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Foreword

Dear reader, on behalf of the four Scientific Statistical Societies: SEIO, Sociedad
de Estadı́stica e Investigación Operativa (Spanish Statistical Society and Operation
Research); SFdS, Société Française de Statistique (French Statistical Society); SIS,
Società Italiana di Statistica (Italian Statistical Society); SPE, Sociedade Portuguesa
de Estatı́stica (Portuguese Statistical Society), we inform you that this is a new book
series of Springer entitled: “Studies in Theoretical and Applied Statistics,” with two
lines of books published in the series: “Advanced Studies”; “ Selected Papers of the
Statistical Societies.”
The first line of books offers constant up-to-date information on the most recent
developments and methods in the fields of theoretical statistics, applied statistics,
and demography. Books in this series are solicited in constant cooperation among
statistical societies and need to show a high-level authorship formed by a team
preferably from different groups to integrate different research points of view.

The second line of books proposes a fully peer reviewed selection of papers
on specific relevant topics organized by editors, also in occasion of conferences,
to show their research directions and developments in important topics, quickly
and informally, but with a high quality. The explicit aim is to summarize and
communicate current knowledge in an accessible way. This line of books will not
include proceedings of conferences and wishes to become a premier communication
medium in the scientific statistical community by obtaining the impact factor, as it
is the case of other book series such as “Lecture Notes in Mathematics.”

The volumes of selected papers of the statistical societies will cover a broad scope
of theoretical, methodological as well as application-oriented articles, surveys and
discussions. A major purpose is to show the intimate interplay between various,
seemingly unrelated domains and to foster the cooperation among scientists in
different fields by offering well-based and innovative solutions to urgent problems
of practice.

On behalf of the founding statistical societies I wish to thank Springer,
Heidelberg and in particular Dr. Martina Bihn for the help and constant cooperation
in the organization of this new and innovative book series.

Rome, Italy Maurizio Vichi
June 2012
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Preface

Statistics has been turning into a main tool in almost every field of activity, either
purely theoretical or as an essential part of scientific applied work, supporting
conclusions and giving insight into new possibilities of usage of methods and
results, thus being an essential tool helping in looking for faceless facts. The
construction of models describing populations or phenomena including random
behavior uses a wide range of methods. The recollection of data is at the basis of
this modeling and verification of assumptions, thus sampling methodologies appear
naturally as an essential object of interest in statistical applications. The modeling
process must then be conducted using the suitable techniques giving the researcher
the means to search for hidden facts and behaviors. This modeling may be addressed
by fitting well predefined shapes and distributions to the data or leaving the data to
unveil its intrinsic properties by using the usually more computational demanding,
nonparametric methods. If these imply the usage of larger data sets, the parametric
description redirects the work toward estimation and hypothesis testing, which can
help detecting inconvenient initial choices for the modeling effort.

Reflecting the above-mentioned problems, this volume is organized into six
chapters, each one dedicated different approaches to the description and modeling
process. The first chapter will include a few contributions on sampling and modeling
concerned with direct description of the population under study, possibly using
different statistically based methodologies. The second chapter includes contribu-
tions concerned with estimation problems, deferring to later chapters a few papers
concerned with estimation problems in some more particular frameworks or with
testing hypothesis. The final chapter includes contributions of more general flavor.

This volume contains peer reviewed selected contributions presented at the XVIII
Annual Congress of the Portuguese Statistical Society that took place at S. Pedro
do Sul from September 29 to October 2, 2010, bringing together not only both
theoretical and applied statisticians mainly working in Portugal but also a number
of Brazilian and Spanish specialists, a few invited well-known specialists and a
minicourse opening the conference. The main emphasis on the call for contributions,
selection of plenary talks, and minicourse was put on estimation with a particular
interest on nonparametric methods and also on the usage of sampling procedures
and methodologies, due to the approach of the Portuguese Census. The XVIII
Annual Congress of the Portuguese Statistical Society was attended by more than
170 participants, including those who participated in a special session organized

vii



viii Preface

by the Italian Statistical Society as a consequence of a cooperation between several
national societies, which also produced the interest on publishing this volume. These
participants presented 81 contributed sessions, scattered by 29 sessions and 42
poster contributions.

The editorial committee wishes to express its deep gratitude to everyone who
contributed their work to the present volume. The editorial committee is largely
indebted to the anonymous referees who kindly helped us on the evaluation process
that preceded the final preparation of this volume.

Viseu, Portugal Carla Henriques
Coimbra, Portugal Paulo Eduardo Oliveira
Rome, Italy Maria da Graça Temido
June 2012 Maurizio Vichi
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Técnico, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa,
Portugal, apacheco@math.ist.utl.pt

Luı́sa Pedro IPL of Lisbon, Portugal, luisa.pedro@estesl.ipl.pt

Dinis Pestana Faculty of Sciences of Lisbon, University of Lisbon, CEAUL —
Center of Statistics and Applications of University of Lisbon, Portugal, dinis.
pestana@fc.ul.pt

Alexandra Pinto Laboratory of Biomathematics, Faculty of Medicine of Lisbon,
Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal, apinto@fm.ul.pt

Alexandra Ramos FEP and CMUP, Universidade do Porto, Rua Dr Roberto Frias,
4200-464-Porto, Portugal, aramos@fep.up.pt

Patrı́cia Ferreira Ramos CEMAT, Instituto Superior Técnico, Technical
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Using Latent Variables in Model Based
Clustering: An E-Government Application

Isabella Morlini

Abstract
Besides continuous variables, binary indicators on ICT (Information and Com-
munication Technologies) infrastructures and utilities are usually collected in
order to evaluate the quality of a public company and to define the policy prior-
ities. In this chapter, we confront the problem of clustering public organizations
with model-based clustering, and we assume each observed binary indicator to
be generated from a latent continuous variable. The estimates of the scores of
these variables allow us to use a fully Gaussian mixture model for classification.

1 Introduction

In order to handle mixed continuous and binary variables for classification purposes,
in this work we assume each observed categorical variable to be generated from a
latent continuous variable. For estimating the scores of these latent variables, we
use the method proposed in Morlini [3]. In economics, the latent variables may
be interpreted as utility functions. The assumption is that the responses (e.g., the
presence or the absence of a public or private service) are determined by the
crossing of certain thresholds in these functions. The advantages of using the scores
of the latent variables in place of the original categories and then specifying a
full Gaussian model are threefold. (1) Classification is possible also for a large
number of variables, while most of the models currently used for variables with
mixed scale types [2, 5] are feasible only with few categorical indicators. (2) Many
forms of restrictions can be imposed on the variances and the covariances, to
obtain parsimony. (3) Local dependencies can be specified not only for couples of
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4 I. Morlini

continuous variables, but also for couples of (original) categorical variables and for
a continuous and a categorical variable.

As shown by Vermunt and Magidson [5], the possibility to include local
dependencies among the indicators may prevent the possibility of ending with a
solution that has too many clusters since, often, a simpler solution with less groups
may be obtained by including some direct effects between the indicators. Moreover,
relaxing the local independence assumption may yield a better classification of
objects since omitting a significant bivariate dependency from a latent class cluster
model leads to too high weights of the indicators in the classification.

In this work, we propose an e-government application with the data collected for
the UNDERSTAND project (European Regions UNDER way towards STANDard
indicators for benchmarking information society) of the Emilia–Romagna Region
(Italy). The data consist of a set of categorical indicators and continuous variables on
ICT, comparable at European level. The chapter is organized as follows. In Sect. 2,
we summarize the method used for estimating the latent variables scores. In Sect. 3
we briefly describe the data set and we report results on the application.

2 Estimation of the Latent Variables Scores

Let consider a general set up in which the values of p binary attributes and q
quantitative variables are collected for n objects and let g = p + q. We indicate
with xk (k = 1, . . . , p) the p binary attributes and with yj (j = 1, . . . , q) the q
quantitative variables. For each object i (i = 1, . . . , n), the p-dimensional vector
xi = [xi1 . . . xip] contains the values of the binary attributes and the q-dimensional
vector yi = [yi1 . . . yiq] contains the values of the quantitative variables. We
suppose that the binary values are generated from latent continuous variables ξk
(k = 1, . . . , p), and we obtain a new (n × g) matrix of quantitative variables by
estimating the score ξik for each object i (i = 1, . . . , n) and each latent variable
k (k = 1, . . . , p). The score ξik is associated with the observed categorical value
xik as follows: xik = 1 if ξik ≥ Tk and xik = 0 if ξik < Tk, where Tk is the
threshold, obtained from the data, for the k-th latent variable. The method includes
the following consecutive steps:
1. Estimate the threshold Tk of each latent variable and the tetrachoric correlation

coefficient rkl between each pair {k, l} of latent variables.
2. Perform a principal component analysis on the matrix of the tetrachoric correla-

tions and obtain the eigenvectors and the eigenvalues.
3. Estimate the score of each principal component for each object, given the

eigenvectors and the eigenvalues.
4. Estimate the score of each latent variable for each object, given the scores of the

principal components.
We construct a contingency table for each pair of variables xl and xk (l, k =
1, . . . , p), with the following cell frequencies: The estimated value for the threshold
generating the variable xl is the value Tl satisfying Φ(Tl) = (akl + ckl)/n. For
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xl = 0 xl = 1 Tot.

xk = 0 akl bkl akl + bkl

xk = 1 ckl dkl ckl + dkl

Tot. akl + ckl bkl + dkl n

variable xk , it is the value Tk satisfying Φ(Tk) = (akl + bkl)/n, where Φ is the
standard normal cumulative distribution function. We then estimate the matrix of
tetrachoric correlations R = (rkl) (k, l = 1, . . . , p) conditional on the thresholds
Tl and Tk, via maximum likelihood. The tetrachoric correlation, introduced by
Pearson [4], is the correlation coefficient rkl that satisfies

dkl
n

=

∫ ∞
Tl

∫ ∞
Tk

φ(ξk, ξl, rkl) dξkdξl, (1)

where φ(ξk, ξl, rkl) is the bivariate normal density function:

φ(ξk, ξl, rkl) =
1

2π
√
1− r2kl

exp

[
− 1

2(1− r2kl)
(ξ2k − 2rklξkξl + ξ2l )

]
. (2)

The solution may be found iteratively or by using one of the analytic formula
proposed in the seminal work of Pearson [4]. Since the thresholds and the tetrachoric
correlation coefficient are identifiable if no frequency in the contingency table is
equal to zero, we replace the zero by one half. We perform a principal component
analysis on the matrix R and consider the following model:

tih = αh1ξi1 + αh2ξi2 + . . .+ αhkξik + . . .+ αhpξip, (3)

where tih (h = 1, . . . , p, i = 1, . . . , n) is the score of the h-th principal com-
ponent th for object i, αhk (k = 1, . . . , p) are the loadings, with

∑p
h=1 α2

hk = 1,
and ξik is the score for object i relative to the k-th latent variable. t ∼ N(0, Λ)
where Λ is a diagonal matrix with elements λ2

h =
∑p

k=1 α2
hk, since the principal

components are orthogonal. The variance of each component th and the coefficients
αhk (h = 1, . . . , p, k = 1, . . . , p) are estimated through the eigenvalues and
the eigenvectors, respectively, of the matrix R, without making any assumption
about the distribution of the latent variables ξk . Given these values, we estimate
the score of the principal components by expected a posteriori (EAP) estimates.
This analysis does not require previous smoothing if the matrix is not positive
definite. However, for the identifiability of the score estimates, all eigenvalues must
be positive and a smoothing procedure is required if the matrix is positively semi-
definite but not definite. We use the procedure implemented in Matlab, which adds
a regularization term to the matrix. Different regularization terms lead to slightly
different solutions. The EAP estimator of the h-th principal component score is the
mean of the posterior distribution of th, which is expressed by:
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E(th|xi,w) =

∫
thf(th|xi,w)dth =

∫
thf(xi|th,w)φ(th|w)dth∫
f(xi|th,w)φ(th|w)dth

, (4)

where f(·) indicates the probability density function, w is the vector of known
parameters (the thresholds and the eigenvectors, estimated geometrically by the
principal component analysis on R), and φ is the Gaussian distribution. In the
following equations, for parsimony, w will be omitted. For every object i (i =
1, . . . , n), the probability of the k-th binary attribute to be equal to 1, given the h-th
principal component score, can be formalized as follows:

P (xik = 1|th) = 1

σhk
√
2π

∫ ∞
Tk

e
− (tih−αhkξk)2

2σ2
hk dξk. (5)

where σ2
hk = λ2

h − α2
hk =

∑
l �=k α2

hl. Introducing the change in the variable:

P (xik = 1|th) = 1

αhk
√
2π

∫ tih−αhkTk
σhk

−∞
e

−z2

2 dz, when αhk > 0, (6)

P (xik = 1|th) = 1

−αhk
√
2π

∫ ∞
tih−αhkTk

σhk

e
−z2

2 dz, when αhk < 0. (7)

Letting zhk = (tih − αhkTk)/σhk, we may define the following quantities:

Fhk(th) = |αhk|−1Φ(zhk), when αhk > 0 and xik = 1

or αhk < 0 and xik = 0,

Fhk(th) = |αhk|−1[1− Φ(zhk)], when αhk < 0 and xik = 1

or αhk > 0 and xik = 0,

where Φ is the standard normal cumulative function. Assuming the independence
of the binary attributes xk (k = 1, . . . , p) conditionally on each component th, we
obtain f(xi|th) =

∏p
k=1 Fhk(th)

xik [1 − Fhk(th)]
1−xik . This assumption may be

thought of as rather unrealistic, since at least one latent variable generating a binary
attribute is dependent from the other latent variables. In fact, formally this is a weak
point of our procedure, which allows for simple and fast computation. Considering
S quadrature points, we estimate the scores as follows:

t̃ih =

S∑
s=1

tqsh
φ(tsh)

∏p
k=1 Fhk(th)

xik [1− Fhk(th)]
1−xik∑S

s=1 φ(tsh)
∏p
k=1 Fhk(th)xik [1− Fhk(th)]1−xik

, (8)

where tqsh are equally spaced points in [−zh, zh] with Φ(−zh/λh) = 0.001, and
φ(tqsh) are the density functions of these points in the N(0, λ2

h) curve times the
interval size.
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Given the estimates t̃ih, the EAP estimates ξ̃ik of the latent variables may be
reached through analogous steps. The EAP estimator of the k-th variable score is
the mean of the posterior distribution of ξk, which is expressed by E(ξk|xk) =∫
ξkf(ξk|xk)dξk. Let ξ+k = ξk if ξk ≥ Tk and ξ−k = ξk if ξk < Tk. Then:

f(ξk|xik = 1, t̃ih) =
1

αhk
√
2π

∫ t̃ih−αhkξ
+
k

σhk

−∞
e

−z2

2 dz, if αhk > 0,

f(ξk|xik = 1, t̃ih) =
1

|αhk|
√
2π

∫ ∞
t̃ih−αhkξ

+
k

σhk

e
−z2

2 dz, if αhk < 0,

f(ξk|xik = 0, t̃ih) =
1

|αhk|
√
2π

∫ t̃ih−αhkξ
−
k

σhk

−∞
e

−z2

2 dz, if αhk < 0,

f(ξk|xik = 0, t̃ih) =
1

αhk
√
2π

∫ ∞
t̃ih−αhkξ

−
k

σhk

e
−z2

2 dz, if αhk > 0.

(9)

Let z+hk =
t̃ih−ahkξ

+
ik

σhk
, z−hk =

t̃ih−ahkξ
−
ik

σhk
,

F+
hk(ξk) = (αhk)

−1Φ(z+hk), when αhk > 0,

F+
hk(ξk) = |αhk|−1(1− Φ(z+hk)), when αhk < 0,

F−hk(ξk) = |αhk|−1Φ(z−hk), when αhk < 0,

F−hk(ξk) = (αhk)
−1(1 − Φ(z−hk)), when αhk > 0.

(10)

Then f(ξk|xk) =
∑p

h=1 F+
hk(ξk)

xikF−hk(ξk)
1−xik ×φ(t̃ih). Considering S quadra-

ture points, we estimate the scores as follows:

ξ̃ik =

S∑
s=1

ξqskφ(ξsk)

p∑
h=1

(F+
hk(ξs)

xikF−hk(ξs)
1−xik × φ(t̃ih)), (11)

where ξqsk are equally spaced points in [−zk, Tk] when xik = 0, in [Tk, zk] when
xik = 1, with Φ(−zk) = 0.001, φ(ξqsk) being the density functions of these points
in the N(0, 1) curve times the interval size.

3 An E-Government Application

In this section, we present a cluster analysis of the Emilia–Romagna municipalities,
based on a set of back office and front office indicators. The indicators aim at
establishing to what extent e-government is working within the region. The data
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have been collected using an online questionnaire, a printed questionnaire sent
by post, filled in face to face or obtained over the phone. The aim of this study
is to obtain an insight into how municipalities are affected by ICTs and ICT-
enabled developments. ICTs have opened up new possibilities for municipalities
to overcome traditional disadvantages deriving from remoteness and distance. But
instead of increasing the quality of service everywhere, they have been shown to
exacerbate disparities. This is due to the difference in the speed and intensity of
the adoption of ICTs, and also to the degree that these technological innovations
are utilized. Regional investment in infrastructure related to the Information Society
have increased over the past years, and regional decision makers are increasingly
committed to the development of ICT in society. As a consequence, policy-makers
need to be able to identify areas in which public investments and political support
are most likely to be successful.

In order to cluster the 268 municipalities and identify the number of areas
with a different ICT development level, we consider 20 binary features and 3
continuous variables. The binary indicators indicate the presence of the following
online facilities: x1: online resolutions of the public administration; x2: call for
bids; x3: e-procurement platform; x4: service delivery information; x5: informative
e-mails; x6: telephone and e-mail index; x7: web site organization for life events;
x8: web site organization for personalization; x9: web site organization for subjects
and/or offices; x10: online questionnaires or forum related to the municipality
activities; x11: possibility to enter into the home page with call centers or sms or
wap; x12: SUAP; x13: dynamic map; x14: information on the government body; x15:
e-mail of the elected representative leadership; x16: information on the possibility
to access the restricted area; x17: service chart; x18: interactive site map; x19: pages
written in a foreign language; x20: quality approved by W3C Markup Validator. The
continuous variables are: y21: percentage of employees with a digital signature; y22:
percentage of employees dedicated to ICT; y23: percentage of employees that have
received ICT training.

We estimate models from 2 to 5 groups with the Latent Gold package [6],
considering a data set with all continuous variables. In this data set, the categorical
values x1, . . . , x20 are substituted with the latent variables scores y1, . . . , y20 and
all variables are treated as Normal in the mixture models. The first model for
each number of classes assumes local independence. The other specifications
are obtained by subsequently adding the direct relationship between couples of
variables, on the basis of the Latent Gold’s bivariate residuals information. The
bivariate residuals computed by the package indicate how similar the estimated and
the observed bivariate associations are. These residuals can be interpreted as lower
bound estimates for the improvement in fit in the likelihood when the corresponding
local independence constraints are relaxed and, in each model, is added the local
dependency with the highest Latent Gold’s bivariate residual in the previous model.
For assessing and comparing the models, we use the BIC criterion. Table 1 reports
the BIC values and the number of parameters. Variables from 1 to 20 are the latent
variables scores, and variables y21, y22, and y23 are the continuous variables in
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Table 1 BIC values and number of estimated parameters (par.)

Model Description 2 clusters 3 clusters 4 clusters 5 clusters

BIC par. BIC par. BIC par. BIC par.
1 Local independence 26591 70 25629 94 25230 118 25291 142
2 Model 1 + σy22y19 25336 72 24023 97 24239 122 23918 147
3 Model 2 + σy21y18 23710 74 22739 100 22519 126 22548 152
4 Model 3 + σy19y14 24994 76 22894 103 22361 130 21870 157
5 Model 4 + σy23y20 23394 78 22656 106 22790 134 22580 162
6 Model 5 + σy15x6 23229 80 22828 109 22383 138 21837 167
7 Model 6 + σy7y1 23582 82 22325 112 22478 142 21555 172
8 Model 7 + σy9y2 23066 84 22654 115 22951 146 21925 177
9 Model 8 + σy14y2 22996 86 22073 118 22135 150 22005 182

10 Model 9 + σy8y7 23187 88 21602 121 21974 154 21472 197
11 Model 10 + σy16y4 22849 90 22315 124 22240 158 21497 202

the original data set. σkj is the covariance between variables k and j. For each
number of groups, the models with more local dependencies have the lowest BIC
values. The accuracy of fit in all situations is improved with inclusions of direct
relationships between variables: the local independence model always performs
worst. The fact that working with more local dependencies may yield a simpler
final model with less clusters is evident: model 11 with 2 clusters performs better
than model 4 with 3 clusters and model 8 with 4 clusters. Table 2 reports the relative
frequencies of category 1 in the binary variables (x1, . . . , x20) and the mean values
of the three continuous variables (y21, y22, y23) in each group, in the 4-clusters
partitions with all considered bivariate dependencies (model 11). The classification
is in agreement with the criterion of segment addressability suggested by Chaturvedi
et al. [1] and related to the degree according to which a clustering solution can be
explained by variables that can be controlled by policy makers. Indeed, in group 3,
the most densely populated municipalities are clustered, with the most efficient
public nets that allow both the distribution of nearly all of the interactive services by
the Public Administration and the development of other telecommunication services
for citizens (call centers, sms, . . .). This cluster is homogeneous with respect to
the presence of online information and facilities like: resolutions of the public
administration (x1), call for bids (x2), informative e-mails (x5), telephone and
e-mail index (x6), web site organization for life events (x7), web site organization
for subjects and/or offices (x9), information on the governing body (x14), e-mail
of the elected representative leadership (x15), interactive site map (x18), and pages
written in a foreign language (x19). This group has a small percentage of employees
with a digital signature but higher percentages of employees dedicated to ICT
support and employees that have received ICT training. In group 2, the smallest
municipalities are clustered. These are usually mountain communities, not in tourist
areas. These units are the least technologically advanced and are in areas where it is
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Table 2 Cluster means for models 11 with 4 groups

Cluster 1 2 3 4 tot

x1 0.49 0.00 0.73 0.36 0.44
x2 0.88 0.34 1.00 0.82 0.82
x3 0.01 0.00 0.27 0.00 0.03
x4 0.46 0.06 0.93 0.55 0.44
x5 0.78 0.66 1.00 1.00 0.78
x6 0.78 0.22 0.87 0.55 0.71
x7 0.09 0.00 0.67 0.00 0.10
x8 0.12 0.00 0.47 0.18 0.13
x9 0.93 0.31 1.00 0.73 0.85
x10 0.06 0.03 0.33 0.00 0.07
x11 0.05 0.00 0.40 0.18 0.07
x12 0.17 0.00 0.80 0.09 0.18
x13 0.52 0.16 0.93 0.55 0.50
x14 1.00 0.00 1.00 0.91 0.87
x15 0.72 0.13 0.93 0.45 0.65
x16 0.31 0.00 0.87 0.36 0.31
x17 0.02 0.00 0.27 0.00 0.03
x18 0.12 0.00 0.93 0.00 0.15
x19 0.00 0.00 1.00 1.00 0.10
x20 0.14 0.00 0.47 0.00 0.13
y21 6.28 3.72 3.13 10.3 6.05
y22 0.95 0.84 1.89 0.79 1.00
y23 8.44 2.77 22.7 10.7 8.71

nc 210 32 15 11 268
pop 8706 2702 105060 15924 13678

Last column (“tot”) reports the means in the sample. Last row (“pop”)
reports the average population of municipalities belonging to the
cluster

practically impossible to build an optic fibers net. Due to this technological barrier,
the online services offered are only the basic ones. The percentage of employees
devoted to ICT support is comparable with the values in the other groups: this
aspect denotes that the absence of front office services is due to the absence of a
broad band internet connection and of communication infrastructures as opposed to
local political will. In group 4, tourist places are clustered. These municipalities are
characterized by the presence of online services that are more useful for tourists
rather than citizens. Indeed, this cluster is perfectly homogeneous with respect
to x5 (presence of informative e-mails) and x19 (presence of pages written in a
foreign language). The percentage of employees with a digital signature is much
higher than in the other groups. Cluster 1 is the largest one and, obviously, the least
homogeneous. It groups municipalities equipped with a public net able to support
most interactive services that have not achieved “excellence” and may improve the
opportunities for citizens.
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Cross-Lagged Structural Equation Models
vs Latent Growth Curve Models: A Study
of Material Deprivation in Portugal with ICOR

Paula C.R. Vicente and Maria de Fátima Salgueiro

Abstract
Structural equation models with lagged and cross-lagged effects and latent
growth curve models are proposed in this chapter to demonstrate the use of two
different, but complementary, approaches to modeling material deprivation over
time. Portuguese data (ICOR) from the European Statistics on Income and Living
Conditions (EU-SILC) are used. The four waves for which the data are available,
2004–2007, are considered.

1 Introduction

The survey on living conditions and household income (ICOR) is a panel that
was implemented with the objective of ensuring the Portuguese participation in the
European database called European Statistics on Income and Living conditions (EU-
SILC). This database was created with the aim of obtaining indicators on income,
living conditions, and social exclusion, comparable between the various European
Union countries. The Portuguese participation is assured by the Instituto Nacional
de Estatı́stica (INE) since 2004, on an annual basis. ICOR has the particularity of
being a rotating panel.

In recent studies the level and the quality of life of families have been assessed
through a concept of material deprivation, measured by indicators such as the ability
to access a set of basic needs, possession of durables, housing conditions, and even
environmental conditions of the place where families live (see [4]).

In this chapter we use data from the ICOR from 2004 to 2007 to study the concept
of material deprivation in two dimensions: (1) the financial capacity to meet basic
needs; and (2) the possession of durables. These data are used to longitudinally
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Table 1 ICOR: number of
households in the rotational
panel, from 2004 to 2007

Survey year
Panel: Year
selected 2004 2005 2006 2007

2004 1251
2004 1242 1129
2004 1252 1158 1097
2004 1240 1144 1102 1017
2005 1184 1052 970
2005 1116 999
2005 1324

Total
households 4985 4615 4367 4310

model material deprivation. A cross-lagged structural equation model and a latent
growth curve model are proposed. The statistical software Mplus 5 is used to
estimate all models presented.

2 The Data

The ICOR is a rotating panel, with a dynamic rotation of one-fourth of the sample
in each year. Thus, no household or individual will remain in the sample for more
than four consecutive years. The adopted scheme minimizes the inquiring efforts of
the participants in the longitudinal study. The collected longitudinal data have been
made available for researchers for the period 2004–2007, both at the household level
and at the individuals level (see [5]).

In the current study, and in order to measure material deprivation, two dimensions
were considered: financial capacity and possession of durables. The scores for each
dimension are obtained as sums of items in the ICOR questionnaire. The financial
capacity dimension includes five items: (1) can afford 1 week vacation out of home
per year; (2) can afford a meal with meat or fish every 2 days; (3) can afford to keep
home adequately warm; (4) can afford regular expenses with no difficulty; and (5)
can afford unexpected expenses without resorting to loan. Being computed as a sum
of the items the household can afford, the financial capacity variable takes values
from 0 to 5. The possession of durables considers the following items: (1) tv set;
(2) telephone; (3) washing machine; and (4) personal vehicle, and takes values from
0 to 4.

The sample under analysis includes 991 households with valid answers to all
questions about financial capacity and possession of durables. In 2004, 20.7% of
the households can afford the regular expenses with no difficulty, 49.6% can afford
keeping the house warm, 94.2% can afford a meal with meat or fish every 2 days,
31.8% can afford 1 week vacation, and 77.3% can afford unexpected expenses
without resorting to loan. In terms of the possession of durables, 65.9%, 91.7%,
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98.7%, and 89.8% of the households mentioned the possession of personal vehicle,
washing machine, tv set, and telephone, respectively.

3 Methodology

This study makes use of two complementary methodologies for modeling longi-
tudinal data: structural equation models and latent growth curve models. A brief
overview of each statistical technique is now given.

3.1 Cross-Lagged Structural Equation Models

The structural component of a structural equation model (SEM) specifies the set of
dependencies among the constructs of interest in the model (see Bollen [1]). A SEM
with lagged and cross-lagged effects appears as an application of the concepts of
autoregressive models to SEMs with longitudinal data. Let us consider two variables
of interest, y and w, measured at different time points. Each variable at time t is
explained by its value at time t − 1 (lagged effect) and by the value of the other
variable at time t− 1 (cross-lagged effect)—see Finkel [3].

Figure 1 displays the path diagram of a cross-lagged structural equation model
with two processes (for y and w). Variables y1, y2, y3, y4 correspond to the four
repeated measures of one process (e.g., the financial capacity dimension). Variables
w1, w2, w3, w4 correspond to the repeated measures of the other process (possession
of durables), at each of the four time points. The model can be represented by the
following system of equations, with t = 2, 3, 4 and i = 1, 2, . . . , N :

yit = βytyt−1yit−1 + βytwt−1wit−1 + εyit , (1)

wit = βwtyt−1yit−1 + βwtwt−1wit−1 + εwit , (2)

where βytwt−1 and βwtyt−1 represent the cross-lagged effects and βytyt−1 and
βwtwt−1 represent the lagged effects. The residual terms in each process (εyt and
εwt) have mean zero, are not autocorrelated, and are uncorrelated with the right-hand
side variables. Since the two processes are modeled simultaneously, at each time
point, εyt and εwt are allowed to be correlated. These covariances are denoted by
ψwtyt and are parameters in the model (and so are the variances ψwtwt and ψytyt).
The residual variables are assumed to follow a multivariate normal distribution. For
the purpose of model estimation the variance/covariance structure of the yt and
wt implied by the specified model is equated to the observed variance/covariance
structure among the four repeated measures of the two dimensions of interest.

The lagged and cross-lagged effects give information about the dependence
structure of the variables of interest, at different time points. However, these
relationships only reflect changes for all individuals considered, not being able
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Fig. 1 Path diagram of a cross-lagged SEM (for y and w) and four time points

to access any information about individual changes. To account for individual
differences in processes of change, latent growth curve models can be used (see [6]).

3.2 Latent Growth Curve Models

Latent growth curve models (LGCMs) are a useful statistical procedure for the
analysis of longitudinal data. Through the estimation of a latent trajectory (linear or
not), these models allow: (1) to estimate the average initial level and rate of change
of all individuals; (2) to estimate the variability between individuals at the initial
level and in the rate of change; and (3) to explain the heterogeneity observed in the
trajectories, using conditional models. The idea underlying this type of longitudinal
modeling is that the true trajectory is not observed, but latent, being estimated from
the structure of means and correlations among the repeated measurements of the
observed variables. LGCMs were developed within the framework of structural
equation models, thus sharing many of its advantages (see [2, 7]).

Sometimes it is of interest to model joint trajectories for the repeated measures of
two (or more) variables and multivariate LGCMs are required. Figure 2 displays the
path diagram of a bivariate LGCM to simultaneously model the growth trajectories
of y and w. The latent variables αy and βy represent the random intercept and the
random slope for process y and are measured by the observed repeated measures
of y. More generally, for the process y the value for individual i = 1, . . . , N at time
t = 1, . . . , T is given by

yit = αyi + λtβ
y
i + εyit, (3)

and for the process w the value for individual i at time t is given by

wit = αwi + λtβ
w
i + εwit, (4)

where λt = t− 1 in the case of a linear growth trajectory (therefore factor loadings
associated with the random slope are constrained to 0, 1, 2, and 3 in Fig. 2). The
variances of the εit in each process are parameters in the model.
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Fig. 2 Path diagram of a bivariate LGCM,where y1, y2, y3, y4 correspond to the four time point
measures for one process and w1, w2, w3, w4 represent the four repeated measures for the other
process

The parameters αyi and αwi , the random intercept for individual i in process y, or
w, are given by (5). The parameters βyi and βwi , the random slope in process y, or
w, for individual i, are given by (6),

αi = μα + ζαi (5)

βi = μβ + ζβi , (6)

where μα and μβ are the mean of the intercept and the mean of the slope across
all cases (in each process, y or w). The ζαi and ζβi are disturbances, with mean
zero and uncorrelated with εit in each process, y or w, and represent the between
individuals variability around the global mean. The covariance structure of the
random intercepts and slopes in the two processes has variances Ψαα = Var(ζα),
Ψββ = Var(ζβ) and covariance Ψαβ = Cov(ζα, ζβ). These covariances are
represented by the double-headed curved arrows in Fig. 2.

The parameters of special interest in the model are the means (μα and μβ) and
variances (Ψαα and Ψββ) of the random effects in each process, and the residual
covariance structure between the random effects in the two processes (Ψαβ).

The equations presented so far assume that observed variables are continuous and
normally distributed. If observed variables are ordinal, as is the case in this chapter,
an auxiliary threshold model linking the ordinal variable yit with an underlying
continuous latent variable y∗it is defined as:

yit = c, when τc−1 < y∗it ≤ τc (7)

where c = 1, 2, . . . , C is the total number of ordered categories; τc−1 and τc are
the lower and upper thresholds for category c with τ0 = −∞ and τc = +∞. The
c − 1 threshold values are ordered from lowest to highest. The LGCM with ordinal
manifest variables is then defined as

y∗it = αi + λtβi + εit (8)
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by replacing yit by y∗it in (3). Similar reasoning applies for process w, and all
remaining model definitions follow.

Mplus 5 was used to estimate all models presented in this chapter. The robust
weighted least squares estimator (WLSMV) implemented in Mplus was used to
deal with models with ordinal indicators.

In order to assess goodness of fit, the following measures are commonly used
in the literature: the Tucker–Lewis Index (TLI), the Comparative Fit Index (CFI),
and Weighted Root Mean Square Residual (WRMR). Recommended fit values are
TLI > 0.95, CFI > 0.95, and WRMR < 0.9.

4 Results

Two different models are considered: a cross-lagged structural equation model and
a bivariate latent growth curve model. Results for the proposed cross-lagged SEM
(Table 1) show that the model fits the data well: CFI = 0.992, TLI = 0.992, and
WRMR = 0.950. Table 2 displays the estimates (and t values in parenthesis) for the
lagged and cross-lagged regression coefficients in a standardized solution (in which
the variances of the variables are set to one so that the magnitude of the effects can
be compared). Most of the lagged and cross-lagged effects are significant, leading to
the conclusion that the financial capacity and the possession of durables at each time
point are influenced by itself and by the other variable, in the preceding time point.
One should point out that the lagged effects are always larger than the cross-lagged
effects. The only nonsignificant effect is the effect of the financial capacity (2005)
on the possession of durables (2006).

Results for the proposed bivariate LGCM (Fig. 2) also indicate an adequate
model-data fit: CFI= 0.991, TLI=0.999 and WRMR=0.568. Table 3 displays
the estimates (and t-values in parenthesis) for the means, variances, and covariances
of the random effect parameters. From Table 3 it is possible to conclude that in both
processes (financial capacity and possession of durables) the mean of the slope is
nonsignificant, suggesting that the average material deprivation does not change
from 2004 to 2007. The estimated variances for the intercept and for the slope
factors are both significant, leading to the conclusion that households vary, both
regarding their 2004 material deprivation and their growth trajectories over time.
The covariance between the intercepts of the two processes is significant, suggesting
that the initial levels of financial capacity and possession of durables are associated.
The covariance between the intercept of financial capacity and the slope of financial
capacity is also significant. Its negative sign suggests that higher levels of financial
capacity in 2004 are associated with lower mean growth trajectories from 2004
to 2007.



CL-SEM vs LGCM: A Study of Material Deprivation in Portugal 19

Table 2 Estimates (t-values), in a standardized solution, for the lagged and cross-lagged regres-
sion coefficients in the cross-lagged SEM

Financial capacity05 Possession of durables05
(y2) (w2)

Financial capacity04 (y1) 0.841 (55.980) 0.146 (7.517)
Possession of durables04 (w1) 0.081 (3.901) 0.816 (71.352)

Financial capacity06 Possession of durables06
(y3) (w3)

Financial capacity05 (y2) 0.815 (44.192) 0.026 (2.480)
Possession of durables05 (w2) 0.090 (3.476) 0.956 (147.190)

Financial capacity07 Possession of durables07
(y4) (w4)

Financial capacity06 (y3) 0.769 (40.339) 0.062 (3.416)
Possession of durables06 (w3) 0.135 (4.980) 0.939 (86.219)

The boldface denotes a significant estimate, at the 5% level

Table 3 Estimates (t-values) for the random parameters of the LGCM

Financial capacity Possession of durables

Mean of the slope −0.012 (−1.367) 0 (−0.025)
Variance of the intercept 0.902 (61.733) 0.968 (205.156)
Variance of the slope 0.029 (7.905) 0.005 (4.124)
Cov. between InterceptFC InterceptPD 0.550 (22.521)
Cov. between SlopeFC SlopePD −0.004 (−1.282)

Cov. between InterceptFC SlopeFC −0.057 (−6.834)

Cov. between InterceptPD SlopePD −0.008 (−1.107)

The boldface denotes a significant estimate, at the 5% level

5 Discussion

Studies on poverty are often based on household disposable income. However, it
can be argued that a multidimensional approach should be followed, and more than
one indicator should be used to measure poverty and material deprivation. This
chapter proposes measuring the financial capacity and the possession of durables
(two dimensions of material deprivation) using several indicators.

A cross-lagged SEM and a LGCM are proposed to investigate and answer the
following four research questions:
• How do the financial capacity and the possession of durables change globally,

over the 4 years, considering all the households?
• Which evidence do we find for cross-lagged effects from financial capacity on

possession of durables and from possession of durables on financial capacity,
over time?

• Which evidence do we find for within and between individual growth variability
over the four time points, both regarding financial capacity and possession of
durables?
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• How do average initial levels of financial capacity and possession of durables
relate to the corresponding average growth rates, over the 4-year period under
analysis?
The first two questions are answered by the proposed cross-lagged SEM. In fact,

the results obtained with cross-lagged SEM allowed us to conclude that, at each time
point, the household financial capacity is explained by their financial capacity and by
their possession of durables in the previous moment in time. Similar conclusion can
be drawn for the household possession of durables, with the exception that the effect
of the 2005 financial capacity on the 2006 possession of durables is nonsignificant.

The bivariate LGCM proposed to jointly model the growth trajectories of the two
dimensions of material deprivation allows us to answer the last two questions. The
households average financial capacity and possession of durables does not change
significantly over time. However, households vary both regarding their average
material deprivation in 2004 and their growth of material deprivation from 2004
to 2007. Additionally, it is possible to conclude that higher initial levels of financial
capacity are associated with lower mean growth trajectories in financial capacity
from 2004 to 2007; the initial level of financial capacity is associated with the initial
level of the possession of durables. Hence, the complementary nature of the two
statistical approaches has been illustrated.
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A Finite Mixture Approach to Uncover
the Heterogeneity in the Relationship Between
Visit Motivation and Activity Preferences

Catarina Marques, Elizabeth Reis, and João Menezes

Abstract
This research uses a model-based segmentation approach in partial least
squares path modeling—the FInite MIXture Partial Least Squares (FIMIX-PLS)
methodology—to capture the unobserved heterogeneity in the inner path model
estimates of the influence of motivation to visit the Portuguese protected areas
on visitors’ preferences for different types of activities. Three distinctive visitor
segments were identified. Results confirm the assumption of heterogeneity as the
relationships differ across segments.

1 Introduction

Heterogeneity in the context of structural equation modeling (SEM) has typically
been addressed by assuming that individuals can be assigned to segments a priori,
for example, on the basis of demographic or psychographic variables (observed
heterogeneity). However, if the substantive theory on the variables causing het-
erogeneity is not available, there is unobserved heterogeneity which can result in
serious problems, e.g., biased parameter estimates thus leading to potentially flawed
conclusions [7, 11, 16].

Different methods have been developed for the analysis of unobserved hetero-
geneity in SEM. Hahn et al. [4] extended the STructural Equation finite Mixture
Model (STEMM) of Jedidi et al. [7, 8] to a Partial Least Squares (PLS) framework
[9, 19] and named their model FIMIX-PLS. The data are supposed to be the result
of the mixture of two or more populations in different proportions, with the aim
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of estimating the (a posteriori) probability of each individual belonging to each of
these subpopulations. The technique is based on the application of the Expectation-
Maximization (EM) algorithm to the latent variable scores predicted in PLS;
EM makes an estimation of the a posteriori probabilities used for the individuals’
classification. In summary, the FIMIX-PLS approach combines the advantages of
predicting path coefficients using PLS, with the maximum likelihood estimation of
a finite mixture model.

The current research studies how the motivation to visit the Portuguese protected
areas (PPA) influences visitors’ preferences for different types of activities by
accounting for unobserved heterogeneity. As this influence may differ for distinct
groups of visitors, it is essential to identify visitor segments so that appropriate
interpretations can be made that are of great importance to marketing decisions.
Partial least squares path modeling (PLS-PM) is used to test the hypothesized
relationships and model, and the finite-mixture PLS methodology is used to identify
distinctive visitor segments. The use of PLS-PM is explained by its minimal
demand on sample size and by its suitability to handle both reflective and formative
measurement models [5]. As for the uncovered heterogeneity, FIMIX-PLS is
regarded as the primary approach [17] and has become mandatory for evaluating
PLS-PM results [5]. A conceptual model to explain how visit motivations influence
visitors’ preferences for particular nature or culture-based activities is proposed.
Motivations to visit parks are based on the push and pull factors theory developed
by Crompton [1].

2 The Influence of Visit Motivation on Activity Preferences

Crompton’s [1] push and pull factors have been one of the most widely used
theoretical framework to explain tourism motivations. The idea behind this two-
dimensional approach lies in the assumption that individuals travel because they are
pushed by their own internal forces and pulled or attracted by the external forces of
the destination attributes, both forces being concurrently attractive in the choice of a
particular destination [1,2,18]. Therefore, the push motivations explain the decision
to travel, considered here as the motives to visit PPA, while the pull motivations
justify the options when faced with the choice of travel destinations. In this study,
the pull factors are considered simultaneously as the PPA attractions and activities.

Figure 1 displays a simplified diagram of the conceptual model used to test the
proposed hypotheses. Marques [10] presents a detailed description of the model.
Based on the literature of nature-based tourism, the proposed hypotheses are as
follows:

H1.1: The motivations related to the enjoyment of nature positively influence the
importance given to nature-based attractions (H1.1a) and observation and study
attractions (H1.1b).
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Fig. 1 Conceptual model and research hypotheses

H1.2: The motivation to visit PPA due of cultural related issues positively
influences the importance of nature-based attractions (H1.2a) and local culture
attractions (H1.2b).
H1.3: Motives related to sports positively influence the importance of nature-
based attractions.
H1.4: Fulfilment and socialization positively influence the importance of
nature-based (H1.4a), local culture (H1.4b), and study and observation (H1.4c)
attractions.
H2.1: The motives related to the enjoyment of nature positively influence the
preference for nature-based sports (H2.1a) and interpretation activities (H2.1b).
H2.2: Culture-related motives positively influence the preference for recreation
activities in PPA.
H2.3: Sport-related motives positively influence the preference for nature-based
sports.
H2.4: Fulfilment and socialization positively influence the preference for nature-
based sports (H2.4a), interpretation (H2.4b), and recreation (H2.4c) activities.
H3.1: The importance of nature attractions positively influences the preference
for interpretation activities.
H3.2: The importance of cultural attractions positively influences the preference
for interpretation (H3.2a) and recreation (H3.2b) activities.
H3.3: The importance of study and observation attractions positively influences
the preference for interpretation activities.
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3 Model Specification

The PLS path model consists of two models, the outer and the inner models. The
inner model depicts the relationships among the endogenous latent variables and the
exogenous latent variables as posited by substantive theory. The outer model may
be specified in two different ways: as a reflective or a formative mode. Traditionally,
applications in marketing and business research are based on reflective measurement
[3, which represents a factor model], where it is assumed the indicators reflect the
variation in the latent variable, i.e., it is expected that changes in the construct will
result in changes in all its indicators. In contrast, the formative models come into
use when a combination of indicator variables underlies the latent variable. Under
these models, changes in the indicators are expected to be reflected in changes in
the latent variable (so the latter is an index). As mentioned, it is assumed that data
result from a mixture of several populations combined in different proportions.
Because the heterogeneity is concentrated in the inner model, each endogenous
latent variable is distributed as a finite mixture of K conditional multivariate normal
densities. The a posteriori probability of membership for each observation can
be computed using Bayes’ theorem, conditional on the estimates of the segment-
specific parameters. Hahn et al. [4] and Ringle [12] present a detailed description of
FIMIX-PLS algorithm.

4 Methodology

This research uses a survey approach based on a self-administered questionnaire.
The target population includes inhabitants in Portugal aged 15 years or more. The
survey was conducted between April and June 2005. There are 779 valid answers;
401 are considered visitors since they alleged to visit protected areas at least once
per year. All variables (measures of visit motives, PPA attractions and activities)
are measured on a 5-point Likert scale ranging from 1 for no importance to 5
for very important. The list of motives is in agreement with the literature on
nature-based tourism motivation; The PPA attractions were identified by accessing
PPA information and activity types were defined based on the orientations of the
Portuguese Program of Nature Tourism. For these reasons, the outer models of PPA
attractions and activities are assumed to be formative whereas the outer model of
visit motive is assumed to be reflective.

The segmentation process follows a four-step approach and the statistical
software SmartPLS 2.0 [13] was used. In the first step, the standard PLS-PM
algorithm was run on all cases to test the hypotheses and model, i.e., to estimate the
so-called overall model. The resulting scores for latent variables in the inner model
were used as input for the FIMIX-PLS procedure in the second methodological step.
As mentioned, the segment-specific heterogeneity is concentrated in the estimated
relationships between latent variables. FIMIX-PLS captures this heterogeneity and
calculates the a posteriori probability of membership for each observation, the
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mixture proportions, and the segment-specific estimates for the inner relationships
and for the regression variances of the latent endogenous variables. As the number
of segments is not known a priori, it is necessary to repeat the FIMIX-PLS algorithm
for a different number of segments to detect the optimal partition. The appropriate
number of segments to be retained is decided based on the jointly consideration of
AIC3 (Corrected Akaike Information Criterion with a penalty factor of three) and
CAIC (Consistent AIC) [16]. The Normed Entropy Statistic (EN) ensures that the
segments are sufficiently distinct.

Step 3 consists of an ex post analysis; this analysis involves the identification
of one or more external variables that best explain differences between the FIMIX-
PLS segments. This approach not only helps the interpretability of these segments
but also to overcome the limitation of FIMIX-PLS segmentation by focusing just on
the inner model relationships [14]. The CHAID algorithm is applied by using the
Classification Tree analysis of SPSS 17.0 with this purpose.

In the fourth step, data are classified by means of these explanatory variables,
which serve as a new input for a group-specific estimation in the PLS-PM approach
(a priori segmentation). The evaluation and interpretation of these group-specific
PLS-PM outcomes require a PLS multigroup analysis to determine significant
differences in both the inner and outer models.

5 Results

The results jointly obtained for the AIC3 and CAIC statistics suggest a three-
segment solution. The validity and reliability were assessed for the overall and the
segment-specific models by applying different measures for both types of indicators,
reflective, and formative. The results of the outer model show that the reflective
items used to measure the constructs are deemed valid (discriminant validity,
composite reliability, and convergent validity). All weight estimates are significant
and the variance inflation factor computed for all formative indicators are much
lower than the threshold value of 10 [5, 6]. Table 1 presents the values of R2 and
GoF measures for the overall and the segment-specific models. R2 values for the
endogenous latent variables in segment 1 are greater than in the overall model,
indicating a real improvement in the explained variance for segment 1 model. In
this segment, the activity type has relatively high values of R2, indicating that
visit motives and attractions have a strong influence on the importance of activities.
Segment 3 shows the lowest R2 values for the attraction latent variables; this means
that the visit motives for these visitors have little influence on the importance given
to PPA attraction (this segment-specific model also has the lowest GoF index).
However, the values of the average R2 are greater than those of the overall model.

Table 2 presents an overview of inner parameter estimates for the overall model
and the three segment-specific models. The results of the overall model suggest
that the main influences on activities are as follows: the nature-based sports are
influenced by the motivation to do sports (path coefficient estimate of 0.3427);
culture-related motives and attractions lead to valuing recreation (0.4316 and
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Table 1 R2 and GoF of the overall and the segment-specific models

Endogenous latent R2 Average

variables Overall Segment 1 Segment 2 Segment 3 R2

Attractions
NATURAL FEATURES 0.4167 0.6281 0.6485 0.2605 0.5060
CULTURAL FEATURES 0.3880 0.6325 0.5190 0.0961 0.4342
STUDY & OBSERVATION 0.4157 0.4858 0.6875 0.0658 0.3712

Activities
SPORTS 0.1422 0.5284 0.1562 0.1437 0.3455
INTERPRETATION 0.1820 0.5777 0.1842 0.2504 0.4113
RECREATION 0.2010 0.5319 0.0538 0.1711 0.3423

GoF 0.4519 0.5990 0.5421 0.3420

N 401 207 56 138
% 100 % 52 % 14 % 34 %

0.2312, respectively) and interpretation activities (0.3616); the motivation to enjoy
nature also affects the interest in interpretation activities (0.2452).

Segments 1, 2, and 3 comprise 51.6 %, 14.0 %, and 34.4 % of the overall
visitors group, respectively. Results from the multiple group comparison provide
evidence of varying relationships among constructs for all segments. Kruskal–
Wallis tests confirm that the segments are different in all inner relationships.
Pairwise comparison tests (Dunnett’s T3 for subsamples with unequal variances) are
also computed for each inner relationship. No differences are shown between pairs
of segments for only four relationships (referenced in Table 2 through the letters
a, b, and c in the last column).

The main influences on activities can be summarized as follows: In segment 1,
nature-based sports are influenced mainly by reasons of personal fulfilment
(path coefficient estimate of 0.4814); recreation activities by the interest in cultural
aspects of PPA (0.5328); and interpretation activities are affected by the desire to
enjoy nature (0.4452) and the attraction of cultural features (0.3107). Study and
observation also have a significant but negative effect on interpretation activities
(−0.3562). In segment 2,1 nature-based sports are only influenced by the motivation
to do sports in PPA (0.5604), while interpretation activities are influenced both by
the interest in cultural aspects of PPA (0.7050) and by being motivated by culture
(through an indirect effect; total effect of 0.3867). Segment 3 is also different from
the other two, because (1) the activities are influenced by the motives directly
related to them (see hypotheses H2.1b, H2.2 and H2.3); (2) fulfilment and social
motives have negative effects on all activities (although the impact on sports is
not significant); and (3) attractions have only one significant effect on activities

1Some path coefficient estimates in segment 2 have high values but are nonsignificant. This
situation may be the result of the highly skewed data, since the non-normal data inflate bootstrap
standard errors and thus reduce statistical power [5].
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Table 2 Standardized path coefficients for the overall and the segment-specific models

Overall KW
Hyp. Inner paths model Segment 1 Segment 2 Segment 3 statistics

H1.1a NATURE ENJOYMENT →
NATURAL FEATURES

0.4150* 0.5128* 0.5651* 0.5130* 32.55*a

H1.1b NATURE ENJOYMENT →
STUDY & OBSERVATION

0.4241* 0.5108* 0.4950* 0.2271 304.22*b

H1.2a CULTURE → NATURAL
FEATURES

0.1598* 0.1780* −0.0409 −0.6154* 477.25*

H1.2b CULTURE → CULTURAL
FEATURES

0.4459* 0.6290* 0.5191* −0.2126 429.39*

H1.3 M SPORTS → NATURAL
FEATURES

−0.0576 0.0832** −0.1342 0.1201 283.91*

H1.4a SOCIALIZATION &
FULFILMENT → NATURAL
FEATURES

0.1597** 0.1735* 0.4001** −0.0497 401.54*

H1.4b SOCIALIZATION &
FULFILMENT →
CULTURAL FEATURES

0.2016* 0.2245* 0.2165 −0.1233 193.64*

H1.4c SOCIALIZATION &
FULFILMENT → STUDY &
OBSERVATION

0.2513* 0.2521* 0.3563** −0.3211 272.41*

H2.1a NATURE ENJOYMENT →
SPORTS

−0.0707 0.1935* −0.4103 −0.1243 385.20*

H2.1b NATURE ENJOYMENT →
INTERPRETATION

0.2452* 0.4452* 0.2520 0.3987* 107.80*

H2.2 CULTURE → RECREATION 0.4316* 0.1146 0.3965 0.5571* 277.96*

H2.3 M SPORTS → SPORTS 0.3427* 0.1971* 0.5604* 0.5282* 369.17*c

H2.4a SOCIALIZATION &
FULFILMENT → SPORTS

0.1042 0.4814* 0.0088 −0.3121 377.20*

H2.4b SOCIALIZATION &
FULFILMENT →
INTERPRETATION

−0.0270 0.2869* 0.1664 −0.3604* 367.53*

H2.4c SOCIALIZATION &
FULFILMENT →
RECREATION

−0.2098* 0.1434** −0.2764 −0.3888** 326.35*

H3.1 NATURAL FEATURES →
INTERPRETATION

−0.1229 0.1035 −0.5078 0.0731 310.34*a

H3.2a CULTURAL FEATURES →
INTERPRETATION

0.3616* 0.3107* 0.7050* −0.0932 503.64*

H3.2b CULTURAL FEATURES →
RECREATION

0.2312* 0.5328* 0.0694 −0.0291 397.17*

H3.3 STUDY & OBSERVATION →
INTERPRETATION

−0.0064 −0.3562* −0.4580 0.3120* 397.77*

Results of Dunnett’s T3:
a No significant differences at 0.05 level between segments 1 and 2
bNo significant differences at 0.05 level between segments 1 and 3
c No significant differences at 0.05 level between segments 2 and 3
∗p < 0.05; **p < 0.10
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(effect of study and observation on interpretation); this means that PPA attractions
are not very important in explaining preferences for activities in this segment.
Regarding the proposed hypotheses, it can be seen that (1) only two are not verified
in the largest segment—segment 1; (2) in contrast, less than half are verified in
the remaining segments; (3) only one relationship is simultaneously not significant
in the overall and segment-specific models (H3.1: NATURAL FEATURES →
INTERPRETATION; this means that interpretation activities are not influenced by
the natural characteristics of PPA for all visitors).

6 Conclusion

This study uses the FIMIX-PLS approach to capture the unobserved heterogeneity
that exists in inner model estimates of how visit motivation influences activity pref-
erences. Overall, relationships differ across segments, with sign changes appearing
in some paths; therefore, estimating a overall PLS model across all three segments
might yield distorted results [11]. It is thus critical to identify different groups
of visitors with distinct estimates in the inner model in order to shape effective
marketing strategies [15].

The proposed conceptual model proves adequate to explain how visit motivations
influence visitors’ preferences for PPA activities for more than half of visitors (given
the high R2 values of endogenous latent variables and the number of hypotheses
verified in segment 1). For these visitors, PPA attractions play an important
possible mediating role in the relationship between visit motives and preferences
for activities. Implications of the findings are that the Portuguese park management
agency should target the segments differentially so as to provide activities for all
visitors. Targeting the segments would also be facilitated by profiling them with
visitor background variables.
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An Application of Structural Equation
Modeling of Test Dispositional Optimism
as Mediator or Moderator in Quality of Life
in Patients with Chronic Disease
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Abstract
The aim of the present study was to test a hypothetical model to examine
if dispositional optimism exerts a moderating or a mediating effect between
personality traits and quality of life, in Portuguese patients with chronic diseases.
A sample of 540 patients was recruited from central hospitals in various districts
of Portugal. All patients completed self-reported questionnaires assessing socio-
demographic and clinical variables, personality, dispositional optimism, and
quality of life. Structural equation modeling (SEM) was used to analyze the
moderating and mediating effects. Results suggest that dispositional optimism
exerts a mediator rather than a moderator role between personality traits and
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quality of life, suggesting that “the expectation that good things will happen”
contributes to a better general well-being and better mental functioning.

1 Introduction

Structural equation modeling (SEM) [2,12,14,16,18,22] techniques are considered
today to be a major component of applied multivariate statistical analysis for
addressing complex scientific questions in a great variety of areas of research.

Quality of life (QoL) has become an important concept for health care. It is a
construct composed of a number of factors that contribute to an individuals well-
being and adjustment to chronic disease [13]. Patients with chronic diseases are
required to live with the limitations imposed by their conditions. Some personality
traits, such as neuroticism and extraversion, are factors that contribute to a poorer
perception of health status and appear as determinants of QoL [5]. In studies that
involve patients with chronic diseases, QoL is frequently studied, but its associations
with personality traits and other variables, which contribute to the adjustment to
illness, are not very well clarified. Optimism is an important variable that can affect
the QoL [3, 8–10, 25], can promote a better emotional adjustment and physical
health. It predicts positive attitudes and the tendency to plan for recovery, seek
information, and reframe bad situations [25]. Data suggest the direct and indirect
effects between optimism and QoL, and the importance of personality traits in this
adjustment. But it is important to explore the nature of influence of optimism on
QoL. Is it a domain specific rather than a generalized construct, with differential
effects on QoL in different domains or contexts [25]? What type of effect does
dispositional optimism exert between personality and QoL, is it mediational or
moderating in nature? Several studies on optimism show its role as a moderator
or mediator [3, 8–10, 25] but not in this context and without the application of SEM
statistical methodology .

Using SEM, this study aimed to test two hypothetical models: (1) dispositional
optimism exerts a moderating influence between personality traits (neuroticism and
extraversion) and the psychosocial components of quality of life (general well-being
and general mental health); (2) dispositional optimism exerts a mediating influence
between these personality traits and the psychosocial components of quality of life,
in Portuguese patients with chronic diseases.

2 Methods

2.1 Participants and Procedure

This is a cross-sectional study comprising a sequential sample of 540 volunteers,
patients with chronic diseases who were approached by their physicians, in out-
patient departments of the main hospitals. Participants were eligible to participate
in the study if they met the following criteria: (1) diagnosis of epilepsy, diabetes,
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multiple sclerosis, obesity, myasthenia gravis, and cancer; (2) age > 18 years at the
time of the interview; (3) educational level higher than 6 years; (4) diagnosed at least
3 years prior to the study; (5) return to usual daily life with disease under control;
(6) no psychiatric disturbances. Written informed consent was obtained from the
institutional review board and from the subjects.

2.2 Measures

A self-report questionnaire was applied to evaluate neuroticism and extraversion,
dispositional optimism, and the psychological components of quality of life. The
data were collected by psychologists, after each consultation.

Socio-demographic and Clinical Variables
The demographic information included age (A), gender (G), and education (E).
The medical information was obtained from medical record and includes time since
diagnosis (TSD) and perception of severity of disease (PSD).

Neuroticism and Extraversion
A short version of the Revised NEO Personality Inventory (NEO-PI-R), the NEO
Five-Factor Inventory (NEO-FFI), was used [4]. It is a measure, composed of
60 items, that assess the five domains of personality. In this study, we are only
interested in Neuroticism (Neuro) and Extraversion (Extra), two of the five factors
that include 4 of the 60 items.

Dispositional Optimism
Dispositional optimism was measured using a six-item scale, the Revised Life
Orientation Test (LOT-R) developed to assess individual differences in generalized
optimism versus pessimism. Three items reflect expectations of positive outcomes
and three items reflect expectations of negative outcomes [20].

Quality of Life
This was measured with the SF-36 [26] questionnaire, a 36-item questionnaire,
divided into the several dimensions and three components identified in the IQOLA
project study [11]: physical health, mental health, and general well-being. In the
present study we did not use the physical component. The general well-being
component (GWB) includes the dimensions of general health (GH) and vitality (V):
the general mental health component (GMH) includes role emotional (RE), social
functioning (SF), and mental functioning (MF) dimensions.

2.3 Statistical Analysis

Data Analysis
Descriptive statistics were used to describe demographic and clinical characteristics.
Pearson’s correlation coefficient was used to analyze linear associations between
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neuroticism, extraversion, dispositional optimism, and the psychosocial components
of quality of life. Data were analyzed using the SPSS statistical package, version 17.

Structural Equation Modeling
SEM was used to test the two hypothetical models, using the traditional approach
of moderation and mediation, described by Baron and Kenny [1].

SEM is a multivariate technique that allows questions that involve multiple
regression analysis of factors. It can be viewed as a combination of factor analysis
(measurement model) and regression or path analysis (structural model). It is a
confirmatory rather than an exploratory technique, because it compares a hypoth-
esized model’s covariance matrix with that of observed data. The measurement
model illustrates the relationships of the latent variables to the observed variable,
whereas the structural model indicates the direct and the indirect effects of latent
and observed variables on each other. Goodness of fit indices were used to test the
adequacy of the models. The chi-squared test was used as an index of discrepancy
between the original (sample) correlation matrix and the (population) correlation
matrix estimated from the model. The value of χ2, its p-value, and the number of
degrees of freedom (df ) were examined. A nonsignificant p-value (p > 0.05) and the
ratio of χ2

df < 3 would represent a good model fit. Because the significance of chi-
square tests is dependent on the number of subjects, other goodness-of-fit indices
were also used: Comparative Fit Index (CFI > 0.9) and Root Mean Square Error
Approximation (RMSEA < 0.05). CFI values derived from the comparison of the
hypothesized model with the independent model. RMSEA values help to answer the
question of how well the model would fit the population covariance matrix if it were
available [2,12,14,16,18,22]. In SEM it is necessary to remember the problems of no
unicity due to the presence of latent variables. Even if the parameters were perfectly
identifiable, since the model gives a solution in terms of latent variables estimation
by means of observed variables, there is not a unique solution for the latent
variables of the model [23]. Analysis for constructing structural equation models
was conducted with the EQS 6.1 program and were used Maximum Likelihood
(ML) estimation with the Satorra–Bentler scaled chi-squared and adjustments to
standard errors.

2.4 Results

Patient Characteristics
The 540 patients include: 67 with cancer, 103 with diabetes, 56 with epilepsy, 19
with myasthenia gravis, 101 with multiple sclerosis, and 194 with obesity. Of this
group, 27.8 % were male, their mean age was 40.95 years (sd = 11.4), mean
school 9.90 years (sd = 4.7), mean time since the diagnosis was 11.74 years
(sd = 9.36), and mean severity of disease perception was 6.66 (sd = 2.76). Table 1
displays the mean scores and standard deviation of predictors, moderator/mediator,
outcome variables, and a correlation matrix. Dispositional optimism, neuroticism,
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Table 1 Descriptive statistics and correlations for dispositional optimism, personality traits, and
QoL

Mean sd 1 2 3 4 5 6 7 8

1. Disp.
Optimism

20.39 4.32 – −0.52* 0.46* 0.35* 0.38* 0.27* 0.35* 0.50*

2. Neuroticism 25.94 7.66 – −0.32* −0.38* −0.44* −0.42* −0.50* −0.61*

3. Extraversion 29.77 6.45 – 0.30* 0.37* 0.21* 0.40* 0.33*

4. General
health

48.24 20.36 – 0.50* 0.37* 0.42* 0.45*

5.Vitality 49.15 21.70 – 0.51* 0.55* 0.67*

6. Role emotion 65.26 40.70 – 0.53* 0.57*

7. Social
functioning

73.02 25.91 – 0.62*

8. Mental
functioning

59.21 22.66 –

*p < 5%

and extraversion were moderately associated with scores on the psychosocial
components of quality of life; only neuroticism shows an inverse relation with
dispositional optimism and with the psychological components of QoL.

Structural Equation Modeling
Moderation Model
One of the hypotheses in this study is that neuroticism and extraversion could be
associated with general well-being and mental health, and dispositional optimism
would moderate this relation. Controlling for socio-demographic and clinical vari-
ables, the model fit statistics for the moderator model χ2

(50) = 99.2623, p < 0.001,

CFI = 0.97, RMSEA = 0.044, χ2

df = 1.98) indicate a reasonable fit, but the
effect of the interaction between personality traits and dispositional optimism was
not statistically significant. These results reveal that the effect of neuroticism and
extraversion on psychological components of quality of life is not moderated by
dispositional optimism.

Mediation Model
The hypothesis that dispositional optimism mediates the relation between neuroti-
cism/extraversion and QoL was evaluated by two models. According to Baron and
Kenny criteria mediation [1], one model tests the significant effect of personality
traits on QoL and the other model tests the role of dispositional optimism as a
mediator between these variables. It means that the relationship between personality
traits and quality of life is reduced, or is no longer significant in controlling
for dispositional optimism. Both models are controlled for socio-demographic
and clinical variables. The results of first model showed a statistically significant
direct effect between personality traits (neuroticism and extraversion) and QoL
(general well-being and mental health), χ2

(25) = 53.847, p < 0.01, CFI = 0.98,
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Fig. 1 SEM with standardized factor loadings and Bentler–Weeks Model [22]

RMSEA = 0.048, χ
2

df = 2.2. The second (overall) model fits reasonably (χ2
(33) =

76, 645, p < 0.01, CFI = 0.98, RMSEA = 0.051, χ
2

df = 2.3) (Fig. 1). We found
that patients with higher levels of neuroticism felt less satisfied with general well-
being, general mental health, and they are less optimistic; extraverted patients tend
to have a better general well-being, better general mental health, and tend to be more
optimistic. After controlling for neuroticism/extraversion, we found that optimistic
patients tended to be more pleased with general well-being and had a positive
impact on general mental health. After controlling for dispositional optimism, it
was revealed that the strength of the relation between personality traits and QoL
was significantly reduced (evaluated by Sobel test [6, 15, 17]), demonstrating a
partial mediation effect of dispositional optimism between neuroticism/extraversion
and general well-being/general mental health. Results also reveal a statistically
significant impact of perception of severity of disease (b = −0.615), showing that
high levels imply poor general well-being.
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3 Conclusions

Using SEM, the purpose of this study was to evaluate, in Portuguese patients
with chronic diseases, the moderator or mediator effect of dispositional optimism
between personality traits (neuroticism and extraversion) and psychological com-
ponents of quality of life (general well-being and mental functioning).

Extensive research has documented links between personality traits and quality
of life [10]. In chronic diseases, optimism has been shown to predict diverse and
important benefits for individuals, affecting the adjustment of the quality of life
[7, 10, 19, 25]. In recent years, this personality attribute has been the one most
examined in the disease-adjustment relationship [21]. It influences several factors
which help in the selection of coping strategies for adjustment to life.

The study results are consistent with those of other authors [25]. We found that
neuroticism and extraversion influence dispositional optimism and, indirectly, affect
the psychological components of quality of life. Dispositional optimism is more
likely to play a mediating, rather a moderating, role in the association between
personality traits and quality of life. An optimistic attitude, in other words, the
expectation that good things will happen seems to promote a higher level of psycho-
logical well-being. This being so, interventions in patients should aim to achieve and
maintain a level of optimism that would help to facilitate and improve the quality
of life. The present study is accordance with the theory and research and makes it
possible to clarify the relationship between optimism and quality of life, concluding
that dispositional optimism is a mediator between neuroticism/extraversion and
general well-being/mental health in Portuguese patients with chronic disease.
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Longitudinal Modeling of Job Satisfaction
Using Portuguese Data from the European
Community Household Panel

Maria de Fátima Salgueiro and Patrı́cia Serra

Abstract
This chapter proposes modeling job satisfaction over time using a Latent Growth
Curve Model. Portuguese data from the European Community Household Panel
are used. Job satisfaction is modeled longitudinally, considering a two factor
structure: satisfaction with the extrinsic factors (material aspects of work) and
satisfaction with the intrinsic factors (qualitative aspects of work). The charac-
teristics of the complex survey design are taken into account in the estimation
procedure. The methodological approach allows to capture differences between
and within individuals in their job satisfaction trajectories.

1 Introduction

Latent Growth Curve Modeling (LGCM) has recently increased popularity as a
statistical technique for longitudinal data analysis. LGCM allows the investigation
of interindividual differences in change over time. Time is incorporated in the model
by imposing some restrictions on the factor loadings in a latent variable model.
Growth parameters are specified as latent variables (intercept and slope), and the
shape of the growth trajectory, linear or quadratic, is defined by the number of latent
variables included in the model.

One of the most important advantages of LGCM is that it is carried out within
the Structural Equation Modeling (SEM) framework, sharing many of its strengths,
but also some of its weaknesses. Although large sample sizes are required, LGCM
allows to evaluate the adequacy of model fit by using model fit indices. LGCM also
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has the ability to account for measurement error, by incorporating latent variables
in the model, and the capacity to deal with missing data [4].

This chapter proposes using a LGCM with a linear growth trajectory to model
job satisfaction over time. The concept of job satisfaction is considered multidimen-
sional and, therefore, a two-factor structure is used to account for both the extrinsic
and the intrinsic factors underlying job satisfaction [5]. The extrinsic factors are
related to financial and other material rewards, such as pay, promotion, and security.
The intrinsic factors are related to symbolic or qualitative aspects of work, for
example, the relation with supervision and the work itself.

This chapter uses Portuguese data from the European Community Household
Panel (ECHP). Salgueiro [6] used data from the ECHP to describe and explain
growth trajectories of a latent life satisfaction factor, measured by four indicators,
without taking into account the complex survey design. This chapter proposes a
bidimensional LGCM to model job satisfaction growth trajectories and accounts for
the complex structure of the survey. Information regarding job satisfaction available
in the ECHP includes satisfaction with earnings, job security, type of work, working
hours, working times, and working conditions/environment. The statistical software
Mplus 5.0 is used to estimate the parameters of the proposed model. The structure
of this chapter is as follows: Sect. 2 characterizes the sample under analysis and
describes the complex survey design of ECHP. Section 3 provides a brief description
of the proposed bivariate LGCM. Section 4 summarizes the main results of the
statistical modeling undertaken, and Sect. 5 presents the discussion of the results
and main conclusions.

2 The Data

The ECHP is a longitudinal survey, representative of the households in 12 European
countries and conducted between 1994 (wave 1) and 2001 (wave 8) [2]. Information
is collected both at the household level and at the individual level. The ECHP
collects data on perceptions of job satisfaction and on demographic characteristics,
including employment, income, health, and education. The current study uses the
Portuguese data available for the period 1994–2001. The following questions are
considered as indicators of job satisfaction: How satisfied are you with your present
job in terms of earnings? How satisfied are you with your present job in terms of job
security? How satisfied are you with your present job in terms of type of work? How
satisfied are you with your present job in terms of working hours? How satisfied
are you with your present job in terms of working times (day time, night time,
shifts, etc.)? and How satisfied are you with your present job in terms of working
conditions/environment? Respondents have been asked to rate their satisfaction
level using a Likert-type scale from 1—not satisfied, to 6—totally satisfied.

The subsample of 2,502 respondents aged between 16 and 65 years old,
employed throughout the period under analysis, working more than 15 h per week,
with valid answers in all job satisfaction variables, and for whom longitudinal survey
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Fig. 1 Distribution of the job satisfaction variables in year 1994

weights were available, was considered. Figure 1 summarizes the distribution of the
responses to the job satisfaction questions for the year 1994.

It is possible to conclude that the majority of the responses are at the level 4
of satisfaction for almost all items, except for satisfaction with earnings. In fact,
the distribution of satisfaction with earnings is the most different: there is a higher
percentage of responses in the lower levels of satisfaction (1, 2, and 3). The variables
satisfaction with type of work and satisfaction with working conditions have the
highest percentage of respondents with higher levels of satisfaction (4, 5, and 6).

Table 1 presents the means of the job satisfaction variables for the years 1994–
2001. Satisfaction with earnings has the lowest average values for all waves,
followed by satisfaction with working hours. For the whole period under analysis
respondents are, on average, more satisfied with the type of work and with the
working conditions/environment (these two items have the highest mean satisfaction
levels). Some changes over time on the average levels of job satisfaction are also
noticeable.

The average age of the respondents is 37 years old, and there are 1,595 males
in the sample. As far as marital status is concerned, 72.5 % of the respondents
are married. In terms of education, only 5.4 % have the recognized third level of
education (ISCED 5–7), 10 % have the second stage of secondary level education
(ISCED 3), and 82.4 % have less than the second stage of secondary level education
(ISCED 0–2). Regarding the perceived health status, 73.3 % of the respondents
consider it very good or just good, and only 26.7 % rate it as fair, bad, or very
bad. In terms of the activity sector, 77.2 % of the respondents work on the private
sector, while 22.8 % work on the public sector.
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Table 1 Means of the job satisfaction variables from 1994 (wave 1) to 2001 (wave 8)

1994 1995 1996 1997 1998 1999 2000 2001

Extrinsic Earnings 3.264 3.219 3.197 3.215 3.329 3.359 3.398 3.434
Factors Job security 4.037 4.087 4.044 4.115 4.142 4.169 4.170 4.188

Intrinsic Type of work 4.194 4.237 4.218 4.213 4.244 4.223 4.263 4.262
Factors Working hours 3.949 3.929 3.920 3.915 3.951 3.947 3.955 3.985

Working times 4.036 4.104 4.056 4.027 4.069 4.041 4.075 4.084
Working conditions 4.193 4.185 4.190 4.176 4.195 4.191 4.193 4.198

The ECHP adopts a complex multistage sampling scheme for collecting data.
This scheme is defined once, for each household, at wave 1. In Portugal, the scheme
has involved three different stages. First, the representativeness of the whole sample
was defined a priori, concerning the seven Portuguese regions known as NUTS II.
A first sample of 1,143 statistical sections1 was then selected from those regions.
In the third stage several households were selected from each statistical section,
ensuring that each household had equal probability of being selected. The seven
regions correspond to the seven strata of the stratification variable, and the 1,143
statistical sections are the primary sampling units (clusters). ECHP data also include
longitudinal weights, computed for each individual that has participated in the panel
since wave 1. Longitudinal weights are adjusted at each wave, to take account of
dropouts and previous wave nonresponse.

3 Latent Growth Curve Models with Multiple Indicators

LGCM allows the investigation of interindividual differences in change over time.
Unconditional LGCM describes the observed heterogeneity between individuals,
and conditional LGCM aims at explaining it. If one wants to model the longitudinal
trajectory of a latent factor measured by several observed indicators, an LGCM with
multiple indicators (also known as a second-order LGCM) has to be considered.

Let yijt denote the repeated measures for individual i, at t = 1, 2, . . . , T con-
secutive time points of J (j = 1, 2, . . . , J) observed ordinal variables. All manifest
variables have the same number of categories and were measured at the same time
points. Let y∗ijt be the continuous latent variable determining the observed ordinal
variable yijt. The connection between yijt and the underlying variable y∗ijt is given
by the auxiliary threshold equation:

yijt = c when τc−1 < y∗ijt ≤ τc,

1The statistical sections are contiguous geographic areas generally belonging to the same freguesia,
although never exceeding the limits of the municipality to which they belong. In Portugal each
statistical section has around 300 households.
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where c = 1, 2, . . . , C is the total number of ordered categories of variable yijt;
τc−1 and τc are the lower and upper thresholds for category c with τ0 = −∞ and
τC = ∞; and the C−1 finite threshold values are ordered from lowest to highest (for
further details see [1]). Note that it is a common practice for LGCM with ordinal
repeated measures to impose invariant thresholds for the repeated measures over
time.

The value for indicator j for individual i at time t is given by:

y∗ijt = νjt + Λjtηit + υijt, (1)

where νjt is the intercept for indicator j at time t; Λjt is the factor loading for the
indicator j at time t; ηit is the repeated latent variable for individual i and time t;
and υijt is the disturbance for the individual i at time t and indicator j (with mean
zero and uncorrelated with the other elements of the equation). The disturbances
are assumed to be normally distributed, with the structure of the variance matrix
depending on which terms are allowed to be correlated.

The growth trajectory for the latent factor is given by:

ηit = αi + λtβi + ζit, (2)

where αi is the random intercept for individual i; βi is the random slope for
individual i; λt is the time trend variable; and ζit is the disturbance for individual
i and time t, with mean zero, variance Ψt,, and uncorrelated with αi, βi, and λt. A
usual coding convention for LGCM with linear growth is that λt = 1 − t (setting
λ1 = 0 allows the intercept to reflet the mean of the trajectory at the initial time
point, and the other values to incorporate the linear trajectory that was defined).

The random effects (intercept and slope) are given by:

αi = μα + ζαi,

βi = μβ + ζβi, (3)

where μα and μβ are the mean of the intercept and the mean of the slope across
all individuals. The model assumes that ζαi ∼ N(0, Ψα) and ζβi ∼ N(0, Ψβ). The
parameters of special interest in the model are the means and the variances of the
random effects (intercept and slope) and the structure of the factor loadings.

Equations presented so far refer to modeling trajectories of a single process.
According to Rose [5] job satisfaction is a bivariate concept because there are
intrinsic and extrinsic factors, related among themselves, underlying job satisfac-
tion. Confirmatory factor analysis (CFA) was used to validate a model with two
correlated factors (at each time point): intrinsic job satisfaction (measured by four
indicators) and extrinsic job satisfaction (with two indicators). Since there are
two correlated dimensions of job satisfaction, their growth trajectories should be
modeled simultaneously and a bivariate LGCM should be considered. Thus, two
sets of Eqs. (2), (3) and (4) are required. Additional parameters of interest in the
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model are the residual covariances among the random effects in the two processes
(elements in Ψαβ).

ECHP data were collected under a complex survey design. The sampling
literature recommends considering such design when performing model estimation.
In Mplus, the estimator used for models with ordinal variables, for which data were
collected using a complex survey design, is the Weighted Least Squares Means
and Variance adjusted estimator (WLSMV). Such estimator belongs to a class of
generalized least squares estimators and accounts for the sampling design features
by considering weighted sample mean vectors and weighted sample covariance
matrices. Standard errors are estimated by using a sandwich Huber-White type
estimator, allowing for clustering and stratification in the sample. These methods
produce consistent standard error estimates without making any distributional
assumption and are also known as asymptotically distribution-free methods [3].

Measures of model fit used in this chapter include the Comparative Fit Index
(CFI), the Tucker–Lewis Index (TLI), the Root Mean Square Error of Approxima-
tion (RMSEA), and the chi-square test of model fit (χ2) and corresponding degrees
of freedom (df) [1].

4 Results for the Proposed LGCM

Figure 2 displays the path diagram of the unconditional bivariate second-order
LGCM proposed in this chapter to describe the joint growth trajectories of the
two dimensions of job satisfaction considered in this chapter: perceived satisfaction
with intrinsic factors (JS Int t) and with extrinsic factors (JS Ext t). Recall JS Ext
is measured by the ordinal variables earnings and job security. JS Int is measured
by three ordinal variables: type of work; working hours; and times and conditions.
The dashed rectangle in the top left corner of Fig. 2 illustrates the presence of the
ordinal observed variable yjt, and of the underlying continuous latent variable y∗jt in
the model. Because the two job satisfaction dimensions are correlated, their growth
trajectories are modeled simultaneously—the induced correlation structure among
intercepts and slopes in the two processes is depicted in Fig. 2.

Some methodological options were made: (1) the error terms of the repeated
measures have been allowed to be correlated over time; (2) the scaling factors of the
repeated measures have been fixed to 1 on the first wave and set free in the following
waves; and (3) the thresholds for each repeated observed variable have been defined
as time invariant [7].

The following goodness of fit measures were obtained: CFI = 0.892, TLI =
0.957, RMSEA = 0.048, and χ2 = 200.066 with estimated df = 31, suggesting
that the model fits the data well. The estimates (and corresponding standard errors)
obtained for the main parameters of interest are presented in Table 2. Note that
because we are modeling the trajectories of latent factors, and given the convention
adopted to include time in the model, the means of the intercepts are both zero, and
no longer a parameter of interest in the model. The average growth rate trajectory
is significant and positive for both processes (0.018 for extrinsic and 0.022 for
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Fig. 2 The unconditional bivariate second-order LGCM proposed to describe joint growth
trajectories of extrinsic and intrinsic job satisfaction

Table 2 Unconditional multiprocess second-order LGCM estimates

Extrinsic Intrinsic

Mean Slope (μβ ) 0.018 (0.005) 0.022 (0.005)

Variance Intercept (ψα) 0.161 (0.025) 0.309 (0.025)
Slope (ψβ ) 0.003 (0.001) 0.008 (0.001)

Covariances Intecept Ext—Slope Ext −0.009 (0.003)
Intercept Int—Slope Int −0.025 (0.004)
Intercept Ext—Intercept Int 0.139 (0.014)
Slope Ext—Slope Int 0.002 (0.000)
(parameters in Ψαβ ) 0.002 (0.000)

intrinsic JS), indicating that there is a significant increase in the mean extrinsic
and intrinsic satisfaction levels from 1994 to 2001. Estimates for the variances
of the intercept and of the slope are both significant. It is therefore possible to
conclude that individuals vary significantly both in their mean levels of extrinsic and
intrinsic satisfaction in 1994 and in their extrinsic and intrinsic satisfaction growth
trajectories.

Regarding the estimates of the residual covariances between intercepts and slopes
in both processes, it is possible to conclude that the mean levels of satisfaction in
1994 are significantly associated with the average satisfaction growth trajectories
from 1994 to 2001. The estimates for both extrinsic and intrinsic factors are negative
(−0.009 and −0.025, respectively) , suggesting that higher mean values in 1994
are associated with less pronounced average growth trajectories. The mean level of
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satisfaction with extrinsic factors in 1994 is significantly and positively associated
with the mean level of satisfaction with intrinsic factors in 1994 (estimated value of
0.139). Analogously, there is a significantly positive residual covariance between the
slopes of both dimensions of satisfaction (estimated value of 0.002). As expected,
the two processes are correlated and their growth trajectories should be jointly
modeled.

5 Conclusion

This chapter has proposed modeling trajectories of two dimensions of job satis-
faction using an unconditional bivariate second-order LGCM. The ordinal nature
of the observed data has been considered. The complex survey design of the ECHP
has been taken into account when estimating the proposed model, and a robust WLS
estimator available in Mplus has been used.

Results suggest that there was a significant increase in the mean satisfaction
levels, with both the intrinsic and the extrinsic job satisfaction dimensions, between
1994 and 2001. It is also possible to conclude that individuals differ significantly,
both in their satisfaction levels in 1994 and in the way their satisfaction levels change
over time.

The variability that was found between individuals has to be explained. A
conditional LGCM should be considered, including in the model some covariates
that could account for the variability found between individuals, namely socio-
demographic characteristics. Thus, further work includes considering time-invariant
and time-varying covariates in the proposed LGCM.
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Estimation of Underrepresented Strata
in Preelection Polls: A Comparative Study

João Figueiredo and Pedro Campos

Abstract
In this work we aim at increasing the utility of a preelection poll, by improving
the quality of the vote share estimates, both at macro and micro level. Three
different methodologies are applied with that purpose: (1) polls aggregation,
using existing auxiliary polling; (2) application of multilevel regression methods,
using the multilevel structure of the data; and (3) methods of small area
estimation, making use of auxiliary information through the application of the
Empirical Best Linear Unbiased Prediction (EBLUP). These methods are applied
to real data collected from a survey with the aim of estimating the vote share in
the Portuguese legislative elections. When auxiliary information is required, we
concluded that polls aggregations and EBLUP have to be applied with caution,
since this information is extremely important for a good application of these
models to the data set and to obtain good reliable forecasts. On the other hand, if
auxiliary information is not available or if it is not of good quality, then multilevel
regression can and should be seen as a safe alternative to obtain more precise
estimates, either at the micro or macro level. Besides, this is the method which
further improves the precision of the estimates. In the presence of good auxiliary
information, EBLUP proved to be the method with greater proximity with real
values.
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1 Introduction

One of the dilemmas of preelection polls is the difficulty of estimating the proportion
of voters in a specific political party, especially in situations where the number
of sampling units is too small for assuring estimates with low sampling error.
Assuming the population is divided into L strata, we propose three approaches for
the problem of estimating, in a preelection poll, the proportion of voters, p, in a
political party: aggregation of preelection polls, by applying a variation of the work
of Erikson et al. [2]; multilevel regression methods, following the work of Gelman
et al. [5, 6], Lax [8], Park et al. [11], Snijders and Bosker [15], and Leeuw and
Meijer [9]; Small Area Estimation (SAE), using the estimator EBLUP (Empirical
Best Linear Unbiased Predictor) at the area level [3, 14]).

The aim of this work consists in comparing the results from the application of
these methods, which constitutes the originality of the paper, as these techniques
have never been simultaneously compared and applied in the scope of preelection
polls [4]. By applying these techniques, we seek not only to improve the quality of
the estimates at the global level, but also to improve the quality of the estimates
at other levels of disaggregation of data, including the district level, avoiding,
ultimately, the need of developing a new preelection poll. We focused on the
problem of estimating the proportion of votes in a given political party and
implemented the three methodologies referred above. Aggregation of Polls and
EBLUP are methods that have to be applied with caution as regards to the use
of auxiliary information. The selection of inadequate information might lead to
a deterioration of the results in forecasts provided by a survey carried out in
isolation. By inadequate information we mean surveys that are made in different
conditions and do not provide comparable information. Multilevel regression is a
safe alternative to obtain more precise estimates, either at the micro or macro level
when auxiliary information is not available or if it is of no good quality (e.g., when
auxiliary information is not available at all or when it contains a small number of
sampling units in some strata). Although all the models produce estimates which
are closer to the real value than the existing poll, the method that obtains the
closer results when compared to the results of the direct estimators from already
existing polls is the EBLUP. Multilevel regression produces the estimates with
greater quality.

The rest of this chapter is structured as follows: in Sect. 2 we present the
three methods mentioned above. Data and methodology are introduced in Sect. 3.
Sections 4, 5, and 6 contain respectively, results, conclusions, and future work.

2 Methods for Dealing with Underrepresented Strata

In Portugal, the election of the deputies to the Portuguese Parliament is made at
the district level, here considered as the strata. Although it is often desirable to
use a stratified sampling scheme to estimate the vote share in preelection polls,



Estimation of Underrepresented Strata in Preelection Polls: A Comparative Study 49

Table 1 Sampling errors (B) of the preelectoral Poll of 2005, by district; the overall sample size
n = 997

District Aveiro Beja Braga Bragança Castelo Branco Coimbra

Error of the poll 0.1187 0.25 0.1118 0.2425 0.2132 0.1507
District Évora Faro Guarda Leiria Lisboa Portalegre
Error of the poll 0.25 0.1601 0.2294 0.1525 0.0685 0.2887
Total sample Porto Santarém Setúbal Viana do Castelo Vila Real Viseu
0.0319 0.0765 0.1525 0.114 0.1826 0.2 0.1562

an underrepresentation of some sampling strata can lead to difficulty in obtaining
accurate estimates. Information for this study is based on an existing poll of 2005,
obtained by a stratified random sampling at the level of Portuguese mainland
(corresponding to the whole country except the autonomous regions—Azores and
Madeira), and includes 997 individuals who are selected randomly from people with
fixed line telephones at home, and proportionally to the number of voters in the
districts. Let pest be the vote share at the population level. Therefore, to estimate pest
with a maximum sampling error of B and a degree of confidence (1− α) × 100%
(α being usually 5 %), it involves an estimator that satisfies the condition:

P (|p̂est − p| ≤ B) = 1− α, 0 < α < 1 (1)

which implies:
P (p̂est −B ≤ p ≤ p̂est +B) = 1− α (2)

Usually B is computed as z
√
V p̂est, where z is the two-tailed value of the Normal

distribution corresponding to an area of 1 − α. One can verify, by Table 1, that
in our poll, at the district level, B varies between 0.0685 (district of Lisbon) and
0.2887 (district of Portalegre). Although it is not explicit in Table 1, we know that
the smaller the samples of the districts, the larger are the errors of the estimates.
The errors in some districts such as Beja, Bragança, Portalegre, and others are very
high. Although there is not a consensual limit for the highest level B can assume,
estimates based on errors higher than 0.20 are definitely not acceptable, due to small
accuracy.

2.1 Aggregation of Preelection Polls

This method was first used by Erikson et al. [2], who aggregated 122 polls made by
Columbia Broadcasting System News/New York Times (CBS/NYT). These polls
were conducted from 1976 to 1988 in order to estimate the US public opinion.
The basic idea of this method is to obtain more precise estimates by obtaining
larger samples from the aggregation of the polls. However, if the opinion poll is not
stable over time, applying this method will produce worse results than any single
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poll in a specific time period. We can formalize this method as follows: consider a
population with I strata, for which we have J independent samples for all segments
or only for some. Let nij be the sample size for stratum i of the jth poll. After the
aggregation of the polls, the total sample size for stratum i is the sum of samples
from each survey and is given by ni =

∑J
i=1 nij . Let p̂ij be an unbiased estimator

of pi obtained from the jth poll. After the aggregation of the polls, the estimated
proportion of elements in stratum i who vote in the political party A is given by:

p̂i =
1

ni

J∑
i=1

nij p̂ij (3)

The aggregation of the total sample surveys is given by:

n =
I∑
i=1

ni =
I∑
i=1

J∑
j=1

nij (4)

The estimate of the proportion in the population who vote in the political party A is
given by:

p̂ =
1

n

I∑
i=1

nip̂i (5)

2.2 Multilevel Regression

According to Gelman et al. [5], multilevel modeling can be viewed in two equivalent
forms: (1) a generalization of linear regression, where the ordinate at the origin and
the slopes may vary by group; (2) equivalently, we can see the multilevel modeling
as a regression that includes a categorical explanatory variable representing the
group where the observation belongs. Take the binary variable, y, representing the
vote for a particular party, defined in the space S = {0, 1}, with 1 being yes and 0
being no. We can fit a logistic regression model for the probability of a yes, πj , for
respondents in the category j using a logit function: logit (πj) = Xjβ, where X is
the matrix of covariates, Xj is the jth column of X , and β is the vector of unknown
regression parameters. The hierarchical model allows a partial aggregation of
variable categories through the definition of a mixed effects model. The model can
then be written in a standard form of a hierarchical logistic regression model, under
a matrix form as logit (pi) = (Xβ)i, being pi the parameter of the distribution
of yi, yi ≈ Bernoulli (pi) and β being the vector of the regression parameters,
with β ≈ N (0, Σβ). X is the matrix of covariates. We write the β vector as a
collection of parameters (α, γ1, . . . , γm), where α is a subvector of disaggregated
coefficients. Σ−1β is a diagonal matrix with 0 in each element of α, followed of σm,
for each element of γm, and for each m. We use the notation pi, for the probability
corresponding to unit i, as distinguished from πj , the probability corresponding to
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the aggregate category j. Each γm, for m = 1, . . . ,M , is a subvector of coefficients
γkm, for each we adjust the hierarchical model: γindkm ≈ N

(
0, σ2

m

)
, k = 1, . . . ,Km,

being K the number of coefficients for each γm. To obtain the parameters of the
model, πj , and the other parameters described above, Gelman et al. [5] uses the
following Bayesian simulation: (1) perform Bayesian inference for the regression
coefficients, β, and the hyperparameters σm through the data set; (2) for each of
the J categories in the population, calculate: pj = logit−1 (Xβ)j ; (3) calculate
inferences for the parameters, summing up all the Njpj’s in each state.

Markov Chain Monte Carlo methods are used in WinBUGS [10] to simulate
the models. Criteria to stop the simulation are based on the potential of reduction
range factor, R, for each parameter, which is approximately the square root of the
variance of the mixture of all Markov chains, V̂ divided by the average within-chain
variance. Gelman et al. [5] suggest taking R < 1.1 to indicate convergence. V̂ and
W are weighted by d. R is defined as follows:

R =

√
(d+ 3)V̂

(d+ 1)W
(6)

After fitting the model logit (pi) = (Xβ)i and obtaining the predictions for pi,
we can do a post-stratification to correct the sample of possible deviations from the
population distribution, since the proportional sample strata size may differ from
the real proportion in the population, which are known. For Gelman et al. [6], the
purpose of post-stratification is the adjustment of the difference between sample
and population. In the notation that follows, lowercase is used for variables that are
observed only in the sample and uppercase is used for variables that are observed
in the sample and are also known for the entire population. We assume we have an
array of X indicators, whose joint distributions are known in the population, and
a variable, y, whose distribution we are interested in estimating. We consider that
the variables are discrete and list the categories of X as post-stratification cells,
j with Nj elements in the population and nj elements in the sample. With this
notation, the total population is given by N =

∑J
j=1 Nj and the sample size is

given by n =
∑J
j=1 nj . In the model of post-stratification, it is implicit that the

data are collected by a simple random process in each of the J strata. The case of
stratification (from which samples are taken by the sampling process of the poll)
is nothing more than a case of post-stratification of the way it is formulated. It is
assumed that the strata totals, Nj , are known for each category j. These categories
include all cross-classifications of the predictors X . The population mean of any
response, θ = E (Y ), can be written as follows:

θ =

∑J
j=1 Njθj∑J
j=1 Nj

(7)
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where θj is the mean of the stratum j. Therefore, the post-stratification estimate θ̂ps

is given by

θ̂ps =

∑J
j=1 Nj θ̂j∑J
j=1 Nj

(8)

The simplest case used in this chapter is the post-stratification total, where the
estimate for each stratum j is the mean estimate of the stratum, θ̂j = yj , thus:

θ̂ps =

∑J
j=1 Njyj∑J
j=1 Nj

(9)

2.3 Empirical Best Linear Unbiased Predictor

SAE methods can be used in the cases where the sample size is too small for some
geographical areas/domains to allow reliable estimates [1]. One of the most used
classification of SAE methods is proposed by Rao [14], who suggests the following
types of estimators: direct, or design-based, indirect, and model-based (synthetic
and combined). In general, direct survey estimators are based on the domain-specific
sample data. Indirect estimators are formed by information from other domains in
order to borrow strength from related areas to increase the precision of the estimates.
Synthetic estimators use information out of the domain in order to artificially
increase the sample size, thus contributing to a gain in precision of the estimates.
Finally, combined estimators use two components of estimation—a design-based
and a model-based. Usually it is a combination between direct and synthetic
estimators. Small area indirect estimators are often based on area level random
effects models [12]. Under this class of models, when only aggregate specific
covariates are available, the Best Linear Unbiased Predictor (BLUP) is obtained
under the assumption of uncorrelated random area effects [3]. The empirical
version of BLUP, the EBLUP, takes advantage of the between small area variation,
especially when this is not large relative to the within small area variation. In this
chapter we use EBLUP, a small area estimator of the combined type that estimates
μd (unknown residuals at the population level) based on εd, (residuals obtained by
fitting the model). There are essentially two different ways of applying the EBLUP,
depending on the type of auxiliary information available: individual level (for which
a link between direct and auxiliary information must exist at individual level) and
area level (for which this link must exist only at the area/domain level). In this work
we applied the EBLUP at area level, since the auxiliary information is aggregated
to the domains (districts) for which we want to calculate the estimates. Let Y be the
variable of interest and X the variable containing auxiliary information. Then, we

have: Ŷi
EBLUP

= γŶi
Direct

(1− γ)X
T
β̂ where γ is a constant used to combine

the direct and the synthetic estimators. To estimate the synthetic part of the model,

(1− γ)X
T
β̂, we have: Ŷi = μi + εi, where εi ≈ N

(
0, σ2

)
. Being the true mean
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of the area i given by: μi = β0 + β1Xi + Z , where μi ≈ N
(
0, σ2

μ

)
. μi represents

the random effects and Z reflects the structure of random effects. To estimate
the variance of the model, Maximum Likelihood (ML) and Restricted Maximum

Likelihood (REML) methods are used. We assume Ŷi ≈ N (μ;V ). The estimates of

small areas are given by: Ŷi = β̂Xi+ μ̂i. The variability of the estimator is given by

the mean square error (MSE), calculated as follows: MSE
[
Ŷi

]
≈ G1+G2+2G3.

G1 represents the uncertainty of the estimation of Y , G2 represents the uncertainty
of the estimation of β, and G3 represents the uncertainty of the estimation of σ̂2

μ.

3 Data and Methodology

To compare these techniques, we took the problem of estimating the proportion of
votes in the Portuguese Socialist (PS) Party and applied the three methods using real
data from a survey conducted by a survey company—IPOM (Instituto de Pesquisa
de Opinião e Mercado)—in 2005, to estimate the PS vote share in the parliamentary
elections stratified by district. Auxiliary data from two other surveys having the
same goal (but at the district level) were used: the vote share at 1999 and 2002. For
the application of multilevel regression we used R [13] and WinBUGS [10], with the
code provided by Gelman [5], and adapted by the authors. Additional data, with the
number of individuals older than 18 years, from Portuguese census [7] were used
as an approximation of the numbers of voters, to produce a post-stratification of the
results. The convergence of this model was obtained with 100 thousand iterations.
The model is defined as:

Pr (Yi = 1) =

= logit−1
(
β0 + βsexo · sexoi + βprof · profi + βsexo·prof · profi

+αidadek[i] + αescl[i] + αidade·esck[i],l[i] + αdisj[i]

)
, i = 1, 2, . . . , 719,

αdisj[i] ≈ N
(
βv·prev , σ2

distrito

)
,

αidadek ≈ N
(
μidade, σ2

idade

)
, k = 1, . . . , 6,

αescl ≈ N
(
μesc, σ2

esc

)
, l = 1, . . . , 8,

αidade·esck,l ≈ N
(
μidade·esc, σ2

idade·esc
)
, k = 1, . . . , 6, l = 1, . . . , 8,

where β0 is the constant term for the ordinate at the origin; βsexo and βprof denote
the coefficients for sex and profession, respectively; sexoi represents the sex of
individual i, profi is the indicator for the profession of the individual i, βsexo·prof

is the coefficient for the interaction between gender and profession, αidadek[i] , αescl[i] ,

αdisj[i] and αidade·esck[i],l[i] are the coefficients for the origin of the coordinate variables age,
school, district, and the interaction between age and schooling, respectively. v.prev
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Table 2 Estimates for the year 2005 of the models computed by the three methods—best
estimates, measured by the MAE are highlighted

Polls Multilevel
District aggregation regression EBLUP Poll Real

Aveiro 0.4357 0.3836 0.4169 0.3256 0.4109
Beja 0.2143 0.4054 0.4004 0.2143 0.5101
Braga 0.4697 0.4807 0.4382 0.4697 0.4542
Bragança 0.4000 0.4614 0.4279 0.4000 0.4207
Castelo Branco 0.8125 0.6273 0.4889 0.8125 0.5598
Coimbra 0.5769 0.5288 0.4541 0.5769 0.4541
Évora 0.6667 0.5616 0.4673 0.6667 0.4968
Faro 0.4444 0.4746 0.4344 0.4444 0.4933
Guarda 0.6667 0.5627 0.4673 0.6667 0.467
Leiria 0.2308 0.3493 0.4028 0.2308 0.3558
Lisboa 0.4351 0.437 0.4331 0.4351 0.4411
Portalegre 0.875 0.6102 0.4982 0.8750 0.5480
Porto 0.4853 0.4331 0.434 0.4412 0.4853
Santarém 0.5862 0.5352 0.4554 0.5862 0.4614
Setúbal 0.4737 0.4771 0.4388 0.4737 0.4371
Viana do Castelo 0.5000 0.5063 0.4427 0.5000 0.4197
Vila Real 0.4118 0.4647 0.4296 0.4118 0.4384
Viseu 0.6207 0.5601 0.4605 0.6207 0.404

Mainland prediction 0.4811 0.4637 0.4375 0.4655 0.4514
Mean absolute error 0.1163 0.0571 0.0306 0.1221

is the mean of the results obtained by the party PS in the two previous elections.
The variances of the variables district, age, education, and interaction between age
and schooling were denoted, respectively, for σ2

distrito, σ2
idade, σ

2
esc , and σ2

idade·esc.
To the parameters μidade, μesc, and μidade·esc noninformative prior distributions are
assigned. The application of EBLUP was implemented in R [13], and information
of the results for the 1999 election was used as auxiliary information. Information
of 2002 was not used here, since it is not correlated to the variable of interest. The
model can be defined as: ŷi = 0.368645 + 0.1479796xi, where ŷi is the model
prediction of the proportion of votes in the PS in district i.

4 Results

Results are compared in two ways: either using the proximity of the estimate
(measured by the mean absolute error—MAE—between the real values and the
estimates, by districts, for each method) or taking into account the quality of the
estimates (using a measure of relative precision—the CV, coefficient of variation). In
terms of proximity, the EBLUP estimator produced the nearest forecasts in 11 of the
18 districts (cells with shadow in the corresponding column in Table 2). At mainland
level, the method that obtains the best results is the multilevel regression (see



Estimation of Underrepresented Strata in Preelection Polls: A Comparative Study 55

1

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0

P
re

di
ct

io
n

Ave
iro Beja

Bra
ga

Bra
ga

nç
a

Cas
te

lo 
Bra

nc
o

Coim
br

a
Évo

ra
Fa

ro

Gua
rd

a

Le
iria

Lis
bo

a

Por
ta

leg
re

Por
to

San
ta

ré
m

Set
úb

al

Vian
a 

do
 C

as
te

lo

Vila
 R

ea
l

Vise
u

District

Polls Aggregation Multilevel regression EBLUP Poll Real

Fig. 1 Estimates of the three models, by district for the year 2005
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Fig. 2 Coefficients of variation (CVs) for the three models, by district, for the year 2005

corresponding column in Table 2). The aggregation of polls produces the nearest
results in two districts, only. This method can be a valid alternative when applied
with caution in relation to sampling methods of various surveys taken at different
time steps. As we can see in Table 2, and in Fig. 1, the EBLUP prediction for
Coimbra and the Polls Aggregation forecast for Porto are the same as the observed
values (what happened just by chance) . To analyze the quality of the estimates,
we plotted in Fig. 2 the coefficients of variation (CV). Multilevel regression is the
method with lower CVs. When compared to the existing poll (column Poll), this
method can improve the estimates of the survey both at the district level and at the
mainland level (Table 3).
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Table 3 Comparison of the coefficients of variation (CVs) for the three models and the real poll,
by district

Polls Multilevel
aggregation regression EBLUP Poll

Aveiro 1.14 0.21 1.20 1.46
Beja 1.99 0.26 1.25 1.99
Braga 1.07 0.15 1.14 1.07
Bragança 1.29 0.23 1.17 1.29
Castelo Branco 0.50 0.18 1.02 0.50
Coimbra 0.87 0.17 1.1 0.87
Évora 0.74 0.19 1.07 0.74
Faro 1.14 0.19 1.15 1.14
Guarda 0.74 0.20 1.07 0.74
Leiria 1.85 0.24 1.24 1.85
Lisboa 1.14 0.14 1.15 1.14
Portalegre 0.40 0.20 1.00 0.40
Porto 1.03 0.14 1.15 1.13
Santarém 0.85 0.17 1.10 0.85
Setúbal 1.06 0.16 1.14 1.06
Viana do Castelo 1.02 0.19 1.13 1.02
Vila Real 1.23 0.21 1.16 1.23
Viseu 0.80 0.16 1.08 0.80

5 Conclusions

Aggregation of Polls and EBLUP are methods that have to be applied with caution
as regards to the use of auxiliary information in order to improve the quality of
the estimates, measured by the coefficient of variation. The choice of appropriate
information may result in substantial improvements in the quality of the estimates,
while the choice of inappropriate information may lead to a worsening of results
with respect to forecasts provided by a poll taken in isolation. As such, the choice
of information should be made by the statistician, conscientious, reasoned, and
attentive to any detail that might inspire a change in the tendency to vote. If auxiliary
information is not available or if it is not of good quality, then multilevel regression
can and should be seen as a safe alternative to obtain more precise estimates, either
at the micro or macro level.

6 Future Work

As future work we intend to apply these techniques to future elections and other
applications/surveys for other purposes, having dichotomous variables as well as
other levels of aggregation, as, for example, a survey at district level with substrata
at the subdistrict level (municipalities). We will also try to investigate possible
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combinations of three methods. The use of resampling techniques in order to obtain
convergence of the series is also to be developed in future applications. Finally, we
aim at developing strategies to produce confidence intervals for these methods, so it
is possible to analyze interval estimates instead of point estimates.
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Medication and Polymedication in Portugal
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Abstract
Portugal is a country with a high per capita consumption of medical drugs.
High levels of medication implies not only risk to the patient but also a strong
burden to the National Health Service (Serviço Nacional de Saúde—SNS).
Polymedication, according to many authors, is the consumption of at least five
different drugs. Polymedication can have serious consequences to the patient, if
it is not well controlled. A project named MAISCINCO was created in order
to make the population aware of the risks of polymedication. Our study used
the data from the 4th National (Portuguese) Health Survey to estimate the
consumption of multiple drugs, in particular polymedication, and to identify
groups with greater risk of being polymedicated. We also aimed to represent
geographically, at a NUTS II level, the prevalence of the more frequent kinds
of drug consumption. As expected from the literature we found that women and
older people have greater probability of being polymedicated, and this trend was
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observed and is similar in all regions. On the other hand, people in Madeira,
Açores, and Algarve tend to use less medication.

1 Introduction

Medical drugs are used as therapy to relieve pain, improve functional capacity
and quality of life, and prolong survival [10]. The number of medical drugs used
by the National Health System has been increasing in Portugal. Between 2002
and 2008, consumption of drugs (such as tranquilizers, hypnotics, sedatives, and
antidepressants) increased approximately 31.6 %, in all NUTS II1 regions [2]. The
high consumption of drugs and the aging of the population rise serious problems for
the SNS and its sustainability in a near future [1]. The chronic use of medication
(for more than 3 months) and polymedication may cause risks to the patient. There
is no consensus regarding the number of prescribed drugs to consider the patient as
polymedicated. However, it is usual to consider a minimum of five [4, 6, 10].

The main factors of polymedication [6, 7, 9] may be considered:
• Multiple pathologies (most common in old people)
• Multiple prescribers (without coordination among them)
• Auto medication (over-the-counter products and alternative medicine)
• Medicine advertising
• Socioeconomic aspects

Polymedication must be carefully thought about by prescribers to minimize drugs
interactions (changes in activities of a drug when it is taken simultaneously with
food or other drugs). It is estimated that the risk of adverse reactions is 6 % when
two drugs are taken simultaneously. The risk increases to 50 % when five drugs
are administered [4]. The increasing prevalence of polymedication, especially in an
aging population, is becoming such a serious problem that Portugal established a
counseling program, MAISCINCO, that aims to inform people about the dangers
of taking too many drugs [9]. Previous studies have shown that polymedication and
chronic use of drugs are more prevalent in women and elderly [5–7, 10]. A study
held by the Faculty of Pharmacy from University of Lisbon revealed that the elderly
take an average of seven drugs a day [9]. Polymedication itself leads to an increased
risk for the patient and many hospitalizations as well. In the USA, approximately
28 % of admissions are due to polymedication, which could probably be considered
the fifth cause of death if it were properly accounted for.

2 Objectives

The aim of our study is to estimate the prevalence of medical drug consumption with
prescription or without it. Only drugs mentioned in National Health Survey (NHS)
will be studied. The purpose of this study is threefold: to identify (1) which are the

1Standard Nomenclature of Territorial Units for Statistics purposes.
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groups with higher consumption of drugs, (2) which are the drugs most consumed,
and (3) what is the prevalence of polymedication both in Portugal in general, and
in the seven regions of NUTS II. Moreover, the objective is to investigate if gender
and age are in fact potential risk factors associated with polymedication.

3 Material and Methods

3.1 NHS

In our study we used data from the 2005/06 NHS, in particular, sections of
individuals socio-demographic characterization and drug consumption, during the
2 weeks before the survey. This survey is the fourth in Portugal Continental and
the first to cover the autonomous regions of Açores and Madeira. The NHS is an
instrument that deals with health conditions of the population (individuals living in
their usual residence during the period of data collection: February 2005 to February
2006). It is important to emphasize that all the individuals living in collective
dwellings (such as prisons, hospitals, and hotels), representing less than 2 % of the
Portuguese population, were excluded. The NHS sample is a stratified two-stage
cluster sample drawn from the Statistics Portugal 2001 Master Sample, which was
established from the 2001 Population and Housing Census results. The Statistics
Portugal 2001 Master Sample uses stratification over NUTS III2 in order to assure
sufficient spread over the whole country. Each stratum was partitioned in areas
(groups of Census sections) containing at least 240 usual residences. The first stage
corresponds to the systematic selection of areas with probability proportional to
number of usual residences. The sample comprises a total of 1,408 areas. The NHS
sample introduces the second stage in the selection procedure. Indeed, in the second
stage, the residences were drawn from the 1,408 areas of 2001 Master Sample. All
the individuals from each selected residence were surveyed. The sample comprises a
total of 19,950 residences (41,193 individuals) divided by the seven NUTS II: Norte
(2,604), Centro (3,048), LVT (3,328), Alentejo (3,045), Algarve (3,220), Açores
(2,304), and e Madeira (2,401).

3.2 Statistical Analysis

The statistical analysis concerns point estimates as well as their standard error
between brackets immediately after the point estimate.The estimates are computed
using a final weight for each individual. The final weight is obtained as follows:
• Initial weight: ratio between 2005 population estimates and the number of

respondent individuals.

230 subregions of NUTS II.
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• Final weight: calibration of the initial weight using the known marginal totals
(gender and age groups), in order to get estimated totals similar to population
totals in the following cells: males and females for 1–4, 5–9, 10–14, 15–19,
20–24, 25–29, 30–34, 35–39, 40–44, 45–49, 50–54, 55–59, 60–64, 65–69,
70–74, 75–79, 80–84, 85 and more years old.
The final weights were provided by INE (National Institute of Statistics of

Portugal) in order to compute estimates based on the Horvitz–Thompson estimator
[8]. Due to the complex sample design and to the calibration of weights, there is no
closed form to compute the variance estimates. Accordingly, a Jackknife procedure
was used to compute the variance of each estimate [11]. To do so, we were given
replica weights in order to produce estimates for each replica and then compute
the variance of replica estimates. A significance level of 5 % for hypotheses testing
(based on asymptotic properties) is used. Chi-square tests, Adjusted Residuals, and
Mann–Whitney tests for independent samples were conducted. Notwithstanding
these tests are designed for data collected using a simple random sample design.
We assume that the calibration of survey design weights reduces the distortion
introduced by the two-stage cluster sample design and the final p-values can be
viewed with fair confidence. A map was made with the results obtained, in order
to illustrate drug consumption mainly at NUTS II level. Statistical analysis was
performed using the statistics software IBM PASW 18, R Software, and Microsoft
Excel 2007.

4 Results

4.1 Prescribed and Non-prescribed Drug Consumption

In the survey, 52.3 % (0.0042) of individuals had taken prescribed drugs (including
contraceptive pills, ointments, creams, lotions, injections, and vaccines) and 9.4 %
(0.0012) of individuals took medication without prescription (including vitamins
and minerals), in the 2 weeks preceding the interview. The simultaneous con-
sumption of prescribed and non-prescribed drugs occurred in 5.0 % (0.00072) of
individuals. On the other hand, 43.2 % (0.004) of individuals had no medication at
all. Among those who had used prescribed drugs, 9.6 % (0.042) had also consumed
drugs without prescription. We found out that 62.7 % (0.0451) of prescribed
consumption and 56.7 % (0.051) of non-prescribed consumption concerned women.

4.2 Medication and Polymedication

About 5.3 % (0.00072) of individuals are polymedicated with prescribed drugs.
When both drugs, prescribed and not prescribed, are taken into account, the
percentage of polymedicated individuals raises to 6.0 % (0.00001).

All results presented forward are related to the total of drug consumption either
prescribed or not (Prescribed + Non-prescribed).
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Fig. 1 Drug consumption by sex

4.3 Drug Consumption Profile by Sex

We analyzed the consumption by sex, considering classes of individuals that
consumed at least 2, 3, 4, or 5 drugs. We found that consumption was significantly
different (chi-square test; p < 0.001 for consumption ≥ 2, ≥ 3, ≥ 4, and ≥ 5
drugs). We also observed that women have higher consumption than men (Fig. 1).
The difference between consumption in both genders peaked in three or more drugs,
starting to decline from four or more.

4.4 Drug Consumption Profile by Age

The average consumption in individuals under 15 years old was 1.19 (0.021) drugs
a day, rising to 3.14 (0.035), in people aged 65 and older. Our study confirms
the strong trend of increasing use of drugs with age (Fig. 2). All age classes
were significantly related with drug consumption (chi-square test; p < 0.001,
for ≥ 2, ≥ 3, ≥ 4, and ≥ 5 drugs). Older individuals appeared associated with
polymedication and younger individuals with lower consumption. About 53.2 % of
polymedicated individuals are over 64 years old.

4.5 Drug Consumption Profile by Age and Sex

Age and gender appear as factors associated with drug use, as shown in Fig. 3.
Consumption increases with age, with higher incidence in females. Significant
differences were seen between gender, for all age groups (Mann–Whitney test;
p < 0.001).
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Fig. 2 Drug consumption by age

Fig. 3 Average drug consumption by sex in the four age classes

4.6 Consumption and Polymedication Profile by Region

Despite some differences, drug consumption showed the same trend in terms of age
and gender distribution in all NUTS II regions. Significant statistical differences
were seen in all levels of consumption (≥ 2, ≥ 3, ≥ 4, and ≥ 5) between each
region (chi-square test; p < 0.001).

Lisboa e Vale do Tejo (LVT) are well known for having the highest consumption.
On the other hand, Madeira is the region with the lowest intakes (Fig. 4).

When polymedication is analyzed among medicated individuals, Algarve and
Açores follow Madeira. Norte, Centro, and Alentejo have an intermediate position
with an identical polymedication profile between them (Fig. 4).
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Fig. 4 Polymedication by NUTS II

Fig. 5 Pathologies or kinds of drugs

4.7 Kinds of Drugs Consumed

“High blood pressure” was notoriously the most common pathology (17.7 %)
that led to drug consumption (Fig. 5). Besides, “joint pains” (10.4 %), “high
cholesterol” (10.0 %), “sleep disturbance” (8.3 %), and “cardiovascular disease”
(7.4 %) frequently occurred. The use of drugs without specified reasons (“other
drugs”) accounted for 15.6 % of the total consumption.
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Fig. 6 Map of consumption level and the five most frequent pathologies or kinds of drugs in each
NUTS II region
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4.8 Kinds of Drugs Consumed per Region

For each NUTS II region, the five most frequent pathologies or kinds of drugs most
consumed (excluding “other drugs”) are presented in a map (Fig. 6). “Other drug”
were not included because as they are not a specific pathology, they would add
less interesting information. The colors on the map distinguish the consumption in
different regions. Dark gray means that consumption is higher.

“High blood pressure” was the most frequent pathology in all regions. Alentejo
reached the highest prevalence of “high blood pressure” (18.1 %). Madeira and
Açores had the lowest percentage (11.2 % and 12.6 %, respectively). The other
diseases or drugs more frequent were: “joint pains,” “high cholesterol,” “sleeping
pills,” “contraceptive pills,” and “other pains.”

5 Conclusions

From the study we concluded that:
• About half of the individuals consumed prescribed drugs.
• 9.4 % of the individuals used medication without prescription.
• Women and elderly were more likely to consume drugs either prescribed or not.
• Women and elderly were associated with polymedication.
• Men and young people were associated with lower drug consumption.
• LVT had the highest incidence of drug consumption, suggesting that individuals

may have poorer health.
• Madeira had the lowest intakes of medication, suggesting that individuals may

be healthier.
• High blood pressure was the most frequent cause of consumption in all NUTS II

regions.
Our findings are consistent with what previous studies have shown: chronic use

of medication and polymedication is more prevalent in women and elderly [3,5,10].
Our research points to the possibility that some differences may be associated

with healthier lifestyles, demographic characteristics, medical care level and orga-
nization, in some regions such as Madeira, Açores, and Algarve. This shows a lower
(ab)use of medication.

This work aims to warn about polymedication in Portugal and the need to study
polymedication as a risk factor, especially in elderly people.
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Improved Shape Parameter Estimation
in a Discrete Weibull Model

P. Araújo Santos and M.I. Fraga Alves

Abstract
A new shape parameter estimator for a discrete Weibull model is proposed. This
estimator is based on an extension of the Khan et al. (IEEE Trans. Reliab. 38:348–
350, 1989) method of proportions. Simulations are carried out to illustrate the
improvement achieved in terms of bias and mean square error. The proposed
estimator is applied on a financial dataset dealing with durations between
violations in a quantitative risk management environment.

1 Introduction

In many reliability studies, data are measured as discrete random variables such
as the number of copies made by a copying machine, number of cycles of a
washing machine, and so on. Materials, equipment, devices, and structures are also
frequently monitored only once per period rather than continuously, due to practical
restrictions. In these types of reliability studies, the discrete Weibull model plays an
important rule. For a survey on discrete lifetime distributions see Bracquemond and
Gaudoin [2]. Moreover, the discrete Weibull can be applied to other problems, from
political renewal analysis [6] to economic problems involving duration dependence.
The “damaged goods” theory implies that the longer the period of unemployment,
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the more likely the job seeker has some attribute that makes her unemployable, thus
less likely to find a job. A discrete Weibull model with a shape parameter lower
than one supports the “damaged goods” theory; see Lancaster [7] for econometric
methods for the duration of unemployment. Other examples of duration dependence
application are the study of speculative bubbles in stock markets [3] and backtesting
Value-at-Risk [4].

In this work, we propose an improved estimator for the shape parameter of the
discrete Weibull version of Nakagawa and Osaki [11], also known as type I discrete
Weibull, with the following cumulative distribution function (cdf) and probability
mass function (pmf):

FD(d) =

{
1− qd

θ

, d = 1, 2, 3, . . . (jump points)
0, d < 1

(1)

fD(d) = q(d−1)
θ − qd

θ

, d = 1, 2, 3, . . . (2)

for 0 < q < 1 and θ > 0. The parameter q is the probability that the duration is
greater than 1 and θ is the shape parameter: applying lifetime studies terminology,
the distribution has increasing failure rate for θ > 1, decreasing failure rate for 0 <
θ < 1 and reduces to the geometric distribution when θ = 1. If W is a continuous
Weibull rv, then a type I discrete Weibull rv can be derived by time discretization
D = [W ] + 1, where [W ] denotes the integer part of W . Stein and Dattero [12]
introduced a type II discrete Weibull and a type III was proposed by Padgett and
Spurrier [8]. In a detailed study Bracquemond and Gaudoin [2] recommended the
use of type I discrete Weibull and discuss the limitations of type II and type III.

The rest of this chapter is organized as follows. Section 2 provides a brief review
of estimation methods. In Sect. 3 we present the new shape parameter estimator. In
Sect. 4, through simulation experiments, we compare the performance of the new
estimator with the method of moments and with the method of proportions. Finally,
Sect. 5 presents an empirical application.

2 Estimation Methods

From the cdf (1), we have

log[− log(1− FD(d))] = θ log d+ log(− log q).

Let d∗1:v < . . . < d∗v:v, v ≤ n, be the observed order statistics (o.s.’s) without ties
of a sample d1, . . . , dn from the type I discrete Weibull distribution and Fn(d) =
n−1

∑n
i=1 I{di≤d} the empirical cumulative distribution function (ecdf), associated

with a random sample D1, . . . , Dn. If the points

{
log d∗i:v, log(− log(1− Fn(d

∗
i:v))

}
1≤i≤v
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are approximately scattered around a straight line, it can be assumed that the
underlying model is (1) and the parameters estimated by the Probability Plotting
method, using these points.

Taking into account (2), we obtain the first two moments

μ1 = E[D] =

∞∑
d=0

(d+ 1)qd
θ −

∞∑
d=1

dqd
θ

= 1 +

∞∑
d=1

qd
θ

μ2 = 2
∞∑
d=1

dqd
θ

+ E[D].

However, closed forms for these moments are not available. As in Khan et al. [9],
for an observed sample d1, d2, . . . , dn, the Moments estimator, θ̂Mn , is obtained by
a numerical algorithm, which minimizes

M(q, θ) =
((

n−1
n∑
i=1

di

)
− μ1

)2
+
((

n−1
n∑
i=1

d2i

)
− μ2

)2
. (3)

The method of proportions was proposed by Khan et al. [9]. Since fD(1) = 1−q,
the idea is to use the empirical frequency of observations greater than 1

q̂P = 1− Fn(1). (4)

In the same way, since fD(2) = q − q2
θ

and using additionally, the empirical
frequency of observations greater than 2

θ̂Pn :=
1

log 2
log

log(1− Fn(2))

log(1− Fn(1))
. (5)

Denoting pd = fD(d), d = 1, 2, . . ., these authors noted that one may think of using
other relation

log q = k−θ log(1− p1 − · · · − pk), k = 1, 2, . . . (6)

In a simulation study it was concluded that the optimum choice of k is 2 and this
lead us to (5).

The method of maximum likelihood considers the log-likelihood function

logL(q, θ; d1, . . . , dn) =
∑n

i=1 log
{
q(di−1)

θ − qd
θ
i

}
; however, the ML equations

∂L/∂q = 0 and ∂L/∂θ = 0 must be solved numerically; in this case, computational
problems can occur, despite the good quality of estimates for high values of q [2].
Based on the method of proportions, approximate maximum likelihood estimators
were proposed by Kulasekera [10], both for complete and type I censored data. Jazi
et al. [5] present alternative approaches.
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3 Improved Shape Parameter Estimation

The main drawback of Khan et al. [9] proportions estimator (5) is that it does not use
all the observations but only a few of them, loosing a significant part of the available
information. Here, we overcome this limitation.

Considering (6) for d = 2, . . . , k it is possible to write the following system of
equations ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θ =
1

log 2
log

log(1− FD(2))

log q

· · · = · · ·
θ =

1

log k
log

log(1− FD(k))

log q

Now, adding all the equations and solving in order to θ

θ =
1

(k − 1)

k∑
d=2

1

log d
log

log(1 − FD(d))

log q
. (7)

Based on (7) we can derive estimators for θ. We suggest cd = 1, for every d, and
the estimation of 1−∑d

i=1 pi and q by the ecdf, in the same line as Khan et al. [9],
but considering all possible equations (6) to obtain one estimator.

Let D1:n ≤ · · · ≤ Dn:n be the o.s.’s of a random sample D1, . . . , Dn from
the type I discrete Weibull distribution (1); whenever defined (i.e., dn:n > 2), we
propose the following class of ecdf based estimators

θ̂IPn :=
1

(k − 1)

k∑
d=2

1

log d
log

log(1− Fn(d))

log(q̂P )
, (8)

where k is chosen as large as possible for an observed data set (e.g., k = dn:n − 1)
and q̂ is an estimator of q. With q̂ = q̂P we denote (8) by θ̂IP∗n . Since Fn(d) are
consistent estimators of

∑d
i=1 pi, for d = 2, . . . , k, θ̂IPn is a consistent estimator

of θ. Finally, notice that Fn(k) is an estimator of P [D < dn:n] with complete data
and with type I censored data, allowing us to use (8) in both cases.

4 Simulations

Here, we compare the moments estimator θ̂Mn (3), the proportions estimator θ̂Pn (5),
and the proposed estimator θ̂IP∗n . For the simulation study we have used the R
language [13]. We present the simulated mean values and root of mean square errors
(rmse) for θ = 0.5, 1, 1.5 and q = 0.5, 0.8, using 5,000 simulations in each sample
size (n = 10, . . . , 100). It is possible to calculate estimates both with (5) and (8),
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Table 1 Frequency of excluded samples

Sample θ = 0.5 θ = 1 θ = 1.5

size n q = 0.5 q = 0.8 q = 0.5 q = 0.8 q = 0.5 q = 0.8

10 0.0088 0.1020 0.0538 0.1094 0.2284 0.1072
20 0.0000 0.0116 0.0028 0.0114 0.0482 0.0116
30 0.0000 0.0022 0.0000 0.0018 0.0114 0.0002
40 0.0000 0.0000 0.0000 0.0004 0.0022 0.0000
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Fig. 1 Simulated mean values (left) and root mean squared errors (right) of θ̂M , θ̂P , and θ̂IP∗,
from a discrete Weibull model with q = 0.5 and θ = 0.5 (decreasing failure rate)
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Fig. 2 Simulated mean values (left) and root mean squared errors (right) of θ̂M , θ̂P , and θ̂IP∗,
from a discrete Weibull model with q = 0.8 and θ = 0.5 (decreasing failure rate)
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Fig. 3 Simulated mean values (left) and root mean squared errors (right) of θ̂M , θ̂P , and θ̂IP∗,
from a discrete Weibull model with q = 0.5 and θ = 1 (geometric distribution)
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Fig. 4 Simulated mean values (left) and root mean squared errors (right) of θ̂M , θ̂P , and θ̂IP∗,
from a discrete Weibull model with q = 0.8 and θ = 1 (geometric distribution)

only if d1:n = 1 and dn:n > 2. Based on these conditions, some samples were
excluded (see Table 1). In terms of bias, for all cases, the estimator θ̂IP∗n performs
much better than the other estimators under study. In terms of rmse, for θ < 1
(decreasing failure rate), the estimator θ̂IP∗n performs better. For θ ≥ 1 (increasing
failure rate or geometric distribution), the performance in terms of rmse of the
moments estimator (3) and θ̂IP∗n is almost the same or in some cases (q = 0.8)
(3) performs slightly better. The comparisons between the moment and proportion
estimators are similar to the results obtained in simulations by Khan et al. [9]
(Figs. 1–6).
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Fig. 5 Simulated mean values (left) and root mean squared errors (right) of θ̂M , θ̂P , and θ̂IP∗,
from a discrete Weibull model with q = 0.5 and θ = 1.5 (increasing failure rate)
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Fig. 6 Simulated mean values (left) and root mean squared errors (right) of θ̂M , θ̂P , and θ̂IP∗,
from a discrete Weibull model with q = 0.8 and θ = 1.5 (increasing failure rate)

5 Empirical Application

As an empirical example, we place ourselves in a context from quantitative risk
management. We consider the Volkswagen share price from January 3, 2003 to
January 29, 2010, and the daily log returns Rt+1 = log(Pt+1/Pt), where Pt is
the stock price at time t. The data come from web site http://chart.yahoo.com/ with
ticker symbol vow.de. The corresponding one-day-ahead VaR forecasts made at time
t for time t + 1, VaRt+1|t(p), is defined by

P [Rt+1 ≤ VaRt+1|t(p)|Ωt] = p,

http://chart.yahoo.com/
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Fig. 7 Comparison of geometric (0.05), FM , FP , and FIP cdfs and ecdf for Volkswagen
durations data set. (a) Geometric(0.05) cdf (gray) and ecdf (black), (b) cdf FM (gray) and ecdf
(black), (c) cdf FP (gray) and ecdf (black), (d) cdf FIP (gray) and ecdf (black)

where Ωt is the information set up to time-t and p is the coverage rate. Considering
a violation the event that a return is lower than the reported VaR, we define the hit
function

It+1(p) =

⎧⎨
⎩

1 if Rt+1 < VaRt+1|t(p)

0 if Rt+1 ≥ VaRt+1|t(p).

and the duration between two consecutive violations as Di := ti − ti−1, where ti
denotes the day of violation number i. Christoffersen [1] showed that evaluating
interval forecasts can be reduced to examining whether the hit sequence satisfies the
unconditional coverage (UC) and independence (IND) properties. It is possible to

write the IND property as Di
iid∼ D ∼ discrete Weibull(θ = 1). A problematic

non-verification of IND is the one that leads to clustering of violations, which
corresponds to several large losses occurring in a short period. With clustering, we
have an excessive number of very short durations and an excessive number of very
long durations. The discrete Weibull with θ < 1 will generate this pattern; for this
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Table 2 Goodness-of-fit statistics for fits of the geometric (0.05), FM , FP , and FIP distributions
to the Volkswagen durations data set

Statistic Geometric(0.05) FM FP FIP

Kolmogorov–Smirnov 0.221 0.052 0.095 0.0514
Chi-Square 46.7 6.16 35.8 5.84

reason, the estimate of the shape parameter can be used to identify a model that
violates IND in this way. Using the popular Historical Simulation (HS) method
for VaR(0.05), we calculate 95 durations with a moving window of size 250. The
obtained estimates were q̂M = 0.847, q̂P = 0.832, θ̂M = 0.712, θ̂P = 0.794, and
θ̂IP∗ = 0.67. All estimators give evidence that the HS VaR method used leads to
clustering of violations, with estimates of θ lower than 1. We consider three models,
FM , FP , and FIP fitted with the methods (3), (5), and (8). To assess how well
these distributions fit the Volkswagen durations data set, Fig. 7 contains the plot of
the ecdf along with FM , FP , and FIP cdfs. We also plot the ecdf along with the
cdf of the geometric (0.05) which corresponds to the UC and IND hypothesis. To
measure the discrepancy between the ecdf and the cdfs, the Kolmogorov–Smirnov
and chi-square statistics are given in Table 2. Clearly, the moments and the improved
proportions methods provide much better fit than the proportions method. These
two methods perform well with the real data set under study, but the improved
proportions are based on a simple equation while the method of moments involves
equations that cannot be solved easily by ordinary techniques.
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DPOT Methodology: An Application
to Value-at-Risk

M.I. Fraga Alves and P. Araújo Santos

Abstract
Threshold methods, based on fitting a stochastic model to the excesses over a
threshold, were developed under the acronym POT (peaks over threshold). To
eliminate the tendency to clustering of violations, a model-based approach within
the POT framework, which uses the durations between excesses as covariates, is
presented. Based on this approach we suggest models to forecast one-day-ahead
Value-at-Risk and apply these models to the Standard & Poor’s 500 Index. Out
of sample results provide evidence that they can perform better than state-of-the
art risk models.

1 Introduction

Value-at-Risk (VaR) aggregates several components of risk into a single number
and has emerged as the standard measure in quantitative risk management (for a
detailed discussion of VaR, see [12]. We will consider the symmetric of daily log
returns, Rt+1 = −log(Vt+1/Vt) × 100, where Vt is the value of the portfolio at
time t. The one-day-ahead VaR forecast made at time t for time t+ 1, VaRt+1|t(p),
is defined by

P [Rt+1 > VaRt+1|t(p)|Ωt] = p,
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where Ωt is the information set up to time-t and p is the coverage rate. A violation
occurs when the symmetric daily return exceeds the reported VaR.

We recall the Generalized Pareto Distribution (GPD)

Gγ,σ(y) =

⎧⎨
⎩

1− (1 + γy/σ)−1/γ , γ 	= 0

1− exp (−y/σ) , γ = 0,
(1)

where σ > 0, and the support is y ≥ 0 when γ ≥ 0 and 0 ≤ y ≤ −σ/γ when γ < 0.
The probability that the random variable (r.v.) X assumes a value that exceeds a
threshold u by at most y, given that it does exceed the threshold, is given by the
excess distribution

Fu(y) = P [X − u ≤ y|X > u] =
F (y + u)− F (u)

1− F (u)
, (2)

for 0 ≤ y < xF − u, where xF is the (finite or infinite) right endpoint of F ,
defined by xF := sup{x : F (x) < 1}. The Extreme Value Theory (EVT), with
the following theorem, suggests the GPD (1) as an approximation for the excess
distribution (2), for a sufficiently high threshold u.

Theorem 1.1. (Balkema and de Haan [3] and Pickands [17]) It is possible to find
a function β(u) such that

lim
u→xF

sup
0≤y<xF−u

|Fu(y)−Gγ,β(u)(y)| = 0,

if and only if F is in the maximum domain of attraction of an extreme value
distribution.

For a wide class of distributions, the excess distribution (2) over a high threshold
u can be approximated by the GPD (1) and this result holds for all distributions for
which the sequence of maxima linearly normalized converges to a non-degenerate
limit law. Smith [19] proposed a tail estimator based on a GPD approximation
to the excess distribution. We denote n the number of exceedances above u in a
sample X1, . . . , Xnx . Using n/nx as estimator of F̄ (u), the relation F̄u(x − u) =
F̄ (x)/F̄ (u) and F̄u(x − u) estimated by a GPD approximation, we obtain the tail
estimator and for p < F̄ (u), inverting the tail estimator, we get the VaR POT
estimator

V̂aR
POT

t+1 (p) = u+
σ̂

γ̂

(( n

nxp

)γ̂
− 1

)
. (3)

However, this is an unconditional method and suffers from the problem of
tendency to clustering of violations when applied to financial time series. In Sect. 2,
in order to solve this problem, we propose risk models based on durations and
within the POT framework. Comparisons between the proposed risk models and
other models are made in Sect. 3. Finally, conclusions are given in Sect. 4.
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2 A Duration-Based POT Method

Our main goal is to eliminate the tendency to clustering of violations that occurs
with the POT method. To achieve this goal, within the POT framework we propose
the presence of durations between excesses as covariates. Smith [20] develop ML
and Least Squares estimation procedures under the POT framework with the shape
and scale parameters dependent on covariates. For a general overview of EVT and
its application to VaR, including the use of explanatory variables, see, for instance,
Tsay [21]. For details about the mathematical theory of EVT and its applications to
risk management, see Embrechts et al. [9]. Let y1, . . . , yn be excesses above a high
threshold u, d1 the duration until the first excess and d2, . . . , dn, defined by

di = ti − ti−1, (4)

where ti denotes the day of excess i. We propose to use from the information set
up to time t (Ωt), the last v durations between excesses, dn, dn−1, . . . , dn−v+1

and the duration since the excess n which we define by dt. With the durations
di, . . . , di−v+1, it is possible to consider at the time of excess number i, the duration
since the preceding v excesses, defined by

di,v = di + · · ·+ di−v+1 = ti − ti−v. (5)

At day t, after the excess n, we define dt,1 = dt and for v = 2, 3, . . . ,

dt,v = dt + dn,v−1

which represents the duration until t since the preceding v excesses.

2.1 Empirical Motivation

The motivation for the presence of durations between excesses as covariates has
mainly been based on the relation between the amount of the excess and durations
which we observe in various financial time series. Figure 1 (left) presents for the
S&P 500 Index, considering all the returns from January 4, 1950 through May 18,
2010, and a threshold such that 10% of the values are larger than the threshold, the
scatterplot of excesses (yi) and durations since the preceding excess (di). Clearly,
large excesses tend to be associated with short durations. In Fig. 1 (right) we plot the
excesses (yi) and the inverse of durations since the preceding excess (1/di). Table 1
gives Pearson correlations between excesses, durations, and the inverse of durations.
The linear association between excesses and durations is weak, but increases when
we take the inverse of durations, as expected. Adding durations we get the duration
since the preceding v excesses defined in (5) and the correlation increases a little
more when we compute the correlation between excesses and the inverse of these
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Fig. 1 S&P Index from January 4, 1950 through May 18, 2010. Scatter plot of excess above a high
threshold (u = 0.9897) and duration since the preceding excess (left) and scatter plot of excess
above a high threshold (u = 0.9897) and the inverse of duration since the preceding excess (right)

Table 1 S&P Index. Pearson correlation between yi, di−j , 1
di−j

, and 1
di,v

j Corr(yi, di−j) Corr(yi, 1
di−j

) v Corr(yi, 1
di,v

)

0 −0.123 0.193 2 0.284
1 −0.127 0.174 3 0.325
2 −0.096 0.149 4 0.335
3 −0.126 0.148 5 0.346

durations. We observe that the excesses have higher mean and higher variance with
short durations, and lower mean and lower variance with long durations. Araújo
Santos and Fraga Alves [1] obtained similar results for the Down Jones Average
Index. Based on these empirical results, we propose to define the expected value and
variance of the excesses dependent on the durations. This purpose can be achieved
by modeling the parameter σ of the GPD model (1) as a function of parameters and
the durations. We generically denote this function by g.

2.2 DPOT Model

With the durations (4) and the duration since the excess n, dt, we assume the GPD
for the excesses Yi above u, such that

Yt ∼ GPD
(
γ, σt = g(α1, . . . , αk, . . . , d

t, dn, dn−1, . . . , dn−v+2)
)
,

where γ, α1, . . . , αk, are parameters to be estimated. And we propose the following
class of estimators

V̂aR
DPOT

t+1|t (p) = u+
σ̂t
γ̂

(( n

nxp

)γ̂
− 1

)
, (6)

with σ̂t = g(α̂1, . . . , α̂k, . . . , d
t, dn, dn−1, . . . , dn−v+2).
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The proposed DPOT method implies, for γ < 1, a conditional expected value
for excesses, and for γ < 1/2, a conditional variance, both dependent on dt and the
last v durations between excesses,

E[Yt|Ωt] =
σt

1− γ
(γ < 1), V [Yt|Ωt] =

(σt)
2

(1− 2γ)
(γ < 1/2).

The empirical results of Sect. 2.1 suggest an inverse relation between excesses
and the durations since the preceding v excesses, with 1/(di,v)

c, c > 0, which leads
to the specification σt = α 1

(dt,v)c
and the VaR estimator

V̂aR
DPOT (v,c)

t+1|t (p) = u+
α̂

γ̂(dt,v)c

(( n

nxp

)γ̂
− 1

)
, (7)

where γ̂ and α̂ are estimators of the parameters γ and α. Applying the maximum
likelihood theory to estimate the parameters, the log likelihood obtained is

log L(γ, α) = log
n∏
i=v

fYi(yi)

= −
n∑
i=v

log
( α

(di,v)c

)
−
( 1
γ
+ 1

) n∑
i=v

log
(
1 +

γ

α
yi(di,v)

c
)
. (8)

We choose v = 3 taking into account that the correlations increase only slightly
for v ≥ 4. We study the model with c estimated, but we achieve poor results.
Empirical findings suggest that the method is robust for different values of c in the
interval between 0.7 and 0.8. We present results for v = 3, c ∈ {0.8, 0.75, 0.7} and
apply an implementation of Nelder and Mead algorithm, using the stats package of
R [18], to maximize (8).

3 Comparative Study

Using all the returns from S&P 500 Index, we compare the proposed DPOT method
with a two-stage hybrid method which combines a time-varying volatility model
with the EVT approach, known as Conditional EVT. We employ the R language
in order to develop the programs. The data were obtained from the web site http://
finance.yahoo.com/. Diebold et al. [8] proposed in a first step the standardization
of the returns through the conditional means and variances estimated with a time-
varying volatility model, and in a second step, estimation of a p quantile using EVT
and the standardized returns. McNeil and Frey [15] combine a AR(1)-GARCH(1,1)
process assuming normal innovations with the POT method from EVT. We will
denote this model as CEVT-n. The filter with normal innovations, while capable
of removing the majority of clustering, will frequently be a misspecified model

http://finance.yahoo.com/
http://finance.yahoo.com/


86 M.I.F. Alves and P.A. Santos

for returns. To accommodate this misspecification, Kuester et al. [13] suggested
a filter with the skewed t distribution. We will denote this model as CEVT-sst.
Several studies conclude that conditional EVT is the method with better out-of-
sample performance, to forecast one-day-ahead VaR (e.g., [4, 6, 11, 13, 15, 16]),
and this is the reason why we choose CEVT-n and CEVT-sst models for the
comparative study. We compare the CEVT-sst, CEVT-n, and DPOT models with
v = 3, c ∈ {0.8, 0.75, 0.7}, denoted respectively by DPOT(0.8), DPOT(0.75), and
DPOT(0.7). We examine the one-day-ahead VaR(0.01) forecasts performance with
the S&P, considering returns produced by all the historical data until May 18, 2010.
Using a rolling window of size 1,000 we obtain 14,190 one-day-ahead VaR(0.01)
forecasts for each model. As usual, the threshold u was chosen such that 10% of
the values are larger than the threshold (see [15]). The primary tool for assessing
the accuracy of the interval forecasts is to monitor the binary sequence generated
by observing if the return on day t + 1 is in the tail region specified by the VaR at
time-t, or not. This is referred to as the hit sequence

It+1(p) =

{
1if Rt+1 > V aRt+1|t(p)

0if Rt+1 ≤ V aRt+1|t(p).

Christoffersen [7] showed that evaluating interval forecasts can be reduced to
examining whether the hit sequence satisfies the unconditional coverage (UC) and
independence (IND) properties. To test the UC hypothesis, we apply the Kupiec test
[14]. Engle and Manganelli [10] consider an autoregression for It and Berkowitz
et al. [5] propose the logit model

log
( P [It = 1]

1− P [It = 1]

)
= α+ β1It−1 + β2VaRt|t−1(p).

We can test the IND hypothesis with a likelihood ratio test considering for the null
β1 = β2 = 0 and in this case the asymptotic distribution is chi-square with 2 degrees
of freedom. We refer to this test as the CAViaR independence test of Engle and
Manganelli (CAViaR). The other independence test applied was recently introduced
in the literature [2] and is based on the ratio (DN :N − 1)/D[N/2]:N , where DN :N

and D[N/2]:N , are the maximum and the median of durations between consecutive
violations and until the first violation. This new test is based on an exact distribution
and outperforms, in terms of power, existing procedures in realistic settings. We
refer to this test as MM ratio test. The empirical findings are presented in Table 2.
In the case of the POT model both independence tests reject the IND hypothesis
with very small p-values. With a violation frequency equal to 0.01367, the UC
hypothesis is also clearly reject with this model. In terms of the UC hypothesis,
both DPOT and CEVT models perform very well taking into account that in no case
the hypothesis is rejected since all p-values are very high. It is interesting to note
the impressive performance of CEVT models in terms of UC in Table 2, with 142
violations in 14,190 out-of-sample forecasts was impossible to obtain a better result
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Table 2 Out-of-sample accuracy for VaR(0.01) applied to S&P 500 Index returns from
January 4, 1950 until May 18, 2010, with a rolling window of size 1,000

Violation Kupiec CAViaR MM ratio
Model frequencies p-value p-value p-value

POT 0.013672 0.0000 0.0000 0.0000
DPOT(0.8) 0.009725 0.7410 0.0189 0.7902
DPOT(0.75) 0.009443 0.5011 0.1018 0.1048
DPOT(0.7) 0.009443 0.5011 0.8659 0.0566
EVTC-n 0.010007 0.9933 0.0145 0.0166
EVTC-sst 0.010007 0.9933 0.0236 0.0314

Unconditional coverage and independence tests

(violation frequency equal to 0.010007). In terms of IND hypothesis, the DPOT
models perform clearly better than the CEVT models. Considering the six cases
with three DPOT models and two independence tests, with DPOT models the IND
hypothesis is rejected only in one case. For the Conditional EVT models the IND
hypothesis is rejected in all cases. This empirical evidence shows that the DPOT
model can perform better than Conditional EVT in terms of removing the tendency
to clustering of violations.

4 Final Remarks

In this work we presented a POT method that uses the durations between excesses
as covariates. Based on this method, we suggest three DPOT models to forecast one-
day-ahead VaR. Empirical findings, with the S&P 500 Index, show that they perform
very well in terms of unconditional coverage and perform better than state-of-the
art models in terms of removing the tendency to clustering of violations. Finally,
we notice that in order to deal with the volatility clustering, the proposed models do
not assume a parametric distribution for the entire distribution of the returns, as the
CEVT models and other models widely used, but assume a parametric model only
on the tail and based on solid asymptotic theory.
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Estimation of the Extremal Index Function
in Case of Asymptotically Independent
Markov Chains and Its Application to Stock
Market Indices

Alexandra Ramos and Anthony Ledford

Abstract
To describe the behaviour of exceedances of a stationary process, attention
has been given to the within-cluster behaviour of the extremes of Markov
chains, which is determined by the short-range temporal dependence. These
characterisations are usually based on the threshold dependence extremal index,
θ(u), which measures the extent of clustering of exceedances of the process
above the high threshold u. In this work, we intend to study the function θ(u),
in case of asymptotically independent Markov chains. An estimator of θ(u)
based on the methodology described in Ramos and Ledford (J. R. Stat. Soc. B
71(1):219–241, 2009) will be deduced and analysed. Applications of the new
estimator to simulated data and to real data will be considered.

1 Introduction

Over the last decade or so, advances in multivariate extreme value theory have
led to improved techniques for characterising the extremal behaviour of stationary
time series. In particular, attention has been given to the within-cluster behaviour
of the extremes of a series, which is determined by the short-range temporal
dependence. Most of its characterisation has been done based on the assumption
of Markovianity of the time series, as the class of dth-order Markov chains is
sufficiently general and tractable. The simplest limiting quantifier of the extremal
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within-cluster dependence for any stationary time series {Xn}n≥1 satisfying the
D condition in [4] is the extremal index θ with 0 ≤ θ ≤ 1. Values of θ close to
0 indicate a very strong short range extremal dependence, while values close to 1
suggest a rather weak dependence. In fact, θ is often defined by both the reciprocal
of the limiting mean cluster size and the only parameter describing the effect of
short-range extremal dependence on the limiting distribution of the componentwise
maxima MN = max {X1, . . . , XN}, in the sense that there exists a sequence of
constants aN > 0, bN and uN = aNx+ bN such that

lim
N→∞

Pr(MN ≤ uN) = lim
N→∞

{F (uN)}Nθ ,

where F is the common marginal distribution function and limN→∞ {F (uN )}Nθ =
Gθ(x) for a non-degenerate distribution function G called the generalised
extreme value distribution. However, some difficulties arise in the case θ = 1,
which implies that asymptotically extreme events occur singly. For example,
for all asymptotically independent Markov processes {Xn}n≥1, i.e. such that
limu→x∗ Pr (Xi+1 > u|Xi > u) = 0 where x∗ is the upper limit of the support
of the common marginal distribution, the extremal index is one, despite clustering
of exceedances of high thresholds still occurring, see [2]. For such processes it
is useful to characterise the extremal dependence by a penultimate version of the
extremal index, θ(u) ≡ θ(u,m) say, defined as a function of the high threshold u
and m = m(u) the length of the window of the clusters, and whose limit is θ as
u → x∗. Following [2], it is natural to define θ(u,m) as

θ(u) ≡ θ(u,m) = [E {N(u,m)|N(u,m) ≥ 1}]−1 , (1)

where N(u,m) =
∑m
i=1 I(Xi > u) is the size of a cluster with window of length m

initialised at i = 1, and where I is the indicator function.
Provided a suitable choice of m can be made, θ(u,m) can be estimated by

an empirical version of (1), see [1] or [2]. Theoretical properties and estimation
techniques of the extremal index and its penultimate version θ(u,m) have been
studied fairly extensively. Their application in various areas include insurance,
hydrology and telecommunications, see, e.g. [3]. Other estimators of θ(u,m) given
in the literature include the runs estimator, the blocks estimator or a profile log-
likelihood based estimator, see [1].

2 Fitting a Markov Model to the Tails of the Stationary
Time Series

A common approach for statistically modelling the tail of a Markov chain consists
of using a determined joint distribution of d-dimensional extreme values to model
the dependence structure between consecutive variables Xi, . . . , Xi+d that exceed
a fixed high threshold u, an approach which is based on the assumption that the
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limiting behaviour of the chain holds exactly above the high threshold u. Assuming
{Xn}n≥1 to be a first-order stationary Markov chain, Ramos and Ledford in a
work yet to be published suggest modelling the joint tail of the distribution of two
consecutive pairs (Xi, Xi+1) with a bivariate joint tail distribution and extended
their results to dth-order Markov chains, see [5] for details. Let {Xn}n≥1 be a
stationary first-order Markov chain with continuous state space and denote its joint
distribution function by F (xi, xi+1), and its marginal distribution by F (x) =
Pr(Xi ≤ x) for all i ≥ 1. Then, we consider the generalised Pareto distribution
(GPD) to describe the univariate tail behaviour over a high threshold u1, u1 in the
original scale of the variable Xi, which leads to

F (x) =

⎧⎨
⎩

1− λ1 {1 + ξ(x− u1)/σ}−1/ξ+ , x ≥ u1

1− λ1, x < u1

(2)

where s+ = max(s, 0), ξ, and σ > 0 are shape and scale parameters respectively
and λ1 denotes the threshold exceedance probability. The joint distribution of
(Xi, Xi+1) over a joint tail region R11 = (u1,∞)× (u1,∞) is treated in a similar
way. We adopt the η-asymmetric logistic model ([6]) as a joint tail survivor model to
describe the dependence between consecutive high observations of the chain, which
is given by

F (xi, xi+1) =
λ

N	

⎡
⎣
(
�yi
uf

)− 1
η

+

(
yi+1

�uf

)− 1
η

−
{(

�yi
uf

)− 1
α

+

(
yi+1

�uf

)− 1
α

}α
η

⎤
⎦
(3)

for xi, xi+1 > u1 and where F (x, y) = Pr(X > x, Y > y), N	 = �−1/η + �1/η −
(�−1/α + �1/α)α/η , η, α ∈ (0, 1] and � > 0, yj = −1/ logF (xj) (j = i, i + 1),
F (x) is as defined in (2) and uf = −1/ log(1 − λ1) is a high threshold in the unit
Fréchet scale.

The fitting of the model is done through a threshold censored likelihood based
on the approach described in [7], where data below a high threshold in each margin
are censored.

3 Within-Clusters Behaviour at Extreme Levels

Having fitted the model, estimates of various extremal characteristics of the
process can be obtained. In particular, we are here interested in studying the
threshold dependent extremal index θ(u), which measures the extent of clustering of
exceedances of the process above the high threshold u. Estimates of the threshold-
dependent extremal index, as well as other quantities of interest, can be obtained
by simulation of clusters of extreme events from the fitted model. Following [2]
and [7], this can be done by first simulating the maximum value of the cluster and
then simulating values backwards and forwards over the cluster window according
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to the transition density of the fitted Markov chain. As the limiting distribution of the
cluster maximum is the same as the limiting distribution of any other exceedance, it
can be simulated from a GPD as in (2). The other cluster values are obtained from
the following result, see [2]. Under regularity conditions and conditionally on the
maximum Y1 > u, the ratios Y2/Y1, . . . , Yq/Yq−1 are independent as u → ∞ and
for fixed q, with common distribution function

HF (y) = lim
u→∞Pr(Y2 ≤ uy|Y1 = u), y ≥ uf/u.

and so the ratios Yi/Yi−1 can be generated from the distribution function above.
Analogously, the observations preceding the maximum are generated by simulating
the ratios Yi−1/Yi as independent points from

HB(y) = lim
u→∞Pr(Y1 ≤ uy|Y2 = u), y ≥ uf/u.

Similar to [2] and using the η-asymmetric logistic model defined in (3), we consider
the approximations

Pr(Y2 ≤ uy|Y1 = u) ∼ exp

(
−λu

1/η
f u1−1/η

ηN	

[
�−1/η − �−1/α

{
�−1/α

+

(
y

�

)−1/α}α/η−1⎤⎦
⎞
⎠

≡ H∗F (y;u)

Pr(Y1 ≤ uy|Y2 = u) ∼ exp

(
−λu

1/η
f u1−1/η

ηN	

[
�1/η − �1/α

{
(�y)−1/α

+

(
1

�

)−1/α}α/η−1⎤⎦
⎞
⎠

≡ H∗B(y;u),

valid for 0 < η < 1 and large u. These functions provide a threshold-dependent
model for the transition distribution. Although they are valid only for η < 1,
they have the advantage of producing approximations for HF and HB which are
proper distribution functions, and since we are primarily interested in asymptotically
independent Markov chains, we work with these functions for the remainder of this
chapter. For asymptotically dependent Markov chains, i.e. when η = 1, we can
either consider other approximations of HF and HB valid for this case under our
framework or work with functions HF and HB defined under the framework in [7].
Then, the complete algorithm for the cluster simulation is as follows.
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1. Choice of threshold and length of cluster window. Choose a high threshold u, in
a unit Fréchet scale, such that u > uf and choose m = 2r + 1, where m and r
are the length and the radius of the window, respectively.

2. Simulation of the cluster maximum. Simulate the cluster maximum, Y0, from a
GPD as defined in (2) but with u1 replaced with u, σ = u, ξ = 1 and λ1 =
1− exp(−1/u).

3. Simulation of the cluster. Simulate the observations Y1, . . . , Yr iteratively from
H∗F with u = Yi−1 (i = 1, . . . , r) and simulate the observations Y−1, . . . , Y−r
iteratively from H∗B with u = Y−i+1 (i = 1, . . . , r). Each of these sequences
will be rejected whenever a value Yi > Y0 is generated, and its simulation will
be repeated.

4. Estimation of functionals of interest. Having repeated the previous steps to
produce a large number k of clusters, several quantities of interest can be

constructed empirically. For example, denoting by Nj

(
u; φ̂

)
the number of

exceedances of u (of m(u)) in the jth simulated cluster that has at least one
exceedance of u, the threshold-dependent extremal index can be estimated by

θ̂
(
u, φ̂

)
=

⎧⎨
⎩

1

k

k∑
j=1

Nj

(
u; φ̂

)⎫⎬
⎭
−1

,

where φ̂ represents the model estimated parameters.

4 Application to Simulated Data from Gaussian Processes

In this section we examine the accuracy of the methodologies developed in Sects. 2
and 3 by studying the threshold-dependent extremal behaviour of simulated data
consisting of a realisation of length 10, 000 generated from a stationary Gaussian
autoregressive process of order 1, {Xn}n ≥ 1, with standard normal marginal
distribution and lag τ correlation of ρτ for ρ = 0.5. Specifically, we consider
Xn = ρXn−1 + (1 − ρ2)1/2εn for −1 < ρ < 1, where εn are independent and
identically distributed standard normal variables. As it was already mentioned in
Sect. 1, this is a class of asymptotically independent Markov chains with extremal
index θ = 1, which exhibits dependence at sub-asymptotic levels. To restrict
attention to the dependence features of the simulated data, the marginal distribution
is treated as known and the points Xn are transformed to unit Fréchet variables Yn
(n = 1, . . . , 10, 000), via Yi = −1/ logΦ(Xi) where Φ denotes the standard normal
cumulative distribution function.

The Markov tail model defined in Sect. 2 was fitted to the simulated data for
the threshold uf = 11.99 corresponding to the 0.92 quantile of the unit Fréchet
marginal distribution, as stability of the model parameters estimates is observed
over this level. The obtained coefficient of tail dependence estimate was η̂ =
0.756 (0.036), where standard error in parentheses are obtained by the delta method,
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Fig. 1 Estimates of the
extremal index function θ(u)
against log u using the
simulated Gaussian series and
obtained by (—-) ̂θ1(u), (· · · )
̂θ2(u), (- · -) ̂θ3(u) and (- - -)
its true behaviour

which is very close to the true value η = 0.75 and significantly different from 1,
confirming the asymptotic independence of the series. The estimates obtained for
the other parameters of the model were α̂ = 0.93 (0.062) and �̂ = 1.22 (0.135).

Figure 1 shows estimates of the extremal index θ(u) obtained by the simulation
scheme of Sect. 3 with m = 6 and the fitted Markov tail model, which we denote by
θ̂1(u). For comparison, the true behaviour of θ(u) is also included in this figure. As
suggested in [2], θ(u) may be evaluated empirically through simulation of clusters
using the true transition densities. That is, the cluster maximum is simulated from
a GPD with u1 = u, ξ = 0, σ = (1 − Φ(u))/Φ(u) and λu = 1 − Φ(u), and the
distribution functions H∗F and H∗B are both equal to a normal distribution function
with mean ρu and variance 1 − ρ2, evaluated at uy, and we use m = 4. Also
shown in Fig. 1 are estimates of θ(u) obtained by the naive estimator θ̂2(u) =∑N
i=1 I(Xi+1 ≤ u < Xi)/

∑N
i=1 I(Xi > u), and by the runs estimator θ̂3(u) =[∑N−1

i=1 I(Xi > u) (1− I(Xi+1 > u)) · · · (1− I(Xi+k > u))
]
/
∑N

i=1 I(Xi > u)

for k = 2. From Fig. 1 we conclude that θ(u) is well approximated by θ̂1(u), in
particular when choosing a large u. In fact, for large values of u, the new estimator
performs better than the naive or the runs estimators.

5 Application to Financial Data

In this section, we consider financial time series consisting of daily log-returns
of closing stock index levels observed for the period of 1/1/00 to 30/9/09 for the
Portuguese index PSI-20, the period of 2/4/84 to 30/9/09 for the English FTSE 100
and the period of 9/11/90 to 30/9/09 for the Swiss SSMI.
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Fig. 2 Daily standardised log-returns of the PSI-20 (top), FTSE 100 and SSMI (bottom) series.
The chosen thresholds u1 are also identified

To remove the observed stock returns heteroskedasticity, we fit the volatility
model GARCH(1,1) to each marginal series, and then apply the Markov chain
modelling approach described in Sect. 2 to the positive/negative daily standard-
ised log-returns of the series, which we denote by {Xn}. These are shown in
Fig. 2. An evident temporal clustering of high and low extreme values can be
seen, which indicates the presence of local dependence at extreme levels. This
clustering behaviour has important implications in practice, as it corresponds to
large consecutive changes associated with large financial gains or losses. Therefore,
we examine both the upper and the lower joint tails of the pairs (Xi, Xi+1) for every
data set, which requires the joint estimation of the extremal temporal-dependence
structure as well as the tail of the marginal distribution.

The Markov tail model defined in Sect. 2 was fitted to these data sets for the
thresholds uf corresponding to the empirical 0.92 quantiles of the unit Fréchet
transformed marginal data. The corresponding thresholds u1 in the original scale,
as in (2) and (3), are represented in Fig. 2. The obtained dependence parameter
estimates are (η̂, α̂, �̂) = (0.31, 0.87, 0.65) for the upper tail and (η̂, α̂, �̂) =
(0.56, 1.04, 2.9) for the lower tail of the standardised PSI-20 series, (η̂, α̂, �̂) =
(0.61, 1.58, 1.10) for the upper tail and (η̂, α̂, �̂) = (0.59, 1.18, 0.35) for the lower
tail of the standardised FTSE 100 series and (η̂, α̂, �̂) = (0.35, 1.08, 0.74) for the
upper tail and (η̂, α̂, �̂) = (0.44, 0.72, 4.0) for the lower tail of the standardised
SSMI series. Estimates for the coefficient of tail dependence are significantly lower
than 1, indicating that all 3 series are asymptotically independent.

Figure 3 shows estimates of the extremal index function θ(u) for the fitted
Markov tail model obtained by the simulation scheme of Sect. 3 with m = 4 and
applied to the upper and lower tails of the 3 standardised series.
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Fig. 3 Estimates of the extremal index function θ(u) against log u obtained by the new estimator
̂θ1(u) and applied to the (—-) upper and (- - -) lower tails of the standardised series of the stock
Market indices PSI-20 (left plot), FTSE 100 (middle plot) and SSMI (right plot)

The estimates in Fig. 3 seem to suggest that, in general, for these standardised
series, clusters tend to be longer in duration for the upper tail than for the lower tail,
indicating that large falls tend to occur more in temporal isolation than large rises.
The PSI 20 index seems to have bigger sized clusters than the other 2 indices, both
for upper and lower tails.

Acknowledgements Alexandra Ramos was partially supported by FCT (Portugal) through the
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Generated Covariates in Nonparametric
Estimation: A Short Review

Enno Mammen, Christoph Rothe, and Melanie Schienle

Abstract
In many applications, covariates are not observed but have to be estimated from
data. We outline some regression-type models where such a situation occurs
and discuss estimation of the regression function in this context. We review
theoretical results on how asymptotic properties of nonparametric estimators
differ in the presence of generated covariates from the standard case where all
covariates are observed. These results also extend to settings where the focus of
interest is on average functionals of the regression function.

1 Introduction

Consider a nonparametric regression model of the form

Y = m0(R) + ε,

E[ε|R] = 0,

where Y is a one-dimensional response variable and R is a q-dimensional covariate
vector. The statistical goal is to nonparametrically estimate the regression function
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m0 : Rq → R or a functional of the regression function, e.g., a weighted
average T (m0)=

∫
m0(x)w(x)dx. We consider the case where the covariate R

is unobserved but an estimator R̂ of R is available. In this note, we provide
some examples where such a situation occurs. Furthermore, appropriate forms
of nonparametric estimators of m0 are discussed and results on their asymptotic
distribution are reviewed. In particular, we analyze how the real feasible estimator
of m0 obtained via regression on R̂ differs from the infeasible one obtained
by regressing on R. With stochastic expansions for the difference of these two
estimators, the asymptotic distribution of the real estimator of m0 can be accurately
described.

The note is organized as follows. In the next section, some examples illustrate
how and where generated covariates typically appear in practice. Section 3 provides
an overview of the asymptotic theory when m0 is estimated by local linear
estimation. In particular, the theory can also be applied to cases where the main
interest is in averages of the regression function m0, which is also important for
some of the stated examples.

2 Examples

2.1 Simultaneous Nonparametric Equation Models Without
Additivity (Imbens and Newey [3])

In economic models, there are often unobserved covariates which affect both
response and observed covariates. Generally, such covariates which are correlated
with the disturbance are called endogenous. Imbens and Newey [3] propose a
regression model with endogenous covariates where the error variable does not enter
additively into the model. This allows for general forms of unobserved heterogeneity
which has led to recent popularity of such nonseparable models among economists.

They consider a general regression relation of the form

Y = μ(X1, Z1, e)

where X1 and Z1 are observed covariates and Y is a one-dimensional response.
While Z1 is independent of the error variable e, no assumptions are made on the
dependence between X1 and e at this stage. For identification, however, assume that
the endogenous variable X1 is generated as

X1 = h(Z1, Z2, V ),

where Z2 is an observed so-called instrumental variable not contained in the original
equation, and (Z1, Z2) is independent of the joint vector of errors (e, V ).
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If the function h is strictly monotone in V , one can set without loss of generality
that the conditional distribution of V given (Z1, Z2) is the uniform law on [0,1].
This can be achieved by putting

V = FX1|Z1,Z2
(X1, Z1, Z2)

and choosing h as the inverse of FX1|Z1,Z2
. Then by definition, the conditional

distribution of V given (Z1, Z2) does not depend on (Z1, Z2). Thus, V is inde-
pendent of (Z1, Z2). Note that the above independence assumption is slightly more
restrictive, because it does not only require that (Z1, Z2) is independent of each
e and V separately, but also of (e, V ) jointly.

For fixed values of z1, z2 and v and for x1 = h(z1, z2, v) it is straightforward to
show

E[μ(x1, z1, e)|V = v]

= E[μ(X1, Z1, e)|Z1 = z1, Z2 = z2, V = v]

= E[μ(X1, Z1, e)|X1 = x1, Z1 = z1, V = v]

= E[Y |Z1 = z1, Z2 = z2, V = v].

Thus we can write
Y = m0(R) + ε,

where

S = (X1, Z1, Z2),

R = r0(S) = (X1, Z1, FX1|Z1,Z2
(X1, Z1, Z2)) = (X1, Z1, V ),

m0(x1, z1, v) = E[μ(x1, z1, e)|V = v],

ε = Y − E[Y |S].

In this model, the covariate V is unobserved, but an estimate

V̂ = F̂X1|Z1,Z2
(X1, Z1, Z2)

of V is available. Thus, instead of R also use the feasible R̂ = (X1, Z1, V̂ ). Then the
function m0 can be estimated by regressing Y onto R̂. Let us denote this estimator
as real, feasible estimator m̂. One may compare this estimator to the theoretical,
infeasible estimator m̃ obtained from regressing Y onto R. If the asymptotics of the
theoretical estimator m̃ are well understood, an asymptotic understanding of m̂ can
be based on a stochastic expansion of the difference of m̂− m̃.

The function m0 is not of direct interest because it contains the nuisance
covariate V . In general, the focus is on the so-called average structural function
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E[μ(x1, z1, e)], the expected response if one exogenously fixes X1 at x1 and Z1 at
z1. This function can be estimated by

∫ 1

0

m̂(x1, z1, v)dv.

Other functionals of interest are averages of the derivative ∂μ(x1, z1, e)/∂(x1, z1).

2.2 Simultaneous Nonparametric Equation Models
with Additivity (Newey, Powell and Vella [9])

In Newey et al. [9] a submodel of the regression model of the last subsection is
considered. The setup differs from the last subsection by assuming that the error
enters additively into the regression function, i.e.

Y = μ(X1, Z1) + e.

For the control equation also an additive specification is used:

X1 = h(Z1, Z2) + V,

but one could also proceed with the control equation of the last section.
With (Z1, Z2) independent of (e, V ) as before, it is

E[Y |X1, Z1, Z2] = μ(X1, Z1) + λ(V ) = E[Y |X1, Z1, V ]

with λ(V ) = E[e|V ]. Thus we get an additive model where the regressor in
the second additive component is not observed. This additive model can also be
obtained under slightly weaker conditions, namely that E[e|Z1, Z2, V ] = E[e|V ]
and E[V |Z1, Z2] = 0.

There are two major approaches to fit an additive nonparametric model: marginal
integration and backfitting. In Marginal Integration [4,8,10], first a full dimensional
regression function E[Y |X1 = x1, Z1 = z1, V = v] is estimated. And then in a
second step, v is integrated out to obtain an estimate of μ(x1, z1). The first step
of this procedure can be rewritten as a regression problem Y = m0(R) + ε with
unobserved regressor R where

S = (X1, Z1, Z2),

R = r0(S) = (X1, Z1, X1 − h(Z1, Z2)) = (X1, Z1, V ),

m0(r) = E[Y |R = r],

ε = Y − E[Y |R].
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A fit of the unobserved R is given by R̂ = (X1, Z1, V̂ ) with V̂ = X1 − ĥ(Z1, Z2)

where ĥ is a (nonparametric) estimator of the control function h.
In the Smooth Backfitting approach [5] for an additive model, estimates are

obtained by iteration. As ingredients for the iteration algorithm, one needs estima-
tors of the marginal expectations E[Y |X1, Z1], E[Y |V ], and of the joint density of
(X1, Z1, V ). Here estimation of E[Y |V ] can be rewritten as a regression problem
Y = m0(R) + ε with unobserved regressor R where now

S = (X1, Z1, Z2),

R = r0(S) = X1 − h(Z1, Z2) = V,

m0(v) = E[Y |V = v],

ε = Y − E[Y |V ].

2.3 Marginal Treatment Effects (Heckman and Vytlacil [1, 2])

In Heckman and Vytlacil [1, 2] the following model for treatment effects is
discussed: we observe D,YD, X, Z in

Yd = ρ(X,Ud, θd) for d = 0, 1

D = 1, if V ≤ μ(Z), and D = 0, otherwise.

Here θ0 and θ1 are unknown parameters that are finite or infinite-dimensional.
Furthermore, ρ is a known function. An example for a specification would be
ρ(X,Ud, θd) = md(X) + Ud with a “nonparametric parameter” θd = md. The
variable D is a dummy variable that indicates if a person is treated or not. The model
contains counterfactual outcomes. If a person is treated (D = 1) the outcome Y1 is
observed, assuming that there also exists an unobserved outcomeY0 that would have
been observed if the person had not been treated. The participation of the person in
the treatment is driven by an unobserved variable V . Without loss of generality,
set V as uniform distribution on [0, 1]. For identification of the model the following
condition is required:

(U0, V ) and (U1, V ) are conditionally independent of Z given X .
Note that the norming of V implies that P (D = 1|Z) = μ(Z).

Here, a function of interest is the Marginal Treatment Effect MTE(x, v) =
E[Y1 − Y0|X = x, V = v], the expected treatment effect for an individual
with covariate X = x that lies on the v-quantile of the unobserved propensity to
participate in the treatment. It holds that

MTE(x, v) = E[Y1 − Y0|X = x, V = v]

= − ∂

∂v
E[YD|X = x, μ(Z) = v].
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This follows because for δ > 0 small:

MTE (x, v) = E[Y1 − Y0|X = x, V = v]

≈ δ−1 (−E[Y1I [V ≥ v + δ]|X = x]− E[Y0I [V < v + δ]|X = x]

+E[Y1I [V ≥ v]|X = x] + E[Y0I [V < v]|X = x])

= δ−1 (−E[Y1I [V ≥ v + δ]|X = x, μ(Z) = v + δ]

−E[Y0I [V < v + δ]|X = x, μ(Z) = v + δ]

+E[Y1I [V ≥ v]|X = x, μ(Z) = v] + E[Y0I [V < v]|X = x, μ(Z) = v])

= δ−1 (−E[YDI [V ≥ v + δ]|X = x, μ(Z) = v + δ]

−E[YDI [V < v + δ]|X = x, μ(Z) = v + δ]

+E[YDI [V ≥ v]|X = x, μ(Z) = v] + E[YDI [V < v]|X = x, μ(Z) = v])

= δ−1 (−E[YD|X = x, μ(Z) = v + δ] +E[YD|X = x, μ(Z) = v])

≈ − ∂

∂v
E[YD|X = x, μ(Z) = v].

Here estimation of (the partial derivative of) E[YD|X = x, μ(Z) = v] can be
rewritten as a regression problem Y = m0(R) + ε with unobserved regressor R
where now

Y = YD,

S = (X,Z),

R = r0(S) = (X,μ(Z)),

m0(r) = E[Y |(X,μ(Z)) = r],

ε = YD − E[YD|(X,μ(Z))].

Many treatment effects parameters and other parameters can be written as weighted
averages of MTE(x, v). Estimation of the MTE function is again based on a
regression problem with an unobserved covariate μ(Z). Here interest is in a partial
derivative of the regression function.

2.4 Further Examples

Further examples of regression problems with unobserved covariates are sample
selection models, censored regression models, generalized Roy models, stochastic
volatility models, and semiparametric GARCH-in-Mean models. For a discussion
and/or references of these models we refer to Mammen et al. [6].
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3 Nonparametric Regression with Nonparametrically
Generated Covariates

In all examples of the last section, the fit R̂ of the unobserved covariate is of the
form R̂ = r̂(S), where r̂ is an estimator of a function r0 that fulfills R = r0(S)
for an observed covariate S. Thus we have the following nonparametric regression
model

Y = m0(r0(S)) + ε,

E[ε|S] = 0.

In this section, we give a brief description of the asymptotics of a nonparametric
estimator m̂ that is based on regressing Y onto the fitted covariate R̂ = r̂(S). For
illustration, we restrict the discussion to the special case where m̂ = m̂LL is a
local linear estimator for an i.i.d. sample (Si, Yi), i.e., m̂LL(x) = α̂, where (α̂, β̂)
minimizes

n∑
i=1

[
Yi − α− βT (R̂i − x)

]2
Kh(R̂i − x).

Here Kh(u) is a product kernel:

Kh(u) = (h1 × · · · × hq)
−1K1(u1)× · · · ×Kq(uq)

for kernel functions K1, . . . ,Kq and a bandwidth vector h = (h1, . . . , hq). We call
this estimator also the real estimator, in contrast to the theoretical estimator m̃LL

which is defined as m̃LL(x) = α̃ where (α̃, β̃) minimizes

n∑
i=1

[
Yi − α− βT (Ri − x)

]2
Kh(Ri − x).

Since the Ris are unobserved, this theoretical estimator is infeasible. It is, however,
introduced here because its asymptotic behaviour is well understood. Thus, for the
asymptotic properties of the real estimator we only need a stochastic expansion of
m̂LL(x)− m̃LL(x). Such an expansion was derived in Mammen et al. [6]. Tailored
results for parameters obtained as functionals of m are derived in Mammen, Rothe
and Schienle [7].

For the comparison of m̂LL and m̃LL, Mammen et al. [6] use three types
of assumptions: besides standard smoothing assumptions, these are conditions on
accuracy (A) and complexity (C) of the estimator r̂ of r0. The assumption (A)
requires that r̂ converges to r0 with a rate that is fast enough. The assumption (C)
states that there exist sequences of sets Mn with two properties: (1) r̂ ∈ Mn with
probability tending to one. (2) The sets Mn are not too large, where size is measured
by entropy. The main result in Mammen et al. [6] is the following expansion
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m̂LL(x)− m̃LL(x) ≈ −m′(x)
1
n

∑n
i=1 Kh(r0(Si)− x)(r̂(Si)− r0(Si))

1
n

∑n
i=1 Kh(r0(Si)− x)

.

This result can be interpreted as follows: The real estimator m̂LL(x) and the oracle
estimator m̃LL(x) differ by a local weighted average of the estimator of r0:

−m′(x)
1
n

∑n
i=1Kh(r0(Si)− x)(r̂(Si)− r0(Si))

1
n

∑n
i=1Kh(r0(Si)− x)

.

This local average is of the order of the bias of r̂ but it may have a faster rate
as the variance part of r̂. Thus we can conclude that for achieving a certain rate
of convergence for estimating m0, it is not necessary that an estimator of r0 has
the same or a faster rate. A similar result can be obtained for derivatives of the
regression function.

We now shortly outline the main ideas of how the expansion of m̂LL(x) −
m̃LL(x) was obtained in Mammen et al. [6]. We want to compare:

real estimator m̂LL = SMOOTH of r̂(S) versus m0(r0(S)) + ε,
oracle estimator m̃LL = SMOOTH of r0(S) versus m0(r0(S)) + ε.

Now, because of additivity of the operator SMOOTH, it is

m̂LL = SMOOTH of r̂(S) versus m0(r̂(S)) + ε

+ SMOOTH of r̂(S) versus m0(r0(S))−m0(r̂(S)).

If r̂ was nonrandom we get, because |r̂(S)− r0(S)| is small by assumption (A),

m̂LL ≈ SMOOTH of r0(S) versus m0(r0(S)) + ε

+ SMOOTH of r̂(S) versus m0(r0(S))−m0(r̂(S))

≈ m̃LL

+ SMOOTH of r0(S) versus m′0(r0(S))(r0(S)− r̂(S)).

This is (nearly) the formula of the desired expansion.
It remains to take care of the fact that r̂ is random and not purely deterministic.

In order to do so, the argument must be uniform over the set of possible realizations
of r̂. This can be achieved by an empirical process worst case analysis. We must
show that

|m̂LL,r(x) − m̃LL(x)

+m′(x)
1
n

∑n
i=1 Kh(r0(Si)− x)(r(Si)− r0(Si))

1
n

∑n
i=1 Kh(r0(Si)− x)

∣∣∣∣
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is small uniformly for r in Mn. Here m̂LL,r is the local linear estimator based on
regressing Y onto r(S). At this stage of the proof one makes use of Assumption (C).
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A Generator of Heavy-Tailed Search Trees

Alda Carvalho and Carlos Santos

Abstract
In theoretical computational statistics, the detection of heavy tails in computing
costs of some random search algorithms generated an increased interest in the
modeling of this heavy-tailed behavior. We propose a general model for these
algorithms that reproduces this characteristic. The model represents the search
for a solution as the descent of a search tree with regular branching factors and
equiprobable nodes. In this work, we present a way to generate heavy-tailed
search trees using very simple rules, and we show how a particular case relates
to the famous Wallis product.

1 Introduction

Constraint Satisfaction Problems (CSP) are the subject of intense research in
computer science. They often exhibit high complexity, requiring a combination of
heuristics and combinatorial search methods to be solved in a reasonable time. In the
last decade we have witnessed tremendous progress in the design and development
of complete, backtrack style search algorithms, for CSP.

Randomized search methods have greatly extended our ability to solve hard
computational problems. In many cases, the incorporation of randomness into the
computational process leads to a significant speed up over purely deterministic
methods.
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Backtrack random search can be viewed as a search tree. When a CSP is solved
very quickly, a bad decision can lead to the exploration of a large sub-tree. The
computing costs associated with these problems have been measured by the number
of backtracks necessary to find a solution or to prove no solution exists. Such
measure is a proxy for computing times and is independent of the particular machine
used to perform the simulations.

Sometimes the number of bad choices has a strong impact in the computing costs.
In these cases, the variance is very high and a power law decay can be observed. It is
now a well-established fact that search algorithms can exhibit heavy-tailed behavior
[1–5]. However, the reasons behind this fact are not well understood. So, a better
understanding of this kind of distributions is well appreciated and it is already an
important research subject.

Chen et al. [4] suggested random search trees as models for random search
algorithms. These models are necessary, as actual algorithms follow very complex
rules and follow ad hoc heuristics, making it difficult to understand the reasons
behind the heavy-tailed behavior. However, these first tree models were just
indicative and did not explain rules for generating the adequate trees.

Simple search trees that reproduce the desired distributions are difficult to set
with easy and plausible rules. If the nodes are equiprobable and the branching factor
constant, then one is led to set trees with an exponential behavior. If the nodes are
not equiprobable, then it is trivial to set trees that generate any desired distribution.
However, such tree models are not realistic and do not provide any insight into
the algorithms behavior. Starting with a tree related to the Wallis product, a tree
search class model with very simple rules is presented. In this model, decisions are
equiprobable at each node; therefore it mimics a key characteristic of real random
algorithms. Also, it follows very simple rules and is capable of displaying a heavy-
tailed behavior.

2 The “Wallis Forest”

Consider the following “game” (not a game in the true sense of the term but an
allegory of a random search tree). The Little Red Riding Hood enters in a dark
forest where it is known that there are ravenous wolves. We know where they are,
but the Little Red Riding Hood does not know, so she chooses her path at random.
The dark forest, which can be considered infinite, is full of crosses. There is a first
bifurcation in which one way runs into a hungry wolf and the other way leads to a
new crossing. This new crossover has three new ways, one going to meet another
wolf, while the other two lead to four new crosses. . . The process continues and is
illustrated in the figures below (Figs. 1–3):

If X is the random variable counting the number of crosses visited by the Little
Red Riding Hood, the rising question is what is P (X > n)? In other words,
considering the starting level n = 1, what is the probability that Little Red Riding
Hood survive to the wolves of the first n levels? With simple calculations we obtain
the following responses:
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Fig. 1 Dark forest

Fig. 2 Wallis forest

1. The probability that Little Red Riding Hood be eaten at the level n > 1 is equal
to P (X = n) = 1

2 × 2
3 × 3

4 × · · · × n−2
n−1 × 1

n = 1
n−1 × 1

n . We also have
P (X = 1) = 0 (there are no wolves in the first level).

2. The probability that Little Red Riding Hood survive to the wolves of the first
n + 1 levels is P (X > n + 1) = 1

2 × 2
3 × 3

4 × · · · × n
n+1 = 1

n+1 . We have
P (X > 1) = 1 because there are no wolves in the first level.
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Fig. 3 John Wallis
(1616–1703)

Note that, in this case, the tail is not negligible. The more the Little Red Riding
Hood survives, the greater her chance of surviving the next level. This simple model
corresponds to a hyperbolic decay in the tail of the distribution of X , with α = 1.

Let us consider a more interesting tree based on the idea exposed in the
introduction. In this new tree, the number of paths at each crossing is no longer
(2, 3, 4, 5 . . .) as in the previous case and becomes (2, 4, 6, 8 . . .).

In this case, we obtain,

P (X > n + 1) =
1

2
× 3

4
× 5

6
× · · · × 2n− 1

2n
. (1)

We have a nice way to estimate this value dated back to 1655, when John Wallis
proposed his famous product ([6] is a very recent reference about this subject).

The key to understand the behavior of P (X > n + 1) is considering P 2(X >
n+ 1) instead. We obtain

P 2(X > n + 1) =
1

2
× 1

2
× 3

4
× 3

4
× 5

6
× 5

6
× · · · × 2n− 1

2n
× 2n− 1

2n
. (2)

We know that w(2n) → π
2 where w(2n) = 2

1× 2
3×· · ·× 2n−2

2n−1× 2n
2n−1 (w(2) = 2

1 ,
w(4) = 2

1 × 2
3 × 4

3 × · · · ). So, the last expression leads to

P 2(X > n+ 1) =
1

w(2n)
× 1

2n
⇔ P (X > n+ 1) =

1√
w(2n)

× 1√
2n

. (3)

The immediate consequence is P (X > n + 1) ∼
√

1
π × 1√

n
. This model

corresponds to a hyperbolic decay in the tail of the distribution of X , with α = 1
2 .
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3 The General Model

The previous examples suggest a possible generalization. In fact, it is possible to
construct a random search tree with hyperbolic decay with rational exponent α. For
an arbitrary α = p

q , we present such a construction, showing that P (X > n+ 1) ∼
Cn−α.

In the general case, a law stating the number of solution-nodes and no-solution
nodes at each level is defined. We can generalize the example of the previous section
fixing the number of solution nodes at each level and increasing the number of
edges linearly with the level. The fixed number of node solutions is p. The linearly
increasing branching factor is q.

The first level node has k edges and p solutions (p < k). The second level
no-solution nodes have each k+ q edges and p solutions, the third level no-solution
nodes have each k + 2q edges with p solutions, and so on. As an example, we can
see on Fig. 4 the three first levels for k = 3, p = 2, q = 3 (α = 2

3 ).

Theorem 3.1. Let X be the random variable that counts the number of visited
nodes on the random search tree until a solution is found. For natural numbers
k, p, q and the random search tree constructed above, we have

P (X > n+ 1) ∼ Cn−
p
q ,

where C =
Γ ( k

q )

Γ ( k−p
q )

, and Γ (x) =
∫∞
0 tx−1e−t dt, x > 0 is the Gamma function.

Proof. We have, for n > 1,

P (X > n + 1) =
k − p

k
× k − p+ q

k + q
× k − p+ 2q

k + 2q
× · · · × k − p + (n− 1)q

k + (n − 1)q

and then

P (X > n+ 1) =
qn × Γ(n+ k−p

q )
Γ( k−p

q )

qn × Γ(n+ k
q )

Γ( k
q )

=
Γ
(
k
q

)

Γ
(
k−p
q

) ×
Γ
(
n+ k−p

q

)

Γ
(
n+ k

q

) ,

where we used the fact Γ (n + z) = (n− 1 + z)× · · · × z × Γ (z).
To prove that P (X > n+1) ∼ n−

p
q , we calculate limn→∞ P (X > n+1)×n

p
q .

We have

P (X > n+ 1)× n
p
q =

Γ
(
k
q

)

Γ
(
k−p
q

) ×
n

p
q × Γ

(
n+ k−p

q

)

Γ
(
n+ k

q

) .
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k=3

p=2

p=2

p=2

q =3q =3

q =3

q =3 q =3

p=2 p=2 p=2

solution
no solution

(...) (...)(...) (...)

Fig. 4 Random search tree with power law decay with α = 2
3

Also, because limn→∞
Γ (n+a)
Γ (n+b)n

b−a = 1, we have n
p
q
Γ(n+ k−p

q )
Γ(n+ k

q )
→ 1 so,

P (X > n+ 1)× n
p
q →

Γ
(
k
q

)

Γ
(
k−p
q

) and P (X > n+ 1) ∼
Γ
(
k
q

)

Γ
(
k−p
q

)n−
p
q .


�

4 Final Remarks

We gave a first example for a tree that generates a distribution with index of stability
α = 1 and showed how is connected with the Wallis product. We have exhibited
a class of random search trees with equiprobable nodes displaying heavy tails for
the number of nodes visited until a solution is reached and showed that this class of
trees is able to generate any rational index of stability.
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Adaptive PORT-MVRB Estimation
of the Extreme Value Index

M. Ivette Gomes and Lı́gia Henriques-Rodrigues

Abstract
In this chapter, we consider an application to environmental data of a bootstrap
algorithm for the adaptive estimation of the extreme value index (EVI), the
primary parameter in Statistics of Extremes. The EVI estimation is performed
through the recent Peaks Over Random Threshold Minimum-Variance Reduced-
Bias (PORT-MVRB) estimators, which apart from scale invariant, like the
classical ones, are also location invariant. These estimators depend not only on
an integer tuning parameter k, the number of top order statistics involved in the
estimation, but also on an extra control real parameter q, 0 ≤ q < 1, which
makes them highly flexible.

1 Introduction

Slightly more restrictively than working in the whole domain of attraction (for
maxima), DM (EVγ), of the extreme value distribution (EVD),

EVγ(x) =

⎧⎨
⎩

exp
(−(1 + γx)−1/γ

)
, 1 + γx ≥ 0 if γ 	= 0

exp(− exp(−x)), x ∈ R if γ = 0,
(1)

we shall consider a positive extreme value index (EVI), i.e. DM (EVγ)γ>0.
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Let us introduce the notations F←(y) := inf {x : F (x) ≥ y} for the generalised
inverse function of F , and RVα for the class of regularly varying functions at infinity
with an index of regular variation α, i.e. positive measurable functions g such that
limt→∞ g(tx)/g(t) = xα, for some α ∈ R and every x > 0. Then,

F ∈ DM (EVγ)γ>0 ⇐⇒ U(t) := F←
(
1− 1/t

) ∈ RVγ . (2)

For these heavy-tailed models, given a sample Xn = (X1, . . . , Xn), and the
associated sample of ascending order statistics (os’s), (X1:n ≤ · · · ≤ Xn:n), the
classical EVI estimators are Hill estimators [14],

Hk,n ≡ Hk,n(Xn) :=
1

k

k∑
i=1

{
ln

Xn−i+1:n

Xn−k:n

}
, (3)

the average of the k log-excesses over a random level Xn−k:n, which needs to be
an intermediate os, i.e. we need to have k = kn → ∞ and k/n → 0, as n → ∞,
so that Hk,n is consistent for the estimation of γ.

In this chapter, we apply the Peaks Over Random Threshold (PORT) method-
ology, recently introduced in [1] for classical estimators, to Minimum-Variance
Reduced-Bias (MVRB) EVI estimators. The EVI, the shape parameter γ in (1),
is the crucial parameter in Statistics of Extremes. The PORT EVI estimators, to be
defined in Sect. 2, depend upon an extra tuning parameter q, 0 ≤ q < 1, which
makes them highly flexible. Moreover, they are invariant for changes in location
and scale, a property that does not hold for most of the classical estimators, which
are invariant only for scale changes. In Sect. 3, we describe the most simple MVRB
EVI estimator, the one studied in [3]. In Sect. 4, we shall provide a few details on
an adaptive MVRB EVI estimation, taking into account the developments in [11]
and [12], and provide an algorithm for the adaptive PORT-MVRB EVI estimation.
Finally, in Sect. 5, we apply the methodology to a set of environmental data.

2 PORT EVI Estimation

Hill estimators are scale-invariant, but not location-invariant. And they can suffer
drastic changes whenever we induce an arbitrary shift in the data. We can then
easily obtain pictures similar to the so-called Hill horror plots [15], associated with
a regularly varying function LU (t) = t−γU(t) going to infinity or zero, with U(t)
the (reciprocal) quantile function defined in (2). Such a kind of plots led the authors
in [1] to introduce the so-called PORT estimators.

The PORT EVI estimators are functionals of a sample of excesses over a random
level X[nq]+1:n, i.e. functionals of

X
(q)
k,n :=

(
Xn:n − X[nq]+1:n, . . . , Xn−k:n −X[nq]+1:n

)
, (4)

with 1 ≤ k < n− [nq]− 1, and where
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• 0 < q < 1 , for any F ∈ DM (EVγ)γ>0 (the random level is an empirical
quantile);

• q=0, for distribution functions with a finite left endpoint x
F

(the random
threshold is the minimum).
If we think, for instance, on the Hill estimators, the class of associated PORT

EVI estimators, the so-called PORT-Hill estimators, asymptotically studied in [1],
and for finite samples in [9], are given by

H
(q)
k,n := Hk(X

(q)
k,n) =

1

k

k∑
i=1

{
ln

Xn−i+1:n −X[nq]+1:n

Xn−k:n −X[nq]+1:n

}
, 0 ≤ q < 1.

Remark 2.1. The PORT EVI estimators are now both location and scale invariant.

Remark 2.2. Moreover, they depend on a tuning parameter q, which provides a
highly flexible class of EVI estimators. Indeed, the PORT-Hill estimators can even
overpass the MVRB EVI estimators, to be introduced next in Sect. 3, provided that
we chose adequately the control parameter q (see [13]).

Remark 2.3. The choice q = 0 is appealing in practice, but needs to be carefully
used, since it can induce a drastic sub-estimation and even inconsistency (see [9]).

3 MVRB EVI Estimation

The main reasons for the need of reduced-bias (RB) EVI estimation are sketched in
the following. Hill estimators, Hk ≡ Hk,n, in (3), reveal usually a high asymptotic
bias, i.e.

√
k (Hk − γ) is asymptotically normal with variance γ2 and a non-null

mean value equal to λ/(1 − ρ), whenever
√
k A(n/k) → λ 	= 0, finite. This non-

null asymptotic bias and a rate of convergence of the order of 1/
√
k lead to sample

paths with a high variance for small k, a high bias for large k, and a very sharp mean
square error (MSE) pattern, as a k-function.

Recently, several authors have dealt with bias reduction in the field of Extremes
and a simple class of MVRB EVI estimators is the one introduced in [3] and used
for the MVRB semi-parametric estimation of lnV aRp in [8]. Such a class, denoted
H ≡ Hk, depends on the adequate estimation of second-order parameters (β, ρ), in
a class slightly more restrict than DM (EVγ)γ>0. More specifically, we shall assume
that the regularly varying function L

U
(t) = t−γU(t) tends to a finite and non-null

constant, i.e. with γ > 0, ρ < 0, and β 	= 0,

U(t) = Ctγ
(
1 + A(t)/ρ+ o(tρ)

)
, A(t) =: γβtρ. (5)

The functional form of the above-mentioned class of MVRB EVI estimators is

Hk ≡ Hk,n ≡ Hk,n(β̂, ρ̂) ≡ H β̂,ρ̂(k) := Hk

(
1− β̂(n/k)ρ̂/(1− ρ̂)

)
, (6)
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where (β̂, ρ̂) is a consistent adequate estimator of (β, ρ), with β̂ and ρ̂ based on a
number of top order statistics, k1, of a higher order than the number of upper order
statistics, k, usually considered for the EVI estimation.

Remark 3.1. Algorithms for the adequate estimation of (β, ρ), as well as heuristic
algorithms for the choice of k in the estimation of γ through Hk, are provided
in [7].

Remark 3.2. The bootstrap methodology in [11] and [12] can also lead
us to the estimation of the optimal sample fraction (OSF), kH0 (n)/n =
argmink MSE

{
Hk

}
/n.

Remark 3.3. We shall again consider the class of ρ estimators introduced in [4],
denoted ρ̂k,n(τ). They are parameterised in a tuning parameter τ ∈ R. For an
appropriate choice of τ =: τ∗, these ρ estimators exhibit stable sample paths,
as functions of k, for high values of k. Consistency is attained provided that k is
intermediate and such that

√
k A(n/k) → ∞, as n → ∞.

Remark 3.4. Regarding the estimation of β, we shall use the class of estimators
β̂k,n(ρ̂) introduced in [5], further studied in [10] and in [2]. Consistency of β̂k,n(ρ̂)
is achieved for intermediate k such that

√
k A(n/k) → ∞, as n → ∞, and ρ

estimators, ρ̂, such that ρ̂ − ρ = op(1/ lnn).

Remark 3.5. In order to guarantee the validity of this condition on ρ̂, we compute
ρ̂k,n(τ) at k = k1 =

[
n1−ε] , ε = 0.005. Then, and provided that

√
k1 A(n/k1) →

∞, we get ρ̂ − ρ := ρ̂k1,n(τ) − ρ = op(1/ lnn), a condition also needed so that
Hk,n keeps the same asymptotic variance of the Hill estimator. Note that with such
a choice of k1,

√
k1 A(n/k1) → ∞ if and only if ρ > 1/2 − 1/(2ε) = −99.5,

an irrelevant restriction from a practical point of view, due to the fact that the Hill
estimator has practically no bias if |ρ| > 1.

Based on these comments, and on all algorithms so far proposed, we shall now
propose (and implement) the following:

Simplified Algorithm (second-order estimates):
1. Given the sample (x1, . . . , xn), consider {ρ̂k,n(τ)}k∈K , K =([n0.99], [n0.999]),

and compute the median value, denoted χτ , for τ = 0 and τ = 1.
2. Compute Iτ :=

∑
k∈K (ρ̂k,n(τ) − χτ )

2, τ = 0, 1.
Next choose the tuning parameter τ∗ = 0 if I0 ≤ I1; otherwise, choose τ∗ = 1.

3. Work with ρ̂∗ ≡ ρ̂τ∗ = ρ̂k1,n(τ
∗) and β̂∗ ≡ β̂τ∗ := β̂k1,n(ρ̂τ∗), k1 = [n0.995].

This algorithm leads in most of the cases to the tuning parameter τ =0when |ρ| ≤ 1
and τ = 1, otherwise.
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3.1 A Few Comments on the Asymptotic Behaviour of MVRB EVI
Estimators

Let k= kn be an intermediate sequence of integers in [1, n), such that√
k A(n/k) → λ, finite, as n → ∞. Let us denote γ̂k,n either Hk,n, in (3), or

Hk,n, in (6). Then, for the class of models under study, i.e. the class in (5),

√
k
(
γ̂k,n − γ

) d−→
n→∞ Normal(λ bγ̂ , σ2

γ̂),

even when we work with RB EVI estimators, provided that (β̂, ρ̂) is consistent for
the estimation of (β, ρ), and (ρ̂ − ρ) ln(n/k) = op(1), as n → ∞. Whereas bH =
1/(1 − ρ), we get bH = 0. Moreover, we have σ2

H
= σ2

H
= γ2. Consequently, for

every k, the H estimators outperform the H estimators.
Asymptotic normality and the asymptotic bias behaviour of the MVRB esti-

mators are easier to refer if we again slightly restrict the class of models under
consideration, assuming that, U(t) = Ctγ

(
1 + A(t)/ρ + β′t2ρ + o(t2ρ)

)
, A(t) =

γβtρ, as t → ∞, with C, γ > 0, β, β′ 	= 0, ρ < 0. Then, under slight restrictions
on k (see [2]), and with Zk asymptotically standard normal, we can guarantee that

Hk,n(β̂, ρ̂)
d
= γ +

γ Zk√
k

+
(
b
H

A2(n/k) +Op

(A(n/k)√
k

))
(1 + op(1)),

where, with ξ = β′/β, b
H
=
(
ξ/(1− 2ρ)− 1/(1− ρ)2

)
/γ.

Consequently, even if
√
k A(n/k) → ∞, with

√
k A2(n/k) → λA , finite, the

type of k values where the MSE of Hk,n is minimum,

√
k
(
Hk,n(β̂, ρ̂)− γ

) d−→
n→∞ Normal

(
λ

A
b
H
, σ2

H
= γ2

)
.

The bootstrap methodology enables us to estimate kH0 (n) = argmink
MSE

{
Hk,n

}
, in a way similar to the one used for the classical EVI estimators

(see [6], among others), now through the use of an auxiliary statistic like
THn (k) := H [k/2],n − Hk,n, k = 2, . . . , n − 1. Such a method, detailed in [11], is
now generalised in Sect. 4. Further results can be found in [12].

4 Adaptive PORT-MVRB EVI Estimation

The PORT EVI estimators in [1] were the PORT-Hill and the PORT-moment
estimators. However, and despite of the fact that we have not yet developed all non-
degenerate asymptotic theory related to PORT-ρ, PORT-β, or perhaps PORT-A(·),
followed by PORT-MVRB EVI estimators, we think sensible to advance with the
PORT-MVRB EVI estimators,
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H
(q)

k,n = Hk,n

(
β̂∗(q), ρ̂∗(q)

)
,

based on PORT-ρ estimators, ρ̂∗(q), and PORT-β estimators, β̂∗(q), based on the
sample of excesses in (4), as well as associated PORT-MVRB estimators of any
parameter of extreme events. If we implement steps from 4. until 10. on the
estimator Hk, in (6), we shall obtain the adaptive MVRB estimator, denoted
H
∗ ≡ H

∗
n,n1|T .

Algorithm (cont.) – adaptive bootstrap PORT-MVRB estimation of γ:

4. For q = 0(0.05)0.95, compute H
(q)

k,n, k = 1, 2, . . . .
5. Consider subsample sizes n1 = o(n) and n2 = [n2

1/n] + 1, a fortiori a o(n).
6. For l from 1 until B=250, generate independently, from the empiri-

cal distribution function, F ∗n(x)=
∑n
i=1 I[Xi≤x]/n, associated with the

observed sample (x1, x2, . . . , xn), B bootstrap samples (x∗1, . . . , x
∗
n2
) and

(x∗1, . . . , x
∗
n2

, x∗n2+1, . . . , x
∗
n1
), of sizes n2 and n1, respectively.

7. Denote T ∗n(k) the bootstrap counterpart of the auxiliary statistic Tn(k) :=

H
(q)

[k/2],n − H
(q)

k,n, obtain (t∗n1,l
(k), t∗n2,l

(k)), 1 ≤ l ≤ B, observed values
of the statistic T ∗ni

(k), i = 1, 2, and compute

MSE∗(ni, k) =
1

B

B∑
l=1

(
t∗ni,l(k)

)2
, k = 1, 2, . . . , ni − 1, i = 1, 2.

8. Obtain k̂∗
0T
(ni) := argmin1≤k≤ni−1 MSE∗(ni, k), i = 1, 2.

9. Compute

k̂
(q)
0 ≡ k̂

0|H(q),T
:= min

(
n − 1,

[
(1− 2ρ̂

∗
)2/(1−2ρ̂

∗)

(
k̂∗

0T
(n1)

)2
k̂∗

0T
(n2)

]
+ 1

)
.

10. Obtain H
∗(q)
n,n1|T := H

(q)

k̂
(q)
0 ,n

.

11. Consider the estimate

ÂMSE(k; q) :=

(
H
∗(q)
n,n1|T

)2
k

+

(
MSE∗(n1, k)

)2
(
22ρ̂∗ − 1

)2
MSE∗(n2, k)

,

with ρ̂∗, MSE∗(ni, k), i = 1, 2 and H
∗(q)
n,n1|T obtained in steps 3., 7. and 10.

in the Algorithm, respectively.
12. Compute q̂ := argminq ÂMSE(k̂

(q)
0 ; q).

13. With the notation k̂
(q̂)
0 ≡ k̂

0|H(q̂),T
, obtain the final adaptive EVI estimate,

H
∗∗ ≡ H

∗(q̂)
n,n1|T := H

(q̂)

k̂
(q̂)
0 ,n

.



Adaptive PORT-MVRB Estimation of the Extreme Value Index 123

-2.5

-1.5

-0.5

0.5

500 1500 2500
k

ˆ 
k,n(0)

ˆ k,n(1)

ˆ 
k ,n (ˆ 

1
*)

ˆ 
k ,n (ˆ 

0
*)

ˆ 
0
* = 0.51

ˆ 
0
* = 0.50

0.5

0.6

0.7

0.8

0.9

0 2800

H

H 

k

H * = 0.658

1319157

H * = 0.73

Fig. 1 Estimates of the second-order parameters β and ρ (left), and bootstrap EVI estimates based
on the Hill estimator, H, and on the MVRB estimator, H, (right) for the burned areas

5 An Application to Burned Areas

5.1 MVRB EVI Estimation of Burned Areas

Most of the wildfires in Portugal are controlled in a short period of time, with
almost negligible effects. However, some of the wildfires become out-of-control,
burn hectares of land and cause significant environmental and economic impacts,
frankly negative. The data to be analysed are related with the number of burned
hectares, above 100 ha, for all registered wildfires in Portugal in a period of 14 years
(1990–2003). The sample, with a size n = 2, 627, seems not to have any significant
temporal structure and has been globally used. A preliminary data analysis provides
immediately evidence that data have been censored at the left and that the right tail
is quite heavy. In Fig. 1, we exhibit, at the left, the sample paths, as function of k,
of the estimators of β and ρ for τ = 0 and τ = 1, and, at the right, the behaviour of
the non-adaptive and adaptive MVRB EVI estimators under study in this chapter.
• The Algorithm in this chapter led us to the estimate ρ̂∗0 = −0.51, obtained at the

level k1 = [n0.995] = 2524. The associated β estimate is β̂∗0 = 0.50.
• This methodology is quite resistant to different choices of k1, which produce

practically no changes in the samples paths of the MVRB EVI estimates.
Prior to [11] we could not adaptively estimate the OSF associated with MVRB

estimators. The above-mentioned Algorithm, up to Step 10, and for q = −1/n,
so that we are working with H , helps us to obtain such an adaptive estimate. For
a subsample of size n1 = [n0.975] = 2157, and B = 250 bootstrap generations, we
have got k̂H0 = 1319 and the MVRB EVI estimate, H

∗
= 0.658, the value presented

in Fig. 1, right, jointly with the bootstrap adaptive Hill estimate, H∗= 0.73,
associated with k̂H0 = 157. Note also that in this case, the MVRB EVI estimators
appear to be practically “unbiased”.
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5.2 PORT-MVRB EVI Estimation for the Burned Areas

The Algorithm described in this chapter led us to the choice of either H or H
(0)

.
We have been led to the same value for the minimum MSE, and, up to 2 decimal
figures, to the same EVI estimate, the value 0.66, as illustrated in Fig. 2.

Acknowledgements This research was partially supported by National Funds through FCT —
Fundação para a Ciência e a Tecnologia, project PEst-OE/MAT/UI0006/2011, PTDC/FEDER and
grant SFRH/BPD/77319/2011. We also would like to thank João Carreiras for permission to use
this data set.

References
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A Note on the Port Methodology in the
Estimation of a Shape Second-Order Parameter

L. Henriques-Rodrigues and M. Ivette Gomes

Abstract
Under a semi-parametric framework and for heavy right tails, we introduce a
class of location invariant estimators of an adequate shape second-order param-
eter, also ruling the rate of convergence of a normalized sequence of maximum
values to a nondegenerate limit. This class is based on the PORT methodology,
with PORT standing for peaks over random thresholds. Consistency of such
estimators is achieved under a second-order condition on the right-tail of the
underlying model F and for large intermediate ranks.

1 Introduction and Scope of This Chapter

Let Xn = (X1, . . . , Xn) denote a random sample of n independent, identically
distributed (i.i.d.) random variables (r.v.’s) with distribution function (d.f.) F . We
are interested in heavy-tailed models, i.e., d.f.’s F with a regularly varying right-tail
function F := 1− F , with a negative index of regular variation −1/γ, i.e., a right-
tail function F such that, for every x > 0, limt→∞ F (tx)/F (t) = x−1/γ . Then,
and denoting Gγ(x) = exp

{−(1 + γ x)−1/γ
}
, 1 + γx > 0, γ ∈ R, the general

extreme-value (EV) d.f., we are in the domain of attraction for maxima of Gγ , with
γ > 0, and we write F ∈ DM (Gγ>0). The parameter γ is the extreme-value index
(EVI) or tail index, one of the primary parameters of extreme events. This type of
heavy-tailed models appears often in practice, in fields like finance, insurance, and
ecology, among others (see [11]). Moreover, let F← denote the generalized inverse
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function of F , defined by F←(t) := inf {x : F (x) ≥ t} , and let U be a (reciprocal)
quantile function of the r.v. X , defined as U(t) := F←(1 − 1/t), t ≥ 1.

First and Second-Order Conditions for Heavy-Tailed Models
In a context of heavy tails, with the usual notation RVa for the class of regularly
varying functions with an index of regular variation equal to a (see [2] for details
on regular variation), we have the validity of the so-called first-order condition,
F ∈ DM (Gγ>0) if and only if 1− F ∈ RV−1/γ if and only if U ∈ RVγ .

The second-order parameter rules the rate of convergence in the first-order
condition, and it is the non-positive value ρ (≤ 0) which appears in

lim
t→∞

lnU(tx)− lnU(t)− γ lnx

A(t)
=

⎧⎨
⎩
(
xρ − 1

)
/ρ if ρ < 0

lnx if ρ = 0,

(1)

which is often assumed to hold for every x > 0, and where |A| must then be in
RVρ. For technical simplicity, we shall assume that ρ < 0. The adequate estimation
of the second-order parameter ρ, in (1), is of primordial importance in the adaptive
choice of the best number of top order statistics (o.s.’s) to be considered in the
estimation of the EVI. Also, most of the research devised to improve the classical
EVI estimators try to reduce the dominant component of their asymptotic bias,
and deal with second-order reduced-bias (RB) EVI estimators. An overview of the
subject can be found in Chap. 6 of [11]. See also [8].

The PORT Methodology
Let Xi:n, 1 ≤ i ≤ n, denote the sample of ascending o.s.’s associated with the avail-
able random sample Xn = (X1, . . . , Xn). The class of estimators suggested here is
a function of a sample of excesses over a random threshold Xnq :n, nq = [nq] + 1,
with [x] denoting, as usual, the integer part of x. Such a sample is denoted by

X(q)
n :=

(
Xn:n − Xnq:n, Xn−1:n −Xnq :n, . . . , Xnq+1:n −Xnq :n

)
, (2)

where we can have 0 < q < 1, for any F ∈ DM (Gγ>0) (the random threshold,
Xnq :n, is an empirical quantile), and q = 0, for d.f.’s with a finite left endpoint
xF := inf{x : F (x) > 0}, (the random threshold is the minimum, X1:n). In what
follows, we use the notation χq for the q quantile of the d.f. F . Then (see [11],
among others),

Xnq:n
p−→

n→∞ χq = F←(q), for 0 ≤ q < 1
(
F←(0) = x

F

)
. (3)

Any statistical inference methodology based on the sample of excesses X(q)
n ,

defined in (2), will be called a PORT-methodology, with PORT standing for peaks
over random thresholds, named after [1], where this methodology easily enabled the
study of classical location/scale invariant EVI estimators, studied for finite samples
in [7].
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Scope of This Chapter
In this chapter, making use of the above-mentioned PORT methodology, and
denoting ρ0 the second-order parameter for the unshifted model, we shall introduce
a class of location-invariant semi-parametric estimators of

ρq :=

{−γ, if γ + ρ0 < 0 ∧ χq 	= 0

ρ0, otherwise.
(4)

The main motivation for such a class of PORT estimators of the shape second-order
parameter ρq, in (4), is related to its possible use, concomitantly with an adequate
estimator of the scale second-order parameter of the function A, in (1), in the
construction of second-order PORT-MVRB EVI estimators, invariant for changes
in location, another challenging and theoretical open subject, out of the scope of
this chapter, but already dealt by simulation in [9].

For the construction of estimators of the shape second-order parameter ρq , in (4),
we consider, for any real α > 0, the same type of statistics used in [4] and [5],
among others, i.e., the moment statistics

M
(α)
n,k ≡ M

(α)
n,k (Xn) :=

1

k

k∑
i=1

(lnXn−i+1:n − lnXn−k:n)
α
, (5)

now applied to the sample of excesses X(q)
n , 0 ≤ q < 1, in (2). For intermediate k

sequences, i.e., sequences of integer values k = k(n), between 1 and n, such that
k = k(n) → ∞, and k = o(n), as n → ∞, we shall thus consider the location and
scale-invariant statistics,

M
(α,q)
n,k ≡ M

(α)
n,k (X

(q)
n ) :=

1

k

k∑
i=1

(
ln

Xn−i+1:n−Xnq :n

Xn−k:n−Xnq :n

)α
, (6)

defined for k < n− nq , with M
(α)
n,k (Xn) ≡ M

(α)
n,k given in (5), α > 0.

In Sect. 2 of this chapter, we present a few technical results related to the PORT
methodology. Next, we introduce, in Sect. 3, the new class of PORT estimators of
the parameter ρq, in (4), a shape second-order parameter associated with heavy-
tailed models under a shift χq = F←(q), 0 ≤ q < 1, and analyze the conditions
needed for consistency of this new class of estimators.

2 Technical Results Related to the PORT Methodology

If we induce any arbitrary shift, s, in the model X underlying our data, with quantile
function UX(t), the transformed r.v., Y = X−s, has an associated quantile function
given by Us(t) ≡ UY (t) = UX(t)−s. Consequently, in (1), ρ = ρs, with ρs=−γ if
γ+ρ0 < 0, s 	= 0, and ρs = ρ0, otherwise. When applying the PORT methodology,
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we are working with the sample of excesses in (2), or equivalently, we are inducing
a random shift, strictly related to χq, in (3). We shall thus use the subscript q instead
of the subscript s, whenever we think of a shift χq .

Then, for all x > 0, the second-order condition in (1) can be rewritten as

lim
t→∞

lnUq(tx)− lnUq(t)− γ lnx

Aq(t)
=

xρq − 1

ρq
, (7)

and |Aq| ∈ RVρq . Under the validity of (7), with |A0| ∈ RVρ0 and assuming
χq 	= 0,

Aq(t) :=

⎧⎪⎨
⎪⎩

γχq

U0(t)
if γ + ρ0 < 0

A0(t) +
γχq

U0(t)
if γ + ρ0 = 0

A0(t), if γ + ρ0 > 0,

and

ρq :=

{−γ, if γ + ρ0 < 0

ρ0 if γ + ρ0 ≥ 0.

Consequently, the introduction of a shift in the model underlying the data can
possibly change the shape second-order parameter ρ, which indeed is equal to −γ
whenever we induce a non-null shift in any unshifted model with γ + ρ0 < 0, like
X � Fréchet (γ = 0.25), for which ρ0 = −1. Then, and for Y = X −χq, χq 	= 0,
the second-order parameter ρ, in (1), becomes equal to −γ. Hence ρq = −γ 	= ρ0 if
and only if χq 	= 0 and the underlying model is a non-shifted model with γ+ρ0 < 0.

Asymptotic Behavior of Auxiliary Statistics

We next present the asymptotic behavior, as n → ∞, of the statistics M
(α,q)
n,k , in

(6), based on the sample of excesses X(q)
n , 0 ≤ q < 1, in (2), and obviously

independent on any shift s imposed to the data. We can thus assume that s = 0. Let
E and Var denote the mean value and variance operators, respectively, let E denote
a unit exponential r.v. and let Γ (t) denote the complete Gamma function. For any
real α > 0, with γ ≥ 0 and ρ < 0, let us define

μ(1)
α (γ) := E

(
Eαe−γE

)
= Γ (α+1)

(1+γ)α+1 μ(1)
α := μ(1)

α (0) = Γ (α+ 1), (8)

σ(1)
α :=

√
Var(Eα) =

√
Γ (2α+ 1)− Γ 2(α + 1), (9)

μ(2)
α (γ, ρ) := E

(
Eα−1 e−γE

(eρE − 1)

ρ

)
= Γ (α)

ρ

(
(1+γ)α−(1+γ−ρ)α
(1+γ−ρ)α(1+γ)α

)
,

μ(2)
α (ρ) := μ(2)

α (0, ρ) = Γ (α)
ρ

(
1−(1−ρ)α
(1−ρ)α

)
,

μ(2)
α (ρ) :=

μ
(2)
α (ρ)

μ
(1)
α

, σ(1)
α :=

σ
(1)
α

μ
(1)
α

, (10)
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and for any θ1, θ2 > 0,

dα,θ1,θ2(ρ) := μ
(2)
αθ1

(ρ)− μ
(2)
αθ2

(ρ). (11)

Moreover, with Ei i.i.d. unit exponential r.v.’s, let us define

Z
(α)
k :=

√
k

σ
(1)
α

(1
k

k∑
i=1

Eα
i − Γ (α+ 1)

)
, (12)

asymptotically standard normal r.v.’s, and

W
(α,θ1,θ2)
k :=

σ
(1)
αθ1

θ1
Z

(αθ1)
k − σ

(1)
αθ2

θ2
Z

(αθ2)
k , (13)

with σ
(1)
α and σ

(1)
α given in (9) and (10), respectively.

We first state the following result, related to the behavior of M
(α)
n,k , in (5), now

needed only for s = 0 (ρ = ρ0), proved in [6] under a third-order framework.

Proposition 2.1. Under the validity of the second-order condition in (1), and
unshifted models with ρ0 < 0, for intermediate sequences k = kn, and with μ

(1)
α ,(

μ
(2)
α (ρ), σ

(1)
α

)
and Z

(α)
k defined in (8), (10) and (12), respectively,

M
(α)
n,k

d
= γαμ(1)

α

{
1 + σ(1)

α

Z
(α)
k√
k

+
α

γ
μ(2)
α (ρ0)A0(n/k)(1 + op(1))

}
. (14)

We next provide for any α, a result already proved in [10] for α = 1, 2.

Proposition 2.2. For intermediate k, let us assume the validity of the second-order
condition in (1). We then get for M

(α,q)
n,k , in (6), α > 0, k < n − nq , with χq , M (α)

n,k

(for s = 0) and μ
(2)
α (ρ) given in (3), (5) and (10), respectively, the distributional

representation,

M
(α,q)
n,k

d
= M

(α)
n,k +

Γ (α+ 1)γα−1χq
U0(n/k)

(
α γ μ(2)

α (−γ) +
h(α)(γ, ρ0) A0(n/k)

γρ0

)

× (1 + op(1)), (15)

where

h(α)(γ, ρ) = (α − 1)ρ μ
(2)
α−1(ρ) +

1 + 2γ

(1 + γ)α
− 1 + 2γ − ρ

(1 + γ − ρ)α
. (16)
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Proof. If k = kn is an intermediate sequence of integers, with {Yi}i=1,...,k i.i.d. unit

Pareto r.v.’s, Yn−k:n
p∼ (n/k), and on the basis of the weak law of large numbers,

we get, for a general α,

M
(α,q)
n,k

d
=

1

k

k∑
i=1

{
ln

Xn−i+1:n

Xn−k:n

+
χq

U0(n/k)

(
1− Y −γi − Y −γi

Y ρ0
i − 1

ρ0
A0(n/k)

)
(1 + op(1))

}α

d
= M

(α)
n,k+

αχq
U0(n/k)

1

k

k∑
i=1

{(
γ lnYi +

(Y ρ0
i −1

ρ0

)
A0(n/k)(1+op(1))

)α−1

×
(
1− Y −γi − Y −γi

(Y ρ0
i − 1

ρ0

)
A0(n/k)

)
(1 + op(1))

}

d
= M

(α)
n,k +

αχq
U0(n/k)

1

k

k∑
i=1

{
γα−1(ln Yi)

α−1
(
1 +

α− 1

γ lnYi

(Y ρ0
i − 1

ρ0

)

×A0(n/k)(1 + op(1))
)

×
(
1− Y −γi − Y −γi

(Y ρ0
i − 1

ρ0

)
A0(n/k)

)
(1 + op(1))

}

d
= M

(α)
n,k +

αχqγ
α−1

U0(n/k)

1

k

k∑
i=1

(lnYi)
α−1

{(
1− Y −γi

)

+A0(n/k)

(
α− 1

γ lnYi

(Y ρ0
i − 1

ρ0

)

− α− 1

γ lnYi

(Y ρ0
i − 1

ρ0

)
Y −γi − Y −γi

(Y ρ0
i − 1

ρ0

))
(1 + op(1))

}
.

Consequently, and since lnY
d
= E,

M
(α,q)
n,k

d
= M

(α)
n,k+

αχqγ
α−1

U0(n/k)

{
γ μ(2)

α (−γ)+
(α− 1)μ

(2)
α−1(ρ0)

γ
A0(n/k)(1+op(1))

−
( (α− 1)μ

(2)
α−1(γ, ρ0)
γ

+ μ(2)
α (γ, ρ0)

)
A0(n/k)(1 + op(1))

}
.

Taking into account the fact that μ(2)
α (ρ) = αΓ (α) μ

(2)
α (ρ) (see (8) and (10)), that
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(α− 1)μ
(2)
α−1(γ, ρ)
γ

+ μ(2)
α (γ, ρ) =

Γ (α)

γ ρ

( 1 + 2γ − ρ

(1 + γ − ρ)α
− 1 + 2γ

(1 + γ)α

)
,

and the validity of (14), we are led to the result in (15) for any α ≥ 1, with h(α)(γ, ρ)
given in (16). 
�

3 The New Class of PORT-ρ Estimators

For α > 0, let us consider the statistics M
(α,q)
n,k = M

(α)
n,k (X

(q)
n ), in (6). Under the

second-order framework in (1), for intermediate k, on the basis of the results in
Propositions 2.1 and 2.2, similar to the developments in [5], and for real tuning
parameters τq ∈ R and θ 	= 0,

(M
(αθ,q)
n,k

μ
(1)
αθ γ

αθ

)τq/θ d
= 1 +

τq
θ

σ
(1)
αθ√
k

Z
(αθ)
k +

ατq μ
(2)
αθ (ρ0)

γ
A0(n/k)

+
α τqχq μ

(2)
αθ (−γ)(1 + op(1))

U0(n/k)
+

τq χq h(αθ)(γ, ρ0)

θγ2ρ0

A0(n/k)

U0(n/k)
(1 + op(1)),

(17)

i.e.

(M
(αθ,q)
n,k

μ
(1)
αθ γ

αθ

)τq/θ d
=
( M

(αθ)
n,k

μ
(1)
αθ γ

αθ

)τq/θ
+

τqχq
θγU0(n/k)

(
αθγ μ

(2)
αθ (−γ)

+
h(αθ)(γ, ρ0)

γρ0
A0(n/k)

)
(1 + op(1)),

with
(
μ
(2)
α (ρ), σ

(1)
α

)
, Z(α)

k and h(α)(γ, ρ), given in (10), (12) and (16), respectively.
We now refer the class of estimators in [5], based on the behavior of the statistics

T
(α,θ1,θ2,τ)
n,k :=

D
(α,1,θ1,τ)

n,k (γ)

D
(α,θ1,θ2,τ)

n,k (γ)
=

(
M

(α)
n,k/μ

(1)
α

)τ

−
(
M

(αθ1)

n,k /μ
(1)
αθ1

)τ/θ1

(
M

(αθ1)

n,k /μ
(1)
αθ1

)τ/θ1

−
(
M

(αθ2)

n,k /μ
(1)
αθ2

)τ/θ2
, (18)

obviously independent of the nuisance parameter γ, with M
(α)
n,k and μ

(1)
α defined in

(5) and (8), respectively. The admissible values of the tuning parameters are τ ∈ R

(as noticed in [3]), α, θ1, θ2 > 0, θ1 	= 1, θ2 	= θ1. Under adequate conditions on k,
and with dα,θ1,θ2(ρ) defined in (11), the statistics T

(α,θ1,θ2,τ)
n,k , in (18), converge in

probability, as n → ∞, to
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tα,θ1,θ2(ρ) :=
dα,1,θ1(ρ)

dα,θ1,θ2(ρ)

(19)

= θ2
(θ1 − 1)(1− ρ)αθ2 − θ1(1− ρ)α(θ2−1) + (1− ρ)α(θ2−θ1)

(θ2 − θ1)(1− ρ)αθ2 − θ2(1 − ρ)α(θ2−θ1) + θ1
,

which enables, through inversion, the general class of estimators introduced and
studied in [5], which can be written as ρ̂

(α,θ1,θ2,τ)
n,k|T := −∣∣t←α,θ1,θ2(T (α,θ1,θ2,τ)

n,k )
∣∣,

T
(α,θ1,θ2,τ)
n,k given in (18).

The class of consistent ρq-estimators, invariant for changes in location, and
named PORT-ρ, is given by

ρ̂
(α,θ1,θ2,τq,q)

n,k|T := −
∣∣∣t←α,θ1,θ2(T (α,θ1,θ2,τq,q)

n,k )
∣∣∣ , (20)

where the statistics T
(α,θ1,θ2,τ)
n,k , in (18), are thus replaced by their PORT-versions,

T
(α,θ1,θ2,τq,q)
n,k :=

D
(α,1,θ1,τq,q)

n,k (γ)

D
(α,θ1,θ2,τq,q)

n,k (γ)
=

(
M

(α,q)
n,k /μ(1)

α

)τq−
(
M

(αθ1,q)

n,k /μ
(1)
αθ1

)τq/θ1

(
M

(αθ1 ,q)

n,k /μ
(1)
αθ1

)τq/θ1−
(
M

(αθ2 ,q)

n,k /μ
(1)
αθ2

)τq/θ2
.

(21)

On the basis of (17), using the notations dα,θ1,θ2(ρ) and W
(α,θ1,θ2)
k introduced

in (11) and (13), respectively, and with

H(α,θ1,θ2)(γ, ρ) :=
1

θ1
h(αθ1)(γ, ρ)− 1

θ2
h(αθ2)(γ, ρ), (22)

h(α)(γ, ρ) defined in (16), we can write

D
(α,θ1,θ2,τq,q)
n,k (γ)

d
=

τq√
k

W
(α,θ1,θ2)
k +

ατqdα,θ1,θ2(ρ0)A0(n/k)

γ

+
ατqχqdα,θ1,θ2(−γ)

U0(n/k)
(1 + op(1))

+
τq χq H(α,θ1,θ2)(γ, ρ0)

γ2ρ0

A0(n/k)

U0(n/k)
(1 + op(1)). (23)

The dominant component of the right hand-side of (23) depends on the behavior
of the functions A0(t) and 1/U0(t). We shall thus consider three different regions
related with the vector (γ, ρ0, χq):

(i) R1 := {γ + ρ0 < 0 ∧ χq 	= 0}
(ii) R2 := {γ + ρ0 > 0 ∨ (γ + ρ0 ≤ 0 ∧ χq = 0)}

(iii) R3 := {γ + ρ0 = 0 ∧ χq 	= 0}.
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We next state the following:

Theorem 3.1. Under the validity of the second-order condition in (1), with ρ < 0,
ρq defined in (4), ρ̂(α,θ1,θ2,τq,q)n,k|T defined in (20),

ρ̂
(α,θ1,θ2,τq,q)

n,k|T
p−→

n→∞ ρq,

for any real α > 0, τq ∈ R, θ1, θ2 ∈ R
+\{1}, θ1 	= θ2 and 0 < q < 1 or q = 0 if

χ0 is finite, provided that k is an intermediate sequence, and moreover
(i) The underlying model lies in R1, and

√
k/U0(n/k) → ∞, as n → ∞. (24)

(ii) The underlying model lies in R2, and

√
kA0(n/k) → ∞, as n → ∞. (25)

(iii) The underlying model lies in R3, and

1

A0(n/k)U0(n/k)
−→ λ̃ 	= 0 and

√
kA0(n/k) → ∞, as n → ∞.

(26)

Proof. (i) In the region R1, A0(t) = o(1/U0(t)), as t → ∞, the second last term
of the right-hand side of (23) is the dominant one, and the statis-
tic D

(α,θ1,θ2,τq,q)
n,k (γ)/(1/U0(n/k)) converges in probability to α τqχq

dα,θ1,θ2(−γ) provided that (24) holds. Moreover, with H(α,θ1,θ2)(γ, ρ) defined
in (22), we get

D
(α,θ1,θ2,τq,q)
n,k (γ)

1/U0(n/k)

d
= α τqχq dα,θ1,θ2(−γ) +

τqχq
γ2ρ0

H(α,θ1,θ2)(γ, ρ0)A0(n/k)

+
τq√
k

W
(α,θ1,θ2)
k U0(n/k) +

ατqdα,θ1,θ2(ρ0)

γ
A0(n/k)U0(n/k).

Consequently, as n → ∞, the statistic T
(α,θ1,θ2,τq,q)
n,k , in (21), converges to

tα,θ1,θ2(−γ), with tα,θ1,θ2(ρ), defined in (19), and consistency follows.
(ii) In the region γ + ρ0 > 0, where 1/U0(t) = o(A0(t)), as t → ∞, or more

generally in the region R2, the second term of the right-hand side of (23) is the
dominant one. If we assume that (25) holds,

D
(α,θ1,θ2,τq,q)
n,k (γ)

A0(n/k)

d
=

ατq dα,θ1,θ2(ρ0)

γ
+

τq√
kA(n/k)

W
(α,θ1,θ2)
k

+
α τq χqdα,θ1,θ2(−γ)

A0(n/k)U0(n/k)
(1 + op(1))+

τqχq
γ2ρ0U0(n/k)

H(α,θ1,θ2)(γ, ρ0)(1 + op(1)).
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In this case, and as n → ∞, the statistic T
(α,θ1,θ2,τq,q)
n,k , in (21), converges

in probability to tα,θ1,θ2(ρ0), with tα,θ1,θ2(ρ) defined in (19), and consistency
follows.

(iii) In the region R3, A0(t) and 1/U0(t) are of the same order, i.e., the dominant
terms of the right-hand side of (23) are the second and the second last. If we
assume that (26) holds,

D
(α,θ1,θ2,τq,q)
n,k (γ)

A0(n/k)

d
=

ατq
γ

{
dα,θ1,θ2(ρ0) + γ λ̃χqdα,θ1,θ2(−γ)

}

+
τq√

kA0(n/k)
W

(α,θ1,θ2)
k (1+op(1))+

τqχqH
(α,θ1,θ2)(γ, ρ0)

γ2ρ0 U0(n/k)
(1 + op(1)).

Then, as n → ∞, the statistics T
(α,θ1,θ2,τq,q)
n,k , in (21), converge in probabil-

ity to

t̃α,θ1,θ2(ρ0) =
dα,1,θ1(ρ0) + γ λ̃χqdα,1,θ1(ρ0)

dα,θ1,θ2(ρ0) + γ λ̃χqdα,θ1,θ2(ρ0)
=

dα,1,θ1(ρ0)

dα,θ1,θ2(ρ0)
= tα,θ1,θ2(ρ0),

with tα,θ1,θ2(ρ) defined in (19), and consistency follows again. 
�
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A Class of Semi-parametric Probability
Weighted Moment Estimators

Frederico Caeiro and M. Ivette Gomes

Abstract
In this paper we deal with the semi-parametric estimation of the right tail
1 − F . Through the use of probability weighted moments based on the largest
observations, we study a class of estimators for the extreme value index γ, the
scale parameter C, and the Value-at-Risk at a level p.

1 Introduction

Let X1, X2, . . . , Xn be a set of n independent and identically distributed (i.i.d.)
random variables (r.v.’s), from a population with distribution function (d.f.) F . We
assume that F is a heavy tailed model with a Pareto-type tail, i.e.,

F (x) := 1− F (x) ∼ (C/x)1/γ , x → ∞, (1)

where C and γ are unknown scale and shape parameters, respectively. Then F is a
regularly varying function with a negative index of regular variation equal to −1/γ,
and we are in the max-domain of attraction of the Extreme Value distribution

EVγ(x) = exp{−(1 + γx)−1/γ}, 1 + γx > 0.

Although we deal with the right tail F , the results here presented are applicable to
the left tail F , after the change of variable Y = −X .
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Suppose that we are interested in the estimation of a high quantile of probability
1 − p, or equivalently, in the estimation of the Value-at-Risk (VaR) at a level p, the
size of the loss occurred with a small probability p,

VaRp ≡ χ1−p := F←(1− p) = inf{x : F (x) ≥ 1− p}, (2)

with the notation F← standing thus for the generalized inverse function of F .
In Sect. 2 we present some already studied semi-parametric estimators and

introduce a new class, to be studied in this chapter. In Sect. 3, after a few technical
details, we study the asymptotic behavior of the estimators under consideration.
Finally, Sect. 4 is dedicated to a small-scale simulation study.

2 Estimators Under Study

Under the largest observations framework, and whenever dealing with Pareto-type
tailed models, the classical semi-parametric estimators of γ and C are the Hill
estimator [7] and Weissman estimator [10], with functional expressions

γ̂H
k,n :=

1

k

k
∑

i=1

(

ln
Xn−i+1:n

Xn−k:n

)

, ĈH
k,n := Xn−k:n

(

k

n

)γ̂H
k,n

, k = 1, 2, . . . , n− 1,

(3)

where Xi:n denotes the i-th ascending order statistic. These estimators are pseudo-
maximum likelihood estimators, obtained from an approximate likelihood, and have
usually a high asymptotic bias which makes the choice of k very difficult. This
problem led researchers to deal with bias reduction and study new estimators with
smaller mean squared error (MSE).

Since heavy-tailed models only have mean value if γ < 1, methods based on
sample moments are rarely considered when we work with such distributions. But
in many practical fields like in finance or insurance, for example, we usually have
a positive scale parameter γ smaller than 1, and even smaller than 1/2. In this
chapter, we again consider the probability weighted moments (PWM) method, a
generalization of the method of moments [4]. This method is known for being more
efficient than the maximum likelihood method for small to moderate sample sizes
[8,9]. The PWM of a r.v. X are defined by Mp,r,s := E(Xp(F (X))r(1−F (X))s),
where p, r, and s are any real numbers. When r = s = 0, Mp,0,0 are the usual
noncentral moments. It is usual to work with one of the two particular and simple
cases:

ar := M1,0,r = E(X(1− F (X))r) or br := M1,r,0 = E(X(F (X))r). (4)

Given a sample of size n, the unbiased estimators of ar and br are, respectively,
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âr =
1

n

n−r∑
i=1

(
n−i
r

)
(
n−1
r

)Xi:n =
1

n

n∑
i=1

(n− i)(n − i− 1) . . . (n − i− r + 1)

(n− 1)(n− 2) . . . (n − r)
Xi:n,

(5)
and

b̂r =
1

n

n∑
i=r+1

(
i−1
r

)
(
n−1
r

)Xi:n =
1

n

n∑
i=1

(i − 1)(i− 2) · · · (i − r)

(n− 1)(n − 2) · · · (n− r)
Xi:n. (6)

The PWM method has already been used in extreme value theory (see Dielbolt
et al. [3], Caeiro and Gomes [1], Cai et al. [2], among others). Caeiro and Gomes [1]
studied the PWM estimators for the parameters of a Pareto tail, based on the top k
largest observations, Xn:n ≥ Xn−1:n ≥ · · · ≥ Xn−k+1:n. The PWM estimators,
valid for γ < 1, and based on the largest values, are

γ̂
PWM

k,n = 1− â1(k)

â0(k)− â1(k)
, Ĉ

PWM

k,n =
â0(k) â1(k)

â0(k)− â1(k)

(k

n

)γ̂PWM

k,n

, (7)

with k = 2, . . . , n and âs(k) :=
1
k

∑k
i=1

(
i−1
k−1

)s
Xn−i+1:n, s = 0, 1.

To overcome the restriction γ < 1 of the previous estimators, we will study the
PWM estimators based on the moments

ar,s := E(Xr(1 − F (X))s). (8)

The constant r will be a parameter that allows us to extend the domain of validity
of the previous PWM estimators. The PWM estimators, valid for γ < 1

r , and based
on the largest values, are

γ̂
PWM(r)

k,n =
1

r

(
1− âr,1(k)

âr,0(k)− âr,1(k)

)
, k = 2, · · · , n, (9)

and

Ĉ
PWM(r)

k,n =

(
âr,0(k) âr,1(k)

âr,0(k)− âr,1(k)

) 1
r (k

n

)γ̂PWM(r)

k,n

, k = 2, · · · , n, (10)

with âr,s(k) :=
1
k

∑k
i=1

(
i−1
k−1

)s
(Xn−i+1:n)

r, s = 0, 1. The parameter r can also

be used as a tuning parameter, controlled at our ease to reduce the bias or the MSE.
Since χ1−p := F←(1 − p) ∼ Cp−γ , as p → 0, the classical and PWM high

quantile estimators, based on the largest values, are, respectively

Q̂
H

k,n(p) := Xn−k:n
( k

np

)γ̂H
k,n

, (11)
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and

Q̂
PWM(r)

k,n (p) =

(
âr,0(k) âr,1(k)

âr,0(k)− âr,1(k)

) 1
s ( k

np

)γ̂PWM(r)

k,n

. (12)

3 Asymptotic Properties

To guarantee the consistency of many semi-parametric estimators, we usually need
to assume that k is intermediate, i.e.,

k = kn → ∞ and k/n → 0, as n → ∞. (13)

To obtain information on the nondegenerate distributional behaviour of semi-
parametric estimators, we assume a second-order condition,

lim
t→∞

lnU(tx)− lnU(t)− γ ln x

A(t)
=

xρ − 1

ρ
⇔ lim

t→∞

U(tx)
U(t)

− xγ

A(t)
= xγ xρ − 1

ρ
,

(14)

valid for all x > 0, where ρ ≤ 0 is a second-order parameter controlling the speed
of convergence of U(tx)/U(t) to xγ .

Hill’s estimator is well studied in the literature. Under the above second-order
condition in (14) and for intermediate k, we get [6]:

γ̂Hk,n
d
= γ +

γ√
k

ZHk +
A(n/k)

1− ρ
(1 + op(1)), (15)

with ZHk =
√

k
(∑k

i=1 Ei/k − 1
)

, and {Ei} i.i.d. standard exponential r.v.’s.

More generally than Theorem 3.1 in Caeiro and Gomes [1], but with a similar
proof, we now state the following theorem.

Theorem 3.1. Under the second-order framework, in (14), and for intermediate k,
the asymptotic distributional representation

γ̂
PWM(r)
k,n

d
= γ +

σPWM(r)√
k

Z
PWM(r)
k + bPWM(r)A(n/k)(1 + op(1)) (16)

holds, for γ < 1/2r ,r > 0, where Z•k is a standard normal r.v., and

σ2
PWM(r)

=
γ2(1− rγ)(2 − rγ)2

(1− 2rγ)(3 − 2rγ)
, b

PWM(r)
=

(1 − rγ)(2− rγ)

(1− rγ − ρ)(2− rγ − ρ)
.

(17)
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Fig. 1 Left: σ
PWM(r)

, as function of r for γ = 0.25, Right: b
PWM(r)

, as function of r for γ = 0.25
and three different values of ρ

Corollary 3.1. If we further assume that
√

k A(n/k) → λ, finite and not
necessarily null,

√
k(γ̂•k,n − γ)

d−→ N
(
λ b• , σ

2
•

)
, as n → ∞, (18)

with • denoting H or PWM(r), σ2
H
= γ2 and bH = 1/(1− ρ).

Remark 3.1. Notice that σ2
H

< σ2
PPWM(r)

, for every γ > 0 and r > 0. On the other
hand, b

PPWM(r)
< b

H
, unless ρ = 0.

In Fig. 1 we provide a picture of σ
PWM(r)

(left) and b
PWM(r)

(right) as function
of r. These functions have opposite behaviour: The variance increases with r, but
the bias decreases with r. The choice of the “optimal” r that minimizes the MSE is
not obvious and is a subject outside the scope of this chapter.

With • denoting again H or PWM(r), with r < 1/γ, we now state the
following two theorems, related to the asymptotic behavior of the estimators of
the scale parameter C and high quantiles. The proof of the first theorem can be
found in de Haan and Ferreira [5], Theorem 4.3.8, and Caeiro and Gomes [1],
Theorem 3.1. The second theorem follows straightforwardly from the relation

Q̂
•
k,n(p) = Ĉ

•
k,np

−γ̂•
k,n .

Theorem 3.2. Under the conditions of Theorem 3.1, but with ρ < 0, if we further
assume ln(k/n) = o(

√
k) and

√
kA(n/k) −→ λ, as n → ∞, then

√
k

ln(k/n)

(
Ĉ

•
k,n

C
− 1

)
d
=

√
k
(
γ̂

•
k,n − γ

)
(1 + op(1)). (19)

Theorem 3.3. Under the conditions of Theorem 3.1, but with ρ < 0, if we assume
that p = pn is a sequence of probabilities such that cn = k/(np) → ∞, ln cn =
o(
√

k) and
√
kA(n/k) −→ λ, as n → ∞, then,
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Fig. 2 Simulated mean values (left) and root mean squared errors (right), as functions of k∗, of
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k∗,n , n = 500, from a Burr(0.25,−1) parent

2.0

1.5

2.5

E

k*

Hill
PWM(r)

r=1

r=0.25

RMSE

k*

Hill
PWM(r)

r=1

r=0.25

1.0

0.5

0.0

0 100 200 300 400 500

0.5

0.4

0.3

0.2

0.1

0.0

0 100 200 300 400 500

Fig. 3 Simulated mean values (left) and root mean squared errors (right), as functions of k∗, of

the estimators γ̂
H

k∗,n and γ̂
PWM(r)

k∗,n , n = 500, from a Burr(1.25,−1) parent

√
k

ln cn

(
Q̂

•
k,n(p)

χ1−p
− 1

)
d
=

√
k
(
γ̂

•
k,n − γ

)
(1 + op(1)). (20)

Remark 3.2. The previous theorems allow us to conclude that the asymptotic
dominant behavior of the scale parameter and high quantiles estimators is thus fully
determined by the asymptotic behaviour of γ̂•k,n.
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the normalized estimators Q̄
H

k∗,n(p) and Q̄
PWM(r)
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Fig. 5 Simulated mean values (left) and root mean squared errors (right), as functions of k∗, of

the normalized estimators Q̄
H

k∗,n(p) and Q̄
PWM(r)

k∗,n (p), n = 500, from a Burr(1.25,−1) parent

4 Finite Sample Behaviour: Small-Scale Simulation Study

We have implemented a Monte Carlo simulation of 5,000 runs for the shape
parameter estimators γ

H

k∗,n, γ̂
PWM(r)

k∗,n and high quantile normalized estimators

Q̄
H

k∗,n(p) := Q̂
H

k∗,n(p)/χ1−p and Q̄
PWM(r)

k∗,n (p) := Q̂
PWM(r)

k∗,n (p)/χ1−p with p = 1/n
and r ∈ {0.25, 1, 1.25}. To work with the exact same number of top o.s., we have
considered k∗ = k for the classical estimators and k∗ = k + 1 for the PWM
estimators. We have only considered Burr underlying parents with d.f. F (x) =
1 − (1 + x−ρ/γ)1/ρ, x > 0 with (γ, ρ) ∈ {(0.25,−1.0), (1.25,−1.0)}. For every



146 F. Caeiro and M.I. Gomes

Table 1 Burr parent: Simulated optimal sample fraction and mean values/RMSE, at their

simulated optimal levels for the high quantile normalized estimators Q̄
H

k∗,n(p) and Q̄
PWM(r)

k∗,n (p)
with p = 1/n

(γ, ρ) = (0.25,−1.0) (γ, ρ) = (1.25,−1.0)

n k∗0/n E RMSE n k∗0/n E RMSE

50 0.0400 0.9569 0.2086 50 0.0400 1.3431 3.1957
100 0.2100 1.0471 0.1984 100 0.2000 1.7620 2.4345
200 0.1750 1.0505 0.1800 200 0.1750 1.6919 1.9448

H 500 0.1280 1.0460 0.1499 500 0.1260 1.5083 1.3346
1000 0.1100 1.0479 0.1313 1000 0.1100 1.4479 1.0342
2000 0.0905 1.0443 0.1128 2000 0.0755 1.3237 0.8255
5000 0.0710 1.0407 0.0926 5000 0.0698 1.2974 0.6254

50 0.5600 1.0295 0.1889 50 0.4200 0.3722 0.7233
100 0.4600 1.0413 0.1813 100 0.2200 0.4005 0.6844
200 0.3750 1.0471 0.1674 200 0.0900 0.4421 0.6446

PWM(1) 500 0.2840 1.0487 0.1445 500 0.0300 0.4738 0.6222
1000 0.2310 1.0483 0.1280 1000 0.0170 0.4648 0.6248
2000 0.1845 1.0449 0.1111 2000 0.0100 0.4471 0.6336
5000 0.1374 1.0399 0.0912 5000 0.0050 0.4274 0.6483

50 0.0400 0.9674 0.2098 50 0.1000 1.1564 1.8126
100 0.3500 1.0491 0.1895 100 0.0300 1.0993 1.6142
200 0.2950 1.0527 0.1703 200 0.0150 1.1045 1.5402

PWM(0.25) 500 0.2160 1.0480 0.1430 500 0.0060 1.1096 1.4340
1000 0.1790 1.0478 0.1264 1000 0.0040 1.1548 1.4836
2000 0.1420 1.0428 0.1085 2000 0.2600 1.4928 1.0606
5000 0.1120 1.0400 0.0890 5000 0.1588 1.3177 0.6786
50 0.8600 1.0402 0.1621
100 0.6000 1.0346 0.1681
200 0.4650 1.0398 0.1629

PWM(1.25) 500 0.3440 1.0439 0.1492
1000 0.2860 1.0473 0.1356
2000 0.2335 1.0465 0.1206
5000 0.1722 1.0415 0.0984

estimator we have simulated, the mean value, the root mean squared error (RMSE)
the optimal level, k∗0 = argminkRMSE, and the optimal sample fraction, k∗0/n.
parameter estimators by H and PWM(r) and the normalized high quantile estimators
by W-H and PWM(r).

To illustrate the finite sample behavior of the estimators, we present, in Figs. 2–5,
the simulated mean values (E) and root mean squared errors (RMSE) patterns as
functions of k∗ for a sample size n = 500. In Table 1 we present the simulated
optimal sample fraction and the simulated mean values and RMSE of the above-
mentioned high quantile normalized estimators, at their simulated optimal levels.
For Burr models with (γ, ρ) = (1.25,−1), we present the simulated results of the
PWM(r) estimators for r = 0.25 and 1. But for this second model, we need to have
r < 0.8 to assure the consistency of the PWM(r) estimators.
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Third Order Conditions and Max-semistability

Sandra Dias and Maria da Graça Temido

Abstract
A third order condition for distribution functions that belong to max-semistable
domain of attraction is established. An extension of the third order condition
introduced in Fraga Alves et al. (Math. Methods Stat. 12:155–176, 2003) is
obtained for the max-semistable context.

1 Introduction

In Probability Theory the concept of max-semistability appeared initially in the
literature of sums. The genesis of max-semistable laws is due to Pancheva [8]
and Grinevich [7]. This class of laws, the MSS class, includes the class of max-
stable laws (MS), and also includes discrete laws and multimodal laws that do
not belong to the MS class. According to Pancheva [8], a distribution function
(d.f.) G is max-semistable (MSS) if there are reals r > 1, a > 0 and b such
that G(x) = Gr(ax + b), x ∈ R, or equivalently, if exists a d.f. F , an integer
nondecreasing sequence {kn} satisfying

lim
n→+∞

kn+1

kn
= r ≥ 1 , (1)
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and real sequences {an > 0} and {bn} for which we have

lim
n→+∞F kn (an x + bn) = G(x) ,

for all continuity points of G. In this case we say that F belongs to the domain of
attraction of G and write F ∈ D(MSS ). The numerical expression of the elements
of this class is Gγ,ν(

x−μ
σ ), with μ ∈ R and σ > 0, where

Gγ,ν(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

exp
(

− (1 + γx)−1/γ
)

ν
(

log (1 + γx)−1/γ
)

, 1 + γx > 0x ∈ R, γ �= 0

I]−∞,0[(γ), 1 + γx ≤ 0x ∈ R γ �= 0

exp
(−e−xν(x)

)

γ = 0, x ∈ R,

being ν a positive, bounded, and periodic function with period p = ln r. When
ν ≡ 1 we obtain the MS class.

The presence of this periodic function and of the parameter r (or any of its
positive integer powers) makes the statistical inference in this class more difficult.
However, there are several results obtained, from which we mention Canto e Castro
and Dias [1], and Canto e Castro et al. [2] and [4].

In Extremes Statistics, asymptotic normality of a wide range of functions
of intermediate order statistics is a primordial result and well known when the
underlying d.f. F satisfies, in addition to the first order condition, a second and a
third order condition. We refer, respectively, to conditions 1.1.20 and 2.3.3 in de
Haan and Ferreira [5] and condition 3.1 introduced in Fraga Alves, de Haan and
Lin [6]. That first order condition is a necessary and sufficient condition so that a
d.f. F belongs to some domain of attraction in the MS class.

The possibility of being able to improve the estimation of r and ν and to establish
a test statistic (as well as its asymptotic law) for the hypothesis H : F ∈ D(MSS ),
motivated us to obtain a third order condition for max-semistable laws. Thus, we
follow a study analogous to the one done for MS domains of attraction (although
compromised by the presence of r and ν). Indeed, for d.f.’s belonging to some MSS
domain of attraction, in Canto e Castro and Temido [3] are introduced first and
second order conditions that extend this class to theirs counterparts established for
the MS class.

2 First and Second Order Conditions

For a d.f. F define the inverse function U = (1/(1− F ))
←. Canto e Castro and

Temido [3] proved that a d.f. F belongs to the domain of attraction of G if and
only if there exist an integer sequence {kn}, under the mentioned conditions, a real
sequence {an} and a real γ such that is verified the first order condition
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lim
n→+∞

U(kn x)− U(kn)

an
= L(x) :=

⎧⎪⎨
⎪⎩

hγ(x)− hγ(1)

γ
γ 	= 0

g(x)− g(1) γ = 0,

(2)

for each continuity point of L. The functions h and g are defined by

h←(x) =
x

ν(− lnx)
and g←(x) =

ex

ν(x)
and satisfy h(z y)= z h(y) and g(z y) =

g(y) + ln z if and only if z ∈ {rm, m ∈ Z}. According to Canto e Castro and
Temido [3], for a d.f. F satisfying (2) the respective second order condition is
described in the following way:

lim
n→+∞

U(kn x)− U(kn)− anL(x)

An
= H(x), x > 0,

where {An} is a real sequence satisfying An/an → 0, n → +∞. Considering that
H is not a multiple of L, those authors proved that there exist periodic functions ξ
and ξ1, with period ln r, and a second order parameter ζ > 0, such that

H(x) =

⎧⎪⎨
⎪⎩

x
ln ζ
ln r ξ(lnx) + L(x) γ 	= 0 ∨ ζ 	= 1

ξ1(lnx) +
(
g2(x)− g2(1)

)
/ ln r2 γ = 0, ζ = 1.

3 Third Order Condition

The appropriate third order condition for max-semistable distributions appears from
the first and second order conditions and was, obviously, motivated by the third
order condition introduced in Fraga Alves et al. [6]. For d.f.’s that satisfy the first
and second order conditions, this third order condition assumes the existence of real
sequences {an}, {An} and {Bn} for which there exists the limit function R in

lim
n→+∞

U(kn x)− U(kn)− anL(x)−AnH(x)

Bn
= R(x), x > 0. (3)

In order to establish the limit function R we present the following lemmas, where
the first one was presented in Canto e Castro and Temido [3].

Lemma 3.1. Let {kn} be a nondecreasing real sequence satisfying (1), with r > 1,
and F a d.f. that satisfies (2). Then

lim
n→+∞

U(kn rm x)− U(kn rm)

an
= lim

n→+∞
U(kn+m x)− U(kn+m)

an
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and

lim
n→+∞

U(kn rm x)− U(kn rm)

U(kn+m x)− U(kn+m)
= 1.

Lemma 3.2. Let {an}, {An} and {Bn} be positive real sequences such that

lim
n→+∞

an+1

an
= β, lim

n→+∞
An+1

An
= η, and lim

n→+∞
Bn+1

Bn
= θ.

Then there are constants C and C1 such that

lim
n→+∞

an+m − βman +An+m − βmAn
Bn

=

{
C(βm − θm) θ 	= β

Cmθm θ = β,

lim
n→+∞

An+m − ηmAn
Bn

=

{
C(ηm − θm) θ 	= η

Cmθm θ = η

and

lim
n→+∞

an+m − an −mAn
Bn

=

⎧⎨
⎩

C1(1− θm) + Cm θ 	= 1

C1m+ C
m2

2
θ = 1.

Proof. Let us consider sm = limn→+∞
an+m−βman+An+m−βmAn

Bn
. Then

sm+p = spθ
m + βpsm = smθp + βmsp.

If θ 	= β, since

spθ
m + βpsm = smθp + βmsp ⇐⇒ sm(βp − θp) = sp(β

m − θm),

we conclude that there exists a constant C such that sm = C(βm − θm).
If θ = β, this leads to sm+p = smθp+ θmsp which solution is sm = Cmθm for

some constant C.
In what concerns the second limit, write

An+m − ηmAn
Bn

= ηm
η−n−mAn+m − η−nAn

η−nBn
= ηm

Dm+n −Dn

En
,

where Dn = η−nAn and En = η−nBn, and consider

sm = lim
n→+∞

Dm+n −Dn

En
, n → +∞.
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Since
Em+n

En
=

η−n−mBm+n

η−nBn
→ η−mθm,

we deduce sn+m = spη
−mθm + sm and similarly sm+p = smη−pθp + sp, for

every m, p ∈ Z.
If θ 	= η, there exists a real constant C such that sm = C(1 − η−mθm), which

enables us to conclude that

lim
n→+∞

An+m − ηmAn
Bn

= ηmC(1− η−mθm) = C(ηm − θm).

If, otherwise θ = η, we have sn+m = sp + sm, for every m, p ∈ Z. So, there
exists a real constant C such that sm = Cm, and the desired result is obtained.

For the last limit, taking

sm = lim
n→+∞

an+m − an −mAn
Bn

,

we obtain

sm+p = lim
n→+∞

an+m+p − am+n − pAn+m
Bm+n

lim
n→+∞

Bn+m
Bn

+ lim
n→+∞

an+m − an −mAn
Bn

+ p lim
n→+∞

An+m −An
Bn

.

Take θ 	= 1. Using the result obtained for the second limit, we get

sm+p = spθ
m + sm + pC(1− θm).

Considering s∗m = sm−Cm, the previous equation is equivalent to s∗m+p = θms∗p+
s∗m and in the same way we get s∗m+p = θps∗m+s∗p. Therefore, there exists a constant
C1 such that s∗m = C1(1− θm), which implies sm = Cm+ C1(1− θm).

If θ = 1, from the second limit we obtain sm+p = sp + sm + Cpm. Now
we consider s∗m = sm − Cm2/2, which allows to get s∗m+p = s∗p + s∗m. Then
s∗m = C1m, for some constant C1, and so sm = Cm2/2 + C1m. 
�
Theorem 3.1. Let {kn} be a nondecreasing real sequence satisfying (1) with r > 1.
If the third order condition (3) holds, where R is not a multiple of H , then there exist
periodic functions ξi, i = 2, 4, . . . , 8 with period ln r, and a third order parameter
χ such that the function R is given by
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⎪

⎩

x
lnχ
ln r ξ2(ln x) + x

ln ζ
ln r ξ(ln x) + L(x) rγ �= ζ �= χ, χ �= rγ

x
lnχ
ln r ξ3(ln x) +

ln x

χ ln r
x

ln ζ
ln r ξ(ln x) + L(x) ζ = χ �= rγ

x
lnχ
ln r ξ4(ln x) + x

ln ζ
ln r ξ(ln x) +

ln x

χ ln r

hγ(x)

γ
ζ �= χ = rγ �= 1

x
lnχ
ln r ξ5(ln x) +

ln x

χ ln r

(

x
ln ζ
ln r ξ(lnx) +

hγ(x)

γ

)

χ = rγ = ζ �= 1

ξ6(ln x) + x
ln ζ
ln r ξ(lnx) +

g2(x)− g2(1)

2 ln r
ζ �= rγ = χ = 1

x
lnχ
ln r ξ7(ln x) + ξ1(ln x) +

g2(x)− g2(1)

2 ln r
+ L(x) χ �= rγ = ζ = 1

ξ8(ln x) +
ln x

ln r
ξ1(lnx) +

g2(x)− g2(1)

2 ln r
+

g3(x)− g3(1)

6 ln2 r
rγ = ζ = χ = 1,

with x > 0. Furthermore, ξi(0) = 0, i = 2, 4, . . . , 8 and, as n → +∞,
Bn+1/Bn → χ.

Proof. Due to the expected repetition we do not present all the steps. From (3) and
considering that L(rmx)− L(rm) = rmγL(x), we have

R(rmx)− R(rm)

= = lim
n→+∞

U(knrmx)− U(knrm)− an (L(rmx)− L(rm)) −An (H(rmx)−H(rm))

Bn

= lim
n→+∞

U(kn+mx)− U(kn+m)− an+mL(x)− An+mH(x)

Bn+m

Bn+m

Bn

+
an+mL(x)− anrmγL(x)− An (H(rmx)−H(rm)) + An+mH(x)

Bn
(4)

= R(x)(1 + on(1)) lim
n→+∞

Bn+m

Bn

+

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

an+m − anrmγ + Am+n − rmγAn

Bn
L(x)+

An+m − ζmAn

Bn
x

ln ζ
ln r ξ(lnx) rγ �=1 ∨ ζ �=1

an+m − an −mAn

Bn
L(x)+

An+m − An

Bn
H(x) rγ=ζ=1.

Case A (rγ 	= ζ 	= χ, rγ 	= χ 	= 1): From (5) and Lemma 3.2 we obtain the
functional equation

R(rmx)−R(rm) = R(x)χm + L(x)(rmγ − χm) + x
ln ζ
ln r ξ(lnx)(ζm − χm),



Third Order Conditions and Max-semistability 155

for all positive integer m. So, we solve the linear equation

R(rx)−R(r) = R(x)χ + L(x)(rγ − χ) + x
ln ζ
ln r (ζ − χ), (5)

starting by its homogeneous part Rh(rx) = Rh(x)χ. Considering x = ez and
multiplying by e−z

lnχ
ln r we get

e−(z+ln r) lnχ
ln r R(ez+ln r) = e−z

ln χ
ln r R(ez).

From the last equation we conclude that ξ2(x) := ez+
lnχ
ln r R(ez) is a periodic

function with period ln r. Then a general solution of the homogeneous equation
is Rh(x) = x

ln χ
ln r ξ3(ln x). Taking into account that a particular solution of the

complete equation (5) is Rp(x) = x
ln ζ
ln r ξ(lnx) + L(x), we obtain

R(x) = Rh(x) +Rp(x) = x
lnχ
ln r ξ3(lnx) + x

ln ζ
ln r ξ(lnx) + L(x).

Case B (rγ 	= ζ 	= χ, rγ 	= χ = 1): The limit (5) and Lemma 3.2 give us the
equation

R(rmx)−R(rm) = R(x) + L(x)(rmγ − 1) + x
ln ζ
ln r ξ(ln x)(ζm − 1).

In this case Rh(x) = ξ2(lnx) and Rp(x) = x
ln ζ
ln r ξ(ln x) + L(x).

Case C (rγ 	= ζ = χ = 1): From (5) we get the functional equation

R(rmx)−R(rm) = R(x) + L(x)(rmγ − 1) +mξ(lnx),

for which Rh(x) is equal to the previous one and Rp(x) =
ln x
ln r ξ(ln x) + L(x).

Case D (rγ = ζ = χ 	= 1): Using the results from Lemma 3.2 in (5), we obtain
the functional equation

R(rmx)−R(rm) = R(x)χ +mχm−1L(x) +mχm−1x
ln ζ
ln r ξ(ln x).

Since, in this case Rh(x) is equal to the one in Case A and Rp(x) =
lnx
χ ln r

hγ(x)
γ +

ln x
χ ln rx

ln ζ
ln r ξ(lnx) we conclude the desired result.

Case E (χ 	= rγ = ζ = 1): From (5) we obtain the equation

R(rmx) −R(rm) = R(x)χm + L(x) ((1 − χm) +m) +H(x)(1 − χm)

for which Rp(x) = H(x)+L(x) is a particular solution of the complete equation.
Case F (rγ = ζ = χ = 1): In this case limit (5) gives

R(rmx)−R(rm) = R(x) + L(x)

(
m+

m2

2

)
+mH(x)
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with

Rp(x) =
lnx

ln r
ξ2(lnx) +

g2(x) − g2(1)

2 ln r
+

g3(x)− g3(1)

6 ln2 r
.
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Part IV

Testing Statistical Hypothesis



Generalized p Values and Random p Values
When the Alternative to Uniformity Is a
Mixture of a Beta(1,2) and Uniform

M.F. Brilhante

Abstract
Combining p values methods and uniformity tests are closely related subjects in
meta analysis. In this context it is also known that publication bias can seriously
impair an overall decision. The recent concepts of generalized p values and
of random p values emphasize that, when faced with a significant number of
results that casts some doubt on the null hypothesis, the correct approach to
the problem should be to combine evidence under the alternative hypothesis.
Following previous research, we investigate generalized p values and random p
values for testing uniformity when the alternative is a mixture of a Beta(1,2) and
standard uniform random variables.

1 Introduction

The main goal of meta analysis is to provide methods for combining results from
independent tests, in order to obtain a valid conclusion about a common null
hypothesis. One way of combining information is through the reported p values,
and therefore uniformity tests play a crucial role, since the observed p values are,
under the null hypothesis, observations from the standard uniform distribution.
There are, however, two major concerns in meta analysis: the small number of
reported p values, which ultimately affects the power of any combined test; and
the phenomenon known as publication bias, which is a direct consequence of the
reported p values being usually smaller than 0.05, and thus creating a biased sample.

M.F. Brilhante (�)
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in Statistics, Studies in Theoretical and Applied Statistics,
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In order to overcome the issues mentioned above, Gomes et al. [4] investigated
the effects of using computationally augmented samples to test uniformity, and con-
sidered the family of random variables Xm with probability density function (pdf)

fm(x) =
(
mx+ 1− m

2

)
I(0,1)(x) , m ∈ [−2, 0] , (1)

as an alternative (m = 0 corresponds to uniformity). They observed that the
computational augmentation of samples had the nasty effect of decreasing the
power of combined uniformity tests, contrarily to what was naı̈vely expected.
Their results showed that data augmentation techniques, which has been used with
relative success by other authors (e.g., [8]), are in fact quite arguable. Posterior
investigations of Brilhante et al. [1, 2] confirmed the attraction role of the uniform
distribution in this context and provided some explanations for the occurrence.

Following previous research on the topic, we decided to take a new approach to
the problem. We apply with some success the concepts of generalized p values and
of random p values to the specific uniformity test problem H0 : m = 0, when
compared to Fisher’s method for combining evidence, and continue to consider
family (1) as an alternative. Observe that densities defined by (1), which are a
mixture of a Beta(1, 2) and Uniform(0, 1) with mixing weights −m

2 and 1 + m
2 ,

respectively, are quite attractive to work with, primarily because of their simplicity1

and the fact that they tackle the problem of publication bias. Fisher’s test is also
used to explore the concept of expected p value with family (1). As we shall see, an
interesting conclusion is derived here. Note that other models with support on (0, 1)
can be considered, e.g., Brilhante et al. [2] used the model Beta(1, q), q ∈ [0.5, 3],
when combining p values.

This chapter is organized as follows. In Sect. 2 we start by discussing the concepts
of generalized p values and then applying the main ideas to obtain a generalized
variable test for testing uniformity. In Sect. 3 we explore the concepts of random p
values and expected p values using Fisher’s method for combining evidence, always
using family (1) as an alternative to uniformity.

2 Generalized p Values with Alternative in the Class Xm

The concept of generalized p values was introduced by Tsui and Weerahandi [10]
to deal with the challenging, and quite often impossible, task of finding test
statistics when nuisance parameters are involved. A brief overview of the subject
follows.

1The family (1) results from tilting the standard uniform density using the point (0.5,1) as a rotation
center.
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Suppose that X is a random variable whose distribution depends on the parameter
of interest θ and the nuisance parameter η (real or vector), and that we are interested
in testing

H0 : θ ≤ θ0 vs. H1 : θ > θ0 . (2)

Let X = (X1, . . . , Xn) be a random sample from the population. Since we
are dealing with p values, we shall consider a significance testing setting. The
usual approach to the problem is to find a test statistic T = T (X; θ, η) whose
distribution is free of η. If T is stochastically increasing with θ, i.e., Pr[T > t; θ]
is a nondecreasing function of θ for any given t and fixed η, then the p value for
problem (2) is computed as

p = Pr[T (X; θ, η) ≥ T (x; θ, η)|θ = θ0] ,

where x is the observed value of X .2

Tsui and Weerahandi [10] extended the conventional definition of p values in
order to eliminate their dependence on nuisance parameters. First they began by
defining the concept of generalized test variables.

Definition 2.1. A random variable of the form T = T (X;x, θ, η) is a generalized
test variable for the parameter θ if it satisfies the following properties:
1. The observed value of T (X;x, θ, η), i.e., T (x;x, θ, η), is free of θ and η.
2. When θ is specified, the distribution of T (X;x, θ, η) is free of η.
3. For fixed x and η, Pr[T ≤ t; θ] is a monotonic function of θ for any given t.

If T = T (X;x, θ, η) is a generalized test variable stochastically increasing with
θ, then the generalized extreme region for problem (2) is defined as

Cx(θ, η) = {X : T (X;x, θ, η) ≥ T (x;x, θ, η)} ,

which does not depend on the nuisance parameter η. Therefore, the generalized p
value is computed as

p
G
= Pr[T (X;x, θ, η) ≥ T (x;x, θ, η)|θ = θ0].

The advantage of using generalized p values instead of ordinary p values in
testing problems with nuisance parameters is that the former enables the problems
to be solved exactly. An additional advantage is that they tend to behave quite well
with respect to the usual frequentist approach.

2If T is stochastically decreasing with θ, then p = Pr[T (X; θ, η) ≤ T (x; θ, η)|θ = θ0].
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Our main interest here is the testing problem

H0 : m = 0 vs. H1 : m < 0 , (3)

i.e., testing uniformity against a density more prone to generate values close to zero,
as suggested by publication bias. Observe that (1) remains a pdf if m ∈ [0, 2],
and therefore a right unilateral test can also be considered (this case augments
the probability near one).3 Although no nuisance parameters are involved in
problem (3), the main ideas supporting the concept of generalized p values can still
be applied.

Let X = (X1, . . . , Xn) be a random sample from the population with pdf (1)
and x = (x1, . . . , xn) be the observed value of X . Ideally we should base our
test statistics on sufficient statistics. However, the application of the factorization
theorem does not provide a sufficient statistic for the parameter m outside the
trivial solutions. Therefore, we decided to use the probability integral transform
theorem and apply the recipe for constructing generalized pivot quantities proposed
by Iyer and Patterson [5]—note that there exists no general method that will yield
generalized test variables for a testing problem.

Basically the recipe can be stated as follows. Suppose that we have a problem
involving k unknown parameters θ1, . . . , θk and that the parameter of interest
is θ = f(θ1, . . . , θk). If there exists a set of statistics (U1, . . . , Uk) and a set
of invertible pivots (V1, . . . , Vk) relating (U1, . . . , Uk) to (θ1, . . . , θk), then by
expressing the parameter of interest θ in terms of the Ui and Vi’s, i.e., θ =
g(U1, . . . , Uk, V1, . . . , Vk), an expression for a generalized pivot quantity, which
can be used for inferences about θ, is R = θ − g(u1, . . . , uk, V1, . . . , Vk), where ui
denotes the observed value of Ui, i = 1, . . . , k.

Let Fm denote the distribution function of Xm. Then from the probability
integral transform theorem it follows that Fm(Xi) ∼ Uniform(0, 1), i = 1, . . . , n,
and consequently V = −2

∑n
i=1 ln[Fm(Xi)] ∼ χ2

2n is a pivot quantity.
On the other hand,

n∑
i=1

ln[Fm(Xi)] =

n∑
i=1

ln
[
Xi

(
m
2 Xi +

2−m
2

)]
=

n∑
i=1

lnXi+

n∑
i=1

ln
[
m
2 (Xi−1)+1

]
.

Since 0 < m
2 (x − 1) < 1 for m ∈ [−2, 0] and x ∈ (0, 1)—when m ∈

[0, 2], we have −1 < m
2 (x − 1) < 0—we can use as an approximation to

ln
[
m
2 (Xi − 1) + 1

]
the first term of the function’s expansion in Maclaurin series,

i.e., ln
[
m
2 (Xi − 1) + 1

] ≈ m
2 (Xi − 1), i = 1, . . . , n. Hence,

3For m ∈ [0, 2], note that (1) is a mixture of a Beta(2,1) and Uniform(0,1) with mixing weights
m
2

and 1− m
2

, respectively.
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V ≈ −2

n∑
i=1

lnXi −mn
(
X − 1

)
. (4)

Solving (4) with respect to m, we obtain m ≈ V+2
∑n

i=1 lnXi

n(1−X)
. We are now in

condition to apply the method discussed above, and define

T (X;x,m) = m− V + 2
∑n
i=1 lnxi

n(1− x)
(5)

as a generalized test variable for m (note that this modus operandi guarantees
that (5) is in fact a generalized test variable and that it is stochastically increasing
with m). Since T (x;x,m) ≈ 0, the generalized p value for problem (3) is
computed as

p
G
= Pr [T (X;x,m) ≤ 0|m = 0] = 1− Pr

(
V ≤ −2

n∑
i=1

lnxi

)
,

with V ∼ χ2
2n.

On the other hand, the generalized data-based power function of the generalized
test variable (5) is defined as

π(x;m) = Pr [T (X;x,m) ≤ 0|m] = 1− Pr
[
V ≤ mn(1− x)− 2

n∑
i=1

lnxi

]
.

If we were interested in the right unilateral test H0 : m = 0 vs. H1 : m > 0,

then p
G
= Pr [T (X;x,m) ≥ 0|m = 0] = Pr

(
V ≤ −2

∑n
i=1 lnxi

)
.

A commonly applied method for combining p values from independent tests is
Fisher’s method, which is based on the test statistic Tn = −2

∑n
i=1 lnXi. Under

the null hypothesis of uniformity we have Tn ∼ χ2
2n, and therefore H0 should be

rejected if Tn ≥ χ2
2n;1−α, where χ2

2n;1−α denotes the quantile of order 1 − α of
the distribution. (For more details on combining p values see, e.g., Pestana [7].)
Although there is no absolute better way of combining evidence, simulation studies
have shown that Fisher’s test is one with the best performance in a majority of
situations. Thus its normal use as a comparison with other possible tests.

Observe that (5) is, in a certain way, a generalization of Fisher’s test statistic for
problem (3). This is quite understandable given the way how both tests are derived.
On the other hand, it is also obvious that the two tests are equally powerful for
problem (3). However, the generalized test variable (5) has here a slighter advantage
over Fisher’s test, in the sense that it allows to test nonuniformity null hypotheses
H0 : m = m0 	= 0 if we desire so. Figure 1 shows the simulated generalized power
function (based on 5,000 runs) of the generalized test variable (5) for sample sizes
n = 5, 10, 20, 30, 50, 100 and α = 0.05.
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Fig. 1 Proportion of rejections of uniformity using the generalized test variable T (X;x,m)

3 Random p Values and Fisher’s Method with Alternative
in the Class Xm

An important aspect of p values, which is often forgotten, is its stochastic behavior.
Dempster and Schatzoff [3] were the first to explore this behavior, and more recently
other authors have rekindled the subject (e.g., [6, 9]). A small introduction to the
topic follows.

Let T be a continuous test statistic to test hypotheses about a parameter of
interest θ. Let F0 denote the distribution function (df) of T under the null hypothesis
H0 and Fθ the df under some alternative H1. If large values of T give evidence in
favor of H1, then the observed p value is given by p = 1 − F0(t), where t is
the observed value of T . The random p value associated with the test is simply
defined as the random variable P = 1 − F0(T ). From the previous definition
it follows immediately that P is a standard uniform random variable under H0

(a direct consequence from the probability integral transform theorem and the
uniform distribution properties). On the other hand, the df of P under the alternative
is given by

Pr
θ
[P ≤ p] = 1− Fθ(F

−1
0 (1− p)), 0 < p < 1. (6)
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Some authors advocate the use of the expected p value, EPV, under the alternative
as a measure of performance of a test (e.g., [3, 9]). The smaller the value, the better
the test. Other reasons in favor of use of the EPV in these authors opinion are: (1) it
depends on the alternative, not on the significance level; (2) it allows to determine
the sample size; and (3) it allows to determine which alternative the observed p value
represents. However, other authors have a different understanding on the matter,
they argue that the random p value’s distribution under alternatives is usually highly
skewed, and therefore is not a good measure to represent its distribution ([6]).

From a computational perspective it can be easier to determine the EPV by
computing Pr[T ∗ ≥ T ], where T ∗ and T are independent random variables with
T ∗ having df Fθ and T df F0 (cf. [9]). Note that

EPV(θ) = Pr[T ∗ ≥ T ] =

∫ ∞
−∞

Pr[T ∗ ≥ T
∣∣T = t]f

T
(t)dt = E[1− Fθ(T )],

which under the null hypothesis takes the value 0.5, as expected.
For problem (3) it is not difficult to derive the distribution of Fisher’s statistic Tn

under the alternative, specially for small sample sizes, and use this knowledge to
determine the distribution of P = 1− F0(Tn) under a particular alternative m.

For example, T2 has pdf

fT
2
(t) =

1

2

[(
m2e−t/2 +

(m−2)2

4

)
t

2
−m(m − 2)(1− e−t/2)

]
e−t/2, t > 0,

and T3

fT
3
(t) =

1

128
e−t

{
− 12m[−16 + et/2(t − 4)2] + 8t2et/2+

+ 6m2[et/2(t− 8)2 − 16t− 64]+

+m3[−et/2(t − 12)2 + 144 + 48t+ 8t2]
}
, t > 0.

The general expression for P ’s pdf under the alternative m can easily be derived
from (6), and is given by

f
P
(p) =

fm[F
−1
0 (1− p)]

f0[F
−1
0 (1− p)]

=
fm(χ

2
2n;1−p)

f0(χ2
2n;1−p)

, 0 < p < 1,

where fm denotes now the pdf of Tn under the alternative m.
In Fig. 2 we plot the pdf of P for some values of m and for n = 3 (the pattern

for n = 2 is similar). In Fig. 3 we plot the simulated EPV under the alternative
hypothesis. It is interesting to observe here that for sample sizes smaller than 20, we
are not likely to observe p values under 0.05.
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Fig. 2 Probability density function for the random p value P under some alternatives for n = 3
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4 Conclusions

The concepts of generalized p values and of random p values can offer attractive
tools when dealing with meta-analytical syntheses of evidence, specially in studies
showing grounds to reject the overall null hypothesis. Aside from the philosophical
appeal of these concepts, their construction is straightforward, and theoretical and
computational results can be sometimes quite convincing.

Following previous work, we explored these relatively new concepts using
the family of pdf’s (1) and proposed in Sect. 2 a generalized test variable for
problem (3), comparable to Fisher’s test in this particular case. On the other
hand, applying the concept of random p values to Fisher’s statistic in Sect. 3, and
computing the associated EPV for some sample sizes, revealed that some caution
is needed on our part in meta-analysis syntheses when dealing with small sample
sizes (a recommendation closely related to power considerations). However, it is
advisable to use EPVs with some prudence, specially in the presence of highly
skewed distributions for P under the alternative.
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The Block-Matrix Sphericity Test: Exact
and Near-Exact Distributions for the Test
Statistic
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Abstract
In this work near-exact distributions for the likelihood ratio test (l.r.t.) statistic
to test the one sample block-matrix sphericity hypothesis are developed under
the assumption of multivariate normality. Using a decomposition of the null
hypothesis in two null hypotheses, one for testing the independence of the k
groups of variables and the other one for testing the equality of the k block
diagonal matrices of the covariance matrix, we are able to derive the expressions
of the l.r.t. statistic, its h-th null moment, and the characteristic function (c.f.)
of its negative logarithm. The decomposition of the null hypothesis induces a
factorization on the c.f. of the negative logarithm of the l.r.t. statistic that enables
us to obtain near-exact distributions for the l.r.t. statistic. Numerical studies
using a measure based on the exact and approximating c.f.’s are developed. This
measure is an upper bound on the distance between the exact and approximating
distribution functions, and it is used to assess the performance of the near-exact
distributions and to compare these with the Box type asymptotic approximation
developed by Chao and Gupta (Commun. Stat. Theory Methods 20:1957–
1969, 1991).
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1 Introduction

The one sample block-matrix sphericity test is of great interest when we wish to
test, under multivariate normality, if in a sequence of p random variables (r.v.’s)
X1, . . . , Xp we have k independent groups of p∗ variables and if all of the k
covariance matrices are equal. We show that we can split the null hypothesis of the
block-matrix test in two null hypotheses, one for testing the independence among
the k groups of variables and the other for testing the equality of the k covariance
matrices. The exact distribution of the likelihood ratio test (l.r.t.) statistic has a very
complicated expression which makes its use very difficult in practice. Therefore the
development of easy to use and yet highly accurate approximations becomes a good
target. Our aim is to show that, based on a the decomposition of the null hypothesis
of the one sample block-matrix sphericity, we are able to derive the expressions of
the l.r.t statistic and also of its h-th null moment, and the characteristic function
(c.f.) of its negative logarithm. The factorization induced on the c.f. of the logarithm
of the l.r.t. statistic, by the decomposition of the null hypothesis, together with the
results in [7] and [6] will allow us to develop very accurate near-exact distributions
for the l.r.t statistic (see the foundations of this methodology developed Coelho and
Marques in [8]). In [4] the exact null distribution of the l.r.t. statistic when k = 2 is
obtained using the inverse Mellin transform and the Meijer G-function what renders
the quantile computations too hard even for small values of p∗, reinforcing the
need for good manageable approximations. In [3] the authors present an asymptotic
approximation based on Box’s method (see [2]) which we will use to compare with
the new approximations proposed.

2 The Decomposition of the Test Null Hypothesis

Let us consider a sample of size N taken from a p-variate normal population
Np(μ , Σ). We intend to test the following null hypothesis:

H0 : Σ =

⎛
⎜⎜⎜⎝

Δ 0 . . . 0

0 Δ . . . 0
...

...
. . .

...
0 0 . . . Δ

⎞
⎟⎟⎟⎠
(
= Ik ⊗Δ

)
, (Δ not specified) (1)

where Δ is of order p∗, with p = kp∗.
The null hypothesis in (1) may be decomposed in two null hypotheses, more

precisely

H0 = H0b|0a ◦H0a (2)
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where, for

Σ =

⎛
⎜⎜⎜⎝

Σ11 Σ12 . . . Σ1k

Σ21 Σ22 . . . Σ2k

...
...

. . .
...

Σk1 Σk2 . . . Σkk

⎞
⎟⎟⎟⎠ , (3)

we have

H0a : Σ = bdiag(Σ11, Σ22, . . . , Σkk) , (4)

the null hypothesis to test the independence among the k groups of p∗ variables and

H0b|0a : Σ11 = Σ22 = · · · = Σkk(= Δ) , (Δ not specified)

assuming H0a true
(5)

the null hypothesis to test the equality of the k covariance matrices of order p∗ .

3 The l.r.t. Statistic, λ∗, and the h-th Null Moment of λ∗

The expressions of the l.r.t statistics, λ∗a and λ∗b|a, to test the null hypotheses in (4)
and (5) respectively are given by (see Chaps. 9 and 10 in [1])

λ∗a =
|A|n/2

k∏
j=1

|Ajj |n/2
and λ∗b|a =

(kn)knp
∗/2

k∏
j=1

np∗n/2

k∏
j=1

|Ajj |n/2

|A∗|nk/2 (6)

where n = N − 1, A =
N∑
i=1

(
Xi −X

) (
Xi −X

)′
, Ajj is the j-th diagonal matrix

of order p∗ of A and A∗ = A11 + · · · + Akk . Using the decomposition in (2) we
may obtain the expression for the l.r.t. statistic, λ∗, to test H0 in (1) as the product
of the expressions of the l.r.t. statistics in (6) (see Lemma 10.3.1 in [1])

λ∗ = λ∗aλ
∗
b|a =

|A|n/2∣∣∣∣∣ 1k
k∑
j=1

Ajj

∣∣∣∣∣
nk/2

. (7)

Given the independence of the l.r.t. statistics, λ∗a and λ∗b|a, in (6), under H0 in (1),
the expression of the h-th null moment of λ∗ may be obtained as the product of the
expressions of the h-th null moments of λ∗a and λ∗b|a (see Chaps. 9 and 10 in [1]),
therefore
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E
[
(λ∗)h

]
= E

[(
λ∗b|aλ

∗
a

)h]
= E

[(
λ∗b|a

)h]
× E

[
(λ∗a)

h
]

=
(nk)nkp

∗h/2

k∏
j=1

np∗nh/2

Γp∗
(
nk
2

)
Γp∗

(
nk
2 (1 + h)

)
k∏
j=1

Γp∗
(
n
2 (1 + h)

)
Γp∗

(
n
2

) (8)

×Γp∗k(
1
2n + 1

2hn)

Γp∗k(
1
2n)

k∏
i=1

Γp∗
(
n
2

)
Γp∗

(
n
2 (1 + h)

) (9)

= k
1
2 p

∗knh
p∗k∏
j=1

Γ
(
1
2 (n + nh− j + 1)

)
Γ
(
1
2 (n − j + 1)

)
p∗∏
i=1

Γ
(
1
2 (nk − i+ 1)

)
Γ
(
1
2 (nk + nkh− i+ 1)

) ,

where Γp∗(.) represents the multivariate p∗ gamma function (see [1]).

4 The c.f. of W = − log λ∗

Noticing that E
(
eitW

)
= E

(
(λ∗)−it

)
, the expression of the c.f. of the r.v. W =

− logλ∗ may be derived from the expression of the h-th null moment of λ∗ as

ΦW (t) = k−
1
2
p∗knit

p∗k∏
j=1

Γ
(
1
2 (n − nit− j + 1)

)
Γ
(
1
2 (n− j + 1)

)
p∗∏
j=1

Γ
(
1
2 (nk − j + 1)

)
Γ
(
1
2 (nk − nkit− j + 1)

) .

However, if we consider the decomposition in (8) and (9) we may rewrite the c.f. of
W as the product of the c.f’s of W1 = − logλ∗a and W2 = − logλ∗b|a

ΦW (t) =
Γp∗k(

1
2n− 1

2 itn)

Γp∗k(
1
2n)

k∏
i=1

Γp∗
(
n
2

)
Γp∗

(
n
2 (1 − it)

)
︸ ︷︷ ︸

ΦW1(t)

× (nk)−nkp
∗it/2

k∏
j=1

n−p∗nit/2

Γp∗
(
nk
2

)
Γp∗

(
nk
2 (1− it)

)
k∏
j=1

Γp∗
(
n
2 (1− it)

)
Γp∗

(
n
2

)

︸ ︷︷ ︸
ΦW2(t)

,

which is a much more useful form for the development of near-exact distributions.
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4.1 Factorizations of the c.f.’s of W1 = − log λ∗
a and

W2 = − log λ∗
b|a

With the final goal of developing near-exact distributions for the l.r.t. statistic, λ∗, in
(7) (see Sect. 5 for details) we will use factorizations of the c.f.’s of W1 = − logλ∗a
and W2 = − logλ∗b|a. These factorizations, already obtained in [6] and [7], show
that the exact distribution of both W1 and W2 may be represented in the form of
the sum of two independent r.v.’s, one with a Generalized Integer Gamma (GIG)
distribution (see [5]) and the other with the distribution of the sum of independent
Logbeta r.v.’s, eventually multiplied by a constant. These similarities in the structure
of the c.f.’s of W1 and W2 will be of great use to achieve our goal.

4.1.1 The c.f. of W1 = − log λ∗
a

Coelho in [6] shows a possible factorization for the c.f. of W1 = − logλ∗a, in the
form

ΦW1 (t) =

p−1∏
j=2

(
n− j

n

)r∗j (n− j

n
− it

)−r∗j

︸ ︷︷ ︸
Φ1,1(t)

{
Γ
(
n
2

)
Γ
(
n
2 − 1

2 − n
2 it
)

Γ
(
n
2 − n

2 it
)
Γ
(
n
2 − 1

2

)
}m∗

︸ ︷︷ ︸
Φ1,2(t)

(10)

with m∗ = k if p∗ is odd and m∗ = 0 if p∗ is even; the parameters r∗j are the
parameters rj given by expressions (A.3) and (A.4) in [9]. The c.f. Φ1,1(t) is the c.f.
of the sum of p−2 r.v.’s with Gamma distribution, with integer shape parameters, r∗j ,

and with rate parameters n−jn (j = 2, . . . , p−1), that is, the c.f. of a GIG distribution
with depth p− 2. The c.f. Φ1,2(t) is the c.f. of the sum of m∗ independent Logbeta
distributed r.v.’s, multiplied by n

2 , with parameters n
2 − 1

2 and n
2 .

4.1.2 The c.f. of W2 = − log λ∗
b|a

Coelho and Marques in [7] derive the following factorization for the c.f. of ΦW2(t)

ΦW2
(t)=

p−1∏
j=1

(
n− j

n

)rj (n− j

n
− it

)−rj

︸ ︷︷ ︸
Φ2,1(t)

×
�p/2
∏
j=1

q∏
k=1

Γ (aj+bjk)

Γ (aj+b∗jk)
Γ (aj+b∗jk−nit)

Γ (aj+bjk−nit)

×
(

q∏
k=1

Γ (ap+bpk)

Γ (ap+b∗pk)
Γ (ap+b∗pk− n

2 it)

Γ
(
ap+bpk− n

2 it
)
)p⊥⊥2

︸ ︷︷ ︸
Φ2,2(t)

(11)
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where aj , bjk, b∗jk , ap, bpk, and bpk∗ are given in (3) and (4) in [7], rj are given in
expressions (5)–(7) also in [7] and where

p ⊥⊥ 2 =

⌊
p+ 1

2

⌋
−
⌊p
2

⌋
=

{
0 , for p even
1 , for p odd.

The c.f. Φ2,1(t) is the c.f. of the sum of p − 1 r.v.’s with Gamma distribution, with
integer shape parameters, rj , and with rate parameters n−j

n (j = 1, . . . , p− 1), that
is, the c.f. of a GIG distribution with depth p − 1. The c.f. Φ2,2(t) is the c.f. of the
sum of �p/2� × q + q × p ⊥⊥ 2 independent Logbeta distributed r.v.’s, the first
�p/2� × q multiplied by n and the remaining by n

2 .

5 Near-Exact Distributions for W and λ∗

Using the similarities observed on the factorizations of the c.f.’s of W1 and W2 given
in Sect. 4.1, we may rewrite the c.f. of W = − logλ∗.

Theorem 5.1. The c.f. of W = − logλ∗ may be represented in the form

ΦW (t) =

p−1∏
j=1

(
n − j

n

)υj
(

n− j

n
− it

)−υj

︸ ︷︷ ︸
ΦW∗

1
(t)

Φ1,2(t) × Φ2,2(t)︸ ︷︷ ︸
ΦW∗

2
(t)

(12)

with Φ1,2(t) and Φ2,2(t) respectively in (10) and (11),

υj =

{
rj j = 1

rj + r∗j j = 2, . . . , p− 1 ,
(13)

and with r∗j equal to the parameters rj in (A.3) and (A.4) of [9] and rj given by
expressions (5)–(7) in [7].

The near-exact c.f.’s will thus have the form

ΦW∗
1
(t)︸ ︷︷ ︸

GIG distribution

×Φne(t) (14)

where ΦW∗
1
(t) is given by (12) and Φne(t) is the c.f. that we will use to approximate

the c.f. ΦW∗
2
(t) in (12). Since a Logbeta distribution is indeed an infinite mixture

of Gamma distributions, we propose Φne(t) to be the c.f. of a single Gamma r.v.
or a mixture of two or three Gamma r.v.’s. The parameters in Φne(t) are evaluated
ensuring that ΦW∗

2
(t) and Φne(t) have the same first two, four, or six derivatives at

t = 0; that is the same as to ensure that the exact and approximating distributions
have the same first two, four, or six moments. Thus, we will have



The Block-Matrix Sphericity Test 175

Φne(t) =

h/2∑
�=1

θ� μ
δ�(μ − it)−δ� (15)

with θ� > 0 ( = 1, . . . , h/2 for h = 2, 4 or 6),
∑h/2

�=1 θ� = 1, and

dj

dtj
ΦW∗

2
(t)

∣∣∣∣
t=0

=
dj

dtj
Φne(t)

∣∣∣∣
t=0

, j = 1, . . . , h (16)

for h = 2, 4, or 6, depending on Φne(t) being the c.f. of a single r.v. or a mixture
of two or three Gamma r.v.’s with the same rate parameters. Using this approach
we obtain, for h = 2, as near-exact distribution for W a single Generalized Near-
Integer Gamma (GNIG) distribution (see [6]) or, for h = 4 or 6, a mixture of two or
three GNIG distributions. By simple transformation it is easy to obtain near-exact
distributions for λ∗.

Theorem 5.2. The near-exact distributions for λ∗ are either an exponential GNIG
distribution or a mixture of 2 or 3 exponential GNIG distributions of depth p
respectively for h = 2, 4 or 6, with p.d.f. given by (using the notation of Appendix B
in [9])

h/2∑
�=1

θ� f
GNIG

(
− logw|υ1, . . . , υp−1, δ� ;

n− 1

n
, . . . ,

n− p+ 1

n
, μ ; p

) 1

w

and c.d.f given by

1−
h/2∑
�=1

θ� F
GNIG

(
− logw|υ1, . . . , υp−1, δ� ;

n− 1

n
, . . . ,

n − p+ 1

n
, μ ; p

)

with υ1, . . . , υp−1 as in (13), and where, for h = 2, 4 or 6, the parameters θ�, δ�
and μ are obtained as the numerical solution of the system of equations in (16), with
θh/2 = 1−∑h/2−1

�=1 θ� .

6 Numerical Studies

To assess the accuracy of the near-exact distributions we will use the measure

1

2π

∫ +∞

−∞

∣∣∣∣ΦW (t)− Φapp(t)

t

∣∣∣∣dt , (17)

where ΦW (t) and Φapp(t) represent respectively the exact and the approximate c.f.
of the r.v. W = − log λ∗. For further details on this measure see [7]. We will denote
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Table 1 Values for the measure in (17) of the approximating distributions of W =− log λ∗ for
p∗ = 3 and increasing values of p, k and n

p p∗ k n GNIG M2GNIG M3GNIG Box

9 3 3 11 4.5× 10−6 3.6× 10−9 4.0× 10−12 5.8× 10−2

12 3 4 14 1.2× 10−6 4.3× 10−10 2.9× 10−13 1.2× 10−1

15 3 5 17 4.3× 10−7 8.2× 10−11 3.8× 10−14 2.1× 10−1

21 3 7 23 8.3× 10−8 5.1× 10−12 9.0× 10−16 4.1× 10−1

27 3 9 29 2.5× 10−8 6.3× 10−13 5.2× 10−17 6.4× 10−1

Table 2 Values for the measure in (17) of the approximating distributions of W =− log λ∗ for
p = 8, p∗ = 4, k = 2 and increasing values of n

p p∗ k n GNIG M2GNIG M3GNIG Box

8 4 2 10 3.1× 10−6 2.9× 10−10 9.1× 10−13 3.3× 10−2

8 4 2 50 2.1× 10−7 6.9× 10−13 1.9× 10−14 3.2× 10−5

8 4 2 100 5.5× 10−8 4.3× 10−14 3.2× 10−18 3.3× 10−6

Table 3 Values for the measure in (17) of the approximating distributions of W =− log λ∗ for
p = 9, p∗ = 3, k = 3 and increasing values of n

p p∗ k n GNIG M2GNIG M3GNIG Box

9 3 3 11 4.5× 10−6 3.6× 10−9 4.0× 10−12 5.8× 10−2

9 3 3 50 4.6× 10−7 2.7× 10−11 1.2× 10−14 9.0× 10−5

9 3 3 100 1.2× 10−7 2.0× 10−12 1.5× 10−15 9.2× 10−6

by GNIG, M2GNIG and M3GNIG the near-exact distributions corresponding,
respectively, to a GNIG or to a mixture of 2 or 3 GNIG distributions and by Box
the asymptotic approximation in [3].

From Tables 1–3 we may observe the very good asymptotic properties of the
near-exact distributions for increasing values of n and p. These distributions display
very good results for the measure in (17) specially when compared with the ones
obtained for the asymptotic approximation denoted by Box.

We may point out the excellent performance of the M3GNIG near-exact
distribution and the remarkable behavior of all near-exact distributions for small
sample sizes.

All values of the measure in (17) were computed using the numerical integration
functions of Mathematica, version 7, and were calculated with at least eight digits
of precision, out of which only two are shown.

7 Conclusions

We have shown that, based on a decomposition of the null hypothesis of the one
sample block-matrix sphericity, we may derive the expressions of the l.r.t statistic, its
h-th null moment, and also of the c.f. of its logarithm. This decomposition induces a
factorization on the c.f. of the l.r.t. statistic which together with the results obtained
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in [6] and [7] allow us to develop very accurate near-exact distributions for the
l.r.t statistic and for the logarithm of the l.r.t. statistic. Numerical studies show that
the near-exact distributions are very accurate approximations exhibiting at the same
time very good asymptotic properties.
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Extensions of Dorfman’s Theory

Rui Santos, Dinis Pestana, and João Paulo Martins

Abstract
Economic impact of composite sampling is investigated in the realistic frame-
work of tests with positive probability of false positive and of false negative
results. Sensitivity and specificity when pooling samples are also discussed,
using rarefaction as a framework.

1 Introduction

During the Second World War, Dorfman [2] used composite sampling in order to
get a more efficient method of identifying syphilis infected soldiers: testing a group
of n members is feasible and saves resources. A negative result of a compound
test means that no one is infected and a positive result means that at least one of
the members is infected. In this last case, individual tests to all the group soldiers
would be mandatory, in order to identify all infected members. As the main goal
is to minimize the number of expected tests to identify all the infected members,
the main issue is to find the optimal group dimension n. The compound analyses
allow us to save resources in a variety of problems aside from blood testing, cf.
[1]. Besides, the optimal n depends on the researcher’s main goal: to identify all
the infected individuals (classification problem) or to estimate the prevalence rate
(estimation problem).
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Dorfman’s original idea was applied to qualitative analyses (presence or absence
of the infection), without measuring any quantitative variable (antigenes or anti-
bodies or bacteria counts, or proportion of specific cells, or weight or volume of
some chemical compound). In his methodology, it was implicitly assumed that the
blood tests had no errors. In the present work, we assume that each test may return
a false negative or a false positive, i.e., the conditional probability of returning
the true diagnostic in the presence or absence of the disease, known respectively
as sensitivity and specificity, are essential operating characteristics of the test.
Some previous works, concerned mainly with prevalence rate estimation, discuss
misclassification issues. Nevertheless, most of these studies assume that pooling
does not affect misclassification (cf. [8, 9, 12, 13]). Others studies, such as [7],
provide simple models for modeling sensitivity without taking into account the
number of infected members in the group. However, an infected member in the
pooled sample can be excessively diluted and become undetectable in the compound
test. Furthermore, the sensitivity and specificity of a compound test must depend
of the number of infected individual on the group—the dilution effect, cf. [6].
Hierarchical models to capture the dilution effect in prevalence estimation were
used in [14, 16], but they do not measure the probability of misclassification. Thus,
the main goal of this work is to analyze the influence of dilution and rarefaction on
sensitivity and specificity in the use of compound tests and Dorfman’s classification
methodology. Moreover, for low prevalence rates, it is shown that the dilution
effect for just one (or two) infected element in the group is sufficient to evaluate
misclassification in the use of pooled samples.

2 Dorfman’s Theory

Let p denote the prevalence rate of the infection and the independent Bernoulli
random variables Xi, with i=1, . . . , N , represent the presence (Xi = 1) or absence
(Xi = 0) of the infection in the i-th population unit. A compound test on a sample
of size n has negative result if none of those units is infected, i.e.,

∑n
i=1 Xi = 0,

and it has positive result if at least one element is infected, i.e.,
∑n

i=1 Xi ≥ 1. In
this case individual tests have to be carried out to identify all infected members. In
this chapter we follow Dorfman’s procedure, although our methods can be applied
to others methodologies, such as the ones proposed in [3,4,8,10] or [11]. Hence, the
expected number of tests needed to identify infected units in the population using
groups of n members is E[T ] = N

(
1
n + 1− (1− p)n

)
(for simplicity, assume

that N
n ∈ N). Thus a simple quantification of the efficiency of compound versus

individual tests is the relative cost RC = E[T ]
N = n+1

n − (1 − p)n, n ≥ 2, which
can be used to find the most efficient value for n knowing the infection prevalence p.
Dorfman [2] analyzed different prevalence rates and concluded that the compound
test is more efficient if p is lower than approximately 0.3066 and the efficient value
for n (represented by n∗) will decrease with p, without attaining the value n = 2,
as described in Table 1. Observe that for 0.123 ≤ p ≤ 0.307 we have n∗ = 3
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Table 1 Relative cost and n optimum for some prevalence rates p

p 0.31 0.30 0.13 0.12 0.07 0.05 0.025 0.01 0.005 10−3 10−4 10−5 10−6

n∗ 1 3 3 4 4 5 7 11 15 32 100 317 1000
RC 1 0.990 0.675 0.650 0.502 0.426 0.305 0.196 0.139 0.063 0.020 0.006 0.002

Table 2 Joint probabilities of an individual test

Individual test result

Truth X+
i X−

i

Xi = 1 ϕsp (1 − ϕs )p p

Xi = 0 (1− ϕe )q ϕeq q

ϕsp+ (1 − ϕe )q (1 − ϕs )p+ ϕeq 1

and for p > 0.307 the compound test is not efficient (n∗ = 1). For p < 0.123
the approximation (1 − p)n ≈ 1 − np (cf. [15]) provides the approximate optimal
solution n∗ ≈ p−0.5, whose maximum error is 1, with no significant influence on
the relative cost. Thus RC ≈ 1

n + np and, for n = n∗, E[T ] ≈ 2N
√
p. Finucan [3]

proposes the smallest integer not less than p−0.5 + 0.5 for n∗. In all examples we
will use the most efficient value for n, i.e. n = n∗.

3 The Inclusion of Errors in the Tests Results

Now consider that the tests results are subject to some sources of error. We shall
denote ϕ

s
∈ (0, 1] the sensitivity of one single test—probability of one positive

test (X+
i ) in one infected sample (Xi = 1), i.e., P

(
X+
i |Xi = 1

)
—and ϕ

e
∈ (0, 1]

the specificity of the test—probability of getting a negative result (X−i ) from a not
infected sample (Xi = 0), i.e., P

(
X−i |Xi = 0

)
. Then, 1−ϕs will be the probability

of one false negative test and 1−ϕe the probability of one false positive. Assuming
that the results of the test and the condition of the tested units are independent,
denoting q = 1− p, we obtain the probabilities shown in Table 2.

3.1 Sensitivity and Specificity in Compound Tests

Let I [n] =
∑n

i=1 Xi represent the number of infected elements in a sample of size
n and I [i,n] = P(I [n] = i) =

(
n
i

)
piqn−i, i = 0, . . . , n. Let X [+,n] [resp. X [−,n]]

represent a positive [resp. negative] result on the compound test. The purpose of
this section is to compare the sensitivity ϕ

s
and the specificity ϕ

e
of one simple

test (n = 1) with the pooled sensitivity ϕ[n]
s

= P(X [+,n]|I [n] ≥ 1) and pooled
specificity ϕ[n]

e
= P(X [−,n]|I [n] = 0) of one compound test in a sample of size n.

Observe that the value of n does not affect the specificity; in fact, if we dissolve
one cm3 of blood from n not infected elements and then we choose, at random, one
cm3 from this mixture to test, then this sample of blood will not be infected, and
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this framework is obviously equivalent to using just one cm3 of blood from one non
infected person. So ϕ[n]

e
= ϕ

e
.

On the other hand, the sensitivity of the compound test ϕ[n]
s

is a function of the
number m of infected members in the group. Denote ϕ[m,n]

s
= P(X [+,n]|I [n] = m),

and assume that ϕ[n,n]
s

= ϕ
s
, i.e., that the sensitivity of the compound test when all

members are infected is equal to the sensitivity of one simple test. Under these
assumptions we shall get 0 < ϕ[1,n]

s
≤ ϕ[2,n]

s
≤ · · · ≤ ϕ[n,n]

s
= ϕ

s
, as a

consequence of the dilution of the fluid and its rarefaction, and

ϕ[n]
s

=

∑n
j=1 P

(

X [+,n]|I [n] = j
)

P

(

I [n] = j
)

P (I [n] ≥ 1)
=

n
∑

j=1

ϕ[j,n]
s

I [j,n]

1− qn
=

n
∑

j=1

ϕ[j,n]
s

λj ,

(1)
where

∑n
j=1 λj = 1 and therefore ϕ[n]

s
is a weighted mean of the sensitivities

ϕ[j,n]
s

; so ϕ[n]
s

≤ ϕ
s

as a consequence of ϕ[m,n]
s

≤ ϕ
s
, for every m. Hung

and Swallow [6] applied a similar approach in order to analyze the robustness of
prevalence estimation under misclassification concerned with the dilution effect.
Nevertheless, they considered ϕ

s
= ϕ

e
= 1 (misclassification is only due the

dilution effect) and proposed two different specific forms to ϕ[j,n]
s

without providing
general formulas for sensitivity and specificity in compound tests.

In fact, the expected number of infected members in the n elements, supposing
p ≈ 0 (thus n∗ ≈ 1√

p ), is 1
n and therefore λi > λj to i < j. Moreover, the first

weight λ1 decreases with p but the remaining λi increase with p. For p = 0.1,
λ1 ≈ 0.85 and λ2 ≈ 0.14; for p = 0.01 λ1 ≈ 0.951 and λ2 ≈ 0.048. In general, the
ϕ[j,n]

s
for j > 2 can be disregarded, and in most cases ϕ[2,n]

s
can also be discarded

(for p = 0.001, for instance, λ1 ≈ 0.985). So, the value ϕ[1,n]
s

of the sensitivity of
one compound test when just one of the n members is infected has a large impact
on the total sensitivity of the compound test (without requiring any assumptions
concerning the dilution effect). If the sensitivity ϕ[1,n]

s
is low (compared with ϕ

s
),

we do not recommend using the compound test.
In order to compare ϕ[m,n]

s
with ϕ

s
we can use the weights k

[n]
m = 1−ϕ[m,n]

s
ϕ−1

s

where 1 > k
[n]
1 ≥ k

[n]
2 ≥ · · · ≥ k

[n]
n = 0. Thus ϕ[n]

s
= ϕ

s
−∑n

j=1 λjk
[n]

j
ϕ

s
, and the

difference between the sensitivity ϕ
s

and the pooled sensitivity ϕ[n]
s

is given by ϕ
s
−

ϕ[n]
s

=
∑n
j=1 λjk

[n]

j
ϕ

s
. So, when p ≈ 0, we have ϕ

s
−ϕ[n]

s
≈ (λ1k

[n]

1
+λ2k

[n]

2
)ϕ

s
.

We illustrate the use of those weights in Sect. 4.1 using the Poisson distribution.
In a compound test with n elements, the probability of each outcome is given in

Table 3.

3.2 Sensitivity and Specificity in Dorfman’s Methodology

Using Dorfman’s methodology, for one infected person being identified by the
test, the compound test must be positive (this happens with probability ϕ[n]

s
which

depends on I [n]) and then, in the simple test, we also need to get a positive result
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Table 3 Joint probabilities of a compound test

Compound test result

Truth X[+,n] X[−,n]

I [n] ≥ 1 ϕ[n]
s

(1− qn)
(

1− ϕ[n]
s

)

(1− qn) 1− qn

I [n] = 0 (1− ϕe)q
n ϕeq

n qn

ϕ[n]
s

− qn
(

ϕ[n]
s

+ ϕe − 1
)

1− ϕ[n]
s

+ qn
(

ϕ[n]
s

+ ϕe − 1
)

1

(with probability ϕ
s
). Therefore, supposing that the tests results are independent,

the sensitivity ϕ
sn

of the process will be given by

ϕ
sn

= P
(
X+

1 |X1 = 1
)
=

n−1∑
i=0

P

(
X+

1 |X1 = 1, I [n−1] = i
)
P

(
I [n−1] = i

)

=

n−1∑
i=0

P
(
X+

1 |X1 = 1
)
P

(
X [+,n]|I [n] = i+ 1

)
I [i,n−1]

= ϕ
s

n−1∑
i=0

ϕ[i+1,n]
s

I [i,n−1] (2)

and ϕ
sn

≤ ϕ2
s
≤ ϕ

s
, i.e., the sensitivity in Dorfman’s methodology is smaller than

the sensitivity of one simple test. There are two different possibilities for one not
infected person being identified by the test: either the compound test is negative or
the compound test is positive and the simple test is negative. So the specificity ϕ

en

of the process will be given by

ϕen
= P

(

X−
1 |X1 = 0

)

=

n−1
∑

i=0

P

(

X−
1 |X1 = 0, I [n−1] = i

)

P

(

I [n−1] = i
)

=

n−1
∑

i=0

[

P
(

X−
1 |X1 = 0

)

P

(

X [+,n]|I [n] = i
)

+ P

(

X [−,n]|I [n] = i
)]

I [i,n−1]

= [ϕe + ϕe(1− ϕe)] q
n−1 +

n−1
∑

i=1

[

ϕeϕ
[i,n]
s

+
(

1− ϕ[i,n]
s

)]

I [i,n−1]

= 1− (1− ϕe)

[

(1− ϕe)q
n−1 +

n−1
∑

i=1

ϕ[i,n]
s

I [i,n−1]

]

= 1− (1− ϕe)ξ (3)

where ξ = ξ(ϕ[i,n]
s

, ϕe , p, n) is a weighted mean of (1 − ϕe) and ϕ[i,n]
s

, i =
1, . . . , n − 1, therefore ξ ≤ 1 and consequently ϕen

≥ ϕe (the specificity in
Dorfman’s methodology is greater than in a simple test). If we do not include
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the rarefaction factor (i.e., supposing ϕ
[m,n]

s
= ϕ

s
, 1 ≤ m ≤ n, cf. [8]), then

ϕ
sn

= ϕ2
s
≤ ϕ

s
, which does not depend on n and corresponds to the maximum

value for ϕ
sn

(best situation for ϕ
sn

). In this case the specificity ϕ
en

is given by

ϕ
en

= 1− (1 − ϕ
e
)ϕ

s
− (1− ϕ

e
)(1− ϕ

e
− ϕ

s
)qn−1, (4)

which depends on n, increases with qn−1 (for suitable values for ϕ
s

and ϕ
e
, i.e.,

ϕ
s
+ ϕ

e
> 1) and corresponds to the minimum value for ϕ

en
(worst case for ϕ

en
).

If we use the approximation n ≈ 1√
p , then qn−1 ≈ (1 − p)

1√
p−1 decreases with

p ∈ (0, 0.31) and, therefore, ϕen
also decreases with p. Nevertheless, if ϕe is close

to one, the value of (1−ϕe)(1−ϕe −ϕs) will be very close to zero and, therefore,
the value of p will not imply great changes in the specificity ϕen

.
Hence, in this simplified situation, the gain of specificity using Dorfman’s

methodology is generally negligible, but the loss of sensitivity can be large. For
instance, for ϕs = 0.9 we get ϕsn

= 0.81 and the probability of a false negative
(a most serious error, as an infected person is not detected) increases 9 % taking into
account the rarefaction factor, the loss would be even greater.

4 The Number of Bacteria

Let us consider the problem of detecting the presence of some type of bacteria to
test the contamination of some substance, for instance of yogurt at an industrial unit.

First, let us assume that the contamination rate is equal to p. Thus, if we choose
n yogurts at random to test, the number of contaminated ones is a random variable
I � B(n, p). Let us assume further that the number of bacteria Y ∗i in one ml taken
from the i-th yogurt, chosen at random, is zero if it is not contaminated. Otherwise, it
is modeled by some random variable Yi with discrete distributionD with parameters
vector θ and support in N0, that is Yi � D(θ).

So, when pooling together one ml from n yogurts, the number of bacteria present
in the pooled sample will be Bn =

∑n
i=1 Y ∗i =

∑I
i=1 Yi. If the compound test uses

one ml of the mixture of yogurts, as in the simple test, i.e., if we choose, at random,
one ml from the n ml of the amalgamated sample, assuming that the mixture
is homogeneous, the number of bacteria in one ml of this compound is B1 �
B
(
Bn,

1
n

)
(we can get the same result by considering B1 =

∑n
i=1 W ∗i =

∑I
i=1 Wi

where the random variable Wi is described by the hierarchic model Wi ∼ B
(
T, 1

n

)
where T ∼ D(θ)). Hierarchical pooling models using continuous distributions were
used in [14, 16] to develop procedures for HIV prevalence estimation with the
dilution effect.

Table 4 exhibits the results for some commonly used count distributions, namely
the main “basic count distributions” with extended Panjer’s recursion, cf. [5].
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Table 4 Example with some common count distributions

D(θ) B1|I=i

Poisson Yi ∼ P(λ), λ > 0 B1|I=i ∼ P
(

i λ
n

)

Binomial Yi ∼ B(m, p1) B1|I=i ∼ B
(

im, p1
n

)

Negative
binomial

Yi ∼ NB(r, p1), y ∈ N0

P (Yi = y) =
(

y+r−1
r−1

)

pr1 (1− p1)
y
B1|I=i ∼ NB

(

ir, np1
np1+1−p1

)

Logarithmic Yi ∼ Log(θ), θ ∈ (0, 1),
P (Yi = y) = − 1

ln(1−θ)
θy

y
y ∈ N

f
Wi

(x) =

⎧⎪⎪⎨
⎪⎪⎩

ln
(
1−θ+ θ

n

)

ln(1−θ)
x = 0

−1
x ln(1−θ)

(
θ
n

1−θ
(
1− 1

n

)
)x

x ∈ N

4.1 Sensitivity and Specificity

For illustration purposes, our analyses will be restricted to the case of the number of
bacteria in one contaminated yogurt being modeled by the Poisson distribution, i.e.,
Yi ∼ P(λ) (the others cases are analogous).

Let us suppose that the test never returns wrong results (it identifies always the
presence of bacteria if any exists in the ml analyzed). Hence, the sensitivity is the
probability of existing at least one bacterium in one ml from on infected yogurt,
and therefore ϕ

s
= P (Yi > 0) = 1 − e−λ; and the specificity will be equal to

certitude (one not contaminated yogurt does not have any bacterium). Under these
conditions, the number of bacteria Y ∗ in one ml is modeled by a zero-inflated
Poisson distribution with probability mass function

f
Y ∗ (x) =

⎧⎪⎨
⎪⎩

(1 − p) + pe−λ x = 0

p
e−λ λx

x!
x ∈ N.

(5)

In the compound test, the number of bacteria in 1 ml of yogurt will be charac-
terized by a Poisson distribution with parameter mλ

n , where m ≤ n represents the
number of infected yogurts in the group. As the number m of contaminated yogurt
is m ∼ B (n, p), the number of bacteria Y ∗n in 1 ml of the pooled sample has
probability function given by

f
Y ∗
n
(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n∑
i=0

I [i,n]e−i
λ
n x = 0

n∑
i=1

I [i,n]
e−i

λ
n

(
iλn
)x

x!
x ∈ N,

(6)

that is equal to f
Y ∗ (x) when n = 1. So, even in the compound test, we still have

ϕ
en

= 1 (if none of the yogurts is contaminated then the test is always negative, as
we obtain in (3) using ϕ

e
= 1) and, denoting by C the contaminated yogurts,
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ϕ
sn
= P (Y ∗n ≥ 1|Y1 ∈ C)×P (Y1 ≥ 1) =

n−1∑
i=0

I [i,n−1]
(
1− e−(i+1) λ

n

) (
1− e−λ

)
,

which corresponds to formula (2) with ϕ[i+1,n]
s

= 1− e−(i+1) λ
n and ϕ

s
= 1− e−λ.

Applying the weights k
[n]

m
computed in Sect. 3.1, we get k

[n]

m
= 1− 1−e− m

n
λ

1−e−λ , and

the difference ϕ
s
− ϕ[n]

s
is approximately

(
λ1k

[n]

1
+ λ2k

[n]

2

)
ϕs. If we consider, as

an example, a prevalence rate of p = 0.01 (n∗ = 11) and a parameter λ = 10, then
ϕ

s
− ϕ[n]

s
≈ 0.39ϕs, so the difference between the single test sensitivity and the

pooled sensitivity is approximately 40 %!
We can also include in the model the probability of having an extra source of error

associated with the test itself, specifically 1− ϕ
e
T

of false positive and probability
1− ϕs

T
of false negative, the resulting specificity is

ϕ
en

= ϕ
e
T
P (Y ∗n = 0|Y1 	∈ C) + (1 − ϕ

s
T
)P (Y ∗n > 0|Y1 	∈ C) +

+ ϕe
T

[
(1− ϕe

T
)P (Y ∗n = 0|Y1 	∈ C) + ϕs

T
P (Y ∗n > 0|Y1 	∈ C)

]

= ϕ
e
T
ϕ

0
+ (1− ϕ

s
T
)(1− ϕ

0
) + ϕ

e
T

[
(1− ϕ

e
T
)ϕ

0
+ ϕ

s
T
(1− ϕ

0
)
]

= 1− (1− ϕe
T
)ϕs

T
− (1 − ϕe

T
)(1 − ϕe

T
− ϕs

T
)ϕ0 , (7)

where ϕ
0
=
∑n−1

i=0 I [i,n−1]
(
e−i

λ
n

)
. This formula is analogous to the one previ-

ously deduced in Sect. 3.2 (but with ϕ
0

instead of qn−1). The sensitivity (where
both the compound and single tests have to be positive) is

ϕ
sn

=
[
(1− ϕ

e
T
)P (Y ∗n = 0|Y1 ∈ C) + ϕ

s
T
P (Y ∗n > 0|Y1 ∈ C)

]
×

×
[
ϕ

s
T
P (Y1 ≥ 1) + (1− ϕ

e
T
)P (Y1 = 0)

]

=
[
(1− ϕ

e
T
)ϕ

1
+ ϕ

s
T
(1− ϕ

1
)
] [

ϕ
s
T

(
1− e−λ

)
+ (1− ϕ

e
T
)e−λ

]

= ϕ2
s
T
+ ϕ

1
e−λ(1− ϕ

e
T
− ϕ

s
T
)2 + ϕ

s
T
(ϕ

1
+ e−λ)(1 − ϕ

e
T
− ϕ

s
T
)(8)

where ϕ1 =
∑n−1

i=0 I [i,n−1]
(
e−(i+1) λ

n

)
. This incorporates the probabilities of

erroneous outcomes due to the operational characteristics of the test himself
(where we obtain ϕ2

s
T

, as in the cases previously analyzed) and of sampling errors

(in one contaminated group, we get no bacterium in the compound sample).
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Table 5 Relative cost, sensitivity, and specificity for two subpopulations

p1 0.0075 0.005 0.001 0.0001 0.005 0.005 0.005 0.005 0.001 0.001 0.001 0.001

ω1 0.5 0.5 0.5 0.5 0.25 0.10 0.75 0.9 0.25 0.10 0.75 0.9
p2 0.0125 0.015 0.019 0.0199 0.011(6) 0.010(5) 0.025 0.055 0.013 0.011 0.037 0.091
RC 0.1939 0.1887 0.1650 0.1467 0.1928 0.1945 0.1806 0.1698 0.1823 0.1905 0.1393 0.1132

ϕ
[S]

en
0.9950 0.9950 0.9953 0.9953 0.9949 0.9950 0.9951 0.9953 0.9951 0.9950 0.9956 0.9961

ϕ
[S]

sn
0.5936 0.5606 0.4810 0.4048 0.5757 0.5935 0.5386 0.5111 0.5506 0.5746 0.4026 0.3388

5 Dealing with Subpopulations

Let us consider that our population is divided into k groups (subpopulations) with
weights ω1, ω2, . . . , ωk, where

∑k
i=1 ωi = 1, and prevalence rates p1, p2, . . . , pk.

If the presence of subpopulations in the compound tests is disregarded, the results
for efficiency, sensitivity, and specificity are the same as the ones obtained with one
population with prevalence rate given by p =

∑k
i=1 ωipi.

On the other hand, if this information is not disregarded in the Dorfman’s
methodology, the expected number of tests will be E [TS] =

∑k
i=1 ωiN minni{

ni+1
ni

− (1− pi)
ni , 1

}
, ni ≥ 2, where ni is chosen in function of the pi (cf.

Table 1). The relative cost, RC = E[TS]
N , is the weighted mean of the relatives

cost of each subpopulation, cf. [3].
For the simplified case (without rarefaction), the sensitivity ϕ[S]

sn
=ϕ2

s
=ϕsn

. But

the specificity is ϕ[S]
en

= 1−(1−ϕe)ϕs −(1−ϕe)(1−ϕe −ϕs)
∑k

i=1 ωiq
ni−1
i . For

p ≈ 0, we get ϕ
[S]

en
≈ 1−(1−ϕ

e
)ϕ

s
−(1−ϕ

e
)(1−ϕ

e
−ϕ

s
)
∑k
i=1 ωi (1− pi)

1√
pi
−1

.

As f(p) = (1− p)
1√
p−1 is a convex function for p ∈ (0, 1), using Jensen’s

inequality
∑k
i=1 ωif(pi) ≥ f

(∑k
i=1 ωipi

)
, and therefore (p =

∑k
i=1 ωipi),

k∑
i=1

ωi (1− pi)
1√
pi
−1 ≥

(
1−

k∑
i=1

ωipi

) 1√√√√ k∑
i=1

ωipi

−1

= (1− p)
1√
p−1 . (9)

Hence, if we analyze the subpopulation strata separately, the specificity increases.
As an example, consider the Poisson example with λ = 10, p = 0.01, ϕ

s
T

=

ϕe
T

= 0.95. Working with the population as a whole, using (7) and (8), we have
ϕ

en
= 0.9949, ϕ

sn
= 0.5780 and E[T ] = 0.1956N (i.e., RC = 0.1956). Table 5

shows the results testing the two subpopulations separately (with k = 2). Testing
the subpopulations separately is slightly more efficient than otherwise, but the loss
of sensitivity should be analyzed previously.
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6 Conclusion

The use of compound tests optimizes the number of expected tests and consequently
saves resources. On the other hand, the possible loss of sensitivity and specificity
can restrict the usefulness of this methodology. Although the pooled sensitivity and
specificity are widely studied, the rarefaction factor is often disregarded. In this
work we stress the importance of determining the ϕ[1,n]

s
sensitivity to control the

total pooled sensitivity. Therefore, the rarefaction factor is crucial in pooled sample
analysis, but for low prevalence rates the knowledge of the sensitivity ϕ[1,n]

s
can be

a simple alternative to measure the overall misclassification, compared to the use of
more general dilution models (cf. [6, 7]).
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Prediction for Individual Growth in a Random
Environment

Patrı́cia A. Filipe, Carlos A. Braumann, Nuno M. Brites,
and Carlos J. Roquete

Abstract
In the literature it is usual to find classic regression models to describe the
dynamics of a certain growth phenomenon. However, in phenomena of a dynamic
nature, it is more appropriate to use models that are able to incorporate the
dynamics of the growth process and the effect produced by the environmental
random fluctuations on such dynamics. This can be done using stochastic differ-
ential equations (SDE) models. In this chapter, we start by comparing the quality
of fitting and prediction using nonlinear regression models and SDE models. For
the SDE models, we discuss the computation of asymptotic confidence intervals
for prediction using simulation and the delta method. We show an application
using cattle weight data from several females of the Mertolengo cattle breed.

1 Introduction

We study models for the growth of individual organisms in randomly fluctuating
environments and show an application using cattle weight data from several females
of Mertolengo cattle breed of the rosilho phenotype. Most commonly, the weight
of an animal at age t, Xt, can be described by a differential equation of the form
dYt = β(α − Yt)dt, where Yt = g(Xt) with g a strictly increasing C1 function.
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For example, g(x) = x, g(x) = −x−1, g(x) = xc, c > 0, and g(x) =
lnx are typical particular choices for g, corresponding to the monomolecular
model, the logistic model, the Bertalanffy–Richards model, and the Gompertz model,
respectively. The solution of the deterministic model is Yt = α+e−β(t−t0)(y0−α),
where y0 = g(x0), x0 being the weight at age t0 (initial age). Notice that α is the
asymptotic value of Yt and thereforeA = g−1(α) is the asymptotic weight or weight
at maturity. The parameter β is a growth coefficient, a rate of approach to maturity.
Using this type of models, the fitting to data is usually made by nonlinear regression
methods in which it is assumed independence between observed deviations from
the regression curve at different times. This would be suitable if the deviations were
due to measurement errors, but it is inappropriate if deviations are due to random
changes on growth rates induced by environmental random fluctuations.

Stochastic differential equation models incorporate the dynamics of the growth
process and the effect of random fluctuations on growth dynamics. To describe
individual growth in a random environment, we use stochastic differential equations
of the form

dYt = β(α − Yt)dt + σdWt, Yt0 = y0, (1)

where σ measures the intensity of the effect of environmental random fluctuations
on growth and Wt is the standard Wiener process. We have considered the stochastic
versions of the Gompertz model (SGM) and the Bertalanffy–Richards model with
c = 1/3 (SBRM). This is a monophasic model, in which there is only one functional
form describing the average dynamics of the complete growth curve (see, for
instance, [1]). In [3] we presented the generalization of the above stochastic model
to the multiphasic case, in which we consider that the growth coefficient assumes
different values for different phases of the animals life. We have also extended
the model to the case where the asymptotic size varies randomly from animal to
animal (mixed-effects SDE model) (forthcoming paper). In this work we present a
study of prediction issues using a monophasic SDE model. We compare classical
regression models with stochastic differential equation models (Sect. 2), and focus
on prediction using this last type of models (Sect. 3).

2 Classic Regression vs Stochastic Differential Equations

Assume that we pretend to model Y as a function of time t and observe (t1, y1),
(t2, y2),. . . , (tn, yn), where yn is the observed value of Ytn . A classical regression
model can take the form yi = f(ti, θ) + εi, where, in our case, we have f(ti, θ) =
α + e−β(ti−t0)(y0 − α), with θ = (α, β, y0) and εi are i.i.d. N (0, σ2

ε). For both
curve fitting and prediction we use ŷ = α̂ + e−β̂(t−t0)(ŷ0 − α̂) where (α̂, β̂, ŷ0)
are estimates obtained through the least square estimation method. One can find, for
instance, in [4] the main theoretical aspects of classical regression as well as several
application examples.
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For the SDE model, one cannot truly speak of curve fitting for ages t= tk,
since Yk is the true size (in the Y scale) of the animal, and not, as in the case of
regression, a value measured with some error for which we want to estimate the true
value. What we call here curve fitting is indeed our estimate of the deterministic
curve that would result if, starting from the initial size Yt0 , there were no environ-
mental random fluctuations (σ = 0), which is in our case equivalent to the curve of
the expected values of Yt: Ŷt = Ê[Yt|y0] = α̂+ (Yt0 − α̂) exp (−β̂ (t− t0)). Here
Ê is the estimate of the expected value and α̂ e β̂ are maximum likelihood estimates
based on all the observations.

Concerning prediction in SDE models, given the values of the process until
instant tk, Yt1 , Yt2 ,. . . , Ytk , we wish to predict Yt for t > tk. The solution of the
SDE model (1) given the value of Ytk is

Yt = α+ (Ytk − α) e−β(t−tk) + σe−βt
∫ t

tk

eβsdW (s). (2)

Considering that Yt is a Markov process, we obtain E [Yt|Yt1 , . . . , Ytk ] =
E [Yt|Ytk ], and using the fact that the process (2) follows a gaussian distribution
with mean α+(Ytk−α) exp(−β (t− tk)) and variance σ2

2β (1− exp(−2β (t− tk))),
we can use as predictor

Ŷt = Ê[Yt|Ytk ] = α̂+ (Ytk − α̂) e−β̂(t−tk), (3)

where p̂ = (α̂, β̂, σ̂) are the maximum likelihood estimates based on observations
up to time tk. We can consider that Ŷt − Yt is approximately gaussian and obtain
the asymptotic 95 % confidence interval for Yt using the expression

Ŷt − E
[
Ŷt − Yt

]
± 1.96

√
Var

[
Ŷt − Yt

]
. (4)

For illustration of the results, we have worked with data from one animal
randomly selected between a set of 97 animals. For this animal we had available
51 observations of its weight from birth till approximately 12 years of age. We have
started by comparing the non linear regression (NLR) model with the SDE model
in terms of fitting. Table 1 shows estimation results based on the data of the full
trajectory. Figure 1 shows the plots resulting from the fitting based on Gompertz and
Bertalanffy–Richards models. Comparing the values of the root of the mean square
error (RMSE), presented in Table 2, we can see that the NLR model is better than
the SDE model. This result was expected, since the least square method was used to
obtain the estimates of the NLR model parameters, which minimizes the sum of the
square errors, consequently the RMSE. However, there is only a slight difference
between the two models and the NLR model has an additional parameter, y0, while
in the SDE model we use the actual known value y0 = g(x0), with x0 = 26 kg for
our trajectory.
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Table 1 NLR vs SDE: parameters estimates based on full
data of the chosen animal

n y0 A β

Gompertz 51 NLR 26.90 409.44 1.40

SDE 406.13 1.49

B-R NLR 30.75 416.41 1.04

SDE 407.36 1.22

Gompertz 72 NLR 27.26 493.29 1.37

SDE 493.39 1.40

B-R NLR 34.98 500.90 0.96

SDE 497.00 1.09

Gompertz 42 NLR 21.70 436.59 1.23

SDE 415.47 1.38

B-R NLR 21.66 441.83 0.84

SDE 423.12 0.99

Fig. 1 NLR vs SDE: Fitting results (Gompert model on the left; Bertalanffy–Richards model on
the right)

Table 2 NLR vs SDE: values of the root of the mean square error

RMSE n Fitting LT prediction SS prediction

Gompertz 51 NLR 45.4 68.9 59.9

SDE 46.2 42.8 27.5

B-R NLR 42.7 64.3 56.3

SDE 44.9 38.9 27.3

Gompertz 72 NLR 46.3 45.1 39.0

SDE 46.6 31.0 23.6

B-R NLR 41.6 37.6 32.5

SDE 43.6 27.4 23.8

Gompertz 42 NLR 39.0 55.1 42.6

SDE 45.8 52.4 30.6

B-R NLR 35.6 48.3 37.9

SDE 40.6 42.7 29.4
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Fig. 2 NLR vs SDE: Prediction (LT on the left; SS on the right) based on Gompertz model

Fig. 3 NLR vs SDE: Prediction (LT on the left; SS on the right) based on Bertalanffy–Richards
model

In terms of prediction, one can see that the SDE model is better than the NLR
model. For further analysis of the quality of prediction, we used for estimation a
subset of the data, leaving out the last 15 observations of the trajectory, (t36, y36),
(t37, y37), . . . , (t50, y50). We present the results for long-term (LT) prediction and
step-by-step (SS) prediction at the ages left out of the estimation procedure. In the
first case, we predict future weights of the animal using estimates obtained based
on the weights observed until age t35. In each step of the second case, we just
predict the animal size at next age using the current size as a starting point and
using maximum likelihood updated parameter estimates based on all observations
up to and including the present time. The RMSE values obtained are shown in
Table 2. Figures 2 and 3 clearly reveal that the SDE models are more appropriate
to predict future weights of an animal. Similar results were obtained with data from



198 P.A. Filipe et al.

other randomly selected animals; for illustration, besides the results concerning the
initially randomly chosen animal (with n = 51 observations), Tables 1 and 2 show
the results for two other randomly chosen animals (one with n = 72 and the other
with n = 42 observations).

3 Confidence Intervals for Prediction

For the SDE model, we shall now discuss the computation of the asymptotic
confidence limits for prediction given by (4). Since it was not possible to obtain
explicit expressions for E[Ŷt−Yt] and Var[Ŷt−Yt], we obtained these values using
simulated data and a delta method procedure.

3.1 Simulation

In [2], we presented the first results related to the prediction of future weights of an
animal based on SGM and SBRM. At that time we have used simulation methods
to obtain the asymptotic confidence limits for prediction.

Since Yk|Ytk−1
=yk−1∼N

(
α+(yk−1−α) e−β(tk−tk−1), σ

2

2β

(
1−e−2β(tk−tk−1)

))
,

and using the maximum likelihood estimates, p̂, to approximate p, we have
simulated S full trajectories of Yt at the same ages as the trajectory we wish
to predict, y∗i =

(
y∗i0 , y∗i1 , . . . , y∗in

)
(i = 1, . . . , S). Based on data until

age tk, for each of the S simulated trajectories we have obtained the maximum
likelihood estimates p̂∗i (i = 1, . . . , S), the predicted values ŷ∗it = α̂∗i + (y∗ik −
α̂∗i)e−β̂

∗i(t−tk) (i = 1, . . . , S), the prediction errors ŷ∗it − y∗it (i = 1, . . . , 1000),
and their correspondent mean and variance for each t > tk.

3.2 Delta Method

The delta method allows us to find confidence intervals for functions of maximum
likelihood estimates. With this method we can approximate a function for which the
computation of its mean and variance is complex, with a linear approximation and
obtain the mean and variance of this function.

In our case, we define

f(α̂, β̂, Zβ) = Ŷt − Yt = α̂− α+ (Yk − α̂)e−β̂(t−tk) − (Yk − α)e−β(t−tk) − σe−βtZβ,

where Zβ =
∫ t
tk

eβsdW (s) follows a gaussian distribution with mean 0 and vari-

ance (e2βt − e2βtk)/2β. Applying the delta method, we obtain E
[
Ŷt − Yt

]
�

f(α, β, 0) = 0. The variance is given by
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Var
[
Ŷt − Yt

]

� E

[(
(α̂− α)

∂f(α, β, 0)

∂α̂
+ (β̂ − β)

∂f(α, β, 0)

∂β̂
+ Zβ

∂f(α, β, 0)

∂Zβ

)2
]

=

(
∂f

∂α̂
(α, β, 0)

)2

Var[α̂]

(
∂f

∂β̂
(α, β, 0)

)2

Var[β̂]

+

(
∂f

∂Zβ
(α, β, 0)

)2

Var[Zβ ] + 2
∂f

∂α̂
(α, β, 0)

∂f

∂β̂
(α, β, 0)Cov[α̂, β̂].

Note that the terms involving Cov[α̂, Zβ ] and Cov[β̂, Zβ ] are null because α̂ and β̂
are estimators based on observations previous to tk and the stochastic integral, Zβ ,
is over a time interval after that instant, so there is no correlation between these
estimators and Zβ . Then, the variance can be written as follows: Var

[
Ŷt − Yt

]
�

VEE + VSI where, with Ek = e−β(t−tk),

VEE = (1− Ek)
2Var[α̂] + (Yk − α)2(t − tk)

2E2
kVar[β̂]

−2(Yk − α)(t − tk)Ek(1− Ek)Cov[α̂, β̂]

corresponds to the variability related to estimation errors (EE) of the parameters and

VSI =
σ2

2β

(
1− E2

k

)

describes the variability caused by the random fluctuations of the environment
(variance of the term with stochastic integral (SI)).

We have applied the simulation method and the delta method for the prediction
of the last 15 observations of the referred trajectory, and we have observed that
the results using simulated values (S = 1, 000 runs) were very close to the ones
resulting from the use of the delta method. This allows us to use the delta method
for the computation of the asymptotic limits of the prediction.

Figure 4 shows the plots for predicted values and their asymptotic 95 %
confidence limits, computed through the delta method, based on SGM and SBRM.
The results were obtained for long-term prediction and step-by-step prediction. The
values were computed on the scale of the variable Y and then inverted back to the
scale of the weight X using the inverse function of g (g−1(y) = exp(y) for SGM
and g−1(y) = y3 for SBRM).

Sometimes, we wish to predict the future size of an animal for which we only
know the current size. We can do that assuming the parameters are the same for
all the animals of the same type for which we have available data. So, we have
also obtained the long-term prediction results of the same weights of the animal,
selected between the group of 97 animals, using data from all of the other 96
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Fig. 4 Observed weights, predicted weights, and asymptotic 95 % confidence bands for prediction
(LT on the left; SS on the right). Results based on SGM and SBRM

animals of the group. The values of the RMSE obtained using the estimates based
on data from the 96 trajectories were 44.27 and 43.30 for the SGM and the SBRM,
respectively. We would expect to obtain better results using the data from all the
animals. However, we can justify this results with the fact that the animal selected
did not match the mean growth pattern of the 96 animals. In fact, when this happens,
we get better results using the data from the single trajectory we wish to predict,
should it be available.

4 Conclusion

We have presented results for the prediction of future sizes of an individual in a
random environment. We have compared fitting and prediction results when using
NLR models against SDE models. We have seen that in terms of prediction, SDE
models produce quite better results. For SDE models, we have seen that the delta
method gives good approximations to the confidence limits for prediction. Even
in the absence of past data from an individual, one can make predictions on its
future size using data from a group of similar individuals. We have also studied
prediction for a biphasic SDE models, not shown here due to space limitations. For
all calculations, we used the R software and the code is available upon request.
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A Note on (Dis)Investment Options and
Perpetuities Under CIR Interest Rates

Manuela Larguinho, José Carlos Dias, and Carlos A. Braumann

Abstract
In this chapter, we discuss alternative ways of computing the options to invest
in and divest from an investment project in a CIR economy (Cox et al., Econo-
metrica 53(2):385–408, 1985). Moreover, different methods of determining CIR
perpetuities will also be analyzed.

1 Introduction

The most realistic case of the capital theory of investment is characterized by
investments with costly reversibility in which a firm can purchase capital at a given
price (by paying an investment cost I) and sell capital at a lower price (by receiving
the divestment proceeds I), i.e., there is a fraction α of the invested capital, α := I/I
(0 < α < 1), that a firm can recoup when divesting.

Decisions made under an uncertain environment where it is costly to reverse
economic actions lead to an intermediate range, called the hysteretic band, where
the continuation is the optimal policy until some threshold is reached.
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In this chapter, such as in [6], we consider the situation of a firm that can invest
I at any time and receive a perpetuity (a project) with constant cash flow rate. Even
though the project’s cash flows are fixed, its perpetuity value (negatively related to
rates) is stochastic because the interest rate r used to discount the perpetual flows is
assumed to follow a CIR [3] diffusion process and thus r can change. Investment in
this perpetual project will be triggered when interest rates are low (high perpetuity
value) and in particular at a critical level r.

Let us denote by F1(r)+P (r) and F0(r) the value functions for the active project
(with perpetuity) which has the option to shut, and for the inactive project (without
flow) but with the option to open, respectively. Investment will be triggered as the
interest rate r falls to the lower threshold r while divestment will be triggered as
rates rise to the upper trigger r (r > r). Thus, the decision to switch from the idle
state to the operating state, and vice versa, can be described by the following value
matching conditions

idlestate → operatingstate, thatis F0(r) + I → F1(r) + P (r)

idlestate ← operatingstate, thatis F0(r) + I ← F1(r) + P (r).

Thus, an idle firm invests when rates fall to r and an operating firm will disinvest
once the interest rate rise to r. Denote by V the value premium of active to idle
firms, this depend on current rates r:

V (r) = F1(r) + P (r)− F0(r), (1)

and the value matching conditions can be coupled with two smooth pasting (first
order) conditions

V (r) = I, V ′(r) = 0, V (r) = I, V ′(r) = 0. (2)

The range r, r is the hysteretic band of the problem since idle firms do not invest
and operating firms do not suspend within this intermediate level of interest rate.

To find the entry and exit interest rate thresholds, and thus the optimal policy
of the firm, we need to numerically evaluate a system of four highly nonlinear
equations (i.e., with two value matching and two smooth pasting conditions).

In this chapter, we discuss alternative ways of computing the options to invest
in and divest from a project in a CIR economy. Furthermore, different methods of
determining CIR perpetuities will also be analyzed.

The remainder of this chapter is as follows. Section 2 discusses in detail the
necessary components for analyzing the optimal entry and exit decision of a firm
with CIR interest rates. Section 3 presents computational results comparing the
alternative methods of computing the options components and perpetuities under
CIR diffusions. Section 4 presents the concluding remarks.
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2 Optimal Entry and Exit Decisions Under CIR Interest Rates

Under the risk-neutral measure Q, Cox et al. [3] modeled the evolution of the interest
rate, rt, by the stochastic differential equation (SDE):

drt =
[
κθ − (λ+ κ)rt

]
dt+ σ

√
rtdW

Q
t , (3)

where WQ
t is a standard Brownian motion under Q, κ, θ, and σ are positive

constants representing reversion rate, asymptotic rate, and volatility parameters,
respectively, and λ is the market risk. The condition 2κθ > σ2 has to be imposed to
ensure that the interest rate remains positive.1

2.1 CIR General Claims

Following Cox et al. [3], the price of a general interest rate claim F (r, t) with cash
flow rate C(r, t) satisfies the following partial differential equation

1

2
σ2r

∂2F (r, t)

∂r2
+κ(θ−r)

∂F (r, t)

∂r
+

∂F (r, t)

∂t
−λr

∂F (r, t)

∂r
−rF (r, t)+C(r, t) = 0.

(4)

The price of a zero coupon bond with maturity at T , Z(r, t, T ), satisfies (4) with
C(r, t) = 0 subject to the boundary condition Z(r, T, T ) = 1 and is given by

Z(r, t, T ) = A(t, T )e−B(t,T )r (5)

where A(t, T )=

(
2γ e

(
(κ+λ+γ)(T−t)

)
/2

(κ+λ+γ)
(

eγ(T−t)−1
)
+2γ

) 2κθ
σ2

, B(t, T )=
2
(

eγ(T−t)−1
)

(κ+λ+γ)
(

eγ(T−t)−1
)
+2γ

,

and γ =

(
(κ+ λ)2 + 2σ2

)1/2

.

2.2 CIR Perpetuity

In a CIR diffusion, the value of a perpetuity, denoted by P (r), that pays coupons at
a constant unit rate C(r, t) = 1, should satisfy the following ordinary differential
equation (ODE):2

1See [7] for a complete description of the boundary conditions.
2We must note that since limt→∞ ∂P (r,t)

∂t
= 0, the value of a perpetuity is not time dependent.
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1

2
σ2r

d2P (r)

dr2
+ κ(θ − r)

dP (r)

dr
− λr

dP (r)

dr
− rP (r) + 1 = 0. (6)

The solution of ODE (6) is the value of a perpetuity given by

P (r) = EQ
t0

[ ∫ ∞
t0

e−
∫ t
t0
rsds dt

]
=

∫ ∞
t0

Z(r, t0, t) dt, (7)

where Z(r, t, T ) is the price of a zero coupon bond. There are several ways to
evaluate the value of this perpetuity. In this chapter, we analyze two methods
proposed by Delbaen [4] and one method proposed by Geman and Yor [8]. In the
first method of Delbaen [4] (method D1), the value of a perpetuity is computed in
the following manner:

P (r) =

∫ 1

0

2

η
e−z(2r/η)(1+βz)(η/2γ)(2κθ/σ

2)−1(1− z)[(γ−κ−λ)/2γ](2κθ/σ
2)−1 dz,

(8)
where η = κ+λ+ γ and β = (γ − κ− λ)/η. In the second method of Delbaen [4]
(method D2), the value of a perpetuity is given by

P (r) =
γ

κθ
Φ1(a, b, c, x, y), (9)

where Φ1 is the degenerate hypergeometric function defined as

Φ1(a, b, c, x, y) =
∞∑
m=0

∞∑
n=0

1

n!

1

m!

(a)m+n

(c)m+n
(b)mxmyn, (10)

where (α)j is the Pochhammer symbol, and where a = 1, b = 1 − κ+λ+γ
2γ

2κθ
σ2 ,

c = 1 + γ−κ−λ
2γ

2κθ
σ2 , x = − γ−κ−λ

κ+λ+γ , and y = − 2r
κ+λ+γ .

The alternative formulation proposed by Geman and Yor [8] (method GY ) is
given by

P (r) =
ψ

ω
eφψr/2

∫ 1

0

(1 + z)p(1 − z)qe
rω(z+ϕ)
2(1+ϕz)

(1 + ϕz)δψ/2
dz, (11)

where δ = κθ, φ = κ+λ
2 , ψ = 4

σ2 , ω = (2ψ + φ2ψ2)1/2, ϕ = φψ
ω , p = φδψ2

4ω +
δψ
4 − 1, and q = δψ

4 − φδψ2

4ω − 1.

2.3 Complementary Functions

Particularizing the time homogenous situation gives a simple ODE that determines
the perpetual option to invest in or divest from a project. Furthermore for the options
themselves no cash flows are present, so C(r) = 0
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1

2
σ2r

d2F (r)

dr2
+ κ(θ − r)

dF (r)

dr
− λr

dF (r)

dr
− rF (r) = 0. (12)

Dias and Shackleton [6] have shown that the ode (12) can be transformed into
Kummer’s equation given by:

z0g
′′(z0) + (b− z0)g

′(z0)− a0g(z0) = 0, (13)

z1g
′′(z1) + (b− z1)g

′(z1)− a1g(z1) = 0, (14)

with a0,1 = κθ
σ2

(
1 ∓ (κ+λ

σ2

)
, b = 2κθ

σ2 , and z0,1 = ±2γr/σ2. The solutions to (13)
and (14) correspond to the complementary functions to be used for an idle firm
and an operating firm, respectively. Since there are many alternative solutions to
Kummer’s equation (see [1, Equations 13.1.12-19]) care must be taken to choose the
ones that give simpler solutions and are easier to apply boundary conditions. In [6],
the complete solutions of (13) and (14) are given by (see, [1, Equation 13.1.11])

y = A0M(a0, b, z0) +B0U(a0, b, z0), (15)

y = A1M(a1, b, z1) +B1U(a1, b, z1), (16)

where A0,1 and B0,1 are arbitrary constants, M(a, b, z) is the Kummer’s confluent
hypergeometric function (e.g., [1, Equation 13.1.2]), and finally U(a, b, z) is the
Tricomi confluent hypergeometric function (e.g., [1, Equation 13.1.3]).

If we multiply the complete solutions (15) and (16) by ev0r and ev1r, respectively,
with v0,1 = κ+λ∓γ

σ2 , and reverse the change of variables, we obtain

F0(r) = C1ev0rM(a0, b, z0) + C2ev0rU(a0, b, z0), (17)

F1(r) = C3ev1rM(a1, b, z1) + C4ev1rU(a1, b, z1), (18)

which are also solutions of the ode (12), and where C1−4 are constants to be
determined from boundary conditions.

The solution to (12) can also be obtained via Mathematica or Maple. For
instance, Dias [5] provides the following solutions for an idle firm and an operating
firm obtained through Mathematica:

F0(r) = C1Mev0r+μ log(r)U(a, 1 + μ, z0) + C2Mev0r+μ log(r)Lβn(z0), (19)

F1(r) = C3Mev0r+μ log(r)U(a, 1 + μ, z0) + C4Mev0r+μ log(r)Lβn(z0), (20)

with μ = 1 − 2κθ
σ2 , a = −κθ(κ+λ+γ)−σ2γ

σ2γ , β = μ, n = −a, and where Lβn(z) is the
Laguerre polynomial as defined in [1, Equation 22.5.54].
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Carmona and León [2] provide also an alternative solution of (12) for the
valuation of an investment project with the option to wait, F0(r), given by3

F0(r) = Cev0r
(
M(a0, b, z0)− Γ (b)

Γ (a0)

Γ (1 + a0 + b)

Γ (2− b)
z1−b0 M(a0−b+1, 2−b, z0)

)
.

(21)
Even though (17–21) are all solutions to (12) we should choose the ones that are
easier to use. For instance, to solve the entry and exit problems we need to numer-
ically evaluate a system of four highly nonlinear equations. Thus, the appropriate
choice of the options components solutions is relevant for simplifying numerical
computations. The analytical study of the Kummer’s confluent hypergeometric
functions M(a, b, z) and U(a, b, z) allow us to conclude that the solution of Dias
and Shackleton [6] is the easiest to apply and turns the economic hysteresis problem
much more simple to analyze and understand. Based on these observations, we
describe below the necessary boundary conditions that should be applied to (17)
and (18).

2.4 Boundary and First Order Conditions

Given the near-zero and asymptotic behavior of the functions M(a, b, z) and
U(a, b, z) and the necessary boundary conditions, Dias and Shackleton [6] found
that the expected net present value in the idle state with the option to open and the
option to switch out of the perpetuity are respectively given by:

F0(r) = C2ev0rU(a0, b, z0), (22)

F1(r) = C3ev1rM(a1, b, z1), (23)

which, using (1) and (2), lead to two value matching conditions

F1(r) + P (r)− F0(r) = I and F1(r) + P (r)− F0(r) = I. (24)

The first order (smooth pasting) conditions are given by

dF0(r)

dr
=

dF1(r)

dr
+

dP (r)

dr
and

dF0(r)

dr
=

dF1(r)

dr
+

dP (r)

dr
. (25)

Thus, the solution of the two-sided control problem rests on the determination of
the two embedded constants C2, C3, and two thresholds r, r.

3Even though Carmona and León [2] do not present solutions for the option to divest, F1(r) could
also be easily obtained.
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3 Numerical Analysis

This section aims to present computational comparisons of the alternative methods
of computing the value of a perpetuity, and then using these results to analyze the
investment hysteresis problem.

3.1 Perpetuities

To compare, in terms of speed and accuracy, the computation of a perpetuity under
the CIR diffusion we need to choose a benchmark. An obvious candidate for a
benchmark is to use numerical integration using, for instance, Gauss–Kronrod’s
method. In order to simplify the numerical computations, we start to analyze if
the use of a fixed number Tmax in the upper limit of the integral of the price of a
CIR zero coupon bond

∫∞
t0

Z(r, t0, t)dt, instead of using infinity, will not generate

any problem.4 The results are shown in Table 1. Considering Tmax = 5, 000
seems to be quite reasonable for the analysis and it will simplify the numerical
computations if we use this approach. Now we want to evaluate the differences in
methods proposed by Delbaen [4] and Geman and Yor [8] compared against the
selected benchmark. Table 2 reports such comparison results using the following set
of parameters: σ ∈ {0.05, 0.07, . . . , 0.17, 0.19}, r ∈ {0, 0.01, . . . , 0.14, 0.15}, λ ∈
{−0.10,−0.05, 0}, κ ∈ {0.15, 0.20, . . . , 0.85, 0.90}, and θ ∈ {0.030, 0.045, . . . ,
0.885, 0.900}. This combination of parameters produce 55, 296 perpetuity values.
The MaxAE, MaxRE, RMSE, MeanAE, and n denote, respectively, the maximum
absolute error, the maximum relative error, the root mean squared error, the mean
absolute error, and the number of times the absolute difference between the two
methods exceeds one penny. The last column of the Table 2 reports the CPU
time, in seconds, for computing 55, 296 values of perpetuities, using the function
T iming[.] available in Mathematica 7.0, running on a Pentium IV (2.53GhZ)
personal computer. The results from Table 2 indicate that the Method D2 proposed
by Delbaen [4] performs best in terms of accuracy, and the method D1 proposed by
Delbaen [4] is the most efficient in terms of computation time.

3.2 Entry and Exit Problem

Table 3 presents the results for investment options on a CIR economy using the
three alternative formulations described above (and after applying the appropriate
boundary conditions) and under the same set of parameters as in [2], i.e., κ = 0.45,
θ = 0.03, σ = 0.15, and λ = 0. In addition, we use an investment cost of I = 5.

4We have tried other combinations and we have reached the same conclusions.
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Table 1 Benchmark selection

κ θ

Tmax θ 0.15 0.50 0.90 Tmax κ 0.03 0.09 0.15

100 0.09 15.983797 12.295701 11.795340 100 0.50 31.816054 12.295701 8.052518
500 0.09 15.986306 12.296527 11.706291 500 0.50 33.154585 12.296527 8.052518

5,000 0.09 15.986306 12.296527 11.706291 5,000 0.50 33.154593 12.296527 8.052518
∞ 0.09 15.986306 12.296527 11.706291 ∞ 0.50 33.154593 12.296527 8.052518
Note: Parameters used in calculations: σ = 0.125, λ = −0.05, and r = 0.

Table 2 Differences in perpetuity values for each method compared against the benchmark

Methods MaxAE MaxRE RMSE MeanAE n CPU time

D1 2.97E − 01 8.45E − 03 3.43E − 04 2.97E − 03 2, 263 275s

D2 4.93E − 03 1.52E − 04 4.44E − 10 9.41E − 08 0 9, 147s

GY 2.90E − 01 8.27E − 03 3.27E − 04 2.89E − 03 2, 238 377s

Table 3 Option to invest in
a CIR economy

Equation Constant r F0(r)

(17) 34.4582 0.1759 21.1574

(19) 16.1497 0.1759 21.1574

(21) 25.8925 0.1759 21.1574

Note: CIR parameters used in calculations: κ = 0.45,
θ = 0.03, σ = 0.15, and λ = 0. The investment cost
is set at I = 5

Table 4 Upper and lower
interest rate thresholds for the
entry and exit problem in a
CIR economy

α r r

0.00 0.1759 +∞
0.25 0.1759 0.9439

0.50 0.1759 0.8897

0.75 0.1759 0.5496

1.00 0.2000 0.2000

Note: CIR parameters used in calculations: κ = 0.45,
θ = 0.03, σ = 0.15, and λ = 0. The investment cost
and the disinvestment proceeds are set at I = 5 and
I := α I , respectively

The perpetuity value is computed using the method D2 proposed by Delbaen [4]. As
expected, the option value is the same under the three alternative solutions. However,
given that the solution proposed by Dias and Shackleton [6] is much more simple,
the preference is to use this one. Table 4 illustrates the upper and lower interest rate
thresholds for the entry and exit problem in a CIR economy for the same parameters
set defined in Table 3. When α = 0, an operating firm never shuts its project.
Therefore, the corresponding threshold represents the interest rate level that will
induce an idle firm to enter in a project and continue its operations forever since
the option to shut down is worthless. Table 4 reveals also that the increasing levels
of flexibility reduce, as expected, the hysteric band. These results provide useful
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insights for practitioners since they clearly highlight that managerial consideration
of abandonment options at the time of project initiation can add value.

4 Conclusion

In this chapter, we analyzed the alternative methods to calculate the value of a
perpetuity under a CIR diffusion, and we conclude that the method D2 proposed
by Delbaen [4] performs best in terms of accuracy. We also discussed the alternative
ways to calculate the options to invest in or disinvest from a project under a CIR
economy, and we conclude that the solution given in [6] is more simple for applying
the smooth pasting conditions, particularly for entry and exit problems.

Acknowledgements Dias is member of the BRU-UNIDE, and Larguinho and Braumann are
members of the Research Center Centro de Investigação em Matemática e Aplicações (CIMA),
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Stochastic Runge–Kutta Schemes for
Discretization of Hysteretic Models

Pedro Vieira, Paula Milheiro de Oliveira, and Álvaro Cunha

Abstract
The need to produce numerical solutions of stochastic differential equations
(SDE) is present in problems arising in many areas. This is the case in
Seismic Engineering where hysteretic models are used (see Wan et al., Soil
Dyn Earthquake Eng 21:75–81, 2001 for an example of a problem involving
a bridge column). The simulation of the solutions of these nonlinear equations is
based on a discretization scheme. In the study of hysteretic models subjected
to Gaussian white noise, we aim to compare the response obtained by using
two schemes in the discretization of the SDE, in terms of the second statistical
moments of the displacement, with that obtained from solving numerically the
ODE system satisfied by the moments that arises after the use of adapted Monte
Carlo simulation. We analyze the single degree of freedom Noori–Baber–Wen
model for different values of (a) the parameters of the nonlinearity coefficient, (b)
the parameters that characterize the type of hysteresis, (c) the parameters that take
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into account with the degradation effect of resistance, stiffness, and the pinching
effect. We conclude that when the discretization step is small, the estimates
of the second moment are similar in both schemes meaning that the choice
between the weakly convergency schemes is irrelevant. However the solutions
obtained by using the Runge–Kutta schemes are different from those obtained
by approximately solving the equations of the moments. This difference is more
relevant in situations where the allowed contribution of the dissipated energy is
larger.

1 Introduction

We are interested in a class of models that describe the nonlinear behavior of Civil
Engineering structures subjected to seismic excitations named the nonlinear models
with hysteretic behavior.

Let us consider a general nonlinear hysteretic model with a single degree of
freedom as in Noori et al. [4]:

⎧⎪⎪⎨
⎪⎪⎩

mẍ+ cẋ+ αkx + (1− α) kz = −mw (t)

ż =

[
1− ξ1e

−z2

2ξ2
2

] [
Aẋ − ν

(
β |ẋ| |z|n−1 z + γẋ |z|n

)] 1
η

ε̇ = (1− α) kzẋ

(1)

which corresponds to a simple structure subjected to a Gaussian white noise, w (t),
of variance 2πSw. The response variables in the model are: x, the displacement; ẋ,
the velocity; z, that defines the displacement component explained by the nonlinear
part of the model and ε that characterizes the dissipated energy by hysteresis. We
separate the parameters into two groups:
• The parameters that characterize the linear part of the model: the mass (m); the

damping (c); the stiffness (k), and the nonlinearity coefficient (α).
• The parameters that characterize the nonlinear part of the model: A, β and γ

(that characterize the hysteretic behavior); ν, η (that characterize, respectively,
the effects of degradation of stiffness and resistance) and ξ1, ξ2 (that characterize
the pinching effect).
In more sophisticated versions of this model, as the ones in Baber et al. [1] and

Noori et al. [4], A, ν, η, ξ1, and ξ2 are assumed to be also of stochastic nature and
ε-dependent (see expressions (14) and (15) in Sect. 4).

We first rewrite model (1) in the Ito form:

dXt = Θ (Xt) dt + ΨdWt (2)

where X (t) = [x, ẋ, z, ε]
T is the response vector and the drift and diffusion

matrices are, respectively:
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Θ (X (t)) =

⎡
⎢⎢⎢⎢⎢⎣

x2

−m−1 (αkx1 + cx2 + (1− α) kx3)[
1− ξ1e

−x2
3

2ξ2
2

] [
Ax2 − ν

(
β |x2| |x3|n−1 x3 + γx2 |x3|n

)]
1
η

(1− α) kx3x2

⎤
⎥⎥⎥⎥⎥⎦
,

(3)

Ψ =
[
0 −1 0 0

]T
. (4)

Since the exact solution of (2) is not known, we compare the moments of the
approximation given by using the stochastic schemes presented in the next section
with moments computed approximately from applying the stochastic calculus on
(2). As we will see the moments of the exact solution of (2) solve a set of ordinary
differential equations whose solution can be approximated if one replaces high order
expectation terms by their Monte Carlo counterparts. This approach is explained in
Sect. 3.

2 Discretization Schemes

Using the fact that the diffusion matrix is independent of the process X , the schemes
exposed by Tocino [5] result in two simple schemes, respectively

Xk+1 = Xk +
1

2
(Θ (Xk) +Θ (Xk +Θ (Xk)Δt + ΨΔWk))Δt+ ΨΔWk (5)

and

Xk+1 =Xk+Θ

(

Xk +
1

2
Θ (Xk)Δt+ Ψ

(

2−√
6

4
ΔWk +

√
6

12

(ΔWk)
3

Δt

))

Δt+ΨΔWk,

(6)

where ΔWk represents the increment of the Wiener process in [tk, tk+1].

3 Moments of the Response of Hysteretic Models

Following the idea of Noori et al. [4], we apply the Ito formula to the function

h (x1, x2, x3, x4) = xp11 xp22 xp33 xp44 (7)

where X = [x1, x2, x3, x4]
T is the solution of (2) and p1, p2, p3 and p4 are

nonnegative integers. This gives

dh = hTXdX +
1

2
Trace

(
ΨQΨThXX

)
dt, (8)
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where Q = 2πSw and hX , hXX represent, respectively, the first and second
derivative of h with respect to X . Taking the expected value in (8) we obtain the
general expression for the ordinary differential equations for the time evolution of
the moments of Xt in (2):

ṁp1,p2,p3,p4 =
1

2
p2 (p2 − 1) 2πSwmp1,p2−2,p3,p4 + p1mp1−1,p2+1,p3,p4

−m−1αkp2mp1+1,p2−1,p3,p4 −m−1cp2mp1,p2,p3,p4

−m−1 (1− α) kp2mp1,p2−1,p3+1,p4

+
p3A

η
mp1,p2+1,p3−1,p4 −

p3ν

η
βE

[
|x2| |x3|n−1 xp11 xp22 xp33 xp44

]

−p3ν

η
γE

[
|x3|n xp11 xp2+1

2 xp3−13 xp44

]

−p3ξ1
η

AE

[
e
− x2

3
2ξ2

2 xp11 xp2+1
2 xp3−13 xp44

]

+
p3ξ1
η

νβE

[
e
− x2

3
2ξ2

2 |x2| |x3|n−1xp11 xp22 xp33 xp44

]

+
p3ξ1
η

νγE

[
e
− x2

3
2ξ2

2 |x3|n xp11 xp2+1
2 xp3−13 xp44

]

+p4 (1− α) kmp1,p2+1,p3+1,p4−1 (9)

where mp1,p2,p3,p4 for pi ∈ 0, 1, 2 . . . represents the p = p1+p2+p3+p4 statistical
moment of the response vector X . By assigning p1, p2, p3, and p4 the appropriate
values, the following equations are derived:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ṁ1000 = m0100

ṁ0100 = −m−1 (αkm1000 + cm0100 + (1− α) km0010)

ṁ0010 = 1
η [Am0100 − ν (βE1 + γE2)−Aξ1E3 + νξ1 (βE4 + γE5)]

ṁ0001 = (1− α) km0110

(10)

and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṁ2000 = 2m1100

ṁ0200 = 2πSw −m−1 (2cm0200 + 2αkm1100 + 2 (1− α) km0110)

ṁ0020 = 2
η [Am0110 − ν (βE6 + γE7)−Aξ1E8 + νξ1 (βE9 + γE10)]

ṁ1100 = m0200 −m−1 (αkm2000 + cm1100 + (1− α) km1010)

ṁ1010 = m0110 +
1
η [Am1100 − ν (βE11 + γE12)−Aξ1E13

+νξ1 (βE14 + γE15)]

ṁ0110 = −m−1 (αkm1010 + cm0110 + (1− α) km0020) +

+ 1
η [Am0200 − ν (βE16 + γE17)−Aξ1E18 + νξ1 (βE19 + γE20)] .

(11)
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This approach differs from that of Noori et al. [4] in that the assumption of
Gaussianity of the response variables, which is made in [4], is dropped. As a
consequence the equations defined by (10) and (11) are different from those
obtained in [4]. These equations can be solved for instance by applying an ordinary
Runge–Kutta scheme of order four. We used the implementation of Dormand–
Prince that is available in Matlab and, assuming that the type of distribution of
the response vector is unknown, we considered the expected values E1, . . . , E20

defined, respectively, as

E
[|x2| |x3|n−1 x3

]

; E [|x3|n x2] ; E

[

e
−x2

3
2ξ2 x2

]

; E

[

e
−x2

3
2ξ2 |x2| |x3|n−1 x3

]

;

E

[

e
−x2

3
2ξ2 |x3|n−1 x2

]

; E
[|x2| |x3|n−1 x3

]

; E [|x3|n x2x3] ; E

[

e
−x2

3
2ξ22 x2x3

]

;

E

[

e
−x2

3
2ξ22 |x2| |x3|n−1 x3

]

; E

[

e
−x2

3
2ξ22 |x3|n x2x3

]

; E
[|x2| |x3|n−1 x1x3

]

;

E [|x3|n x1x2] ; E

[

e
−x2

3
2ξ22 x1x2

]

; E

[

e
−x2

3
2ξ22 x1 |x2| |x3|n−1 x3

]

;

E

[

e
−x2

3
2ξ2

2 |x3|n x1x2

]

; E
[|x2| |x3|n−1 x2x3

]

; E
[|x3|n x2

2

]

; E

[

e
−x2

3
2ξ2

2 x2
2

]

;

E

[

e
−x2

3
2ξ2

2 |x2| |x3|n−1 x2x3

]

; E

[

e
−x2

3
2ξ2

2 |x3|n x2
2

]

,

approximated by performing Monte Carlo simulations at each time step. In this
work, 1, 000 simulations of the response vector Xt based on the schemes (5) and
(6) were used to produce estimates of E1, . . . , E20.

4 Numerical Results

We consider model (1) with Sw = 0.1, m = 0.933, c = 0.5728, k = 35.2, and
A = n = 1. We simulate 1, 000 trajectories in the time interval [0, 20] and we use
discretization schemes (5) and (6) to approximate solutions of model (1). In the fol-
lowing figures these schemes will be named Tocino #1 and Tocino #2, respectively.
We analyze three different cases.

Case 1: ξ1 = 0, η = ν = 1 and ε̇ negligible (the so called Bouc–Wen model,
see [8])
Model (1) reduces to:

⎧⎪⎨
⎪⎩

mẍ+ cẋ+ (1− α) kz = −mw (t)

ż =
[
Aẋ−

(
β |ẋ| |z|n−1 z + γẋ |z|n

)] . (12)
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Fig. 1 Standard deviation of the displacement for α = 0.9 and β
γ
= −1

Figure 1 shows the estimates of the standard deviation of the displacement
varying with time for a model with hardening tendency (β/γ = −1) for
different choices of the discretization step, Δt = 1/24, 1/25, 1/27 and for
α = 0.9. This scenario is known to be close to the linear behavior. The figure
illustrates the fact that for a fixed discretization step, the standard deviations of
the displacement obtained by using different discretization schemes are similar.
For large discretization steps these standard deviations are different from those
obtained by solving the moment equations (10) and (11). The same happens for
α = 0.05 in Fig. 2.
Case 2: ξ1 = 0 (the so called Baber–Wen model, see [1])
Model (1) reduces to:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

mẍ+ cẋ+ (1− α) kz = −mw (t)

ż =
[
Aẋ− ν

(
β |ẋ| |z|n−1 z + γẋ |z|n

)]
1
η

ε̇ = (1− α) kzẋ

(13)

with ⎧⎨
⎩

A = 1− δAε (t)

ν = 1 + δνε (t)

η = 1 + δηε (t)

. (14)
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Fig. 2 Standard deviation of the displacement for α = 0.05 and β
γ
= −1

The parameters δA, δν , and δη control the amount of the dissipated energy in the
estimation of parameters A, ν, and η, at each time instant t. We use Δt = 1/27,
β/γ = −1, and α = 0.5 in order to avoid being close to the linear behavior
(α = 1) as well as to the pure nonlinear behavior (α = 0). Figure 3 shows the
estimates of the standard deviation of the displacement for δη = 0.5 and different
values of δν . We notice that the lines corresponding to the Runge–Kutta schemes
(5) and (6) are indistinguishable. Both schemes behave similarly but become
more distant from the moments of (10)–(11) as δν gets larger. On the other hand,
considering δν = 0.5 and different values of δη , we obtain that there is almost no
difference in the results when δη changes (Fig. 4).
Case 3: The so called Noori–Baber–Wen model (see [4])
Model (1) is considered with A, ν, and η given by (14) and ξ1 and ξ2 given by:

{
ξ1 = ξ10

(
1− e−pε(t)

)
ξ2 = (ξ0 + δξε (t)) (λ+ ξ1)

. (15)

These quantities ξ1 and ξ2 characterize, respectively, the severity and sharpness
of the pinching behavior. The parameter ξ10 represents the maximum value
allowed for ξ1 and p controls the development rate of ξ1.

We take α = 0.5, A = n = 1 and δν = δη = 0.5, β/γ = −1. The results
are shown in Fig. 5 for different pinching levels: a low pinching level (ξ10 = 0.8,
λ = 0.05) and a high pinching level (ξ10 = 0.9, λ = 0.15); and for different
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Fig. 3 Standard deviation of the displacement for α = 0.5, β
γ

= −1, δη = 0.5 and for different
values of δν

Fig. 4 Standard deviation of the displacement for α = 0.5, β
γ

= −1, δν = 0.5 and for different
values of δη
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Fig. 5 Standard deviation of the displacement for α = 0.5, β
γ

= −1, two levels of pinching and
different values of δξ and p

contributions of the dissipated energy ε, respectively, for a high contribution (δξ =
0.1, p = 1) and a low contribution (δξ = 0.01, p = 0). We notice that the standard
deviations obtained by using schemes (5) and (6) are indistinguishable by sight,
but differ more from those obtained by solving the moment equations when the
parameters that control the contribution of the dissipated energy are larger. Similar
situations are observed for systems with no hardening tendency (β/γ = 1).

5 Conclusions

From the simulation study, we may expect that the Runge–Kutta discretization
schemes (5) and (6) produce similar values of the second statistical moment of
the response as far as Δt is kept small. The deviation of these results from those
given by solving the moments equation gets larger as the non-stationarity gets
larger. The procedure can be easily extended to the n-dimension case since model
(2) presents the same matricial form in blocks of size 4, the hysteretic component
and the dissipating energy component being characterized, for each dimension i, by
the corresponding component of each parameter vector Ai, νi, ηi, βi, γi, ξ1i, and
ξ2i associated with the correspondent component of the response vector x2i and
x3i. Simulations can be performed in parallel and benefit from the architecture of
parallel machines.
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The investigation of efficient discretization schemes of the type presented here is
important as it provides tools for the simulation and analysis of nonlinear systems
appearing in seismic engineering problems, as is the case of hysteretic systems with
pinching effect (see [3] for the case of masonry structures). The inherent complexity
of the drift function of these models highlights the importance of developing
efficient discretization schemes that do not involve the derivatives of this function.
The present work shows that the discretization schemes adapted from Tocino [6]
that are shown in (5) and (6) are fitted for the purpose of simulating and analyzing
hysteretic systems with pinching effect, in the usual region of values of the model
parameters that appear in a set of engineering problems (see [2–4, 7] for examples)
and as long as the time step is kept small enough, replacing the popular stochastic
Euler scheme with benefit to the user in terms of accuracy.
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Misleading Signals in Simultaneous Schemes
for the Mean Vector and Covariance Matrix
of a Bivariate Process
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Abstract
In a bivariate setting, misleading signals (MS) correspond to valid alarms which
lead to the misinterpretation of a shift in the mean vector (resp. covariance
matrix) as a shift in the covariance matrix (resp. mean vector). While dealing with
bivariate output and two univariate control statistics (one for each parameter), MS
occur when:
• The individual chart for the mean vector triggers a signal before the one for the

covariance matrix, although the mean vector is on-target and the covariance
matrix is off-target.

• The individual chart for the variance triggers a signal before the one for the
mean, despite the fact that the covariance matrix is in-control and the mean
vector is out-of-control.

Since MS can be rather frequent in the univariate setting, as reported by many
authors, this chapter thoroughly investigates the phenomenon of MS in the
bivariate case.
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CEMAT, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais 1,
1049-001 Lisboa, Portugal
e-mail: patriciaferreira@ist.utl.pt

M.C. Morais · A. Pacheco
CEMAT and Mathematics Department, Instituto Superior Técnico, Technical University
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Table 1 Definition of misleading signals of types III and IV in
simultaneous schemes for µ and Σ

Type of MS µ Σ First chart to signal

III On-target Off-target Chart for µ
IV Off-target On-target Chart for Σ

1 Introduction

When we intend to monitor both the mean vector and the covariance matrix of a
bivariate process, it is common to run two individual charts at the same time, one
for the mean vector (μ) and another one for the covariance matrix (Σ). The schemes
that make use of these two individual charts are the popular simultaneous (or joint)
schemes. When we are using a simultaneous scheme, the process is suspected to
be out of control whenever at least one of the individual charts triggers a signal.
Similarly, a signal triggered by one of the individual charts might correspond to a
shift in μ, Σ or both μ and Σ. Moreover, it is possible that a shift in one parameter
results in a signal triggered by the individual chart designed to monitor the other
parameter leading to what [13, 20] called a misleading signal (MS). When we are
using a simultaneous scheme to monitor the mean vector and the covariance matrix
of a bivariate process, the MS likely to happen are listed in Table 1.

The phenomenon of misleading signals in simultaneous schemes for univariate
i.i.d. processes has been addressed by several authors ([13, 14, 18–20]). More
recently, [2,8,16,17] discussed this issue for univariate autocorrelated processes. As
far as we have investigated, this phenomenon has not been studied for multivariate
processes.

The remainder of this chapter is structured as follows. In Sect. 2 we make
a brief review of existing simultaneous schemes for bivariate processes, present
the Hotelling-|S| and the EWMA type schemes under study, and end with some
numerical results concerning the PMS for these two types of schemes. In Sect. 3 we
present some concluding remarks on the obtained results.

2 Simultaneous Schemes for Bivariate Processes

The first chart to monitor the mean vector of a multivariate process was proposed
by [5]. Regarding the control of the covariance matrix, Alt [1] presented a control
chart based on the sample generalized variance (|S|). The simultaneous scheme
resulting of using these two charts is the most commonly used and it is usually
considered the Shewhart analogue for multivariate processes [9]. However, this
simultaneous scheme has the disadvantage of being based only on the most recent
observation, which led to the emergence of CUSUM and EWMA type schemes for
both univariate and multivariate processes.

In the particular case of bivariate processes, some new schemes have been
proposed recently by [4,7,10], just to name a few authors. References [4,7] propose
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new EWMA type charts that monitor the mean vector and the covariance matrix
simultaneously. In addition, [10] recommend the use of a scheme based on an
univariate control statistic with noncentral chi-square distribution. In this chapter
we shall consider two different simultaneous schemes: the Hotelling-|S| scheme
and an EWMA-type scheme described below.

2.1 Output Process and Simultaneous Schemes

Let us denote by {YN} the target process which we assume to be i.i.d. with a
bivariate normal distribution with mean vector μ0 and covariance matrix Σ0, both
known. As for the observed process, denoted by {XN}, we shall assume that it is
related to the target process as follows [12]:

XN = μ0 +
1√
n
Σ

1/2
0 δ +Θ(YN − μ0), (1)

where n is the fixed sample size and δ = (δ1, δ2)
′ and Θ =

[
θ11 θ12
θ12 θ22

]
represent the

shifts in the mean vector and in the covariance matrix, respectively. Therefore, when
a shift in the mean vector (resp. covariance matrix) occurs, the observed process
has a bivariate normal distribution with mean vector μ1 = μ0 + 1√

n
Σ

1/2
0 δ (resp.

covariance matrix Σ1 = ΘΣ0Θ
′). In this chapter we shall focus on the detection of

increases in the mean vector or in the covariance matrix, therefore we shall assume
that δ and Θ are such that both the mean and the variances of the process increase.
Without loss of generality we shall also assume that the components of δ are equal,
that is, δ1 = δ2 = δ.

As previously mentioned, we shall consider two types of simultaneous schemes:
the Hotelling-|S| scheme and an EWMA type scheme. Both schemes make use
of the control statistics proposed by [1, 5] to monitor the mean vector and the
covariance matrix. These control statistics have the following in-control properties
when dealing with the N th sample:

T 2
N = n(X− μ0)

′Σ−10 (X− μ0)
i.i.d.∼ χ2

2; (2)

UN =
2(n− 1)|S|1/2

|Σ0|1/2
i.i.d.∼ χ2

2(n−2), (3)

where S is the sample covariance matrix.
The control statistics and control limits of these two simultaneous schemes are
condensed in Table 2, where we note that under control E(T 2

N ) = 2 and E(UN ) =
2(n− 2).

Capitalizing on the distributional properties of T 2
N and UN , we can conclude that

the run length (RL) of the individual Hotelling chart for μ (RLH−μ) and of the
individual |S| chart for Σ (RLH−Σ) have geometric distribution with parameters
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Table 2 Control statistics and control limits for the Hotelling-|S| and EWMA simultaneous
schemes

max{2, T 2
N} LCLH−μ = 2

UCLH−μ = 2 + 2γH−μ

max{2(n − 2), UN} LCLH−Σ = 2(n− 2)

UCLH−Σ = 2(n− 2)

+2
√
n− 2γH−Σ

ZN =

{

2,N = 0

max{2, λT 2
N + (1 − λ)ZN−1},N ≥ 1

LCLE−μ = 2

UCLE−μ = 2 + γE−μ

√

4λ
2−λ

WN =

{

2(n− 2), N = 0

max{2(n − 2), λUN + (1 − λ)WN−1}, N ≥ 1

LCLE−Σ = 2(n− 2)

UCLE−Σ = 2(n− 2)

+γE−Σ

√

4λ(n−2)
2−λ

{
ξH−μ(δ,Θ) = 1− Fχ2

2,ν
(2 + 2γH−μ), Θ = I

ξH−μ(δ,Θ) = 1− F ∗(2 + 2γH−μ), Θ 	= I
(4)

and

ξH−Σ(Θ) = 1− Fχ2
2(n−2)

[
2(n− 2) + 2

√
n − 2γH−Σ

|Θ|
]
, (5)

where Fχ2
2,ν

represents the distribution function of a noncentral chi-square distri-

bution with noncentrality parameter ν = δ′δ and F ∗ represents the distribution
function of T 2

N , suggested by [11, p. 95] and given by

F ∗(x) =
+∞∑
k=0

(−1)kck
xk+1

(k + 1)!
, (6)

where

ck =

⎧⎨
⎩

(4λ1λ2)
−1/2, k = 0

1
k

∑k−1
r=0 dk−rcr, k ≥ 1

(7)

dk =
1

2

[
1

(2λ1)k
+

1

(2λ2)k

]
(8)

and λ1, λ2 are the eigenvalues of the matrix nB′Σ−10 B with BB′ = Σ1/n.
Since X and S are independent ([23, p. 48]), we can conclude, by the disjoint

blocks theorem (see, e.g., [6, p. 76]), that T 2
N and UN are also independent.
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Therefore, the RL of the simultaneous scheme (RLH−μ,Σ) also has geometric
distribution with parameter

ξH−μ,Σ(δ,Θ) = ξH−μ(δ,Θ) + ξH−Σ(δ,Θ)− ξH−μ(δ,Θ)× ξH−Σ(δ,Θ). (9)

It is interesting to note that the RL of the individual chart for Σ does not depend on
the shift in the mean vector.

As for the EWMA individual and simultaneous schemes, the Markov chain
approach [3] provides the following approximations to the survival functions of the
run lengths RLE−μ, RLE−Σ and RLE−μ,Σ

FRLE−μ(δ,Θ)(m) � e′μ[Qμ(δ,Θ;xμ)]
m 1μ (10)

FRLE−Σ(Θ)(m) � e′Σ[QΣ(Θ;xΣ)]
m 1Σ (11)

FRLE−μ,Σ(δ,Θ)(m) = FRLE−μ(δ,Θ)(m)× FRLE−Σ(Θ)(m), (12)

for m = 0, 1, 2, . . ., where
• (xμ + 1) and (xΣ + 1) are the number of transient states associated with the

absorbing Markov chain.
• eμ (resp. eΣ) denotes de 1st vector of the orthonormal basis for Rxμ+1 (resp.

R
xΣ+1), associated with the state related to the initial value of the control

statistic.
• 1μ (resp. 1Σ) is a column vector of (xμ + 1) (resp. (xΣ + 1)) ones.
• Qμ(δ,Θ) and QΣ(Θ) are the substochastic matrices that govern the transitions

between the states of the Markov chains.
Moreover, the left partial sums of the entries of Qμ(δ,Θ) and QΣ(Θ) are,
respectively:

aμ,ij(δ,Θ;xμ)

= FT 2
N

(
1

λ

{
2 + (j + 1)

γE−μ
√
4λ/(2− λ)

xμ + 1

−(1− λ)

[
2 +

γE−μ(i+ 1/2)
√
4λ/(2− λ)

xμ + 1

]})
, i, j = 0, 1, . . . , xμ;

aΣ,ij(Θ;xΣ)

= Fχ2
2(n−2)

(
1

λ|Θ|

{
2(n − 2)+(j + 1)

γE−Σ
√
4λ(n − 2)/(2− λ)

xΣ + 1

−(1− λ)

[
2(n−2)+

γE−Σ(i+ 1/2)
√
4λ(n − 2)/(2− λ)

xΣ + 1

]})
,

i, j = 0, 1, . . . , xΣ .
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2.2 Probability of a Misleading Signal

The frequency with which an MS occurs in a simultaneous scheme is a cause of
concern. This obviously suggests the use of an additional performance measure—
the probability of misleading signal (PMS)—whose definition depends on those of
the RL of the two individual charts. According to the definition of MS of types III
and IV, the corresponding PMS can be written as

PMS III (Θ) = P [RLμ(0,Θ) < RLΣ(Θ)]

=

+∞∑
i=1

[
FRLμ(0,Θ)(i − 1)− FRLμ(0,Θ)(i)

]× FRLΣ(Θ)(i); (13)

PMS IV (δ) = P [RLΣ(I) < RLμ(δ, I)]

=

+∞∑
i=1

[
FRLΣ(I)(i − 1)− FRLΣ(I)(i)

] × FRLμ(δ,I)(i). (14)

It is worth noting that we can derive exact expression for the PMS of the
Hotelling-|S| simultaneous scheme. In fact, since the associated run lengths have
geometric distribution with the parameters defined by (4) and (5), we get

PMS III−H(Θ) =
ξH−μ(0,Θ)× [1− ξH−Σ(Θ)]

ξH−μ,Σ(0,Θ)
; (15)

PMS IV−H(δ) =
[1− ξH−μ(δ, I)]× ξH−Σ(I)

ξH−μ,Σ(δ, I)
. (16)

As for the EWMA schemes, we use the approximations (10) and (11) of the survival
functions of the RL and truncate the series (13) and (14).

2.3 Numerical Results

We now present some numerical results concerning the PMS in the Hotelling-|S|
and EWMA schemes. These results were obtained by considering:
• Sample size n = 5.
• In control mean vector μ0 = (0, 0).

• In control covariance matrix either Σ0 =

[
1 0.3

0.3 1

]
or Σ0 = I.

• λμ = λΣ = λ ∈ {1, 0.5, 0.05}, allowing the comparative assessment of the
Hotelling-|S| and two EWMA simultaneous schemes.

• xμ + 1 = xΣ + 1 = 101 transient states used in the Markov approach.
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Table 3 Critical values of the individual schemes and associated in-control ARL

λ γE−μ γE−Σ ARLE−μ(0, I) ARLE−Σ(I) ARLE−μ,Σ(0, I)

1.00 5.90776 4.75094 1000.00 999.999 500.000
0.50 5.46644 4.50619 999.412 999.421 500.002
0.05 3.33721 3.12739 987.181 987.217 500.016

The critical values in the control limits of the individual charts were determined
such that the in-control average run length (ARL) of the simultaneous scheme would
be approximately 500 samples and the ARL of the individual charts would be
approximately the same. These values were calculated using the regula falsi method
and they are condensed in Table 3.
To study the behavior of the PMS of Type III, we have contemplated four different
scenarios involving the matrices

Θ1 =

[√
θ 0

0
√
θ

]

,Θ2 =

[
1

√
θ√

θ 1

]

,Θ3 =

[√
θ −√

θ√
θ

√
θ

]

and Θ4 =

⎡

⎣
σ∗
√

1−ρ∗
2

σ∗
√

1+ρ∗
2

−σ∗
√

1−ρ∗
2

σ∗
√

1+ρ∗
2

⎤

⎦ :

1. We assume that both variances increase equally and that the correlation coeffi-
cient remains the same. The matrix Θ is of the form Θ1 with θ > 1.

2. We consider increases both in the variance and in the correlation coefficient. In
this case we have Θ = Θ2 where the values of θ were chosen such that the
variances are the same as in Scenario 1.

3. We study the behavior of the PMS of Type III when the variances increase and
the correlation shifts to zero. Here we have Θ = Θ3 and, unlike the previous
scenario, the values of θ can only be chosen in such way that the variances of the
first component of the bivariate normal quality characteristic are the same as in
Scenario 1.

4. Here we start with an in-control covariance matrix equal to the identity matrix
and study the behavior of PMS of Type III when there are increases in the
variances and a shift in the correlation coefficient. Θ is of the formΘ4 where σ∗2

and ρ∗ are the new values of the variances and of the correlation, respectively.
The results we have obtained for these four scenarios are summarized in Table 4.
They surely deserve some comments. First of all, it is important to stress out that the
MS of Type III are very likely to occur in these simultaneous schemes specially for
very small shifts in the covariance matrix. The results concerning the first scenario
indicate that the PMS of Type III appears to decrease as the shift in the variance
becomes larger. It also seems to increase with the value of λ, suggesting that this
type of MS is more likely to occur in the Hotelling-|S| simultaneous scheme than in
the EWMA type scheme. As for scenario 2, on one hand we observe the opposite
behavior in terms of the monotonic behavior with the magnitude of the shift, that
is, as both the variances and the correlation increase, the PMS of Type III also
increases. On the other hand, the MS of Type III become more likely as λ decreases,
unlike in scenario 1. The PMS of Type III obtained for the third scenario show
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Table 4 PMS of Type III for simultaneous Hotelling-|S| (λ = 1) and EWMA simultaneous
schemes (λ = 0.5, 0.05)

Σ1 Σ0 Scenario
[

1.01 0.303

0.303 1.01

][

1.05 0.315

0.315 1.05

][

1.2 0.36

0.36 1.2

][

1.5 0.45

0.45 1.5

] [

2 0.6

0.6 2

]

[

1 0.3

0.3 1

]

1ρ1 0.3 0.3 0.3 0.3 0.3

λ

1.00 0.493338 0.470243 0.402394 0.323562 0.262602
0.50 0.491053 0.459151 0.367658 0.275227 0.223378
0.05 0.478638 0.406067 0.275333 0.214696 0.188278

[

1.01 0.33

0.33 1.01

] [

1.05 0.45

0.45 1.05

] [

1.2 0.79

0.79 1.2

] [

1.5 1.3

1.3 1.5

] [

2 1.95

1.95 2

]

[

1 0.3

0.3 1

]

2ρ1 0.33 0.43 0.66 0.87 0.98

λ

1.00 0.502779 0.563216 0.861575 0.994459 –
0.50 0.502946 0.565347 0.874792 0.996639 –
0.05 0.503551 0.571285 0.931102 – –

[

1.01 0

0 1.88

] [

1.05 0

0 1.95

] [

1.2 0

0 2.23

] [

1.5 0

0 2.79

] [

2 0

0 3.71

]

[

1 0.3

0.3 1

]

3ρ1 0 0 0 0 0

λ

1.00 0.522976 0.498640 0.425560 0.335134 0.255899
0.50 0.459357 0.432878 0.360581 0.285525 0.227996
0.05 0.349150 0.332861 0.292123 0.252388 0.222915

[

1.01 0.505

0.505 1.01

][

1.05 0.525

0.525 1.05

] [

1.2 0.6

0.6 1.2

] [

1.5 0.75

0.75 1.5

] [

2 1

1 2

]

[

1 0

0 1

]

4

ρ1 0.5 0.5 0.5 0.5 0.5

λ

1.00 0.925244 0.908116 0.832099 0.668480 0.474916
0.50 0.939737 0.921881 0.832554 0.621058 0.406073
0.05 0.986951 0.973323 0.820556 0.487846 0.335958

[

1.01 0.707

0.707 1.01

][

1.05 0.735

0.735 1.05

][

1.2 0.84

0.84 1.2

][

1.5 1.05

1.05 1.5

] [

2 1.4

1.4 2

]

ρ1 0.7 0.7 0.7 0.7 0.7

λ

1.00 0.995131 0.993212 0.980580 0.922897 0.760349
0.50 0.997253 0.995988 0.985959 0.923080 0.712014
0.05 0.999951 0.999916 0.998541 0.919548 0.622448

a similar behavior to the ones in scenario 1. The MS of Type III become more
unlikely as the shift in the variances increases and λ decreases. Finally, in scenario 4
the numerical results suggest that the PMS of Type III decreases as λ and the shift
in the variances increase, and it increases as the correlation increases. As a final
comment to this results, we should add that the PMS of Type III can be larger
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Table 5 PMS of Type IV for
simultaneous Hotelling-|S|
(λ = 1) and EWMA
simultaneous schemes
(λ = 0.5, 0.05)

λ

δ 1.00 0.50 0.05

0.05 0.495208 0.494691 0.490680
0.25 0.405094 0.394540 0.319622
0.50 0.232321 0.204998 0.087947
1.00 0.050466 0.032235 0.005031
2.00 0.003300 0.001662 0.000036

than 0.9 in some cases. These values are much larger than the one obtained in the
univariate case. One possible explanation to this fact is that the PMS of Type III is a
function of the determinant of the matrix Θ and not directly a function of the shifts
in the variances and in the correlation coefficient.

As for the PMS of Type IV, the results are condensed in Table 5 for several shifts
in the mean vector. Like MS of Type III, we can see that MS of Type IV are also
very likely to occur for very small shifts in this case in the mean vector. The values
in Table 5 suggest that the MS of Type IV are more likely to occur in the Hotelling-
|S| simultaneous scheme than in the EWMA simultaneous scheme. In fact the PMS
of Type IV seems to increase with the smoothing parameter λ; in addition it tends
to decrease with the value of δ. This apparent monotonic behavior agrees with the
results previously obtained by [15] for univariate processes.

3 Concluding Remarks

The results presented in this chapter illustrate that MS are very likely to happen
in bivariate schemes, specially for very small shifts in the mean vector or in the
covariance matrix.

As for the monotonic behavior of the PMS of types III and IV, the numerical
results suggest a similar behavior to the one observed in the univariate case, namely,
the MS of Type III (resp. IV) are more likely to occur for small shifts in the
covariance matrix (resp. mean vector) and occur less frequently in EWMA-type
simultaneous schemes.

We strongly believe that these results show that the PMS is an important
performance measure and should be taken into account, in addition to other relevant
RL-related performance measures.

As a final note, we ought to point out that the Referee drew our attention
to [21,22], who studied a few control charts to monitor the covariance matrix. These
authors show that these control charts outperform some of the most commonly used
ones, for example, the one that makes use of the generalized variance. However, the
control statistic proposed by [21] has a crippling disadvantage: even though it has
a well-known distribution under control, as far as we have investigated, it is very
difficult to derive the correspondent out-of-control distribution, as a consequence
we are not able to calculate the PMS, the goal of our study, unless we resort to
simulation as [22] did. As for the other charts used in the simulation study by [22],
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we ought to stress that for all of them it is very difficult to derive the out-of-control
distribution; moreover, the use of the modified likelihood ratio test is questionable
because, in practice, the monitoring is usually based on samples that are not large
enough to justify the use of such an asymptotic test. In spite of these disadvantages,
we plan to perform a simulation-based study to compare the PMS of a few control
charts for the covariance matrix, such as the one proposed by [21].
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On the Finite Dimensional Laws of Threshold
GARCH Processes

Esmeralda Gonçalves, Joana Leite, and Nazaré Mendes-Lopes

Abstract
In this chapter we establish bounds for the finite dimensional laws of a threshold
GARCH process, X, with generating process Z . In this class of models the
conditional standard deviation has different reactions according to the sign of
past values of the process. So, we firstly find lower and upper bounds for the
law of

(
X+

1 ,−X+
1 , . . . , X+

n ,−X+
n

)
, in certain regions of R2n, and use them to

find bounds of the law of (X1, . . . , Xn). Some of these bounds only depend on
the parameters of the model and on the distribution function of the independent
generating process, Z . An application of these bounds to control charts for time
series is presented.

1 Introduction

As the true theoretical law of conditional heteroskedastic models is difficult to find,
the most part of the analysis undertaken for these models is dedicated to the study
of properties or probabilistic summaries of those laws. The use of these models, for
instance within the quality control theory, needs the assessment of the probability
of certain regions depending on the process. So, contrary to that trend, Pawlak and
Schmid [5], Gonçalves, Leite and Mendes-Lopes [1], and Gonçalves and Mendes-
Lopes [3] develop studies to find bounds for the finite dimensional laws of certain
transformations of ARCH and TGARCH processes, respectively, here denoted X .
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These bounds are expressed in terms of the distribution function of the independent
generating process, Z , and it becomes clear that the marginal law of X is, in certain
regions, strongly controlled by that of the process Z . This fact is rather relevant as
we know that these laws have in general quite different characteristics; for example,
the marginal law of X is leptocurtic even if it does not happen with that of the
independent generating process. The application in time series of this kind of bounds
on control charts with symmetric control limits has been explored in the literature
[2, 6], due to the relevance of the target process distribution in the alarm signal
definition as it makes possible to analyze the probability of having the process out
of control in a given moment.

For a real stochastic process X = (Xt, t ∈ Z) let us define X+
t = XtI{Xt≥0},

X−t = XtI{Xt<0} and Xt the sigma field generated by Xt, Xt−1, . . ..
The process X follows a generalized threshold auto-regressive conditionally

heteroskedastic model with orders p and q, TGARCH(p, q), if for real constants
α0 > 0, αi ≥ 0, βi ≥ 0, γj ≥ 0, (i = 1, . . . , q, j = 1, . . . , p) and a sequence
of independent and identically distributed real random variables, (Zt, t ∈ Z), with
zero mean, unit variance and Zt independent of Xt−1 we have, for every t ∈ Z,

⎧⎪⎪⎨
⎪⎪⎩

Xt = σtZt

σt = α0 +

q∑
i=1

αiX
+
t−i −

q∑
i=1

βiX
−
t−i +

p∑
j=1

γjσt−j .

The process Z = (Zt, t ∈ Z) is called the generating process of X . If γj = 0,
j = 1, . . . , p, we say that X follows a TARCH(q) model.

The main characteristic of threshold conditionally heteroskedastic models is the
fact that they allow to take into account different reactions in the volatility according
to the sign of the process values even for values with the same absolute size.
So, these models capture the so-called leverage effect very common in financial
time series of daily returns [4]. A not so very common, but yet still present
characteristic in some daily returns series is skewness, positive in some cases and
negative in others [7]. For these financial series, only control charts designed with
asymmetric control limits are appropriate. So, following the ideas of Gonçalves and
Mendes-Lopes [3] for the finite dimensional laws of the absolute value process of
a TGARCH model, we first establish in Sect. 2 lower and upper bounds for the law
of
(
X+

1 ,−X−1 , . . . , X+
n ,−X−n

)
, in certain regions of R2n. A relationship between

the finite dimensional laws of the process X and the corresponding laws of |X | and
(X+, X−) processes is obtained in Sect. 3 from which we bound the distribution
function of (X1, . . . , Xn). Some of these bounds only depend on the parameters
of the model and on the distribution function of the error process Z . These new
results on the distribution function of

(
X+

1 ,−X−1 , . . . , X+
n ,−X−n

)
, are essential

to generalize the study developedin Gonçalves et al. [2] to control charts with
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asymmetric limits. A preliminary contribution for the evaluation of the run length of
this kind of control charts is presented in Sect. 4. In the last section some concluding
remarks are included.

2 Bounds for the Distribution Function
of (X+

1 ,−X−
1 ,. . . ,X+

n ,−X−
n)

Let X = (Xt, t ∈ Z) be a TGARCH(p,q) process. In the following, the distribution
function of Zt is denoted by FZ and, if the law of Zt is absolutely continuous,
fZ denotes its density of probability function. We also consider the conventions∑0
i=1 (.) = 0 and, for n < q + 1,

∏n
t=q+1 (.) = 1.

If the law of Zt is diffuse, we have the following upper bound for the distribution
function of

(
X+

1 ,−X−1 , . . . , X+
n ,−X−n

)
:

F(X+
1 ,−X−

1 ,...,X
+
n ,−X−

n ) (x1, x
∗
1, . . . , xn, x

∗
n) ≤

n∏
t=1

[
FZ

(xt
θ

)
− FZ

(
−x∗t

θ

)]

for every (x1, x
∗
1, . . . , xn, x

∗
n) ∈ [0,+∞[

2n and where θ = α0

(
1 +

∑p
j=1 γj

)
.

This result follows easily taking into account the equality

F(X+
1 ,−X−

1 ,...,X
+
n ,−X−

n ) (x1, x
∗
1, . . . , xn, x

∗
n)

= P

(
−x∗1

σ1
≤ Z1 ≤ x1

σ1
, . . . ,−x∗n

σn
≤ Zn ≤ xn

σn

)
,

the inequality σt ≥ α0 +
∑p

j=1 γjσt−j as well as the independence and identical
law of Z1, . . . , Zn.

The determination of a lower bound of F(X+
1 ,−X−

1 ,...,X
+
n ,−X−

n ) is more complex

and it is subject to more restrictive hypotheses. The following theorem states a result
for TARCH(q) and TGARCH (1,1) models. The general case of TGARCH(p, q)
models is studied in an analogous way, with increased calculations complexity. Let
us define the real function h(x) = xf

′
Z (x) + 2fZ (x), x ∈ R.

Theorem 2.1. Let X = (Xt, t ∈ Z) be a stationary TGARCH(p, q) process, with
variance σ2

X , such that the law of Zt is absolutely continuous with a differentiable
density of probability. For (x1, x

∗
1, . . . , xn, x

∗
n) ∈ [0,+∞[

2n such that

∀y ≥ 0, g(y) = xth

(
xt

α0 + y

)
+ x∗th

(
− x∗t

α0 + y

)
≥ 0,

where
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t =

{
1, . . . ,min{q, n}, if p = 0

1, . . . , n, if p = 1,

we have:
a) if p = 0 and 1 ≤ q < n,

F(X+
1 ,−X−

1 ,...,X
+
n ,−X−

n ) (x1, x
∗
1, . . . , xn, x

∗
n)

≥
q∏
t=1

[
FZ

(
xt
ut

)
− FZ

(
−x∗t

ut

)] n∏
t=q+1

[
FZ

(
xt
vt

)
− FZ

(
−x∗t

vt

)]

where ut = α0 +
∑t−1

i=1

(
αixt−i + βix

∗
t−i
)
+ E

(
X+
t

)∑q
i=t (αi + βi) , t =

1, . . . , q, and vt = α0 +
∑q

i=1

(
αixt−i + βix

∗
t−i
)
, t = q + 1, . . . , n;

b) if p = 0 and q ≥ n ≥ 1,

F(X+
1 ,−X−

1 ,...,X
+
n ,−X−

n ) (x1, x
∗
1, . . . , xn, x

∗
n) ≥

n∏
t=1

[
FZ

(
xt
ut

)
− FZ

(
−x∗t

ut

)]

where ut = α0 +
∑t−1
i=1

(
αixt−i + βix

∗
t−i
)
+ E

(
X+
t

)∑q
i=t (αi + βi), t =

1, . . . , n;
c) if p = 1 and q = 1,

F(X+
1 ,−X−

1 ,...,X+
n ,−X−

n ) (x1, x
∗
1, . . . , xn, x

∗
n) ≥

n
∏

t=1

[

FZ

(

xt

wt

)

− FZ

(

−x∗
t

wt

)]

where wt = α0

∑t−1
j=1 γj−11 +

∑t−1
i=1 γj−11

(
α1xt−j + β1x

∗
t−j

)
+ γt−11 E (σ1) ,

t = 1, . . . , n.

Proof. We present the proof for the situation considered in a), p = 0 and 1 ≤
q ≤ n. Let (x1, x

∗
1, . . . , xn, x

∗
n) ∈ [0,+∞[

2n
. We note that if X+

1 ≤ x1,−X−1 ≤
x∗1, . . . , X

+
n ≤ xn,−X−n ≤ x∗n then

(i) for t ∈ {2, . . . , q}, σt ≤ α0 +
∑t−1
i=1

(
αixt−i + βix

∗
t−i
)
+
∑q
i=t

(
αiX

+
t−i−

βiX
−
t−i
)
= St;

(ii) for t = 1, σ1 = α0 +
∑q
i=1

(
αiX

+
1−i − βiX

−
1−i

)
= S1;

(iii) and for t ∈ {q + 1, . . . , n}, σt = α0 +
∑q
i=1

[
αiX

+
t−i + βi

(−X−t−i
)]

≤ α0 +
∑q
i=1

(
αixt−i + βix

∗
t−i
)
= vt.

So,

F(X+
1 ,−X−

1 ,...,X
+
n ,−X−

n ) (x1, x
∗
1, . . . , xn, x

∗
n)
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= P

(
−x∗t

σt
≤ Zt ≤ xt

σt
, t = 1, . . . , q,−x∗t

σt
≤ Zt ≤ xt

σt
, t = q + 1, . . . , n

)

≥ P

(
−x∗t

St
≤ Zt ≤ xt

St
, t = 1, . . . , q,−x∗t

vt
≤ Zt ≤ xt

vt
, t = q + 1, . . . , n

)
.

As St is X0-measurable (t = 1, . . . , q), vt is nonrandom (t = q+1, . . . , n), Zt is
independent of Xt−1 and X0 ⊂Xt−1, Z1, . . . , Zn are independent and identically
distributed and absolutely continuous, we get, using the properties of the mean and
conditional mean,

P

(

−x∗
t

St
≤ Zt ≤ xt

St
, t = 1, . . . , q,−x∗

t

vt
≤ Zt ≤ xt

vt
, t = q + 1, . . . , n

)

= E

[

P

(

−x∗
t

St
≤ Zt ≤ xt

St
, t = 1, . . . , q,−x∗

t

vt
≤ Zt ≤ xt

vt
, t = q + 1, . . . , n

∣

∣X0

)]

=

q
∏

t=1

E

[

FZ

(

xt

St

)

− FZ

(

−x∗
t

St

)] n
∏

t=q+1

E

[

FZ

(

xt

vt

)

− FZ

(

−x∗
t

vt

)]

.

For t arbitrarily fixed in {1, . . . , q} , let us consider the function Rt: [0,+∞[ −→
[−1, 1] defined by Rt (y) = FZ

(
xt

α0+y

)
− FZ

(
− x∗

t

α0+y

)
. We have

d2Rt
dy2

(y) =
1

(α0 + y)
3 g(y).

So, for every t ∈ {1, . . . , q} , if g(y) ≥ 0, for every y ≥ 0, then Rt is a convex
function. In these conditions we may apply Jensen inequality and we obtain

q
∏

t=1

E

[

FZ

(

xt

St

)

− FZ

(

−x∗
t

St

)] n
∏

t=q+1

E

[

FZ

(

xt

vt

)

− FZ

(

−x∗
t

vt

)]

≥
q
∏

t=1

[

FZ

(

xt

E (St)

)

− FZ

(

− x∗
t

E (St)

)] n
∏

t=q+1

[

FZ

(

xt

vt

)

− FZ

(

−x∗
t

vt

)]

and so

F(X+
1 ,−X−

1 ,...,X
+
n ,−X−

n ) (x1, x
∗
1, . . . , xn, x

∗
n)

≥
q∏
t=1

[
FZ

(
xt
ut

)
− FZ

(
−x∗t

ut

)] n∏
t=q+1

[
FZ

(
xt
vt

)
− FZ

(
−x∗t

vt

)]
,

taking into account that E (St) = ut. 
�
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Remark 2.1. We point out that E
(
X+
t

)
and E (σ1) only depend on the coefficients

of the model and on Z law. In fact, as X is second order stationary, it is also strictly
stationary; so, E (σt) is independent of t and we obtain

E
(
X+
t

)
= E (σt)E

(
Z+
t

)
=

α0

1− E
(
Z+
t

)∑q
i=t (αi + βi)−

∑p
i=t γi

E
(
Z+
t

)
.


�
The result presented is valid for a large class of probability laws of the process Z .

In order to get some insight on the sets where the lower bounds obtained for
the distribution function of

(
X+

1 ,−X−1 , . . . , X+
n ,−X−n

)
are valid, related to the

positivity of the g function, we analyze the positivity of the h function considering
two distributions particularly useful in the applications.

Example 2.1. For Zt distributed according to the standard Gaussian law, we have
h(x) = 1√

2π
fZ (x)

[−x2 + 2
]
, x ∈ R, and so h(x) ≥ 0 if x ∈ [−√

2,
√
2
]
.

Example 2.2. We consider now that Zt follows a centered and reduced Laplace law,

that is, Zt is absolutely continuous with density fZ (y) =
√
2
2 exp

(
−
√
2
2 |y|

)
, y ∈R.

We obtain, for y > 0, h(y) = fZ (y)
(
−
√
2
2 y + 2

)
and h(y) ≥ 0 if y ≤ 2

√
2.

3 Bounds for the Distribution Function of (X1, . . . , Xn)

As a probabilistic application of the results developed in Sect. 2, we analyze now
some bounds of the distribution function of (X1, . . . , Xn) in the regions ]0,+∞[

n

and ]−∞, 0[n. Let us consider θ = α0

(
1 +

∑p
j=1 γj

)
.

If (x1, . . . , xn) ∈ ]0,+∞[
n, we easily conclude that

F(X1,...,Xn) (x1, . . . , xn) ≤
n∏
t=1

FZ

(xt
θ

)
.

A lower bound for F(X1,...,Xn) (x1, . . . , xn) is found as a consequence of the
following theorem.

Theorem 3.1. Let X = (Xt, t ∈ Z) be a TGARCH(p, q) process such that the
law of Zt is absolutely continuous. Then, for every (x1, . . . , xn) ∈ ]0,+∞[

n,

F(X1,...,Xn) (x1, . . . , xn) ≥

≥ [FZ (0)]
n
+

n∑
t=1

F(X+
1 ,−X−

1 ,...,X
+
t ,−X−

t )
(x1, 0, x2, 0, . . . , xt, 0) [FZ (0)]

n−t
.
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Proof. We have

F(X1,...,Xn) (x1, . . . , xn) = P (X1 ≤ x1, Xt ≤ xt, t = 2, . . . , n)

= P (0 ≤ X1 ≤ x1, Xt ≤ xt, t = 2, . . . , n) + P (X1 < 0, Xt ≤ xt, t = 2, . . . , n)

= P (0 ≤ X1 ≤ x1, 0 ≤ X2 ≤ x2, Xt ≤ xt, t = 3, . . . , n) +

+P (0 ≤ X1 ≤ x1, X2 < 0, Xt ≤ xt, t = 3, . . . , n) +

+P (X1 < 0, 0 ≤ X2 ≤ x2, Xt ≤ xt, t = 3, . . . , n) +

+P (X1 < 0, X2 < 0, Xt ≤ xt, t = 3, . . . , n) .

Repeating this reasoning we obtain

F(X1,...,Xn) (x1, . . . , xn)

≥ P (0 ≤ Xt ≤ xt, t = 1, . . . , n) + P (Xt < 0, t = 1, . . . , n)

+

n−1∑
t=1

P (0 ≤ Xi ≤ xi, i = 1, . . . , t, Xi < 0, i = t+ 1, . . . , n) .

But

P (0 ≤ Xt ≤ xt, t = 1, . . . , n) = P
(
X+
t ≤ xt,−X−t ≤ 0, t = 1, . . . , n

)
= F(X+

1 ,−X−
1 ,...,X

+
n ,−X−

n ) (x1, 0, . . . , xn, 0) .

Further, as P (Xt < 0, t = 1, . . . , n) = [FZ (0)]
n and Zi is independent of

Xi−1, i ∈ {t + 1, . . . , n} , then

P (0 ≤ Xi ≤ xi, i = 1, . . . , t,Xi < 0, i = t + 1, . . . , n)

= F(X+
1 ,−X−

1 ,...,X
+
t ,−X−

t )
(x1, 0, . . . , xt, 0) [FZ (0)]

n−t
.

In this way we obtain

F(X1,...,Xn) (x1, . . . , xn) ≥ F(X+
1 ,−X+

1 ,...,X
+
n ,−X+

n ) (x1, 0, . . . , xn, 0)

+ [FZ (0)]
n
+

n−1∑
t=1

F(X+
1 ,−X−

1 ,...,X
+
t ,−X−

t )
(x1, 0, . . . , xt, 0) [FZ (0)]

n−t
.


�
Remark 3.1. A lower bound of F(X1,...,Xn) (x1, . . . , xn) depending only on the
coefficients of the model and on the distribution function of Z may be obtained
taking into account the results of the previous section. In fact, if we consider, for
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example, that X follows a TARCH(q) model (with q ≤ n) we get for 1 ≤ t ≤ n
and under the conditions of Theorem 2.1,

F(X+
1 ,−X−

1 ,...,X
+
t ,−X−

t )
(x1, 0, . . . , xt, 0) ≥

≥

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q∏
j=1

[
FZ

(
xj
uj

)
− FZ (0)

] t∏
j=q+1

[
FZ

(
xj
vj

)
− FZ (0)

]
, 1 ≤ q < t,

t∏
j=1

[
FZ

(
xj
uj

)
− FZ (0)

]
, t ≤ q,

where uj = α0 +
∑j−1
i=1 αixj−i + E

(
X+
t

)∑q
i=j (αi + βi) and vj = α0 +∑q

i=1 αixj−i. So, for a process X following a TARCH(q) model we have, if
(x1, . . . , xn) ∈ ]0,+∞[

n,

F(X1,...,Xn) (x1, . . . , xn)

≥ [FZ (0)]n +

q
∑

t=1

{

[FZ (0)]n−t
t
∏

j=1

[

FZ

(

xj

uj

)

− FZ (0)

]

}

+
n
∑

t=q+1

{

[FZ (0)]n−t
q
∏

j=1

[

FZ

(

xj

uj

)

− FZ (0)

] t
∏

j=q+1

[

FZ

(

xj

vj

)

− FZ (0)

]

}

.


�
Let us now consider (x1, . . . , xn) ∈ ]−∞, 0[

n. We get

F(X1,...,Xn) (x1, . . . , xn) ≥ P
(
Z1 ≤ x1

θ
, . . . , Zn ≤ xn

θ

)
=

n∏

t=1

P
(
Zt ≤ xt

θ

)
=

n∏

t=1

FZ

(xt

θ

)
.

Otherwise, for (x1, . . . , xn) ∈ [0,+∞[
n
, an upper bound of F(X1,...,Xn) (−x1, . . . ,

−xn) can be obtained in terms of F(X1,...,Xn) (x1, . . . , xn) and of F(|X1|,...,|Xn|)
(x1, . . . , xn) , as stated in the next theorem.

Theorem 3.2. Let X = (Xt, t ∈ Z) be a TGARCH(p, q) process such that the law
of Zt is diffuse. Then, for every (x1, . . . , xn) ∈ [0,+∞[

n,

F(X1,...,Xn) (−x1, . . . ,−xn) ≤ F(X1,...,Xn) (x1, . . . , xn)− F(|X1|,...,|Xn|) (x1, . . . , xn) .

Proof. As
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F(|X1|,...,|Xn|) (x1, . . . , xn)

= P(X1,...,Xn)

(
n∏
t=1

[−xt, xt]

)

= P(X1,...,Xn)

(
n∏
i=1

]−∞, xi] ∩
(

n∪
t=1

(Rt−1 × ]−∞,−xt[× Rn−t)
))

,

then

F(|X1|,...,|Xn|) (x1, . . . , xn)

= F(X1,...,Xn) (x1, . . . , xn)−P(X1,...,Xn)

⎛
⎝

n⋃
t=1

⎛
⎝

t−1∏
i=1

]−∞, xi]× ]−∞,−xt[×
n∏

i=t+1

]−∞, xi]

⎞
⎠
⎞
⎠.

As, for every t = 1, . . . , n,

(
n∏

i=1

]−∞,−xi]
)

\ {(−x1, . . . ,−xn)} ⊂
n⋃

t=1

⎛

⎝
t−1∏

i=1

]−∞, xi]× ]−∞,−xt[×
n∏

i=t+1

]−∞, xi]

⎞

⎠

and P (X1 = −x1, . . . , Xn = −xn) = 0, then

P(X1,...,Xn)

⎛

⎝
n⋃

t=1

⎛

⎝
t−1∏

i=1

]−∞, xi]× ]−∞,−xt[×
n∏

i=t+1

]−∞, xi]

⎞

⎠

⎞

⎠

≥ P(X1,...,Xn)

((
n∏

i=1

]−∞,−xi]
)

\ {(−x1, . . . ,−xn)}
)

= F(X1,...,Xn) (−x1, . . . ,−xn) .

So,

F(|X1|,...,|Xn|) (x1, . . . , xn) ≤ F(X1,...,Xn) (x1, . . . , xn)− F(X1,...,Xn) (−x1, . . . ,−xn) .


�
We recall the relation

F(|X1|,...,|Xn|) (x1, . . . , xn) ≤
n∏
t=1

[
F|Z|

(
xt
α0

)]
, (x1, . . . , xn) ∈ ]0,+∞[n ,

valid for a general TGARCH(p, q) (Gonçalves and Mendes-Lopes [3]) which
may contribute to build bounds useful in practice, that is, only expressed in
terms of the coefficients of the model and characteristics of the process Z . We
point out that the statement in Theorem 3.1 of these upper and lower bounds
of F(X1,...,Xn) (x1, . . . , xn) when (x1, . . . , xn) ∈ ]0,+∞[

n or (x1, . . . , xn) ∈
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]−∞, 0[
n do not demand the weak stationarity of the process X . Nevertheless, to get

some bounds useful in practice the weak stationarity of X may be necessary. This
is the case with lower bounds of F(|X1|,...,|Xn|) (x1, . . . , xn) for some subfamilies
of these models deduced in Gonçalves and Mendes-Lopes [3].

4 Application to Control Charts

In problems related to assessing the performance of control charts for conditionally
heteroskedastic processes with symmetric marginal distribution, it is important to
evaluate the probabilities P (|Xt| ≤ xt, t = 1, . . . , n) [5], concretely when evaluat-
ing the distribution of the run length [6]. With this goal, upper and lower bounds for
P (|Xt| ≤ xt, t = 1, . . . , n) were established in Gonçalves and Mendes-Lopes [3]
when X is a TGARCH(p, q) process. In particular, if X is a TARCH(q) process and
under general conditions, they conclude that the probability of no alarm until time

n in the in-control state, namely P
(
max1≤t≤n

|Xt|
σX

≤ x
)

, can be evaluated, for

certain values of x, using the independent generating process Z . From these results
Gonçalves et al. [2] developed theoretical and simulated studies for control charts
with symmetric limits. The lower and upper bounds obtained in Theorem 2.1 for
the distribution function of

(
X+

1 ,−X−1 , . . . , X+
n ,−X−n

)
are crucial to generalize

this approach to control charts with asymmetric control limits, in the sense that, for
x, y ∈ R, the probability of no alarm until time n in the in-control state is

P

(
min

1≤t≤n
X−t ≥ x, max

1≤t≤n
X+
t ≤ y

)

= P
(
X−t ≥ x, t = 1, . . . , n, X+

t ≤ y, t = 1, . . . , n
)

= P
(−X−t ≤ −x, t = 1, . . . , n, X+

t ≤ y, t = 1, . . . , n
)

= F(X+
1 ,−X−

1 ,...,X
+
n ,−X−

n ) (y,−x, . . . , y,−x) .

These asymmetric limits became relevant when the marginal distribution of the
generating process is skewed, as a symmetric marginal distribution of the generating
process necessarily leads a symmetric marginal distribution of the conditionally
heteroskedastic process.

For example, if p = q = 1 and x < 0 and y > 0 we obtain the following bounds
for the probability of no alarm until time n in the in-control state

n∏
t=1

[
FZ

(
y

wt

)
− FZ

(
x

wt

)]

≤ P

(
min

1≤t≤n
X−t ≥ x, max

1≤t≤n
X+
t ≤ y

)
≤
[
FZ

(y

θ

)
− FZ

(x

θ

)]n
,



On the Finite Dimensional Laws of Threshold GARCH Processes 247

where wt = α0 (1 + α1y − β1x)
1−γt−1

1

1−γ1 + γt−11 E (σ1) and θ = α0 (1 + γ1). We
note that, if X becomes independent (α1 = β1 = γ1 = 0) , the equality holds
for both bounds as we have P

(
min1≤t≤nX−t ≥ x, max1≤t≤nX+

t ≤ y
)

=[
FZ

(
y
α0

)
− FZ

(
x
α0

)]n
.

5 Conclusions

The results here presented, namely the evaluation of the finite dimensional laws of
the process (X+,−X−), lead us to the theoretical analysis of no alarm until time n
in the in-control state in a way that is not necessarily symmetrical.

Moreover, the results established in Sect. 2 were also used to bound the laws of
the process taking into mind its application to control charts with unilateral control
limits. The theoretical development of this study, particularly in the context of
control charts, as well as its evaluation with simulated and real data are planned for
future work. The generalization of these results to other models, for example with
several thresholds or random thresholds, is also an open question with relevance in
financial time series.
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Modelling the Duration of Multihop Paths
in Mobile Ad Hoc Networks

Gonçalo Jacinto, Nelson Antunes, and António Pacheco

Abstract
Mobile ad hoc networks are characterized by having nodes that are cooperative
and communicate without any kind of infrastructure. The mobility and multihop
capability of these networks lead the network topology to change rapidly and
unpredictably; this aspect must be incorporated in effective models to describe
the dynamics of multihop paths.
When modeling the duration of multihop paths, a great part of the literature
assumes that the links of multihop paths behave independently. This simplifies
the modeling and reduces the complexity of computations. However, each link
shares a common node with each of its neighbor links, turning the independent
link assumption generally not valid. In this chapter, we use a piecewise deter-
ministic Markov model that characterizes the random behaviour of a multihop
path not assuming independent links. We obtain the mean path duration of
multihop paths and compare the results for the used model with the ones obtained
by assuming independent links. Numerical results illustrate that independent
link approximation results underestimate the mean path duration, with the most
significant differences being observed with low node mobility and higher path
durations.
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1 Introduction

The demand for wireless communications is experiencing a steady growth. In
this respect, the integration of Mobile Ad Hoc Networks (MANETs) multihop
capability into wireless networks is one of the most promising architectural upgrade
to envisage area coverage without significant additional infrastructure cost. The
rapid deployment and low configuration profile of MANETs make them suitable
to be used in emergency and military scenarios, as well in sensor networks and
vehicular networks, among others.

In MANETs the nodes can dynamically form a network in a self-organizing
manner without the need of an existing fixed infrastructure. Nodes are expected
to act cooperatively in order to route traffic and to allow the network to adapt to the
highly dynamic status of its links and node mobility patterns. In view of the limited
transmission range of nodes, when the source and destination nodes are at a distance
greater than the transmission range, the communication between them is made by
a multiple hop path, using the neighbour nodes to forward the traffic towards the
destination node.

Once a multihop path is active, the mobility of nodes causes the frequent failure
of the path and activation of a new link. Thus, node mobility affects the performance
of a MANET (cf., e.g., [2, 7]). Therefore, the development of models integrating
mobility and the connectivity demands of MANETs are essential to characterize
the reliability of these networks. The functionality of the network depends on the
reliability of communications paths, and these are dependent on the stability of
the links along the multihop path and their dependence structure, with the state of
the links limited by power constraints and channel effects.

Few studies in the literature address the reliability of multihop paths, with an
exact analysis of this issue seeming to be limited to [1]. Moreover, most analytical
studies that focus on link stability extend the analysis for multihop paths assuming
that the links of a multihop path behave independently of each other (e.g., [4, 7, 8]).

One of the earliest analysis that includes mobility was done by McDonald and
Znati [7], who addressed link and path availability assuming independent links
and that nodes move according to a variation of the random walk mobility model.
Xu et al. [8] used a Markov chain mobility model to derive several path metrics
assuming that links behave independently. Han et al. [4] proved that when the
link count is large, the distribution of path duration converges to an exponential
distribution. La and Han [6] relaxed the independence assumption for the links
in [4] requiring that the dependence between links goes away asymptotically with
increasing link count. In addition, Bai et al. [2] investigated path durations under
different mobility models and routing protocols based on simulations.

An effective piecewise deterministic Markov model that describes the random
behaviour of a multihop path in a MANET is proposed in [1]. We will use this
model, which assumes that the links of a multihop path do not behave independently,
to compute the mean path duration and compare the results obtained from this model
with those obtained assuming that links behave independently.
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The path is characterized through a Piecewise Deterministic Markov Processes
(PDMP, see [3]) where, for simplicity, the mobility of each node along the path
is given by the random walk mobility model. A PDMP is a Markov process
that follows deterministic trajectories between random jumps, which occur either
spontaneously, in a Poisson-like fashion, or when the process hits the boundary of
its state space. The usage of a PDMP to model a multihop path arises naturally, since
PDMPs are a mix of deterministic motion and random events, just like the multihop
path dynamics.

The mean path duration is obtained as the unique solution of a set of ordinary
differential equations (ODEs), that calculated by a recursive method allow to obtain
numerical solutions of the mean path duration. The numerical results obtained
for the mean path duration are compared with those obtained when assuming
independent links. We show that the independent links assumption can lead to a
large underestimation of the mean path duration, especially in scenarios where there
is a small number of links and a low node mobility, which originates larger mean
path durations.

The chapter is organized as follows. Section 2 describes the multihop path model.
Section 3 presents a recursive method for the computation of the mean path duration.
Numerical results are presented in Sect. 4. Finally, Sect. 5 concludes the chapter.

2 Multihop Path Model

We assume that a multihop path is set up (or already active) at time 0 with N − 1
links and extends from node 1 along nodes 2, 3, . . . , until it reaches terminal node
N . We consider a transmission range R equal for all nodes in the multihop path and,
given two consecutive nodes in the path, i− 1 and i, with locations in the plane li−1

and li, respectively, they can communicate if ‖li−1 − li‖ < R.
Each node in the path moves across the plane independently of other nodes

according to a variation of the random walk mobility model. In this model it is
assumed that a node alternates between two phases: pause (0) and move (1). If at a
transition instant a node goes into phase i, the amount of time it stays in phase i is
drawn independently of the past according to a continuous distribution function Fi
with support on the set R+. We assume that the hazard rate function of Fi, denoted
by λi(t) = dFi(t)/(1 − Fi(t)), is bounded on the positive reals.

Denote by pj the phase of node j and by mj its mobility vector if pj = 1 (i.e. the
node is in the move phase). When the phase of node j changes to move, the node
picks a mobility vector according to a distribution function FM on an open set SM .
Choosing a mobility vector m corresponds to choosing independently a direction θ
and a velocity v through m = (v cos θ, v sin θ). The node travels from the current
location in the direction and with the velocity drawn for the mobility vector during
the entire phase duration, with distribution F1. Once this time expires, independently
of the past, the node pauses for a random time period with distribution F0 before
starting to move again.
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To obtain the duration of a link between two nodes, we need to define the relative
location and relative mobility vector of node i with respect to node i − 1, which
are given, respectively, by lir = li − li−1 and mi

r = mi − mi−1, where mi (resp.
mi−1) is omitted in the expression if pi = 0 (resp. pi−1 = 0), and if both nodes
are in pause phases mi

r = 0 with 0 = (0, 0). Then, the duration of the link i, is
given by dlink(l

i
r,m

i
r) = Z(lir,m

i
r)/‖mi

r‖, for mi
r 	= 0, where Z(lir,m

i
r) denotes

the distance that node i needs to travel to move out of the range of node i− 1.
The multihop path model is characterized by a vector of phase states governed

by an alternating Markov renewal process, and by a vector of phase attributes. The
phase states describe the state of each relay node (moving or paused) while the
phase attributes describe the sojourn time in the current state, the relative location
between two consecutive nodes and its movement characteristics: its velocity and
direction. Thus, we obtain a process X = (P,A) with P = (P i)1≤i≤N where
P i is the phase process of node i, and A = (E,M,Lr) denotes the joint attribute
process, where E = (Ei)1≤i≤N denotes the elapsed time since the previous phase
transition of node i, M = (M i)1≤i≤N denotes the mobility vector of node i, if node
i is in move phase, and is omitted if node i is in pause phase, and Lr = (Lir)2≤i≤N
denotes the relative location process of node i with respect to node i − 1. From the
definition of X, a state will be denoted by x = (p, a) where a = (e,m, lr) with
the vector p = (p1, . . . , pN ) containing the phases of nodes, e = (e1, . . . , eN) the
elapsed times of the nodes in their current phases, m = (m1, . . . ,mN ) including
the mobility vectors of the nodes, having dimension N when all pj = 1 and with mj

omitted if pj = 0, and lr = (l2r , . . . , l
N
r ) the relative locations of nodes 2, 3, . . . , N

relative to nodes 1, 2, . . . , N − 1, respectively.
When the process departs from a state x, the flow of the process describes the

deterministic trajectory of X until the next jump, and is characterized by φ(t,x) =
(p, φp(t, a)) with

φp(t, a) = (e+ t1,m, lr + tmr), t ∈ R

representing the evolution of the component a over time, where 1 denotes a vector
of 1′s with dimension N and the vector mr = (m2

r , . . . ,m
N
r ) contains the relative

mobility vectors of nodes 2, 3, . . . , N relative to nodes 1, 2, . . . , N−1, respectively.
For a given phase vector p, denote the set

Sp =]0,∞[N×SM
∑
pi × SL

N−1

where SL = {x ∈ R
2 : ‖x‖ < R}, as the set of the possible values of the

attribute process A, that is, the set where all the links of the multihop path are
active. Let ∂Sp denote the boundary of the set Sp, ∂−Sp denote the disjoint union
of the set of boundary points that take the process into Sp, and B denote the set
of boundary points at which the multihop path process exits from Sp. When the
process hits a state in the boundary B, which represents the set of states through
which the multihop path disconnects, it means that the path breaks and X jumps to
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an absorbing state which is denoted by Δ. The state space of the joint process X is
denoted by

SΔX = SX ∪ {Δ},
where the set SX denotes the disjoint union of the sets S−p = Sp ∪ ∂−Sp.

For x ∈ SX, define dpath(x) as the path duration constrained to no phase
transitions of the nodes when departing from state x (in another words, if the mobile
nodes maintain their states, is the time to hit a state in B, the set of states at which
the multihop path is disconnected). This time is equal to infinity if all nodes are in
pause phase or all nodes have the same mobility vector.

The function λ : SΔX → R
+
0 is a measurable function that characterizes the jump

rate (or transition rate) from each state of the process. For x ∈ SX the jump rate
depends only on the phase and the time since the last phase transition of each node,
and is given by the sum of the hazard rate functions λi(t) = dFi(t)/(1 − Fi(t)) of
the phase duration distributions Fi, λ(x) =

∑n
i=1 λpi(e

i). Since λ(x) denotes the
rate at which the process will leave from a given state x, and we are considering that
the state Δ (the state of the process when at least one of the links is disconnected)
is an absorbing state, λ(Δ) = 0.

The evolution of X starting from state x ∈ SX can be constructed as follows.
The survival function of the first jump time T1 is defined by

Gx(t) =

⎧⎪⎨
⎪⎩

exp

(
−
∫ t

0

λ(φ(s,x))ds

)
t < dpath(x)

0t ≥ dpath(x)

(1)

and the state at an instant of time before the first jump is given by the deterministic
evolution of the process,

X(t) = φ(t,x), t < T1.

If T1 = dpath(x) the path breaks since the process hits a state in B and the next
state X(T1) is Δ with probability 1; the process then stays in Δ forever since the
jump rate out of Δ is zero. Otherwise, T1 < dpath(x), which means that one of the
nodes in the path changes phase and the next state of the multihop processX(T1) has
distribution Q(φ(T1,x), ·), next defined. The function Q : (SX ∪ B)× E → [0, 1]
is the transition measure where E denotes the event space of SX, and is such that
for x ∈ SX, Q(x, ·) is a probability measure defined by

Q(x, {x(j)}) = λpj (e
j)/λ(x); pj = 1

Q(x, dx(j)) = λpj (e
j)/λ(x)FM (dm); pj = 0

(2)

where the new state of the process, x(j), is next defined, and for x ∈ B we have
Q(x, {Δ}) = 1. The interpretation of P and A makes it clear that from any x =
(p, a) ∈ SX it is only possible to jump to a state where a node changes its phase
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characteristics (phase, elapsed time in the phase, and mobility vector) and all the
other values of the components remain the same. Thus, when pj = 1, x(j) coincides
with x except for the fact that the phase of node j is a pause phase, pj = 0, and the
corresponding elapsed time in the phase is null, ej = 0 (and its mobility vector will
be omitted). Conversely, when pj = 0, the new state of the process, x(j), coincides
with x except on the part concerning to node j whose phase becomes a move phase,
pj = 1, the corresponding elapsed time in the phase is null, ej = 0, and the mobility
vector is m. When the new state of the process is chosen, the process restarts from
X(T1) in a similar way. For a detailed description of the multihop path model, please
see [1].

3 Mean Path Duration

Given the state of the multihop path process x ∈ SΔX , the mean path duration is
denoted by

D(x) = Ex

(∫ ∞
0

ISX(X(s))ds

)
(3)

where IA is the indicator function of a set A. Note that since ISX(X(s)) denotes the
indicator function that the process X belonging to a state where all the links of the
multihop path are connected, the integral in (3) denotes the amount of time that
the process X remains connected, when departing from a state where all links are
connected. Thus, the expected value, D(x), is in fact the mean path duration of the
multihop path process.

In [1] it is proved that the mean path duration written as the expectation of
a functional of the multihop path process is the unique solution of a system of
integro-differential equations. However, any direct method to solve them is quite
problematic and depends very much on the specific characterization of the multihop
path process (number of nodes, deterministic motion, jump rate, transition measure).
To provide a way to calculate numerically D(x), a recursive scheme is proposed for
a feasible computation of the mean path duration.

Let D0 be a function such that D0(x) = 0 for all x ∈ SΔX and let O be an
operator mapping the set of bounded measurable functions on SΔX ∪ B into itself.
The action of the operator O on D0 originates the function D1 ≡ OD0 defined by

D1(x) = Ex

(∫ T1

0

ISX(X(s)) ds +D0(X(T1))

)
, x ∈ SΔX .

Iterating k(≥ 1) times the operator O on D0 results into the function Dk ≡ OkD0

given by

Dk(x) = ODk−1(x) = Ex

(∫ T1

0

ISX(X(s)) ds +Dk−1(X(T1))

)

for x ∈ SΔX .
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The equation above signifies that, if the state of the process after k − 1 phase
transitions is known, the state of the process after k phase transitions is just given by
the evolution of the process until the next phase change. The metric Dk(x) denotes
the mean path duration constrained to at most k jumps of the multihop process X,
when departing from state x. As the number of jumps increases, in the limit, the
mean path duration D(x) defined by (3), is obtained

lim
k→∞

Dk(x) = D(x). (4)

Let f : SΔX ∪B → R
+ be a bounded measurable function and for x ∈ B define

f(x) ≡ limt↓0 f(φ(−t,x)). Denote the expected value of X just after a jump from
x by

Qf(x) =

∫
SΔ
X

f(y)Q(x,dy),

where for x ∈ B, Qf(x) = f(Δ).
For x ∈ SX, the state ofX after a short time t is, roughly,φ(t,x) with probability

1−λ(x)t+ o(t), while with probability λ(x)t+ o(t) the process jumps to another
state X(t) with transition measure Q and all other events have probability o(t).
Thus, we have

Ex(f(X(t))) = (1 − λ(x)t)f(φ(t,x)) + λ(x)tQf(φ(t,x)) + o(t) (5)

so that

1

t
Ex(f(X(t)) − f(x))

=
1

t
(f(φ(t,x)) − f(x)) + λ(x) (Qf(φ(t,x)) − f(φ(t,x))) + o(1). (6)

Denote by A f(x) the derivative of (5) where, in order to define the derivative of
f with respect to the flow φ(t,x) in a rigorous way, we need to define its phase
function fp : S−p → R

+ by fp(a) = f(x). Therefore, as t → 0 in (6) we obtain

A f(x) = V f(x) + λ(x)(Qf(x) − f(x)),

for x ∈ SX, where to simplify the notation we write V f(x) instead of the more
accurate Vpfp(a). Also any reference to a function t → f(φ(t,x)) should be read
as t → fp(φp(t, a)). The function Vp is the vector field and φp(t, a) is the unique
integral curve of Vp such that for almost all t,

d
dt

fp(φp(t, a)) = Vpfp(φp(t, a)), φp(0, a) = a

is satisfied, since the function t → fp(φp(t, a)) is differentiable almost everywhere
on [0, dpath(x)[.
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The next result follows from Theorems 32.2 and 32.10 of Davis [3] conveniently
applied to the expectation functional Dk of the PDMP X with finite time horizon
and taking into account the specific boundary conditions.

Proposition 3.1. Suppose that the function Dk−1 is given. For each x ∈ SX, t →
Dk(φ(t,x)) is an absolutely continuous function on [0, d(x)[ and Dk is the unique
bounded solution of the equations

V f(x) + λ(x)
(
QDk−1(x)− f(x)

)
= −1, x ∈ SX, (7)

and at a boundary state x ∈ B, f(x) = f(Δ) = 0.

Note that in (7) the operator Q acts only on the given function Dk−1, so that the
respective equations are ODEs. Combining this result with (4) provides a recursive
way for computing the mean path duration D. For a complete proof of the results
presented in this section, please see [5].

Computing Dk requires only to solve first order ordinary differential equations.
The results of these calculations are then used to compute the next iteration k + 1.
Since they are independent ODEs, they can be computed using parallel computation.
The convergence of the solution depends on how large k has to be before Dk is close
to D. Any direct implementation of these equations requires a discretization of the
state space and solving at each grid point an independent ODE, providing the data
for calculating the next iteration. It is unrealistic to hope that numerical solutions
are possible for a medium size number of links in a single workstation due to the
great number of computer processing cycles and the need of storing large amounts
of data. However, it is possible to solve the equations in a single workstation in the
case of one or two links and in one-dimensional ad hoc networks.

4 Numerical Results

In this section we illustrate an application of the preceding results and study the
effect of the independence link assumption. The scenario proposed intends to model
a scenario where nodes move with relatively low velocities and pause times. We
consider that the phase durations are exponentially distributed with means of 30 s
and 60 s in move and pause phase, respectively. The transmission range of a node
is set up to 250 m. The mobility vector is obtained choosing a velocity (m/s) and
direction of nodes uniformly distributed in ]1, 20[ and ]0, 2π[, respectively. For a
multihop path with N nodes, initially each node i (2 ≤ i ≤ N) is deployed inside
node i − 1’s radio coverage with an angle uniformly distributed in ]0, 2π[ and with
a distance following a triangular distribution in the interval (0,250) with mode 62.5.
The initial phase of a node is picked randomly with probabilities proportional to the
mean time spent in the phase.

Figure 1 shows the results of the mean path duration after each iteration for
different link count. The departure states of the multihop path were sampled
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Fig. 1 Mean path duration after each iteration

according to the initial distribution, and their respective mean path durations were
estimated in each iteration using Monte Carlo methods (in a single workstation).
The results were averaged out in the final of each iteration. The difference between
iterations gets smaller as the number of links increases since it gets more likely that
a path failure occurs after a small number of phase transitions. However, all curves
have converged before iteration 25.

In Fig. 2 we investigate the impact of neglecting the dependency between links
in the mean path duration and study the impact of the mean time in pause phase
on the mean path duration. Numerical routines were developed for independent
links. We conclude that the mean path duration increases with the increase in the
mean time in pause phase, and the independent link assumption leads always to an
underestimation of the mean path duration. The observed percentage errors from
assuming independent links were always higher than 3.5 % and achieved values
higher than 25 %. The results are rather sensitive to the mean time in pause phase
and getting an estimate for the mean path duration using the link independence
assumption may in fact lead to a large bias when the inactive time of a node is large.
Smaller values of the percentage error occur with paths with a higher number of
hops and in scenarios where mobile nodes have higher mobility (no pause phase).

Figure 3 shows the impact of the mean time in move phase on the mean
path duration. We conclude that with the increase in the mean time in move
phase, the mean path duration decreases and also the percentage error arising from
assuming independent links. We can again observe that higher percentage errors
occur in scenarios where nodes have low mobility (inclusion of pause phases) and
in multihop paths with a small number of hops.
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In Fig. 4 we observe the impact of the mobile nodes velocity on the mean path
duration. We conclude that with the increase in the mean node velocity, leading to
a decrease in mean path duration, the percentage error by assuming independent
links increases, so higher node velocity associated with low node mobility (long
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pause phases) increases the underestimation error of mean path durations when the
independent links assumption is used.

5 Conclusion

This chapter uses an analytical framework to characterize the random behaviour of a
multihop path under a PDMP that allows to describe the mean path duration through
a set of ordinary differential equations and a recursive scheme for its computation.
The results obtained using this model were compared with the corresponding
results obtained assuming that links behave independently. We concluded that in
scenarios with a small number of links, high velocities, and low node mobility
(inclusion of long pause phases), the independent links assumption can lead to large
underestimation of the mean path duration. In these scenarios, the percentage error
can achieve values higher than 25 %. In the best case scenario, that is, with no
pause phases, low velocities, and high number of links, the observed percentage
errors were always higher than 3.0 %. These results can be used to improve the
performance of routing algorithms in MANETs.
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Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal (2011)
6. La, R.J., Han, Y.: Distribution of path durations in mobile ad hoc networks and path selection.

IEEE/ACM Trans. Networks 15, 993–1006 (2007)
7. McDonald, A.B., Znati, T.: A path availability model for wireless ad-hoc networks. Proceedings

IEEE Wireless Communication Network Conference, vol. 1, pp. 35–40, Orleans, LA (1999)
8. Xu, S., Blackmore, K.L., Jones, H.M.: An analysis framework for mobility metrics in mobile ad

hoc networks. EURASIP J. Wirel. Comm. Network. 1, 26–26 (2007)



Risk Measures and Stochastic Orders Using
Integrals of Distorted Quantile Functions

Miguel Mendes and Ignacio Cascos

Abstract
We construct new risk functionals and stochastic orderings based on integrals
using discontinuous distortion functions. We prove a result on the subadditivity
of the risk functional. As to the stochastic order we give a characterization of this
order which allows us to construct spectral risk measures that are consistent with
that order.

1 Introduction

In this chapter we call integral of distorted quantile function to all integrals of the
form

∫ t

0

qX (ϕ (s)) ds (1)

where qX is the pseudo-inverse (commonly known as quantile function) of the
distribution function FX(x) := P (X ≤ x) for a given probability measure P on a
measure space (Ω,F ) and ϕ : [0, 1] → [0, 1] is a non-decreasing function satisfying
ϕ (0) = 0 and ϕ (1) = 1. This function is interpreted as a pseudo-inverse of a
given distortion function ψ : [0, 1] → [0, 1] which generates a distorted probability
P ∗ := ψ ◦P . The distortion function will be assumed to possess discontinuities and
to the best of our knowledge this had not been considered previously.

M. Mendes (�)
FEUP and CMUP, Universidade do Porto, Portugal
e-mail: mmendes@fc.up.pt

I. Cascos
Department of Statistics, Universidad Carlos III de Madrid, Spain
e-mail: ignacio.cascos@uc3m.es

P.E. Oliveira et al. (eds.), Recent Developments in Modeling and Applications
in Statistics, Studies in Theoretical and Applied Statistics,
DOI 10.1007/978-3-642-32419-2 26, © Springer-Verlag Berlin Heidelberg 2013

261



262 M. Mendes and I. Cascos

Integrals of this form appear naturally in the following classical construction. Let
X1, . . . , Xn be i.i.d. random variables. It can be easily seen that the expectation of
X1:n := min {X1, . . . , Xn} can be written as

E (X1:n) =

∫ 1

0

qX

(
1− (1− s)

1/n
)
ds

where ϕ (s) := 1− (1− s)
1/n is the inverse function of ψ (u) := 1− (1− u)

n and
ψ is such that P (X1:n ≤ x) = ψ (P (X ≤ x)) for all x ∈ R.

Its relation with risk measures is also straightforward. If one sees X as a
random variable representing the net worth after discounting of a certain portfolio
and interprets X1:n as a worst case scenario over n simulations, the risk of X1:n

calculated by means of the Expected Shortfall is given by the following integral:

ESt (X1:n) = −1

t

∫ t

0

qX

(
1− (1− s)

1/n
)

ds .

In Sect. 2 we will make use of integrals of form (1) in a more general setting
in order to obtain new risk functionals. These functionals will have an interesting
decomposition formula resulting from a change of variables which is proved in the
Appendix.

As far as stochastic orderings are concerned, we recall that the random variable
X is dominated by Y uniformly if and only if for every 0 < t ≤ 1

∫ t

0

qX (s) ds ≤
∫ t

0

qY (s) ds .

Again, if we replace X by X1:n we obtain a new stochastic order which can be
included in the generalization discussed in Sect. 3 (see also Cascos and Mendes [5]).

2 Risk Measures

In measuring the risk of a given portfolio modeled by a random variable X , risk
functionals are employed with the purpose of calculating a number which represents
a capital requirement that must be met so that X is considered acceptable (see the
seminal paper by Artzner et al. [2]). These functionals typically satisfy a certain set
of properties and according to several factors some may be preferred over others.
A list of concepts which are usually considered important are the following:
1. Monotonicity: if X ≤ Y then ρ (X) ≥ ρ (Y ).
2. Positive homogeneity: ρ (λX) = λρ (X) for λ > 0.
3. Law invariance: if X and Y are identically distributed then ρ (X) = ρ (Y ).
4. Cash-invariance: ρ (X +m) = ρ (X)−m for every m ∈ R.
5. Sub-additivity: ρ (X + Y ) ≤ ρ (X) + ρ (Y ).
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6. Comonotonic additivity: if X and Y are comonotonic then

ρ (X + Y ) = ρ (X) + ρ (Y ) .

We now introduce a risk functional based on the use of integrals of distorted
quantile functions as aforementioned.

Definition 2.1. The ϕ-distorted Expected Shortfall is the functional

ESϕt (X) := −1

t

∫ t

0

qX (ϕ (s)) ds

where ϕ is a pseudo-inverse of a given distortion function ψ.

At this moment, one issue must be clarified. If ψ is continuous then integrals of
the form (1) which correspond to ESϕ1 coincide with the Choquet integral under the
corresponding distorted probability P ∗. And for t < 1, the ϕ-distorted Expected
Shortfall is nothing more than a truncated Choquet integral.

Let us now apply formula (3) in Appendix to the case when f = qX defined on
an interval [0, t] for t ≤ 1 and ψ : [0, 1] → [0, 1] represents a distortion function
with pseudo-inverse ϕ. Then

∫ ψ(u+)

0

qX (ϕ (s)) ds=

∫ u

0

qX (x)ψ′ (x) dx+
∑

x∈[0,u]
qX (x)

{
ψ
(
x+
)−ψ

(
x−
)}

.

In order to replace ψ (u+) by any real number t ∈ [0, 1], we note that u := ϕ (t)
can be such that ψ (u−) < t < ψ (u+). Therefore

∫ t

0

qX (ϕ (s)) ds =

∫ ψ(u+)

0

qX (ϕ (s)) ds−
∫ ψ(u+)

t

qX (ϕ (s)) ds

=

∫ ψ(u+)

0

qX (ϕ (s)) ds− qX (u)
{
ψ
(
u+
)− t

}

Consequently

∫ t

0

qX (ϕ (s)) ds =

∫ u

0

qX (x)ψ′ (x) dx+ St (X)

where u=ϕ (t) and St (X) :=
∑

x∈[0,u) qX (x) {ψ (x+)− ψ (x−)}+qX (u)

{t − ψ (u−)}. Note that if X is bounded then
∑

x∈[0,u) qX (x) {ψ (x+)− ψ (x−)}
< ∞ because

∑
x∈[0,u) {ψ (x+)− ψ (x−)} ≤ 1.
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In terms of risk functionals we rewrite (2) as

ESϕt (X) = Ψt (X) + Γt (X)

where Ψt (X) := − 1
t

∫ ϕ(t)
0

qX (u)ψ′ (u) du and Γt (X) := − 1
tSt (X).

We note without proof that properties 1, 2, 3, and 6 are satisfied by ESϕt , Ψt and
Γt whereas 4 holds for ESϕt and Γt but not necessarily for Ψt. In fact, we have the
following simple fact.

Proposition 2.1. For a given t ∈ (0, 1], the risk functional Ψt is cash-invariant if
and only if ψ is continuous in [0, ϕ (t)].

Proof. Clearly, for m ∈ R, we have that

Ψt (X +m) = Ψt (X)−m ⇔
∫ ϕ(t)

0

ψ′ (u) du = t

which is equivalent to saying that

ψ
(
ϕ (t)

−)−
∑

x∈[0,ϕ(t))

{
ψ
(
x+
)− ψ

(
x−
)}

= t . (2)

By definition of pseudo-inverse functions we have that ψ
(
ϕ (t)

−) ≤ t. How-

ever, if ψ
(
ϕ (t)

−)
< t then (2) cannot hold since

∑
x∈[0,ϕ(t)) {ψ (x+)− ψ (x−)}

≥ 0. Therefore, ψ
(
ϕ (t)

−
)
= t and hence

∑
x∈[0,ϕ(t)) {ψ (x+)− ψ (x−)} = 0.

Conversely, if ψ is continuous then, of course,
∫ ϕ(t)
0 ψ′ (u) du = t. 
�

This result implies that the property of cash-invariance of Ψt is not of interest
here because it would mean that ESϕt ≡ Ψt as a consequence of the continuity of ψ.
Obviously, ESϕt is a novelty as long as ψ is discontinuous.

As far as subadditivity is concerned we note that Γt is basically a sum of VaR
measures rescaled by the jumps at the corresponding discontinuities of ψ. Recently,
it was proved by Danı́elsson et al. [6] that if X and Y have a jointly regularly varying
nondegenerate tails with tail index α > 1, then there is a sufficiently low probability
level p such that

VaRp (X + Y ) ≤ VaRp (X) + VaRp (Y ) .

Therefore, assuming the same conditions on the distributions of random variables
and choosing such a low level p as in Danı́elsson et al. [6] the subadditivity of ESϕt
is valid in the context of the following simple result.

Proposition 2.2. If ψ has at most a finite number of discontinuities in [0, ϕ (t)],
then Ψt is sub-additive if and only if ψ′− (a) ≥ ψ′+ (a) for all a ∈ (0, ϕ (t)).
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Proof. First note that Ψt can be written in the form

Ψt (X) = −
∫ 1

0

qX (u)
ψ′ (u)

t
I{0≤u≤ϕ(t)} du

which is a spectral representation of Ψt. By Acerbi [1] we know that Ψt is sub-
additive if and only if

∫ a

a−ε
ψ′ (u) du ≥

∫ a+ε

a

ψ′ (u) du

for all a ∈ (0, ϕ (t)) and all ε > 0 such that [a− ε, a+ ε] ⊂ [0, ϕ (t)]. This is
equivalent to saying that

ψ
(
a−
)− ψ

[
(a− ε)

+
]
−

∑
x∈(a−ε,a)

{
ψ
(
x+
)− ψ

(
x−
)} ≥

≥ ψ
[
(a+ ε)−

]
− ψ

(
a+
)− ∑

x∈(a,a+ε)

{
ψ
(
x+
)− ψ

(
x−
)}

.

Since ε is arbitrary we can take ε sufficiently small so that a is the only possible
point of discontinuity (here we have used the fact that points of discontinuity do not
accumulate). Consequently, our previous condition reduces to

ψ
(
a−
)− ψ (a− ε) ≥ ψ (a+ ε)− ψ

(
a+
)⇔ ψ′− (a) ≥ ψ′+ (a)

by letting ε ↓ 0. Of course, if ψ′− (a) ≥ ψ′+ (a) for all a ∈ (0, ϕ (t)), then condition
(3) is satisfied. 
�

The result on the subadditivity of VaR mentioned above and the latter proposition
yield the following corollary.

Corollary 2.1. Let X and Y be random variables with jointly regularly varying
nondegenerate tails with tail index α > 1 and let p be sufficiently small so that
VaRp (X + Y ) ≤ VaRp (X) + VaRp (Y ) . Then, assuming that ψ has finitely many
discontinuities {xi}ki=1 such that xi < p for all i ∈ {1, . . . , k} and ψ′− (a) ≥
ψ′+ (a) for all a ∈ (0, ϕ (t)), we have that for all 0 < t ≤ 1

ESϕt (X + Y ) ≤ ESϕt (X) + ESϕt (Y )

provided that all integrals are well defined.

Example 2.1. Market regulators impose capital requirements involving the VaRλ
measure usually for λ = 0.01 or λ = 0.05. Let us suppose that a conservative
market player wants to mix VaR with a sub-additive measure. He/she can choose
a percentage p ∈ ]0, 1[ of how much of the V aR measure will be used and devise
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a distortion function ψ that has a discontinuity at x = λ with jump equal to p and
is such that ψ′− (x) ≥ ψ′+ (x) for all x ∈ [0, 1]. Moreover, in order to give more
relevance to low quantiles ψ can me made to exhibit a higher derivative close to the
origin. If in addition he/she chooses t = 1 the whole range of the portfolio is then
covered in any risk measure of the type ESϕ1 (X) = Ψ1 (X) + p.VaRλ (X) . 
�

3 Stochastic Orders

We now define a stochastic order for random variables in the following manner.

Definition 3.1. Given two random variables X and Y , we say that X !ϕ Y if and
only if for all t ∈ (0, 1]

∫ t

0

qX (ϕ (s)) ds ≤
∫ t

0

qY (ϕ (s)) ds .

where ϕ is again a pseudo-inverse of a distortion function ψ.

Our next result will be used in obtaining conditions for spectral measures to be
consistent with !ϕ.

Proposition 3.1. Given X and Y we have that X !ϕ Y if and only if for all
nonincreasing functions f : (0, 1) → [0,∞),

∫ 1

0

f (s) qX (ϕ (s)) ds ≤
∫ 1

0

f (s) qY (ϕ (s)) ds .

Proof. Here we reproduce the argument in the proof of Lemma 3.45 in Föllmer and
Schied [7]. Let us assume that

∫ t

0

qX (ϕ (s)) ds ≤
∫ t

0

qY (ϕ (s)) ds

for all t ∈ (0, 1]. Without loss of generality we assume that f is left-continuous.
Therefore, there exists a Radon measure μ such that f (t) = μ ([t, 1]). By Fubini’s
theorem we have that

∫ 1

0

f (s) qX (ϕ (s)) ds =

∫ 1

0

∫ 1

s

qX (ϕ (s)) μ (dt) ds

=

∫ 1

0

∫ t

0

qX (ϕ (s)) ds μ (dt) ≤
∫ 1

0

∫ t

0

qY (ϕ (s)) ds μ (dt)

=

∫ 1

0

f (s) qY (ϕ (s)) ds .



Risk Measures and Stochastic Orders 267

The converse implication follows by taking f (s) = I(0,t]. 
�
Let us consider now the problem of finding spectral measures(1)

Mφ (X) := −
∫ 1

0

qX (u)φ (u) du

which are consistent with a given stochastic order !ϕ(2). By this we mean that we
want to find conditions on the risk aversion function φ such that X !ϕ Y implies
Mφ (X) ≤ Mφ (Y ).

Suppose ϕ is a continuous and a.e. differentiable function (note that ϕ is also
nondecreasing by assumption). Then, by the change of variables u = ϕ (s) we
have that

∫ 1

0 qX (u)φ (u) du =
∫ 1

0 qX (ϕ (s))φ (ϕ (s))ϕ′ (s) ds . Consequently,
we conclude from Proposition 3.1 that if f , given by f (s) := −φ (ϕ (s))ϕ′ (s), is
nonincreasing, then Mφ must be consistent with !ϕ.

Example 3.1. Let us consider the case of the function ϕ (s) = 1−(1− s)
1/n which

corresponds to the stochastic order !icvn introduced in Cascos and Mendes [5].
Let R (ϕ) be the set of all risk-aversion functions φ such that φ (ϕ (·))ϕ′ (·) is a
nondecreasing function.

First, we see that φ (ϕ (s))ϕ′ (s) = 1
nφ

(
1− (1− s)

1/n
)
(1− s)

1/n−1 and that

for u ≤ v we have that u := 1− (1− u)1/n ≤ 1− (1− v)1/n := v. Consequently,
φ (ϕ (·))ϕ′ (·) being nondecreasing is equivalent to

u ≤ v ⇒ φ (u) (1− u)
1−n ≤ φ (v) (1− v)

1−n
.

by the change of variable s := 1− (1− s)
1/n. Therefore, φ ∈ R (ϕ) if and only if

φ is a risk aversion function and φ (x) (1− x)
1−n is nondecreasing in [0, 1), that is

to say that φ (x) = g (x) (1− x)
n−1

, x ∈ [0, 1), for some nondecreasing function
g : [0, 1) → R

+
0 . 
�

Appendix

Let f : [a, b] → R be an a.e. differentiable function such that for every x both
f (x+) and f (x−) exist. We define the jump differential of f , df , by its Lebesgue
decomposition, i.e.

df := df + δf ; df " λ, δf ⊥ λ

1See Acerbi [1] for more details on the properties of spectral risk measures.
2For more details on consistency issues cf. Bäuerle and Müller [3].



268 M. Mendes and I. Cascos

where, as usual, df = f ′ (x) dλ and λ represents Lebesgue measure. As to the
singular component, we define δf as the cumulative jump measure, that is, for every
Borel set A, δf(A) :=

∑
x∈A {f (x+)− f (x−)} .

In the following let ψ : [c1, c2] → [d1, d2] be an a.e. c1 increasing function
and let ϕ represent any of its pseudo-inverses. Since ψ is increasing we have that
both ψ (x+) and ψ (x−) are well defined for all x. For convenience and ease of
notation, we write ψ

(
c−1
)
:= ψ (c1) = d1 and ψ

(
c+2
)
:= ψ (c2) = d2.

Proposition 3.2. Let f : [d1, d2] → R be a Lebesgue integrable function. Then for
every α, β ∈ [c1, c2] with α < β we have that

∫ ψ(β+)

ψ(α−)

f ◦ ϕdλ =

∫ β

α

f dψ . (3)

Proof. By a change of variables (see Billingsley [4] Theorem 16.13) we have that

∫
ϕ−1(A)

f ◦ ϕ (x) λ (dx) =

∫
A

f (x) λϕ−1 (dx)

where, λϕ−1 (S) := λ
(
ϕ−1 (S)

)
for every Lebesgue measurable set S. Since ψ is

a pseudo-inverse of ϕ we do not necessarily have ϕ−1 (S) = ψ (S). Nevertheless,
ϕ−1 ([a, b]) is an interval with endpoints ψ (a−) and ψ (b+). Therefore

λ
(
ϕ−1 ([a, b])

)
=

∫
ϕ−1([a,b])

λ (dx) = ψ
(
b+
)− ψ

(
a−
)
.

First we note that if A is an interval of the form [a, b] = ∪ni=1 [ai−1, ai] where ψ′

is continuous in the interior of each [ai−1, ai], then

∫
A

ψ′ (x) dx =

n∑
i=1

{
ψ
(
a−i
)− ψ

(
a+i−1

)}

= ψ
(
b−
)− ψ

(
a+
)−

n−1∑
i=1

{
ψ
(
a+i
)− ψ

(
a−i
)}

.

And by writing ψ (x−) = ψ (x+)− {ψ (x+)− ψ (x−)} for x ∈ {a, b} we get

∫
A

ψ′ (x) dx = ψ
(
b+
)− ψ

(
a−
)−

n∑
i=0

{
ψ
(
a+i
)− ψ

(
a−i
)}

which implies that λ
(
ϕ−1 ([a, b])

)
=
∫
A
ψ′ (x) dx+

n∑
i=0

{
ψ
(
a+i
)− ψ

(
a−i
)}

. 
�
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