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Preface

A spatial point pattern is a set of locations, irregularly distributed within
a designated region and presumed to have been generated by some form of
stochastic mechanism. In most applications, the designated region is essen-
tially planar (two-dimensional Euclidean space), but one-dimensional appli-
cations are also possible, and three-dimensional applications are becoming
more common in conjunction with the development of more sophisticated
three-dimensional scanning microscopes. The first edition of Statistical Anal-
ysis of Spatial Point Patterns appeared in 1983. Its aim was to cover the major
methodological themes of the subject and their application to data arising in
the biological sciences, especially ecology.

In the second edition, published in 2003, I extended the methodological
discussion to cover major developments in the intervening years, but also tried
to preserve the applied flavour of the book. Much of the newer work in the
area tends to be mathematically sophisticated. My aim in covering the newer
methodological developments was to discuss the central ideas without going
into the full technical detail which a rigorous treatment would require, and
which is available in the original articles. I also resisted the temptation to
discuss spatial statistics more widely. Cressie (1991) identified the three main
branches of spatial statistics as geostatistics (spatially continuous processes),
lattice processes (spatially discrete processes) and spatial point processes.
Whilst these three topics are to some extent inter-linked, they nevertheless
give rise to distinct stochastic models and associated statistical methods, and
can therefore be studied separately.

Within the realm of spatial point processes, perhaps the most important
theoretical development over the last three decades has been the provision
of formal, likelihood-based methods of inference for a reasonably wide range
of models. These have partially replaced the more ad hoc methods which
prevailed in the early 1980’s. Nevertheless, some of the ad hoc methods remain
useful, and have themselves been extended in various ways, for example in the
adaptation of non-parametric smoothing methods to spatial point processes.
New applications have also emerged and, as is usual in statistics, have in
turn motivated further methodological development. The two new areas of
application on which I draw most heavily, in my own research and in the
book, are micro anatomy and epidemiology.

In microanatomy, the points in an observed pattern typically are refer-
ence locations for cells in a microscopic tissue section. The underlying cellular
structure influences the kinds of models which are appropriate, usually in-

xxix
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volving the concept of interactions between near-neighbouring cells. Perhaps
more fundamentally from a statistical viewpoint, most micro-anatomical stud-
ies use a replicated sampling design in which data are obtained from several
subjects and/or several tissue sections per subject, in contrast to the tradi-
tional emphasis throughout spatial statistics on the analysis of unreplicated
patterns.

In epidemiology, the points are reference locations (typically place of res-
idence) for cases of a disease in a geographical region, often supplemented
by the reference locations for a set of controls sampled from the underlying
population at risk. The principal methodological challenge in this area of appli-
cation is to use the case-control paradigm to circumvent the obvious difficulty
of building credible parametric models for human population distributions in
a heterogeneous environment.

When the first edition was written, there were few other books available
on the then-emerging subject of spatial statistics, and none at all which dealt
exclusively with the statistical analysis of spatial point patterns. This is no
longer the case. Books on spatial point processes and associated statistical
methods include Møller and Waagepetersen (2004) and Ilian et al (2008),
whilst Van Lieshout (2000) deals exclusively with Markov point processes
and their statistical analysis. The first general text on spatial statistics was
Ripley (1981). This, and Cressie (1991), remain standard references. Other
books on spatial statistics that include substantial material on point processes
include the two volumes of Upton and Fingleton (1985, 1989), Cliff and Ord
(1981), Bailey and Gatrell (1995), Stoyan, Kendall and Mecke (1995), Waller
and Gotway (2004), Schabenberger and Gotway (2004), and Gelfand et al.
(2010). Additionally, and typically for a maturing field, a wide variety of more
specialised books have also become available. For example, Matérn (1986) is a
re-issue of Bertil Matérn’s classic 1960 Swedish doctoral dissertation that laid
many of the foundations for later developments in spatial point processes and
geostatistics. Rue and Held (2005) discuss Gaussian Markov random fields, the
most widely used modelling framework for spatially discrete processes. Chilès
and Delfiner (1999, 2012) and Diggle and Ribeiro (2007) cover the so-called
“classical” and “model-based” approaches to geostatistics, respectively.

Some topics which seemed important at the beginning of the 1980’s had
become less so by 2003, and I reduced the space given to them. One example
was the discussion of methods for sparse sampling of spatial point processes in
situ. These methods arose in the 1950’s and 1960’s, principally in connection
with field-work by ecologists, who needed to investigate the density and spatial
pattern of plant communities in the field. By 2003, these methods were rarely
used because technological advances had made much more straighforward the
task of mappping a spatial point pattern for later analysis using the more
sophisticated methods that were by then available. To my surprise, however,
these methods subsequently experienced a minor revival when they began to
be used for analysing the size and pattern of refugee encampments (see, for
example, Bostoen, Chalabi and Grais, 2007).
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Thus forewarned, in this new book I have not deleted any material from
the second edition, other than to correct a number of errors, but I have added
substantial new material in places.

The biggest change from the second edition, reflected in the enlarged title,
is to discuss spatio-temporal point patterns. Spatio-temporal point process
data have long been studied in specialised fields, notably seismology (see, for
example, Zhuang, Ogata and Vere-Jones, 2002). However, in the last decade
there has been an acceleration of methodological development, accompanied
by a diversification of application as spatio-temporially indexed data have
become more widely available in many scientific fields. Book-length treatments
are now beginning to appear, including the edited collection by Finkenstadt,
Held and Isham (2007), several chapters of Gelfand et al. (2009) and, most
recently, Cressie and Wikle (2011).

Another important development, throughout the statistics discipline, has
been the rise in popularity of R as a vehicle for the dissemination of new statis-
tical methods through open-source software. Useful packages for the analysis of
spatial point process data include spatial, spatstat, MarkedPointProcess,
splancs and spatialkernel. All of these, and more, can be downloaded from
the R project web-page, www.r-project.org. I predict with some confidence
that the above list will be out-of-date by the time this appears in print.

Public-domain data-sets used in the book, and any errors of which I am
aware, can be found on the book’s web-page:
http://wwww.lancs.ac.uk/staff/diggle/pointpatternbook

My thanks are again due to many colleagues, in many places and over
some forty years, who have provided me with such stimulating working envi-
ronments, spanning the UK, Sweden, Australia and the USA. I was fortunate
to begin my career under the wise guidance of the late Prof Robin Plackett
at the University of Newcastle upon Tyne. Periods spent at the Royal College
of Forestry Stockholm, CSIRO Australia and, most recently, the University
of Liverpool, have taught me the inestimable value of working closely with
subject-matter scientists. Visits to the Department of Biostatistics at Johns
Hopkins University, Baltimore, stimulated an enduring interest in medical and
public health applications. At Lancaster University, I have been privileged to
work with a succession of talented young research students and staff, amongst
whom special mention goes to Barry Rowlingson for his patient, if doomed,
efforts over 25 years to teach me to compute efficiently.

Finally, my collaborators on the many jointly authored publications listed
amongst the references should share the credit for whatever value the book
may have, whereas responsibility for defects remains mine alone.

Peter J. Diggle, Lancaster

http://www.lancs.ac.uk/staff/diggle/pointpatternbook
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1.1 Spatial point patterns

Data in the form of a set of points, irregularly distributed within a region of
space, arise in many different contexts; examples include locations of trees in
a forest, of nests in a breeding colony of birds, or of nuclei in a microscopic
section of tissue. We call any such data-set a spatial point pattern and refer
to the locations as events, to distinguish these from arbitrary points of the
region in question.

Figures 1.1 and 1.2 show two spatial point patterns in a square region.
The first, due to Numata (1961), shows 65 Japanese black pine saplings in a
square of side 5.7 metres whilst the second, extracted by Ripley (1977) from
Strauss (1975), shows 62 redwood seedlings in a square of side 23 metres, ap-
proximately. The two patterns appear strikingly different. Figure 1.1 shows no
obvious structure and might be regarded as a “completely random” pattern, in
a sense that we shall define formally in due course. In Figure 1.2, on the other
hand, the strong clustering of seedlings requires some biological explanation
which, in this instance, is readily available. The seedlings cluster around red-
wood stumps, which are known to be present in the study region but whose
locations have not been recorded. It is important to recognise that patterns
like Figure 1.2 can arise either through some form of clustering mechanism or
through environmental variation leading to local patches with relatively high
concentrations of events. Here, as elsewhere, failure to record relevant biolog-
ical information limits the conclusions which can be drawn from a statistical

1
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FIGURE 1.1
Locations of 65 Japanese black pine saplings in a square of side-length 5.7
metres (Numata, 1961).

analysis. We therefore describe patterns like Figure 1.2 as “aggregated” to
avoid the mechanistic connotations of the perhaps more obvious term “clus-
tered.”

Figure 1.3 shows a further qualitatively different type of pattern, formed
in this case by the centres of 42 biological cells (Crick and Lawrence, 1975;
Ripley, 1977). The cell centres are distributed more or less regularly over the
unit square, improbably so unless there is some associated regulating mech-
anism operating to encourage an even spatial distribution of cell centres. A
possible explanation is that the cell centres are merely convenient reference
points for cells whose physical size is non-negligible relative to the scale of
observation. Quite generally, and again without wishing to imply any specific
causal mechanism, we refer to such patterns as “regular.”

The nature of the pattern generated by a biological process can be affected
by the physical scale on which the process is observed. At a sufficiently large
scale most natural environments exhibit heterogeneity, which will tend to pro-
duce aggregated patterns. At a smaller scale, environmental variation will be
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FIGURE 1.2
Locations of 62 redwood seedlings in a square of side-length 23 metres
(Strauss, 1975; Ripley, 1977).

less pronounced and the major determinant of pattern may then be the nature
of the interactions amongst the events themselves. For example, vegetative
propagation of individual shoots will tend to produce small-scale aggregation
whereas competition for space will encourage regularity. Our classification of
patterns as regular, random or aggregated is therefore an over-simplification,
but a useful one at an early stage of analysis. At a later stage, this simplistic
approach can be abandoned in favour of a more detailed, and essentially mul-
tidimensional, description of pattern that can be obtained either by the use of
a variety of functional summary statistics or by formulating an explicit model
of the underlying process. The approach taken in this book will be to develop
methods for the analysis of spatial patterns based on stochastic models, which
assume that the events are generated by some underlying random mechanism.

Our fourth example, shown in Figure 1.4, introduces the idea of amultivari-
ate point pattern. In this example, the points represent cells of two different
types (hence, bivariate) in the retina of a rabbit. The data consist of the lo-
cations of 294 displaced amacrine cells, amongst which 152 are of a type that
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FIGURE 1.3
Locations of 42 cell centres in a unit square (Ripley, 1977).

transmits information to the brain when a light goes on, whilst the remaining
142 transmit information when a light goes off. The relationship between the
two component patterns can help to explain the developmental processes that
operate within the immature retina. We shall re-examine the data from this
point of view in Section 4.7.

Our fifth example is of a spatio-temporal point pattern, in which the data
provide both the location and the time of occurrence of events of scientific
interest within a specified spatial region and time-interval. Figure 1.5 shows
the residential locations and dates of 100 consecutive cases of non-specific
gastrointestinal symptoms, as reported between 1 and 8 January 2001 to NHS
Direct, a 24-hour phone-based triage service operated by the UK National
Health Service, by residents in the county of Hampshire. The cases naturally
cluster in areas of relatively high population density, but there is at least a
hint that cases close in time (circles of the same radius of nearly so) are also
closer spatially than might be expected by chance. If true, this would suggest
that multiple cases may be the result of infections from a common source.

Spatio-temporal patterns are better examined dynamically than statically.
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FIGURE 1.4
Locations of 294 displaced amacrine cells in the retina of a rabbit. Solid and
open circles respectively identify on and off cells.

The data shown in Figure 1.5 are a sub-set of a much larger data-set reported
in Diggle et al. (2003); an animation of the complete data-set by Barry Rowl-
ingson can be viewed from the book’s web-site.

We shall assume throughout this book that the spatial region of interest is
essentially planar, although most of the ideas extend, at least in principle, to
other dimensions. Even in one dimension, the distinction between temporal
and spatial point patterns is important. In the case of series of events irreg-
ularly distributed in time, for example division times in a cell proliferation
process, stochastic models and their associated statistical methods reflect the
essentially unidirectional quality of the time dimension, whereas in the corre-
sponding spatial case, for example nesting sites along the bank of a canal, no
such directionality exists. Cox and Lewis (1966) give an excellent introduction
to the analysis of temporal point patterns, whilst Daley and Vere-Jones (2002,
2005) discuss the underlying point process theory in depth.

All of our examples involve applications in the life sciences, although sim-
ilar problems arise in many other disciplines. For examples in archaeology,
astronomy and geography see, respectively, Hodder and Orton (1976), Pee-
bles (1974) and Cliff and Ord (1981). To some extent, the methods that we
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FIGURE 1.5
Locations of cases of non-specific gastrointestinal symptoms reported to NHS
Direct Hampshire, UK, between 1 January and 8 January 2001. The radius of
each plotted circle codifies the reporting date (smallest for 1 January, largest
for 8 January).

describe remain useful (and have certainly been used) in these other areas of
application, but should not be adopted uncritically. In particular, our stochas-
tic models will be motivated by simple considerations of possible underlying
biological mechanisms that may or may not be relevant in other disciplines.

1.2 Sampling

The selection of the study region, A say, merits some discussion. In some
applications, A is objectively determined by the problem in hand, and infer-
ences are required in terms of a process defined on A itself. One example of
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this would be a map of all nesting sites on an island. More commonly, A is
selected from some much larger region. The selection of A may then be made
according to a probability sampling scheme, or it may simply reflect the ex-
perimenter’s view that A is in some sense representative of the larger region.
In either case, but particularly the latter, inferences drawn from an analysis
will carry much greater conviction if consistency over replicate data-sets can
be demonstrated.

As an alternative to intensive mapping within a single region A, the ex-
perimenter may choose to record limited information from a large number of
smaller regions, for example the number of events in each region. In this con-
text, the regions are called quadrats and the data are referred to as quadrat
counts. A quadrat was originally a square of side-length 1 metre, used by the
Uppsala school of plant ecologists as the basic sampling unit for investigating
plant communities in the field (Du Rietz, 1929).

Quadrat sampling remains a popular field technique in plant ecology and
elsewhere, but in some contexts it is rather impractical. This led to the de-
velopment, initially in the American forestry literature (Cottam and Curtis,
1949), of a number of distance methods for sampling spatial point patterns.
In these, the basic sampling unit is a point, and information is recorded in
the form of distances to neighbouring events, for example the distances to the
first few nearest events.

We shall refer to quadrat count and distance methods as sparse sampling
methods, to distinguish them from intensive mapping exercises. The appropri-
ate techniques for analysing data obtained by sparse sampling and by intensive
mapping are quite different. Also, analyses of sparsely sampled patterns typ-
ically have more limited objectives than do analyses of mapped patterns.

A particular form of quadrat sampling, intermediate between sparse sam-
pling and intensive mapping, consists of partitioning the study region into dis-
joint sub-regions and recording the number of events in each sub-region. Data
of this kind arise in two very different ways. The first, which has a long tradi-
tion as a method of field sampling in plant ecology, is when a rectangular study
region is partitioned into a regular grid of square or rectangular quadrats,
and a count is taken within each quadrat. The second, which typically arises
in environmental epidemiology, is when health outcome data are routinely
maintained as counts of the numbers of events in administratively defined
sub-regions. In either case, the resulting data can be represented as a realisa-
tion of a high-dimensional multivariate random variable, Y = (Y1, ..., Yn) say,
where Yi denotes the number of events in the ith sub-region. In this setting, a
stochastic model for the underlying point process would induce a unique sta-
tistical distribution on Y , but in practice the form of this distribution tends
to be intractable except in a few special cases. A pragmatic alternative is
to formulate a model directly for the distribution of Y , without reference to
any underlying point process. The usual method of construction is to specify
the set of conditional distributions of each Yi given all other Yj . Models of
this kind are called Markov random fields. Their construction must satisfy
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sometimes non-obvious constraints to ensure self-consistency. Besag (1974) is
an early, and very influential, account; see also Rue and Held (2005) or the
relevant chapters of Gelfand et al. (2009) for detailed accounts.

Replicated sampling of mapped patterns is surprisingly rare. Ecological
investigations have certainly compared patterns in study regions deliberately
selected to represent different environmental conditions (see, for example,
Bagchi et al. 2011), but I am not aware of corresponding studies which have
been designed with a view to establishing the consistency of patterns in os-
tensibly similar regions. Pseudo-replication can always be achieved by par-
titioning a single region into two or more sub-regions. Genuine replication
is more common in fields such as neuroanatomy, where the natural spatial
sampling unit is a single field of view under a microscope, and there is a
well-established tradition of using hierarchical sampling designs of the form:
multiple fields of view within tissue sections; multiple tissue sections within
subjects; multiple subjects within experimental treatment groups. Studies of
this kind lend themselves to design-based inference as an alternative to the
more widely prevailing model-based inference for spatial point patterns. See,
for example, Diggle, Lange and Benes (1991), Baddeley et al. (1993) or Eglen,
Diggle and Troy (2005).

1.3 Edge-effects

Edge-effects arise in spatial point pattern analysis when, as is often the case
in practice, the region A on which the pattern is observed is part of a larger
region on which the underlying process operates. The essential difficulty is
then that unobserved events outside A may interact with observed events
within A but, precisely because the events in question are not observed, it is
difficult to take proper account of this.

For some kinds of exploratory analysis, edge-effects can safely be ignored.
We shall discuss when and why this is so at appropriate points in the text.
More generally, we can distinguish between three broad approaches to han-
dling edge-effects: the use of buffer zones; explicit adjustments to take account
of unobserved events; and, when A is rectangular, wrapping A onto a torus
by identifying opposite edges. We will illustrate each of these approaches by
considering a statistic that arises in several contexts, namely the number of
events that occur within a specified distance of an arbitrary event or location.

The buffer zone method consists of carrying out all aspects of the statistical
analysis after conditioning on the locations of all events which fall within a
buffer zone B consisting of all points less than a specified distance, d0 say, from
the edge of A. Let C = A − B denote the remainder of A after subtracting
the buffer zone. Then, it is clear that for any event or location x ∈ C, the
observed number of events within a distance d of x must equal the actual
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number of events in the underlying process within distance d of x, provided
d ≤ d0, whereas for d > d0 the observed number may be less than the actual
number, thereby biasing any estimates based on these observed numbers. The
choice of d0 in the buffer zone method is awkward, since too small a value
leaves residual edge-effects, whereas too large a value effectively throws away
data unnecessarily. However, the method can be applied in adaptive form,
varying the value of d0 according to the particular statistic being used.

The adjustment method operates by making an “on average” adjustment
for the unobserved events outside A. Again using our simple example to illus-
trate, if we count the observed number, n say, of events within distance d of
a location x, and a(d) denotes the area of intersection between A and a disc
of radius d centred on the location x, then an intuitively sensible estimate
of the actual number of events within distance d of x is nπd2/a(d). The ad-
justment method is attractive because it makes full use of the observed data,
especially when relatively large-scale effects are of interest. Note, however,
that the adjustments typically lead to an increased sampling variance for the
edge-adjusted estimator by comparison with its unadjusted counterpart. In
essence, this is an example of the common trade-off in statistical estimation
between bias and variance, as edge-corrections seek to eliminate bias at the
expense of some increase in variance.

Toroidal wrapping of a rectangular A is not so much an edge-correction
method as a trick to eliminate edge-effects in particular circumstances. Its
most common use is as a convenient way of simulating realisations of various
kinds of point process. For example, suppose that we wish to simulate a point
process model for the cell centre data shown in Figure 1.3, the most obvious
feature of which is that no two events can occur too close together. If we
attempt to simulate a process of this kind directly on a unit square A, then
points near the edge of A are favoured over points near the centre of A as
potential locations, because of the absence of potentially inhibiting events
outside A. By simulating the process on a torus and subsequently unwrapping
to a unit square for presentation, we avoid this effect. Note that it will seldom
make sense to wrap observed data onto a torus for analysis; for example, if
we were to do this with the cell centre data, then we would observe some very
small toroidal distances between pairs of cells, thus distorting the inhibitory
nature of the underlying process.

1.4 Complete spatial randomness

The hypothesis of complete spatial randomness (henceforth CSR) for a spatial
point pattern asserts that (i) the number of events in any planar region A with
area |A| follows a Poisson distribution with mean λ|A|; (ii) given n events xi

in a region A, the xi are an independent random sample from the uniform dis-
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FIGURE 1.6
Realisation of CSR: 100 events in a unit square.

tribution on A. The self-consistency of (i) and (ii) is not immediately obvious,
but will be established in Chapter 4. In (i), the constant λ is the intensity, or
mean number of events per unit area. According to (i), CSR therefore implies
that the intensity of events does not vary over the plane. According to (ii),
CSR also implies that there are no interactions amongst the events. For ex-
ample, the independence assumption in (ii) would be violated if the existence
of an event at x either encouraged or inhibited the occurrence of other events
in the neighbourhood of x. In developing tests of CSR for sparsely sampled
patterns the starting point will be property (i), whilst for mapped patterns it
is more usual to start with (ii), i.e. to analyse the pattern conditional on the
observed number of events.

Intuitive ideas about what constitutes a “random pattern” can be mislead-
ing. Figure 1.6 shows a realization of 100 events independently and uniformly
distributed on the unit square. Any visual impression of aggregation is illusory.
Note also the superficial similarity to Figure 1.1.

Our interest in CSR is that it represents an idealized standard which, if
strictly unattainable in practice, may nevertheless be tenable as a convenient
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first approximation. Most analyses begin with a test of CSR, and there are
several good reasons for this. Firstly, a pattern for which CSR is not rejected
scarcely merits any further formal statistical analysis. Secondly, tests are used
as a means of exploring a set of data, rather than because rejection of CSR
is of intrinsic interest. Greig-Smith, in the discussion of Bartlett (1971), em-
phasized that ecologists often know CSR to be untenable but nevertheless use
tests of CSR as aids to the formulation of ecologically interesting hypotheses
concerning pattern and its genesis. Thirdly, CSR acts as a dividing hypothesis
to distinguish between patterns which are broadly classifiable as “regular” or
“aggregated”.

Another use of CSR is as a building block in the construction of more
complex models. We shall return to this topic in Chapter 6.

1.5 Objectives of statistical analysis

In any particular application, the objectives of a statistical analysis should
be determined by the scientist’s objectives in collecting the data in question.
We have already given reasons for beginning an analysis with a test of CSR.
What to do next will vary according to context.

In sparse sampling exercises, a specific objective may be to estimate the
intensity. For example, in forestry surveys an important quantity to be esti-
mated is the “stocking density,” or number of stems per hectare. The nature of
the pattern might then be of interest only in so much as it affects the sampling
distribution of the estimator.

With mapped data, the scientist will usually want a more detailed descrip-
tion of the observed pattern than can be provided by a test of CSR. One way
to achieve this is by formulating a parametric stochastic model and fitting it
to the data. If a model can be found that fits the data well, the estimated val-
ues of its parameters provide summary statistics that can be used to compare
ostensibly similar data-sets. More ambitiously, a fitted model can provide an
explanation of the underlying scientific processes. But this must involve an
element of non-statistical inference: quite apart from the obvious fact that
a model which fits the data is not necessarily correct in any absolute sense,
we shall see in Chapter 4 that a simple stochastic model for a spatial point
pattern may admit more than one scientific interpretation.

Of course, it is generally the case that modelling itself is only a means to a
wider end. A well-formulated, and well-fitting, model provides a parsimonious
description of a complex pattern, and one which will be especially useful if
its parameters can be related to scientific hypotheses about the underlying
phenomenon being studied.

Model-fitting is particularly difficult for very heterogeneous data-sets. In
such cases, it may be unhelpful to force a parametric analysis based on unten-
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able assumptions. For example, a generic problem in environmental epidemi-
ology is to estimate the spatial variation in the risk of a particular disease,
using data on the locations of individual cases in a geographical region. One
approach to this problem might be to formulate an idealised model for the ob-
served spatial pattern of cases under the assumption that risk is spatially con-
stant, and to investigate deviations of the observed pattern from this model.
An alternative, which would be more in line with classical epidemiological
methods, would be to make a nonparametric comparison between the pattern
of cases and a second pattern of controls, defined to be a random sample from
the population at risk. We shall discuss this idea in detail in Chapter 9.

1.6 The Dirichlet tessellation

Given n distinct events xi in a planar region A, we can assign to xi a “terri-
tory” consisting of that part of A which is closer to xi than to any other xj .
This construction, referred to either as the Dirichlet tessellation or Voronoi
tessellation of the events in A, has been incorporated into stochastic models
of natural phenomena such as inter-plant competition. In these models, plants
whose territories abut are assumed to be in direct competition for available
nutrient; see, for example, Cormack (1979, pp. 171–175). For large n, the tes-
sellation is also the basis of a computationally efficient solution to a number
of problems involving the calculation of distances between events.

Except possibly along the boundary of A, each territory or cell is a convex
polygonal region. Events xi and xj whose cells share a common boundary seg-
ment are said to be contiguous. Typically, each cell vertex is common to three
cells, and the lines joining the pairs of contiguous events define a triangula-
tion of the xi, called the Delaunay triangulation. Thus, cell boundaries can be
obtained as the perpendicular bisectors of the edges of the triangulation, and
cell vertices are the corresponding circumcentres. Figure 1.7 shows a simple
example of both the tessellation and the triangulation associated with n = 12
events in a unit square. Rogers (1964) discusses the mathematical properties
of the Dirichlet tessellation in a general p-dimensional setting.

The construction of the Dirichlet tessellation and the associated Delaunay
triangulation rapidly becomes a non-trivial exercise as n increases. Green and
Sibson (1978) give a remarkably efficient algorithm whose computational cost
increases roughly as n1.5.
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FIGURE 1.7
The Dirichlet tessellation (——) and Delaunay triangulation (– – –) associated
with 12 points in a unit square.

1.7 Monte Carlo tests

Even simple stochastic models for spatial point patterns lead to intractable
distribution theory, and in order to test models against data we shall make
extensive use of Monte Carlo tests (Barnard, 1963).

Quite generally, let u1 be the observed value of a statistic U and let ui : i =
2, ..., s be corresponding values generated by independent random sampling
from the distribution of U under a simple hypothesis H. Let u(j) denote the
j th largest amongst ui : i = 1, ..., s Then, under H,

P{u1 = u(j)} = s−1, j = 1, ..., s,

and rejection of H on the basis that u1 ranks kth largest or higher gives an
exact, one-sided test of size k/s . This assumes that the values of the ui are all
different, so that the ranking of u1 is unambiguous. If U is a discrete random
variable, for example a count, tied values are possible and we then adopt the
conservative rule of choosing the least extreme rank for u1. The extension to
two-sided tests is clear.
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Hope (1968) gives a number of examples to show that the loss of power
resulting from a Monte Carlo implementation is slight, so that s need not
be very large. For a one-sided test at the conventional 5% level, s = 100 is
adequate.

Power loss is related to Marriott’s (1979) investigation of “blurred critical
regions”, which arise because a value of u1 which would be declared significant
in a classical test may not be declared significant in a Monte Carlo test, and
vice versa. Let the (unknown) distribution function of U under H be F (u).
For a one-sided 5% test with s = 20k, the probability that we reject H, given
that U = u1, is

p(u1) =

k−1∑

r=0

(
s− 1

r

)
{1− F (u1)}r{F (u1)}s−1−r. (1.1)

For a classical test, represented here by the limit s → ∞, p(u1) is 1 or 0
accordingly as F (u1) is greater or less than 0.95. The effect of the “blurring”
introduced by (1.1) is measured by Marriott’s Table 1, here reproduced as
Figure 1.8. Marriott concludes also that the extent of the blurring depends
primarily on k, so that if s = 100 is judged to be acceptable for a test at the
5% level, then s = 500 should be used for a test at the 1% level, and pro rata
for tests at smaller levels. These recommended values of s are smaller than
would be considered adequate for the estimation of P{U > u1 | H}. This is
essentially a consequence of the blurring effect. It is the rank of u1, and not
u1 itself, which is the test statistic. A Monte Carlo test may fail to reject H
when a classical test would have done so, representing a loss of power, but
may also reject H when a classical test would have done so, representing a
gain in power.

A technical point concerning the use of Monte Carlo tests is that in practice
random sampling will be replaced by pseudo-random sampling. In the past,
we have used the generator supplied in the NAG (1977) subroutine library
or a Fortran implementation of the Wichmann and Hill (1982) generator, but
we now routinely use the built-in R function runif() (Venables and Ripley,
1994). Other references for users who wish to understand the theory under-
lying pseudo-random number generators include Kennedy and Gentle (1980)
or Ripley (1987).

A more subtle, but potentially more important, criticism is that Monte
Carlo tests encourage “data-dredging”, since the user can choose the statistic
U to focus on any seemingly aberrant feature of their data. Whilst we admit
that this is a danger, it should be obvious that “significant” results based on
pathological test statistics are of no practical value.

An inherent weakness of the Monte Carlo approach is its restriction to
simple hypotheses H. Composite hypotheses can be tested if pseudo-random
sampling is made conditional on the observed values of sufficient statistics for
any unknown parameters, but this is seldom feasible. Note that a goodness-
of-fit test that ignores the effects of estimating parameters will tend to be
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FIGURE 1.8
Blurred critical regions for one-sided, 5% Monte Carlo tests with s = 20, 40,
100 and s → ∞ (adapted from Marriott, 1979).

conservative. This particular difficulty does not arise with tests of CSR for
mapped data, because the observed number of events n is sufficient for the
intensity λ, and conditional on n CSR is a simple hypothesis. But it does
affect the assessment of goodness-of-fit for more general stochastic models.
An approximate remedy, which we discuss further in Chapter 6, is to measure
goodness-of-fit by a statistic that is not directly related to the procedure used
to estimate the parameters of the model.

The principal advantage to be set against the above is that the investigator
need not be constrained by known distribution theory, but rather can and
should use informative statistics of their own choosing.

When asymptotic distribution theory is available, Monte Carlo testing
provides an exact alternative for small samples and a useful check on the ap-
plicability of the asymptotic theory. If the results of classical and Monte Carlo
tests are in substantial agreement, little or nothing has been lost; if not, the
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explanation is usually that the classical test uses inappropriate distributional
assumptions.

1.8 Software

Spatial point pattern analysis is computationally intensive, not least because
of the heavy reliance on Monte Carlo methods of inference. As noted in the
Preface, R has become the computing environment of choice for many statisti-
cians. The splancs package (Rowlingson and Diggle, 1993) gives a wide range
of functions for statistical analysis of spatial point patterns. The Spatstat li-
brary, written by Adrian Baddeley and Rolf Turner, also implements a wide
range of methods, with a stronger emphasis than splancs on parametric mod-
elling. Many of the analyses reported in this book were implemented using a
combination of splancs, Spatstat and Voronoi (a package for computation
of the Dirichlet tessellation, written by Rolf Turner), together with some ad-
ditional functions written by the author.

More sophisticated displays than those shown in this book, for example
colour-coded overlays of point pattern maps and contour maps, can most
easily be produced using a Geographical Information System (GIS). A wide
variety of commercial and open-source GIS packages are now available. Also,
a number of R packages have been written to provide GIS-like functionality
within the R environment. For a detailed description of spatial data-handling
in R, see for example Bivand, Pebesma and Gomez-Rubio (2008).
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2.1 Tests of complete spatial randomness

Although complete spatial randomness is of limited scientific interest in itself,
there are several good reasons why we might begin an analysis with a test
of CSR: rejection of CSR is a minimal prerequisite to any serious attempt
to model an observed pattern; tests are used to explore a set of data and to
assist in the formulation of plausible alternatives to CSR; CSR operates as a
dividing hypothesis between regular and aggregated patterns.

In view of the above, the present discussion emphasizes two aspects: the
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value of graphical methods, which will almost always be informative and will
sometimes make formal testing unnecessary; and informal combination of sev-
eral complementary tests, to indicate the nature of any departure from CSR.
With regard to the second of these, if a single assessment of significance is
required the following result is useful. Suppose that the attained significance
levels of k, not necessarily independent tests of CSR, are pj : j = 1, ..., k
and let pmin be the smallest such pj, corresponding to the most significant
departure from CSR. Then, under CSR,

p ≤ P{pmin ≤ p} ≤ kp. (2.1)

For k independent tests, the exact result is

P{pmin ≤ p} = 1− (1− p)k.

Cox (1977) points out that using multiple tests as part of a diagnostic proce-
dure makes practical sense only if the various tests examine different aspects
of pattern, so that a significant result for one test does not prevent a sensible
interpretation of the others.

We acknowledge that testing complete spatial randomness is a very unam-
bitious agenda in itself, and should be seen as no more than a natural starting
point. From a pedagogical point of view, it provides a historical perspective
on the early development of the subject, and an opportunity to illustrate a
number of general issues in the simplest possible setting. These include the
role of Monte Carlo methods, the need to assess the relative merits of intu-
itively sensible but ad hoc methods and, perhaps most importantly, the need
to take account of the inherent dependence amongst multiple measurements
derived from a single point pattern. In the remainder of the chapter we will
therefore describe a number of different tests that have been proposed, and
assess their strengths and weaknesses. As illustrative examples, we shall use
repeatedly the three data-sets shown in Figures 1.1 to 1.3, each of which has
a straightforward interpretation. More ambitious analyses of these and other
data-sets will appear in later chapters, when we discuss the formulation and
fitting of stochastic models other than CSR.

2.2 Inter-event distances

One possible summary description of a pattern of n events in a region A is
the empirical distribution of the 1

2n(n− 1) inter-event distances, tij say. The
corresponding theoretical distribution of the distance T between two events
independently and uniformly distributed in A depends on the size and shape
of A, but is expressible in closed form for the most common cases of square
or circular A (Bartlett, 1964).
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For A a square of unit side, the distribution function of T is

H(t) =

⎧
⎨

⎩

πt2 − 8t3/3 + t4/2 : 0 ≤ t ≤ 1

1/3− 2t2 − t4/2 + 4(t2 − 1)
1
2 (2t2 + 1)/3

+2t2 sin−1(2t−2 − 1) : 1 < t ≤ √
2

(2.2)

whilst for a circle of unit radius the corresponding expression is

H(t) = 1 + π−1{2(t2 − 1) cos−1(t/2)− t(1 + t2/2)
√
(1− t2/4)} (2.3)

for all 0 ≤ t ≤ 2.
We now develop a test of CSR based specifically on inter-event distances;

the general approach is applicable to other summary descriptions and will
reappear in later sections.

Assume that for the particular region A in question, H(t) is known. Cal-
culate the empirical distribution function (henceforth abbreviated to EDF) of
inter-event distances. This function, Ĥ1(t) say, represents the observed pro-
portion of inter-event distances tij which are at most t; thus,

Ĥ1(t) =
1

2
n(n− 1)}−1#(tij ≤ t),

where # means “the number of.” Now prepare a plot of Ĥ1(t) as ordinate
against H(t) as abscissa. If the data are compatible with CSR, the plot should
be roughly linear. To assess the significance or otherwise of departures from
linearity, the conventional approach would be to find the sampling distribution
of Ĥ1(t) under CSR. But this is complicated by the dependence between
inter-event distances with a common end-point, and we therefore proceed as
follows. Calculate EDF’s Ĥi(t), i = 2, 3, ..., s, from each of s− 1 independent
simulations of n events independently and uniformly distributed on A, and
define upper and lower simulation envelopes,

U(t) = max{Ĥi(t)}; L(t) = min{Ĥi(t)}, (2.4)

where in each case, i runs from 2 to s. These simulation envelopes can also be
plotted against H(t), and have the property that under CSR, and for each t,

P{Ĥ1(t) > U(t)} = P{Ĥ1(t) < L(t)} = s−1. (2.5)

Simulation envelopes are intended to help in the interpretation of the plot
of Ĥ1(t) against H(t), and we shall shortly give examples of their use. Two
of the many possible approaches to the construction of an exact Monte Carlo
test of CSR are as follows.

(i) Choose t0 and define ui = Ĥi(t0). As described in Section 1.7, the
rank of u1, amongst the ui provides the basis of a test because under
CSR all rankings of u1 are equi-probable.
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(ii) Define ui to be a measure of the discrepancy between Ĥi(t) and
H(t) over the whole range of t, for example

ui =

∫
{Ĥi(t)−H(t)}2dt (2.6)

and again proceed to a test based on the rank of u1.
The first approach makes sense only if t0 can be chosen in a way that is

natural to the problem in hand. The second has the advantage of objectivity
but we shall see that in the particular context of inter-event distances it often
gives a very weak test. In any event, no single test statistic should be allowed
to over-ride a critical inspection of the EDF plot.

If the region A is one for which the theoretical distribution function H(t)
is unknown, a test can still be carried out if, in (2.6), H(t) is replaced by

H̄i(t) = (s− 1)−1
∑

j �=i

Ĥj(t).

The ui are no longer independent under CSR, but they are exchangeable and
the required property that under CSR all rankings of u1 are equi-probable
therefore still holds. Similarly, the graphical procedure then consists of plotting
Ĥ1(t), U(t) and L(t) against H̄1(t). Note that because H̄1(t) involves only the
simulations of CSR and not the original data, it provides an unbiased estimate
of H(t) under the null hypothesis.
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FIGURE 2.1
EDF plot of inter-event distances for Japanese black pine saplings. —— : data;
−−− : upper and lower envelopes from 99 simulations of CSR.
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2.2.1 Analysis of Japanese black pine saplings

Figure 2.1 shows the plot of Ĥ1(t), U(t) and L(t) against H(t) for Numata’s
data previously given as Figure 1.1. Note that Ĥ1(t) lies close to H(t) and
between U(t) and L(t) throughout its range, which suggests acceptance of
CSR. A formal test based on the integrated squared difference (2.6) and 99
simulations (s = 100) leads to an attained significance level of 0.37, and we
conclude that these data are compatible with a completely random spatial dis-
tribution of saplings over the study region. The same conclusion was reached
by Bartlett (1964) and by Besag and Diggle (1977), who based their test on
Pearson’s X2 goodness-of-fit statistic applied to a histogram of inter-event
distances.
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FIGURE 2.2
EDF plot of inter-event distances for redwood seedlings. —— : data; −−− :
upper and lower envelopes from 99 simulations of CSR.

2.2.2 Analysis of redwood seedlings

For the redwood data of Figure 1.2, a test based on (2.6) again suggests ac-
ceptance of CSR with an attained significance level of 0.22, but a detailed
inspection of the EDF plot in Figure 2.2 leads to a different conclusion. We
see that Ĥ1(t) is greater than H(t) throughout its range and in particular is
greater than U(t) for both very small and very large values of H(t). The ex-
cess of small inter-event distances is compatible with an underlying clustering
mechanism for which, as we have seen, there is a ready biological explanation.
Further reinforcement of this conclusion, if any were needed, lies in Strauss’s
remark that a distance of 6 feet (approximately 2 metres) on the ground, cor-
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responding to t ≈ 0.08, “was thought to be very roughly the range at which
a pair of seedlings could interact.” This suggests that Ĥ1(0.08), the observed
proportion of inter-event distances less than or equal to 6 feet, is a reasonable
test statistic. Since Ĥ1(0.08) > U(0.08), it follows that CSR is rejected at a
(one-sided) attained significance level of 0.01. Strictly, of course, this conclu-
sion would only be valid if we had chosen our test statistic to be Ĥ1(0.08)
before inspecting Figure 2.2. Perhaps a more useful message from this exam-
ple is that it reinforces the value of looking at the EDF plot in conjunction
with its simulation envelopes, rather than relying on the result of a formal
test of significance.
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FIGURE 2.3
EDF plot of inter-event distances for biological cells. —— : data; − − − :
upper and lower envelopes from 99 simulations of CSR.

2.2.3 Analysis of biological cells

For Ripley’s cell data previously given as Figure 1.3, a test based on (2.6)
again suggests acceptance of CSR, this time with an attained significance
level of 0.23, but inspection of the EDF plot in Figure 2.3 again suggests
otherwise. The most striking feature of this plot is the complete absence of
small inter-event distances, so that Ĥ1(t) = 0 for small t. This provides an
explanation for the regular appearance of the observed pattern. Also, at large
values of H(t) we see that Ĥ1(t) lies close to, albeit below, U(t). This is
unusual for a regular pattern, and encourages us to re-examine Figure 1.3.
With the benefit of hindsight, we see a surprising lack of events in the corners
of the unit square. This suggests that there may have been some difficulty in
determining the boundary of the study region, which in turn would have led



Preliminary testing 23

to empty spaces near the corners of the square region and a spurious deficit
of large inter-event distances.

2.2.4 Small distances

For the redwood seedlings and the biological cells, the evidence against CSR
derives from the excess or deficiency, respectively, of small inter-event dis-
tances. The main body of the distribution of inter-event distance is relatively
insensitive to changes in pattern.

It follows that at larger values of t, departures from the null form of H(t)
are usually swamped by sampling fluctuations in Ĥ1(t), unless n is very large.
Thus, while the EDF plot is informative, the test based on (2.6) is not recom-
mended.

An extreme case of concentrating on small inter-event distances would be
to use as test statistic the minimum inter-event distance. This is theoretically
attractive if regular alternatives to CSR are suspected, because for particular
kinds of regular alternative to CSR it can be derived as a likelihood ratio
statistic. Furthermore, an approximate test can be implemented without sim-
ulations. Silverman and Brown (1978) express the asymptotic null distribution
of Tk, the kth smallest inter-event distance, as

n(n− 1)π|A|−1T 2
k ∼ χ2

2k. (2.7)

Ripley and Silverman (1978) suggest that the chi-squared approximation is
adequate for k ≤ 9 when n ≥ 30.

For the biological cells, the observed value of T1, the minimum inter-event
distance, is 0.086. With n = 42 and |A| = 1, (2.7) gives P{T1 ≥ 0.086} < 0.001
and CSR is conclusively rejected. The same test accepts CSR for both the
Japanese black pines and the redwoods.

A disadvantage of this test for large data-sets is its sensitivity to record-
ing inaccuracies. For example, suppose that n events in the unit square are
mapped to an accuracy of two decimal places in each coordinate direction;
this corresponds approximately to the accuracy achieved in Figures 1.1 to 1.3.
Then, the observed value of T1 must be either zero, and significantly small
according to (2.7), or at least 0.01. From (2.7), we can deduce that the up-
per critical value of T1 for a one-sided, 5%, test of CSR is approximately
1.38{n(n − 1)} 1

2 , and this is less than 0.01 if n ≥ 139, hence any non-zero
value of T1 would be declared significantly large. A test based on Tk for some
value of k > 1 is more robust in this respect, but the choice of k then becomes
rather arbitrary.
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2.3 Nearest neighbour distances

For n events in a region A, let yi denote the distance from the ith event to
the nearest other event in A. The yi are called nearest neighbour distances.
Typically, the n nearest neighbour distances for a pattern of n events include
duplicate measurements between reciprocal nearest neighbour pairs. We can
calculate the EDF, Ĝ1(y) say, of the nearest neighbour distances by analogy
with the calculation used in Section 2.2 to obtain Ĥ1(t). Thus,

Ĝ1(y) = n−1#(yi ≤ y).

In many practical situations, interactions between events exist, if at all,
only at a small physical scale. For example, trees would be expected to compete
for sunlight or nutrient within an area roughly confined to their crowns or
root systems, respectively. In such cases, nearest neighbour distances provide
an objective means of concentrating on “small” inter-event distances when a
precise threshold distance cannot be specified in advance.

The theoretical distribution of the nearest neighbour distance Y under
CSR depends on n and on A, and is not expressible in closed form because
of complicated edge effects. An approximation that ignores these edge effects
is obtained by noting that if |A| denotes the area of A, then πy2|A|−1 is
the probability under CSR that an arbitrary event is within distance y of a
specified event. Since the events are located independently, the approximate
distribution function of Y is

G(y) = 1− (1− πy2|A|−1)n−1.

A further approximation for large n, writing λ = n|A|−1, is

G(y) = 1− exp(−λπy2) : y ≥ 0. (2.8)

This result is well known. In Chapter 3 we shall reach it by a different route,
as a property of the homogeneous planar Poisson process.

The EDF Ĝ1(y) can be compared with upper and lower simulation en-
velopes from simulated EDFs Ĝi(y) : i = 2, ..., s exactly as in Section 2.2. The
approximate result (2.8) can be used to suggest a suitable range of tabulation
but, because it is approximate, it is generally preferable to use the sample
mean Ḡ1(y) of simulated EDFs for linearisation of the EDF plot. Possible test
statistics for a Monte Carlo test include the sample mean of the n nearest
neighbour distances, or

ui =

∫
{Ĝi(y)− Ḡi(y)}2dy, (2.9)

where
Ḡi(y) = (s− 1)−1

∑

j �=i

Ĝj(y)
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is defined by analogy with H̄i(t) in Section 2.2. A test based on the sample
mean, ȳ, was proposed by Clark and Evans (1954), but without proper al-
lowance for the dependencies amongst the nearest neighbour distances. One
possible advantage of a test based on ȳ is that, as with the test based on
the minimum inter-event distance, simulation is unnecessary. Donnelly (1978)
has shown that, to a good approximation, the distribution of ȳ under CSR is
Normal, with mean and variance

E[ȳ] = 0.5(n−1|A|)1/2 + (0.051 + 0.042n−1/2)n−1P (2.10)

and
Var(ȳ) = 0.070n−2|A|+ 0.037(n−5|A|)1/2P (2.11)

where P denotes the perimeter length of A. Significantly small or large values
of ȳ indicate aggregation or regularity, respectively. A minor qualification is
that these approximations break down for very convoluted regions A, in which
case a Monte Carlo implementation is again necessary. Also, we maintain that
informal inspection of the EDF plot is at least as important as formal testing.

The obvious method of computing nearest neighbour distances involves a
crude search through all the inter-event distances. For sufficiently large n a
more efficient method is to construct the Dirichlet tessellation of the n events,
and then to search for nearest neighbour distances within the tessellation.
This exploits the fact that, however large n is, each event is contiguous to, on
average, six other events, one of which must be its nearest neighbour. As a
result, only a small fraction of the inter-event distances need to be calculated.
Peter Green (personal communication) has shown that the crude search is
more efficient than the tessellation method for n less than about 500, but
thereafter becomes progressively less efficient with increasing n.

2.3.1 Analysis of Japanese black pine saplings

Figure 2.4 shows the EDF plot of nearest neighbour distances for the Japanese
black pine saplings, together with the upper and lower envelopes from 99
simulations of CSR. The plot suggests acceptance of CSR, as does a Monte
Carlo test based on (2.9) with an attained significance level of 0.52. In addition
the observed value of ȳ is 0.0660, whilst (2.10) and (2.11) give E[ȳ] = 0.0655
and Var(ȳ) = 0.000021, and hence a standard Normal deviate of −0.11, again
suggesting acceptance of CSR.

Incidentally, and in contrast to Figures 2.1, 2.2 and 2.3, the linear inter-
polation between values of the EDF calculated at intervals of 0.01 shows up
clearly in Figure 2.4. However, the limited resolution of the data does not
justify either a much finer tabulation or a more subtle interpolation rule.

2.3.2 Analysis of redwood seedlings

For the redwood seedlings, a Monte Carlo test based on (2.9) leads to em-
phatic rejection of CSR, with u1 comfortably larger than all 99 simulated uj .
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FIGURE 2.4
EDF plot of nearest neighbour distances for Japanese black pine saplings.
—— : data; −−− : upper and lower envelopes from 99 simulations of CSR.

The EDF plot, Figure 2.5, clearly shows the excess of small nearest neigh-
bour distances which is a characteristic feature of aggregated patterns. The
observed value of ȳ is 0.0385. This corresponds to a standard Normal deviate
of −5.96 and again provides strong evidence for rejection of CSR in favour of
an aggregated alternative.

2.3.3 Analysis of biological cells

For the biological cells, (2.9) again gives a value of u1 which is comfortably
larger than all 99 simulated values uj, whilst the EDF plot, Figure 2.6, now
shows the deficiency of small nearest neighbour distances which is typical of
regular patterns. For the Clark-Evans test, the observed value of ȳ is 0.1283,
the corresponding standard Normal deviate 6.30, and the conclusion emphatic
rejection of CSR in favour of a regular alternative.

2.4 Point to nearest event distances

A related type of analysis uses distances xi from each of m sample points in
A to the nearest of the n events. The EDF F̂ (x) = m−1#(xi ≤ x) measures
the empty spaces in A, in the sense that 1 − F̂ (x) is an estimate of the area
|B(x)| of the region B(x) consisting of all points in A a distance at least x
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FIGURE 2.5
EDF plot of nearest neighbour distances for redwood seedlings. —— : data;
−−− : upper and lower envelopes from 99 simulations of CSR.

from every one of the n events in A. The argument leading to (2.8) can be
repeated to show that, under CSR,

F (x) = 1− exp(−πλx2) : z ≥ 0 (2.12)

approximately, where λ = n|A|−1.
Lotwick (1981) describes an algorithm, based on the Green-Sibson Dirich-

let tessellation algorithm, for computing |B(x)| exactly when A is a rectangle.
In practice, using m points in a regular k× k grid gives an adequate approxi-
mation if k is reasonably large. A sensible choice for k depends to some extent
on the precise configuration of the n events in A and on the subsequent use
to which the estimator will be put. Diggle and Matérn (1981) recommend
k ≈ √

n for estimating an unknown F (x) from simulated realisations of a
point process, in which context we have the freedom to choose both the num-
ber of sample points per realisation and the number of realisations. Figure
2.7 shows, for the biological cell data, the degree of approximation introduced
by using k = 7 ≈ √

42 or k = 14. In a modern computing context, concern
about the computational effort of calculating F̂ (x) is unnecessary, and there
is certainly no good statistical reason to limit the choice of k. However, it
is worth remembering that whilst large k will produce a very smooth curve
F̂ (x), its statistical precision is still limited by n, the number of events.

By analogy with the procedure adopted for nearest neighbour distances, a
Monte Carlo test of CSR can be based on the statistic
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FIGURE 2.6
EDF plot of nearest neighbour distances for biological cells. —— : data; −−−
: upper and lower envelopes from 99 simulations of CSR.

ui =

∫
{F̂i(x)− F̄i(x)}2dx. (2.13)

2.4.1 Analysis of Japanese black pine seedlings

Figure 2.8 shows the EDF plot for a point to nearest event analysis of Nu-
mata’s data, using k = 16. We see that F̂1(x) lies between the simulation
envelopes and close to F̄1(x) throughout its range. As in our previous analy-
ses of these data, CSR is accepted.

2.4.2 Analysis of redwood seedlings

Figure 2.9 shows the corresponding EDF plot for the redwood data, again
using k = 16. Now, F̂1(x) lies below the lower simulation envelope for most
of its range, and (2.13) leads to rejection of CSR with u1 larger than all 99
simulated uj . Note that F̂1(x) drifts below the lower simulation envelope. This

is typical of an aggregated pattern, and contrasts with the behaviour of Ĝ1(y)
for these data shown in Figure 2.5.

2.4.3 Analysis of biological cells

Figure 2.10 shows the comparable analysis of the biological cells, using k = 14.
A test based on (2.13) again leads to rejection of CSR with an attained signif-
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FIGURE 2.7
Calculation of F̂ (x) for the biological cells data, using a k × k grid of sample
points for different values of k. —— : k = 7; −−− : k = 14; ....... : k = 96.

icance level of 0.02. The position of F̂1(x) near or above the upper simulation
envelope typifies a regular pattern and again contrasts with the behaviour of
Ĝ1(y) for these data in Figure 2.6.

2.5 Quadrat counts

An alternative to a distance-based approach is to partition A into m sub-
regions, or quadrats, of equal area and to use the counts of numbers of events
in the m quadrats to test CSR. The choice of sub-regions for this exercise
is somewhat arbitrary. For ease of presentation, and because it represents
common practice, we shall assume that A is the unit square and is partitioned
into a regular k × k grid of square sub-regions, so that m = k2. Let ni : i =
1, ...,m be the quadrat counts which result from this partitioning of A and
write n̄ = n/m for the sample mean of the ni. An obvious statistic to test for
departures from the uniform distribution on A implied by CSR is Pearson’s
criterion,

X2 =

m∑

i=1

(ni − n̄)2/n̄, (2.14)
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FIGURE 2.8
EDF plot of point to nearest event distances for Japanese black pine saplings.
—— : data; −−− : upper and lower envelopes from 99 simulations of CSR.

whose null distribution is χ2
m−1, to a good approximation provided that n̄ is

not too small.
Note that X2 is just m− 1 times the sample variance-to-mean ratio of the

observed quadrat counts, which Fisher et al. (1922) introduced in order to test
the hypothesis that the counts follow a Poisson distribution. The relationship
between a uniform distribution of events and a Poisson distribution of quadrat
counts is not entirely transparent, but is implicit in our definition of CSR and
will be discussed further in Chapter 4. Note also that in the present context
the null hypothesis may fail either because of a non-uniform distribution of
events in A or because of dependencies amongst the events. In particular,
significantly large or small values of X2 are both of interest, and respectively
indicate a tendency towards an aggregated or a regular spatial distribution of
events in A.

2.5.1 Analysis of Japanese black pine seedlings

For the 65 Japanese black pine saplings, the conservative rule that expected
frequencies should be at least five suggests using a 3 × 3 grid. This gives an
array of counts

6 15 7
10 4 3
4 8 8
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FIGURE 2.9
EDF plot of point to nearest event distances for redwood seedlings. —— :
data; −−− : upper and lower envelopes from 99 simulations of CSR.

for which X2 = 15.17, corresponding to a one-sided attained significance level
of p = P(χ2

8 > 15.17) ≈ 0.06. Remembering that in the present context the
chi-squared test is naturally two-sided, the evidence against CSR is weak;
further support for this conclusion is provided by the fact that for both 4× 4
and 2×2 grids the observed value of X2 is close to its expectation under CSR.

2.5.2 Analysis of redwood seedlings

For the 62 redwood seedlings a 3 × 3 grid is again a reasonable choice. The
observed counts are

5 9 6
13 8 2
0 6 13

and the X2 value of 22.77 is highly significant (p = 0.0037). A 4 × 4 grid
similarly leads to emphatic rejection of CSR (p = 0.0010), whereas a 2 × 2
grid gives p = 0.156. A plausible model for these data, which we investigate
further in Chapter 7, involves randomly distributed clusters of events. In these
circumstances it is not unreasonable that the smaller-sized quadrats give the
stronger rejection of CSR. The essential point to note here is that the choice
of quadrat size can have a marked effect on the result of the test.
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FIGURE 2.10
EDF plot of point to nearest event distances for biological cells. —— : data;
−−− : upper and lower envelopes from 99 simulations of CSR.

2.5.3 Analysis of biological cells

For the 42 biological cells, the observed values of X2 are below expectation
for 2 × 2, 3× 3 and 4× 4 grids, significantly so in the 2× 2 and 4× 4 cases,
although for a 4×4 grid the expected frequencies under CSR are a little small
for comfort. The failure to reject CSR using the 3 × 3 grid suggests that the
test is weak against regular alternatives to CSR. For comparison with the
previous two examples, we give the 3× 3 array of counts,

3 6 3
4 7 6
3 6 4

2.6 Scales of pattern

Greig-Smith (1952) proposed the following method for the analysis of data pre-
sented as counts in a large grid of contiguous quadrats. The sample variance-
to-mean ratio, also called the index of dispersion, of the counts is first calcu-
lated for the basic grid and for further grids obtained by successive combina-
tion of adjacent quadrats into 2×2, 4×4, etc., blocks. The index of dispersion
is then plotted against block size and peaks or troughs in the graph are inter-
preted as evidence of scales of pattern (aggregated or regular, respectively).
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This method of analysis originated in plant ecology, in which field it be-
came extremely popular; a review by Greig-Smith (1979) lists numerous ap-
plications. A possible objection to the method is that formal tests for the
significance of peaks and troughs in the sequence of indices of dispersion at
different scales are not available. According to the development in Section 2.5,
each index is proportional to a chi-squared statistic for testing the hypothesis
that the events are an independent random sample from the uniform distri-
bution over the study region. Either this hypothesis is true or it is false – it
makes no sense to ask whether it is true at some scales and false at others.

Mead (1974) addressed this formal defect of the Greig-Smith procedure by
establishing a series of independent tests for pattern at several scales. Mead’s
procedure requires the data to be partitioned successively into 1, 4, 16, etc.,
blocks each consisting of 16 counts in a 4×4 grid. At each stage, the hypothesis
to be tested is that, within each block, the set of counts in the four associated
2 × 2 sub-blocks is a random selection from (16!)/(4!)5 = 2, 627, 265 equally
likely possibilities, as implied by CSR. Mead’s suggested test statistic is the
sum of the six absolute pairwise differences between the four sub-block counts
within a block, summed in turn over all blocks. A significantly large value of
this statistic implies that, within blocks, counts in neighbouring quadrats are
relatively similar, and this would be interpreted as evidence of aggregation at
the appropriate scale. A significantly small value similarly implies relatively
dissimilar counts in neighbouring quadrats. This is more difficult to interpret.
An extreme manifestation of it would be a chess-board pattern of alternating
high and low counts, but this seems unlikely to arise in practice. Once the test
statistic, u say, has been chosen, the test itself can be implemented via Monte
Carlo sampling of the null randomization distribution of u. The independence
of the tests at the various scales follows because the randomized 2 × 2 sub-
block counts at one scale become the fixed 4 × 4 block counts at the next
smaller scale, and so on.

So far, we have assumed that the quadrat grid has seen superimposed
retrospectively on a mapped pattern. In practice, the counts may be recorded
directly in the field and a common variation, proposed by Kershaw (1957),
is to replace the k × k grid by an m × 1 transect. The data are then being
analysed essentially as a time-series, an analogy which is strengthened by
Ripley’s (1978) interpretation of Greig-Smith’s method as a form of spectral
analysis on the quadrat counts. By applying Greig-Smith’s, Mead’s and related
methods to simulated data, Ripley also shows that the results can be difficult
to interpret in terms of an underlying generating mechanism. From a modern
statistical perspective, this is of greater concern than the lack of formal tests
of significance.

2.6.1 Analysis of Lansing Woods data

Gerrard (1969) describes an investigation of a 19.6 acre square plot in Lansing
Woods, Clinton County, Michigan, USA. In particular, he has provided the
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FIGURE 2.11
Locations of trees in Lansing woods: left panel, hickories; middle panel,
maples; right panel, oaks.

locations of 2251 trees in the plot. Maps of these data are shown, for the
three major species groupings of hickories, maples and oaks, in Figure 2.11.
Each map is here converted to counts in a 32 × 32 grid, which permits the
investigation of four scales of pattern using Mead’s procedure. The tests are
implemented with 99 Monte Carlo randomizations, and the test statistic at
each scale is the one suggested by Mead.

Table 2.1 gives the ranks of the observed test statistics amongst the Monte
Carlo randomizations. For each of the three species groupings there is mod-
erate or strong evidence of aggregation at the smallest scale and a strong
indication of aggregation at one or more further scales. In the cases of the
hickories and maples, departure from CSR is obvious from inspection of the
data, but for the oaks the visual impression is less clear. Figure 2.12 shows
a plot of the quadrat count index of dispersion against block size, for each
of the three species groupings. The sequence of generally increasing values of
the index observed in each case is consistent with an underlying mechanism
involving random variation in the local intensity of events, and in Chapters 7
and 8 we shall re-examine the data from this viewpoint. The plots in Figure
2.12 do not relate in any obvious way to the results of the analysis by Mead’s
procedure. This inconsistency was experienced also by Ripley (1978). It can-
not be dismissed as an artefact of the Monte Carlo testing, but rather implies
that the concept of a scale of pattern is somewhat ill-defined.

2.6.2 Scales of dependence

Besag (1978) describes a bivariate analogue of Mead’s test in order to investi-
gate what we might term scales of dependence between two patterns. For this,
the basic unit is a 2 × 2 block of quadrats. Each quadrat provides a pair of
counts, one for each species. Besag suggests testing the hypothesis that the
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TABLE 2.1
Analysis of Lansing Woods data by Mead’s procedure, using a 32× 32 grid of
quadrat counts and 99 randomizations. A high rank for u1 suggests aggrega-
tion. Where ties occur, the least extreme rank is quoted. Block size refers to
the number of quadrats which are treated as a single 4× 4 block.

Rank of u1 amongst Block size
ui : i = 1, ..., 100 4× 4 8× 8 16× 16 32× 32
Hickories 99 100 100 90
Maples 100 71 100 62
Oaks 95 99 90 73

two sets of four counts within a block are independent, using as test statis-
tic the Spearman rank correlation coefficient (Kendall, 1970; Sprent, 1981,
Chapter 10) for the two sets of four, summed over all blocks. The test is im-
plemented via Monte Carlo randomization of counts within blocks. Each 2×2
block is then aggregated into a single quadrat, and so on, to give a sequence of
independent tests of the hypothesis of independence for the two sets of counts
within blocks. Besag applies this procedure to the Lansing Woods data and
detects negative dependence between the hickories and maples, at the single
scale corresponding to a partitioning of the study region into a 4 × 4 grid
of blocks, i.e. an 8 × 8 grid of quadrats. The analysis of patterns formed by
two or more distinct types of event will be considered in more detail in later
chapters.

As noted in Section 1.2, contiguous quadrat counts represent a form of
data intermediate between complete mapping and the sparse sampling proce-
dures that we shall discuss in Chapter 3. Greig-Smith (1979) and Mead (1974)
have emphasized that their analyses are intended to be exploratory in nature.
As such, they are most useful for large, potentially heterogeneous data-sets,
particularly if the results suggest further, and quite possibly non-statistical,
investigations of the underlying processes.

2.7 Recommendations

The discussion in this chapter falls short of any systematic investigation of the
power of the various tests under consideration. During the early development
of the subject, many publications focused on tests of CSR and a number in-
cluded comparative power assessments; see, for example, Ripley and Silverman
(1978), Diggle (1979a) and Ripley (1979a). Our recommendations are based
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FIGURE 2.12
Index of dispersion plotted against block size (k×k) for Lansing Woods data,
based on a 32 × 32 grid of quadrat counts. —— : hickories; − − − : maples;
....... : oaks.

partly on a synthesis of published results, but also on accumulated practical
experience.

Our over-riding view is that a test of CSR is of very limited inherent in-
terest, but rather should be seen as a framework within which exploratory
analysis can be conducted. In our view, the most useful procedures are those
based on functional summary descriptions of the data together with simula-
tion envelopes to indicate the range of statistical variation under CSR. Of the
three functional summaries considered in this chapter, we recommend using
both F̂ (·) and Ĝ(·) routinely. The two corresponding theoretical distribution
functions, F (·) and G(·), are equal if the underlying point process is a ho-
mogeneous Poisson process, i.e. if CSR prevails. Also, departures from CSR
typically induce opposite deviations in F̂ (·) and Ĝ(·) from their common the-
oretical form under CSR. These deviations show up in the main body of each
distribution, and are therefore easily seen from their graphical representations
as EDF plots. For these reasons, it may be useful to combine the two types of
nearest neighbour distance into a single test statistic. A possible test statistic,
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analogous to those used in Sections 2.3 and 2.4, would be

u1 =

∫
{F̂ (x) − Ĝ(x)}2dx

Another, suggested by Van Lieshout and Baddeley (1996), would be a statistic
based on an estimate of the function J(x) = {1−G(x)}/{1 − F (x)}. In this
case, it is not necessary to use edge-corrected estimators for F (·) and G(·), as
Van Lieshout and Baddeley have shown that the estimate of J(·) is insensitive
to edge-effects.

The functions F̂ (·) and Ĝ(·), either separately or in combination, are also
useful for assessing the goodness-of-fit of a date-set to any stochastic model.
One reason for this is that they are complementary to the second-order meth-
ods and likelihood-based methods that, as we shall see in later chapters, are
more useful for identifying a suitable class of models and estimating its pa-
rameters, once CSR has been rejected.

The inter-event distance distribution function, H(·), is less useful for pre-
liminary testing. Its behaviour in our three illustrative examples, in which
only the lower tail of the distribution is sensitive to quite pronounced changes
in the underlying pattern, is typical. However, the distribution of inter-event
distances is closely related to the second-order properties of a spatial point
process and, as we shall see in later chapters, in this form it is a valuable tool
in the much wider context of formulating and fitting stochastic models.

Quadrat count methods are now used infrequently for the analysis of
mapped data. By comparison with the distance-based methods, they are less
easily adaptable to more ambitious tasks, such as parameter estimation within
a declared class of stochastic models.
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3.1 General remarks

In this chapter we consider methods for the analysis of data obtained by
a sparse sampling procedure, as defined in Section 1.2. We recall that such
data consist either of quadrat counts in small areas within a study region A,
or of distances measured from sampling points in A to neighbouring events.
The number n of events in A is unknown, but must be assumed to be very
much larger than m, the number of quadrats or sampling points, otherwise a
complete mapping of A would presumably be feasible and would certainly be
more informative. Typically, A will be large and potentially heterogeneous. For
example, sparse sampling methods were originally devised as field-sampling
methods in forestry and plant ecology.

The objectives of a sparse sampling analysis will usually be to estimate the
number of events in A, or equivalently the intensity, defined to be the mean
number of events per unit area, and to obtain a qualitative description of the
underlying pattern through the application of one or more tests of complete
spatial randomness. If more detailed inferences are required, these are better
dealt with by the collection and analysis of mapped data in sub-regions of
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A. Indeed, one useful function of a preliminary, sparse sampling analysis is to
provide guidelines for the planning of a subsequent more detailed investigation.

Most theoretical discussions of sparse sampling assume, if only implicitly,
that sample points are randomly located according to a uniform distribution
on A. However, the essential practical requirement for the validity of most
of the associated statistical methods that we consider in this chapter is that
sample points should be well separated in order that observations from differ-
ent points can be assumed to be independent. This is most easily achieved by
a systematic sampling design. Another desirable feature of systematic sam-
pling is that it conveniently allows for retrospective partitioning of A into
several sub-regions within which separate analyses can be performed and the
results compared. A possible disadvantage is that the interval between succes-
sive sample points may coincide with periodicities in the underlying pattern.
If this is thought to be a serious danger, it can be alleviated by random sam-
pling within sub-regions of A. Other possible designs include, for example,
the location of sample points along line transects. Note that the statistical
merits of different sampling schemes should be compared on the basis of equal
effort in the field. In this respect, systematic sampling may permit a larger
value of m and, all other things being equal, a more sensitive analysis. In
theory, the maximum value of m is constrained by the requirement that dif-
ferent sample points should generate independent observations. In practice,
this constraint is not severe if systematic sampling is used. Byth and Ripley
(1980) use simulations to establish that for any of the commonly used dis-
tance measurements, m may be at least as large as 0.1n. If random sampling
is used a safe upper limit is about 0.05n. In the remainder of this chapter
we assume without further comment that observations from different sample
points are independent. Whatever sampling design is adopted, objectivity in
the positioning of the sample points is, of course, vital.

In the remainder of this chapter, we first discuss separately the use of
quadrat counts and distance methods for testing CSR and for estimating in-
tensity. We then describe tests of independence between pairs of patterns,
which are relevant to the interpretation of data like the Lansing Woods data
in which different species are recorded within the same study region.

3.2 Quadrat counts

We recall from Section 1.3 that, under CSR, the number N(B) of events in
any region with area B follows a Poisson distribution with mean λB, where
λ is the intensity. Explicitly, the probability distribution of N(B) is

pn(B) = exp(−λB){(λB)n/n!} : n = 0, 1, 2, .... (3.1)
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In this section, we assume that the available data comprise independent counts
n1, n2, ..., nm in m such quadrats, each of area B.

3.2.1 Tests of CSR

We wish to test the hypothesis that the ni are an independent random sample
from a Poisson distribution with unspecified mean. A natural test statistic is
the sample variance-to-mean ratio or index of dispersion,

I =
m∑

i=1

(ni − n̄)2/{(m− 1)n̄}. (3.2)

The intuitive appeal of (3.2) rests on the equality of the mean and variance of
the Poisson distribution (3.1). Thus, I can be interpreted as a variance ratio
statistic. The numerator,

s2 = (m− 1)−1
m∑

i=1

(ni − n̄)2,

estimates the variance of N(B) when no distributional assumptions are made,
whilst the denominator, n̄, estimates the variance when CSR holds. The index
of dispersion was first used by Fisher et al. (1922). Under CSR, the sampling
distribution of (m − 1)I is χ2

m−1, to a good approximation provided that
m > 6 and λB > 1 (Kathirgamatamby, 1953). Significantly large or small
values respectively indicate aggregated or regular departures from CSR. In
Section 2.5 we showed that (m − 1)I could also be interpreted as Pearson’s
goodness-of-fit criterion for a uniform distribution of events over the union of
the m quadrats, conditional on the total count.

The power of the index of dispersion test obviously increases with m, but
also depends in an unpredictable way on the size and shape of the individual
quadrats. Perry and Mead (1979) calculate the power of the test against a
heterogeneous alternative to CSR involving interspersed patches of high and
low intensity. Stiteler and Patil (1971) calculate the theoretical variance-to-
mean ratio for some regular lattice patterns. Results in the above two papers
and in Diggle (1979a) suggest that the index of dispersion test is generally
powerful against aggregated alternatives to CSR, but may be weak against
regularity.

For quadrat count data, the index of dispersion appears to have no seri-
ous rivals as a test statistic. Cormack (1979) notes that alternative indices
proposed by Morisita (1959) and by Lloyd (1967) need to be converted to
(m− 1)I in order to test CSR.

Early work on the analysis of quadrat count data concentrated on the
development of more general families of discrete distributions than the single-
parameter Poisson, especially with a view to modelling aggregated patterns.
See, for example, Evans (1953) or Douglas (1979). The story of the rise and
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fall of these so-called “contagious distributions” as tools for the analysis of
spatial data is of some historical interest because it shows how attempts to
model observed data through discrete distributions ultimately foundered on
their failure to respect the underlying setting of spatial point processes. We
shall return to this in Chapter 6, as part of a wider discussion of the various
classes of models that have been proposed for aggregated patterns.

3.2.2 Estimators of intensity

An intuitively reasonable estimator of the intensity is the total count divided
by the total quadrat area,

λ̂ =

m∑

i=1

ni/(mB). (3.3)

It is easy to establish from (3.1) that this is the maximum likelihood estimator

under CSR, in which case λ is unbiased for λ̂, with variance λ/(mB). More

generally, λ̂ is always an unbiased estimator for the intensity but its variance
may depend on the size and shape of the individual quadrats and on the
sampling scheme, as well as on the total quadrat area. Note that, strictly, the
variance of λ̂ is different according to whether it is regarded as an estimator
for the observed number of events per unit area within A or for the intensity
of an underlying spatial point process that is assumed to have generated the
observed pattern: in the former case the variance goes to zero as a systematic
sample of quadrats extends to cover the whole of A. In practice, the assumed
sparseness of the sampling makes this distinction unimportant and the sample
standard deviation of the observed counts can be used to construct interval
estimates of λ. Some authors, including Ghent (1963), have suggested that in

practice λ̂ may be biased by a tendency for the field-worker to include events
just outside the individual quadrat boundaries, in the mistaken belief that an
empty quadrat contains no information.

3.2.3 Analysis of Lansing Woods data

We now apply these techniques to the Lansing Woods data introduced in Sec-
tion 2.7, taking a systematic sample of 25 square quadrats of side 0.05 arranged
in a 5× 5 grid. We emphasise that this analysis is purely illustrative, because
analysing a mapped pattern by sparse sampling methods is inefficient. Table
3.1 gives the results for the analysis of each of the three species groupings.
For the hickories and maples, CSR is overwhelmingly rejected in favour of an
aggregated alternative, whilst for the oaks CSR is accepted (the one-sided 5%
and 1% critical values of I when m = 25 are 1.52 and 1.79, respectively). In

all three cases, λ̂ is within one empirical standard error of λ, which we take
to be equal to n because A is the unit square.

In these analyses, the individual counts are typically small (average counts



Methods for sparsely sampled patterns 43

TABLE 3.1
Quadrat count analysis of Lansing Woods data, using 25 square quadrats of
side 0.05.

λ I λ̂/λ S.E.(λ̂/λ)
Hickories 703 2.59 1.02 0.25
Maples 514 2.92 0.90 0.29
Oaks 929 1.22 1.03 0.15

for hickories, maples and oaks were 1.80, 1.16 and 2.40 respectively) but the
quadrats are nevertheless physically quite large, as 0.05 translates to about
46 feet (14 metres) in the field. We repeated the analysis using 100 quadrats
of side 0.02 and found marginal evidence against CSR for the maples and the
oaks, but none at all for the hickories. However, the null distribution theory
is suspect in this case because of the small average counts.

These results are generally consistent with, but weaker than, those ob-
tained in Section 2.6 using a grid of contiguous quadrats to partition the
whole of the study region.

3.3 Distance measurements

Distance methods, also known as plot-less sampling techniques, were intro-
duced because of the practical difficulties sometimes raised by quadrat sam-
pling. An early reference is Cottam and Curtis (1949). It is straightforward
to devise a large number of subtly different distance methods, each with its
own distribution theory. Possibly for this reason, an extensive literature on
distance methods developed throughout the 1950’s, 1960’s and 1970’s. Most of
the early work was concerned with the definition of various types of distance
measurement and associated statistics to test CSR or to estimate intensity.
Holgate (1965a) marked something of a departure in that he evaluated the
power functions of several tests of CSR against theoretical alternatives, thus
providing an objective basis for the choice of a method. Developments since
1965 tended to continue in this vein, investigating the power of tests of CSR
(Holgate, 1965b; Besag and Gleaves, 1973; Brown and Holgate, 1974; Dig-
gle et al., 1976; Cox and Lewis, 1976; Diggle, 1977b; Hines and Hines, 1979;
Byth and Ripley, 1980) or the robustness of estimators of intensity (Persson,
1971; Pollard, 1971; Holgate, 1972; Diggle, 1975, 1977a; Cox, 1976; Warren
and Batcheler, 1979; Patil et al., 1979; Byth, 1982).
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3.3.1 Distribution theory under CSR

When CSR holds, the distribution theory for the various distance methods
can be derived from the Poisson distribution of quadrat counts together with
the independence of counts in disjoint regions. From (3.1), taking B to be the
area πx2 of a disc of radius x, we immediately deduce that the distribution
function of the distance X from an arbitrary point (or event) to the nearest
(other) event is

F (x) = 1− exp(−πλx2) : x ≥ 0, (3.4)

a result previously given at (2.8) and (2.12). Notice that πX2 follows an
exponential distribution with parameter λ and 2πλX2 is therefore distributed
as χ2

2.
Various other distance distributions associated with the Poisson process

can be derived from (3.1) and the independence of numbers of events in disjoint
regions. Let Xk,θ denote the distance from an arbitrary point or event to the
kth nearest event within a sector of included angle θ ≤ 2π and arbitrary
orientation. Let Uk = 1

2θX
2
k,θ and note that Uk is the area of a sector of

included angle θ and radius Xk,θ. Then,

P (U1 > u1) = P{N(u1) = 0} = e−λu1 ,

again using (3.1). Furthermore, for any u2 > u1,

P (U2 > u2 | U1 = u1) = P{N(u2 − u1) = 0} = exp{−λ(u2 − u1)},

so that the conditional probability distribution function (pdf) of U2, given
U1 = ui, is λ exp(−λ(u2 − u1)} and the joint pdf of (U1, U2) is

f2(u1, u2) = λ2 exp(−λu2) : 0 < u1 < u2.

Essentially the same argument gives the joint pdf of (U1, ..., Uk) for any k as

fk(u1, ..., uk) = λk exp(−λuk) : 0 < u1 < · · · < uk, (3.5)

a result due to Thompson (1956).
More intricate geometrical constructions can be handled similarly. For ex-

ample, Cox and Lewis (1976) consider the joint distribution of random vari-
ables X and Y defined as the respective distances from an arbitrary point O
to the nearest event, at P say, and from P to the nearest other event, Q. Then,

P (Y > y | X = x) = P[N{A(x, y)} = 0],

where
A(x, y) = πy2 − (φy2 + θx2 − xy sinφ) (3.6)

is the area of the shaded region in Figure 3.1, cosφ = y/(2x) and θ+2φ = π.
Notice in particular that P is not an arbitrary event; the selection proce-

dure for P is biased in favour of the more isolated events in the population.
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FIGURE 3.1
The nearest event, P, to an arbitrary point, O, and the nearest event, Q, to
the event P.

Cox and Lewis further deduce from (3.6) that, conditional on Y > 2X , the
random variable 4X2/Y 2 is uniformly distributed on (0, 1). Cormack (1977)
uses a strikingly simple geometrical argument to show that this holds for any
underlying pattern. Briefly, for an arbitrary pattern of events, consider the
ith event to be located at the centre of a disc of radius xi/2, where xi is the
distance from the ith event to its nearest neighbour. These circles touch when
pairs of events are reciprocal nearest neighbours, but cannot intersect. Con-
ditioning on Y > 2X is equivalent to placing the sampling origin O uniformly
at random within the union of these discs, and the result follows.

A related, but distributionally simpler, device is the T-square sampling
procedure of Besag and Gleaves (1973). As shown in Figure 3.2, O and P are
as above, but Q is now the nearest event to P under the restriction that the
angle OPQ must be at least π/2. With X =OP as above and Z =PQ, we see
that

P(Z > z|X = x) = P{N(πz2/2) = 0} = exp(−λπx2/2)

and deduce that 2πλX2 and πλZ2 are independently and identically dis-
tributed as χ2

2

T-square and other distance-based methods for sampling spatial point pat-
terns were originally applied in forestry and plant ecology, but have recently
re-emerged as a tool for surveying refugee camps and other unplanned human
settlements (Bostoen, Chalabi and Grais, 2007; see also Section 3.3.5).
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FIGURE 3.2
T-square sampling: the nearest event, P, to an arbitrary point, O, and the
T-square nearest neighbour, Q, to the event P.

3.3.2 Tests of CSR

In this sub-section, remarks on the comparative power of different tests rep-
resent an overview of results in Diggle et al. (1976), Hines and Hines (1979)
and Byth and Ripley (1980). The original papers give more details in specific
instances.

One general approach to the construction of a scale-free statistic to test
CSR is to compare two types of distance measurement. For example, Hop-
kins (1954) considers measurements xi : i = 1, ...,m, from each of m sample
points to the nearest event and yi : i = 1, ...,m from each of m randomly
sampled events to the nearest other event. Under CSR and sparse sampling,
2πλx2

i and 2πλy2i are independently distributed as χ2
2. Thus, 2πλ

∑m
i=1 x

2
i and

2πλ
∑m

i=1 y
2
i are independently distributed as χ2

2m and

h =
∑

x2
i /

∑
y2i (3.7)

is distributed as F2m,2m. In (3.7), and in the remainder of this section unless
stated otherwise, summations are over i = 1, ...,m. The rationale for Hopkins’
test is that in an aggregated pattern, the point-event distances xi will be large
relative to the event-event distances yi, and vice versa in a regular pattern.
Thus, significantly large or small values of h indicate aggregation or regularity,
respectively. Note that h/(1 + h) lies between 0 and 1 and could therefore be
regarded as an index of pattern. The statistic h was proposed independently
by Moore (1954).
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Within the context of sparse sampling methods, Hopkins’ test generally
has good power properties. However, the random selection of events requires
a complete enumeration within A, which is precisely the operation we wish
to avoid in a sparse sampling analysis. Byth and Ripley (1980) propose im-
plementing Hopkins’ test, but selecting one event at random from each of m
quadrats “of a size which would contain about five trees on average”. In some
contexts this might still prove impractical, and would in any case imply an
increased effort in the field which has not been allowed for in published power
comparisons.

Holgate (1965b) considers measurements (x1i, x2i) : i = 1, ...,m from each
of m sample points to the nearest and second nearest events, respectively. He
then uses (3.5) to deduce that, under CSR, x2

1i/x
2
2i is uniformly distributed

on (0, 1), whence

hN = m−1
∑

(x2
1i/x

2
2i)

is Normally distributed with mean 1 and variance (12m)−1, to an excellent
approximation if m > 10. Alternatively,

hF =
∑

x2
1i/

∑
(x2

2i − x2
1i)

is distributed as F2m,2m. The rationale for hF is that (x2
2i−x2

1i) should behave
like y2i , and the interpretation of hN or hF is the same as for Hopkins’ h.
Published results suggest that Holgate’s tests are generally less powerful than
Hopkins’ test and, in particular, are very weak against regular alternatives to
CSR.

Eberhardt (1967) considered only point–event distances xi, and proposed
an index

e = m
∑

x2
i /(

∑
xi)

2.

Note that
√{m(e − 1)/(m − 1)} is the sample coefficient of variation of the

distances xi. Hines and Hines (1979) provide critical values to test CSR but the
test must be weak against aggregated alternatives, because the distribution of
e under CSR applies also to a process of randomly distributed point clusters,
in which each single event of a completely random pattern is replaced by a
fixed or random number of coincident events. By the same argument, any
scale-free statistic based only on measurements of the distance from a sample
point to the nearest event must be suspect.

Besag and Gleaves (1973) use data (xi, zi) : i = 1, ...,m generated by their
T-square sampling procedure as described in Section 3.3.1. Recall that xi is
a point-event distance and zi an event-event distance in a restricted area of
search. Two possible test statistics are

tN = m−1
∑

x2
i /(x

2
i + z2i /2) (3.8)

and
tF = 2

∑
x2
i /

∑
z2i , (3.9)
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whose distributions under CSR are the same as for the corresponding Hol-
gate statistics hN and hF . Significantly large or small values again suggest
aggregation or regularity, respectively. The T-square tests are generally less
powerful than Hopkins’ test but more powerful than their Holgate counter-
parts, particularly against regular alternatives. On balance, tN is preferable
to tF , although this does depend on the range of alternatives under considera-
tion. Hines and Hines (1979) recommend a variant of Eberhardt’s index based
on T-square sampling. In this variant, the measurements xi and zi/

√
2, which

under CSR are independent with a common distribution given by (3.4), are
treated as a single sample of size 2m. The resulting test statistic appears to
be slightly more powerful than tN against a range of aggregated and regular
alternatives, although its interpretation is less transparent.

One advantage of the T-square sampling procedure is that the simplicity of
its distribution theory under CSR allows to some extent for the development
of appropriate tests when the range of alternatives is restricted a priori. For
example, a test based on tN is insensitive to long-range fluctuations in local
intensity. Specifically, if CSR applies locally but with possibly different values,
λi : i = 1, ...,m say, of the intensity parameter associated with the different
sample points, the distribution of tN is the same as under CSR. However,
within this restricted context it is straightforward to derive the likelihood
ratio test of CSR, which corresponds to equal λi. The test statistic is

M = 48m
{
m log(ū)−

∑
log ui

}
/(13m+ 1) (3.10)

where ui = x2
i + z2i /2. The approximate distribution of M under CSR is

χ2
m−1. This test is a direct analogue of Bartlett’s (1937) test of the equality of

variances in Normal sampling and incorporates the correction factor recom-
mended by Bartlett to improve the chi-squared approximation. Note that the
test is one-sided: significantly large values suggest rejection of CSR. Diggle
(1977b) proposed a two-stage procedure in which the M -test is applied only
if an initial test using tN gives a non-significant result. The effect of this is to
achieve a four-way classification of the underlying pattern as regular, random,
heterogeneous or aggregated, although the two-stage procedure means that
the nominal significance level for M is not strictly correct.

Another situation in which the standard tests are unsatisfactory is when
elements of aggregation and regularity are combined. For example, Brown
and Rothery (1978) discuss the detection of local regularity in the presence of
long-range aggregation, motivated by a study of the spacing of ducks’ nests
when only a small proportion of the study region contains usable nesting
sites (Brown, 1975). In this context, T-square sampling will typically generate
point-event distances xi which are larger than the event-event distances zi,
indicating aggregation. The local regularity could be detected by using only
the zi. Two possible statistics based on the zi : i = 1, ...,m are the Eberhardt
index or a variant of the M statistic,

M = 24m
{
m log(z̄2)−

∑
log z2i

}
/(7m+ 1)
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with significantly small values of either statistic indicating regularity.
Cox and Lewis (1976) work with data (xi, yi) : i = 1, ...,m, where xi is the

distance from the ith sample point to the nearest event and yi the distance
from that event to the nearest other event. As described in Section 3.3.1 above,
Cormack (1977) shows that pairs (xi, yi) with yi > 2xi are uninformative. Cox
and Lewis consider the m0 ≤ m pairs for which yi < 2xi, and use (3.6) to
show that the following sequence of transformations produces observations
ri : i = 1, ...,m, whose distribution under CSR is uniform on (0, 1):
(i) θi = 2 sin−1{yi/(2xi)};
(ii) wi = {2π + sin θi − (π + θi) cos θi}−1;
(iii) ri = (4πwi − 1)/3. It follows that cl = m−1

0

∑
ri is approximately Nor-

mally distributed with mean 0.5 and variance (12m0)
−1 under CSR. Signif-

icantly large or small values indicate aggregation or regularity respectively,
and in either case the power of the test appears to be comparable to that of
tN .

3.3.3 Estimators of intensity

Suppose now that distances are measured from each sample point to the near-
est, second nearest, ..., kth nearest event. Then, (3.5) shows that under CSR
the distances xki : i = 1, ...,m to kth nearest events are sufficient for λ, and
the maximum likelihood estimator of γ = λ−1 is

γ̂k = π(
∑

x2
ki)/(km)

which is unbiased with variance γ2/(km). An increase in the value of k gives
an estimator which has smaller variance, but whose application in the field is
more time-consuming. The more subtle question of robustness to departures
from CSR will be considered shortly. The change from λ to γ as the param-
eter of interest makes for ease of presentation, but also seems natural for a
distance-based method of estimation, since squared distances effectively mea-
sure areas. Holgate (1964) showed that if the total quadrat area in the quadrat
count estimator (3.5) is set equal to the expected area of search involved in
computing γ̂−1

k , considered as an estimator for λ, then the two methods are
equally efficient under CSR and, incidentally, all choices of k in γ̂k are equally
efficient.

The major objection to γ̂k is that it can be seriously biased when CSR does
not hold (Persson, 1971; Pollard, 1971). The bias tends to become smaller for
larger values of k, but identifying the kth nearest neighbour in the field then
becomes difficult. An alternative strategy for reducing the bias is to note that
estimators based on point-event and on event-event distances tend to be biased
in opposite directions. An average of the two should therefore be more robust,
in the sense of having smaller bias for a wide range of underlying patterns.
Under CSR, the maximum likelihood estimator for γ based on a T-square
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sample (xi, zi) : i = 1, ...,m, is

γ̂T = π(
∑

x2
i +

∑
z2i /2)/(2m),

the arithmetic mean of estimators based on the xi or zi measurements sepa-
rately. Results in Diggle (1975, 1977a) suggest that a more robust estimator
is

γ∗
T = (π/m)

√
(2

∑
x2
i /

∑
z2i )

whilst Byth (1982) recommends

γ̃T = (2
√
2/m2)(

∑
xi

∑
zi), (3.11)

which is less sensitive than γ∗
T to an occasional very large xi measurement in

a strongly aggregated pattern.
Because γ̃T is a function of two sample means, its approximate standard

error can be calculated using the delta technique. Let x̄, z̄, s2x, s
2
z and sxz

denote sample means, variances and covariance. Then,

S.E.(γ̃T ) ≈
√{8(z̄2s2x + 2x̄z̄sxz + x̄2s2z)/m}.

Strictly, this does not lead to interval estimates for γ but for E(γ̃T ). How-
ever, it would appear that the bias of γ̃T is often small. It is admittedly easy
to devise theoretical point process models for which γ̃T performs badly, but
these typically represent extreme departures from CSR which would be easily
detected in the field. One example would be a process involving large, tightly
clustered groups of events, in which case it would be more sensible to estimate
separately the mean area per cluster and the mean cluster size.

Cox (1976) and Warren and Batcheler (1979) adopt a different approach in
which an empirically determined correction factor is applied to an estimator
based only on point-event distances. Warren and Batcheler report a variety of
successful applications, but Byth (1982) obtains disappointing results from a
simulation study.

Patil et al. (1979) devise a consistent estimator for the intensity of any
stationary process that does not generate multiple coincident events, but this
theoretically desirable property appears to have been achieved at the expense
of a large increase in variance.

3.3.4 Analysis of Lansing Woods data

We again use the Lansing Woods data to illustrate the use of sparse sampling
techniques, in this case T-square sampling. We take a systematic sample of
m = 25 points in a 5×5 grid. To test CSR we use the tN -statistic (3.8) followed
if necessary by the M statistic (3.10). To estimate γ, the mean area per event,
we use Byth’s estimator γ̃T , defined at (3.11). The results are given in Table
3.2. We accept CSR for the oaks, but reject CSR in favour of a heterogeneous
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TABLE 3.2
T-square analysis of Lansing Woods data. Figures in parentheses indicate
attained significance levels for tests of CSR (two-sided for tN , one-sided for
M).

γ tN M γ̃T /γ S.E.(γ̃T /γ
Hickories 0.001425 0.54 (0.53) 41.26 (0.02) 1.47 0.26
Maples 0.001946 0.60 (0.08) 38.28 (0.03) 1.23 0.29
Oaks 0.001076 0.42 (0.17) 32.18 (0.12) 0.99 0.15

alternative for both the hickories and the maples. The estimates of γ̃T are
within one empirical standard error of γ except for the hickories, where the
difference is about 1.8 standard errors.

3.3.5 Catana’s wandering quarter

An ingenious sampling procedure whose statistical potential appears not to
have been tapped is Catana’s (1963) “wandering quarter.” This generates a
single point-event distance x0 and a sequence of event-event distances xi :
i = 1, ...,m, from a single starting point O, as indicated in Figure 3.3. Under
CSR, the transformed observations πx2

i are independently distributed as χ2
2.

Inferential procedures could, and should, recognize the spatial ordering of the
xi. If the underlying pattern is one of patchy spatial heterogeneity, this would
induce autocorrelation in the series. Even without any formal analysis, simple
plotting of the xi in sequence order could reveal interesting spatial trends.

The method could also be used to sample a large region by a series of
essentially parallel traverses. From a practical point of view, it is attractive
that the field-worker can take observations continuously as they traverse the
study region, whilst the restriction of the area of search for each event to a
ninety-degree sector neatly ensures that successive regions of search do not
overlap.

In their discussion of distance-based sampling methods for estimating the
size of unplanned human settlements such as refugee camps, Bostoen, Chalabi
and Grais (2007) mention Catana’s method but focus on T-square sampling,
including a detailed discussion of how to optimise a route through a series of
sampling origins distributed at random within the region of interest. In this
context Catana’s method, which generates a whole sequence of measurements
from a single sampling origin, would seem to have considerable practical ad-
vantages over T-square sampling in terms of the amount of information that
can be gathered for a fixed sampling effort in the field.
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 O

FIGURE 3.3
Catana’s wandering quarter: solid lines indicate a sequence of recorded dis-
tances, starting from the point O.

3.4 Tests of independence

When events of two different types, for example plants of different species,
co-exist within a study region, it may be of interest to establish whether the
two underlying point processes are independent.

For quadrat count data, the hypothesis under test is that the two sets
of counts are independent, but with unspecified marginal distributions. Be-
cause the data are discrete, they are naturally presented as a two-way table of
frequencies and the hypothesis of independence, conditional on the marginal
totals, can be tested via Pearson’s X2 statistic or its asymptotic equivalent,
the likelihood ratio statistic for interaction between rows and columns in a
Poisson log-linear model. Note that this does not assume that the counts are
marginally Poisson-distributed.

For a distance-based approach, an early contribution was made by Goodall
(1965) who observed that, under independence, the distances from an arbi-
trary point to the nearest type 2 event, and from an arbitrary type 1 event
to the nearest type 2 event, would be identically distributed. In this context,
treating the nearest type 1 event to an arbitrary point as an arbitrary type 1
event would not invalidate a test of independence of the two types of event. It
would affect the power of the test, as would switching the labelling of the two
types. For example, consider a process in which type 1 events form a Poisson
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process and a proportion p of type 1 events have an associated type 2 event a
small distance away. If p is small, the test as described will be weak, whereas
interchanging the role of the two types of event would give a more powerful
test since every type 2 event has an associated type 1 event close by, but not
conversely.

Diggle and Cox (1983) propose as test statistic Kendall’s rank correla-
tion coefficient τ (Kendall, 1970; Sprent, 1981, Chapter 10) between pairs of
distances from each of n sample points to the nearest events of type 1 and
type 2. Their comparative simulations suggest that this test is more power-
ful than Goodall’s test against a range of positively or negatively dependent
alternatives to independence.

3.5 Recommendations

It is difficult to compare the statistical merits of quadrat count and distance
methods because they are based on quite different sampling operations, and
their relative ease of implementation in the field will vary considerably between
applications.

For a quadrat count analysis, the choice of which statistic to use for testing
or estimation is straightforward. In contrast, the choice of quadrat size is
rather arbitrary and can seriously affect the results of the analysis. With this
qualification, the index of dispersion (3.1) provides a test of CSR which is
generally powerful against aggregation, but less so against regularity. The
intensity estimator λ̂ defined at (3.3) is always unbiased.

Amongst the many distance-based methods, T-square sampling is easy to
use in the field, and the simplicity of its associated distribution theory gives
some degree of flexibility in the construction of tests of CSR and estimators
of intensity. To test CSR, the combination of tN and M allows a four-way
classification of the underlying pattern as regular, random, heterogeneous or
aggregated, with good power against each type of alternative. To estimate the
mean area per event, the estimator γ̃T is generally robust, although unbiased-
ness is not guaranteed. Catana’s method also has the advantages of ease of
use in the field and tractable distribution theory under complete spatial ran-
domness. Moreover, it naturally provides a systematic coverage of the region
of interest through a series of parallel transects, inviting a more flexible and
searching analysis strategy than merely estimating intensity and testing for
departure from complete spatial randomnness.

Finally, note that sparse sampling methods are inherently limited in what
they can achieve by comparison with methods for the analysis of mapped data.
In this respect, we again emphasise that the discussion of the Lansing Woods
data in this chapter is purely illustrative.
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4.1 Processes and summary descriptions

A spatial point process is a stochastic mechanism that generates a countable
set of events xi in the plane. We will usually be dealing with processes that
are stationary and isotropic. Stationarity means that all properties of the
process are invariant under translation, isotropy that they are invariant under
rotation. These assumptions are less restrictive than they might seem at first
sight. In particular, they do not rule out the modelling of random heterogeneity
in the environment (recall the discussion of Figure 1.2 in Section 1.1). However,
three qualifications are in order.

Firstly, although models are often defined as processes on the whole plane,
in practice we only apply them to data from finite planar regions and it will
be sufficient for our purposes if stationarity and isotropy hold to a reasonable
approximation within the study region in question. Indeed, study regions are

55
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often selected with this requirement implicitly in mind so that, for example,
in micro-anatomical studies the tissue sections to be analysed are deliberately
sited well away from any boundaries between different types of tissue.

Secondly, we will abandon the stationarity assumption when the data in-
clude spatial explanatory variables that account for spatial variation in the
local intensity of events.

Finally, in some applications we may choose to circumvent the stationarity
assumption by the use of design-based inference. This applies to the analysis
of replicated patterns as discussed in Chapter 5, to certain problems in envi-
ronmental epidemiology which we consider in Chapter 9, and to our discussion
of mechanistic models for spatio-temporal point processes in Chapter 13.

Many statistical methods for spatial point pattern data involve compar-
isons between empirical summary descriptions of the data and the correspond-
ing theoretical summary descriptions of a point process model. However, it is
important that the theoretical summary descriptions are derived from an un-
derlying model, rather than being advanced as models in their own right. For
example, we have already seen in Chapter 2 that one summary description
of the homogeneous Poisson process is that the distribution function of the
distance from an arbitrary event of the process to its nearest neighbour is

G(y) = 1− exp(−λπy2) : y ≥ 0.

This leads, amongst other things, to the construction of tests of complete
spatial randomness involving a comparison between this theoretical form of
G(y) and the corresponding empirical distribution function for an observed
pattern of n events. However, it would make no sense to attempt to define a
more general class of models by embedding G(y) within a larger parametric
family of distributions unless the enlarged class were itself derived from an
explicit class of point process models.

In this chapter, we consider various theoretical summary descriptions of
point processes, and the corresponding empirical descriptions of point pattern
data. We focus on properties that lead to useful statistical methods, and il-
lustrate their use on a number of data-sets. We include a description of the
homogeneous Poisson process and, for multivariate processes, discuss the ideas
of independence and random labelling. We postpone until Chapter 6 a gen-
eral discussion of different parametric classes of point processes that have been
proposed as models for data.

We need the following notation: E[X ] denotes the expectation of a random
variable X ; N(A) denotes the number of events in the planar region A; in a
multivariate process, Nj(A) similarly denotes the number of type j events in
A; |A| is the area of A; dx is an infinitesimal region that contains the point x;
||x− y|| denotes the Euclidean distance between the points x and y.
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4.2 Second-order properties

4.2.1 Univariate processes

We can now define the first-order and second-order properties of a spatial
point process. First-order properties are described by an intensity function,

λ(x) =
lim

| dx |→ 0

{
E[N(dx)]

|dx|

}
.

For a stationary process, λ(x) assumes a constant value λ, the mean number
of events per unit area.

The second-order intensity function is similarly defined as

λ2(x, y) =
lim

|dx|, |dy| → 0

{
E[N(dx)N(dy)]

|dx||dy|

}
.

A closely related quantity is the conditional intensity λc(x|y) = λ2(x, y)/λ(y)
which, loosely speaking, corresponds to the intensity at the point x conditional
on the information that there is an event at y.

For a stationary process, λ2(x, y) ≡ λ2(x − y); for a stationary, isotropic
process, λ2(x − y) reduces further to λ2(t), where t = ||x − y||. In statistical
mechanics, the scaled function ρ(t) = λ2(t)/λ

2 is referred to as the radial
distribution function, or pair correlation function, although it is neither a
distribution function nor a correlation function in the usual statistical sense.

Baddeley, Møller and Waagepetersen (2000) discuss intensity-reweighted
(second-order) stationary processes, which have the property that

λ2(x, y)/λ(x)λ(y) = ρ(t) (4.1)

depends only on t = ||x − y||. Note that this requires the intensity function
λ(x) to be bounded away from zero, in which case we again call ρ(t) the
pair correlation function. Intensity-reweighted stationarity is a point process
analogue of the assumption commonly made in the analysis of real-valued
spatial processes that the mean value may vary spatially whereas the variation
about the local mean is stationary.

An alternative characterisation of the second-order properties of a station-
ary, isotropic process is provided by the function K(t), one definition of which
is

K(t) = λ−1E[N0(t)], (4.2)

where N0(t) is the number of further events within distance t of an arbitrary
event. The notion of an arbitrary event of the process involves the conceptual
limit of simple random sampling from a finite population. For a mathemati-
cally rigorous discussion see, for example, Daley and Vere-Jones (2002, 2005).
Intuitively, we envisage a large but finite number n of events in some finite
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region and define an arbitrary event to be an event selected at random from
this population. Similarly, in practice an arbitrary point will mean a point
distributed uniformly over some finite region.

In order to establish a link betweenK(t) and λ2(t) we shall assume that our
process is orderly, by which we mean that multiple coincident events cannot
occur or, more precisely, that P{N(dx) > 1} is of a smaller order of magnitude
than |dx|. This means that E[N(dx)] ∼ P{N(dx) = 1} in the sense that the
ratio of these two quantities tends to 1 as |dx| → 0. We shall further assume
that in a similar sense, E[N(dx)N(dy)] ∼ P{N(dx) = N(dy) = 1}. Under
these conditions, the expected number of further events within distance t of
an arbitrary event can be computed by integrating the conditional intensity
over the disc with centre the origin and radius t. Hence,

λK(t) =

∫ 2π

0

∫ t

0

{λc(x|o)xdxdθ.

Using the fact that λc(x|o) = λ2(x)/λ, this gives

λK(t) = 2πλ−1

∫ t

0

λ2(x)xdx, (4.3)

or conversely, λ2(t) = λ2(2πt)−1K ′(t) and

ρ(t) = (2πt)−1K ′(t). (4.4)

Note that for an intensity-reweighted stationary process, Baddeley, Møller and
Waagepetersen (2000) extend the definition of the K-function to

KI(t) = 2π

∫ t

0

ρ(x)xdx,

which reduces to (4.3) in the stationary case.
It is sometimes more convenient to work with λ2(t) or ρ(t) rather than

with K(t). As a minor variation we define a covariance density,

γ(t) = λ2(t)− λ2 = λ2{ρ(t)− 1}. (4.5)

For data analysis, one potential advantage of K(t) over λ2(t) or ρ(t), espe-
cially in small samples, is that its estimation is more straightforward. Essen-
tially, K(t) and λ2(t) are related to the distribution function and probability
density function of the distances between pairs of events in a point pattern,
and the former can be estimated without having to decide how much to smooth
the corresponding empirical distribution. Against this, given a data-set con-
taining sufficiently many events, a simple histogram-like estimate of λ2(t) or
ρ(t) is easily calculated and may be considered easier to interpret. We return
to this point in Section 4.6.2.

Another useful property of the K-function is that it is invariant under



Spatial point processes 59

random thinning. By this, we mean that if each event of a process is retained
or not according to a series of mutually independent Bernoulli trials, then
the K-function of the resulting thinned process is identical to that of the
original, unthinned process. This follows from the definition (4.2), where the
K-function is defined as the ratio of two quantities, E[N0(t)] and λ. The effect
of the thinning is to multiply each of these by p, the retention probability for
any one event, leaving the ratio unchanged.

Rather than observe the exact locations of events in a planar region, it
is sometimes easier in practice to observe only counts N(A) in convenient
sub-regions A (cf. Section 2.7). The resulting quadrat count distribution,

pn(A) = P{N(A) = n} : n = 0, 1, ...,

provides a possible summary description of the process. The arbitrary nature
of A is unsatisfactory. One solution is further to summarize the quadrat count
distribution by its first few moments, and to regard these as functions of A.
In particular,

E[N(A)] =

∫

A

λ(x)dx,

which reduces to λ|A| for a stationary process. More interestingly, orderliness
implies that

E[N(A)2] = E

[{∫

A

N(dx

}2
]

= E

[∫

A

N(dx) +

∫

A

∫

A

N(dx)N(dy)

]
.

Interchanging expectation and integration this becomes, for a stationary pro-
cess,

λ|A|+
∫

A

∫

A

λ2(x− y)dxdy,

whence

Var{N(A)} =

∫

A

∫

A

λ2(x− y)dxdy + λ|A|(1 − λ|A|). (4.6)

A straightforward generalization gives

Cov{N(A), N(B)} =

∫

A

∫

B

λ2(x− y)dxdy + λ|A ∩B| − λ2|A||B|

where A ∩B denotes the intersection of A and B.
The quantity Var{N(A)} defined in (4.6) is sometimes called the “variance-

area curve”, and is closely related to K(t) in the sense that both involve
integrated versions of the second-order intensity function.
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4.2.2 Extension to multivariate processes

In a multivariate process, the events are of two or more distinguishable types.
Definitions for the second-order properties of such processes follow as natural
generalisations of the corresponding quantities for univariate processes. We
assume stationarity, isotropy and orderliness, and write Nj(S) for the number
of type j events in a planar region A.

The (first-order) intensities are constants,

λj = E[Nj(A)]/|A|.

The second-order intensities are functions of a scalar argument,

λij(t) = lim
|dx|→0
|dy|→0

{
E[Ni(dx)Nj(dy)]

|dx||dy|

}

where, as before, t denotes distance. The corresponding covariance densities
are

γij(t) = λij(t)− λiλj

and the multivariate K-functions are

Kij(t) = λ−1
j E[N0ij(t)] (4.7)

where N0ij(t) denotes the expected number of (further) type j events within
distance t of an arbitrary type i event. Note that λij(t) = λji(t), from which
it follows that γij(t) = γji(t). A similar argument to the one used in Section
4.2.1 shows that

Kij(t) = 2π(λiλj)
−1

∫
λij(x)xdx

from which it follows that Kji(t) = Kij(t).

4.3 Higher order moments and nearest neighbour distri-
butions

Second-order properties provide a natural and valuable starting point for the
description of a spatial point process. However, they do not give a complete
picture. Baddeley and Silverman (1984) describe a class of non-Poisson pro-
cesses for which K(t) = πt2, and in Section 6.9.3 we shall give another exam-
ple in which clearly different processes have identical second-order properties.
Higher order properties can easily be defined in terms of the joint intensity
functions for the occurrence of specified configurations of three, four, etc.
events. Interpretation would be difficult in practice since, for example, the
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third-order intensity function of a stationary, isotropic process requires three
arguments, the fourth-order function five, and so on.

In view of this, we define two distribution functions that we used in Chapter
2 to provide tests of CSR and that serve as additional summary descriptions
for spatial point processes. These are G(y), the distribution function of the
distance from an arbitrary event to the nearest other event, and F (x), the
distribution function of the distance from an arbitrary point to the nearest
event.

One interpretation of F (x) is as the probability that a randomly located
disc of radius x contains at least one event. This suggests an obvious exten-
sion whereby the disc is replaced by some other geometrical figure. Oriented
shapes such as ellipses or rectangles could be used to describe departures from
isotropy. Matheron (1975) incorporates these ideas within a general theory of
random sets, in which a random set S is characterized by the function F(T ),
the probability that the intersection of S with T is non-empty, for a suitably
wide class of “test-sets ” T .

4.4 The homogeneous Poisson process

The homogeneous planar Poisson process, subsequently referred to without
qualification as the Poisson process, is the cornerstone on which the theory of
spatial point processes is built. It represents the simplest possible stochastic
mechanism for the generation of spatial point patterns, and in applications is
used as an idealized standard of complete spatial randomness that, if strictly
unattainable in practice, sometimes provides a useful approximate description
of an observed pattern. The Poisson process is conveniently defined by the
following postulates, which correspond exactly to the definition of complete
spatial randomness given in Section 1.3:

PP1 For some λ > 0, and any finite planar region A, N(A) follows a Poisson
distribution with mean λ|A|.

PP2 Given N(A) = n, the n events in A form an independent random sample
from the uniform distribution on A.

To demonstrate that PP1 and PP2 are self-consistent, we first establish

PP3 For any two disjoint regions A and B, the random variables N(A) and
N(B) are independent.

Let C = A∪B be the union of two disjoint regions A and B. Write p = |A|/|C|
and q = 1− p = |B|/|C|. Then, PP2 applied to the region C implies that

P{N(A) = x,N(B) = y|N(C) = n} =

(
x+ y

x

)
pxqy,
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for integers 0 ≤ x ≤ n and y = n− x. PP1 then gives the unconditional joint
distribution of N(A) and N(B) as

P{N(A) = x,N(B) = y} =

(
x+ y

x

)
pxqy{e−λ|C|(λ|C|)n/n!}

= {e−λ|A|(λ|A|)x/x!}{e−λ|B|(λ|B|)y/y!}(4.8)

for all integers x ≥ 0 and y ≥ 0. This establishes PP3 and shows also that
N(A) and N(B) have the distributions implied by PP1. It is immediately ob-
vious that if PP2 holds for any region C it must hold also for all sub-regions of
C. Conversely, the additive property of independent Poisson-distributed ran-
dom variables X and Y , and the associated conditional binomial distribution
of X given X + Y , establish PP1 and PP2 respectively for any region formed
as the union of two disjoint regions for which PP1 and PP2 hold. This proves
the required self-consistency.

The parameter λ of the Poisson process is its intensity. The independence
result PP3 implies that

λ2(t) = λ2 : t > 0, (4.9)

whence (4.9) gives
K(t) = πt2 : t > 0. (4.10)

The variance-area curve follows directly from PP1 as

Var{N(A)} = λ|A|. (4.11)

The nearest neighbour distribution functions G(y) and F (x) are identical,
since the existence of an event at a particular point, x0 say, has no bearing on
the distribution of the remaining number of events in a disc with centre x0.
We deduce from PP1 that

F (x) = G(x) = P{N(πx2) > 0} = 1− exp(−πλx2) : x > 0. (4.12)

To simulate a partial realisation of a Poisson process on A conditional on
a fixed value of N(A), we need to generate events independently according to
a uniform distribution on A. Awkward shapes of region can be accommodated
by simulating the process on a larger region of a more convenient shape, such
as a rectangle or disc, and retaining only those events which lie within A.
Alternatively, Hsuan (1979) gives an algorithm for the direct generation of
events uniformly distributed on an arbitrary polygon.

If N(A) is required to be randomly varying, this same method can of
course be preceded by the simulation of N(A) from the appropriate Poisson
distribution. In some implementations, the direct simulation of N(A) is a rel-
atively time-consuming step. Lewis and Shedler (1979) propose an alternative
method which can be used when A is a rectangle, say A = (0, a)×(0, b). This is
based on the observation that the x-coordinates of events in the infinite strip
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0 ≤ y ≤ b form a one-dimensional Poisson process with intensity λb, from
which it follows that the differences between successive ordered x-coordinates
are independent realizations of an exponentially distributed random variable
with distribution function

F (v) = 1− e−λbv, v > 0

(see, for example, Cox and Lewis, 1966, Chapter 2). The corresponding y-
coordinates are, again independently, uniformly distributed on (0, b). Note
that this method automatically generates the events (xi, yi) in order of in-
creasing x-coordinates, and terminates when the latest x-coordinate is greater
than a.

4.5 Independence and random labelling

To assess the spatial association between the two types of events in a bivariate
process, we can consider at least two different benchmark hypotheses :

(i) independence - the two types of event are generated by a pair of indepen-
dent univariate processes;

(ii) random labelling - the two types of event are generated by labelling the
events of a univariate process in a series of mutually independent Bernoulli
trials.

These two hypotheses generate distinctively different K12-functions.
Firstly, for any two independent processes of type 1 and type 2 events

K12(t) = πt2.

This follows from the fact that, if the two component processes are indepen-
dent, then an event of type 1 has the same status, with respect to events of
type 2, as an arbitrary point, hence the expected number of type 2 events
within a disc of radius t centred on an arbitrary type 1 event is λ2πt

2, the
expected number of type 2 events per unit area multiplied by the area of the
disc. It follows that K12(t) = πt2 as claimed.

Secondly, for any randomly labelled process of type 1 and type 2 events,

K11(t) = K22(t) = K12(t) = K(t), (4.13)

where K(s) is the K-function for the unlabelled univariate process. To see
this, let K(t) be the K-function of the unlabelled, univariate process con-
sisting of all events, irrespective of type. Then, under random labelling the
univariate processes of type 1 and type 2 events are each random thinnings of
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the unlabelled process, and we have already seen in Section 4.2.1 that the K-
function is invariant under random thinning, hence K11(t) = K22(t) = K(t).
Essentially the same argument shows that K12(t) = K(t).

Note that independence and random labelling are equivalent if and only
if the component processes of type 1 and type 2 events are both Poisson
processes. This makes it important to decide which, if either, is the natural
benchmark of “no association” in a particular application.

4.6 Estimation of second-order properties

4.6.1 Stationary processes

For the reason given in Section 4.2, we shall focus initially on estimating the
K-function.

In Section 4.2 we defined the function K(t) by

λK(t) = E[N0(t)],

the expected number of further events within distance t of an arbitrary event,
where the intensity λ is the mean number of events per unit area. An obvious
estimator for λ is the observed number of events per unit area, λ̂ = n/|A|.

Similarly, becauseE(t) = E[N0(t)] is the expected number of further events
within distance t of an arbitrary event, we can construct an estimator for E(t)
as follows. Let rij = ||xi − xj ||. Define

Ẽ(t) = n−1
n∑

i=1

∑

j �=i

I(rij ≤ t), (4.14)

where I(·) denotes the indicator function.
The form of the estimator Ẽ(t) in (4.14) suggests, correctly, that the K-

function is closely connected to the distribution of inter-event distances, whose
use in exploratory analysis we discussed in Section 2.2. However, Ẽ(t) is neg-
atively biased for E(t) because of edge-effects. For a reference event within
distance t of the boundary of A, the observed count of other events within
distance t necessarily excludes any events which may have occurred within
distance t but outside A. Several methods have been proposed to correct for
this source of bias; see, for example, Stein(1991) or Baddeley (1999). The fol-
lowing method, which we shall use in all of our examples, is due to Ripley
(1976).

Let w(x, r) be the proportion of the circumference of the circle with centre
x and radius r which lies within A. Write wij for w(xi, ||xi − xj ||). Then, for
any stationary isotropic process, wij is the conditional probability that an
event is observed, given only that it is a distance rij = ||xi − xj || away from
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FIGURE 4.1
Construction of the edge-correction weights in Ripley’s (1976) estimator for
K(t)

the ith event xi. See Figure 4.1, and note that in general wij = wji. Thus, an
unbiased estimator for E(t) is

Ê(t) = n−1
n∑

i=1

∑

j �=i

w−1
ij I(rij ≤ t).

Finally, replacing the unknown intensity λ by (n−1)/|A|, we obtain Ripley’s
(1976) estimator for K(t),

K̂(t) = {n(n− 1)}−1|A|
n∑

i=1

∑

j �=i

w−1
ij I(rij ≤ t). (4.15)

In fact, Ripley used n−2 rather than {n(n−1)}−1 in the expression for K̂(t); we
prefer the given form for technical reasons although the distinction is clearly
unimportant when n is large.

Ripley’s estimator is approximately unbiased for sufficiently small t, the re-
striction on t being necessary because the weights wij can become unbounded
as t increases. In practice this is not a serious problem. For example, when A
is the unit square the theoretical upper limit of t is 1

2

√
2 ≈ 0.7 but K̂(t) will

seldom be required for such large values of t, partly because the sampling fluc-
tuations in K̂(t) increase with t but also because it is not realistic to attempt
to model effects which operate on the same physical scale as the dimensions
of A.

The splancs package incorporates an algorithm written by Barry Rowl-
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ingson for computing w(x, y) when A is an arbitrary polygon. Explicit for-
mulae for w(x, u) can also be written down for simple shapes of region A,
for example rectangular or circular, and these may be useful if computational
efficiency is paramount. Suppose firstly that A is the rectangle (0, a)× (0, b).
Write x = (x1, x2) and let d1 = min(x1, a− x1) d2 = min(x2, b− x2); thus d1
and d2 are the distances from the point x to the nearest vertical and horizontal
edges of A. To calculate w(x, u) we need to distinguish two cases:

1. if u2 ≤ d21 + d22, then

w(x, u) = 1− π−1[cos−1{min(d1, u)/u}+ cos−1{min(d2, u)/u};
(4.16)

2. if u2 > d21 + d22, then

w(x, u) = 0.75− (2π)−1{cos−1(d1/u) + cos−1(d2/u)}. (4.17)

Note that (4.16) correctly gives w(x, u) = 1 when u ≤ min(d1, d2). The above
formulae apply to values of u in the range 0 ≤ u ≤ 0.5min(a, b) which, as
noted above, should be sufficient for practical purposes.

Now suppose that A is the disc with centre the origin and radius a. Let
r =

√
(x2

1 + x2
2) be the distance from x to the centre of the disc. Then, again

distinguishing two cases, we have the following:

1. if u ≤ a− r, then
w(x, u) = 1;

2. if u > a− r, then

w(x, u) = 1− π−1 cos−1{(a2 − r2 − u2)/(2ru)}.

These formulae apply to values of u between 0 and a.
The sampling distribution of K̂(t) is analytically intractable, except in the

case of a homogeneous Poisson process. Given any specific model and region
A, the sampling distribution can be estimated by direct simulation. However,
the theoretical expression for the variance of K̂(t) in a homogeneous Poisson
process provides a useful benchmark in initial inspection of a plot of K̂(t). In
what follows, we treat n, the number of events in A, as fixed.

For a homogeneous Poisson process, Ripley (1988) gives an asymptotic ap-
proximation to the sampling variance of K̂(t). Lotwick and Silverman (1982)
give exact formulae whose evaluation in general requires extensive numerical
integration, although they give explicit formulae for rectangular A. Chetwynd
and Diggle (1998) give a different approximation, based on a thinning argu-
ment, that is easily computed for arbitrarily shaped A.

Ripley’s asymptotic approximation, modified to take account of our non-
standard choice of denominator in (4.15), is

vR(t) = 2{|A|/(n− 1)}2{πt2/|A|+ 0.96Pt3/|A|2 + 0.13(n/|A|)Pt5/|A|2}
(4.18)
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where P denotes the perimeter of A. The approximation is accurate for rela-
tively small values of t (see below).

Lotwick and Silverman’s result, similarly modified and assuming rectan-
gular A, is that the variance of K̂(t) is

vLS(t) = {n(n− 1)}−1{2b(t)− a1(t) + (n− 2)a2(t)} (4.19)

where, for rectangular A with perimeter length P ,

b(t) = πt2|A|−1(1− πt2/|A|) + |A|−2(1.0716Pt2 + 2.2375t4),

a1(t) = |A|−2(0.21Pt3 + 1.3t4)

and
a2(t) = |A|−3(0.24Pt5 + 2.62t6).

These expressions are valid for t less than or equal to the shorter side-length
of A.

Chetwynd and Diggle’s approximation involves summations of functions
of the edge-correction weights wij as follows. For any fixed t, define φij =
0.5(wij + wji)I(||xi − xj || ≤ t). Further define

Wn =

n∑

i=1

∑

j �=i

φij ,

Xn =

n∑

i=1

∑

j �=i

φ2
ij

and

Zn =

n∑

i=1

(
∑

j �=i

φij)
2.

Write n(k) = n(n − 1)...(n − k + 1) and define m2(t) = Xn/n
(2), m3(t) =

(Zn − Xn)/n
(3) and m4(t) = (W 2

n − 4Zn + 2Xn)/n
(4). Then the estimated

variance of K̂(t) is

vCD(t) = (2|A|2/n(2)){(3− 2n)m4(t) + 2(n− 2)m3(t) +m2(t)}. (4.20)

Chetwynd and Diggle in fact give an explicit formula for Cov{K̂(t), K̂(s)}, of
which (4.20) is a special case.

It is also useful to be able to assess the precision of an estimate of K(t)
without assuming a specific model. A simple way to do this is to subdivide A
into equal sub-areas, estimate K(t) separately within each sub-area and use
the empirical variance over the separate estimates. Thus, if for each t we let
ki denote the estimate of K(t) from the ith of m sub-areas, then our overall
estimate is

K̃(t) = m−1
m∑

i=1

ki (4.21)
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FIGURE 4.2
Comparison between Ripley’s asymptotic approximation and the Lotwick-
Silverman formula for the sampling variance of K̂(t). —— : n = 100; − − −
: n = 200; ....... : n = 400. The horizontal line at height 1 corresponds to
equality of the two formulae.

with approximate variance

Var{K̃(t)} ≈ {(m(m− 1)}−1
m∑

i=1

{ki − K̃(t)}2. (4.22)

The approximation in (4.22) arises for two reasons. Firstly, an element of ap-
proximation is inherent in using the sample variance of the ki as an estimate
of their true variance; secondly, dividing the sample variance of the ki by m
makes the implicit assumption that disjoint sub-regions give independent esti-
mates ki, which is correct for the homogeneous Poisson process, but not more
generally. Furthermore, K̃(t) can be expected to be less efficient than K̂(t) be-
cause it does not use information from pairs of events in different sub-regions;
this may be an important consideration unless n, the number of events, is very
large. All of these considerations suggest that the estimator K̃(t) and its as-
sociated approximate variance should be used only for relatively small values
of t, or when the artificial subdivision of A is replaced by genuine replication.
We postpone further discussion of replicated patterns until Chapter 8.

We now illustrate the performance of the different estimators for
Var{K̂(s)}. We consider first the homogeneous Poisson process. Figure 4.2
shows the ratio of Ripley’s asymptotic approximation (4.18) and the Lotwick-
Silverman formula (4.19), for n = 100, 200 and 400, and A the unit square.
For small t, the approximation is excellent when n = 100 and, as would be
expected, improves as n increases. At larger values of t, it is less reliable
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FIGURE 4.3
Comparison between Chetwynd and Diggle’s estimator and the Lotwick-
Silverman formula for the sampling variance of K̂(t). —— : n = 100; −−− :
n = 200; ....... : n = 400.

and does not necessarily improve as n increases. For a comparison between
the Lotwick-Silverman formula and the Chetwynd-Diggle method, we need to
simulate replicate patterns because the latter is a data-based estimate rather
than a numerical approximation. Figure 4.3 is comparable to Figure 4.2 except
that the comparison is now between the Chetwynd-Diggle estimated variance,
averaged over replicate simulations, and the Lotwick-Silverman formula. The
results point to a small negative bias in the Chetwynd-Diggle estimator at
large distances.

In a second experiment, we again simulated homogeneous Poisson pro-
cesses but now compared the two estimators K̂(t) and K̃(t), the latter using
a sub-division of the unit square into a 4 × 4 grid of smaller squares. The
results summarised below are based on 1000 replicates of processes with each
of n = 100, 200 and 400 events on the unit square, and for distances t ≤ 0.25.

Recall that for the homogeneous Poisson process, the implicit assump-
tion in (4.22) that disjoint sub-regions give independent estimates of K(t) is
correct, and the simulation results confirm this. Perhaps more interestingly,
Figure 4.4 shows the ratio of the estimated variance of K̃(t) and the Lotwick-
Silverman formula vLS(t) for the variance of K̂(t). This confirms the inherent
inefficiency of K̃(t) relative to K̂(t), especially for small n and/or large t.

Finally, we simulated two non-Poisson processes, one generating aggre-
gated patterns similar to Figure 1.2, the other regular patterns with a mini-
mum permissible distance between events, similar to Figure 1.3. The results
confirm that, as expected, formulae based on a Poisson assumption tend to
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FIGURE 4.4
Comparison between the variances of K̃(t) and of K̂(t). —— : n = 100; .........
: n = 200; – – – : n = 400

under-estimate or over-estimate the variance of K̂(t) according to whether
the underlying process is aggregated or regular, respectively. Specifically, in
the aggregated case the estimated variances were between two and 12 times
larger than the Poisson-based Lotwick-Silverman formulae, and in the regular
case between three and seven times smaller over the range t ≤ 0.25 (excluding
small distances for which K̂(t) is identically zero because of the minimum
permissible inter-event distance). However, the approximation (4.22) contin-
ued to give reasonable estimates for the variance of the less efficient estimator
K̃(t).

Our overall conclusions from these comparisons are the following. For the
initial exploration of second-order structure of patterns which are close to
completely random, it is useful to supplement a graphical display of K̂(t)
with error bounds based on the Lotwick-Silverman formula for rectangular
regions. For regions with an irregular boundary, such as arise typically in epi-
demiological applications, either the Chetwynd-Diggle formula can be used,
or empirical bounds can be constructed from repeated simulations of a homo-
geneous Poisson process.

For patterns markedly different from completely random, Poisson-based
approximations are unreliable. However, provided that a parametric model
has been formulated, standard errors can again be estimated empirically from
repeated simulations of the declared model. It is usually instructive, and
straightforward in most modern computing environments, to supplement a
graphical display of K̂(t) with envelopes of repeated simulations of a candi-
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date model, both to quantify uncertainty and for an informal assessment of
goodness-of-fit. We give examples in later chapters.

In the absence of a parametric model, the estimator K̃(t) can be used if a
reliable indication of precision takes precedence over efficiency of estimation.

4.6.2 Estimating the pair correlation function

Given an estimate K̂(t), a simple way to estimate the pair correlation func-
tion is to exploit the relationship between K(t) and ρ(t) by substituting the
derivative of K̂(t) for K ′(t) on the right hand side of (4.4). Strictly, K̂(t) as
defined at (4.15) is a step-function, and therefore non-differentiable. However,
in practice we usually evaluate K̂(t) at a discrete set of equally spaced val-
ues of t, say t = jh : j = 0, 1, 2, ...,m for a suitably small value h > 0 and
interpolate linearly. In this case, K̂ ′(t) is piece-wise constant,

K̂ ′(t) = {K̂(jh)− K̂((j − 1)h)}/h :: t ∈ ((j − 1)h, jh),

leading to a histogram-like estimator for ρ(t),

ρ̂(t) = (2πt)−1K̂ ′(t). (4.23)

Stoyan and Stoyan (1994) discuss a kernel-smoothed version, subsequently
used by a number of authors including Møller, Syversveen and Waagepetersen
(1998). For this, we again choose a positive value h, but also specify a univari-
ate probability density function, g(u) say, symmetric about u = 0, to define
the smoothing weights. Stoyan and Stoyan’s estimator for ρ(t) is then

ρ̃(t) = |A|(2πtn2)−1
∑

j �=i

w−1
ij h−1g{(t− uij)/h} (4.24)

where, as earlier, |A| is the area of A, uij = ||xi − xj || and wij is Ripley’s
edge-correction. In the non-parametric smoothing literature, h is called the
band-width and g(u) the kernel function; see, for example, Silverman (1986).

Typically, h in (4.24) would usually be chosen somewhat larger than its
counterpart when estimating K(t). Another consideration is that (4.24) gives
poor estimates of ρ(t) at values of t close to zero; indeed, it gives positive
estimates for negative t. A simple solution to this is to reflect the negative
portion of the estimate in the y-axis, i.e. for each positive t, use the estimate

ρ̂(t) = ρ̃(t) + ρ̃(−t), (4.25)

although this can still leave substantial bias near t = 0 for aggregated patterns.
Note also that the reflection in the y-axis does not arise for the histogram-like
estimator (4.23), although the tendency to under-estimate ρ(t) near t = 0 for
aggregated patterns remains.

To illustrate these issues, we generated synthetic data by simulating a
Poisson process with intensity n = 500 events on a unit square region A.
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FIGURE 4.5
Comparison between histogram-like (solid line) and kernel smoothed estimates
of the pair correlation function. Dashed and dotted lines correspond to ker-
nel estimates using a quartic kernel and band-widths h = 0.038 and 0.076,
respectively.

Figure 4.5 shows estimates (4.23) and two versions of (4.25), based on the
simulated data, and using a quartic kernel function,

g(u) = (15/16)(1− u2)2 : −1 < u < 1,

in the smoothed estimator defined by (4.24) and (4.25). The histogram-like
estimate uses bins of width 0.05, whilst the two versions of the kernel estimate
use band-widths h = 0.038 and 0.076. The smaller of the two band-widths
induces an amount of smoothing comparable to the histogram-like estimate
except near u = 0, apart from which the difference between these two is
largely cosmetic, whereas the larger band-width gives a materially smoother
estimate. Stoyan and Stoyan (1994) offer guidelines for choosing the band-
width h in (4.24). The author’s opinion is that attempting to optimise the
choice of band-width is an over-elaboration of what is best seen as a simple
exploratory device.

4.6.3 Intensity-reweighted stationary processes

If we assume that the process is intensity-reweighted stationary and, unreal-
istically, that the first-order intensity λ(x) is known, we can estimate KI(t)
by an easy modification of (4.18). The modification consists of re-scaling the
inter-event distances by the product of the first-order intensities at the corre-
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sponding two locations, leading to the estimator

K̂I(t;λ) = |A|−1
n∑

i=1

∑

j �=i

w−1
ij It(uij)/{λ(xi)λ(xj)}. (4.26)

This was proposed by Baddeley, Møller and Waagepetersen (2000), who went

on to discuss the consequences of using an estimated first-order intensity λ̂(x)
in place of the true λ(x). Unsurprisingly, this turns out to be problematic,
because of the difficulty of distinguishing empirically between non-constancy
of λ(x) and dependence between the events of the process. This relates to
the equivalence of certain classes of Cox process and Poisson cluster process,
to be discussed in Chapter 6. As a consequence, it is difficult in practice
simultaneously to estimate non-parametrically both first-order and second-
order properties of an intensity-reweighted stationary process. One situation
in which it is easier to disentangle first-order and second-order properties is in
design-based inference when independent replicate patterns can be assumed
to have the same first-order intensity function. Another is in the analysis of
case-control data in epidemiology. We discuss these topics in Chapters 5 and
9, respectively.

4.6.4 Multivariate processes

To estimate K12(s) for a bivariate pattern we use the same basic idea as in
estimating K(s), but measure distances between pairs of events of different
types. Thus, if uij is the distance between the ith event of type 1 and the
jth event of type 2, wij is as before, and the numbers of type 1 and type 2

events are n1 and n2 respectively, we can construct two estimates of K̂12(s)
as follows:

(i) λ̂2K̃12(s) = n−1
1

n1∑

i=1

n2∑

j=1

wijI(uij ≤ s)

(ii) λ̂1K̃21(s) = n−1
2

n2∑

j=1

n1∑

i=1

wjiI(uij ≤ s)

We then combine the two estimates as a weighted average, to give

K̂12(s) = (n1n2)
−1|A|

⎧
⎨

⎩n1

n1∑

i=1

n2∑

j=1

wijI(uij ≤ s)

+ n2

n2∑

j=1

n1∑

i=1

wjiI(uij ≤ s)

⎫
⎬

⎭ /(n1 + n2)

= (n1n2)
−1|A|

n1∑

i=1

n2∑

j=1

w∗
ijI(uij ≤ s), (4.27)
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FIGURE 4.6
The estimate K̂(t)−πt2 for the Japanese black pine data. —— : data; −−−
: plus and minus two standard errors under complete spatial randomness.

where
w∗

ij = (n1wij + n2wji)/(n1 + n2).

The variance formulae in Lotwick and Silverman (1982) include the bi-
variate case. In addition to the functions v(t), a1(t) and a2(t) defined above,
let c = n2/(n1 + n2). Then, when the component processes are independent
homogeneous Poisson processes,

Var{K̂12(t)} = (n1n2)
−1|A|2[v(t) − 2c(1− c)a1(t) +

{(n1 − 1)c2 + (n2 − 1)(1− c)2}a2(t)](4.28)

4.6.5 Examples

Figure 4.6 shows the estimate D̂(t) = K̂(t) − πt2 for the Japanese black
pine sapling data of Figure 1.1, together with plus and minus two standard
deviation limits calculated from the Lotwick-Silverman formula under the as-
sumption that the data are generated by a homogeneous Poisson process.
Note that D̂(t) lies within these limits throughout the plotted range, suggest-
ing compatibility with the Poisson assumption as in earlier analyses of these
data.

Note also that the standard deviation under the Poisson assumption is
roughly linear in t. This is an indirect consequence of the Poisson quadrat
count distribution, since K̂(t) is essentially an average of counts in circles of
radius t, hence its mean and variance are both approximately proportional
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FIGURE 4.7
Transformed estimates of K̂(t) for the Japanese black pine data. —— : data;
−−− : plus and minus two standard errors under complete spatial randomness.
The left-hand panel shows

√
K̂(t), the right-hand panel {K̂(t)− πt2}/t.

to t2. For this reason, some authors recommend plotting
√
K̂(t) against t to

stabilise the sampling variance, and incidentally to linearise the plot under
the Poisson assumption. We prefer to plot D̂(t) because of its direct physical
interpretation in terms of counting numbers of events in circular regions; also,
as we shall show in later chapters, plots of D(t) can be used for preliminary
estimation of parameters for some widely used models. If a variance-stable
plot is required, either the square-root scale can be used, or a standardised
difference, D̂(t)/t, although the latter would become numerically unstable if
extrapolated to t = 0. The two panels of Figure 4.7 show these two plots for
the Japanese black pine data. In each case, the error limits are obtained by the
appropriate transformation of the plus and minus two standard error limits
for K̂(t) calculated by the Lotwick-Silverman formula.

The two panels of Figure 4.8 show D̂(t) with plus and minus two standard
error limits under complete spatial randomness, for the redwood data of Figure
1.2, and for the cell data of Figure 1.3. In contrast to Figure 4.6, it is clear in
both cases that the data are incompatible with complete spatial randomness,
but for opposite reasons. As is now very familiar, the redwood data display
strong spatial aggregation, and the cell data strong spatial regularity. The
damped oscillatory behaviour of D̂(t) for the cell data is typical of regular
patterns.
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FIGURE 4.8
The estimate D̂(t) = K̂(t) − πt2 for the redwood data (left-hand panel) and
for the cell data (right-hand panel). —— : data; −−− : plus and minus two
standard errors under complete spatial randomness.

4.7 Displaced amacrine cells in the retina of a rabbit

The displaced amacrine cell data, shown in Figure 1.4, illustrate how estimated
K-functions can be used in a specific context without explicit parametric
modelling. The analysis presented here is adapted from Diggle (1985a).

The primary scientific interest in these data is to distinguish between two
developmental hypotheses (Hughes, 1981). Recall that the two types of cell
are those which respond to a light being switched on or off, respectively. The
separate layer hypothesis is that the on and off cells are initially formed in two
separate layers which later fuse to form the mature retina, whilst the single
layer hypothesis is that the two types of cell are initially undifferentiated in a
single layer and acquire their separate functions at a later stage.

Figure 4.9 shows estimates of Kij(t) for each of (i, j) = (1, 1), (1, 2) and
(2, 2), where types 1 and 2 refer to on and off cells, respectively, and an es-
timate of K(t) for the superposition of both types of cell. Note firstly that
the estimate of K12(t)−πt2 is close to zero throughout the plotted range. We
could use the Lotwick-Silverman formula to compute the sampling variance
of K12(t) under the assumption that the two types of cell form independent
Poisson processes, but this would likely over-estimate the variance because, as
shown by the estimates of K11(t) and K22(t), the components’ patterns are
markedly more regular than the Poisson process. However, we can test the
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FIGURE 4.9
Second-order properties of displaced amacrine cells. Functions plotted are
D̂(t) = K̂(t) − πt2 as follows: – – – : on cells; ....... : off cells; — — — :
all cells; —— : bivariate. The parabola −πt2 is also shown as a solid line.

independence hypothesis using a procedure also suggested by Lotwick and
Silverman (1982). If we wrap the rectangular observation window A onto a
torus, independence of the component processes would imply that the sam-
pling distribution of K̂12(t) is invariant to a random toroidal shift of either
pattern. This in turn implies that we can conduct a Monte Carlo test of inde-
pendence by comparing the value of a suitable test statistic for the observed
data with values generated under a sequence of independent random toroidal
shifts. Using the test statistic

u =

125∑

k=1

t−2
k {K̂12(tk)− πt2k}2,

where tk = 0.002, 0.004, ..., 0.250, we implemented a Monte Carlo test by re-
calculating u after each of 99 independent random toroidal shifts, and obtained
a p-value of 0.12. Thus, at least with regard to their second-order properties,
the evidence against the hypothesis of independent components is weak. This
is supportive of the separate layer hypothesis. However, the evidence is not yet
conclusive since the result that K12(t) = πt2 is necessary, but not sufficient,
for independence.

We now examine K̂11(t) and K̂22(t), and note that they are very similar
to each other, but markedly different from K̂(t) for the superposition. This
suggests that if the observed pattern is the result of a labelling of an initially
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undifferentiated set of cells, then the labelling cannot be random. We could
formally test the hypothesis of random labelling, but this seems unnecessary
in view of the very clear difference between K̂(t) for the superposition and
the two very similar estimates K̂11(t) and K̂22(t).

The argument so far leaves open the possibility that the observed pat-
tern is the result of a non-random labelling process. However, note that both
K̂11(t) and K̂22(t) are zero for t < 0.025 approximately, whereas K̂(t) for the
superposition is non-zero at much smaller values of t. For this to arise from a
labelling process, the following would have to be true: in the undifferentiated
process, close pairs of cells are allowed but mutually close triples are forbidden;
and in the labelling process, the two members of a close pair must always be
oppositely labelled. This seems implausible, and the analysis therefore points
strongly towards the separate layer hypothesis being the correct explanation.
Subsequent work by Eglin, Diggle and Troy (2005) and Diggle, Eglen and Troy
(2006) led to a refinement of the separate layer hypothesis; in Section 8.3.6
we shall re-visit this example accordingly.

4.8 Estimation of nearest neighbour distributions

We now consider estimation of the two nearest neighbour distribution func-
tions introduced in Sections 2.3 and 2.4. These are: F (x), the probability that
the distance from an arbitrary point to the nearest event is less than or equal
to x; and G(x), the probability that the distance from an arbitrary event to
the nearest other event is less than or equal to x.

In either case, the simplest estimator is the empirical distribution function
of observed nearest neighbour distances, as used in Sections 2.3 and 2.4. These
estimators are biased because of edge-effects. The bias does not affect the
validity of a Monte Carlo test of complete spatial randomness, or indeed of any
other specified model, but would be problematic if we were directly concerned
with estimation.

One approach to edge-correction is the following, due to Ripley (1977).
Consider first an estimator for G(y). Let (yi, di) : i = 1, ..., n, denote the
distances from each event to the nearest other event in A and to the nearest
point on the boundary of A, respectively, and define the estimator G̃(y) to be
the proportion of nearest neighbour distances yi ≤ y amongst those events at
least a distance y from the boundary of A; thus

G̃(y) = #(yi ≤ y, di > y)/#(di > y).

To estimate F (x), similarly let (xi, ei), i = 1, . . . , m, denote the distances
from each of m sample points to the nearest event in A and to the nearest
point on the boundary of A, and define
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F̃ (x) = #(xi ≤ x, ei > x)/#(ei > x).

As in Section 2.4, for estimation of F (x) we would suggest locating the m
sample points in a regular grid. Alternatively, we could avoid altogether the
need for a grid of sample points by computing directly the areal proportion
of the study region for which the distance to the nearest event is less than or
equal to x, as described by Lotwick (1981).

A technically simpler procedure for dealing with edge-effects would be to
use the buffer-zone method, taking measurements only from points or events
sufficiently far from the boundary of A, so that edge effects do not arise for the
range of distances of interest. As noted in Section 1.3, the obvious disadvantage
of this procedure is that it effectively throws away a non-trivial proportion of
the data. Recall also from Section (2.7) that Baddeley and van Lieshout’s J-
function, defined by J(x) = {1−G(x)}/{1−F (x)}, can be estimated reliably
without any correction for edge-effects.

The sampling distributions of estimators for F (·) and G(·) appear to be
intractable, although for large data-sets the device of splitting the observa-
tion region A into sub-regions to form pseudo-replicates is available, whilst
simulation can be used to assess the fit of a parametric model.

4.8.1 Examples

Figure 4.10 compares the empirical distribution functions, Ĝ(·) and F̂ (·), with
the edge-corrected estimators G̃(·) and F̃ (·) for the Japanese black pine sapling
data of Figure 1.1. Notice that the two estimates in each case are very similar,
but that the edge-corrected estimators are not necessarily monotone.

Figures 4.11 and 4.12 are the corresponding plots for the redwood seedling
data of Figure 1.2 and for the cell data of Figure 1.3. For comparability, all
six plots in Figures 4.10, 4.11 and 4.12 evaluate the estimates over the same
set of distances. The qualitative differences amongst these three data-sets are
again clear.

4.9 Concluding remarks

The K-function, and the two nearest neighbour distribution functions F (·)
and G(·), provide complementary tools for the description of spatial point
processes.

The K-function is the most amenable of the three to theoretical analysis.
We shall see in later chapters that its algebraic form can be derived for a
number of useful models. Its physical interpretation as a scaled expectation
is also a useful property. The sampling distribution of its estimator K̂(t) is
reasonably well understood in the case of a homogeneous Poisson process,
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FIGURE 4.10
Estimates of F (x) (left-hand panel) and of G(x) (right-hand panel) for the
Japanese black pine data. —— : Ĝ(·), F̂ (·); – – – : G̃(·), F̃ (·)

but otherwise must be assessed by splitting the observation region into sub-
regions, or by simulation. The choice between using estimates of K(t) or ρ(t)
to summarise the second-order properties of an observed pattern is to some
extent a matter of taste. One clear advantage in estimating K(t) rather than
ρ(t) is that this avoids the need to choose a bin-width or band-width. In the
author’s opinion, this is conclusive when the number of events is relatively
small, say of the order of one hundred or less. For observed patterns with
larger numbers of events, the choice is less clear-cut.

Estimates of all three functions, K(·) (or ρ(·)), F (·) and G(·) are useful
for exploratory assessment of departure from complete spatial randomness.
More generally, we shall see in later chapters that the estimated K-function
is a useful and versatile tool. In the author’s opinion, the principal use of
estimates of F (·) and G(·) is to provide goodness-of-fit measures that are
complementary to the second-order description provided by theK-function. In
this respect, it is worth noting that the function J(x) = {1−G(x)}/{1−F (x)}
can sometimes be calculated explicitly when its separate components F (x) and
G(x) are intractable.
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Estimates of F (x) (left-hand panel) and of G(x) (right-hand panel) for the
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Estimates of F (x) (left-hand panel) and of G(x) (right-hand panel) for the
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5.1 Introduction

In some studies, the questions of scientific interest can be addressed without
specifying a parametric model for the data. A venerable, and generic, example
is design-based inference for randomised experiments, which dates back at
least to the early work of R. A. Fisher at Rothamsted; see, for example,
Fisher, R.A. (1925, 1935).

In this chapter, we discuss methods for analysing spatial point pattern data
that are not tied to particular parametric families of models. The material
builds directly on the discussion of second-order properties in Section 4.6.

5.2 Estimating weighted integrals of the second-order
intensity

Recall that one definition of the K-function of a stationary process is

K(t) = 2πλ−2

∫ t

0

λ2(s)sds (5.1)

83
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where λ and λ2(s) are the intensity and second-order intensity, respectively.
It turns out that several non-parametric inference problems for point process
data can be solved by estimating a weighted integral,

Kφ(t) = 2πλ−2

∫ t

0

φ(s)λ2(s)sds, (5.2)

for suitably defined, problem-specific functions φ(s). Before considering a spe-
cific application, we give the general result, from Berman and Diggle (1989).

It is convenient to re-express (5.2) as

Kφ(t) = 2πλ−2H(t)

where

H(t) =

∫ t

0

φ(s)λ2(s)sds. (5.3)

Using integration by parts to evaluate (5.3), and substituting from (5.1), we
obtain

H(t) = λ2(2π)−1

(
K(t)φ(t) −

∫ t

0

K(s)φ′(s)ds
)

(5.4)

Estimation of H(t) is now straightforward, because φ(·) is a known function
and we can substitute existing estimators for λ and for K(t) into (5.4). In
practice, the integration on the right hand side of (5.4) must be carried out
numerically, but this is usually straightforward and numerically more stable
than would have been the case for the direct numerical evaluation of (5.3).
Given a sufficiently large data-set, it would also be feasible to substitute an
estimate of λ2(t) into (5.3) and apply numerical integration to the right hand
side of (5.3), but for the reasons discussed in Section 4.2, we prefer the esti-
mator Ĥ(t) based on (5.4).

5.3 Nonparametric estimation of a spatially varying in-
tensity

Suppose that the available data are a partial realisation of a Cox process,
and that we wish to estimate the realisation of Λ(x), the underlying intensity
process. A simple and intuitively sensible estimator would consist of counting,
for each location x, the number of events of the process within a distance h
of x and scaling by πh2, the area of a disc of radius h. In practice, we shall
need to adjust this simple estimator to allow for edge-effects when x is close
to the boundary of the study region, but we can ignore this complication for
the time being. How should we choose the value of h? One way is to consider
the mean square error of the resulting estimator.
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Diggle (1985b) derived the mean square error of the estimator on the
assumption that the underlying process is a stationary, isotropic Cox process.
If the driving intensity of a Cox process has expectation μ and covariance
function γ(u), then the Cox process itself has intensity λ = μ and second-order
intensity λ2(u) = γ(u) − μ2. Let N(x, h) denote the number of events of the
Cox process within distance h of the point x. Then, temporarily ignoring edge-
effects, the non-parametric estimator of the realised value of Λ(x) described
above can be written as

λ̃(x) = N(x, h)/(πh2). (5.5)

We now consider the mean square error of λ̃(x),

MSE(h) = E[{λ̃(x)− Λ(x)}2],

where the expectation is with respect to the distribution of the Cox process,
i.e. with respect both to Λ(·) and to the points of the process conditional on
Λ(·). Stationarity implies that MSE(h) does not depend on x. Taking x = 0
and using a standard conditioning argument, we have that

MSE(h) = EΛ[EN [{N/(πh2)− Λ(0)}2]]
= EΛ[VarN{N/(πh2)}+ {EN [N/(πh2)]− Λ(0)}2], (5.6)

where N = N(0, h). Conditional on Λ(·), the count N(0, h) follows a Pois-
son distribution with both mean and variance equal to

∫
Λ(x)dx, where the

integration is over the disc with centre 0 and radius h. Hence, (5.6) becomes

MSE(h) = EΛ

[∫
Λ(x)dx/(πh2)2 +

∫ ∫
Λ(x)Λ(y)dydx

−2

∫
Λ(x)Λ(0)dx+ λ(0)2

]

= λ/(πh2) +

∫ ∫
λ2(||x− y||)dydx− 2

∫
λ2(||x||)dx + λ2(0).

Now, use the fact that
∫
λ2(||x||)dx = λ2K(h) to give

MSE(h) = λ2(0) + λ{1− 2λK(h)}/(πh2) + (πh2)−2

∫ ∫
λ2(||x− y||)dydx.

(5.7)
The first term on the right hand side of (5.7) does not depend on h, and

it follows that the value of h which minimises MSE(h) also minimises

M(h) = λ{1− 2λK(h)}/(πh2) + (πh2)−2

∫ ∫
λ2(||x− y||)dydx. (5.8)

The first of the two terms on the right hand side of (5.8) is an explicit function
of K(h), and can be estimated by substituting the standard estimator K̂(·).
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The double integral in the second term can be converted to a single integral
of the form (5.2) using polar coordinates, and can therefore be estimated as
described in Section 5.1.

We now consider how to deal with edge-effects in the estimator λ̃(x). Sev-
eral methods of edge-correction are available. The one used by Diggle (1985b)
in the one-dimensional case and extended to the two-dimensional case by
Berman and Diggle (1989) replaces the denominator πh2 in (5.5) by the area
of intersection of the relevant disc with the study region. Hence, if the data
are observed on a region A and B(x, h) denotes the disc with centre x and
radius h, the edge-corrected estimator is

λ̂(x) = N(x, h)/|A ∩B(x, h)| (5.9)

A further, and in this case largely cosmetic, refinement can be made by inter-
preting the estimator as a kernel estimator (Silverman, 1981). Define a kernel
function k(u) to be any radially symmetric, bivariate pdf (expressed in polar
coordinates); thus, k(u) ≥ 0 for all u ≥ 0 and

2π

∫ ∞

0

k(u)udu = 1.

Then, kh(u) = h−2k(u/h) is also a radially symmetric pdf for any h > 0, and
a kernel estimator of a bivariate pdf f(x), based on data x1, ..., xn, takes the
form

f̂(x) = n−1
n∑

i=1

kh(x− xi).

The estimator λ̃(x) can now be seen as a special case of the kernel estimator,
with kernel function

k(u) =

{
(πu2)−1 : 0 ≤ u ≤ 1

0 : u > 1.
(5.10)

Note, however, that the expressions given here for λ̃(x) and f̂(x) differ by a
factor of n, because the intensity is a mean number of events per unit area
and, unlike the pdf, does not integrate to 1.

Viewed in this light, the edge-corrected estimator λ̂(x) can be written as

λ̂(x) =

n∑

i=1

kh(u)/

∫

A

kh(||x||)dx

Most applications of kernel density estimation would use a smoother kernel
function than (5.10), for example the quartic

k(u) =

{
3π−1(1 − u2)2 : 0 ≤ u ≤ 1

0 : u > 1.
(5.11)

In this case one way to choose the value of h is to calibrate (5.11) against (5.10)
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FIGURE 5.1
Estimates of the mean square error, M̂(h) of a non-parametric intensity esti-
mator applied to each of the three major species groupings in Lansing Woods.
−−−−−− : hickories; −−−: maples; ....... : oaks.

by equating second moments. For the bivariate random variable, (X,Y ) say,
with pdf (5.11) the expectation of U2 = X2 + Y 2 is h2/4, whereas with the
circular uniform pdf (5.10) the corresponding expectation is h2/2. Hence, if
h0 is the optimum bandwidth for a uniform kernel according to (5.8), the
calibrated bandwidth for the quartic kernel is h = h0

√
2.

In the original setting of non-parametric probability density estimation,
Silverman (1981) points out that to obtain an estimate f̂(x) with good prop-
erties, the precise choice of kernel function is relatively unimportant by com-
parison with the choice of h. This is also generally true in the present context.
An exception is when the underlying intensity surface is highly variable, in
particular including large empty regions, and interest is in the ratio of inten-
sities between two data-sets; this question arises naturally, for example in the
application of point process methods to case-control studies in epidemiology,
as we shall discuss in Chapter 9.

5.3.1 Estimating spatially varying intensities for the Lansing
Woods data

Figure 5.1 shows estimates of the function M(h) obtained by applying (5.8) to
each of the three major species groupings of the Lansing Woods data shown
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FIGURE 5.2
Estimates K̂(t) − πt2 for each of the three major species groupings in Lans-
ing Woods. —– : hickories; − − −: maples; ....... : oaks. Pointwise values of
two standard errors assuming an underlying homogeneous Poisson process are
shown as − · − · −

originally as Figure 2.11. We suggest that a plot of M̂(h) should be used as a
guide to the choice of h, rather than as an automatic procedure. In this respect,
we emphasise two particular features. Firstly, because M̂(h) is an empirical
quantity and therefore subject to sampling variation, multiple local minima
are to be expected in the neighbourhood of the optimal value of h where
M(h) is relatively flat. Secondly, and as illustrated here by the plot for the
oaks, near-monotonicity of M̂(h) is a useful indication that there is little or no
evidence in the data for spatial variation in intensity. When the underlying Cox
process reduces to a homogeneous Poisson process, for which Λ(x) is constant
and γ(u) = 0 for all u, the theoretical form of MSE(h) reduces to MSE(h) =
(πh2)−1, which is monotone decreasing in h. The estimates shown in Figure
5.1 have been scaled so that they in fact estimate {MSE(h)+λ2(0)}/λ2. This
implies that for a homogeneous Poisson process, M̂(h) =→ −1 as h → ∞.

The estimated K-function can also be used directly to confirm that the
data are indeed spatially aggregated, and that a Cox process is a reasonable
working model, before constructing an estimate of the realised intensity sur-
face Λ(x). Figure 5.2 shows K̂(t) − πt2 for each of the three species. The
pointwise two-standard-error limits for a homogeneous Poisson process with
the same intensity as the oaks are also shown as a dot-dashed line. This
indicates that the second-order properties of the oaks are close to, albeit sig-
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FIGURE 5.3
Kernel estimates of λ(x) for the hickories (left-hand panel) and maples (right-
hand panel) in Lansing Woods, using a quartic kernel with bandwidth h = 0.1.

nificantly different from, those of a homogeneous Poisson process whereas the
hickories and maples are unequivocally spatially aggregated.

We therefore interpret Figure 5.1 as follows. For both the hickories and the
maples, the minimum estimated mean square error is substantially less than
−1, indicating spatial variation in intensity, whereas for the oaks the esti-
mate M̂(h) is approximately constant for h greater than about 0.03 and never
substantially less than −1. For the maples, there is a reasonably well-defined
minimum of M̂(h) around h ≈ 0.07, whereas the trace of M̂(h) for the hicko-
ries is minimised at h ≈ 0.06, but is then rather flat until about h ≈ 0.09. Our
preliminary conclusion is that there is substantial spatial variation in the in-
tensity of hickories and maples in Lansing Woods, whereas the oaks, although
departing significantly from complete spatial randomness on the evidence of
Figure 5.2, show approximately constant intensity. In general, we would con-
sider using non-parametric estimation of spatially varying intensity λ(x) only
when, as is the case here, the data-set contains several hundred events or more,
and when there is unequivocal evidence of substantial variation in λ(x).

The two panels of Figure 5.3 show the estimates of λ(x) obtained for the
hickories and maples, using the quartic kernel (5.11) with h = 0.07

√
2 ≈ 0.1

in both cases to make the estimates directly comparable.
Notice that the two estimated surfaces λ̂(x) are essentially complementary

to each other, in the sense that the intensity of hickories is high where the in-
tensity of maples is low, and vice versa, suggesting that the two species occupy
distinct ecological niches. We obtained a qualitatively similar result in Section
(7.1.1) using a parametric model for λ(x). However, with the selected band-
width h = 0.1, the non-parametric estimates capture more of the variation in
the data, the contour lines showing considerably more complicated behaviour
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than those of the parametric model. As noted earlier, the oaks display a pat-
tern which is close to Poisson, implying in the present context a near-constant
intensity, or an ability to exploit either of the two niches favoured by the
hickories and by the maples. Of course, at a sufficiently small scale, we would
expect to find competitive interactions between near-neighbouring trees, in vi-
olation of the Cox process assumption. Note, in this context, that the average
area per tree in the whole forest (including a small number of miscellaneous
trees not considered in this analysis) is approximately 35 square metres.

In contrast to the results for the parametric analysis of these data that
we shall present in Section 8.2, if we assume intensity-reweighted stationarity
and estimate KI(t) by using our non-parametric estimates of λ(x) in Figure
5.3, then for both the hickories and the maples K̂I(t) is significantly less
than πt2. Figure 5.4 shows, for each species, K̂I(t) together with upper and
lower envelopes from 19 simulations of an inhomogeneous Poisson process
with intensity equal to the corresponding kernel estimate λ̂(x). The apparent
regularity suggests small-scale inhibitory effects between neighbouring trees,
but could also be a by-product of over-fitting a complicated surface λ̂(x).

The parametric analysis of these data that we shall discuss in Section 8.2.1
uses a log-quadratic model for the intensity, λ(x). It could be argued that the
nonparametric methodology described here is better able to describe subtle
gradations in intensity over the study region. On the other hand, there is
an attendant risk that a nonparametric smoothing method will find spurious
features in the estimated intensity surface when used on sparse data. This
underlines the importance of examining a plot of M̂(h) before computing

the surface estimate λ̂(·). A more important point relates to the theoretical
requirement that λ(x) should be bounded away from zero. In practice, this
means that when the study-region A contain sub-regions where the intensity
is close to zero, the estimator K̂I(t) can be very sensitive to the choice of
estimator for λ(x).

5.4 Analysing replicated spatial point patterns

Nonparametric methods of inference are also appropriate when the data con-
sist of replicate point patterns within a designed experiment, in which case
inference can be based on the design rather than on an assumed stochastic
model. For example, in Section 4.6 we considered the problem of estimating
the sampling variance of an estimator for K(t). There, we distinguished be-
tween situations in which the underlying process was or was not assumed to
be a homogeneous Poisson process. In the second of these cases, we consid-
ered two different ways in which we might proceed, leading to model-based
and design-based inference, respectively. For data consisting of a single point
pattern, the design-based method used a form of pseudo-replication by divid-
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FIGURE 5.4
Estimates of KI(t) for the hickories (left-hand panel) and maples (right-hand
panel) in Lansing Woods. −−−−− : data; −−− upper and lower envelopes
from 19 simulations of the inhomogeneous Poisson process with intensity equal
to the corresponding kernel estimate λ̂(·).

ing the study region A into sub-regions. We now consider how to analyse data
with genuine replication.

Genuine replication is obtained when an observed point pattern is the
result of an experiment that can be repeated under identical conditions, thus
producing a sequence of patterns which, by design, are exchangeable. It is
then natural to analyse the resulting data using the design-based approach to
inference.

As a motivating example, we consider the data shown in Figure 5.5. These
consist of 12 point patterns, each of which identifies the locations of pyramidal
neurons within a microscopic section of brain tissue taken from an area of the
cingulate cortex (area 24, layer 2) of a human subject post-mortem (Dig-
gle, Lange and Benes, 1991). The 12 subjects are presumed to be a random
sample of normal brains, and it is of interest to quantify the typical spatial
arrangement of pyramidal neurons, for later comparison with samples from
abnormal subjects. It would be difficult to justify a stationary process model
for the pattern presented by a single individual. Nevertheless, we can use the
estimated K-function as a general summary measure of spatial aggregation,
and the between-subject variation in estimated K-functions as the basis for
inference.



92 Statistical Methods for Spatial and Spatio-Temporal Point Processes

 

 

 
 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5.5
Locations of pyramidal neurons in brain tissue sections from 12 normal sub-
jects.

5.4.1 Estimating the K-function from replicated data

Suppose that the data consist of r point patterns, each observed on a region
A. Denote the ith of these by Xi = {xi1, ..., xini}. When the patterns are
strict replicates of an underlying process, the corresponding estimates of the
K-function are identically distributed and a reasonable overall estimate can be
obtained by simple averaging, as was done for the estimator K̃(t) discussed
briefly in Section (4.6.1). Because K(t) is itself defined as a ratio, K(t) =
E(t)/λ, a better strategy might be to pool separately estimates of λ and

of E(t) = λK(t). This leads to λ̂ =
∑

ni/(r|A|), which is the maximum
likelihood estimator when the underlying process is a homogeneous Poisson
process, and Ê(t) =

∑
Êi(t)/r, where Êi(t) is the estimate of E(t) obtained

from the ith replicate. The resulting estimator for K(t) is

K̂(t) =

r∑

i=1

niK̂i(t)/

r∑

i=1

ni, (5.12)

a weighted average of the individual estimates K̂i(t).
TheK-function is defined so as not to depend on the underlying intensity of

events. We can therefore also construct a pooled estimated without assuming
a common intensity across all replicates; this presumes that the hypothesis of
a common K-function and varying intensity between replicates is scientifically
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plausible, as would be the case if the “replicates” were differentially thinned
versions of a common underlying process. However, in this case we would
again argue that the weighted average (5.12) is an appropriate estimator,
since the dominant term in the variance of K̂i(t) is of order n−1

i . This also
holds if the regions on which the separate patterns are observed differ in size.
The distinction between assuming a common intensity λ or pattern-specific
intensities λi might be expected to make a material difference. However, in
the latter case, the argument leading to the estimator (5.12) holds directly,
whereas in the former, it follows by using the estimators

Ẽ(t) =

r∑

i=1

|Ai|Êi(t)/

r∑

i=1

|Ai|

and λ̃ =
∑r

i=1 ni/
∑r

i=1 |Ai|i together with the fact that Êi(t) = niK̂i(t)/|Ai|.
For a design-based assessment of the sampling variance of K̂(t), we use a

simple method based on the bootstrap (Efron and Tibshirani, 1993). Define
residual K-functions,

Ri(t) = n0.5
i {K̂i(t)− K̂(t)} : i = 1, ..., r (5.13)

To a first approximation, the Ri(t) are exchangeable under the assumption
that the underlying processes may differ in their intensities, but are otherwise
identical. We then construct a bootstrap sample of K-functions as

K∗
i (t) = K̂(t) + n−0.5

i R∗
i (t) : i = 1, ..., r,

where the R∗
i (·) are sampled at random with replacement from the set

{R1(·), ..., Rr(·)}, and compute a re-sampled K̂(t) as

K̂∗(t) =
r∑

i=1

niK̂
∗
i (t)/

r∑

i=1

ni.

Repeating this whole procedure, say s times, we then take the sample vari-
ance of the s values of K̂∗(t) as the bootstrap approximation to the sampling
variance of K̂(t). Note that, because the whole of each residual K-function
is re-sampled, the procedure gives a bootstrap estimate of the variance ma-
trix of the vector of values of K̂(t) for the complete set of values of t under
consideration, if required.

Figure 5.6 shows the estimate K̂(t) − πt2, as defined at (5.12), for the
data in Figure 5.5, together with plus and minus two bootstrap standard
error limits, computed from s = 1000 re-samples. Using a larger number
of re-samples did not materially change the bootstrap variance estimates.
All of the original estimated K-functions, and hence necessarily all of their
bootstrap re-sampled counterparts, have K̂(t) = 0 for small distances t < 0.03,
approximately, indicating a small-scale inhibitory effect. At larger distances,
the rapidly increasing width of the bootstrap standard error limits renders
non-significant any further departure from an underlying K(t) = πt2.



94 Statistical Methods for Spatial and Spatio-Temporal Point Processes

0.05 0.10 0.15 0.20 0.25

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

t

K̂
(t
)
−

π
t2

FIGURE 5.6
Pooled estimate K̂(t)− πt2 from 12 control subjects, with bootstrapped plus
and minus two pointwise standard error limits

5.4.2 Between-group comparisons in designed experiments

We now extend our motivating example to include data from two additional
experimental groups, consisting of post-mortem samples from subjects pre-
viously diagnosed as schizo-affective or schizophrenic. These data are shown
in Figures 5.7 and 5.8. One of the patterns from the schizophrenic group has
only two pyramidal neurons and we shall ignore it in the subsequent analysis.

Preliminary analysis of the counts ni, using a log-linear Poisson regres-
sion model, suggested that the intensity of events varied significantly between
groups. The observed mean numbers of cells per pattern in the three groups
were 54.6 for the controls, 45.1 for the schizo-affectives and 37.4 (excluding the
pattern with only two cells) for the schizophrenics. The likelihood ratio statis-
tic to test for equality of the three underlying population means within the
Poisson log-linear model was 33.3 on 2 degrees of freedom. There is no formal
justification for assuming Poisson counts in this context, but unless the indi-
vidual patterns are spatially aggregated, a Poisson approximation should be
conservative (McCullagh and Nelder, 1989). Recall that the estimator K̂(t)
remains valid when the underlying intensities vary between replicates, and
therefore also when the intensities vary between groups. The two panels of
Figure 8.9 show the resulting estimates of K(t)− πt2 for the schizo-affectives
and for the schizophrenics, together with pointwise limits constructed as plus
and minus two bootstrap standard errors, and using a common vertical scale
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FIGURE 5.7
Locations of pyramidal neurons in brain tissue sections from 9 schizo-affective
subjects.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5.8
Locations of pyramidal neurons in brain tissue sections from 10 schizophrenic
subjects.
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FIGURE 5.9
Pooled estimates K̂(t)− πt2 from 9 schizo-affective subjects (left-hand panel)
and from 9 schizophrenic subjects (right-hand panel), with bootstrapped plus
and minus two pointwise standard error limits.

for all three groups. Visual inspection of Figures 5.6 and 5.9 suggests that
all three groups show small-scale inhibitory behaviour, as is to be expected
in most micro-anatomical applications where the events represent reference
locations for finite-sized objects. However, the groups appear to differ in their
larger-scale behaviour; specifically, the schizo-affectives alone show apparently
significant spatial aggregation. We now consider how to convert this visual
assessment into a formal inference.

Let nij denote the number of events for the jth subject within the ith

experimental group, and K̂ij(t) the corresponding estimated K-function. De-

fine K̂i(t) to be the estimate (5.12) calculated from the ri subjects in the ith
group, and K̂0(t) a weighted average of the K̂i(t) with weights proportional to
the total numbers of events, ni =

∑ri
j=1 nij , in the three groups. Now let Ki(t)

denote the expectation of K̂ij(t) under repeated sampling. The null hypothe-
sis is that this is the same in all three groups, hence Ki(t) = K(t). Then, the
K̂i(t) estimate the corresponding Ki(t), whilst K̂0(t) estimates K(t) under
the null hypothesis that Ki(t) = K(t) for all i.

To test the hypothesis that Ki(t) = K(t), a statistic loosely analogous to
the between treatment sum of squares in a classical analysis of variance is

BTSS =

3∑

i=1

ni

∫ t0

0

w(t){K̂i(t)− K̂0(t)}2dt. (5.14)

The null sampling distribution of T is intractable, but for a design-based
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inference we can again use a re-sampling method. For the jth subject within
the ith group, define the residual K-function,

Rij(t) = n0.5
ij {K̂ij(t)− K̂i(t)} (5.15)

The Rij(t) are, to a first approximation, exchangeable under the null or al-
ternative hypotheses. Hence, if R∗

ij(t) : j = 1, ..., ri : i = 1, 2, 3 are obtained
from the original Rij(t) by re-sampling, we can construct a set of re-sampled
K-functions under the null hypothesis as

K̂∗
ij(t) = K̂0(t) + n−0.5

ij R∗
ij(t) (5.16)

For an approximate test, we then compare the observed value, BTSS1 say,
with values BTSSk : k = 2, ..., s from independent sets of re-sampled K∗

ij(t).

We applied the bootstrap procedure with t0 = 0.25, w(t) = t−2 and 1000
re-samples. Note that in this context, each re-sample is a complete set of
30 estimated K-functions in three groups, but generated under the null hy-
pothesis that the three underlying group-mean K-functions are equal. The
resulting bootstrap p-value is 0.253, giving no reason formally to reject the
null hypothesis.

Diggle, Lange and Benes (1991) used an unweighted version of the test
statistic (5.14) in conjunction with a square root transformation of K̂(t). They
also used random permutations of the residual K-functions, i.e. re-sampling
without replacement, rather than the bootstrap re-sampling with replacement
implemented here.

5.5 Parametric or nonparametric methods?

We have argued that for the application described in Section 5.4, paramet-
ric modelling assumptions would be hard to justify, and a nonparametric,
design-based approach therefore seems natural. Of course, in this context an
estimated K-function is just one of many possible ad hoc summary statistics
that could be calculated from each pattern. It is a reasonable choice when
there is scientific interest in the degree of spatial aggregation or regularity
in the component patterns and in the extent to which this varies between
groups of subjects. For more specific alternative hypotheses, other summary
statistics may be preferable. Note also that Bell and Grunwald (2004) have
analysed the same set of data using parametric methods. They fit pairwise
interaction point process models using maximum pseudo-likelihood and ac-
commodate differences between replicates by treating model parameters as
random effects.

An immediate benefit of using likelihood-based methods when a suitable
parametric model can be identified is that ad hoc methods of inference are no
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longer necessary. Also, information from independent replicates can be com-
bined objectively, by adding the corresponding log-likelihood contributions.
The corresponding cost is the reliance on additional assumptions, i.e. the cor-
rectness of the assumed model. An intermediate strategy is to use likelihood-
based methods to estimate model parameters as summary statistics for each
replicate, but to continue to use the randomisation distribution induced by
the study design as the basis for inference. Diggle, Mateu and Clough (2000)
report some empirical comparisons of the parametric and nonparametric ap-
proaches. Their results confirm, as expected, that the parametric approach is
more powerful when its underlying assumptions are satisfied, but correspond-
ingly less robust to departures from the assumptions.
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6.1 Introduction

The basic building block for point process modelling is the Poisson process.
As discussed in earlier chapters, the homogeneous Poisson process provides
a benchmark of complete spatial randomness against which various kinds of
pattern can be assessed. The essence of complete spatial randomness is the
independence of the different events: knowing where some of the events are
located does not help to predict where other events might be located. When
the occurrence of an event at a particular location makes it more likely that
other events will be located nearby, the resulting patterns display a kind of
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pattern which might loosely be described as aggregated. In contrast, when each
event is likely to be surrounded by empty space, the overall pattern will be of
a more regular spatial distribution of events.

In the remainder of this chapter, we will describe some simple constructions
for these and other, more complex types of spatial pattern.

6.2 Contagious distributions

Historically, the first extension of the Poisson process as a model for spatial
point patterns was advanced by Neyman (1939), who was concerned with pos-
sible models for the spatial distribution of insect larvae. Neyman postulated a
Poisson process of egg-masses from which larvae hatch and subsequently move
to positions relative to the corresponding egg-mass according to a bivariate
distribution with pdf h(·). The probability that a larva from an egg-mass at
x will subsequently be found within a region A is

P (x;A) =

∫

A

h(y − z)dy.

Neyman then argued that without any knowledge of h(·) a model might
reasonably be specified by a prescribed form for P (x;A). However, Skellam
(1958) subsequently pointed out that the implied integral equation for h(·)
may not be soluble; note that the required solution is a pdf which must not
depend on A.

Rather more simply, suppose that “parent” events form a Poisson process
with intensity ρ and that each parent, independently, produces a random
number S of “offspring”, all of which occupy the same position as their parent.
The number of parents, M say, in a given region A therefore follows a Poisson
distribution with mean ρ|A|. The number of offspring in A, N(A) say, is
S1 + · · ·+ SM , and if the probability generating function (pgf) of S is πs(z),
then the pgf of N(A) is

π(z;A) = exp[−ρ|A|{1− πs(z)}]. (6.1)

Equation (6.1) defines the class of generalized Poisson distributions (Feller,
1968, Chapter 12, but note the difference in terminology). In the present
context, such distributions are usually called contagious, following Ney-
man (1939). Neyman’s Type A distribution is obtained by setting πs(z) =
exp{−μ(1 − z)} and therefore corresponds to a non-orderly process of ran-
domly distributed point clusters. A variation due to Thomas (1949) is to
include parents in the final pattern. This avoids “clusters” of zero size and
corresponds to πs(z) = z exp{−μ(1− z)} Finally, if S has a logarithmic series
distribution with πs(z) = 1 − log{1 + β(1 − z)}/ log(1 + β) for some β > 0
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then Y has a negative binomial distribution. The absence of any genuinely spa-
tial clustering mechanism in the formulation of these contagious distributions
should be noted. Furthermore, it is well known that the negative binomial dis-
tribution in particular can be derived also as a compounded, or mixed, Poisson
distribution in which the parameter of a Poisson distribution is determined
by random sampling from a gamma distribution.

Contagious distributions have long been fitted to quadrat count data,
with apparent success. Evans (1953) gives a number of ecological examples,
whilst Douglas (1979) contains a detailed description of the relevant statistical
methodology. This approach provides at best an empirical description of pat-
tern, and specific inferences about the underlying process should be avoided.
In particular, it is far from clear that a negative binomial quadrat count dis-
tribution can be compatible with any spatial point process other than a point
cluster process of the type defined by (6.1) or a non-ergodic process in which
each complete realisation is a Poisson process, but whose intensity λ varies
between realisations according to a gamma distribution; see, for example, the
discussion of Matérn (1971).

The existence question was pursued by Diggle and Milne (1983a), who
tried and failed to find a construction for which the resulting point process
was stationary, ergodic, orderly and with negative binomial quadrat count
distributions. They conjectured that no such process exists, and this was sub-
sequently confirmed in unpublished work by Bob Griffiths (Department of
Statistics, University of Oxford).

6.3 Poisson cluster processes

Poisson cluster processes, introduced by Neyman and Scott (1958), incorpo-
rate an explicit form of spatial clustering, and therefore provide a more satis-
factory basis for modelling aggregated spatial point patterns. Their definition
incorporates the following three postulates.

PCP1 Parent events form a Poisson process with intensity ρ.

PCP2 Each parent produces a random number S of offspring, realized in-
dependently and identically for each parent according to a probability dis-
tribution ps : s = 0, 1, . . . .

PCP3 The positions of the offspring relative to their parents are indepen-
dently and identically distributed according to a bivariate pdf h(·).

Conventionally, and in the sequel unless explicitly stated otherwise, the final
pattern consists of the offspring only. Some authors adopt a less restrictive def-
inition involving the superposition of independent realisations of an arbitrary
process, translated by the points of a Poisson parent process.
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Poisson cluster processes as defined here are stationary, with intensity
λ = ρμ where μ = E[S]. They are isotropic if PCP3 specifies a radially
symmetric pdf h(·).

To express the second-order properties in terms of the three postulates
PCP1 to PCP3, let

h2(x) =

∫
h(x)h(x − y)dx

be the pdf of the vector difference between the positions of two offspring
from the same parent, and H2(·) the corresponding cumulative distribution
function. If we now consider an arbitrary event within a cluster of size S, the
expected number of other events from the same cluster within a distance t is
(S − 1)H2(t). The probability distribution of the size of the cluster to which
an arbitrary event belongs is obtained by length-biased sampling from the
cluster size distribution p(s), hence p∗(s) = sp(s)/μ : s = 1, .... Averaging
over the distribution p∗(·) then gives the expected number of related events
within distance t of an arbitrary event as E[S(S − 1)]H2(t)/μ.

Now, consider the expected number of unrelated events, meaning events
from different clusters, within distance t of an arbitrary event. PCP1 implies
that all such events are located independently of the original event, hence
their expected number is just λπt2. Summing the contributions from related
and unrelated events then gives

λK(t) = λπt2 + E[S(S − 1)]H2(t)/μ.

Finally, dividing by λ = ρμ we obtain

K(t) = πt2 + E[S(S − 1)]H2(t)/(ρμ
2). (6.2)

Differentiation of (6.2), in conjunction with (4.3), then gives

λ2(t) = λ2 + ρE[S(S − 1)]h2(t). (6.3)

Note that the second term on the right hand side of (6.2) is non-negative,
and monotone non-decreasing, and that K(t) − πt2 approaches a constant,
c = E[S(S− 1)]/(ρμ2), as t → ∞. If S follows a Poisson distribution, c = ρ−1.
These results suggest a useful way of identifying whether a Poisson cluster
process might be a reasonable model for an observed pattern, and if so a
means of obtaining preliminary parameter estimates.

The variance of the quadrat count distribution for a Poisson cluster process
is similarly obtained from (4.6) and (6.3) as

Var{N(A)} = ρμ|A|+ ρE[S(S − 1)]

∫

A

∫

A

h2(x− y)dxdy.

General expressions for the nearest neighbour distributions of an isotropic
Poisson cluster process are also available (Bartlett, 1975, Chapter 1). In the
isotropic case, let q(x, y) denote the probability that there are no offspring
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within a distance x of the origin, from a parent a distance y from the origin.
Then, the distribution function of the point to nearest event distance is

F (x) = 1− exp

(
−2πρ

∫ ∞

0

{1− q(x, y)}ydy
)
.

Because parents’ locations are mutually independent, the distribution function
of nearest neighbour distance follows immediately as

G(y) = 1− {1− F (y)}q∗(y),

where q∗(y) denotes the probability that no offspring from the same parent
as an arbitrary offspring, O say, lie within a distance y of O. In principle,
the probabilities q(x, y) and q∗(y) are expressible in terms of the distribu-
tions specified in PCP2 and PCP3. Whilst the general expressions are not
particularly illuminating, explicit results are obtainable in special cases; see,
for example, Warren (1971) and Diggle (1975, 1978). Note also that q∗(y) is
an example of Van Lieshout and Baddeley’s (1996) J-function.

In simulating Poisson cluster processes on a rectangular region, say A =
(0, a)×(0, b), a useful device to avoid edge-effects is to impose periodic bound-
ary conditions. Parents in A are first generated as a partial realisation of the
appropriate Poisson process, as described in Section 4.4. Offspring are now
attached to parents according to PCP2 and located according to PCP3, with
the following exceptions:

1. Any generated x-coordinate of the form ka+x, for non-zero integer
k and 0 < x < a, is transformed to x.

2. Any generated y-coordinate of the form kb+ y, for non-zero integer
k and 0 < y < b, is transformed to y.

In effect, the rectangle is converted to a torus by identifying opposite edges.
When PCP2 specifies a Poisson distribution for the number of offspring per
parent, the process can if required be simulated conditional on the total num-
ber of events in A by randomly allocating the events amongst the parents.
Conditioning on the number of parents in A is straightforward.

Figure 6.1 shows parallel realisations of two Poisson cluster processes. Both
have 25 parents on the unit square and an average of four offspring per parent.
The position of each offspring relative to its parent follows a radially symmetric
Gaussian distribution with pdf

h(x1, x2) = (2πσ2)−1 exp{−(x2
1 + x2

2)/2σ
2},

and σ = 0.025. In the left-hand panel, each parent has exactly four offspring.
Notice that because formally distinct clusters coalesce it is difficult to identify
the 25 sets of four offspring with any confidence. In the right-hand panel, the
100 offspring are randomly allocated amongst the 25 parents. Both patterns
have used the same locations for parents, but the additional random element
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FIGURE 6.1
Realisations of two Poisson cluster processes, each with 25 parents on the
unit square an average of four offspring per parent and radially symmetric
Gaussian dispersion of offspring, with parameter σ = 0.025. In the left-hand
panel, each parent has exactly four offspring. In the right-hand panel, offspring
are randomly allocated amongst the 25 parents.

in the right-hand panel makes it still more difficult to identify the underlying
process by visual inspection.

Poisson cluster processes can be extended to “multi-generation” processes
in which the offspring become the parents of the next generation, and so on.
This type of construction tends to be mathematically intractable, but it is
intuitively appealing and we shall discuss it further in Section 5.5.

6.4 Inhomogeneous Poisson processes

A class of non-stationary point processes is obtained if the constant intensity
λ of the Poisson process is replaced by a spatially varying intensity function,
λ(x). This defines the class of inhomogeneous Poisson processes, for which

IPP1 N(A) has a Poisson distribution with mean
∫
A
λ(x)dx.

IPP2 Given N(A) = n, the n events in A form an independent random
sample from the distribution on A with pdf proportional to λ(x).

Figure 6.2 shows a partial realisation of an inhomogeneous Poisson process
with A the unit square, N(A) = 100 and λ(x1, x2) = exp(−2x1 − x2). The
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FIGURE 6.2
A realisation of an inhomogeneous Poisson process with 100 events on the unit
square and λ(x) = exp(−2x1 − x2)

intensity gradient in the x1-direction is immediately apparent, the gentler
gradient in the x2-direction less so.

The inhomogeneous Poisson process provides a possible framework for the
introduction of covariates into the analysis of spatial point patterns via an
intensity function λ(x) = λ{z1(x), z2(x), ..., zp(x)}. For example, suppose that
the locations of trees of a particular species are thought to follow a Poisson
process with intensity determined by height above sea-level, then a possible
model might be λ(x) = exp{α + βz(x)}, where z(x) denotes height above
sea-level at the location x. Cox (1972a) refers to this as a “modulated Poisson
process”.

Another example, which we will consider in more detail in Chapter 9,
would be a model for the point process of cases of a respiratory disease in
the vicinity of a point source of environmental pollution. In this example,
we might assume that case locations form an inhomogeneous Poisson process
with intensity λ(x) given by

λ(x) = λ0(x)f{||x− x0||, θ},

where λ0(x) corresponds to spatial variation in population density, x0 is the
location of the point source, and f(u, θ) describes how the impact of the source
varies with distance, u.

Provided that λ(x) is bounded away from zero, inhomogeneous Poisson
processes are re-weighted second-order stationary in the sense of Baddeley,
Møller and Waagepetersen (2000), with pair correlation function ρ(t) = 1 and
inhomogeneous K-function KI(t) = πt2.

The obvious method of simulating an inhomogeneous Poisson process is
via IPP2, whether with fixed or randomly generated N(A). In special cases,
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one-off algorithms can be devised. For the general case, Lewis and Shedler
(1979) suggest an algorithm based on rejection sampling. In its simplest form,
this consists of simulating a Poisson process on A with intensity λ0 equal
to the maximum value of λ(x) within A, and retaining an event at x with
probability λ(x)/λ0.

6.5 Cox processes

The rationale behind the use of Poisson cluster processes as models for bio-
logical processes is that aggregated spatial point patterns might be generated
by the clustering of groups of related events, as in Neyman’s (1939) seminal
paper. A second possible source of aggregation is environmental heterogeneity.
Specifically, an inhomogeneous Poisson process with intensity function λ(x)
will produce apparent clusters of events in regions of relatively high intensity.
The source of such environmental heterogeneity might itself be stochastic in
nature. This suggests investigation of a class of “doubly stochastic” processes
formed as inhomogeneous Poisson processes with stochastic intensity func-
tions. Such processes are called Cox processes, following their introduction in
one temporal dimension by Cox (1955). Explicitly, a spatial Cox process can
be defined by the following postulates.

CP1 {Λ(x)} : x ∈ IR2} is a non-negative-valued stochastic process.

CP2 Conditional on {Λ(x) = λ(x) : x ∈ IR2}, the event form an inhomoge-
neous Poisson with intensity function λ(x).

A Cox process is stationary if and only if its intensity process Λ(x) is station-
ary, and similarly for isotropy. A convenient and expressive terminology is to
refer to the Cox process “driven by” {Λ(x)}.

First-order and second-order properties are obtained from those of the
inhomogeneous Poisson process by taking expectations with respect to {Λ(x)}.
Thus, in the stationary case, the intensity is

λ = E[Λ(x)].

Also, the conditional intensity of a pair of events at x and y, given {Λ(x)},
is Λ(x)Λ(y), so that

λ2(x, y) = E[Λ(x)Λ(y)].

In the stationary, isotropic case this can be written as

λ2(t) = λ2 + γ(t), (6.4)

where
γ(t) = Cov{Λ(x),Λ(y)}
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and t = ||x−y||. Note that, consistent with the notation introduced in Section
4.2, the covariance function γ(t) of the intensity process is also the covariance
density of the point process.

General expressions for K(t) and Var{N(A)} then follow as in (4.3) and
(4.6). Note that for the typical case in which γ(t) takes non-negative values
only, (6.4) is qualitatively similar to the corresponding expression (6.3) for a
Poisson cluster process. More than this, processes in the two different classes
can be shown to be equivalent. To see this, let h(·) be a bivariate pdf and
construct an intensity process {Λ(x)} by defining

Λ(x) = μ
∞∑

i=1

h(x−Xi) (6.5)

for some μ > 0, where the Xi are the points of a Poisson process. The Cox
process driven by (6.5) is also a Poisson cluster process in which PCP2 spec-
ifies a Poisson distribution with mean μ, and PCP3 specifies the pdf h(·).
Intuitively, this is because a Poisson distribution for the number of offspring
per parent corresponds to the random allocation of offspring amongst parents.
The equivalence of the two processes is established formally in Bartlett (1964).

By way of illustration, Figure 6.3 shows a realisation of a process of this
type previously introduced in Section 5.3; we take μ = 4 and a radially sym-
metric Gaussian h(·) with σ = 0.05. The process has again been conditioned
to generate 100 events in the unit square and the realisation parallels the one
shown in the right-hand panel Figure 6.1, to which it is identical in every re-
spect save for the increased value of σ. The larger value of σ produces a more
diffuse form of aggregation which, were it to be observed in the field, might
suggest environmental heterogeneity rather than clustering. Whether or not
such an interpretation were sound would then depend on further, biological
investigation.

From a statistical viewpoint, the distinction between clustering and het-
erogeneity can only be sustained if additional information is available, for
example in the form of covariates. Note that if we were able to model the
intensity surface Λ(x) through a regression equation in measured covariates,
rather than as a realisation of a stochastic process, the resulting point process
model would become an inhomogeneous Poisson process.

Matérn (1971) notes the difficulty of obtaining explicit expressions for the
nearest neighbour distributions of a general Cox process. Conditional on the
realisation λ(x) of the intensity process, the probability that there are no
events within a distance t of the origin is

exp

(
−
∫

λ(x)dx

)
, (6.6)

where the region of integration is the disc with centre the origin and radius
t. In principle, the distribution function of the distance from an arbitrary
point to the nearest event is obtained by taking the expectation of (6.6) with
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FIGURE 6.3
A realisation of a Cox process; see text for detailed explanation.

respect to the (infinite-dimensional) distribution of the surface Λ(x) over a
disc of radius t. In general, this is not an attractive proposition.

Kingman (1977) has argued that Cox processes provide a natural frame-
work within which to model the spatial pattern of a population of reproducing
individuals. Let Gn denote a point process which determines the locations Xi

of individuals in the nth generation and suppose that reproduction obeys the
following rules:

1. The number of offspring of the parent individual at xi is a Poisson
random variable with mean μi = μi(Gn).

2. The positions of offspring relative to their parents are independently
distributed according to a bivariate distribution with pdf h(·).

Rule (2) above is identical to postulate PCP3 of a Poisson cluster process,
whilst (1) is similar to PCP2 but allows the μi to depend on the configuration
of parent individuals; for example, μi might be a function of the number of
parents within some prescribed distance of xi. The locations of the offspring
define the process Gn+1, and so on. It follows that Gn+1 is a Cox process with
{Λ(x)} defined by

Λ(x) =

∞∑

i=1

μi(Gn)h(x − xi),

where the xi are the events of the nth generation and might, for example, be
determined according to the “multi-generation” prescription discussed briefly
at the end of Section 5.3.

In principle, any Cox process can be simulated by first simulating {Λ(x)}
on the appropriate region and then using the rejection sampling method for
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inhomogeneous Poisson processes as described in Section 5.4. More efficient
methods can be devised for particular types of Cox process. For example, Cox
processes defined by (6.5) are more efficiently simulated as Poisson cluster
processes.

6.6 Trans-Gaussian Cox processes

One relatively flexible and tractable construction for Cox processes that is
not based on their duality with cluster processes is the class of log-Gaussian
processes, introduced by Møller, Syversveen and Waagepetersen (1998). These
are defined by taking Λ(x) = expS(x), where S(x) is a Gaussian process. Mo-
ment properties follow from known properties of log-Gaussian distributions;
specifically, if U is Normally distributed with mean m and variance v, then
for any positive integer k,

E[Uk] = exp(km+ 0.5k2v). (6.7)

Now suppose that S(x) is stationary with mean μ, variance σ2 and corre-
lation function r(u) = Corr{S(x), S(x − u)}. Then, the intensity of the Cox
process follows by setting k = 1 in (6.7), hence λ = E[Λ(x)] = exp(μ+0.5σ2).
Similarly, E[Λ(x)Λ(x−u)] = E[exp{S(x)+S(x−u)}]. But S(x)+S(x−u) is
itself Normally distributed with mean 2μ and variance 2σ2{1 + r(u)}, hence
E[Λ(x)Λ(x − u)] = exp[μ + σ2{1 + r(u)}]. The covariance density and pair
correlation function of the Cox process follow as

γ(u) = E[Λ(x)Λ(x− u)]− λ2 = exp(2μ+ σ2)[exp{σ2r(u)} − 1] (6.8)

and
ρ(u) = 1 + γ(u)/λ2 = exp{σ2r(u)}. (6.9)

Figure 6.4 shows a realisation of a log-Gaussian process in which S(x) has
σ2 = 1, μ ≈ 4.8 to give λ = 200, and r(u) = exp(−4u). Also shown is the
corresponding realisation of Λ(x) = exp{S(x)}. The asymmetric appearance
of the intensity surface, with relatively sharp peaks and flatter troughs, is a
characteristic feature of this class of processes.

Less extreme asymmetry could be obtained by using a different transfor-
mation, for example by defining Λ(x) = S(x)2. In this case, it follows from
the moment properties of the bivariate Normal distribution that the intensity
of the Cox process is λ = μ2 + σ2, the covariance density is

γ(u) = 2σ4r(u)2 + 4μ2σ2r(u), (6.10)

and the pair correlation function is

ρ(u) = {2σ4r(u)2 + 4μ2σ2r(u) + 1}/(μ2 + σ2)2. (6.11)
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FIGURE 6.4
A realisation of a log-Gaussian Cox process (dots) superimposed on the re-
alisation of the underlying intensity surface (grey-scale image); see text for
detailed explanation.

6.7 Simple inhibition processes

The alternatives to the Poisson process described in Sections 5.3 and 5.5 share
a tendency to produce aggregated patterns. Regular patterns arise most natu-
rally by the imposition of a minimum permissible distance, δ say, between any
two events. This may simply reflect the physical size of the biological entities
whose locations define the point pattern (cf the discussion of Figure 1.3 in
Section 1.1), or it may be a manifestation of more subtle effects such as com-
petition between plants or territorial behaviour in animals. Processes of this
sort which incorporate no further departure from complete spatial random-
ness are called simple inhibition processes, a notion which can be formalized
in several non-equivalent ways. As a convenient piece of terminology, we define
the packing intensity of a simple inhibition process as

τ = λπδ2/4,

where λ is the intensity. Thus, τ is the proportion of the plane covered by
non-overlapping discs of diameter δ, or the expected proportion of coverage
for a finite region A. Notice that the maximum possible packing intensity is
attained by close-packed discs whose centres form an equilateral triangular
lattice with spacing δ; thus τ ≤ τmax = (π

√
3)/6 ≈ 0.907.

Matérn (1960, Chapter 3) describes two types of simple inhibition pro-
cess. In the first, a Poisson process of intensity ρ is thinned by the deletion of
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all pairs of events a distance less than δ apart. The probability that an arbi-
trary event survives is therefore exp(−πρδ2), and the intensity of the resulting
inhibition process is

λ = ρ exp(−πρδ2). (6.12)

The corresponding packing intensity is at most (4e)−1 ≈ 0.092, or about 10%
of τmax. The second-order properties are conveniently expressed by

λ2(t) =

{
0 : t < δ
ρ2 exp{−ρUδ(t)} : t ≥ δ

(6.13)

where Uδ(t) denotes the area of the union of two discs each of radius δ and
with centres a distance t apart. This follows because exp{−ρUδ(t)} is the
conditional probability that two events both survive, given that they are a
distance t ≥ δ apart.

In Matérn’s second process, the events of a Poisson process are marked
with times of birth and an event is removed if it lies within a distance δ of
an “older” event. Expressions analogous to (6.12) and (6.13) can be obtained,
but only by ignoring any consideration of whether or not the older event in
question has itself previously been removed. Recognition of this last aspect
leads to a simple sequential inhibition process, defined on any finite region A
as follows. Consider a sequence of n events Xi in A. Then

SSI1 X1 is uniformly distributed in A.

SSI2 Given {Xj = xj , j = 1, ..., i − 1}, Xi is uniformly distributed on the
intersection of A with {y : ||y − xj || ≥ δ, j = 1, ..., i− 1}.

Simple sequential inhibition is parameterized most naturally by its packing
intensity, τ = nπδ2/(4A). Note that if too high a value of τ is prescribed, the
sequential procedure may terminate prematurely. The maximum attainable
packing intensity is a random variable whose distributional properties appear
to be largely intractable; simulations by Tanemura (1979) suggest an expecta-
tion of about 0.547. Figure 6.5 shows the development of a realisation on the
unit square with δ = 0.08 and n = 25, 50, 75 and 100, the last corresponding
to τ ≈ 0.5 The progressive development of regularity is clear.

Packing problems arise in many different contexts. Rogers (1964) gives a
mathematical introduction to the subject. Bernal (1960) was among the first
to use simple inhibition processes as models in the theory of liquids. Mannion
(1964) discusses the “car-parking problem”, which is simple sequential inhi-
bition in one spatial dimension. Bartlett (1975, Chapter 3) relaxes the strict
inhibition rule to replace the constant δ by a random variable, realized inde-
pendently for each event, and uses the resulting process to model the spatial
distribution of gulls’ nests.
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FIGURE 6.5
Progressive development of a realisation of a simple sequential inhibition pro-
cess with δ = 0.08 and n = 25, 50, 75, 100 events on the unit square.

6.8 Markov point processes

Many regular patterns require a more flexible description than can be provided
by a strict, simple inhibition rule. For example, competitive interactions be-
tween plants may make it unlikely, but not impossible, that two individuals
can survive in close proximity to each other.

For the simple inhibition processes described in Section 6.7 it is clear that
the conditional intensity of an event at a point x, given the realisation of the
process in the remainder of any planar region A, depends only on the existence
or otherwise of an event within a distance δ of x. In other words, the process
involves a form of local or Markovian dependence amongst events. For the
reasons noted above, we might wish to preserve this local dependence, but
introduce more flexibility into the model. This provides a motivation for the
class of Markov point processes, introduced by Ripley and Kelly (1977).

Markov point processes are defined on an arbitrary, but fixed, finite region
A. Each process is characterized by its likelihood ratio f(·) with respect to a
Poisson process of unit intensity. Thus, if X = {x1, . . . , xn} denotes any finite
set of points in A, then f(X ) indicates in an intuitive sense how much more
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likely is the configuration of events X for the particular process than for a
Poisson process of unit intensity. Usually, f(·) is defined up to a normalizing
constant that cannot be calculated explicitly. Note that f(·) can always be
factorized as a product of the form

f(X ) = α

n∏

i=1

gi(xi)
∏

j>i

gij(xi, xj) . . . g12...n(x1, x2, ..., xn). (6.14)

We now define two points x and y in A to be neighbours if ||x − y|| < ρ,
where ρ > 0 is a prescribed value, called the range of the process. We further
define a clique to be a set of mutual neighbours, and the neighbourhood of x to
be the set of points {y ∈ A : 0 < ||x− y|| < ρ}. With these definitions, a point
process is said to be Markov of range ρ if the conditional intensity at the point
x, given the configuration of events in the remainder of A, depends only on
the configuration in the neighbourhood of x. In this context, the conditional
intensity is defined as the natural extension of the second-order conditional
intensity as discussed in Section 4.2, except that the conditioning set is now
an entire configuration of events in a specified region, rather than a single
event at a specified location.

Ripley and Kelly (1977) establish the fundamental result that for a point
process to be Markov of range ρ it is necessary that each g-function in (6.14)
is identically unity unless its arguments constitute a clique; further conditions
must be imposed, essentially to ensure that f(·) is integrable. There is a
close link between this result for Markov point processes and the celebrated
Hammersley-Clifford theorem for Markov random fields (Besag, 1974).

For a Poisson process of unit intensity, the likelihood of exactly n events in
A at specified locations x1, . . . , xn is exp(−|A|), since N(A) follows a Poisson
distribution with mean |A|, the distribution of events given N(A) is uniform
on A and there are n! equally likely permutations of x1, . . . , xn. Thus, the
likelihood function of a Markov point process can in principle be written as
f(X ) exp(−|A|). In practice, this is of limited use because the normalizing
constant is unknown.

Particular examples of Markov point processes include the Strauss process,
for which

f(X ) = αβnγs (6.15)

where n is the number of events in X , s is the number of distinct pairs of
neighbours, α is the normalizing constant, β reflects the intensity of the process
and γ describes the interactions between neighbours. The case γ = 1 gives
a Poisson process with intensity β, whilst γ = 0 gives a simple inhibition
process, each realisation of which is a partial realisation of a Poisson process
but conditioned by the requirement that no two events in the region A may
be neighbours. This last process is formally different from simple sequential
inhibition, but its statistical properties appear to be very similar (Ripley,
1977). Values of γ between 0 and 1 represent a form of non-strict inhibition.
In the original paper, Strauss proposed (6.15) with γ > 1 as a model for
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clustering. Unfortunately, this results in an explosion of the process, with an
infinite number of events in A. This can be seen intuitively from the form of
(6.15), in which the exponent s can be of order n2, whereas adjustment of the
intensity via the parameter β can only absorb a term of order n. Kelly and
Ripley (1976) establish this result formally.

If we fix n in (6.15), this results in a valid probability distribution for
X for any non-negative γ. However, when γ > 1 the resulting patterns tend
to exhibit an extreme form of clustering as the most likely configurations of
events is one in which all n events from a single cluster of mutual neighbours.
This is discussed in more detail in Gates and Westcott (1986).

6.8.1 Pairwise interaction point processes

The class of pairwise interaction processes is defined by

f(X ) = αβn
∏

j �=i

h{||xi − xj ||}, (6.16)

where α and β are as in (6.15), h(u) is non-negative for all u and the product
is over all pairs of distinct points in X (Ripley, 1977). As the Strauss process
is a special case of (6.16), it follows from the earlier discussion that some
further restriction on h(·) is required in order to define a valid point process.
A sufficient condition is that h(·) is bounded and h(u) = 0 for all u less
than some δ > 0; this automatically limits the number of events in any finite
region A by imposing a minimum permissible distance δ between any two
events. However, models which allow h(u) > 1 still tend to produce unrealistic
models. In particular, the properties of any such process generating n events
in a fixed, finite region of space depend strongly on the packing density, τ =
nπδ2/(4|A|). At small packing densities, realisations of processes that allow
h(u) > 1 tend to be extremely aggregated. As the value of τ increases, the
small-scale regularity induced by the minimum distance constraint dominates
the tendency towards aggregation induced by allowing h(u) > 1 at distances
u > δ until, in the limit as τ approaches its maximum permissible value, the
only feasible realisations of the process are approximate versions of a regular,
close-packed lattice, irrespective of the nature of the interaction at larger
distances.

To generate simulated realisations of a Markov point process the following
procedure can be used. For illustrative convenience, we confine our attention
to the class of pairwise interaction processes defined by (6.16), and condition
each realisation to produce n events in A. Let X = {x1, . . . , xn−1} be any set
of n−1 events in A and consider the possible addition of an event at the point
y. It follows from (6.16) that

f(X ∪ y) = αβn
∏

i

∏

j �=i

h{||xi − xj ||}
n−1∏

i=1

h{||xi − y||}
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and

f(X ∪ y)/f(X ) = β

n−1∏

i=1

h{||xi − y||}. (6.17)

Since h(·) is bounded, say h(u) ≤ k, then

p(y) =

[
n−1∏

i=1

h{||xi − y||}
]
/kn−1 (6.18)

is a probability. Consider any set of n points in A to constitute an initial
realisation and delete one of the n points at random to produce the set X
of (6.17). Now generate a point y distributed uniformly in A and accept y
with probability p(y), otherwise reject and repeat until one such point y is
accepted. The process defined by alternative depletion and replacement of
points according to the above prescription converges to the Markov point
process defined by (6.16), but conditioned to produce n events in A; see Ripley,
1977, and Preston, 1977, for a formal justification. The number of depletion-
replacement steps needed to achieve approximate equilibrium is unknown, but
it is obviously sensible to use a feasible initial realisation. Ripley (1979b) gives
a FORTRAN subroutine and suggests that 4n depletions and replacements are
adequate in practice. This is an early example, and to my knowledge the first
implementation in the statistical literature, of what would now be called an
MCMC algorithm. A minor variation is to carry out the depletion-replacement
steps in a systematic order, so that each “sweep” of n deletion-replacement
steps results in the re-positioning of every event in the initial realisation. This
gives a somewhat quicker convergence by reducing the statistical dependence
between realisations from successive sweeps.

Figure 6.6 shows a realisation of each of two pairwise interaction processes
conditioned to produce 100 events in the unit square, together with the cor-
responding interaction functions h(·). The first of these is a simple inhibition
process with interaction function

h1(u) =

{
0 : u < 0.05,
1 : u ≥ 0.05.

,

whilst the second has

h2(u) =

⎧
⎨

⎩

0 : u < 0.05,
20(u− 0.05) : 0.05 ≤ u < 0.1,
1 : u ≥ 0.1,

.

Each of these interaction functions imposes a minimum distance of 0.05 be-
tween events. The second additionally discourages pairs of events a distance
less than 0.1 apart and thereby produces a more regular pattern of events.
Both simulations were conditioned to generate exactly 100 events on the unit
square and used four complete sweeps of Ripley’s MCMC algorithm.

Figure 6.7 shows a realisation of each of another two pairwise interaction
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FIGURE 6.6
Realisations of two pairwise interaction point processes on the unit square and
their corresponding interaction functions (see text for detailed explanation).

processes, again conditioned to produce 100 events in the unit square, but
now with interaction function

h3(u) =

⎧
⎨

⎩

0 : u < δ,
2− δ/(u− δ) : δ ≤ u < 2δ,
1 : u ≥ 2δ

(6.19)

The upper row of Figure 6.7 corresponds to δ = 0.05 in (6.19), with pack-
ing density τ ≈ 0.2. The resulting pattern is not grossly dissimilar to that
produced by a simple inhibitory process with δ = 0.05 (cf the upper row of
Figure 6.6). The lower row of Figure 6.7 corresponds to δ = 0.01, with packing
density τ ≈ 0.008. Now, the aggregative effect of allowing h(u) > 1 dominates,
to the extent that the simulated realisation consists of single, tight cluster of
events surrounded by empty space.

In most applications, it is more natural to consider the number of events as
a random variable because the study region, here the unit square, is itself only
part of a larger region on which the underlying process operates. However, for
inhibitory processes with interaction function h(u) ≤ 1 for all u, whether we
treat the number of events in the study region as fixed or random does not
greatly affect the statistical properties of the resulting data. In the case of
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FIGURE 6.7
Realisations of two partly inhibitory, partly attractive pairwise interaction
point processes on the unit square and their interaction functions (see text for
detailed explanation).

partly attractive processes, for which h(u) > 1 for a range of values of u,
this is not necessarily so. As noted earlier, processes of this kind may not
even be well-defined as point processes on the plane, and when they are well-
defined they tend to generate extreme forms of clustering, as discussed in
Gates and Westcott (1986). In these circumstances, and as the lower row of
Figure 6.7 illustrates, if the fixed-number prescription is used to simulate a
pattern in a prescribed region A, then the partial realisations in sub-regions
of a given size and shape may have very different statistical properties than
the corresponding realisations on the whole of A. The author’s conclusion is
that pairwise interaction processes should generally be used only as models for
regular spatial point patterns. However, the same conclusion does not apply
to spatio-temporal point patterns. In that setting, it is not only reasonable,
but often of direct interest, to model how the statistical properties of the
underlying process develop over time. From this point of view, Figure 6.5 can
be interpreted as a series of four snap-shots from a spatio-temporal simple
inhibition process. Spatio-temporal point processes are discussed in Chapters
10 to 13.

The MCMC algorithm described above can become computationally very
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expensive because the acceptance probability (6.18) can become extremely
small. This is certainly the case when n is large and k, the designated upper
bound on h(u), is greater than one, but it can also apply to pairwise interaction
functions that incorporate strong inhibitory interactions at relatively large
distances.

6.8.2 More general forms of interaction

A more satisfactory construction for modelling aggregated patterns within the
Markov point process framework is the area interaction process, as proposed
by Baddeley and Van Lieshout (1995). In the simplest case, this process is
defined by

f(X ) = αβnγ−A(X ,δ), (6.20)

where A(X , δ) is the area of the union of discs, each of radius δ, centred on
the points of X .

When γ = 1 this reduces to a Poisson process with intensity β; when γ < 1
or γ > 1 its realisations exhibit spatial regularity or aggregation, respectively.
In contrast to the Strauss process, as defined at (6.15), the exponent of the
parameter γ in (6.20) is sub-linear in n, the number of points of X , which
prevents the process from exploding when γ > 1; instead, an area-interaction
process with γ > 1 generates a stable form of spatial aggregation.

Baddeley and Møller (1989) consider a generalisation of the Markov point
process construction in which the neighbourhood definition for a pair of events
is allowed to vary dynamically according to the configuration of other events.
One of their specific examples defines two events to be neighbours if their
associated Dirichlet cells share a common boundary.

For a more detailed account of these and other constructions for Markov
point processes, see Van Lieshout (2000).

6.9 Other constructions

6.9.1 Lattice-based processes

Various lattice-based processes can be used to generate regular spatial point
patterns. These have limited appeal as models for natural phenomena, al-
though the equilateral triangular lattice does represent an extreme of com-
plete regularity and as such has been used as an idealized model of territorial
behaviour within a population of mobile individuals (Maynard-Smith, 1974,
Chapter 12).

A more pragmatic reason for studying lattice-based processes is their rela-
tive tractability by comparison with inhibition processes. In the early days of
the development of spatial statistical methods, this tractability was exploited
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in the assessment of proposed inferential procedures, for example to make
power comparisons amongst rival tests of CSR. In this context, deterministic
lattice structures were used by Persson (1964) and Holgate (1965c), randomly
thinned lattices by Brown and Holgate (1974), and the superposition of a
deterministic lattice and a Poisson process by Diggle (1975).

6.9.2 Thinned processes

Many biological processes involve mortality, which in some instances is a re-
action to an unfavourable environment. For example, the probability that a
seedling survives may vary according to the amount of nutrient available in its
immediate vicinity. Thinned point processes (Brown, 1979; Stoyan, 1979) pro-
vide a possible class of models for patterns which result from spatial variation
in mortality.

A thinned point process is defined by a primary point process N0(dx) and
a “thinning field” Z(x), which is a stochastic process, independent of N0(·),
with realized values 0 ≤ z(x) ≤ 1 for all x. Given realisations of N0(dx) and
of Z(x), the events xi of N0(dx) are retained, independently, with respective
probabilities z(xi). The corresponding realisation of the thinned point process
N(dx) consists of the retained events of N0(dx).

The second-order properties of N(dx) are easily derived from those of
N0(dx) and of Z(x). In particular, in the stationary, isotropic case let μ and
γ(t) denote the mean and covariance function of Z(x). Then, the second-order
intensity function of N(x) is

λ2(t) = λ02(t){γ(t) + μ2}, (6.21)

where λ02(t) is the corresponding second-order intensity function of N0(dx).
This follows because a pair of events of N0(dx) at locations x and y a dis-
tance t apart are both retained in the thinned process N(dx) with probability
Z(x)Z(y). Using (4.3) and (6.21), and in an obvious notation, the K-functions
of N(dx) and N0(dx) are related by

K(t) = K0(t) + μ−2

∫ t

0

γ(u)K ′
0(u)du.

Note that if {N0(dx)} is a Poisson process, the thinned process is a Cox
process. Thinned processes also provide one way of combining local inter-
actions and stochastic environmental variation by taking {N0(dx)} to be a
Markov point process. Figure 6.8 shows an example of a construction of this
kind. The unthinned process N0(x) is a simple inhibitory process, with inhi-
bition distance δ = 0.08. To define the thinning field Z(x), discs of radius 0.1
are centred on the events of a Poisson process of intensity 20. Then, Z(x) = 1
within the union of all such discs, Z(x) = 0 otherwise. The resulting thinned
process N(dx) displays small-scale regularity due to the inhibitory interac-
tions, together with large-scale aggregation induced by the patches where
Z(x) = 1.
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FIGURE 6.8
A thinning of an inhibitory pairwise interaction point process (see text for
detailed explanation).

6.9.3 Superpositions

Another general construction to enrich the available range of models is to
superimpose two or more component processes. For example, in Section 4.7
our analysis of the superposition of the two types of displaced amacrine cell
was helpful in discriminating between the two competing scientific hypotheses
concerning these data.

Provided that the component processes are independent, the second-order
and nearest neighbour properties of the superposition are easily derived. In
the bivariate case, let unsubscripted quantities refer to properties of the su-
perposition, and subscripts 1 and 2 identify the corresponding properties for
the component processes.

Note first that the component intensities λk add to give λ = λ1+λ2. Now,
using the result that λK(t) is the expected number of further events within
distance t of an arbitrary event, together with independence of the component
processes, we find that

λK(t) = p{λ1K1(t) + λ2πt
2}+ (1− p){λ2K2(t) + λ1πt

2}

where p = λ1/λ is the probability that an arbitrary event is from component
1. It follows that

K(t) = λ−2{λ2
1K1(t) + λ2

2K2(t) + 2λ1λ2πt
2} (6.22)

Similarly, using F (·) and G(·) to denote point-to-event and event-to-event
nearest neighbour distribution functions we find that

F (x) = 1− {1− F1(x)}{1− F2(x)} (6.23)
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and

G(x) = 1− [p{1−G1(x)}{1−F2(x)}+(1−p){1−G2(x)}{1−F1(x)}]. (6.24)

This construction provides a convenient illustration of how second-order
properties do not completely describe a point process. We consider the super-
position of a homogeneous Poisson process and a Poisson cluster process, with
respective K-functions K1(t) = πt2 and

K2(t) = πt2 + ρ−1H(t) (6.25)

where H(·) is the distribution function of the distance between two offspring
from the same parent. Then, substitution of these expressions for K1(t) and
K2(t) into (6.22) gives the K-function of the superposition as

K(t) = πt2 + λ−2λ2
2ρ

−1H(t). (6.26)

Note that (6.26) is of the same form as (6.25), but with ρ∗ = λ2ρ/λ2
2 replacing

ρ in (6.25), showing that the superposition of a Poisson process and a Poisson
cluster process is indistinguishable from a pure Poisson cluster process on
the basis of its second-order properties alone. The two are distinguishable
by their different nearest neighbour properties. Setting F1(x) = G1(x) =
1− exp(−πλ1x

2) in (6.23) and 6.24), we obtain the expressions

1− F (x) = exp(πλ1x
2){1− F2(x)}

and

1−G(x) = exp(−πλ1x
2)[p{1− F2(x)} + (1− p){1−G2(x)}].

The upper panels of Figure 6.9 show realisations of two such processes with
identical intensities and K-functions but, as shown in the lower two panels
of Figure 5.9, clearly different nearest neighbour properties. The difference is
especially marked for the distribution function F (·), where the larger empty
spaces apparent in the realisation of the pure cluster process by comparison
with the superposition process translate into stochastically larger distances
from sample points to nearest events.

6.9.4 Interactions in an inhomogeneous environment

Markov point processes are used to model interactions between events. Inho-
mogeneous Poisson processes are used to model environmental heterogeneity.
A construction that combines these two features is obtained if we replace
the constant β in the definition (6.16) of a pairwise interaction process by
a function of position, β(x). Then, the density for a configuration of events
X = {x1, ..., xn} is given by

f(X ) = α

n∏

i=1

β(xi)
∏

i�=j

h(||xi − xj ||).
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FIGURE 6.9
Realisations of two processes with identical second-order properties (upper
panels) and their estimated nearest neighbour distributions functions (lower
panels), with dashed and solid lines corresponding to a Poisson cluster process
and the superposition of a Poisson cluster process and a homogeneous Poisson
process.

Models of this kind are studied in Ogata and Tanemura (1986).
Figure 6.10 shows a realisation of a process with λ(x1, x2) proportional to

exp(−x1 − 2x2) and a simple inhibitory interaction function with minimum
permissible distance δ = 0.03 between any two events. The intensity gradient
is clear. The small-scale inhibition is perhaps less obvious at first sight, but
is made clear by comparing 6.10 with 6.2, which shows a realisation of an
inhomogeneous Poisson process with the same intensity function.



Models 123

FIGURE 6.10
An inhomogeneous pairwise interaction point process (see text for detailed
explanation).

6.10 Multivariate models

6.10.1 Marked point processes

One general construction for multivariate models is to label each of the events
of a univariate point process by a categorical variable that distinguishes the
different types of event. The categorical variable is called the mark variable,
and the resulting process is an example of a marked point process.

In this context, and as discussed in Section 4.8, the simplest starting point
for modelling is to assume that the marks of the different events are mutually
independent and identically distributed. Under this random labelling hypoth-
esis, all of the bivariate K-functions of the process are identical. More general
models can be defined by allowing dependence amongst marks. For example,
a Markov random field model for the marks would define, for each event xi,
the conditional distribution of the mark at xi given the marks at all other
events xj . Markov random fields are very widely used in spatial statistics as
models in their own right. An important early reference is Besag (1974); see
also Rue and Held (2005).

6.10.2 Multivariate point processes

A different construction for multivariate models is as a set of possibly inter-
dependent univariate point processes realised on the same space. As discussed
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in Section 4.5, if the separate univariate processes are stationary and indepen-
dent, the bivariate K-function between any two component processes is equal
to πt2, whatever the marginal properties of the components.

6.10.3 How should multivariate models be formulated?

Although any multivariate model can be formally defined either as a marked
point process or as a multivariate point process, in practice the choice between
the two formulations will lead to different models. In particular, the “bench-
mark” hypotheses of random labelling and independence are different, except
in the special case that the component processes are homogeneous Poisson
processes, in which case random labelling and independence are equivalent.
More generally, the range of potential models for multivariate point processes
is so rich that there may be limited benefit in seeking to establish a com-
prehensive catalogue of “standard” models, as opposed to using the scientific
context of a particular application to inform the modelling process.

To illustrate this point we can compare three hypothetical, but realistic,
examples, each of which formally involves a bivariate point process or, equiv-
alently from a formal theoretical perspective, a marked point process with
binary-valued marks. We let P denote the unmarked point process and M the
binary-valued mark process. The joint distribution of P and M can then be
factorised in either of two equivalent ways, namely

[P,M ] = [P ][M |P ] = [M ][P |M ]

where [·] is to be read as “the distribution of” and the vertical bar denotes
conditioning.

Our first hypothetical example is in the area of human epidemiology. In
this case, P identifies the locations of all members of a population at risk
of contracting a particular disease, and M identifies which members of the
population do, in fact, contract the disease. Here, the unmarked point process
P is a physically sensible construct, and it would be natural to develop a
model from the factorisation [P,M ] = [P ][M |P ]. Furthermore, the marginal
specification of [P ] is unlikely to be of scientific interest, and there would be
no obvious value to the epidemiologist in devising an elaborate model for it.
Hence, the focus of scientific interest is the conditional, [M |P ]. In practice, the
complete, unmarked process P is rarely observed. More commonly, data are
obtained using a case-control study-design (Breslow and Day, 1980), consisting
of all of the events of P with marks M = 1, and a random sub-set of the
events with marksM = 0, called cases and controls, respectively. Point process
methods for analysing data from case-control study-designs will be considered
in Chapter 9.

Our second example concerns mineral exploration. Now, P identifies the
locations of a number of exploratory drillings, and M identifies which drillings
lead to the discovery of a commercially viable grade of the mineral in question.
In contrast to the epidemiological example, the mark process M now derives
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from an underlying binary-valued random field {M(x) : x ∈ A} which exists in
it own right throughout the study region A, and which is the focus of scientific
interest. Hence it would be natural in this context to begin by formulating a
marginal model for M , within the factorisation [P,M ] = [M ][P |M ]. This is
what is done in the branch of spatial statistics known as geostatistics (Chiles
and Delfiner, 1999, 2012; Diggle and Ribeiro, 2007), where typically the mark
process is real-valued rather than binary. In that context, the joint distribution
[P,M ] is rarely considered explicitly. On the contrary it is usually assumed
implicitly that P and M are independent processes, i.e. that [P,M ] = [M ][P ].
This would clearly be violated if exploratory drillings were deliberately sited at
locations thought likely to yield commercially viable grades of ore. Schlather,
Ribeiro and Diggle (2004) propose a number of tests of the hypothesis that
[M ] and [P ] are independent processes. Diggle, Menezes and Su (2010) develop
methodology for fitting a particular class of models for dependent [M ] and
[P ], in which [P ] is a log-Gaussian Cox process with random intensity Λ(x) =
exp{S(x)} and the mark of the ith event xi is Mi = S(xi) + Zi, where the
Zi are mutually independent and Normally distributed. The scientific focus
in Diggle, Menezes and Su (2010) is to use the marked point process data to
make inferences about the spatially continuous process S(x). Ho and Stoyan
(2008) use a similar class of models but focus more on understanding the
properties of the point process.

Our third, and in this case non-hypothetical, example concerns the joint
distribution of nests of two species of ant, as considered by Harkness and Isham
(1983), Hogmander and Sarkka (1999) and Baddeley and Turner (2000). In
this case, neither factorisation of [P,M ] seems particularly helpful. Rather
than attempting to model either a point process of ants of indeterminate
species, or the species of a hypothetical ant at an arbitrary location, it would
be more natural to model the two component processes, P1 and P2 say, in
their own right, along with any possible interactions between ants of the same
or different species. One way to do this is through multivariate extensions of
Markov point processes, which we shall describe in Section 6.10.5.

We have argued that multivariate models should usually be related to the
needs of specific applications. Nevertheless, it may be useful to give a few
examples of specific multivariate constructions, and this we shall now do.

6.10.4 Cox processes

In a multivariate Cox process, the component processes are mutually in-
dependent Poisson processes, conditional on the corresponding intensities,
λj(x) : j = 1, ..., k, which are formed as a realisation of a multivariate, non-
negative valued stochastic process, Λ(x) = {Λ1(x), ...,Λk(x)}. In what follows,
we specifically discuss the bivariate case, k = 2.

Note firstly that any dependence structure between the two components
of a bivariate Cox process arises only through dependence between the pro-
cesses {Λ1(x)} and {Λ2(x)}. In this sense, bivariate Cox processes provide a
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natural framework for modelling the joint reaction of two types of event to a
stochastically heterogeneous environment, but do not incorporate any direct
stochastic interactions amongst the events themselves.

Cox and Lewis (1972) adopt essentially the above definitions, but for point
processes in time. Diggle and Milne (1983b) consider the extension of Cox and
Lewis’s work to bivariate spatial point processes, and give two examples that
we shall describe later in this section.

As in the univariate case, nearest neighbour distributions are rarely
tractable, but second-order properties can be expressed in terms of the corre-
sponding properties of Λ(x). For stationary Λ(x), write

λj = E[Λj(x)] (6.27)

and
γij(u) = Cov{Λi(x),Λj(y)}, (6.28)

where u is the distance between x and y. Then, consistent with earlier notation,
λ1 and λ2 are also the intensities of the Cox process driven by {Λ(x)}. The
second-order intensity functions are

λij(u) = γij(u) + λiλj (6.29)

and (4.3) then gives

Kij(t) = πt2 + 2π(λiλj)
−1

∫ t

0

γij(u)udu. (6.30)

To provide an intuitively reasonable notion of “extreme positive correla-
tion” within the class of bivariate Cox processes, Diggle and Milne (1983b)
define a linked process as one for which

Λ1(x) = νΛ2(x),

for some positive constant ν = λ1/λ2. Combining (6.27), (6.28) and (6.29) we
deduce that λ11(u) = νλ12(u) = ν2λ22(u), with

λ12(u) = ν{γ22(u) + λ22}.

This shows that the covariance structure between the component point pro-
cesses is simply a scaled version of the covariance structure within {Λ2(x)}.
Substitution into (6.30) then gives

K11(t) = K22(t) = K12(t) = πt2 + 2πλ−2
2

∫ t

0

γ22(u)udu.

To exemplify “extreme negative correlation” Diggle and Milne (1983b)
defined a balanced bivariate Cox process as one for which λ1(x) + Λ2(x) = ν,
a positive constant. Note that in any such process, the superposition of the
component processes is a homogeneous Poisson process.
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FIGURE 6.11
A linked (left-hand panel) and a balanced (right-hand panel) log-Gaussian
Cox process (see text for detailed explanation).

Figure 6.11 shows realisations of a linked and a balanced log-Gaussian Cox
process. In each case, the first component process has the same construction
as was used for the univariate log-Gaussian Cox process illustrated in Figure
6.4. Also, both panels of Figure 6.11 use the same realisation for the first
component. Visually, the positive dependence between the two components
of the linked process is obvious, the negative dependence between the two
components of the balanced process less so. This is essentially a consequence of
the asymmetric nature of the underlying intensity process. Specifically, Λ1(x)
consists of relatively sharp peaks on a relatively flat background plain. In the
linked process, these peaks lead to easily discernible co-located concentrations
of both types of events. In the balanced case, the plain of Λ1(x) becomes a high
plateau of Λ2(x) with type 2 events scattered more or less randomly across
it, whilst the peaks of Λ1(x) become sink-holes of Λ2(x) where the absence of
type 2 events is not immediately obvious.

Linked and balanced Cox processes are extreme in the sense that the
corresponding point-wise correlations between Λ1(x) and Λ2(x) are 1 and
−1, respectively. Intermediate levels of correlation are most easily gener-
ated within the log-Gaussian framework, i.e. where Λj(x) = exp{Zj(x)} and
{Z1(x), Z2(x)} is a bivariate Gaussian process. Constructing such processes is
technically straightforward, finding examples that give flexible and intuitively
appealing correlation structure less so; for a review, see Fanshawe and Diggle
(2011). Also, the bivariate Gaussian is inflexible with regard to higher-order
properties.

We emphasize that linking and balancing represent extreme positive
second-order dependence only within the class of bivariate Cox processes. For
example, the equality of all threeK-functions in a linked bivariate Cox process
reminds us that such processes are examples of random labelling mechanisms
which, in other contexts, correspond to a form of non-association between
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the component processes (cf. the discussion of the displaced amacrine cell
data in Section 4.7). It is also easy to construct non-Cox processes for which
K12(t) > Kjj(t). For example, consider the following definition of a linked
pairs bivariate Poisson process:

LP1 type 1 events form a homogeneous Poisson process of intensity λ;

LP2 each type 1 event has an associated type 2 event;

LP3 the positions of the type 2 events relative to their associated type 1
events are determined by a set of mutually independent realisations from a
radially symmetric bivariate distribution.

Marginally, each component process is a homogeneous Poisson process, hence
K11(t) = K22(t) = πt2. However, if H(t) is the distribution function of the
distance between an event and its linked offspring, it is easy to show that
K12(t) = πt2 + λ−1H(t).

Similarly, it is easy to construct non-Cox models that show more extreme
negative second-order dependence than a balanced Cox process. One way to
do this is by introducing inhibitory interactions between type 1 and type 2
events, as we now discuss.

6.10.5 Markov point processes

The formal definition of a Markov point process extends directly to multi-
variate processes, with essentially only notational changes. For example, a
bivariate pairwise interaction point process requires the specification of three
interaction functions, h11(·), h12(·) and h22(·), rather than a single interaction
function h(·).

We denote a bivariate configuration of points as {X ,Y}, where X =
{x1, ..., xn1} and Y = {y1, ..., yn2} are the configurations of type 1 and type
2 events, respectively. Then, in a bivariate pairwise interaction point process,
the joint density of (X ,Y) is

f(X ) = αβn1

1 βn2

2

∏

i�=j

h11{||xi − xj ||}
∏

k �=�

h22{||yk − y�||}
∏

p,q

h12{||xp − yq||}

(6.31)
The component processes are independent if h12(u) = 0 for all u, and randomly
labelled if h11(u) = h12(u) = h22(u) for all u.

Even very simple forms of interaction function can lead to a wide range
of bivariate behaviour by varying the model parameter values. For example,
consider a simple inhibitory specification in which

hij(u) =

{
0 : u ≤ δij
1 : u > δij

.

If all three δij are equal, the superposition of type 1 and type 2 events is



Models 129

 

 

 
 

FIGURE 6.12
Two mutually inhibitory bivariate pairwise interaction point processes. The
stronger inhibition is between events of opposite type in the left-hand panel,
and between events of the same type in the right-hand panel (see text for
detailed explanation).

a Strauss-type simple inhibition process, and the component processes are
random thinnings of this. The component processes therefore exhibit a quali-
tatively similar, but less severe, form of regularity than does the superposition.
If δ12 = 0, the component processes are independent Strauss-type simple in-
hibition processes but there is no inhibition between events of opposite types
and the superposition exhibits less regularity than do its components. Finally,
if δ12 is large relative to δ11 and δ22 then the bivariate pattern will tend to
produce segregated clumps of type 1 and type 2 events. Each component will
then exhibit large-scale spatial aggregation but also, assuming that δjj > 0,
small-scale regularity within each segregated clump.

Figure 6.12 illustrates both cases. In the left-hand panel, δ1 = δ2 = 0.007
and δ12 = 0.07, whilst in the right-hand panel, δ1 = δ2 = 0.07 and δ12 = 0.007.
Sarkka (1983), Baddeley and Møller (1989) and Hogmander and Sarkka (1999)
discuss similar examples.
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Model-fitting using summary descriptions
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7.1 Introduction

Classical methods of inference for spatial point processes are hampered by
the intractability of the likelihood function for most models of interest. To
some extent, this difficulty has been alleviated by the development of Monte
Carlo methods for calculating approximate likelihoods, and we shall discuss
the resulting methods of inference in the next chapter. Nevertheless, the more
ad hoc methods of inference described in this chapter, which operate by com-
paring theoretical and empirical summary descriptions, remain useful for at
least two reasons. Firstly, they are computationally straightforward, and con-
sequently useful for rapid exploration of a range of possible models. Secondly,
they provide direct, graphical methods for assessing model fit.
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7.2 Parameter estimation using the K-function

In this section, we describe a method of parameter estimation using K(t) and
its estimator K̂(t). Analogous methods using the summary descriptions G(y)
or F (x) could be implemented and might in some instances be necessary to
allow identification of all the model parameters (cf. Section 5.8.3).

One attraction of an analysis using K̂(t) is that the mathematical form of
K(t) is known, either explicitly or as an integral, for a number of potentially
useful classes of spatial point process. Plots of K̂(t) can therefore be used
to suggest candidate models and to provide initial parameter estimates. To a
limited extent this remains true in the case of less tractable models, for which
K(t) retains its tangible interpretation as an expectation. A glance back at
Figure 6.1 should convince the reader that it can be extremely difficult to
make reasonable guesses at parameter values merely by inspecting the data.

7.2.1 Least squares estimation

Suppose that our model incorporates a vector of parameters θ. Let K(t; θ)
denote the theoretical K-function and K̂(t) the estimator (4.15) calculated
from the data. A class of criteria to measure the discrepancy between model
and data is given by

D(θ) =

∫ t0

0

w(t)[{K̂(t)}c − {K(t; θ)}c]2dt, (7.1)

where the constants t0 and c, and the weighting function w(t) are to be chosen.

We then estimate θ to be the value θ̂ which minimizes D(θ).
An immediate question is how to choose t0, c and w(t). As noted ear-

lier, there are good theoretical and practical reasons for not using too large
a value of t0. The power transformation c and the weighting function w(t)
present two opportunities to allow for the nature of the sampling fluctuations
in K̂(t). These sampling fluctuations increase with t and so have a potentially
wayward influence on the estimation of θ. By reducing the influence of large
values of t we also make the precise choice of t0 less critical. Besag (1977)
pointed out that for a Poisson process the variance of

√
K̂(t) is approximately

independent of t, so that c = 0.5 acts as a variance-stabilising transformation
for patterns which are not grossly different from CSR. Empirical experience
with real and simulated data, some of which is reported in the remainder of
this chapter, suggests that c = 0.5 in conjunction with w(t) = 1 is a reasonable
choice for fitting models to regular patterns, but that for aggregated patterns
something more severe, say c = 0.25, is usually more effective. On similarly
empirical grounds we would recommend that for data on a rectangular region
with side-lengths a and b, t0 should be no bigger than 0.25min(a, b), but this
choice can also to some extent be related to the model in question: taking t0
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small concentrates on small-scale effects and conversely. A reasonable practi-
cal strategy is to try a few different values of t0 and of c in order to assess the
sensitivity of the results to these choices.

A different strategy would be to fix c = 1 and use a weighting function
inversely proportional to a guess at the sampling variance of K̂(t). For patterns
that are close to Poisson, w(t) = t−2 is a reasonable choice, although using
this approach we need to be careful to avoid problems of numerical instability
near t = 0.

The sampling distribution of θ can be assessed by repeated application to
simulated realisations of the fitted model, although this may be a computa-
tionally expensive exercise for very large data-sets.

7.2.2 Simulated realisations of a Poisson cluster process

To provide an illustration for which the true value of θ is known, we use sim-
ulated data from a Poisson cluster process with Poisson numbers of offspring
per parent and radially symmetric Gaussian dispersion of offspring relative
to their parents. Using the additive property of two independent Gaussian
random variables and a transformation to polar coordinates we deduce that
for this model the distribution function of the distance between two offspring
from the same parent is H2(t) = 1− exp{−t2/(4σ2)}. Thus, using (6.2),

K(t) = πt2 + ρ−1[1− exp{−t2/(4σ2)}], (7.2)

where ρ is the mean number of parents per unit area and σ is the disper-
sion parameter of the radially symmetric Gaussian distribution. The resulting
mean squared distance of an offspring from its parent is 2σ2. In a rather loose
sense, the degree of aggregation in the model increases with a reduction in the
value of either ρ or σ.

For various values of θ = (ρ, σ) we simulated 100 replicates and esti-
mated θ from (7.1) using t0 = 0.05, 0.15, 0.25 and c = 0.125, 0.25, 0.5. Fig-
ure 7.1 shows the empirical sampling distribution of log ρ̂ and log σ̂ when
(ρ, σ) = (100, 0.025), t0 = 0.125 and c = 0.25, with each replicate consisting
of 400 events on the unit square. The strong linear relationship with slope
somewhere around −2 suggests that the product ρσ2 can be estimated with
much higher precision than either ρ or σ separately. An explanation is that
for small t2/(4σ2), a series expansion of the exponential in (7.2) gives

K(t) ≈ πt2 + t2/(4ρσ2)

so that, to this degree of approximation, ρ and σ2 are not separately identi-
fiable. The right-hand panel of Figure 6.1 showed a partial realization of this
model, but with 100 rather than 400 events on the unit square and the values
of ρ and σ re-scaled accordingly.

The simulation experiment confirmed that, at least for this model, using
c = 0.25 or smaller makes the estimation procedure relatively insensitive to
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FIGURE 7.1
The empirical sampling distribution of (log ρ̂, log σ̂) in a Poisson cluster pro-
cess with 400 events in the unit square, ρ = 100 and σ = 0.025.

the choice of t0. An exception to this general statement is that when σ is large
relative to the dimensions of the study-region A, the model parameters are
very poorly identified whatever value is chosen for c. In these circumstances
the optimization algorithm occasionally failed to converge, or declared conver-
gence to materially different estimates, depending on the starting value. The
results reported here used a quasi-Newton method (Gill and Murray, 1972),
as implemented in the R function optim().

7.2.3 Procedure when K(t) is unknown

When K(t; θ) cannot be evaluated either explicitly or numerically, it can be
replaced in (7.1) by K̄s(t), the pointwise mean of estimates K̂i(t) calculated
from s simulated realizations of the model. If s is large, each evaluation ofD(θ)
may then be computationally expensive, in which case a sensible strategy is to
start with a small value of s and use a robust minimization algorithm, such as
the simplex algorithm of Nelder and Mead (1965), to find a first approxima-

tion to θ̂. The algorithm can then be restarted from this first approximation
using a larger value of s and a more stringent stopping rule. In this context,
Diggle and Gratton (1984) used a modification of the simplex algorithm in
which s is automatically increased whenever the variation in D(θ) between dif-
ferent points θ in the simplex becomes comparable to the simulation-induced
variation in repeated evaluation of D(θ) for fixed θ.
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7.3 Goodness-of-fit assessment using nearest neighbour
distributions

Any of the Monte Carlo tests of complete spatial randomness described in
Chapter 2 can also be used to test the goodness of fit of a fully specified
model, by simulating the appropriate model in place of CSR. Such tests are
strictly invalid, and probably conservative, if parameters have been estimated
from the data. However, this problem can be alleviated if we use a goodness-
of-fit statistic which is only loosely related to the estimation procedure (cf.
Section 1.7).

We shall therefore consider two goodness-of-fit statistics based on the
EDF’s of nearest neighbour and point to nearest event distances,

gi =

∫ ∞

0

{Ĝi(y)− Ḡi(y)}2dy, (7.3)

and

fi =

∫ ∞

0

{F̂i(x)− F̄i(x)}2dx, (7.4)

where Ĝ1(y) is the EDF of nearest neighbour distance for the data, Ĝi(y), i =
2, . . . , s, are the EDF’s from simulations of the model,

Ḡi(y) = (s− 1)−1
∑

j �=i

Ĝj(y),

and similarly for F̂i(x) and F̄i(x).
We carried out a simulation experiment to investigate the joint sampling

distribution of the attained significance levels of Monte Carlo tests based on
(7.3), (7.4) and on a third set of statistics,

ki =

∫ 0.25

0

[
{K̂i(t)}

1
2 − {K̄(t)} 1

2

]2
dt, (7.5)

which are related in an obvious way to the method of parameter estimation
described in Section 6.1.

The simulation experiment involved generating data as a realization of
a particular model, testing the goodness of fit of that model using Monte
Carlo tests based on each of (7.3), (7.4) and (7.5) and repeating the entire
procedure 100 times. This produced a 100× 3 matrix of attained significance
levels, which we examined by sample means, variances and correlations, and
by scatter-plots. Each simulated data-set consisted of n = 100 events on the
unit square. Three different models were used, to embrace complete spatial
randomness, aggregation and regularity: (i) a homogeneous Poisson process;
(ii) a Poisson cluster process, as in Section 6.1.2, with (ρ, σ) = (25, 0.025); (iii)
simple sequential inhibition, with δ = 0.08. Realizations of these three models
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TABLE 7.1
Estimated correlations amongst attained significance levels for three goodness-
of-fit tests

Model Estimated correlation between
tests based on

gi, fi gi, ki fi, ki
Poisson process 0.088 0.047 0.215
Poisson cluster process 0.048 0.268 0.004
Simple sequential inhibition −0.077 0.467 0.001

were shown in Figures 1.4, 5.2 and 5.6, respectively. In all cases, the sample
means and variances were consistent with the theoretical values implied by a
discrete uniform distribution of attained significance levels. The correlations
amongst the results of the three tests are given in Table 6.1. The moderately
large positive correlation between tests based on (7.3) and on (7.5) in the case
of simple sequential inhibition is not surprising since the pattern of small inter-
event distances is here of paramount importance. The remaining correlations
are encouragingly small, and the scatter-plots showed no obvious non-linear
relationships. In view of these results and remarks in Section 2.6, our preferred
method of goodness-of-fit testing is to use both (7.3) and (7.4) in conjunction
with the inequality (2.1). This amounts to accepting the model only if neither
test indicates a significant lack of fit.

7.4 Examples

7.4.1 Redwood seedlings

In Figure 1.2 we showed the locations of 62 redwood seedlings in a square of
side 23 metres approximately (data extracted by Ripley, 1977, from Strauss,
1975). The methods of preliminary testing described in Chapter 2 led to em-
phatic rejection of CSR for these data. Ripley (1977) reached the same con-
clusion, but did not suggest an alternative model. Strauss (1975) used a larger
set of data to fit a pairwise interaction point process with interaction function

h(u) =

{
γ : u < δ
1 : u ≥ δ,

and γ > 1. Kelly and Ripley (1976) subsequently pointed out that, for the rea-
sons given in Section 5.7, this model is only valid for 0 ≤ γ ≤ 1, in which case
it can only generate regular patterns. However, Strauss also noted that the
apparent aggregation in these data is attributable to clustering of seedlings
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FIGURE 7.2
K(t)− πt2 for the redwood seedlings. —–: data; −−−: fitted model.

around stumps which are known to be present in the plot but whose positions
were not recorded. A Poisson cluster process is therefore plausible as a provi-
sional model. We fit the particular model described in Section 5.3.2, in which
the number of offspring per parent is Poisson and the dispersion of offspring
relative to their parents follows a radially symmetric Normal distribution.
Recall that for this model,

K(t) = πt2 + ρ−1[1− exp{−t2/(4σ2)}],

where ρ is the mean number of parents per unit area and 2σ2 the mean squared
distance of an offspring from its parent.

Figure 7.2 shows a plot of K̂(t) − πt2 against t. Equating the maximum
on the plot to the point (4σ, ρ−1) gives initial parameter estimates (ρ̃, σ̃) =
(22.5, 0.040). Least squares estimation using (7.1) with t0 = 0.25, c = 0.25
and w(t) = 1 gives estimates (ρ̂, σ̂) = (25.6, 0.042). The behaviour of K̂(t) for
t > 0.16 is superficially incompatible with the fitted K(t), which is also shown
in Figure 7.2. However, because the sampling fluctuations in K̂(t) increase
with t, the fit proves statistically adequate. Goodness-of-fit tests based on (7.3)
and (7.4) give nominal attained significance levels of 0.10 and 0.77 respectively
or, in combination, 0.10 ≤ p ≤ 0.20.

Graphical summaries of Ĝ(y) and F̂ (x) for model and data are given in
Figure 7.3. Note that the nearest neighbour EDF Ĝ(y) drifts briefly above
the upper envelope from 99 simulations of the model, but that this does not
in itself justify rejection of the model because it would imply a retrospective
choice of test statistic. Figure 7.4 shows a realisation of the fitted model. Both



138 Statistical Methods for Spatial and Spatio-Temporal Point Processes

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F̂
(x
)

Ĝ
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FIGURE 7.3
Goodness-of-fit of a Poisson cluster process to the redwood seedling data,
using nearest neighbour (left-hand panel) and point-to-nearest-event (right-
hand panel) distribution functions. —— : data; − − − : envelope from 99
simulations of fitted model.

for this and for the data, visual inspection would suggest considerably fewer
than the 26 or so clusters implied by the estimate ρ̂ = 25.6; the eye is a poor
judge of the extent to which formally distinct clusters coalesce.

From a biological viewpoint, the fitted value of ρ implies that the mean
number of mature redwoods in an area of around 500m2 is about 26. This
seems an improbably large value, although Strauss (1975) gives no indication
of the age at which the previous generation was felled. Assessment of the
sampling distribution of (ρ̂, σ̂) is therefore particularly relevant. Figure 7.5
shows the least squares estimates obtained from 100 simulated realizations of
the fitted model. Note in particular the very wide range of values of ρ̂ and the
negative correlation between ρ̂ and σ̂.

Diggle (1978) fitted a different Poisson cluster process to these data, in
which the radially symmetric Normal dispersion of offspring was replaced by
a uniform distribution over a disc of radius σ centred on the corresponding
parent. This gave an equally good fit, and comparable estimates (ρ̂, σ̂). This
example therefore illustrates that it can be all too easy to fit a model to
sparse, strongly aggregated data. In the present context, a model incorporating
inhibition between parents might be biologically more plausible, but in the
absence of specific information on this point it would be difficult to justify the
fitting of a more complex model to such a small set of data.
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FIGURE 7.4
A realisation of the model fitted to the redwood seedling data.

7.4.2 Bramble canes

Hutchings (1979) describes an investigation of the spatial pattern of bramble
canes in a 9 metre square plot “staked out within a dense thicket of bramble”.
Living canes were classified as newly emergent, one-year old or two-year old.
Here, we consider only the newly emergent canes.

We first analyse the pattern of the 359 newly emergent canes, shown in Fig-
ure 7.6. For these data, Hutchings detects aggregation using the uncorrected
form of the Clark-Evans test. Although this is strictly invalid, inspection of
the data does strongly suggest an aggregated pattern and this is confirmed
by analysis via the EDF’s of nearest neighbour and point to nearest event
distances.

For the remainder of the analysis we take 9 metres as the unit of measure-
ment. Hutchings attributes the aggregated pattern to “vigorous vegetative
reproduction.” This suggests a Poisson cluster process as a provisional model.
Using the same model and estimation procedure as for the analysis of the red-
wood seedling data reported in Section 6.3.1 we obtain parameter estimates
(ρ̂, σ̂) = (123.6, 0.012). The left-hand panel of Figure 7.7 shows the functions
K̂(t)− πt2 for the data and from 99 simulations of the fitted model, together
with the fitted function K(t)− πt2. Even without formal testing, this clearly
indicates a poor fit. The estimate for the data lies above all of those from the
simulations for distances less than about 0.02, and below for distances between
about 0.02 and 0.05. This suggests that the underlying process is generating
pattern at two different scales, for which a plausible explanation might be a
combination of the small-scale vegetative propagation and a larger-scale ef-
fect, perhaps environmental heterogeneity, whilst the Poisson cluster process
can only capture a single scale of clustering, and the fit therefore tries to com-
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FIGURE 7.5
The empirical sampling distribution of (log ρ̂, log σ̂) for the model fitted to the
redwood seedling data.

promise between the two. Note, incidentally, the very large sampling variation
in K̂(t) at large distances t. Also, showing all of the simulated estimates as
“shadows” gives a more complete picture of the sampling distribution of K̂(t)
than plotting only the simulation envelopes.

In view of the above results, we now attempt to model the finer second-
order structure apparent in the left-hand panel of Figure 7.7, by a combi-
nation of tight clustering at a small physical scale and a more diffuse form
of aggregation. Specifically, we apply a thinning field {Z(x)} to the Poisson
cluster process described previously. For {Z(x)} we use the example of Sec-
tion 5.8.2, in which discs of radius δ are centred on the events of a Poisson
process of intensity λ and Z(x) = 1 if x is covered by at least one such disc,
Z(x) = 0 otherwise. According to (6.21) we need the mean and covariance
function of {Z(x)} in order to determine the second-order properties of this
four-parameter model.

Note that P{Z(x) = 0} is the probability that there are no disc centres
within a distance δ of the point x and that E[Z(x)] = P{Z(x) = 1} =
1 − P{Z(x) = 0}. Since the number of disc centres in a region A follows a
Poisson distribution with mean λ|A|, it follows that

E[Z(x)] = 1− exp(−πλδ2). (7.6)

Similarly, for two points x and y a distance u apart, P{Z(x) = Z(y) = 0} is
the probability that there are no disc centres within a distance δ of either x
or y, and we deduce that

P{Z(x) = Z(y) = 0} =

{
exp[−λ{2πδ2 −A(u; δ)}] : 0 ≤ u < 2δ
exp(−2πλδ2) : u ≥ 2δ
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FIGURE 7.6
Locations of 359 newly emergent bramble canes in a 9 metre square plot
(Hutchings, 1978)

where A(u, δ) is the area of intersection of two discs, each of radius δ and
whose centres are a distance u apart. This result allows us to evaluate the
covariance function γ(u) of {Z(x)} because

Cov{Z(x), Z(y)} = Cov{1− Z(x), 1− Z(y)}
= P{Z(x) = Z(y) = 0} − P{Z(x) = 0}P{Z(y) = 0}.

Routine manipulation gives the covariance function as

γ(u) =

{
exp(−2πλδ2)[exp{λA(u; δ)} − 1] : 0 ≤ u < 2δ,
0 : u ≥ 2δ.

(7.7)

Substitution of (7.6) and (7.7) into (6.21) gives K(t) for our four-parameter
model in a form which can easily be evaluated by numerical integration,
namely

K(t) = K0(t) + μ−2

∫ t

0

γ(u)K ′
0(u)du,

where μ = 1 − exp(−πλδ2), K0(t) = πt2 + ρ−1[1 − exp{−u2/(4σ2)}] and
K ′

0(u) = 2πu+ exp{−u2/(4σ2)}/(2ρσ2).
Least squares estimates of the model parameters, again obtained us-

ing (7.1) with t0 = 0.25, c = 0.25 and w(t) = 1 are (ρ̂, σ̂, λ̂, δ̂) =
(587.6, 0.0036, 26.90, 0.1104). The right-hand panel of Figure 7.7 mirrors the
left-hand panel, except that now the simulations are of the fitted four-
parameter model. The fit is much improved, and warrants a formal assess-
ment.

Figure 7.8 gives a graphical summary of the goodness-of-fit as assessed by
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FIGURE 7.7
K(t)− πt2 for newly emergent bramble canes (solid black line), fitted model
(dashed black line) and 99 simulations of fitted model cluster process (thin
grey lines). In the left-hand panel, the fitted model is a two-parameter Poisson
cluster process; in the right-hand panel, it is four-parameter thinned Poisson
cluster-process.

nearest neighbour and point-to-nearest-event distributions. The visual fit is
tolerable, whilst the p-values for the associated tests based on (6.3) and(6.4),
respectively, are 0.13 and 0.18.

Table 6.2 gives empirical standard errors of, and correlations amongst, the
parameter estimates for the four-parameter model. These are calculated from
the sample covariance matrix of parameter estimates obtained by applying the
estimation procedure to 100 simulations of the fitted model. Note that none of
the correlations are close to 1 in absolute value, which might suggest that the
model is well-identified. However, the eigenvalues of the sample correlation
matrix are 2.529, 1.105, 0.335 and 0.032. The first three principal components
therefore account for approximately 96% of the variation in the joint sampling
distribution of the four standardised parameter estimates, indicating that the
distribution is effectively three-dimensional.

Figure 7.9 shows a realization of the fitted model, which can be compared
with the data in Figure 7.6. A literal interpretation of the model would be that
the Poisson cluster component describes the vegetative propagation of new
shoots from old canes, whilst the thinning field distinguishes between parts of
the plot which can or cannot sustain healthy growth. The truth is likely to be
more subtle than this. Also, other models could doubtless be found that would
fit the data equally well. However, the eigen-analysis reported above suggests
that further elaboration of the model might be over-ambitious. Perhaps the
only claim that should be made for this particular model is that it gives a
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FIGURE 7.8
Goodness-of-fit for the four-parameter model fitted to the newly emergent
bramble canes, using nearest neighbour (left-hand panel) and point-to-nearest-
event (right-hand panel) distribution functions. The data are shown as thick
black lines, simulations of the fitted model as thin grey lines.

tangible expression to the notion that the data incorporate two distinct scales
of pattern.

We now extend the analysis to include the bivariate pattern formed by the
359 newly emergent and 385 one year old bramble canes. Because mortality
is generally low in the first year of growth, these data can be interpreted
as two successive cohorts of newly emergent canes. Figure 7.10 shows this
bivariate data-set, and strongly suggests positive dependence between the two
component patterns. Figure 7.11 shows that the three functions K̂ij(t) − πt2

for the data are similar, at least for small t where sampling fluctuations in
the K̂ij(t) are also relatively small. In view of (4.13), this suggests random
labelling as a possible model.

The four-parameter model which we fitted to the newly emergent canes
is a Cox process, and within this parametric framework, random labelling
of two component Cox processes corresponds to proportionality of the cor-
responding driving intensities, Λ2(x) ∝ Λ1(x), i.e. a linked Cox process
as defined in Section 5.9.4. If the two components are indeed linked in
this sense, then the parameters can be re-estimated from the superposi-
tion of the newly emergent and one year old canes. We obtain estimates
(ρ̂, σ̂, λ̂, δ̂) = (745.2, 0.0034, 38.9, 0.0876). The magnitudes of the differences
between these estimates and those obtained previously are compatible with
the standard errors reported in Table 6.2.

To assess goodness of fit of the linked Cox process model, we first ex-
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FIGURE 7.9
A realisation of the four-parameter model fitted to the newly emergent bram-
ble canes

amine second-order properties. The left-hand panel of Figure 7.12 shows√{K̂12(t)/π}− t for the bivariate data together with the corresponding func-
tions calculated from 99 simulations of the fitted model. An informal visual
assessment suggests a good fit. As in the univariate case, for a formal goodness-
of-fit assessment it is preferable to use a test statistic that is not related to
the method of parameter estimation. By analogy with the univariate case, a
candidate for this task would be some kind of nearest neighbour analysis. For
example, let Fj(x) denote the distribution function of the distance from an
arbitrary point to the nearest event of type j, and F (x) the distance to the
nearest event of either type. If the two component processes are independent,

TABLE 7.2
Empirical standard errors of, and correlations amongst, parameter estimates
for model fitted to newly emergent bramble canes

Parameter Point estimate Standard error Correlation with

σ̂ λ̂ δ̂
ρ 587.6 129.3 −0.58 0.38 −0.59
σ 0.0036 0.0004 −0.07 0.28
λ 26.9 14.33 −0.81
δ 0.1104 0.0444
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FIGURE 7.10
Locations of 359 newly emergent (solid dots) and 385 one-year-old (open cir-
cles) bramble canes in a 9 metre square plot (Hutchings, 1978).

then
F (x) = 1− {1− F1(x)}{1− F2(x)},

More generally, we might consider the function

H2(x) = {1− F (x)} − {1− F1(x)}{1− F2(x)}

as measuring near-neighbour dependence between two components. A
positive-valued function H2(x) indicates positive dependence in the sense that
neighbouring type 1 and type 2 events are then, probabilistically speaking,
closer together than in the case of independent components.

The right-hand panel of Figure 7.12 shows the empirical function Ĥ2(x)
for the bivariate data together with the envelope from 99 simulations of the
fitted model. The data show stronger positive dependence near the origin than
do the simulations of the model. A formal test using the statistic

∫ 0.2

0

{Ĥ2(x)− H̄(x)}2dx (7.8)

gives a p-value of 0.07.
We now add the two-year old canes to the analysis. A first candidate for a

trivariate extension of the model is to a Cox process in which all three driving
intensity processes are proportional, Λ3(x) ∝ Λ2(x) ∝ Λ1(x). To assess the fit
of this trivariate linked Cox process, Figure 7.13 shows the trivariate version
of Ĥ2(x), namely

Ĥ3(x) = {1− F̂ (x)} −
3∏

j=1

{1− F̂j(x)},



146 Statistical Methods for Spatial and Spatio-Temporal Point Processes

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

t

K̂
(t
)
−

π
t2

FIGURE 7.11
K̂ij(t) − πt2 for newly emergent and one-year-old bramble canes: solid line
corresponds to K11(t) (newly emergent), dashed line to K22(t) (one-year-old),
dotted line to K12(t).

together with two sets of simulations. In the left-hand panel, the simulation
model is the trivariate version of the linked Cox process, now with parame-
ter estimates (ρ̂, σ̂, λ̂, δ̂) = 687.2, 0.0039, 37.8, 0.0890), whilst in the centre and
right-hand panels the simulation model is random labelling, but without fur-
ther parametric assumptions. In either case, a goodness-of-fit test using the
trivariate analogue of (7.8) gives a p-value of 0.01, the most extreme result
possible with 99 simulations. Visually, the lack of fit to the parametric Cox
model is clear from the left-hand panel of Figure 7.13, whereas the centre
panel suggests a superficially reasonable fit to the non-parametric random
labelling hypothesis. The right-hand panel of Figure 7.13, which is simply
a magnified version of the centre panel, shows a clear lack of fit, with the
data-based function lying at or beyond the upper extreme of the simulation
envelope throughout the reduced range of distances, x ≤ 0.025.

Note, incidentally, how much tighter the simulation envelopes are in the
non-parametric version of Figure 7.13. Conditioning on the data-locations
in the superposition has greatly reduced the sampling variation in the test
statistic. We conclude that the failure of the linked Cox process model to fit
these data is not wholly attributable to our making inappropriate parametric
assumptions; rather, the small-scale positive dependence amongst the three
component pattern is stronger than can be explained by random labelling,
and therefore by any trivariate Cox process.

There are only 79 two–year–old canes in the whole plot, because the ma-
jority of canes die after one year. Our non-parametric analysis has shown that
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FIGURE 7.12
Left-hand panel: K̂12(t) − πt2 for newly emergent and one-year-old bramble
canes (thick black line) and for simulations of fitted linked Cox process model
(thin grey lines). The fitted function K12(t)− πt2 is shown as a thick dashed
line. Right–hand panel: Ĥ2(x) for newly emergent and one-year-old bramble
canes (solid black line) and for 99 simulations of fitted linked Cox process
model (thin grey lines).

the data are inconsistent with any trivariate Cox process, and therefore that
the observed pattern cannot be completely explained by micro-environmental
variation. A more plausible explanation is that vegetative propagation in suc-
cessive years generates a form of direct dependence over and above environ-
mental heterogeneity.

7.5 Parameter estimation via goodness-of-fit testing

Another way of using summary descriptions in model-fitting is to exploit the
duality between confidence intervals and significance tests. Suppose that we
have a model indexed by a parameter vector θ, and a set of data presumed
to be generated from the model but with the value of θ unknown. For any
fixed value of θ we can test the goodness-of-fit of the model to the data. Then,
the set of all values of θ which are not rejected by a test at the 100α% level
constitutes a 100(1− α)% confidence region for θ. If the individual tests are
Monte Carlo tests, the method involves a direct search through a discretised
version of the parameter space, and is only feasible for low-dimensional θ.
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FIGURE 7.13
Ĥ3(x) for newly emergent, one-year-old and two-year-old bramble canes (solid
black line) and for 99 simulations (thin grey lines). In the left-hand panel, the
simulation model is the fitted trivariate linked Cox process model, in the centre
and right-hand panels the simulation model is random labelling.

7.5.1 Analysis of hamster tumour data

Figure 7.14, provided by Dr. W. A. Aherne (formerly of the Department of
Pathology, University of Newcastle upon Tyne) shows the positions of the nu-
clei of 303 cells within an approximately 0.25mm square histological section of
tissue from a laboratory-induced metastasising lymphoma in the kidney of a
hamster. The diagram distinguishes two types of cells: 77 pyknotic nuclei, cor-
responding to dying cells, and 226 nuclei arrested in metaphase, corresponding
to cells which have been “frozen” in the act of division. The background void
is occupied by much larger numbers of unrecorded, interphase cells.

Figure 7.15 compares the second-order properties of the data with simula-
tions of a pair of independent homogeneous Poisson processes as a provisional
model. Again with the caveat about the small number of pyknotic cells, these
again suggest a small-scale inhibitory effect, and are compatible with random
labelling of the two cell types. We therefore fit an inhibitory pairwise inter-
action point process to the superposition of pyknotic and metaphase cells.
Based on the discussion in Chapter 2, a natural goodness-of-fit statistic for
an inhibitory process is

u =

∫
{Ĝ(y)− Ḡ(y)}2dy,

where Ĝ(·) is the empirical distribution function of nearest neighbour distances
for the data and Ḡ(·) the corresponding average empirical distribution function
from simulations of the simple inhibition process. Inspection of Figure 7.14
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FIGURE 7.14
Locations of 303 cell nuclei in a hamster tumour; 77 pyknotic nuclei (solid
dots); 226 metaphase nuclei (open circles)

shows several close pairs of cells. We therefore specified an interaction function
with a non-strict form of inhibition, namely

h(u) = 1− exp{−(u/θ)2} : u ≥ 0.

The left-hand panel of Figure 7.16 shows the resulting p-value as a function
of θ, with the implied 95% confidence interval for θ highlighted. The right-
hand panel of Figure 7.16 gives a more detailed summary of the goodness-of-fit
when θ = 0.014 ≈ 0.003mm, corresponding to the mid-point of the confidence
interval shown in the left-hand panel. The model fits well with, as already
shown in the left-hand panel, a p-value of 0.72 for the goodness-of-fit test.
However, other forms of interaction function might well give an equally good
fit.
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Left-hand panel: 95% confidence interval for interaction parameter θ in pair-
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from the data, thin grey lines from 99 simulations of pairwise interaction pro-
cess with θ = 0.014.
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8.1 Introduction

The likelihood function plays a fundamental role in both classical and Bayesian
approaches to statistical inference. When more ad hoc methods, such as those
described in Chapter 7, are used instead this is often for pragmatic reasons.
The most obvious of these is that likelihood-based methods for most spatial
point process models are notoriously intractable. However, this difficulty has to
some extent been alleviated by recent developments in Monte Carlo methods of
inference, including but not restricted to Markov chain Monte Carlo methods
(Gilks, Richardson and Spiegelhalter, 1996).
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8.2 Likelihood inference for inhomogeneous Poisson pro-
cesses

An instance in which the likelihood function is tractable is the inhomogeneous
Poisson process with intensity function λ(x). Essentially, this is because the
distribution associated with a partial realisation, X = {x1, .., xn}, of this
process on a finite region A can be factorised as the product of a Poisson
distribution with mean μ =

∫
A
λ(x)dx for the number of events n, and a set

of mutually independent locations xi whose common distribution has density
λ(x)/μ. Hence, the log-likelihood for λ(·) based on data X is

{−μ+ n logμ− n!}+ {
∑

i=1n

log λ(xi)− logμ}

Simplifying, and ignoring the constant n!, this gives the log-likelihood as

L(λ) =

n∑

i=1

log λ(xi)−
∫

A

λ(x)dx. (8.1)

In practice, this is most useful if λ(x) can be specified through a regression
model, for example a log-linear model

log λ(x) =

p∑

j=1

βjzj(x) (8.2)

where the zj(x) are spatially referenced explanatory variables. Cox (1972)
calls this a modulated Poisson process.

The presence of the integral term on the right-hand side of (8.1) implies
that, in order to fit the regression model (8.2), we need the explanatory vari-
ables zj(x) to be measured continuously throughout the study region,A. When
the zj(x) are measured only at a finite number of points within A, we need
to distinguish between observed and unobserved values of the underlying con-
tinuous surfaces zj(x), and the form of the likelihood function becomes more
complicated. Briefly, consider a single explanatory variable, and partition the
z-surface into observed and unobserved components, z = {zo, zu} say. Then,
the Poisson likelihood (8.1) would apply only if we observed the “complete”
explanatory variable data z. To obtain a likelihood for the observed data,
we need to specify a model for z, thereby defining the conditional distribu-
tion of zu given zo, and to eliminate zu from the complete data likelihood
(8.1) by integrating with respect to the conditional, [zu|zo]. How best to do
this in practice is an open question. Rathbun (1996) develops an approximate
approach, using geostatistical methods to interpolate from the observed zo
to the complete surface z. Note that modelling z(x) stochastically turns the
point process model into a Cox process. Stoyan and Ho (2008) consider the
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situation in which z(x) is observed only at the points of the process, which
they call an intensity-marked Cox process. Diggle, Menezes and Su (2010) use
a similar model, but allow the possibility that values of z(x) at the points
of the process are measured with error. Standard geostatistical methods for
making inferences about the process Z(x), as described in Chilès and Delfiner
(1999) or Diggle and Ribeiro (2007), assume that the spatially continuous
process Z(x) and the point process of locations at which Z(x) is measured are
stochastically independent. Diggle, Menezes and Su (2010) use their model to
investigate how these standard methods perform when the data are generated
by an intensity-marked process in which Z(x) and the measurement locations
are stochastically dependent.

For the Poisson case, i.e. when z(x) is deterministic, Berman and Turner
(1992) discuss different quadrature schemes for the integral term, and show
how the model can then be fitted using standard generalized linear modelling
software. Their method is implemented in the Spatstat package.

8.2.1 Fitting a trend surface to the Lansing Woods data

In Section 5.3 we used a nonparametric smoothing method to estimate inten-
sity surfaces for the three major species groupings in the Lansing Woods data.
Here, we use a parametric approach by specifying a trend surface for the log-
arithm of the intensity. A trend surface is a representation of a continuously
varying surface by a polynomial in its two spatial coordinates. For example,
a quadratic trend surface model is specified as

log λ(x) = α+ β1x1 + β2x2 + γ1x
2
1 + γ2x

2
2 + δx1x2, (8.3)

where x1 and x2 are the Cartesian coordinates of the location x. Table 8.1
summarises the results of fitting this model, and its linear and constant sub-
models, to each of the three major species groupings of the Lansing Woods
data. In all three cases, formal likelihood ratio criteria would favour the
quadratic over the linear or constant trend surface models. Notice, however,
that the strength of the evidence in favour of the quadratic, as measured by
the log-likelihood ratio, is greater for the hickories and maples than for the
oaks, consistent with the relative amounts of spatial heterogeneity evident on
visual inspection of the three data-sets (see Figure 2.11).

The results for the hickories and maples are shown graphically in Figure
8.1. In this example, the fitted trend surfaces capture the main features of
the observed variation in spatial intensity reasonably well. Note in particular
that the intensity of the hickories is relatively high where that of the maples
is relatively low, and vice versa. However, as a general method, polynomial
trend surface modelling is rather inflexible. In particular, when low-degree
trend surfaces do not capture the essential features of the data, fitting higher-
order surfaces tends to introduce artefacts, such as local modes where there
is little or no data.

To assess the goodness-of-fit of the inhomogeneous Poisson process model,



154 Statistical Methods for Spatial and Spatio-Temporal Point Processes

TABLE 8.1
Maximised log-likelihoods for Poisson log-quadratic trend surface models fit-
ted to the Lansing Woods data

Species Maximised log-likelihood for
trend surface of degree

0 1 2
hickories 3905.4 3943.3 3985.3
maples 2694.5 2747.6 2778.5
oaks 5419.9 5425.9 5440.4
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FIGURE 8.1
Fitted log-quadratic trend surfaces for the hickories (left-hand panel) and
maples (right-hand panel) in Lansing Woods

we use the estimated inhomogeneous K-function, K̂I(·) defined by (4.26),

plugging in the estimated log-quadratic surface λ̂(·). The two panels of Figure
8.2 show K̂I(t) − πt2 for the hickories and for the maples, in each case with
simulation envelopes from 99 simulations of the fitted inhomogeneous Poisson
process conditioned to produce a fixed number of events in the unit square.
For both species, there is a clear lack of fit, which could be due either to non-
Poisson behaviour (specifically, small-scale aggregation), or to inadequacy of
the log-quadratic model.
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Estimates of KI(t) for the hickories (left-hand panel) and maples (right-hand
panel) in Lansing Woods. Data are shown as thick black lines, simulations of
the fitted log-quadratic inhomogeneous Poisson process as thin grey lines.

8.3 Likelihood inference for Markov point processes

As discussed in Section 5.7, Markov point processes are defined in terms of
the joint density f(X) for a configuration of events X = {x1, ..., xn}. This
points to the likelihood function being an obvious tool for inference within
this class. However, the normalising constant, represented by α in equation
(6.14), is generally intractable.

An early response to the intractability problem was to replace the likeli-
hood criterion by a pseudo-likelihood which, for a general multivariate distri-
bution f(x1, ..., xn) is defined as the product of the full conditionals, leading
to the criterion

PL =

n∑

i=1

log f(xi|xj , j = i).

Besag (1975) introduced the pseudo-likelihood as a method of parameter esti-
mation for lattice processes. Besag, Milne and Zachary (1982) derived a point
process version by showing that a pairwise interaction process could be de-
fined as the limiting form of a binary lattice process when the lattice spacing
shrinks to zero.

Subsequently, Monte Carlo methods for approximating the normalis-
ing constant were developed, although their implementation is not entirely
straightforward and can be computationally burdensome. Partly for this rea-
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son, interest in the computationally less demanding pseudo-likelihood method
was revived by Baddelely and Turner (2000). In the remainder of this chapter,
we first consider the method of maximum pseudo-likelihood in more detail,
before discussing Monte Carlo implementations of likelihood-based methods.

One issue that immediately arises in considering methods of inference for
Markov point processes is whether or not to condition on the observed num-
ber of events, n. As discussed in Section 5.7, the distinction is not always
innocuous, but is usually so for models that generate regular patterns. In de-
veloping specific estimation criteria we shall therefore take a pragmatic stance
in choosing whether to treat n as fixed or random.

8.3.1 Maximum pseudo-likelihood estimation

Consider any process defined by the joint density f(X) for a configuration
consisting of a variable number of points, X = (x1, ..., xn), in a spatial region
A. We consider both n and the xi to be random variables. The conditional
intensity of a point at an arbitrary location u, given the realisation X of the
process on A− {u}, is

λ(x;X) =

{
f(X ∪ {u})/f(X) : u /∈ X
f(X)/f(X − {u} : u ∈ X

(8.4)

and the log-pseudo-likelihood function (Besag, 1978) is

PLλ =
∑

log λ(xi;X)−
∫

A

λ(u;X)du (8.5)

For an inhomogeneous Poisson process, the conditional intensity reduces to
the intensity, and the log-pseudo-likelihood (8.5) reduces to the log-likelihood
(8.1).

More generally, for the class of pairwise interaction processes defined by
(6.16),

λ(xi;X) = β
∏

j �=i

h(||xi − xj ||, φ)

and, for u /∈ X ,

λ(u;X) = β

n∏

i=1

h(||u− xi||), φ).

Hence, writing p(·) = log h(·) for convenience, the log-pseudo-likelihood func-
tion for the model parameters (β, φ) is

PL(β, φ) = n log β+

n∑

i=1

∑

j �=i

p(||xi − xj ||;φ)−β

∫

A

exp{
n∑

i=1

p(||u−xi||, φ)}du.

(8.6)
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For any fixed value of φ, the value of β that maximises the pseudo-likelihood
is given explicitly by

β̃(φ) = n/

∫

A

exp{
n∑

i=1

p(||u− xi||, φ)}du. (8.7)

Substitution of this expression back into the right-hand side of (8.6) gives the
reduced log-pseudo-likelihood function,

PL0(φ) = n(logn−1)−n log

∫

A

exp{
n∑

i=1

p(||u−xi||, φ)}du+
n∑

i=1

∑

j �=i

p(||xi−xj ||;φ).

(8.8)
This can be maximised numerically to give the maximum pseudo-likelihood
estimator φ̂ and hence, by back-substitution into (8.7), the maximum pseudo-

likelihood estimate β̂ = β̃(φ̂).
Note in particular that the log-pseudo-likelihood does not involve the awk-

ward normalising constant α. Hence, maximum pseudo-likelihood estimation
provides a computationally easy alternative to full maximum likelihood. Also,
it can be implemented without the need for careful tuning of specialised Monte
Carlo algorithms, as currently required for maximum likelihood estimation.
In particular, Berman and Turner (1992) and Baddeley and Turner (2000)
show how standard Poisson regression modelling software can be adapted to
implement maximum pseudo-likelihood estimation for point process models
including, but not restricted to, pairwise interaction point processes.

Diggle et al. (1994) suggested an edge-corrected version of the log-pseudo-
likelihood function. The rationale for this is exactly parallel to that for the
edge-correction described in Section 4.6 for estimating the K-function, namely
that the summations of log-interaction terms on the right hand side of (8.8)
ignore potential contributions from unobserved events outside the study region
A. To address this, we replace (8.8) by

PL∗(β, φ) = n(logn− 1)− n log

∫

A

exp[

n∑

i=1

w(u, xi)
−1p(||u− xi||, φ)du

+

n∑

i=1

∑

j �=i

w(xi, xj)
−1p(||xi − xj ||;φ), (8.9)

where the weights w(·) are defined as in Section 4.6.1. A potential objection
to (8.9) is that the edge-correction weights w(xi, xj)

−1 are unbounded. How-
ever, in practice it is only reasonable to attempt to estimate interactions that
operate over a range of distances much smaller than the dimensions of the
region on which the data are observed.

In practice, the integral in (8.8) or (8.9) must be evaluated numerically.
In our applications, we use the simplest form of quadrature, replacing the
integration by summation over a fine grid of equally spaced quadrature points
to cover A.
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8.3.2 Non-parametric estimation of a pairwise interaction
function

In formulating pairwise interaction models for particular applications, it would
be useful to have available a simple, non-parametric estimator for the inter-
action function h(·). This is needed because, in general, there is no simple
algebraic relationship between h(·) and the already established summary de-
scriptors based on second moment or nearest neighbour properties. Diggle,
Gates and Stibbard (1987) propose a solution that combines Fourier methods
and approximations from statistical physics, but their method is somewhat
elaborate and difficult to automate. A simpler solution, suggested in Badde-
ley and Turner (2000), is to use maximum pseudo-likelihood in conjunction
with a piece-wise constant specification for h(·), leading to a kind of indirect
histogram estimator. Heikkinen and Penttinen (1999) also suggested estimat-
ing a piece-wise constant h(·), but using more computationally demanding,
Monte Carlo likelihood-based methods of estimation.

8.3.3 Fitting a pairwise interaction point process to the dis-
placed amacrine cells

In our earlier, non-parametric analysis of these data, reported in Section 4.7,
we concluded that the on and off cells form independent processes with very
similar second-order properties, including inhibitory behaviour at small dis-
tances. In view of this, our initial modelling strategy will be to formulate and
fit a model to the on cells only, reserving the off cells for a goodness-of-fit
assessment. Also, the inhibitory behaviour at small distances, together with
the absence of any obvious longer-range heterogeneity or other form of aggre-
gation, suggests that a pairwise interaction process is a reasonable candidate
model.

For an initial, non-parametric estimate of the interaction function, we max-
imise the edge-corrected pseudo-likelihood criterion (8.9) in conjunction with
a piece-wise constant interaction function. Figure 8.3 shows the resulting es-
timate of h(·). Its basic shape, increasing from 0 to approximately 1 over the
range of distances 0 to 0.15, is characteristic of non-strict inhibitory interac-
tion between the points.

For the particular estimate shown in Figure 8.3 the number and width of
intervals on which the function is estimated were chosen after some prelim-
inary experimentation. The quadrature points for evaluation of the integral
term in the expression for the log-pseudo-likelihood were placed on an equally
spaced 100 by 70 grid.

After inspection of this non-parametric estimate, we proceeded to fit a
parametric model with interaction function

h(u) =

⎧
⎨

⎩

0 : u < δ
{(u− δ)/(ρ− δ)}β : δ ≤ u ≤ ρ

1 : u > ρ
(8.10)
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FIGURE 8.3
Non-parametric (step-function) estimate of the interaction function for the
displaced amacrine on cells.

This particular parametric form has no special scientific status, but is
simply a flexible family that provides a reasonable empirical fit to the form
of interaction indicated by the preliminary, non-parametric estimate. Diggle
and Gratton (1984) fitted the same model, but using curve-fitting methods
of the kind described in Chapter 6. Here, we use maximum pseudo-likelihood
to estimate the parameters δ, ρ and β. This involves a grid search in (δ, ρ)-
space, with β optimised automatically at each value of (δ, ρ). Note that the
minimum distance between any two of the on cells is approximately 0.032,
hence the maximum pseudo-likelihood estimate of δ cannot be greater than
0.032. Again using a 100 by 70 grid of quadrature points for each evaluation of
the integral term in the log-pseudo-likelihood we obtained estimates δ̂ = 0.016,
ρ̂ = 0.121 and β̂ = 2.091. Figure 8.4 compares this parametric estimate with
the non-parametric estimate shown in Figure 8.3.

Figure 8.5 shows a profile of the log-pseudo-likelihood surface, maximised
with respect to β for each of the plotted combinations of δ and ρ. The profile is
a unimodal surface in the neighbourhood of the maximum pseudo-likelihood
estimates, albeit somewhat flat in the δ-direction.

Figure 8.6 assesses the goodness-of-fit of the parametric model to the off
cells, using nearest neighbour and point-to-nearest-event distribution func-
tions. In both cases, there is a discrepancy between data and model as judged
by the nearest neighbour distributions; the model generates patterns that are
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FIGURE 8.4
Parametric (dashed line) and non-parametric (step-function) estimates of the
interaction function for the displaced amacrine on cells.

more regular than the data. The corresponding Monte Carlo tests using the
statistics (7.4) and (7.3) give p = 0.01 and p = 0.05, respectively.

8.3.4 Monte Carlo maximum likelihood estimation

Recent developments in likelihood-based inference for point processes focus
on the use of Monte Carlo methods to circumvent problems of analytical in-
tractability. In this section we describe an elegant method for Markov point
processes which was first used by Penttinen (1984), and subsequently devel-
oped in a more general context by Geyer and Thompson (1992). Geyer (1999)
describes how the method can be applied to spatial point processes including,
but not restricted to, Markov point processes.

For definiteness, we consider the fixed-n version of a pairwise interaction
point process with interaction function h(d, θ), where d denotes distance and
θ is the (possibly vector-valued) parameter to be estimated. We use X =
{x1, ..., xn} to denote a configuration of n events within some designated region
A. Then, the likelihood function for θ is

�(θ) = f(X, θ)/a(θ) (8.11)

where
f(X) =

∏

i

∏

j �=i

h(||xi − xj ||, θ).
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Profile log-pseudo-likelihood surface for the pairwise interaction point pro-
cess fitted to the on cells. The plotted value at each point is the log-pseudo-
likelihood maximised with respect to β, holding δ and ρ fixed.

The obstacle to direct evaluation of the likelihood is the normalising constant,
a(θ). However, if we write L(θ) = log �(θ) and consider any fixed value θ0 in
the parameter space, it follows from (8.11) that

L(θ)− L(θ0) = log{f(X, θ)/f(X, θ0)} − log{a(θ)/a(θ0)}. (8.12)

Observe that

a(θ) =

∫
f(X, θ)dX

=

∫
f(X, θ)× a(θ0)

a(θ0)
× f(X, θ0)

f(X, θ0)
dX. (8.13)

Now, define r(X, θ, θ0) = f(X, θ)/f(X, θ0) and re-arrange the right-hand side
of (8.13) to give

a(θ) = a(θ0)

∫
r(X, θ, θ0)a(θ0)f(X, θ0)dX

= a(θ0)Eθ0 [r(X, θ, θ0)], (8.14)

or equivalently
a(θ/a(θ0) = Eθ0 [r(X, θ, θ0)], (8.15)
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FIGURE 8.6
Goodness-of-fit assessment for displaced amacrine off cells, using point-to-
nearest-event (left-hand panel) and nearest neighbour (right-hand panel) dis-
tribution functions. —— : data; −−−: envelope from 99 simulations of fitted
pairwise interaction point process.

where Eθ0[·] denotes expectation with respect to the distribution of X when
θ = θ0. An immediate consequence of (8.14) is that if we can find a value θ0 for
which we can both evaluate a(θ0) directly, and simulate realisations X , then
in principle we can evaluate a(θ) approximately for any value of θ by using
simulations,X1, ..., Xs say, under θ = θ0 to obtain an empirical approximation
to the expectation term.

More interestingly, substitution of (8.15) into (8.12) gives

L(θ)− L(θ0) = log{f(X, θ)/f(X, θ0)} − log Eθ0 [r(X, θ, θ0)]. (8.16)

This suggests a family of algorithms for evaluating an approximate maximum
likelihood estimator, θ̂. Since θ0 is a constant, (8.16) implies that for any θ0,

the maximum likelihood estimator θ̂ maximises

Lθ0(θ) = log f(X, θ)− log Eθ0[r(X, θ, θ0)],

hence an approximation to θ̂ can be obtained by maximising

L̂θ0,s(θ) = log f(X, θ)− log s−1
s∑

j=1

r(Xj , θ, θ0) (8.17)

where X1, ...Xs are simulated realisations with θ = θ0. Maximisation of (8.17)
with respect to θ requires us only to be able to simulate the process at θ = θ0.
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FIGURE 8.7
Monte Carlo log-likelihood functions for the displaced amacrine on cells, with
interaction function (8.10), θ0 = (δ, ρ, β) = (0.016, 0.121, 2.091) and s = 10
simulations per log-likelihood evaluation. Thin grey lines show each of five
independent replicates, thick black line the point-wise average of the five. Left-
hand panel: L̂θ0,10(δ). Centre panel: L̂θ0,10(ρ). Right-hand panel: L̂θ0,10(β).

The Monte Carlo approximation to the expectation used in (8.17) may
be numerically unstable with a poor choice of θ0. However, the method of
maximum pseudo-likelihood can be used to choose a value for θ0, which we can
consider as a first approximation to the maximum likelihood estimate, and this
process can be iterated over successive approximations to θ̂. A precautionary
comment is that even with modern computing facilities, the computational
load of the Monte Carlo method can inhibit its routine use for fitting multi-
parameter models to large data-sets.

8.3.5 The displaced amacrine cells re-visited

We now use the displaced amacrine cell data to illustrate the Monte Carlo
maximum likelihood estimation procedure. To show how the method works,
we first explore one-dimensional traces through the likelihood surface for the
pairwise interaction model defined by (8.10), varying one of the three param-
eters whilst holding the other two fixed at their maximum pseudo-likelihood
estimates.

Figure 8.7 shows the results for five replicate runs, in each of which
the number of simulations used to evaluate (8.17) is s = 10 and θ0 =
(0.016, 0.121, 2.091). With such a small number of simulations, the compu-
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FIGURE 8.8
Monte Carlo log-likelihood functions for the displaced amacrine on cells, with
interaction function (8.10), θ0 = (δ, ρ, β) = (0.017, 0.122, 2.100) and s = 100
simulations per log-likelihood evaluation. Thin grey lines show each of five
independent replicates, thick black line the point-wise average of the five. Left-
hand panel: L̂θ0,100(δ). Centre panel: L̂θ0,100(ρ). Right-hand panel: L̂θ0,100(β).

tation can be numerically unstable, as can be seen in the trace for δ and β in
one of the five replicates.

Figure 8.8 gives the same information, but with s = 100 and θ0 updated to
(0.017, 0.122, 2.100). The computations are now stable, and the Monte Carlo
variation in the approximate log-likelihood is negligible in the vicinity of the
maximum likelihood. This suggests that s = 100 gives an adequate approx-
imation for point estimation. However, the divergence of the five replicates
as θ moves away from the maximum likelihood estimate indicates that reli-
able interval estimation would need a larger value of s. Accordingly, Figure
8.9 shows the results obtained with s = 1000. The five replicates now show
negligible divergence within the range relevant for calculating likelihood-based
confidence intervals.

Taking the maximum likelihood estimates to be the values that max-
imise the average of the five replicates in each panel of Figure 8.9 gives
maximum likelihood estimates (δ̂, ρ̂, β̂) = (0.017, 0.122, 2.175). These dif-

fer only slightly from the maximum pseudo-likelihood estimates (δ̂, ρ̂, β̂) =
(0.016, 0.121, 2.091), and the fit to the nearest neighbour distribution is essen-
tially as shown previously in Figure 8.6.
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FIGURE 8.9
Monte Carlo log-likelihood functions for the displaced amacrine on cells,
with interaction function (8.10), θ0 = (δ, ρ, β) = (0.017, 0.122, 2.100) and
s = 1000 simulations per log-likelihood evaluation. Thin grey lines show each
of five independent replicates, thick black line the point-wise average of the
five. Left-hand panel: L̂θ0,1000(δ). Centre panel: L̂θ0,1000(ρ). Right-hand panel:

L̂θ0,1000(β).

8.3.6 A bivariate model for the displaced amacrine cells

Until now, our working hypothesis for the amacrine cell data has been that
the on and off cells are independent realisations of the same point process. We
arrived at this working hypothesis by a non-parametric analysis as reported
in Section 4.7, where we also concluded that the evidence pointed strongly
towards the “separate layer” hypothesis for the underlying developmental bi-
ology. However, statistical independence cannot strictly be correct, as physical
constraints prevent any two cells in the mature retina from occupying arbi-
trarily close positions in the retinal plane.

Figure 8.10 gives a schematic view of the transition from the immature to
the mature retina. This prompted Eglen, Diggle and Troy (2005) to make a
distinction between statistical and functional independence, the latter meaning
that the only form of dependence between the two types of cell is a simple in-
hibitory constraint between cells of opposite type. Within the class of bivariate
pairwise interaction point processes defined by equation (6.31) Section 5.9.5,
the formal definition of functional independence is that the cross-interaction
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FIGURE 8.10
Schematic representation of the placement of displaced amacrine cells in the
transition from the immature to the mature retina.

function, h12(u), takes the form

h12(u) =

{
0 : u ≤ δ
1 : u > δ

,

with the special case δ = 0 corresponding to functional and statistical inde-
pendence.

Eglen, Diggle and Troy (2005) also used likelihood-based inference within
the class of bivariate pairwise interaction point process models to test the
assumption that the locations of the two types of cell are independent reali-
sations of the same point process, i.e. that h11(u) = h22(u). Their parametric
model for the interaction functions was

hij(u) =

{
0 : u ≤ δij

1− exp[−{u− δij)/φij}βij ] : u > δij
.

This is different from the parametric form (8.10) but the difference is slight,
and the two give very similar results. Eglen, Diggle and Troy (2005) also
treated δ11 and δ22 as known constants, both equal to 0.015 based on the
known physical size of a cell, but estimated δ12 because the vertical displace-
ment between the two types of mature cells, as shown in the right-hand panel
of Figure 8.10, would allow two cells of opposite type to be separated in the
horizontal plane by less than their diameter. Using Monte Carlo likelihood ra-
tio tests with s = 1000 replicates for each evaluation of the likelihood, they ac-
cepted the hypothesis h11(u) = h22(u) (log-likelihood ratio 0.68 on two degrees
of freedom, p = 0.507), rejected statistical independence against functional
independence (log-likelihood ratio 2.65 on one degree of freedom, p = 0.021)
and accepted functional independence against the general parametric form
of h12(u) (log-likelihood ratio 0.15 on two degrees of freedom, p = 0.861).
Maximum likelihood estimates for the fitted functional independence model,
with h11(u) = h22(u) as specified by equation (8.18) and δ11 = δ22 = 0.015

treated as known constants, are (φ̂, β̂, δ̂12) = (0.085, 2.832, 0.008). Each eval-
uation of the Monte Carlo likelihood used s = 1000 replicate simulations
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with θ0 = (φ0, β0), δ120 = (0.074, 2.92, 0.007). For numerical maximisation of
the Monte Carlo log-likelihood we used the Nelder and Mead (1965) simplex
algorithm as implemented in the R optim() function.

8.4 Likelihood inference for Cox processes

Recall from Chapter 6 that a Cox process is a Poisson process with stochas-
tic intensity function Λ(x). As a convenient shorthand, we write Λ for the
complete set of values {Λ(x) : x ∈ A}. We assume that the model for
Λ(x) is indexed by a parameter θ. The likelihood function for θ associated
with data X = {x1, ..., xn} on a finite region A is therefore the expectation
with respect to Λ of the Poisson process likelihood for a given Λ, which is
exp(−μ)μn−1

∏
Λ(xi)/n! where μ =

∫
A
Λ(x)dx. The overall intensity, μ, is

usually of limited scientific interest and is easily estimated by the observed
number of events per unit area. To estimate the remaining parameters of Λ,
we can therefore condition on n, in which case the Poisson likelihood becomes

�(θ,Λ) = c(Λ)

n∏

i=1

Λ(xi), (8.18)

where c(Λ) = {
∫
A Λ(x)dx}−n. The Cox process likelihood is then

�(θ) = EΛ[�(θ,Λ)]. (8.19)

In the present context, the conditioning on n implies that (8.19) is unaffected
if Λ(x) is multiplied by an arbitrary constant; one implication of this is that
in specifying a stationary parametric model for Λ, its expectation can be set
at an arbitrary constant value, typically E[Λ(x)] = 1. Also, the evaluation of
(8.19) involves integration over the infinite-dimensional distribution of Λ. In
principle, we can approximate Λ by a finite set of values Λ(gk) : k = 1, ..., N ,
where the points g1, ..., gN form a fine grid to cover A, but even so the high
dimensionality of the implied integration appears to present a formidable ob-
stacle to progress. One solution, easily stated but hard to implement robustly
and efficiently, is to use Monte Carlo methods.

In essence, Monte Carlo evaluation of (8.19) consists of approximating the
expectation by an empirical average over simulated realisations of some kind.
A crude Monte Carlo method would use the approximation

�MC(θ) = s−1
s∑

j=1

�(θ, λj), (8.20)

where λj = {λj(gk) : k = 1, ..., N} is a simulated realisation of Λ with param-
eter θ, on the set of grid-points gk. In practice, this is hopelessly inefficient.
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A more fruitful approach is to use an extension of the method described in
Section 8.3.4, again building on results in Geyer (1999).

Imagine, temporarily, that we could observe both the point pattern, X ,
and the underlying intensity field Λ. The likelihood function would then take
the form

�(θ;X,Λ) = f(X,Λ; θ)/a(θ), (8.21)

where f(·) is the un-normalised joint density of X and Λ, and

a(θ) =

∫ ∫
f(X,Λ, θ)dΛdX (8.22)

is the intractable normalising constant for f(·). The method described in Sec-
tion 8.3.4 can be applied directly to give

a(θ)/a(θ0) = Eθ0 [f(X,Λ; θ)/f(X,Λ; θ0)], (8.23)

where θ0 is any convenient, fixed value of θ.
The function f(X,Λ; θ) in (8.21) is an un-normalised conditional density

for Λ given X . Under this new interpretation, the corresponding normalised
conditional density is f(X,Λ; θ)/a(θ|X), where

a(θ|X) =

∫
f(X,Λ, θ)dΛ. (8.24)

The argument leading to (8.23) can be repeated to give

a(θ|X)/a(θ0|X) = Eθ0 [{f(X,Λ; θ)/f(X,Λ; θ0)}|X ], (8.25)

We now acknowledge that only X is observed. The likelihood function is
therefore obtained by integrating out the dependence on Λ on the right-hand
side of (8.21), to give

�(θ;X) =

(∫
f(X,Λ; θ)dΛ

)
/a(θ)

By substitution from (8.24), this can also be written as

�(θ;X) = a(θ|X)/a(θ).

By the same token, for any fixed value θ0,

�(θ0;X) = a(θ0|X)/a(θ0).

It follows that for any fixed value θ0, the likelihood ratio between θ and θ0 is

�(θ;X)/�(θ0;X)} = {a(θ|X)/a(θ)}/{a(θ0|X)/a(θ0)}
= {a(θ|X)/a(θ0|X)}/{a(θ)/a(θ0)}
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and the corresponding log-likelihood ratio is

L(θ)− L(θ0) = log{a(θ|X)/a(θ0|X)} − log{a(θ)/a(θ0)}. (8.26)

Now write r(X,Λ, θ, θ0) = f(X,Λ, θ)/f(X,Λθ0) and substitute (8.23) and
(8.25) into (8.26). This gives the log-likelihood for θ associated with the ob-
served data X as

L(θ)− L(θ0) = log Eθ0[r(X,Λ, θ, θ0)|X ]− log Eθ0 [r(X,Λ, θ, θ0)]. (8.27)

For any fixed value of θ0, a Monte Carlo approximation to the log-likelihood,
ignoring the constant term L(θ0) on the left-hand side of (8.27) is therefore
given by

L̂(θ) = log

⎧
⎨

⎩s−1
s∑

j=1

[r(X,λj , θ, θ0

⎫
⎬

⎭− log

⎧
⎨

⎩s−1
s∑

j=1

[r(Xj , λj , θ, θ0

⎫
⎬

⎭ (8.28)

Note that in the second term on the right-hand side of (8.28) the pairs (Xj ,Λj)
are simulated joint realisations of X and Λ at θ = θ0, whilst in the first term
X is held fixed at the observed data and the simulated realisations λj are
conditional on X .

Exactly as in Section 8.3.4, the result (8.28) shows that a Monte Carlo
approximation to the log-likelihood function, and therefore to the maximum
likelihood estimate θ̂, can be found by simulating the process only at a sin-
gle value, θ0. As there, the quality of the approximation rests on identifying a
value θ0 that is itself close in value to θ̂. Here, an additional complication is the
need to simulate conditional realisations of Λ given X . Simple, direct simula-
tion methods are available for unconditional simulation of X and Λ jointly, but
conditional simulation of Λ requires Markov chain Monte Carlo methods, for
which careful tuning is generally required to ensure convergence within a fea-
sible run-length. Taylor et al. (2013) describe a Metropolis-adjusted Langevin
algorithm for conditional simulation of a log-Gaussian Cox process, and an
implementation of this algorithm in an R package, lgcp.

8.4.1 Predictive inference in a log-Gaussian Cox process

The definition of the Cox process makes it suitable as a model for point pat-
terns that are thought primarily to be the result of spatial variation in in-
tensity, rather than of stochastic interactions amongst the events. Within the
Cox class, the log-Gaussian Cox process is particularly suited to applications
in which the focus of scientific interest is in the realisation of the underlying
intensity surface, rather than its parameters. The reason is the model’s em-
pirical character; its parameters have no obvious mechanistic interpretation,
but simply describe how variable is the intensity surface, and how the correla-
tion between pairs of values varies according to the spatial separation between
their corresponding locations.
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Suppose that we wish to use an observed partial realisation X = {xi ∈ A :
i = 1, ..., n} to find out about some aspect of the realisation of the underlying
intensity field Λ(x). Quite generally, let T denote the quantity of interest,
called the target. In different contexts, T might be any of the following: a
real-valued quantity, for example the maximum value of Λ(x) within A; multi-
dimensional, for example a digitised image of the surface Λ(x) throughout A;
a random set, for example the sub-region of A within which the value of Λ(x)
exceeds a threshold value of practical significance. Then, the formal solution
to the prediction problem is the conditional distribution of T given the data,
X . If a point predictor is wanted, we can use a summary property of the
predictive distribution such as its mean or median; note, in this context, that
the mean, T̂ = E[T |X ] minimises the mean square error, E[(T̂ − T )2]. A
richer summary is a sequence of quantiles of the predictive distribution. This
is particularly useful when T is the complete surface, {Λ(x) : x ∈ A}, whose
predictive distribution can be examined interactively through an animation
of a sequence of cumulative probability maps, {q(x, c) = P(Λ(x) ≤ c : x ∈ A},
for increasing values of c > 0.

Let θ denote the parameters of the model. In plug-in prediction, we use
the conditional distribution of T given X treating a point estimate θ̂ as if
it were a fixed, known quantity. In Bayesian prediction, we assign a prior
distribution to θ and use the conditional distribution of T given X averaged
over the posterior for θ. Specifically, the Bayesian predictive distribution is

[T |X ] =

∫
[T |X ; θ][θ|X ]dθ. (8.29)

The averaging over the posterior in (8.29) typically, but not necessarily, gives

a more conservative prediction than the plug-in, [T |X ; θ̂], because the plug-in

ignores the uncertainty in the estimate θ̂.

8.4.2 Non-parametric estimation of an intensity surface:
hickories in Lansing Woods

In Section 5.3 we used a kernel smoothing method for non-parametric estima-
tion of an intensity surface. In Section 8.2 we considered a parametric version
of the problem, fitting a log-quadratic intensity surface for a inhomogeneous
Poisson process model by maximum likelihood. Here, we re-cast the problem
as one of prediction within an LGCP model, using the hickories in Lansing
Woods as our example; the analysis is taken from Diggle, Moraga, Rowlongson
and Taylor (2013).

For this analysis, we re-scaled the data to lie in a square of side-length
100 and fitted an LGCP with intensity Λ(x) = exp{β + S(x)}, where S(x) is
a Gaussian process with mean −0.5σ2, variance σ2 and correlation function
ρ(u) = exp(−u/φ); recall that under this parameterisation, E[exp{S(x)}] = 1,
hence the unconditional intensity of the Cox process is λ = exp(β). We obtain
preliminary estimates of θ = (σ, φ) by minimising a weighted least squares
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criterion,

D(θ) =

∫ 0.25

0

(K̂(t)0.25 −K(t; θ)0.25)2dt

as described in Section 7.2.1. The resulting estimates are θ̃ = (0.50, 12.7).
We used these to inform a pragmatic prior specification, with β ∼ N(0, 20),
log σ ∼ N(log(σ̃), 0.1) and logφ ∼ N(log(φ̃), 0.05).

For the MCMC sampling, we used a burn-in of 30,000 iterations followed
by a further 200,000 iterations, of which we retained every 200th iteration so
as to give a weakly dependent sample of size 1000. Figure 8.11 compares the
prior and posterior distributions of the three model parameters showing, in
particular, that the data give only very weak information about the correlation
range parameter, φ.
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FIGURE 8.11
Prior (smooth curves) and posterior (histograms) distributions for the param-
eters β, σ and φ in the LGCP model for the hickory data.

The centre panel of Figure 8.12 shows the pointwise medians of the pre-
dictive distribution for the target, Λ(x). This clearly identifies the pattern
of the spatial variation in intensity, and is not dissimilar to the kernel-based
estimate shown in Figure 5.3. The left-hand and right-hand panels show the
pointwise predictive probabilities that the local intensity is less than half, and
more than twice, the overall average, respectively. High probabilities in these
plots indicate where there is strong evidence that the local intensity differs
from the overall average by a factor of at least two in either direction.

The LGCP-based solution to the smoothing problem is arguably over-
elaborate by comparison with simpler methods such as the kernel smoothing
approach described in Section 5.3.1, especially if all that is required is an
estimate of the intensity surface. Against this, arguments in its favour are that
it provides a principled rather than an ad hoc solution, probabilistic prediction
rather than point prediction, and an obvious extension to smoothing in the
presence of explanatory variables by specifying Λ(x) = exp{u(x)′β + S(x)},
where u(x) is a vector of spatially referenced explanatory variables.
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FIGURE 8.12
Predictive probabilities P{exp[S(x)] < 1/2|data} (left-hand panel), pointwise
medians of the predictive distribution of exp{β+S(x)} (centre panel), predic-
tive probabilities P{exp[S(x)] > 2|data} (right panel). Left and right panels
also show data.

8.5 Additional reading

Likelihood-based Monte Carlo methods of inference for spatial point processes,
including both classical and Bayesian approaches, are becoming more ac-
cessible through a combination of ever-increasing computational power and
continuing theoretical developments. Early contributions include Ogata and
Tanemura (1981, 1984, 1986) and Penttinen (1984). A good, if technically de-
manding, detailed treatment and literature review can be found in Møller and
Waagepetersen (2002).

The author’s view is that the more ad hoc methods of estimation will con-
tinue to be useful for some time because of their ease of implementation, and to
provide good starting values for numerical optimisation of the likelihood. But
for formal inference, they should eventually be replaced by likelihood-based
methods as more efficient, reliable algorithms are developed and implemented
in user-friendly software. Work by Havard Rue and colleagues on the use of
Integrated Nested Laplace Approximations (Rue, Martino and Chopin, 2009;
see also http://www.r-inla.org) reminds us that these algorithms may not
need to use Monte Carlo methods.
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9.1 Introduction

Epidemiology is concerned with the study of patterns of disease incidence and
prevalence in natural populations, and the identification and estimation of
risk factors associated with particular diseases. Traditionally, epidemiological
studies only considered spatial risk factors at coarse geographical scales, for
example comparing estimates of disease risk in different countries, or otherwise
defined administrative regions. The advent of relatively precise post-code sys-
tems, together with the inclusion of post-coded information on place of birth,
residence or death in disease registers and in census data, made it possible to
consider much more detailed patterns of spatial variation in disease risk. For
example, the UK post-code system is notionally accurate to an order of magni-
tude of tens of meters in urban areas, where each post-code typically identifies
a single street. As a result, statistical methods have been developed to apply
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the ideas of spatial point processes to epidemiological data, specifically to the
study of the observed pattern of disease in relation to possible environmental
risk factors. In epidemiology, studies of this kind are often called individual-
level studies. Studies that compare disease rates between different populations
are usually called area-level studies or, somewhat quaintly, ecological studies.

Using point process methods to model the spatial pattern of disease is not
an uncontroversial thing to do. At one level, it is obvious that allocating a per-
son to a unique spatial location is no more than a convenient mathematical
fiction. Even discounting long-term migration effects, most people move from
place to place as they go about their daily business. Nevertheless, in the ab-
sence of direct, person-specific environmental dose monitoring, the location in
which a person lives or works, according to context, may be the best available
surrogate for the micro-environment to which they are principally exposed.

Another limitation of individual-level studies is that relevant collateral
information, for example on demographic or socio-economic variables, is of-
ten only available on a larger spatial scale, for example at the level of coun-
ties or other administratively defined units. Against this, a powerful counter-
argument in favour of individual-level studies is the well-known phenomenon
of the ecological fallacy (Selvin, 1958), also called ecological bias (see, for ex-
ample, Greenland and Morgenstern, 1989). This refers to the fact that effects
of risk factors averaged over populations may differ, perhaps even qualita-
tively, from the corresponding effects at the individual level. Our aim in this
chapter is to show how spatial point process methodology can be applied to
several common problems in environmental epidemiology. We do not attempt
to discuss the wider role which spatial statistical methods, including but not
restricted to point process methods, can play in epidemiology. For overviews
from this wider perspective see, for example, Elliott et al. (2000) or Waller
and Gotway (2004).

The starting point for an individual-level analysis is a set of data giving
the locations of all known cases of a particular disease within a designated
study region A over a defined time-period. For example, the left-hand panel
of Figure 9.1, based on data from Cuzick and Edwards (1990), shows the
residential locations of 62 cases of childhood leukaemia diagnosed in the North
Humberside region of the UK, in the years 1974 to 1982.

A feature of all data of this kind is that the spatial distribution of cases
must to some extent reflect the spatial distribution of the underlying popu-
lation. In the current example, the most obvious feature of the map is the
concentration of cases in the city of Hull. Usually, patterns attributable solely
to population distribution are not of interest, and it is therefore necessary
to compare the case-map with a map of controls sampled from the under-
lying population at risk. The simplest case-control design is the completely
randomised design, in which the controls are an independent random sample
from the underlying population. The right-hand panel of Figure 9.1 shows a
map of 143 controls sampled at random from the birth register for the North
Humberside region over the years 1974 to 1982. Note the superficial similarity
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FIGURE 9.1
Residential locations at birth of 62 cases of childhood leukaemia in North
Humberside, UK (left-hand panel), and of 143 controls sampled at random
from the birth register (right-hand panel).

between the case and control maps, in the sense that both patterns broadly
follow that of the underlying population at risk. The polygon superimposed
on the control map is a crude approximation to the boundary of the North
Humberside region, which we will use in the analysis reported in Section 9.2
below.

More sophisticated case-control designs involve stratification or matching;
for example, a sample of controls may be constrained to show the same sex-
ratio as the set of cases (stratification by sex), or controls may be paired
with individual cases of the same age (matching by age). In what follows,
we shall initially assume a completely randomised design. In Section 9.5 we
discuss briefly how the associated statistical methods can be extended to cover
stratified or matched designs, and point out why this may not be a good idea.
For a general discussion of the arguments for and against matching in case-
control study designs, see Breslow and Day (1980).

In the remainder of the chapter we shall discuss three classes of problem:
investigation of spatial clustering of cases; non-parametric estimation of spa-
tial variation in disease risk; and parametric modelling of elevation in risk
near a point source of environmental pollution.
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9.2 Spatial clustering

By spatial clustering, we mean a general tendency for cases to occur more
closely together than would be compatible with random sampling from the
population at risk. We emphasise that this is a description of the underlying
disease process, rather than of the study region itself. The implication of
clustering is that the conditional intensity of cases at an arbitrary location y,
given a case at a nearby location x, is greater than the unconditional intensity
of cases at y, i.e. clustering involves a form of dependence between cases.

Under the null hypothesis of no clustering, cases form a spatially random
sample from the underlying population. By design, controls necessarily form
a spatially random sample from this same population. Hence, no spatial clus-
tering is equivalent to random labelling of the bivariate point process of cases
and controls, and under this hypothesis the function

D(t) = K11(t)−K22(t) (9.1)

is identically zero. More generally,K22(t) measures the degree of spatial aggre-
gation of the population at risk, whereasK11(t) measures the cumulative effect
of this same spatial aggregation together with any additional effect of cluster-
ing. Hence, D(t) measures spatial clustering in the same way that K(t)− πt2

measures the degree of spatial aggregation in a univariate process. We shall
therefore develop a statistic to test the hypothesis of no clustering based on
the corresponding empirical function,

D̂(t) = K̂11(t)− K̂22(t),

where the case and control K-functions are estimated using (4.14).
In order to construct a formal test, we need to evaluate the null sampling

distribution of D̂(t). In particular, although D(t) itself is motivated by the
theory of stationary spatial point processes, it would be inappropriate to as-
sume stationarity in the present context because of the spatial heterogeneity
inherent in human settlement patterns. We therefore turn to design-based
inference, which uses the sampling distribution of D̂(t) induced by the ran-
dom labelling process conditional on the observed superposition of cases and
controls.

Diggle and Chetwynd (1991) use combinatorial arguments to show that
under random labelling of cases and controls, E[D̂(t)] = 0 exactly. They
also derive an explicit, albeit cumbersome, formula for the covariance
Cov{D̂(t), D̂(s)}. Based on these results, Diggle and Chetwynd (1991) suggest
the test statistic

D =

∫ t0

0

w(t)D̂(t)dt (9.2)

where w(t) = Var{D̂(t)}−0.5. In applications, this requires a choice to be
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FIGURE 9.2
Second-order analysis of clustering for the North Humberside childhood
leukaemia data. —— : D̂(t) for observed data; − − − : plus and minus two
standard errors under random labelling of cases and controls.

made for the upper limit of integration t0. Our view is that this choice should
be context-dependent. However, (9.2) implicitly down-weights large distances
because the randomisation variance of D̂(t) increases with t. This makes the
choice of t0 less critical than it would otherwise be.

For an exact Monte Carlo test, we compare the observed value of D with
values computed after independent random re-labellings of the cases and con-
trols. A Gaussian approximation is also available if required, using the known
form for the covariance structure of D̂(·).

9.2.1 Analysis of the North Humberside childhood leukaemia
data

Figure 9.2 shows the resulting analysis of the North Humberside childhood
leukaemia data. The unit of distance is 100km. At distances of the order of
several hundred meters the empirical function D̂(t) drifts close to or beyond
the upper limit of two point-wise standard errors under the null hypothesis of
no clustering. The p-value of an exact Monte Carlo test based on the statistic
(9.2) is p = 0.14, whereas the Normal approximation gives p = 0.11. We
conclude that there is only very slight evidence of spatial clustering in these
data, and that any clustering which may occur operates on a spatial scale of
the order of several hundred meters.
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9.2.2 Other tests of spatial clustering

In this context, there is no compelling reason to use the Diggle-Chetwynd
statistic D. There is an extensive literature on tests of spatial clustering for
epidemiological data, somewhat reminiscent of the burgeoning of tests of com-
plete spatial randomness for ecological data forty or more years ago, as re-
viewed in earlier chapters. The idea of using case-control data, and the ran-
domisation distribution induced by the case-control design, to test for spatial
clustering was introduced in Cuzick and Edwards (1990). Alexander and Boyle
(1996) report on an empirical comparison amongst a number of different tests,
based on their ability to detect clustering in a number of synthetic data-sets.

Methods for detecting specific clusters of disease are sometimes called fo-
cused tests, to distinguish them from tests of clustering as described above.
A good example, with a carefully argued rationale for their use in practice, is
Besag and Newell (1991). In effect, these methods operate by testing whether
particular concentrations of cases are statistically significant, with appropriate
modifications to allow for the implicit multiple testing. Other contributions to
this area of research include Tango (1995, 2000), Anderson and Titterington
(1997), Kulldorff (1997, 1999), Williams et al. (2001), Duczmal, Kulldorff and
Huang (2006), Kulldorff et al. (2006) and Kulldorff et al. (2007).

Our preference for the Diggle-Chetwynd statistic stems from its roots in
general summary statistics for point processes, rather than its performance
in any specific power comparisons. In particular, the interpretation of K(t)
as a scaled expectation means that we can in turn interpret D(t) as a scaled
expected number of excess cases within distance t of a reference case, by
comparison with a completely random pattern of disease incidence in the un-
derlying population. Hence, at least in principle, it is possible to use D̂(t)
not only to test the null hypothesis of no spatial clustering, but also to esti-
mate the size and spatial scale of clustering if present. On the other hand, an
implicit limitation of D̂(t) is that it is intended only to estimate general ten-
dencies to clustering on spatial scales that are small relative to the dimensions
of the study region. For a test of spatial clustering as here defined, the null
hypothesis under test is that disease risk is spatially constant and cases occur
independently, whereas the implicit alternative is that risk remains constant,
but cases are dependent. When the suspected alternative is that risk varies
spatially, either focused tests or regression methods may be more suitable.
Focused tests can be viewed as methods for identifying unexplained peaks in
the underlying risk surface, whereas regression methods are useful for inves-
tigating broad spatial trends in disease risk.
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9.3 Spatial variation in risk

By spatial variation in risk, we mean that the case and control intensity func-
tions are not proportional. Specifically, let r(x) denote the probability that
a person at location x will be a case. Then, adopting the usual convention
that controls must be non-cases, the respective intensity functions of cases
and controls are

λ1(x) = r(x)λ(x) (9.3)

and
λ2(x) = c{1− r(x)}λ(x), (9.4)

where λ(x) is the intensity of the underlying population and c is a constant de-
termined by the study design. It follows that λ1(x) and λ2(x) are proportional
if and only if r(x) is constant. The function r(x) is called the risk surface.

In contrast to spatial clustering, spatial variation in risk is a description
of the study region, under the implicit assumption that cases of disease oc-
cur independently of one another. As we have seen in earlier chapters, it can
be difficult or even impossible to sustain an empirical distinction between a
process of dependent events in a homogeneous environment and one of in-
dependent events in a heterogeneous environment. To emphasise this in the
present context, the null hypothesis of no spatial variation in risk, r(x) = r,
is equivalent to random labelling of cases and controls, which is also the hy-
pothesis of no spatial clustering. Thus, spatial clustering and spatial variation
in risk represent different alternatives to the same null hypothesis.

Conditional on the intensity surface λ1(x), and under the assumption that
cases occur independently, the case map is a realisation of an inhomogeneous
Poisson process. Controls occur independently by design. It follows that con-
ditional on the intensity surface λ2(x), the control map is a realisation of a
second, independent Poisson process. Also, it follows from (9.3) and (9.4) that

λ1(x)/λ2(x) = c−1r(x)/{1 − r(x)}. (9.5)

This shows that, up to a multiplicative constant, disease odds r(x)/{1−r(x)},
and hence the risk surface r(x), can be estimated non-parametrically via non-
parametric estimates of the two intensity functions λj(x). Specifically, we can
estimate the risk surface by substituting into (9.5) kernel estimates of the
λj(x) as discussed in Section 8.2.

In order to choose values of h for the kernel estimates of the λj(x), we
could use the method described in Section 8.2. However, in the non-parametric
setting, there is no reason to suppose that optimal values of h for separate
estimation of the two functions λj(x) will be optimal for their ratio. Kelsall and
Diggle (1995a) show that the asymptotically optimal estimator with respect
to mean square error is achieved by using equal values of h in the numerator
and denominator, irrespective of the numbers of cases and controls.
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A second method of estimating the risk surface non-parametrically is mo-
tivated by the following observation. Consider two independent Poisson pro-
cesses with respective intensities λ1(x) and λ2(x). Then, the superposition of
the two is also a Poisson process, with intensity λ1(x) + λ2(x). In this super-
position, define a binary random variable Y1 to take the value 1 or 0 according
to whether the ith event in the superposition is an event of the first or the
second component process. Then, conditional on the superposition the labels
Yi are mutually independent with

P(Yi = 1) = λ1(xi)/{λ1(xi) + λ2(xi)}. (9.6)

If we now substitute from (9.3) and (9.4) into the right hand side of (9.6), we
obtain

log{P(Yi = 1)/P(Yi = 0)} = − log c+ log[r(xi)/{1− r(xi)}]. (9.7)

It follows from (9.7) that we can estimate the log-odds of disease, up to an
additive constant, by using a non-parametric logistic regression model for
the binary responses Yi. This approach has the important advantage over the
kernel density ratio estimator that it is easily extended to incorporate covariate
information attached to individual cases and controls. Specifically, if we define
the log-odds function �(x) = log[r(x)/{1− r(x)} and let zi denote a covariate
vector for the ith individual (case or control), then a semi-parametric model
to identify residual spatial variation after adjusting for covariate effects is

log{P(Yi = 1)/P(Yi = 0)} = α+ z′iβ + �(xi). (9.8)

Note in particular that the zi could include spatial effects, such as a measure
of social deprivation, or non-spatial effects such as the age or sex of the ith
individual.

If the function �(x) in (9.8) were to be specified parametrically, a natural
approach to parameter estimation would be to maximise the log-likelihood,

L =
∑

yi log pi + (1 − yi) log(1 − pi) (9.9)

where pi = P(Yi = 1) as specified by (9.8). In the non-parametric or semi-
parametric setting an alternative method is to maximise a cross-validated
version of the log-likelihood, as suggested in Diggle, Zheng and Durr (2005).
Let p(x) denote the estimated probability that an event at the location x is
a case, using a non-parametric smoothing method with bandwidth h. Then,
the cross-validated log-likelihood for h is

LCV (h) =
∑

yi log p
i(xi) + (1 − yi) log(1− pi(xi)) (9.10)

where pi(xi) denotes the estimated probability using all of the data except yi.
The semi-parametric model (9.8) is an example of a generalised additive

model (Hastie and Tibshirani, 1990; Wood, 2006). The R package mgcv, de-
scribed in detail in Wood (2006), includes an implementation of spline-based
methods for fitting models of this kind, embedded within a more general
framework for semi-parametric generalised linear modelling.
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FIGURE 9.3
Residential locations (postcodes) of 761 cases of primary biliary cirrhosis
in North East England (solid dots) and 3044 control locations selected by
weighted random sampling from the postcode directory (open circles). The
dashed line in the left-hand panel indicates the approximation to the bound-
ary of the study-region used in the analysis of the data. The right-hand panel
shows the densely populated part of the study-region in more detail.

9.3.1 Primary biliary cirrhosis in the North East of England

Prince et al. (2001) describe an analysis of data on liver cirrhosis in an area
of the North East of England as shown in Figure 9.3. The 761 case-locations,
shown as solid dots, are the residential locations of all incident and prevalent
cases of definite or probable primary biliary cirrhosis alive between January
1987 and December 1994 amongst residents of a study-area defined by the
boundaries of six health areas: Northumberland, Sunderland, North Durham,
South Durham, South Tyneside, and North Tyneside. The 3044 control loca-
tions, shown as open circles, were selected randomly from a list of full UK
postcodes within the study area. The probability for selecting each postcode
was weighted by the number of drop-off points per postcode.

Using randomly selected postcodes as controls is problematic because it
fails to distinguish between residential and commercial areas. Weighting by
the number of drop-off points alleviates, but does not completely resolve, the
problem because large commercial premises would typically have their own
post-code with a single drop-off point, whereas in residential areas a single
post-code would typically correspond to a complete street in urban areas,
with one drop-off point per household. With this caveat, we now estimate a
spatially varying risk surface, r(x), for these data using the binary regression
formulation (9.7). Figure 9.4 shows the cross-validated log-likelihood (9.10).

Using the bandwidth h = 6.0km that maximises the cross-validated like-
lihood, we obtain the estimated relative risk surface shown in Figure 9.5.
A global test of the hypothesis of constant risk is overwhelmingly rejected
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FIGURE 9.4
Cross-validated log-likelihood criterion for choice of band-width in non-
parametric estimation of the relative risk surface for primary biliary cirrhosis
in the North East of England.

(p = 0.001 by a Monte Carlo test with 999 simulations). The contour line in
Figure 9.5 identifies the sub-region, consisting of essentially the Newcastle-
Gateshead conurbation, in which the local relative risk is significantly higher,
at the conventional 5% level of significance, than the region-wide average. The
obvious inference, that risk is higher in this sub-region than elsewhere in the
region, needs to be tempered by the fact that the local tests are more powerful
in sub-regions of relatively high population density. Note, however, that the
highest point estimates of relative risk also fall in this same sub-region.

9.4 Point source models

The question of spatial variation in risk arises very directly when it is sus-
pected that adverse effects on health are caused by a specific source of envi-
ronmental pollution. A much-studied, and controversial, example in the UK
has been the investigation of unusually high incidences of childhood cancers
near nuclear installations. See, for example, Cook-Mozaffari et al. (1989) and
Gardner (1989).

In this more structured setting, it is reasonable to contemplate parametric
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FIGURE 9.5
Estimated relative risk surface for primary biliary cirrhosis in the North East
of England. The scale denotes the probability, at each location x in the study-
region, that a case or control at location x is a case.

modelling of the risk surface in relation to the postulated source. This leads
to a general model in which controls and cases form independent Poisson
processes with respective intensities λ2(x) and λ1(x) = φλ2(x)ρ(x) where
λ2(x) is of unspecified form, ρ(x) is given by a parametric model and φ is a
nuisance parameter that relates to the relative numbers of cases and controls.
Using the same argument as in Section 9.3, by considering case-control labels
conditional on locations we can convert the Poisson process model to a binary
regression model with spatially dependent probabilities

p(x) = λ1(x)/{λ1(x) + λ2(x)} = φρ(x)/{1 + φρ(x)}, (9.11)

thereby eliminating the nuisance function λ2(x).
We first consider models that depend only on distance from a point source.

Hence, the risk at a location x is proportional to some function ρ(||x − x0||)
where x0 is the location of the source and || · || denotes distance.

The simplest possible such model postulates an elevation in risk within
some critical distance, δ, hence

ρ(u) =

{
1 + α : u ≤ δ

1 : u > δ.
(9.12)

In practice, this model is often used with a subjectively chosen value for δ
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(Elliott et al., 1992). The resulting analysis is extremely simple. In this setting,
case-control locations can be reduced to a 2 × 2 contingency table of events
classified by their case-control designations and their distance from the source
being greater or less than δ. The test for elevated risk within the selected
distance threshold is then a standard comparison of two binomial proportions,
and the corresponding empirical proportions of cases, p1 and p2 say, from
events below and above the distance threshold, estimate 1/{1+φ(1+α)} and
φ(1 + α)/{1 + φ(1 + α)}, respectively.

Lawson (1989), Diggle (1990) and Diggle and Rowlingson (1994) used an
isotropic Gaussian model,

ρ(u) = 1 + α exp{−(u/δ)2}. (9.13)

As in the previous model (9.12), the parameter α measures the elevation in
risk at the source, whereas the second parameter δ now measures the rate at
which risk decays smoothly with increasing distance towards a background
level represented by ρ(u) = 1. Whilst there is no particular theoretical justi-
fication for assuming the Gaussian shape, a smoothly decaying risk function
will be qualitatively sensible in many applications. Ideally, the form of model
should be suggested by the practical context, for example to correspond to
the behaviour of a plume of dispersing pollutant. This analogy immediately
raises the possibility that the pattern of elevation in risk may have a direc-
tional component. As a simple example of how a directional effect might be
incorporated, Figure 9.6 shows examples of a directional model with

f(d, θ) = 1 + α exp(−[d exp{κ cos(θ − φ)}/β]2). (9.14)

In (9.14), α represents the elevation in risk at the source, β the rate of de-
cay of risk with distance from the source, φ the principal direction of the plume
and κ the extent of directional concentration of the plume, hence each of the
parameters has a tangible interpretation. Lawson (1993) modelled directional
effects by including terms for cos(θ−φ) and u cos(θ−φ) in a log-linear formu-
lation for ρ(u). Rodrigues, Diggle and Assuncao (2010) used a non-parametric
specification for ρ(u).

In practice, point source models are rarely derived from theoretical argu-
ments. More often, they are used simply as parsimonious, descriptive models.
As in the non-parametric case, it is important to include adjustments for
known available risk factors in order to avoid the detection of spurious spatial
effects. For example, pollution sources are often sited in areas with generally
higher than average social deprivation, which is known to be a risk factor for
many diseases.

All of the specific point source models described above correspond for-
mally to non-linear binary regression models for the case-control labels, and
can accordingly be fitted using likelihood-based methods. However, the prop-
erties of maximum likelihood estimators and likelihood ratio tests may show
irregular behaviour. This is discussed, for example, in Diggle, Elliott, Morris
and Shaddick (1997).
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FIGURE 9.6
Examples of a directional model for elevation in risk around a point source.

9.4.1 Childhood asthma in north Derbyshire, England

Diggle and Rowlingson (1994) fit the isotropic Gaussian model to data from
a case-control study of asthmatic symptoms in elementary schools in north
Derbyshire, England. The study population consisted of children attending
10 schools in the area. Schools were stratified according to whether the head
teacher had previously reported concern about the apparently high level of
asthmatic symptoms in the school. Four potential sources were considered;
here, we look only at two: a coking works, and the main road network. In the
latter case, we used the distance between each child’s residential location x and
the nearest point on the road network as the distance measure in the model.
Additional binary covariates for each child in the study indicated whether
the household included at least one cigarette smoker, and whether the child
suffered from hay fever. The overall risk was modelled multiplicatively, with
separate terms for each of the two sources, and log-linear covariate adjustments
for smoking, hay-fever and the prior stratification of the schools into two
groups.

Likelihood ratio comparisons within this overall modelling framework are
summarised in Table 9.1. Our conclusions are firstly that hay fever is biggest
single risk factor and is overwhelmingly significant; secondly, that proximity
to coke works shows a marginally significant increase in risk, with or without
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TABLE 9.1
Deviances (twice maximised log-likelihoods) for various sub-models fitted to
the north Derbyshire childhood asthma data

Risk factors Deviance Number of
included parameters
None -1165.9 2
Coking works 1160.7 4
Coking works, main roads 1160.6 6

Coking works, smoking 1159.4 5
Coking works, hay fever 1127.6 5

Hay fever only 1132.5 3

prior adjustment for hay fever. For example, the comparison between the
last two lines of the table gives a chi-squared value of 4.9 on 2 degrees of
freedom to test the association with the coke works after adjusting for hay
fever (p = 0.087). There is no evidence of significant association with main
roads or with cigarette smoking.

9.4.2 Cancers in North Liverpool

We now present the results of an investigation that used both parametric and
non-parametric approaches to the estimation of spatial variation in risk. The
investigation concerned the spatial distribution of cancer cases in an area of
North Liverpool, UK, in which specific concerns had been expressed about a
possible elevation in risk near the site of a now-disused hospital incinerator.
The results presented here are extracted from Ardern (2001).

The study used an unmatched case-control design. The case locations con-
sisted of the residential post-codes of all known cases of cancer diagnosed
between 1974 and 1988. Adult cancers were classified into seven types, as
listed in Table 9.2.

A random sample of 10,000 control locations was drawn from a database of
general practitioner registrations within the study area, as shown in Figure 9.7.
Also shown in Figure 9.7 is the location of the former incinerator. Covariate
information attached to each case and to each control included the individ-
ual’s age and sex, and the Townsend index of social deprivation (Townsend et
al., 1988) for the census enumeration district that contained the individual’s
residential location.

The initial analysis consisted of fitting the isotropic model (9.13), includ-
ing log-linear adjustments for age, sex and the Townsend index. For every
type of cancer, after adjustment for covariate effects the association with
distance from the incinerator was non-significant. Table 9.3 shows the esti-
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TABLE 9.2
Numbers of North Liverpool cancer cases available for analysis

Cancer type Number
Colorectal 1162
Lung 2345
Liver 70
Larynx and nasopharynx 126
Leukaemia and lymphoma 365
Soft tissue sarcoma 45
Other cancers 5828
Total 9941

TABLE 9.3
Parameter estimates of regression effects for age, sex and Townsend depriva-
tion index (TI) in the North Liverpool cancer study, and p-values for associ-
ated likelihood ratio tests of significance.

Cancer type Parameter estimate p-value
age sex TI age sex TI

Colorectal 0.076 −0.31 0.033 < 0.001 < 0.001 < 0.001
Lung 0.077 −0.97 0.086 < 0.001 < 0.001 < 0.001
Liver 0.062 −0.56 0.071 < 0.001 0.02 0.06
Larynx/nasopharynx 0.059 −1.34 0.125 < 0.001 < 0.001 < 0.001
Leukaemia/lymphoma 0.048 −0.30 0.043 < 0.001 0.005 0.01
Soft tissue sarcoma 0.045 −0.32 −0.048 < 0.001 0.29 0.28
All adult cancers 0.075 −0.14 0.036 < 0.001 < 0.001 < 0.001

mated covariate adjustment parameters and their statistical significance. As
expected, the effect of age is highly significant and positive for all adult can-
cer types considered. The effect of sex is highly significant for colorectal, lung
and larynx/nasopharynx cancers, with men at higher risk than women. Sex
is less significant for liver and leukaemias/lymphomas and non-significant for
soft tissue sarcomas, although this may be a reflection of the smaller sam-
ple sizes available for the less common cancer types. Social deprivation as
measured by the Townsend index is highly significant for colorectal, lung and
larynx/nasopharynx cancers, and less significant or non-significant for the re-
maining, less common types. This may again be a reflection of the smaller
sample sizes available.

The conclusion from the initial analysis is therefore that there is no sig-
nificant evidence of association between cancer risk and proximity to the lo-
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FIGURE 9.7
Study region, control locations (solid dots) and incinerator location (solid
triangle) for the North Liverpool cancer study.

cation of the former incinerator. To investigate the possibility that there may
be unexplained spatial variation in risk that is not associated with the incin-
erator, we used the semi-parametric model (9.8), again adjusting for age, sex
and social deprivation as measured by the Townsend index. For the kernel
smoothing term, we used a quartic kernel with a subjectively chosen band-
width h = 0.5km. We applied this semi-parametric model only to the more
common cancer types, as the kernel smoothing method is only effective with
large sample sizes. Figures 9.8 to 9.10 show the resulting estimates of residual
spatial variation in risk. In each case, the scale is logarithmic to base 2, hence
each unit increase in the grey-scale corresponds to a doubling of estimated risk.
The solid and dashed contours identify regions within which the local risk is
pointwise significantly higher or lower, respectively, than the average for the
whole study-area, at the conventional 5% level. All three cancer types show
an area of apparently elevated risk close to the north-eastern boundary of the
study-area. The p-values for an overall test of departure from constant resid-
ual risk are 0.05, 0.01 and 0.67 for colorectal, lung and leukaemia/lymphoma,
respectively. This suggests that, at least for colorectal and lung cancers, the
statistical significance of the elevated risk close to the north-eastern boundary
is not merely a by-product of multiple testing.
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FIGURE 9.8
Estimated residual spatial variation in risk for colorectal cancers in the North
Liverpool cancer study. The risk scale is logarithmic to base 2. Solid and
dashed contours identify regions within which risk is point-wise 5% signifi-
cantly higher or lower, respectively, than the average for the whole study-area.

9.5 Stratification and matching

9.5.1 Stratified case-control designs

All of the methods described above are easily adapted to stratified case-control
studies. Provided the number of events within each stratum is sufficiently
large, the analysis can be carried out separately within each stratum and
the results pooled as and when appropriate. The precise form of pooling will
depend on what supplementary assumptions are considered to be reasonable.
We illustrate this for the specific case in which there are two strata, for example
one for each sex.

We first consider how to modify the Diggle-Chetwynd test for spatial clus-
tering when cases and controls can each be divided into two strata. Compute
test statistics D1 and D2 within each stratum, as described in Section 9.2. If
vj denotes the null variance of Dj according to the Diggle-Chetwynd formula,
then a suitable combined test statistic is given by D = v−0.5

1 D1 + v−0.5
2 D2.

Under the reasonable assumption that the labelling processes operating in
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FIGURE 9.9
Estimated residual spatial variation in risk for lung cancers in the North Liv-
erpool cancer study. The risk scale is logarithmic to base 2. Solid and dashed
contours identify regions within which risk is point-wise 5% significantly higher
or lower, respectively, than the average for the whole study-area.

the two strata are independent, the null expectation and variance of D are
zero and 2, respectively. An approximate test follows by assuming a Normal
sampling distribution for D, whilst an exact Monte Carlo test is available by
jointly re-labelling cases and controls randomly within each stratum.

We now consider non-parametric estimation of a spatially varying risk sur-
face when there are two strata. In this case, we use the generalized additive
model formulation (9.8). The simplest way to incorporate strata into the anal-
ysis is then as a two-level factor to be added to the model as a main effect.
If necessary, the stratum factor could then be allowed to interact with other
terms in the model.

For the parametric modelling of elevated risk near a point source, the same
basic strategy applies. We introduce the stratum label as a two-level factor, to
be added to the regression model either as a main effect or as an interaction
with other terms.

These methods of dealing with data in two strata extend in the obvious
way to k > 2 strata. However, in practice this is only a useful strategy if the
number of strata is small and the number of events within each stratum is
large.
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FIGURE 9.10
Estimated residual spatial variation in risk for leukaemias/lymphomas in the
North Liverpool cancer study. The risk scale is logarithmic to base 2. Solid
and dashed contours identify regions within which risk is point-wise 5% signifi-
cantly higher or lower, respectively, than the average for the whole study-area.

9.5.2 Individually matched case-control designs

When strata are small, a different approach is needed. We consider here the
setting of individually matched data, whereby each case is associated with a
set of k controls matched to the corresponding case by the values of one or
more identifiable factors.

To investigate spatial clustering in this setting, Chetwynd et al. (2001)
evaluate the null expectation and covariance structure of D̂(t) = K̂11(t) −
K̂22(t) for an individually matched case-control design. They show that when
k = 1, the null expectation of D(t) is still zero, whereas when k > 1 it is
non-zero, perhaps substantially so. This suggests that we should modify the
the test statistic (9.2), for example to

D′ =
∫ t0

0

v(t)−0.5{D̂(t)− μ(t)}dt

where μ(t) denotes the null expectation of D(t), and v(t) now denotes the
variance calculated from the randomisation distribution appropriate to the
individually matched design.

An intuitive explanation for the non-zero null expectation in the case k >
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1 is that the matching variables may themselves be spatially non-neutral.
For example, suppose that marginally the population, and hence the cases
under the null hypothesis of no spatial clustering, are distributed completely
at random, but that matched controls are likely to be spatially close to the
corresponding case. Then, the cases would generate an estimate K̂11(t) ≈
πt2, but when k > 1 the controls would tend to fall in clumps of size k,
leading to K̂22(t) > πt2. This kind of effect can easily arise in practice because
administrative, demographic or socio-economic factors, which are often used
as matching variables, tend to be spatially non-neutral. A corollary is that
individual matching can easily induce spurious spatial effects if the analysis
fails to make allowance for the matching in the study design.

For non-parametric or parametric modelling of spatial variation in risk
using the binary regression formulation, individual matching requires the basic
form of the likelihood function introduced in Section 9.3 to be modified. Let
p(x) denote the probability that a person at location x is a case, and xij the
location of the jth member of the ith matched case-control set with i = 1
identifying the case and i = 2, ..., (k + 1) its matched controls. Then, the
matched design is equivalent to a constraint that amongst the k+1 members
of any matched set, there is exactly one case. The probability that the case is
the member at location xi1 is therefore given by

pj = p(xi1)/

k+1∑

i=1

p(xij).

The corresponding log-likelihood for n matched sets is given by

L∗ =

n∑

j=1

log pj . (9.15)

The corresponding expression for a randomised case-control design is given by
(9.9).

Diggle, Morris and Wakefield (2000) discuss inference based on the log-
likelihood (9.15) in the specific context of point source models. Jarner, Diggle
and Chetwynd (2002) discuss non-parametric estimation of the risk surface. As
in the case of spatial clustering, when matching variables are spatially non-
neutral they introduce an ambiguity into precisely what is being estimated
as a spatial effect. For this reason, when spatial variation is of particular
interest, we would recommend dealing with measured risk factors by regression
adjustments where possible, rather than by individual matching at the design
stage. Of course, it remains true that spatial effects will usually only be of
scientific interest if they persist after adjustment for all known risk factors,
whether or not the risk-factors themselves are spatially structured.
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9.5.3 Is stratification or matching helpful?

In general, epidemiologists are divided on the merits of stratification and/or
matching over the completely randomised design, for the good reason that
there are clear advantages and disadvantages to the more complex designs
and the balance between the different considerations will inevitably change in
different practical settings. See, for example, Woodward (1999, pp. 266–8).

When spatial variation is a major scientific focus, the author’s opinion is
that fine stratification and individual matching are both undesirable, because
they severely complicate the interpretation of of the estimated spatial effect.
Specifically, consider the problem of estimating residual spatial variation in
risk in a stratified design. As noted above, the analysis proceeds in the first
instance by adding stratum effects to the generalized additive model (9.8). If
we now let Yij = 1/0 denote whether the jth event in the ith stratum is a
case or control, respectively, and write pij = P(Yij = 1), then the model for
the data is that the Yij are mutually independent with

log{pij/(1− pij)} = αi + z′ijβ + �(xij) (9.16)

where xij and zij respectively denote the location and covariate vector asso-
ciated with Yij . In the extreme case of individual matching, or more generally
when there are many strata, the standard analysis uses the log-likelihood
(9.15) to estimate β and �(·) whilst eliminating the nuisance parameters αi.
However, and especially when �(·) is specified non-parametrically, the interpre-
tation of the resulting estimate of the spatial surface �(x) is now problematic.
Suppose, for example, that the events within a particular stratum are concen-
trated within a small sub-region of the whole study region. Then, the presence
of the αi parameter in (9.16), coupled with its elimination from the stratified
log-likelihood (9.15) means in effect that the behaviour of the spatial surface
�(x) in that sub-region is only identifiable up to an arbitrary constant. More
generally, one of the advantages claimed for stratified or matched designs is to
eliminate the effects of the matching variables on the presumption that these
are not of scientific interest; but if the matching variables are not spatially
neutral, then they are partially confounded with the spatial effect, which for
the purposes of the present discussion is of scientific interest.

9.6 Disentangling heterogeneity and clustering

An issue which arises quite generally in the analysis of spatial point process
data, but which is particularly obvious in epidemiological applications, is the
difficulty of separating variation in intensity from clustering of events. We have
shown how the case-control paradigm can resolve the difficulty in the sense of
enabling a test of a null hypothesis that specifies no variation in intensity and
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no clustering, but it leaves ambiguous the interpretation of a significant test
result.

In other branches of statistics that deal with dependent data, for example
in the analysis of real-valued spatial data, the usual pragmatic strategy is to
partition the data into the sum of a spatially varying mean value function
and random variation about the mean, hence Y (x) = μ(x) + Z(x), where
Y (·) is the observed process, μ(x) = E[Y (x)] and Z(·) is a zero-mean residual
process (see, for example, Chiles and Delfiner, 1999). The analogous mod-
elling assumption for point process data is to allow a non-constant intensity
λ(x) but to assume that the higher-order random variation is, in some sense,
stationary. One way to formalise this, as discussed in Section 4.2, is to as-
sume that the process is re-weighted second-order stationary, meaning that
λ2(x, y)/{λ(x)λ(y)} = ρ(t), where t is the distance between x and y. For
processes of this kind, the definition of the K-function extends naturally to

KI(t) = 2π

∫ t

0

ρ(x)xdx

although, as discussed in Section (4.6.2) estimation of KI(t) from a single
realisation is problematic.

In the case-control setting, there is a much clearer rationale for separate
estimation of a spatially varying λ(x) and stationary second-order proper-
ties. By construction, a random sample of controls constitute a realisation of
an inhomogeneous Poisson process, albeit one with a possibly very compli-
cated intensity function. The controls can therefore be used to estimate λ(x).

Given an estimate λ̂(x), we can then use the case data to estimate ρ(t) or,

equivalently,KI(t) incorporating the control-based estimate λ̂(x). Diggle et al.
(2007) developed this idea and showed that a test for spatial clustering based
on the empirical function K̂I(t)−πt2 is competitive with existing approaches.
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10.1 Introduction

Until now, our focus has been on describing the distributions of points in two-
dimensional space. We now extend the scope of our discussion to distributions
in two-plus-one-dimensional space-time. Note that in this context, two plus
one does not equal three, in the sense that the time dimension is fundamentally
different from either of the two spatial dimensions.

Most spatial processes in nature are merely snapshots of evolving spatio-
temporal processes. But to argue that they should therefore be analysed using
spatio-temporal methods would be misguided. We analyse purely spatial data,
and build purely spatial models, if and when in so doing we can address
interesting scientific questions. By the same token, our aim for the remainder
of this book is to describe statistical models and methods that can be used
to analyse patterns of points in space-time when the questions of scientific
interest concern both their spatial and their temporal behaviour, and cannot
be answered by separate analyses of the spatial and temporal components of
the spatio-temporal data.
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FIGURE 10.1
Locations (residential post-codes) of 10,572 successive cases of non-specific
gastro-intestinal disease, as reported to NHS Direct in Hampshire, UK, be-
tween 1 January 2001 and 31 December 2003.

10.2 Motivating examples

10.2.1 Gastro-intestinal illness in Hampshire, UK

Figure 10.1 shows the locations of 10,572 cases of non-specific gastro-intestinal
disease in the county of Hampshire, UK, as reported to NHS Direct (a phone-
in triage service operating within the UK’s National Health Service). Each
location corresponds to the post-coded location of the residential address of
the person making the call to NHS Direct. The data include all such reported
cases between 1 January 2001 and 31 December 2003. A more informative
display is an animation, an example of which can be viewed from the book’s
web-site.

The most obvious feature of these data is that the spatial pattern of calls
predominantly reflects the spatial distribution of the underlying population;
predominantly rather than exactly, for at least two reasons. Firstly, both dis-
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FIGURE 10.2
Times (days since 1 January 2001) of 10,572 successive cases of non-specific
gastro-intestinal disease, as reported to NHS Direct in Hampshire, UK, be-
tween 1 January 2001 and 31 December 2003.

ease risk and usage of NHS Direct vary between different demographic and
socio-economic groups within the population. Secondly, the diseases covered
by the blanket term “non-specific gastro-intestinal disease” include specific
conditions whose incidence is largely endemic but with occasional outbreaks,
typically associated with a contaminated food-source.

Figure 10.2 shows the numbers of reported cases per 28-day interval over
the three-year period covered by the data. The sharp dip in interval 10 is due
to a gap of 19 days between successive case-reports that is almost certainly
artificial. More generally, the relatively low numbers of reported cases in the
first of the three years reflects a progressive increase in the usage of what was
at the time a newly established service. The apparent decreasing trend over
the second and third years is harder to explain, but presumably includes a
combination of changes in case-incidence and in reporting behaviour.

The main objective in analysing these data is to develop a surveillance
system that would enable the timely identification of unusual spatially and
temporally localised peaks in incidence. Such unusual features, or anomalies,
within the overall pattern might point to an emerging public health problem;
see Diggle et al. (2003). We shall consider the data from this perspective in
Chapter 12.
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10.2.2 The 2001 foot-and-mouth epidemic in Cumbria, UK

Figure 10.3 shows the culmination of the epidemic of foot-and-mouth disease
(FMD) that affected many parts of the UK in 2001. The left-hand panel shows
the locations of 5,153 animal-holding farms in the county of Cumbria at the
start of the epidemic; the locations of the 658 amongst these that suffered cases
of FMD are highlighted. Most of the county is intensively farmed, except for
the mountainous area in the centre. The right-hand panel of Figure 10.3 gives
the cumulative numbers of affected farms between January and July 2001.
This shows the classic features of an epidemic curve, with an exponential-like
early growth followed by a slowing in the rate of occurrence of new cases.
For obvious reasons, the epidemic was not left to run its natural course, but
was brought under control through a policy of aggressive control measures.
These included slaughtering the stock of each infected farm, and of all other
farms within a radius of a few kilometres, as soon as possible following the
confirmation of a new case.

The epidemic began in the far north of the county and subsequently spread
both south-west and south-east. Transmission of infection is thought to occur
primarily between neighbouring farms but cases can also occur far from all
pre-existing cases, possibly because of the unintended transport of infected
material. As with our previous example an animation, again available from
the book’s web-site, is more informative. It shows that the final pattern of
affected farms can be explained predominantly by the spread of infection from
an initial case in the north-east corner of the county, together with a few
smaller, apparently spontaneous outbreaks around locations relatively remote
from all prevalent cases.

The scientific interest in analysing these data lies primarily in modelling
the transmission of infection between farms, with a view to informing control
strategies for future epidemics. We shall consider the data from this perspec-
tive in Chapter 13.

10.2.3 Bovine tuberculosis in Cornwall, UK

Figure 10.4 shows the locations of cattle farms in the county of Cornwall,
UK, that tested positive for bovine tuberculosis (BTB) in an approximately
annual series of inspections between 1989 and 2002. The original data-set also
contained genotyping data, which we do not consider here; see Diggle, Zheng
and Durr (2005).

In Figure 10.4, the grey-scale shading of each affected farm location corre-
sponds to the year in which the farm first tested positive. Some farms tested
positive in more than one year – the 919 cases are associated with 738 different
farms.

One question of scientific interest is the extent to which the pattern of
infected farms changes from year to year. Figure 10.5 shows the annual number
of test-positive farms. Whilst the data themselves give no information on
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FIGURE 10.3
Data from the 2001 UK foot-and-mouth epidemic. Left panel: small dots show
the locations of all animal-holding farms in the county of Cumbria, larger dots
show the locations of those farms that experienced foot-and-mouth during the
epidemic. Right panel: cumulative distribution of reporting times of cases, in
days since 1 February 2001.

possible changes over time in the number of at-risk farms or the details of
the testing regime, the rise in the number of test-positive farms from the
mid-1990’s is striking, and it is well-established that there has been a large
increase in prevalence over the period in question; see, for example, Jalava et
al. (2007).

10.3 A classification of spatio-temporal point patterns
and processes

A point process is a stochastic process whose realisations consist of countable
sets of points, which in this book we call events, in a pre-defined space. Corre-
spondingly, a point pattern is a finite set of points that can usefully be treated
as a partial realisation of a stochastic process; and by “usefully” we mean that
treating the data in this way helps to answer an interesting scientific question.

In the spatial setting, we have always assumed that the space on which the
events occur is a continuous region of the plane. In the extension to spatio-
temporal processes and patterns, it is useful to allow either the spatial or
temporal dimensions to be discrete.
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FIGURE 10.4
Locations of farms in Cornwall, UK, that tested positive for bovine tubercu-
losis at least once during the period 1989 to 2002. The grey-scale shading of
the locations corresponds to the year in which each farm first tested positive
(from white in 1989 to black in 2002).

The motivating examples in Section 10.2 cover the three cases of most
interest. In each case, we can represent the data as the locations, xi say, of
the events of interest and the corresponding times, ti say, at which they occur,
hence {(xi, ti) : i = 1, ..., n} where each (xi, ti) ∈ A× T for some pre-defined
spatial region A and temporal region T .

In the example of Section 10.2.1 both the spatial and temporal regions
are essentially continuous (“essentially” because of limited data-resolution).
The region A is the county of Hampshire, T is the continuous time-interval
between 1 January 2001 and 31 December 2003, and each reported case (xi, ti)
could, in principle, have occurred at any place and time within A× T .

In the example of Section 10.2.2, T is the continuous time-interval between
1 January and 31 July 2001, but A is now a discrete set, consisting of the
locations of all stock-holding farms within the county of Cumbria as of 1
January 2001. Note, however, that by defining A in this way, we are making
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FIGURE 10.5
Number of farms in Cornwall, UK, testing positive for bovine tuberculosis in
each year, 1989 to 2002.

the implicit assumption that the locations of the farms are not of any interest
in themselves, otherwise we would have defined A to be the whole of Cumbria
and farm locations as events. What is of interest is how the farms’ locations
collectively affect the progress of the epidemic. Note also that simply to refer
to the times ti at which particular farms reported FMD cases is only half the
story. We need to attach to each farm both a time, ti, and a label, or mark,
that indicates into which of three categories the farm in question falls: newly
reported cases at time ti; stock pre-emptively culled at time ti; no reported
cases by the end of the observation period, in which case ti corresponds to 31
July 2001.

In the example of Section 10.2.3, the spatial region A is continuous whilst
the temporal region T is discrete, because incident cases are only identified
annually.

We refer to these three situations as continuous, spatially discrete and
temporally discrete spatio-temporal point processes, respectively.
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10.4 Second-order properties

In this section, we define the first and second moment properties of a con-
tinuous, orderly spatio-temporal point process on IR2 × IR+. The definitions
involve essentially only notational changes from the analogous definitions for
spatial point processes, as discussed in Chapter 4. Spatially discrete and tem-
porally discrete processes can formally be treated as multivariate temporal
and spatial point processes, respectively.

The first-order properties of a continuous spatio-temporal point process
are described by its spatio-temporal intensity function,

λ(x, t) =
lim

| dx |, |dt| → 0

{
E[N(dx, dt)]

|dx||dt|

}
.

For a spatially or temporally stationary process, λ(x, t) is independent of x
or t, respectively. For a spatio-temporally stationary process, λ(x, t) assumes
a constant value λ, representing the mean number of events per unit area
per unit time. Note that from a strict mathematical perspective it makes no
sense to talk about the marginal spatial or temporal properties of a stationary
spatio-temporal point process; in particular, both the mean number of events
per unit area and the mean number per unit time are infinite. In practice,
we only ever observe a spatio-temporal process on a finite region, A × T , in
which case we can always define marginal spatial and temporal intensities as,
respectively,

λT (x) =

∫

T

λ(x, t)dt λA(t) =

∫

A

λ(x, t)dx.

The same point applies to other summary properties, and we shall not labour
it further, other than to emphasise the need for care when interpreting
“marginal” spatial or temporal properties that depend on the observation
region. Note also that because point process intensities are not normalised,
we can interpret the spatio-temporal intensity λ(x, t) in three different ways:
as a joint spatio-temporal intensity; as a conditional spatial intensity for any
given value of t; or as a conditional temporal intensity for any given value of
x.

The second-order spatio-temporal intensity function is similarly defined as

λ2(x, y, s, t) =
lim

|dx|, |dy|, |ds|, |dt| → 0

{
E[N(dx× ds)N(dy × dt)]

|dx||dy||ds||dt|

}
,

and the second-order conditional spatio-temporal intensity as

λc(x, s|y, t) = λ2(x, y, s, t)/λ(y, t),
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corresponding to the intensity at (x, s) conditional on the information that
there is an event at (y, t).

For a spatio-temporally stationary, isotropic process, λ2(x, s, y, t) reduces
to λ2(u, v), where u = ||x − y|| and v = |s − t|. The function ρ(u, v) =
λ2(u, v)/λ

2 is then called the spatio-temporal pair correlation function. Note
that we are here using “isotropic” as a convenient shorthand for “spatially
isotropic and temporally reversible.” Temporal reversibility is an innocuous
assumption if we are concerned only with second-order properties but in gen-
eral, and as we shall discuss in a later section, the directional nature of time
can often be used to good effect in devising spatio-temporal models and asso-
ciated methods of analysis.

The concept of intensity re-weighted (second-order) stationarity (Baddeley,
Møller and Waagepetersen, 2000) also extends directly to the spatio-temporal
setting. Provided that λ(x, t) is bounded away from zero, intensity re-weighted
(second-order) spatio-temporal stationarity requires that

λ2(x, s, y, t)/λ(x, s)λ(y, t) = ρ(u, v) (10.1)

depends only on u = ||x− y|| and v = |s− t|.
The K-function of a stationary, isotropic spatio-temporal point process

can be defined as
K(u, v) = λ−1E[N0(u, v)], (10.2)

where N0(u, v) is the number of further events within distance u and time v
of an arbitrary event. Two variants of this definition are available according
to whether we consider the occurrence of events before and after, or only
after, the arbitrary event. We will use the second of these, in which case the
K-function of a homogeneous spatio-temporal Poisson process is

K(u, v) = πu2v : u ≥ 0, v ≥ 0.

Provided that the process is orderly, the link between K(u, v) and λ2(u, v) is
then that

λK(u, v) = 2πλ−1

∫ v

0

∫ u

0

λ2(x)xdxdt (10.3)

For an intensity re-weighted stationary process, we therefore define an inho-
mogeneous K-function as

KI(t) = 2π

∫ v

0

∫ u

0

ρ(x, t)xdxdt

which reduces to (10.3) in the stationary case.
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10.5 Conditioning on the past

The history of a spatio-temporal point process at time t is the collection of
all events of the process, (xi, ti) say, that occur before time t. We write this
as Ht = {(xi, ti) : ti < t}. The complete conditional intensity of the process is
then defined as

λc(x, t|Ht) =
lim

| dx |, |dt| → 0

{
E[N(dx, dt)|Ht]

|dx||dt|

}
.

Informally, this describes how the likelihood of observing an event at location
x and time t changes as the partial realisation of the process up to, but not
including, time t, develops over time.

The complete conditional intensity provides a simple and intuitive way of
defining a spatio-temporal Poisson process as a continuous, orderly process for
which λc(x, t) = λ(x, t), for all (x, t).

More generally, whilst the moment properties considered in Section 10.4
are all summary properties of a spatio-temporal point process, and in particu-
lar different processes can share the same summary descriptions, the complete
conditional intensity characterises an orderly spatio-temporal point process
uniquely. In later chapters, we will make use of this in developing models and
associated methods of inference for spatio-temporal point process data. Here,
we illustrate the point by considering a general algorithm for simulating any
continuous, orderly process on a finite region A × T , where T is the interval
[0, t0]. Denote the events of the realisation in their order of occurrence by
(xi, ti) : i = 1, 2, ..., i.e. ti < ti+1 for all i ≥ 1, and recall that Ht denotes the
history at time t. Note that, conditional on Ht, the probability that no event
occurs in the time-interval [t, t+ v] is

Pt(v) = exp

(
−
∫ t+v

t

∫

A

λc(x, s|Ht)dxds

)

To initiate the simulation algorithm we need to choose H0, the initial config-
uration of events at time t = 0. The algorithm then proceeds as follows.

1. Set i = 0 and t = 0

2. Draw U ∼ U(0, 1)

3. Find v such that P0(v) = U

4. If v > t0, the simulated realisation is empty, i.e. there are no events
in A× T , otherwise proceed to

5. Set i = i+ 1 and ti = t+ v

6. Draw xi from the distribution on A with pdf proportional to
λc(x, ti|Hti)
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7. Draw U ∼ U(0, 1)

8. Find v such that Pti(v) = U

9. If ti+v > t0, the realisation is the set (xj , tj) : j = 1, ..., i, otherwise
return to step 6

Although the above algorithm is completely general it is not always useful.
The complete intensity is only one of a number of ways to define a spatio-
temporal point process, and if λc(x, t|Ht) is not specified directly, its evalua-
tion may be intractable. Note also that the necessary and sufficient conditions
for a function λc(x, t|H�) to be valid as the complete conditional intensity of a
spatio-temporal point process on IR2×IR+ are that λc(x, t|H�) should be non-
negative valued and integrable over any finite sub-region A×T of IR2×IR+ for
all possible configurations Ht at any time t. It is not obvious how one might
check that a given function satisfies the second of these conditions. If we are
willing to consider only process on a finite region A×T , a sufficient condition
for validity is that the value of λc(x, t|H�) is non-negative and finite for all
(x, t) in A× T and all possible configurations Ht for any t in T . Whether the
resulting process provides a realistic model in any specific applied setting is
another matter.

In Chapter 13 we will discuss how to define scientifically interesting mod-
els through their complete conditional intensities. Here, we give a simple il-
lustration of a process whose partial realisations combine elements of spatial
regularity and spatial aggregation.

We take A to be the unit square, T the time-interval [0, 100], and set the
initial configuration, H0, as a single event located at the centre of A. For all
t ≥ 0, we define the complete conditional intensity as follows. Firstly, let

h(u) =

⎧
⎨

⎩

0 : u < δ,
2− δ/(u− δ) : δ ≤ u < 2δ,
1 : u ≥ 2δ.

(10.4)

Now, suppose that nt events (xi, ti) : i = 1, 2, ..., nt occur before time t and
let ui(x) denote the distance between xi and an arbitrary location x. Finally,
define the complete conditional intensity to be the function

λc(x, t|Ht) =

nt∏

i=1

h{ui(x)}. (10.5)

In Section 6.8.1, we used the interaction function (10.4) as a cautionary
example against using a pairwise interaction point process to model a spatial
distribution that combines elements of inhibition and aggregation. There, we
argued that the corresponding pairwise interaction point process was unsatis-
factory as a model because the equivalent spatial birth-and-death process did
not have a realistic equilibrium distribution. Whether this is equally objec-
tionable in the spatio-temporal setting depends on the context. The spatio-
temporal process defined by (10.4) and (10.5) evolves in what is arguably a



206 Statistical Methods for Spatial and Spatio-Temporal Point Processes

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 10.6
Snap-shots from a simulated partial realisation of a continuous spatio-
temporal pairwise interaction point process with both inhibitory and aggre-
gated characteristics. In each frame, the most recent 30 or 40 events are shown
as solid dots, earlier events as open circles. See text for details of the simulation
model.

sensible manner as time progresses. If we use (10.4) and (10.5) to define a
spatio-temporal point process on a fixed region A, every realisation will ter-
minate as soon as λc(x, t|Ht) = 0 for all x ∈ A, at which point the process
will be indistinguishable from a simple sequential inhibition process. However,
the temporal progression of the process towards this terminating state does
reflect both its inhibitory and its aggregated aspects. To illustrate this, Figure
10.6 shows a series of snap-shots of a realisation of the process, whilst Fig-
ure 10.7 shows a series of snap-shots of a purely inhibitory spatio-temporal
process, again defined by (10.5), but now with a purely inhibitory interaction
function,

h(u) =

{
0 : u < δ,
1 : u ≥ 0.05.

(10.6)

The contrast between the two processes as they develop over time is clear.
More informatively, the book’s web-site includes R functions that can be used
to simulate repeated realisations of these and other processes, and to display
these as animations.
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FIGURE 10.7
Snap-shots from a simulated partial realisation of a continuous spatio-
temporal pairwise interaction point process with purely inhibitory charac-
teristics. In each frame, the most recent 30 or 40 events are shown as solid
dots, earlier events as open circles. See text for details of the simulation model.

10.6 Empirical and mechanistic models

The word ‘model” means different things in different branches of science. In
statistics, a model will always include a stochastic element, i.e. one or more
random variables, and this could be taken as distinguishing statistical from
(deterministic) mathematical models. However, a secondary and arguably
more interesting distinction is between empirical models (whether statisti-
cal or mathematical), whose aim is only to describe the pattern of a data-set,
and mechanistic models, which aim to encapsulate the underlying scientific
processes that generated the data.

The author’s opinion is that both kinds of models can be useful, and that
the choice between an empirical and a mechanistic modelling strategy should
be guided by both the context and the purpose of each application. For exam-
ple, data collected in a controlled experimental environment are more likely
to justify mechanistic modelling than are observational data. Chapters 12 and
13 cover empirical and mechanistic models, respectively.
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11.1 Introduction

Throughout this chapter, unless otherwise stated we assume that the avail-
able data form a partial realisation of a spatially and temporally continuous
process, consisting of the locations and times, {(xi, ti) : i = 1, ..., n}, of all
the events of the process that lie within a designated spatio-temporal region
A × T . We also assume that the underlying process is orderly, so that ties
amongst ti arise only through round-off error and can legitimately be bro-
ken by randomly unrounding. Finally, without loss of generality we label the
events in time-order so that, after unrounding if necessary, ti < ti+1 for all i.

In an exploratory analysis we may choose to treat the data as if the under-
lying process is as described above even when it is temporally or spatially dis-
crete. For example, the gastro-intestinal illness data discussed in Section 10.2.1
strictly are confined to the finite set of Hampshire post-codes, each of which
is simply a reference location within an area. However, the relatively fine spa-
tial resolution of the UK post-code system (to within a single street in urban
areas) justifies modelling the data as a point process in a spatial continuum.
In contrast, for the foot-and-mouth epidemic data discussed in Section 10.2.2,
events can only occur at farm locations, all of which are recorded whether
or not they experience cases of foot-and-mouth, and any analysis of the data
should acknowledge this. Finally, for the bovine tuberculosis data discussed
in Section 10.2.3, the time-resolution of one year is sufficiently coarse that a
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sensible analytic strategy, at least for exploratory purposes, is to consider the
data as arising from a discrete sequence of spatial point processes.

11.2 Animation

In Chapter 10 we described three motivating examples, and in so doing il-
lustrated marginal graphical displays of the spatial and temporal dimensions
of a spatio-temporal data-set. We also suggested that animations will often
reveal rich structure that is hidden in marginal displays. The book’s web-site
includes a link to the R package stpp, which includes a simple animation func-
tion. More sophisticated forms of animation can also add considerable value.
One such is to overlay the animation on a colour-coded contour map of a
relevant spatially or spatio-temporally varying explanatory variable. Another
is to add a slider that allows the user to control the speed (and direction) of
the animation. The book’s web-site includes links to several such examples.

11.3 Marginal and conditional summaries

Notwithstanding the above advice, the numerical and graphical summaries of
spatial point processes described in the first part of this book can sometimes
usefully be applied to spatio-temporal data in two different ways: marginally,
by ignoring the time-dimension; and conditionally, by discretising the time-
dimension and calculating spatial summaries within each time-interval so de-
fined. The second of these is most likely to be helpful when the data are
already coarsely discretised in time, as is the case for the bovine tuberculosis
data introduced in Section 10.2.3.

11.3.1 Bovine tuberculosis in Cornwall, UK

The incidence of bovine tuberculosis (BTB) in the UK has increased markedly
since the mid-1990’s, with some of the highest rates occurring in the south-west
of England. Figure 11.1 shows the annual numbers of herd-level incidences in
the south-western county of Cornwall between 1996 and 2002, relative to the
average annual numbers in the preceding seven years.

One of several questions posed by these data is whether the increase in
incidence in the disease after 1995 applies equally across the whole county,
or whether the spatial extent of the area at risk has changed since 1995. The
available data refer only to farms that tested positive for the disease. Also, for
reasons of confidentiality, in the version of the data that we analyse here and
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FIGURE 11.1
Annual numbers of incident bovine tuberculosis cases in Cornwall, relative to
the average annual incidence over the baseline period 1989 to 1995.

that are available on the book’s web-site, farm locations have been randomly
jittered to preserve their anonymity.

For an exploratory analysis, we make the temporary working assumptions
that the spatial distribution of at-risk farms has not changed over the pe-
riod covered by the data, and that cases occur independently. Then, the
process of case-locations in year t has intensity λt(x) = λ(x)ρt(x), where
λ(x) represents the spatial intensity of at-risk farms whilst ρt(x) represents
spatial variation in risk. It follows that for any two time-periods t and s,
λt(x)/λs(x) = ρt(x)/ρs(x). In other words, we can estimate changes in the
spatial distribution of risk over time by comparing intensities, exactly as de-
scribed in Section 9.3. Because the annual numbers of cases were stable be-
tween 1989 and 1995, we treat the superposition of case-locations for these
seven years as a baseline period, and compare the case-locations for each year
t > 1995 with the baseline case-locations.

Let n0 denote the number of baseline case-locations, xi : i = 1, ..., n0,
counting each location more than once if the farm in question tests positive in
more than one of the seven baseline years. For each year t > 1995, let nt de-
note the number of year t case-locations. To compare year t with the baseline
period, label the year t case-locations as xi : i = n0 + 1, ..., n0 + nt and define
binary random variables Yit to have realised values let yit = 0 : i = 1, ..., n0,
yit = 1 : i = n0 + 1, ..., n0 + nt. Then, conditional on the all n0 + nt locations
xi, the Yit are a set of independent Bernoulli trials with success probabilities
pit = ρt(xi)/{ρ0(xi)+ρt(xi)}, and we can estimate the corresponding spatially
continuous surfaces pt(x) using the nonparametric binary regression method
described in Section 9.3. Interpretation of the sequence of fitted binary regres-
sions is easier if we use a common bandwidth for the kernel smoothing. Figure
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FIGURE 11.2
Cross-validated log-likelihood criteria, LCV (h), for kernel smoothing over
bovine tuberculosis cases in Cornwall. Thin lines refer to comparisons be-
tween baseline period 1989 to 1995 and individual post-baseline years, whilst
the thick line is calculated as the average of the LCV (h) over all seven post-
baseline years. Dotted lines identify the location and value of the maximised
average.

11.2 shows the cross-validated log-likelihood criterion (9.10), calculated sepa-
rately for each year t = 1996, ..., 2002 and averaged over all seven post-baseline
years.

Figures 11.3 and 11.4 show the resulting estimated incidence surfaces rela-
tive to the baseline period, using a common bandwidth h = 4.6km; note that
the scale on the maps is in metres. In each case, a value of pt(x) > 1/7 ≈ 0.14
indicates an estimated risk for the year in question that is above the baseline
risk. The maps show a number of interpretable features. Firstly, most of the
estimates pt(x) are greater than 0.14, indicating that the increase in incidence
has been widespread, rather than confined to local foci. Secondly, an area of
relatively high incidence in the north-east of Cornwall, around the map refer-
ence (220000, 90000), increases both its numerical value and its spatial extent
progressively between 1996 to 2000, falls in 20001 and rises again in 2002; re-
call from Figure 11.1 that the overall incidence also fell in 2001 but recovered
in 2002. Thirdly, an area of relatively high incidence in the south-east in 1996,
centered roughly on the map reference (190000, 50000), wanes in 1997, returns
in 1998 and thereafter fluctuates in intensity from year to year.
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FIGURE 11.3
Kernel smoothing estimates of annual incidence of bovine tuberculosis cases
in Cornwall, 1996 to 1999. In each case, the comparison is between the year
indicated and the seven-year baseline period 1999 to 1995 and the common
grey-scale runs from 0 (black) to 1 (white). The value 1/7 ≈ 0.14 corresponds
to equality between current and baseline incidence.

11.4 Second-order properties

11.4.1 Stationary processes

Spatial and temporal units of measurement are fundamentally incompatible.
It follows that overtly spatio-temporal versions of the kind of functional sum-
maries discussed in earlier chapters in the purely spatial setting require at
least two arguments. In this section, we consider non-parametric estimation
of first-order and second-order structure.

The first-order structure of a stationary spatio-temporal point process is
captured by a single parameter, λ, called the intensity of the process. The
intensity is equal to the expected number of events per unit area per unit
time. Hence, a natural estimator is the observed number of events per unit
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FIGURE 11.4
Kernel smoothing estimates of annual incidence of bovine tuberculosis cases
in Cornwall, 2000 to 2002. In each case, the comparison is between the year
indicated and the seven-year baseline period 1999 to 1995 and the common
grey-scale runs from 0 (black) to 1 (white). The value 1/7 ≈ 0.14 corresponds
to equality between current and baseline incidence.

area per unit time,
λ̂ = n/|A× T |. (11.1)

To estimate the second-order properties, we begin with the definition of
K(u, v) given as equation (10.2), replace the expected count on the right-
hand-side by an observed count and include an edge-correction, analogous to
the purely spatial case that was discussed in Chapter 4. This leads to the
following estimator for K(u, v). As in the purely spatial case, let w(x, r) be
the proportion of the circumference of the circle with centre x and radius
r which lies within A, and write wij for w(xi, ||xi − xj ||). Assume that the
temporal observation window, T , is a simple interval, say T = [a, b], and for
any v > 0 let nv denote the number of ti ≤ b− v. Then,

K̂(u, v) = (nnv)
−1|A|T

nv∑

i=1

∑

j>i

w−1
ij I(||xi − xj || ≤ u)I(tj − ti ≤ v). (11.2)
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The estimate K̂(u, v) can most easily be examined as a grey-scale image
or contour plot. For exploratory analysis, the plot can be assessed relative to
either or both of the following benchmarks, according to their relevance to the
application in hand. Firstly, for a homogeneous Poisson process,

K(u, v) = πu2v. (11.3)

Secondly, for a process with independent spatial and temporal components,

K(u, v) = Ks(u)Kt(v) (11.4)

where, with the proviso noted in 10.4, Ks(u) and Kt(v) are the marginal
spatial and temporal K-functions.

To assess the significance of any departure from either of these benchmarks,
we can use simple Monte Carlo methods as follows. To assess departure from
the Poisson process, we compare K̂(u, v) with estimates calculated from in-
dependent simulations of a Poisson process conditioned to have n events in
A × T . To assess departure from independence, we compare with estimates
calculated from independent permutations of the ti holding the xi fixed. In
either case, for an exact test we need to specify a test statistic beforehand. The
choice of test statistic should ideally take into consideration what would be
a scientifically natural alternative hypothesis for each specific application. In
the absence of any such natural alternative, a general-purpose statistic would
be a summary measure of the discrepancy between K̂(u, v) and its theoretical
form under the null hypothesis, for example

D =

∫ u0

0

∫ v0

0

w(u, v)D(u, v)dudv, (11.5)

where
D(u, v) = {k̂(u, v)−K0(u, v)}2. (11.6)

Implementation needs choices to be made for the truncation points u0 and v0,
and for the weight function w(u, v). Truncation points should depend both on
the physical dimensions of A× T and on the context, whilst a natural choice
for the weight function is w(u, v) = (u2v)−1.

An informal assessment of the fluctuations in K̂(u, v) relative to simu-
lation envelopes is often at least as useful as a formal test, but their visu-
alisation is less straightforward in the spatio-temporal setting than in the
lower-dimensional purely spatial or temporal settings. One option is to su-
perimpose a grey-scale image of K̂(u, v) and contour lines indicating regions
where K̂(s, t) does or does not fall outside the relevant simulation envelope.
Another is to add contour lines for p-values of local Monte Carlo tests, using
test statistics D(u, v) as defined at (11.6).

Rather than focus on K(u, v), we could consider estimating the second-
order intensity function or pair correlation function, λ2(u, v) or ρ(u, v) re-
spectively. The same considerations apply here as in the purely spatial case.
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Firstly, estimating λ2(u, v) or other non-cumulative summaries requires the
user to choose a smoothing constant, equivalent to choosing the bin-width in
a histogram. Accordingly, the choice becomes less problematic as the number
of events in the data-set increases. Secondly, some users may find it easier to
interpret estimates of the non-cumulative functions λ2(u, v) and ρ(u, v). There
is, however, a simple connection between K̂(u, v) and a well-known test for
space-time interaction proposed by Knox (1963, 1964). Knox’s test consists
of choosing values for u and v, summarising the data by a 2 × 2 contingency
table that classifies each pair of events according to whether they are sepa-
rated by less than or more than a distance u and time-interval v, and using
as test statistic the number of pairs of events that are close both in space and
in time. A Poisson approximation to the null distribution of the test statistic
can be used provided u and v are sufficiently small that close pairs are rare,
but an exact version for any values of u and v can be implemented as a Monte
Carlo test by comparing the test statistic for the data with values obtained
after random permutation of the event-times holding their locations fixed. In-
spection of the right-hand side of (11.2) shows why the value of K̂(u, v) at
any specific value of (u, v) can be interpreted as an edge-corrected version of
Knox’s statistic

11.4.2 Intensity-reweighted stationary processes

Recall that a point process is intensity-reweighted stationary if its intensity
function, λ(x, t), is bounded away from zero and its pair correlation function,

ρ(u, v) = λ2(x, s, y, t)/{λ(x, s)λ(y, t)},

depends only on u = ||x− y|| and v = |s− t|, in which case its inhomogeneous
K-function is

KI(u, v) = 2π

∫ v

0

∫ u

0

ρ(x, t)xdxdt.

Either non-parametric or parametric methods can be used to estimate
λ(x, t). However, as in the purely spatial case discussed in Chapter 4, it is
difficult in practice to sustain an unambiguous distinction between first-order
and second-order properties without making parametric assumptions. For non-
parametric estimation of λ(x, t), a pragmatic strategy is to make the working
assumption that the first-order structure is separable, by which we mean that
λ(x, t) is a product of a function of x and a function of t, whilst second-order
structure may be non-separable, by which we mean that KI(u, v) does not
factorise into a product of a function of u and a function of v. To make the
factorisation of λ(x, t) unique, we need to impose a scaling condition. For
data on A×T , a convenient version is to write the intensity as λ(x)μ(t) where∫
A λ(x)dx = 1, in which case the mean number of events in any time-interval,

(a, b) is
∫ b

a
λ(t)dt.

If we can specify a parametric model for the intensity function λ(x, t), it can
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be estimated by maximum likelihood under the working assumption that the
process is an inhomogeneous Poisson process. For example, we might specify
log λ(x, t) as a linear regression model, with explanatory variables defined
either as simple functions of x and t, i.e. a spatio-temporal trend surface, or
more satisfactorily as scientifically relevant variables that can be measured
throughout A× T .

Once we have an estimate, λ̂(x, t) say, of the first-order structure, we can
estimate KI(u, v) by an obvious modification of (11.2), namely

K̂I(u, v) =
n

nv|A|T )

nv∑

i=1

∑

j>i

w−1
ij I(||xi − xj || ≤ u)

I(tj − ti ≤ v)

λ̂(xi, ti)λ̂(xj , tj)
(11.7)

The form of the denominator on the right-hand-side of (11.7) suggests, cor-
rectly, that the estimator K̂I(u, v) will be poorly behaved if the data span sub-
regions where λ(x, t) is close to zero, especially when we use non-parametric
methods to estimate λ(x, t). The same point applies in the purely spatial
case, as discussed in Section 5.3.1, but tends to exacerbated in the spatio-
temporal setting where the increase in the dimensionality of the study-region
from two to three gives more scope for the occurrence of locally sparse data-
configurations.

11.4.3 Campylobacteriosis in Lancashire, UK

Campylobacter is the most commonly identified cause of gastro-intestinal dis-
ease in the developed world. Temporal incidence of campylobacteriosis shows
strong seasonal variation, rising sharply between spring and summer. Here, we
describe the analysis of the locations and dates of notification of all reported
cases of campylobacteriosis within the Preston postcode district (Lancashire,
England) between January 1st 2000 and December 31st 2002. This analysis
was previously reported in Diggle and Gabriel (2011).

The two panels of Figure 11.5 show the cumulative spatial distribution of
the 969 reported cases and the cumulative distribution of the times, in days
since 1 January 2000, on which the cases were reported. The spatial distribu-
tion of cases largely reflects the population at risk, consistent with the endemic
character of gastro-intestinal infections, whilst the temporal distribution hints
at a slight overall fall in the rate of incident cases over the three-year period,
and some seasonal fluctuations.

These data can be considered as a single realisation of a spatio-temporal
point process displaying a highly aggregated spatial distribution. As is com-
mon in epidemiological studies, the observed point pattern is spatially and
temporally inhomogeneous, because the pattern of incidence of the disease
reflects both the spatial distribution of the population at risk and systematic
temporal variation in risk. When analysing such spatio-temporal point pat-
terns, a natural starting point is to investigate the nature of any stochastic
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FIGURE 11.5
Campylobacteriosis in the district of Preston, 2000-2002. Locations of cases
(left panel) cumulative distribution of reporting times in days since 1 January
2000 (right panel).

interactions amongst the points of the process after adjusting for spatial and
temporal inhomogeneity.

The three panels of Figure 11.6 show: the study-region, corresponding to
the Preston post-code sector of the county of Lancashire, UK; a grey-scale
representation of the spatial variation in the population density, derived from
the 2001 census; and the residential locations of the 619 recorded cases over
the three years 2000 to 2002 in the most densely populated part of the study-
region.
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FIGURE 11.6
Lancashire campylobacteriosis data: study-area (left panel); 2001 population
density in number of people per hectare (centre panel); locations of the 619
cases within the urban area (right panel).

We first estimate the marginal spatial and temporal intensities of the data.
To estimate the spatial density, λ(x), we use a Gaussian kernel estimator with
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band-width chosen to minimize the estimated mean-square error of λ̂(x), as
suggested in Berman and Diggle (1989). To estimate the temporal intensity,
μ(t), we use a Poisson log-linear regression model incorporating a time-trend,
seasonal variation and day-of-the-week effects, hence

logμ(t) = δd(t) +

3∑

k=1

αk cos(kωt) + βt sin(kωt) + γt,

where ω = 2π/365 and d(t) identifies the day of the week for day t =
1, ..., 1096. The sine-cosine terms corresponding to six-month and four-month
frequencies are justified by likelihood ratio criteria under the assumed Poisson
model, but this would over-state their significance if, as turns out to be the
case, the data show significant spatio-temporal clustering. Figure 11.7 shows
the resulting estimates of λ(x) and μ(t).
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FIGURE 11.7
Lancashire campylobacteriosis data: kernel estimate of spatial intensity (left
panel); weekly numbers of notified cases and fitted regression curve (right
panel).

A comparison between the left panel of Figure 11.7 and the centre panel
of Figure 11.6 shows, unsurprisingly, that cases tend to be concentrated in
areas of high population density, whilst the right-hand panel of Figure 11.7
shows a decreasing time-trend and a sharp peak in intensity each spring. The
smaller, secondary peaks in intensity are a by-product of fitting three pairs
of sine-cosine terms and their substantive interpretation is open to question;
here, we are using the log-linear model only to give a reasonably parsimonious
estimate of the temporal intensity as a necessary prelude to investigating
residual spatio-temporal structure in the data.

To investigate spatio-temporal structure, we consider the data in relation
to two benchmark hypotheses. The hypothesis of no spatio-temporal clustering,
HC

0 , states that the data are a realisation of an inhomogeneous Poisson process
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with intensity λ(x)μ(t). The hypothesis of no spatio-temporal interaction, HI
0 ,

states that the data are a realisation of a pair of independent spatial and
temporal, re-weighted second-order stationary point processes with respective
intensities m(s) and μ(t). Note that in formulating our hypotheses in this
way, we are making a pragmatic decision to interpret separable effects as
first-order, and non-separable effects as second-order. Also, as here defined,
absence of spatio-temporal clustering is a special case of absence of spatio-
temporal interaction.

To test HC
0 , we compare the inhomogeneous spatio-temporal K-function

of the data with tolerance envelopes constructed from simulations of a Pois-
son process with intensity m̂(s)μ̂(t). To test HI

0 , we proceed similarly, but
with tolerance envelopes constructed by randomly re-labelling the locations of
the cases holding their notification dates fixed, thus preserving the marginal
spatial and temporal structure of the data without assuming that either is
necessarily a Poisson process.
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FIGURE 11.8
Lancashire campylobacteriosis data: K̂st(u, v)−πu2v, ×106 (left panel); iden-
tification of sub-sets of (u, v)-space in which spatio-temporal clustering (di-
agonal black hatching) and/or spatio-temporal interaction (grey shading) is
detected at the 5% level of significance (right panel).

The left-hand panel of Figure 11.8 shows K̂st(u, v)− πu2v for the campy-
lobacteriosis data. The diagonal black hatching on the right-hand panel of
Figure 11.8 identifies those values of (u, v) for which the data-based esti-
mate of K̂st(u, v)−πu2v lies above the 95th percentile of estimated calculated
from 1,000 simulations of an inhomogeneous Poisson process with intensity
λ̂(x)μ̂(t). Similarly, the grey shading identifies those values of (u, v) for which
K̂st(u, v)−K̂s(u)K̂t(v) lies above the 95

th percentile envelopes calculated from
1,000 random permutations of the xi holding the ti fixed.

The results suggest spatio-temporal clustering up to a distance of about
300 metres and a time-lag of 10 days, and spatio-temporal interaction at dis-
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tances up to 400 metres and time-lags up to 3 days. These precise numbers
should not be treated as anything other than rough estimates of the spatial
and temporal scales on which the underlying disease process is operating. Nev-
ertheless, they are broadly consistent with the infectious nature of the disease.
Although the risk-factors for the disease are not completely understood, the
time between infection and the emergence of symptoms is of the order of days
rather than weeks, whilst spatial concentrations of cases are though to result
multiple cases from a common source occurring relatively closely both in space
and in time. The analysis also suggests the existence of stochastic structure
that cannot be explained by the first-order intensity λ̂(x)μ̂(t). Note that the
relatively large negative values of K̂st(u, v) − πu2v at large values of u and
v are not significantly different from zero, because the sampling variance of
K̂st(u, v) increases with u and v.
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12.1 Introduction

Recall from Chapter 10 that the aim of empirical modelling is to describe the
pattern in a data-set without necessarily pointing to any particular underlying
mechanism. This approach can be useful in at least two different settings.

The first is when little is known about the underlying mechanism. A quan-
titative description of the pattern may then help to generate mechanistic
hypotheses. The second is when the underlying mechanism is known to be
sufficiently complex that formulating and fitting a mechanistic model is im-
practical, but also unnecessary to achieve the objectives of the analysis.

Suppose, for example, that we wish to analyse data on the locations and
times of incident cases of a disease in a mixed urban/rural population, with
a view to identifying anomalous patterns of incidence when and where they
occur. The aetiology of the disease is only one of several factors that deter-
mine the observed pattern. A second, more obvious one is the geographical
distribution of the population over the region of interest. Others may include
socio-economic and behavioural risk-factors, patterns of travel between home
and school or work-place, and the introduction of exotic infections by returning
international travellers. An empirical model may then give useful predictions
of where and when anomalies occur even if it cannot explain why.

223



224 Statistical Methods for Spatial and Spatio-Temporal Point Processes

12.2 Poisson processes

The definition of an inhomogeneous spatio-temporal Poisson process exactly
parallels that of its spatial counterpart as defined in Section 6.4 except for
the change from two to two-plus-one dimensions. Let AT denote any spatio-
temporal region; typically in applications, AT will be of the form S × (0, T ),
for some spatial region S and time-interval (0, T ). Denote by N(AT ) for the
number of events in AT . Then, an inhomogeneous spatio-temporal Poisson
process with intensity λ(x, t) is defined by the following two postulates:

ISTPP1 N(AT ) has a Poisson distribution with mean
∫ T

0

∫
A λ(x, t)dxdt.

ISTPP2 Given N(AT ) = n, the n events in A× (0, T ) form an independent
random sample from the distribution on AT with pdf proportional to λ(x, t).

Similarly, the associated log-likelihood function for data (xi, ti) : i =
1, ..., n generated as a partial realisation of the process on AT is the direct
spatio-temporal analogue of (8.1), namely

L(λ) =

n∑

i=1

log λ(xi, ti)−
∫ T

0

∫

A

λ(x, t)dxdt. (12.1)

12.3 Cox processes

As discussed in Section 6.5, a Cox process is an inhomogeneous Poisson pro-
cess whose intensity is itself a realisation of a non-negative-valued stochas-
tic process. In the spatio-temporal setting, we write the intensity process as
Λ(x, t). The conditional Poisson property of the Cox process precludes any
direct interactions between events. This makes it most appealing as a model
when an observed pattern is thought to be determined by observed and/or
unobserved environmental processes. If all of the relevant environmental vari-
ables are observed, an obvious provisional model would be an inhomogeneous
Poisson process, with intensity λ(x, t) specified as a regression on explanatory
variables, z(x, t) say. Note from the form of (12.1) that likelihood-based infer-
ence would strictly require all elements of z(x, t) to be observed at all locations
and times. If some of the relevant environmental variables are unobserved, we
could represent them by stochastic processes, so defining a stochastic intensity
Λ(x, t). The model for the stochastic component of Λ(x, t) could, in principle,
be either mechanistic or empirical in character, but empirical models are more
common in practice.

In what follows, we allow the expectation of Λ(x, t) to vary with x and
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t, but assume that its covariance structure is stationary. A convenient re-
parameterisation is then to

Λ(x, t) = λ(x, t)R(x, t), (12.2)

where R(x, t) is a stationary process with expectation 1 and covariance func-
tion γ(u, v) = σ2r(u, v). It follows that λ(x, t) is the unconditional intensity
of the point process, and the stationarity of R(x, t) implies that the point
process is intensity-reweighted stationary.

12.3.1 Separable and non-separable models

In the parameterisation (12.2), we say that Λ(x, t) is first-order separable if

λ(x, t) = ρ(x)μ(t) (12.3)

and second-order separable if if

γ(u, v) = σ2r1(u)r2(v). (12.4)

In most applications, it will be reasonable to assume that R(x, t) is continuous
at the origin, in which case so is γ(u, v) and it follows that in (12.4), r1(u) =
r(u, 0) and r2(v) = r(0, v).

To avoid ambiguity in (12.3), we scale the spatial intensity ρ(x) so that∫
A
ρ(x)dx = 1. This has the convenient consequence that μ(t) represents the

expected number of events per unit time over the whole of the spatial region
of interest, A. Assuming (12.3) is, in a sense, an arbitrary strategy, but can be
defended pragmatically as follows. First-order and second-order effects can-
not be distinguished empirically from a single realisation without additional
assumptions. One way to maintain an operational distinction is therefore to
treat spatially averaged time-trends and temporally averaged spatial trends as
first-order, non-stochastic effects and any residual spatio-temporal structure
as a second-order, stochastic effect.

The assumption of second-order separability assumption is also not par-
ticularly natural, but it is undeniably convenient. From the point of view of
model formulation it is convenient that the product of any pair of valid spatial
and temporal correlation functions is a valid spatio-temporal correlation func-
tion, hence the functions r1(u) and r2(v) can be chosen as any pair of valid
correlation functions in IR2 and IR, respectively. From the point of view of
exploratory data analysis, separability makes for straightforward calculation
and interpretation of non-parametric estimators for the correlation structure
of Λ(x, t).

The K-function of an intensity-reweighted stationary Cox process param-
eterised according to (12.2) is

K(u, v) = πu2v + 2πλ−2σ2

∫ v

0

∫ u

0

r(s, t)sdsdt, (12.5)
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where σ2 is the variance of R(x, t) and r(s, t) its correlation function. Under
separability, this simplifies to

K(u, v) = πu2v + 2πλ−2σ2

∫ u

0

r1(s)sds

∫ v

0

r2(t)dt. (12.6)

Note that the standard estimator (11.2) for K(u, v), neither assumes nor ex-
ploits second-order separability.

12.4 Log-Gaussian Cox processes

In a spatio-temporal log-Gaussian Cox process, log Λ(x, t) is a Gaussian pro-
cess, and is therefore defined by its mean and covariance structure. In the
intensity-reweighted stationary case with the parameterisation (12.2), we can
write R(x, t) = exp{S(x, t)}, where S(x, t) is a Gaussian process with expec-
tation −0.5ν2, variance ν2 so that E[R(x, t)] = 1 as required, and correlation
function g(u). It follows that R(x, t) has variance σ2 = exp(ν2) − 1 and cor-
relation function r(x, t) = exp{ν2g(u, v)} − 1.

Self-evidently, any valid family of spatio-temporal correlation functions can
be used to define a valid class of spatio-temporal log-Gaussian Cox processes.
The study of such families of correlation function has generated a substantial
literature in its own right, which is reviewed in Gneiting and Guttorp (2010).

As already noted, one way to guarantee validity is to use a separable fam-
ily, g(u, v) = g1(u)g2(v). For example, each of g1(u) and g2(v) could be chosen
to lie within the Matérn class. This is convenient, and often provides a rea-
sonable empirical fit to data, but is not especially natural from a mechanistic
perspective.

An example of a physically motivated construction is given in Brown et
al. (2000), who propose models based on a dispersion process. In discrete
time, with δ denoting the time-separation between successive realisations of
the spatial field, their model takes the form

S(x, t) =

∫
hδ(u)S(x− u, t− δ)du+ Zδ(x, t), (12.7)

where hδ(·) is a smoothing kernel and Zδ(·) is a noise process, in each case with
parameters that depend on the value of δ in such a way as to give a consistent
interpretation in the spatially continuous limit as δ → 0. Other parametric
families of non-separable models are discussed in Cressie and Huang (1999),
Gneiting (2002), Ma (2003, 2008) and Rodrigues and Diggle (2010).
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12.5 Inference

As in the purely spatial case, in estimating the parameters of a spatio-temporal
log-Gaussian Cox process, there is a choice between computationally easy but
ad hoc moment-based methods and more demanding but principled likelihood-
based methods. In principle, the theory described in Chapter 8 carries over
directly, but at the time of writing I am not aware of any routine implemen-
tations in readily available software.

In epidemiological applications of spatio-temporal log-Gaussian Cox pro-
cesses, a common scenario is that the events are cases of a particular disease,
the intensity field Λ(x, t) models spatio-temporal variation in disease risk and
its deterministic (first-order) and stochastic (second-order) components rep-
resent, respectively, the effects of known and unknown factors that affect the
observed pattern of cases. The former might typically include spatial varia-
tion population density, seasonal variation in population-averaged exposure
to risk-factors and a variety of measured physical and social environmental
variables that partially determine an individual’s risk at a particular place or
time. The latter would then represent a mix of unanticipated effects including
unsuspected risk-factors, the temporary exposure of a sub-population to a spa-
tially and temporally localised source of infection and infectious transmission
between individuals. In the absence of a well-understood mechanistic model,
this can lead to a focus on prediction rather than estimation. The practical
goal is to uncover the behaviour of the unobserved realisation of Λ(x, t), and
in particular its stochastic component, either to provide clues about the ae-
tiology of the disease in question or simply to identify anomalous departures
from the normal pattern of disease incidence.

12.6 Gastro-intestinal illness in Hampshire, UK

We now describe an application of a log-Gaussian Cox process model to data
on gastro-intestinal disease in the English county of Hampshire that were
described in Section 10.2.1. The analysis was originally reported in Diggle,
Rowlingson and Su (2005, henceforth DRS), who used only the 7126 cases
reported in 2001 and 2002. As noted earlier, the goal of the analysis was to
develop a method for identifying spatially and temporally localised peaks in
incidence, termed anomalies. The analysis strategy assumed a log-Gaussian
Cox process model with separable intensity and second-order separable latent
Gaussian process. Hence,

Λ(x, t) = ρ(x)μ(t) exp{S(x, t)}, (12.8)
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where S(x, t) has mean −0.5σ2, variance σ2 and correlation function r(u, v) =
r1(u)r2(v). Note, incidentally, that this does not equate to second-order sep-
arability of Λ(x, t), whose correlation function is exp{r1(u)r2(v)− 1}.

To model the time-trend in daily incidence, DRS made the working as-
sumption that the daily counts of incident case-reports are independent,
Poisson-distributed, with a log-linear specification for the mean, μ(t) =
exp{η(t)}. The data show strong day-of-week effects, principally because of
the differential use of the NHS Direct service between weekdays and weekends.
Also, the general incidence in gastro-intestinal disease is known to vary sea-
sonally, although the reasons for this are not fully understood. Finally, there
may be long-term trends in incidence arising from the combined effects, again
poorly understood, of a range of natural and social factors. To accommodate
all of these features, DRS specified the model for ηt to be

η(t) = αdt) + βt+

2∑

k=1

{γk cos(2kπt/365) + δk sin(2kπt/365)}, (12.9)

where dt denotes day-of-week. Figure 12.1 shows the observed and fitted daily
incidence, in each case averaged over seven successive days to eliminate the
day-of-week effects; note in particular the two seasonal peaks in incidence, in
spring and late summer.

It is less clear how one might formulate a parametric model for the spa-
tial variation in reported case incidence. This spatial variation must, to a
considerable extent, reflect the spatial distribution of the underlying popula-
tion, but is compounded with a variety of demographic and socio-economic
factors that influence levels of usage of the NHS Direct service by different
sub-populations. DRS used a non-parametric kernel smoothing approach. A
standard kernel smoother of the kind described in Section 5.3 proved unsat-
isfactory because of the very wide variation in intensity between urban and
rural locations. This resulted in many local estimates close to zero, which in
turn led to unstable estimates of second-order properties as discussed below.
DRS therefore used a kernel estimator with locally adaptive bandwidth. This
takes the form

ρ̂(x) = n−1
n∑

i=1

h−2
i k(||x− xi||/hi. (12.10)

In (12.10), hi is intended to take relatively large values in areas where ρ(x)
is small, and vice versa. Following a recommendation in Silverman (1986),
DRS specified hi to be proportional to ρ̃(xi)

−0.5, where ρ̃(x) is a standard,
fixed-bandwidth, kernel estimate. Figure 12.2 shows the resulting fitted surface
ρ̂(x).

To estimate the second-order properties, DRS assumed a double-
exponential model, r(u, v) = exp(−u/φ1) exp(−v/φ2) and estimated the
model parameters using a moment-based method suggested in Brix and Diggle
(2001). This consisted of matching empirical and fitted spatial and temporal
correlation functions according to a least squares criterion. Figure 12.3 shows
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FIGURE 12.1
Gastro-intestinal illness in Hampshire: observed counts of reported cases per
day, averaged over successive weekly periods (solid dots), compared with the
fitted harmonic regression model of daily incidence (solid line).

the result. The ad hoc nature of the fitting process is open to criticism, but the
fit appears reasonably good, and the ranges of the fitted spatial and temporal
correlation are consistent with the presumption that clusters of nearby cases
are most likely the result of sharing contaminated food, and with the acute,
short-term nature of most food-borne infections.

To meet the objective of identifying anomalies, DRS followed Brix and
Diggle (2001) in treating this as a problem in stochastic process prediction. Let
Ht denote the dates and locations of all incident cases up to day t. Under the
assumed model (12.8), let R(x, t) = exp{S(x, t)}. Then, the formal solution
to the prediction problem is the conditional distribution of R(x, t) given Ht.
Similarly, the formal solution to the problem of forecasting anomalies with
a lead-time of k days is the conditional distribution of R(x, t + k) given Ht.
DRS used a plug-in version of the conditional distribution, meaning that they
treated their estimates of ρ(x), μ(t) and the parameters of S(x, t) as if they
were the true values. In general, a better and more elegant solution is to
assign Bayesian priors to these unknown quantities; see, for example, Diggle et
al. (2013). However, in the current application, parameter uncertainty makes
only a small contribution to the overall predictive uncertainty, because all of
the data inform the parameter estimates, whilst only local data inform the
prediction of R(x, t).

Figure 12.4 shows an example of the resulting predictive maps; more exam-
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FIGURE 12.2
Gastro-intestinal illness in Hampshire: adaptive kernel estimate of the overall
spatial variation in incidence, ρ̂(x).

ples can be inspected on the book’s web-site. Note that what is being mapped
is the predictive probability that R(x, t) exceeds a specified value, c. The maps
in Figure 12.4 is for c = 2. The author’s view is that maps of this kind are
more useful as an aid to decision-making than the more traditional practice of
mapping the predicted value of R(x, t) and its associated predictive standard
deviation, because they focus attention on places and times at which there is
a high probability of an important effect. An immediate corollary is that the
decision-maker, rather than the statistician, should choose what value of c to
use.

12.7 Concluding remarks: point processes and geostatis-
tics

The log-Gaussian Cox process is a useful starting point for the analysis of
spatio-temporal point patterns when the focus of scientific interest is on iden-
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FIGURE 12.3
Gastro-intestinal illness in Hampshire: non-parametric (solid line) and fitted
parametric (dashed line) log-transformed pair correlation functions (left-hand
panel) and temporal covariance functions (right-hand panel).

tifying variation in the spatial and/or temporal intensity of events and both
of the following conditions are satisfied: available explanatory variables do
not completely explain the observed pattern of variation; and the underlying
mechanism that generates the observed pattern is not well understood. The
relative tractability of the process is also convenient for exploratory analysis
by comparing empirical and theoretical moment properties.

There is a close connection between point process methods based on log-
Gaussian Cox processes and geostatistical methods based on generalized linear
mixed models (Diggle and Ribeiro, 2007). Geostatistical methods are con-
cerned with the analysis of spatially discrete data relating to spatially con-
tinuous phenomena. In the spatio-temporal setting, a typical geostatistical
data-set might consist of observed values yi associated with spatio-temporal
locations (xi, ti) : i = 1, ..., n, which are then linked to an observed spatio-
temporal surface u(x, t) and an unobserved stochastic process S(x, t) by a
suitable statistical model. As a specific example, suppose that conditional on
S(x, t), the yi are realisations of mutually independent Poisson random vari-
ables with means

μi = exp{βu(xi, ti) + S(xi, ti)}. (12.11)

Now suppose that the yi in this hypothetical example were in fact counts of
the numbers of event in small spatio-temporal regions ATi centred on (xi, ti).
Then, provided these small regions did not overlap, an assumed log-Gaussian
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FIGURE 12.4
Gastro-intestinal illness in Hampshire: predictive map for 6 March 2003. The
mapped value in each case is the conditional probability that R(x, t) > 2 given
the data up to and including day t.

Cox process model for the underlying point process would again imply that
conditional on S(x, t), the yi are realisations of mutually independent Poisson
random variables, but now with means

μi =

∫

ATi

exp{βu(x, t) + S(x, t)}dxdt. (12.12)

Comparing (12.11) and (12.12), we see that the two models become equivalent
if the ATi are sufficiently small that both u(x, t) and S(x, t) can be treated as
approximately constant within each ATi.

A final comment is that whilst the log-transformation of the underlying
Gaussian process S(x, t) is convenient, it can induce very severe asymmetry in
the distribution of R(x, t), depending on the values of the mean and variance
of S(x, t). Within a Monte Carlo inferential framework, there is no particular
reason to use the log-transformation: any non-negative-valued transformation
could be used instead. Figure 12.5 shows, in a one-dimensional spatial setting,
the effect of a range of transformations of the form R(x) = ak + bkS(x)

2k,
where S(x) is a realisation of a Gaussian process with mean 1, variance 1 and
correlation function ρ(u) = exp(−u/0.1). The constants bk have been chosen
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FIGURE 12.5
Three simulated transformed Gaussian processes, R(x, t) = ak + bkS(x, t)

2k,
for k = 0.5, 1, 2 (solid, dashed and dotted lines, respectively).

so that R(x) also has variance 1, whatever the value of k, whilst the ak have
been chosen simply to separate the three traces so as to ease the comparison.



This page intentionally left blankThis page intentionally left blank



13

Mechanistic models and methods

CONTENTS

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
13.2 Conditional intensity and likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
13.3 Partial likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
13.4 The 2001 foot-and-mouth epidemic in Cumbria, UK . . . . . . . . . . . . 238
13.5 Nesting patterns of Arctic terns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

13.1 Introduction

All natural processes evolve over time. It follows that a mechanistic model
of a natural process must do likewise. This immediately switches the focus
of statistical modelling and analysis from a joint description of spatial and
temporal properties to a conditional description, in which the current proper-
ties of a process are specified conditionally on its realisation up to the current
time, i.e. by conditioning on the past as described in Section 10.5.

13.2 Conditional intensity and likelihood

The conditional intensity function of a spatio-temporal point process, written
λc(x, t|Ht), is the spatial first-order intensity at time t conditional on the
history, Ht say, of the process up to time t, i.e. Ht is the set of locations
and times of all events of the process that occur before time t. More formally,
writingN(dx, dt) for the number of events in an infinitesimal space-time region
ds× dt,

λc(x, t|Ht) =
lim

|dx| → 0, dt → 0

{
E[N(dx, dt)|Ht]

|dx|dt

}
. (13.1)

If the process is orderly, we can replace the expectation term on the right-
hand-side of (13.1) by the probability that there is an event in the infinites-

235
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imal space-time region dx × dt plus terms that vanish in the limit, and the
conditional intensity function completely defines the process.

Now consider the restriction of an orderly process to a finite but otherwise
arbitrary spatial region A, and denote by t+U and X the time and location,
respectively, of the the first event that occurs after time t. Then,

P(U > u) = exp{−
∫ t+u

t

∫

A

λc(s, t|Ht)dsdt}, (13.2)

and the conditional probability density of X given U = u is proportional to
the conditional intensity, λc(x, t+ u|Ht+u) : x ∈ A.

Together, these results show that any orderly spatio-temporal point pro-
cess can be interpreted as a time-indexed sequence of inhomogeneous Poisson
processes whose intensity evolves in response to its history. It follows that for
data {(xi, ti) : i = 1, ..., n} consisting of the locations and times of all events
in a spatio-temporal A× [0, T ], the log-likelihood is

L =

n∑

i=1

log λc(xi, ti|Hti)−
∫ T

0

∫

A

λc(s, t)dsdt. (13.3)

Note that (13.3) is identical to (12.1) except that the conditional intensity,
λc(s, t|Ht) in (13.3) replaces the unconditional intensity λ(x, t) in (12.1).

An immediate consequence of (13.3) is that likelihood-based inference is,
at least in principle, straightforward for any model that we choose to define
by specifying its conditional intensity. Also, specifying a model in this way
is scientifically appealing because of the direct relationship of the conditional
intensity to an underlying mechanism.

Strictly, the only requirement for a valid specification of the conditional
intensity is that λc(x, t) is non-negative valued and integrable over A for any
possible history at any time t ≤ T . As a counterexample, consider the speci-
fication

λt(x) =

{
λ0 : t = 0

θnt(x) : t > 0

where θ > 1 and nt(x) is the number of events such that ti < t and
||x − xi|| < δ, for some δ > 0. The early development of this process re-
sembles a homogeneous Poisson process, but as soon as a new event falls
within distance δ of an existing event, this “seeds” a cluster that eventually
grows uncontrollably. This is (not coincidentally) reminiscent of the unsatis-
factory behaviour of a pairwise interaction point process with an attractive
interaction function, as discussed in Section 6.8.1.

In order for the above results on the conditional intensity to be useful
for inference, two further conditions need to hold. Firstly, unless a model is
directly specified through its conditional intensity, we need to be able to derive
an explicit expression for λc(x, t), and this may be difficult, or impossible. For
example, the conditional intensity of a log-Gaussian Cox process is intractable.
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Secondly, the integrand for the integral term on the right-hand side of (13.3) is
typically a complicated function of location and time with many local modes,
making it difficult to evaluate the integral term accurately.

13.3 Partial likelihood

A useful variant of the likelihood (13.3), which greatly simplifies the associated
computations, can be obtained when the process is spatially discrete, in the
sense of the classification described in Section 10.3. The variant is a direct
analogue of the partial likelihood introduced by Cox (1972b) in the context
of proportional hazards modelling of survival data, and subsequently used in
the point process setting by Møller and Sorensen (1998), Lawson and Leimich
(2000) and Diggle (2006).

Denote by {(xi, ti) : i = 1, ..., n} the observed events of the process in
the spatio-temporal region A × (0, T ), ordered so that ti < ti+1, and let
{xi : i = n+1, ..., N} be the set of locations of potential events that have not
occurred by time T . For each of i = 1, ..., n, define

pi = λc(xi, ti)/

N∑

j=i

λc(xj , ti). (13.4)

Each pi is the conditional probability that the event at time ti is at location
xi, given that an event occurs at time ti and at one of the locations xj , j ≥ i.
It follows that

PL =

n∑

i=1

log pi (13.5)

is the log-likelihood for the observed assignment of the times ti to the locations
xi. Because each pi involves a ratio of conditional intensities, it will typically
only identify a sub-set of the model parameters. How much this matters de-
pends on whether the unidentified parameters are of interest in their own
right. In the original setting of survival analysis, the unidentified parameters
correspond to an arbitrary baseline hazard function, λ0(t) say, and avoidance
of the need to specify a parametric model for λ0(t) is sometimes advanced as
a virtue of the method.

The computational advantage of (13.5) over (13.3) is that its evaluation
requires only a finite summation, so no approximation is needed. Against this,
the partial likelihood method is potentially inefficient, although the extent of
its efficiency would seem to be context-specific.

Diggle, Kaimi and Abellana (2011) proposed an extension of the partial
likelihood to spatially continuous processes. In this case, events could have
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occurred anywhere in A, and (13.4) is replaced by

p∗i = λc(xi, ti)/

∫

A

λc(x, ti)dx (13.6)

The need to evaluate the integral in the denominator of (13.6) loses some
of the computational savings of the partial likelihood over the full likelihood
(13.3).

13.4 The 2001 foot-and-mouth epidemic in Cumbria,
UK

The analysis reported here is based on the account in Diggle (2006). We de-
scribe a spatial SIR (Susceptible, Infectious, Removed) model, similar to a
model proposed by Keeling et al. (2001), and show how the partial likelihood
method can give a computationally routine implementation of likelihood-based
methods of inference within this class of models. We analyse the data intro-
duced in Section 10.2.2 concerning the evolution of the 2001 FMD epidemic
in Cumbria, the English county most severely affected by the epidemic.

The basis of the Keeling et al. (2001) model is a decomposition of the rate
of transmission of the infection from an infectious farm i to a susceptible farm
j into five terms, representing: a baseline rate; the infectiousness of the trans-
mitting farm; the susceptibility of the receiving farm; the spatial juxtaposition
of the transmitting and receiving pair; an at-risk indicator Iij(t). Hence,

λij(t) = λ0(t)Aj(t)Bi(t)Cij(t)Iij(t). (13.7)

The baseline hazard, λ0(t) is not identifiable from the partial likelihood, and
we therefore leave its form unspecified. We assume that the terms Ai and
Bj can each be described by regressions involving a vector of explanatory
variables attached to each farm. Candidates for the analysis reported here
are the numbers of cows, n1i, and sheep, n2i, held on farm i at the start of
the epidemic, and the area of land owned by the farm, ai say. Our regression
models take the form

Ai = (αnγ
1i + nγ

2i) exp(aiδ), (13.8)

with a similar expression for Bi but replacing α by β. The rationale for this
form of dependence on animal numbers was that linear dependence is a natural
starting point, but there was a specific interest in establishing whether this
was in fact the case. The rationale for including farm area as a multiplicative
effect was that in a large farm, only animals relatively close to the farm’s
boundary would be likely to transmit infection to, or receive infection from, a
neighbouring farm, thereby reducing the effective animal numbers.
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For the spatial term Cij , we write dij = ||xi−xj || for the distance between
farms i and j, and assume that

Cij = exp{−(dij/φ)
κ}+ ρ. (13.9)

In (13.9) φ has an immediate interpretation as the rate at which the transmis-
sion of infection decays with increasing distance, whilst κ is a shape parameter
whose value we fix at 0.5 to capture the sharper-than-exponential decay noted
by Keeling et al. (2001). The parameter ρ > 0 allows for the occasional occur-
rence of new, spatially isolated cases which would otherwise distort the fit of
the model to the prevailing pattern of transmission between near-neighbouring
farms.

An important feature of the FMD epidemic is that both reactive and pre-
emptive culling strategies were used to try to limit the spread of the epidemic.
As soon as practicable after a farm was found to be infected, all of its ani-
mals and those of all other farms either close to, or otherwise considered to
have been in dangerous contact with, the infected farm, were slaughtered. To
capture this feature, we define a risk-set Ri to consist of all farms that have
neither been reported as infected nor culled at time ti. Hence, the at-risk
indicator Iij(t) is defined to be 1 if farm i is infected and has not had its
animals slaughtered by time t and farm j is not infected and has not had
its animals slaughtered by time t. Culling dates and reporting dates of new
infections are known exactly, but infection dates themselves are not. We make
the simplifying assumption that each infection took place five days before the
corresponding reporting date.

With the above definitions in place, we can evaluate the partial likelihood
for the model as follows. The rate at which a susceptible farm, j say, at time
t becomes infected is λj(t) =

∑
i λij(t). The contribution of the jth infection

event to the partial likelihood is then pj = λj(tj)/
∑

k λk(tj). Maximisation
of the partial likelihood with and without the farm-area term, exp(aiδ) on the
right-hand side of (13.8) and the corresponding expression for Bi suggested
that this term could be excluded, albeit not unequivocally so; the partial
likelihood ratio statistic was 3.26 on 1 degree of freedom, corresponding to a
p-value of 0.07. Table 13.4 gives the parameter estimates for the model without
the farm-area effect.

The quoted confidence intervals in Table 13.4 are derived from a numerical
estimate of the Hessian matrix, and their accuracy is suspect. A more reliable
way to assess precision of estimation is through simulation, as described in
Section 13.5.

The fitted spatial kernel, f(d) = exp{−(d/φ̂)0.5} + ρ̂, shows how the risk
of transmission from an infected to a susceptible herd decays over an effective
range of a few kilometres, as shown in Figure 13.4. This is consistent with
the “ring culling” policy implemented during the epidemic, whereby any farm
within 3km of an infected farm had its stock slaughtered to limit the risk of
further transmission (Tildesley et al., 2009). The estimate of γ indicates a
sub-linear dependence of risk on animal numbers. One possible interpretation
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TABLE 13.1
Parameter estimation for the five-parameter model fitted to combined data
from Cumbria and Devon

Parameter Estimate 95% confidence interval
α 1.42 1.13 1.78
β 36.17 0.19 692.92
γ 0.13 0.09 0.21
φ 0.41 0.36 0.48
ρ 1.3× 10−4 8.5× 10−5 2.1× 10−4

of this is that farms with larger animal holdings also occupy greater areas, and
transmission of infection occurs predominantly at or near boundaries between
farms. This could also explain why farm area in itself does not give a significant
improvement in the fit of the model after taking account of stocking numbers.
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FIGURE 13.1
Estimated transmission kernel in the spatial SIR model fitted to data on the
2001 FMD epidemic in Cumbria, UK.

13.5 Nesting patterns of Arctic terns

This example is taken from a study of the nesting behaviour of Arctic terns
conducted in the Ebro Delta Natural Park, of Spain (Hernández and Ruiz,
2003). The analysis reported here is based on the account in Diggle, Kaimi
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and Abellana (2010). The data consist of the locations xi and times ti of nests
made by successive arrivals at a nesting colony on each of several small islets.
Figure 13.5 shows the locations of the two largest colonies at the end of the
nesting season. On each islet, height above sea-level was measured at each nest
location and at the additional locations shown on each map. In what follows,
we analyse only the larger of the two colonies, containing 104 nests.
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FIGURE 13.2
Locations of Arctic tern nests (crosses) on each of two islets in the Abro Delta
National Park, Spain, and additional locations at which height above sea-level
was also recorded (triangles).

Two features of the resulting point process that are not of direct interest
but must be incorporated in any model of the process are the physical size
of each nest and the birds’ clear preference for locating their nests close to
the shoreline, but not so close as to be at risk of inundation at high tide. The
question of scientific interest is whether, after taking account of these features,
incoming birds’ choices of nesting sites show evidence of aggregation or inhi-
bition, reflecting a preference to co-locate with established nests or territorial
behaviour, respectively. We therefore model the conditional intensity as the
product of three terms: a baseline intensity λ0(t) which we leave unspecified,
a regression function a(x) and a behavioural function b(x, t).

For the regression function, we assume that

a(x) = exp{α1z(x) + α2z(x)
2}, (13.10)

where z(x) denotes the height above sea-level of the location x, and the
quadratic term accommodates an anticipated non-monotone relationship.

To capture the behavioural aspects of the colonisation process, we first
define a family of interaction functions,

h(d) =

{
0 : d < δ

1 + β exp{−(u− δ)c} : d ≥ δ
(13.11)
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In (13.11), δ represents the diameter of a typical nest, whilst α allows for
either aggregative (β > 0) or inhibitory (β < 0) behaviour. The constant c is
a shape parameter, which is difficult to estimate. We therefore consider only
two candidate values, c = 1 or 2.

For the behavioural term b(x, t), at each time t we allow an incoming bird’s
preference for establishing a nest at location x to depend either on all existing
nest-locations, or only on the nest-location closest to x. Let N(t) denote the
number of nests already in place immediately before time t. If we allow all
pre-existing next locations to affect the incoming bird’s preferences, then

b(x, t) =

N(t)∏

j=1

h(||x− xj ||). (13.12)

If we assume that only the location of the most recent arrival is relevant, then

b(x, t) = h(d0(t)), (13.13)

where d0(t) = min
N(t)
j=1 ||x− xj || is the smallest of the N(t) distances between

x and each of the pre-existing nests.
In contrast to the foot-and-mouth example described in Section 13.4, the

process of nest colonisation is spatially continuous, and evaluation of the par-
tial likelihood requires numerical integration of the conditional intensity over
the whole island. This in turn requires the height above sea-level, z(x) , to
be available at every location x. The data record the values of z(x) only at
nest-locations and at a further set of reference locations. To obtain a complete
surface of values of z(x), we use a simple piece-wise constant interpolation on
the Dirichlet tessellation of the locations at which z(x) has been recorded,
including locations on the shore-line where z(x) = 0.

The models with behavioural terms defined by (13.12) and by (13.13) are
not nested, nor are the versions of each model with c = 1 and 2 nested, and
formal likelihood ratio tests are not available. Nevertheless, comparison of
maximised partial likelihoods favours (13.13) with c = 1. Our preferred model
for the conditional intensity is therefore

λc(x, t|Ht) = λ0(t) exp{α1z(x) + α2z(x)
2}

× [1 + β exp{−(d0(t)− δ)/φ}]× I[d0(t) > δ], (13.14)

where, as earlier, d0(t) = min
N(t)
j=1 ||x − xj ||. We estimate the non-regular pa-

rameter δ as the smallest observed distance between any two nests in the final
pattern, hence δ̂ = 0.24 metres. Maximum partial likelihood estimates and
Monte Carlo standard errors for the remaining parameters are shown in Table
13.2.

The estimates of β and φ suggest aggregative social behaviour operating
up to a scale of several metres. The regression parameter estimates α̂1 = 0.22
and α̂2 = −0.0046 suggest a unimodal effect of height above sea-level, with the
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TABLE 13.2
Maximum partial likelihood estimates and standard errors for the model fitted
to the Arctic tern nesting data. Standard errors are Monte Carlo approxima-
tions, calculated by re-fitting the model to 100 simulated data-sets.

Parameter Estimate SE
α1 0.22 0.0039
α2 -0.0046 9.5× 10−5

β 18.94 0.39
φ 2.97 0.56
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FIGURE 13.3
Estimated interaction function, h(d), for the model fitted to the Arctic tern
nesting data (thick line) and re-estimates from 100 simulated realisations of
the model (thin grey lines).

most favoured locations at a height of 0.22/0.0092 ≈ 24 metres. The standard
errors shown in Table 13.2 do not in themselves indicate with what precision
we have been able to estimate the interaction function. Instead, we show
this graphically in Figure 13.3, which compares the fitted interaction function
h(d) with 100 Monte Carlo re-estimates. This confirms that the aggregative
behaviour is statistically significant, whilst indicating that both the strength of
this effect and the effective range over which it operates are rather imprecisely
estimated.
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