patient),
then type the following instructions in the R console:

> dyn.load("memory.dll")
> .C("testmemory",10000L,3.0)
> q()

Now look for the instances of testmemory in the file which opened up. This will
indicate the lines which may contain errors. For example, this shows that there is
an error at line 13. In fact, we realize that the array a is of length 1 (and initially
contains only the value 3.0), whereas we are trying to write values in entries 0–9.
Furthermore, the pointer ptr2 was deleted on the preceding line.

You can also try the following R instruction, and note in the task manager that
the amount of RAM used by R increases greatly. This is because we forgot the
instruction delete[] ptr1; in the C/C++ code above:

> for (i in 1:10000) .C("testmemory",10000L,as.double(1:10))

Linux

The equivalent of Dr Memory under Linux is called Valgrind. To detect
where the leak comes from, you can use the instruction:

R -d ’valgrind --leak-check=full’

> dyn.load("memory.so")
> .C("testmemory",10000L,3.0)
> q()

In the output of valgrind, you then need to look for the errors and for the
corresponding line numbers in the source code of memory.cpp. The following
instructions give other error types displayed by R and detected by Valgrind:

> # Works only once!
> # Afterwards, R crashes with: "caught segfault":
> .C("testmemory",10000L,c(3.0,5.0))
> # R closes: "invalid next size":
> .C("testmemory",10000,c(3.0,5.0))
> # R closes: "std::bad_alloc":
> .C("testmemory",10ˆ12,c(3.0,5.0))
> # Works when ptr2 is no longer defined:
> .C("testmemory",10000L,as.double(1:10))
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SECTION 8.7

Parallel Computing and Computation on Graphical
Cards

8.7.1 Parallel Computing

You can speed up your calculations by having them run on several processors at
the same time; these processors can even be on different computers. There are
several specialized packages for this; they are listed in the CRAN Task View:
High-Performance and Parallel Computing with R, available at http://
cran.r-project.org/web/views/HighPerformanceComputing.html.

The easiest to use is package parallel with communication protocol PSOCK,
which we briefly describe below through an example.

Tip

The MPI protocol (Message Passing Interface), used by package Rmpi, is
more flexible than the PSOCK protocol, but it requires the installation of other
software (such as OpenMPI or mpich2).

See also

We refer the interested reader to the websites http://www.divms.uiowa.
edu/˜luke/R/cluster/cluster.html, http://www.sfu.ca/˜sblay/

R/snow.html and http://cran.r-project.org/web/packages/

snowfall/vignettes/snowfall.pdf.

The following R code performs numerical evaluation (by Monte Carlo simula-
tion) of the empirical level of the Shapiro-Wilks normality test for a nominal level
of 5 %:

> myfunc <- function(M=1000) f
+ decision <- 0
+ for (i in 1:M) f
+ x <- rnorm(100)
+ if (shapiro.test(x)$p < 0.05) decision <- decision + 1
+ g
+ return(decision)
+ g

Here is the computation time needed for this code with M D 60; 000 Monte
Carlo iterations:

> system.time(f
+ M <- 60000

http://cran.r-project.org/web/views/HighPerformanceComputing.html
http://cran.r-project.org/web/views/HighPerformanceComputing.html
http://www.divms.uiowa.edu/~luke/R/cluster/cluster.html
http://www.divms.uiowa.edu/~luke/R/cluster/cluster.html
http://www.sfu.ca/~sblay/R/snow.html
http://www.sfu.ca/~sblay/R/snow.html
http://cran.r-project.org/web/packages/snowfall/vignettes/snowfall.pdf
http://cran.r-project.org/web/packages/snowfall/vignettes/snowfall.pdf
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+ decision <- myfunc(M)
+ print(decision/M)
+ g)
[1] 0.04893333

user system elapsed
18.124 0.331 18.457

We now show how this code can be parallelized using the package parallel
and the corresponding gain in computation time. We used six processors.

Tip

To know the number of processors on your computer, type the instruction
devmgmt.msc in the menu Start/Run. Then count the number of lines in
the Processors entry. Under Linux, type top in a terminal window, then 1.
This shows the number of processors. Another option is to use the function
detectCores() of package parallel.

> require("parallel")
> system.time(f
+ nbclus <- 6
+ M <- 60000
+ cl <- makeCluster(nbclus, type = "PSOCK")
+ out <- clusterCall(cl, myfunc, round(M/nbclus))
+ stopCluster(cl)
+ decision <- 0
+ for (clus in 1:nbclus) f
+ decision <- decision + out[[clus]]
+ g
+ print(decision/(round(M/nbclus)*nbclus))
+ g)
[1] 0.0501

user system elapsed
0.019 0.033 5.522

8.7.2 Computation on Graphical Cards

The processor, or CPU (central processing unit), is the computer component which
handles execution of software. However, it is now also possible to perform com-
putations on a GPU (graphical processing unit), or graphical card. Graphical cards
allowing such operations are marketed by Nvidia, and they can include hundreds of
processors working in parallel. The speed-up in computation time can be substan-
tial. To use this technology, however, you must know the programming language
CUDA, developed by Nvidia. A few R developers have delved into this language
and have grouped a few functions in the package gputools, which is only available
on Linux for now.
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Here is a short example of use of this package. We used an NVIDIA GeForce
GTX 480 graphical card.

> require("gputools")
> A <- matrix(runif(40000),nrow=200,ncol=200)
> B <- matrix(runif(40000),nrow=200,ncol=200)
> system.time(cor(A, B, method="kendall")) # Computation CPU.

user system elapsed
29.804 0.002 29.810
> system.time(gpuCor(A, B, method="kendall")) # Computation on

# GPU.
user system elapsed
0.836 0.052 0.891

See also

To find out more on this topic, go to http://cran.r-project.
org/web/packages/gputools/gputools.pdf and http://developer.
nvidia.com/object/cuda_training.html.

http://cran.r-project.org/web/packages/gputools/gputools.pdf
http://cran.r-project.org/web/packages/gputools/gputools.pdf
http://developer.nvidia.com/object/cuda_training.html
http://developer.nvidia.com/object/cuda_training.html
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Memorandum

function(<par1>,<par2>,...,<parN>) <body> : declare a function object
"f"(): define a block of instructions and return the last evaluated instruction
class(), "class<-"(): extract, affect the class of an object
missing(): test whether an effective argument is defined
attributes(), "attributes<-"(): extract, affect all attributes as a list
attr(), "attr<-"(): extract, affect a single attribute
expression(): create an expression object
parse(): convert text to an expression
eval(): evaluate an expression
"	"(): create a formula object
new.env(): create an environment
local(): execute code locally in an environment

✎
Exercises

8.1- For each of the following command lines, indicate the class of the returned R
object. What is displayed upon execution of each of these command lines?

� function(name) {name}

� (function(name) {name})("Ben")

� (function(name) {cat(name,"\n")})("Ben")

� (function(name) {invisible(name)})("Ben")

8.2- Is there a difference between

� name <- function(name) name and name <- function(name)

{name}

� name <- function(name) {name} and
name <- function(name) {return(name)}

� name <- function(name) {name} and
(function(name) {name}) -> name

8.3- Upon execution, is there a difference between name() and name("Peter")
when

� name <- function(name="Peter") name

� name <- function(name="Peter") name2 <- name

For these two declarations of the function name(), is there a difference in the
type of the R object res given by res <- name("Ben")?

8.4- What R object is returned upon execution of name() when

name <- function(name="Peter") {

name

# The last instruction is a comment!

}
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8.5- When name <- function(firstname="Peter",name="L") {
paste(firstname,name)}, what R object is returned by

� name(firstname="Ben")

� name(fir="Ben")

� name(n="D",f="R")

8.6- Rewrite the following function declaration in one line, without using the com-
mand separator “;”:
name <- function(name) { if(missing("name"))

name <- "Peter"; cat(name,"\n") }

8.7- What is the output of the execution of nameS("peteR","Ben","R")when

� nameS <- function(...) c(...)

� nameS <- function(...) list(...)

� nameS <- function(...) for(name in c(...)) print(name)

� nameS <- function(...) for(name in list(...))

print(name)

Same question upon execution of
nameS(c("peteR","L"),c("Ben","L"),c("R","D"))

8.8- When nameS <- function(names=c("Ben","R"),...) c(names,...),
which R objects are returned by nameS("PeteR"), nameS(name="PeteR")
and nameS(names="PeteR")? Same question when
nameS <- function(...,names=c("Ben","R")) c(names,...).

8.9- Create a constructor function Male() generating an object of class "Male"
with fields firstname and name (in an object of type list). Create
the method hello.Male() which displays "Hello Mister FIRSTNAME
NAME!" (do not forget the "nn" at the end of the display!) for an object with
values "FIRSTNAME" and "NAME", respectively, for the fields firstname and
name. When man <- Male("Ben","L"), what is produced upon execution
of the following commands: hello.Male(man) and hello(man)? What
code should you execute in addition for the two results to be identical?

8.10- Create the analogous functions for the class "Female" (hint: do not forget to
update the gender in hello.Female()). When
woman <- Female("Elsa","R"), what is produced upon execution of the
following commands: hello.Male(woman), hello.Female(woman) and
hello(woman)?

8.11- When welcome <- function(...) for(person in list(...)){
hello(person)}, what is returned by welcome(man,woman)?

And when welcome <- function(...) for(person in c(...)){
hello(person)}?

Same question when hello.default <- function(obj){
cat("hello",obj,"!\n")}.
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Ï
Worksheet

Programming Functions and Object-Oriented Programming in R

Before reading the practicals of this chapter, we strongly advise you to revise
those of the previous chapters (especially the one on “advanced plots”) and to reor-
ganize their solutions in as many functions as necessary.

A- Managing a Bank Account

The aim of this practical is to create three minimalist functions to manage bank
accounts. The accounts will be stored in data.frame objects all called accounts and
stored in different .RData files. All these files will be located in the same folder.
The path to this folder should be saved in the R variable .folder.accounts and
be accessible in all the functions you develop.

8.1- The instruction file.path(.folder.accounts,paste(name,".RData",
sep="")) gives the path of the file associated with the account Name. Create
the functions path.account(), which takes one formal argument name
(representing the name of the account) and returns the complete path to the
file (which contains the object account of class data.frame) with extension
.RData.

8.2- Given that factor(levels=c("Debit","Credit")), numeric(0) and
character(0), respectively, give empty vectors of explicit types, which
expression would generate an empty data matrix with the predefined fields
amount, mode, date and remark? Create the function account() (not to
be confused with the variable account called in its body) which takes one
argument name and creates a new account.

8.3- Create the functions debit() and credit() to, respectively, debit and credit
an amount amount (second argument) from the account name (first argu-
ment). The third argument is any comment to put as remark. A fourth ar-
gument can represent the date; the default value is
format(Sys.time(),"\%d/\%m/\%Y") (i.e. the date of input). Remem-
ber to use the functions load() and save() to load and save the variable
account in the body of each function.

8.4- If account is the data matrix containing information on the account, what
is returned by sum(account[account$mode=="Credit","amount"])?
Modify the function account() so that it returns the current state of the
account only when the file returned by path.account(name) exists (use
the function file.exists() to test whether a file exists).

8.5- Complete account management by creating any additional functions you
wish.

8.6- Optional question: Since most use of R is done with objects, adapt the pre-
vious functions in a way that respects the R object-oriented philosophy. You
can use the next practicals for inspiration.
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B- Organizing Graphical Objects

When you think about it, plots in R do not really respect the object-oriented
spirit: unlike most other entities, an R plot is not considered as an object which
can be saved (and possibly modified) and on which certain methods can be applied.
We shall attempt to propose a very basic prototype to draw a plot with circles and
rectangles (and hence squares). You can enrich this library with graphical objects as
you wish. Our aim is to maintain a list of graphical objects, with the possibility of
changing any of its elements at any time.

8.1- R functions plot.new() and plot.window() are used to initialize a plot.
The argument asp set to 1 creates plots with correct units for the x and y
axes. Propose an object Windowwhich gives the user the option of saving the
dimensions of the graphics display window. The user can then call the con-
structor function (or method) Window() (which could have the same name as
the class), which takes as arguments x and y (the coordinates of the centre),
width, height (dimensions along the x and y axes, respectively) and option-
ally log (logarithmic transformation). All these quantities should be stored
in an object list, returned by the constructor function Window(), after
affecting its class to "Window".

8.2- Similarly, propose constructor functions for objects of classes Circle and
Rectangle. The fields x and y represent the coordinates of the centre of
the object, radius is the radius of a circle and width and height are the
dimensions of a rectangle.

8.3- Propose plotting methods plot.Window(), plot.Rectangle() and
plot.Circle(). You can find inspiration in the following R treatments used
to display a new plot with a circle and a square centred at the origin and of
diameter and side length set to 1:

plot.new()

plot.window(xlim=c(-1,1),ylim=c(-1,1),asp=1)

rect(-.5,-.5,.5,.5)

symbols(0,0,circle=.5,inches=FALSE,add=TRUE)

8.4- Test the code you have developed by executing the code:

mywindow <- Window(0,0,2,2)

mycircle <- Circle(0,0,.5)

myrectangle <- Rectangle(0,0,1,1)

plot(mywindow);plot(mycircle);plot(myrectangle)

If all goes well, you should see a graphics window with a circle inside a
square.

8.5- We now need to develop the methods associated with the class MyPlotwhich
will contain the list of all graphical objects. First, propose a constructor
function MyPlot() which initializes an object as list(objects=list())
(where objects is the field containing the list of graphical objects), affects
the class "MyPlot" and returns the object.
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8.6- Propose a method add.MyPlot() which adds graphical objects. Remember
to give a generic function add() to launch all associated methods. Use the
functionalities of the list of supplementary arguments ... and the function
c() so that the method add.MyPlot() can initialize as many graphical ob-
jects as the user wishes. Propose a method plot.MyPlot() which executes
the methods plot() for all graphical objects. The user can then enter the
following lines to get the same result as earlier:

myplot <- MyPlot()

myplot <- add(myplot,Window(0,0,2,2),Circle(0,0,.5),

Rectangle(0,0,1,1))

plot(myplot)

8.7- To display a plot, you need to initialize an object of type Window and put it
in first position of the list of graphical objects of the class MyPlot. It might
be useful to initialize it directly inside the constructor function MyPlot().
The arguments of the function Window() can be proposed directly for the
function MyPlot(). Another idea is to propose a list of graphical objects to
the user upon creation of an object of class MyPlot. As we have done for the
method add.MyPlot(), we could use the list of supplementary arguments
..., which must be placed as first argument of the function MyPlot() so as
to get the previous result with only two lines:

myplot <- MyPlot(Circle(),Rectangle())

plot(myplot)

However, note that in the first line, it is assumed that the default values of
the arguments of the function Window(), Circle() and Rectangle() are
appropriate.

8.8- The project is launched with this first prototype. You can complete it as you
wish. If you need inspiration, you could try managing the list of graphical
objects (e.g., deleting or modifying an object), display styles, axes, etc.

C- Creating a Class lm2 for Linear Regression with Two Regressors

The aim of this practical is to reproduce the procedure used by our two friends
for simple regression. Graphical display will be made possible by the excellent
package rgl, which is an OpenGL interface for R. Given the technical difficulty
of this chapter, we propose here to develop functions (actually methods). Given that
some aspects are very technical, the aim is only to get the reader to understand all
the development steps of the following functions. This practical is aimed at more
advanced users.

The following function returns an object of class lm2 which inherits from the
standard class lm.

1 lm2 <� f u n c t i o n ( . . . ) f
2 o b j <� lm ( . . . )
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3 i f ( n c o l ( model . f rame ( o b j ) ) != 3 )
4 s t o p ("two i n d e p e n d e n t v a r i a b l e s a r e r e q u i r e d !" )
5 c l a s s ( o b j ) <� c ("lm2" , c l a s s ( o b j ) ) # o r c ("lm2" ,"lm" )
6 o b j
7 g

For example, execute the following commands:

> n <- 20
> x1 <- runif(n,-5,5)
> x2 <- runif(n,-50,50)
> y <- 0.3+2*x1+2*x2+rnorm(n,0,20)
> reg2 <- lm2(y�x1+x2)
> summary(reg2)
Call:
lm(formula = ..1)
Residuals:

Min 1Q Median 3Q Max
-32.0767 -17.1529 0.9872 12.3298 35.5909
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.8708 5.0769 -0.368 0.717
x1 2.8400 1.9594 1.449 0.165
x2 1.8084 0.1952 9.263 4.7e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 21.14 on 17 degrees of freedom
Multiple R-squared: 0.848, Adjusted R-squared: 0.8301
F-statistic: 47.42 on 2 and 17 DF, p-value: 1.112e-07

No surprises here: the R output of the summary is given by the method
summary.lm().

The user now wishes a 3D scatter plot with the regression plane given by the
standard method of least squares.

1 p l o t 3 d . lm2 <� f u n c t i o n ( obj , r a d i u s =1 , l i n e s=TRUE,
2 windowRect , . . . ) f
3 mat reg <� model . f rame ( ob j )
4 colnames ( mat reg ) < � c ("y" ,"x1" ,"x2" )
5 p r e d l i m <� cb i nd ( c ( r ange ( mat reg [ , 2 ] ) ,
6 rev ( range ( mat reg [ , 2 ] ) ) ) ,
7 rep ( range ( mat reg [ , 3 ] ) , c ( 2 , 2 ) ) )
8 p r e d l i m <� cb i nd ( p red l i m , app l y ( p red l i m , 1 ,
9 f u n c t i o n ( l ) sum ( c ( 1 , l )� c o e f ( ob j ) )

10 ) )
11 i f ( m i s s i n g ( windowRect ) ) windowRect=c ( 2 , 2 , 5 0 0 , 5 0 0 )
12 open3d ( windowRect=windowRect , . . . )
13 bg3d ( c o l o r = "w hi t e" )
14 p l o t 3 d ( fo rm u l a ( ob j ) , t y p e="n" )
15 s p h e r e s 3 d ( fo rm ul a ( ob j ) , r a d i u s= r a d i u s , s p e c u l a r="green " )
16 quads3d ( p red l i m , c o l o r="b l u e" , a l p h a =0 . 7 , s h i n i n e s s =128)
17 quads3d ( p red l i m , c o l o r="cyan" , s i z e =5 , f r o n t=" l i n e s " ,
18 back=" l i n e s " , l i t =F )
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19 i f ( l i n e s ) f
20 matpred <� cb i nd ( mat reg [ 2 : 3 ] ,
21 model . m a t r i x ( ob j)%�%c o e f ( ob j ) )
22 p o i n t s 3 d ( matpred )
23 colnames ( matpred ) < � c ("x1" ,"x2" ,"y" )
24 m a t l i n e s <� r b i n d ( mat reg [ , c ( 2 : 3 , 1 ) ] , matpred )
25 n r <� nrow ( mat reg )
26 m a t l i n e s <� m a t l i n e s [ r ep ( 1 : nr , r ep ( 2 , n r ) )+ c ( 0 , n r ) , ]
27 segment s3d ( m a t l i n e s )
28 g
29 g

Here is a direct application of this method with four graphical illustrations for
four different viewing angles.

> require("rgl")
> plot3d(reg2)



Chapter 9
Managing Sessions

Prerequisites and goals of this chapter
� Reading previous chapters.
� This chapter describes various procedures to manage R sessions. You have to

follow a rather rigorous discipline and a methodology specific to R to make
sure you save your work efficiently. We present the commands to save your
work: objects you have created, instructions you have typed, plots you have
drawn. We also present a few other useful commands and offer a short intro-
duction to package creation.

SECTION 9.1

R Commands, Objects and Storage

� Storing objects

The basic commands are either expressions or affectations using the arrow <- or
->. If an expression is typed in, it is evaluated, and the result is displayed and then
lost. An affectation also evaluates an expression, but does not necessarily display
the result. The result is then stored in an object.

> 2*9 # The result is displayed then lost.
[1] 18
> My.Weight <- 75 ; My.Height <- 1.90 # These two results are

# stored. They can be
# re-used.

> My.BMI <- My.Weight/My.Heightˆ2

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3 9,
© Springer Science+Business Media New York 2013
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> My.BMI
[1] 20.77562

� Listing objects

After you have created R objects, you can get the list of all objects with the
function ls() or the synonymous function objects().

> ls()
[1] "A" "B" "cl" "clus"
[5] "combnRC" "combnRCF" "corr" "decision"
[9] "e" "inv" "lm2" "lsq"
[13] "M" "My.BMI" "My.Height" "My.Weight"
[17] "myfunc" "n" "nbclus" "out"
[21] "plot3d.lm2" "pmvtRCR" "reg2" "space"
[25] "space2" "space3" "x1" "x2"
> objects()
[1] "A" "B" "cl" "clus"
[5] "combnRC" "combnRCF" "corr" "decision"
[9] "e" "inv" "lm2" "lsq"
[13] "M" "My.BMI" "My.Height" "My.Weight"
[17] "myfunc" "n" "nbclus" "out"
[21] "plot3d.lm2" "pmvtRCR" "reg2" "space"
[25] "space2" "space3" "x1" "x2"

� Deleting objects

To delete objects, use the function rm().

> rm(My.Height) # Delete the object My.Height.
> ls()
[1] "A" "B" "cl" "clus"
[5] "combnRC" "combnRCF" "corr" "decision"
[9] "e" "inv" "lm2" "lsq"
[13] "M" "My.BMI" "My.Weight" "myfunc"
[17] "n" "nbclus" "out" "plot3d.lm2"
[21] "pmvtRCR" "reg2" "space" "space2"
[25] "space3" "x1" "x2"
> rm(list=ls()) # Delete all objects in the current work

# environment.
> ls()
character(0)

Advanced users

You can use regular expressions to delete objects following a certain name
pattern. For example, the following instruction only deletes objects with a name
of the form a?b, where ? represents a single character:
rm(list=ls(pattern=glob2rx("a?b")))

We will not give further details and refer the interested reader to the online help
for the function glob2rx().
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SECTION 9.2

Workspace: .RData Files

When working with R, objects are created: vectors, matrices, functions, etc. These
objects are physically saved in a file on the hard disk called workspace. The file
name extension must be .RData (or .rda in older versions of R).

It is possible (and highly advisable) to create several .RData files: one for each
project you are working on. You should create these .RData files in different ap-
propriate folders. For example, suppose you are working on two different statistical
projects: one related to cars and one related to climate events. You could then create
a folder called Cars containing a file cars.RData and another folder called Climate
containing a file called climevt.RData; these files will contain the R objects corre-
sponding to the two studies.

The function save.image() is used to save a workspace; you can use the func-
tion load() to load an existing workspace. Under Microsoft Windows, you can
access .Rdata files from the menus File/Save workspace... and File/Load
workspace.

Mac

Under MacOS, you can access .Rdata files from the menus
Workspace/Save workspace file and Workspace/Load workspace

file. The menu Workspace is also useful to explore the contents of the
workspace (you can open a window with a list of all objects including their
type and dimension) and to edit objects.

Note that the function save() will save only the objects you choose in the
workspace.

Note

There is a default workspace in R. To find the path to the folder where it is
stored, type the instruction getwd() just after launching R.

It is worth noting that the command getwd() returns the current working direc-
tory. The command setwd() is used to change working directory.
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Do it yourself Ï
Start R, then type

x <- 3 # Assigning a value to x; check the contents of x.
x <- 4 # Assigning a new value to x, overwriting the old value.

Now, outside of R, create two folders in the same directory: one called Cars,
the other Climate. Then type into R the following instructions:

rm(list=ls()) # Start by deleting all objects
# in the current workspace.

ls() # Returns character(0), indicating that no
# objects are left.

x<-c("FIAT","VOLVO","RENAULT","PEUGEOT") # Assign a value to x.
ls() # Return x.
setwd("/path/to/Cars") # Move to folder Cars.
save.image("cars.RData") # Create the file cars.RData

# in the folder Cars.

You have created an object called x, containing a list of car manufacturers.
This object is saved (in binary form) in the workspace cars.RData in the
folder Cars.
Now, type the following instructions:

# Affect a new value to x:
x <- c("storm","hurricane","tornado","typhoon")
setwd("/path/to/Climate") # Move to folder Climate.
save.image("climevt.RData") # Create the file climevt.RData

# in the folder Climate.

You have created an object called x containing names of climate events. Note
that the old value of x has been overwritten in the current workspace. This
new object x is saved in the workspace climevt.RData in the folder Climate.
Exit R (you can use the function q("yes")). Start R again and type in the
following instructions:

ls() # Returns x; check the value of x
load(file.choose()) # Open the file cars.RData

# in the folder Cars.
ls() # Returns x; check the value of x.

load(file.choose()) # Open the file climevt.RData
# in the folder Climate.

ls() # Returns x; check the value of x.
q("no") # Exit R.

This shows the point of having several workspaces: you can keep several
objects which have the same name but contain different information.
Otherwise, the second affectation of a value to x would overwrite the first!
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Tip

When exiting R with the command q() (or by clicking the cross at the top
right corner of the R window under Windows, or on the red button at the top
left corner for Macintosh users), the following question is asked:

Save an image of the session?

If you answer Yes (or y under Linux), a workspace file called .RData (contain-
ing all objects created during the session) and a command history file called
.Rhistory (which we explain in the next section) are saved in the current
directory.

Note

The function attach() plays a similar role to the function load(). The
difference between these two functions is explained later on.

SECTION 9.3

Command History: .Rhistory Files

R includes a mechanism to recall and reexecute old commands. The up and down
arrows on the keyboard can be used to go back and forward in the command history.
Once you have located a command using this method, you can move the cursor
using the right and left arrows, delete characters with the DEL key and add or
modify characters with the keyboard.

Just like all objects can be saved in a dedicated file with the command
save.image(), you can also save all commands you typed. The commands are
saved in a file which must have the extension .Rhistory (or .rhi in old versions
of R).

Here again, it is a good idea to save a .Rhistory file for each project you are
working on. You can then access these commands in an interactive fashion from the
R command line, using the keyboard arrows.

To save the command history of the current session, use the command
savehistory(). To load the command history from a previous session, use the
command loadhistory(). Under Microsoft Windows, the same operations can be
done from the menus File/Save History... and File/Load History...
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Mac

Mac users can rely upon R.app which offers a lateral bar to view,
navigate and manipulate the history. It is activated by clicking the icon
Show/Hide history in the R console.

Tip

The command history() opens a new window with a list of all commands
from the current session.

Do it yourself Ï
Start R and type in the following instructions:

Mc <- "My car"
# Use the up arrow and change the last command to:
Yc <- "Your car"
# Save a file cars.Rhistory in the folder Cars.
savehistory("/path/to/Cars/cars.Rhistory")
q("no") # Exit R.
# Open R again.
# Note that the up arrow does not
# give access to the last two commands.
# Open the file cars.Rhistory in the folder Cars.
loadhistory(file.choose())
# Now, the up arrow can be used
# to find old commands.
q("no")

SECTION 9.4

Saving Plots

You might also want to save plots you have produced with R. The instructions listed
in this section have already been introduced in Chap. 7, but we give them again as a
matter of interest. For example, to save the following plot:

> curve(cos(x),xlim=c(-10,10))
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you simply need the command:

dev.print(png,file="myplot.png",width=480,height=480)

Another way of saving a plot is to first redirect the graphical device to a file, then
execute the command to generate the plot.

png(file="myplot2.png",width=480,height=480)
curve(cos(x),xlim=c(-10,10))
dev.off()

Warning

Remember to use the function dev.off() at the end of the procedure: it
closes the device and writes the plot to a file. Otherwise, the file will remain
empty.

Other commands are available to save images in other formats: jpeg(), png(),
bitmap(), postscript(), pdf(), ....

Under Microsoft Windows, you can also use the menu
File/Save as... or copy-paste the plot to another software. You must first click
on the graphics window to make it active.

Mac

You can use the menus File/save. The saved/copied plot is in the PDF
format. Note that graphical windows have a “history”. You can explore the
history of generated plots with the keystroke combination COMMAND + left and
right keyboard arrows.
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SECTION 9.5

Managing Packages

A package is a collection of data and functions belonging to a same theme.
When you install R, some basic functionalities come out of the box. But you can

extend the functionalities of R by adding libraries, also called packages. First, install
the package on the computer’s hard disk, then load (activate) it in the memory of R
only when needed (see Appendix on page 531 for further details).

First, you can use the function search() which gives the list of databases
(collections of R packages) attached to the system. The function searchpaths()
returns the same list, but adds the path to the corresponding file.

Recall that the function library() returns the list of all packages available in
the library C:/PROGRAM FILES/R/R-3.1.0/library.

Do it yourself Ï
search() # Return the list of databases attached to the system.
library() # Return the list of packages saved on the disk.

Install package R2HTML and type in the following instructions:

library() # Package R2HTML is present on the disk.
search() # Package R2HTML is not loaded.
require("R2HTML") # Activate package R2HTML.
search() # Package R2HTML is now loaded.

Note

The instructions require("package") and library("package") have
a similar behaviour. The function require() is designed for use inside other
functions; it returns FALSE and gives a warning (rather than an error as
library() does by default) if the package does not exist.

SECTION 9.6

Managing Access Paths to R Objects

In the previous section, we saw the use of the function search(), which lists and
numbers all databases attached to the system. We also saw how to load a package
with the function require(). A database can also be attached with the function



9.6 Managing Access Paths to R Objects 291

attach() and detached with the function detach(). These two functions will be
put to use in the practicals at the end of this chapter.

Tip

Suppose you have created a data.frame (individuals�variables table) called
mydata. Then attach(mydata) attaches the data.frame mydata, giving ac-
cess to the variables of the data.frame data directly by typing their names in
the console.

The following instructions will help you understand how the function attach()
works.

# Start R.
attach(file.choose()) # Open the file cars.RData from the folder

# Cars.
ls() # x is not mentioned.
x # This is strange: the contents of x are displayed,

# yet ls() does not mention it.
rm(x)
Warning message:
In rm(x): variable "x" cannot be found.
x # Yet x is there!

The command ls(pos=n), where n is an integer, returns the list of objects in the
database at the nth position in the list given by search().

For example, ls(pos=2) returns the objects for the module in second place,
ls(pos=3) for the module in third place and so on.

Note that position 1 is reserved. Thus ls() is equivalent to ls(pos=1) and gives
the list of all objects in the current workspace.

search()
ls(pos=2) # List all objects from the database cars.RData.

Do it yourself Ï
require("datasets") # Load several datasets.
warpbreaks
mydata <- warpbreaks
fix(mydata) # Read the data and the variables names.
breaks # Returns an error message: this object

# is not defined.
search() # Returns the list of databases attached

# to the system.
searchpaths() # Same list, with the complete path.
position <- match("package:datasets",search())

# Get the position of datasets in the list
# output by search().

ls(pos=position) # Gives the list of all objects in datasets.
data() # Description of these datasets.
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attach(mydata)
search()
searchpaths()
ls(pos=2)
breaks # No error message.

We now have direct access to the columns of mydata: breaks, wool and
tension.

SECTION 9.7

� Other Useful Commands

In this section, we introduce a few other interesting commands to manage your
work:

� Under Microsoft Windows, the menu File/Save to file... can be used to
save to a text file all the text displayed in the console (including error messages);
by default, the file is called lastsave.txt and is created in the current directory.
The size of the contents is limited by parameters which can be changed in the
menu Edit/Preferences....

� The function sink(file="myoutput.txt") redirects all R output (which
would usually be displayed in the console) to the file myoutput.txt. To stop this
functionality, type sink() in the console.

� The menu File/Source R code... is used to transfer a sequence of R ins-
tructions from a file directly to the console. This command also checks the syn-
tax of the R code in the file before transferring it. Equivalently, you can type
source(file.choose()) in the console.

� R includes many functions to manage files and directories on the hard disk:
file.create(), file.exists(), file.remove(), file.rename(),
file.append(), file.copy(), file.symlink(), dir.create(),
Sys.chmod(), Sys.umask(), file.info(), file.access(), file.path(),
file.show(), list.files(), unlink(), basename(), path.expand().
For example, the command list.files() returns a vector of strings of
characters of the names of files in the specified directory. The command
file.exists() is used to find out whether a file exists in a given directory. We
refer the reader to the help files for the details of all these functions.
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SECTION 9.8

� Problems in Memory Management

In this section, we shall focus on memory management by the computer in general
and by R in particular. We shall try to understand why messages occur such as

cannot allocate a vector of size xxx

We shall also see how to work with high-dimension vectors and matrices.

Before giving indications on memory management in R, we need to give a
short explanation of the internal workings of a computer. Upon execution of an R
program, the following internal components of the computer are used:

� The hard disk (which contains the code and data files)
� The processor (which performs the calculations; there are 32 bit and 64 bit

processors)
� And the RAM (for random access memory), which holds temporarily the data

which are used by the processor for the calculations

In what follows, we shall mostly focus on the RAM, though we will also mention
the processor. The main interest of the RAM as opposed to the hard disk is that it
can be accessed very quickly. In a computer, the processor accesses the instructions
of the program to execute and the data necessary to execution from the RAM.

9.8.1 Organization of RAM

The RAM is organized as an ordered sequence of boxes, and each box can contain
a binary digit: 0 or 1. The information contained in a box, the smallest quantity of
information that can be contained, is called a bit (for binary digit). At this point,
it is worth noting that information is actually often organized in blocks of 8 boxes.
Another unit has thus been introduced: the byte, which is worth 8 bits.

Warning

1 byte D 8 bits:

Also note that each block is numbered; the number of a (8 boxes) block is called
its memory address. A memory address is thus an identifier, which designates a
specific zone of memory where data (or instructions to run) can be read and stored.
This identifier is usually an integer, often expressed in hexadecimal notation (base
b D 16, see Sect. 5.9) (Fig. 9.1).
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9.8.2 Accessing the Memory

Note

A process running on a computer does not usually have a direct access to the
RAM but rather to the so-called virtual memory. The memory addresses used
by R are thus addresses in the virtual memory; the operating system then puts
these addresses in correspondence with the actual RAM memory addresses.
We do not distinguish between the two types of memory.

To access a given zone of memory, R uses (in a transparent way hidden from the
user) what is called a pointer (a quantity which “points” to the desired memory
zone). A pointer is a variable containing a memory address. At the address contained
in a given pointer, we can find for example a data point. Note that each data point
has a specific type, such as integer, double, etc. (see Chap. 3). Note also that an
integer is coded on 4 bytes, a double on 8 bytes, a character on 1 byte, a logical on
4 bytes and a complex on 16 bytes, to cite the most common variable types. This is
true on a 32 bit processor and on a 64 bit processor. Examine now the following R
instructions:

> x <- 3L # create the value 3, of type integer,
> # or equivalently:
> x <- as.integer(3)

Given what we just explained, we can assume that at the same time, a memory
slot of 32 successive blocks (4 bytes of 8 bits each) is reserved (or allocated) and
a pointer is created containing the address of (the first of) these boxes. In fact, the
pointer must contain not only the address of variable x but also its type to know over
how many boxes the variable is stored. For this reason, the pointers are said to be
“typed”. When a typed pointer is incremented (i.e. when we need to add one unit to
the address it contains), it is not necessarily incremented by 1, but by the size of the
pointed type.

Fig. 9.1: Illustration of storage of values in memory. Each little box contains a binary
number (0 or 1). Each green number gives the decimal representation of the number
in binary form in the block above. Each red number gives the address (expressed
here in decimal notation) of the 8-box block above. Note that the same memory
addresses could have been written in hexadecimal notation (b D 16), giving 3C,
3D, 3E and 3F
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9.8.2.1 Problems Caused by Memory Management of Integers

Since a (signed) integer is coded over 4 bytes, i.e. 32 bits, the largest integer that
can be represented is 2;147;483;647. Indeed, if the first bit is reserved for the sign,
there are 31 remaining available boxes, or 231 possible arrangements. Counting 0,
the largest available integer is thus 231 � 1, or

> as.integer(2ˆ31-1)
[1] 2147483647
> .Machine$integer.max
[1] 2147483647

The result below is thus not surprising.

> as.integer(2ˆ31)
[1] NA

The number 231 can thus only be handled by R as a double:

> 2ˆ31
[1] 2147483648
> is.double(2ˆ31)
[1] TRUE

Warning

The largest vector that can be allocated in R is of length 231 � 1 � 2 �
109, whether on a 32 bit or 64 bit processor. This is easy to understand: it
corresponds to the largest integer that R can define, and the length on a vector
(number of elements) is stored as a (signed) integer.

We note in passing that this knowledge on R’s behaviour helps understand the
output below.

> 46360*46360 # 46360 is stored as a double.
[1] 2149249600
> 46360L*46360L # 46360L is stored as an integer.
[1] NA

Fig. 9.2: Illustration of R storage in memory of a (signed) integer. Each little box
contains a binary digit (0 or 1). The green number gives the decimal notation of
the integer expressed in binary notation in the four blocks above. The red number
gives the address (expressed here in decimal base) of the first 8-box memory block
above. Note that here, a number is stored over 32 boxes and not over 8 as in Fig. 9.1.
Furthermore, the first box is used to specify the sign of the number, negative here
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> sum(1:304) # 1:304 is stored as an integer.
[1] 46360
> sum(1:304)*sum(1:304)
[1] NA
Warning message :
In sum(1:304) * sum(1:304) :

NA produced by overflow
> 46360ˆ2 # The result is stored as a double.
[1] 2149249600
> sum(1:304)ˆ2 # The result is stored as a double.
[1] 2149249600

The Warning message above comes from the fact that sum(1:304) is an integer.
Note that the exponent function (ˆ) transforms its arguments into reals and returns
a real number.

9.8.2.2 Successive Allocation of Memory

In fact, the smallest block of memory that can be allocated (reserved) by R is 8 bytes
(=64 bits). Memory is thus allocated in R in blocks of 8 successive blocks (both on
32 and 64 bit processors). In the instruction x <- 3L, there are thus 64 reserved
boxes (of 1 bit each), of which the first 32 are used to store the integer value C3.
All 64 boxes would be used to allocate a double, with the instruction:

> x <- 3.0

Note

The 64 boxes are apportioned as follows: 1 box for the sign, 11 boxes for the
exponent and 52 boxes for the significand, in the floating point representation
(see Sect. 5.9.2).

The package associated with this book includes the functions getaddr() and
writeaddr()which can be used respectively to get the memory address of a vari-
able containing a number and to write a value at a memory address.

> x <- c(8L,9L)
> x
[1] 8 9
> addr <- getaddr(x)$addr.int # Gets the address of the first

# box of the 64-box block where x
# is stored.

> addr
[1] 53173920
> writeaddr(addr,6L) # Write the integer 6 at this address.
> x
[1] 6 9
> writeaddr(addr+4L,7L) # An integer is coded over 4 bytes,

# hence increment the address by 4 to
# get to x[2].
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> x
[1] 6 7

Now with a vector of doubles,

> x <- c(12.8,4.5)
> x
[1] 12.8 4.5
> addr <- getaddr(x)$addr.int # Get the address of the first box

# of the 128-box block where x is
# stored.

> writeaddr(addr,6.2)
> x
[1] 6.2 4.5
> writeaddr(addr+8L,7.1) # A double is coded over 8 bytes.
> x
[1] 6.2 7.1

Advanced users

R can only access memory boxes that have been allocated by R, and other
software cannot access the memory zones reserved by R. This is essential!
Otherwise, the data for our calculations could be modified by external software.
Even another R session cannot access the memory zones reserved by the first.
For example, type in a first R session:

> x <- 1L
> getaddr(x)$addr.int
[1] 37602112

which is the address of the memory block containing the integer value 1. Then
type in a second R session:

> writeaddr(37602112,7L)

Then (if the second R session does not crash!) we can check that the value
of x in the first session has not been modified. Return to the first session and
type

> x # The attempt to modify the value of x in another R session
# is doomed to failure.

[1] 1
> # Try the modification in the same session:
> writeaddr(37602112,7L)
> # This time it works!
> x
[1] 7
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9.8.3 Object Size in R

A useful R function gives the size of an object: the function object.size(). Given
the previous subsection, we expect the instruction object.size(3L) to output 8
bytes, but that is not the case.

> object.size(3L) # (On a 64 bit processor.)
48 bytes

In fact, each R object contains (even when declaring a simple integer by
x <- integer(3)) a header which takes up some space in the RAM: 24 bytes
on a 32 bit processor and 40 bytes on a 64 bit processor. This header is used to
save information of the created object: its type (integer, double, complex, etc.), its
length, etc.

Tip

To find out on what kind of processor R is running, use the instruction:

> .Machine$sizeof.pointer
[1] 8

The value 8 is returned for a 64 bit processor and the value 4 for a 32 bit
processor.

The values returned by the following instructions are rather clear now:

> # On a 32 bit processor:
> object.size(3L) - 24
8 bytes
> # On a 64 bit processor:
> object.size(3L) - 40
8 bytes

Advanced users

Memory allocation in R is done differently for small and large integer vec-
tors. Small vectors belong to one of 6 classes, depending on their length (lesser
than or equal to 2, 4, 8, 12, 16 or 32), and can store data of 8, 16, 32, 48, 64 or
128 bytes, respectively. Since an integer uses up only 4 bytes, these classes can
be used to store, respectively, 2, 4, 8, 12, 16 and 32 integers. An integer vector
of length n > 32 uses up space of size 4nC 40 if n is even and 4.nC 1/ if n is
odd, to which we add a header of 2 bytes on a 32 bit processor and 40 bytes on
a 64 bit processor. The following code returns the size in memory of vectors of
increasing size.
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> N <- 50
> V <- vector(length = 50)
> for (L in 1:N) f
+ z <- sample(N, L, replace = TRUE)
+ V[L] <- object.size(z)
+ g
> V - 24 # On a 32 bit processor.
[1] 8 8 16 16 32 32 32 32 48 48 48 48 64 64
[15] 64 64 128 128 128 128 128 128 128 128 128 128 128 128
[29] 128 128 128 128 136 136 144 144 152 152 160 160 168 168
[43] 176 176 184 184 192 192 200 200

> V - 40 # On a 64 bit processor.
[1] 8 8 16 16 32 32 32 32 48 48 48 48 64 64
[15] 64 64 128 128 128 128 128 128 128 128 128 128 128 128
[29] 128 128 128 128 136 136 144 144 152 152 160 160 168 168
[43] 176 176 184 184 192 192 200 200

9.8.4 Total Memory used by R

The total size of virtual memory allocated to R in a session includes:

� Memory used to store the values of objects (their contents)
� Memory used to store the headers of objects

This information can be accessed with the function gc(), in which Ncells repre-
sents the number of cells used for the header and Vcells the number of blocks for
the values.

Do it yourself Ï
The following example illustrates this function:

> rm(list=ls()) # Delete all objects in the session.

Type three times gc(). Note that the values displayed stabilize. Now type
the instruction:

> x <- as.integer(3)

Type several times gc() until the results stabilize. Note that the value of
Vcells has increased by 1 unit, corresponding to 8 bytes (smallest possible
size of a block of data). Recall that an integer needs 4 bytes but is still stored
in a memory zone of 8 bytes.
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The total amount of memory available to R depends on several factors:

� The RAM physically present on the computer
� The RAM already used by the operating system and the other software being run

on the system (such as a web browser if it is open)
� The type of processor (32 or 64 bit), since the RAM is limited to 4 GB (1 GB=

1024 kB) for 32 bit processors (and it is often closer to 3 GB or 2 GB), but is
(really!) much larger for 64 bit processors

Note

On a 32 bit processor, an address is coded over 32 bits, and hence the ad-
dressable memory is limited at 232 bytes (=4 GB). On a 64 bit processor, an
address is coded over 64 bits, so theoretically, the addressable memory is “lim-
ited” at 264 bytes, a huge number. In fact, it is usually limited by the proces-
sor’s architecture. This information can be obtained from the manufacturer (it
is called ‘Max Memory Size’).

Note also that R allocates memory for the creation of large objects and clears
these objects from memory (when they are no longer used) by a process called
garbage collection. You can force garbage collection with the function gc().

Warning

When creating a large object, the memory reserved by R must be contiguous
(it cannot be fragmented in several blocks).

It is therefore possible that there remains enough total memory for R, but no
“gap” large enough to fit the data of a single large object. Here is an illustration.
Beware that these commands may provoke a major slowdown of your system or
even a brutal crash of R.

> # First, type the instructions:
# rm(list=ls()) ; gc() ; gc() # to empty the memory.

> P <- 14000
> D <- matrix(rep(0, P*P), nrow=P)
Error: cannot allocate a vector of size 1.5 GB.
> # But the next allocation is certainly possible,

# after typing gc();gc() # to empty the memory.
> Q <- round(sqrt(Pˆ2/2))
> D1 <- matrix(rep(0, Q*Q), nrow=Q)
> D2 <- matrix(rep(0, Q*Q), nrow=Q)
> # The sum of the sizes of D1 and D2 is approximatively 1.5 GB.
> object.size(D1) + object.size(D2)
1567843440 bytes

In the example above, it was not possible to create a single object of size 1.5 GB,
but it was possible to create two objects of size 0.75 GB each.
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Tip

Note that on a 64 bit processor, we would probably not have encountered
this issue, even when creating an objects of size close to 3GB:

> # First we typed the instructions
# rm(list=ls()) ; gc() ; gc() # to empty the memory.

> P <- 20000
> D <- matrix(rep(0, P*P), nrow=P)
> object.size(D)
> 3200000200 bytes

9.8.5 A Few Recommendations

An elementary understanding of memory management on a computer in general,
and in R in particular, will be very useful to help identify the origin of memory-
related issues. Our first recommendation is thus to read the previous sections. We
give here some extra recommendations.

For example, you could calculate the (approximative) size of a matrix before
creating it. Since a real number uses up to 8 bytes, a real-valued matrix of size n�p
needs 8np bytes. If you need to work with very large matrices, a 64 bit processor
will allow you to allocate larger memory blocks. Compare this to a 32 bit processor
which will usually not allow for more that 2 gigabytes. If you are not able to create
a large object, remember to remove (using the function rm()) other useless large
objects (the function object.size() gives the size of such objects) and to free up
some memory with the function gc(). You can also close other software running on
your computer to free up some memory and as a last resort purchase further physical
memory.

Linux

The software ksysguard can be used to visualize in real time the memory
used by R and by the other processes on your system.

Another option would be to split your matrix into several submatrices and find a
way to perform your analysis on those, before combining the results.

Tip

The packages bigmemory, ff and RevoScaleRmay be useful.

Under Windows, the functions memory.size() and memory.limit() dis-
play some information on the memory used. You can also read the online help:
help("Memory-limits").
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Note

These problems, which stem from the conception of R, may be solved in the
future. We refer the interested reader to the document http://www.divms.
uiowa.edu/˜luke/talks/uiowa11.pdf.

SECTION 9.9

� Using R in BATCHMode

It is possible to launch a sequence of R instructions in BATCHmode. In this mode, R
starts and automatically executes the instructions in the background and then closes
down when the work is done.

� To start this mode, use the following instruction in a DOS window (or a terminal
window under LINUX or Mac):

R CMD BATCH myfile.R myoutput.out

The file myfile.R should contain the list of R instructions to execute and the file
myoutput.out will contain any messages and output displayed by R.

Warning

Note that you will have to set the PATH system variable to contain the path
to the executable Rgui.exe. See the Warning frame on page 231.

� This mode is also useful when you want to start simulations on a remote
UNIX/LINUX station (through a simple ssh tunnel). In this case, you should
add the LINUX command nohup.

nohup /path/to/executable/R CMD BATCH myfile.R myoutput.out &

Linux

Under Linux, to find the /path/to/executable/R, you need to type in a
terminal the instruction: which R.

It is also possible to create an R script that can be run without having to open
R at first. To do this, download and modify to suit your needs the file http://
biostatisticien.eu/springeR/runthis.bat.

http://www.divms.uiowa.edu/~luke/talks/uiowa11.pdf
http://www.divms.uiowa.edu/~luke/talks/uiowa11.pdf
http://biostatisticien.eu/springeR/runthis.bat
http://biostatisticien.eu/springeR/runthis.bat
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See also

The interested reader can consult with profit the web page http://cran.
r-project.org/contrib/extra/batchfiles.

Linux

Under Linux, create a script named runthis and make it executable (chmod
u+x runthis). This script will contain the following lines:

#!/bin/bash

R --vanilla << "EOF" # Pipe all subsequent lines into R.

############ Put all your R code here ##############

X11();plot(1:3);require("tcltk")

tkmessageBox(message="hello")

####################### end of R code ##############

EOF

Tip

If you want to pass command line arguments to R CMD BATCH, use the fol-
lowing approach. First, create a file called test.R containing the following
lines:

args <- commandArgs(trailingOnly = FALSE)
print(args)
q("no")

Next, from the command line run:
R CMD BATCH -q -4 -foo test.R

Finally, issue:
cat test.Rout

SECTION 9.10

� Creating a Simple R Package

A package is a practical way of grouping data sets, functions and help files in a single
structure. This structure is stored in a .zip file (or .tar.gz under Linux). Nonethe-
less, this operation is complicated under Microsoft Windows, because it requires the
installation of many tools which are not present by default on this operating system.

http://cran.r-project.org/contrib/extra/batchfiles
http://cran.r-project.org/contrib/extra/batchfiles
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Mac

Specific documentation for Mac users will be made available on the website
associated with this book.

You will need to install the following software:

� Latest version of Rtools available here: http://cran.r-project.org/bin/
windows/Rtools.

� http://www.biostatisticien.eu/springeR/htmlhelp.exe.
� A complete version of Tex Live. Download the file http://mirror.ctan.
org/systems/texlive/tlnet/install-tl.zip and unzip it in a temporary
folder. Then double click on the file install-tl.advance.bat. A graphical installa-
tion interface pops open and will guide you through the installation of Tex Live.

Here is the procedure to create an R package:

� Start R.
� Import into the workspace the data sets and functions you want to include in your

package.
� Use the function package.skeleton() to create the structure of your package.

You should give a value to the following arguments:

� name: a string of characters containing the name of the package
� list: a vector of strings of characters, specifying the various objects (data

sets and functions) to include in the package
� path: a string of characters containing the path to the directory where your

package structure will be created

� When you call this function, a folder is created in your current directory, con-
taining the files and subfolders of your package. You then need to modify some
of these files, as described in the file Read-and-delete-me which you will find
in that folder.

� The last step is to create a .zip file containing the package structure. To this end,
execute the following commands in an MS-DOS command window:

� R CMD check PackageName
� R CMD build --binary --use-zip PackageName

Tip

If your R code calls C/C++ or Fortran functions, the files containing the
source code for these functions need to be placed in a subdirectory called src/,
located in the folder whose name is specified by the argument name of the
function package.skeleton().

http://cran.r-project.org/bin/windows/Rtools
http://cran.r-project.org/bin/windows/Rtools
http://www.biostatisticien.eu/springeR/htmlhelp.exe
http://mirror.ctan.org/systems/texlive/tlnet/install-tl.zip
http://mirror.ctan.org/systems/texlive/tlnet/install-tl.zip
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The practical section at the end of this chapter gives an example of package
creation.

Advanced users

Linux users who do not have access to Microsoft Windows but wish
to build a package for that operating system can use the website http://
win-builder.r-project.org/, on which the Linux-created .tar.gz
package can be uploaded. A Windows-compatible .zip package is then sent
by e-mail to the address given in the Maintainer field of file DESCRIPTION.

http://win-builder.r-project.org/
http://win-builder.r-project.org/
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Memorandum

ls(), objects(): list all objects available in the workspace
rm(): delete an object
.RData: extension for workspace files
save.image(): save all created objects in a file (name.RData)
load(): load a .RData file containing created objects
.Rhistory: extension for command history files
savehistory(): save the command history (.Rhistory file)
loadhistory(): load command history
dev.print(): save a plot
search(), searchpaths(): list of databases attached to the system
attach(): attach a database
detach(): detach a database
require(): load a package present on the disk
sink(): redirect R output to a .txt file
source(): import a sequence of R instructions from a file to the console
package.skeleton(): create a package structure

✎
Exercises

9.1- Name two R functions which return a list of objects in your session.
9.2- How would you delete the object foo?
9.3- Which R command gives the current directory?
9.4- Which R command changes the current directory?
9.5- What is the purpose of the function save.image()?
9.6- What are the four things you can save before closing an R session?
9.7- What is the purpose of the command history? Which keys are necessary to

use it?
9.8- What is the purpose of the function history()?
9.9- Give the list of R instructions you would use to get a file called myplot.png

containing a plot of the curve y D x2.
9.10- When is the function attach() useful for a data.frame?
9.11- Which R function is used to load an R package to the memory?
9.12- What is the purpose of the function source()?



Worksheet 307

Ï
Worksheet

Managing and Creating Packages

A- Using the Functions attach() and detach()

9.1- Download the file http://www.biostatisticien.eu/springeR/
bmichild.xls.

9.2- Display the names of the variables of the data.frame.
9.3- Type GENDER. What do you observe?
9.4- Type ls(). Can you see the variable GENDER?
9.5- Use the function attach() on your data.frame, then type GENDER. What do

you observe now?
9.6- Type ls() again. What do you observe?
9.7- Use the function search() to find the position at which your data.frame is

attached.
9.8- Use the argument pos of the function ls() to list the objects present at this

position.
9.9- Detach your data.frame and check (using the function search()) that it

worked. Now type GENDER again and observe that this object has disappeared.
9.10- Create an object called GENDER containing the string "Male". Display the

contents of this object.
9.11- Use the function attach() on your data.frame, then type GENDER. What do

you observe?
9.12- Can you display the contents of the object GENDER of your data.frame? How

about the object weight?
9.13- Type ls(). What do you observe? How about with search()?
9.14- Use the argument pos of the function ls() to check that the object GENDER

of the data.frame does exist.
9.15- Use the function get() and its argument pos to display the contents of the

object GENDER from your data.frame. Can you propose another approach?

B- Creating a mini-package

� Objects in the package

9.1- Start R, then change the current directory to the Windows Desktop, using the
instruction setwd(choose.dir()).

9.2- Create the following functions and data sets:

f <- function(x,y) x+y
g <- function(x,y) x-y
d <- data.frame(a=1,b=2)
e <- rnorm(1000)

http://www.biostatisticien.eu/springeR/
bmichild.xls
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� Package structure

9.3- Use the function package.skeleton() to create the structure of your pack-
age.

package.skeleton(name="SmallRPkg",list=c("f","g","d","e"))

A folder called SmallRPkg is created on your desktop. It contains three sub-
folders (data, man and R) and two files (DESCRIPTION and Read-and-
delete-me).
The folder data contains the files d.RData and e.RData, which contain, re-
spectively, the data sets (in binary form) d and e, which you imported from
the R console.
The folder R contains the files f.R and g.R, which contain the source code of
the functions f and g defined earlier.
The folder man contains help files for all objects included in the package.

9.4- You must edit the help files (.Rd extension files), even if they are not empty.
Use the description of the help file for the function mean in Chap. 6. The
fields to fill in are made apparent in all help files by lines starting with %%.
Replace those lines (including the characters %%) with the appropriate infor-
mation. Do not change the sentences starting with a single %. Furthermore,
in fields of the form keyword � kwd1, you must replace � kwd1 with a
reserved keyword; the list of reserved keywords is given by the instruction
file.show(file.path(R.home("doc"), "KEYWORDS")).

9.5- You should also change the file DESCRIPTION and fill in the relevant fields.
For example, it is very important that you give a valid e-mail address.

9.6- You can then read and delete the file Read-and-delete-me.

Your package structure has now been created.

� Creating the package file

9.7- You have one final operation to perform: building the .zip file which will
include your structure (modified by R). You first need to change a few system
environment variables. Use the key combination WINDOWS+PAUSE to open the
system properties window, go to the section System Variables and edit
the variable PATH. At the beginning of this long list of semi-colon-separated
paths, add the path to the executable Rgui.exe and the path to the executable
hhc.exe (be careful not to delete anything!).

9.8- Open an MS-DOS command menu (using the menu Start/Execute:
command) and execute the instructions
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� cd "C:\Documents and Settings\johndoe\Desktop" (puts you in
the folder containing the package structure).

� R CMD check SmallRPkg

Check that there are no error or warning messages here. If there are, make
the suggested changes.

� R CMD build --binary --use-zip SmallRPkg

If there were no errors, the package file SmallRPkg.zip is created.
9.9- Install it from the following menu:

Packages/Install package(s) from zip files...

Read the help files of your package.

You can follow this procedure to create more complex packages, which you can
then publicize.



Part III
Elementary Mathematics and Statistics



Chapter 10
Basic Mathematics: Matrix Operations,
Integration and Optimization

Goals of this chapter
This chapter describes basic mathematical functions. It then gives some usual
operations on matrices and the most usual decompositions. We also present a
few numerical integration and differentiation functions and the main optimization
functions.

SECTION 10.1

Basic Mathematical Functions

The following table is an almost exhaustive list of classical mathematical functions
(Table 10.1).

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3 10,
© Springer Science+Business Media New York 2013
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Table 10.1: Table of basic mathematical functions

R name Description Example Result

x%%y Remainder of the division of x by y 10%%3 1

ceiling() Smallest integer greater than or equal to x ceiling(2.3) 3

floor() Largest integer smaller than or equal to x floor(2.3) 2

round() Round the value of the first argument to the number of
digits specified by the second argument

round(2.375,2) 2.38

signif() Round the value of the first argument to a given number of
significant digits

signif(2.375,2) 2.4

trunc() Integer part of x, obtained by removing all digits after the
decimal separator

trunc(1.37) 1

sign() Sign ˙1 sign(-2) -1

abs() Absolute value jxj abs(-2) 2

exp() Exponential ex exp(0) 1

log() Natural logarithm log(1) 0

sqrt() Square root
p

x sqrt(4) 2

range() Range range(2,5,1) 1 5

max() Maximum max(2,3) 3

min() Minimum min(2,3) 2

sum() Sum of effective arguments sum(2,3,4) 9

prod() Product of effective arguments prod(2,4,2) 16

cummax() Cumulative maxima cummax(c(2,4,3)) 2 4 4

cummin() Cumulative minima cummin(c(2,4,1)) 2 2 1

cumsum() Cumulative sums cumsum(c(2,3,4)) 2 5 9

cumprod() Cumulative products cumprod(c(2,4,3)) 2 8 24

cos() Cosine cos(pi) -1

sin() Sine sin(pi/2) 1

tan() Tangent tan(pi/4) 1

acos() Arccosine acos(1) 0

asin() Arcsine asin(0) 0

atan() Arctangent atan(0) 0

cosh() Hyperbolic cosine cosh(0) 1

sinh() Hyperbolic sine sinh(0) 0

tanh() Hyperbolic tangent tanh(0) 0

acosh() Inverse hyperbolic cosine acosh(1) 0

asinh() Inverse hyperbolic sine asinh(0) 0

atanh() Inverse hyperbolic tangent atanh(0) 0

beta() Beta function beta(1,2) 0.5

lbeta() Logarithm of beta function B.a; b/ lbeta(1,1) 0

factorial() Factorial xŠ factorial(6) 720

choose() Binomial coefficient
�

n

p

� D nŠ
pŠ.n�p/Š

choose(5,2) 10

gamma() Gamma function � .x/ (� .n/ D .n � 1/Š; if n 2 N/) gamma(4) 6

lgamma() Logarithm of gamma function lgamma(2) 0

digamma() First derivative of gamma function digamma(2) 0.4227843

trigamma() Second derivative of gamma function trigamma(2) 0.6449341

Note that most of these functions can take a vector as argument.

Do it yourself Ï
� Check numerically for a few values that the following formula is correct:�

n�1
p�1

�C �
n�1

p

� D �
n
p

�
.

� Compute the sum of the first n integers for the values n D 1; : : : ; 10.
Check that this corresponds to the formula n.nC1/

2
.

� Compute the sum of the squares of the first n integers for n D 1; : : : ; 10.
Check that this corresponds to the formula n.nC1/.2nC1/

6
.

� For x D .x1; : : : ; xn/
T D (0.83,0.13,-1.16,-1.14,-0.68,0.73,-1.27/T,

compute the value of
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OGn D n

K
gn.cme; O�/2 where gn.me; �/ D 1� � � 1

n

nX

iD1

jyi j log jyi j

with yi D xi �me

�
, cme DMedian.x1; : : : ; xn/, O� D 1

n

Pn
iD1 jxi � cmej,

K D �2

3
� 3, � D 1 �  .2/ (Euler’s constant) and  .�/ the digamma

function. Use the function median().
Note: It is sufficient to check that the value OGn is greater than the critical

value qchisq(1-˛,df=1), for a given level ˛ (usually 5 %), to decide,
at error level ˛, that the data were not generated following a Laplace
distribution. Such procedures are explored in detail in Chap. 13.

Tip

The number 	 can be used in R with the command pi.

SECTION 10.2

Matrix Operations

Several basic matrix operations are included in the base version of R. Before we
introduce them, let 
 be a scalar, let A and B be two real matrices and let C be a
complex matrix. We refer the interested reader to [29].

> lambda <- 2 # Creating scalar �.
> A <- matrix(c(2,3,5,4),nrow=2,ncol=2) # Real matrix.
> A

[,1] [,2]
[1,] 2 5
[2,] 3 4
> B <- matrix(c(1,2,2,7),nrow=2,ncol=2) # Symmetric real matrix.
> B

[,1] [,2]
[1,] 1 2
[2,] 2 7
> C <- matrix(c(1,1i,-1i,3),ncol=2) # Hermitian complex matrix.
> C

[,1] [,2]
[1,] 1+0i 0-1i
[2,] 0+1i 3+0i
> I2 <- diag(rep(1,2)) # Identity matrix of order 2.
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We shall use these objects to illustrate matrix operations.

Note

For more sophisticated matrix manipulation, use the package Matrix.

10.2.1 Basic Matrix Operations

In R, the basic matrix operations are:

� Adding a scalar: 
CA
> lambda+A

[,1] [,2]
[1,] 4 7
[2,] 5 6

� Addition (entry-wise): ACB
> A+B

[,1] [,2]
[1,] 3 7
[2,] 5 11

� Substraction (entry-wise): A �B
> A-B

[,1] [,2]
[1,] 1 3
[2,] 1 -3

� Multiplying by a scalar: 
A
> lambda*A

[,1] [,2]
[1,] 4 10
[2,] 6 8

� Transposition: AT

> t(A)
[,1] [,2]

[1,] 2 3
[2,] 5 4
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� Conjugation: C
> Conj(C)

[,1] [,2]
[1,] 1+0i 0+1i
[2,] 0-1i 3+0i

� Entry-wise multiplication:

> A*B
[,1] [,2]

[1,] 2 10
[2,] 6 28

� Dot product: AB
> A%*%B

[,1] [,2]
[1,] 12 39
[2,] 11 34

� Entry-wise division:

> A/B
[,1] [,2]

[1,] 2.0 2.5000000
[2,] 1.5 0.5714286

� Matrix inversion: B�1

> solve(B)
[,1] [,2]

[1,] 2.3333333 -0.6666667
[2,] -0.6666667 0.3333333

� Matrix division: A�1B
> solve(A)%*

[,1] [,2]
[1,] 0.8571429 3.857143
[2,] -0.1428571 -1.142857

� Cross product: ATB
> crossprod(A,B) # t(A)%*%B

[,1] [,2]
[1,] 8 25
[2,] 13 38

%B # Identical to: solve(A,B)
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Do it yourself Ï
Let M, N , O, P be the following matrices:

M D
2

4
1 1

2 3

4 1

3

5 ; N D
2

4
3 4

1 3

4 1

3

5 ; O D
�
3 4 2

1 3 2

�
and P D

2

4
3 4 2

1 3 2

1 2 1

3

5 :

Give the dimensions of the matrices M;N ;O and P . Calculate MCN ,
M � N , 3M, MO, OM, MT, P�1. Check that PP�1 D I3 D
P�1P .

Let Q and R be the following matrices: Q D
2

4
1

2

4

3

5 and R D �
3 4 1

�
.

Calculate QR, RQ and QTPQ.

10.2.2 Outer Product

The outer product of column vectors x and y is the matrix xyT of general element
xiyj .

> x <- seq(1,4)
> y <- seq(4,7)
> outer(x,y,FUN="*")

[,1] [,2] [,3] [,4]
[1,] 4 5 6 7
[2,] 8 10 12 14
[3,] 12 15 18 21
[4,] 16 20 24 28

Tip

The function outer() allows more general operations than simple entry-
wise multiplication. For example, the command outer(x,y,FUN=f) on vec-
tors x D .x1; : : : ; xn/

T, y D .y1; : : : ; yn/
T with the function f .x; y/ produces

the following matrix:
0

B
@

f .x1; y1/ � � � f .x1; yn/
::: f .xi ; yj /

:::

f .xn; y1/ � � � f .xn; yn/

1

C
A :
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10.2.3 Kronecker Product

If A is an m � n matrix and B is a p � q matrix, then the Kronecker product of

matrix A by matrix B is the matrix A˝ B D

2

6
4

a11B � � � a1nB
:::

: : :
:::

am1B � � � amnB

3

7
5 of dimensions

mp � nq.

> kronecker(A,B)
[,1] [,2] [,3] [,4]

[1,] 2 4 5 10
[2,] 4 14 10 35
[3,] 3 6 4 8
[4,] 6 21 8 28

10.2.4 Triangular Matrices

It can be useful to get the lower and upper parts of a matrix. This can be done with
the functions lower.tri() and upper.tri().

> M <- matrix(1:16,nrow=4)
> lower.tri(M)

[,1] [,2] [,3] [,4]
[1,] FALSE FALSE FALSE FALSE
[2,] TRUE FALSE FALSE FALSE
[3,] TRUE TRUE FALSE FALSE
[4,] TRUE TRUE TRUE FALSE
> upper.tri(M,diag=TRUE)

[,1] [,2] [,3] [,4]
[1,] TRUE TRUE TRUE TRUE
[2,] FALSE TRUE TRUE TRUE
[3,] FALSE FALSE TRUE TRUE
[4,] FALSE FALSE FALSE TRUE
> M[lower.tri(M)] <- 0
> M

[,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 0 6 10 14
[3,] 0 0 11 15
[4,] 0 0 0 16
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10.2.5 Operators vec and Half vec

The matrix operator vec applied to a matrix A outputs the long column vector
vec.A/ made by concatenating the columns of A. It is computed in R with the
following instruction:

> vec <- function(M) as.matrix(as.vector(M))
> # or equivalently, but outside a function call:
> # dim(A) <- c(prod(dim(A)),1)
> A

[,1] [,2]
[1,] 2 5
[2,] 3 4
> vec(A)

[,1]
[1,] 2
[2,] 3
[3,] 5
[4,] 4

The matrix operator vech (for vec half ) applied to a matrix A outputs the long
column vector vech.A/ made by concatenating the columns of A, but excluding
elements above the diagonal ofA. It is computed in R with the following instruction:

> vech <- function(M) as.matrix(M[lower.tri(M,diag=TRUE)])
> vech(A)

[,1]
[1,] 2
[2,] 3
[3,] 4

10.2.6 Determinant, Trace and Condition Number

The function det() computes the determinant of a matrix.

> det(A)
[1] -7

There is no R function to compute the trace of a matrix directly, but it is very
easy to calculate:

> sum(diag(A))
[1] 6

Warning

Do not use the function trace() to compute the trace of a matrix. This
function is used to debug R code.
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The condition number is the ratio of the largest and smallest non-zero singular
values. A large condition number is an indicator that the matrix has bad numerical
properties. It is computed with the function kappa().

> kappa(A,exact=TRUE)
[1] 7.582401

10.2.7 Scaling and Centring Data

The function scale() is used to centre and/or scale a matrix. Centring corresponds
to subtracting to each column the mean of that column. Scaling corresponds to di-
viding each column by its standard deviation.

Warning

Note that the function sd() calculates a standard deviation with n�1 at the
numerator.

Centring

> scale(A,scale=FALSE)
[,1] [,2]

[1,] -0.5 0.5
[2,] 0.5 -0.5
attr(,"scaled:center")
[1] 2.5 4.5

Scaling

> scale(A,center=FALSE,scale=apply
(A,2,sd))

[,1] [,2]
[1,] 2.828427 7.071068
[2,] 4.242641 5.656854
attr(,"scaled:scale")
[1] 0.7071068 0.7071068

Warning

To use a scaling factor based on the standard deviation of the population, as
is done for example in the French school of data analysis, use the instruction:

> red <- sqrt((nrow(A)-1)/nrow(A))
> scale(A,center=FALSE,scale=apply(A,2,sd)*red) # t(A/apply
(A,2,sd))/red

[,1] [,2]
[1,] 4 10
[2,] 6 8
attr(,"scaled:scale")
[1] 0.5 0.5

10.2.8 Eigenvalues and Eigenvectors

The eigenvalues and eigenvectors of a matrix are returned by the function eigen().
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> eigen(A)
$values
[1] 7 -1
$vectors

[,1] [,2]
[1,] -0.7071068 -0.8574929
[2,] -0.7071068 0.5144958

Tip

Note that if C is a Hermitian matrix (i.e. a complex matrix equal to its
own conjugate transpose), the function eigen() can be used to get the eigen-
decomposition of C, i.e. C D VDV� (where V� is the conjugate transpose
of V):

> C <- matrix(c(1,1i,-1i,3),ncol=2)
> e <- eigen(C,symmetric=TRUE)
> V <- e$vectors
> D <- diag(e$values)
> all.equal(C,V%*%D%*%t(Conj(V)))
[1] TRUE

10.2.9 Square Root of a Hermitian Positive-Definite Matrix

A square root of a positive-definite matrix C is any matrix M verifying M�M D
C, where M� denotes the conjugate transpose (adjoint matrix) of M. It is usually
denoted as C1=2 even when it is not unique. If C is Hermitian (i.e. a complex matrix
equal to its own conjugate transpose or a symmetric real matrix), then C1=2 can be
computed as follows:

> e <- eigen(C,symmetric=TRUE)
> V <- e$vectors
> V %*% diag(sqrt(e$values)) %*% t(Conj(V)) # C1=2,

# which is
# Hermitian in this
# case.

[,1] [,2]
[1,] 0.9238795+0.0000000i 0.000000-0.3826834i
[2,] 0.0000000+0.3826834i 1.689246+0.0000000i

The matrix C�1=2 can be computed as follows:

> V %*% diag(1/sqrt(e$values)) %*% t(Conj(V)) # C�1=2,
# which is
# Hermitian in
# this case.

[,1] [,2]
[1,] 1.194478+0.0000000i 0.0000000+0.2705981i
[2,] 0.000000-0.2705981i 0.6532815+0.0000000i
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10.2.10 Singular Value Decomposition

We wish to write C D UDV� where D denotes the diagonal matrix of the singular
values of C and U (respectively V) denotes the matrix of left (respectively right)
singular vectors of C. To this end, we use the function svd().

> res <- svd(C)
> res
$d
[1] 3.4142136 0.5857864
$u

[,1] [,2]
[1,] -0.3826834+0.0000000i 0.9238795+0.0000000i
[2,] 0.0000000-0.9238795i 0.0000000-0.3826834i
$v

[,1] [,2]
[1,] -0.3826834+0.0000000i 0.9238795+0.0000000i
[2,] 0.0000000-0.9238795i 0.0000000-0.3826834i
> D <- diag(res$d)
> U <- res$u
> V <- res$v
> all.equal(C,U%*%D%*%t(Conj(V))) # A D UDV*.
[1] TRUE

Tip

To compute the Moore–Penrose pseudo-inverse of a (non-invertible) matrix,
use the following function:

> mpinv <- function(M,eps=1e-13) f
s <- svd(M)
e <- s$d
e[e>eps] <- 1/e[e>eps]
return(s$v%*%diag(e)%*%t(s$u))
g

10.2.11 Cholesky Decomposition

Let B be a symmetric and positive-definite real matrix. We wish to write B D
UTU D LLT, where U (respectively L) is an upper (respectively lower) triangular
matrix. Note that this implies that U is a square root of B. To get this decomposition,
use the function chol().

> U <- chol(B) # This is another method for calculating
# B1=2.

> L <- t(U)
> U
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[,1] [,2]
[1,] 1 2.000000
[2,] 0 1.732051
> all.equal(B,t(U).%*%U) # B D UTU.
[1] TRUE

Note that the function chol2inv() can be used to compute the inverse B�1 of a
square symmetric and positive definite matrix B, using its Cholesky decomposition.

> B
[,1] [,2]

[1,] 1 2
[2,] 2 7
> chol2inv(U) # This is B�1.

[,1] [,2]
[1,] 2.3333333 -0.6666667
[2,] -0.6666667 0.3333333
> all.equal(chol2inv(U),solve(B))
[1] TRUE

Finally, note that the function chol() can be used to compute B�1=2 as follows:

> solve(chol(B))# This is a version of B�1=2.
[,1] [,2]

[1,] 1 -1.1547005
[2,] 0 0.5773503

10.2.12 QR Decomposition

We wish to write A D QR, where Q is an orthogonal matrix (QQT D QT

Q D I) and R is an upper triangular matrix.

> res <- qr(A)
> Q <- qr.Q(res)
> Q

[,1] [,2]
[1,] -0.5547002 -0.8320503
[2,] -0.8320503 0.5547002
> all.equal(I2,Q.%*%t(Q)) # I2 D QQT.
[1] TRUE
> R <- qr.R(res)
> R

[,1] [,2]
[1,] -3.605551 -6.101702
[2,] 0.000000 -1.941451
> all.equal(A,Q.%*%R) # A D QR.
[1] TRUE
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Tip

Note that qr(A,tol=1e-07)$rank returns the rank of the matrix A using
tol as the tolerance for detecting linear dependencies in the columns of A.

SECTION 10.3

Numerical Integration

The numerical value of an integral can be computed in R with the function
integrate().

A few examples will help illustrate this function. Suppose you wish to check
numerically that Z 1

�1
exp.�x2=2/p

2	
dx D 1:

Use the following procedure:

> myf <- function(x) fexp(-xˆ2/2)/sqrt(2*pi)g
> integrate(myf,lower=-Inf,upper=Inf)$value
[1] 1

Note that it is also possible to integrate functions of several variables. Thus, sup-
pose you wish to check numerically that

Z xD1

xD0

Z yD3

yD2

cos.x C y/dydx D 2 cos.3/� cos.4/ � cos.2/:

Use the following procedure:

> myf <- function(x) f
+ res <- vector("integer",length(x))
+ for (i in 1:length(x)) f
+ res[i] <- integrate(f=function(y,x)fcos(x+y)g,lower=2,
+ upper=3,x=x[i])$value
+ g
+ return(res)
+ g
> integrate(myf,lower=0,upper=1)$value
[1] -0.9101945
> 2*cos(3)-cos(4)-cos(2)
[1] -0.9101945

Note

Note that the function integrate() also returns the precision of the nu-
merical calculation.
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Do it yourself Ï
Check numerically that the function fX.x/ D 1

2

�
1C .x�1/

8

	�5

1Œ1;C1�.x/

is a probability distribution function, i.e. that it integrates to 1. It is in fact
the density function of a generalized Pareto distribution with parameters
(1,2,1/4).

SECTION 10.4

Differentiation

10.4.1 Symbolic Differentiation

R has very limited capabilities for symbolic calculus and we shall not dwell on this
aspect. Note however that R includes symbolic differentiation functions: D() and
deriv(). For instance,

> D(expression(sin(cos(x + yˆ2))), "x") # Differentiate with
# respect to
# x.

-(cos(cos(x + yˆ2)) * sin(x + yˆ2))
> D(expression(sin(cos(x + yˆ2))), "y") # Differentiate with

# respect to
# y.

-(cos(cos(x + yˆ2)) * (sin(x + yˆ2) * (2 * y)))
> f <- deriv(� xˆ2, "x", TRUE) # Differentiate

# x2

# and get
# 2x.

> f(3) # Returns 3ˆ2 and 2*3
[1] 9
attr(,"gradient")

x
[1,] 6

Advanced users

The package Ryacas interfaces R with the formal calculus software Yacas,
available online at http://yacas.sourceforge.net. Install and load the
package Ryacas, then try the command vignette("Ryacas").

http://yacas.sourceforge.net
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10.4.2 Numerical Differentiation

Numerical differentiation can be done in R with the function grad() from the pack-
age numDeriv.

> require("numDeriv")
> f <- function(x) xˆ2 # Function of one variable.
> grad(f,c(2,1,3,5)) # Computes the derivative at several

# (scalar) points.
[1] 4 2 6 10

This package also includes the functions hessian() to compute second-order
derivatives but only at a single (vectorial) point.

> g <- function(x) x[1]*x[2]ˆ2 # Function of two variables.
> grad(g,c(2,1)) # Calculates the derivative at a single

# (vectorial) point.
[1] 1 4
> hessian(g,c(2,1)) # Calculates the second-order derivative

# at a single (vectorial) point.
[,1] [,2]

[1,] 4.210428e-14 2
[2,] 2.000000e+00 4

The function numericDeriv(), which is trickier to use, returns the gradient of a
function of several variables at several vectorial points. For instance, the following
instructions compute the gradient vector of the function xy2 at .2; 1/ and .3; 4/. The
results are .1; 4/ and .16; 24/.

> h <- function(x,y) x*yˆ2 # Function of two variables.
> x <- c(2,3)
> y <- c(1,4)
> attributes(numericDeriv(quote(h(x,y)),c("x","y")))$gradient

[,1] [,2] [,3] [,4]
[1,] 1 0 4 0
[2,] 0 16 0 24

SECTION 10.5

Optimization

10.5.1 Optimization Functions

Optimizing a function means finding where it reaches its maximum or its minimum.
There are severalR functions to this end, based on various algorithms: optimize(),
optim(), nlm(), constrOptim() and nlminb().



328 10 Basic Mathematics: Matrix Operations, Integration, and Optimization

� One-dimensional optimization

The function optimize(), which only works in one dimension, is the easiest to
manipulate. As an example, suppose you wish to find the value and argument of
the minimum of the function cos(xˆ2) over the interval Œ0; 2�. This function is
plotted on the next figure.

0.0 0.5 1.0 1.5 2.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

x

co
s(

x^
2)

The function optimize() solves this problem numerically.

> optimize(f=function(x)fcos(xˆ2)g,lower=0,upper=2)
$minimum
[1] 1.772453
$objective
[1] -1

The minimum is �1 and is reached at x D 1:772453.

Tip

The argument maximum=TRUE of the function optimize() is used to
compute the maximum rather than the minimum of a function.

� Multidimensional optimization

We wish to find the maximum of the function of two variables f .x; y/ D
10

sin
�p

.x�3/2C.y�4/2
	

..x�3/2C.y�4/2/˛=2 with ˛ D 1:1. We use the function nlm(), which cal-
culates the minimum of a function. The function f is plotted on Fig. 10.1 using
the following R instructions:
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> x <- seq(-10,10,length= 30)
> y <- x
> f <- function(x,y,alpha=1.1) f r <- sqrt((x-3)ˆ2+(y-4)ˆ2)
+ 10 * sin(r)/rˆalpha g
> z <- outer(x, y, f)
> z[is.na(z)] <- 1
> op <- par(bg = "white")
> persp(x,y,z,theta=30,phi=30,expand=0.5,
+ col="lightblue",ticktype="detailed")

x

−10
−5

0

5

10

y

−10

−5

0

5

10

0

5

10

N

Fig. 10.1: Modified sinc function

Finding the maximum of f is equivalent to finding the minimum of �f , so we
use nlm() on the function �f .

> f <- function(z,alpha=1.1) f
+ x <- z[1]
+ y <- z[2]
+ r <- sqrt((x-3)ˆ2+(y-4)ˆ2)
+ return(-10 * sin(r)/rˆalpha)
+ g
> res <- nlm(f,c(0,0)) # The second effective argument gives

# the initial values.
> res
$minimum
[1] -1.046464
$estimate
[1] -1.627385 -2.169848
$gradient
[1] -1.534979e-07 1.139977e-07
$code
[1] 1
$iterations
[1] 7
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The maximum is .�1/�res$minimum=1:046464 and is reached at
res$estimate=.�1:627;�2:169/.

Tip

In nlm(), you can specify the value of a parameter of the function to
minimize. Thus, to maximize f with ˛ D 2, use the following instruction:
nlm(f,c(0,0),alpha=2)

� Constrained optimization
For optimization subject to simple constraints, such as �a 
 x 
 b and �c 

y 
 d , use the function nlminb() and its arguments lower and upper. For
example, suppose we wish to find the three maxima of the surface of equation
e�.x�1:2/2�.y�2/2

cos.2	.x � 1:2// over the range Œ�1; 3�� Œ0; 4�, whose plot is
obtained using the following instructions:

> f <- function(x,y) exp(-(x-1.2)ˆ2-(y-2)ˆ2)*cos((x-1.2)*pi*2)
> x <- seq(-1,3,0.1)
> y <- seq(0,4,0.1)
> persp(x,y,outer(x,y,f),theta=30,phi=30,expand=0.5,
+ col="lightblue",ticktype="detailed")

x

−1
0

1

2

3

y

0

1

2

3

4

outer(x, y, f) −0.5

0.0

0.5

1.0

First, we search for the global maximum. Visual inspection shows that it is
reached in the range Œ0:5; 1:5� � Œ0; 4�.
> f <- function(x) -exp(-(x[1]-1.2)ˆ2-(x[2]-2)ˆ2)*
+ cos(2*pi*(x[1]-1.2))
> nlminb(c(0.8,0),f,lower=c(0.5,0),upper=c(1.5,4))
$par
[1] 1.200000 2.000000
$objective
[1] -1
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$convergence
[1] 0
$message
[1] "relative convergence (4)"
$iterations
[1] 19
$evaluations
function gradient

27 42

The (global) maximum is .�1/�res$objective=1 and is reached at
res$par=.1:2; 2/.

We conclude with a search over the ranges Œ�1; 0:5� � Œ0; 4� and Œ1:5; 3� � Œ0; 4�,
with the following instructions:

nlminb(c(0,0),f,lower=c(-1,0),upper=c(0.5,4))
nlminb(c(2,0),f,lower=c(1.5,0),upper=c(3,4))

Note

For linear constraints such as


a b

c d

� 

x

y

�
�



c1

c2

�
� 0,

�
ax C by � c1 � 0
cx C dy � c2 � 0

you can use the function constrOptim() with arguments ui=



a b

c d

�
and

ci=



c1

c2

�
.

10.5.2 Roots of a Function

The roots (or zeros) of a function f are defined as the solutions to the equation
f .x/ D 0.

� Single root
If there is a single root, use the function uniroot() which performs a one-
dimensional search over a given interval. For example, here is how you would
find the value at which the function cos.x2/ vanishes, over the interval Œ0; 2� (we
mentioned this function when we introduced one-dimensional optimization). The
analytical solution to this simple problem is x D p

	=2 D 1:253314.

> uniroot(f=function(x)fcos(xˆ2)g,lower=0,upper=2,
+ tol=0.00001)$root
[1] 1.253314
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� Roots of a polynomial
The function polyroot()finds all (possibly complex) roots of a polynomial. For
example, this instruction finds the roots of the polynomial P.x/ D 3� 8xC x2.

> polyroot(c(3,-8,1)) # These are (8+c(-1,1)*sqrt(54))/2.
[1] 0.3944487+0i 7.6055513+0i
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Memorandum

round(): round numbers
abs(): absolute value
sqrt(): square root
exp(), log(): exponential, logarithm
max(), min(): maximum, minimum
sum(), prod(): sum, product
cummax(), cummin(), cumprod(), cumsum(): cumulative maxima, minima, products

and sums
cos(), sin(): cosine, sine
%*%: matrix multiplication operator
t(), solve(): matrix transposition, inversion
outer(), kronecker(): external product, Kronecker product
det(): matrix determinant
eigen(): eigenvalues and eigenvectors of a matrix
svd(), chol(), qr(): matrix decompositions (singular values, Cholesky, QR)
integrate(): numerical integration
D(), deriv(): symbolic differentiation
grad(), hessian(): numerical differentiation with package numDeriv
optimize(), nlm(), nlminb(): function optimization
uniroot(), polyroot(): roots of a function

✎
Exercises

10.1- Which function calculates binomial coefficients?
10.2- Give the instruction to compute the sum of the first n integers.
10.3- Which function returns the range of a sample?
10.4- What is the output of this instruction:

matrix(c(1,0,0,1),nrow=2)*matrix(1:4,nrow=2)?
10.5- What is the symbol for matrix multiplication?
10.6- Which function transposes a matrix? Which function inverses a matrix?
10.7- Give the instruction to create the identity matrix of size 5.
10.8- Give the instructions to calculate the determinant and the trace of a matrix.
10.9- Give the instruction to centre and scale a matrix A.

10.10- Which function calculates the eigenvalues and eigenvectors of a matrix?
10.11- Give the instruction to integrate numerically the function 3x2 C 2 over

Œ�1; 1�.
10.12- Give the instruction to find the maximum of the function sin2.x/ over Œ0; 2�.
10.13- Which function would you use to find where a function vanishes? Where a

polynomial vanishes?
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Ï
Worksheet

Matrix Operations, Optimization and Integration

A- A First Optimization Problem

The aim of this practical is to find the eigenvalues of the following matrix, using
several methods:

> A
[,1] [,2]

[1,] 2 5
[2,] 3 4

10.1- Create a function called myf()which evaluates the characteristic polynomial
P.x/ D det.A � xI2/ at point x (hint: use the function det()). Recall that
the eigenvalues of a matrix are the roots of its characteristic polynomial.

10.2- Change the function myf() so that it takes vector values.
10.3- Plot the function myf() over the range Œ�10; 10�. Add axes.
10.4- Use the function uniroot() twice to find the two roots of this function.
10.5- Find the coefficients of the polynomial P.x/, then use the function

polyroot() to calculate the roots of this polynomial.
10.6- Check your results with the function eigen().

B- A Second Optimization Problem

The following information is given about the figure below:

� .MH/ is the perpendicular bisector of ŒDC �.
� Q is the orthogonal projection of M onto .BC /.
� g.˛/ DMACMB CMH with ˛ D 1AMB 2�0I	=2�.
� AB D 10 and BC D 6.

The aim of this practical is to find the angle ˛ which minimizes g.˛/.

Recall the following trigonometric identities:

� cos.�/ D length of adjacent side
length of hypotenuse

� sin.�/ D length of opposite side
length of hypotenuse

� tan.�/ D length of opposite side
length of adjacent side D sin.�/

cos.�/

� sin.	=2 � �/ D cos.�/

10.1- Reproduce the figure with R.
10.2- Show analytically that g.˛/ D 5.2 � sin.˛//= cos.˛/C 6.
10.3- In R, create the function g.
10.4- Calculate numerically the value and argument of the minimum of g.˛/.
10.5- Calculate analytically g0.˛/.
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A B

CD
H

Q
αM

10.6- Check your result with symbolic differentiation.
10.7- In R, create this function, which you can call gprime.
10.8- Calculate numerically the root of g0.˛/. Check that you get the same result

as before.

C- Standard Normal Table

We shall use the function integrate() to create a table for the distribution
N .0; 1/.

Let ˚.x/ D R x

�1
1p
2�
e� t2

2 dt be the cumulative density function of N .0; 1/.
It is well known that ˚.�x/ D 1 � ˚.x/. We shall thus only create the table for
positive values of x.

10.1- Create a function phi() which takes as input a vector x of length n and

returns the vector of values 1p
2�
e� x2

i
2 , i D 1; : : : ; n.

10.2- Use the function integrate() to compute ˚.x/ for all x in the following
vector: quantiles <- seq(0,5.5,by=0.1). Store these values in a vector
called probs.

10.3- Use the function all.equal() to compare these results with those given by
the function pnorm().

10.4- Plot the values of ˚.x/ for all x and all �x in quantiles (hint: use the
function rev()).

10.5- Plot the function pnorm() in blue over the previous curve. Check that the two
plots coincide perfectly.

D- Principal Components Analysis

Principal components analysis is used to describe the proximity of individuals on
which several quantitative traits have been measured. This method requires many
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matrix operations and is thus a good way to put into practice the notions introduced
at the beginning of this chapter.

Data were collected in the wine region of Bordeaux. They include:

� Four weather traits:

– TEMPER: sum of daily average temperatures (in degrees Celsius)
– SUN: length of insolation (in hours)
– HEAT: number of days of strong heat
– RAIN: rainfall (in mm)

� Wine quality (QUALITY), as determined by wine-tasters:
1 = good wine, 2 = average wine, and 3 = mediocre wine

We shall represent these quantitative data on a scatter plot after projecting the
data onto a subspace (a plane) chosen so as to limit the loss of information caused
by the projection.

10.1- Import into the variable climatewine the contents of the data file http://
www.biostatisticien.eu/springeR/climatewine.csv

10.2- Store in matrix X the variables TEMPER, SUN, HEAT, RAIN (hint:
as.matrix()).

10.3- Calculate the centre (of gravity) g of the scatter plot of individuals included
in X (vector of column averages) with the function colMeans(). Display it
with two decimal places.

10.4- Use the function scale() to calculate the matrix PX D . Pxij / of centred
data, and store it in the variable Xdot.

10.5- Calculate the global inertia of the scatter plot, which represents the dis-
persion of the points: I D 1

n

Pn
iD1

Pp
j D1 Px2

ij , where n is the number of
individuals in X .

10.6- The contribution of individual i to the global inertia is given by the formula
1

nI
Pp

j D1 Px2
ij , where p is the number of variables (four in this case).

Calculate the vector inertiacontr of contributions to inertia from each
individual.

10.7- Create the column matrix onen of length n, containing only 1s.
10.8- Check that the centre of gravity g of the scatter plot is also given by the

formula g D 1
n
X T1n.

10.9- Check that the matrix Xdot of centred data is also given by the formula
PX D X � 1ngT.

10.10- Calculate the matrix of covariances S with the formula S D 1
n
PX T PX . Try to

reproduce this result with the function cov().
10.11- Use the matrix S to calculate the diagonal matrix Doneovers containing the

inverses of standard deviations: D1=s D diag.1=s1; : : : ; 1=sp/.
10.12- Calculate the matrix Z of scaled and centred data with the formula Z D

PXD1=s.

http://www.biostatisticien.eu/springeR/climatewine.csv
http://www.biostatisticien.eu/springeR/climatewine.csv
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10.13- Calculate the matrix of correlations R with the formula R D 1
n
ZTZ . Try

to reproduce this result with the function cor().
10.14- Calculate the diagonal matrix Lambda of eigenvalues (Λ) and the matrix W

of eigenvectors (W) of the correlation matrix R. The matrix W contains the
coordinates of a new basis in which we shall represent the individuals.

10.15- Plot the circle of correlations, which is a circle of radius 1, over which you
should overlay arrows starting at the origin and ending at the points with
coordinates given by the first two columns of the matrix WΛ1=2. On the
same plot, add the names of the variables at the end of the four arrows.

10.16- The total inertia of the scaled and centred scatter plot is equal to the number
of variables (four in this case). It can be decomposed into a sum of inertias
contributed by each one of the four axes of the basis of W , which are given
by the diagonal of Λ. Calculate the vector of percentages of total inertia
explained by the first k axes (1 
 k 
 p). What percentage of the inertia is
explained by the first two axes?

10.17- Calculate the matrix CW of principal components with the formula CW D
ZW . The principal components are the coordinates of the individuals in
the new basis described by W.

10.18- Open a new graphics window and plot the individuals projected onto the
first principal plane, i.e. with coordinates given by the first two columns of
CW . Add the names of the individuals onto the plot.

10.19- Draw the last plot again, but this time plot in red (respectively blue and
green) good wines (respectively average wines and mediocre wines). Add a
caption.

10.20- The quality of representation of individual i on the first principal plane is

given by the formula
c2

i1
Cc2

i2Pp

j D1
c2

ij

, where cij is the entry at row i and column

j of the matrix CW . Calculate the vector QLT of qualities of representation
of individuals on the first principal plane. Display QLT with two decimal
places.

10.21- We shall briefly explore package ade4 which performs PCA. Install and
load this package.

10.22- Type the following instructions:

rownames(X) <- climatewine[,1]
res <- dudi.pca(X) # Answer 2 to the question you are asked.
scatter(res)
s.class(res$li,as.factor(climatewine[,6]))



Chapter 11
Descriptive Statistics

Goals
This chapter describes the procedures in R to structure your variables, draw
standard summary plots of your data and calculate simple numerical statistical
summaries on a data set. The data used to illustrate this chapter are from the data
set NutriElderly. We also give a few examples of functions to produce prettier
plots, useful for presentations or reports.

SECTION 11.1

Introduction

All examples in this chapter are based on the data file nutrition elderly.xls which
you can import into R using one of the methods described in Chap. 4. For exam-
ple, you could use the following instructions (remember to install the file http://
www.biostatisticien.eu/springeR/Rtools.exe if you are working under
Microsoft Windows):

> require("gdata") # Gives access to the function read.xls().
> nutrielderly <- read.xls(
+ "http://www.biostatisticien.eu/springeR/nutrition_elderly.xls")

> attach(nutrielderly)
> head(nutrielderly)

gender situation tea coffee height weight age meat fish
1 2 1 0 0 151 58 72 4 3
2 2 1 1 1 162 60 68 5 2
3 2 1 0 4 162 75 78 3 1
4 2 1 0 0 154 45 91 0 4
5 2 1 2 1 154 50 65 5 3
6 2 1 2 0 159 66 82 4 2

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3 11,
© Springer Science+Business Media New York 2013
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http://www.biostatisticien.eu/springeR/Rtools.exe
http://www.biostatisticien.eu/springeR/Rtools.exe
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raw_fruit cooked_fruit_veg chocol fat
1 1 4 5 6
2 5 5 1 4
3 5 2 5 4
4 4 0 3 2
5 5 5 3 2
6 5 5 1 3

This table includes measures of 13 variables for 226 individuals.
In the remainder of the chapter, we shall assume that the data used for the various

examples have been structured as explained in the next section.

SECTION 11.2

Structuring Variables According to Type

The 13 variables from the data set NutriElderly can be sorted by type with the
algorithm given in the next figure. Recall that the type of a variableX is determined
by the setEX of observable modalities and not by the modalities which are actually
observed (Fig. 11.1).

Qualitative

YES
NO

Continuous quantitative

OrdinalDiscrete quantitative

NOYES

NO YES

Can we interpret the differences between
any two terms of EX ?

Order relation on EX ?

Is EX an union of intervals?
(of positive length)

Fig. 11.1: Algorithm to determine the type of a variable
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With this algorithm, we get the following summary table:

Qualitative variables gender, situation and fat
Ordinal variables meat, fish, raw fruit, cooked fruit veg and chocol
Discrete quantitative variables tea and coffee
Continuous quantitative variables height, weight and age

First of all, we shall set up an adapted R structure for each variable.

11.2.1 Structuring Qualitative Variables

For qualitative variables, set up the structure with the function as.factor(). It
might be useful to also use the function levels() to recode the modalities of a
qualitative variable.

Let us perform these operations on the qualitative variables from our data set:

> gender <- as.factor(gender)
> levels(gender) <- c("Male","Female")
> situation <- as.factor(situation)
> levels(situation) <- c("single","couple","family","other")
> fat <- as.factor(fat)
> levels(fat) <- c("butter","margarine","peanut",
+ "sunflower","olive","Isio4","rapeseed","duck")

Note that if the variable is coded as presence/absence, you can also use an R
structure with a vector of logical values:

> smoker <- c(1,0,0,1,0,1,0,1,0,0) # 10
# smokers(=1)/non-smokers(=0).

> smoker
[1] 1 0 0 1 0 1 0 1 0 0
> smoker <- as.logical(smoker)
> smoker
[1] TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
[10] FALSE

If you also wish to associate a name to your modalities, you can proceed as
follows:

> smoker <- c(smokes=smoker)
> smoker
smokes1 smokes2 smokes3 smokes4 smokes5 smokes6 smokes7

TRUE FALSE FALSE TRUE FALSE TRUE FALSE
smokes8 smokes9 smokes10

TRUE FALSE FALSE

However, we advise against coding presence/absence variables as logical values,
as this hinders their use in other R functions, especially for graphical representation.
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Advanced users

If you start with a variable which is already structured into factors, for
example,

> smoker <- as.factor(c("Smoker","NonSmoker","NonSmoker",
+ "Smoker","NonSmoker","Smoker","NonSmoker",
+ "Smoker","NonSmoker","NonSmoker"))
> smoker
[1] Smoker NonSmoker NonSmoker Smoker NonSmoker
[6] Smoker NonSmoker Smoker NonSmoker NonSmoker
Levels: NonSmoker Smoker

you can code it as logical values with the following procedure:

> smoker <- c(smoke=as.logical(2-as.integer(smoker)))
> smoker
smoke1 smoke2 smoke3 smoke4 smoke5 smoke6 smoke7
FALSE TRUE TRUE FALSE TRUE FALSE TRUE

smoke8 smoke9 smoke10
FALSE TRUE TRUE

11.2.2 Structuring Ordinal Variables

For ordinal variables, the structure can be set up with the function as.ordered().
It can also be useful to recode the modalities of an ordinal variable with the function
levels().

Let us perform these operations on the ordinal variables from our data set:

> meat <- as.ordered(meat)
> fish <- as.ordered(fish)
> raw_fruit <- as.ordered(raw_fruit)
> cooked_fruit_veg <- as.ordered(cooked_fruit_veg)
> chocol <- as.ordered(chocol)
> mylevels <- c("never","< 1/week.","1/week.","2-3/week.",
+ "4-6/week.","1/day")
> levels(chocol) <- levels(cooked_fruit_veg) <-
+ levels(raw_fruit) <- mylevels
> levels(fish) <- levels(meat) <- mylevels

11.2.3 Structuring Discrete Quantitative Data

For a discrete variable, the structure is set up with the function as.integer().

> tea <- as.integer(tea)
> coffee <- as.integer(coffee)

This only works if the data take integer values.
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11.2.4 Structuring Continuous Quantitative Variables

For a continuous variable, the structure is set up with the function as.double().

> height <- as.double(height)
> weight <- as.double(weight)
> age <- as.double(age)

SECTION 11.3

Data Tables

For a given data set, plots and numerical summaries which can be performed depend
strongly on the structure of the data table and on the type of the variable(s) in play.
In this chapter, we detail how data can be organized into tables in R.

11.3.1 Individual Data Tables

This is the most common organization type. The data consist of measures of one or
several variables for each of N individuals in a population. Refer to Chap. 4 to find
out how to import data into R. These data are usually organized in a data.frame.

11.3.2 Tables of Counts and Frequency Tables

It is often interesting to represent a table of individual data (or raw data table) in a
more condensed form. A table of counts or a table of frequencies makes it easier
to understand the distribution of a variable, especially if the data are qualitative or
ordinal. Such tables are obtained with the function table().

> tc <- table(fat) # Table of counts.
> tc
fat

butter margarine peanut sunflower olive Isio4
15 27 48 68 40 23

rapeseed duck
1 4

> tf <- tc/length(fat) # Frequency table.
> tf
fat

butter margarine peanut sunflower olive
0.066371681 0.119469027 0.212389381 0.300884956 0.176991150

Isio4 rapeseed duck
0.101769912 0.004424779 0.017699115
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> levels(fat) # Levels.
[1] "butter" "margarine" "peanut" "sunflower" "olive"
[6] "Isio4" "rapeseed" "duck"
> nlevels(fat) # Number of levels.
[1] 8

11.3.3 Tables of Grouped Data

It is sometimes interesting to represent a table of individual data (or raw data table),
of one or several quantitative variables, in a more condensed form. To this end, use
a table of grouped data, giving the count (or frequency) of predefined classes.

Note that you can use the function hist() and specify the boundaries of classes
in the argument breaks; it will then return the count in each of these classes. The
default value of the argument breaks is "Sturges", which automatically calculates
the classes.

> res <- hist(height,plot=FALSE)
> nn <- as.character(res$breaks)
> x <- as.table(res$counts)
> dimnames(x) <- list(paste(nn[-length(nn)],nn[-1],sep="-"))
> x
140-145 145-150 150-155 155-160 160-165 165-170 170-175

1 7 37 50 46 31 27
175-180 180-185 185-190

17 4 6
> # Or using the function cut():
> table(cut(height,res$breaks,include.lowest=TRUE))
[140,145] (145,150] (150,155] (155,160] (160,165] (165,170]

1 7 37 50 46 31
(170,175] (175,180] (180,185] (185,190]

27 17 4 6

11.3.4 Cross Tabulation

11.3.4.1 Contingency Tables

When given a table of individual data, you can use the function table() to get the
observed contingency table for a couple .X; Y /.

> mytable <- table(gender,situation)
> mytable

situation
gender single couple family other

Male 20 63 2 0
Female 78 56 7 0
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To add margins to this table, use the function addmargins().

> table.complete <- addmargins(mytable,FUN=sum,quiet=TRUE)
> table.complete

situation
gender single couple family other sum

Male 20 63 2 0 85
Female 78 56 7 0 141
sum 98 119 9 0 226

Tip

� To change the label (“sum”) of the margins in the previous table, you can
define the function Total() (thus: Total <- sum) and then replace sum
with Total in the above call of addmargins().

� If the contingency table is already given in a file, see Chap. 4 on how to
import such a file with the function read.ftable() and display it with the
function ftable().

11.3.4.2 Joint Distribution

The joint distribution table (or table of relative frequencies) for a couple .X; Y / is
obtained from the contingency table mytable.

> freqtable <- mytable/sum(mytable)
> freqtable

situation
gender single couple family other

Male 0.088495575 0.278761062 0.008849558 0.000000000
Female 0.345132743 0.247787611 0.030973451 0.000000000

To get margins, use one of the following instructions:

> Total <- sum
> addmargins(freqtable,FUN=Total,quiet=TRUE)

situation
gender single couple family other

Male 0.088495575 0.278761062 0.008849558 0.000000000
Female 0.345132743 0.247787611 0.030973451 0.000000000
Total 0.433628319 0.526548673 0.039823009 0.000000000

situation
gender Total

Male 0.376106195
Female 0.623893805
Total 1.000000000

> freqtabletotal <- table.complete/table.complete[
+ length(table.complete)]
> freqtabletotal
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situation
gender single couple family other

Male 0.088495575 0.278761062 0.008849558 0.000000000
Female 0.345132743 0.247787611 0.030973451 0.000000000
sum 0.433628319 0.526548673 0.039823009 0.000000000

situation
gender sum

Male 0.376106195
Female 0.623893805
sum 1.000000000

11.3.4.3 Marginal Distributions

The marginals of a distribution or contingency table freqtable are obtained with
the function margin.table().

> margin.table(freqtable,1) # Right margin.
gender

Male Female
0.3761062 0.6238938
> margin.table(freqtable,2) # Bottom margin.
situation

single couple family other
0.43362832 0.52654867 0.03982301 0.00000000

Warning

When the distribution (or contingency) table is complete, i.e. when it already
includes the margins (as is the case for freqtabletotal), do not extract them
with the function margin.table(), but proceed thus:

> freqtabletotal[,ncol(freqtabletotal)] # Right margin.
Male Female sum

0.3761062 0.6238938 1.0000000
> freqtabletotal[nrow(freqtabletotal),] # Bottom margin.

single couple family other sum
0.43362832 0.52654867 0.03982301 0.00000000 1.00000000

11.3.4.4 Conditional Distributions

Conditional distribution tables are obtained with the function prop.table().

� Conditional distribution of situation knowing the values of gender :

> prop.table(mytable,1)
situation

gender single couple family other
Male 0.23529412 0.74117647 0.02352941 0.00000000
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Female 0.55319149 0.39716312 0.04964539 0.00000000
> addmargins(prop.table(mytable,1),margin=2,FUN=sum) # Add Total.

situation
gender single couple family other

Male 0.23529412 0.74117647 0.02352941 0.00000000
Female 0.55319149 0.39716312 0.04964539 0.00000000

situation
gender sum

Male 1.00000000
Female 1.00000000

� Conditional distribution of gender knowing situation :

> prop.table(mytable,2)
situation

gender single couple family other
Male 0.2040816 0.5294118 0.2222222
Female 0.7959184 0.4705882 0.7777778

> addmargins(prop.table(mytable,2),margin=1,FUN=sum) # Add Total.
situation

gender single couple family other
Male 0.2040816 0.5294118 0.2222222
Female 0.7959184 0.4705882 0.7777778
sum 1.0000000 1.0000000 1.0000000

SECTION 11.4

Numerical Summaries

For simplicity, we present all numerical summaries on the vector x D .x1; : : : ; xN /
T.

This vector is the set of N values of the variable X measured on a population of
size N (standard situation in descriptive statistics). When the vector x represents a
subsample, we shall denote its length by n. Examples are mainly based on the data
vector height.

Warning

Numerical summaries cannot be computed when some data are missing
(NA). If necessary, missing data can be omitted with the function na.omit().

> x <- na.omit(height) # Useless in this case since height has
# no NA.
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11.4.1 Summaries of the Location of a Distribution

11.4.1.1 Modes

The modes of variable X are the values that occur most frequently. They can be
computed for a variable of any type, although for continuous quantitative variables,
the modal class should be used instead. Note that the mode may be unique, in which
case the distribution is said to be unimodal, as opposed to multimodal.

> tabtea <- table(tea)
> names(which.max(tabtea)) # Getting a unique mode.
[1] "0"
> names(tabtea)[max(tabtea)==tabtea] # Getting all modes.
[1] "0"

In this case, the variable tea (number of cups of tea per day) is unimodal.

Tip

For a quantitative variable, you can use the function as.numeric() on the
above results to get numerical values.

11.4.1.2 Median

The median of a statistical series is the value me which splits the series into two
halves (larger and smaller than me) of same size, when the values are sorted from
smallest to largest. It is a location criterion, which is obviously relevant only for
purely qualitative variables. To compute it, there are two cases:

� If the total sample size N of the series is odd, then the median is the value at
position N C1

2
.

� If the total sample size N is even, then any value between the values at positions
N
2

and N
2
C 1 can be used as a median of the series. In practice, the median is

usually the mean between these two values (this method thus excludes ordinal
characters).

The R function to calculate the median, only for numerical data, is median().

> median(x)
[1] 163
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Tip

We propose the following code, which computes the median for individual
ordinal or numerical data:

> my.median <- function(x) f
+ if (is.numeric(x)) return(median(x))
+ if (is.ordered(x)) f
+ N <- length(x)
+ if (N%%2) return(sort(x)[(N+1)/2]) else f
+ inf <- sort(x)[N/2]
+ sup <- sort(x)[N/2+1]
+ if (inf==sup) return(inf) else return(c(inf,sup))
+ gg
+ stop("Cannot calculate the median for this type of data.")
+ g
> my.median(fish)
[1] 2-3/week.
6 Levels: never < < 1/week. < 1/week. < ... < 1/day

Now suppose that we do not have individual data, but only the table of observed
frequencies f1; : : : ; fk; : : : ; fK in the K classes �e0; e1�; : : : ; �ek�1; ek�; : : : ;

�eK�1; eK � of a quantitative variable. In that case, we need a linear interpola-
tion between the two values with cumulative frequencies closest to 50 %. Let ek

and ekC1 be the two consecutive values of class boundaries such that CFPX .ek/ <

0:5 
 CFPX .ekC1/, where CFPX .ej / D f1 C f2 C � � � C fj , j D 1; : : : ; K

(CFPX .x/ is the value of the cumulative frequency polygon at point x). Then,

me D ek C .ekC1 � ek/
0:5 � CFPX .ek/

CFPX .ekC1/� CFPX .ek/
:

We propose the following code to compute the median in such a case:

> median.for.freq <- function(x) f # x is the frequency table.
tmp <- suppressWarnings(as.double(names(x)))
if (!(is.null(tmp) | all(is.na(tmp)))) f

tab.freq.cum <- cumsum(x)
index <- order(tab.freq.cum < 0.5)[1]
fc1 <- tab.freq.cum[index]
fc2 <- tab.freq.cum[index-1]
x1 <- as.numeric(names(fc1))
x2 <- as.numeric(names(fc2))
mex <- as.numeric(x1 + (x2-x1)*(0.5-fc1)/(fc2-fc1))

g else fmex <- NAg
return(mex)
g

Here is how we compute the median for the data in vector x grouped into classes
with the function hist():

> res <- hist(x,plot=FALSE,breaks=c(130,150,160,170,180,190))
> tab.x <- table(rep(res$breaks[-1],res$counts))
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> tab.x
150 160 170 180 190

8 87 77 44 10
> median.for.freq(tab.x/sum(tab.x))
[1] 162.3377

11.4.1.3 Mean

It can only be computed for quantitative variables.

> mean(x) # �X D 1
N

Pn
iD1 xi :

[1] 163.9602

11.4.1.4 Quantiles

The quantile of order p (0 < p < 1) is the value qp of the variable X which splits
the sample into two parts, one of size equal to p % of the total sample size of x

(elements smaller than qp), the other of size .1 � p/ % (elements greater than qp).
It cannot be computed for purely qualitative variables.

Quantiles of order 10 % and 90 %:

> quantile(x,probs=c(0.1,0.9))
10% 90%
153 176

Quartiles q1=4; q1=2; q3=4 (also denoted as q1; q2 D me; q3):

> quantile(x,probs=c(0.25,0.5,0.75))
25% 50% 75%
157 163 170

Deciles:

> quantile(x,probs=1:10/10)
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

153.0 156.0 158.5 160.0 163.0 165.0 168.0 172.0 176.0 188.0

Tip

The function summary() applied to a vector of quantitative data calculates
the minimum, maximum, mean and the three quartiles.

11.4.2 Summaries of the Dispersion of a Distribution

These summaries can only be computed for quantitative variables. We first define
the following three R functions and then present the summaries in the next table.
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> # Variance � 2 of the population � 2.x/ D 1
N

PN
iD1.xi � �X /2.

> var.pop <- function(x) var(x)*(length(x)-1)/length(x)
> # Standard deviation � of the population

> �.x/ D
q

1
N

PN
iD1.xi � �X /2.

> sd.pop <- function(x) sqrt(var.pop(x))
> # Coefficient of variation:

# cv D �
�X

.
> co.var <- function(x) sd.pop(x)/mean(x)

Name Mathematical formula R instruction Result

Range max
1�i�N

.xi / � min
1�i�N

.xi /
max(x)-min(x)

48.0

diff(range(x))

Interquartile range q3=4 � q1=4 IQR(x) 13.0

Variance �2
Pop.x/ D 1

N

PN
iD1.xi � x/2 var.pop(x) 80.702

Standard deviation �Pop.x/ D
q

1
N

PN
iD1.xi � x/2 sd.pop(x) 8.983

Coefficient of variation cv D �Pop

�X
co.var(x) 0.055

Absolute deviation
1
N

PN
iD1 jxi � meX j mad(x) 10.378

to the median

Mean absolute deviation 1
N

PN
iD1 jxi � xj mean(abs(x-mean(x))) 7.312

Note

An unbiased estimator O
2 of the variance 
2 of a population, based on a
sample of size n, can be computed with the function var(). The corresponding
standard deviation O
 is computed with the function sd().

> var(x) # O� 2.x/ D 1
n�1

Pn
iD1.xi � x/2

# with x D 1
n

Pn
iD1 xi.

[1] 81.06063

> sd(x) # O� .x/ D
q

1
n�1

Pn
iD1.xi � x/2

# with x D 1
n

Pn
iD1 xi.

[1] 9.003368

11.4.3 Summaries of the Shape of a Distribution

These summaries can only be computed for quantitative variables. It is worth men-
tioning coefficients of asymmetry (skewness) and of peakedness (kurtosis); the rel-
evant R code is given below.
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> skew <- function(x) mean((x-mean(x))ˆ3)/sd.pop(x)ˆ3
> skew(x) # �1 D �3

� 3

# with �3 D 1
N

PN
iD1.xi � �X /3.

[1] 0.4256203
> kurt <- function(x) mean((x-mean(x))ˆ4)/sd.pop(x)ˆ4
> kurt(x) # ˇ2 D �4

� 4

# with �4 D 1
N

PN
iD1.xi � �X /4.

[1] 2.778185

Tip

The functions skewness() and kurtosis() from package moments per-
form the same operations.

SECTION 11.5

Measures of Association

11.5.1 Measures of Association Between Two Qualitative Variables

11.5.1.1 Pearson’s �2 Statistic

The results of this section are obtained with the function chisq.test(). We
present how to compute the contingency table of observed counts Oij , the con-
tingency table of theoretical (expected) counts Eij .1 
 i 
 p; 1 
 j 
 q/ (also
called independence table) and the table of contributions to the �2 as well as the �2

itself.

> genderfat <- table(gender,fat) # Observed contingency table
# of Oij’s.

> tab.ind <- chisq.test(genderfat)$expected # The Eij’s.
> round(tab.ind)

fat
gender butter margarine peanut sunflower olive Isio4

Male 6 10 18 26 15 9
Female 9 17 30 42 25 14

fat
gender rapeseed duck

Male 0 2
Female 1 2

> # (genderfat-tab.ind)ˆ2/tab.ind:
.Oij �Eij /ˆ2

Eij
:

> tab.contr <- chisq.test(genderfat)$residualsˆ2
> tab.contr
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fat
gender butter margarine peanut sunflower

Male 3.367083116 0.002361810 0.233489502 0.818473834
Female 2.029801879 0.001423786 0.140756083 0.493406212

fat
gender olive Isio4 rapeseed duck

Male 1.632483082 1.540468053 0.376106195 1.486777720
Female 0.984121007 0.928650954 0.226730685 0.896284441

> chi2 <- chisq.test(genderfat)$statistic # sum(tab.contr)

> chi2 # �2 D P
i;j

.Oij �Eij /ˆ2
Eij

:

X-squared
15.15842

Tip

Another way to compute Pearson’s �2 statistic is to use the function
summary().

> chi2 <- summary(table(gender,fat))$statistic
> chi2
[1] 15.15842

11.5.1.2 ˚2, Cramér’s V and Pearson’s Contingency Coefficient

All indicators in the next table are computed from the �2 coefficient.

> N <- sum(genderfat)
> p <- nrow(genderfat)
> q <- ncol(genderfat)

Indicator Formula Instruction R Result

˚2 ˚2 D �2

N
Phi2 <- chi2/N 0.067

Cramér’s V 2 V 2 D ˚2

min.p�1;q�1/
Phi2/(min(p,q)-1) 0.067

Pearson’s C D
q

�2

.NC�2/
sqrt(chi2/(N+chi2)) 0.251

contingency coefficient D
q

˚2

.1C˚2/

Tip

The function cramer.v() from package rgrs can also be used to compute
Cramér’s V .

> require("rgrs")
> cramer.v(genderfat)ˆ2
[1] 0.06707265



354 11 Descriptive Statistics

11.5.2 Measures of Association Between Ordinal Variables
(or Ranks)

11.5.2.1 Kendall’s � and �b

This coefficient is based on the notion of concordance of individuals. For two in-
dividuals i and j and for ordinal variables X and Y having p and q modalities,
respectively, pairs .xi ; yi / and .xj ; yj / are said to be concordant if sign.xj �xi / D
sign.yj � yi / and discordant if sign.xj � xi / D �sign.yj � yi /. If xi D xj or
yi D yj (or both), the corresponding pair is neither concordant nor discordant: we
say there is a tie. If there are nc concordant pairs, nd discordant pairs and nt ties,
then nc C nd C nt D 1

2
N.N � 1/. Kendall’s �b is then given by the formula

�b D 2.nc � nd /q
.N 2 �Pp

kD1
n2

k�/.N 2 �Pq

lD1
n2

�l
/

where 2.nc�nd / D
Pp

kD1

Pq

lD1
sign.xk�xl /sign.yk�yl /, nk� D

Pq

lD1
nkl and

n�l D
Pp

kD1
nkl , with nkl being the number of individuals having the modalities k

for X and l for Y .

When there are no ties, this formula simplifies to what is known as Kendall’s � :

� D 2.nc � nd /

N.N � 1/ :

These two quantities can be computed in R with the function cor().

> cor(as.numeric(meat),as.numeric(fish),method="kendall")
[1] -0.1583088

Tip

Note that you could also compute these coefficients yourself by translating
the formula for �b into R instructions:

> Kendall.taub <- function(x,y) f
+ a1 <- sign(outer(as.numeric(x),as.numeric(x),"-"))
+ a2 <- sign(outer(as.numeric(y),as.numeric(y),"-"))
+ num <- sum(a1*a2)
+ N <- length(x)
+ b1 <- sum(margin.table(table(x,y),1)ˆ2)
+ b2 <- sum(margin.table(table(x,y),2)ˆ2)
+ denom <- sqrt((Nˆ2-b1)*(Nˆ2-b2))
+ taub <- num / denom
+ return(taub)
+ g
> Kendall.taub(meat,fish)
[1] -0.1583088



11.5 Measures of Association 355

11.5.2.2 Spearman’s Rank Correlation Coefficient �

First compute the ranks (function rank()) xi and yi of all individuals for variables
X and Y . In case of a tie, assign to tied values the rank equal to the mean of their
shared positions (which is what the function rank() does by default).

When there are no ties, Spearman’s rank correlation coefficient is given by the
formula

� D 1 � 6
PN

iD1 d
2
i

N.N 2 � 1/ with di D xi � yi :

When there are ties, we need to use the Pearson’s standard correlation coefficient
between ranks:

� D N.
PN

iD1 xiyi / � .PN
iD1 xi /.

PN
iD1 yi /q

N.
PN

iD1 x
2
i / � .

PN
iD1 xi /2

q
N.

PN
iD1 y

2
i /� .

PN
iD1 yi /2

:

To compute Spearman’s rank correlation coefficient in R, you can use the func-
tions rank() and cor() or use directly the function cor() with the argument
method set to "spearman":

> cor(rank(fat),rank(situation))
[1] 0.008787643
> cor(as.numeric(fat),as.numeric(situation),method="spearman")
[1] 0.008787643

11.5.3 Measures of Association Between Two Quantitative
Variables

11.5.3.1 Covariance and Pearson’s Correlation Coefficient

For two quantitative variables, the appropriate measure of association is correlation.
It is defined as the ratio of the covariance of the two variables and their respective
standard deviations. It is computed with the function cor().

> cor(height,weight)
[1] 0.6306576

Covariance is computed with the function cov().

> cov(height,weight)
[1] 68.32596



356 11 Descriptive Statistics

Tip

This coefficient can also be computed with the function cor.test().

> cor.test(height,weight)$estimate
cor

0.6306576

11.5.4 Measures of Association Between a Quantitative Variable
and a Qualitative Variable

11.5.4.1 Correlation Ratio �2
Y jX

The correlation ratio �2
Y jX indicates how much of the variation of the quantitative

variable Y is explained by the levels of the qualitative variable X with p levels.
Indeed,X can be viewed as defining groups in the population. The correlation ratio
is the ratio of variance within groups and inter-group variance. It is given by the
formula

�2
Y jX D

Pp

kD1
nk.yk � y/2

PN
iD1.yi � y/2

where nk denotes the number of observationsyi corresponding to the kth level ofX .

Here is the R code to compute this ratio:

> eta2 <- function(x, gpe) f
+ means <- tapply(x, gpe, mean)
+ counts <- tapply(x, gpe, length)
+ varwithin <- (sum(counts * (means - mean(x))ˆ2))
+ vartot <- (var(x) * (length(x) - 1))
+ res <- varwithin/vartot
+ return(res)
+ g

We compute it for the variables weight and gender.

> eta2(weight,gender)
[1] 0.3325501

Tip

You can also use the following R instruction to compute �2
Y jX :

> summary(lm(weight�gender))$r.squared
[1] 0.3325501
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SECTION 11.6

Graphical Representations

The way a variable is represented graphically should always be adapted to the type
of variable. Indeed, the type of a variable often translates into specificities of
a plot. For instance, an arrow head at the end of an axis indicates that the corre-
sponding levels are ordered. The direction of the axis of levels should thus be made
evident for all variables, except those of a qualitative type. We have thus defined
(and included in the package associated with this book) the function arrowaxis()
which we shall use, when needed, to add an arrow on a plot axis. For some plots,
we have decided to show side by side a basic version and a more elaborate and aes-
thetically pleasing version. We do not necessarily recommend using the elaborate
version in data exploration, but these plots show the possibilities offered by R to
modify a plot as one wishes.

11.6.1 Plotting Qualitative Variables

11.6.1.1 Cross Chart

For each observation, the cross chart shows a small horizontal bar in the column of
the relevant level. This diagram is not included in R, but it can be coded with the
function plot() and its argument pch. The corresponding function, which we call
crosschart(), is included in the package associated with this book (Fig. 11.2).

Note that there also exists a function dotchart(). When coupled with the func-
tion table(), it gives a similar display, except that it is rather a representation of
the table of counts of the variable (Fig. 11.3).
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> crosschart(situation,col=c("orange","darkgreen","black","tan"))

Cross chart
of variable situation

single couple family other

0
20

40
60

80
10

0
12

0

Fig. 11.2: Cross chart for a qualitative variable

> dotchart(table(situation),col=c("orangered","darkgreen",
+ "turquoise","tan"),pch=15,main=paste("Dot chart of counts",
+ "of variable situation",sep="nn"))

single

couple

family

other

0 20 40 60 80 100 120

Dot chart of counts
of variable situation

Fig. 11.3: Dot chart for a qualitative variable
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11.6.1.2 Bar Charts

It is obtained with the function barplot(). To make the plot prettier, we pro-
pose the function barchart(), included in the package associated with this book
(Fig. 11.4).

> col <- c("gray","orangered","lightgoldenrodyellow","red")
> barplot(table(situation),col=col)

single couple family other

0
20

40
60

80
10

0

Fig. 11.4: Bar chart for a qualitative variable

> barchart(situation,col)

0
20

40
60

80
10

0
12

0

Bar chart
of variable situation
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11.6.1.3 Pareto Chart

A Pareto chart can also be produced with the function barplot(), since it is a bar
chart with bars ordered from tallest to smallest (Fig. 11.5).

> col <- c("yellow","yellow2","sandybrown","orange",
+ "darkolivegreen","green","olivedrab2","green4")

> barplot(sort(table(fat),TRUE),col=col)

sunflower olive Isio4 duck

0
10

20
30

40
50

60

Fig. 11.5: Pareto chart for a qualitative variable

> barchart(fat,col,pareto=TRUE)

0
10

20
30

40
50

60
70

Pareto chart
of variable fat
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11.6.1.4 Stacked Bar Chart

A stacked bar chart can be obtained with the function barplot()with an object of
type matrix() as first effective argument (Fig. 11.6).

> nbh <- table(gender)[1]
> nbf <- table(gender)[2]
> tabfreq.fat.males <- table(fat[gender=="Male"])/nbh
> tabfreq.fat.females <- table(fat[gender=="Female"])/nbf
> barplot(cbind(tabfreq.fat.males,tabfreq.fat.females),
+ main="Stacked bar chart for variable fat",col=
+ c("yellow","yellow2","sandybrown","orange",
+ "darkolivegreen","green","olivedrab2","green4"),xlim=
+ c(0,1),width=0.15,space=1,names.arg=
+ c("Males","Females"),legend=TRUE,density=40)
> arrowaxis(x=FALSE,y=TRUE)

Males Females

duck
rapeseed
Isio4
olive
sunflower
peanut
margarine
butter

Stacked bar chart for variable fat

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 11.6: Stacked bar chart for a qualitative variable

11.6.1.5 Pie Chart

A pie chart can be obtained with the function pie(). We propose the more aestheti-
cally pleasing function camembert(), included in the package associated with this
book.

> require("RColorBrewer")
> col <- brewer.pal(8,"Pastel2")
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> pie(table(fat),col=col)

butter

margarine

peanut

sunflower

olive

Isio4

rapeseed
duck

> camembert(fat,col)

rapeseed ( 0 %)
duck ( 2 %)

butter ( 7 %)

Isio4 (10 %)

margarine (12 %)

olive (18 %)

peanut (21 %)

sunflower (30 %)

Pie chart
for variable fat

11.6.2 Plotting Ordinal Variables

11.6.2.1 Bar Chart With Cumulative Frequencies Line

Such a chart can be obtained with the functions barplot() and points()
(Fig. 11.7). As previously, the function barchart() included in the package as-
sociated with this book allows a different representation (for instance, the line of
cumulative frequencies is raised and projects a shadow).
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> require("RColorBrewer")
> col <- brewer.pal(6,"Blues")
> tx <- table(fish)
> tx <- tx/sum(tx)
> r <- barplot(tx,ylim=c(0,1),col=col)
> points(r,cumsum(tx),type="l")

never 1/week. 4−6/week.0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 11.7: Bar chart with cumulative frequencies line for an ordinal variable

11.6.3 Plotting Discrete Quantitative Variables

11.6.3.1 Cross Chart

A cross chart can be obtained with the function crosschart(), included in the
package associated with this book.

See also

See Sect. 11.6.1, page 357.

11.6.3.2 Bar Chart

Such a chart can be obtained with the function plot() applied to a contingency
table (Fig. 11.8).

11.6.3.3 Plotting the Empirical Distribution Function

Such a plot is obtained with the functions plot() and ecdf() (Fig. 11.9).
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> plot(tabtea/length(unique(tea)),ylab="",
+ col="darkolivegreen",lwd=5,
+ main="Bar chart for variable tea")
> arrowaxis()

0
5

10
15

Bar chart for variable tea

tea
0 1 2 3 4 5 6 9 10

Fig. 11.8: Bar chart for a discrete quantitative variable

> plot(ecdf(na.omit(coffee)),main=paste("Empirical distribution
function",

+ "for variable coffee",sep="nn"),verticals=TRUE,
+ ylab=expression(F[n](x)),col.01line="#89413A",col.points=
+ "#6D1EFF",col.hor=’#3971FF’, col.vert=’#3971FF’)
> arrowaxis(x=TRUE,y=TRUE)

−1 0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical distribution function
for variable coffee

x

F
n(

x)

Fig. 11.9: Empirical distribution function for a discrete quantitative variable
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11.6.3.4 Stemplot

A stemplot, or stem-and-leaf display, can be obtained with the function
stem.leaf() of package aplpack.

See also

See Sect. 11.6.4, page 367.

11.6.3.5 Boxplot

Such a chart can be obtained with function boxplot(), as shown below. The chart
gives explanations (Fig. 11.10).

The box is drawn using the values of the three quartiles. Values rep-
resented as small circles are outliers, which might be suspect or deviant
(boxplot(cafe)$out). These extreme values are those that are outside the box,
further than 1.5 times the interquartile range (the argument range can be used to
change this value from the default 1.5). Note that values which are outside the box,
but within 1.5 times the interquartile range, are called adjacent values. The whiskers
are drawn at the largest and smallest adjacent value.

Tip

Type example(bxp) or example(boxplot) for other examples of such
diagrams.
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> boxplot(coffee,col="orange",
+ main="Boxplot for variable coffee")
> arrowaxis(x=TRUE,y=TRUE)

Most extreme value
(aberrant?)

Most extreme
adjacent value

3rd quartile

Median

1st quartile

Smallest adjacent
value

25%
of observations

25%
of observations

25%
of observations

25%
of observations

0
1

2
3

4
5

Boxplot for variable coffee

Fig. 11.10: Boxplot and explanations
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11.6.4 Plotting Continuous Quantitative Variables

We now present a few useful graphs for exploring quantitative data.

11.6.4.1 Empirical Distribution Function

Use the functions plot() and ecdf() (Fig. 11.11).

> plot(ecdf(na.omit(age)),main=paste("empirical distribution
function",

+ "of variable age",sep="nn"),col.hor=’# 3971FF’,col.points
=’#3971FF’)

> arrowaxis()

65 70 75 80 85 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

empirical distribution function
of variable age

x

F
n(

x)

Fig. 11.11: Plot of the empirical distribution function for a continuous quantitative
variable

11.6.4.2 Stemplot

You can use the function stem(), but it is not very sophisticated. We recommend
the function stem.leaf() from package aplpack. Chart construction is done in
three steps:

� Choose a leaf unit, using argument unit.
� Choose the number of parts (1, 2 or 5) in which each stem should be divided,

using argument m.
� Choose the representation style, using argument stylewhich can take the values
"Tukey" or "bare".
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> require("aplpack")
> stem.leaf(height,m=5,style="bare")
1 | 2: represents 12
leaf unit: 1

n: 226
1 14 | 0

14 |
14 |
14 |

3 14 | 88
12 15 | 000001111
24 15 | 222223333333
45 15 | 444444444444555555555
60 15 | 666666666667777
73 15 | 8888888899999
97 16 | 000000000000000000000011
(22) 16 | 2222222222333333333333
107 16 | 4444444455555555555555
85 16 | 6666777
78 16 | 88888888888999
64 17 | 000000000011111
49 17 | 2222222222333
36 17 | 444555555
27 17 | 6666666777
17 17 | 88889
12 18 | 0011
8 18 | 22

18 |
6 18 | 666
3 18 | 888

11.6.4.3 Boxplots

They can be created with the function boxplot().

See also

See Sect. 11.6.3, page 365.

11.6.4.4 Density Histogram with Identical or Different Class Ranges

Use the function hist() (Fig. 11.12).



11.6 Graphical Representations 369

> classes <- hist(age,right=TRUE,freq=FALSE,ylab="Density",
+ main="Histogram of variable age",col="orangered")
> arrowaxis()

Histogram of variable age
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> classes <- hist(weight,right=TRUE,freq=FALSE,
+ main="Histogram of variable weight",
+ ylab="Density",breaks=c(min(weight),50,80,
+ 90,max(weight)),col="olivedrab")
> arrowaxis()

Histogram of variable weight
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Fig. 11.12: Density histogram with identical or different class ranges

11.6.4.5 Frequency Polygon

Use the functions hist() and segments() (Fig. 11.13).
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> classes <- hist(height,right=TRUE,freq=FALSE,
+ main=paste("Histogram and frequency polygon",
+ "of variable height",sep="nn"),col="orangered")
> middles <- classes$mid ; mlon <- length(middles)
> densities <- classes$density
> segments(middles[1:mlon-1],densities[1: mlon-1],
+ middles[2:mlon],densities[2:mlon],col=
+ rgb(0.4196078,0.4196078,0.1372549,0.9),lwd=3)
> arrowaxis()

Histogram and frequency polygon
of variable height
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Fig. 11.13: Frequency polygon

11.6.4.6 Cumulative Frequency Polygon

Use the functions hist(), ecdf() and plot() (Fig. 11.14).

> bounds <- hist(height,right=TRUE,plot=FALSE)$breaks
> plot(bounds,ecdf(height)(bounds),type="l",main=
+ paste("Cumulative frequency polygon","of variable height",
+ sep="nn"),
+ ylab="Frequencies",col="darkolivegreen",lwd=3)
> arrowaxis()
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Fig. 11.14: Cumulative frequency polygon

Tip

This plot can be used to give a graphical estimator of the median. Simply add
a horizontal line at height h D 0:5 with the instruction abline(h=0.5). Then,
type the instruction locator(1)$x and click on the intersection between this
horizontal line and the cumulative frequency polygon. Similarly, you can get
any other quantile by replacing the value 0.5 with the desired quantile.

11.6.5 Graphical Representations in a Bivariate Setting

In this section, we present a few useful representations for bivariate settings.

11.6.5.1 Two-Way Plots for Two Qualitative Variables

You can overlay two barplots, as shown on the next two figures (Fig. 11.15).

> tss <- prop.table(table(gender,situation),1)
> barplot(tss,bes=TRUE,leg=TRUE)
> title(paste("Barplots of situation","as a function of gender",
+ sep="nn"))
> arrowaxis(FALSE,TRUE)



372 11 Descriptive Statistics
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Fig. 11.15: Bar plot for two qualitative variables

A mosaic plot can also be useful to visualize the relationship between two quali-
tative variables (Fig. 11.16).

> par(las=1) # Horizontal writing of levels.
> mosaicplot(gender�fat,color=brewer.pal(5,"Set1"),
+ main="Mosaicplot of fat as a function of age")

gender

fa
t

Male Female

butter

margarine

peanut

sunflower

olive

Isio4
rapeseed
duck

Mosaicplot of fat as a function of age

Fig. 11.16: Mosaic plot for two qualitative variables
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Tip

Another interesting function in this setting is assocplot() which pro-
duces a Cohen–Friendly association plot indicating deviations from indepen-
dence in a 2 � 2 contingency table (Fig. 11.17). We can also cite the function
spineplot().

> assocplot(table(gender,fat))

gender
Male Female
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Fig. 11.17: Cohen–Friendly association plot for two qualitative variables

One last interesting function is table.cont() from package ade4 (Fig. 11.18).

> require("ade4")
> genderfat <- table(gender,fat)
> table.cont(genderfat,row.labels=rownames(genderfat),
+ col.labels=colnames(genderfat))
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Fig. 11.18: table.cont plot for two qualitative variables

11.6.5.2 Two-Way Plots for Two Quantitative Variables

In this setting, use the function plot().

> plot(height�weight)
> arrowaxis()

40 50 60 70 80 90

14
0

15
0

16
0

17
0

18
0

weight

he
ig

ht

We have seen in Chap. 7 how to make this plot prettier. To this end, we create a
function flashy.plot() (Fig. 11.19).



11.6 Graphical Representations 375

140 150 160 170 180

40
50

60
70

80
90

Scatter plot

Male
Female

Fig. 11.19: Plot of two quantitative variables

11.6.5.3 Two-Way Plots for One Qualitative and One Quantitative Variable

In this setting, it is interesting to draw box plots of the quantitative variable for each
level of the qualitative variable. If the variables are structured correctly in R, you
simply need to call the function plot() (Fig. 11.20).

> par(bty="n")
> plot(coffee�gender,col=brewer.pal(5,"Set2"),
+ notch=TRUE,varwidth=TRUE,boxwex=0.3)
> title(paste("Boxplot of coffee consumption",
+ "as a function of gender",sep="nn"),family="Courier")
> arrowaxis(F,T)
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Fig. 11.20: Box plots of a quantitative variable as a function of the levels of a quali-
tative variable

Also note that the function stripchart() is useful to get the following plot
(Fig. 11.21):

> stripchart(raw_fruit�age,data=nutrielderly)
> arrowaxis(y=TRUE)
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Fig. 11.21: stripchart plot for a quantitative and a qualitative variable
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Memorandum

as.factor(): transform a variable into factors
levels(): display or affect the levels of a factor
as.ordered(): transform a variable into ordered factors
as.integer(): structure a discrete variable
as.double(): structure a continuous variable
table(): table of counts for a variable or contingency table between two variables
addmargins(): add margins to a contingency table
margin.table(): marginal distributions of a contingency table
prop.table(): conditional distributions from a contingency table
na.omit(): remove missing values (NA) of a variable
median(): median of a vector
mean(): mean of a vector
quantile(): quantiles of a vector
summary(): when applied to a numerical series, returns minimum, maximum, quartiles and

mean
range(): minimum and maximum
IQR(): interquartile range
var(): variance of a sample
sd(): standard deviation of a sample
mad(): absolute deviation from the median
chisq.test(): chi-squared statistic
cor.test(): Pearson’s correlation coefficient, Kendall’s 	 or Spearman’s 

cov(): covariance
cor(): correlation
barplot(): draw a bar chart
pie(): draw a pie chart
plot.ecdf(): plot the empirical cumulative distribution function
stem(): draw a stem plot
boxplot(): draw a box plot
hist(): draw a histogram
plot(): draw a scatter plot

✎
Exercises

11.1- Give the instruction which returns the table of frequencies for a qualitative
variable x.

11.2- Give the instruction which returns the contingency table for qualitative
variables x and y.

11.3- Which function returns the marginal distributions from a contingency table?
11.4- Which function returns the conditional distributions from a contingency

table?
11.5- Give the instruction which returns the mode of a distribution.
11.6- Give the instruction which returns the range of a vector x.
11.7- Give the instruction which returns the interquartile range of a vector x.
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11.8- Give the instruction which returns the (nonempirical) variance of a vector x.
11.9- Give the code of a function which calculates the coefficient of variation.

11.10- Give the instruction which calculates the mean absolute deviation.
11.11- Which package includes functions to calculate skewness and kurtosis?
11.12- Give the instruction which returns Cramér’s ˚2.
11.13- Give the code of a function which calculates the correlation ratio �2

Y jX .
11.14- Which function would you use to draw a Pareto chart?
11.15- Which function would you use to draw a stacked bar chart?
11.16- Which function would you use to draw a pie chart?
11.17- Which function would you use to draw a box plot?
11.18- Which function would you use to draw a histogram?

Ï
Worksheet

Descriptive Data Studies

A - Thoughts on Independence in Descriptive Statistics

11.1- Import the file http://www.biostatisticien.eu/springeR/snee74
en.txt into an R object called snee.

11.2- Display the first and last lines of snee with the functions head() and
tail(). How many individuals are there? How many variables? What type
are the variables?

11.3- Use the function attach() on your data.frame, then check with the func-
tions class() and levels() that the structure of your variables is correct.
What are the levels of the variables?

11.4- Perform a univariate descriptive study of each variable: numerical results
and appropriate graphical representations.

11.5- We shall now study the dependence of variables eyes and hair. Create the
contingency table eyeshair (observed counts) of variables eyes and hair.

11.6- Calculate the frequency of each level of the variable hair (profile by col-
umn). You get the distribution function fhair of hair colour in the popula-
tion.

11.7- Now, include the second characteristic: eye colour. Calculate the number
nblue of individuals with blue eyes in the entire population.

11.8- Suppose that eye colour and hair colour are independent. In other words,
the fact that an individual has blue eyes bears no relation with the colour
of their hair. In that case, the proportions calculated in 11.6 should still
be the same within the subpopulation of people with blue eyes. Under this
independence hypothesis, calculate the number of blue-eyed people who
should have blond hair (respectively, brown, black and red).

11.9- Do the same with other eye colours. You get a table tab.ind1 of theoretical
counts under the hypothesis of independence between eye and hair colour.

http://www.biostatisticien.eu/springeR/snee74
en.txt
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11.10- Repeat the entire process, but with the two characteristics inverted (i.e. start
with the variable eyes). From table eyeshair, calculate the frequency of
each level of the variable eyes (profiles by rows). You get the distribution
function feyes of eye colours in the population.

11.11- Now include the second characteristic: hair colour. Calculate the number
nblond of people with blond hair in the entire population.

11.12- Suppose that hair and eye colour are independent. In other words, the fact
that an individual has blond hair bears no relation with their eye colour.
In that case, the proportions calculated in 11.10 should still be the same
within the subpopulation of people with blond hair. Under this independence
hypothesis, calculate the number of blond people who should have blue eyes
(respectively, brown, hazel and green).

11.13- Do the same with other hair colours. You get a table tab.ind2 of theoretical
counts under the hypothesis of independence between hair and eye colour.

11.14- Use the function all.equal() to compare the two tables of theoretical
counts. What do you observe?

11.15- Compare the table of observed counts eyeshair with the table of theoreti-
cal counts (for each entry, calculate the square of the difference).

11.16- Calculate the table of contributions to the �2.
11.17- Calculate all relevant link indicators. Conclude.
11.18- Independence can also be defined (and this is in fact the primary definition)

as equality of all conditional distributions. Calculate the conditional distri-
bution of the variable hair knowing that the eye colour is blue (i.e. the
frequency of various hair colours knowing that eye colour is blue). Calcu-
late the three other conditional distributions of the variable hair. Calculate
the conditional distributions of the variable eyes knowing each of the levels
of variable hair. Conclude.

11.19- Perform a descriptive study of variable hair as a function of variable
gender.

11.20- Perform a descriptive study of variable eyes as a function of variable
gender.

11.21- Analyze the dependence between eye colour and hair colour for the follow-
ing contingency table:

Hair
Blond Brown Black Red Total

Blue 1,768 807 189 47 2,811
Eyes Grey/green 946 1,387 746 53 3,132

Brown 115 438 288 16 857
Total 2,829 2,632 1,223 116 6,800
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B- Descriptive Analysis of Data Set NutriElderly

We now propose to solve the following questions on the data set NutriElderly,
in which deliberate errors were introduced:

11.1- Import the data file nutrition elderly.xls.
11.2- Give the absolute mode of variables situation, chocol and height.
11.3- Choose classes for variable height and give the modal class.
11.4- Calculate the median of variable chocol.
11.5- Give frequency tables of variables chocol and raw_fruit.
11.6- Using only these frequency tables, give the median of these two variables.
11.7- Calculate the quartiles of variable height using the classes defined earlier.
11.8- Draw the cumulative frequency polygon for variable height. On this plot,

estimate the quartiles of the distribution.
11.9- Using individual data, calculate the mean of variables height, weight

and age.
11.10- Calculate the frequency table of variable tea. Using this table, calculate the

mean of this variable.
11.11- Calculate the mean of variable height using the classes defined earlier.
11.12- Calculate the range of variable weight.
11.13- Draw a boxplot of variable weight.
11.14- Using individual data, calculate the standard deviation of variable height.
11.15- Using only its frequency table, calculate the coefficient of variation of vari-

able tea.
11.16- Calculate the total variance, the within-group variance and the between-

group variance of variable coffeewith the population split into two groups:
males and females. Calculate the coefficient �2.

C- Descriptive Analysis of Data Sets

11.1- Perform a descriptive statistical analysis of data set Birth-weight.
11.2- Perform a descriptive statistical analysis of data set Infarction.



Chapter 12
A Better Understanding of Random Variables,
Distributions and Simulations Using R
Specificities

Goals of this chapter
We use the specificities of R to build empirically the notions of random variable,
distribution of a random variable, law of large numbers and central limit theo-
rem. We introduce some complex notions for statistical inference and examine
sampling variation as well as the bias and variance of estimators. We go on to
describe a few classical methods for simulating from a distribution. At the end
of the chapter, we give commands to generate observations from common prob-
ability distributions and to calculate their probability and cumulative distribution
functions and quantiles.

SECTION 12.1

Notions on Random Number Generation

Consider an urn containing n balls numbered 1 to n. Random number construction
can be imagined as an experience in which we pick (or draw) with replacement a
single ball at a time, several times in a row. This operation produces a sequence of
integers. The order in which these numbers appear is governed by a law called the
discrete uniform distribution (on the set f1; : : : ; ng). It is then natural to wonder how
to generate real numbers uniformly over an interval. We introduce a few elements
on number generation from such a uniform distribution, using a computer algorithm.

Random number generation is an essential part of simulation. The production of
such numbers can be based on a mathematical algorithm which imitates random-
ness. We now explore such an algorithm ([34]), based on linear congruence, with
period 231 � 1.

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3 12,
© Springer Science+Business Media New York 2013
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The algorithm is defined by the prime number m D 231 � 1, by an initial value
x1 chosen arbitrarily in f1; : : : ; m � 1g and called the seed of the generator and by
the following recurrence relation which produces n values (seed included):

xj C1  48271� xj .mod m/; j D 1; : : : ; n � 1
followed by a normalization (to the unit interval) step:

xj C1  xj C1=m; j D 1; : : : ; n � 1:
Recall that x (modm) represents the “remainder in the division of x by m”.

Note

Other similar algorithms are presented in Robert and Casella’s book ([35]).

Do it yourself Ï
Give the sequence of R instructions which code this algorithm to create n D
30 values. Recall that x (mod m) can be computed in R with the instruction
x%%m.

The following vector x contains n D 30 values generated from this algorithm.

> x
[1] 0.2785000 0.4735070 0.6554026
[4] 0.9377200 0.6813453 0.2190502
[7] 0.7743987 0.9984000 0.7660816
[10] 0.5251324 0.6643606 0.3513046
[13] 0.8235011 0.2202823 0.2478704
[16] 0.9542908 0.5703867 0.1386948
[19] 0.9379738 0.9309887 0.7576328
[22] 0.6942503 0.1547888 0.8092940
[25] 0.4322561 0.4344264 0.1965560
[28] 0.9561434 0.9964051 0.4690752

As you can see, the values created by this algorithm are unpredictable (apart from
the fact that they are between 0 and 1). However, because they were created with
a deterministic mathematical algorithm, these values are called pseudo-random
numbers.

The algorithm above is a pseudo-random number generator called uniform over
Œ0; 1�, because it generates numbers spread uniformly over this interval.
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Tip

Pseudo-random number generation is of course implemented at the core of
R. For instance, a more elaborate version of the algorithm above is available
through the R function runif(). The function set.seed() is used to set the
seed of the algorithm.

SECTION 12.2

The Notion of Random Variables

In the previous section, we proposed an algorithm to generate pseudo-random num-
bers. In probability and statistics, such a process is usually called a random variable.
The purpose of this section is to propose a heuristic on this topic: a random vari-
able could be viewed as an algorithm to generate numbers, which are then called
realizations of the random variable.

12.2.1 Realizations of a Random Variable and Functioning Law

In this section, we shall see how the syntax of R can help us better understand the
difference between a random variable and its realizations.

A common example is that a statistics problem starts with one of the following
assertions: (1) “Let X be a random variable with distribution U.0; 1/” or (2) “Let X

be a random variable with distribution N .0; 1/”.

A random variable can be viewed as a number creation factory or, in mathe-
matical terms, as a function which creates a random number every time it is called.
The process which creates values generated by a random variable is governed by a
functioning rule imposed upon this variable, called the law of the random vari-
able. This is shown clearly in the body of the function that defines it.

In R, it is easy (and informative) to create such random variables. For instance,
the instruction

> X <- function() runif(1)
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corresponds to assertion (1). Successive calls of this function create realizations of
the random variable X:

> X()
[1] 0.8806583
> X()
[1] 0.07355798
> X()
[1] 0.05503209

Similarly, the instruction

> X <- function() rnorm(1)

corresponds to assertion (2). Once again, successive calls of this function create
realizations of the new random variable X:

> X()
[1] 0.6683035
> X()
[1] -0.3708295
> X()
[1] 0.7179792

We find this makes it easier to understand the difference between a random vari-
able (the function) and its realizations (the numbers output by the function). As you
can see, a random variable is a “machine” (a procedure) which makes values, called
realizations. It is random in the sense that the realizations change at each call, and
that it is impossible to predict which value will be output.

Warning

Note that the two random variables we have introduced are built in the same
way (the instructions are the same), except for the functioning rule or law
which governs them (runif or rnorm in the body of the function). A syn-
onymous often used for law is distribution. This comes from the fact that the
cumulative distribution function (seen later), which describes how the values
produced by a random variable are distributed, entirely characterizes the law
of this variable.

12.2.2 I.i.d. Random Variables

Another standard statement in statistics is: “Let X1; : : : ;Xn be n independent and
identically distributed (i.i.d.) random variables following the distribution N .0; 1/”.
This concept can easily be translated into R. For example, with n D 4, we get

> X <- function() rnorm(1) # r.v. governed by the distribution
# rnorm (i.e. N .0; 1/).

> X4 <- X3 <- X2 <- X1 <- X # Translates the fact that
# Xi are i.i.d.
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Warning

X1 and X2 follow the same distribution rnorm. They are identically dis-
tributed. However, they are not identical, in the sense that they do not produce
the same values. Independence of X1 and X2 means the production of values
by X1 is not influenced by X2:

> X1
function() rnorm(1) # r.v. governed by the Normal distribution
> X2
function() rnorm(1) # r.v. governed by the Normal distribution
> c(X1(),X2())
[1] -0.6319022 -0.1029233

Note that you could also consider the vector X D .X1; : : : ;X4/, which is a ran-
dom vector with four components and which produces four “independent” realiza-
tions simultaneously at each call.

> vecX <- function() c(X1(),X2(),X3(),X4())
> vecX()
[1] 0.8041706 -3.6413500 1.7871627 0.7710802
> # or, equivalently in R:
> vecX <- function() rnorm(n = 4)
> vecX()
[1] -0.3010423 0.7895389 0.2059419 1.0169773

Tip

If the n Xi are i.i.d. with same distribution as X, then Xn D .X1; : : : ;Xn/

can be created using

> vecXn <- function(n) replicate(n,X())

The random vector Xn D .X1; : : : ;Xn/ is called the sample.

12.2.3 Characterizing the Distribution of a Random Variable

We have seen that the process by which a random variable produces values is gov-
erned by a functioning rule, called the distribution of the random variable.
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Note

We shall use the standard symbol � to indicate that a random variable X

follows a given distribution. For example, we shall write X � U.0; 1/ to indi-
cate that the random variable X follows a uniform distribution over the interval
Œ0; 1� or X � N .0; 1/ to indicate that X follows a standard normal distribution.

The next drawing illustrates the idea that a random variable is a “machine” gov-
erned by parameters and which outputs realizations. There is a blueprint of the
machine, which governs how the realizations are created. But slight, unpredicted
variations in the run of the process lead to variations in the output, which can there-
fore not be completely predicted. Indeed, each specific realization is unpredictable
and governed by randomness. However, since there is a fixed functioning rule for
the generator, it is still possible to describe a few global properties of these numbers.
There are thus several kinds of randomness, each structured by the distribution of
the random variable at play. When speaking of “random numbers”, it is necessary
to specify the kind of randomness.

Mathematicians have introduced mathematical objects describing this structure:
the probability density function (or density or p.d.f.); the cumulative distribution
function (or distribution function or c.d.f.); and the quantile function of a random
variable, to name a few. In most cases, these functions characterize completely the
distribution of the random variable.
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12.2.3.1 Density Function, Distribution Function and Quantile Function

Suppose that we observe several unpredictable values produced by a random vari-
able X. We wish to describe these values and, through them, to better understand or
specify the functioning of the generator X.

Here are a few examples of what you might notice for a given random variable X:

� there are positive and negative values;
� they are gathered around the number 7;
� as many values are greater than and lesser than 7;
� they are spread symmetrically about 7.

On a more global scale, you can also look at the density of observations (in the
common meaning of the word: a high density corresponds to values close to each
other) generated by X in intervals Œx��; xC�� (where � is a very small non-negative
number) of the range of possible values. The range of possible values is called the
support of X. The code of the function density, given below, was written for
didactic reasons and is not efficient; it should help translate the notion of density of
observations.

> # The code (distribution) of the r.v. X is temporarily hidden
# on purpose.

> X <- function() some.code(some,parameters)
> ourdensity <- function(x,n=1000,eps=0.01) f
+ lx <- length(x)
+ res <- vector("integer",lx)
+ obs <- replicate(n,X()) # Generate observations from X.
+ for (i in 1:lx) f res[i] <-
+ length(which((x[i]-eps) <= obs & obs <= (x[i]+eps)))/n
+ g
+ return(res)
+ g

The plot below represents the function which associates to each interval in the
support of X the value y of the relative concentration of observations in this interval
(i.e. the frequency of values belonging to this interval).

> curve(ourdensity,xlim=c(-1,10))
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If you increase the number n of observations generated by X and decrease �, this
plot becomes smoother.

> curve(ourdensity(x,n=1000000,eps=0.001),xlim=c(-1,10))

Fig. 12.1: Plot approximating the density of X

In the limit, as n ! 1 and � ! 0, this plot becomes perfectly smooth and
regular. Once normalized so that its area equals 1, it is called the density function
of the random variable X and is denoted fX.
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Note

A random variable whose possible values can make a continuous set of val-
ues (such as an interval) is called continuous. A random variable which can
only take a finite or countable number of different values (also called modali-
ties) is called discrete. For a discrete random variable, we do not speak of its
density, but of its mass function which gives the probability of outcome of
each modality.

To sum up, it could be said that describing the distribution of a random variable
X consists in giving two pieces of information:

(1) The range of possible values or support of X (which can be discrete or contin-
uous)

(2) For each (infinitesimal) interval in this range, the value of the density of X for a
continuous random variable or of the mass function of X for a discrete random
variable

Note

The cumulative distribution function FX.x/, which accumulates the den-
sities of observations up to the point x (or which accumulates the observation
probabilities of all modalities up to and including x for a discrete variable), is
another way of characterizing the distribution of a random variable. It can be
shown that it represents the area of the density plot fX up to x and that it gives
the probability that the random variable X creates observations smaller than x:

FX.x/ D P ŒX 
 x� D
Z x

�1
fX.t/dt:

The quantile function F�1
X , the inverse distribution of the cumulative

distribution function, also characterizes a random variable.

For each probability value p 2 Œ0; 1�, the value xp D F�1
X .p/ is called

the fractile or quantile of order p of random variable X. It is defined by the
equation

xp D F�1
X .p/, FX.xp/ D P ŒX 
 xp � D p:

Thus, the probability that the realizations of the random variable X be lesser
than or equal to the value xp is p. The following plot illustrates this notion.
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xp

p

fX

12.2.4 Parameters of the Distribution of a Random Distribution

We had deliberately hidden the body of the function defining the random variable
X. We can now reveal that the density shown on Fig. 12.1 is the density of a random
variable X following the distribution N .� D 7; 
2 D 1/.
> X <- function() rnorm(1,7,1)

Tip

The R function density() gives the density plot of a sample of observed
values.

> plot(density(rnorm(1000,7,1)),xlim=c(-1,10),
+ main="Density plot with function density()")
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In this definition, the quantities � D 7 and 
2 D 1 appear explicitly. They are
called the parameters of this distribution.

Let X1; : : : ;Xn be n independent and identically distributed (i.i.d.) random vari-
ables following the normal distribution with mean � D 7 and variance 
2 D 1. We
also define Xn D 1

n

Pn
iD1 Xi .

We have noticed that it is sometimes difficult to understand the (fundamental)
difference that exists between:

� The random variable Xn

� Its realizations xn

� The parameter � D E.X/, which is the theoretical expectation

It is true that, by abuse of language, these three objects are often all called by the
same name: the mean.

We believe that the R language helps better understand and distinguish these
concepts. The random variable X4 D 1

4

P4
iD1 Xi (for n D 4) could be defined as

> X1 <- function() rnorm(1, mean = mu <- 7,sd = 1)
> X4 <- X3 <- X2 <- X1
> Xbar4 <- function() (X1()+X2()+X3()+X4())/4

Advanced users

The random variable Xn can be defined automatically (for small n):

> n <- 10
> eval(parse(text=paste(paste("X",1:n," <- ",sep="",
+ collapse=""),"X")))
> eval(parse(text=paste("Xbar",n," <- function()
+ (",paste("X",1:(n-1),"()+",sep="",collapse=""),
+ "X",n,"())/",n,sep="")))
> Xbar10
function()
(X1()+X2()+X3()+X4()+X5()+X6()+X7()+X8()+X9()+X10())/10

This function can be used repeatedly to create several realizations, which could
be denoted as x.i/

4 ; i D 1; 2; : : ::
> xbar4.1 <- Xbar4()
> xbar4.1
[1] 7.495727
> xbar4.2 <- Xbar4()
> xbar4.2
[1] 7.069361
> xbar4.3 <- Xbar4()
> xbar4.3
[1] 6.837127
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It is clear that successive calls of the same function Xbar4() result in several
different unpredictable realizations which vary around 7: the x.i/

4 . This helps show
that:

� X4 is indeed a random variable, i.e. a machine to create realizations;
� the realizations x.1/

4 ; x
.2/
4 ; x

.3/
4 ; : : : are all different and unpredictable and come

from the random variable X4;
� the machine X4 is made of the individual random variables X1; : : : ;X4, which all

follow the same functioning law;
� this functioning law depends on a parameter mu (affected to the formal parameter
mean of the function rnorm()) which was set upon creation to the value � D 7

and which does not vary between calls of the function;
� the parameter � is thus an intrinsic characteristic of each of the variables Xi .

Note

Since X4 is a random variable, it has a distribution, like any random variable.
Mathematical theory states that X4 � N .� D 7; 
2 D 1=4/. If we only care
about the behaviour of the distribution of Xbar4(), we can define it directly
with

> Xbar4 <- function() rnorm(1,mean = 7,sd = sqrt(1/4))

SECTION 12.3

Law of Large Numbers and Central Limit Theorem

Let Xn D 1
n

Pn
iD1 Xi be the mean random variable made of n i.i.d. random variables

Xi , each following the same distribution L (which is not necessarily known) with
expectation E.Xi / D � and variance Var.Xi / D 
2 <1.

12.3.1 Law of Large Numbers

The law of large numbers states that when n goes to infinity, the mean random
variable Xn goes (technical term: converges in probability) to E.X1/, i.e. the theo-

retical mean �. This is written Xn
P�! E.X1/. This can easily be checked in R, for

example when L D U.0; 1/:

> mean(runif(1))
[1] 0.2501903
> mean(runif(10))
[1] 0.3372082
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> mean(runif(100))
[1] 0.5185887
> mean(runif(1000))
[1] 0.4885624
> mean(runif(10000))
[1] 0.5062192
> mean(runif(100000))
[1] 0.4998102
> mean(runif(1000000))
[1] 0.5000058

We notice that when the size of the sample n increases, these numbers get closer
to the theoretical mean � D 0:5 of the n i.i.d. random variables U.0; 1/.

Note

This will be very useful to approximate (technical term: estimate) the un-
known parameters of a distribution. We shall return to this point in Sect. 12.4.

12.3.2 Central Limit Theorem

We can also look at the random variable Yn D p
n

�
Xn��

�

	
which is used as

a pivot when constructing some confidence intervals and hypothesis tests. As all
random variables, Yn has a distribution. In some cases, mathematics allow us to
calculate it explicitly. In general, this distribution depends on the size n of the sam-
ple. One might wonder how this distribution changes as n increases. This behaviour
is called the convergence in distribution of a random variable. The central limit
theorem states that Yn converges in distribution to a random variable with distri-
bution N .0; 1/. In other words, generating observations from Y1 is equivalent (as
far as one is only concerned with the distribution of the values of Y1) to generating
observations from a random variable with distribution N .0; 1/.

This mode of convergence and other classical modes of convergence (conver-
gence in probability, almost sure, and in r-th order mean) are very well explained
in [24].

The package ConvergenceConcepts, described in [23], is a tool to visualize
this evolution graphically. For example, try the following instructions (Fig. 12.2):

require("ConvergenceConcepts")
investigate() # Choose Example 3.
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Fig. 12.2: Convergence in distribution in action on an example with simulated data.
Left: the cumulative distribution function of a N .0; 1/ is plotted in black; the em-
pirical cumulative distribution function OFyn

(see Sect. 12.4.2) of the sample Yn

(n D 70) based on M D 5; 000 realizations is plotted in red. Right: 3D plot of
j OFyn

.t/ � F.t/j as a function of n and t

SECTION 12.4

Inferential Statistics

In the previous section, we saw that the law of large numbers can be used to approx-
imate the fixed parameter (call it �) of a distribution, thanks to the realization of a
random variable (e.g. the parameter �, thanks to a realization of Xn). This will of
course be very useful when the parameter is unknown. The “approximating” random
variable is then called an estimator of the parameter. Realizations of this estimator
are called estimates (of the unknown parameter �). To perform inference is to es-
timate unknown parameters based on a sample of random variables which follow a
distribution which depends on these unknown parameters.

12.4.1 Point Estimate of Parameters

What is an estimator? Since we are proposing a plausible value for the unknown
parameter of a distribution, based on a sample generated from this distribution, we
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can consider this plausible value as a function of the sample. If � is the unknown
value of the parameter to guess (estimate), we note our proposition O�.x1; : : : ; xn/,
thus specifying explicitly that it depends on the values of our sample. We call it an
estimate of � .

Then O�.X1; : : : ;Xn/ is the estimator of � . This estimator is a random variable, a
function of the random variables which generated the sample, and was built so that
it is close of � in some sense.

There are several techniques to propose an estimator of a parameter � . For ex-
ample, recall that the law of large numbers implies that we can propose Xn D
1
n

Pn
iD1 Xi as an estimator of the theoretical expectation � D E.X1/. Note that

the sample .X1; : : : ;Xn/ was generated from a distribution which takes precisely
this unknown value � as one of its parameters.

> theta <- 7 # Value assumed unknown.
> mean(rnorm(10000,mean=theta)) # Use the observed sample

.x1; : : : ; x10000/.
[1] 7.019249

Following the same idea based on the law of large numbers, we can propose

X2
n�

�
Xn

�2 D 1
n

Pn
iD1 X2

i �
�

1
n

Pn
iD1 Xi

�2
as an estimator of the (assumed unknown)

parameter 
2 D Var.X1/ D E.X2
1/ � ŒE.X1/�

2. To estimate 
2, we thus only used
an observed sample of random variables (which follow a distribution depending on
the unknown parameter 
).

Note

This estimator is biased (see Sect. 12.4.4). An unbiased estimator of 
2 is
Oσ2 D 1

n�1

Pn
iD1

�
Xi � Xn

�2
.

> theta <- 2 # Var.X1/, assumed unknown.
> vecx <- rnorm(10000,sd=sqrt(theta))
> mean(vecxˆ2)-(mean(vecx))ˆ2 # We only used the observed sample.
[1] 1.976646

Tip

Note that this approach can be used to compute integrals. Indeed, for exam-
ple, Z b

a

g.x/dx D
Z

R

g.x/1Œa;b�.x/dx D EŒg.X/�;

where X is a random variable distributed along the uniform distribution U.a; b/
over the interval Œa; b�.
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It thus suffices to generate a sample .x1; : : : ; xn/, with large size n, from
random variables following a distribution U.a; b/, to estimate EŒg.X/� with

1

n

nX

iD1

g.xi /:

This is called integral computation by Monte Carlo simulation.

12.4.2 Empirical Cumulative Distribution Function

A random variable following a Bernoulli distribution with parameter p is defined as
a generator to create only 1’s and 0’s, with probability p of creating a 1 and 1 � p
of creating a 0. Given a sample .x1; : : : ; xn/ of n realizations of random variables
following this distribution, we can then compute the proportion Op of values equal
to 1 amongst all the values of the sample. This proportion is also equal to the mean
xn D 1

n

Pn
iD1 xi .

By the law of large numbers, as n gets larger, this mean gets closer to the expec-
tation of X, i.e. E.X/ D 1 � P ŒX D 1�C 0 � P ŒX D 0� D P ŒX D 1� D p. This is
called the frequentist approach of probability, which stipulates that the probabil-
ity of an event is defined as the limit of the frequency that this event occurred. We
note Op the estimator of the proportion p.

Let X be a random variable and x a real value (here, x is not a realization of X).
We can then create a new random variable 1ŒX
x� which takes the values 1 or 0
depending on whether X takes values lower or greater than x. Following the same
idea, and using a sample Xn D .X1; : : : ;Xn/

T, we can create the random variable
OFn.x/ WD OFXn

.x/ WD 1
n

Pn
iD1 1ŒXi 
x�. The law of large numbers states that

1

n

nX

iD1

1ŒXi 
x�

P�! E.1ŒX1
x�/:

It can be shown theoretically that E.1ŒX1
x�/ D P ŒX1 
 x� D FX1
.x/. Thus,

OFXn
.x/

P�! FX1
.x/:

The random variable OFXn
.x/, seen as a function of x, is called the empirical cumu-

lative distribution function of the sample Xn D .X1; : : : ;Xn/. We shall return to
this function when we introduce the bootstrap method in Sect. 12.6.
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The R function ecdf() can be used to create simply the empirical cumulative
function:

> X <- function() rnorm(1)
> vecXn <- function(n) replicate(n,X()) # Sample of r.v.s

# following the
# distribution N .0; 1/.

> Fnhat <- function(n,x,X) ecdf(X(n))(x) # Creating function
# (r.v.) OFn.

> Fnhat(n=10,x=0,X=vecXn) # First call of OFn.x/ with x D 0.
[1] 0.6
> Fnhat(n=1000,x=0,X=vecXn) # Second call of OFn.x/ with x D 0.
[1] 0.509

12.4.3 Maximum Likelihood Estimation

The problem is as follows. We observe in nature some phenomenon and gather data
related to this phenomenon. We thus have an observed sample of data .x1; : : : ; xn/

of size n. We can then assume that these data were created by “Mother Nature”,
who generated them with a random variable following a distribution, say N .��; 1/,
for some parameter �� whose exact value is unknown, but which belongs to the set
f0; 1; 2; : : : ; 9g.

The aim of the method of maximum likelihood is to guess (estimate) the value
of ��, based only on the observed sample, which is the only piece of information
available about the data generation process (apart from the hypothesis on the dis-
tribution of the random variable which generated the data). We are trying to find
out which is the most plausible value for �� (in f0; 1; : : : ; 9g): the one most likely
to have led to generating the data we observed.

We shall use a computer simulation, which will help us better understand the
mechanism of the maximum likelihood method.

To this end, let us pretend for a moment that we are “Mother Nature” (or the
“Great Architect”) and choose a value �� in the set f0; 1; 2; : : : ; 9g, called the true
value of the parameter � . To allow us (“Mother Nature”) to choose a value while
allowing us (the “Statistician”) to leave it unknown temporarily, we use the function
runif():

> theta.point <- as.integer(runif(1)*10)
> # For now, do not display the value of theta.point.

Now, still as “Mother Nature”, we simulate a sample .x1; : : : ; xn/ of size n from
a distribution N .��; 1/.
> n <- 1000
> x1...xn <- rnorm(n,mean=theta.point)
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Warning

As we mentioned in part II, it is allowable to include dots (.) in the name of
a variable. Thus x1...xn represents the name of an R variable.

We can now shed the clothes of “Mother Nature” and return to our simple statis-
tician’s envelope. We now wish to estimate the unknown �� with a numerical value,
which we note O�.x1; : : : ; xn/. To this end, we shall use the R optimization function
nlminb() to create a function O�.X1; : : : ;Xn/ which builds this estimate. It will
be built as the value of � which maximizes the likelihood L.� ;X1; : : : ;Xn/ of the
sample or, equivalently, which minimizes �LogL.� ;X1; : : : ;Xn/. This function is
called the maximum likelihood estimator of ��. Note that the likelihood (evalu-
ated at �) is in a sense a measure of the plausibility of observing the sample if we
assume that �� D � .

We define

> theta.hat <- function(X1...Xn) f
+ start <- 0.5
+ nlminb(start,minus.log.likelihood,X1...Xn=X1...Xn)$par
+ g
where the function minus.log.likelihood() is defined as

> minus.log.likelihood <- function(theta,X1...Xn) f
+ res <- -sum(log(dnorm(X1...Xn,theta)))
+ return(res)
+ g

Now, we can use our estimator on the observations x1; : : : ; xn given by “Mother
Nature” to get our estimate.

> theta.hat(x1...xn)
[1] 9.024612

Since we assumed that the value �� belongs to the set f0; 1; : : : ; 9g, we can
propose as an estimate of �� the value b�� D 9.

We can now return to the role of “Mother Nature” and check whether the estimate
we got is close to the true unknown value �� which we had temporarily hidden.

> theta.point
[1] 9

Note that we had assumed here that �� lives in a discrete set (finite or countable),
which allowed us to find its exact value with our estimate. This will not be possible
with continuous values of parameters to estimate.
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Warning

One of the main advantages of introducing statistics with simulations is that
we can be simultaneously (or at least alternately) on both sides of the fence:

“Mother Nature” j Statistician

12.4.4 Sampling Variation and Properties of an Estimator

� Sampling variation

In the practical section, we shall see how to create a tool which simulates the
throw of a die. We use it now to throw 20 virtual dice:

> n <- 20
> res <- throw.die(n)
> res
[1] 2 3 4 6 2 6 6 4 4 1 2 2 5 3 5 3 5 6 3 5

We saw in Sect. 12.4.2 that we can estimate the probability p of getting a 4 by
the proportion of times we got a 4 in the above sample: Op D 0:15.

Since a die has six sides, the expected value is 1=6 	 0:1667. This is not quite
the value we got. Let us throw 20 other virtual dice to see what is going on.

> res <- throw.die(n)
> res
[1] 2 5 3 2 4 4 1 2 4 4 4 4 4 4 6 5 1 5 6 2

This time, our estimate of the probability p of getting a 4 is Op D 0:4. The
estimate has changed with this new sample. This phenomenon is called sampling
variation. When we try to estimate an unknown parameter � , the estimates vary as
a function of the samples. Each new observed sample leads to a different estimate
of .

If the size of the sample increases (e.g. n D 10; 000), there is much less variation
between two throws of 10,000 dice.

> n <- 10000
> res <- throw.die(n)
> sum(res==4)/n
[1] 0.1725
> res <- throw.die(n)
> sum(res==4)/n
[1] 0.1678

�
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� Properties of an estimator

How can we know whether an estimator O�.X1; : : : ;Xn/ is accurate enough to
estimate an unknown parameter �? We can define two criteria for an estimator:

� its bias (when estimating �) B

h O�.X1; : : : ;Xn/I �
i
D E

h O�.X1; : : : ;Xn/
i
� � ,

which measures whether the estimator is correct “on average”;

� its variance Var
h O�.X1; : : : ;Xn/

i
which measures the variability of the estimator

Note that the bias and variance of O�.X1; : : : ;Xn/ depend (theoretically) on n.

Now, suppose we have a generator which simulates the behaviour of random vari-
ables X1; : : : ;Xn, i.e. we are able to create a large number of samples .X1; : : : ;Xn/

(say M D 10; 000 or even more, depending on the context). It is then possible,
with Monte Carlo simulation, to estimate the bias and variance of an estimator.
Indeed, for each observed sample .x1;i ; : : : ; xn;i /, we can compute the correspond-
ing estimate O�.x1;i ; : : : ; xn;i /. We then have M values O�1; : : : ; O�M which can be

used to estimate E

h O�.X1; : : : ;Xn/I �
i

with O� D 1
M

PM
iD1
O�i and the variance

Var
h O�.X1; : : : ;Xn/

i
with 1

M

PM
iD1

� O�i � O�
	2

.

In the next example, we use Monte Carlo simulation to estimate the bias and
variance of the estimator Op (frequency of 4’s out of n dice throws) of the known
parameter p D � D 1=6. Note that p is the parameter of the random variable X

which represents whether we get a 4 when throwing a die. The distribution of X is a
Bernoulli with parameter p D 1=6.

> n <- 20
> M <- 100000
> vec.theta.hat <- replicate(M,fres <- throw.die(n)
+ theta.hat <- sum(res==4)/ng)
> mean(vec.theta.hat)-1/6 # estimate of the bias.
[1] -0.00006716667
> var(vec.theta.hat) # estimate of the variance.
[1] 0.006969351

For this example, it can be shown that the random variable n O�.X1; : : : ;Xn/ fol-
lows a binomial distribution Bin.n; p/, with expectation np and variance np.1�p/
(here, p D 1=6). Thus the estimator O�.X1; : : : ;Xn/ is an unbiased estimator of �
and its variance is p.1�p/

n
.

We can check this numerically:

> p <- 1/6
> p*(1-p)/n
[1] 0.006944444
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See also

The bootstrap technique, which we introduce in Sect. 12.6, can be used
to approximate the bias and variance of a given estimator, based on a single
sample .X1; : : : ;Xn/ (which is often all we have in real life), rather than on
M samples as we did in Monte Carlo simulation, where a data generator is
available.

SECTION 12.5

A Few Techniques to Draw from a Distribution

Why performing simulations?

� to “check”, using the computer, a mathematical result already known;
� to “demonstrate”, using the computer, a result we cannot prove theoretically;
� this can guide us in the demonstration of a difficult mathematical result;
� it is often required when trying to publish results in scientific journals;
� this allows better reasoning as a statistician, as we have already seen in this

chapter.

How should one perform efficient simulations? One must:

(1) properly identify the (heart of) the problem;
(2) write an outline of an algorithm to solve the problem;
(3) translate this algorithm into a program written in an interpreted language like

R;
(4) test this program to ensure it works properly;
(5) translate (possibly) the program using a lower level language (compiled) as
C/C++ or Fortran.

Any simulation needs one to be able to simulate random variables from a given
law. In the previous sections, we saw how to simulate from a few distributions in R
(rnorm(), runif()). When the distribution to simulate from is not implemented in
R, you can use one of the methods introduced in this section.

12.5.1 Simulating from Another Distribution

There sometimes exists a simple formula expressing the random variable X with
distribution L, from which we wish to sample observations, as a function of one
or several random variables with a standard distribution. It is then easy to build a
generator with distribution L, thanks to this formula. The very simple following
example illustrates this point. For example, recall that a random variable following
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a �2
1 distribution can be obtained by taking the square of a standard normal random

variable.

> rchi2.1 <- function() rnorm(1)ˆ2 # X � N .0; 1/ ) X2 � �2
1
.

Do it yourself Ï
Generate observations from a T U.2/ distribution (see the definition of this
distribution in Sect. 12.7, page 409).

12.5.2 Inverse Transform Method

Suppose we know the inverse cumulative distribution function F�1
X of the random

variable X, and we wish to draw observations following the same distribution as X.
This is very easy to do with a generator U with distribution U.0; 1/, thanks to the
following formula:

QX D F�1
X .U/:

Indeed, the cumulative distribution function of the random variable QX happens to
be FX. This property is known as inverse transform method and was discovered by
R.A. Fisher ([16]).

Do it yourself Ï
Recall that the cumulative distribution function of an exponential random
variable X with distribution E.
/ is

FX.xI
/ D
�
1 � e��x; x � 0;

0; x < 0:

Calculate F �1
X and then use the function runif() to generate observations

from the distribution E.2/.

12.5.3 Rejection Sampling

Suppose we know the density function fX of the random variable X, but not its
inverse cumulative distribution. We wish to simulate observations following the
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same distribution as X. Rejection sampling consists in generating data following a
distribution with density g close to f (in the sense that fX.x/ 
 c � g.x/ for some
c > 0) and then discarding some proportion of these data, so as to get data which
follow the desired distribution.

The algorithm is as follows:

(1) generate a data point y using a random variable Y with density g;
(2) generate u from a random variable U with density U.0; 1/;
(3) if c � g.y/ � u 
 f .y/, then keep y as a generated data point; else discard it

and return to the start of the algorithm.

The values output by this algorithm can be used as if they were generated by a
random variable with density fX. The best value for the constant c to minimize the

number of rejections is c D supx

fX.x/

g.x/
.

Do it yourself Ï
Use the rejection method to generate observations from the distribution
N .0; 1/, using as reference function the density of an exponential distribu-

tion with parameter 
 D 1. Take the value c D
q

e1

2�
, and use the function

rbinom() to assign a positive or negative sign to the values given by the
rejection algorithm.

12.5.4 Simulation of Discrete Random Variables

Suppose we wish to simulate a sample from a discrete random variable X which
satisfies P.X D xi / D pi for all i in N (or a subset of N). Define U as a random
variable with distribution U.0; 1/, which can be sampled from with the function
runif(), and use the following algorithm:

�
X D x0 if 0 < U 
 p0I
X D xi if

Pi�1
j D0 pj < U 
Pi

j D0 pj :

Do it yourself Ï
Use this algorithm to generate observations from the discrete uniform distri-
bution over the set f0; 1; 2; 3; 4; 5g.
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SECTION 12.6

Bootstrap

Resampling methods, also known as bootstrap methods, consist in using the infor-
mation available in a sample of observed values .x1; : : : ; xn/ to approximate the
distribution of the i.i.d. random variables X1; : : : ;Xn which generated this sam-
ple. We saw in Sect. 12.2.3.1 that the distribution of a random variable can be
described by the cumulative distribution function FX, and we saw in Sect. 12.4.2
how the cumulative distribution function can be approximated with the empiri-
cal cumulative distribution function OFXn

. The idea behind bootstrap is to generate
several observed data sets x�

1 D .x�
1;1; : : : ; x

�
n;1/; : : : ;x

�
B D .x�

1;B ; : : : ; x
�
n;B /

following the distribution described by OFXn
(which we know), as a proxy for

FX (which is unknown in practice). We then consider that these new data which
can be generated have the same properties as observations we would get if we
could use the generator based on FX (which we cannot in practice). We can
then use Monte Carlo techniques, as introduced in Sect. 12.4.1, to estimate for
example the bias and the variance of the estimator O�.X1; : : : ;Xn/ of some un-
known parameter � , with the formulae 1

B

PB
bD1
O�.x�

1;b
; : : : ; x�

n;b
/ � O�.x1; : : : ; xn/

and 1
B

PB
bD1

� O�.x�
1;b
; : : : ; x�

n;i /� 1
B

PB
j D1
O�.x�

1;i ; : : : ; x
�
n;i /

	2

. One question still

needs to be answered: how do we generate observations from OFXn
? This is in fact

very simple: all we need to do is draw with replacement n observations from the
original sample. The bootstrap procedure consists in generating B such samples x�

b

and use them as illustrated in the above example. The R function sample() is used
for the draw with replacement operation.

We return to the example from Sect. 12.4.4, where we tried to estimate the bias
and variance of the estimator Op (frequency of the number 4 for n throws of a die) of
the parameter p D � of the random variable X which represents whether we get a 4
when throwing a die.

> n <- 20 ; xvec <- throw.die(n) ; sum(xvec==4)/n
[1] 0.15

Draw with replacement a sample of length n from xvec:

> sample(xvec,n,replace=TRUE)
[1] 6 6 4 5 6 2 5 2 5 2 5 4 6 6 5 5 6 2 1 4
> B <- 10000
> vec.theta.star <- replicate(B,sum(
+ sample(xvec,n,replace=TRUE)==4)/n)
> mean(vec.theta.star) - sum(xvec==4)/n
[1] 0.00009
> ((B-1)/B)*var(vec.theta.star) ; sd(vec.theta.star)
[1] 0.006377992
[1] 0.07986632

In this very simple case, theory states that the bias is zero and the variance is
p.1 � p/=n D 0:00694.
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Tip

Note that the package boot() facilitates bootstrap:
boot(xvec,function(x,w) sum(x[w]==4)/n,B)

SECTION 12.7

Standard and Less Standard Distributions

12.7.1 Standard Distributions

Standard probability distributions are implemented in R. In Tables 12.1 and 12.2, we
give the functions to compute the density (or mass probability function), the cumu-
lative distribution function and the quantile function of these distributions. We also
give the instruction to generate pseudo-random numbers from these distributions.

Table 12.1: Standard discrete distributions. R functions for the mass function (d--),
cumulative distribution function (p--) and quantile function (q--). Instruction to
generate (r--) pseudo-random numbers from these distributions

Discrete distributions R functions
Expected value Probability mass
Variance functions P.X D x/

Binomial(m; ˛)

dbinom(x,size=m,prob=˛)
m˛ �

m
x

�
˛x.1 � ˛/m�xpbinom(q,size=m,prob=˛)

qbinom(p,size=m,prob=˛)
m˛.1 � ˛/

rbinom(n,size=m,prob=˛)

Poisson(�)

dpois(x,lambda=�)
�

e�� �x

xŠ

ppois(q,lambda=�)
qpois(p,lambda=�)

�
rpois(n,lambda=�)

Geometric(˛)

dgeom(x,prob=˛) 1
˛

.1 � ˛/x�1˛
pgeom(q,prob=˛)
qgeom(p,prob=˛) 1�˛

˛2rgeom(n,prob=˛)
dhyper(x,m=m,n=n,k=k) nm

N
(with N D n C m)

.m
x /. n

k�x/

.mCn
k /

Hyper- phyper(q,m=m,n=n,k=k)
geometric(m; n; k) qhyper(p,m=m,n=n,k=k) n.m=N /.1�.m=N //.N �n/

.N �1/rhyper(nn,m=m,n=n,k=k)
dnbinom(x,size=m,prob=˛)

m 1�˛
˛ �

xCm�1
m�1

�
˛m.1 � ˛/xNegative pnbinom(q,size=m,prob=˛)

binomial(m; ˛) qnbinom(p,size=m,prob=˛)
m 1�˛

˛2rnbinom(n,size=m,prob=˛)
(x %in% 1:m)/m mC1

2
1
m
1

f1;:::;mg

.x/
Discrete sum(1:m<=q)/m
uniformf1; : : : ; mg match(1,1:m/m>=p)

m2
�1

12sample(x=1:m,size=n,TRUE)
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12.7.2 � Less Standard Distributions

In the next tables, we give formulae to generate a sample from a few less standard
distributions.

Table 12.3 presents the following distributions: Rademacher Rad, Irwin-
Hall Irw.n/, Kumaraswamy Kum.a; b/, inverse normal GI.�; 
/, Lévy Levy.c/,
Log-logistic Log-Logis.˛; ˇ/, Rayleigh Ray.
2/, Rice Rice.
; �/, multinomial
M.n; p1; : : : ; pk/.

Table 12.3: Less standard distributions (notations: B1=2 � Bernoulli.1=2/, Y1;b �
Beta.1; b/, Z � N .0; 1/, Uk;U � U.0; 1/, G.˛; ˇ/ � Gamma.˛; ˇ/, L1=2.x/ D
ex=2

�
.1 � x/I0

� �x
2

� � xI1

��x
2

��
, I˛.�/: modified Bessel functions, B.˛; ˇ/: beta

function)

Distribution Density Generation Expected value
Variance

Rad 1=2 if k D ˙1 2B1=2 � 1
0
1

Irw.n/
1

2.n�1/Š

Pn
kD0.�1/k

�
n
k

�
Pn

kD1 Uk
n=2

�.x � k/n�1sgn.x � k/ n=12

Kum.a; b/ abxa�1.1 � xa/b�1 Xa;b D Y1=a

1;b

bB.1 C 1=a; b/

bB.1 C 2
a

; b/ � b2B2.1 C 1
a

; b/

GI.�; �/
h

�

2�x3

i1=2

exp
�

��.x��/2

2�2x

	 X D � C �2

2�

�
Z2 � jZj

�

q
4�� C �2Z2

�
�

X if U 
 �

�CX , else �2

X
�3

�

Levy.c/
q

c
2�

e�c=2x

x3=2
X D 1

G.1=2;c=2/

1
1

Log-Logis.˛; ˇ/ .ˇ=˛/.x=˛/ˇ�1

Œ1C.x=˛/ˇ
2
X D exp.Logistic.log.˛/; ˇ//

˛�=ˇ
sin.�=ˇ/

if ˇ > 1

˛2. 2b
sin 2b

� b2

sin2 b/
if ˇ > 2

Ray.�2/ x

�2 exp
�

�x2

2�2

	
X D �

p�2 log.U/
�

q
�
2

4��
2

�2

Rice.�; 
/ x

�2 exp
�

�.x2
C�2/

2�2

	
I0

�
x�

�2

	 R D
q

X2 C Y2 with �
p

�=2L1=2.�
2=2�2/

X 	 N .1; �2/ and Y 	 N .0; �2/ 2�2 C 
2 � ��2

2
L2

1=2

�
��2

2�2

	

M.n; p1; : : : ; pk/
nŠ

x1Š���xk Š
p

x1
1 : : : p

xk
k

Yj D arg mink
j 0

D1

�Pj 0

iD1 pi � U
	

E.Xi / D pi

if
Pk

iD1 xi D n X D Pn
j D1 Yj (Yj i.i.d) Var.Xi / D npi .1 � pi /

Table 12.4 gives formulae to generate a sample from the following less stan-
dard distributions: skew-normal SN.�; !2; ˛/, Laplace Lp.�; b/, shifted expo-
nential SE.l; b/, generalized Pareto GP.�; 
; �/, generalized error distribution
GED.�; 
; p/, Johnson SU JSU.�; 
; �; �/, symmetrical Tukey T U.l/, scale con-
taminated SC.p; d/, location contaminated LC.p;m/, Johnson SB SB.g; d/, sta-
ble S.a; b/.
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SECTION 12.8

Modelling a Phenomenon

Suppose we observe the following n D 500 values produced by some phenomenon.

> xvec
[1] 1 1 1 2 0 0 1 1 1 1 2 1 0 1 1 1 0 1 1 2 2 1 2 1 1 2 2 1 2

[30] 1 1 0 0 3 1 2 2 3 2 1 1 0 0 2 1 0 0 1 0 2 1 3 1 1 0 1 1 1
[59] 1 1 0 0 1 1 2 2 1 1 0 0 0 1 2 1 0 1 1 3 1 0 2 1 0 1 0 0 2
[88] 1 0 0 1 2 1 1 1 2 1 1 2 0 1 0 1 1 3 2 3 1 2 1 2 2 0 1 2 3
[117] 1 2 1 2 0 1 1 1 0 0 2 1 2 3 2 0 2 0 1 1 2 2 0 1 2 0 0 3 0
[146] 2 1 1 0 3 2 0 0 0 1 0 0 1 3 0 2 1 1 1 2 1 2 3 2 1 1 2 2 2
[175] 4 1 0 1 1 1 1 0 1 1 1 1 2 2 2 0 0 0 0 1 2 1 1 1 2 2 0 1 2
[204] 2 0 2 2 4 1 2 2 2 2 1 0 2 2 1 2 0 0 2 2 2 1 0 1 2 2 1 1 1
[233] 2 0 2 1 2 1 2 2 1 1 1 0 1 2 0 2 2 2 0 2 1 0 0 2 1 1 0 2 3
[262] 1 2 1 0 1 1 1 1 2 0 4 2 0 2 4 2 2 2 0 0 4 0 3 0 3 3 1 2 2
[291] 2 3 2 4 1 1 3 0 1 0 1 0 1 1 2 2 0 1 0 2 0 1 2 1 2 0 0 0 0
[320] 1 2 1 1 4 2 1 1 1 1 3 1 1 2 0 0 2 1 2 0 3 0 2 1 0 1 0 2 2
[349] 1 2 3 3 1 2 1 1 2 2 2 2 2 1 2 1 0 2 1 1 2 3 3 1 1 0 1 1 2
[378] 1 1 0 1 1 2 2 1 1 0 1 0 0 1 2 0 2 0 2 0 1 0 3 2 2 1 2 3 1
[407] 2 0 0 1 2 2 2 1 0 0 1 0 0 1 1 1 2 2 1 3 0 5 2 2 0 0 2 0 1
[436] 0 1 1 0 2 1 4 1 0 2 1 1 3 1 0 2 3 1 0 3 1 2 1 3 0 1 0 0 1
[465] 1 1 1 4 2 1 2 2 0 1 0 2 0 1 0 0 3 0 2 1 2 3 2 2 2 1 1 1 1
[494] 1 1 1 1 1 2 1

Given these data, a statistician will try to describe (mathematically) the gener-
ative process which led to these values. The observed values seem to arise in an
unpredictable fashion, and it seems difficult to find a logical (and deterministic)
sequence which would explain them. But can they be described?

Inductive inferential statistics can be used to go from observed facts about the
sample to the probability distribution in the population. To this end, a statistician
will for example first assume that each of these observations is a realization of a
single random variable X and that these observations are produced independently
of one another. Mathematically, this can be stated as “Let xn D .x1; : : : ; xn/ be
an (observed) sample of the random vector Xn D .X1; : : : ;Xn/ made of n D 500

independently and identically distributed (i.i.d.) random variables”. The statistician
is thus assuming that “Mother Nature” owns a random number generator X, known
to her alone, and that the statistician obviously does not know. The statistician’s aim
is to guess what the generator is, as far as possible. This process is called statistical
modelling.

The statistician then searches within its toolbox of models and starts with the
model which seems most simple (parsimony principle) and adequate. The random
variables at play are discrete, so he has the following probabilist models at its dis-
posal:

� the binomial distribution Bin.m; ˛/;
� the Poisson distribution P.
/.
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Given the observations (numbers between 0 and 4), the binomial distribution is
most appropriate.

The statistician now needs to estimate the unknown parameters of this model, i.e.
plausible values for the parameters of the chosen distribution (here, m and ˛). This
is the parameter estimation phase, which was described in Sect. 12.4.1.

Note

As you may have guessed, the 500 data above were simulated with a com-
puter. We let ourselves on the other side of the fence (the side of “Mother
Nature”) to generate these data. We can now reveal that we used the following
generator:

X <- function() rbinom(500,5,1/4)

One of the main advantages of computers is that we can be simultaneously on
either side of the fence, to better understand the phenomena around us. This is
of course not possible when working with real data.

The many distributions we have introduced in this chapter can be used to model
other types of phenomena. The reader should be able to find a distribution amongst
those we have listed to model a specific phenomenon.

Note

For example, the following remarks are worth noting:

� the Bernoulli distribution (rbinom(n,1,p)) is used when a random ex-
periment has only two possible outcomes: success, with probability p, and
failure, with probability 1� p;

� the negative binomial.k; p/ distribution (rnbinom(n,k,p)) models the
number of observations until the kth success (included);

� the Poisson.
/ distribution (rpois(n,
)) is the distribution of a variable
X which counts the number of realizations of a rare event, for example, per
unit of time or per unit of area;

� the exponential(
) distribution (rexp(n,
)) is used to model the time at
which a system breaks down or, equivalently, the lifespan of a system;

� the Pareto distribution is often used to describe the distribution of incomes;
� the Cauchy distribution describes the points of impact of particles emitted

in a beam;
� the beta distribution is used to fit distributions with known support.
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It is also worth noting that the website http://en.wikipedia.org/wiki/
List_of_probability_distributions describes many other distributions.

Warning

We only modelled phenomena involving several independent copies of the
same random variable. In Chap. 14, we will present a statistical tool to model
some phenomena involving several interacting random variables.

http://en.wikipedia.org/wiki/List_of_probability_distributions
http://en.wikipedia.org/wiki/List_of_probability_distributions
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Memorandum

d--: mass or density function (e.g., dnorm())
p--: cumulative distribution function (e.g., pchisq())
q--: quantile function (e.g., qt(), qf())
r--: pseudorandom number generation (e.g., runif())

✎
Exercises

12.1- Which R function would you use to generate numbers from a N .0; 1/ distri-
bution?

12.2- Which R function would you use to generate numbers from a N .2; 10/ dis-
tribution?

12.3- Which R function would you use to calculate the quantiles of a �2 distribu-
tion?

12.4- Which R function would you use to calculate the density of a Fisher distribu-
tion?

12.5- Which R function would you use to calculate the quantiles of a Student dis-
tribution?

12.6- How would you compute the probability that X lays between 3 and 5 given
that X � N .4; 2/?

12.7- How would you calculate the quantile of order p D 0:95 of a N .0; 1/?

Ï
Worksheet

Simulations

A- Study of the Distribution f .x/ D 3
2

p
x on Œ0; 1�

12.1- Check that f .x/ is a density, using the function integrate().
12.2- Simulate a sample of size 1; 000 from the distribution defined by the density

f .x/ D 3
2

p
x over Œ0; 1�.

12.3- Calculate the empirical mean and variance.
12.4- Compare with the theoretical values.
12.5- Calculate and compare the theoretical and empirical probabilities of the fol-

lowing classes:
Œ0; 0:30�, �0:30; 0:50�, �0:50; 0:70�, �0:70; 0:85�, �0:85; 1�.
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B- Study of the Generalized Pareto Distribution

Let X be a random variable following a generalized Pareto distribution
GP.�; 
; �/. The density of this distribution is

fX.x/ D
1






1C �.x � �/




�� 1
�

�1

with
x � � if � � 0 and x 
 � � 
=� if � < 0:

It is given that

E.X/ D �C 


1 � � .� < 1/

and

Var.X/ D 
2

.1 � �/2.1 � 2�/ .� < 1=2/:

We can simulate from X with the following formula:

X D �C 
.U�� � 1/
�

where U is a uniform random variable over Œ0; 1�.

12.1- Propose an R code to generate a sample of size n from aGP.�; 
; �/ distribu-
tion. Your source code should use the following variables: n, mu, sigma and
xi.

12.2- Simulate a sample of size n D 1; 000 from the distribution GP.0; 1; 1=4/.
12.3- Calculate the empirical mean and variance.
12.4- Compare with the theoretical values.
12.5- Repeat questions 2 to 3 with n D 10; 000.
12.6- Plot in red the density histogram of your sample. Take 500 equidistant classes

and limit the display of the histogram to the interval Œ0; 10� on the x-axis.
12.7- Overlay the density plot of the GP.0; 1; 1=4/ distribution (in blue). Note that

the plot is close to the histogram.

C- Uniform Distribution on a Square

12.1- Simulate 1,000 observations from .X1;X2/ which follow the uniform distri-
bution over the square Œ0; 1� � Œ0; 1�.

12.2- Get an approximation of the probability that the distance between .X1;X2/

and the nearest edge is less than 0.25.
12.3- The same question for the distance to the nearest vertex.
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12.4- Try to identify the theoretical distribution of the variable distance to the
nearest edge: expected value, variance and density.

D- Towards Modelling

A statistician believes that the world around us and the phenomena that occur are
a large entanglement of random events, which can be modelled in a simplified way
by random variables.

12.1- Start with the simple, and classical example of a coin toss. The outcome of
this experiment is the observation of HEAD or TAIL at each toss. This can be
modelled by a random variable X with distribution a Bernoulli with parameter
1=2. This experiment can be reproduced with a computer. Create a function
X which simulates a coin toss. You can toss your virtual coins a few times.

12.2- We can also propose a modelling of the throw of a die. The outcome of this
experiment is the observation of the number on the upper side of the die at
each throw. If the die is not weighted, this can be modelled by a random vari-
able X with distribution a discrete uniform over f1; 2; 3; 4; 5; 6g. This exper-
iment can be reproduced with a computer. Create a function throw.die()
using the function sample(). You can throw your virtual die a few times.

12.3- To simulate the game of Yahtzee, we shall create a function yahtzee()
which throws five virtual dice. Create this function using the parameters size
and replace of the function sample().

12.4- Estimate the probability of getting a yahtzee, i.e. five identical dice in one
throw (hint: use the functions apply(), replicate() and unique()). You
should get a value close to 1

64 .

E- Box–Muller Theorem

Let U1 and U2 be two independent random variables uniform over the interval
Œ0; 1�. The variables

Z1 D
p�2 log.U1/ cos.2	U2/

Z2 D
p�2 log.U1/ sin.2	U2/

are then two independent standard normal random variables.

12.1- Generate n D 1; 000 pairs of observations .´1; ´2/1; : : : ; .´1; ´2/n using this
algorithm.

12.2- Use the function kde2d() from package MASS to estimate the bivariate den-
sity of these data.

12.3- Use the functions spheres3d() and surface3d() from the package rgl to
plot these observations and the surface of the estimated bivariate density of
these data. Also plot the surface of the density of a bivariate standard normal
distribution. Note that you get a bell plot, typical of the bivariate normal.



Chapter 13
Confidence Intervals and Hypothesis Testing

Goals of this chapter
This chapter is a catalogue of R functions commonly used to get confidence
intervals for usual parameters: mean, proportion, variance, median and correla-
tion. We also present a catalogue of R functions to perform standard hypothesis
testing. Furthermore, a few practical worksheets will help the reader understand
how to interpret confidence intervals, as well as the various errors related to hy-
pothesis testing.

SECTION 13.1

Notations

Table 13.1 gives the notation we need to define the confidence intervals and hypoth-
esis tests we introduce later in the chapter.

Table 13.1: Some notation for standard parameter estimation

Parameter Notation Estimator Estimate R function

Mean � X Nx mean()

Variance �2 Oσ2 O�2 var()

Median me cme cme median()

Correlation 
 Oρ O
 cor()

Proportion p Op Op mean()

Table 13.2 gives the notation of quantiles we shall use.

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3 13,
© Springer Science+Business Media New York 2013
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Table 13.2: Notation of various quantiles of order p

Distribution Notation R function
Normal: N .0; 1/ up qnorm(p)
Student with n d.f.: T .n/ tn

p qt(p,df=n)

Chi-squared with n d.f.: �2.n/ qn
p qchisq(p,df=n)

Fisher with n and m d.f.: F.n; m/ f n;m
p qf(p,df1=n,df2=m)

d.f.: degrees of freedom

SECTION 13.2

Confidence Intervals

We are given a sample Xn D .X1; : : : ;Xn/
T of random variables which depend on

an unknown parameter � which we wish to estimate. A random confidence interval
with level (of confidence) 1�˛ for � consists in two random variables A WD a.XnI˛/
and B WD b.XnI˛/ such that

P ŒA 
 � 
 B� D 1 � ˛:
The random variables A and B are the boundaries of this random confidence interval,
usually noted

CI1�˛.�/ D ŒA;B�:

When the sample is observed and we are given the data .x1; : : : ; xn/, we note

ci1�˛.�/ D Œa; b�
the resulting realization of the confidence interval, where a D a.x1; : : : ; xnI˛/ and
b D b.x1; : : : ; xnI˛/. In the remainder of this chapter, by abuse of language, we
shall not distinguish between a random confidence interval and its realization.

Finally, note that the correct way of interpreting a (random or realized) confi-
dence interval will be given in the practical section. For now, we only give a cata-
logue of classical confidence intervals for the usual parameters: mean, proportion,
variance, median and correlation.

13.2.1 Confidence Intervals for the Mean

� Case of a large sample (n > 30) or of a small sample under the assumption
of normality

I Definition: A confidence interval at level .1� ˛/ for the mean � is

ci1�˛.�/ D
�
Nx � tn�1

1�˛=2

O
p
n
; Nx C tn�1

1�˛=2

O
p
n

�
:
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I R instruction: The confidence interval is given by the function t.test().

I Example of use: Using the nutrition study, we wish to build a confidence int-
erval of the mean of the weight of elderly people living in Bordeaux.

> t.test(weight,conf.level=0.9)$conf.int
[1] 65.16024 67.80436
attr(,"conf.level")
[1] 0.9

We get the confidence interval Œ65:16; 67:80�with confidence level 0:9.

� Case of small samples

I Definition: When no assumption is made about the data, we suggest using a
bootstrap approach. Several bootstrap confidence intervals are given in [14].

I R instruction: The functions boot() and boot.ci() from package boot()
can be used.

I Example of use: We are given a sample of cholesterol levels (in g/l) of ten
women. This sample is representative of women living in France:

> chol.levels <- c(3,1.8,2.5,2.1,2.7,1.9,1.5,1.7,2,1.6)

Without the assumption of normality, we propose a confidence interval at the
95% level of the mean cholesterol level of women living in France.
> require("boot")
> mymean <- function(x,indices) mean(x[indices])
> level.boot <- boot(chol.levels, mymean, R = 999,
+ stype = "i", sim = "ordinary")
> boot.ci(level.boot, conf = 0.95,type = c("norm","basic",
+ "perc","bca"))
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates
CALL:
boot.ci(boot.out = chol.levels.boot, conf = 0.95, type =
c("norm", "basic", "perc", "bca"))
Intervals:
Level Normal Basic
95% ( 1.787, 2.366 ) ( 1.770, 2.340 )
Level Percentile BCa
95% ( 1.82, 2.39 ) ( 1.83, 2.41 )
Calculations and Intervals on Original Scale

13.2.2 Confidence Intervals for a Proportion p

� Case of large samples (np � 5 and n.1 � p/ � 5)
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I Definition: A confidence level at level .1�˛/ for the unknown proportionp is

ci1�˛.p/ D
"

Op � u1�˛=2

r
Op.1 � Op/
n

; Op C u1�˛=2

r
Op.1 � Op/
n

#

:

I Conditions for validity: The required conditions (np � 5 and n.1 � p/ � 5)
can be “checked” a posteriori by replacing p with the boundaries of the
confidence interval. If the conditions are not verified, use the exact method
given for the case of small samples.

I R instruction: The function binom.approx() from package epitools can
be used.

I Example of use: We wish to build a confidence interval for the proportion of
men (coded 2 below) amongst elderly people in Bordeaux, from the nutrition
study.

> require("epitools")
> table(gender) # Sampling distribution of the gender

# variable.
gender

1 2
85 141
> binom.approx(141,226)[c("lower","upper")] # Calculating

# the CI
# with n=226.

lower upper
1 0.5607393 0.6870483

Warning

The function prop.test() also gives a confidence interval for the propor-
tion, based on the score statistic.

� Case of small samples: exact calculation

I Definition: A confidence interval at level .1�˛/ for proportionp comes from

nOp � Bin.n; p/:

I R instruction: You can use the function binom.test().

I Example of use: We return to the previous example to compute exactly the
confidence interval for the proportion of men amongst elderly people in
Bordeaux.

> binom.test(141,226)$conf # Computing the CI with
# n=226.



13.2 Confidence Intervals 421

[1] 0.5572321 0.6872590
attr(,"conf.level")
[1] 0.95

Tip

The function binom.exact() from the package epitools returns the
same confidence interval.

13.2.3 Confidence Intervals for a Variance

� Case of samples under the assumption of normality

I Definition: A confidence interval at level .1� ˛/ for the variance 
2 is

ci1�˛.

2/ D

"
.n � 1/ O
2

qn�1
1�˛=2

;
.n � 1/ O
2

qn�1
˛=2

#

:

I R instruction: The relevant function is sigma2.test(). This function is
included in the package associated with this book.

I Example of use: We wish to build a confidence interval for the variance of the
weight of elderly people living in Bordeaux, using the nutrition study.

> sigma2.test(weight,conf.level=0.9)$conf
[1] 124.8330 170.3277
attr(,"conf.level")
[1] 0.9

� Case of samples without the assumption of normality

When no assumption is made about the data, we suggest using a bootstrap
method, as for the mean.

I R instruction: You can use the functions boot() and boot.ci() available in
package boot().

I Example of use: We return to the data about women’s cholesterol levels and
compute a confidence interval for the cholesterol level without assuming nor-
mality of the data.

> chol.levels <- c(3,1.8,2.5,2.1,2.7,1.9,1.5,1.7,2,1.6)
> require("boot") # Load package boot.
> variance <- function(x,indices) var(x[indices])
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> level.boot <- boot(chol.levels,variance,R=999,
+ stype="i",sim="ordinary")
> boot.ci(level.boot,conf=0.95,type=c("norm",
+ "basic","perc","bca"))
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates
CALL:
boot.ci(boot.out=level.boot,conf=0.95,type=

c("norm","basic","perc","bca"))
Intervals:
Level Normal Basic
95% ( 0.1060, 0.4412 ) ( 0.1026, 0.4448 )
Level Percentile BCa
95% ( 0.0521, 0.3943 ) ( 0.1201, 0.4670 )
Calculations and Intervals on Original Scale
Some BCa intervals may be unstable

Note

Note that for large samples where you cannot assume normality, you can
use an asymptotic approach. This is available in the package asympTest. Here
is an example computing a confidence interval for the weight of elderly people
living in Bordeaux using the nutrition study.

> require("asympTest")
> asymp.test(weight,par="var")$conf
[1] 121.6842 167.9196
attr(,"conf.level")
[1] 0.95

13.2.4 Confidence Intervals for a Median

I Definition: A confidence interval at level .1 � ˛/ for the medianme is

ci1�˛.me/ D
�
x.m1/; x.m2C1/

�
;

where the x.i/ are the ordered values of the sample of size n, m1 is the small-
est value such that P.L 
 m1/ � ˛=2 and m2 is the largest value such that
P.L � m2/ > ˛=2 with L � Bin.n; 0:5/.

I R instruction: A confidence interval for the median can be computed with the
function qbinom().

I Example of use: We return to the example of cholesterol levels and wish to build
a 95% confidence interval for the median cholesterol level of women living in
France.
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> chol.levels <- c(3,1.8,2.5,2.1,2.7,1.9,1.5,1.7,2,1.6)
> m1 <- qbinom(0.025,length(chol.levels),0.5)
> m2 <- qbinom(1-0.025,length(chol.levels),0.5)
> median.ci <- c(sort(chol.levels)[m1],sort(chol.levels[m2+1]))
> median.ci
[1] 1.6 2.0

Note

It is always possible to build a bootstrap confidence interval. For this exam-
ple, the percentile method returns:

> chol.levels <- c(3,1.8,2.5,2.1,2.7,1.9,1.5,1.7,2,1.6)
> require("boot")
> mymedian <- function(x,indices) median(x[indices])
> levels.boot <- boot(chol.levels,mymedian,R=999,
+ stype="i",sim="ordinary")
> levels.int <- boot.ci(levels.boot,conf=0.95,type="perc")
> levels.int$perc[4:5]
[1] 1.7 2.6

Also note that a non-parametric confidence interval is implemented in the
function wilcox.test().

> wilcox.test(chol.levels,conf.int=TRUE)$conf
[1] 1.70 2.45
attr(,"conf.level")
[1] 0.95

13.2.5 Confidence Intervals for a Correlation Coefficient

I Definition: A confidence interval at level .1 � ˛/ for the correlation coefficient
� is

ci1�˛.�/ D
"

exp .2 O�min/� 1
exp .2 O�min/C 1

;
exp .2 O�max/ � 1
exp .2 O�max/C 1

#

;

where O�min D 1
2

ln
�

1C O

1� O


	
� u1�˛=2

1p
n�3

and O�max D 1
2

ln
�

1C O

1� O


	
C

u1�˛=2
1p
n�3

.

I R instruction: You can use the function cor.test().

I Example of use: We now wish to build a confidence interval for the correlation
coefficient between the weight and height of elderly people living in Bordeaux,
based on the nutrition study.

> cor.test(weight,height)$conf
[1] 0.5450122 0.7032775
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attr(,"conf.level")
[1] 0.95

Warning

This confidence interval is only valid under the assumption of joint nor-
mality of the pair of variables, here (weight,height). If this assumption is not
verified, you can always use bootstrap.

13.2.6 Summary Table for Confidence Intervals

Table 13.3 below provides a summary for confidence intervals.

Table 13.3: Summary for confidence intervals

Type Condition for validity R function

Proportion
np � 5 and n.1 � p/ � 5 prop.test(x)$conf

None binom.test(x)$conf

Mean n > 30 or normality t.test(x)$conf

Variance Normality sigma2.test(x)$conf

Median None wilcox.test(x)$conf

Correlation Joint normal cor.test(x)$conf

SECTION 13.3

Standard Hypothesis Testing

We present briefly the philosophy of hypothesis testing.

Hypothesis tests propose a tool to aid decision or to validate an assertion of
interest H1 (often called the “alternative hypothesis”). This statistical decision will
be made based on a decision rule, which is intuitively built from a test statistic
T (which depends on an observed sample). This decision may be wrong, so it is
important to measure the risk of accepting H1 for each of the situations which
are described by not-H1. These risks of wrongly accepting H1 are called risks of
the first kind and are defined under not-H1. We then aim at controlling the worse
(largest) of these risks, which is defined for a specific situation of not-H1, usually
noted H0 and called the “null hypothesis”. Thus any decision rule is associated
with a maximum risk. Amongst potential decision rules, we choose the one which
guarantees a low maximum risk ˛, specified in advance (usually 5%). This is called
the level of significance ˛ of the test.

When we apply this decision rule to an observed data set, it is interesting to know
what is the smallest significance level that would have led to accepting H1. In both
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cases, the answer is what is called the p-value, defined as the (maximal) risk level
that would lead to accepting H1. The p-value is given by any statistical software,
and the user can then compare this risk to a significance level ˛ (fixed by the user
or by some custom). Its interpretation is extremely simple: the smaller the p-value,
the more reliable the decision (to accept the assertion of interest H1).

In the same context, it is worth mentioning the concept of power of a test:
this function measures the probability of accepting H1 under any situation. These
concepts will be explained and detailed, using the power of R, in the practical sec-
tion. The remainder of this section gives a catalogue of classical statistical testing
procedures and of R instructions to put them to use. Unless specified otherwise, the
significance level of all tests presented hereafter is fixed at ˛ D 5%.

Advanced users

Although we prefer our approach of hypothesis testing, which insists on the
assertion of interest H1, we present a mathematical curiosity which explains
why some authors (often mathematicians) use the notation H0 to designate
not-H1. This makes sense from a mathematical point of view, since the logic of
hypothesis testing is similar to proof by contradiction. Consider the simplistic
example where we wish to prove H1 W �X > �0 based on a sample Xn D
.X1; : : : ;Xn/ of i.i.d. r.v.s following the distribution N .�X; 1/.

(1) We reason by contradiction and suppose our hypothesis H1 is wrong. We
are then in the contrary of H1, which is noted here H0 W �X 
 �0. For
example, this corresponds to the situation where �X D Q� for some value
Q� lesser than or equal to �0.

(2) We then wish to measure the plausibility of the contradiction hypothesis
H0. To this end, we shall measure how negative is the unknown spread
d D �X��0, estimated by the test statistic T D OμX��0 D QTC . Q� � �0/,
where QT D � OμX � Q�

� � N .0; 1=n/.
(3) The data, which carry information about the value of �X since they were

generated from a distribution with this expectation, give a realization tobs

of the statistic T. If H0 were true, then the random variable T D OμX �
�0, which measures the spread between �X and �0, would be unlikely to
produce large values. Thus,

p. Q�/ WD P�XD Q�ŒT � tobs� D P�XD Q�ŒQTC Q� � �0 � tobs�

D P�XD Q�ŒQT � tobs � . Q�� �0/�

from (1)
 P�XD Q�ŒQT � tobs � WD Qp
(independent from Q� here/:
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Note that p. Q�/ (of which we do not know the numerical value) can be
seen as an extension of the p-value for the situation Q� and that Qp is only
a computable upper bound, used to control this extended p-value. If the
value Qp D P ŒN .0; 1=n/ > tobs� is very small (and thus the probability
p. Q�/ is even smaller), we get a (quasi) contradiction since the event fT �
tobsgwith probabilityp. Q�/ did occur, even though we expected it to almost
never happen under H0. By contradiction, our hypothesis H1 is certainly
true and Qp (smallest upper bound of the p. Q�/, Q� 
 �0, attained when
Q� D �0) expresses the strength of the contradiction (or of conviction) of
not-H1, or the risk of being wrong when deciding H1. The probability Qp
is nothing else than the p-value we defined earlier.

13.3.1 Parametric Tests

13.3.1.1 Tests of the Mean

� Comparing the theoretical mean and a reference value (case with one
sample)

I Description of the test: Let X be a quantitative variable with theoretical mean
� and variance 
2. Using a sample of size n, we wish to compare the the-
oretical mean � to a reference value �0. The hypotheses of the test are

H0 W � D �0 and H1 W �
ˇ
ˇ
ˇ
ˇ

>

¤
<

ˇ
ˇ
ˇ
ˇ�0. Under H0, the test statistic is

T D pn

 NX � �0

Oσ
�
� T .n � 1/:

I Conditions for validity: Normally distributed data or large sample size
(n > 30).

I R instruction: Use the function t.test().

I Example of use: In the data set Intima-media, we wish to know whether peo-
ple with a body mass index (BMI) above 30 have thicker intima–media on
average than the population from which the sample is taken. We make the
assumption that the theoretical mean of intima–media thickness in this popu-
lation is 0.58 mm:

> BMI <- weight/((height/100)ˆ2)
> measure1 <- measure[BMI>30]
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> t.test(measure1,mu=0.58,alternative="greater")
One Sample t-test

data: measure1
t = 1.5272, df = 8, p-value = 0.08262
alternative hypothesis: true mean is greater than 0.58
95 percent confidence interval:
0.5715358 Inf
sample estimates:
mean of x
0.6188889

We cannot give a positive answer to the question, at the specified risk level
˛ D 5%.

� Comparing two theoretical means (case with two samples)

I Description of the test: Let X1 and X2 be two quantitative variables (measuring
the same quantity, but in two different populations). We assume that X1 has
theoretical mean �1 and variance 
2

1 and that X2 has theoretical mean �2 and
variance 
2

2 . Using estimations computed from two samples of respective size
n1 and n2 from the two populations, we wish to compare �1 and �2. The

hypotheses of the test are H0 W �1 D �2 and H1 W �1

ˇ̌
ˇ
ˇ

>

¤
<

ˇ̌
ˇ
ˇ�2. Under H0, the

test statistic is

T D NX1 � NX2

Oσ
q

1
n1
C 1

n2

� T .n1 C n2 � 2/;

where Oσ2 D .n1�1/Oσ2
1

C.n2�1/Oσ2
2

n1Cn2�2
, Oσ1 and Oσ2 being estimators of the variance in

the two populations.

I Conditions for validity: Normally distributed variables X1 and X2 and equal
variance.

I R instruction: Use the function t.test().

I Example of use: We wish to see whether there is a significant difference of
intima–media thickness between women with a physical activity and women
with no such activity.

> measure.SPORT.1 <- measure[SPORT==1&GENDER==2]
> measure.SPORT.0 <- measure[SPORT==0&GENDER==2]
> t.test(measure.SPORT.1,measure.SPORT.0,var.equal=FALSE)

Welch Two Sample t-test
data: measure.SPORT.1 and measure.SPORT.0
t = -1.4693, df = 53.179, p-value = 0.1476
alternative hypothesis: true difference in means is not

equal to 0
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95 percent confidence interval:
-0.07488130 0.01155649
sample estimates:
mean of x mean of y
0.5130435 0.5447059

We cannot give a positive answer to the question, at the specified risk level ˛ D
5%.

Warning

However, we need to check the hypothesis of equal variances (see the next
section). Thus the value of the argument var.equal in the function t.test()
should be set depending on the result of the test of equal variances. The test
statistic is then

T� D NX1 � NX2r
Oσ2

1

n1
C Oσ2

2

n2

:

This statistic follows a Student distribution; the number of degrees of free-
dom can be computed using Satterthwaite’s approximation. For large samples,
the statistic T� follows a N .0; 1/ distribution.

� Case of paired samples

I Description of the test: We wish to compare the theoretical means of two
random variables X1 and X2 based on two paired samples. To this end, we use
the difference random variable D D X1 � X2, and we compare the theoretical
mean ı D �1 � �2 of D with the reference value 0. We are thus back to
the case of a test of the mean for one sample. The hypotheses of the test are

H0 W �1 � �2 D 0 and H1 W �1 � �2

ˇ̌
ˇ
ˇ

>

¤
<

ˇ̌
ˇ
ˇ 0. Under H0, the test statistic is

T D pn NDOσ � T .n � 1/:

I Conditions for validity: Normally distributed data or large sample size
(n > 30).

I R instruction: Use the function t.test()with the argument paired=TRUE.

I Example of use: We wish to compare the results from two labs for a specific
examination. Both labs made the necessary measurement on 15 patients.

> dose.lab1 <- c(22,18,28,26,13,8,21,26,27,29,25,24,
+ 22,28,15)
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> dose.lab2 <- c(25,21,31,27,11,10,25,26,29,28,26,23,
+ 22,25,17)
> t.test(dose.lab1,dose.lab2,paired=TRUE)

Paired t-test
data: dose.lab1 and dose.lab2
t = -1.7618, df = 14, p-value = 0.0999
alternative hypothesis: true difference in means is not

equal to 0
95 percent confidence interval:
-2.0695338 0.2028671
sample estimates:
mean of the differences

-0.9333333

At the specified risk level ˛ D 5%, we cannot decide that the two labs give
different results on average.

Note

This test is valid when n is large or when the data can be assumed to be
normally distributed. Otherwise, we advise you to use a non-parametric test
such as the sign test or Wilcoxon’s test (see Sect. 13.3.3).

13.3.1.2 Tests of Variance

� Comparing the theoretical variance with a reference value (case with one
sample)

I Description of the test: Let 
2 be the variance of a quantitative variable X.

The hypotheses of the test are H0 W 
2 D 
2
0 and H1 W 
2

ˇ
ˇ
ˇ̌

>

¤
<

ˇ
ˇ
ˇ̌ 
2

0 . Under H0,

the test statistic is

T D .n � 1/Oσ2


2
0

� �2.n � 1/:

I Conditions for validity: Variable X must follow a normal distribution.

I R instruction: You can use the function sigma2.test() from the package
associated with this book.

I Example of use: A factory makes cans of weight � with precision 
2 D 10.
We wish to show that the production line is faulty (the precision is not 
2 D
10). Here are the weights from a series of 20 cans.

> weights <- c(165.1,171.5,168.1,165.6,166.8,170.0,168.8,
+ 171.1,168.8,173.6,163.5,169.9,165.4,174.4,171.8,
+ 166.0,174.6,174.5,166.4,173.8)
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> sigma2.test(weights,var0=10)
One-sample Chi-squared test for given variance

data: weights
X-squared = 24.2045, df = 19, p-value = 0.3768
alternative hypothesis: true variance is not equal to 10
95 percent confidence interval:

7.367682 27.176225
sample estimates:
var of x
12.73924

We cannot give a positive answer to the question at the specified risk level
˛ D 5%.

Note

If the data are not normally distributed, and for large samples, you can
use the function asymp.test(x,parameter= "var",reference=10). This
function is included in the package asympTest.

� Comparing two theoretical variances (case with two samples)

I Description of the test: This test is often useful as a prerequisite for other tests,
such as the comparison of two means in the case with small samples. Indeed,
in this case, the statistic is not the same depending on whether the variances of
X1 (variable for the first sample) and X2 (variable for the second sample) can
be considered as equal or not. The hypotheses of the test are H0 W 
2

1 D 
2
2

and H1 W 
2
1

ˇ
ˇ̌
ˇ

>

¤
<

ˇ
ˇ̌
ˇ 


2
2 . Under H0, the test statistic is

T D Oσ
2
1

Oσ2
2

� F.n1 � 1; n2 � 1/:

I Conditions for validity: X1 and X2 must be normally distributed.

I R instruction: You can use the function var.test().

I Example of use: In the data set Intima-media, we wish to know whether
within the population of women, there is a significant difference of variance
of intima–media thickness between women who have a physical activity and
those who do not.

> measure.SPORT.1 <- measure[SPORT==1&GENDER==2]
> measure.SPORT.0 <- measure[SPORT==0&GENDER==2]
> var.test(measure.SPORT.1,measure.SPORT.0)

F test to compare two variances
data: measure.SPORT.1 and measure.SPORT.0
F = 0.303, num df = 22, denom df = 33, p-value =
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0.00468
alternative hypothesis: true ratio of variances is not

equal to 1
95 percent confidence interval:
0.1431908 0.6815918
sample estimates:
ratio of variances

0.3029910

We can conclude that there is a significant difference in the variance of
intima–media thickness between women who have a physical activity and
those who do not, at the ˛ D 5% risk level.

Tip

Remember to use the function asymp.test() for large samples without the
assumption of normality.

See also

For the comparison of more than two variances, see Bartlett’s test, which
will be presented in Sect. 15.1, page 509.

13.3.1.3 Tests of Proportion

� Comparing a theoretical proportion to a reference value (case with one
sample)

I Description of the test: Let p be the unknown frequency of a trait in a given
population. We observe data of presence/absence of this trait on individuals in
a sample of size n in this population. The hypotheses of the test are H0 W p D
p0 and H1 W p

ˇ
ˇ
ˇ
ˇ

>

¤
<

ˇ
ˇ
ˇ
ˇp0. Under H0, the test statistic is

U D Op � p0q
p0.1�p0/

n

� N .0; 1/:

I Conditions for validity: The sample must be large enough: check that np0 � 5
and n.1 � p0/ � 5.

I R instruction: You can use the function prop.test().

I Example of use: Assume (and this really is no more than an assumption)
that a case study called “Study of pregnant women in Abidjan” led to data
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collection after a large campaign of information and prevention of HIV
infection, which aimed at reducing the proportion of people infected by HIV,
especially amongst people aged 18 to 25. Assume that the first aim is that
the prevalence rate for pregnant women aged 18 to 25 be reduced to less
than 10 %. Using the subsample of pregnant women aged 18 to 25, we there-
fore wish to know whether the HIV prevalence rate is less than p0 D 0:1.
The data set is available at the URL http://www.biostatisticien.eu/
springeR/aidsafrica.xls.

> table(HIV[age<=25])
0 1

137 10
> prop.test(10,147,0.1,alternative="less",correc=FALSE)

1-sample proportions test without continuity
correction

data: 10 out of 147, null probability 0.1
X-squared = 1.6697, df = 1, p-value = 0.09815
alternative hypothesis: true p is less than 0.1
95 percent confidence interval:
0.0000000 0.1105720
sample estimates:

p
0.06802721

We cannot give a positive answer to the question at the specified ˛ D 5% risk
level.

I Case of small samples: In that case, the function binom.test() can be used
for an exact calculation based on the binomial distribution.

> binom.test(10,147,0.1,alternative="less")
Exact binomial test

data: 10 and 147
number of successes = 10, number of trials = 147,
p-value = 0.1208
alternative hypothesis: true probability of success is

less than 0.1
95 percent confidence interval:
0.0000000 0.1126571
sample estimates:
probability of success

0.06802721

Once again, we cannot give a positive answer to the question, at the specified
˛ D 5% risk.

� Comparing two theoretical proportions (case with two samples)

I Description of the test: Let p1 (respectively p2) be the unknown proportion
of individuals with a given trait within a population P1 (respectively P2). We
wish to compare p1 and p2. To this end, we use the frequencies Op1 and Op2 of

http://www.biostatisticien.eu/springeR/aidsafrica.xls
http://www.biostatisticien.eu/springeR/aidsafrica.xls
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this trait in two representative samples of the two populations, of respective
sizes n1 and n2. The hypotheses of the test are H0 W p1 D p2 and H1 W
p1

ˇ
ˇ
ˇ
ˇ

>

¤
<

ˇ
ˇ
ˇ
ˇp2. Under H0, the test statistic is

U D Op1 � Op2q
Op.1�Op/

n1
C Op.1�Op/

n2

� N .0; 1/;

where Op D n1 Op1Cn2 Op2

n1Cn2
.

I Conditions for validity: Large samples: check that n1 Op � 5, n1.1 � Op/ � 5,
n2 Op � 5 and n2.1 � Op/ � 5.

I R instruction: Use the function prop.test().

I Example of use: In the therapeutic test “Ditrame”, the underlying question
is whether the treatment has an effect on the HIV status of the child. If not,
then the HIV status of the child is independent of the treatment followed by
the mother. To answer this question, we use the table of crossed variables
Mother’s treatment group (TTTGRP) and Child’s HIV status (HIVSTATUS). We
give the observed contingency table of these two variables. The data set is
available at the URL http://www.biostatisticien.eu/springeR/TME_
Africa.xls.

> table(TTTGRP,HIVSTATUS)
HIVSTATUS

TTTGRP 0 1 9
0 139 59 3
1 152 41 7

> mytable <- as.matrix(table(TTTGRP,HIVSTATUS)[,c(2,1)])
> prop.test(mytable,correc=FALSE)

2-sample test for equality of proportions without
continuity correction

data: mytable
X-squared = 3.7574, df = 1, p-value = 0.05257
alternative hypothesis: two.sided
95 percent confidence interval:
-0.0004122543 0.1715013839
sample estimates:

prop 1 prop 2
0.2979798 0.2124352

With a risk of being wrong less than 5%, we can assert that the theoretical
proportion p1 of children with HIV in the non-treated group is greater than
the theoretical proportion p2 of children with HIV in the treated group.

13.3.1.4 Tests of Correlation

� Comparing a theoretical correlation coefficient with a reference value (case
with one sample)

http://www.biostatisticien.eu/springeR/TME_Africa.xls
http://www.biostatisticien.eu/springeR/TME_Africa.xls
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I Description of the test: Let � be the correlation coefficient of two quantitative
variables X and Y. We wish to test the hypotheses H0 W � D �0 and H1 W
�

ˇ
ˇ
ˇ
ˇ

>

¤
<

ˇ
ˇ
ˇ
ˇ �0. Under H0, the test statistic is

U D Z � �Z

Z

� N .0; 1/;

where Z D 1
2

ln
�

1COρ
1�Oρ

	
, �Z D 1

2
ln



1C �0

1 � �0

�
, 
2

Z D
1

n � 3 .

If we are interested in the linear association between X and Y (tested by taking
�0 D 0), then the test statistic under H0 is

T D Oρ
p
n � 2p
1 � R2

� T .n � 2/:

I Conditions for validity: The pair .X;Y/ follows a joint normal distribution.

I R instruction: You can use the function cor.test() if you are testing the lin-
ear association between X and Y. For a value other than �0 D 0, you can use
the function cor0.test() available in the package associated with this book.

I Example of use: In the data set BMI-child, we are interested in the linear
association between height and weight.

> cor.test(weight,height)
Pearson’s product-moment correlation

data: weight and height
t = 13.4327, df = 150, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.6570527 0.8036174
sample estimates:

cor
0.7389562

At the 5% risk level, we can assert that there is a linear association between
height and weight.

� Comparing two theoretical correlation coefficients (case with two samples)

I Description of the test: We are given two independent populations. Let �1

be the correlation coefficient between X and Y in population 1 and �2 the
correlation coefficient between X and Y in population 2. We wish to test
whether these two correlation coefficients are equal, based on two samples
of sizes n1 and n2. The hypotheses of the test are H0 W �1 D �2 and
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H1 W �1

ˇ
ˇ
ˇ
ˇ

>

¤
<

ˇ
ˇ
ˇ
ˇ �2. Under H0, the test statistic is

U D Z1 � Z2p
1=.n1 � 3/C 1=.n2 � 3/

� N .0; 1/;

with Z1 D 1
2

ln
�

1COρ1

1�Oρ1

	
and Z2 D 1

2
ln

�
1COρ2

1�Oρ2

	
, where Oρ1 and Oρ2 are the

estimators of the correlation coefficients.

I Conditions for validity: In both populations, the pair .X;Y/ must follow a
joint normal distribution.

I R instruction: You can use the function cor.test.2.sample() available in
the package associated with this book.

I Example of use: In the data set BMI-child, we wish to compare the intensity
of the relation height–weight between the group of girls and the group of boys.

> indg <- which(GENDER=="F") # To get the indices of girls.
> indb <- which(GENDER=="M") # To get the indices of boys.
> cor.test.2.sample(height[indg],weight[indg],
+ height[indb],weight[indb])
$statistic
[1] -1.67379
$p.value
[1] 0.09417185

At the 5% risk level, we cannot show a significant difference between the two
coefficients of linear correlation.

13.3.2 Independence Tests

13.3.2.1 �2 Test for Independence

I Description of the test: Let X1 and X2 be two qualitative variables (or variables
made qualitative by grouping): X1 has l modalities and X2 has c modalities.
We wish to know whether these two variables are dependent, i.e. whether the
modalities of variable X2 are not distributed in the same way in each of the l
subpopulations made of individuals taking each of the l modalities of variable X1.
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We know the value of these modalities for n individuals; these data are usually
given in a contingency table (or table of observed frequencies) and we compare
this table to the theoretical contingency table for n individuals calculated under
the assumption of independence of the two variables. The hypotheses are H0:
variables X1 and X2 are independent and H1: the variables are not independent.
Under H0, the test statistic is

X2 D
lX

iD1

cX

j D1

.Nij � tij /2
t2ij

� �2..c � 1/.l � 1//;

where Nij is the observed count value and tij is the theoretical count value
calculated under H0, for the modality i of X1 and j of X2.

I Conditions for validity: The theoretical values tij must be greater than 5; other-
wise, you can use Yates’ �2 (if the values are greater than 2.5 and only for 2 � 2
tables) or Fisher’s exact test.

I R instruction: Use the function chisq.test() with the argument correct
=FALSE.

I Example of use: We return to the example of the “Ditrame” study, where the
underlying question is to know whether treatment has an effect on the HIV status
of the child.

> mytable
HIVSTATUS

TTTGRP 1 0
0 59 139
1 41 152

> chisq.test(mytable,correct=FALSE)
Pearson’s Chi-squared test

data: mytable
X-squared = 3.7574, df = 1, p-value = 0.05257

At the 5% risk level, we cannot show that treatment has an effect on the HIV
status of the child.

Tip

You can also use the command summary(table( HIVSTATUTS,TTTGRP))
to get the result of the �2 test of independence.
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Note

You can perform a �2 test of mutual independence for d � 2 qualitative
variables (see [5]). The �2 statistic is then

X2 D
X

A2Id

TA with

�
TA D X2

A if jAj D 2I
TA D X2

A �
P

fB�AI1<jBj<jAjg TB if jAj > 2:

In the last equation, Id is the family of all subsets of f1; : : : ; d g of size strictly
greater than 1. Furthermore, if we are given the contingency array M of the d
quantitative variables, then X2

A (jAj � 2) can be obtained with the instruction
summary(margin.table(M,A))$statisticwhere A is the vector of indices
of elements in A. Another advantage of this (orthogonal) decomposition of X2,
obtained by induction, is that each term TA describes the mutual dependence
of variables indexed by the set A.
The R function which performs this operation is A.dep.tests(). It is in-
cluded in the package IndependenceTests.

13.3.2.2 Yates’ �2 Test

I Description of the test: The �2 test with Yates’ correction (or Yates’ �2) should
be used when you wish to perform a �2 test of independence for a 2 � 2 table,
but at least one of the theoretical counts is less than 5; the theoretical counts
should not be too small .> 2:5/. The general setting is the same as the �2 test of
independence. Under H0, the test statistic is

X2 D
lX

iD1

cX

j D1

.jNij � tij j � 0:5/2
t2ij

� �2.1/:

I R instruction: You can use the function chisq.test().

I Example of use: In the data set Intima-media, we select people aged 50 or more
and we wish to test whether their smoking habits are linked to gender.

> table.cont <- as.matrix(table(GENDER[AGE>=50],
+ tobacco[AGE>=50]))
> chisq.test(table.cont)$expected # Table of theoretical

counts.
0 1 2

1 2.88 0.48 2.64
2 9.12 1.52 8.36

> table.cont1 <- cbind(table.cont[,1],table.cont[,2]+
+ table.cont[,3])
> chisq.test(table.cont1)
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Pearson’s Chi-squared test with Yates’ continuity
correction

data: table.cont1
X-squared = 1.6732, df = 1, p-value = 0.1958

We cannot give a positive answer to the question at the 5% risk level.

13.3.2.3 Fisher’s Exact Test

I Description of the test: Fisher’s exact test is used when the conditions for the �2

test of independence and Yates’ �2 test are not verified, i.e. for small theoretical
counts. Fisher’s test can be used for tables with more than two rows or columns.

I R instruction: Use the function fisher.test().

I Example of use: The definition of obesity is that an individual with BMI greater
than 30 kg/m2 is obese. We make the hypothesis that obesity is more common in
people less than 50 years old. This means that the BMI variable is linked to age.
We wish to answer this question using the “intima–media” study. To this end, we
study the joint distribution of the following variables: under 50 / over 50
and BMI<30 / BMI>30. We get the following distribution:

> bmi <- weight/(height/100)ˆ2
> obesity <- factor(bmi<30)
> levels(obesity) <- c("BMI>30","BMI<30")
> age50 <- factor(AGE>=50)
> levels(age50) <- c("under 50","over 50")
> table(age50,obesity)

obesity
age50 BMI>30 BMI<30

under 50 8 77
over 50 1 24

> bmi.table <- as.matrix(table(obesity,age50))
> fisher.test(bmi.table,alternative="greater")

Fisher’s Exact Test for Count Data
data: bmi.table
p-value = 0.3478
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
0.3830018 Inf

sample estimates:
odds ratio

2.477058

We cannot show that obesity is significantly more frequent amongst people under
the age of 50.
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Note

Fisher’s exact test makes it possible to have a unilateral alternative
hypothesis.

Tip

The function CrossTable() from the package gmodels performs
independence tests (chi-square, Fisher exact and McNemar). It also produces
outputs similar to those provided by SAS or SPSS.

13.3.3 Non-parametric Tests

13.3.3.1 Goodness-of-Fit Tests

� Shapiro–Wilk test

I Description of the test: The Shapiro–Wilk test is built specifically to test
whether a continuous variable X is normally distributed. It is one of the most
powerful tests of normality. The hypotheses are H0 W X follows a normal dis-
tribution and H1 W X does not follow a normal distribution. The test statistic
is

W D T2

Oσ2
;

where Oσ2 D 1

n � 1
nX

iD1

.Xi � NX/2 and T2 D 1

n�1

2

4
Œn=2�X

iD1

ai .X.n�iC1/�X.i//

3

5

2

.

The ai are the coefficients of the Shapiro–Wilk table available in most books
of statistical tables.

I R instruction: You can use the function shapiro.test().

I Example of use: We return to the Intima-media data set used in the case “mean
comparison with one sample”. We wish to invalidate the assumption of nor-
mality of intima–media thickness for people with BMI above 30.

> measure1
[1] 0.62 0.52 0.55 0.59 0.59 0.65 0.63 0.79 0.63
> shapiro.test(measure1)

Shapiro-Wilk normality test
data: measure1
W = 0.8835, p-value = 0.1708

We cannot show that the data are not normal, at the 5% risk level.
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� �2 test for fit to a distribution

The �2 test for fit to a distribution is used to check whether a qualitative variable
does not follow a given theoretical distribution. It can be used to check whether
a quantitative variable does not follow a given theoretical distribution, but in that
case, it must first be grouped into classes to make it qualitative.

I Description of the test: Let X be a qualitative random variable with k modal-
ities. We assume that X follows the distribution where modality i has proba-
bility pi . Given a sample of size n, we test whether X follows the distribution
defined by the pi . The hypotheses of the test are H0 W X follows the distribu-
tion defined by the pi and H1 W X does not follow this distribution. The test
statistic is

kX

iD1

.Ni � npi /
2

npi

� �2.k � 1/;

where Ni is the observed count for modality i .

I Conditions for validity: All theoretical counts npi are greater than or equal
to 5.

I R instruction: You can use the function chisq.test().

I Example of use: A study on hypertension was performed, and we wish to
test whether the sample of patients is representative of the general popula-
tion from an ethnic point of view. We know that in the general population of
Mauritius, the ethnic distribution is Hindu 51%, Muslim 17%, Creole 27%,
Chinese 3% and Other 2%. The data are available in the file http://www.
biostatisticien.eu/springeR/HTAen.xls.

> table(ETHNIC)
ETHNIC

1 2 3 4
225 77 99 1
> ni <- cbind(t(as.vector(table(ETHNIC))),0)
> chisq.test(ni,p=c(0.51,0.17,0.27,0.03,0.02))

Chi-squared test for given probabilities
data: ni
X-squared = 22.0659, df = 4, p-value = 0.0001945

At the 5% risk level, we can conclude that the sample of patients is signif-
icantly not representative of the general population from an ethnic point of
view.

� Kolmogorov–Smirnov test for one sample

I Description of the test: The aim of this test is the same as the �2 test for fit to
a distribution. We wish to compare an empirical distribution to a completely

http://www.biostatisticien.eu/springeR/HTAen.xls
http://www.biostatisticien.eu/springeR/HTAen.xls
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specified theoretical distribution. Let F0 be the specified cumulative distribu-
tion function and F the cumulative distribution function of X. We are inter-
ested in the point at which the difference between the two cumulative distribu-
tion functions is greatest in absolute value, and we compare this value to the
critical value given by the Kolmogorov–Smirnov table for one sample. The

hypotheses of the test are H0 W F D F0 and H1 W F
ˇ
ˇ
ˇ
ˇ

>

¤
<

ˇ
ˇ
ˇ
ˇF0. The test statistic

is
D D supxjOFXn

.x/ � F0.x/j;
where OFXn

.�/ is the empirical c.d.f. of the sample Xn.

I R instruction: Use the function ks.test().

I Example of use: We return to the can factory example and try to invalidate the
assumption of normality, which is necessary for the variance test. The cans
are made with average weight � D 170 g and precision 
2 D 10. We test the
normality of the series of 20 cans made by the factory.

> weights <- c(165.1,171.5,168.1,165.6,166.8,170.0,168.8,
+ 171.1,168.8,173.6,163.5,169.9,165.4,174.4,
+ 171.8,166.0,174.6,174.5,166.4,173.8)
> ks.test(weights,"pnorm",170,sqrt(10))

One-sample Kolmogorov-Smirnov test
data: weights
D = 0.1942, p-value = 0.4376
alternative hypothesis: two-sided

At the 5% risk level, we cannot show that the data are not normally dis-
tributed.

� Kolmogorov–Smirnov test for two samples

I Description of the test: The aim of this test is to compare two distributions
F1 and F2. We are interested in the point at which the difference between the
two empirical cumulative distribution functions (OFXn;1

and OFXn;2
) is greatest

and we compare this value to the critical value given by the Kolmogorov–
Smirnov table for two samples. The hypotheses of the test are H0 W F1 D F2

and H1 W F1

ˇ
ˇ
ˇ
ˇ

>

¤
<

ˇ
ˇ
ˇ
ˇF2. The test statistic is

D D supxjOFXn;1
.x/� OFXn;2

.x/j:
I R instruction: You can use the function ks.test().

I Example of use: Using the data set Intima-media, we wish to see whether men
who have quit smoking are younger that men who smoke. In the sample, there
are twelve smokers and nine former smokers. The sample size is small; we do
not know the distribution of the age variable in this population and therefore
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cannot use a Student test to compare the means. The test is unilateral, since
the hypothesis is that smokers are younger than former smokers.
> table(tobacco,GENDER)

GENDER
tobacco 1 2

0 32 40
1 9 9
2 12 8

> ks.test(AGE[GENDER==1&tobacco==1],AGE[GENDER=
+ =1&tobacco==2], alternative="greater")

Two-sample Kolmogorov-Smirnov test
data: AGE[GENDER == 1 & tobacco == 1] and AGE[GENDER == 1 &

tobacco == 2]
Dˆ+ = 0.6389, p-value = 0.01502
alternative hypothesis: the CDF of x lies above that of y

In the population under study, we have shown at the 5% risk level that men who
have quit smoking are younger than men who smoke.

Tip

The package PoweR contains many other goodness-of-fit tests.

13.3.3.2 Tests of Position

� Sign test or test of the median for one sample

I Description of the test: We wish to compare the theoretical median of a
quantitative variable X (denoted by me) to a reference value m0, with no
assumption about the data. The hypotheses of the test are H0 W me D m0

or equivalently P.X � m0 > 0/ D 0:5 and H1 W me

ˇ
ˇ
ˇ
ˇ

>

¤
<

ˇ
ˇ
ˇ
ˇm0 or equivalently

P.X �m0 > 0/

ˇ
ˇ
ˇ̌

>

¤
<

ˇ
ˇ
ˇ̌ 0:5. Under H0, the test statistic is

K � Bin.n; 0:5/;

where K is the number of values strictly greater thanm0. This test is therefore
equivalent to a test of proportion.

I R instruction: You can use the function prop.test() or binom.test().

I Example of use: The median price of one-bedroom flats in the Grenoble re-
gion in 2008 was 130,000 euros. We are given a sample of size n D 32 of
prices of one-bedroom flats (in thousands of euros), from the free monthly
magazine L’Offre Immobilière, issue number 91 (January 2009). We wish to
know whether prices are increasing.
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> m0 <- 130
> prices <- c(230.00,148.00,126.00,134.62,155.00,157.70,
+ 160.00,225.00,125.00,109.00,157.00,115.00,
+ 125.00,225.00,118.00,179.00,176.00,125.00,
+ 123.00,180.00,151.00,120.00,143.00,170.00,
+ 190.00,233.00,148.72,189.00,121.00,149.00,
+ 225.00,240.00)
> sum(prices-m0>0)
[1] 22
> median(prices)
[1] 153
> prop.test(22,32,0.5,"greater")

1-sample proportions test with continuity
correction

data: 22 out of 32, null probability 0.5
X-squared = 3.7812, df = 1, p-value = 0.02591
alternative hypothesis: true p is greater than 0.5
95 percent confidence interval:
0.5266965 1.0000000
sample estimates:

p
0.6875

We can conclude, at the 5% risk level, that prices are increasing.

� Sign test or median test for two independent samples

I Description of the test: The median test is a test which compares the medi-
ans me1

and me2
of two quantitative variables X1 and X2 using data from

two independent samples of these variables. The hypotheses of the test are

H0 W me1
D me2

and H1 W me1

ˇ
ˇ
ˇ̌

>

¤
<

ˇ
ˇ
ˇ̌me2

. Under H0, we compute the common

median cme for the two samples joined together. We then build a 2� 2 table of
counts of values which are smaller or greater than the median in the samples.
This table is used as a �2 contingency table. We can then perform a �2 test, or
(depending on the sample size) a �2 test with Yates’ correction or a Fisher’s
exact test.

I R instruction: You can use the function chisq.test() or fisher.test().

I Example of use: We return to the data set Intima-media and wish to test
whether women who have quit smoking are younger than women who smoke.
In this example, there are nine smokers and eight former smokers. The sam-
ple size is small and we cannot assume that the age variable is normally
distributed in this population. We therefore cannot compare the means; it be-
comes interesting to perform a median test.

> Me <- median(AGE[GENDER==2&tobacco>0])
> tab.obs <- table(tobacco[tobacco>0&GENDER==2&AGE!=Me],
+ AGE[GENDER==2&tobacco>0&AGE!=Me]>Me)
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> rownames(tab.obs) <- c("Former smoker","Smoker")
> colnames(tab.obs) <- c("AGE<ME","AGE>ME")
> tab.obs

AGE<ME AGE>ME
Former smoker 6 2
Smoker 2 6

> fisher.test(tab.obs,alt="greater")
Fisher’s Exact Test for Count Data

data: tab.obs
p-value = 0.06597
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
0.878644 Inf
sample estimates:
odds ratio

7.613556

At the 5% risk level, we cannot assert that women who have quit smoking are
younger than women who smoke.

� Sign test for two paired samples

I Description of the test: We wish to compare two paired quantitative series.
We use the series of differences. We delete all concordant pairs (pairs for
which the two values are equal) and keep only the n discordant pairs (non-
zero difference between the two values). The sign test only takes into account
the sign of the difference of discordant pairs. Let NC be the number of positive
pairs and N� the number of negative pairs. The test statistic is

S D min.NC;N�/ � Bin.n; 0:5/:

I R instruction: You can use the function prop.test() or binom.test()
after calculating the realization of S. Note that when n � 20, the distribution
of S can be approximated by N .n

2
; n

4
/.

I Example of use: We return to the example of results from two labs, which we
previously analysed using a test of comparison of means under the assumption
of normality. The sign test does not require any assumption.

> dose.lab1 <- c(22, 18, 28, 26, 13, 8, 21, 26, 27,
+ 29, 25, 24, 22, 28, 15)
> dose.lab2 <- c(25, 21, 31, 27, 11, 10, 25, 26, 29,
+ 28, 26, 23, 22, 25, 17)
> dif <- (dose.lab1-dose.lab2)
> nminus <- sum(dif<0)
> nplus <- sum(dif>0)
> binom.test(min(nplus,nminus),nplus+nminus)

Exact binomial test
data: min(nplus, nminus) and nplus + nminus
number of successes = 4, number of trials = 13, p-value
= 0.2668
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alternative hypothesis: true probability of success is
not equal to 0.5

95 percent confidence interval:
0.0909204 0.6142617
sample estimates:
probability of success

0.3076923

At the 5 % risk level, we cannot conclude that the two labs give different
results.

� Wilcoxon or Mann–Whitney test for two independent samples

I Description of the test: The Wilcoxon rank test is a non-parametric test which
tests whether two distributions F1 and F2 are equal. The hypotheses of the

test are H0 W F1 D F2 and H1 W F1

ˇ
ˇ
ˇ̌

>

¤
<

ˇ
ˇ
ˇ̌F2. The idea of the test is as follows:

we merge the two series and sort the values from smallest to largest; we as-
sign rank 1 to the smallest value, rank 2 to the next value and so on. We then
calculate the score of each series by summing the ranks of the values from
that series. Using the appropriate table, we then decide whether the scores are
compatible with the hypothesis H0 of equal distributions. By convention, the
test statistic S is the score of the sample with the smallest size. The statistic
W D S � n0.n0C1/

2
is also used sometimes.

I Conditions for validity: If n0 D min.n1; n2/ 
 10, then the statistic W

does not follow a standard distribution, but the corresponding probabilities
are given in the Mann–Whitney/Wilcoxon table (function pwilcox()). If

min.n1; n2/ � 10, we can consider that W � N
�
�W D n1n2

2
I 
2

W D n1n2

n1Cn2C1
12

	
. If there are ties in the ranks, we also use a normal approximation,

but with 
2
W D n1n2

12
�

�
.n1 C n2 C 1/�Pg

j D1

t3
j

�tj

.n1Cn2/.n1Cn2�1/

�
where

g is the number of groups of tied values and tj the number of tied values in
group j .

I R instruction: You can use the function wilcox.test(). Use the ar-
gument exact=FALSE for an approximate calculation using the normal
approximation.

I Example of use: Using the dataset Intima-media, we would like to know
whether men who smoke are older than men who have quit smoking. In this
sample, there are nine smokers and twelve former smokers.

> wilcox.test(AGE[GENDER==1&tobacco==2],AGE[GENDER==1&
+ tobacco==1],exact=FALSE,alternative="greater")
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Wilcoxon rank sum test with continuity correction
data: AGE[GENDER == 1 & tobacco == 2] and AGE[GENDER == 1 &
tobacco == 1]
W = 88.5, p-value = 0.007756
alternative hypothesis: true location shift is greater
than 0

At the 5 % risk level, we can conclude that men who smoke are older than men
who have quit smoking.

Warning

To get the statistic W, you need to put the smallest sample first in the function
wilcox.test().

� Wilcoxon’s test for two paired samples

I Description of the test: We wish to compare two paired quantitative series.
We use the series of paired differences. We discard all concordant pairs (pairs
for which the two values are equal) and keep only the discordant pairs (non-
zero difference). Let n be the number of discordant pairs. We sort the values
according to their absolute value and rank them. In case of a tie, we use the
mean of the corresponding ranks. Let SC be the score of the series of positive
differences and S� the score of the series of negative differences. The scores
are calculated in the same way as for the Wilcoxon test. The hypotheses of the

test are H0 W F1 D F2 and H1 W F1

ˇ
ˇ̌
ˇ

>

¤
<

ˇ
ˇ̌
ˇF2. We can use either SC or S� as the

test statistic.

I Conditions for validity: If n 
 30, then the test statistic does not follow
a standard distribution, but the corresponding probabilities can be found in
the Wilcoxon table for paired series. If n � 30, then SC and S� follow a

N
�

n.nC1/
4
I n.nC1/.2nC1/

24

	
distribution.

I R instruction: By default, R uses the statistic V D SC in the func-
tion wilcox.test() with argument paired=TRUE. Use the argument
exact=FALSE to use the normal approximation.

I Example of use: We return to the example of the results from two labs, which
we analysed with the sign test. This test is more powerful than the sign test,
since it also takes into account the absolute value of the differences.

> dose.lab1 <- c(22, 18, 28, 26, 13, 8, 21, 26, 27,
+ 29, 25, 24, 22, 28, 15)
> dose.lab2 <- c(25, 21, 31, 27, 11, 10, 25, 26, 29,
+ 28, 26, 23, 22, 25, 17)
> wilcox.test(dose.lab1,dose.lab2,paired=TRUE,exact=FALSE)

Wilcoxon signed rank test with continuity
correction
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data: dose.lab1 and dose.lab2
V = 22, p-value = 0.1047
alternative hypothesis: true location shift is not

equal to 0

At the 5 % risk level, we cannot conclude that the two labs give different results.

13.3.4 Memorandum of Standard Tests

This table lists all the tests we have introduced (Table 13.4).

Table 13.4: Standard tests

Nature Data Conditions for validity R function
Parametric tests

Mean

1 sample n > 30 or normality t.test(x,...)

2 samples Normality and equal variances t.test(x,y,...)
2 samples Normality t.test(x,y,var.equal=F)

2 paired samples n > 30 or normality t.test(x,y,paired=T)

Variance
1 sample Normality sigma2.test(x,...)

2 samples Normality var.test(x,y,...)

2 samples Large sample size asymp.test(x,y,...)

Correlation
1 sample Normality, H0 W 
 D 
0 cor.test(x,y..)

2 samples Normality cor.test.2.sample(x,y,...)

Proportion
1 sample np � 5 and n.1 � p/ � 5 prop.test(x,...)

1 sample binom.test(x,...)

2 samples Large sample size prop.test(x,y,...)

Independence tests
�2 for independence Contingency table Theoretical counts � 5 chisq.test(.,correct=F)

Yates’ �2 2 � 2 table Theoretical counts � 2:5 chisq.test()

Fisher’s exact test Contingency table fisher.test()

Tests of fit to a distribution
Shapiro–Wilk 1 sample shapiro.test(x,...)

�2 of fit to a distribution 1 sample Theoretical counts � 5 chisq.test()

Kolmogorov–Smirnov
1 sample ks.test(x,.)

2 samples ks.test(x,y)

Tests of position
Median 1 sample binom.test(x,)

Sign test
2 samples fisher.test(x,y,)

2 paired samples binom.test(x,y,paired=T)

Mann–Whitney 2 samples min.n1; n2/ � 10 wilcox.test(x,y,exact=F)

Mann–Whitney 2 samples min.n1; n2/ 
 10 wilcox.test(x,y)

Wilcoxon 2 paired samples wilcox.test(x,y,paired=T)

SECTION 13.4

Other Tests

Many other tests are available in R. For example, you can get a first list of tests with
the following instruction:
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> apropos(".test")
[1] ".runRUnitTestsGdata" ".valueClassTest"
[3] "ansari.test" "as.krandtest"
[5] "as.randtest" "as.rtest"
[7] "asymp.test" "bartlett.test"
[9] "binom.test" "Box.test"
[11] "chisq.test" "cor.test"
[13] "cor.test.2.sample" "cor0.test"
[15] "file_test" "fisher.test"
[17] "fligner.test" "friedman.test"
[19] "gpuTtest" "kruskal.test"
[21] "ks.test" "mantel.randtest"
[23] "mantel.rtest" "mantelhaen.test"
[25] "mauchley.test" "mauchly.test"
[27] "mcnemar.test" "mood.test"
[29] "multispati.randtest" "multispati.rtest"
[31] "oneway.test" "ormidp.test"
[33] "pairwise.prop.test" "pairwise.t.test"
[35] "pairwise.wilcox.test" "plot.krandtest"
[37] "plot.randtest" "plot.rtest"
[39] "poisson.test" "power.anova.test"
[41] "power.prop.test" "power.t.test"
[43] "PP.test" "print.krandtest"
[45] "print.randtest" "print.rtest"
[47] "procuste.randtest" "procuste.rtest"
[49] "prop.test" "prop.trend.test"
[51] "quade.test" "randtest"
[53] "randtest.amova" "randtest.between"
[55] "randtest.cca" "randtest.coinertia"
[57] "randtest.discrimin" "randtest.pcaiv"
[59] "randtest.pcaivortho" "randtest.rlq"
[61] "rate2by2.test" "rtest"
[63] "rtest.between" "rtest.discrimin"
[65] "rtest.niche" "RV.rtest"
[67] "RVdist.randtest" "shapiro.test"
[69] "sigma2.test" "t.test"
[71] "tab2by2.test" "var.test"
[73] "var0.test" "wilcox.test"

Note

Other tests are available in packages. For example, package nortest in-
cludes various tests of fit to normality. The functions associated with these
tests are

> require("nortest")
> ls("package:nortest")
[1] "ad.test" "cvm.test" "lillie.test"
[4] "pearson.test" "sf.test"
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Memorandum

t.test(): test and confidence interval for the mean
var.test(): test for equality of variances
prop.test(): approximate confidence interval for a proportion
binom.test(): exact confidence interval for a proportion
cor.test(): test and confidence interval for correlation
chisq.test(): �2 test
fisher.test(): Fisher’s test of independence
ks.test(): Kolmogorov–Smirnov test of fit to a distribution
shapiro.test(): Shapiro–Wilk test of normality
med.test(): median test
wilcox.test(): Wilcoxon’s test of position
boot(): package for bootstrap

✎
Exercises

13.1- Which function would you use to get the quantiles of a binomial distribution?
13.2- What is the use of the function pnorm()?
13.3- Give the R instruction to get a confidence interval for the mean using a sam-

ple of size 50.
13.4- Explain the difference between the functions prop.test() and binom.

test().
13.5- Name two functions which compare two cumulative distribution functions

using two samples.
13.6- Which function is used to test whether a sample follows a normal distribu-

tion?
13.7- Which functions are used to test the dependence of qualitative variables?
13.8- Which package includes functions to compute confidence intervals using

bootstrap?
13.9- Which formal argument of the function t.test() is used for a paired test?

13.10- What is the difference between a �2 for independence and a �2 for fit to a
distribution? How would you perform these two tests in R?

Ï
Worksheet

A- Study of Confidence Intervals

The aim of this practical is to understand how to interpret a confidence interval.
Indeed, for a confidence interval at level 1 � ˛ of an unknown parameter, it is
incorrect to say that there is a 100 � .1 � ˛/% chance that the parameter lies in
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the realized interval. The unknown parameter has a unique value which does not
change: the probability that it lies in the realized interval is either 0 or 1. However, it
is correct to say that there is a 5 % risk of being wrong by stating that the parameter
lies in the realized confidence interval.

� Study of the confidence interval for the mean:

13.1- Simulate M D 50; 000 samples of size n D 20 from a normal distribution
with mean � D �1:2 and variance 
2 D 2.

13.2- For each sample, compute a 90 % confidence interval of the mean �.
13.3- Calculate the proportion of intervals which contain the value� D �1:2. What

do you observe?
13.4- Repeat this procedure for the value � D 1, with samples of size n D 100

from a �2.1/ distribution.
13.5- Same question with n D 10 and a �2.1/ distribution. What do you observe?

How do you explain this?
13.6- Simulate a sample of size n D 20 from a normal distribution with mean

� D �1:2 and variance 
2 D 2. Calculate a 95 % confidence interval for �.
13.7- Repeat this operation for samples of increasing size: n D 50; 100; 1; 000;

10; 000; 100; 000. What do you observe?
13.8- For each of the six samples above, calculate the observed value of the statistic

for a Student test of hypothesis H1 W � ¤ 0, as well as the p-value of the test
(at significance level 5 %). What do you observe? How do you explain this?

13.9- For a sample of size n D 100; 000, calculate a 95 % confidence interval and
compute the p-value of the test of hypothesis H1 W � ¤ �1:1. Compare this
p-value to the one you found in the previous question with n D 50. What do
you conclude?

� Study of confidence intervals from bootstrap:

13.1- Simulate M D 500 samples of size n D 20 from an exponential distribution
with expectation 1=
 D 10.

13.2- For each sample, calculate a 90 % confidence interval of the mean 1=
 using
the bootstrap method.

13.3- Using the method described above, check the level of the confidence interval.
13.4- Compare this level to the one you get with a standard confidence interval for

the mean (procedure t.test()).

B- Study of Risks in Hypothesis Testing

The aim of this practical is to explore the risks associated with hypothesis testing:

1) P Œaccept H1jH0 is true� D ˛, the risk of deciding H1 when in reality H0 is
true;
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2) P Œreject H1jH1 is true� D ˇ, the risk of not deciding H1 when in reality H1

is true.

� Study of risk of the first kind:

13.1- Simulate M D 500 samples of size n D 20 following a normal distribution
with mean � D 4 and variance 
2 D 1:2.

13.2- For each sample, perform a Student test for hypotheses H0 W � D 4 and
H1 W � ¤ 4 at level ˛ D 5%.

13.3- Count how many times you decide H1. What result did you expect?
13.4- Increase the numberM of simulations.
13.5- Repeat this procedure for the value � D 1, with samples of size n D 100

from a �2.1/ distribution.
13.6- Same question with n D 10. What do you observe? How do you explain this?
13.7- In fact, for each of the M D 500 samples, we make the decision either

to accept H1 or to reject it. Let dj (1 
 j 
 M ) be the random variable
which takes the value 1 if we decide to accept H1 and 0 otherwise (based
on the j th sample). The variable dj follows a Bernoulli distribution with
parameter p D P Œdj D 1� D P Œaccept H1�. The variables dj are inde-
pendent; hence, the variable d D PM

j D1 dj follows a binomial distribution
Bin.M; p/. It counts how many times we accept H1. If H0 is true and the
test is well constructed (well chosen critical value), then we should have
p D P Œaccept H1jH0 is true� D ˛. Calculate a 95 % confidence interval for
parameter p and conclude.

� Study of power:

13.1- Simulate M D 500 samples of size n D 20 from a normal distribution with
mean � D 5 and variance 
2 D 1:2.

13.2- On each sample, perform a Student test between H0 W � D 4 and H1 W � ¤ 4
at level ˛ D 5%.

13.3- Count the number of times you accept H1. Estimate the power of the test for
the situation in H1 where � D 5.

13.4- Increase the size of the sample to n D 100 and estimate the power of the test.
What do you observe?

13.5- Repeat the procedure for the test H0 W � D 1 and H1 W � ¤ 1, with samples
of size n D 100 from a �2.2/ distribution.

13.6- Same question with n D 10. What do you observe? How do you explain this?

C- A Few Practical Examples

� Cow study: The quantity of bacteria per cm3 of milk from eight different cows
is estimated after milking and 24 h later. We wish to test whether the quantity of
bacteria significantly increases with time.
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Cow Just after milking 24 h after milking
1 12,000 11,000
2 13,000 20,000
3 21,500 31,000
4 17,000 28,000
5 15,000 26,000
6 22,000 30,000
7 11,000 16,000
8 21,000 29,000

13.1- Answer the question under the assumption of normality of the data.
13.2- Answer the question using a sign test.
13.3- Answer the question using a Mann–Whitney test.

� East German athletes: In the 1970s, female athletes from East Germany were well
known for their corpulence. The Olympic ethics committee of the time, intrigued
by this “masculinity”, required the services of Dr. Volker Fischbach. He selected
nine female athletes with identical morphological characteristics, then measured the
quantity of androgens (hormones which stimulate male characteristics) per litre of
blood. The results are 3.22 3.07 3.17 2.91 3.40 3.58 3.23 3.11 3.62.

13.1- Given that for women who do not use performance-enhancing drugs, the
mean quantity of androgens is 3.1, propose a way to test whether East German
athletes used such drugs (assume normality of data).

13.2- What was Dr. Fischbach conclusion?

� Drinking and driving: To study the effect of alcohol on reflexes, 14 subjects went
through a test of dexterity before and after drinking 100 mL of wine. The before and
after scores are given in the following table (these are reaction times: a higher score
means slower reflexes).

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Before 57 54 62 64 71 65 70 75 68 70 77 74 80 83
After 55 60 68 69 70 73 74 74 75 76 76 78 81 90

Propose a way to test whether alcohol has an effect on reflexes (assume normality
of the data).

� Speed of light: In 1879, American physicist Michelson performed several exper-
iments to check the speed of light c proposed by French physicist Cornu in 1876.
Cornu proposed a value of 299,990 km/s. Michelson got the 20 following measures
(we subtracted 299,990 from Michelson’s values, to avoid having to handle large
numbers):

850 740 900 1,070 930 850 950 980 980 880 1,000 980 930 1050 960 810 1,000
1,000 960 960.
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These 20 observations can be considered as the observed values of 20 random
variables with identical but unknown mean �. If the conditions to measure the speed
of light are satisfactory, then it is reasonable to assume that � is the true speed of
light.

13.1- Plot the data. Comment.
13.2- Test the normality of the data.
13.3- Perform a Student test to check whether Michelson’s measures invalidate the

value of c proposed by Cornu.
13.4- What value for the speed of light could Michelson propose after these 20

experiments?

� Cholesterol levels: 17 people with the same illness are randomly assigned to
two groups. The first group receives a placebo A and the second group receives a
treatment B containing a vitamin. The relevant measure is capillary resistance. We
get the following measurements:
Group A: 46.3 ; 42.5 ; 43.0 ; 43.9 ; 42.0 ; 41.5 ; 41.6 ; 44.4 ; 40.7
Group B: 47.1 ; 44.5 ; 45.8 ; 49.0 ; 44.6 ; 43.7 ; 44.5 ; 47.4

Assuming that the measure of capillary resistance is normally distributed, what
can you conclude?

� Treatment-death independence: Two small groups of animals are infected by a vir-
ulent germ. The first group receives chemotherapy; the second group is not treated.
We measure mortality after eight days in both groups.

With treatment Without treatment Total
Dead 0 9 9

Survived 8 3 11
Total 8 12 20

Is mortality independent of treatment?

� Number of patients in the emergency ward: To study the variation of the number
of emergency cases in a hospital, the number of patients was counted for the months
of June, July and August. The results are

June July August
Number of patients 1,500 1,600 1,450

Number of emergency patients 675 720 610

Can we conclude that the proportion of emergency cases is the same every
month?



Chapter 14
Simple and Multiple Linear Regression

Goals of this chapter
This chapter is a brief introduction to simple and multiple linear regression and
how to use this method in a real context (see [41] for a more complete presenta-
tion). We present the relevant R commands and use a real data set as a connect-
ing thread as we present the key concepts for this method. We treat the case of
qualitative explanatory variables, as well as interaction of explanatory variables.
We discuss model validation with a study of residuals and mention the issue of
collinearity. We also present a few methods for variable selection.

SECTION 14.1

Introduction

In most situations, we study the relationship between a variable of interest Y (often
quantitative) and one or several variable(s) X1, X2, : : :, Xk , with the aim of exp-
laining the variations of the variable of interest. Variable Y is called the explained
variable (or dependent variable, or response variable). Variables X1, X2, : : :, Xk are
called explanatory variables (or independent variables); in epidemiology, they rep-
resent risk or confounding factors. Thus, multivariate analysis models, and specifi-
cally linear regression models, allow us to:

� Take into account simultaneously several factors which could explain the
variation or the distribution of variable Y

� Study the role of effect modification or confusion of one or several factor(s)
� Predict the value or distribution of the explained variable knowing the value of

the explanatory variables

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3 14,
© Springer Science+Business Media New York 2013
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To introduce the key concepts of linear regression, we shall first introduce simple
linear regression: we consider a quantitative explained variable Y and a single quan-
titative explanatory variable X, though in principle X could also be qualitative. In the
second part, we shall introduce multiple linear regression, which is used to study
the relation between a dependent quantitative variable Y and several (quantitative or
qualitative) explanatory variables X1, X2, : : :, Xk .

Connecting Thread Example: “Weight at Birth” Study

We return to the data set Birth-weight which we presented in Chap. 2. We wish
to explain the variability of child weight at birth as a function of characteristics of
the mother, of family history and of behaviour during pregnancy. The explained
variable is weight at birth (quantitative variable BWT, expressed in grammes); the
explanatory variables are described in Chap. 2.

I Loading the Data

> myfile <- "http://www.biostatisticien.eu/springeR/Weight_birth.
csv"

> mydata <- read.table(myfile,header=TRUE,sep="nt")
The weight of the mother is expressed in pounds. We first transform the

data.frame to recode this variable in kilogrammes (1 pound = 0.45359237kg).

> mydata <- transform(mydata,LWT=LWT*0.4535923)
> attach(mydata) # Access variable names.

SECTION 14.2

Simple Linear Regression

14.2.1 Aim and Model

I Aim

We wish to “explain” the variations of a quantitative variable Y (e.g., child weight
at birth, noted BWT) using an explanatory variable X, also quantitative (e.g., weight
of the mother, noted LWT).

I Model

It is written as
Y D ˇ0 C ˇ1XC ε;

where ε represents the noise of the model, which is assumed to be normally
distributed, with expectation zero and variance Var.εjX/ D 
2. The (unknown)
parameters of the regression model are ˇ0, ˇ1 and 
2.
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Warning

The assumption of normality of the noise � is necessary to get the distribu-
tion of the estimators and thus perform hypothesis testing on the parameters
of the model. However, this assumption is not very important, since it is not
necessary when the data size is large.

14.2.2 Fitting Data

I Graphical Inspection

To study the relationship between child weight at birth and weight of the mother,
we first draw the scatterplot of the points (child weight; mother weight) using the
instruction plot(BWT�LWT).
> plot(BWT�LWT,xlab="Mother weight",ylab="Child weight at birth")
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Fig. 14.1: Scatter plot of child weight (in grammes) against mother weight (in
kilogrammes)

We observe a slight increase in child weight when mother weight increases,
although this relationship is not very clear (Fig. 14.1).

I Parameter Estimation

We now study the following model:

BWTi D ˇ0 C ˇ1LWTi C εi ; i D 1; : : : n;
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where the εi are independent random variables with expectation zero and constant
variance 
2, for all i .

Let us note bwti and lwti the observed values of the random variables BWT and
LWT respectively. The estimates Ǒ0 of ˇ0 and Ǒ1 of ˇ1 are obtained by minimizing
the least squares criterion:

S.˛0; ˛1/ D
nX

iD1

.bwti � ˛0 � ˛1lwti /
2:

The relevantR function for this operation is lm() (abbreviation of linear models).
The main parameter of this function is a formula, symbolized by a tilde �, used to
specify the relationship between BWT and LWT.

> model1 <- lm(BWT � LWT,data=mydata) # We get an object
# of class "lm".

> model1
Call:
lm(formula = BWT � LWT, data = mydata)
Coefficients:
(Intercept) LWT

2369.672 9.765

The above R output gives the least squares estimates of ˇ0 and ˇ1. For the above
example, we get Ǒ0 D 2; 369:672 and Ǒ1 D 9:765.

We can now draw the regression line on the scatter plot, using the function
abline() (Fig. 14.2):

> plot(BWT�LWT,xlab="Mother weight",ylab="Child weight")
> abline(model1,col="blue")
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Fig. 14.2: Least squares regression line on the scatter plot of child weight (in
grammes) against mother weight (in kilogrammes)
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I Tests on Parameters

Note that the function lm() performs a complete analysis of the linear model
and that you can get a summary of the calculations related to the data set with the
function summary().

> res <- summary(model1) # Results.
> res
Call:
lm(formula = BWT � LWT, data = mydata)
Residuals:

Min 1Q Median 3Q Max
-2192.184 -503.627 -3.910 508.250 2075.529
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2369.672 228.431 10.374 <2e-16 ***
LWT 9.765 3.777 2.586 0.0105 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 718.2 on 187 degrees of freedom
Multiple R-squared: 0.03452, Adjusted R-squared: 0.02935
F-statistic: 6.686 on 1 and 187 DF, p-value: 0.01048

Here is a description of the information in this output.

� Call: formula used in the model.
� Residuals: descriptive analysis of residuals O�i D Oyi �yi . Later in this chapter,

we shall see that residuals are used to validate the assumptions of the regression
model.

� Coefficients: this table has four columns:

– Estimate gives the estimates of the parameters of the regression line.
– Std. Error gives the estimate of the standard deviation of the estimators of

the regression line.
– t value gives the realization of Student’s test statistic associated with the

hypotheses H0 W ˇi D 0 and H1 W ˇi ¤ 0.
– Pr(>|t|) gives the p-value of Student’s test.

� Signif. codes: codes for significance levels.
� Residual standard error: an estimate of the standard deviation of the noise

 and the associated degree of freedom n � 2.

� Multiple R-squared: coefficient of determination r2 (percentage of variation
explained by the regression).

� Adjusted R-squared: adjusted r2
a (of limited interest for simple linear

regression).
� F-statistic: realization of Fisher’s test statistic associated with the hypothe-

ses H0 W ˇ1 D 0 and H1 W ˇ1 ¤ 0. The associated degrees of freedom (1 and
n � 2) are given, as is the p-value.
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Note

Note that the values of all these fields can be extracted. For example, to get
the four columns of the field Coefficients, use

> res$coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2369.672063 228.430647 10.373705 3.328580e-20
LWT 9.764856 3.776573 2.585639 1.048072e-02

The other suffixes are given by

> names(res)
[1] "call" "terms" "residuals"
[4] "coefficients" "aliased" "sigma"
[7] "df" "r.squared" "adj.r.squared"
[10] "fstatistic" "cov.unscaled"

Also, note that the function coefficients()gives Ǒ0 and Ǒ1 directly from
model1.

> coefficients(model1)
(Intercept) LWT
2369.672063 9.764856

I Analysis of Variance Table

In simple linear regression, Fisher’s test (the statistic of which is given in
F-statistic) is equivalent to Student’s test for the regression slope. The relation-
ship F-statistic=t2 holds and the p-values of the tests are equal. Fisher’s test is
often associated with an analysis of variance table, given by function anova().

> anova(model1)
Analysis of Variance Table
Response: BWT

Df Sum Sq Mean Sq F value Pr(>F)
LWT 1 3448881 3448881 6.6855 0.01048 *
Residuals 187 96468171 515873
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

I Interpreting the Results for the “Weight at Birth” Study

� The test associated with the intercept ˇ0 of the model is significant (p-value
< 0:05); it is therefore advised to keep the intercept (ˇ0) in the model. However,
the intercept in this regression has no meaning. It might be better to use a regres-
sion on the variable mother weight, centred beforehand. In that case, ˇ0 would
represent the mean child weight for mothers who have weight equal to the mean
weight of observed mothers.
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Tip

The instruction to perform linear regression without an intercept is
lm(y�x-1) or equivalently lm(y�0+x).

� The linear relationship between BWT and LWT is proven by the result of Student’s
test on coefficient ˇ1. The p-value < 0.05 indicates a significant linear relation-
ship between child weight and mother weight.

� The percentage of variance explained by the regression (r2) is 0.035. Only 3:5%
of the variability of child weight is explained by mother weight. We therefore
need to add to the model other explanatory variables (multiple linear regression),
to increase the model’s predictive power.

� The estimate of the slope indicates that the difference between the average
weights of babies whose mothers have weights different by 1 kg is 9.765 g.

Tip

To get an estimate by confidence interval of the regression coefficients, you
can use the function confint().

> confint(model1)
2.5 % 97.5 %

(Intercept) 1919.039836 2820.30429
LWT 2.314692 17.21502

The 95% confidence interval for ˇ1 is ci95 %.ˇ1/ D Œ2:31; 17:22�.

14.2.3 Confidence and Prediction Intervals for a New Value

I Definition

Consider a new observation x0 of variable X for which we have not observed the
corresponding value y0 of the response variable Y. This value y0 is unknown, since
it is not observed, and is a realization of the random variable Y0 D ˇ0Cˇ1X0C ε0.
The predictor of Y0 for the new value x0 is given by

OYp

0 D Oβ0 C Oβ1x0:

We can also propose a prediction interval at level 1 � ˛ for Y0, by finding two
random bounds such that the random variable Y0 falls in the interval with probability
1 � ˛:

PI1�˛.Y0jx0/ D
"

OYp

0 ˙ t .n�2/

1�˛=2
Oσ

s

1C 1

n
C .x0 � x/2Pn

iD1.xi � x/2
#

:
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Note that the realization Oyp
0 D Ǒ0C Ǒ1x0 is called the prediction of the unobserved

value y0 D ˇ0 C ˇ1x0 C �0.

Similarly, note that an estimator of the fixed and unknown valueE.Y0jX D x0/ D
ˇ0 C ˇ1x0 is given by

OE.Y0jX D x0/ WD OY0 D Oβ0 C Oβ1x0:

We can also give a confidence interval at level 1 � ˛ for E.Y0jX D x0/:

CI 1�˛.ˇ0 C ˇ1x0/ D
"

OY0 ˙ t .n�2/

1�˛=2
Oσ

s
1

n
C .x0 � x/2Pn

iD1.xi � x/2
#

:

Warning

Note that OYp

0 D OY0, but do not confuse the prediction interval for Y0 and the
confidence interval for the mean value E.Y0jX D x0/ D ˇ0 C ˇ1x0.

I R Instruction

The function to define the prevision interval and confidence interval for a new
value x0 is predict().

I Example with the Study “Weight at Birth”

We calculate the prediction of the weight of a baby whose mother weighs lwt D
56 kg.

> lwt0 <- 56
> predict(model1,data.frame(LWT=lwt0),interval="prediction")

fit lwr upr
1 2916.504 1495.699 4337.309

For the confidence interval of the mean value of the weight of babies with a
mother weighing 56 kg:

> predict(model1,data.frame(LWT=lwt0),interval="confidence")
fit lwr upr

1 2916.504 2811.225 3021.783

We now represent the confidence interval and prediction interval for a series of
new values of the mother’s weight (Fig. 14.3):
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> x <- seq(min(LWT),max(BWT),length=50)
> predint <- predict(model1,data.frame(LWT=x),interval=
+ "prediction")[,c("lwr","upr")]
> confint <- predict(model1,data.frame(LWT=x),interval=
+ "confidence")[,c("lwr","upr")]
> plot(BWT�LWT,xlab="Mother weight",ylab="Child weight")
> abline(model1)
> matlines(x,cbind(confint,predint),lty=c(2,2,3,3),
+ col=c("red","red","blue","blue"),lwd=c(2,2,1,1))
> legend("bottomright",lty=c(2,3),lwd=c(2,1),
+ c("confidence","prediction"),col=c("red","blue"))
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Fig. 14.3: Visualization of confidence and prediction intervals

14.2.4 Analysis of Residuals

I Checking Model Assumptions

Analysis of residuals consists in examining whether the underlying assumptions
of the linear model are verified. Various plots of the residuals can be used to detect
rather easily whether the assumptions on the errors εi are respected:

� Plotting the histogram of residuals to check for normality. The QQ-plot is
another approach. You can also apply the Jarque–Bera test of normality on resid-
uals (function jarque.bera.test() in package tseries).
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� Plotting the residuals O�i as a function of the predicted values Oyi . When all the
model assumptions are verified, residuals and predicted values are uncorrelated.
This plot should have no particular structure. This plot also gives indications
on the validity on the linearity assumption and on the homogeneity of error
variance. The plot of O�i against Oyi should show a uniform spread of the residuals
following a horizontal line on either side of the x axis.

� For the assumption of independence of the Yi : if the values Yi are measured on
different, unrelated individuals, the assumption of independence is in principle
verified. However, if the values of Yi represent measures of a quantity at different
points in time (e.g., every month), the assumption of independence may not be
verified. This assumption can be checked by examining the autocorrelation of the
residuals, either graphically by plotting the residuals O�i or using statistical tests
such as the Durbin–Watson test (function dwtest() in package lmtest).

I Example of Analysis of Residuals in Study “Weight at Birth”

We briefly present an analysis of residuals for the model under study, even though
this is not very relevant given the low predictive power of the model (r2 D 3:5%).

We first examine the assumption of normality (Fig. 14.4):

> par(mfrow=c(1,2))
> hist(residuals(model1), main="Histogram")
> qqnorm(resid(model1),datax=TRUE) # Caution: normalized

# quantiles on the y axis.
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Fig. 14.4: Graphical inspection of normality of residuals
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> require("tseries")
> jarque.bera.test(residuals(model1)) # Jarque-Bera test of

# normality.
Jarque Bera Test

data: residuals(model1)
X-squared = 1.7877, df = 2, p-value = 0.4091

This test does not lead us to rejecting the assumption of normality of errors. The
QQ-plot also suggests normal errors since the observed quantiles and theoretical
quantiles (given by a normal distribution) form a straight line. We therefore decide
to accept the assumption of normality.

We now examine the plot of residuals as a function of predicted values. The next
figure shows a scatter plot of residuals correctly spread, symmetrical about the x
axis: the conditions of the model seem valid (Fig. 14.5).

> plot(residuals(model1)�fitted(model1),
+ xlab="Predicted values",ylab="Residuals")
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Fig. 14.5: Plot of residuals as a function of predicted values
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Note

Some diagnostic plots can be obtained with the instructions:

> par(mfrow=c(1,2))
> plot(model1,1:2,col.smooth="red")
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Note that the instruction plot(model1) can draw six plots; some of these
are for detection of outliers. We shall return to this topic in Sect. 14.3.

14.2.5 Student’s Tests for Means and Linear Model

It is interesting to note that the one-sample t-test and the classical or paired two-
sample t-tests are special cases of simple linear regression models.

� One-sample t-test

Let Y1; : : : ;Yn be i.i.d. N .�; 
2/ random variables. We want to test

H0 W � D �0 versus H1 W � ¤ �0;

for some given reference value �0. This can be performed by testing ˇ D 0 in
the model

Yi � �0 D ˇ C εi ;
where the εi are i.i.d. N .0; 
2/, 1 
 i 
 n. Let us see this on an example:

> n <- 100
> y <- rnorm(n,mean=0)
> mu0 <- 0.1
> t.test(y,mu=mu0)[[3]]
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[1] 0.08523596
> summary(lm(y-mu0 � 1))[[4]][1,4]
[1] 0.08523596

� Two-sample t-test

Let X
.1/
1 ; : : : ;X

.1/
n1

be i.i.d. N .�1; 

2/ random variables and X

.2/
1 ; : : : ;X

.2/
n2

be
i.i.d. N .�2; 


2/ random variables. The two samples are supposed to be indepen-
dent. We want to test

H0 W �1 D �2 versus H1 W �1 ¤ �2:

This can be done by testing ˇ1 D 0 in the model

Yi D �1 C ˇ1Ai C εi ;
where the εi are i.i.d. N .0; 
2/ random variables and where we define

Ai D
�
0 si 1 
 i 
 n1;

1 si n1 C 1 
 i 
 n1 C n2;

and

Yi D
(

X
.1/
i si 1 
 i 
 n1;

X
.2/
i�n1

si n1 C 1 
 i 
 n1 C n2:

Let us see this on an example:

> n1 <- 100 ; n2 <- 150
> x1 <- rnorm(n1,mean=0) ; x2 <- rnorm(n2,mean=0.1)
> y <- c(x1,x2) ; a <- c(rep(0,n1),rep(1,n2))
> t.test(x1,x2,var.equal=TRUE)[[3]]
[1] 0.3996454
> summary(lm(y � a))[[4]][2,4]
[1] 0.3996454

� Two-sample paired t-test
Let X

.1/
1 ; : : : ;X

.1/
n be i.i.d. N .�1; 


2/ random variables and X
.2/
1 ; : : : ;X

.2/
n be

i.i.d. N .�2; 

2/ random variables, measured on the same statistical units. We

want to test
H0 W �1 D �2 versus H1 W �1 ¤ �2:

This can be done by testing ˇ D 0 in the model

Yi D ˇ C εi ;

where the εi are i.i.d. N .0; 
2/ random variables and where Yi D X
.1/
i � X

.2/
i ,

1 
 i 
 n. Let us see this on an example:

> n <- 100
> x1 <- rnorm(n,mean=0) ; x2 <- rnorm(n,mean=0.1)
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> t.test(x1,x2,var.equal=TRUE,paired=TRUE)[[3]]
[1] 0.4541976
> summary(lm(x1-x2 � 1))[[4]][1,4]
[1] 0.4541976

14.2.6 Summary

The table below presents the main functions to use for simple linear regression be-
tween the response variable Y and the explanatory variable X (Table 14.1).

Table 14.1: Main R functions for simple linear regression

R instruction Description
plot(Y	X) Scatter plot
lm(Y	X) Estimation of the linear model
summary(lm(Y	X)) Description of results of the model
abline(lm(Y	X)) Draw the estimated line
confint(lm(Y	X)) Confidence interval for regression parameters
predict() Function for predictions
plot(lm(Y	X)) Graphical analysis on residuals

SECTION 14.3

Multiple Linear Regression

14.3.1 Aim and Model

I Aim

We wish to study the variations of a quantitative variable Y (the explained or
response variable, assumed to be random) as a function of p (p > 1) explanatory
variables X1, X2,: : :,Xp (also called independent variables). The explanatory vari-
ables can be all quantitative, all qualitative (in which case we fall back on ANOVA,
presented in Chap. 15) or a mixture of quantitative and qualitative variables. In this
last case, the multiple linear regression model is also called ANCOVA.

I Model

The multiple linear regression model is written as

Y D ˇ0 C ˇ1X1 C � � � C ˇpXp C ε;
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where ε is the random noise term of the model, often assumed to be normally dis-
tributed with expectation zero and variance 
2 and independent of the Xj . The (un-
known) parameters of the regression model are ˇ0, ˇ1; : : : ; ˇp and 
2.

14.3.2 Fitting Data

Consider a data set from the following model:

Yi D ˇ0 C ˇ1Xi1 C ˇ2Xi2 C � � � C ˇpXip C εi i D 1; : : : ; n;
where Xij is the j th explanatory variable for individual i and the errors εi are
independent random variables such that E.εi / D 0 and Var.εi jXi / D 
2 with
Xi D .Xi1; : : : ;Xip/. The observed counterpart of this model can be written in
matrix form:

y D Xˇ C �

with y D

0

B
@

y1

:::

yn

1

C
A, X D

0

B
B
B
@

1 x11 x12 � � � x1p

1 x21 x22 � � � x2p

:::
:::

:::

1 xn1 xn2 � � � xnp

1

C
C
C
A

, ˇ D

0

B
@

ˇ0

:::

ˇp

1

C
A and � D

0

B
@

�1
:::

�n

1

C
A.

The regression parameters ˇ are estimated by minimizing (in ˛ D .˛0; ˛1; : : : ;

˛p/) the ordinary least squares:

S.˛/ D
nX

iD1

.yi � ˛0 � ˛1xi1 � ˛2xi2 � � � � � ˛pxip/
2 D ky �X˛k2:

This gives the least squares estimator Ǒ D .X TX /�1X Ty.

Warning

We assume that X W n � .p C 1/ is a full rank matrix (rank.X / D p C
1 < n). This implies that X TX is invertible. This condition can be evaluated
using R with the command qr(X)$rank. If this condition is not satisfied, it
is possible to use other methods, not shown in this book, as ridge regression,
lasso regression, regression on principal components or PLS regression.

I Graphical Inspection

Connecting thread example: Regression of child weight at birth as a function of
mother age, weight and smoking status during pregnancy.
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In this study, we note X1 the age of the mother (variable AGE), X2 the weight of
the mother (variable LWT), X3 the smoking status of the mother (variable SMOKE)
and Y the child weight at birth (response variable BWT); we can write the following
regression equation:

E.BWTjAGE; LWT; SMOKE/ D ˇ0 C ˇ1AGEC ˇ2LWTC ˇ3SMOKE:

Before estimating the model, we present a scatter plot of all pairs of variables
(Fig. 14.6).

> add.cor <- function(x,y) f
+ usr <- par("usr"); on.exit(par(usr))
+ par(usr = c(0, 1, 0, 1))
+ text(0.5,0.5,round(cor(x,y),2))
+ g

> newdata <- cbind(BWT,LWT,AGE,SMOKE)
> pairs(newdata,lower.panel=panel.smooth,upper.panel=add.cor)
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Fig. 14.6: Scatter plot of all pairs of variables
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The purpose of this plot is twofold. It is used to visualize the relationship between
the response variable and each of the explanatory variables, but also the correlation
between explanatory variables. This second point is useful, amongst other things,
because it helps notice collinearity issues (see the section on this topic, Sect. 14.3.7).

I Parameter Estimation

As for simple linear regression, the model is estimated using function lm():

> model2 <- lm(BWT�AGE+LWT+as.factor(SMOKE))
> model2
Call:
lm(formula = BWT � AGE + LWT + as.factor(SMOKE))
Coefficients:

(Intercept) AGE LWT
2362.720 7.093 8.860

as.factor(SMOKE)1
-267.213

I Tests on Parameters

Tests on parameters are performed by function summary().

> summary(model2)
Call:
lm(formula = BWT � AGE + LWT + as.factor(SMOKE))
Residuals:

Min 1Q Median 3Q Max
-2069.89 -433.18 13.67 516.45 1813.75
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2362.720 300.687 7.858 3.11e-13 ***
AGE 7.093 9.925 0.715 0.4757
LWT 8.860 3.791 2.337 0.0205 *
as.factor(SMOKE)1 -267.213 105.802 -2.526 0.0124 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 708.8 on 185 degrees of freedom
Multiple R-squared: 0.06988, Adjusted R-squared: 0.05479
F-statistic: 4.633 on 3 and 185 DF, p-value: 0.003781

The results output by summary() are presented in the same fashion as for simple
linear regression. Parameter estimates are given in the column Estimate.

The realizations of Student’s test statistics associated with the hypotheses
H0 W ˇi D 0 and H1 W ˇi ¤ 0 are given in column t value; the associated
p-values are in column Pr(>|t|). Residual standard error gives the es-
timate of 
 and the number of associated degrees of freedom n � p � 1. The
coefficient of determination r2 (multiple R-squared) and an adjusted version
(adjusted R-squared) are given, as are the realization of Fisher’s global test
statistic (F-statistic) and the associated p-value.
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I Analysis of Variance Table

The analysis of variance table is given by function anova():

> anova(model2)
Analysis of Variance Table
Response: BWT

Df Sum Sq Mean Sq F value Pr(>F)
AGE 1 806927 806927 1.6063 0.20661
LWT 1 2970564 2970564 5.9133 0.01598 *
as.factor(SMOKE) 1 3204339 3204339 6.3787 0.01239 *
Residuals 185 92935223 502353
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note

Fisher’s global F test is used to test the global joint contribution of all ex-
planatory variables in the model to “explaining” the variations of Y. The null
hypothesis is H0 W ˇ1 D ˇ2 D � � � D ˇp D 0 (under the linear model, the
p explanatory variables give no useful information to predict Y). The asser-
tion of interest is H1 W at least one of the coefficients ˇj .j D 1; 2; : : : ; p/

is significantly different from zero (at least one of the explanatory variables is
associated with Y after adjusting for the other explanatory variables).

I Interpreting Results from Study “Weight at Birth”

Given the result of Fisher’s global test (p-value D 0.003781), we can conclude
that at least one of the explanatory variables is associated with child weight at birth,
after adjusting for the other variables. The individual Student tests indicate that:

� Mother weight is linearly associated with child weight, after adjusting for age
and smoking status, with risk of error less than 5% (p-valueD 0.0205). At same
age and smoking status, an increase of 1 kg in mother weight corresponds to an
increase of 8.860 g of average child weight at birth.

� The age of the mother is not significantly linearly associated with child weight
at birth when mother weight and smoking status are already taken into account
(p-valueD 0.20661).

� Weight at birth is significantly lower for a child born to a mother who smokes,
compared to children born to non-smoker mothers of same age and weight, with
a risk of error less than 5% (p-valueD 0.012). At same age and mother weight,
child weight at birth is 267.213 g less for a smoker mother than for a non-smoker
mother.
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Note

We could have got the same conclusions by looking at confidence intervals
and checking whether zero lies in the interval. If zero does not lie in the con-
fidence interval, then the variable has a significant contribution in the model,
after adjusting for the other variables.

> confint(model2)
2.5 % 97.5 %

(Intercept) 1769.504181 2955.93509
AGE -12.486773 26.67319
LWT 1.380732 16.34007
as.factor(SMOKE)1 -475.945996 -58.48000

14.3.3 Confidence and Prediction Intervals for a New Value

Suppose we wish to predict the weight at birth of a child whose mother is 23 years
old, weighs 57 kg and smokes. The function predict() gives a prediction, a pre-
diction interval and a confidence interval for the mean weight of children whose
mothers have these characteristics.

> newdata <- data.frame(AGE=23,LWT=57,SMOKE=1)
> predict(model2,newdata,interval="pred")

fit lwr upr
1 2763.693 1355.943 4171.444
> predict(model2,newdata,interval="conf")

fit lwr upr
1 2763.693 2600.914 2926.472

14.3.4 Testing a Linear Sub-hypothesis: Partial Fisher Test

Fisher’s partial test is used to test the contribution of a subset of explanatory vari-
ables in a model which already includes other explanatory variables. For example,
consider the following two models:

� Model 1: BWT D ˇ0 C ˇ1LWTC ε
� Model 2: BWT D ˇ0 C ˇ1LWTC ˇ2AGEC ˇ3SMOKEC ε
Fisher’s test is used to test the joint contribution of variables AGE and SMOKE in
model 2. The hypotheses of the test are H0 W ˇ2 D ˇ3 D 0 and H1: at least one
of the coefficients ˇ2 or ˇ3 is non-zero. The following instructions are used for this
test:

> anova(model1,model2)
Analysis of Variance Table
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Model 1: BWT � LWT
Model 2: BWT � AGE + LWT + as.factor(SMOKE)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 187 96468171
2 185 92935223 2 3532949 3.5164 0.03171 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The p-value of the test (Pr(>F)=0.03171) indicates that at least one of the two
variables AGE or SMOKE gives extra information to predict child weight at birth,
when mother weight has already been taken into account.

Note

When comparing two nested models which only differ by one variable,
Fisher’s partial test is equivalent to the individual Student test.

> model3 <- lm(BWT�LWT+SMOKE)
> anova(model3,model2)
Analysis of Variance Table
Model 1: BWT � LWT + SMOKE
Model 2: BWT � AGE + LWT + as.factor(SMOKE)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 186 93191828
2 185 92935223 1 256606 0.5108 0.4757

We get the same p-value as in the individual Student test associated with
variable AGE in model 2.

14.3.5 Qualitative Variables with More Than Two Modalities

Binary explanatory variables are not an issue, as shown in the connecting thread
example with variable SMOKE. Using such a variable in a regression model boils
down to comparing the mean of the response variable Y in the two groups defined
by the binary qualitative variable. This comparison is said to be adjusted on the
other explanatory variables, meaning that we estimate the conditional mean of Y,
for fixed values of all the explanatory variables but SMOKE.

However, for a qualitative variable with more than two modalities, we need to
introduce dummy variables to compare the mean of Y in the groups defined by the
modalities of the qualitative explanatory variable. A dummy variable for a group or
modality is a variable that takes the value 1 in the group and 0 in all other groups.

Connecting thread example: Child weight at birth as a function of mother weight
and race.
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Variable RACE is coded with three modalities: 1 for white, 2 for black and 3 for
other. In this example, we can therefore define three dummy variables RACE1, RACE2
and RACE3.

Categories RACE RACE1 RACE2 RACE3
White 1 1 0 0
Black 2 0 1 0
Other 3 0 0 1

> RACE1 <- as.integer(RACE==1)
> RACE2 <- as.integer(RACE==2)
> RACE3 <- as.integer(RACE==3)

If we try to fit the following model

BWT D XˇC ε D ˇ01C ˇ1LWTC ˇ2RACE1C ˇ3RACE2C ˇ4RACE3C ε; (14.1)

a problem will occur, as can be seen in the output below:

> summary(lm(BWT�LWT+RACE1+RACE2+RACE3))
Call:
lm(formula = BWT � LWT + RACE1 + RACE2 + RACE3)
Residuals:

Min 1Q Median 3Q Max
-2094.9 -420.8 40.1 478.2 1928.4
Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2245.097 226.805 9.899 < 2e-16 ***
LWT 10.267 3.856 2.662 0.00844 **
RACE1 243.667 113.826 2.141 0.03361 *
RACE2 -209.098 168.988 -1.237 0.21752
RACE3 NA NA NA NA
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 702.7 on 185 degrees of freedom
Multiple R-squared: 0.08578, Adjusted R-squared: 0.07095
F-statistic: 5.786 on 3 and 185 DF, p-value: 0.0008399

This comes from the fact that the design matrix X is not of full rank:

> head(model.matrix(summary(
+ lm(BWT�LWT+RACE1+RACE2+RACE3)))) # First rows of the design

# matrix.
(Intercept) LWT RACE1 RACE2 RACE3

1 1 82.55380 0 1 0
2 1 70.30681 0 0 1
3 1 47.62719 1 0 0
4 1 48.98797 1 0 0
5 1 48.53438 1 0 0
6 1 56.24545 0 0 1

Indeed, the sum of the last three columns gives the first column: the model is
called non-identifiable. The least squares estimator of ˇ is then no more unique
(even if predictions based on any least squares estimator of ˇ will be unique).
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Note

We could think about using the least squares estimator Oβ� D XCBWT, based
on the (Moore–Penrose) generalized inverse XC de X , defined on page 323
from Chap. 10.

> mpinv(model.matrix(summary(
+ lm(BWT�LWT+RACE1+RACE2+RACE3))))%*%as.matrix(BWT)

[,1]
[1,] 1692.46453
[2,] 10.26709
[3,] 796.29883
[4,] 343.53360
[5,] 552.63210

But the trouble is that it is difficult to interpret the coefficients of this vector
since non-controllable linear constraints on its components were used (in the
sense that two of them are expressed in terms of all others).

We can see that the model (14.1) can be rewritten as

BWT D ˇ0 C ˇ1LWTC ˇ2RACE1C ˇ3RACE2C ˇ4RACE3C ε
D ˇ0 C ˇ1LWTC ˇ2.1 � RACE2� RACE3/C ˇ3RACE2C ˇ4RACE3C ε
D .ˇ0 C ˇ2/„������ƒ‚������…

�0

C ˇ1„ƒ‚…
�1

LWTC .ˇ3 � ˇ2/„������ƒ‚������…
�2

RACE2C .ˇ4 � ˇ2/„������ƒ‚������…
�3

RACE3C ε:

In this latter form, the model is now identifiable (�i ’s can be estimated). This is
easily verified on the following output:

> summary(lm(BWT�LWT+RACE2+RACE3))$coeff
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2488.76336 241.863663 10.289943 6.348821e-20
LWT 10.26709 3.856339 2.662393 8.442125e-03
RACE2 -452.76523 157.481809 -2.875032 4.513529e-03
RACE3 -243.66673 113.825910 -2.140697 3.360769e-02

This consists in taking as a reference the group RACE = 1 (white race), i.e. to
consider the linear regression model with only the dummy variables for the other
groups (RACE2, RACE3).

To fit a model with qualitative covariates, you can use the function factor() in
instruction lm(), as can be seen below:

> model4 <- lm(BWT�LWT+factor(RACE))
> summary(model4)$coeff

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2488.76336 241.863663 10.289943 6.348821e-20
LWT 10.26709 3.856339 2.662393 8.442125e-03
factor(RACE)2 -452.76523 157.481809 -2.875032 4.513529e-03
factor(RACE)3 -243.66673 113.825910 -2.140697 3.360769e-02
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Note that in this output, R used as reference the group RACE = 1.

In this context, the estimation O�2 D 2ˇ3 � ˇ2 D �452:765 g represents the
difference of child birth weight between black mothers (RACE=2) and white moth-
ers (reference group), and this result is significantly different from zero (p-value =
0.00451) in a model adjusted for mother weight. Similarly, the difference in aver-
age weight at birth between group RACE = 3 and the reference group is 2ˇ4 � ˇ2 D
�243:667g and is significantly different from zero (p-value = 0.03361), adjusting
for mother weight.

Note

It is possible to change the reference class using the function relevel().

> summary(lm(BWT�LWT+relevel(factor(RACE),ref=3)))$coeff
Estimate Std. Error

(Intercept) 2245.09663 226.805111
LWT 10.26709 3.856339
relevel(factor(RACE), ref = 3)1 243.66673 113.825910
relevel(factor(RACE), ref = 3)2 -209.09850 168.988169

t value Pr(>|t|)
(Intercept) 9.898792 8.296639e-19
LWT 2.662393 8.442125e-03
relevel(factor(RACE), ref = 3)1 2.140697 3.360769e-02
relevel(factor(RACE), ref = 3)2 -1.237356 2.175232e-01

Note

To test the global contribution of variable RACE, use a partial Fisher test, as
described in the previous section.

> anova(model1,model4)
Analysis of Variance Table
Model 1: BWT � LWT
Model 2: BWT � LWT + factor(RACE)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 187 96468171
2 185 91346474 2 5121697 5.1864 0.006434 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Warning

To resume, never add to the model the dummy variable for the reference
group. For a qualitative variable with p modalities, only use p � 1 dummy
variables.
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14.3.6 Interaction Between Variables

We say that there is interaction between two explanatory variables X1 and X2 if the
association between one of the variables and the response variable Y is not the same
depending on the values of the other variable. This corresponds to the notion of
effect modification in epidemiology.

Suppose we are interested in the association between X1 and Y and we wish
to know whether the effect of X1 on Y is different depending on the values of X2.
We simply need to include in the model the variables X1 and X2 as well as a third
variable X3 defined as the product of X1 and X2 (X3 D X1�X2, called the interaction
term between X1 and X2). To make things clearer, suppose we wish to determine
whether the effect of quantitative variable X1 is modified by binary (0/1) variable
X2. We then consider the model:

Y D ˇ0 C ˇ1X1 C ˇ2X2 C ˇ3X1 � X2 C ε:
In group X2 D 0, the model is: Y D ˇ0Cˇ1X1C ε and the effect of X1 is measured
by ˇ1. In group X2 D 1, the model is Y D .ˇ0 C ˇ2/C .ˇ1 C ˇ3/X1 C ε and the
effect of X1 is measured by ˇ1 C ˇ3.

There is interaction between X1 and X2 (or modification of the effect of X1 by
X2) if the effect of X1 is different in groups X2 D 0 and X2 D 1, i.e. if ˇ3 ¤ 0. We
therefore need to perform an individual Student test on ˇ3 (H0 W ˇ3 D 0 versus
H1 W ˇ3 ¤ 0). If we accept H1, we keep the interaction term in the model: there is
modification of effect.

Connecting thread example: Modification of the effect of mother age on child
weight at birth by mother’s smoking status.

We first consider the model

BWT D ˇ0 C ˇ1AGEC ˇ2SMOKEC ε:
> model5 <- lm(BWT�AGE+SMOKE)

This model assumes that the effect of AGE is the same for smoker and non-smoker
mothers. We can propose a more flexible model, allowing for different effects in the
two groups SMOKE=0 and SMOKE=1:

BWT D ˇ0 C ˇ1AGEC ˇ2SMOKEC ˇ3AGE � SMOKEC ε
> model6 <- lm(BWT�AGE+SMOKE+AGE:SMOKE)
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Tip

To introduce an interaction term between the two variables X1 and X2 in a
linear model, simply type X1:X2. Note that X1*X2 in a formula corresponds to
X1+X2+X1:X2. The previous call could have been replaced with

> model6 <- lm(BWT�AGE*SMOKE)

The difference between the two models can be visualized on the next two plots.
The first plot shows two parallel lines; the slope represents the effect of AGE on BWT,
which is the same for smokers and non-smokers (Fig. 14.7).

> co <- coef(model5); a0 <- co[1] ; a1 <- co[1]+co[3]
> b <- co[2]
> fSMOKE <- as.factor(SMOKE)
> plot(BWT�AGE, xlab="AGE in years", ylab=
+ "Weight at birth (g)",main=expression(BWT�"="�
+ beta[0]+beta[1]*AGE+beta[2]*SMOKE+epsilon),
+ col = c(’blue’,’red’)[fSMOKE], pch=c(1,18)[fSMOKE])
> abline(a=a0,b,col="blue") ; abline(a=a1,b,col="red")

> legend("bottomright",c("SMOKE=0","SMOKE=1"),
+ col=c("red","blue"),lty=1)
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Fig. 14.7: Effect of age on BWT in a model without interaction

The next plot shows two different slopes, illustrating the notion of interaction
(Fig. 14.8).
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> co <- coef(model6); a0 <- co[1] ; a1 <- co[1]+co[3]
> b0 <- co[2] # Effect of age on non-smokers.
> b1 <- co[2]+co[4] # Effect of age on smokers.
> plot(BWT�AGE,xlab="AGE in years",ylab="Weight at birth (g)",
+ main=expression(BWT�"="�beta[0]+beta[1]*AGE+beta[2]*SMOKE+
+ beta[3]*AGE�"x"�SMOKE+epsilon))
> points(AGE[SMOKE==1],BWT[SMOKE==1],col="red",pch=18)
> points(AGE[SMOKE==0],BWT[SMOKE==0],col="blue")
> abline(a=a0,b0,col="blue") ; abline(a=a1,b1,col="red")

> legend("bottomright",c("SMOKE=0","SMOKE=1"),
+ col=c("red","blue"),lty=1)
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Fig. 14.8: Effect of age on BWT in a model with interaction

We can test the significance of the interaction term by analysing the results of
model 6.

> summary(model6)
Call:
lm(formula = BWT � AGE * SMOKE)
Residuals:

Min 1Q Median 3Q Max
-2187.8 -456.6 52.8 526.6 1522.2
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2408.38 292.24 8.241 3.05e-14 ***
AGE 27.60 12.15 2.271 0.0243 *
SMOKE 795.38 484.42 1.642 0.1023
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AGE:SMOKE -46.36 20.45 -2.267 0.0245 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 709.4 on 185 degrees of freedom
Multiple R-squared: 0.0683, Adjusted R-squared: 0.05319
F-statistic: 4.521 on 3 and 185 DF, p-value: 0.004378

The coefficient ˇ3 is significantly different from zero (p-value = 0.024). We
therefore conclude that the effect of mother age on child weight at birth is not the
same depending on the smoking status of the mother. The results on association be-
tween mother age and child weight at birth must therefore be presented separately
for the smoker and non-smoker groups.

For completeness sake, for non-smoker mothers, the effect of AGE is significant
(p-value = 0.0243). The mean child weight at birth increases with mother age, by
27.60 g ( Ǒ1) for one extra year for the mother. A confidence interval is given by

> confint(model6)[2,]
2.5 % 97.5 %

3.628108 51.573048

For smoker mothers, the mean child weight at birth decreases with mother age,
by 18.762 g ( Ǒ1C Ǒ3) for one extra year for the mother. To know whether this result
is significant, we calculate the confidence interval for ˇ1 C ˇ3. A clever way of
doing this is to create a new variable SMOKE1 which reverses the coding of SMOKE,
then to launch the instructions

> SMOKE1 <- 1-SMOKE
> confint(lm(BWT�AGE+SMOKE1+AGE:SMOKE1))[2,]

2.5 % 97.5 %
-51.21423 13.68941

The value 0 lies in the confidence interval; thus the effect of AGE on BWT is not
significant for smoker mothers.

14.3.7 Issues with Collinearity

When several explanatory variables give the same kind of information, several phe-
nomena can occur:

� Disruption of estimate quality (very large variance)
� Contradictory values of coefficients (opposite signs)
� Non-significant coefficients

These are collinearity issues.
The criterion used to quantify collinearity of explanatory variables is the vari-

ance inflation factor VIF: 1

1�r2
j

where r2
j is the multiple coefficient of determination

when we regress the j th explanatory variable xj on the set of other regressors.
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The VIF plays an essential role in estimator variance since Var
� Oβj jX D X

	
D

�2

n�s2
j

� 1

1�r2
j

where s2
j D 1

n

Pn
iD1.xij � xj /

2 is the variance of the sample xj . The

more xj is collinear to the other regressors, the closer r2
j is to 1, hence the higher

the term 1

1�r2
j

; the variance of the estimator Oβj is then very high. Conversely, the

closer r2
j is to 0, the closer the associated VIF is to 1 (the minimum). Thus, the more

xj is “independent” of the other regressors, the less the estimates are disrupted.
Collinearity of regressors necessarily has an impact on estimator precision. We say
there is strong collinearity when VIFj > 10 (i.e. r2

j > 0:9).

The R instruction to compute the VIF is vif(), available in package car.

We show how to use the function vif() in the very simple example of model

EŒBWTjLWT; AGE� D ˇ0 C ˇ1LWTC ˇ2AGE:

> model7 <- lm(BWT�LWT+AGE)
> vif(model7)

LWT AGE
1.033513 1.033513

Note

In this case, the VIFs are equal, since there are only two regressors. This
is a very simple example: there are only two regressors and we could have
analysed this collinearity graphically, but the usefulness of this method is clear
when there is a large number of regressors.

14.3.8 Variable Selection

Amongst the large number of possible explanatory variables, we wish to select those
which explain Y the best. This way, we can decrease the number of predictors (giv-
ing a parsimonious model) and get good predictive power by eliminating redundant
variables which increase the variance inflation factor (VIF).

The greater the number of parameters (large number of explanatory variables),
the better the fit to the data (r2 close to 1). As a trade-off, parameter estimation is
disrupted (variance of estimators increases) because of collinearity issues.

In this section, we briefly present a few methods for variable selection available
in R. They are illustrated on a few variables from data set Birth-weight.
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We consider the explanatory variables LWT, AGE, UI, SMOKE and HT and two
recoded variables FTV1 and PTL1. We note FVT1 = 1 if there was at least one visit
to a physician, and FVT1= 0 otherwise. Similarly, we note PTL1 = 1 if there is at
least one preterm birth in the family history, and PTL1 = 0 otherwise.

I Best Subset Method

When the number p of explanatory variables is not too large, we can study all
possibilities. One efficient algorithm (see [18, 19]) can go up to 30 variables: the
leaps and bounds method. At fixed p, we choose the regression model with the
largest r2. For two regression models with different numbers of explanatory vari-
ables, we can choose the one with largest adjusted r2

a .
The relevant R function is leaps() available in package leaps().

> FVT1 <- FVT; FVT1 <- as.integer(FVT>=1)
> PTL1 <- PTL; PTL1 <- as.integer(PTL>=1)
> matx <- model.matrix(lm(BWT�-1+LWT+AGE+UI+SMOKE+HT+FVT1+PTL1))
> # Equivalent to: matx <- cbind(LWT,AGE,UI,SMOKE,HT,FVT1,PTL1)
> adjr2.leaps <- leaps(matx,BWT,nbest=1,method="adjr2")
> best.model.adjr2 <- adjr2.leaps$which[adjr2.leaps$adjr2==
+ max(adjr2.leaps$adjr2),]
> best.model.adjr2

1 2 3 4 5 6 7
TRUE FALSE TRUE TRUE TRUE FALSE TRUE

The best model in the sense of the adjusted r2
a is thus

BWT D ˇ0 C ˇ1LWTC ˇ2UIC ˇ3SMOKEC ˇ4HTC ˇ5PTL1C ε:

Note

You can use other selection criteria than the adjusted r2
a with the argument

method of function leaps(). For example, method="Cp" uses Mallows’ Cp

criterion [27].

Another interesting function in package leaps() is regsubsets(). For exam-
ple, with its argument force.in, it can be used to specify one or several variables
which must be included in all models considered. We give an example using the
BIC (Bayesian information criterion) to choose the best model [37] (Fig. 14.9):
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> # Force SMOKE to be included:
> best.model.bic <- regsubsets(matx,BWT,nbest=1,force.in=4)
> summary(best.model.bic)$bic # BIC values of best models of

# each size (nbest=1).
[1] -6.273748 -7.607040 -9.796126 -7.865648 -3.491572 1.544854
> plot(best.model.bic)
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Fig. 14.9: Selecting variables with the BIC

The best model is the one with lowest BIC. The best model, in the sense of the
BIC, is

BWT D ˇ0 C ˇ1LWTC ˇ2UIC ˇ3SMOKEC ˇ4HTC ε:
Note

Other selection criteria can be used with argument scale in function
plot() applied to an object of class regsubsets or using $rsq, $rss,
$adjr2 and $cp (for r-squared, residual sum of squares, adjusted r-squared
and Mallows’ Cp respectively), instead of $bic, with the function summary()
as shown above.

I Forward Selection

The forward selection method is an iterative method. At each step, it selects the
most significant explanatory variable (at level ˛) when we regress Y on all explana-
tory variables selected at previous steps and the newly chosen variable, as long as
the marginal contribution of the new variable is significant.

Watch this method in action with function add1() for level ˛ D 0:05.
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> add1(lm(BWT�1),BWT�LWT+AGE+UI+SMOKE+HT+FVT1+PTL1,test="F")
Single term additions
Model:
BWT � 1

Df Sum of Sq RSS AIC F value Pr(F)
<none> 99917053 2492.7
LWT 1 3448881 96468171 2488.0 6.6855 0.010481 *
AGE 1 806927 99110126 2493.1 1.5225 0.218790
UI 1 8028747 91888305 2478.8 16.3391 0.00007732 ***
SMOKE 1 3573406 96343646 2487.8 6.9359 0.009156 **
HT 1 2132014 97785038 2490.6 4.0772 0.044894 *
FVT1 1 1338322 98578731 2492.1 2.5387 0.112772
PTL1 1 4757523 95159530 2485.4 9.3491 0.002558 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

UI is the most significant variable.

> add1(lm(BWT�UI),BWT�LWT+AGE+UI+SMOKE+HT+FVT1+PTL1,test="F")
Single term additions
Model:
BWT � UI

Df Sum of Sq RSS AIC F value Pr(F)
<none> 91888305 2478.8
LWT 1 2076990 89811315 2476.5 4.3015 0.03946 *
AGE 1 472355 91415950 2479.9 0.9611 0.32819
SMOKE 1 2949940 88938365 2474.7 6.1693 0.01388 *
HT 1 3162469 88725836 2474.2 6.6296 0.01081 *
FVT1 1 949028 90939278 2478.9 1.9411 0.16522
PTL1 1 2837049 89051257 2474.9 5.9257 0.01587 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

HT is the most significant variable.

> add1(lm(BWT�UI+HT),BWT�LWT+AGE+UI+SMOKE+HT+FVT1+PTL1,test="F")
Single term additions
Model:
BWT � UI + HT

Df Sum of Sq RSS AIC F value Pr(F)
<none> 88725836 2474.2
LWT 1 3560080 85165756 2468.5 7.7333 0.005982 **
AGE 1 415275 88310561 2475.3 0.8700 0.352184
SMOKE 1 2828310 85897527 2470.1 6.0914 0.014492 *
FVT1 1 698035 88027801 2474.7 1.4670 0.227365
PTL1 1 2682800 86043036 2470.4 5.7683 0.017308 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

LWT is the most significant variable.

> add1(lm(BWT�UI+HT+LWT),BWT�LWT+AGE+UI+SMOKE+HT+FVT1+PTL1,
+ test="F")
Single term additions
Model:
BWT � UI + HT + LWT
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Df Sum of Sq RSS AIC F value Pr(F)
<none> 85165756 2468.5
AGE 1 94703 85071053 2470.3 0.2048 0.65138
SMOKE 1 2579898 82585858 2464.7 5.7480 0.01751 *
FVT1 1 509265 84656491 2469.3 1.1069 0.29414
PTL1 1 2127921 83037835 2465.7 4.7152 0.03118 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

SMOKE is the most significant variable.

> add1(lm(BWT�UI+HT+LWT+SMOKE),BWT�LWT+AGE+UI+SMOKE+HT+FVT1+PTL1,
+ test="F")
Single term additions
Model:
BWT � UI + HT + LWT + SMOKE

Df Sum of Sq RSS AIC F value Pr(F)
<none> 82585858 2464.7
AGE 1 65305 82520553 2466.5 0.1448 0.70397
FVT1 1 275436 82310423 2466.0 0.6124 0.43491
PTL1 1 1434298 81151560 2463.3 3.2344 0.07375 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

No further variable is significant. The method thus stops at the model with vari-
ables: UI, HT, LWT and SMOKE.

I Backward Selection

This time, we start with the complete model and at each step, we delete the
variable with lowest value of Student’s test statistic (largest p-value) in absolute
value, as long as it is not significant (at a specified level ˛).

Watch this method in action with function drop1() for level ˛ D 0:05.

> drop1(lm(BWT�LWT+AGE+UI+SMOKE+HT+FVT1+PTL1),test="F")
Single term deletions
Model:
BWT � LWT + AGE + UI + SMOKE + HT + FVT1 + PTL1

Df Sum of Sq RSS AIC F value Pr(F)
<none> 80692151 2466.3
LWT 1 2475214 83167365 2470.0 5.5521 0.0195277 *
AGE 1 87708 80779859 2464.5 0.1967 0.6578974
UI 1 5431112 86123263 2476.6 12.1825 0.0006059 ***
SMOKE 1 1622617 82314768 2468.0 3.6397 0.0580009 .
HT 1 3885141 84577292 2473.2 8.7147 0.0035749 **
FVT1 1 272400 80964551 2464.9 0.6110 0.4354262
PTL1 1 1601044 82293195 2468.0 3.5913 0.0596772 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



14.3 Multiple Linear Regression 487

We delete variable AGE.

> drop1(lm(BWT�LWT+UI+SMOKE+HT+FVT1+PTL1),test="F")
Single term deletions
Model:
BWT � LWT + UI + SMOKE + HT + FVT1 + PTL1

Df Sum of Sq RSS AIC F value Pr(F)
<none> 80779859 2464.5
LWT 1 2740905 83520764 2468.8 6.1754 0.0138569 *
UI 1 5536620 86316478 2475.0 12.4742 0.0005228 ***
SMOKE 1 1644322 82424180 2466.3 3.7047 0.0558183 .
HT 1 3954174 84734033 2471.5 8.9089 0.0032279 **
FVT1 1 371701 81151560 2463.3 0.8375 0.3613362
PTL1 1 1530564 82310423 2466.0 3.4484 0.0649284 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We delete variable FVT1.

> drop1(lm(BWT�LWT+UI+SMOKE+HT+PTL1),test="F")
Single term deletions
Model:
BWT � LWT + UI + SMOKE + HT + PTL1

Df Sum of Sq RSS AIC F value Pr(F)
<none> 81151560 2463.3
LWT 1 2891443 84043002 2468.0 6.5203 0.0114803 *
UI 1 5763232 86914792 2474.3 12.9963 0.0004023 ***
SMOKE 1 1886275 83037835 2465.7 4.2536 0.0405794 *
HT 1 4217585 85369145 2470.9 9.5108 0.0023592 **
PTL1 1 1434298 82585858 2464.7 3.2344 0.0737548 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We delete variable PLT1.

> drop1(lm(BWT�LWT+UI+SMOKE+HT),test="F")
Single term deletions
Model:
BWT � LWT + UI + SMOKE + HT

Df Sum of Sq RSS AIC F value Pr(F)
<none> 82585858 2464.7
LWT 1 3311668 85897527 2470.1 7.3783 0.0072310 **
UI 1 6955671 89541530 2477.9 15.4971 0.0001171 ***
SMOKE 1 2579898 85165756 2468.5 5.7480 0.0175082 *
HT 1 4443587 87029445 2472.6 9.9002 0.0019278 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The method stops at the model with variables: UI, HT, LWT and SMOKE.

I The Stepwise Method

This algorithm is an improvement upon the forward selection method. At each
step, it performs Student’s or Fisher’s tests, or optimize some criterion, to not add
a non-significant variable and possibly delete previously included variables which
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are no longer significant given the latest included variable. The algorithm stops
when no variables can be added or deleted.

We present function step() to perform the stepwise method, using at each step
a selection procedure based on the AIC criterion [2] (an information criterion).
One can also use the well-known BIC criterion (Bayesian information criterion)
by means of the k=log(n) argument of the step() function.

> step(lm(BWT�1),BWT�LWT+AGE+UI+SMOKE+HT+FVT1+PTL1,
+ direction="both")
Start: AIC=2492.66
BWT � 1

Df Sum of Sq RSS AIC
+ UI 1 8028747 91888305 2478.8
+ PTL1 1 4757523 95159530 2485.4
+ SMOKE 1 3573406 96343646 2487.8
+ LWT 1 3448881 96468171 2488.0
+ HT 1 2132014 97785038 2490.6
+ FVT1 1 1338322 98578731 2492.1
<none> 99917053 2492.7
+ AGE 1 806927 99110126 2493.1
Step: AIC=2478.83
BWT � UI

Df Sum of Sq RSS AIC
+ HT 1 3162469 88725836 2474.2
+ SMOKE 1 2949940 88938365 2474.7
+ PTL1 1 2837049 89051257 2474.9
+ LWT 1 2076990 89811315 2476.5
<none> 91888305 2478.8
+ FVT1 1 949028 90939278 2478.9
+ AGE 1 472355 91415950 2479.9
- UI 1 8028747 99917053 2492.7
Step: AIC=2474.21
BWT � UI + HT

Df Sum of Sq RSS AIC
+ LWT 1 3560080 85165756 2468.5
+ SMOKE 1 2828310 85897527 2470.1
+ PTL1 1 2682800 86043036 2470.4
<none> 88725836 2474.2
+ FVT1 1 698035 88027801 2474.7
+ AGE 1 415275 88310561 2475.3
- HT 1 3162469 91888305 2478.8
- UI 1 9059202 97785038 2490.6
Step: AIC=2468.47
BWT � UI + HT + LWT

Df Sum of Sq RSS AIC
+ SMOKE 1 2579898 82585858 2464.7
+ PTL1 1 2127921 83037835 2465.7
<none> 85165756 2468.5
+ FVT1 1 509265 84656491 2469.3
+ AGE 1 94703 85071053 2470.3
- LWT 1 3560080 88725836 2474.2
- HT 1 4645559 89811315 2476.5
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- UI 1 7482463 92648219 2482.4
Step: AIC=2464.66
BWT � UI + HT + LWT + SMOKE

Df Sum of Sq RSS AIC
+ PTL1 1 1434298 81151560 2463.3
<none> 82585858 2464.7
+ FVT1 1 275436 82310423 2466.0
+ AGE 1 65305 82520553 2466.5
- SMOKE 1 2579898 85165756 2468.5
- LWT 1 3311668 85897527 2470.1
- HT 1 4443587 87029445 2472.6
- UI 1 6955671 89541530 2477.9
Step: AIC=2463.35
BWT � UI + HT + LWT + SMOKE + PTL1

Df Sum of Sq RSS AIC
<none> 81151560 2463.3
+ FVT1 1 371701 80779859 2464.5
- PTL1 1 1434298 82585858 2464.7
+ AGE 1 187009 80964551 2464.9
- SMOKE 1 1886275 83037835 2465.7
- LWT 1 2891443 84043002 2468.0
- HT 1 4217585 85369145 2470.9
- UI 1 5763232 86914792 2474.3
Call:
lm(formula = BWT � UI + HT + LWT + SMOKE + PTL1)
Coefficients:
(Intercept) UI HT LWT

2631.45 -506.76 -633.15 9.33
SMOKE PTL1

-208.46 -247.66

Warning

The data set Birth-weight has been used here only to illustrate how to use
R functions for automatic selection, even though the best strategy for this data
set would have been to select “by hand”.

Indeed, it should be noted that different methods of automatic selection may
not lead to the same choice of variables in the final model. They have the ad-
vantage of being easy to use and of treating the question of variable selection
in a systematic manner. The main drawback is that variables are included or
deleted based on purely statistical criteria, without taking into account the aim
of the study. This usually leads to a model which may be satisfactory from a
statistical point of view, but in which the variables are not the most relevant
when it comes to understanding and interpreting the data in the study.
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14.3.9 Analysis of Residuals

We present here a few elements on analysis of residuals. This method is useful
to check the assumptions of the model and to detect possible outliers. For further
details, we recommend you read [41].

I Validating Model Assumptions

We have already mentioned that for simple linear regression, analysis of residuals
can be used to check the assumptions of the regression model. We showed two plots
to check the assumptions of normally distributed errors and homoscedasticity of
errors (Figs. 14.10, 14.11).

Connecting thread example: Study “Child weight at birth”.
We study the validity of the assumptions for the model

BWT D ˇ0 C ˇ1SMOKEC ˇ2AGEC ˇ3LWTC ˇ4RACE2C ˇ5RACE3C ˇ6UI

Cˇ7HTC ˇ8SMOKE� AGEC ε:

> finalmodel<-lm(BWT�SMOKE+AGE+LWT+factor(RACE)+UI+HT+SMOKE:AGE)
> par(mfrow=c(1:2))
> plot(finalmodel,1:2,col.smooth="red")
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Fig. 14.10: Checking the assumptions of homoscedasticity (left) and normality (right)
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> res <- residuals(finalmodel)
> par(mfrow=c(2,3))
> plot(res�SMOKE);plot(res�AGE);plot(res�LWT)
> plot(res�RACE);plot(res�UI);plot(res�HT)
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Fig. 14.11: Residuals as a function of explanatory variables

It can also be useful to plot the residuals as a function of each explanatory vari-
able, as shown in the above figure. This plot is useful to check whether there is a
relationship between the error term and the explanatory variables, which would in-
validate the assumption of independence between errors and explanatory variables.
This plot is also useful to detect outliers.

I Outliers and Influential Points

An outlier is a point with a large value of its residual. It is a point which is often
distant from the others. It can be visualized on the plot of residuals against predicted
values (or against an explanatory variable) as a point very far away. Several kinds of
residuals can then be defined:

� Standardized residuals ti D O�i

O
 p1 � hii
where hii is the “leverage” (defined

later on). These residuals are given by function rstandard(). Standardized
residuals are “mostly” between �2 and 2, but they are dependent.
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� Studentized residuals t�i D
O�i

O
.�i/

p
1 � hii

D ti
s

n� p � 2
n � p � 1 � t2i

where O
.�i/

is an estimation of the standard deviation obtained without observation i . Studen-
tized residuals are given by function rstudent(). An observation is called an
outlier when jt�i j > t

.n�p�2/
0:975 (where t .n�p�2/

0:975 is the 0.975 quantile of a Student
distribution with n � p � 2 degrees of freedom) (Fig. 14.12):

> res.stud <- rstudent(finalmodel) # Calculating studentized
# residuals.

> threshold.stud <- qt(0.975,189-8-2) # Calculating the
# threshold for the
# Student distribution.

> cond <- res.stud<(-threshold.stud) | res.stud > threshold.stud
> # List of individuals who can be considered outliers.
> id.student <- ID[cond] # ID (identification number) is in

# first column of dataset.
> val.ajust <- fitted(finalmodel)
> plot(res.stud�val.ajust,xlab="Fitted values",
+ ylab="Studentized residuals",pch=20)
> abline(h=c(-threshold.stud,threshold.stud))

> text(val.ajust[cond],res.stud[cond],id.student,col="red",pos=1)
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Fig. 14.12: Visualizing outliers: studentized residuals against fitted values

Another way of studying outliers is the notion of “leverage points”. The lever-
age for observation i (noted hii) is the value on the diagonal of matrix H D
X .X TX /�1X T (the hat matrix). This measure is mostly used for the variance of
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residuals: Var.Oεi / D 
2.1 � hii /. A leverage above 2.p C 1/=n can be considered
too large. Large hii indicates that the i th observation is far from the centre of gravity.

The hii, stored in vector leverage, are given by

> # Equivalent to hat(model.matrix(finalmodel)):
> leverage <- hatvalues(finalmodel)
> # We also could have used the following instructions:
> outl <- influence.measures(finalmodel)
> leverage <- outl$infmat[,"hat"]

To detect leverage points, you can type:

> threshold.leverage <- 2*(8+1)/189
> outl.leverage <- ID[leverage>threshold.leverage]
> # List of individuals with large leverage:
> outl.leverage
[1] 85 98 119 126 138 159 168 187 197 202 226 11 13 19
[15] 20 28 75 83 84

Other diagnostics can be used to inspect outliers and check their influence on the
regression model:

� Cook’s distance. It is used to measure the influence of observation i on the
estimation of the regression parameters. It is defined as

Ci D
Pn

j D1

�
Oyj � Oy.�i/

j

	2

O
2.p C 1/ D



1

p C 1
� 


hi i

1 � hi i

�
t2i

D



1

p C 1
� 


hi i

.1 � hi i /2

� O�2
i

O
2

D



1

p C 1
� 


hi i

1 � hi i

� O
2
.�i/

O
2
t�2
i ;

where Oy.�i/
j is the prediction at point xj D .1; xj1; : : : ; xjp/

T given by the
model estimated without the i th observation.

A large value of Ci indicates that the i th observation is influential (1 is some-
times used as the threshold). Deleting this observation can lead to big modifi-
cations in the regression equation. The function to calculate Cook’s distance is
cooks.distance().

Here is a graphical representation (Fig. 14.13):
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> plot(cooks.distance(finalmodel),type="h")
> # Or: plot(finalmodel,4)
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Fig. 14.13: Visualizing influential observations: Cook’s distance

According to Cook’s distance, no value seems globally influential.

� Welsch–Kuh distance or Dffits. It is defined as

Dffitsi D Oyi � Oy.�i/
i

O
.�i/

p
hii
D t�i

s
hii

1 � hii
:

Large jDffitsi j indicates that observation i has an influence on the estimate Oyi ,
which means that observation is influential on the regression results. In practice,

an observation is considered influential if jDffitsi j � 2
q

pC1
n

.

The R function to calculate the Dffits is dffits().

> threshold.dffit <- 2*sqrt((8+1)/189)
> ID[abs(dffits(finalmodel))>=threshold.dffit]
[1] 108 119 187 188 197 202 210 226 4 10 11 13 18 20
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� The Dfbetas measure. It is defined as

Dfbetasj;i D
Ǒ
j � Ǒ.�i/

j

O
.�i/

q
.X TX /�1

j C1Ij C1

where Ǒ.�i/
j is the estimate of ˇj obtained without using the i th observation. This

quantity measures the influence of observation i on the estimate of the j th coef-
ficient. For small or medium-size data sets, a value larger than 1 is suspect. For
large data sets, observation i is suspect if jDfbetasj;i j > 2=pn for at least one j .

The R function to calculate the Dfbetas is dfbetas().

> threshold.dfbetas <- 1
> ID[apply(abs(dfbetas(finalmodel))>threshold.dfbetas,
+ FUN=any,MARGIN=1)]
integer(0)

Here, no value seems suspect.

� Covariance ratio. It is defined, for the i th observation, as the ratio of the deter-
minant of the estimated matrix of variances-covariances of bβ.�i/ (estimator of ˇ

obtained without using the i th observation) by the determinant of the estimated
matrix of variances-covariances of bβ (estimator of ˇ):

det

�
d

Var.bβ.�i//

�

det

�
d
Var.bβ/

� :

If the ratio is near 1, the i th observation does not significantly influence the co-
variance matrix.

> max(abs(covratio(finalmodel)-1))
[1] 0.2897528

Note

For further details on these diagnostics, you can read [4], [41] or [11].
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14.3.10 Polynomial Regression

In a polynomial model, the relationship between the explained variable Y and an
explanatory variable X is represented in a non-linear fashion, such as:

Y D ˇ0 C ˇ1XC ˇ2X2 C � � � C ˇpXp C ε:
This model is a multiple regression model with p regressors: the powers of the
explanatory variable.

To perform regression in a polynomial model, you simply need to correctly spec-
ify the formula associated with the model in the function lm(). Two R functions
are useful: I() and poly(). The next table gives a few examples of formulae for
polynomial models.

Model R formula
M1: Y D ˇ0 C ˇ1X C ˇ2X2 Y	poly(X,2,raw=TRUE)
M2: Y D ˇ1X C ˇ2X2 C ˇ3X3 Y	-1+poly(X,3,raw=TRUE)
M3: Y D ˇ0 C ˇ1X C ˇ2X3 Y	X+I(Xˆ3)
M4: Y D ˇ1X C ˇ2X3 C ˇ3X4 Y	-1+X+I(Xˆ3)+I(Xˆ4)

14.3.11 Summary

This table lists the main functions useful for multiple linear regression (Table 14.2).

Table 14.2: Main R functions for multiple linear regression

R instruction Description
pairs() Graphical inspection
lm(Y	X1+X2+...+X3) Estimation of the multiple linear model
summary(lm()) Description of the results of the model
confint(lm()) Confidence interval for regression parameters
predict() Function for predictions
plot(lm()) Graphical analysis of residuals
anova(mod1,mod2) Partial Fisher test
X1:X2 Interaction between X1 and X2

vif() Computation of VIF
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Memorandum

lm(): perform linear regression
summary(lm()): results of the linear model
confint(): confidence interval for regression parameters
predict(): prediction of new values
residuals(): recover residuals of a linear model
plot(lm(()): plots for model validation
pairs(): scatter plot
anova(lm()): analysis of variance table of a linear model
X1:X2: interaction term
rstandard(): standardized residuals
rstudent(): studentized residuals
vif(): calculation of VIF
cooks.distance(): Cook’s distance
dffits(): Welsch–Kuh distance
dfbetas(): Dfbetas measure
step(): stepwise method with AIC
regsubsets(): selection by exhaustive search

✎
Exercises

14.1- Give the instruction to fit the model Y D ˇ0 C ˇ1X1 C ε.
14.2- Give the instruction to fit the model Y D ˇ1X1 C ε.
14.3- Give the instruction to fit the model Y D ˇ0 C ˇ1X1 C ˇ2X2 C ε.
14.4- Give the instruction to fit the model Y D ˇ0 C ˇ1X1 � ˇ2X2 C ˇ3X1 C

ˇ4X2 C ε.
14.5- Give the instruction to fit the model Y D ˇ0 C ˇ1X1 C ˇ2X2

1 C ˇ3X4
1 C ε.

14.6- Which instruction performs a partial Fisher test?
14.7- Which function recovers the residuals of a model?
14.8- Which function gives the estimates of a regression model?
14.9- Let Z be a qualitative variable. Which function should you use to fit a regres-

sion model with Z as the explanatory variable?
14.10- Give the instruction to fit the polynomial model Y D ˇ0 C ˇ1X1 C ˇ2X2 C

ˇ3X3 C ε.
14.11- Which function performs forward selection?
14.12- Which function performs backward selection?
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Ï
Worksheet

A- Study of Simple Linear Regression

� Study of synthetic data:

14.1- Simulate a data set .xi ; yi /; i D 1; : : : ; n from a simple linear regression
model. To this end:

� Choose the true parameters ˇ0 and ˇ1, as well as 
 > 0.
� Simulate the vector of errors � of size n from a normal distribution

N .0; 
2/.
� Simulate the vector of values of the explanatory variable x of size n from

a uniform distribution over Œ0; t � where t is a positive real number of your
choosing.

� Construct the vector of values of the explained variable y of size n from
the linear regression model.

14.2- Plot the n points .xi ; yi /.
14.3- Give an estimate of the regression parameters and of the error variance.
14.4- Analyse the residuals to validate the model:

� Plot the residuals against the fitted values.
� Plot the fitted values against the observed values.
� Draw a plot to check the normality of residuals.

14.5- Change the values of n and 
 to understand the consequences on the precision
of the regression parameter estimates (in terms of variance).

� Study of intima media: In the “Intima–media” study, we wish to study the rela-
tionship between intima–media thickness and age.

14.1- Download the intima-media data file.
14.2- Plot variable measure as a function of variable AGE. Describe this scatter

plot.
14.3- Is there a link between these variables? Explain how to measure the severe-

ness of the link.
14.4- We now wish to fit a regression line on this scatter plot:

� Propose a regression model and estimate the parameters of the model.
� Draw the regression line over the scatter plot.

14.5- Analyse the residuals to validate the model.
14.6- Give a prediction interval for intima–media thickness for a 33-year-old

person.
14.7- Give a confidence interval for the average intima–media thickness of a 33-

year-old person.
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14.8- Propose a model to increase the predictive power of intima–media thickness,
using only AGE as an explanatory variable.

B- Study of Multiple Linear Regression

� Study of intima media: In the previous practical, we looked at the relationship
between intima–media thickness and age. We now wish to fit a regression model on
all variables which may explain variations in intima–media thickness. The study will
rely on the following variables: AGE, SPORT, alcohol, packyear and the variable
BMI which you must create from variables height, weight.

We are mostly interested in tobacco, through the variable packyear as main
exposure factor. We therefore decide to keep this variable in the model even if it is
not significant.

14.1- Draw scatter plots of all pairs of variables (explained and explanatory). Do
you suspect any issues with collinearity?

14.2- Perform a univariate analysis of intima–media thickness of each explanatory
variable.

14.3- We only keep the explanatory variables associated with significance level
p < 0:25 in the univariate analysis. One by one, test all possible interactions
between the selected explanatory variables and the main exposure variable
packyear.

14.4- Estimate and analyse the model with all variables which were declared sig-
nificant in the univariate analysis (˛ D 25%) and all interaction terms signif-
icant at the 10% level.

14.5- Are the interaction terms still significant? Remove interaction terms which
are no longer significant at the 10% level.

14.6- Starting with the model from the previous question, remove one by one all
variables which are not significant at the 5% level, making sure that the re-
movals do not make a big difference on the estimate of the coefficient associ-
ated with tobacco status.

14.7- Interpret the final model.

� Study of unemployment rates: This practically studies unemployment rates from
1960 to 1993. The data set unemployment is made of n D 34 yearly observations
(from 1960 to 1993). Here is a description of the variables:

� year: year
� unemp: unemployment rate
� gdprate: rate of variation of gross domestic product (GDP), representing

economic growth
� govspend: ratio of government spending and GDP, representing the degree

of intervention of the state in the economy
� taxb: tax burden, to see whether taxation of businesses has an impact on

hiring policy, and hence on unemployment rates
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� salav: ratio of salaries to added value, to know the influence of cost at hiring
� infl: inflation rate, to verify the inverse relationship between unemployment

and inflation, defined in the Philips curve

14.1- We consider a linear model explaining variable unemp as a func-
tion of variable gdprate only. Download the data set http://www.
biostatisticien.eu/springeR/unemployment.RData. Perform a
complete analysis of the underlying simple linear regression model.

14.2- We consider a multiple linear model explaining variable unemp as a function
of all explanatory variables in the data set (except variable year). Give the
correlation matrix of all these variables.

14.3- Draw scatter plots of all pairs of variables.
14.4- Which explanatory variables seem to make the biggest contribution? Do you

suspect collinearity between regressors?
14.5- Present the results of the multiple linear regression model with explanatory

variables.
14.6- Calculate the VIF associated with each explanatory variable.
14.7- Perform backward variable selection with threshold ˛ D 0:2.
14.8- Present the final model.
14.9- Suppose we do not know the value of unemp in 1993. Can you predict its

value, and calculate a 95 % prediction interval?
14.10- What is the observed value of unemp in 1993? Is this surprising?

C- Study of Polynomial Regression

� Study of synthetic data:

14.1- Simulate a sample of size n D 100 from the following model:

Y D XC 2X2 C 3:5X3 � 2:3X4 C ε;
where X follows a uniform distribution over Œ�2;C2� and ε follows a N .0; 1/
distribution.

14.2- Draw the scatter plot and the simulated polynomial line.
14.3- Fit a simple linear regression model. Remember to analyse the residuals.
14.4- Fit a polynomial regression, using a polynomial of degree 4. Draw the esti-

mated model over the scatter plot.

� Fitting a scatter plot with a polynomial: Suppose you are asked to propose a model
to predict a variable Y given an explanatory variable X. You are given a sample of
size n.

14.1- Download the data file http://www.biostatisticien.eu/springeR/
fitpoly.RData.

14.2- Draw a scatter plot of variable Y as a function of variable X.

http://www.biostatisticien.eu/springeR/unemployment.RData
http://www.biostatisticien.eu/springeR/unemployment.RData
http://www.biostatisticien.eu/springeR/fitpoly.RData
http://www.biostatisticien.eu/springeR/fitpoly.RData


Worksheet 501

14.3- Is there a linear relationship between these two variables? Fit a regression line
on the previous plot.

14.4- Perform polynomial regression to fit the data better.
14.5- Draw the estimated polynomial over the scatter plot. Draw the confidence

curve for the mean of Y for X 2 Œ�3:5; 3:5�. Add the prediction interval of the
model for X 2 Œ�3:5; 3:5�.



Chapter 15
Elementary Analysis of Variance

Prerequisites and goals of this chapter
� Read Chap. 14.
� This chapter describes the variousR commands to perform analysis of variance.

We present the standard cases of analysis of variance with 1 factor and 2 factors
with or without interaction. We also introduce repeated measures analysis of
variance.

SECTION 15.1

Analysis of Variance with One Factor

15.1.1 Aims, Data and Model

I Aim: Analysis of variance (ANOVA) is a method to study the modification of the
mean � of a phenomenon under study Y (quantitative variable) under the influ-
ence of one or several qualitative experimental factors (treatments). In the case
where the mean is only influenced by one factor (noted X), it is called analysis
of variance with one factor or one-way ANOVA. A factor is often a qualitative
variable with a small number of modalities. The number of modalities (or levels)
of factor X is noted I . We assume that Y follows a normal distribution N .�i ; 


2/

in each subpopulation i defined by the modalities of X. The aim is to test whether
these I populations have equal means, i.e. to test the null hypothesis

H0 W �1 D �2 D � � � D �I

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3 15,
© Springer Science+Business Media New York 2013
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against the assertion of interest

H1 W 9 i ¤ i 0 = �i ¤ �i 0 (“there are at least two different means”):

I Data: For each subpopulation i (or modality i of X, or group i ), we are given a
sample of ni observations from the quantitative variable Y:

yi;1; yi;2; : : : ; yi;ni
:

The model is written

Yik D �i C εik; for k D 1; : : : ; ni and i D 1; : : : ; I;
where the errors εik are independent random variables following the distribution
N .0; 
2/. We can also write �i as �i D � C ˛i for i D 1; : : : ; I . In this
setting, � is called the mean effect of the factor and ˛i D �i � � is called the
differential effect for level i of the factor. The above model can therefore also be
written as

Yik D �C ˛i C εik; for k D 1; : : : ; ni and i D 1; : : : ; I:
This model is not identifiable (which means that some parameters cannot be est-

imated). We therefore have to impose a (linear) constraint to make it identifiable,
for example

PI
iD1 ˛i D 0, which corresponds to taking the mean effect � as the

reference.

Warning

By default, R imposes the constraint ˛1 D 0. All comparisons are then made
relatively to �1. The reference class is level 1 of the factor.

See also

The concept of a reference group has already been explained on page 476
of Chap. 14.

15.1.2 Example and Graphical Inspection

I Example of use: Cold sores.

Five treatments (T1; : : : ; T5) against cold sores, including one placebo, were ran-
domly assigned to 30 patients (six patients per treatment group). For each patient,
the time (in days) between the apparition of the cold sore and complete scarring
was measured.
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Treatments
T1 (placebo) T2 T3 T4 T5

5 4 6 7 9
8 6 4 4 3
7 6 4 6 5
7 3 5 6 7

10 5 4 3 7
8 6 3 5 6

The aim here is to compare the theoretical means of scarring times; these times
were observed on five independent samples (treatment groups.)

I Graphical inspection: We first perform a brief descriptive analysis of the data, to
see whether any probable patterns emerge (Fig. 15.1).

> X <- data.frame(Placebo=c(5,8,7,7,10,8),T2=c(4,6,6,3,5,6),
+ T3=c(6,4,4,5,4,3),T4=c(7,4,6,6,3,5),T5=c(9,3,5,7,7,6))
> times <- stack(X)$values # stack() is used to stack vectors.
> treatment <- stack(X)$ind
> tapply(times,treatment,summary)
$Placebo

Min. 1st Qu. Median Mean 3rd Qu. Max.
5.0 7.0 7.5 7.5 8.0 10.0

$T2
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.00 4.25 5.50 5.00 6.00 6.00

$T3
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.000 4.000 4.000 4.333 4.750 6.000

$T4
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.000 4.250 5.500 5.167 6.000 7.000

$T5
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.000 5.250 6.500 6.167 7.000 9.000

> plot(times�treatment)

15.1.3 ANOVA Table and Parameter Estimation

I R instruction for the ANOVA table: Use the function aov(). As for regression
models, ANOVA works with R formulae. You therefore have to specify the
model.
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Placebo T2 T3 T4 T5

3
4

5
6

7
8

9
10

treatment

tim
es

Fig. 15.1: Box plot of scarring times for each treatment

> my.aov <- aov(times�treatment)
> summary(my.aov)

Df Sum Sq Mean Sq F value Pr(>F)
treatment 4 36.467 9.1167 3.896 0.01359 *
Residuals 25 58.500 2.3400
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Warning

If it has not already been done, remember to declare your factor variable (in
this case, the variable treatment) as an R object of type factor, using the
function factor().

> class(treatment)
[1] "factor"

ANOVA is in fact a linear model, so note that it is also possible to perform anal-
ysis of variance of the underlying linear model:

> model <- lm(times�treatment)
> anova(model)
Analysis of Variance Table
Response: times

Df Sum Sq Mean Sq F value Pr(>F)
treatment 4 36.467 9.1167 3.896 0.01359 *
Residuals 25 58.500 2.3400
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Tip

Note that you can also use the function Anova() from package car. This
function is more complete and can handle more complex data.

The analysis of variance table outputs the result of Fisher’s test for the hypothe-
ses: H0 W �1 D �2 D � � � D �I and H1 W 9 i ¤ i 0 = �i ¤ �i 0 (“there are at least
two different means”). The p-value=0.013 allows us to conclude that the effects
of at least two treatments are different, although we do not know which ones.

I Estimating the parameters of the model: Estimates are given by the function
summary() for model lm(times�treatment). Recall that R imposes the con-
straint ˛1 D 0.

> summary(model)
Call:
lm(formula = times � treatment)
Residuals:

Min 1Q Median 3Q Max
-3.16667 -0.87500 -0.08333 0.83333 2.83333
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.5000 0.6245 12.010 7.06e-12 ***
treatmentT2 -2.5000 0.8832 -2.831 0.00903 **
treatmentT3 -3.1667 0.8832 -3.586 0.00142 **
treatmentT4 -2.3333 0.8832 -2.642 0.01401 *
treatmentT5 -1.3333 0.8832 -1.510 0.14366
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.53 on 25 degrees of freedom
Multiple R-squared: 0.384, Adjusted R-squared: 0.2854
F-statistic: 3.896 on 4 and 25 DF, p-value: 0.01359

The intercept corresponds to the estimate of the mean time for the placebo (treat-
ment 1 is the reference). The estimate associated with variable T2 corresponds to
the differential effect between treatment T2 and the placebo. The same goes for
the other variables. The assertions of interest and the two-by-two Student tests
performed in this model (with constraint ˛1 D 0) are summed up in the following
table:

H1

Intercept �1 ¤ 0
Treatment T2 ˛2 ¤ 0 , �1 ¤ �2

Treatment T3 ˛3 ¤ 0 , �1 ¤ �3

Treatment T4 ˛4 ¤ 0 , �1 ¤ �4

Treatment T5 ˛5 ¤ 0 , �1 ¤ �5

The results output by R show that there is a significant difference between the
placebo and treatments 2, 3 and 4. In this setting, the placebo was the natural
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reference. However, it is possible to take another reference, or a linear constraint,
using the instruction C(), as shown in the next example:

> summary(lm(times�C(treatment,base=2)))
Call:
lm(formula = times � C(treatment, base = 2))
Residuals:

Min 1Q Median 3Q Max
-3.16667 -0.87500 -0.08333 0.83333 2.83333
Coefficients:

Estimate Std. Error t value
(Intercept) 5.0000 0.6245 8.006
C(treatment, base = 2)1 2.5000 0.8832 2.831
C(treatment, base = 2)3 -0.6667 0.8832 -0.755
C(treatment, base = 2)4 0.1667 0.8832 0.189
C(treatment, base = 2)5 1.1667 0.8832 1.321

Pr(>|t|)
(Intercept) 0.0000000232 ***
C(treatment, base = 2)1 0.00903 **
C(treatment, base = 2)3 0.45739
C(treatment, base = 2)4 0.85184
C(treatment, base = 2)5 0.19847
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.53 on 25 degrees of freedom
Multiple R-squared: 0.384, Adjusted R-squared: 0.2854
F-statistic: 3.896 on 4 and 25 DF, p-value: 0.01359

Fisher’s statistic value does not change, since it does not depend on the linear
constraint, but the estimates and the individual Student tests do change. With
these results, we cannot show that treatment 2 is different to treatments 3, 4 and
5, but we do get a significant Student’s test for the comparison of the placebo
with treatment 2.

Note

To get the constraint
PI

iD1 ˛i D 0, use C(treatment, sum).

Note that you can use the function model.matrix() on the fitted linear model
to get the matrix of explanatory variables. In the ANOVA model with a constraint
of the type ˛i D 0, the matrix includes an intercept (a column of 1s) and the I �1
indicator variables.
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15.1.4 Validation of Assumptions

I Validation of assumptions: The ANOVA model corresponds to a linear model
with a qualitative explanatory variable. The assumptions of the model can
be validated using the method of analysis of residuals we presented for the
regression model. Recall that the plot of residuals is obtained with the instruc-
tions (Fig. 15.2):

> par(mfrow=c(2,2))
> plot(model,col.smooth="red")
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Fig. 15.2: Analysing the residuals in single-factor ANOVA

In ANOVA, it is also possible to use a test of equality of variances to explore
whether the assumption of homoscedasticity is admissible. Bartlett’s test (under
normality in the subpopulations) can be obtained by

> bartlett.test(times�treatment)
Bartlett test of homogeneity of variances

data: times by treatment
Bartlett’s K-squared = 2.4197, df = 4, p-value = 0.6591

However, this test is not robust to non-normality. In that case, use Levene’s
test [25]:

> levene.test(times,treatment) # Available in package car.
Levene’s Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
group 4 0.5851 0.6763

25
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15.1.5 Multiple Comparisons and Contrasts

I Multiple comparisons: If, after performing analysis of variance, we reject the
hypothesis of equal means relative to a factor with I levels, an interesting ques-
tion is which means are significantly different from the others. In the cold sore
example, we would like to select the most efficient treatment, i.e. the one which
leads to the fastest scarring.
The individual Student test in the linear model is perfectly valid to compare two
treatments chosen in advance. However, it cannot be used to compare (for exam-
ple) the treatment which seems to give the best results with the treatment which
seems to give the worse results. Indeed, this would be equivalent to comparing
all pairs of treatments. Each test has probability ˛ (the level of the test) of show-
ing as present a difference which does not exist. Overall, out of the I.I � 1/=2
possible comparisons, the probability that one is declared significant “at random”
becomes important. There are several methods to control the global risk for the
I.I � 1/=2 pairwise comparisons.
The function pairwise.t.test() performs all pairwise comparisons and inc-
ludes several methods to correct the risk ˛ in order to take into account the prob-
lem of multiple tests.

> pairwise.t.test(times,treatment,p.adjust="bonf")
Pairwise comparisons using t tests with pooled SD

data: times and treatment
Placebo T2 T3 T4

T2 0.090 - - -
T3 0.014 1.000 - -
T4 0.140 1.000 1.000 -
T5 1.000 1.000 0.483 1.000
P value adjustment method: bonferroni

R gives p-values adjusted with Bonferroni’s correction: the corrected p-values
are given by multiplying the p-values from the Student tests by the number of
tests. Given the results (p-value = 0.014 between treatment 1 and treatment 3),
there is a significant difference between treatment 1 (placebo) and treatment 3,
at the 5 % level.

Note

The comparison between treatment 1 and treatment 3 was performed by
analysing model 1. The p-value for the individual Student test was 0.0014.
Since ten comparisons were performed, this p-value is multiplied by 10 in
Bonferroni’s method.
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Many other correction methods exist. For single-factor analysis of variance with
the same number of observations in each group, Tukey’s method [30] is the most
accurate. It gives simultaneous confidence intervals for the difference �i � �j

where 1 
 i < j 
 I .

> my.aov <- aov(times�treatment)
> TukeyHSD(my.aov)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = times � treatment)
$treatment

diff lwr upr p adj
T2-Placebo -2.5000000 -5.0937744 0.09377442 0.0627671
T3-Placebo -3.1666667 -5.7604411 -0.57289224 0.0113209
T4-Placebo -2.3333333 -4.9271078 0.26044109 0.0927171
T5-Placebo -1.3333333 -3.9271078 1.26044109 0.5660002
T3-T2 -0.6666667 -3.2604411 1.92710776 0.9410027
T4-T2 0.1666667 -2.4271078 2.76044109 0.9996956
T5-T2 1.1666667 -1.4271078 3.76044109 0.6811222
T4-T3 0.8333333 -1.7604411 3.42710776 0.8770466
T5-T3 1.8333333 -0.7604411 4.42710776 0.2614661
T5-T4 1.0000000 -1.5937744 3.59377442 0.7881333

> par(las=1) # Horizontal writing of labels.
> plot(TukeyHSD(my.aov))
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Differences in mean levels of treatment

The results from Tukey’s method agree with those from Bonferroni’s method:
the only confidence interval which does not contain the value 0 is the one for the
difference between treatment 3 and treatment 1. There is a significant difference
between treatment 1 and treatment 3. Since scarring time is shorter with treat-
ment 3, we suggest using treatment 3.
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I Contrast analysis: In ANOVA, a contrast (noted L) is defined as a linear combi-
nation of theoretical means with sum of coefficients equal to zero:

L D
IX

iD1


i�i D 	T� with
IX

i


i D 0;

where � D .�1; : : : ; �I /
T and 	 D .
1; : : : ; 
I /

T.
Contrasts are used to compare the means of groups of levels. For example, in the
cold sore example, to compare treatments 2 and 3, you should use the contrast
L1 D 	T� with 	 D .0; 1;�1; 0; 0/T and perform the test H0 W L1 D 0 against
H1 W L1 ¤ 0.
You can perform tests on contrasts with the function fit.contrast() from
package gregmisc.

> require("gregmisc")
> cmat <- rbind(": 2 against 3"=c(0,1,-1,0,0))
> fit.contrast(my.aov,treatment,cmat)

Estimate Std. Error t value
treatment: 2 against 3 0.6666667 0.883176 0.7548514

Pr(>|t|)
treatment: 2 against 3 0.4573908

Note

The same result was given by the individual Student test in model 2.

Now suppose that treatments 2 and 3 are ointments but treatments 4 and 5 are
anti-tobacco patches. To compare the two types of remedies, you can use the con-
trast L2 D 	T� with 	 D .0;�1;�1; 1; 1/T and perform the test H0 W L2 D 0

against H1 W L2 ¤ 0.

> cmat <- rbind(": 2 against 3"=c(0,1,-1,0,0),
+ ": 2 and 3 against 4 and 5"=c(0,-1,-1,1,1))
> fit.contrast(my.aov,treatment,cmat)

Estimate Std. Error
treatment: 2 against 3 0.6666667 0.883176
treatment: 2 and 3 against 4 and 5 2.0000000 1.249000

t value Pr(>|t|)
treatment: 2 against 3 0.7548514 0.4573908
treatment: 2 and 3 against 4 and 5 1.6012815 0.1218767

15.1.6 Summary

The next table presents the main functions for single-factor analysis of variance
(Table 15.1).
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Table 15.1: Main functions for single-factor ANOVA

R instruction Description
plot(Y�factor(X)) Graphical inspection
aov(Y�factor(X)) Analysis of variance
summary(aov(Y�factor(X))) Analysis of variance table
anova(lm(Y�factor(X))) Analysis of variance table
pairwise.t.test() Pairwise comparisons
fit.contrast() Contrast tests (package gregmisc)
barlett.test() Homoscedasticity test
levene.test() Homoscedasticity test
plot(aov(Y�factor(X))) Graphical analysis of residuals

SECTION 15.2

Analysis of Variance with Two Factors

15.2.1 Aims, Data and Model

I Aim: ANOVA with two factors, or two-way ANOVA, is a method to explain a
quantitative variable with two “crossed” explanatory qualitative variables (called
factors).

Note

In ANOVA, the explanatory variables are often called independent variables
(e.g., in psychology) and noted IV.

I Data: Let A be a factor with I modalities and B a factor with J modalities.
For each couple .i; j /; i D 1; : : : ; I and j D 1; : : : ; J , we observe a quanti-
tative variable Yij , nij times. We assume that Yij follows a normal distribution
N .�ij ; 


2/ in each subpopulation defined by values i and j of the two factors.
I Model: The model is written

Yijk D �ij C εijk ; for k D 1; : : : ; nij ; i D 1; : : : ; I; j D 1; : : : ; J;
where the errors εijk are independent random variables from a N .0; 
2/

distribution.
In this model, the real parameters�11; : : : ; �I1; : : : ; �1J ; : : : ; �IJ are unknown,
as is the variance 
2.
We decompose�ij so that the effects of the factors A and B appear, as well as the
effect of their interaction:

�ij D ��� C ˛A
i C ˛B

j C ˇij

with:
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– ��� D 1
IJ

PI
iD1

PJ
j D1 �ij : general mean effect

– �i� D 1
J

PJ
j D1�ij : effect of level i of factor A

– ˛A
i D �i� � ���: differential effect of level i of factor A

– ��j D 1
I

PI
iD1�ij : effect of level j of factor B

– ˛B
j D ��j � ���: differential effect of level j of factor B

– ˇij D �ij ���� � ˛A
i � ˛B

j : interaction effect of level i of factor A and level
j of factor B

Note

By construction,
PI

iD1 ˛
A
i D 0,

PJ
j D1 ˛

B
j D 0 and 8i; PJ

j D1 ˇij D
0, 8j; PI

iD1 ˇij D 0.

The aim here is to detect:

– whether factor A has an effect on the quantitative variable Y

– whether factor B has an effect on the quantitative variable Y

– and whether there is an interaction effect between factors A and B on the
quantitative variable Y

15.2.2 Example and Graphical Inspection

I Example of use: The next table gives the yield of einkorn wheat from fields in
four different regions with three types of fertilizer.

Region I Region II Region III Region IV
Fertilizer E1 15 14 17 21 20 21 14 15 14 16 17 17
Fertilizer E2 16 19 20 23 24 25 15 14 14 12 11 12
Fertilizer E3 18 17 17 20 21 21 17 19 17 12 13 13

These data are input in R with the following instructions:

> yield <- c(15,14,17,21,20,21,14,15,14,16,17,17,16,19,20,23,
+ 24,25,15,14,14,12,11,12,18,17,17,20,21,21,17,19,
+ 17,12,13,13)
> fertilizer <- gl(3,12,36,labels=paste("Fertilizer",1:3))
> region <- gl(4,3,36,labels=paste("Region",1:4))
> wheat <- data.frame(yield,fertilizer,region)

We wish to study the effect of the type of fertilizer (E1, E2 and E3) on the
yield per hectare of einkorn wheat and to find out whether there is a significantly
different yield between the four regions.
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Note

In this example, the data are balanced (there is the same number of observa-
tions for each pair of factor levels). When this is not the case, the ANOVA
table is no longer unique; we advise you to use a decomposition of variance
of type III (see [31]).

I Graphical inspection: In the ANOVA model with two factors and interaction,
the effect of a factor on the explained variable can be different depending on
the modalities of the other factor. This flexibility in the model can be visualized.
The command to explore this interaction is interaction.plot(). The function
plotMeans(), available in the package Rcmdr, also allows graphical inspection
of the interaction (Fig. 15.3).

> interaction.plot(region,fertilizer,yield)
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> interaction.plot(fertilizer,region,yield)
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Fig. 15.3: Exploration of interaction in two-way ANOVA

These plots indicate that there seems to be interaction (the lines intersect).

15.2.3 ANOVA Table, Tests and Parameter Estimation

I R instruction for ANOVA table: Several functions exist to perform two-way
ANOVA with interaction: aov(), anova(lm()) and Anova() (in package car).

Warning

When you have only one observation per combination of modalities of the
factors A and B (i.e. nij D 18i; j ), you can only estimate two-way ANOVA
without interaction.
aov(yield�region+fertilizer).

> model2 <- summary(aov(yield�region*fertilizer,data=wheat))
> model2

Df Sum Sq Mean Sq F value Pr(>F)
region 3 327.19 109.065 112.1810 2.955e-14 ***
fertilizer 2 0.89 0.444 0.4571 0.6385
region:fertilizer 6 99.56 16.593 17.0667 1.359e-07 ***
Residuals 24 23.33 0.972
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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> anova(lm(yield�region*fertilizer,data=wheat))
Analysis of Variance Table
Response: yield

Df Sum Sq Mean Sq F value Pr(>F)
region 3 327.19 109.065 112.1810 2.955e-14 ***
fertilizer 2 0.89 0.444 0.4571 0.6385
region:fertilizer 6 99.56 16.593 17.0667 1.359e-07 ***
Residuals 24 23.33 0.972
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> Anova(lm(yield�region*fertilizer,data=wheat))
Anova Table (Type II tests)
Response: yield

Sum Sq Df F value Pr(>F)
region 327.19 3 112.1810 2.955e-14 ***
fertilizer 0.89 2 0.4571 0.6385
region:fertilizer 99.56 6 17.0667 1.359e-07 ***
Residuals 23.33 24
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note

The formula region*fertilizer, used in aov() and lm(), corresponds
in fact to the formula region+fertilizer+region:fertilizer, i.e. the
factor region, the factor fertilizer and the interaction of these two factors.

The p-value associated with the test of interaction is significant. This implies that
the effect of fertilizer of yield can be different depending on the region.

Warning

We consider that there is no interaction effect if the associated p-value is
greater than 5 %. In this case, we perform an ANOVA without an interaction
term which makes it easier to interpret the principal effect. When there is
interaction, do not interpret the principal effects in the ANOVA table output.

I Test of conditional effects with interaction: For example, we wish to know
whether there is a fertilizer effect in region 1. To this end, we use the function
subset(), which only uses data from a given region.

> fertilizer.region1 <- summary(aov(yield�fertilizer,subset=
+ region=="Region 1"))
> fertilizer.region1

Df Sum Sq Mean Sq F value Pr(>F)
fertilizer 2 14 7.0000 3 0.125
Residuals 6 14 2.3333
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Warning

The test in this ANOVA table corresponds to ANOVA with one factor (fer-
tilizer) of the yield of wheat in region 1. It does not take into account any
information from data in the other regions, which would allow for a better
estimation of the residual variance. To test the fertilizer effect in region 1,
divide the mean square of the fertilizer factor found in the ANOVA restricted
to region 1 by the mean residual square of the ANOVA with interaction:

> F.fertilizer.region1 <- fertilizer.region1[[1]]$Mean[1]/
+ model2[[1]]$Mean[4]
> pvalue <- 1-pf(F.fertilizer.region1,df1=2,df2=24)
> pvalue
[1] 0.003552714

The p-value is less than 5 %; hence we conclude that there is a fertilizer effect in
region 1.

I Parameter estimation: The parameters can be estimated with the function
summary() for the model lm(yield�region*fertilizer). Recall that R
imposes the constraints ˛A

1 D 0, ˛B
1 D 0, ˇ1j D 0 8j D 1; : : : ; J and

ˇi1 D 0 8i D 1; : : : ; I .

> summary(lm(yield�region*fertilizer))
Call:
lm(formula = yield � region * fertilizer)
Residuals:

Min 1Q Median 3Q Max
-2.3333 -0.6667 0.1667 0.3333 1.6667
Coefficients:

Estimate Std. Error
(Intercept) 15.3333 0.5693
regionRegion 2 5.3333 0.8051
regionRegion 3 -1.0000 0.8051
regionRegion 4 1.3333 0.8051
fertilizerFertilizer 2 3.0000 0.8051
fertilizerFertilizer 3 2.0000 0.8051
regionRegion 2:fertilizerFertilizer 2 0.3333 1.1386
regionRegion 3:fertilizerFertilizer 2 -3.0000 1.1386
regionRegion 4:fertilizerFertilizer 2 -8.0000 1.1386
regionRegion 2:fertilizerFertilizer 3 -2.0000 1.1386
regionRegion 3:fertilizerFertilizer 3 1.3333 1.1386
regionRegion 4:fertilizerFertilizer 3 -6.0000 1.1386

t value Pr(>|t|)
(Intercept) 26.935 < 2e-16 ***
regionRegion 2 6.625 0.000000749 ***
regionRegion 3 -1.242 0.22619
regionRegion 4 1.656 0.11071
fertilizerFertilizer 2 3.726 0.00105 **
fertilizerFertilizer 3 2.484 0.02036 *
regionRegion 2:fertilizerFertilizer 2 0.293 0.77221
regionRegion 3:fertilizerFertilizer 2 -2.635 0.01451 *
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regionRegion 4:fertilizerFertilizer 2 -7.026 0.000000290 ***
regionRegion 2:fertilizerFertilizer 3 -1.757 0.09174 .
regionRegion 3:fertilizerFertilizer 3 1.171 0.25306
regionRegion 4:fertilizerFertilizer 3 -5.270 0.000021016 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.986 on 24 degrees of freedom
Multiple R-squared: 0.9483, Adjusted R-squared: 0.9245
F-statistic: 39.99 on 11 and 24 DF, p-value: 1.009e-12

Thus the intercept corresponds to the estimate of the mean yield for fertilizer 1
in region 1. For example, the coefficient associated with region 2 (6.625) cor-
responds to the estimate of the difference of the mean yield with fertilizer 1 of
region 2 and the mean yield with fertilizer 1 of region 1. The Student tests as-
sociated with the factors can therefore be interpreted. However, those associated
with the estimates of the crossed factors coefficients are not relevant.

Note

In this example, there is no particular reason of choosing this constraint. To
change it, use the function C(). For example,
summary(lm(yield�C(region,sum)*C(fertilizer,sum)))
corresponds to the constraints

PI
iD1 ˛

A
i D 0,

PJ
j D1 ˛

B
j D 0 and

8i; PJ
j D1 ˇij D 0, 8j; PI

iD1 ˇij D 0.

15.2.4 Validating Assumptions

I Validating assumptions: As in one-way ANOVA, we validate the model with a
study of the residuals of the underlying linear model (Fig. 15.4).

> par(mfrow=c(2,2))
> plot(model,col.smooth="red")

However, if the data size is large enough for each pair of factor modalities, it is
better to check for normality in each subpopulation and for homoscedasticity.

15.2.5 Contrasts

I Contrast method: We refer the reader to the definition of contrasts given for one-
way ANOVA.
For example, suppose we wish to know whether there is a significant difference
of yield in region 1 between fertilizers 1 and 2. We perform a contrast test using
the function estimable() from package gmodels.
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Fig. 15.4: Residual analysis in two-way ANOVA

> mod.inter <- lm(yield � fertilizer:region-1)
> cm <- rbind("F1 vs F2 in R1"=
+ c(1,-1,0,0,0,0,0,0,0,0,0,0))
> estimable(mod.inter,cm)

Estimate Std. Error t value DF Pr(>|t|)
F1 vs F2 in R1 -3 0.8050765 -3.726354 24 0.001048837

We get the same p-value as with the test for estimating model parameters.
Another example of use of the method of contrasts is the comparison of the yield
with fertilizer 1 in the southern regions (regions 1 and 2) with the northern re-
gions (regions 3 and 4):

> cm <- rbind("F1 vs F2 in R1"=
+ c(1,-1,0,0,0,0,0,0,0,0,0,0),
+ "R1 & R2 vs R3 & R4 for F1" =
+ c(1,0,0,1,0,0,-1,0,0,-1,0,0))
> estimable(mod.inter,cm)

Estimate Std. Error t value DF
F1 vs F2 in R1 -3 0.8050765 -3.726354 24
R1 & R2 vs R3 & R4 for F1 5 1.1385501 4.391550 24

Pr(>|t|)
F1 vs F2 in R1 0.0010488374
R1 & R2 vs R3 & R4 for F1 0.0001951599
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15.2.6 Summary

This table lists the main functions for two-way ANOVA (Table 15.2).

Table 15.2: Main functions for two-way ANOVA

R instruction Description
interaction.plot(Y,factor(X),factor(Z)) Graphical inspection
aov(Y�factor(X)*factor(Z)) Two-way ANOVA with interaction
summary(aov(Y�factor(X)*factor(Z))) ANOVA table
anova(lm(Y�factor(X)*factor(Z))) ANOVA table
Anova(lm(Y�factor(X)*factor(Z))) ANOVA table (package car)

Warning

For two-way ANOVA with unbalanced data, you should use a
decomposition of the sums of squares of type III (see [31]).

> model.lm <- lm(yield�region*fertilizer,contrasts=list(region=
+ contr.sum,fertilizer=contr.sum))
> Anova(model.lm,type="III")
Anova Table (Type III tests)
Response: yield

Sum Sq Df F value Pr(>F)
(Intercept) 10370.0 1 10666.3143 < 2.2e-16 ***
region 327.2 3 112.1810 2.955e-14 ***
fertilizer 0.9 2 0.4571 0.6385
region:fertilizer 99.6 6 17.0667 1.359e-07 ***
Residuals 23.3 24
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Remember to use the option contrasts in function lm().

SECTION 15.3

Repeated Measures Analysis of Variance

This section is a brief introduction to repeated measures ANOVA models. We first
introduce some vocabulary to better understand the three models introduced in this
section.

A fixed effects model is a model where all explanatory variables (factors) are
treated as non-random (e.g., controlled). A random effects model or mixed ef-
fects model occurs when some or all explanatory variables are assumed to be
random.
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In ANOVA, a statistical unit is called a “subject”. When a dependent variable
is measured on groups of independent subjects, where each group is exposed to a
different condition, the set of conditions is called a between-subjects factor. The
models in Sects. 15.1 and 15.2 only use such factors.

In the case where each subject has a measure of the dependent variable for all
modalities of the factor, this factor is called a within-subjects factor. An experiment
has within-subjects design when at least one factor is within-subjects. Such exper-
imental designs are also called repeated measures designs, since within-subjects
factors always imply repeated measures on each subject. By construction, this is
equivalent to considering an extra random factor, the subject factor.

When an analysis includes both within-subjects and between-subjects factors, it
is called a repeated measures ANOVA with between-subjects factors, mixed-design
ANOVA or split-plot ANOVA.

15.3.1 One-Way Repeated Measures ANOVA

I Aim: We consider the case where for each subject s (out of n), we measure the
response (dependent) variable Y for each of the I modalities of the fixed-effects
factor X.

I Example: For 15 minutes, we count how many times each of seven rats presses
a lever, in three reinforcement conditions. In the first condition, the rat is given
well-liked food, in the second average-liked food and in the third less-liked food.
The results are given in the following table:

Factor: condition
Subject cond1 cond2 cond3

s1 8 6 2
s2 6 5 1
s3 7 5 0
s4 9 3 3
s5 5 4 1
s6 7 5 2
s7 6 2 0

I Model: The underlying model is a mixed-effects model:

Ysi D �i C πs C εsi ; s D 1; : : : ; n; i D 1; : : : ; I
where �i measures the fixed effect of modality i of factor X, the πs are indepen-
dent random variables following a N .0; 
2

�/ distribution, to take into account the
dependence between measures made on individual s, and the εsi are independent
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random variables following a N .0; 
2/ distribution. We also assume that the πs

and the εsi are independent. By construction, this single-factor model with re-
peated measures is in fact a two-factor model: one fixed within-subjects factor
(X) and one random factor, the subject factor.

I R instructions:
summary(aov(Y � X + Error=subject/X,data=my.data.frame))
where my.data.frame is a data.frame containing variables Y and X, and a vari-
able subject giving the subject ID number. The variables X and subject must
necessarily be defined as factors.

Note

You can also use the function lme() included in package nlme():
anova(lme(Y � X,random= 1|subject,data=my.data.frame))

I Back to the example:

> rat <- data.frame(lever=c(8,6,2,6,5,1,7,5,0,9,3,3,5,4,1,
+ 7,5,2,6,2,0),subject=gl(7,3,21),cond=gl(3,1,21))
> summary(aov(lever�cond+Error(subject/cond), data=rat))
Error: subject

Df Sum Sq Mean Sq F value Pr(>F)
Residuals 6 15.905 2.6508
Error: subject:cond

Df Sum Sq Mean Sq F value Pr(>F)
cond 2 108.86 54.429 47.297 0.000002036 ***
Residuals 12 13.81 1.151
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

15.3.2 Two-Factor Model with Repeated Measures for Both Factors

I Aim: We consider the case where for each subject s (out of n), the response
variable Y is measured for each of the I � J combinations of modalities of two
fixed effects factors A and B.

I Example: A scientist wishes to study the effect of lecithin on memory issues.
Four subjects receive a daily treatment. After one, two and six months of treat-
ment, each subject undergoes two tests (Test 1 and Test 2). The results are shown
in the following table:
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Test 1 Test 2
Subject M1 M2 M6 M1 M2 M6

s1 10 11 9 3 6 3
s2 18 20 17 16 20 14
s3 6 8 8 5 6 3
s4 4 9 9 10 10 6

I Model: The underlying model is a mixed model:

Ysij D ��� C ˛A
i C ˛B

j C ˇij C πs C 	A
si C 	B

sj C εsij

with s D 1; : : : ; n; i D 1; : : : ; I; j D 1; : : : ; J and where the terms ���,
˛A

i , ˛B
j and ˇij were defined in Sect. 15.2. The random effect subject is rep-

resented by the i.i.d. random variables πs with distribution N .0; 
2
� /. The i.i.d.

random variables πA
si � N .0; 
2

�A/ measure the random interaction effects
between the subject factor and the fixed factor A. The i.i.d. random variables
πB

sj � N .0; 
2
�B / measure the random interaction effects between the subject

factor and the fixed factor B. The errors εsij are i.i.d. variables following the
distribution N .0; 
2/. Furthermore, we assume that the errors are independent
of the πs, πA

si and πB
sj .

I R instructions:

summary(aov(Y� A*B + Error(subject/(A*B)),data=my.
data.frame))

I Back to the example:

> lecithin <- data.frame(memory=c(10,11,9,3,6,3,18,20,17,16,20,
+ 14,6,8,8,5,6,3,4,9,9,10,10,6),subject=gl(4,6,24),
+ test=gl(2,3,24),month=gl(3,1,24))
> summary(aov(memory�month*test+Error(subject/(test*month)),
+ data=lecithin))
Error: subject

Df Sum Sq Mean Sq F value Pr(>F)
Residuals 3 508.13 169.38
Error: subject:test

Df Sum Sq Mean Sq F value Pr(>F)
test 1 30.375 30.375 2.2158 0.2333
Residuals 3 41.125 13.708
Error: subject:month

Df Sum Sq Mean Sq F value Pr(>F)
month 2 32.25 16.1250 16.826 0.003465 **
Residuals 6 5.75 0.9583
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Error: subject:test:month
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Df Sum Sq Mean Sq F value Pr(>F)
month:test 2 12.25 6.125 2.3333 0.1780
Residuals 6 15.75 2.625

15.3.3 Two-Factor Model with Repeated Measures for One Factor

I Aim: We are interested in the case where subjects are allocated to groups defined
by the I modalities of fixed factor A. For each subject, we measure the response
variable for all J modalities of fixed factor B.

I Example: In an experiment, the subjects estimate the length of a metal bar. The
bars are of three different lengths. Two groups of four distinct subjects are cre-
ated. In each group, each subject is shown three bars of different lengths.

G1
Subject L1 L2 L3

1 10 11 9
2 18 20 17
3 6 8 8
4 4 9 9

G2
Subject L1 L2 L3

1 3 6 3
2 16 20 14
3 5 6 3
4 10 10 6

I Model:

Ys.i/j D �
��

C˛A
i

C˛B
j

Cˇij CπA
s.i/

Cεs.i/j ; s D 1; : : : ; n; i D 1; : : : ; I; j D 1; : : : ; J

where the πs.i/ are i.i.d. random variables with distribution N .0; 
2
�/ measuring

the random effects of the modalities s of the subject factor. The errors εs.i/j are
i.i.d. random variables with distribution N .0; 
2/. Furthermore, we assume that
the εs.i/j are independent of the πs.i/. The terms ���, ˛A

i , ˛B
j , ˇij were defined

in Sect. 15.2. For the model to be identifiable, we have to impose the constraintsPI
iD1 ˛

A
i D 0,

PJ
j D1 ˛

B
j D 0, 8j;PI

iD1 ˇij D 0, 8i;PJ
j D1 ˇij D 0. The

realization ys.i/j of the random variable Ys.i/j represents the observation of the
sth subject from i th group of factor A, for level j of factor B. The notation s.i/
underlines the fact that the subject factor is nested in factor A.

I R instructions:
summary(aov(Y�A*B + Error(subject %in% A),data=my.
data.frame))

or equivalently:
summary(aov(Y� A*B + Error(subject:A),data=my.data.frame))
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I Back to the example:

> bar.estim <- data.frame(bar=c(10,11,9,3,6,3,18,20,17,16,20,
+ 14,6,8,8,5,6,3,4,9,9,10,10,6),subject=gl(4,6,24),
+ group=gl(2,3,24), # Factor A.
+ long=gl(3,1,24) # Factor B.
+ )
> summary(aov(bar � group*long +
+ Error(subject %in% group),data=bar.estim))
Error: subject:group

Df Sum Sq Mean Sq F value Pr(>F)
group 1 30.37 30.375 0.3318 0.5855
Residuals 6 549.25 91.542
Error: Within

Df Sum Sq Mean Sq F value Pr(>F)
long 2 32.25 16.1250 9.0000 0.004096 **
group:long 2 12.25 6.1250 3.4186 0.066833 .
Residuals 12 21.50 1.7917
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Memorandum

aov(): perform ANOVA
anova(lm()), Anova(lm()): ANOVA table
factor(), as.factor(): declare a variable as a factor
C(): specify the constraint in ANOVA
barlett.test(), levene.test(): tests of equality of variances
pairwise.t.test(): pairwise comparisons
fit.contrast(): contrast test (package gregmisc)
estimable(): contrast test (package gmodels)
interaction.plot(): graphical inspection for interaction
Error(): create a formula to specify the nesting of the subject factor

✎
Exercises

15.1- Give the instruction to perform ANOVA with one factor (noted A).
15.2- Give the instruction to perform ANOVA with two factors (noted A and B) with

interaction.
15.3- Which test would you use to check for homoscedasticity in an ANOVA

model?
15.4- Which instruction performs pairwise tests after single-factor ANOVA?
15.5- Which function gives the estimates for a single-factor ANOVA model?
15.6- Which function is used to choose the constraint in ANOVA?

Ï
Worksheet

A- Study of One-Way ANOVA

� Study of noise levels: In order to study the influence of the factor “level of sur-
rounding noise” on the ability of a subject to solve a problem, the following exper-
iment is designed: 24 school children are randomly allocated to four rooms. Street
noises were previously recorded and are played in each room at a specific noise
level. The children must solve a series of problems. The response variable is the
final grade for the series of problems. The results are given in the following table:
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Noise level
1 2 3 4

62 56 63 68
60 62 67 66
63 60 71 71
59 61 64 67
63 63 65 68
59 64 66 68

We wish to know whether there is an effect of the factor “level of surrounding noise”
on a subject’s ability to solve a problem.

15.1- Input the data set in an adequate structure to perform ANOVA.
15.2- Write down the ANOVA model to answer the question.
15.3- Perform the analysis corresponding to your model.
15.4- Perform all pairwise comparisons of noise levels; remember to take into ac-

count the problem of multiplicity of tests.

� Study of intima–media: In the “Intima–media” study, we are interested in the re-
lationship between intima–media thickness and alcohol consumption.

15.1- Download the intima-media data file.
15.2- Suggest a plot to visualize the differences in intima–media thickness depend-

ing on alcohol consumption.
15.3- Is there a difference of mean intima–media thickness depending on alcohol

consumption?
15.4- Analyse the residuals to validate the assumptions of your statistical study.

� Study of physical activity: In a study of risky behaviour amongst people aged
14 to 25, a scientist observed offences (theft, racketeering, brawls, . . . ) committed
by youngsters and weekly physical activity. Risky behaviour was measured on a
scale from 0 to 100. A subset of the data is available at the URL http://www.
biostatisticien.eu/springeR/sports.RData:

> print(sports[sample(1:105,10),],row.names=FALSE)
score time

9 [2;3[
75 [0;1[
0 [3;4[

21 [2;3[
67 [4;5[
69 [1;2[
36 [2;3[
0 [3;4[

87 [0;1[
16 [2;3[

15.1- Describe the factors involved and write down the model (and the underlying
assumptions).

http://www.biostatisticien.eu/springeR/sports.RData
http://www.biostatisticien.eu/springeR/sports.RData
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15.2- Perform a test at the 5 % level to decide whether there is a significant effect
between physical activity and risky behaviour.
We call “not athletic” youngsters who play sports for less than 2 hours per
week, “somewhat athletic” those with weekly physical activity in the interval
[2,4) and “very athletic” those who play sports at least 4 hours per week.
The scientist makes the following research assumptions:

� Research assumption 1: “Not athletic” youngsters have more risky be-
haviour than “somewhat athletic” youngsters.

� Research assumption 2: Risky behaviour is different between “very ath-
letic” and “not athletic” youngsters.

15.3- Translate the research assumptions into contrasts.
15.4- Test these two assumptions at the 5 % level.

B- Study of Two-Way ANOVA

� Study of batteries: In an experiment on battery lifetime, the aim is to find battery
life as a function of type of battery. It is known that battery lifetime depends on
temperature, so a plane with two factors (temperature and type of battery) is created.
The following table gives battery lifetime depending on these two factors.

15 ıC 70 ıC 125 ıC
Type I 130 155 34 40 20 70

74 180 80 75 82 58
Type II 150 188 136 122 25 70

159 126 106 115 58 45
Type III 138 110 174 120 96 104

168 160 150 139 82 60

15.1- Which factors are involved in this experiment? What are their modalities?
What is the response variable?

15.2- Propose and define an ANOVA model for this data set.
15.3- Propose a graphical representation to visualize any interaction there may be

in the model.
15.4- Estimate the parameters of the model.
15.5- Draw an ANOVA table for your model.
15.6- Perform the relevant tests to finalize this analysis.

�Milk yield: We are interested in the influence of type and quantity of food on milk
yield. We have observed these forty values:

Straw Hay Grass Silage
Low dose 8 11 11 10 7 12 13 14 11 10 10 12 12 13 14 17 13 17 14 13
High dose 8 9 8 10 9 10 7 10 12 11 11 9 11 11 12 13 12 11 15 14

15.1- Propose and define an ANOVA model to study the influence of type and quan-
tity of food on milk yield.
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15.2- Propose a graphical representation to visualize any interaction there may be
in the model.

15.3- Estimate the parameters of the model.
15.4- Draw an ANOVA table for your model.
15.5- Perform the relevant tests to finalize this analysis.

� Intima-media study: In practical A, we looked at a possible relationship between
intima–media thickness and alcohol consumption in the “Intima–media” study. We
now wonder whether intima–media thickness is linked to alcohol consumption and
tobacco consumption.

15.1- Download the intima–media data set.
15.2- Propose and define an ANOVA model to study the influence of tobacco con-

sumption and alcohol consumption on intima–media thickness.
15.3- Propose a graphical representation to visualize any interaction there may be

in the model.
15.4- Is there a difference in intima–media thickness depending on alcohol con-

sumption? Depending on tobacco consumption?



Appendix: Installing R and R Packages

Prerequisites and goals of this chapter
� No prerequisite. You may be interested in reading Chap. 3 first.
� This chapter explains how to install R version x (replace throughout x by the

number of the latest version) under Microsoft Windows and how to install
additional packages under Windows or Linux.

SECTION A.1

Installing R Under Microsoft Windows

First download R (file R-x-win.exe where x is the number of the latest version) us-
ing your usual web browser from the URL http://cran.r-project.org/bin/
windows/base/. Save this executable file on the Windows Desktop and double-

click the file R-x-win.exe (its icon is ).

The software then installs. All you have to do is follow the instructions displayed
on your screen and keep the default options.

When the icon is added to the Desktop, installation is complete.

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3,
© Springer Science+Business Media New York 2013
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http://cran.r-project.org/bin/windows/base/
http://cran.r-project.org/bin/windows/base/
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SECTION A.2

Installing Additional Packages

Many additional modules (called packages or libraries) are available on the website
http://cran.r-project.org/web/packages/available_packages_by_

name.html or here: http://cran.r-project.org/bin/windows/contrib/,
in the folder corresponding to the number x of your R version.

Packages extend the functionalities of R. We present several ways of installing a
new package.

A.2.1 Installing from a File on Your Disk

For example, you can download from the website mentioned above the file:
R2HTML number.zip and save it on the Windows Desktop.

To install this package, first start R by double-clicking its icon .
Go to the menu Packages, in the submenu Install package(s) from zip

files...

.

Select the file R2HTML number.zip on the Windows Desktop, then click on “Open”.

http://cran.r-project.org/web/packages/available_packages_by_name.html
http://cran.r-project.org/web/packages/available_packages_by_name.html
http://cran.r-project.org/bin/
windows/contrib/
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A.2.2 Installing Directly from the Internet

For example, to install packages car and Rcmdr, first launch R by double-clicking
its icon on the Desktop.

Then go to menu Packages and submenu Install package(s)...

Choose a CRAN mirror close to your location and click OK.
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At the next step, select the entries “car” and “Rcmdr”.
To do this, first click on “car”, then scroll down and click on “Rcmdr” while pressing
the CTRL key. Check that both entries have been selected (highlighted in blue).

Click “OK”. You should see the two following screens, indicating that the packages
you selected are being installed.

Warning

This procedure may fail, for example, if your system administrator has
blocked access to some websites with a firewall, has imposed a proxy to surf the
Internet or has forbidden writing in some Windows folders. If you encounter a
problem, we advise you to contact your administrator. Note that you can force
R to use a proxy and that you can install packages locally in your own home
directory. You can consult sections 2.15 (How do I set environment variables?)
or 2.19 (The Internet download functions fail) of the Windows FAQ available
here: http://cran.r-project.org/bin/windows/base/rw-FAQ.html

http://cran.r-project.org/bin/windows/base/rw-FAQ.html
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A.2.3 Installing from the Command Line

You can use R without the menus of the graphical user interface. This is the case
for example under Unix/Linux, where R does not have a graphical user interface. In
that case, use the following commands to install packages:

� To install a package from a *.zip file on your hard disk:

install.packages(choose.files(),repos = NULL)

� To install a package (say Rcmdr) from the CRAN website:

install.packages("Rcmdr")

Another possibility is to install a package without going through R, directly from
an MS-DOS command window under Microsoft or from a terminal under Linux or
MacOS. In that case, you will need many compilation tools. If these tools are not
installed on your computer, refer to the section on package creation in Chap. 9.

If these tools are installed on your computer, you can try this:
For example, download the file (package source) Rcmdr_number.tar.gz from

the URL http://cran.r-project.org/web/packages/Rcmdr. Save it (on the
Desktop) and start an MS-DOS window (Start menu/Run/cmd), then enter:
cd Desktop

R CMD INSTALL Rcmdr_number.tar.gz (replace number with the relevant
number).

A.2.4 Installing Packages Under Linux

Note that the commands of the previous section also work under Linux. But some-
times, you need to be logged in as root to use them (command su - in a terminal
window).

If you do not have root access, you can still install packages locally, in your
home directory. For example, for package Rcmdr, type in a terminal:

R CMD INSTALL --library=/home/user/Rlibs Rcmdr_number.tar.gz

(you should first have created the folder Rlibs with the command mkdir Rlibs,
and should replace /home/user/Rlibswith the appropriate path and number with
the appropriate number).

Finally, so that R knows where to look for installed packages, you must create a
file �/.Renviron containing the line

R_LIBS=/home/user/Rlibs

http://cran.r-project.org/web/packages/Rcmdr
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Tip

If your computer is behind a firewall and you need to use a proxy to go
online, you can use the following command to install a package directly fromR:

Sys.setenv("http_proxy"="http://user:pass@url_of_
the_proxy:num_port")

install.packages("Rcmdr",method="wget")

For further details, read the online help for function download.file().

SECTION A.3

Loading Installed Packages

Warning

To understand this section, you need to have a rough understanding of the
difference between your computer’s random access memory (RAM) and phys-
ical memory.

Installing a package means that its files are “written” physically on the hard disk:
when you turn your computer off then on again, the files are still in the same place.
You will not need to reinstall the package, unless you need an updated version.
On the contrary, loading a package (to the memory) means that it is temporarily at
the user’s disposal in R. But if you close and reopen R, the package is no longer
available: you need to load it again.

To sum up, once you have installed a package on your computer’s hard disk, you
have to load it to R’s memory before you can use it.

For example, if you type in the R console:

Commander()

you should see the following error message, which indicates that the package
including this function cannot be accessed by R:

Error: cannot find function "Commander"

You must first load Rcmdr to the memory. To do this, you can either
type require("Rcmdr") in the console or go to the menu Packages/Load
package...,
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and use the mouse to load package Rcmdr.
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The following window then appears.

Close it, and type once again in the R console:

Commander()

Note that the package Rcmdr has been loaded and that this command no longer
returns an error message.

Tip

Note that R offers the possibility of automatically loading some packages
upon start-up:

.First <- function() f
require("pkg1") # Replace pkg1 with the

# name of the desired package.
require("pkg2")
# and so on.

g
Indeed, the functions .First() and .Last() specify instructions to be exe-
cuted when you start and exit R, respectively.

These functions can be put in a file called .Renviron located in the
current folder or in the user’s home directory given by the R instruction
Sys.getenv("R USER").
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227
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490, 496, 497, 506-508, 513,
516-519, 521, 527, 577
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lwd . . . . . . . . . . . . . . . . . 173, 185, 186
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mad() . . . . . . . . . . . . . . . . . . . 351, 377
mai . . . . . . . . . . . . . . . . . . . . . . . . . . 177
main . . . . . . . . . . . . . . . . . . . . . 157, 171
mantelhaen.test() . . . . . . . . . . 448
map() . . . . . . . . . . . . . . . . . . . . . . . . 191
mapdata . . . . . . . . . . . . . . . . . 191, 594
mapply() . . . . . . . . . . . . . . . . . . . . . .97
maps . . . . . . . . . . . . . . . . . . . . . 191, 594
mar . . . . . . . . . . . . . . . . . . . . . . . . . . 177
MARGIN . . . . . . . . . . . . . . . . . . . . . . . . 93
margin.table() . . . . 346, 377, 575
MASS . . . . . . . . . . . . . . . . . . . . . . . . . 415
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max() . . . . . . . . . . . . . . . 314, 333, 351

mcnemar.test() . . . . . . . . . . . . . 448
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mfcol . . . . . . . . . . . . . . . . . . . 154, 177
mfg . . . . . . . . . . . . . . . . . . . . . . . . . . 177
mfrow . . . . . . . . . . . . . . . . . . . 153, 177
mgp . . . . . . . . . . . . . . . . . . . . . . . . . . 177
min() . . . . . . . . . . . . . . . 314, 333, 351
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missing() . . . . . .196, 198, 201, 276
Mod() . . . . . . . . . . . . . . . . . . . . . . . . . 47
mode() . . . . . . . . . . . . . . 46, 49, 50, 59
model.frame() . . . . . . . . . . . . . . 214
model.matrix() . . . . . . . . . 493, 508
moments . . . . . . . . . . . . . . . . . 352, 576
months() . . . . . . . . . . . . . . . . . . . . 113
mood.test() . . . . . . . . . . . . . . . . . 448
mosaicplot() . . . . . . . . . . . . . . . . 372
mpinv() . . . . . . . . . . . . . . . . . . . . . .323
mtext() . . . . . . . . 170, 180, 184, 188
mtp . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
mtrace() . . . . . . . . . . . . . . . . 257, 258
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na.rm . . . . . . . . . . . . . . . . . . . . . . . . 139
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460, 575
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NaN . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
nchar() . . . . . . . . . . . . 109, 134, 135
ncol . . . . . . . . . . . . . . . . . . . . . . . . . . 52
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ncol() . . . . . . . . . . . . . . . . . . . 88, 134
ncolumns . . . . . . . . . . . . . . . . . . . . . .72
new . . . . . . . . . . . . . . . . . . . . . . . . . . 177
new.env() . . . . . . . . . . 229, 230, 276
next . . . . . . . . . . . . . . . . . . . . . 118, 119
nlevels() . . . . . . . . . . . . . . . . . . . 344
nlm() . . . . . . . . . . . . . . . 327-330, 333
nlme() . . . . . . . . . . . . . . . . . . . . . . . 523
nlminb() . . 327, 330, 331, 333, 398
noquote() . . . . . . . . . . . . . . . . . . . 109
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NULL . . . . . . . 116, 125, 198, 218, 220
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odbcConnect() . . . . . . . . . . . . . . . .76
oma . . . . . . . . . . . . . . . . . . . . . . . . . . 177
omd . . . . . . . . . . . . . . . . . . . . . . . . . . 177
omi . . . . . . . . . . . . . . . . . . . . . . . . . . 177
oneway.test() . . . . . . . . . . . . . . 448
optim() . . . . . . . . . . . . . . . . . . . . . .327
optimize() . . . . 327, 328, 333, 575
options() . . . . . . . . . . . . . . . . . . . 144
order() . . . . . . . . . 87, 134, 139, 161
ordered() . . . . . . . . . . . . . . . . . 56, 58
origin . . . . . . . . . . . . . . . . . . . . . . . 114
ormidp.test() . . . . . . . . . . . . . . 448
outer() . . . . . . . . . . . . 318, 330, 333
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pairs() . . . . . . . . . . . . 470, 496, 497
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pbinom() . . . . . . . . . . . . . . . . . . . . 405
pcauchy() . . . . . . . . . . . . . . . . . . . 407
pch . . . . . . . . . . . . . . . . . 185, 186, 357
pchisq() . . . . . . . . . . . . . . . . 407, 413
pdf . . . . . . . . . . . . . . . . . . . . . . . . . . 152
pdf() . . . . . . . . . . . . . . . . . . . 153, 289
permn() . . . . . . . . . . . . . . . . . . . . . .232
persp() . . . . . . . . . . . . . . . . . 329, 330
pexp() . . . . . . . . . . . . . . . . . . . . . . . 407
pf() . . . . . . . . . . . . . . . . . . . . . . . . . 407
pgamma() . . . . . . . . . . . . . . . . . . . . 407
pgeom() . . . . . . . . . . . . . . . . . . . . . .405
pgumbel() . . . . . . . . . . . . . . . . . . . 407
phyper() . . . . . . . . . . . . . . . . . . . . 405
pi . . . . . . . . . . . . . . . . . . . . . . . . . . . .315
pictex() . . . . . . . . . . . . . . . . . . . . 153
pie() . . . . . . . . . . 166, 361, 377, 576
pin . . . . . . . . . . . . . . . . . . . . . . . . . . 177
plnorm() . . . . . . . . . . . . . . . . . . . . 407
plogis() . . . . . . . . . . . . . . . . . . . . 407
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plot.new()171, 173, 177, 185, 279
plot.window() . . . . . . . . . . . . . . 279
plotMeans() . . . . . . . . . . . . . . . . . 515
plt . . . . . . . . . . . . . . . . . . . . . . . . . . 177
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pnbinom() . . . . . . . . . . . . . . . . . . . 405
png . . . . . . . . . . . . . . . . . . . . . . . . . . 152
png() . . . . . . . . . . . . . . . 153, 289, 574
pnorm() . . . . . . . . 335, 407, 449, 577
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postscript() . . . . . . . . . . . 153, 289
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print . . . . . . . . . . . . . . . . . . . . . . . . 209
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print.default() . . . 208, 211, 214
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print.lm() . . . . . . . . . . . . . . . . . . 214
PrintValue() . . . . . . . . . . . . . . . . 261
prod() . . . . . . . . . 137, 314, 333, 569
prop.table() . . . . . . .346, 377, 575
prop.test() . . . 420, 424, 431-433,

442-444, 447-449, 577
prop.trend.test() . . . . . . . . . . 448
ps . . . . . . . . . . . . . . . . . . . . . . . 152, 180
pt() . . . . . . . . . . . . . . . . . . . . . . . . . 407
pty . . . . . . . . . . . . . . . . . . . . . . . . . . 177
punif() . . . . . . . . . . . . . . . . . . . . . .407
pweibull() . . . . . . . . . . . . . . . . . . 407
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qbinom() . . . . . . . 405, 422, 423, 577
qcauchy() . . . . . . . . . . . . . . . . . . . 407
qchisq() . . . . . . . . . . . 407, 418, 576
qexp() . . . . . . . . . . . . . . . . . . . . . . . 407
qf() . . . . . . . . . . . . . . . . 407, 413, 418
qgamma() . . . . . . . . . . . . . . . . . . . . 407
qgeom() . . . . . . . . . . . . . . . . . . . . . .405
qgumbel() . . . . . . . . . . . . . . . . . . . 407
qhyper() . . . . . . . . . . . . . . . . . . . . 405
qlnorm() . . . . . . . . . . . . . . . . . . . . 407
qlogis() . . . . . . . . . . . . . . . . . . . . 407
qnbinom() . . . . . . . . . . . . . . . . . . . 405
qnorm() . . . . . . . . . . . . . . . . . 407, 418
qpois() . . . . . . . . . . . . . . . . . . . . . .405
qqnorm() . . . . . . . . . . . . . . . . . . . . 464
qr() . . . . . . . . . . . . . . . . . . . . . 324, 333
qr.Q() . . . . . . . . . . . . . . . . . . . . . . . 324
qr.R() . . . . . . . . . . . . . . . . . . . . . . . 324
qt() . . . . . . . . . . . .407, 413, 418, 576
quade.test() . . . . . . . . . . . . . . . . 448
quantile() . . . . . . . . . . . . . 350, 377
quartz() . . . . . . . . . . . . . . . . . . . . 152
qunif() . . . . . . . . . . . . . . . . . . . . . .407
quote() . . . . . . . . . . . . . . . . . . . . . .327
qweibull() . . . . . . . . . . . . . . . . . . 407
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R.matlab . . . . . . . . . . . . . . . 4, 71, 582
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rainbow() . . . . . . . . . . 165, 166, 192
range() . . . 314, 351, 377, 575, 576
rank() . . . . . . . . . . . . . . . . . . . 87, 355
rate2by2.test() . . . . . . . . . . . . 448
raw . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
rbenchmark . . . . . . . . . . . . . . . . . . 242
rbeta() . . . . . . . . . . . . . . . . . . . . . .407
rbind() . . . . . . . . . . 89, 92, 134, 139
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rcauchy() . . . . . . . . . . . . . . . . . . . 407
rchisq() . . . . . . . . . . . . . . . . . . . . 407
Rcmdr . . . . . . 7, 8, 515, 533, 535-538
RcmdrPlugin.sos . . . . . . . . . . . . . 19
RcmdrPlugin.TeachingDemos . 18
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RColorBrewer . . . . . . . . . . . 166, 167
RCommander . . . . . . . 8, 12, 13, 16, 17
Re() . . . . . . . . . . . . . . . . . . . . . . . . . . 47
read.csv() . . . . . . . . . . . . . . .80, 568
read.csv2() . . . . . . . . . . . . . 80, 568
read.delim() . . . . . . . . . . . . 80, 568
read.delim2() . . . . . . . . . . . 80, 568
read.ftable() . . . 64, 80, 345, 568
read.gif() . . . . . . . . . . . . . 169, 189
read.mtp() . . . . . . . . . . . . 70, 71, 80
read.spss() . . . . . . . . . . . 70, 71, 80
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read.xls() . . . . . .70, 340, 457, 568
read.xport() . . . . . . . . . . 70, 71, 80
readBin() . . . . . . . . . . . . . . . . . . . 191
readline() . . . . . . . . . . . . . . . . . . . 24
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readMat() . . . . . . . . . . . . . . . . . 71, 80
rect() . . . . . . . . . . . . . . . . . . . . . . . 189
regsubsets() . . . . . . .483, 484, 497
relevel() . . . . . . . . . . . . . . . . . . . 477
rep() . . . . . . . . . . . . . 73, 80, 166, 569
repeat . . . . . . . . . . . . . . 118, 120, 134
replicate() . . . . . . . . 385, 387, 415
require() 167, 261, 290, 340, 536,

574
resid() . . . . . . . . . . . . . . . . . . . . . .464
residuals() . . . 464, 465, 497, 577
return() . . . . . . . . . . . . . . . . 121, 199
rev() . . . . . . . . . . . . . . . . 87, 134, 335
RevoScaleR . . . . . . . . . . . . . . . . . . 301
RExcelInstaller . . . . . . . . . . . . . . 4
rexp() . . . . . . . . . . . . . . . . . . 407, 411
rf() . . . . . . . . . . . . . . . . . . . . . . . . . 407
Rf PrintValue() . . . . . . . . 261, 264
rgamma() . . . . . . . . . . . . . . . . . . . . 407
rgb() . . . . . . . . . . . . . . . . . . . . . . . . 165
rgeom() . . . . . . . . . . . . . . . . . . . . . .405
rgl . . . . . . . . . . . . . . . . . 187, 280, 415
rgrs . . . . . . . . . . . . . . . . . . . . . . . . . 353
rgumbel() . . . . . . . . . . . . . . . . . . . 407
rhyper() . . . . . . . . . . . . . . . . . . . . 405
rlnorm() . . . . . . . . . . . . . . . . . . . . 407
rlogis() . . . . . . . . . . . . . . . . . . . . 407

rm() . . . . . . . . . 81, 82, 284, 301, 574
Rmpi . . . . . . . . . . . . . . . . . . . . . . . . . 273
rnbinom() . . . . . . . . . . . . . . . 405, 411
rnorm() 74, 162, 392, 401, 407, 576
RODBC . . . . . . . . . . . . . . . . . . . . . . . . . 76
round() . . . . . . . . . . . . . . . . . 314, 333
row.names . . . . . . . . 64, 80, 223, 568
rowMeans() . . . . . . . . . . . . . . . . . . . 93
rownames . . . . . . . . . . . . . . . . . . . . 223
rownames() . 88, 134, 175, 223, 569
rowSums() . . . . . . . . . . . . . . . . . . . . 93
rpois() . . . . . . . . . . . . . . . . . 405, 411
RSiteSearch() . . . . . 146, 149, 570
rstandard() . . . . . . . . 491, 492, 497
rstudent() . . . . . . . . . . . . . 492, 497
rt() . . . . . . . . . . . . . . . . . . . . . . . . . 407
runif()74, 161, 163, 164, 383, 397,

401-403, 407, 413
rweibull() . . . . . . . . . . . . . . . . . . 407
Ryacas . . . . . . . . . . . . . . . . . . . . . . . 326

S
s.class() . . . . . . . . . . . . . . . . . . . 337
sample() . . . . . . . 140, 404, 405, 415
sapply() . . . . . . . . 96, 120, 134, 207
sav . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
save() . . . . . . . . . . . . . . . . . . 278, 285
save.image() . . . . . . . . . . . 285, 287
savehistory() . . . . . . . . . . . . . . 287
savePlot() . . . . 152, 153, 188, 571
scale() . . . . . . . . . . . . 321, 336, 575
scan() . . . 64, 68, 69, 71, 74, 80, 82,

192, 568
scatter() . . . . . . . . . . . . . . . . . . . 337
sd() . . . . . . . . . . . . . . . . 321, 351, 377
sd.pop() . . . . . . . . . . . . . . . . . . . . 351
search() . . . . . . . . . . . 290, 291, 307
searchpaths() . . . . . . . . . . . . . . 290
seed . . . . . . . . . . . . . . . . . . . . . . . . . 382
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Solutions to Exercises

Solutions to Exercises from Chap. 3

3.1- [1] 1 2 3 4 5 6 7 8 9
3.2- [1] 2 4 6 8 10
3.3- The instruction var<-3 does not output anything. The instruction Var*2 out-

puts an error message because Var has not yet been defined.
3.4- The instruction x<-2 does not output anything. The instruction 2x<-2*x

outputs an error message because a variable name should not begin with a
number.

3.5- The instruction root.of.four <- sqrt(4) does not output anything. The
instruction root.of.four outputs [1] 2.

3.6- The instruction x<-1 does not output anything. The instruction x< -1 out-
puts [1] FALSE.

3.7- The instruction An even number <- 16 outputs an error message because
a variable name should not contain spaces.

3.8- The instruction "An even number" <- 16 does not output anything.
3.9- The instruction "2x" <- 14 does not output anything.

3.10- The instruction An even number outputs an error message.
3.11- >2 +

+ 4

[1] 6

3.12- The instruction TRUE + T + FALSE*F + T*FALSE + F outputs [1] 2.
3.13- The five R data types are numeric, complex, logical, character, raw.
3.14- X <- matrix(1:12,nrow=4,ncol=3,byrow=FALSE).
3.15- The R data structures are c(), matrix(), array(),

list(), data.frame(), factor(), ordered().
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566 Solutions to Exercises

Solutions to Exercises from Chap. 4

4.1- The three main R functions to use to import data from an ASCII text file are
read.table(), scan() and read.ftable().

4.2- header: a logical value indicating whether the file contains the names of the
variables as its first line (e.g., header=TRUE).
sep: the field separator character. Values on each line of the file are separated
by this character (e.g., sep=" " or sep="nt").
dec: the character used in the file for decimal points (e.g., dec="." or
dec=",").
row.names: a vector of row names. This can be a vector giving the actual
row names, or a single number giving the column of the table which contains
the row names (e.g., row.names=2).
skip: the number of lines of the data file to skip before beginning to read
data (e.g., skip=4 to exclude the first 4 lines from reading).
nrows: the maximum number of rows to read in (e.g., row.names=19).

4.3- Function readLines() reads some or all text lines from a connection.
4.4- Function fix() enables one to modify a data.frame or a matrix using a

small spreadsheet.
4.5- read.csv(): reads a comma separated value file in table format and creates

a data frame from it, with cases corresponding to lines and variables to fields
in the file (note: dec=".").
read.csv2(): reads a semicolon separated value file in table format and
creates a data frame from it, with cases corresponding to lines and variables
to fields in the file (note: dec=",").
read.delim(): reads a tabulated separated value file (note: dec=".").
read.delim2(): reads a tabulated separated value file (note: dec=",").

4.6- Function read.ftable() reads, writes and coerces flat contingency tables.
4.7- Function scan() should be used when data are not organized in table format.

Function read.table() is used for table format data sets.
4.8- Importing data from an Excel sheet:
� Using copy–paste: select the data under Excel, copy these data to the clip-
board and use the instruction:

x <- read.table(file("clipboard"),sep="\t",header=TRUE,

dec=",")

� Using an intermediate ASCII file: save the Excel sheet as .txt (separator:
TAB), then use function read.table().
� Using package gdata and function read.xls().

4.9- Package foreign.
4.10- The colClasses argument from function read.table() can be used to in-

dicate the type of each column and thus greatly increases the speed of reading
of huge data sets.
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4.11- Function write.table() enables one to write in a file the data set contained
in a data.frame. Another function is write() that should be used for vector
or matrix objects.

4.12- Here are four basic functions to build vectors:
� c()
� seq()
� rep()
� ":"() (example 1:10):

4.13- The instruction seq(1,2,by=0.1) gives the following vector:
[1] 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

4.14- The instruction rep(1:3,each=2) gives the following vector:

1 1 2 2 3 3

4.15- The instruction rep(1:3,2) gives the following vector:

1 2 3 1 2 3

4.16- Functions to enter data at hand in a small spread sheet are data.entry()
and de().

Solutions to Exercises from Chap. 5

5.1- [1] 2 12
5.2- [,1] [,2]

[1,] 1 1

[2,] 2 2

5.3- Using functions rownames() and colnames().
5.4- cbind(X,Y)
5.5- For the product of all elements of a matrix X : prod(X).

For the product of the elements of each column of matrix X :
apply(X,FUN=prod,MARGIN=2).

5.6- [1] 4
[1] 2 6 8 3

5.7- weight[height>180]
5.8- [1] 7 8 9

[1] 5 6

5.9- L[[4]] <- 1:10
5.10- [1] 67
5.11- attach(X)

weight[sex=="F"]

height[sex=="F"]
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# or:

X[sex=="F",-3]

5.12- [1] 1 2 3 and integer(0)
5.13- [1] TRUE TRUE FALSE and [1] TRUE
5.14- [1] 4 4
5.15- [1] "acbd"
5.16- [[1]]

[1] "ab" "cd"

5.17- [1] "" "cd"
5.18- tolower(c("Jack","Julia","William"))
5.19- strptime().

Solutions to Exercises from Chap. 6

6.1- help(mean).
6.2- This instruction provides a list of all functions whose name contains the

searched word.
6.3- This instruction gives examples on using the searched function.
6.4- Command RSiteSearch() enables one to search the website http://

search.r-project.org/nmz.html directly from R. The extracted infor-
mation is then displayed in your browser.

6.5- 1. The header of the file, with:
– The name of the function for which we are looking for help.
– The name of the package in which the function is included (e.g., base).
– The origin of the help file: R Documentation.

2. An explicit title for the function (e.g., Arithmetic Mean).
3. A brief description of what the function does: Description.
4. How to use the function; in particular, the compulsory and optional argu-

ments: Usage.
5. A description of the function’s arguments: Arguments.
6. Explanations on the output of the function: Value.
7. References (statistical articles or books) related to the function’s applica-

tion domain: References.
8. The See Also section, which lists similar or related functions.
9. Examples of use: Examples.

6.6- help(package="stats") or library(help="stats").
6.7- Type data() to see a list of data sets and then type the name of the chosen

data set.

http://search.r-project.org/nmz.html
http://search.r-project.org/nmz.html
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Solutions to Exercises from Chap. 7

7.1- The windows() command is used to open a graphical device. The
dev.off() command closes the window specified by device-number (if
no device number is given, the active window is closed).

7.2- savePlot(filename="myplot",type="pdf",device=dev.cur()).

7.3- The instruction par(mfrow=c(3,2))opens a graphical window where plots
are successively displayed in a “matrix” with three rows and two columns
(filled by rows).

7.4- Function layout() enables one to obtain a more evolved splitting of the
graphical window than using function par().

7.5- points()
7.6- type="l"
7.7- abline()
7.8- Function curve() enables one to draw any function of x.
7.9- The argument col.

7.10- Function image(). The instruction

image(as.matrix(rev(as.data.frame(t(X)))))

enables one to display coherently the image whose values are given in
matrix X.

7.11- Function text().
7.12- Function identify() or locator().
7.13- The instruction par(ask=TRUE) outputs a message asking the user to press

the ENTER key before each new plot is drawn.
7.14- lty
7.15- pch
7.16- curve(cos(x),xlim=c(-10,10),xlab="X axis",col="blue",

main="Sinus and cosinus curves",ylim=c(-2,2),

ylab="sin(x)")

curve(sin(x),add=TRUE)

abline(h=0,col="red")

abline(v=0,col="red")

arrows(3�pi/2,1,pi/2,1)
text((3�pi)/2,1,expression(hat(beta)[1]))
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Solutions to Exercises from Chap. 8

8.1- � function(name) {name}: the class of the returned R object is
function, and the display produced is function(name) {name}.

� (function(name) {name})("Ben"): the class of the returned R object
is character, and the display produced is "Ben"

� (function(name) {cat(name,"\n")})("Ben"): the returned R ob-
ject has no class, and the display produced is Ben

� (function(name) {invisible(name)})("Ben"): the class of the re-
turned R object is character, no display.

8.2- � No difference.
� No difference.
� No difference.

8.3- No difference when executing name() and name("Peter") if the function
name() is defined by name <- function(name="Peter") name and also
by name <- function(name="Peter") name2 <- name. For these two
functions, the nature of res, obtained by res <- name("Ben") is of type
character.

8.4- "Peter"
8.5- � "Ben L"
� "Ben L"
� "R D"

8.6- name <- function(name="Peter") {cat(name,"\n")}
8.7- For the execution of names("peteR","Ben","R")

� [1] "peteR" "Ben" "R"

� [[1]]
[1] "peteR"

[[2]]

[1] "Ben"

[[3]]

[1] "R"

� [1] "peteR"
[1] "Ben"

[1] "R"

� [1] "peteR"
[1] "Ben"

[1] "R"

For the execution of names(c("peteR","L"),c("Ben","L"),c("R",
"D"))

� [1] "peteR" "L" "Ben" "L" "R" "D"



Solutions to Exercises from Chap. 8 571

� [[1]]
[1] "peteR" "L"

[[2]]

[1] "Ben" "L"

[[3]]

[1] "R" "D"

� [1] "peteR"
[1] "L"

[1] "Ben"

[1] "L"

[1] "R"

[1] "D"

� [1] "peteR" "L"
[1] "Ben" "L"

[1] "R" "D"

8.8- For the function names <- function(names=c("Ben","R"),...)

c(names,...)

� [1] "PeteR"
� [1] "PeteR"
� [1] "PeteR"
For the function names<-function(...,names=c("Ben","R"))

c(names,...)

� [1] "Ben" "R" "PeteR"
� name

"Ben" "R" "PeteR"

� [1] "PeteR"
8.9- � Male <- function(firstname,name) {

obj <- list(firstname=firstname,name=name)

class(obj) <- "Male"

obj

}

� hello.Male <- function(obj)
cat("Hello Mister",obj$firstname,obj$name,"!\n")

� Hello Mister Ben L !
� Error : impossible to find function "hello"
� hello <- function(obj) UseMethod("hello")

8.10- � Female <- function(firstname,name) {
obj <- list(firstname=firstname,name=name)

class(obj) <- "Female"
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obj

}

� hello.Female <- function(obj)
cat("Hello Mrs.",obj$firstname,obj$name,"!\n")

� Hello Mister Elsa R !
� Hello Mrs. Elsa R !
� Hello Mrs. Elsa R !

8.11- � Hello Mister Ben L !
Hello Mrs. Elsa R !

� Error in UseMethod("hello") :
no method for ‘hello’ applicable for

an object of class "character"

� Hello Ben !
Hello L !

Hello Elsa !

Hello R !

Solutions to Exercises from Chap. 9

9.1- ls() or objects().
9.2- rm(foo).
9.3- getwd().
9.4- setwd(choose.dir()).
9.5- Save in a file (name.RData) the objects that have been created.
9.6- The history of commands, the working environment, the contents displayed

in the console and the graphs.
9.7- This allows you to recall and replay previously typed commands (using ar-

rows up and down on the keyboard).
9.8- The function history() displays in a new window the list of all previous

commands typed in the current session.
9.9- png(file="myplot.png")

curve(x��2)
dev.off()

9.10- It enables one to access variables of a data.frame directly by their name.
9.11- require() (or library()).
9.12- Import a sequence of R instructions from a file to the console and check the

syntax.
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Solutions to Exercises from Chap. 10

10.1- choose().
10.2- The instruction sum(1:n).
10.3- range().
10.4- The term by term product of the two following matrices:

[,1] [,2]

[1,] 1 0

[2,] 0 1

and

[,1] [,2]

[1,] 1 3

[2,] 2 4

which gives

[,1] [,2]

[1,] 1 0

[2,] 0 4

10.5- %*%().
10.6- Function solve() for the inverse and function t() for the transpose.
10.7- The instruction diag(5).
10.8- Command det() for the determinant and sum(diag()) for the trace.
10.9- scale(A).

10.10- Function eigen().
10.11- myf <- function(x) {3�xˆ2+2}

integrate(myf,lower=-1,upper=1)

10.12- optimize(f=function(x)(sin(x))**2,lower=0,upper=2,
maximum=TRUE).

10.13- Command uniroot() for a function and polyroot() for a polynomial.

Solutions to Exercises from Chap. 11

11.1- table(x)/length(x).
11.2- table(x,y).
11.3- margin.table().
11.4- prop.table().
11.5- names(which.max(table(mytable))).
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11.6- diff(range(x)).
11.7- IQR(x).
11.8- var(x)*(length(x)-1)/length(x).
11.9- sqrt(var(x)*(length(x)-1)/length(x))/mean(x).

11.10- mean(abs(x-mean(x))).
11.11- Package moments.
11.12- First, we need to compute the �2 statistic using:

chi2 <- summary(table(mytable))$statistic

Cramér’s ˚2 is obtained by chi2/N.
11.13- Here is the code to compute the correlation ratio �2

Y jX :

eta2 <- function(x,gp) {

means <- tapply(x,gp,mean)

frequency <- tapply(x,gp,length)

varinter <- (sum(frequency � (means - mean(x))ˆ2))
vartot <- (var(x) � (length(x) - 1))
res <- varinter/vartot

return(res)

}

11.14- Function barplot() can be used to obtain a Pareto diagram.
11.15- A stacked bar chart can be obtained using the function barplot() with an

object of type matrix as first argument.
11.16- Function pie() can be used to obtain a pie chart.
11.17- Function boxplot() can be used to obtain a box plot.
11.18- Function hist() is used to draw a histogram.

Solutions to Exercises from Chap. 12

12.1- rnorm().
12.2- rnorm(n,mean=2,sd=sqrt(10)) generates n realizations of a random

variable with N .2; 10/ distribution.
12.3- qchisq().
12.4- df().
12.5- qt().
12.6- pnorm(5,mean=4,sd=sqrt(2))-pnorm(3,mean=4,sd=sqrt(2)).
12.7- qnorm(0.95).
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Solutions to Exercises from Chap. 13

13.1- qbinom().
13.2- Function pnorm() is used to compute the Gaussian cumulative distribution

function.
13.3- t.test(x,conf.level=0.9)$conf.int
13.4- Function prop.test() is used to compute a confidence interval for a pro-

portion or to perform a statistical test for a proportion by approximat-
ing the binomial distribution by a normal distribution, whereas function
binom.test() performs exact computations.

13.5- ks.test() and wilcox.test().
13.6- shapiro.test().
13.7- chisq.test() and fisher.test().
13.8- Package boot().
13.9- paired=TRUE.

13.10- The �2 test of independence enables one to test the dependence between two
qualitative variables, whereas the �2 goodness-of-fit test can be used to test
if a qualitative variable follows a given distribution. To perform these two
tests, you can use the chisq.test() function. The �2 test of independence
is performed on a table. For the �2 goodness-of-fit test, it is necessary
to specify the p argument representing the theoretical probabilities of the
possible outcomes of the qualitative variable.

Solutions to Exercises from Chap. 14

14.1- lm(Y�X1).
14.2- lm(Y�X1-1) or lm(Y�0+X1).
14.3- lm(Y�X1+X2).
14.4- lm(Y�X1+X2+X1:X2) or lm(Y�X1*X2).
14.5- lm(Y�X1+I(X1ˆ2)+I(X1ˆ4)).
14.6- anova(lm(Y�X1+X2),lm(Y�X1+X2+X3+X4)).
14.7- residuals().
14.8- coefficients().
14.9- The variable Z has to be introduced as a factor by means of the factor()

command.
14.10- lm(Y�poly(X,3)).
14.11- add1().
14.12- drop1().
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Solutions to Exercises from Chap. 15

15.1- aov(Y�factor(A)).
15.2- aov(Y�factor(A)+factor(B)).
15.3- aov(Y�factor(A)*factor(B)).
15.4- bartlett.test() and levene.test().
15.5- pairwise.t.test().
15.6- summary(lm(Y�factor(X))).
15.7- The function C().



Solutions to Worksheet

Solutions to Worksheet from Chap. 3

Study of Body Mass Index

3.1- Individuals <- c("Edward","Cynthia","Eugene","Elizabeth",
"Patrick","John","Albert","Lawrence",

"Joseph","Leo")

Weight <- c(16,14,13.5,15.4,16.5,16,17,14.8,17,16.7)

Height <- c(100,97,95.5,101,100,98.5,103,98,101.5,100)

Gender <- c("F","F","M","F","M","M","M","M","M","M")

3.2- mean(Weight) # result : [1] 15.69

mean(Height) # result : [1] 99.45

3.3- BMI <- Weight/(Height/100)ˆ2
BMI # Outputs the results

3.4- myTable <- data.frame(Individuals,Weight,Height,Gender,BMI)
myTable # Outputs the results

3.5- help(plot)

3.6- plot(Height,Weight,main="Scatter plot of Weight as a
function of Height")

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3,
© Springer Science+Business Media New York 2013
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Solutions to Worksheet from Chap. 4

Reading Various Data Sets

A- Entering Data from a Hard Copy

� Cold sore

4.1- blisters <- as.data.frame(de(""))

First, change the type of each column to Real and the names to trti , 1 

i 
 5 (by clicking on the first cell of each column), then enter your data. Click
on Quit at the end. Next, we can type the following command to display the
data in R:

blisters # Outputs the data.

4.2- attach(blisters)
mean(trt1) # Result: [1] 7.5

mean(trt2) # Result: [1] 5

mean(trt3) # Result: [1] 4.333333

mean(trt4) # Result: [1] 5.166667

mean(trt5) # Result: [1] 6.166667

4.3- We obtain directly the same results by typing

colMeans(blisters).

4.4- write.table(file="blisters.txt",blisters,row.names=FALSE).

4.5- You can use your favourite text editor to display the contents of the file
blisters.txt and thus check if it has been correctly created (the instruction
getwd() will tell you where this file has been saved).

4.6- ls()
rm(blisters)

ls()

blisters # We see that the object blisters has disappeared.

4.7- blisters <- read.table("blisters.txt",header=TRUE,sep="")
blisters # Here is again!

� Risk factors for atherosclerosis

4.1- Enter data as they are organized in the contingency table, by pressing the
ENTER key after each end of line. After the last line, press once more on the
ENTER key.
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X <- scan() # Data are then collected in a vector.

X <- matrix(X,ncol=3,nrow=6,byrow=TRUE)

4.2- class(X) <- "ftable"

4.3- attributes(X)$col.vars<-list(alcohol=c("nondrinker",
"occasional-drinker","regular-drinker"))

attributes(X)$row.vars<-list(GENDER=c("M","F"),tobacco=

c("non-smoker","former smoker","smoker"))

4.4- X

4.5- write.ftable(X,file="athero.txt").

4.6- You can use your favourite text editor to display the contents of the file
athero.txt and thus check that it has been correctly created (the instruction
getwd() will tell you where this file has been saved).

4.7- rm(X)
X # The object has been removed.

4.8- X <- read.ftable(file="athero.txt")
X # Here it is again!

B- Importing from Other Software

4.1- You can begin by downloading the file "http://biostatisticien.eu/
springeR/bmichild.xls" using your browser. If you have Excel, you can
then transform it into the file bmichild.txt, with TAB as separators, then use
the following R command:

bmi.XLS <- read.table(file.choose(),header=TRUE,sep="\t",

dec=",")

If you do not have Excel, you can use the package required xlsReadWrite
after installing it:

require("xlsReadWrite")

bmi.XLS <- read.xls("bmichild.xls")

Finally, under Linux, you can use the commands:

require("gdata")

bmi.XLS <- read.xls("http://biostatisticien.eu/springeR/

bmichild.xls")

4.2- Install the package foreign. Download the file "http://www.

biostatisticien.eu/springeR/bmichild.xpt" using your browser.

require("foreign")

bmi.SAS <- read.xport(file.choose()) # Select bmichild.xpt.

http://biostatisticien.eu/springeR/bmichild.xls
http://biostatisticien.eu/springeR/bmichild.xls
http://www.
biostatisticien.eu/springeR/bmichild.xpt
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4.3- url <- "http://www.biostatisticien.eu/springeR/
bmichild.sav"

bmi.SPSS <- read.spss(url)

bmi.SPSS <- as.data.frame(bmi.SPSS)

4.4- Install the package R.matlab.

require("R.matlab")

x <- readMat("http://www.biostatisticien.eu/springeR/

bmichild.mat")

class(x) # x is a list.

x # We see that the data are in $bmi[,,1].

x <- x$bmi[,,1]

# Note that the elements of GENDER and zep are saved into

a list.

x$GENDER

class(x$GENDER) <- "character"

x$GENDER

class(x$zep) <- "character"

bmi.MAT <- as.data.frame(x)

4.5- summary(bmi.XLS)
summary(bmi.SAS)

summary(bmi.SPSS)

summary(bmi.MAT)

4.6- write.table(bmi.SPSS,"bmichild.txt",row.names=FALSE)

C- Importing More Complex Data Files

4.1- readLines("http://biostatisticien.eu/springeR/
geoidformat.txt")

X <- scan("http://biostatisticien.eu/springeR/raf98.gra",

skip=3)

X <- matrix(X,ncol=421,nrow=381,byrow=TRUE)

dim(X)

4.2- Save the file http://biostatisticien.eu/springeR/Infarction.xls using your
browser, then transform it into a file Infarction.txt (TAB as separator). Next,
use the command:

infarction <- read.table("Infarction.txt",header=TRUE,

sep="\t",na.strings = ".",dec=",")

Under Linux, rather use

require("gdata")

url <- "http://biostatisticien.eu/springeR/Infarction.xls"
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infarction <- read.xls(url,header=TRUE,sep=",",

na.strings=".",dec=".")

4.3- Download the file "http://biostatisticien.eu/springeR/nutrition
_elderly.txt" in the folder whose name is given by the command
getwd(), then enter the following commands:

X <- read.table("nutrition_elderly.txt",row.names=1)

X <- t((X))

X <- as.data.frame(X)

4.4- url <- "http://www.biostatisticien.eu/springeR/
Birth_weight.txt"

readLines(url) # To get an idea of the file organization.

# Note the three missing lines [33] to [35],

# and also the presence of dashes at line [194].

X <- read.table(url,row.names=1,skip=1,header=FALSE,

sep=";",nrows=189, blank.lines.skip=TRUE)

Y <- read.table(url,nrows=1,row.names=1)

colnames(X) <- as.matrix(Y)

head(X) # Display the first lines of X.

Solutions to Worksheet from Chap. 5

Manipulating Various Data Sets

A- Manipulating a few data sets presented at the beginning of the book

File nutrielderly.xls

5.1- Install the package gdata. Be careful that the use of this package necessi-
tates the PERL software which is not available by default under Windows.
Thus install also PERL (http://www.biostatisticien.eu/springeR/
Rtools.exe):

require("gdata")

nutrien1 <- read.xls("http://www.biostatisticien.eu/

springeR/nutrien1.xls")

nutrien2 <- read.xls("http://www.biostatisticien.eu/

springeR/nutrien2.xls")

colnames(nutrien1) <- tolower(colnames(nutrien1))

result <- rbind(nutrien1,nutrien2)

http://biostatisticien.eu/springeR/nutrition
_elderly.txt
http://www.biostatisticien.eu/springeR/Rtools.exe
http://www.biostatisticien.eu/springeR/Rtools.exe
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5.2- nutrien3 <- read.xls("http://www.biostatisticien.eu/
springeR/nutrien3.xls")

nutrien4 <- read.xls("http://www.biostatisticien.eu/

springeR/nutrien4.xls")

result <- merge(nutrien3,nutrien4,all=TRUE)

5.3- nutrien5 <- read.xls("http://www.biostatisticien.eu/
springeR/nutrien5.xls")

nutrien6 <- read.xls("http://www.biostatisticien.eu/

springeR/nutrien6.xls")

The coding of the variables is given in the table in Sect. 2.4. We will try to
identify abnormal values using the following instruction:

apply(nutrien5,FUN=table,MARGIN=2)

We can identify six abnormal values in nutrien5: gender=12, gender=21,
height=1.67, weight=200, age=8 and chocol=7. The subjects with these
abnormal values are identified using

ind5gender <- nutrien5$Subject[which(nutrien5$gender %in%

c(12,21))]

ind5height <- nutrien5$Subject[which(nutrien5$height==

1.67)]

ind5weight <- nutrien5$Subject[which(nutrien5$weight==200)]

ind5age <- nutrien5$Subject[which(nutrien5$age==8)]

ind5chocol <- nutrien5$Subject[which(nutrien5$chocol==7)]

ind5abnorm <- c(ind5gender,ind5height,ind5weight,ind5age,

ind5chocol)

Let us do the same with nutrien6.

apply(nutrien6,FUN=table,MARGIN=2)

We find seven abnormal values in nutrien6: gender=12, gender=21,
weight=8, age=7, meat=6, chocol=6 and fat=9. The subjects with these
abnormal values are identified using

ind6gender <- nutrien6$Subject[which(nutrien6$gender %in%

c(12,21))]

ind6weight <- nutrien6$Subject[which(nutrien6$weight==8)]

ind6age <- nutrien6$Subject[which(nutrien6$age==7)]

ind6meat <- nutrien6$Subject[which(nutrien6$meat==6)]

ind6chocol <- nutrien6$Subject[which(nutrien6$chocol==6)]

ind6fat <- nutrien6$Subject[which(nutrien6$fat==9)]

ind6abnorm <- c(ind6gender,ind6weight,ind6age,ind6meat,

ind6chocol,ind6fat)

We will now look at whether it is possible to correct some of these abnormal
values. To do this, we will investigate whether an individual with an abnormal
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value in one of the tables may be present in another table with a normal value.
Here is the list of common subjects between both files:

ind.com <- intersect(nutrien6$Subject,nutrien5$Subject)

List of abnormal subjects in nutrien5 that are also present in nutrien6:

intersect(ind.com,ind5abnorm)

# Result : no subject.

List of abnormal subjects in nutrien6 that are also present in nutrien5:

intersect(ind.com,ind6abnorm)

# Result: subject 30

nutrien5[nutrien5$Subject==30,]

nutrien6[nutrien6$Subject==30,]

# We have gender=21 in nutrien6 and gender=2 in nutrien5.

We thus replace this value in nutrien6:

nutrien6$gender[which(nutrien6$Subject==30)] <-

nutrien5$gender[which(nutrien5$Subject==30)]

We can now merge the two tables:

result <- merge(nutrien5,nutrien6,all=TRUE)

Without other information on abnormal data, we decide not to change them
for the moment.

5.4- nutrien7 <- read.xls("http://www.biostatisticien.eu/
springeR/nutrien7.xls")

nutrien8 <- read.xls("http://www.biostatisticien.eu/

springeR/nutrien8.xls")

result <- cbind(nutrien7,nutrien8)

5.5- nutrien9 <- read.xls("http://www.biostatisticien.eu/
springeR/nutrien9.xls")

nutrien10 <- read.xls("http://www.biostatisticien.eu/

springeR/nutrien10.xls")

apply(nutrien9,FUN=table,MARGIN=2,useNA="ifany")

apply(nutrien10,FUN=table,MARGIN=2,useNA="ifany")

The variable chocol contains 29 missing data points. We delete this variable
before combining the two tables:

nutrien9bis <- nutrien9[,-which(colnames(nutrien9)==

"chocol")]

result <- cbind(nutrien9bis,nutrien10)

5.6- nutrien11 <- read.xls("http://www.biostatisticien.eu/
springeR/nutrien11.xls")
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nutrien12 <- read.xls("http://www.biostatisticien.eu/

springeR/nutrien12.xls")

# Number of missing values for all individuals in each

table:

ind11NA <- apply(is.na(nutrien11),FUN=sum,MARGIN=1)

ind12NA <- apply(is.na(nutrien12),FUN=sum,MARGIN=1)

# Determination of the individual with the most missing

values:

ind11max <- which.max(ind11NA) # We find the individual 86.

ind12max <- which.max(ind12NA) # We find the individual 86.

ind11NA[ind11max] # 3 missing values.

ind12NA[ind12max] # 4 missing values.

The individual 86 has 7 missing values on 13 variables. We suppress it from
the merged table:

result <- cbind(nutrien11,nutrien12)[-86,]

5.7- url <- "http://www.biostatisticien.eu/springeR/
nutri_elderly.xls"

nutri_elderly <- read.xls(url)

nrow(nutri_elderly[nutri_ederly$fish==0 & nutri_elderly

$meat==0,])

There is no vegetarian among the individuals studied.

File Intima Media Thickness.xls

5.1- url <- "http://www.biostatisticien.eu/springeR/
Intima_Media_Thickness.xls"

Intima <- read.xls()

Intima <- transform(Intima,BMI=weight/(height/100)ˆ2)

# or equivalently:

# BMI <- Intima$weight/((Intima$height/100)ˆ2)

# Intima <- cbind(Intima,BMI)

5.2- Intima$measure[Intima$BMI>30]

5.3- Intima[Intima$SPORT==1,]

5.4- Intima[Intima$BMI<=30 & Intima$AGE>=50,]
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File bmichild.xls

5.1- bmichild <- read.xls("http://www.biostatisticien.eu/
springeR/bmichild.xls")

bmichild <- transform(bmichild,BMI=weight/(height/100)ˆ2)

# or equivalently:

# BMI <- bmichild$weight/((bmichild$height/100)ˆ2)

# bmichild <- cbind(bmichild,BMI)

5.2- subset(bmichild,BMI<15 & an<=3.5 & month <=5)
# or equivalently:

# bmichild[bmichild$BMI<15 & bmichild$an <=3 &

bmichild$month<=5,]

5.3- sum(bmichild$BMI<15 & bmichild$an<=3 & bmichild$month<=5)
# or equivalently:

# nrow(bmichild[bmichild$BMI<15 & bmichild$an<=3 &

bmichild$month<=5,])

We find seven children.

File Birth weight.xls

5.1- url <- "http://www.biostatisticien.eu/springeR/
Birth_weight.xls"

birth.weight <- read.xls(url)

PTL1 <- birth.weight$PTL

PTL1[birth.weight$PTL>=2] <- 2

birth.weight <- cbind(birth.weight,PTL1)

5.2- FVT1 <- birth.weight$FVT
FVT1[birth.weight$FVT>=2] <- 2

birth.weight <- cbind(birth.weight,FVT1)

5.3- birth.weight[order(birth.weight$BWT),]

5.4- birth.weight[birth.weight$RACE<=2 & birth.weight$SMOKE==1,]

B- Handling Missing Values

Install the package gdata. And since this package necessitates PERL, also install
PERL (http://www.biostatisticien.eu/springeR/Rtools.exe). Now, we
read the data:

url <- "http://www.biostatisticien.eu/springeR/Infarction.xls"

read.xls(url)

http://www.biostatisticien.eu/springeR/Rtools.exe
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We note that the missing values are coded with ".". We thus use the following
instruction:

infarction <- read.xls(url,na.strings=".")

5.1- indNA <- which(apply(is.na(infarction),FUN=any,MARGIN=1)
==TRUE)

5.2- sup1 <- function(x) {sum(x)>1}
indNA <- which(apply(is.na(infarction),FUN=sup1,

MARGIN=1)==TRUE)

infarction$NUMBER[indNA]

5.3- colnames(infarction)[which(apply(is.na(infarction),FUN=any,
MARGIN=2)==TRUE)]

5.4- (a)infarction[as.logical(apply(!is.na(infarction),1,
prod)),]

(b)infarction[!apply(apply(infarction,1,is.na),2,any),]
(c)infarction[apply(!apply(infarction,1,is.na),2,all),]
(d)infarction[complete.cases(infarction),]
(e)na.omit(infarction)

C- Handling Character Strings

5.1- url<-"http://www.biostatisticien.eu/springeR/dept-pop.csv"
dept <- read.csv(url,dec=",")

5.2- numdep <- substring(dept$Departement,1,3)
Dept <- substring(dept$Departement,4)

dept <- cbind(numdep,Dept,dept[,-1])

D- Influenza Epidemics in France Since 1984

5.1- url <- "http://www.biostatisticien.eu/springeR/flu.csv"
head(read.csv(url))

We note that the missing values are coded using dashes (-). We thus use the
following instruction:

flu <- read.csv(url,na.strings="-")

5.2- names(flu)
flu$Date

5.3- unique(sort(substring(flu$Date,5,6)))

We find the numbers "01" to "53".
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5.4- strptime("198444",format="%Y%W")

We notice that the above instruction gives the correct year, but in fact the
current day and month.

5.5- We read on the calendar that the first Monday of the 44th week corresponds
to October 29, 1984.

5.6- strptime("1984441",format="%Y%W%w")

5.7- flu$Date[1:10]
strptime(paste(as.character(flu$Date[1:10]),"1",sep=""),

format="%Y%W%w")

We notice on the website calendar that this does not work for December 31,
1984. We should rather use

strptime("1984531",format="%Y%W%w")

whereas we used

strptime("1985011",format="%Y%W%w")

Thus there is a problem with week format.
5.8- date1 <- as.POSIXlt("29,10,1984",format="%d,%m,%Y")

5.9- date1
date1+7

The above operation added 7 s to date1.
5.10- date1+7�24�60�60
5.11- dates <- date1 + 7�24�60�60�(0:(nrow(flu)-1))
5.12- flu$Date <- substring(dates,1,10)

5.13- mask1 <- (as.POSIXlt(dates) >= as.POSIXlt("1992-09-15"))
mask2 <- (as.POSIXlt(dates) <= as.POSIXlt("1993-11-03"))

portion <- flu[mask1 & mask2,]

5.14- flu.cases <- colSums(portion[,-1],na.rm=TRUE)
flu.cases

E- Combining Tables or Lists and Other Manipulations

5.1- a <- matrix(1:6,3,2)
rownames(a) <- c(1,2,6)

b <- matrix(1:8,4,2)

rownames(b) <- c(3,4,5,7)
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5.2- ab <- rbind(a,b)
ab <- ab[order(rownames(ab)),]

ab

5.3- list1 <- list()
list1[[1]] <- matrix(runif(25),nr=5)

list1[[2]] <- matrix(runif(30),nr=5)

list1[[3]] <- matrix(runif(15),nr=5)

matrix(unlist(list1),nrow=5)

# or also:

do.call(cbind,list1)

5.4- list2 <- list()
list2[[1]] <- matrix(runif(25),nc=5)

list2[[2]] <- matrix(runif(35),nc=5)

list2[[3]] <- matrix(runif(15),nc=5)

tmp <- lapply(list2,FUN=t)

t(matrix(unlist(tmp),nrow=5))

# or also:

do.call(rbind,list2)

5.5- tmp <- data.frame(Disease = c("Infarction", "Hepatitis",
"Lung cancer"),RF = c("tobacco, alcohol", "alcohol",

"tobacco"))

tmp

tmp$Disease[grep("tobacco",tmp$RF)]

F- The French Chevalier de Méré

� fourthrows <- function() {
asixormore <- 0

game <- sample(1:6,4,replace=TRUE)

nbsix <- sum(game == 6)

if(nbsix >= 1) asixormore <- 1

return(asixormore)

}

� twentyfourthrows <- function() {
adoublesixormore <- 0

die1 <- sample(1:6,24,replace=TRUE)

die2 <- sample(1:6,24,replace=TRUE)

nbdoublesix <- sum(die1[which(die1 == die2)] == 6)

if(nbdoublesix >= 1) adoublesixormore <- 1

return(adoublesixormore)

}
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� meresix <- function(nsim = 2000) {
atleastasix <- 0

atleastadoublesix <- 0

for (j in 1:nsim) {

atleastasix <- atleastasix + fourthrows()

atleastadoublesix <- atleastadoublesix +

twentyfourthrows()

}

#������������� Displaying the output �������������������
cat("Frequency of 6s =",atleastasix/nsim,"nn")
cat("Frequency of double-6s =",atleastadoublesix/nsim,

"nn")
}

Solutions to Worksheet from Chap. 6

Where to Find Information

6.1- We type

help.search("combination")

then we note the right function. We choose the one from package utils
which is present by default in R.

help(combn)

6.2- combn(c(5,8,2,9),3)

6.3- help.search("crime")
help(USArrests)

6.4- dim(USArrests) # Dimension of the data set.

names(USArrests) # Names of variables.

rownames(USArrests) # Names of individuals (states).

6.5- Subscribe to https://stat.ethz.ch/mailman/listinfo/r-help.
6.6- Read the General Instructions on the R Mailing Lists page and the posting

guide on http://www.r-project.org/posting-guide.html.
6.7- To unsubscribe, it suffices to follow the instructions given at the bottom of

page https://stat.ethz.ch/mailman/listinfo/r-help.
6.8- Connect on IRC, for example, via the website http://webchat.freenode.

net.

https://stat.ethz.ch/mailman/listinfo/r-help
http://www.r-project.org/posting-guide.html
https://stat.ethz.ch/mailman/listinfo/r-help
http://webchat.freenode.net
http://webchat.freenode.net
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6.9- Subscribe to http://stackoverflow.com/questions/tagged/r.
6.10- Read the Windows FAQ from http://cran.r-project.org/faqs.html.

Section 7.5 explains TAB completion mechanism.
6.11- Enter a quote ("), then press twice on the TAB key.

Solutions to Worksheet from Chap. 7

Creating Various Plots

A- Complex Numbers

7.1- z <- 1+2i
plot(1,3,xlab="Re(z)",ylab="Im(z)",xlim=c(0,2.5),

ylim=c(0,2.5),

main="Complex numbers")

segments(0,0,Re(z),Im(z))

points(Re(z),Im(z),pch=19)

abline(h=0,v=0)

segments(Re(z),0,Re(z),Im(z),lty=3)

segments(0,Im(z),Re(z),Im(z),lty=3)

text(Re(z),Im(z),"z",pos=4)

text(0.4,1.1,"Mod(z)",srt=Arg(z)�180/pi)
r<-0.5

x<-seq(from=Re(r�exp(1i�Arg(z))),to=r,length=100)
y<-sqrt(0.5ˆ2-xˆ2)

points(x,y,type="l")

text(0.55,0.35,"Arg(z)",srt=-45,cex=0.8)

B- Flag of Canada

7.1- require("caTools")

7.2- Save the file "http://www.biostatisticien.eu/springeR/canada.
gif" in your working environment. Then launch the instruction:

X <- read.gif("canada.gif")

7.3- image(as.matrix(rev(as.data.frame(t(X$image)))),col=X$col)

http://stackoverflow.com/questions/tagged/r
http://cran.r-project.org/faqs.html
http://www.biostatisticien.eu/springeR/canada.gif
http://www.biostatisticien.eu/springeR/canada.gif
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7.4- coord <- locator(25) # Retrieve coordinates of points
# constitutive of the contour maple

leaf.

rec1 <- locator(2) # Retrieve coordinates of bottom-left

# and top-right vertices of left

# rectangle.

rec2 <- locator(2) # Retrieve coordinates of bottom-left

# and top-right vertices of right

# rectangle.

windows() # or X11() under Linux.

plot(0,xlim=c(0,1),ylim=c(0,1),type="n",ann=FALSE,

axes=FALSE)

rect(rec1$x[1],rec1$y[1],rec1$x[2],rec1$y[2],col="red")

rect(rec2$x[1],rec2$y[1],rec2$x[2],rec2$y[2],col="red")

polygon(coord,col="red")

C- Frequency Tables

7.1- Enter the data set:

X <- matrix(c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,

3,2,1,1,1,1,1,1,2,1,4,1,1,1,1,1,2,2,1,1,1,1,2,3,3,1,2,1,1,

1,1,1,3,4,1,1,1,2,3,4,3,1,2,1,1,4,1,1,4,4,1,1),ncol=8)

colnames(X) <- c("Nr","W1","W2","W3","W4","W5","W6","W7")

fi <- tabulate(X[,"W7"],4)/16

as.vector(t(cbind(fi,1-fi)))

7.2- For this, create a function:

f <- function(x){

fi <- tabulate(x,4)/16

as.vector(t(cbind(fi,1-fi)))

}

freq <- apply(X[,-1],FUN=f,MARGIN=2)

rownames(freq) <- c("f1","1-f1","f2","1-f2","f3","1-f3",

"f4","1-f4")

7.3- barplot(freq,col=c("black","white"))

7.4- windows() # or X11() under Linux.
barplot(freq,col=c("red","white"),width=1,space=0.1,axes=F,

border="black",names.arg=rep("",7))

axis(2,labels=1:4,at=1:4-0.5,lty=0,las=1,col.axis="blue")

par(cex=.8)
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axis(3,labels=c("W1","W2","W3","W4","W5","W6","W7"),

at=0:6+0:6/10+0.5,lty=0,col.axis="blue")

par(cex=1)

title(main="Burning scores",col="black")

D- Anatomic Images of the Brain

7.1- Read the data:

dim <- 256

url <- "http://www.biostatisticien.eu/springeR/anat.img"

bytes <- readBin(url,what="raw",n=dim�dim�2)
7.2- Permutate pairs of bytes:

nbval <- dimˆ2

indices <- rbind((1:nbval)�2,(1:nbval)�2-1)
indices <- as.numeric(indices)

x <- bytes[indices]

7.3- Transformation to decimal representation:

x <- matrix(x,ncol=2,byrow=TRUE)

test <- function(x) {

as.numeric(paste("0x",paste(x,collapse=""),sep=""))

}

values <- apply(x,MARGIN=1,FUN=test)

7.4- X <- matrix(values,nrow=dim,ncol=dim)

7.5- image(X,col=gray(0:100 / 100))

7.6- Install the package AnalyzeFMRI. Download the files anat.img and anat.hdr
to your workspace, then type the following instructions:

require("AnalyzeFMRI")

Y <- f.read.volume("anat.img")

image(Y[,,1],col=gray(0:1000 / 1000))

E- Drawing the Map of a Region of France

7.1- Install the packages maps and mapdata, then load them into memory:

require("maps")

require("mapdata")

7.2- map("france")

7.3- france <- map("france",plot=FALSE)
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7.4- Latitude/longitude data are organized in france$x/france$y for each re-
gion in france$names (until the next NA).

7.5- Vector of NA indices:

indNA <- which(is.na(france$x))

7.6- deptname <- "Gard"

7.7- inddept <- which(france$names==deptname)

7.8- plot(france$x[indNA[inddept-1]:indNA[inddept]],
france$y[indNA[inddept-1]:indNA[inddept]],

type="l",main=deptname,xlab="Longitude",

ylab="Latitude")

7.9- Retrieve coordinates of the town called Alès on http://www.

gpsvisualizer.com/geocode.

ales <- c(4.08268,44.121288)

points(ales[1],ales[2],pch=16,col="red")

text(ales[1],ales[2],"Al\‘{e}s",pos=1)

F- Representation of the Geoid in France

7.1- Read the data:

readLines("http://www.biostatisticien.eu/springeR/

geoidformat.txt")

data <- scan("http://www.biostatisticien.eu/springeR/

raf98.gra",skip=3)

7.2- Z <- matrix(data,nrow=421,ncol=381,byrow=FALSE)
Z <- as.matrix(rev(as.data.frame(Z)))

layout(mat=matrix(1:2,ncol=2),widths=c(5,1))

par(mar=c(4,4,3,0),mai=c(1, 1, 1, 0),las=1,tck=-0.01)

x<-seq(from=-5.5,to=8.5,length=421)

y<-seq(from=42,to=51.5,length=381)

image(x,y,Z,col=rainbow(17),xlab="Longitude",

ylab="Latitude",axes=FALSE)

par(ps=18)

title("The quasigeoid QGF98 model",family="HersheyScript")

par(ps=11)

axis(1,at=(-6):8,labels=paste((-6):8,"o",sep=""))

axis(2,at=42:51,labels=paste(42:51,"o",sep=""))

contour(x,y,Z,add=TRUE)

par(mai=c(0, 0, 0, 0),bty="n")

http://www.
gpsvisualizer.com/geocode
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plot(0:1,0:1,axes=FALSE,xlab="",ylab="",type="n")

legend("center",legend=42:55,fill=rainbow(17),bty="n",

title="Meters")

Solutions to Worksheet from Chap. 8

Programming Functions and Object-Oriented Programming in R

A- Managing a Bank Account

8.1- .folder.accounts <- "./Account"
path.account <- function(name) {

file.path(.folder.accounts,paste(name,".RData",sep=""))

}

8.2- account <- function(name) {
path <- path.account(name)

account <- data.frame(amount=numeric(0),

mode=factor(levels=c("Debit","Credit")),

date=character(0),remark=character(0))

save(account,file=path)

cat("Account",name,"created !\n")

}

8.3- debit <- function(name,amount,remark="",
date=format(Sys.time(),"%d/%m/%Y")) {

path <- path.account(name)

load(path)

account <- rbind(account,data.frame(amount=amount,

mode="Debit",date=date,remark=remark))

save(account,file=path)

}

credit <- function(name,amount,remark="",

date=format(Sys.time(),"%d/%m/%Y")) {

path <- path.account(name)

load(path)

account <- rbind(account,data.frame(amount=amount,

mode="Credit",date=date,remark=remark))

save(account,file=path)

}
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8.4- The instruction

sum(account[account$mode=="Credit","amount"])

returns the credited amount on the account. We modify the function
account() this way:

account <- function(name) {

path <- path.account(name)

if(!file.exists(path)) {

account <- data.frame(amount=numeric(0),mode=

factor(levels=c("Debit","Credit")),

date=character(0),

remark=character(0))

save(account,file=path)

cat("Account",name,"created !\n")

} else {

load(path)

cat("State of account",name,"=",

sum(account[account$mode=="Credit","amount"])

- sum(account[account$mode=="Debit","amount"]),

"euros.\n")

}

}

B- Organizing Graphical Objects

8.1- Window <- function(x=0,y=0,width=2,height=2,log="") {
obj <- list(x=x,y=y,width=width,height=height,log=log)

class(obj) <- "Window"

obj

}

8.2- Circle <- function(x=0,y=0,radius=0.5) {
circle <- list(x=x,y=y,radius=radius)

class(circle) <- "Circle"

circle

}

Rectangle <- function(x=0,y=0,width=1,height=height) {

rectangle <- list(x=x,y=y,width=width,height=height)

class(rectangle) <- "Rectangle"

rectangle

}
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8.3- plot.Window <- function(obj) {
plot.new()

plot.window(xlim=obj$x+c(-1,1)*obj$width/2,
ylim=obj$y+c(-1,1)*obj$height/2,obj$log,asp=1)

}

plot.Rectangle <- function(rectangle) {

rect(rectangle$x-rectangle$width/2,rectangle$y-

rectangle$height/2,rectangle$x+rectangle$width/2,

rectangle$y+rectangle$height/2)

}

plot.Circle <- function(circle) {

symbols(circle$x,circle$y,circle=circle$radius,

inches=FALSE,add=TRUE)

}

8.4- mywindow <- Window(0,0,2,2)
mycircle <- Circle(0,0,.5)

myrectangle <- Rectangle(0,0,1,1)

plot(mywindow);plot(mycircle);plot(myrectangle)

8.5- MyPlot <-function(x=0,y=0,width=2,height=2,log="") {
graph <- list(objets=list())

class(graph) <- "MyPlot"

graph

}

8.6- add.MyPlot <- function(graph,...) {
graph$objects <- c(graph$objects,list(...))

graph

}

add <- function(obj,...) UseMethod("add")

plot.MyPlot <- function(graph) {

for(object in graph$objects) {

plot(object)

}

}

graph <- MyPlot()

graph <- add(graph,Window(0,0,2,2),Circle(0,0,.5),

Rectangle(0,0,1,1))

plot(graph)
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8.7- MyPlot <- function(...,x=0,y=0,width=2,height=2,log="") {
graph <- list(objets=list())

class(graph) <- "MyPlot"

graph <- add(graph,Window(x,y,width,height,log),...)

graph

}

graph <- MyPlot(Circle(),Rectangle())

plot(graph)

8.8- display <- function(obj,...) UseMethod("plot")
graph <- MyPlot(Circle(),Rectangle())

display(graph)

8.9- Your turn to play!

C- Creating a Class lm2 for Linear Regression with Two Regressors

lm2 <- function(...) {

obj <- lm(...)

if(ncol(model.frame(obj))!=3)

stop("two independent variables are required!")

class(obj) <- c("lm2",class(obj)) # or c("lm2","lm")

obj

}

n <- 20

x1 <- runif(n,-5,5)

x2 <- runif(n,-50,50)

y <- .3+2�x1+2�x2+rnorm(n,0,20)
reg2 <- lm2(y�x1+x2)
summary(reg2)

plot3d.lm2 <- function(obj,radius=1,lines=TRUE,windowRect,...) {

matreg <- model.frame(obj)

colnames(matreg) <- c("y","x1","x2")

predlim <- cbind(c(range(matreg[,2]),rev(range(matreg[,2]))),

rep(range(matreg[,3]),c(2,2)))

predlim <- cbind(predlim,apply(predlim,1,

function(l) sum(c(1,l)�coef(obj))
))

if(missing(windowRect)) windowRect=c(2,2,500,500)

open3d(windowRect=windowRect,...)

bg3d(color = "gray")

plot3d(formula(obj),type="n")
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spheres3d(formula(obj),radius=radius,specular="green")

quads3d(predlim,color="blue",alpha=0.7,shininess=128)

quads3d(predlim,color="cyan",size=5,front="lines",

back="lines",lit=F)

if(lines) {

matpred <- cbind(matreg[2:3],model.matrix(obj)%�%coef(obj))
points3d(matpred)

colnames(matpred) <- c("x1","x2","y")

matlines <- rbind(matreg[,c(2:3,1)],matpred)

nr <- nrow(matreg)

matlines <- matlines[rep(1:nr,rep(2,nr))+c(0,nr),]

segments3d(matlines)

}

}

require("rgl")

plot3d(reg2)

rgl.snapshot("lm2vue1.png")

par3d(userMatrix=rotate3d(par3d("userMatrix"),-pi�.1, 0, 0, 1))
rgl.close()

Solutions to Worksheet from Chap. 9

Managing and Creating Packages

A- Using the Functions attach() and detach()

9.1- Download the file "http://www.biostatisticien.eu/springeR/

bmichild.xls", using your favourite browser, in your working folder.
9.2- Install the package gdata. Since this package necessitates PERL, install also

PERL (using "http://www.biostatisticien.eu/springeR/Rtools.
exe").

require("gdata")

bmichild <- read.xls("bmichild.xls")

names(bmichild)

9.3- When you type GENDER,R answers Error: object ‘GENDER’ not found.
9.4- When you type ls(), you cannot see the variable GENDER.
9.5- attach(bmichild)

GENDER

The contents of object GENDER appear.

http://www.biostatisticien.eu/springeR/bmichild.xls
http://www.biostatisticien.eu/springeR/bmichild.xls
http://www.biostatisticien.eu/springeR/Rtools.exe
http://www.biostatisticien.eu/springeR/Rtools.exe


Solutions to Worksheet from Chap. 9 599

9.6- The variable GENDER is still not visible with the instruction ls().
9.7- search()

We notice that the object bmichild appears in position 2.
9.8- ls(pos=2)

9.9- detach(bmichild)
search()

GENDER

9.10- GENDER <- "Male"
GENDER

9.11- attach(bmichild)

A warning message displays.

GENDER

It is "Male" that displays but not the contents of the object GENDER from the
data.frame.

9.12- GENDER # does not display the contents of the object
# GENDER from the data.frame.

weight

9.13- ls() # bmichild and GENDER are present.
search() # bmichild is present.

9.14- ls(pos=2)

9.15- get("GENDER",pos=2)
bmichild[,"GENDER"]

# or

rm(GENDER)

GENDER

# Note the existence of the following function:

browseEnv()

B- Creating a Mini-package

� Objects in the Package

9.1- setwd(choose.dir())
# alternatively, under Linux:

library("tcltk")

setwd(tk_choose.dir())
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9.2- Create the two functions and the data sets:

f <- function(x,y) x+y

g <- function(x,y) x-y

d <- data.frame(a=1,b=2)

e <- rnorm(1000)

9.3- package.skeleton(name="SmallRPkg",list=c("f","g","d","e"))

9.4- Effective creation of the file of the package. You must modify the help files
.Rd.

file.show(file.path(R.home("doc"),"KEYWORDS"))

9.5- Modify the file DESCRIPTION.
9.6- Read then delete the file Read-and-delete-me.
9.7- Checking (and possibly modification) of the PATH environment variable.
9.8- In a DOS command window, type the following instructions:

# Change to the folder containing your package:

cd C:\Documents and Settings\johndoe\Desktop

R CMD check SmallRPkg

R CMD INSTALL --build SmallRPkg

9.9- Install your package SmallRPkg.zip. For this, type, for example,

help(package="SmallRPkg")

help(d)

Solutions to Worksheet from Chap. 10

Matrix Operations, Optimization and Integration

A- The First Optimization Problem

10.1- A <- matrix(c(2,3,5,4),nrow=2,ncol=2)
myf <- function(x) {

res <- det(A-x�diag(2))
return(res)

}

10.2- myf <- function(x) {
n <- length(x)

res <- rep(NA,n)

for (i in 1:n) res[i] <- det(A-x[i]�diag(2))
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return(res)

}

10.3- curve(myf,xlim=c(-10,10))
abline(h=0,v=0)

Note that we can use the instruction locator(2)$x to “find” the two roots.
10.4- uniroot(myf,lower=-5,upper=0)$root

uniroot(myf,lower=0,upper=10)$root

10.5- The polynomial can be written P.x/ D �7� 6xC x2. Its roots are obtained
using

polyroot(c(-7,-6,1))

10.6- eigen(A)$values

B- The Second Optimization Problem

10.1- To simplify things, we do not reproduce the figure at the correct scale.

plot.new()

par(xpd=NA)

rect(0,0,1,1)

points(0,1,pch=16)

text(0,1,"A",adj=c(2,-0.1),col="blue")

points(1,1,pch=16)

text(1,1,"B",adj=c(-1,0),col="blue")

points(1,0,pch=16)

text(1,0,"C",adj=c(-0.5,1),col="blue")

points(0,0,pch=16)

text(0,0,"D",adj=c(1.7,1),col="blue")

points(0.5,0,pch=16)

text(0.5,0,"H",adj=c(1.5,-0.5),col="blue")

points(1,0.4,pch=16)

text(1,0.4,"Q",pos=4,col="blue")

points(0.5,0.4,pch=16)

text(0.5,0.4,"M",adj=c(0.5,-1),col="blue")

segments(0.5,0,0.5,0.4)

segments(0.5,0.4,1,0.4)

polygon(x=c(0.5,0,1),y=c(0.4,1,1),

col=rgb(t(col2rgb("brown"))/256,

alpha=20/100),border="brown")

x <- seq(from=0.6,to=0.565,length=100)

points(x,sqrt(0.1ˆ2-(x-0.5)ˆ2)+0.4,type="l")

text(0.61,0.45,expression(alpha))
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10.2- We have cos.˛/ D MQ=MB; hence, MB D 5= cos.˛/ and MA D MB .
MH D BC � BQ, tan.˛/ D BQ=MQ D BQ=.AB=2/ so BQ D 5 tan.˛/
and MH D 6 � 5 tan.˛/. Thus g.˛/ D 10= cos.˛/C 6 � 5 tan.˛/ D .10 �
5 sin.˛//= cos.˛/C 6 D 5.2� sin.˛//= cos.˛/C 6.

10.3- g <- function(alpha){5�(2-sin(alpha))/cos(alpha)+6}
10.4- optimize(g,lower=0,upper=pi/2,tol=0.000001)

10.5- g0.˛/ D 5.� cos2.˛/ � .2 � sin.˛//.� sin.˛///= cos2.˛/ D 5.� cos2.˛/C
2 sin.˛/ � sin2.˛//= cos2.˛/ D 5.2 sin.˛/ � 1//= cos2.˛/ since cos2.˛/ C
sin2.˛/ D 1.

10.6- D(expression(5�(2-sin(alpha))/cos(alpha)+6),"alpha")
10.7- gprime <- function(alpha){5�(2�sin(alpha)-1)/

(cos(alpha))ˆ2}

10.8- uniroot(gprime,lower=0,upper=pi/2,tol=0.000001)$root

C- Standard Normal Table

10.1- phi <- function(x) {exp(-xˆ2/2)/sqrt(2�pi)}
10.2- quantiles <- seq(0,5.5,by=0.01)

n <- length(quantiles)

probs <- vector(mode="numeric",length=n)

for (i in 1:n) probs[i] <- integrate(phi,lower=-Inf,

upper=quantiles[i],rel.tol=0.00001)$value

10.3- all.equal(probs,pnorm(quantiles))

10.4- plot(c(rev(-quantiles),quantiles),c(rev(1-probs),probs),
type="l")

10.5- curve(pnorm(x),add=TRUE,col="blue")

D- Principal Components Analysis

10.1- url <- "http://www.biostatisticien.eu/springeR/
climatewine.csv"

climatewine <- read.table(url,sep="\t",header=TRUE)

attach(climatewine)

names(climatewine)

10.2- X <- as.matrix(climatewine[,-c(1,6)])

10.3- g <- colMeans(X)
round(g,2)
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10.4- Xdot <- scale(X,scale=FALSE)

10.5- n <- nrow(X)
inertia <- sum(Xdotˆ2)/n

inertia

10.6- inertiacontr <- rowSums(Xdotˆ2)/n/inertia
inertiacontr

10.7- onen <- as.matrix(rep(1,n))

10.8- g
(g <- t(X)%�%onen/n)

10.9- Xdot
(Xdot <- X-onen%�%t(g))

10.10- (S <- t(Xdot)%�%Xdot/n)
cov(X)�(n-1)/n

10.11- Doneovers <- diag(1/sqrt(diag(S)))

10.12- Z <- Xdot%�%Doneovers
10.13- t(Z)%�%Z/n

(R <- cor(X))

10.14- Lambda <- diag(eigen(R)$values)
W <- eigen(R,symmetric=TRUE)$vectors

10.15- theta <- seq(0,2�pi,.05)
x <- cos(theta)

y <- sin(theta)

plot(x,y,type="l")

abline(h=0,v=0)

A <- W%�%Lambdaˆ(1/2)
text(A[,1:2],colnames(X))

arrows(rep(0,4),rep(0,4),A[,1],A[,2],length=0.1)

10.16- p <- ncol(X)
cumsum(diag(Lambda))/p�100
The first two axes explain 87.6 % of the total inertia.

10.17- CW <- Z%�%W
10.18- dev.new()

plot(CW[,c(1,2)],type="p",xlab="Axis 1",ylab="Axis 2")

text(CW[,c(1,2)],labels=YEAR)

abline(h=0,v=0)
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10.19- plot(CW[,c(1,2)],type="n",xlab="Axis 1",ylab="Axis 2")
good <- CW[QUALITY==1,c(1,2)]

average <- CW[QUALITY==2,c(1,2)]

mediocre <- CW[QUALITY==3,c(1,2)]

text(good,labels=YEAR[QUALITY==1],col="red")

text(average,labels=YEAR[QUALITY==2],col="blue")

text(mediocre,labels=YEAR[QUALITY==3],col="green")

abline(h=0,v=0)

legend("topleft",c("good","average","mediocre"),

fill=c("red","blue","green"))

10.20- QLT <- apply(sweep(CWˆ2,1,apply(CWˆ2,FUN=sum,1),FUN="/")
[,1:2],FUN=sum,1)

round(QLT,2)

10.21- require("ade4")

10.22- rownames(X) <- climatewine[,1]
res <- dudi.pca(X) # Enter 2 for the number of axes.

scatter(res)

s.class(res$li,as.factor(climatewine[,6]))

Solutions to Worksheet from Chap. 11

Descriptive Data Studies

A- Thoughts on Independence in Descriptive Statistics

11.1- url <- "http://www.biostatisticien.eu/springeR/snee74en
.txt"

snee <-read.table(url,header=TRUE)

11.2- head(snee)
tail(snee)

dim(snee)

str(snee)

There are 592 individuals and three qualitative variables.
11.3- attach(snee)

names(snee)

class(hair)

levels(hair)
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class(eyes)

levels(eyes)

class(gender)

levels(gender)

11.4- Study of the variable hair:

table(hair) # Frequencies.

round(table(hair)/length(hair)�100,2) # Frequencies in
# percentage.

names(which.max(table(hair))) # Mode of the variable.

barplot(sort(table(hair),TRUE),col=c("yellow2","tan4",

"black","tan1"))

Study of the variable eyes:

table(eyes) # Frequencies.

round(table(eyes)/length(eyes)�100,2) # Frequencies
# in percentage.

names(which.max(table(eyes))) # Mode of the variable.

barplot(sort(table(eyes),TRUE),col=c("blue","brown","tan3",

"green"))

Study of the variable gender:

table(gender) # Frequencies.

round(table(gender)/length(gender)�100,2) # Frequencies
# in percentage.

names(which.max(table(gender))) # Mode of the variable.

barplot(sort(table(gender),TRUE),col=c("pink","blue"),

pareto=TRUE)

11.5- eyeshair <- table(eyes,hair) # Contingency table.

11.6- fhair <- margin.table(eyeshair,2)/592 # Column profiles.
fhair

11.7- # Number of individuals having blue eyes:
nblue <- margin.table(eyeshair,1)[1]

nblue

11.8- round(fhair�nblue)
11.9- marginX <- margin.table(eyeshair,1)

tab.ind1 <- marginX%�%t(fhair)
round(tab.ind1)

11.10- feyes <- margin.table(eyeshair,1)/592 # Row profiles.
feyes
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11.11- # Number of individuals having blond hair:
nblond <- margin.table(eyeshair,2)[1]

nblond

11.12- round(feyes�nblond)
11.13- marginY <- margin.table(eyeshair,2)

tab.ind2 <- feyes%�%t(marginY)
round(tab.ind2)

11.14- all.equal(tab.ind1,tab.ind2)

The two tables are identical, which is reassuring since interest in the inde-
pendence of the eyes and hair is equivalent to an interest in the independence
of the hair and eyes.

11.15- (eyeshair-tab.ind1)ˆ2

11.16- tab.contr <- (eyeshair-tab.ind1)ˆ2/tab.ind1
tab.contr

11.17- chi2 <- sum(tab.contr)
chi2

Phi2 <- chi2/sum(eyeshair)

Phi2

C <- sqrt(chi2/(sum(eyeshair)+chi2))

C

V2 <- Phi2/(min(dim(eyeshair))-1)

V2

All these indicators are not zero, so there is some form of dependence in
this population (studied under the descriptive statistics framework).

11.18- # Conditional distributions of the variable hair
# given that eyes = (blue, or brown or ...):

prop.table(eyeshair,1)

Rows are not identical. This confirms the dependency (from a descriptive
statistics perspective) between the two variables.

# Conditional distributions of the variable eyes

# given that hair = (blond or ...):

prop.table(eyeshair,2)

Columns are not identical. This also confirms the dependency (from a de-
scriptive statistics perspective) between the two variables.
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11.19- table(hair,gender)
plot(hair�gender)
plot(table(hair,gender))

11.20- table(eyes,gender)
plot(eyes�gender)
plot(table(eyes,gender))

11.21- See worksheet in Chap. 2 to know how to import the table, then follow the
steps above.

B- Descriptive Analysis of Data Set NutriElderly

11.1- require("gdata")
url <- "http://www.biostatisticien.eu/springeR/

nutrition_elderly.xls"

nutrition <- read.xls(url,header=TRUE)

attach(nutrition)

11.2- names(which.max(table(situation)))
names(which.max(table(chocol)))

names(which.max(table(height)))

11.3- res <- hist(height,breaks=seq(140,190,by=5),right=TRUE,
plot=FALSE)

ind <- which.max(res$count)

modal.class <- paste(res$breaks[ind],res$breaks[ind+1],

sep="-")

The modal class is the class �155I 160�.
11.4- median(chocol)

Note that if the studied variable is considered as an ordinal variable, then
the function median() of R does not work anymore:

median(as.ordered(chocol))

But we can propose a self-made function to realize this operation:

my.median <- function(x) {

if (is.numeric(x)) return(median(x))

if (is.ordered(x)) {

N <- length(x)

if (N%%2) return(sort(x)[(N+1)/2]) else {

inf <- sort(x)[N/2]

sup <- sort(x)[N/2+1]

if (inf==sup) return(inf) else return(list(inf,sup))
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}}

stop("Computation of the median not possible for

this type.")

}

my.median(as.ordered(chocol))

11.5- table(chocol)
table(raw_fruit)

11.6- We can use the following self-made function:

med <- function(tabx) names(which.max(cumsum(tabx)/

sum(tabx)>0.5))

med(table(chocol))

med(table(raw_fruit))

11.7- quartile.on.freq <- function(tabx,quart) {
# tabx is the table of frequencies.

tab.freq.cum <- cumsum(tabx)/sum(tabx)

index <- order(tab.freq.cum < quart)[1]

f1 <- tab.freq.cum[index]

f2 <- tab.freq.cum[index-1]

x1 <- as.numeric(names(f1))

x2 <- as.numeric(names(f2))

quartile <- as.numeric(x1 + (x2-x1)*(quart-f1)/(f2-f1))
return(quartile)

}

tab <- res$counts

names(tab) <- res$breaks[-1]

quartile.on.freq(tab,0.25)

quartile.on.freq(tab,0.5)

quartile.on.freq(tab,0.75)

11.8- breaks <- res$breaks
plot(breaks,ecdf(height)(breaks),type="l",main=

paste("Cumulated frequency polygon",

"of variable height",sep="\n"),ylab="Frequencies",

col="darkolivegreen",lwd=3)

abline(h=c(0.25,0.5,0.75))

locator(1)$x # Click on the searched intersection.

11.9- mean(height)
mean(weight)

mean(age)
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11.10- table(tea)
sum(c(0:6,9,10)�as.numeric(table(tea)))/sum(table(tea))

11.11- sum(res$mids*res$counts)/sum(res$counts)

11.12- diff(range(weight))

11.13- boxplot(weight)

11.14- var.pop <- function(x) var(x)�(length(x)-1)/length(x)
sd.pop <- function(x) sqrt(var.pop(x))

sd.pop(height)

11.15- coeffvar.tab <- function(tabx) {
val <- as.numeric(names(tabx))

freq <- as.numeric(tabx)/sum(tabx)

mean <- sum(val�freq)
var <- sum(valˆ2�freq) - meanˆ2
res <- sqrt(var)/mean

return(res)

}

coeffvar.tab(table(tea))

11.16- eta2 <- function(x,gp) {
means <- tapply(x,gp,mean)

frequencies <- tapply(x,gpe, length)

varinter <- (sum(frequencies � (means - mean(x))ˆ2))
vartot <- (var(x) � (length(x) - 1))
res <- varinter/vartot

list(var.tot=vartot,var.inter=varinter,

var.intra=vartot-varinter,eta2=res)

}

res <- eta2(tea,gender)

Solutions to Worksheet from Chap. 12

Simulations

A- Study of the Distribution f .x/ D 3
2

p
x on Œ0; 1�

12.1- f <- function(x) (3/2)�sqrt(x)
integrate(f,lower=0,upper=1)
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12.2- Method of generic inversion:

Finv <- function(x) xˆ(2/3)

u <- runif(1000)

x <- Finv(u)

12.3- mean(x)
var(x)

12.4- Theoretical values are E.X/ D 3=5 and Var.X/ D 12=175.
12.5- The cumulative distribution function is F.x/ D x2=3. The theoretical prob-

abilities of the various classes are: 0:33=2 D 0:1643168, 0:53=2 � 0:33=2 D
0:1892366, 0:73=2�0:53=2 D 0:2321086, 0:853=2�0:73=2 D 0:1979993 and
1 � 0:853=2 D 0:2163387. We can evaluate them numerically:

class <- c(0.3,0.5,0.7,0.85)

prob <- function(x) {integrate(f,lower=0,upper=x)$value}

dist <- c(0,apply(as.matrix(class),MARGIN=1,FUN=prob),1)

(theoretical.prob <- diff(dist))

The empirical probabilities can be computed using the following code:

count <- function(x,vect.y) sum(vect.y<x)/length(vect.y)

empirical.dist <- c(0,apply(as.matrix(class),MARGIN=1,

FUN=count,x),1)

(empirical.prob <- diff(empirical.dist))

or the following code:

c(mean(0<=x & x<=0.3),mean(0.3<x & x<=0.5),mean(0.5<x &

x<=0.7),

mean(0.7<x & x<=0.85),mean(0.85<x & x<=1))

B- Study of the Generalized Pareto Distribution

12.1- rGP <- function(n,mu,sigma,xi)mu
+sigma�((runif(n))ˆ(-xi)-1)/xi

12.2- n <- 1000
simu <- rGP(n,0,1,0.25)

12.3- mean(simu)
var(simu)

12.4- mu <- 0
sigma <- 1

xi <- 0.25

(theo.mu <- mu + sigma/(1-xi))

(theo.var <- (sigmaˆ2)/(((1-xi)ˆ2)�(1-2�xi)))
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12.5- n <- 10000
simu.new <- rGP(n,0,1,0.25)

mean(simu.new)

var(simu.new)

12.6- hist(simu.new,breaks=500,xlim=c(0,10),prob=TRUE,col="red")

12.7- dens.pareto <- function(x,mu,sigma,xi) {
(1/sigma)�((1+(xi�(x-mu))/sigma)ˆ(-1/xi-1))
}

curve(dens.pareto(x,mu,sigma,xi),add=TRUE,col="blue")

C- Uniform Distribution on a Square

12.1- n <- 1000
simu <- data.frame(X1=runif(n),X2=runif(n))

12.2- The distance of .X1; X2/ to the nearest edge is given byD D min.X1; X2; 1�
X1; 1 �X2/ (make a drawing to be convinced).

simu.d <- cbind(simu,1-simu)

D <- apply(simu.d,MARGIN=1,FUN=min)

mean(D<0.25)

12.3- dist.sum <- function(coord){
d <- min(coord[1]ˆ2+coord[2]ˆ2,coord[1]ˆ2+coord[4]ˆ2,

coord[3]ˆ2+coord[2]ˆ2,coord[3]ˆ2+coord[4]ˆ2)

d <- sqrt(d)

}

D.sum <- apply(simu.d,MARGIN=1,FUN=dist.sum)

mean(D.sum<0.25)

12.4- mean(D)
var(D)

hist(D,prob=TRUE)

curve(-8�x+4,add=TRUE)
# Density on [0,0.5] : f(x)=-8x+4

D- Towards Modelling

12.1- X <- function() ifelse(rbinom(1,1,0.5),"HEADS","TAILS")
X()

12.2- throw.of.a.die <- function() sample(1:6,1)
throw.of.a.die()
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12.3- yams <- function() sample(1:6,size=5,replace=TRUE)

12.4- n <- 1000000
result <- replicate(n,yams(),TRUE)

test <- function(res) ifelse(length(unique(res))> 1,0,1)

prop <- mean(apply(result,MARGIN=2,FUN=test))

E- Box–Muller Theorem

12.1- n <- 1000
u1 <- runif(n)

u2 <- runif(n)

z1 <- sqrt(-2�log(u1))�cos(2�pi�u2)
z2 <- sqrt(-2�log(u1))�sin(2�pi�u2)

12.2- Non-parametric estimation of the density:

require("MASS")

ngrid <- 40

denobj<-kde2d(z1,z2,n=ngrid)

den.z <-denobj$z

12.3- Surface of the density of the bivariate normal:

require("rgl")

xgrid <- denobj$x

ygrid <- denobj$y

bi.z <- dnorm(xgrid)%*%t(dnorm(ygrid))

New window:

open3d()

bg3d(color="#887777")

light3d()

Representing simulated data:

spheres3d(z1,z2,rep(0,n),radius=0.1,color="#CCCCFF")

Representing the non-parametric estimated density:

surface3d(xgrid,ygrid,den.z�20,color="#FF2222",alpha=0.5)
Representing the standard bivariate normal:

surface3d(xgrid,ygrid,bi.z�20,color="#CCCCFF",
front="lines")
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Solutions to Worksheet from Chap. 13

A- Study of Confidence Intervals

� Study of the confidence interval for the mean

13.1- n <- 20
M <- 50000

ech <- rnorm(n,mean=-1.2,sd=sqrt(2)) # Only a sample.

simu <- replicate(M,rnorm(n,mean=-1.2,sd=sqrt(2)),

simplify=TRUE)

13.2- inter.mu <- function(x) t.test(x,conf.level=0.9)$conf.int
res <- t(apply(simu,MARGIN=2,FUN=inter.mu))

13.3- prop <- mean((res[,1] < -1.2) & (-1.2 < res[,2]))

Around 90 % of the intervals contain the value �1:2.
13.4- n <- 100

M <- 50000

simu <- replicate(M,rchisq(n,df=1),simplify=TRUE)

res.chi2 <- t(apply(simu,MARGIN=2,FUN=inter.mu))

prop <- mean((res.chi2[,1] < 1) & (1 < res.chi2[,2]))

13.5- n <- 10
M <- 50000

simu <- replicate(M,rchisq(n,df=1),simplify=TRUE)

res.chi2 <- t(apply(simu,MARGIN=2,FUN=inter.mu))

prop <- mean((res.chi2[,1] < 1) & (1 < res.chi2[,2]))

The (empirical) level of confidence of the interval is not equal to 90 %. This
is due to the small sample size (n D 10), which is not sufficient to use the
central limit theorem.

13.6- n <- 20
ech.20 <- rnorm(n,mean=-1.2,sd=sqrt(2))

inter.mu <- function(x) t.test(x,conf.level=0.95)$conf.int

inter.mu(ech.20)

13.7- ech.50 <- rnorm(50,mean=-1.2,sd=sqrt(2))
inter.mu(ech.50)

ech.100 <- rnorm(100,mean=-1.2,sd=sqrt(2))

inter.mu(ech.100)

ech.1000 <- rnorm(1000,mean=-1.2,sd=sqrt(2))

inter.mu(ech.1000)

ech.10000 <- rnorm(10000,mean=-1.2,sd=sqrt(2))
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inter.mu(ech.10000)

ech.100000 <- rnorm(100000,mean=-1.2,sd=sqrt(2))

inter.mu(ech.100000)

The confidence interval gets narrower around the true value of �.
13.8- tt.20 <- c(t.test(ech.20)$st,t.test(ech.20)$p.val)

tt.50 <- c(t.test(ech.50)$st,t.test(ech.50)$p.val)

tt.100 <- c(t.test(ech.100)$st,t.test(ech.100)$p.val)

tt.1000 <- c(t.test(ech.1000)$st,t.test(ech.1000)$p.val)

tt.10000 <- c(t.test(ech.10000)$st,t.test(ech.10000)

$p.val)

tt.100000 <- c(t.test(ech.100000)$st,t.test(ech.100000)

$p.val)

output <- rbind(tt.20,tt.50,tt.100,tt.1000,tt.10000,

tt.100000)

colnames(output) <- c("tobs","pvalue")

output

As n increases, tobs increases and the p-value gets smaller. It becomes more
and more difficult to “show” that � is different from 0.

13.9- inter.mu(ech.100000)
t.test(ech.100000,mu=-1.1)$p.val

tt.50

The p-value is smaller here although�1:1 is nearer from the true� (D �1:2)
than the reference value 0 used at the previous question. On the other side,
the confidence interval does not deceive. We see the interest of confidence
intervals as compared to only giving the p-value!

� Study of confidence intervals from bootstrap

13.1- n <- 20
M <- 500

ech <- rexp(n,rate=1/10) # only one sample

simu.exp <- replicate(M,rexp(n,rate=1/10),simplify=TRUE)

13.2- For one sample:

require("boot")

mean <- function(x,indices) mean(x[indices])

mean.boot <- boot(simu.exp[,3],mean,R=999,stype="i",

sim="ordinary")

boot.ci(mean.boot,conf=0.9,type="perc")$percent[4:5]
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For M samples:

inter.boot.mean <- function(y) {

mean <- boot(y,mean,R=999,stype="i",sim="ordinary")

boot.ci(mean,conf=0.9,type="perc")$percent[4:5]

}

res <- t(apply(simu.exp,MARGIN=2,FUN=inter.boot.mean))

13.3- prop.boot <- mean((res[,1] < 10) & (res [,2] > 10))

13.4- res.ttest <- t(apply(simu.exp,MARGIN=2,FUN=inter.mu))
prop.ttest <- mean((res.ttest[,1] < 10) & (res.ttest

[,2] > 10))

B- Study of Risks in Hypothesis Testing

� Study of risk of the first kind

13.1- n <- 20
M <- 500

ech <- rnorm(n,mean=4,sd=sqrt(1.2)) # Only one sample.

simu <- replicate(M,rnorm(n,mean=4,sd=sqrt(1.2)),

simplify=TRUE)

13.2- ttest <- function(x) t.test(x,mu=4)$p.value
res <- apply(simu,MARGIN=2,FUN=ttest)

13.3- (count <- sum(res < 0.05))

count hypotheses are rejected; we expect to reject 25 null hypotheses.
13.4- M <- 5000

simu <- replicate(M,rnorm(n,mean=4,sd=sqrt(1.2)),

simplify=TRUE)

res <- apply(simu,MARGIN=2,FUN=ttest)

proportion <- mean(res < 0.05)

proportion

13.5- n <- 100
M <- 5000

simu <- replicate(M,rchisq(n,df=1),simplify=TRUE)

ttest <- function(x) t.test(x,mu=1)$p.value

res.chi2 <- t(apply(simu,MARGIN=2,FUN=ttest))

proportion <- mean(res.chi2 < 0.05)

proportion



616 Solutions to Worksheet

13.6- n <- 10
M <- 5000

simu <- replicate(M,rchisq(n,df=1),simplify=TRUE)

ttest <- function(x) t.test(x,mu=1)$p.value

res.chi2 <- t(apply(simu,MARGIN=2,FUN=ttest))

proportion <- mean(res.chi2 < 0.05)

proportion

The risk of the first kind of the test is greater than 5 % because the Student
test is not valid here due to a small sample size.

13.7- IC.p <- t.test((res.chi2<0.05)*1)$conf
IC.p

# or also:

binom.test(sum(res.chi2<0.05),length(res.chi2))$conf

� Study of power

13.1- n <- 20
M <- 500

simu <- replicate(M,rnorm(n,mean=5,sd=sqrt(1.2)),

simplify=TRUE)

13.2- ttest <- function(x) t.test(x,mu=4)$p.value
res <- apply(simu,MARGIN=2,FUN=ttest)

13.3- count <- sum(res < 0.05)
power <- mean(res < 0.05)

13.4- n <- 100
M <- 500

simu <- replicate(M,rnorm(n,mean=5,sd=sqrt(1.2)),

simplify=TRUE)

res <- apply(simu,MARGIN=2,FUN=ttest)

(power <- mean(res < 0.05))

The power is 100 %. It has increased with the sample size.
13.5- n <- 100

M <- 500

simu <- replicate(M,rchisq(n,df=2),simplify=TRUE)

ttest <- function(x) t.test(x,mu=1)$p.value

res.chi2 <- apply(simu,MARGIN=2,FUN=ttest)

proportion <- mean(res.chi2 < 0.05)

proportion

13.6- n <- 10
M <- 500

simu <- replicate(M,rchisq(n,df=2),simplify=TRUE)



Solutions to Worksheet from Chap. 13 617

ttest <- function(x) t.test(x,mu=1)$p.value

res.chi2 <- t(apply(simu,MARGIN=2,FUN=ttest))

proportion <- mean(res.chi2 < 0.05)

proportion

The power of the test is low due to a small sample size n D 10. We do not
have enough information to show that the mean is different from 1.

C- A Few Practical Examples

� Cow study

13.1- just.after.milking <- c(12000,13000,21500,17000,15000,
22000,11000,21000)

after.milking.24h <- c(11000,20000,31000,28000,26000,

30000,16000,29000)

t.test(just.after.milking,after.milking.24h,paired=TRUE,

alt="less")

13.2- # Test of signs:
dif <- just.after.milking - after.milking.24h

sminus <- sum(dif<0)

splus <- sum(dif>0)

binom.test(min(splus,sminus),splus+sminus,alt="less")

13.3- # Mann-Whitney’s test:
wilcox.test(just.after.milking,after.milking.24h,

paired=TRUE,exact=FALSE,alt="less")

� East German athletes

13.1- hormons <- c(3.22,3.07,3.17,2.91,3.4,3.58,3.23,3.11,3.62)
t.test(hormons,mu=3.1,alt="greater")

13.2- The average amount of androgens for athletes in East Germany is signifi-
cantly higher than the average reference 3.1. They are doped.

� Drinking anddriving

before <- c(57,54,62,64,71,65,70,75,68,70,77,74,80,83)

after <- c(55,60,68,69,70,73,74,74,75,76,76,78,81,90)

t.test(before,after,paired=TRUE)
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� Speed of light

13.1- speed <- c(850,740,900,1070,930,850,950,980,980,880,1000,
980,930,1050,960,810,1000,1000,960,960)

speed <- speed + 299000

hist(speed)

There is a very visible absolute mode.
13.2- shapiro.test(speed)

13.3- t.test(speed,mu=299990)

13.4- mean(speed)

� Cholesterol levels

groupA <- c(46.3,42.5,43,43.9,42,41.5,41.6,44.4,40.7)

groupB <- c(47.1,44.5,45.8,49,44.6,43.7,44.5,47.4)

t.test(groupA,groupB,alt="less")

We can conclude that the treatment is efficient at significance level ˛ D 5%.

� Treatment–death independence

x <- matrix(c(0,9,8,3),ncol=2,byrow=TRUE)

# Table of theoretical frequencies:

chisq.test(x)$ex # Some values are < 5.

chisq.test(x) # Yates chi-2.

fisher.test(x) # Fisher’s exact test.

Mortality depends on the treatment.

� Number of patients in the emergency ward

files <- c(1500,1600,1450)

cases <- c(675,720,610)

chisq.test(cases/files)

In view of the results, we cannot conclude that the proportion of emergencies is
different depending on the month.
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Solutions to Worksheet from Chap. 14

A- Study of Simple Linear Regression

� Study of synthetic data

14.1- n <- 50
b0 <- 1

b1 <- 2

sigma <- 0.1

t <- 5

error <- rnorm(n,sd=sigma)

x <- runif(n,min=0,max=t)

y <- b0+b1�x+error
14.2- plot(y�x)
14.3- model <- lm(y�x)

coefficients(model)

sd(residuals(model))*sqrt((n-1)/(n-2))
# or also:

summary(model)[6]

14.4- plot(model,1:2)
plot(model$fitted�y)

14.5- precision.parameter.b1 <- function(n,sigma) {
error <- rnorm(n,sd=sigma)

x <- runif(n,min=0,max=t)

y <- b0 + b1*x + error
model <- lm(y�x)
summary(model)$coef[2,2]

}

size <- seq(50,1000,by=50)

sd.b1 <- vector("numeric",20)

for (i in 1:20) {

sd.b1[i] <- precision.parameter.b1(size[i],0.1)

}

We can see on the graph below the precision of the estimate of b1 according
to n for a noise standard deviation equal to 0.1:
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plot(sd.b1�size,xlab="n",
ylab="Estimation of standard deviation of the

estimator of b1",

main="Precision of the estimation of b1 as

a function of n")

On the chart below, we can see the accuracy of the estimate of b1 according
to sigma for n equal to 100:

sd <- seq(0.1,10,by=0.1)

sd.b1 <- vector("numeric",100)

for (i in 1:100) {

sd.b1[i] <- precision.parameter.b1(n=100,sd[i])

}

title <- "Precision of the estimation of b1 as a function

nn of the standard deviation of the noise"
plot(sd.b1�sd,xlab=expression(sigma),ylab=
"estimation of the standard deviation of the estimator

of b1", main=title)

� Study of intima–media

14.1- url <- "http://biostatisticien.eu/springeR/Intima_Media_
Thickness.xls"

require("gdata")

intima.media <- read.xls(url,header=TRUE)

attach(intima.media)

14.2- plot(measure�AGE)
Increasing trend of the measure of the thickness of the intima–media as a
function of AGE.

14.3- # Calculating the correlation coefficient between the two
variables:

cor(measure,AGE)

# Test the significance of the coefficient of correlation:

cor.test(measure,AGE)

14.4- model <- lm(measure�AGE,data=data.frame(measure,AGE))
summary(model)

abline(model,col="blue")

14.5- hist(residuals(model),main="Histogram")
plot(model,1:6)
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14.6- age0 <- 33
predict(model,data.frame(AGE=age0),interval="prediction")

14.7- predict(model,data.frame(AGE=age0),interval="confidence")

14.8- model2 <- lm(measure�I(AGEˆ2))
summary(model2)

The R2 increased (a little bit).

B- Study of Multiple Linear Regression

� Study of intima–media

We notice (tobacco[is.na(packyear)] and packyear[tobacco==0]) that
the variable packyear (giving the number of pack of cigarettes per year) contains
missing values NA each time the variable tobacco takes the value 0 (meaning a non
smoker). It is thus natural to replace missing data of variable packyearwith zeroes:

intima.media$packyear[is.na(packyear)] <- 0

Creation of the variable BMI:

BMI <- intima.media$weight/((intima.media$height/100)ˆ2)

attach(intima.media)

my.data <- data.frame(AGE,SPORT,alcohol,packyear,BMI,measure)

14.1- pairs(my.data)

Some scatter plots have a linear trend, which can lead to collinearity.
14.2- model.age <- lm(measure�AGE,data=my.data)

summary(model.age)

model.sport <- lm(measure�SPORT,data=my.data)
summary(model.sport) ### p-value > 0.25

model.alcohol <- lm(measure�factor(alcohol),data=my.data)
summary(model.alcohol)

model.packyear <- lm(measure�packyear,data=my.data)
summary(model.packyear)

model.BMI <- lm(measure�BMI,data=my.data)
summary(model.BMI)

14.3- model.age.inter <- lm(measure�AGE*packyear)
# Non-significant interaction at 0.25 level:

summary(model.age.inter)

model.alcohol.without.inter <-

lm(measure�factor(alcohol)+packyear,data=my.data)
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model.alcohol.inter <-

lm(measure�factor(alcohol)*packyear,data=my.data)
summary(model.alcohol.inter)

anova(model.alcohol.without.inter,model.alcohol.inter)

model.BMI.inter <- lm(measure�BMI*packyear,data=my.data)
# Non-significant interaction at level 0.25:

summary(model.BMI.inter)

14.4- model.inter <-
lm(measure�AGE+factor(alcohol)�packyear+BMI,
data=my.data)

summary(model.inter)

14.5- model.without.inter <- lm(measure�AGE+factor(alcohol)+
packyear+BMI,data=my.data)

# The interaction term is not significant anymore:

anova(model.inter,model.without.inter)

summary(model.without.inter)

14.6- modele.without.alcohol <- lm(measure�AGE+packyear+BMI,
data=my.data)

anova(model.without.alcohol,model.without.inter)

The variable alcohol does not bring any information.

summary(model.without.alcohol)

14.7- In the final model, the measurement of intima–media is explained by the vari-
ables AGE and BMI, with an adjustment on the variable packyear. Whatever
the number of packs of cigarettes smoked each year, the measurement of
intima–media increases with age and BMI.

� Study of unemployment rates

14.1- Download the file "http://biostatisticien.eu/springeR/

unemployment.RData" in your working folder:

load("unemployment.RData")

names(unemployment)

attach(unemployment)

model.txpib <- lm(unemp�gdprate,data=unempolyment)
summary(model.gdprate)

plot(unemp�gdprate)
abline(model.gdprate)

http://biostatisticien.eu/springeR/
unemployment.RData
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hist(residuals(model.gdprate))

plot(model.gdprate,1:2)

14.2- cor(unemp[,2:7])

14.3- pairs(unemp[,2:7])

14.4- Most explicative variables: taxb, govspend, gdprate. Colinear variables:
govspend and taxb, as well as govspend and gdprate, and finally taxb
and gdprate.

14.5- full.model <- lm(unemp�gdprate+govspend+taxb+salav+infl,
data=unemployment)

summary(full.model)

14.6- require("car")
vif(full.model)

14.7- drop1(lm(unemp�gdprate+govspend+taxb+salav+infl,
data=unemploment),test="F")

# We remove variable infl.

drop1(lm(unemp�gdprate+govspend+taxb+salaav,
data=unemployment),test="F")

# We remove variable txpib.

drop1(lm(unemp�govspend+taxb+salav,data=unemployment),
test="F")

# We remove variable pfisc.

drop1(lm(unemp�govspend+salav,data=unemployment),test="F")
14.8- # Final model:

final.model <- lm(unemp�govspend+salav,data=unemployment)
summary(final.model)

14.9- govspend93 <- unemployment$govspend[unemployment$year==
1993]

salav93 <- unemployment$salav[unemployment$year==1993]

predict(final.model,data.frame(govspend=govspend93,

salav=salav93),

interval="prediction")

14.10- The observed value of unemployment in 1993 was 11:2 and this value is
contained in the prediction interval.
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C- Study of Polynomial Regression

� Study of synthetic data

14.1- n <- 100
x <- runif(n,min=-2,max=2)

eps <- rnorm(n)

y <- x+2�(xˆ2)+3.5�(xˆ3)-2.3�(xˆ4)+eps
14.2- plot(y�x)

curve(x+2�x�x+3.5�xˆ3-2.3�xˆ4,add=TRUE)
14.3- simple.model <- lm(y�x)

summary(simple.model)

hist(residuals(simple.model))

plot(simple.model,1:6)

14.4- poly.model <- lm(y�-1+poly(x,4,raw=TRUE))
summary(poly.model)

coef <- coef(poly.model)

plot(y�x)
curve(coef[1]�x+coef[2]�(xˆ2)+coef[3]�xˆ3+coef[4]�xˆ4,

add=TRUE)

� Fitting a scatter plot with a polynomial

14.1- Download the file http://biostatisticien.eu/springeR/fitpoly.
RData in your current directory.

load("fitpoly.RData")

attach(fitpoly)

14.2- plot(Y�X)
14.3- lin.model <- lm(Y�X)

summary(lin.model)

abline(lin.model)

14.4- poly.model <- lm(Y�poly(X,3,raw=TRUE),data=fitpoly)
summary(poly.model)

14.5- coef <- coef(poly.model)
curve(coef[1]+coef[2]�x+coef[3]�xˆ2+coef[4]�xˆ3,add=TRUE)
x <- seq(-3.5,3.5,length=50)

pred.int <- predict(poly.model,data.frame(X=x),

interval="prediction")[,c("lwr","upr")]

http://biostatisticien.eu/springeR/fitpoly.RData
http://biostatisticien.eu/springeR/fitpoly.RData
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conf.int <- predict(poly.model,data.frame(X=x),

interval="confidence")[,c("lwr","upr")]

matlines(x,cbind(conf.int,pred.int),lty=c(2,2,3,3),

col=c("red","red","blue","blue"),lwd=c(2,2,1,1))

legend("bottomright",lty=c(2,3),lwd=c(2,1),

c("confidence","prediction"),col=c("red","blue"))

Solutions to Worksheet from Chap. 15

A- Study of One-Way ANOVA

� Study of noise levels

15.1- noise <- gl(4,6,24)
grade <- c(62,60,63,59,63,59,56,62,60,61,63,64,63,67,

71,64,65,66,68,66,71,67,68,68)

15.2- gradeik D �C˛i C �ik where the �ik’s are i.i.d. random variables following
a N .0; 
2/ distribution.

15.3- model <- aov(grade�noise)
summary(model)

15.4- pairwise.t.test(grade,noise,p.adjust="bonf")
TukeyHSD(model)

� Study of intima–media

15.1- url <- "http://biostatisticien.eu/springeR/Intima_Media_
Thickness.xls"

require("gdata")

intima.media <- read.xls(url,header=TRUE)

attach(intima.media)

15.2- plot(measure�factor(alcohol))
15.3- intima.model <- aov(measure�factor(alcohol))

summary(intima.model)

There exists a difference in the measure of thickness of intima–media
depending on alcohol consumption (p-value
 0:05).
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15.4- plot(intima.model)
# Homoscedasticity :

require("car")

leveneTest(measure,factor(alcohol))

� Study of physical activity

15.1- Download the file "http://biostatisticien.eu/springeR/sports.
RData" in your working folder.

load("sports.RData")

attach(sports)

Factor time of practicing sport (7 levels). scoreik D �C ˛i C �ik where the
�ik’s are i.i.d. random variables following a N .0; 
2/ distribution.

15.2- sport.model <- aov(score�time)
summary(sport,model)

15.3- cmat <- rbind(" : not athletic versus somewhat athletic"=
c(1,1,-1,-1,0,0,0),

" : very athletic versus not athletic"=c(3,3,0,0,-2,-2,-2))

15.4- require("gmodels")
fit.contrast(sport.model,time,cmat)

B- Study of Two-Way ANOVA

� Study of batteries

15.1- Factor temperature with three levels: 15, 70 and 125 degrees. Factor type with
three levels: I, II and III. Dependent variable: lifetime.

15.2- Yijk D �C�ij C �ijk where the �ijk’s are i.i.d. random variables following
a N .0; 
2/ distribution.

15.3- lifetime <- c(130,155,74,180,34,40,80,75,20,70,82,58,150,
188,159,126,136,122,106,115,25,70,58,45,138,

110,168,160,174,120,150,139,96,104,82,60)

temperature <- as.factor(rep(rep(1:3,each=4,3)))

levels(temperature) <- c("15$\circ$C", "70$\circ$C","

125$\circ$C")

type.battery <- as.factor(rep(1:3,each=12))

levels(type.battery) <- c("type I","type II","type III")

battery <- data.frame(lifetime=lifetime,temperature=

temperature,type.battery=type.battery)

http://biostatisticien.eu/springeR/sports.RData
http://biostatisticien.eu/springeR/sports.RData
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interaction.plot(temperature,type.battery,lifetime)

interaction.plot(type.battery,temperature,lifetime)

15.4- summary(lm(lifetime�temperature�type.battery))
15.5- anova(lm(lifetime�temperature�type.battery))

Significant interaction: be careful about the interpretation of parameters and
tests of fixed effects; we must look at the conditional effects.

15.6- For example, test of the temperature effect for batteries of type I

model <- summary(aov(lifetime�temperature*type.battery))
lifetime.battery1 <- summary(aov(lifetime�temperature,

subset=type.battery=="type I"))

lifetime.battery1

F.lifetime.battery1 <- lifetime.battery1[[1]]$Mean[1]/

model[[1]]$Mean[4]

pvalue <- 1-pf(F.lifetime.battery1,df1=2,df2=27)

�Milk yield

15.1- Factor food with four levels: Straw, Hay, Grass and Silage. Factor dose with
two levels: Low and High. Dependent variable: yield. Yijk D �C�ij C εijk

where the εijk ’s are i.i.d. random variables following a N .0; 
2/ distribution.
15.2- yield <- c(8,11,11,10,7,12,13,14,11,10,10,12,12,13,14,17,

13,17,14,13,8,9,8,10,9,10,7,10,12,11,11,9,

11,11,12,13,12,11,15,14)

food <- as.factor(rep(rep(1:4,each=5,2)))

levels(food) <- c("Straw","Hay","Grass","Silage")

dose <- as.factor(rep(1:2,each=20))

levels(dose) <- c("Low", "High")

milk <- data.frame(yield=yield,food=food,dose=dose)

interaction.plot(food,dose,yield)

interaction.plot(dose,food,yield)

15.3- summary(lm(yield�dose�food))
15.4- anova(lm(yield�dose�food))

Nonsignificant interaction: we will prefer a simpler model.
15.5- anova(lm(yield�dose+food))
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� Intima–media study

15.1- url <- "http://biostatisticien.eu/springeR/Intima_Media_
Thickness.xls"

intima.media <- read.xls(url,header=TRUE)

attach(intima.media)

15.2- Two way ANOVA model with an interaction term.
15.3- tobacco <- factor(tobacco)

alcohol <- factor(alcohol)

interaction.plot(tobacco,alcohol,measure)

interaction.plot(alcohol,tobacco,measure)

15.4- require("car")
intima.model <- Anova(lm(measure�alcohol�tobbaco),

type="III")

intima.model

# non-significant interaction:

additive.intima.model <- Anova(lm(measure�alcohol+
tobacco),type="III")

# alcohol: p-value=0.09 Tobacco: p-value=0,16
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