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Foreword and Acknowledgements

This book collects the main contributions to the research program “Statistical design
of the continuous product innovation” carried out by a group of five units from
the Italian Universities of Naples Federico II, Bologna, Salerno, Palermo and the
Polytechnic of Turin, respectively. Some contributions are mainly applicative and
concern the innovation of specific products or processes; other contributions are
mainly theoretical and propose new methods to support the innovation process. All
ones are aimed at showing that the technological innovation can be planned and
designed likely any other product feature.

Until the past century, firms gained competitive advantage from reducing costs,
minimizing process variability and continuously improving their products. In the
current global marketplace, these initiatives are only prerequisites to survive, while
innovation is the actual source of competitive advantage.

Product innovation is realized when the product is provided with a new feature
aimed at fulfilling a new customer need. Since customer needs change rapidly over
time, product innovation must be a continuous process and, consequently, it cannot
rely on a brilliant and contingent intuition as for an invention. Often some needs
are latent and cannot be elicited from a traditional customer survey, so they must be
identified differently, by means of more advanced statistical tools. Sometimes, the
innovation is implemented by exploiting a new technology, which is not necessarily
the most advanced one, since its aim is fulfilling a new customer need not showing
an intrinsic novelty.

The above essential considerations are only examples of those developed by the
contributions contained in this book. From the whole set of contributions a new
approach to the innovation as a never-ending series of manufacturing cycles arises.
Each cycle requires a series of steps, each performed using a specific statistical
and/or engineering tool.

The contributions result from different Statistics and Engineering schools, hence
their whole set is not biased by any specific point of view. Different opinions
that were not able to converge were left unchanged and, when possible, all were
tested facing practical applications. Nevertheless, many unsolved questions arise,
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vi Foreword and Acknowledgements

but these certainly will boost further research to advance the statistical and engi-
neering knowledge addressed to innovation.

A glance to the table of contents is the most effective way to master the whole
range of practical and theoretical topics covered by this book. It starts from product
innovation attained by engineering design in virtual reality; then shows examples of
process innovation obtained integrating physical and simulation experiments; pro-
poses a Bayesian approach to the innovation of the reliability and maintenance ser-
vice; ends with an advanced approach to management of the research and innovation
activities themselves.

This book and the whole research program “Statistical design of the continu-
ous product innovation” (PRIN 2005–2007) have been financially supported by the
Italian Ministry of University and Scientific and Technological Research (MIUR).

Naples, 24 August 2008 Pasquale Erto
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Chapter 1
Analysis of User Needs for the Redesign
of a Postural Seat System

Stefano Barone, Alberto Lombardo, and Pietro Tarantino

Abstract The identification and translation of customer needs early in the design
process is a major challenge for product design researchers. Some needs are ex-
plicit and customers can state them very clearly. Other needs are implicit, so cus-
tomers cannot express them, e.g., those pertaining to the affective and emotional
sphere. In this work, we describe the methods most commonly used to capture ex-
plicit and emotional customer needs, and the traditional ways in which they are
used. Moreover, an integration of QFD and Kansei engineering, a simplification of
Kano methodology, and a new attribute weighing methodology based on the “choice
time” are discussed for the design of an innovative postural seat system for patients
affected by mental retardation.

1.1 Introduction

In recent years, customer-oriented product development has become vital for com-
panies facing global competition. The identification and, above all, the translation
of customers’ needs early in the design process is a major challenge for product de-
sign researchers. These needs have three main characteristics that create difficulties
in product development tasks. Firstly, not all of the customers’ needs are explicitly
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or clearly stated by them. Secondly, not all of the customers’ needs are easily trans-
formed into engineering characteristics. Thirdly, these needs quickly change due
to environmental factors such as advertising. Moreover, while customers expected
functionality, reliability and safety from products in the past, these aspects are now
increasingly taken for granted. Indeed, the product’s affective and emotional prop-
erties (or “Kansei” in Japanese) have recently emerged as important factors in the
successful marketing of products.

Therefore, methods for eliciting and analyzing customer needs can be successful
only if they make use of a multidisciplinary approach in which engineering com-
petences are merged with statistical models, quality tools and psychology concepts.
Moreover, the use of a multidisciplinary approach is the solution to the so-called
“crisis of the engineering algorithm” (Keniston 1996).

This work aims to demonstrate the advantages of such a multidisciplinary ap-
proach using a case study in which an innovative postural seat system for patients
affected by mental retardation is designed. The difficulties inherent in this study, as
well as the high number of “potential customers,” show the validity and usefulness
of the proposed product design approach.

The paper is organized as follows. Section 1.2 describes the evolution of the cus-
tomers’ concept of quality and the corresponding evolution in product development
strategy. Section 1.3 briefly describe the methodologies used to capture customers’
needs and translate them into engineering characteristics. Section 1.4 formalizes the
necessary modifications of some of these methods in order to take into account emo-
tional or implicit customer needs. Section 1.5 presents the results from the first part
of the case study on the postural seat system design. The last section is reserved for
the conclusion of this study and some reflections.

1.2 Evolution in the Customers’ Concept of Quality

Over the last few decades, quality has become the leading issue in many companies
and other organizations in order to improve competitiveness and increase customer
satisfaction (Dahlgaard et al. 2002). Nevertheless, the concept of quality has evolved
a great deal, from the product’s conformance to specifications and requirements
(Crosby 1979), to the product’s ability to satisfy the needs and expectations of the
customer (Bergam and Klefsjö 1994). This evolution in the customers’ concept of
quality has profoundly affected the product design strategy used by designers and
engineers (Fig. 1.1). In the age of mass production up to the 1960s, manufacturers
designed products according to their own ideas, and then tried to sell them. This
product design strategy can be termed the “product-out strategy,” and it implied
a lack of communication with the customer. At the end of 1959, Deming (1986),
during his lecture to top Japanese managers, introduced his approach to designing
and producing a product. It was an iterative approach in which customer research
was included in order to establish the continuous integration of customers into the
product design or redesign process.
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Fig. 1.1 The evolution in product design strategy

Even though the new approach included the customers’ views and enforced con-
tinuous improvement, it was not entirely feasible in a new product development
context. Companies can no longer afford to have customers evaluate products after
they have been launched onto the market. Instead, it is important to build customer
satisfaction into the products before their introduction into the market. This product
design strategy is termed the “market-in strategy,” and it presupposes a great deal of
communication with customers.

This communication creates a need to establish efficient means for understand-
ing and integrating customer needs as early as possible in the product development
process, and for translating those needs into product characteristics. Many method-
ologies were originated for these aims. voice of the customer, quality function de-
ployment (QFD), and the Kano model are the tools most commonly used in this
context, and they will be briefly described in the next section.

The problem with these methodologies is that they are able to capture and inte-
grate only the conscious and explicit needs of customers. Nowadays, inexplicit and
emotional properties are known to be just as important, and so are included as eval-
uation criteria in the design process, preferably in the early stages. To support this
idea, it is necessary to observe that new products introduced by organizations oper-
ating in many market sectors are often not as successful as expected, even though
they are functionally reliable and produced to high quality standards. This occurs
because designers and engineers do not seem to understand the feelings of cus-
tomers toward the product concept. Different methodologies have been developed
and integrated into product design processes in order to measure the affective im-
pacts of different products on customers. Some of these methodologies have been
termed affective design (Khalid and Helander 2004), human-centered design (Toft
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et al. 2003) and affective human factors design (Park and Han 2004), and they are all
part of emotional design (Norman 2004). This is succinctly defined as a design phi-
losophy that focuses on the influence of emotions on the way humans interact with
objects. Among these methodologies, Kansei engineering (KE) is attracting a great
deal of attention in academic research as well as industrial research. It is a technique
that is used to analyze the unexpressed and unconscious needs of customers and to
develop such needs into an “emotional” specification list (Nagamachi 1995). This
method will be briefly described in the next section.

1.3 Traditional Methods for Capturing Customers’ Needs

Eliciting customers’ needs is one of the biggest challenges for designer and engi-
neers. Some needs are explicit and customers can state them very clearly. However,
customers do not know how to express other needs, such as those pertaining to their
affective and emotional sphere. Sometimes, customers are even not aware of the
existence of these needs. In this section, we describe the methods most commonly
used to capture explicit and emotional customers’ needs, and the traditional ways in
which they are used.

1.3.1 Voice of the Customer

The voice of the customer (VoC) is a general term for a structured list of customer
needs for the product or service being designed (Griffin and Hauser 1993). This
list is gathered by asking individual customers or focus groups to talk freely about
their needs for the product or service in a survey. The result of the interview is a set
of words and phrases representing the customers’ wants and needs. These phrases
are usually sorted by the voice of the customer table (VOCT) (Cohen 1995). The
VOCT traditionally has two parts. Part 1 contains information on the source of the
customer phrases and on the ways that customers can come into contact with the
product/service being designed. In part 2, the data are sorted in different ways ac-
cording to different categories. The most commonly used categories are customer
needs (statement in the customer’s words), substitute quality characteristics (SQCs)
(statement in the company’s technical language) and functions (descriptions of the
ways in which the product or service operates). Another tool for sorting and orga-
nizing the collected data during the interview is an affinity diagram (Tague 2004).
This is a method that is useful for gathering large amounts of data (opinions, ideas,
etc.) and for organizing them into groupings based on their relationship. The voice
of the customer can be also collected through customer complaints. In particular, the
critical incident technique provides a tool for identifying significant factors that con-
tribute to the success or failure of an action (Flanagan 1954). Critical incidents are
usually gathered by allowing customers to freely converse about their experiences.
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1.3.2 Quality Function Deployment

Quality function deployment (QFD) is a customer-oriented approach to product in-
novation. It provides a systematic process for translating customer requirements into
technical requirements at each stage of product development and production (Sul-
livan 1986b). Quality function deployment was first successfully used in the 1960s
by Japanese manufacturers in the areas of tire production and electronics (Akao and
Mazur 2003). The first publication was due to Akao, who was the first to formalize
the term “hinshitsu tenkai” (quality deployment) as a method of deploying the main
engineering characteristics in order to ensure that quality is incorporated into the
design process (Akao 1972). More than 20 years later, Clausing first used the QFD
approach in the United States, in the Ford Motor Corporation (Hauser and Clausing
1988).

QFD is a process that can help companies to make key trade-offs between what
the customer wants and what the company can afford to build (Govers 1996). QFD
decomposes the product development process into four phases: strategy and con-
cept definition, product design, process design and manufacturing operations. In
each phase, the customer requirements (the “whats”) serve as input to establish the
engineering characteristics (the “hows”) of the product design. The relationships
between the inputs and outputs are mapped into matrices (Cohen 1995). The ini-

Fig. 1.2 The house of quality
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tial and most important matrix, linking the voice of the customer to the engineering
characteristics, is the “house of quality” (HOQ). The house of quality procedure can
be divided into several steps (Chan and Wu 2005), all of them constituting a section
in the house of quality diagram (Fig. 1.2).

If correctly applied, QFD can produce benefits such as a deeper understanding of
customer requirements, fewer start-up problems, and fewer design changes which
are also made earlier (Lockamy and Khurana 1995).

1.3.3 Kano Model

Developed in the 1980s by Prof. Noriaki Kano, this model aims to understand the
relationship between the fulfilment (or not) of a requirement (product feature) and
the satisfaction or dissatisfaction experienced by the customer (Kano et al. 1984).
In his model, Kano classifies the customer requirements into six categories (CQM
1993).

• Must-be: these are considered prerequisites by the customers. If these require-
ments are not fulfilled, the customer will be extremely dissatisfied. On the other
hand, their fulfilment will not increase his/her satisfaction. Customers take these
requirements for granted and therefore does not explicitly demand them.

• One-dimensional: these requirements result in satisfaction when fulfilled and dis-
satisfaction when not fulfilled, and they are explicitly demanded by the customer.

• Attractive: these provide satisfaction when achieved fully but do not cause dissat-
isfaction when not fulfilled. These requirements are not normally expected and
are therefore often unspoken.

• Indifferent: these are viewed as neutral requirements by the customers and so do
not result in either customer satisfaction or customer dissatisfaction.

• Reverse: these requirements cause dissatisfaction when fulfilled and satisfaction
when not fulfilled.

• Questionable: these requirements are not clearly interpretable using this method-
ology.

Even though designers and engineers have to take all of the requirement categories
into account, in a real, competitive market they have to focus on the fulfilment of
attractive requirements (Lofgren and Wittel 2005). Figure 1.3 presents the relation-
ship between the requirement categories and customer satisfaction/dissatisfaction
visually.

If correctly applied, the Kano model can produce various benefits, such as the
identification of critical customer requirements, and it can provide a valuable tool in
trade-off situations or differentiation strategies (Hinterhuber and Matzlerl 1998).
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Fig. 1.3 Diagram of the Kano model

1.3.4 Kansei Engineering

The roots of Kansei engineering (KE) can be traced back to the Faculty of Engi-
neering at Hiroshima University, where Professor Nagamachi was appointed to the
Engineering Management group in the early 1970s, with the aim of developing emo-
tional ergonomics for product design (Schütte 2005). After several studies of differ-
ent products such as houses, automobiles, and electrical appliances, he formalized
the concept of Kansei engineering as a consumer-oriented technology for new prod-
uct development which made it possible to translate consumers’ feelings about and
images of a product into design elements and product features (Nagamachi 1995).
The Japanese word “Kansei” is an expression that is not readily translated into other
languages because it is very closely connected to the Japanese culture. It typically
consists of two different Kanji-signs, “Kan” and “Sei,” which in combination mean
sensitivity or sensibility (Lee et al. 2002). According to Nagamachi (Nagamachi and
Matsubara 1997), Kansei is the impression somebody gets from a certain artefact,
environment or situation using all her/his senses of sight, hearing, feeling, smell,
taste as well as their recognition. For example, we can imagine the situation in
which a potential customer wants to buy a car and he/she initially takes it for a test
drive. During this test he/she can smell the odor inside the new car, examine the sur-
face in great detail, feel the sound of the motor, and watch the speedometer needle
climb. Especially in the new global market, where so many products with the same
functionality and quality are available, many customers make their final decisions
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Fig. 1.4 Schematic for the Kansei engineering procedure and the statistical/quality tools involved

unconsciously, based on these subjective feelings. Therefore, taking these feelings
that affect the buying decision into account in the early phases of the design pro-
cess can yield a substantial advantage over one’s competitors. Kansei engineering is
a methodology by which it is possible to capture and translate subjective and even
unconscious feelings about a product into concrete design parameters. It requires
a multidisciplinary approach with knowledge of cognitive psychology, behavioral
science, psychometrics, consumer research and marketing science (Lanzotti and
Tarantino 2007).

To obtain relationships between the customers’ Kansei and design parameters,
a systematic procedure can be followed. This is shown schematically in Fig. 1.4,
where some of the statistical and quality tools that can support the flow of analysis
in the procedure are also illustrated (Fonti and Tarantino 2006).

The main idea behind the methodology is to describe the product from two differ-
ent perspectives, the emotional perspective and the technical perspective. Words and
phrases that describe the emotional sphere of customers are linked to the engineering
sphere in the synthesis phase, where product concepts are evaluated in a interview
session. Data extracted from the synthesis phase constitute the input for the rela-
tion model that indicates how the emotional sphere and the engineering sphere are
related and the strength of this relationship (Schütte and Eklund 2005). The results
of a Kansei engineering procedure allow companies to implement the right product
development strategy based on the specific needs and feelings of customers.

1.4 Advanced Methods for Capturing Customers’ Needs

Traditionally, methods for capturing customers’ needs were often applied individu-
ally, in order to capture either declared and explicit needs or emotional and implicit
needs. The integration of these methods was only performed for the first task (in-
tegration of VOC with QFD and QFD with Kano model). Given the evidence that
the emotional properties of a product or service must be considered early on in the
design phase, an integration of QFD and Kansei engineering methodology is pro-
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posed here. Moreover, there is a lack of methods which can capture customer needs
that cannot be expressed in words. In the second part of this section, we propose
a method for capturing customer preferences for product attributes that uses an in-
direct value, such as the time he/she takes to choose a ranking in a controlled inter-
view. The last part of the section describes a modification of the Kano methodology
that allows similar information to be obtained with a simplified version of Kano’s
questionnaire.

1.4.1 Integrating Kansei Engineering

Even though, according to Mazur (1997), QFD makes it possible to translate both
spoken and unspoken needs into engineering characteristics, this methodology has
been always used to translate declared and explicit customer needs. On the other
hand, Kansei engineering aims to identify the emotional needs of the customers and
the relations these have to the technical aspects of design. Therefore, QFD and Kan-
sei engineering have the same goal but they use different data. Since both method-
ologies employ a systematic step-by-step approach, a strategy in which the results
of the two methodologies are merged somehow is feasible. In particular, the more
general structure of QFD can be integrated with the results of a simplified Kan-
sei engineering approach. By a “simplified Kansei engineering approach,” we mean
a process in which the links between Kansei words and engineering characteristics
are primarily explored using qualitative tools (an example of a simplified Kansei
engineering approach can be found in Lanzotti and Tarantino 2007).

Fig. 1.5 Integration of simplified Kansei engineering into the QFD process
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The integration of QFD and Kansei engineering can take place in the customer
needs and technical response sections of the HOQ. The customer needs section of
the HOQ, the core of a QFD approach, uses the data resulting from the application of
the VOC method or/and the Kano model. This section can be divided into two sub-
sections. The first takes into account explicit and declared customers needs, and the
second considers the emotional needs expressed by the Kansei words. The techni-
cal response section defines one or a few technical performance measurements for
each customer need. Again, this section can be divided into two subsections. The
first takes into account the engineering characteristics corresponding to declared
needs (often defined by engineers), and the second considers the technical proper-
ties linked with Kansei words, which arise from the simplified Kansei engineering
approach.

A first tentative theory for integrating QFD and Kansei engineering can be found
in Arnold (2001), and is presented visually in Fig. 1.5. The study presented in
Sect. 1.5 uses the practical integration of these methodologies as central method-
ology.

1.4.2 A New Practical Way to Measure Customer Preferences
for Product Attributes

Huge amounts of time and effort have been expended by consumer researchers in
order to develop methods for identifying product attributes that are important in in-
fluencing product preferences and choice. Among these methods, conjoint analysis
has been broadly used to estimate the value that customers associate with a particu-
lar product feature/attribute (Gustafsson et al. 2003). In general, an attribute is said
to be important if a change in the individual’s perception of that product attribute
leads to a change in their attitude toward that product (Jaccard 1996). Many conjoint
analysis studies have used different approaches to measure the relative importance
of attributes and scenarios (combinations of product attribute alternatives).

For instance, in Barone and Lombardo model, the sequentially selected scenar-
ios are then presented again to the interviewed customer, who must assign a score
to each of them (Barone and Lombardo 2004). In this approach, the customer has to
interact twice with the interviewer; initially he/she selects attributes that will con-
stitute the scenarios, and then he/she evaluates the scenarios. This procedure allows
the researcher to directly interpret the customer’s opinion about the scenarios, but
the addition of a second step can result in boredom and decreased customer concen-
tration, which may result in a distorted opinion during the interview.

We proposed a new methodology for indirectly capturing customers’ opinions
on product attributes, using the time taken to make a choice (“choice time”) when
ranking the attributes. The model is fully described in Barone et al. (2007). Here,
we only report the theoretical conclusions of that study and the applicable platform
for conducting the case study in Sect. 1.5.
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The weights for each attribute (0 ≤ wi ≤ 1) are calculated by solving the system
of n + 1 equations: ⎧⎪⎪⎨

⎪⎪⎩
wi

wi+1
= 1 +

t∗

t(i)c

i = 1,2, . . . ,n−1

n
∑

i=1
wi = 1

(1.1)

where t(i)c is the time a respondent takes to choose the position i-th in the ranking
process (choice time) and t∗ is a reference time testing the degree to which the
respondent reacts to a predefined stimulus (reaction time). System solutions can be
seen as applications of a recursive calculus, by posing 1+ t∗

t(i)c
= ai. Then the weights

of importance are:

wi =
ai×ai+1× . . .×an−1

(a1×a2×. . .×an−1)+(a2×a3×. . .×an−1)+. . .+(an−3×an−2×an−1)+an−1+1
(1.2)

for i = 1,2, . . .,n−1 and

wn =
1

(a1×a2×. . .×an−1)+(a2×a3×. . .×an−1)+. . .+(an−3×an−2×an−1)+an−1+1
(1.3)

These recursive formulae were implemented with a JAVA code, and a software inter-
face (EAW1 – Easy Attribute Weighing) was defined, which was very useful for the
interview task. This interface allows the experimenter to automate the customers’
attribute ranking process and the weight calculation process. Moreover, it provides
a way to directly rate the attributes such that the results of the two procedures can be
prepared. A visual report, together with an EXCEL file, will be generated that con-
tains the ranks of the attributes, the choice times, the weights, the rating scores and
the t∗ values for each respondent. EAW is a flexible tool for applying this method-
ology in different experimental contexts and with several customers.

By measuring the respondent choice time and using this methodology, it is pos-
sible to extrapolate from each respondent not only the preference order of attributes
but also the importance (the weight) of each attribute.

1.4.3 A Simplified Version of the Kano Questionnaire

The traditional methodology for mapping customer needs into the Kano model
makes use of a questionnaire. In its standard form, the questionnaire consists of
two questions for each customer requirement: a functional question captures the
customer’s feelings when the requirement is fulfilled, and a dysfunctional question

1 License released under the authors’ authorization
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Fig. 1.6a,b Kano questionnaire: a traditional version; b simplified version

captures the customer’s feelings when the requirement is not fulfilled (see Fig. 1.6a).
By combining the two answers in the Kano evaluation table, the customer require-
ments can be classified according to the categories defined above. Therefore, the
traditional methodology is divided into two steps: (1) collecting data in a question-
naire, often quite a time-consuming task, and (2) combining the data in a prede-
fined table. Due to this elaborate process, the risk of bias during data analysis is
high. Moreover, based on our past experiences, many respondents have found the
“double-question” format to be rather contradictory.

To simplify the task of the respondent and the analysis, we propose a question-
naire with a single question for each customer requirement. The chosen form is
that of Fig. 1.6b, and this allows a clear interpretation of the examined requirement.
The interview process is not influenced by biased answers, and the methodology is
reduced to one step.
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1.5 Needs Analysis for the Design of a Postural Seat System

This study aims to develop an innovative postural seat system for children af-
fected by mental retardation. The results that will be described here and in the next
chapter of this book were obtained in close collaboration with IRCSS Oasi Maria
SS., a research institution of internationally recognized excellence in the area of
mental retardation and brain aging, located in the center of Sicily. This study is
relevant not only from a design point of view, but also from an ethical point of
view, and it aims to urge engineers to show their competencies in relation to social
issues.

1.5.1 Regulations and Figures on Disability

The disability issue breached the wall of indifference for the first time when the
Charter of Fundamental Rights of the European Union was published in 2000 (EU
2000). In fact, Article 21 of Chapter III of the Charter prohibits any discrimina-
tion based on disability. A society that is open and accessible to all is the goal of
the European Union disability strategy, for which the principle that there should
be “nothing about people with disability without people with disabilities” (EORG
2004) holds. At a global level, the Convention on the Rights of People with Dis-
abilities of United Nations (UN 2007) symbolizes the high point of governmental
attention on the disability issue. The purpose of the Convention is to promote, pro-
tect and ensure the full and equal enjoyment of all human rights and fundamental
freedoms by all persons with disabilities, and to promote respect for their inherent
dignity. Moreover, this Convention formalizes the concept of “universal design” as
the means to reduce the amount of adaptation of a product required to meet the
specific needs of a person with disabilities to a minimum.

A census of people with disabilities is not still completely available for three
main reasons. Firstly, there is no universal definition of disability, and so a unique
set of indicators is not available. Since 1980, the International Classification of Im-
pairments, Disabilities and Handicaps (ICIDH), published by the World Health Or-
ganisation (WHO), has made a distinction between impairment, disability and hand-
icap. In 2001, the World Health Assembly adopted the International Classification
of Functioning, Disability and Health (ICF). Secondly, the accuracy of the survey
depends on the type of disability. Health Interview Surveys (HIS) and Disability
Interview Surveys (DIS) are widely accepted instruments that can provide compa-
rable data on health, disability and social integration. Thirdly, due to social and
psychological issues, many people do not want to declare their disabilities or those
of their families. Therefore, the real number of people with disabilities is probably
underestimated by surveys conducted thus far.

It is currently estimated that at least 10% of the EU population will be affected at
some point in their life by a disability. The Italian data are aligned with the EU data
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(about 15% of Italian families are involved in the disability issue) (ISTAT 2000).
Surprisingly, mental health problems now account for a quarter of all disability in
the EU (EU 2007).

1.5.2 Objectives of the Study and Work Plan

The objectives of this study were determined in complete accordance with doctors,
paramedics and managers of OASI Maria SS. It was immediately clear that im-
provements in the performance, functionality and design of the postural seat system
for children with mental retardation were needed. The specific needs of these pa-
tients required a postural system completely different from those of other disabled
people. This system, if possible, is more difficult to settle and even more costly
and ugly. Moreover, the high degree of dependence of these patients—they require
constant assistance from paramedical and parents/relatives—makes easy-to-handle
regulation procedures necessary.

In detail, the new postural seat system should incorporate the following features:

• Improved performance in terms of lightness and maneuverability.
• An easier manual postural regulation system.
• The presence of a diagnostic system that is able to signal departure from ideal

postural settings.
• A pretty design.

The last feature was inserted to reduce the sense of “abnormality” experienced by
patients and parents/relatives during the use of the postural seat system.

The study was divided into two parts. The first part, which we were responsible
for, aimed at identifying the specific needs associated with the improvements and
translating them into engineering suggestions for the planning phase (performed by
the University of Naples “Federico II”). The methodology we followed is described
in Fig. 1.7.

1.5.3 Customer Identification

The first and crucial step in achieving customer satisfaction is to clearly determine
the customers and the process leading from the company to the customers (Dahl-
gaard et al. 1998). Nevertheless, a general definition of customers has not yet been
formulated in the literature. This is due to not only the inherent differences within
the goods and services sector, but also differences between studies performed within
this sector. In the ISO 9000 standard, a customer is defined as an organization or
a person who receives a product. This definition is restrictive for our study, because
in mental or psychological disability issues the system of people around the patient
play a central role in therapeutic and rehabilitative functions.
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Fig. 1.7 Phases of the
methodology adopted for
the study of user needs in the
redesign of a postural seat
system

The following groups may be seen as customers for our study of the postural seat
system:

• Patients are the real beneficiaries of the improved postural seat system. Due to
their disabilities, these patients are not always able to directly express their needs.

• Doctors give instructions to paramedics regarding the correct postural fitting of
the patients at different hours of the day.

• Paramedics follow the instructions of doctors regarding the regulation of the pos-
tural seat system.

• Parents/relatives often work as intermediaries for patient needs. Moreover, they
execute the regulation of the postural seat system at home.

• National healthcare organizations pay for patient sanitary assistance and con-
tribute to the purchase of the postural seat system.

Other customers include hospitals, where patients are cured, and society, which
expects the new and functional postural seat system to be available on the market.

Therefore, a definition of “customer” that seems more suited to this study is the
people or the organizations that are the reason for our activities, i.e., those for whom
we want to create value by our activities and products (Bergman and Klefsjö 1994).

Because there are several potential customer categories, the various needs and
expectations have to be combined through considered prioritization.
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1.5.4 Benchmarking

After a careful meditation on the roles of the various people involved in this study,
we made an accurate survey of the postural seat system already used by people with
the same or similar disabilities. Particular attention was paid to the most brands of
postural seat system most commonly used at Oasi Maria SS. The characteristics of
sixteen models were examined. These characteristics were divided into eight groups:
back rest, cushion, lateral push, pelvic waistband, footboard, lumbar push, armrest,
and headrest. The characteristics of these groups guarantee postural functionality,
stability and comfort. A frequency diagram was used to show how commonly the
postural seat system characteristics appeared in the examined models. The most fre-
quent characteristics were considered basic, while the less frequent were considered
specific to or distinctive of model and brand. The use and functionality of all the
characteristics were then discussed with doctors, paramedics and the technical staff
at Oasi Maria SS.

1.5.5 Identification of Needs

In order to collect both explicit and technical customer needs as well as the implicit
and emotional ones, we used different tools with different customers. In particular,
a structured interview was used with ten doctors and paramedics because of their
high degree of knowledge. In contrast, a simplified version of the Kano question-
naire, as described in Sect. 1.4, was prepared for fifteen parents/relatives of patients.
Moreover, the questionnaire was integrated at the beginning with a preliminary set
of questions on customers actual feelings about the postural seat system, and at the
end with a set of questions on possible critical incidents (what, when, where and
why they happened). The preliminary questions highlighted a poor satisfaction in
the performance of the current postural seat system and the great difficulties in-
volved in modifying the postural parameters, as suggested by doctors and instructed
by paramedics.

The complete list of needs arising from doctors/paramedics and parents/relatives
are reported in Table 1.1, with a distinction made between explicit and technical
needs and Kansei words.

1.5.6 Importance of Needs

The importance of each identified need was calculated using the choice time
methodology described in Sect. 1.4 and the JAVA interface reported in the appendix.
Twenty-five respondents were subjected to the same interview. A brief introduction
illustrates the aim of the survey and the general steps to follow. After providing some
input data, the respondent is asked to look at the list of needs and then choose the
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Table 1.1 List of customers’ needs divided into explicit/technical and implicit/emotional

Customers Used method

Explicit/technical needs

1 Pathology adaptability Doctors/paramedics Structured interview
2 Armrest adjustability Doctors/paramedics Structured interview
3 Cushion anatomy Doctors/paramedics Structured interview
4 Body adaptability Doctors/paramedics Structured interview
5 Pelvis blocking Doctors/paramedics Structured interview
6 Reduction of the sense of weakness Doctors/paramedics Structured interview
7 Transportability Parents/relative Critical incident
8 Lightness Parents/relative Kano model
9 Maneuverability Parents/relative Critical incident/Kano model
10 Reducibility Parents/relative Critical incident
11 Ease of setting Parents/relative Kano model

Implicit/emotional needs

12 Comfort Doctors/paramedics Structured interview
13 Color & Design Parents/relative Kano model
14 Robustness Doctors/paramedics Structured interview

most preferable. A computer clock measures how long the respondent takes to make
the selection. The attribute list is updated after each selection and randomized. The
ranking task continues until the respondent makes the final choice between the last
two needs. A common time of 1000 ms was chosen as an estimate of the reaction
time t∗. The ratings session was replaced by a more simple confirmation session, in

Fig. 1.8 Bar chart of the weights of importance for the evaluated user needs
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which respondents were asked to look at a bar diagram representing the weights of
the needs in descending order. In all cases, the respondent confirmed the results of
the procedure.

The mean values of the weights of the needs are graphically represented in
Fig. 1.8.

1.5.7 Relation Model

An augmented HOQ, as described in Sect. 1.4.1, was used as the model that links
the customers’ needs to the engineering characteristics. The engineering charac-
teristics (technical response section) for the needs in Table 1.1 were determined
with the help of medics and paramedics. In particular, the same criterion used for
customer needs was followed: some engineering characteristics are related to ex-
plicit/technical needs, while others are related to implicit/emotional needs. The en-
gineering characteristics are reported in the upper part of Table 1.2.

Table 1.2 Relationship matrix of the HOQ
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Pathology adaptability 9 9 9 9 9 9 – 1 – 3 3 1 3 3 – 3 – 1 – –
Armrest adjustability 9 – – – – – – 3 – – – – – – – – – – – –
Cushion anatomy – – 9 9 – – – – – – – – – 1 – – – – – –
Body adaptability 9 3 9 – 1 9 – 1 – – – – – 1 – – – 9 – –
Pelvis blocking 9 1 – – – – – – – 9 9 3 3 – – – – 1 – –
Reduction of sense
of weakness

– – – – – – – – – – – 9 – – 1 – – – – –

Transportability – – – – – – 9 – – – – – – – – – 9 – – 3
Lightness – – – – – – 1 – 9 – – – – – – – – – – –
Maneuverability – – – – – – 9 3 – – – – – – – – – – – –
Reducibility – – – – – – 9 – – – – – – – – – 3 – – –
Ease of setting 9 9 – – – – – 3 – – – – – – – – – – – –
Comfort – – – – 9 – – – – – – – – – – – – – – –
Color & design – – – – – – 9 – 3 – – – – – – 3 – – 9 –
Robustness – – – – – – – 9 – – – – – – – – – – – –
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The next step was to compile the planning matrix (the right part of the HOQ).
The matrix we used contains the following elements:

• Importance to customer: this column records how important each need is to the
customer. The data for this column are the mean values of the weights of the
needs.

• Customer satisfaction performance: this is the customer’s perception of how well
the available postural seat system is meeting his/her needs. The values in this
column were assigned by authors in accordance with doctors and paramedics
(development team) on a five-point scale.

• Goal: in this column, the development team (in collaboration with experts from
the University of Naples “Federico II”) decided on realistic performance values
for the new postural seat system. The numerical values were based on the same
scale.

• Improvement ratio: this is a measure of the effort required to approach customer
satisfaction performance for the defined goal. It can be calculated with several
formulae (Cohen 1995), but the most simple and intuitive is the ratio of the goal
to the customer satisfaction performance.

• Raw weight: this is a summary of the planning matrix. The values in this col-
umn are the product of the importance to customer column and the improvement
ratio column. The higher the raw weight, the more important the corresponding
customer need should be to the development team.

The columns “competitive satisfaction performance,” “sales point” and “normalized
raw weight” do not apply in this study and are therefore ignored here. The values of
the planning matrix are reported in Table 1.3.

Table 1.3 Planning matrix for the HOQ

Importance
to customer

Customer
satisfaction
performance

Goal Improvement
ratio

Raw
weights

Pathology adaptability 0.148 2 5 2.5 0.370
Armrest adjustability 0.121 2 2 1.0 0.121
Cushion anatomy 0.09 3 4 1.3 0.119
Body adaptability 0.015 2 5 2.5 0.037
Pelvis blocking 0.083 3 5 1.6 0.137
Reduction of sense of weakness 0.056 2 4 2.0 0.112
Transportability 0.062 2 3 1.5 0.093
Lightness 0.135 2 4 2.0 0.270
Maneuverability 0.063 2 4 2.0 0.126
Reducibility 0.035 3 3 1.0 0.035
Ease of setting 0.054 1 5 5.0 0.270
Comfort 0.059 4 4 1.0 0.059
Color & design 0.049 3 4 1.3 0.065
Robustness 0.028 1 4 4.0 0.112
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The third step in the construction of the relation model is to compile the relation-
ship section. This is a matrix where the number of rows is equal to the number of
customer needs and the number of columns is equal to the number of engineering
characteristics. Each cell ci j contains an indication of the strength of the link be-
tween the i-th customer need and the j-th engineering characteristic. The strength
of the link is usually expressed by a symbol (Asians and Americans use different
symbols) and then converted into a numerical value. The numerical values were as-
signed according to American coding, i.e., 9 for an extremely strong relation, 3 for
a moderately strong relation, 1 for a weak relation and 0 for no relation between
the customer need and the engineering characteristic. The relationship matrix is re-
ported in the central part of Table 1.2.

The last part of the relation model for this study is the row of priorities. This
row summarizes the relative contributions of each engineering characteristic to the
overall customer satisfaction. The priority for the j-th engineering characteristic is
calculated as:

p j =
I

∑
i=1

ci j × ri (1.4)

where ci j is the relation value between the i-th customer need and the j-th engi-
neering characteristic, and ri is the value of the raw weight for the i-th customer
need.

The larger the value of the priority, the more influence the engineering character-
istic has on the customer satisfaction performance, and therefore the more important
it is in the development of the new model of postural seat system.

The priority values for this study are reported in Table 1.4. The last three sections
of the HOQ, i.e., competitive benchmarking, targets and technical correlation, apply
in a subsequent phase of product development process, when the created product
concept is evaluated in comparison with those of its competitors, or when production
constraints force designers and engineers to solve the potential correlations between
technical characteristics of the product.

1.5.8 Design Suggestions

The process followed allowed a list of design interventions to be defined based on
customer needs. Interpreting the results summarized in Table 1.4, it was possible to
suggest the strategic elements needed to improve the development of an innovative
postural seat system to the designers and engineers at the University of Naples.
These elements are (in order):

• Indicators: they should be easy to see and handle (characteristic 1).
• Postural regulation systems: they should be automatic, to facilitate parents/tutors

in setting them (characteristics 2-3-4-5-6-8-13-14).
• Structure: new materials (light and robust) should be used, and a new structure

(reducible and transportable) should be developed (characteristics 7 and 9).
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Table 1.4 Priorities for engineering characteristics

Engineering characteristics Priorities

1 Position indicator 8.42
2 Electronic system for position 6.01
3 Lumbar/ridge push system 4.73
4 Cushion regulation system 4.40
5 Balancing roll 3.89
6 Body support 3.66
7 Frame structure 3.14
8 Coupling with endless screw 2.97
9 Frame material 2.63
10 Pelvis push system 2.34
11 Balancing seat 2.34
12 Pelvis waistband 1.78
13 Lateral push system for adduction 1.52
14 Inclinable backrest 1.30
15 Mobile footboard 1.27
16 Modular headrest 1.12
17 Releasable cushion 0.94
18 Deepness of seat 0.84
19 Washable and breathable cloth 0.59
20 Interchangeable cloth 0.28

• Seat: this is one of the most important parts of the postural seat system. The
characteristics 10, 11, 12 and 18 should be significantly improved.

• Adaptability: characteristics 15 and 16 indicate the need to develop a modular
headrest and a free-to-move footboard.

• Versatility: new fabrics and interchangeable parts could improve the design of
the postural seat system and its versatility in use.

1.6 Conclusions

The most important step in the design process is the initial one, in which customer
needs are identified and examined. The need for manufacturers to capture and cor-
rectly interpret the requirements of their target customers has led to the development
of a number of techniques aimed at bringing the “voice of the customer” into the
design process. The voice of the customer, the Kano model and quality function de-
ployment have been broadly used in the design and development product process.
Nevertheless, a successful product development process should be based not only on
the stated/explicit customer needs, but also on the implicit needs and feelings of the
customer. Kansei engineering is a methodology that makes it possible to incorporate
customers’ emotions and perceptions into the product design process.

The integration of QFD and Kansei engineering methodology can lead to an
increased customer satisfaction, since the product should fulfill both the expected
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and the emotional needs of the customer. Moreover, there are real situations in which
a simplified version of the theoretical tools or the creation of new practical ones is
strongly suggested.

In this work, we propose a general framework for capturing customers’ needs
for the design of an innovative postural seat system for patients affected by men-
tal retardation. A step-by-step procedure, carried out in collaboration with doctors,
paramedics, managers, technicians and parents/tutors of Oasi Maria SS, allowed
strategic elements of the design intervention to be defined. These elements will be
improved by the design team of the University of Naples.
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Chapter 2
Statistical Design for Innovation
in Virtual Reality

Antonio Lanzotti, Giovanna Matrone, Pietro Tarantino,
and Amalia Vanacore

Abstract In this chapter, an original design strategy for product innovation is pre-
sented. This strategy is based on a continuous innovation process and takes ad-
vantages of both emotional design methodologies and participative design tools in
virtual reality (VR). It combines techniques for user need identification and virtual
reality experiments to simulate user-product interaction. This original combination
of techniques allows the early evaluation of the quality of new product concepts,
which is essential for the success of innovation.
To show the main phases of this strategy, three case studies are briefly introduced.
In the first case study, concerning the design of a railway coach interior, the impor-
tances of both the identification of user needs and an evaluation session in VR are
highlighted. In the second case study, concerning the railway seat design, the tech-
niques used to generate new concepts and to choose the optimal one among them
are briefly illustrated. Finally, in the third case study, concerning the innovation of
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a postural seat system, the continuous innovation iterative cycle—which is crucial
to the statistical design for innovation strategy—is described, starting from designer
sketches.

2.1 Introduction

Recent tendencies in the field of product design show increasing interest in objects
that are able to inspire users and to evoke positive feelings and emotions (Demirbilek
and Sener 2003). The designer’s creativity alone cannot provide sufficient support
for the complex process of understanding the emotions arising from the user–object
interaction and coding them as useful information for successful design. The need
for a new design strategy is particularly evident in the concept design phase where,
to a great extent, the future success of a product is determined. In this phase, the
designers look for a concise description of all product features that will satisfy user
needs (Ulrich and Eppinger 2000). Consequently, the early correct identification of
these needs plays a central role in the maximization of user satisfaction (Di Giron-
imo et al. 2006). In the last few years, several methodologies have been developed
to identify the functional user needs as well as the emotional ones. Some of these
methodologies apply a user-centered approach, a designer-driven approach, or a bal-
anced mix of the previous ones, in order to satisfy conscious and unconscious user
needs and translate them into the functional features of the product. Among them,
the Kano model and Kansei engineering are widely applied in research as well as in-
dustry. The Kano model allows designers to classify product functional elements in
quality categories (Kano et al. 1984). Kansei engineering, being an emotional design
methodology (Norman 2004), allows designers to objectively understand the human
subjective and psychological sensibility and connect it to the process of product de-
velopment (Nagamachi 1995). Once user needs are identified, designers develop
new product concepts in compliance with standard engineering constraints. At this
stage, the combined use of computer-aided styling (CAS) and computer-aided de-
sign (CAD) tools, experimental statistical methods and a top-down approach (Di
Gironimo et al. 2008) to explore concept alternatives by means of virtual prototypes
is essential. The generated alternatives are tested and the best solution is identified.
In this phase, the opportunities offered by virtual reality can overcome the main lim-
itations of traditional approaches that rely on physical prototypes (Ottosson 2002).
In particular, the availability of a virtual prototype allows designers to anticipate
aesthetic, ergonomic and usability tests in the concept design phase by means of
a participatory design and, at the same time, to reduce the development time and
costs of physical prototypes (Bruno and Muzzupappa 2006).

In this chapter, a systematic design strategy for improving the quality of new de-
signed products is presented. Section 2.2 illustrates the logical phases of the new
strategy, which takes advantage of emotional design methodologies as well as par-
ticipative design in virtual reality. Section 2.3 briefly shows the first results from the
application of the proposed strategy in three significant case studies.
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2.2 From Emotions to Innovation in Virtual Reality

Innovation is realized through the introduction of product features that address new
user needs or provide new solutions in order to satisfy—significantly more so than
previously—pre-existing user needs. The proposed strategy, denoted “statistical de-
sign for innovation,” is based on the continuous identification of both conscious (i.e.,
expressed) and unconscious (i.e., latent) user needs and their translation into prod-
uct features called quality elements (QEs). The translation of user needs into QEs
is one of the most critical phases in new product design. Up to now, this translation
was achieved through either designer creativity or methodologies based on expert
user involvement. The statistical design for innovation strategy recognizes the im-
portance of both approaches and combines them in order to identify the best product
architecture. It integrates a recently proposed concept design for quality procedure
(Di Gironimo et al. 2006) with the emotional design approach (Nagamachi 1995),
(Lanzotti and Tarantino 2007). The logical phases of the proposed strategy are de-
picted in Fig. 2.1.

The proposed strategy is realized through five phases, which are briefly illustrated
in the following.

I.a Identification of user needs. The product design process begins with the iden-
tification of both expressed and latent user needs. This phase is critical be-
cause of the influence of the emotional user process on the success of the
product. The Kano model and Kansei engineering (KE) are the methodolo-
gies applied here to accomplish the task of identifying user needs. In partic-
ular, the Kano model allows us to identify quality elements that satisfy the
expressed user needs. It starts with a small group (10–15) of QEs proposed by
designers and then assigns priorities to 3–5 elements by classifying these QEs
into quality categories (Kano et al. 1984). On the other hand, KE allows us to

Fig. 2.1 Logical phases of the statistical design for innovation in VR strategy
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identify the latent and emotional quality elements and to translate them into
physical solutions for product concept (Nagamachi 1995). KE starts with the
identification of an almost exhaustive group (70–80) of QEs and then allows
us to select the most meaningful (3–5) among them according to the feelings
and emotions of a group of potential users, by means of Pareto analysis, factor
analysis and ordinal logistic regression.

I.b Definition of style sketches. The designer takes part in the statistical design for
innovation process by developing style and product architecture ideas starting
from the previously identified QEs and by using simple tools such as pencils
and colors. In this phase, the designer can ascertain some needs not identified
in the previous phase and also interpret the user needs so as to add original-
ity to the QEs definition. This process requires a knowledge of the market,
patents, materials and new trends in the fields of art and style, as well as a
knowledge of standard constraints, which are very important for industrial
products.

II. Generation of product concepts. Starting from the identified QEs and style
sketches proposed by designers, product concepts can be generated through
the use of DOE statistical tools. The main constraint is the maximum number
of virtual prototypes that can be evaluated by expert users in a participative
design session. For this reason, fractionated factorial designs are used and
only a few levels (2–3) are adopted for each QE (Wu and Hamada 2000).
Each QE level is developed from sketches into a CAS–CAD (computer-aided
styling–computer-aided design) model following the style architecture even-
tually defined by designers. Thus, the output of this phase is a limited number
(4–8) of virtual prototypes of product concepts developed by following the
adopted fractionated factorial design.

III. Quality evaluation of product concepts. In this phase, the generated virtual
prototypes are transferred to the virtual reality environment in order to allow
expert user evaluation. The VR tools allow the user–product interaction to be
tested through photorealistic visualization in an immersive environment that
is adequately designed to evaluate aesthetics and to perform usability tests.
Using these tools, designers can perform a participatory design session in
which expert users are involved. In this session, the participants are asked to
express their opinions about the overall product concepts as well as each QE,
according to main effects analysis and the EVA method (Erto and Vanacore
2002).

IV. Definition of the optimal concept. Analysis of the results from the evalua-
tion session allows the level of maximum satisfaction to be identified for each
QE, and then, starting from the best levels, the expected optimal product con-
cept. A confirmatory test is performed to verify that the expected optimal
product concept satisfies user needs more than the experimental one. Main
effects analysis and the EVA method can be adopted in order to assess the op-
timal concept, identifying the most important QEs and the best combination
of them. In particular, the EVA method allows us to evaluate a quality index
that reflects the level of user satisfaction for each significant QE.
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Table 2.1 Statistical techniques and design tools involved in each phase of the proposed product
innovation strategy

Phases
I II III IV

Statistical
techniques

– Pareto diagram
– Factor analysis
– Ordinal logistic

regression

– DOE – Main effects
analysis

– EVA method

– Main effects
analysis

– EVA method

Design tools – Creativity
– Pencil

– Pencil
– CAS–CAD
– virtual prototypes

– VRLab
– Interaction with

Virtual prototypes

– VRLab

V. Continuous innovation. At the end of phase IV, designers can verify whether
innovation really has been achieved. If it has, the design strategy suggests that
another iteration of the procedure should be performed in order to satisfy other
needs, not contemplated in the first experimentation. In contrast, if innovation
has not been achieved, the procedure is reactivated and designers look for the
reasons for the lack of success, which can be either incomplete identification
of the user needs or—more often—the wrong translation of user needs into
product concepts. This process, taken together, allows to improve the success
of innovative products.

The statistical design for innovation strategy involves the application of statistical
methodologies to help designers synthesize the input from expert users into new
features of virtual prototypes. Table 2.1 shows the statistical techniques and de-
sign tools involved in each phase of this product innovation process. Some phases
are particularly important to the innovation process: the identification of user needs
could be incomplete, ignoring important needs, or designers may have chosen to
study first some needs and then other ones. Moreover, in the generation phase, the
levels chosen for each QE or the product architecture selected could be wrong. For
these reasons, at the end of the experimentation stage, a continuous innovation pro-
cess is activated. Based on the collected information, the collaborative process be-
tween designers and expert users is updated until a sufficiently improved result is
obtained.

The innovation process is achieved through the use of virtual and physical pro-
totypes used in product and process simulation. Robust design techniques are pro-
posed in order to complete the product development with the implementation of
physical solutions.
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2.3 Three Applications of Statistical Design for Innovation

The proposed design strategy and its operational phases are now presented by de-
scribing three case studies in the next three sections. Each case study is briefly in-
troduced to illustrate, following an applicative approach, some particular phases of
the new strategy.

2.3.1 Railway Coach Interior Design

This case study was developed to improve the interior design of a railway coach.
It originated as a fruitful collaboration between the Department of Aerospace En-
gineering, the Department of Engineering Design and Industrial Management of
the University of Naples Federico II, Firema Trasporti S.p.A., and the Competence
Center for the Qualification of Transportation Systems (founded by the Campania
Region), which hosts a virtual reality laboratory called VRTest. Only the most in-
novative phases of the case study are discussed here: the identification of user needs
and concept evaluation in VR. Further details about the case study can be found in
Lanzotti and Tarantino (2007) and Di Gironimo et al. (2007).

2.3.1.1 Identification of User Needs

A simplified version of Kansei engineering was used to identify the quality elements
associated with the emotional perspective of users. Passengers of a medium-haul
train were chosen as the target group of this study. By scanning several sources of in-
formation, thirty-nine words describing the emotional bond between passengers and
train interiors were identified (Kansei words). These words were reduced to a more
manageable number using both factor analysis and affinity diagrams. The final set
of words was: comfort, originality, mobility, versatility, simplicity. A similar proce-
dure was used to identify the functional requirements to be studied: closed-circuit
monitoring system, recyclability, support for standing passengers, wide spaces, win-
dows. Each of these requirements was represented by two alternatives (i.e., levels)
with respect to Italian railway standards. These levels were arranged in a facto-
rial design to estimate the correlation between functional requirements and Kansei
words. Starting from the mood boards technique (McDonagh et al. 2002), an in-
novative procedure to exhibit concepts in KE sessions was used. According to this
new procedure, sketches representing different combinations of functional require-
ment levels were created using minimum design elements. These sketches aimed to
hint at the design of the railway coach interior rather than to show all of its prop-
erties. Thirty students enrolled at the Faculty of Industrial Design of the Second
University of Naples were asked to rate their impressions of each product concept
on a five-grade Likert scale. It was pointed out that the first impression was the most
important. No time constraint was considered.
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In order to analyze the collected data, ordinal logistic regression (OLR) was ap-
plied. This method, a general linear model, has been proposed for use in the case of
Likert scale data (Lawson and Montgomery 2006). The results from OLR indicated
that the Kansei word comfort was more associated with the QE (quality element)
support for standing passengers than the elements closed-circuit monitoring system
and wide spaces, whereas the Kansei word mobility was moderately associated with
the element wide spaces. No other association between Kansei words and functional
requirements was found to be statistically significant.

2.3.1.2 Quality Evaluation in VR

Support for standing passengers was the QE that was most strongly connected to
the sense of comfort. Following usability principles, three particular design factors
were chosen for this QE: shape, position and color. In particular, these factors were
studied for hands, perches and handrails. For each factor, three design solutions were
designed. Nine concepts were first drawn in CAD according to a nine-run fractional
factorial design, which were subsequently transferred into virtual reality software.
The generated train interior concepts were improved by applying light and texture
in order to increase their realism, before they were evaluated in an immersive virtual
reality environment. Ten expert users took part in the evaluation session. They were
first asked to express the feelings of comfort evoked by the different design solutions
on a ten-grade Likert scale, and then to answer a series of questions in order to
implement the EVA method (Erto and Vanacore 2002). This method quantitatively
measures the specific contribution of each physical quality element to the global
quality level of a chosen product concept. Figure 2.2 shows a moment during the
evaluation phase at the VRTest laboratory.

A confirmatory session was performed, within one week, in order to verify the
robustness of the procedure and the coherence of the results. On the basis of the
expert user responses in both sessions (planned and confirmatory), the optimal con-
cept shown in Fig. 2.3 was identified. It yielded a 40% improvement in perceived
quality compared with the concept designed without using the proposed strategy.

In conclusion, by using the proposed strategy, it was possible to identify a new
design element that was able to improve the users’ sense of comfort as well as the
global quality perception of train interiors.

2.3.2 Railway Seat Design

This case study concerns the seat design for a regional train; it was developed at the
virtual reality laboratory of the Competence Center for the Qualification of Trans-
portation Systems founded by the Campania Region. It shows how the proposed ap-
proach allows the deep separation between the activities of styling and engineering
to be reduced. The design cycle starts with both the sketches proposed by design-
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Fig. 2.2 The expert users involved in the evaluation session in the VRTest laboratory

Fig. 2.3 The optimal concept identified using statistical design for innovation strategy
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ers and the identification of user needs; it proceeds with assembly modeling and
the generation of several virtual prototypes of railway seats in compliance with the
constraints of standards; and it ends with the identification of the best concept for
the railway seats obtained through evaluations made by expert users in the virtual
reality environment. This procedure allows a realistic and reliable verification of the
results due to the expert users’ involvement in the main phases of product develop-
ment. In the following, we will focus on the generation of product concepts and the
definition of the optimal one. A more detailed description of the case study can be
found in Di Gironimo et al. (2008).

2.3.2.1 Generation of Product Concepts

In the first phase, three different style solutions, named yesterday, today and tomor-
row, were developed for new railway seats. Four QEs were identified from a Kano
analysis (armrests, direct lighting, footrest, tip-top table) and, for each QE, two
alternative solutions were defined according to railway standards. In order to test
the identified QE for each style, and taking into account the maximum number of
virtual prototypes that can be evaluated by expert users in a participative design
session, a 24−1 fractional factorial design was adopted (Table 2.2).

Afterwards, the twenty-four seats concepts were modeled in a 3D CAD environ-
ment. CAD software and the top-down approach were used to develop the virtual
prototypes according to a datum structure for assemblies and parts (Whitney 2004).
Some suitable geometric references (points, axes, planes) were built, based on the
standards. These references allowed the features of the QE to be realized and sub-
sequently modified in an easy and continuous updating process. The study of the
standards was the first step in implementing the datum structure; the geometric ref-
erences were used to control the main parameters of seats such as height, width and
depth. Due to the datum structure, the generated concepts complied with both the
standards and the first style ideas. In order to guarantee a good immersive experi-
ence in the evaluation phase, a basic seat was designed for each style and then the
QEs were added according to the respective level in the chosen design (Fig. 2.4).

Table 2.2 The experimental design (24−1)

Concept A: Armrests B: Lighting C: Footrest D: Table

1 Fixed Rear No Yes
2 Fixed Rear Yes No
3 Fixed Lateral No No
4 Fixed Lateral Yes Yes
5 Moving Rear No No
6 Moving Rear Yes Yes
7 Moving Lateral No Yes
8 Moving Lateral Yes No
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Fig. 2.4 Concept 4 for the style today (armrests: fixed; lighting: lateral; footrest: yes; table: yes)

2.3.2.2 Definition of the Optimal Concept

The data from the evaluation session were analyzed via Pareto ANOVA (Park 1996)
and mean effects analysis. The footrest and the tip-top table proved to be the most
important QEs; indeed, whatever the style, they provided the maximum contribution
to the perceived quality level. Starting from the best level of each QE, the expected
optimal seats concept was identified for each style. Finally, a confirmatory test was
performed for each style in order to assess the expected results under homogeneous
conditions. A comparison between the data from the first and second evaluation
sessions indicated that yesterday was the best style; its optimal concept is shown in
Fig. 2.5.

The EVA method was applied in order to establish the effective quality improve-
ment in the identified optimal concept. The results of the analysis were not satis-
factory for the must-be element direct lighting; for this reason new solutions and
further experimentation were needed.

2.3.3 Postural Seat System Innovation

This case study concerns the innovation of a postural seat system for disabled chil-
dren suffering from infantile cerebral paresis. It was developed in cooperation with
the IRCSS Associazione Oasi Maria SS. in Troina (EN, Sicily), Italy, which is an
Italian Institute involved in genetic research on mental disease recognized by World
Health Organization.
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Fig. 2.5 The optimal concept for yesterday, identified as the best style

This case study shows that continuous innovation is marked by the continuous
involvement of expert users at each stage of design in order to achieve an optimal
product in terms of user satisfaction. In the following, the focus is on describing the
sketch definition phase and on the continuous innovation approach.

2.3.3.1 Definition of Sketches

The designers worked intensely on style definition because of the strong influence
of aesthetics on user quality satisfaction. The aim was to free the children from
their “heaviness” resulting from the handicap and to spread an idea of mobility and
agility. The inspiration for this came from nature: a butterfly. Many sketches were
drawn for covers and control systems based on this idea (Fig. 2.6). The shape of
a butterfly wing was used in sketches of the line of the back of the seat; flowers (on
which butterflies rest) suggested a form for seat knobs; and butterfly feelers provided
the inspiration for collocating two webcams for video surveillance.

2.3.3.2 Continuous Innovation

In this case study, the continuous involvement of expert users was essential in order
to achieve successful innovation. Indeed, only those people who face the disease
every day can provide an effective contribution to product innovation. For this rea-
son, the designers chose to advance step-by-step, alternating the development of
new quality features with expert user evaluation. In particular, concept generation
stages and participative design sessions were iterated until a product concept that
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Fig. 2.6 From the concept of a butterfly to the first sketches by designer Francesco Fittipaldi
(photo: Costantino Tedeschi, WWF Sannio, Italy)

was more satisfying to users than previous implementations, and with innovative
features, was achieved. This design strategy allowed design improvements at every
iteration of the procedure (Fig. 2.7).

The identification of user needs was critical because, in this case, the users could
not express opinions on their own. For this reason, the designers focused their at-
tention on the users’ care-givers: parents and doctors. In the first phase, a lot of
interviews were conducted in the Oasi in order to identify the deficiencies of pos-
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Fig. 2.7 The continuous innovation cycle used in the postural seat system statistical design
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Fig. 2.8 Mariposa prototype

tural systems that were used in the institute. Starting from the best product in class
(BIC) among those used in the Oasi, new concepts were generated, with several so-
lutions for the mechanics and aesthetics. A lot of alternative concepts were studied;
the most functional ones among these were selected.

An evaluation session was performed in the Oasi in order to validate the design
and identify the best solution. The results showed a high satisfaction with the new
solution, called Mariposa (Fig. 2.8), compared with BIC.

Then, starting from Mariposa, a new virtual prototype was designed to concretely
define the parts and the assembly in terms of shape, dimensions and materials. This
virtual prototype concept was evaluated in the Oasi in order to discover the func-
tional requirements for innovative adjustments. Then a physical prototype was real-
ized to test the characteristics of some adjustments that are impossible to simulate
in VR. Based on the evaluation session and the analysis of the physical prototype,
a new virtual prototype called Unina was concretely designed, incorporating all of
the technical details for each part of the assembly. A final evaluation session was
performed in the Oasi; the results showed an effective improvement in the proposed
postural system. In particular, the Unina prototype nearly doubled the user satisfac-
tion compared with the BIC model. Table 2.3 lists some details about the product
feature innovations that resulted in this marked improvement in user satisfaction for
the Mariposa and Unina prototypes over the the BIC model.
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Table 2.3 Improvement of user satisfaction via product features innovation

BIC Mariposa Unina

Modular
systems

– Separate systems
for body parts

– Scarce segmentation
– No balancing system

– Partial segmentation
– No balancing system
– 5 discrete adjustments
– 2 continuous adjustments

– High segmentation
– Balancing system
– Adjustments for

ischiatic tuberosities
– 4 discrete adjustments
– 5 continuous

adjustments
Adjustment
interface

– Adjustment levers
– No position markers

– Control panel
in the back

– Position markers
– 10 knobs

– Control panel
in the back

– Position markers
– 1 handle

Stability
of the
adjustments

– Scarce – Medium – High

Ease of
adjustment

– No – Control panel
in the back

– Position markers
– 10 knobs

– Control panel
in the back

– Position markers
– 1 handle

Safety – Presence of dangers
for doctors, parents
and patients

– Absence of dangers
for doctors, parents
and patients

– Absence of dangers
for doctors, parents
and patients

Aesthetics – No – Yes – Yes

2.4 Conclusions

In this chapter, a design strategy based on the integration of the traditional pro-
cedure for user-centered design with the new principles of emotional design was
presented. Statistical methods and quality evaluation tools can support designers
in attempts to systematize the process of translating expressed/technical needs and
latent/emotional needs into product features, here called “quality elements.” More-
over, these methods provide designers with objective information that can be used
to continuously update the design procedure and then to improve the quality of the
designed products and the overall level of user satisfaction.

This strategy makes use of statistical methods, and tests the generated concept
alternatives in a virtual reality environment. Extensive use of virtual reality gives
designers the advantage of being able to improve quality early on in product devel-
opment. The case studies show how the proposed strategy can support and integrate
the designer’s creativity in the innovation process, enhancing the chances of success
of new products, since it increases user satisfaction.
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Chapter 3
Robust Ergonomic Virtual Design

Stefano Barone and Antonio Lanzotti

Abstract From the early development phases of a new industrial product, realistic
simulations can be performed in a virtual environment to study the human–machine
interaction. In a virtual lab, it is possible to perform experiments to assess the er-
gonomics of the new product using mannequins simulating the human body, and to
deal with the problem of anthropometric variation.
Although such sophisticated tools are available, there is still the need for a method-
ological framework that efficiently organizes the experiments in the virtual lab.
This paper provides an overview of robust ergonomic virtual design (REVD),
a methodology developed by the authors over the last few years. It allows prod-
ucts to be developed with ergonomic performances that are as insensitive as possi-
ble to anthropometric variations during their life cycles. This methodology focuses
on finding the optimal values for the main design parameters and, when necessary,
the adjustment parameters. Furthermore, a new way of dealing with anthropometric
noise is proposed. Some applications are presented, along with detailed analysis.

3.1 Introduction

Designing the ergonomics of a new product is an increasingly important aspect of
early product development phases. This is particularly true if the end-user must
interact with the product for long periods (Dainoff 2003). Today, the main fields
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that are developing new tools for the study of the human–machine interface (HMI)
are:

• transportation (improving the comfort of cars, trains, airplanes, etc.)
• furniture (reducing discomfort from video terminals or usability studies of new

devices)
• production lines (e.g., reducing musculoskeletal problems in assembly line work-

ers).

Realistic digital humans (mannequins) in the virtual environment, for example
Jack® (Bowman 2001) and Ramsis® (Geuss 2000; Vogt et al. 2005) to cite those
most commonly used in both industrial and academic contexts, can help design-
ers to perform human–machine interaction studies (see e.g., Colombo and Cugini
2005). These computer programs are widely used in the automotive field, where
they were initially developed. When assessing the comfort of new car user packag-
ing, these programs make it possible to analyze the joint angles that a subject can
assume while driving, which can be related to the feeling of comfort (Porter and
Gyi 1998). In such a virtual environment, the analysis of the interaction between
a digital mock-up and the mannequin gives rise to a new form of experimentation.

These experiments in the virtual environment are usually time-consuming, so it is
necessary to perform them in a rational and efficient way. Existing, well-known pro-
cedures for performing an ergonomic analysis (e.g., accessibility or usability analy-
sis, comfort assessment) are based on the involvement of potential users selected on
the basis of the mode, median and mean values and the limit percentiles for height.
Using real or virtual experiments, it is possible to study the effects of anthropo-
metric variation on ergonomic performance. Nevertheless, there is still a lack of
a methodological framework for planning and analyzing virtual experiments aimed
at improving product performance early on in the design process.

This chapter provides an overview of the work that the authors have carried out
on what is termed the robust ergonomic virtual design (REVD) methodology. This
approach has been applied to improve the comfort performances of driving seats
and to identify innovative designs for seat adjustments in the virtual environment.
This research work led to several articles (Barone et al. 2001, Barone and Lanzotti
2002; Barone et al. 2005; Barone and Lanzotti 2007; Lanzotti 2006; Lanzotti and
Vanacore 2007a; Lanzotti and Vanacore 2007b). In Sect. 3.2, the methodological
framework of REVD is presented, with particular emphasis placed on the definition
of the performance indicator weighted comfort loss and the selection method for the
experimental levels of the anthropometric noise factor height. An application is then
described: a three-wheeled vehicle, where only the male population is considered as
the target users. In Sect. 3.3, we focus on the most common situation, where the
noise factor (the height of a potential user; female or male) is a mixture. For this
case, we show how the correct experimental levels can be determined. A second ap-
plication concerning mini-car user packaging is then presented. Section 3.4 presents
the last phase of REVD, i.e., adjustment design, and the application of it to a new
mini-car driving seat. Section 3.5 provides final comments and conclusions.
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3.2 Aims and Phases of the Robust Ergonomic
Virtual Design (REVD) Strategy

REVD is a statistics-based methodology for improving the ergonomic characteris-
tics and finally the quality of a new product by reducing the sensitivity of its er-
gonomic performances to anthropometric variation.

Our starting point is the well-known robust design methodology (Taguchi 1987;
Phadke 1989; Park 1996). Following this methodological path, and according to it,
the REVD framework can be schematized as shown in Fig. 3.1.

The human–machine interface (HMI) design phase involves developing work-
ing prototypes of the system and fulfilling functional requirements by taking into
account user interaction. The designer sketches several concepts, i.e., product ar-
chitectures. Such concepts can, at this stage, be developed in a virtual environ-
ment as virtual prototypes that simulate some key system ergonomic characteristics
(KSECs). This design phase is performed by exploiting engineering experience and
knowledge, as well as simulation tools.

The parameter design phase involves identifying the main design parameters,
and predicting and evaluating their optimal settings. In this context, attention is paid
to improving system ergonomic robustness, i.e., insensitivity of the system to an-
thropometric variation. During the experimental phases, the designer can discover
interaction effects that were not previously considered, and thus increase his/her sci-
entific knowledge. Even if no “discovery” is made, the experimental phase at least
contributes to improving the state of the art in his/her technological field.

The responses to analyze are the KSECs that were identified in the previous
phase and that are measurable in the virtual environment. Design parameters are
variables whose values can still be modified in this phase without any increase in
manufacturing or usage costs. Designers select parameters that are able to signif-
icantly improve the KSECs (key system ergonomic characteristics). The effect of
changing design parameter values is evaluated through experiments aimed at find-

Fig. 3.1 The three main
phases of robust ergonomic
virtual design
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ing the best design solution, otherwise termed the design setting, i.e., the best com-
bination of design parameter values. In this phase, it is also necessary to identify
the sources of variation—the so-called noise factors—and to understand their im-
pact on the KSECs when the human–machine interaction is realistically evaluated.
The systematic assessment of noise factors and their effects in product development
is a growing research area (see, e.g., Johansson et al. 2006). Once identified, the
noise factors should be opportunely introduced into the experimental arrangement
(for a comprehensive account see, e.g., Wu and Hamada 2000). In REVD, the main
source of noise is due to variation in the anthropometric dimensions of potential
product users (e.g., vehicle drivers).

The adjustment design phase involves improving the system robustness still fur-
ther if the optimal setting obtained in the parameter design phase does not guarantee
a satisfactory performance level. The presence of an adjustment phase results from
the inability to set any tolerance on the anthropometrical noise factor unless a deci-
sion is made to cut off some fraction of the potential user population.

Adjustment parameters can be identified in the parameter design phase when it is
believed that it is technically viable to set them at minimum cost and that this does
not negatively affect the safety and the cost of the product.

3.2.1 Key Steps of the Parameter and Adjustment Design Phases

Once the concept design for the human–machine interface has been completed, the
key steps to follow according to the REVD methodology are:

1. Selection of the experimental design strategy to be performed in the virtual lab
2. Selection of the design parameters and levels
3. Identification of anthropometric noise factors and levels
4. Selection of the performance indicator (comfort loss)
5. Analysis of the experimental results and definition of the optimal settings for

the main design parameters
6. If the robustness level is not satisfactory, the selection and definition of the func-

tional requirements for the adjustment parameters

3.2.1.1 Selecting the Experimental Design to be Performed in the Virtual Lab

Experiments in virtual reality must be accurately planned. One effective and tech-
nically viable experimental arrangement is a cross-array (Phadke 1989; Park 1996),
in which the “inner array” is defined by the design settings and the “outer array”
is defined by the settings for the anthropometric noise factor values. Each design
setting of the inner array is tested several times, as prescribed by the outer array.

The particular inner and outer array designs that should be chosen essentially
depends on the number of design parameters chosen and the number of levels as-
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Fig. 3.2 Cross-array arrangement for experimentation in virtual reality

sociated with them. It also depends on the time and cost constraints imposed on
experimenters (engineers/designers) during the development phase.

A pictorial representation of a cross-array is given in Fig. 3.2. The two plans for
the inner array and outer array are crossed in the sense that each row of the inner
array (design parameter level combination) is tested for each column of the outer
array. The picture shows the case for a single anthropometric noise factor, which
will be the case adopted here for reasons explained later.

3.2.1.2 Choice of Design Parameters and Levels

Design parameters depend on the product architecture and are defined during the
concept design phase. In REVD, design parameters are essentially geometrical fea-
tures (e.g., lengths, angles, etc.) of the design which are thought to affect ergonomic
performance. It is interesting to investigate the extent to which they individually af-
fect (main effects) the KSECs (key system ergonomic characteristics), but also to
check whether there are any synergistic or antisynergistic interactions among these
parameters. The choice of design parameter levels to be tested is mainly left to the
judgment of designers/engineers, who will consider technical and economical con-
straints (in the sense that the adoption of a certain design parameter level should not
significantly increase the manufacturing or usage cost).

3.2.1.3 Identification of Anthropometric Noise Factors and Levels

As already mentioned, the final objective of REVD is to find the product design set-
ting that is the least sensitive (i.e., the most robust) to variations in the anthropomet-
ric characteristics of the subjects (men/women) who will interact with it. Therefore,
in general, variations in the anthropometric characteristics of the target population
are considered to be a noise factor in the robust design terminology.
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In the applications that have been proposed by the authors up to now, only one
anthropometric noise factor has been considered: the height of the human body. This
is a synthetic noise factor, since it is a good surrogate for anthropometric variation
(Reed and Flannagan 2000) within the particular scope of this analysis. In addition,
it is easily managed in the posture prediction software packages Jack and RAMSIS.

When defining the outer array, more levels of the noise factor “height” must be
chosen. Obviously, the higher the number of levels for the noise factor, the more
representative the population variation will be, but the number of virtual lab ex-
periments required will also be greater. Therefore, a compromise solution must be
found. The definition of the noise factor levels in the outer array that is most com-
monly adopted is that proposed by Taguchi (see, e.g., Taguchi 1987), in which three
levels are chosen: a central level corresponding to the expected value μ of the noise
factor, and two levels at a distance ±σ

√
3/2 from μ , which represent σ , the stan-

dard deviation of the noise factor. The responses obtained for these three noise factor
levels are equally weighted. D’Errico and Zaino (1988) proposed an improvement of
Taguchi’s method that involved adopting three levels (μ −σ

√
3, μ , μ + σ

√
3) that

were differently “weighted” (1/6, 4/6, 1/6, respectively). Their proposal was based
on a better approximation of the continuous normal random variable (rv) when mod-
eling the noise factor by a discrete three-mass-point rv.

The three levels proposed by D’Errico and Zaino (1988) are almost equivalent to
the 5th, 50th and 95th height percentiles, which can be easily handled in the software
packages Jack and RAMSIS.

3.2.1.4 Choice of the Performance Indicator: The Comfort Loss

In the ergonomic analysis of the HMI (human–machine interface), the use of a hu-
man mannequin in the virtual environment enables some defined KSECs to be mea-
sured. These KSECs do not fully explain the human feeling of comfort, since it is
a complex and subjective structure, but they have the undoubted advantage of being
objective and reproducible in the virtual reality experiments. For example, in the
ergonomic analysis of new car user packaging, these programs provide the ability to
evaluate the joint angles that a subject assumes while driving, which can be related
to the human feeling of comfort (Porter and Gyi 1998, Barone and Curcio 2004).
Joint angles are not the only way in which an objective measure of comfort can be
derived. Another way is provided by the system of forces and pressures acting on
the interface between the product and the user (Bubb and Estermann 2000).

In their investigation, based on a selected random sample representative of a pop-
ulation of western Europe drivers, Porter and Gyi (1998) measured the joint angles
preferred by each subject when they were free to choose their preferred posture in
a highly adjustable driving rig. Table 3.1 provides the summary statistics for a sub-
set of preferred joint angles. These values concern only male drivers. However, the
methodology is straightforward to extend to female drivers and eventually to a suit-
able mixture of the two, as will be shown later in this article.
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Table 3.1 Summary statistics (values in degrees) of preferred joint angles
(source: Porter and Gyi 1998)

Joint angles Min. Preferred Max.

Upper arm flexion 19 50 75
Elbow angle 86 128 164
Trunk–thigh angle 90 101 115
Knee angle 99 121 136
Foot–calf angle 80 93 113

We assume that the “preferred” joint angles in Table 3.1 are ideal targets for
the designer. For simplicity of illustration, we start by considering only one joint
angle (the knee angle). We define a “comfort loss” which is zero if the joint angle
imposed by the design exactly matches the target value (121◦ for the knee angle),
while it increases as the imposed joint angle moves away from the target.

Due to the absence of quantitative knowledge about the discomfort experienced
at the limits of the range, it is assumed that the comfort loss is the same value (con-
ventionally placed equal to 1) at the extremes of each range given in Table 3.1. So
the loss function we imagine for each joint angle is not symmetrical (Barone et al.
2001, Abdel-Malek et al. 2001). In order to test the most appropriate asymmetric
loss function (for an example, see Spiring and Yeung 1998), Barone and Lanzotti
(2002) considered several models of loss. Using this simplified measure of discom-
fort as well as human mannequins, we showed that analyses of discomfort data
based on different models are substantially equivalent from the designer’s point of
view. Therefore, the simplest and most reasonable model, the quadratic asymmet-
ric model, can be fruitfully applied. The quadratic asymmetric loss is an extension
of the well known symmetric quadratic loss and is mostly used in tolerance design
(Maghsoodloo and Li 2000). An analytical expression for it is:

L(y) =
{

α (y− τ)2 , y ≤ τ
β (y− τ)2 , y > τ

(3.1)

where:

y is a generic joint angle value,
τ is the target value for the joint angle y,
α and β are constants. Imposing the loss value 1 for ymin and ymax,

we get α = (ymin − τ)−2 and β = (ymax − τ)−2.

In the applications presented in this article, we will always assume this model (3.1)
for the loss function L(y).

Now, it is evident that for a specific design setting, the value assumed by the
joint angle depends on the anthropometric characteristics of the subject who will
interact with that design (Pheasant 1996, Robertson and Minter 1996, Vogt et al.
2005). We are assuming that the height of the subject provides a good surrogate for
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the anthropometric variation. The height of the person interacting with the product
is in fact a random variable (rv). We henceforth denote this rv “H.”

Since the joint angle depends on H, it becomes a random variable, let’s say Y (H).
Hence the loss function formulation becomes:

L(Y (H)) =
{

α (Y (H)− τ)2 , Y (H) ≤ τ
β (Y (H)− τ)2 , Y (H) > τ

(3.2)

We are interested in evaluating and maximizing the expected value of L(Y (H)),
which can take the form:

E {L(Y (H))} =
∫

L(y(h)) · fH (h) dh (3.3)

by considering H a continuous rv with a density fH(h).
If the continuous rv is replaced with a discrete three-mass-point rv, as specified

in the previous subsection, then the expected loss can be rewritten as:

E {L(Y (H))} =
3

∑
i=1

L(y(hi)) ·wi (3.4)

where hi are the three height values (5th, 50th, 95th percentiles) and wi are the
weights (probability masses respectively, 1/6, 4/6, 1/6), set according to the
D’Errico and Zaino approach.

By recalling Table 3.1, it is evident that a loss function for this case should con-
sider all joint angles, and should thus have a multivariate structure.

Multivariate quadratic loss functions have been defined mainly for the symmetric
case (see, e.g., Pignatiello 1993; Kuhnt and Erdbrügge 2004; and a recent review by
Murphy et al. 2005). There, the loss function is defined as a quadratic form gov-
erned by a matrix of costs (known constants). The costs on the main diagonal of the
matrix individually weight the distances of each of p responses from their targets.
Furthermore, the off-diagonal elements of the matrix model the incremental losses
incurred when pair of responses are simultaneously off-target. If the off-diagonal
elements are placed equal to zero, the multivariate loss reduces to the sum of p uni-
variate quadratic losses. Due to an absence of information, here we use a simplified
model which assumes that all joint angles have the same importance to the comfort,
and that off-diagonal cost elements are zero.

In this case, the loss function for each joint angle is:

Lj = L(Yj (H)) =
{

α j (Yj (H)− τ j)
2 , Yj (H) ≤ τ j

β j (Yj (H)− τ j)2 , Yj (H) > τ j
, j = 1, . . . , p (3.5)

where p = 5, by referring to Table 3.1.
Under the assumption that off-diagonal cost elements are equal to zero, the total

loss is given by:

Ltot =
p

∑
j=1

Lj (3.6)
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and therefore the expected value of the loss is the sum of the expected values of the
univariate losses, despite the correlation structure. So we define a total expected loss
for the multivariate quadratic asymmetric case, and call it the weighted comfort loss
(WCL):

WCL =
p

∑
j=1

3

∑
i=1

L [y j (hi)] ·wi . (3.7)

3.2.1.5 Analysis of the Experimental Results

The WCL allows the anthropometric variability that affects joint angles to be ac-
counted for in any fixed design setting; this makes the WCL the simplest approxi-
mate index for evaluating the overall comfort experienced by a potential user. Fur-
ther analysis of the experimental results can be conducted on the basis of statistical
methods. It can be a more or less standard analysis, depending on the experimen-
tal arrangement adopted and the degree of mathematical precision. Main effects
analysis and Pareto diagrams are useful and simple tools for evaluating the design
parameters during explorative experimental phases.

3.2.2 A First Application: Three-Wheeled Vehicle

In this first application, we show the results obtained during the development phase
for an electrically powered three-wheeled vehicle permitting city center mobility.
Figure 3.3a shows a digital mock-up of the vehicle concept. It was developed using
a computer-aided styling program and then transferred to the Jack® software. Fig-
ure 3.3b shows how the mannequin can be accommodated on the vehicle mock-up
by imposing several constraints: the hands grasp the handlebar, the feet are located
at a fixed point on the foot-board, the rear is located at a fixed point on the seat, and
the mannequin’s back is held vertical.

Fig. 3.3 a Digital mock-up of the vehicle concept proposed by the designer Francesco Fittipaldi.
b The mannequin Jack® accommodated in the mock-up in the virtual environment
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Table 3.2 Description of design parameters and levels

Levels

Parameter 0 1 2

A Handlebar arc length (mm) 500 600 700
B Seat arm length (mm) 430 445 460
C Handlebar angular position (deg.) –15 0 15
D Seat arm angular position (deg.) –15 0 15
E Seat angular inclination (deg.) –10 0 10

In this early development phase, an aim of the designer is to anticipate the er-
gonomic characteristics of the vehicle as accurately as possible by finding the geo-
metrical features that have the most effect on the driver’s comfort and their optimal
settings, which should then be frozen during the following development phases.
This activity can also result in the proposal of adjustment factors, i.e., design fea-
tures that can be regulated by the end-user, taking into consideration safety and cost
constraints.

The six key methodological steps described in Sect. 3.2 can be followed here. The
designer must choose the design parameters and their levels. Five parameters were
identified and judged as potentially affecting driver comfort. They are described in
Table 3.2 and depicted in the schematic drawing of Fig. 3.4.

For each design parameter, three levels were chosen; level 1 represents the initial
setting, i.e., a setting tentatively chosen by the designer based on his/her experience
only.

During the virtual experimentation, for each design setting it is necessary to:

• Build the digital mock-up of the vehicle corresponding to the design setting
• Import the obtained digital mock-up into the virtual environment
• Choose the anthropometric dimensions of the mannequin
• Accommodate the mannequin in the vehicle
• Analyze the joint angles

Fig. 3.4 Scheme of the adopted design parameters
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These operations cannot be performed automatically. Each run is time-consuming
and requires the work of at least one person. Furthermore, the experimenters need
to account for all conditions to ensure reproducibility.

In order to find the optimal design setting, a cross-array was planned and used.
A three-level 35−2 fractional factorial design was adopted as the inner array (Wu and
Hamada 2000), while the anthropometric noise factor “height” was set at the 5th,
50th and 95th percentiles, since the product was initially intended only for men. The
experimental plan and summary results in terms of WCL (weighted comfort loss)
are shown in Table 3.3. To get a benchmark, the WCL was calculated at the initial
setting (all factors coded at level 1), which is not included in the inner array. For
this, WCL0 = 2.83.

From the data in Table 3.3, it is possible to estimate the main effects of the design
parameters on the WCL. They are also presented graphically in Fig. 3.5. Recall
that each point in the graph represents an average of nine different experimental
conditions, this being a strength of this experimental design.

Table 3.3 Experimental design of and results from the first parameter design phase for the three-
wheeled vehicle (DS = design setting)

DS A B C D E WCL DS A B C D E WCL DS A B C D E WCL

1 0 0 0 0 0 23.28 10 1 0 0 1 1 5.38 19 2 0 0 2 2 3.04
2 0 0 1 1 2 2.15 11 1 0 1 2 0 4.20 20 2 0 1 0 1 19.64
3 0 0 2 2 1 2.76 12 1 0 2 0 2 10.75 21 2 0 2 1 0 13.45
4 0 1 0 1 2 2.65 13 1 1 0 2 0 2.85 22 2 1 0 0 1 17.27
5 0 1 1 2 1 2.21 14 1 1 1 0 2 8.40 23 2 1 1 1 0 8.43
6 0 1 2 0 0 18.85 15 1 1 2 1 1 4.09 24 2 1 2 2 2 2.23
7 0 2 0 2 1 3.62 16 1 2 0 0 2 4.04 25 2 2 0 1 0 5.56
8 0 2 1 0 0 15.57 17 1 2 1 1 1 1.78 26 2 2 1 2 2 4.09
9 0 2 2 1 2 2.32 18 1 2 2 2 0 3.32 27 2 2 2 0 1 9.35
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Fig. 3.5 Design parameter main effects on the weighted comfort loss
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From Fig. 3.5, it is clear that the handlebar arc length (factor A) has an evident
quadratic effect, while the most evident linear effect is given by the seat arm an-
gular position (factor D), for which the best level tested is level 2. Seat arm length
and seat angular inclination (factors B and E) have moderate linear effects. Han-
dlebar angular position (factor C) results are indifferent (at least across the tested
range). The best experimental design setting is the 17th, for which we have calcu-
lated a WCL = 1.78—already a 37% improvement over the initial setting. However,
the best experimental design setting is different from the expected optimal setting
(factor A at level 1, B at level 2, C at level 0, D at level 2, E at level 2), as can be
deduced by selecting the level associated with the lowest WCL value for each factor
from Fig. 3.5.

To confirm the previous results, a second experimental phase was performed (see
Tables 3.4 and 3.5). Factor A was fixed at the previous level, 1, factor C, the setting
of which appeared to be largely irrelevant, was fixed at level 2, the most convenient
one. Factor D was fixed at the previous level, 2, and was proposed as an adjustment
factor. The second inner array tested was a central composite design for the two fac-
tors B and E, enabling the response surface to be estimated. The levels for factor B
were chosen to investigate whether WCL decreases for values that are higher than
the best one found in the previous phase. The levels for factor E were chosen to

Table 3.4 Description of the design parameters and levels for the second experimental phase

Dimensions

Fixed parameters

A 600 mm
C 15 degrees
D 15 degrees

Design parameters Levels
–α –1 0 1 α

B 440 446 460 474 480 mm
E 7.5 8.2 10 11.8 12.5 degrees

Table 3.5 Experimental design of and results from the second experimental phase
(DS = design setting)

DS B E WCL

1 –1 –1 0.74
2 1 –1 0.49
3 –1 1 0.68
4 1 1 0.87
5 –α 0 0.50
6 a 0 0.60
7 0 –α 0.69
8 0 a 0.73
9 0 0 0.56



3 Robust Ergonomic Virtual Design 55

check whether the WCL minimum occurred within the range tested previously, due
to engineering constraints that required the maximum level of this factor to increase.

The predicted minimum WCL lies at the point with coordinates
(−0.8109,0.7454), corresponding to the levels B = 361 mm and E = 8.79 de-
grees. The predicted value of WCL is 0.46. The point was tested and the pre-
diction error was negligible. The final improvement attained in WCL was 84%
(|0.46− 2.83|/2.83). This application showed that, although the initial setting of
design parameters based on designer experience was good, the application of this
methodology made it possible to attain significant improvements with limited exper-
imental effort (two experimental sessions performed in about two working days).

3.3 Anthropometric Noise Factor for a Mixture Population

The approach proposed by D’Errico and Zaino to model the anthropometric noise
factor in the cross-array experiment is unsuitable when the designer wishes to con-
sider a mixture of men and women for the potential population of product users.
In this case, the anthropometric noise factor is a mixture of two rvs. We consider
the rv “height” H to be a mixture of the two normal rvs Hw and Hm. We then pose:
μw = E{Hw}, μm = E{Hm}, σ2

w = Var{Hw}, σ2
m = Var{Hm}.

The probability density function (pdf) of H is simply obtained by weighting the
pdfs of Hw and Hm:

fH (h) = k · fw (h)+ (1− k) · fm (h) (3.8)

where k is the mix coefficient (proportion of women in the target population), and
the parameters are μw = 1.627; σw = 0.069; μm = 1.755; σm = 0.068.

The choice of levels for the anthropometric noise factor “height” in the REVD
experiment poses a problem when approximating the mixture H by a discrete rv as-
suming only a very limited number of prefixed values. We henceforth consider the
case in which four levels are chosen for the noise factor; such values are denoted
by hi (i = 1, . . . ,4). In particular, we choose the values h1 (corresponding to the 5th
percentile of Hw), h2 (to the 50th percentile of Hw), h3 (to the 50th percentile of Hm),
and h4 (to the 95th percentile of Hm). This choice is reasonable and can be adopted
mainly for practical purposes (these percentiles are easily set in the packages Jack
and RAMSIS). However, Barone and Lanzotti (2007) also showed the methodologi-
cal reasons for the optimal nature of this choice (four noise factor levels).

To obtain equivalence for the two probability distributions (the continuous mix-
ture and the discrete approximation), we equate the first three absolute moments of
the two distributions. Furthermore, we impose the necessary constraint on the sum
of probabilities for the discrete rv (Barone and Lanzotti 2007). For the parameters
defined, we have h1 = 1.513; h2 = μw = 1.627; h3 = μm = 1.755; h4 = 1.866. By
solving the system, we get: w1 = 0.049; w2 = 0.316; w3 = 0.511; w4 = 0.124. It
should be noted that the discrete approximation is parametrically defined by the
mix coefficient k.
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For this case of a mixed population, formula (3.7) is generalized to the following:

WCL = WCL(k) =
p

∑
j=1

4

∑
i=1

L [y j (hi)] ·wi (k) . (3.9)

3.3.1 A Second Application: Mini-Car User Packaging

As a second application, we illustrate the results of work carried out in the devel-
opment of mini-car user packaging. Figure 3.6a shows the vehicle concept, while
Fig. 3.6b indicates the seven design parameters chosen for the experiments in the
virtual lab. These parameters and their levels were selected based on designer expe-
rience and SAE guidelines (SAE = Society of Automotive Engineers).

Table 3.6 provides details on the chosen design parameters and the levels that
were tested.

Once the design parameters and their levels had been defined, the experiments
were performed according to a cross-array arrangement. A fractional 27−3

IV factorial
(Wu and Hamada 2000) consisting of sixteen design settings was chosen as the inner

Fig. 3.6a,b REVD of mini-car user packaging (the mini-car model was designed by F. Fittipaldi)

Table 3.6 Description of design parameters and levels for the experimental phase
(coded as “−1” and “+1”)

Parameter Experimental levels

A Steering wheel angular position (deg) 40 50
B Seat arm angular position (deg) 20 40
C Foot position on footboard (mm) 5 15
D Seat back inclination (deg) 0 5
E Seat arm length (mm) 30 35
F Seat cushion inclination (deg) 0 5
G Steering wheel arm length (mm) 55 65
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Table 3.7 Experimental design of and results for the mini-car user packaging
(DS = design setting)

DS A B C D E F G WCL
(k = 0.25)

WCL
(k = 0.50)

WCL
(k = 0.75)

1 –1 –1 –1 –1 –1 –1 –1 5.37 4.83 4.29
2 1 –1 –1 –1 1 –1 1 6.55 6.21 5.87
3 –1 1 –1 –1 1 1 –1 1.67 1.38 1.10
4 1 1 –1 –1 –1 1 1 6.95 6.39 5.83
5 –1 –1 1 –1 1 1 1 8.09 7.57 7.05
6 1 –1 1 –1 –1 1 –1 9.42 8.88 8.33
7 –1 1 1 –1 –1 –1 1 7.72 6.98 6.23
8 1 1 1 –1 1 –1 –1 3.50 2.97 2.44
9 –1 –1 –1 1 –1 1 1 5.61 5.19 4.77

10 1 –1 –1 1 1 1 –1 3.82 3.67 3.52
11 –1 1 –1 1 1 –1 1 1.87 1.74 1.61
12 1 1 –1 1 –1 –1 –1 2.30 2.06 1.81
13 –1 –1 1 1 1 –1 –1 6.56 6.14 5.73
14 1 –1 1 1 –1 –1 1 12.07 11.38 10.69
15 –1 1 1 1 –1 1 –1 4.34 3.80 3.26
16 1 1 1 1 1 1 1 4.55 4.04 3.52

array. This is presented in Table 3.7. The last three columns of the table show the
WCL values obtained using formula (3.9).

Figure 3.7 shows the estimated main effect plot for the mix coefficient k = 0.5.
The graph shows that the most important effects are: B (seat arm angular posi-
tion), C (foot position on footboard), E (seat arm length), and G (steering wheel arm
length). Factor F (seat cushion inclination) has absolutely no influence.

A B C D E F G

-1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1
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Fig. 3.7 Estimated effects of the design parameters on WCL (mix coefficient k = 0.5)
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3.4 Adjustment Design of a New Mini-Car Driving Seat

An application of the last step of the REVD methodology is now presented, con-
cerning the concept design of a new mini-car driving seat. After the definition of
the mini-car user packaging (see Lanzotti 2008), involving steps 1 to 5 (Sect. 3.2.1),
the adjustment design phase is performed to improve system comfort. This phase
starts with the optimal settings obtained at the end of the parameter design phase
and aims to further improve the robustness of the system to anthropometric vari-
ability.

First, to set the functional requirements for the adjustment parameters of the driv-
ing seat, it is necessary to establish a reference system. The origin of the parameter
space is the H-point. Its position is defined by the coordinates H30, the vertical dis-
tance between the seating reference point (SgRP) and the heel point, and L53, the
horizontal distance between SgRP and the heel point (see Fig. 3.8). Their initial val-
ues, (58.2,50) (expressed in cm), were obtained as a result of the parameter design
phase.

The experimental phase aims to explore the new parameter space with classi-
cal techniques (“steepest ascent”). This space has its origin at the coordinate (L53,
H30), equal to (58.2,50). The exploration is made in three steps. The first two
steps are carried out using two full-factor factorial experimental design with central
point experiments. The third step is carried out using a central composite design,
with the central point occurring at coordinates (8,−2). The results are reported in
Table 3.8.

Fig. 3.8 Reference system for the adjustment design phase
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Table 3.8 Comfort loss evaluated with a central composite design (CCD)

Female Male

Run A (H30) B∗ (L53) 5th 50th 50th 95th

0 0.00 10.00 11.61 6.33 2.47 1.72
1 –4.00 10.00 8.24 6.20 2.76 3.29
2 –2.00 5.17 4.15 3.50 3.99 4.34
3 –2.00 10.83 10.34 6.48 2.90 2.18
4 0.83 8.00 7.83 4.76 2.41 2.40
5 –4.00 6.00 6.36 4.04 2.96 3.24
6 –2.00 8.00 5.76 3.32 2.30 2.78
7 0.00 6.00 6.31 4.03 3.15 3.36
8 –4.83 8.00 5.76 4.36 3.12 3.63

3.4.1 Sensitivity of Comfort Loss to Mix Variation

Figure 3.9 shows isocomfort curves, and uses different colors to highlight the de-
creasing comfort around the new optimal area (the blue one, where the comfort loss
is less than 4).

The optimal area is defined by a comfort loss that is 10% higher than the mini-
mum value and by an absolute value of less than 4, empirically fixed on the basis of
the conventional limit value for the loss (equal to 1) for all joint angles (in number
of 12). The isocomfort curves show that the optimal posture of the mannequin, de-
fined at the end of the parameter design phase, can be significantly improved (about
50%).

Fig. 3.9 Isocomfort curves based on WCL(50) for the 50% population mix
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Fig. 3.10 Isocomfort curves based on WCL(75) for a 75% population mix

Figure 3.10 shows how isocomfort curves vary with the mix coefficient. This
means that the system is not robust in the widest possible sense, since the optimal
setting depends on the population mix. This variability could be reduced if the prod-
uct is designed only for a specific target (e.g., for female users or a prefixed mix);
when this target is not specified, the robustness can be improved only by introducing
adjustment parameters.

3.4.2 Adjustment Optimization

The results can be analyzed to minimize the adjustments needed to reduce the ex-
pected comfort loss for the population. For the driving seat, this means evaluating
its slope and slide range. This step is important when the designer must carefully
choose the adjustments to introduce, given the strict cost constraints typical of the
mini car segment.

In order to evaluate the slope, it is necessary to fit the optimal coordinates of the
H-point for each percentile. Table 3.9 summarizes the minimum point of comfort

Table 3.9 WCL for the four percentiles used in the virtual experiments

X(L53) Y(H30) 5th female 50th female 50th male 95th male

5.2 –2 4.15 3.5 3.99 4.34
8 –2 5.76 3.32 2.3 2.78

10 0 11.61 6.33 2.47 1.72
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Fig. 3.11 Innovative design of adjustment requirements

loss for each percentile. By applying the weighted least square technique, it is pos-
sible to estimate the regression line for each population mix. As an example, the
estimation procedure can be repeated for the quantiles and the median (25%, 50%
and 75%), in order to compare the slopes.

The slope ranges from 6◦ (for the 25%) to 28◦ (for the 75%). Thus, a device that is
able to satisfy this range can maximize the comfort. Otherwise, once the population
mix has been fixed, we can design an innovative device with a slope that minimizes
the comfort loss. At this step, the second adjustment parameter to design is the slide
range. In order to minimize the comfort loss of potential users, the 1st female and
99th male percentiles need to be introduced into the experiments performed at this
step (Lanzotti 2008b).

Figure 3.11 shows the results for the optimal setting of the slide range. The value
of 110 mm enables the driver cabin to be the smallest, a useful advantage in the
mini-car segment.

These results are good if compared with those obtained by UMTRI (University
of Michigan Transportation Research Institute) and implemented in Jack. The hor-
izontal slide range proposed by UMTRI is 146 mm—more than that proposed here
(Reed et al. 1999, 2000).

Figure 3.12 shows the positions of the six percentiles of the human mannequins.
It is useful to check the driver cabin and the accessibility to the dashboard.
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Fig. 3.12 Positioning of the
six percentiles

3.5 Conclusions

This chapter presented the methodological framework of REVD (robust ergonomic
virtual design), which involves HMI (human–machine interface) concept design and
robustness improvement. The HMI is tested using a cross-array experimental design
in a virtual environment. The chapter has focused on the pre-design phase of the
outer array, when the experimenter has to select the levels of the anthropometric
noise factor. In this case, the noise factor is a mixture of two Normal variables,
corresponding to the male and female components of a target population of potential
product users. For this problem, an efficient solution was applied that saves 33% of
experimental effort compared with a straightforward generalization of D’Errico and
Zaino’s approach to the discretization of noise factors.

Finally, for cases where the system response—in terms of discomfort minimiza-
tion for potential users—is not yet robust enough to the anthropometric noise factor,
the authors have briefly illustrated, as a guideline, how the most significant design
factors can be identified and then adjusted in accordance with the anthropometric
particulars of the potential user. In fact, no restriction (i.e., tolerance) can be placed
on the anthropometric noise factors unless a decision is made to design out a fraction
of the population of potential users.

As a beautiful synthesis of artistic and statistical designer cooperation, Fig. 3.13
shows sketches made by the Italian designer Riccardo Dalisi, who was involved in
this project. Starting from the optimal definition of the main dimensions of an of-
fice chair, represented by the continuous line in Fig. 3.13 and obtained using the
REVD approach by postgraduate and Ph.D. students working for their theses, Ric-
cardo Dalisi has creatively used these lines while giving his concept design the right
proportions.
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Fig. 3.13 REVD of an office chair. The artistic side of the research work (designed by Riccardo
Dalisi, private collection)
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of Technological Processes

Alessandro Baldi Antognini, Alessandra Giovagnoli,
Daniele Romano, and Maroussa Zagoraiou

Abstract This chapter is about experiments for quality improvement and the inno-
vation of products and processes performed by computer simulation. It describes
familiar methods for creating surrogate models of simulators (emulators), with par-
ticular reference to Kriging interpolation, and some new ways of fitting the models
to the simulated data.
It also deals with the advantages of computer experiments performed sequentially,
and with computer experiments in which some of the random noise factors that af-
fect the output of a process are simulated stochastically.
As an example, an application to the integrated parameter and tolerance design of
a high-precision space-measuring instrument is illustrated, and other potential ap-
plications are also mentioned.
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4.1 Introduction

4.1.1 Importance of Computer Simulation

The importance of experimenting for quality improvement and innovation of prod-
ucts and processes is now very well known: “experimenting” means to implement
significant and intentional changes with the aim of obtaining useful information. In
particular, the majority of industrial experiments have two goals:

• To quantify the dependence of one or more observable response variables on
a group of input factors in the design or the manufacturing of a product, in order
to forecast the behavior of the system in a reliable way.

• To identify the level settings for the inputs (design parameters) that are capable
of optimizing the response.

The set of rules that govern experiments for technological improvement in a phys-
ical set-up are now comprehensively labeled “DoE.” In recent years, the use of ex-
perimentation in engineering design has received renewed momentum through the
utilization of computer experiments (see Sacks et al. 1989, Santner et al. 2003),
which has been steadily growing in the last two decades. These experiments are run
on a computer code implementing a simulation model of a physical system of inter-
est. This enables us to explore the complex relationships between input and output
variables. The main advantage of this is that the system becomes more “observable,”
since computer runs are generally easier and cheaper than measurements taken in
a physical set-up, and the exploration can be carried out more thoroughly. This is
particularly attractive in industrial design applications where the goal is system op-
timization.

4.1.2 Simulators and Emulators

The request that the simulator should be accurate in describing the physical sys-
tem means that the simulator itself may be rather complex. In general a “simulator”
will consist of a set of many linear or nonlinear, ordinary and/or differential simul-
taneous equations, whose solutions may not be amenable to analytical expression.
Furthermore, the number of input factors may be large, so runs may be expensive
and/or time-consuming. This has led to the use of surrogate models (emulators),
i.e., simpler models which represent a valid approximation of the original simulator.
These emulators are statistical interpolators built from the simulated input–output
data. Predictions at untried points, most useful in the case of expensive simulations,
are made by the surrogate models.

Familiar methods for creating surrogate models are the response surface method-
ology and the Kriging interpolator. The latter is a technique where the deterministic
response of the computer is regarded as a realization of a random process whose
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correlation function can be shaped in such a way as to reflect the characteristics of
the response surface (for more details, see Santner et al. 2003). This and other types
of emulators are reviewed in Sect. 4.2.

The existing methods of fitting a Kriging model generally start with a space-
filling design, e.g., a latin hypercube sampling scheme. A novel method based on
the theory of optimal designs has been introduced by Zagoraiou and Baldi Antognini
(2008), and will be explained in Sect. 4.2.

4.1.3 Sequential Computer Experiments

Originally introduced by Box and Wilson (1951) in the context of statistical qual-
ity control and optimization of engineering processes/products, sequential experi-
mentation includes a vast class of statistical procedures which employ previously
collected data in order to modify the trial as it goes along. Because of their greater
flexibility and efficiency than classical fixed-sample procedures (see for instance
Siegmund 1985 and Ghosh and Sen 1991), sequential procedures are now widely
used in the great majority of applied contexts, such as biomedical practice, physical
research, and industrial experimentation. In this field in particular, where economic
demands (time and cost savings) may be crucial, the ability to exploit the newly ac-
quired data during the trial may help to detect potential defects, inefficient settings,
dangerous or ineffective treatments, and enable designers to pursue continuous qual-
ity improvement.

There is a fair amount of recent literature on this topic (Romano 2006): exist-
ing sequential methods generally start with a space-filling design (a latin hypercube
sampling design or a maximin design); then, once the sequential procedure is acti-
vated, the estimates for the parameters of the unknown quantities process are recur-
sively updated at each step or, to reduce the computational burden, after a few steps.
Adaptive designs for optimization in the response surface methodology framework
are available that iteratively reduce the design space. Wang et al. (2001) discard
regions with large values of the objective function at each modeling–optimization
iteration, while Farhang-Mehr and Azarm (2003) and Lin et al. (2004) use maxi-
mum entropy as the criterion. Other criteria for successively reducing the design
space include move limits (Wujek and Renaud 1998) and trust regions (Alexandrov
et al. 1998). Van Beers and Kleijnen (2005) use bootstrap to estimate the prediction
variance at untried sites and then choose the point with the maximum prediction
variance as the next input.

In Sect. 4.3, the principles of sequential experimentation are illustrated, followed
by some recent proposals for sequential procedures. A new virtual experiment for
a Kriging model by Baldi Antognini and Pedone is introduced which is randomized,
thus making it possible to overcome a typical problem, namely that algorithms tend
to linger for a long time around local maxima/minima. The new method extends the
one by Kleijnen and Van Beers (2004) and has turned out to be very efficient for
small samples too, reaching the same degree of precision with 40% fewer obser-
vations.
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4.1.4 Stochastic Simulators

A major problem with most simulators is that they use a deterministic code. This
choice is too restrictive. In many instances, some important input variables are ran-
dom in the real process. Typical examples are the design of robust engineering
systems, where parameters that cannot be controlled by the designer (like external
temperature and manufacturing errors) act randomly, and the management and con-
trol of queuing systems (for instance production and telecommunication facilities),
where arrival and service times (of parts, phone calls) are random. In such cases, the
simulation code, e.g., a finite element code for a new product (Romano et al. 2004)
or a discrete event simulator for inventory systems (Bashyam and Fu 1998) may
be random too: this appears to be the natural tool for transmitting the distribution
of noise input to the output. Besides, the construction of a computer simulator of
a complex system often has some degree of uncertainty. This involves several de-
cisions about different modeling options, numerical algorithms, and the assignment
of values to physical and numerical parameters. Since there are often no clear-cut
best decisions, a huge number of deterministic computer codes are compatible with
the same physical system. The same is true of course of stochastic simulators, but
to a lesser degree. Thus (Romano and Vicario 2002a, 2002b) random simulation
again seems preferable, and it is now largely employed in several technological and
scientific areas. One practical consequence is that the rationale for using standard
statistical tools is restored. Thus regression analysis, for instance, can be safely used
for prediction.

In Sect. 4.4, a modified protocol for conducting robust design studies on the com-
puter is described, which extends the dual response surface approach (Giovagnoli
and Romano 2008). The suggested protocol utilizes stochastic simulation. It is char-
acterized by a different treatment of the noise factors, some of which are consid-
ered random, as they are in the real process. The proposed model includes both the
crossed array and the combined array as special cases. As is well known, crossed
arrays are the experimental plans suggested by Taguchi and Wu (1980): some level
combinations of the control factors (inner array) are chosen and tested across some
level combinations of the random factors (outer array), which in the experimental
setting are selected by the experimenters and are under their control; this type of ex-
periment permits the fitting of two separate response surfaces: one for the response
and one for the log-variance. An alternative is a combined array experiment (Vining
and Myers 1990; Welch et al. 1990), which fits a second-degree polynomial regres-
sion model—containing both control factors and their interactions with the noise
variables—with fixed levels of both the controls and the noises.

When the design scope is extended to the specification of allowable deviations
of parameters from nominal settings (tolerances), an integrated parameter and toler-
ance design problem arises. Here the additional objective of minimizing the produc-
tion costs needed to fulfil tolerance specs will compete with the minimum variance
objective. This method can be beneficial to the solution of an integrated parameter
and tolerance design problem, since it adds standard deviations of internal noise
factors as controls in the experiment and simulates the internal noise accordingly.
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The method appears to be particularly well suited to complex measurement sys-
tem design. The main quality requirements of a measure, namely lack of bias and
precision, are strictly linked to the mean and variance of the measurement. In Gio-
vagnoli and Romano (2008), we describe how the method was applied to the design
of a high-precision measuring instrument, an optical profilometer. In Sect. 4.4, this
case study is recalled briefly to show that the same method can be applied in a wide
range of other possible contexts.

4.2 Construction of the Emulators

A common approach used to deal with the problem of complex input–output rela-
tionships exhibited by the simulation model is to construct an emulator, also called
a surrogate. Since emulators are models of the original simulator, which is itself
a model of reality, they are often called metamodels. The goal of using a surro-
gate model is to provide a smooth relationship of potentially high fidelity to the
true function with the advantage of quick computational speed instead of the time-
consuming runs associated with the computer code. This section provides guidelines
for the construction of an emulator and a brief overview of many different emula-
tors; it does not aim to explain each type in detail but rather to underline the wide
variety of approximating models available in the literature. The Kriging method-
ology is discussed in a thorough way due to its importance as a tool for accurate
predictions.

4.2.1 A Protocol for Creating Emulators

Kleijnen and Sargent (2000) have suggested a procedure for developing an emulator
which can be briefly described as follows:

1. Determine the aim of the emulator: any model should be developed for a spe-
cific goal. Usually we can identify four different goals: understanding the prob-
lem, predicting values of the response variable, performing optimization, and
aiding the validation of the simulator.

2. Identify the output variable: the simulator usually has multiple response vari-
ables. However, current practice suggests that a separate metamodel should be
developed for each output (single-response models).

3. Identify the inputs and their characteristics: determine the independent vari-
ables and specify the domain of applicability or experimental region X .

4. Specify the required accuracy of the metamodel: the range of accuracy de-
pends on the goal of the metamodel. For example, if our main focus is on the
optimization of a system, we cannot require a high level of complexity, since
the optimization algorithms need simple models.
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5. Specify the metamodel: in this step we should select a particular type of model
among those proposed in the literature, e.g., polynomial regression models,
Fourier metamodels, splines, neural networks, Kriging. . .

6. Specify the type of experiment: the experimental design problem is the selection
of inputs for the computer code. The following main approaches are used to
select designs (for more details see Sect. 4.2.4):

• If we believe that interesting features of the simulator can be found in several
parts of the experimental region, i.e., that no privileged areas exist, it seems
natural to use designs that spread the points “evenly” to cover the full range
of the input space. This allows the researcher to gather information about the
relationship between the inputs and outputs for all regions of the domain of
applicability. Furthermore, by covering the full range of input domain, space-
filling designs could lead to good predictions over the entire input space,
which is typically a fundamental goal in computer experiments. There are
a number of ways to define what it means to spread points, and these lead to
a variety of designs, usually called space-filling designs.

• If we choose a particular type of metamodel, it is possible to formulate spe-
cific criteria for choosing a design and thus adopt an optimal design. Several
criteria have been proposed in the literature. A recent class of design proce-
dures which use a criterion based on the Fisher information matrix can be
found in Zagoraiou and Baldi Antognini (2008).

7. Fit the metamodel: we run the simulation to obtain the output data from the
inputs specified in step 6 for fitting the metamodel. From these data, we estimate
the parameters of the metamodel.

8. Validation of the fitted model: starting from a test set of inputs we run sim-
ulations to validate the emulator, verifying the accuracy of the prediction (see
Sect. 4.2.3). In the case of time-consuming and/or computationally intensive ex-
periments, the researcher can apply “cheap” methods, such as cross-validation.

4.2.2 A Special Type of Emulator: The Kriging Technique

A wide variety of different modeling techniques are available in the literature. In
this section, we mention some of them, and we focus our attention on the Krig-
ing methodology, originally developed for geological applications but now a very
important tool for producing accurate predictions of the output of a deterministic
computer code.

The selection of a metamodel to approximate the true model as accurately as
possible is a crucial problem. Generally, most of the metamodels in the literature
are linear combinations of basis functions defined for an experimental region, and
the unknown coefficients of the combination have to be estimated. Thus, when the
simulator is deterministic, the construction of a surrogate can be viewed as an inter-
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polation problem. Following this point of view, most metamodels take the form:

g(x) = ∑
j

B j(x)β j (4.1)

where B j is a set of basis functions, β j are unknown coefficients, and x is the input
variable. If the basis function is polynomial, we obtain polynomial surrogates, which
are widely used to model computer experiments. Often, the behavior of the data
cannot be explained by the polynomial models. A solution to this problem is to
use so-called splines, where the polynomials are defined in a piecewise way, i.e.,
several low-order polynomials are fit to the data, each in a separate range defined by
the knots. Splines and polynomial models make the assumption that the data can be
locally or globally fit by a polynomial. An alternative method which allows the data
to be fitted in a less constrained form is known as the neural network technique; for
more details, see Fang et al. (2006). Other bases for the construction of a metamodel
have also appeared in the literature. For example, the Fourier basis can be used to
approximate periodic functions.

Metamodels set up on a polynomial basis, spline basis or Fourier basis are com-
petitive if the number of input variables is small, but extending them to a high-
dimensional multivariate input can be difficult. Therefore, other techniques have
been proposed. One of the most popular is the Kriging methodology. This kind
of approach was originally proposed by a South African geologist, D.G. Krige
(1951), for the analysis of geostatistical data. His work was later developed by Math-
eron (1962) and has become very popular in several applied contexts of the spatial
statistics literature (see Ripley 1981 and Cressie 1993). Recently, this modeling ap-
proach has been widely used for the design and analysis of computer experiments
(see for instance Sacks et al. 1989, Welch et al. 1992 and Bursztyn and Steinberg
2006).

Following Sacks et al. (1989), the Kriging approach consists of treating the deter-
ministic response y(x), i.e., the output of the simulator, as a realization of a stochas-
tic process (random field) Y (x) such that

Y (x) = μ(x)+ Z(x) , (4.2)

where μ(x) denotes the global trend and Z(x) represents the departure of the re-
sponse variable Y (x) from the trend. More precisely, Z(x) is usually assumed to
be a Gaussian stationary process with E(Z(x)) = 0, a constant variance σ2

Z , and
a non-negative correlation function between two inputs x and w ∈ X .

Corr[Z(x),Z(w)] = R(x,w) , (4.3)

depending only on the displacement vector between any pair of points in X , and
tending to 1 as the displacement vector goes to 0.

The correlation function should reflect the characteristics of the output. For
a smooth response, a correlation function with some derivatives would be preferred,
while an irregular response might call for a function with no derivatives. It is cus-
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tomary for the correlation to have the following property:

R(x,w) = ∏
j

R j(|x j −wj|) , (4.4)

i.e., products of one-dimensional correlations. Of special interest are those within
the power exponential family:

R(x,w) = ∏
j

exp(−θ j|x j −wj|p) (4.5)

where 0 < p ≤ 2. We can also permit p to vary with j. The case p = 1 is the product
of Ornstein–Uhlenbeck processes; they are continuous but not very smooth. A spe-
cial type is the one-parameter exponential correlation function given by:

R(x,w) = exp(−θ |x−w|) . (4.6)

When p = 2 we have the so-called Gaussian correlation function, which is suitable
for smooth and infinitely differentiable responses. An alternative choice for R(x,w)
is the linear correlation function:

R(x,w) = −θ |x−w| . (4.7)

Two different types of Kriging metamodels have been proposed in the literature
depending on the functional form of the trend component:

• Ordinary Kriging: the trend is constant μ(x) = μ but unknown.
• Universal Kriging: the trend component depends on x and is modeled in a re-

gressive way

μ(x) =
p

∑
j=1

f j(x)β j = f t(x)β (4.8)

where f1(·), . . ., fp(·) are known functions and β = (β1, . . .,βp)t is the vector of
the unknown parameters.

Kriging modeling lends itself to a sound theoretical methodology for the prediction
of the output. Let

Y (x) =
p

∑
j=1

f j(x) ·β j + Z(x) = f t(x) ·β+ Z(x) (4.9)

be the model under study, x1, . . .,xn be the inputs,

Yn = (Y1, . . . ,Yn)t = (y(x1), . . . ,y(xn))t (4.10)

be the set of outputs variables, and y(x0) = Y0 be the output to predict. Furthermore,
let Ŷ0 denote a generic predictor of Y0. Then the model is denoted(

Y0

Yn

)
∼
[(

ft
0

F

)
β,σ2

Z

(
1 r t

0
r0 R

)]
(4.11)
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where f0 = f(x0) is the (p×1) vector of regression functions for Y0,

F = ( f j(xi)) =

⎛
⎜⎝

f1(x1) . . . fp(xp)
...

...
f1(xn) . . . fp(xn)

⎞
⎟⎠ (4.12)

is the (n× p) matrix of regression functions for the observed data, r0 = (R(x0−x1),
. . .,R(x0 −xn))t is the (n×1) vector of correlations of Yn and Y0,

R = Ri, j = (R(xi,x j)) (4.13)

is the (n× n) matrix of correlations among the entries of Yn, and β and σ2
Z are the

unknown parameters.
If the correlation function is known, which is hardly ever the case in practical

situations, the BLUP (best linear unbiased predictor) of Y0 is given by

Ŷ0 ≡ ft
0β̂+ rt

0R−1
(

Yn −Fβ̂
)

(4.14)

where
β̂ =

(
FtR−1F

)−1
FtR−1Yn (4.15)

is the generalized least squares estimator of β. Note that Ŷ0 interpolates the data
(xi,y(xi)) for 1 ≤ i ≤ n, and that Ŷ0 is a linear unbiased predictor of Y (x0).

On the other hand, if the correlation function is unknown, R(·) can be written as

R(·) = R(· |ψ ) (4.16)

where ψ is an unknown parameter vector. Then it can be estimated by maximum
likelihood, restricted maximum likelihood, cross-validation, or the posterior mode.
In this case the predictor Ŷ0 is termed the empirical best linear unbiased predictor,
given by:

Ŷ0 ≡ f t
0β̂+ r̂t

0R̂−1
(

Yn −Fβ̂
)

. (4.17)

However, predictions are no longer linear. For a thorough reading, see Santner et al.
(2003).

4.2.3 Accuracy of the Predictor

To validate an emulator, we must know the accuracy required of it, and this depends
on its purpose. However, as is well known, in many cases there will be a trade-off
between accuracy and complexity. Ideally, we want the departure of the emulator
from the deterministic simulation code to be as small as possible over the experi-
mental region, i.e.,

(ŷ(x),y(x))L → 0 for all x ∈ X , (4.18)
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where L is some measure of distance. Usually, the mean square error (MSE) of
prediction at an untried point x is used to provide a measure of the overall model
accuracy:

MSE(ŷ(x)) = E (ŷ(x)− y(x))2 . (4.19)

Thus, one would need to know the values of the true model over the whole X . There-
fore, the key element is to compare the predictions with the known true values in
a test set. Possible ways to choose this kind of set are:

• In the case of “cheap” experiments, we may collect a large number of points,
say N points x∗i , i = 1, . . .,N and calculate the empirical integrated mean squared
error (EIMSE):

EIMSE =
1
N

N

∑
i=1

(ŷ(x∗i )− y(x∗i ))
2 (4.20)

or the empirical maximum mean squared error (EMMSE)

EMMSE = max
x∗i

(ŷ(x∗i )− y(x∗i ))
2 (4.21)

to check whether the metamodel satisfies the required accuracy.
• In general, since computer experiments are time-consuming and computationally

intensive, the accuracy of the prediction will be assessed using adequate meth-
ods such as cross-validation. This method is based on iteratively partitioning the
full set of available data into training and test subsets. For each partition, the re-
searcher can estimate the model via the training subset and evaluate its accuracy
using the test subset (Fang et al. 2006).

4.2.4 Experiments for a Kriging model

The experimental design problem for computer experiments is to select inputs for
a computer code. The following main approaches are used in the literature to select
designs: space-filling designs, and designs based on some optimality criterion.

4.2.4.1 Space-Filling Designs

As is recognized by many researchers, when no details on the functional behavior of
the response variable are available, it is important to be able to obtain information
from the entire design space. Therefore, design points should fill up the entire region
in a “uniform fashion.”

There are several statistical strategies that one might adopt to fill a given ex-
perimental region. One possibility is to select a simple random sample of points
from the experimental region. However, other sampling schemes such as stratified
random sampling are preferable, since simple random sampling is not completely
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satisfactory; e.g., with small samples and in high-dimensional experimental regions,
it may present some clustering and fail to provide points in several portions of the
domain.

Another method of generating designs that spread observations over the range
of each input variable is so-called latin hypercube sampling (LHS). Introduced by
McKay et al. (1979), LHS design is one of the most commonly used space-filling
designs. An LHS design yielding n design points involves stratifying the experimen-
tal space into n equal probability intervals for each dimension, randomly selecting
a value in each stratum, and then combining them in order to obtain a design point.

The “space-filling” property has inspired many statisticians to develop related
designs. One class of designs maximizes the minimum Euclidean distance between
any two points in the multidimensional experimental area. Other designs minimize
the maximum distance or are based on the principle of comparing the distribution of
the points with the uniform distribution (see Johnson et al. 1990, Koehler and Owen
1996 and also Santner et al. 2003).

4.2.4.2 Optimal Designs

An alternative way of choosing a design is to base the decision on some statistical
criterion. After the type of metamodel has been chosen, the researcher can choose
the design according to one of the many criteria proposed in the literature. The
search for optimum designs for random field models is a rich but difficult research
area. A good design for a computer experiment should facilitate accurate prediction,
and most of the progress in this area has been made with respect to criteria based on
functionals of the MSE, i.e.,

• The integrated mean squared error (IMSE) criterion:

IMSE =
∫
X

E [ŷ(x)− y(x)]2 dx (4.22)

where the expectation is taken with respect to the random field.
• The maximum mean squared error (MMSE) criterion:

MMSE = max
x∈X

E [ŷ(x)− y(x)]2 . (4.23)

Then, a design is said to be IMSE-optimal or MMSE-optimal if it minimizes (4.22)
or (4.23), respectively. Observe that the IMSE and MMSE criteria can be considered
generalizations of the A- and G-optimality (Silvey 1980), respectively. Both criteria
can be calculated if the correlation function is known, which is impossible in prac-
tical situations. One possible way of overcoming this problem consists of starting
with a space-filling design, e.g., a latin hypercube sampling scheme, in order to esti-
mate the unknown correlation parameters, and then determining the IMSE-optimal
or MMSE-optimal design, treating the obtained estimates as the true parameter val-
ues.
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Lindley (1956) proposed the use of the change in entropy before and after col-
lecting data as a measure of the information provided by an experiment. The entropy
criterion for random fields is thus:

E(ΔH(Y )) (4.24)

where ΔH(Y ) is the reduction in entropy after observing Y . A good design should
maximize the expected reduction in entropy (see Shewry and Wynn 1987 and Bates
et al. 1996).

An alternative criterion proposed in the literature is the maximum prediction vari-
ance. In this case, we choose to take observations where Kriging predictions are
most uncertain, i.e., we select the design point which maximizes Var(ŷ(x)).

A novel method based on the theory of optimal designs has been proposed by
Zagoraiou and Baldi Antognini (2008). The main aim of the authors is to derive op-
timal designs for maximum likelihood estimation for ordinary Kriging with expo-
nential correlation structure (4.6) using a criterion based on the Fisher information
matrix. When the interest is mainly in the estimation of the trend parameter, they
prove that the equispaced design is optimal for any sample size, while an optimal
design for the estimation of the correlation parameter does not exist. Furthermore,
the optimal strategy for the trend conflicts with the one for θ, since the equispaced
design is the worst solution for estimating the correlation parameter. Hence, when
the inferential purpose concerns the estimation of both the unknown parameters,
the authors propose geometric progression design, namely a flexible class of proce-
dures that allow the experimenter to choose a suitable compromise for the estimation
precision of the two unknown parameters that at the same time guarantees a high
efficiency for both.

4.3 Sequential Experiments for Kriging

4.3.1 Design and Analysis of Sequential Experiments

When experiments are carried out sequentially by the observer, at each step all of
the information gathered up to that point is available in order to decide whether to
observe any further and, if so, how to perform the next observations. Thus, the exper-
imental decisions concerning the data collection process can evolve in an adaptive
way on the basis of the experiment itself. Sequential designs are a type of experi-
mental plan which consists of

1. A rule specifying at each stage the set of experimental conditions under which
the next statistical unit(s) must be observed, and

2. A stopping rule, usually governed by economic constraints.

These rules are defined a priori in terms of the information gathered up to each
given step, namely the data observed and the way in which the experiment itself has
evolved.
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In point of fact, there are many potential reasons for conducting the trial se-
quentially, in particular crucial economic demands (time–cost savings); the ability
to exploit newly acquired data during the trial may allow one to pursue continuous
quality improvement, which also results in a significant cost reduction.

There is another important factor in experiments in various fields of application,
namely randomization. This is a rather loose term that has been brought into general
use by R.A. Fisher; it is the action of assigning some features of the experiment
by “controlled chance:” it may refer to the way in which experimental units are
chosen, the order in which treatments are allocated to the units, and so on. It is
nowadays commonly believed that a component of randomization in the design of
the experiment is always required in order to protect against various types of bias
(for instance accidental bias, selection bias, chronological bias, etc.), and it is also
a fundamental tool for correct inferential procedures. However, there may be other
reasons for introducing a probabilistic component into the experimental design that
have not been sufficiently stressed in the literature, which result in an improvement
in the convergence properties of the experiment itself, as in Baldi Antognini and
Giovagnoli (2005).

In general, the choice of the design depends on several aspects which reflect
the experimental aims: accurate inference about unknown parameters, accurate pre-
dictions at untried sites, cost savings, etc. . . Often these objectives can be defined
as an optimization problem, but the solutions, the so-called optimal design or tar-
get, may depend on the unknown parameters (local optimality). This is typically
the case in nonlinear problems, namely when the statistical model is nonlinear in
the parameters of interest or the inferential aim consists of estimating a nonlinear
function of the unknown parameters. In this context, sequential designs are essen-
tial, since they may represent a natural solution to the local optimality problem.
In fact, by adopting a suitable response-adaptive procedure, the available outcomes
can be used at each stage to estimate the unknown parameters, and thus the opti-
mal design too; therefore, the allocations can be redirected in order to converge to
the unknown target (asymptotic optimality). An example is the maximum likelihood
design, which is a sequential randomized procedure based on the step-by-step up-
dating of the optimal target by ML estimates (see for instance Baldi Antognini and
Giovagnoli 2005).

However, the adoption of a particular sequential procedure may pose problems
in relation to the correct inferential paradigm (Silvey 1980; Ford et al. 1985; Rosen-
berger et al. 1997; Giovagnoli 1999; Hu and Rosenberger 2003; Baldi Antognini
and Giovagnoli 2006). If the design does not depend on the observed data, then it
can be regarded as an ancillary statistic, and we can infer conditionally from the ob-
served sequence of design points. In contrast, for all response-adaptive procedures,
the design variability must be accounted for and we should argue unconditionally
(Rosenberger and Lachin 2002). Thus, sequential experiments may be difficult to
analyze, because the inferential methodology depends on the adopted design (Ford
et al. 1985; Chaudhuri and Mykland 1993; Thompson and Seber 1996; Melfi and
Page 2000; Aickin 2001). Recently, Baldi Antognini and Giovagnoli (2005) have
shown that, under suitable conditions related to the statistical model and the allo-
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cation rule, conditional and unconditional inference tend to be the same asymptot-
ically. This result can be applied when it is possible to simulate extensively from
the computer code, but may be inappropriate for small samples, and/or when the
simulation runs are very time/cost-expensive.

4.3.2 Recent Developments in Sequential Computer Experiments
for Kriging with Applications

A vast amount of literature on sequential designs for computer experiments based on
the Kriging methodology is available (Williams et al. 2000; Van Beers and Kleijnen
2003; Kleijnen and Van Beers 2004; Gupta et al. 2006; Romano 2006). In general,
these methods start with a pilot study, where a small number n0 of observations from
a space-filling design will be gathered in order to get an initial estimation of the un-
known parameters of the model; then, the sequential procedure is activated through
the adoption of a suitable allocation rule, which specifies at each step the choice
of the next design point; popular criteria are based on IMSE, MMSE, entropy, vari-
ance of prediction, etc. . . (see Sect. 4.2 for details). Finally, this procedure is stopped
according to the specifications of the stopping rule, which is usually related to cost–
time constraints or to the required inferential accuracy (i.e., when the improvement
in precision is negligible).

For instance, the sequential Kriging design (SK) is one of the first proposals in
this area (see Chap. 8). This is a deterministic response-adaptive procedure which
selects at each step the design point at which the estimated variance of prediction
is maximal. The SK procedure is very simple to implement, and at each step is
sequential over the entire design region; however, it tends to get locked in the so-
called interesting areas, namely in certain subsets of the experimental domain where
the function assumes critical behavior (i.e., local or global maxima/minima).

4.3.3 “Application-Driven Sequential Designs”

This is the name of a sequential procedure recently introduced by Kleijnen and
Van Beers (2004) for fitting the ordinary Kriging metamodel with one-parameter
exponential correlation (4.6) or the linear correlation function in (4.7). Application-
driven sequential designs (ADSD) can be briefly described as follows:

• The procedure starts with a pilot experiment generated by a LHS or a maximin
design, which includes the extremes of the design space (since extrapolations
via the Kriging methodology are not recommended); based on the simulations
at these points, the correlation parameter is estimated by the cross-validation
method.
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• Using a space-filling approach, a given set of candidate points is selected (the
authors suggest that the specific candidates halfway between the design points
of the pilot study should be used), and at each candidate the variance of the pre-
dicted output is estimated by a cross-validation combined with jackknife tech-
nique.

• At each stage, the next design point (i.e., the winner among the candidate points
for the actual simulation) is the one with maximum jackknife variance.

• The sequential procedure is stopped when no substantial improvement in terms
of jackknife variance is observed.

The authors test the properties of the ADSD through two applications, namely hy-
perbolic and four-degree polynomial input–output functions, for small samples (i.e.,
n0 = 4 and a total sample size N of up to 36). Assuming that the prediction errors
induced by the procedure can be measured by EIMSE (4.20) and EMMSE (4.21),
the authors show that ADSD gives better results than LHS with a prefixed sample
of the same size.

4.3.4 A Modified Version via Randomization

Alessandro Baldi Antognini together with Paola Pedone have generalized the ADSD
(Kleijnen and Van Beers 2004) by introducing the randomized sequential Kriging
(RSK) design. This is a randomized response-adaptive procedure for fitting the uni-
versal Kriging metamodel with power exponential correlation (4.5), which can be
described as follows:

• The experiment starts with a space-filled design (LHS), which includes the ex-
tremes of the design space and, based on the simulations on these points, the
unknown parameters are estimated by the maximum likelihood method.

• Again, a given set of candidate points is selected using a space-filling approach,
and at each candidate the variance of the predicted output is estimated.

• The choice of the next design point is made through a random assignment where
the probability of selecting each candidate is proportional to the estimated pre-
diction variance at this site obtained at the previous step.

• This sequential procedure is stopped when no substantial improvement in terms
of EIMSE or EMMSE is observed.

With respect to ADSD, the particular features of RSK are that: (a) the assumed
model is more general than the ordinary Kriging with one-parameter exponential
correlation (4.6), and it is also more suitable in the case of smooth functions; (b)
at each stage the parameters will be estimated by the ML method; (c) the choice
of the design points is randomized: this random mechanism in the assignments is
suggested in order to explore all of the design region without being trapped by local
maxima/minima.
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Table 4.1 Hyperbolic with N = 19

RSK ADSD SK LHS

EIMSE 4×10−6 9×10−4 0.008 0.006
EMMSE 4×10−5 0.08 0.35 0.36

Table 4.2 Hyperbolic with N = 36

RSK ADSD SK LHS

EIMSE 10−7 10−4 8×10−4 3×10−4

EMMSE 10−6 0.03 0.15 0.08

Table 4.3 40 polynomial with N = 18

RSK ADSD SK LHS

EIMSE 6×10−5 0.17 0.58 0.59
EMMSE 9×10−4 1.05 0.67 3.30

Table 4.4 40 polynomial with N = 24

RSK ADSD SK LHS

EIMSE 5×10−6 0.01 0.27 0.25
EMMSE 6×10−5 0.25 0.51 2.12

In Tables 4.1–4.4, we have compared the performances of RSK, ADSD, SK and
LHS in terms of EIMSE and EMMSE with the same input–output functions consid-
ered in Kleijnen and Van Beers (2004).

The tables show that the introduction of a randomization component in the as-
signments makes it possible to overcome one well-known drawback of sequential
procedures for Kriging, namely that the algorithms tend to linger for a long time
around some critical areas. Furthermore, the choice between ordinary Kriging and
universal Kriging seems to be almost irrelevant (Sasena 2002), whereas the ran-
dom mechanism in the choice of the next design point combined with the maximum
likelihood estimations of the unknown parameters is crucial. Observe that the RSK
design in this case has performed better than the other procedures: the precision
is high even with a small number of observations, and the efficiency of ADSD is
reached by this design with approximately 40% fewer observations.
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4.4 Robust Parameter and Tolerance Design
via Computer Experiments

4.4.1 Robust Parameter and Tolerance Design:
Crossed Arrays and Combined Arrays

Robust parameter design, introduced in the 1980s by the Japanese engineer
G. Taguchi (Taguchi and Wu 1980), is an experiment-based statistical methodology
that aims to find the nominal settings of design variables (parameters) that achieve
a desired compromise between two objectives: optimizing the performance of a sys-
tem by keeping the mean system performance around an ideal quality target and the
variation around the mean to a minimum. This variation is caused by random vari-
ables (noise) related either to the external conditions (temperature, humidity, elec-
tromagnetic field, mechanical vibrations, way in which it is used) under which the
product/process is operating, or to random variations in parameters due to manufac-
turing errors. Thus, random noise plays a major role in robust design.

When the design scope is extended to the specification of allowable deviations of
parameters from nominal settings (tolerances), an integrated parameter and toler-
ance design problem arises. Here the additional objective of minimizing the produc-
tion costs needed to fulfil tolerance specs will compete with the minimum variance
objective.

The statistical methodology underlying robust design that is now widely accepted
is dual response surface methodology, which estimates two surfaces, one for the
mean and one for the variance (or the log-variance) of the process; see for instance
Myers et al. (1992) and Myers and Montgomery (2002).

Let the system performance be described by a variable which depends on a set of
controllable factors and a set of random noise factors: we write Y (x,Z) where the
vector x stands for the levels of the controls and the vector Z for those of the noise.
To explore the dependence of Y on x and Z, one option is to run a crossed-array
(Taguchi-type) experiment: some level combinations of the control factors (inner
array) are chosen and tested across some level combinations of the random factors
(outer array), which in the experimental setting are selected by the experimenters
and are therefore regarded as fixed (nonrandom).

An alternative is a combined array experiment (see Vining and Myers 1990,
Welch et al. 1990) with fixed levels of both the control and the noise variables.
In such experiments, the in-process response is described by the model:

Y (x,Z) = β0 + βtx+ xtBx+ γtZ+ xtΔx+ ε , (4.25)

where Z is the random noise vector, ε’s are i.i.d. N(0,σ2) random errors, and ε
and Z are independent. The constant β0, the vectors β, γ and the matrices B and Δ
consist of unknown parameters, and σ2 is also usually unknown. It is also assumed
that E(Z) = 0 and that Cov(Z) is known. After model (4.25) is fitted to the data,
two response surfaces, one for the mean of Y as a function of the control factors x,
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and one for the variance of Y , also in terms of the control factors, are obtained
analytically from (4.25) by taking expectations.

Both approaches (crossed array and combined array) have some drawbacks: we
now briefly describe the method suggested in Giovagnoli and Romano 2008 which
generalizes both approaches making use of a stochastic simulator.

4.4.2 The Proposed Simulation Protocol and Its Application
to the Integrated Design of Parameters and Tolerances

Let us divide the random factors into two independent vectors, Z1 and Z2. The ran-
dom vector Z1 will include the variables that we are going to simulate stochastically,
while the remaining set of noise factors Z2 will be given fixed levels z2 for some
different choices of z2. At the same time, different levels x of the control factors
are also chosen for the experimentation. The computer experiment is performed by
stochastically simulating the noise Z1 for chosen pairs (x,z2), and the sample mean
and variance of the observed responses are calculated. The hypothesis underlying
the proposed approach is that a simulation code of the physical system is available
and that noise factors are explicitly modeled in the code. The normality of Z1 can
often be reasonably assumed. Clearly this method requires that existing models are
modified to take into account the additional variability introduced by simulating the
randomness of Z1.

In the case Z1 = /0 (or, equivalently, Z2 = Z), the simulation becomes nonstochas-
tic and the model reduces to model (4.25) for the combined array approach, but
without the experimental error. In the case Z1 = Z (or, equivalently, Z2 = /0), one
gets the crossed-array approach with independent and normally distributed noises.

This method can be extended to a several-stage procedure if noise factors are sim-
ulated by adding them sequentially, one after another, to Z1. This allows sequential
assessment of the way in which each single noise factor affects the total variability.

Other proposals for conducting robust design studies (see Lehman et al. 2004,
Bates et al. 2006) have recently been made in the context of computer experiments,
but they do not envisage any stochastic simulation.

Sometimes robust design aims to set both design parameters and tolerance speci-
fications. External noise variables are totally out of the designer’s control, but inter-
nal noise variables, which represent random deviations in design parameters due to
part-to-part variations induced by uncontrollable manufacturing errors, are partially
controllable. In this case, the size of the common variability can be decided upon by
the designer by choosing components of suitable quality. It seems natural, at the ex-
perimental stage, to take this variability as a control factor and simulate the internal
noise accordingly at each level of this factor. Hence, internal noise variables, under
the common assumption of independence and a normal distribution with zero mean,
are natural candidates for inclusion in the Z1 vector of the proposed method.

After the modified dual response approach is applied, the in-process mean and
variance of the response are obtained as functions of the control factors. These func-
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tions, coupled with cost functions which specify how individual tolerances affect
production cost (the tighter the tolerances, the more expensive the manufacturing
processes), are the ingredients for tackling the integrated parameter and tolerance
design problem (see Li and Wu 1999; Romano et al. 2004) as an optimization prob-
lem under constraints.

4.4.3 An Application to Complex Measurement Systems

The new method was applied to the design of a high-precision optical profilometer
(Fig. 4.1). This is a measuring device that inspects the surface of mechanical parts
and then reconstructs the relevant profile. Its particular features are that the surface
is inspected without contact and that measurement uncertainty is very low (in the
range 101–102 nm).

An innovative prototype, based on the technique of white-light interferometry,
has been recently realized at the Department of Mechanical Engineering of Cagliari
University, Italy (see Baldi et al. 2002; Baldi and Pedone 2005). The measurement
process combines the analog treatment of optical signals with the numeric process-
ing of digitized images. The white light, emitted from a source, is separated by a po-
larized beam splitter into two beams that head to the mirror and the testpiece respec-
tively. After reflection, the beams are recombined, producing interference fringes
(alternating light and dark bands) that are collected by a video camera. The vari-
ation in light intensity at a given point in the image is represented as a function

Fig. 4.1 Scheme of the optical profilometer
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of the optical path difference; it theoretically corresponds to the sinc2 function and
peaks where the optical path difference equals zero, which realizes the condition
of maximum positive interference. By processing images collected for a number of
equispaced positions of the mirror, which is displaced along the x-axis by a piezo-
electric transducer, a sample of points on the modulation curve at each pixel of the
image is obtained. Estimating the abscissa of the maximum modulation for all pix-
els provides information on the surface profile. Relevant noise factors are the errors
in the two coordinates of each sample point.

An experiment was performed at the Department of Mechanical Engineering of
Cagliari University, Italy, with the objective of improving the measurement quality
of the profilometer, i.e., minimizing bias and uncertainty in the profile reconstruc-
tion. As there are several sources of noise in the system, robust design was called
for. Since experimenting on the prototype would have been exceedingly expensive,
the whole measurement process was reproduced by a suitable simulator. The sim-
ulator incorporated both theoretical and experimental knowledge on the physical
mechanisms involved. The measurement variance predicted by the simulator was
also validated by comparing it with that obtained by replicated measurements of the
prototype (Baldi et al. 2006).

4.4.4 Other Potential Applications

It is useful to clarify the conditions most suited to the utilization of the proposed
method, and thus to identify applications which can benefit most from it. Some of
the most congenial set-ups are now described.

• The simulator should not be exceedingly expensive in terms of completion times
for single runs. This is generally true of stochastic simulators, but not just for
them. Consider for instance the use of finite element codes to solve engineering
design problems in the most diverse areas (mechanical components, buildings,
electrical and electromagnetic apparatus, fluid-dynamic systems, etc.). In the not
too infrequent case in which the problem can be modeled using a system of linear
differential equations, the computing code is very reliable and the running time
is relatively short.

• There are circumstances in which simulating noise variables may be conve-
nient not only to improve the quality of the solution to a robust design prob-
lem but also, although this may seem paradoxical, to save costs. This may be
due to the presence of a very large number of noise variables which all share
the same probability distribution because of their common physical source. Con-
sider for instance a simulator of microeconomic system in which a large num-
ber of individual—independent and identically distributed—choices come into
play. Simulation from a common distribution is evidently more appropriate in
this case, as well as more convenient. This is true of external noise factors, and
even more so of internal ones, like manufacturing errors induced on a number
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of similar part features, such as flat faces, bores, cylindrical surfaces, all ma-
chined by the same physical process (milling, drilling, turning). This way of
simulating internal noise was applied in the case study mentioned above, on the
optical profilometer. Here, the same piezoelectric transducer repeatedly moves
a mirror by a nominally constant distance. Random errors in successive displace-
ments, though independent, come from the same distribution. Under these cir-
cumstances, all of the independent identically distributed internal noise variables
can be cumulatively accounted for by just one tolerance factor. This may yield
a considerable saving in terms of runs. Suppose there are two control factors and
ten internal noise variables of this kind. If we take two levels per control and
three levels per noise variable and cross them fully, as is done in a Taguchi-type
experiment, an outer array of 22×310 = 236,156 runs will result. This number is
far larger than the reasonable sampling size (800) obtained by running 100 sim-
ulations of ten tuples drawn from the common underlying distribution, for each
combination of tolerance and control factor levels, say 23.

• Another interesting application field concerns a class of systems sometimes re-
ferred as hybrid systems, incorporating both hardware and software components.
The hardware part collects or generates analog information which, in turn, af-
ter being converted into a digital format, is further processed by some software
module. Such systems are already common in our daily life, and are becoming
more so. Familiar examples include cellular phones and household appliances
like dishwashers, food processors, etc. Sophisticated software processes the elec-
trical signals to permit an acceptable quality of mobile communication, even in
hostile external conditions. Household machines are provided with carefully de-
signed digital controllers which can modify, in real time, the operating conditions
of the machine in order to obtain optimal performance (effective operations, en-
ergy saving, noise reduction, vibration control and safety control). The design of
hybrid systems is particularly challenging. Although the design techniques for
the hardware and software components are highly heterogeneous, they must be
perfectly coupled for effective design. The option here is to replace, at the design
stage, the physical part of the system with a simulation model. In these circum-
stances, the whole system can be represented by a computer code, which is very
easy to handle for design purposes. It is sensible to forecast that the software parts
of hybrid systems will become dominant and more and more complex. This will
make these systems easier to simulate (numerical treatment is a computer code)
and even more fully designed (numerical treatment can deal with a huge number
of design variables). This opens the way to intelligent and innovative products.
The optical profilometer mentioned before is a hybrid system. Reconstruction of
the microgeometry requires a massive numerical treatment of several images col-
lected by a digital video camera after a number of costly optical components have
processed the white light. Measurement and diagnosis systems are in fact one of
the most interesting sectors where design via simulators is applicable. Allow us
to mention three more cases: the process for the dimensional and geometric con-
trol of manufactured parts by coordinate measuring machines (CMM) (Romano
and Vicario 2002a); the supervising systems for fault diagnosis in industrial pro-
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cesses (Romano and Kinnaert 2006); and the fixed-bed gasifier in a clean plant
for obtaining energy from coal (Cocco et al. 2008). In all of these applications,
a robust design approach has been applied to stochastic simulators (developed ad
hoc) of the processes involved.
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Chapter 5
Design for Computer Experiments: Comparing
and Generating Designs in Kriging Models

Giovanni Pistone and Grazia Vicario

Abstract The selection of design points is mandatory when the goal is to study how
the observed response varies upon changing the set of input variables. In physical
experimentation, the researcher is asked to investigate a number of issues to gain
valuable inferences. Design of experiments (D.o.E.) is a helpful tool for achieving
this goal. Unfortunately, designing a computer experiment (CE), used as a surrogate
for the physical one, differs in several aspects from designing a physical experiment.
As suggested by the pioneers of CEs, the output can be predict by assuming Gaus-
sian responses and that covariance depends parametrically on the distance between
the locations, according to the Kriging model. Latin hypercube (LH) training sets
are used in most cases. In this chapter, we discuss the influence of LHs on the predic-
tion error of the conditional expectation step of the Kriging model using examples.
Our suggestion is to perform these preliminary tests in order to assess which class
of LH seems to fit the specific application.

5.1 Introduction

To represent the behavior of physical systems, it is common practice to resort to
a mathematical model, such as:

y = f (x) (5.1)
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where x = (x1,x2, . . . ,xs)∈ D is the vector of input variables (without distinguishing
between control variables or engineering variables, noise variables and model vari-
ables), y ∈ IR is the output variable and D, the input variable space, is a subset of IRs

(Santner et al. 2003). Model (5.1) may imply the solution of ordinary or partial dif-
ferential equations defined in a time–space domain, as in the case of the ubiquitous
finite element method (Zienkiewicz 1971), the solution of a set of equations (either
linear or not); furthermore, the function f may not have an analytic solution. It may
be that the solution to such a system of equations is not available in closed form, or
that the numerical computation of it takes an unacceptably long time to obtain, or
that only an approximation of the true model (5.1) is available. Consequently, com-
puter simulation may provide hints about the actual relationship between the output
and input variables (see Fig. 5.1).

It is common practice for computer experiment (CE) practitioners to seek an
approximate model:

y = g(x) (5.2)

which is hopefully close enough to the real one in the domain of interest and lends
itself more easily to numerical evaluation. Such an approximate model of an in-
put/output function may be referred to as a metamodel (Kleijnen 1987) or, equiv-
alently, an emulator (Sacks et al. 1989a,b). Such a metamodel may imply rather
complex functions, not just low-order polynomials, a popular choice in response
surface methodology (Box et al. 1987).

A metamodel is first estimated in a given class of models and subsequently it pro-
duces a prediction of interest on the basis of a set of data (training set). The choice of
a data set is a problem classically termed “design of experiments” (D.o.E). The ap-
propriateness of a data set must be evaluated with respect to criteria that are strongly
affected both by the metamodel chosen and the aim of the experiment. The appli-
cability of the basic principles of classical D.o.E.—i.e., replication, randomization
and blocking—is questioned in CE. Moreover, effects of uncontrolled factors and
measurement uncertainties are the main sources of error in physical experiments.
With CE, there are no measurement uncertainties, since repeated runs with the same
input lead to exactly the same responses, and the effects of uncontrolled factors are
present, possibly with an interpretation that is different from the physical case. Un-
certainty is related to a lack of knowledge of the exact relationship between input
variables and response (in D.o.E., this discrepancy is referred to as “model bias”).
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Fig. 5.1 Graphical representation of physical experimentation: a number of experiments are car-
ried out according to changes in the input variables in order to acquire knowledge about the causal
relationships between the input and output variables of a (usually quite complex) physical system
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Therefore, the selection of an experimental design in CE is crucial to achieving
an efficient and informative model. In principle, the problem is that of finding a good
design, namely a set of experimental points Dn = {x1,x2, . . . ,xn} ⊂ IRd for a given
number of runs n; the CE approach involves uniform coverage of the experimental
region (in which we want to predict the response y) and any number of levels for
each factor.

In classical D.o.E., the minimization of some function of the covariance matrix
containing the least squares estimates for the model parameters is an accepted prin-
ciple, together with work aimed at ensuring the independence of estimates. It is
suggested in the literature on CE that the principle should be to make the deviation
between the true model (5.1) and the metamodel (5.2):

Dev(xi; f ,g) = f (xi)−g(zi) (5.3)

as small as possible for any point xi ∈ Dn, for i = 1,2, . . .,n, in the experimental
region (there is no restriction on supposing that Dn is a d-dimensional cube, since all
input variables may be rescaled; therefore the experimental region may be the unit
cube Cd , without any loss of generality, where d is the number of the variables); see
the discussion in Santner et al. (2003), Sasena et al. (2002), and Park et al. (2002)

It has been suggested by Sacks et al. (1989a,b) that the joint use of a Kriging
model as a metamodel together with latin hypercube (LH) designs (Mckay et al.,
1979; Loh, 1996) is the best option in CE when no specific model is imposed by
the application itself. In the present chapter, we discuss the behaviors of different
LH designs in minimizing the overall error of prediction for a regular grid. It has
frequently been observed that some LH designs are not desirable because they do
not ensure sufficient coverage of the design space. We hope that our results will be
useful for clarifying the coverage criteria in quantitative terms.

5.2 Kriging Prediction

When the output of a CE is modeled according to the suggestion of J. Sacks, a Krig-
ing model is used that considers the response y(x), for x ∈ D ⊂ IRd , to be a realiza-
tion of a Gaussian random process Y (x):

Y (x) = β′f(x)+ Z(x) (5.4)

where f(x) = ( f1(x), f2(x), . . . , fm(x))′ is a set of specified trend functions, β =
(β1,β2, . . . ,βm)′ is a set of (usually unknown) parameters, and Z(x) is a Gaussian
random process with zero mean and stationary covariance over D; therefore:

E [Y (x)] = β′f(x)

Cov(Y (x),Y (x+ h)) = σ2
Z R(h;θ) (5.5)
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where σ2
Z is the process variance, and R is the stationary correlation function (SCF),

which only depends on the displacement vector h between any pair of points in D
and on the vector parameter θ.

Model (5.4) is known as “universal Kriging,” and was created by a group of statis-
ticians (Sachs et al. 1989a,b) at the end of the 1980s. Such a suggested framework
for deterministic CEs appears to conflict with its origins: Kriging models are named
after a South African engineer, Daniel G. Krige (1951), who first used them to pre-
dict noisy spatial responses from (generally) a small number of observations when
analyzing mining data. The two contexts are quite different: the former is refers to
phenomena affected by noise, and so the use of statistical models is valid; the latter
assumes that the responses of a CE are the realization of a stochastic process, and
makes much of the correlation structure dictated by the process.

The original suggestion, which is still the most popular choice for the correlation
function, comes from the power exponential family:

R(h;θ) =
d

∏
l=1

exp{−θl |hl|p} = exp

{
−

d

∑
l=1

θl |hl|p
}

with 0 < p ≤ 2 , (5.6)

where θ = (θ1,θ2, . . .,θd , p)′, θl are positive scale parameters and p is a com-
mon smoothing parameter. Parameter θl , l = 1,2, . . .,d, represents the rapidity with
which the correlation decays in direction l with increasing distance hl . The assump-
tion in (5.6) that the positive correlation between outputs diminishes as the distance
between input sites increases is the formalization of Krige’s original idea.

Most practitioners (Santner et al. 2003) suggest that Bayesian estimators should
be used to analyze the output of CE; prior information on the set Y n = (Y (x1),Y (x2),
. . . ,Y (xn))′ of process variables at xn = (x1,x2, . . . ,xn) (also named the training
data) is used to predict the unknown output Y (x) at a new site x0. Then, un-
der the hypothesis (consistent with (5.5) and (5.6)) that the joint random variable
(Y (x0),Y (x1),Y (x2), . . . ,Y (xn)) is a multivariate normal, N[(f′0,F)′β,σ2

Z Σ], with

Σ =
(

1 r′0
r0 R

)
, the conditional mean of Y (x) for the process data at the untried

point x0, Ŷ0 = E(Y (x0)|Yn) is:

Ŷ0 = f′0β+ r′0R−1 (Yn −Fβ) (5.7)

where f0 is the m× 1 vector of the trend functions in x0, F is the n×m matrix
{ f j(xi)} i = 1, . . .,n

j = 1, . . .,m
of the trend functions computed in (x1,x2, . . .,xn), r0 is the cor-

relation vector (R(x0 − x1), . . .,R(x0 − xn))′, and R is the n× n correlation matrix
whose (i, j) element is R(hi j = xi −x j).

As the predictor Ŷ0 = E(Y (x0)|Yn) minimizes the mean squared prediction error,
E[(Ŷ0 −Y0)2], it is the best linear unbiased predictor (BLUP) of Y (x0), and it is also
the unique one.

The mean squared prediction error

MSPE
[
Ŷ0
]
= E

[(
Ŷ0 −Y (x0)

)2
]

= σ2
z

(
1− r′0R−1r0

)
(5.8)
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usually called the Kriging variance, is a measure of prediction uncertainty. It is
worth noting that it is large when x0 is far from the experimental points and small
when it is close to them; it vanishes at the experimental points because of the inter-
polatory nature of Kriging.

Equations 5.7 and 5.8 hold only if β and R(h;θ) are known (rarely the case in
practical situations), but we use them in a methodological context. We are going
to compare the efficiencies of different training sets in toy examples for each value
of β and R; in other words, we do not consider the relative efficiencies of different
training sets in terms of estimating unknown parameters.

5.3 A Class of Designs: Fractions of a Regular Grid

The correlation model (5.6) is defined for θl > 0, l = 1,2, . . .,d, and p between 0
and 2. It is known that these conditions are necessary and sufficient for a function of
that form to be positive definite in Euclidean space and, therefore, for a stationary
Gaussian process to exist with that covariance function.

In the present computations we are going to assume that the Gaussian process is
defined on a regular rectangular grid, i.e.,

D = {1, . . ., l}d (5.9)

The Euclidean distance is not really adapted on a regular grid, so we now switch to
the Manhattan distance, i.e., |x− y|= ∑d

l=1 |xl − yl| and a covariance function of the
form:

R(h;θ) = exp

{
−θ

(
d

∑
l=1

|hl|
)p}

with 0 < p ≤ 2 (5.10)

with hl = xl − yl, l = 1,2, . . .,d.
Since the major source of variability in CE comes from the lack of fit, i.e., the

discrepancy between the responses predicted by the model (5.4) and the runs (the
outputs of the numerical simulations or code), it is mandatory to choose designs
that spread the points (at which we want to run the code) throughout the region
of interest. Classical factorial designs may be extremely resistant to this mandate.
Anyway, there are a number of these designs in literature, known as space-filling
designs, that meet the desired requirements. A design with this feature is obtained
by simple random sampling or by stratified random sampling (if a portion of the
experimental region needs to be explored with more refined investigations). One
very popular design among CE users can be generated by applying the latin hyper-
cube (LH) sampling proposed by McKay et al. (1979) in order to lower the variance
of the unbiased (or asymptotically unbiased) estimator of E[Y ]; i.e., the goal is to
achieve the estimator with the smallest variance. However, while LH sampling has
nice marginal properties (the points are marginally spread uniformly over the values
of each input variable), not all LH designs are properly space-filling.
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The next section is devoted to comparing different LH designs from among the
total set of designs by considering a fixed number of variable levels.

5.4 Comparing Different Designs: Cases 2 × 2, 3 × 3, 4 × 4

In this section, we focus on finding classes of latin hypercube (LH) designs that
have the same prediction features. We want to convince the reader that the choice of
a LH design should made very carefully, and that such a choice must not be simply
based on generic combinatorial or geometric arguments that are not directly related
to the actual statistical computation of interest.

For the sake of the present discussion, we deliberately ignore the effects of es-
timating unknown model parameters. We focus on studying the variance of the
Gaussian linear prediction as a function of the design, given that all parameters
are known.

According to the Bayesian methodology for designing and analyzing CEs, the
comparison is carried out on the variance of the conditional expectation (for a de-
tailed and exhaustive discussion, see Santner et al. 2003). In Sack et al. 1989a,
1989b, the prediction of the unknown output Y (x) occurs at a new site x0, i.e., at
a generic point. In this chapter, we prefer to consider the prediction of the grand to-
tal Y+ = ∑n

i=1 Y (xi) of process variables for the training data, just as geostatisticians
do (Krige 1951; Cressie 1993; Cressie 1997 and Matheron 1971).

According to the assumption of a conjoint multivariate normal distribution, see
Sect. 5.2, the expected value and the variance of the grand total may be computed
in closed form. For the sake of simplicity, we consider that β is the null vector
and that the process variance σ2

Z is unitary. This standardization does not affect
our conclusion. Under these circumstances, the total is a normal distribution with
zero mean and a covariance matrix of {σi, j}i, j=1,2,...,ld , where σi, j is the covariance

between any two sets of training data Y (xi) and Y (x j). Therefore, Y+ ∼ N(0,σ2
+),

where σ2
+ is the variance of the total, comprising l2d covariances (this number of

covariances includes ld variances).
Given the rectangular grid (5.9), l! different LH designs are available. Let

{Y
(LH) j
i } be the set of l training points in the LH j design, j = 1,2, . . ., l!. The distri-

bution of the normal vector (Y+,Y
(LH) j
1 ,Y

(LH) j
2 , . . .,Y

(LH) j
l ) has zero mean and a co-

variance matrix of Σ =

(
σ2

+ σ+,(LH) j

σ′
+,(LH) j

Σ(LH) j

)
, where σ+,(LH) j

is the row vector of

the covariances between the total and the point in the LH design considered, and
Σ(LH) j

is the covariance matrix of the cited design.

The predictor Ŷ
(LH) j
+ = E(Y+|Y (LH) j

1 ,Y
(LH) j
2 , . . .,Y

(LH) j
l ) is BLUP, and its mean

square prediction error: (MSPE):

MSPE
[
Ŷ

(LH) j
+

]
= E

[(
Ŷ

(LH) j
+ −Y+

)2
]

(5.11)
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is the statistical index chosen in this chapter in order to compare different LH de-
signs with the same number of training points. Given the orthogonality between

Ŷ
(LH) j
+ −Y+ and Ŷ

(LH) j
+ , the MSPE of (5.11) may be written as:

MSPE
[
Ŷ

(LH) j
+

]
= E

[
(Y+)2

]
−E

[(
Ŷ

(LH) j
+

)2
]

. (5.12)

Therefore, if the main reason that leads to the particular choice of an LH design
among the l! ones with the same number of points is to minimize the MSPE, we
compare the different MSPEs of the designs in order to find the one that yields
the predictor with maximum variance. In other words, the displacement of the LH

design points must provide the predictor Ŷ
(LH) j
+ that has maximum variance because

of the relationship caused by the covariance (remember that since both Ŷ
(LH) j
+ and

Y+ have means of zero, their variances overlap the second-order moment, and so the
right side of (5.12) is the difference between their variances).

Finally, the best LH design—according the rule of maximum predictor variance—
is the one that produces:

max
1≤ j≤l!

var
[
Ŷ

(LH) j
+

]
= max

1≤ j≤l!
σ+,(LH) j

Σ(LH) j
σ′

+,(LH) j
. (5.13)

We compared all of the LH designs with two variables and l = 2, 3 and 4 levels. The
predictor variances (5.13) were computed with the software CoCoA (Computations
in Commutative Algebra), a freely available system for symbolic computation with
multivariate polynomials. In fact, the closed form expression of the predictor vari-
ance is a rational function in the covariances with rational coefficients. As such, it is
suitable for symbolic exact computation. Computation with the exponential model
for the covariance was done using the software R.

First, we consider the trivial case with two factors and two levels of each factor.
There are only two LH designs, and they coincide with the two regular fraction of
a 22 factorial design. Because of the symmetry imposed by the covariance structure,
the two designs have the same prediction variance.

5.4.1 3 × 3 LH Designs

When there are three levels, the situation is a bit more interesting. There are six LH
designs, and two clusters are imposed by the symmetry, see Fig. 5.2. The former
contain the two diagonal ones (1 and 4), and the latter contain all the remaining LH
designs (2, 3, 5, 6).

The two LH designs with diagonal arrays of design points are not usually con-
sidered true space-filling designs; these designs are in the second cluster instead.
This classification is not just qualitative—it is confirmed by an actual comparison
between the respective predictor variances.
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Fig. 5.2 Graphical represen-
tation of the array of three
design points in each of the
six LH designs with two vari-
ables and three levels

The structure of the covariance matrix Σ among the nine original points is:

Σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ(1) ρ(2) ρ(1) ρ(2) ρ(3) ρ(2) ρ(3) ρ(4)
ρ(1) 1 ρ(1) ρ(2) ρ(1) ρ(2) ρ(3) ρ(2) ρ(3)
ρ(2) ρ(1) 1 ρ(3) ρ(2) ρ(1) ρ(4) ρ(3) ρ(2)
ρ(1) ρ(2) ρ(3) 1 ρ(1) ρ(2) ρ(1) ρ(2) ρ(3)
ρ(2) ρ(1) ρ(2) ρ(1) 1 ρ(1) ρ(2) ρ(1) ρ(2)
ρ(3) ρ(2) ρ(1) ρ(2) ρ(1) 1 ρ(3) ρ(2) ρ(1)
ρ(2) ρ(3) ρ(4) ρ(1) ρ(2) ρ(3) 1 ρ(1) ρ(2)
ρ(3) ρ(2) ρ(3) ρ(2) ρ(1) ρ(2) ρ(1) 1 ρ(1)
ρ(4) ρ(3) ρ(2) ρ(3) ρ(2) ρ(1) ρ(2) ρ(1) 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.14)

where ρ(h), h∈ {1,2,3,4}, is the correlation coefficient, which depends only on the
distance |h| between any pair of points xi and x j (the process variance σ2

Z is unitary
according to the assumptions).

The variance of the grand total is:

σ2
+ = 16 + 24ρ(1)+ 28ρ(2)+16ρ(3)+4ρ(4) . (5.15)

The covariance matrices Σ(LH)1−4
for LH numbers 1–4 and Σ(LH)2−3−5−6

are:

Σ(LH)1−4
=

⎛
⎝ 1 ρ (2) ρ (4)

ρ (2) 1 ρ (2)
ρ (4) ρ (2) 1

⎞
⎠

Σ(LH)2−3−5−6
=

⎛
⎝ 1 ρ (3) ρ (3)

ρ (3) 1 ρ (2)
ρ (3) ρ (2) 1

⎞
⎠ (5.16)

Figure 5.3 shows a plot of the relative difference between the variances of the grand
total predictors based on the two cluster designs as a function of the parameter θ .
We use this relative difference as an efficiency index. The LHs numbered 2, 3, 5
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Fig. 5.3 Comparisons of grand total predictors based on two different LH designs: the data refers
to the relative difference between the variances of the two grand total predictors as a function of
the covariance function parameter θ with smoothing parameter p = 1

and 6 (see Fig. 5.2) lead to a slightly more efficient predictor of the grand total (i.e.,
a smaller MSPE), but the efficiency tends to vanish as the parameter θ increases (as
θ increases, correlation decreases).

5.4.2 4 × 4 LH Designs

When four levels are considered for each factor, there are 4! = 24 LH designs avail-
able, all of which are depicted in Fig. 5.4. The computations were only performed
for eight designs, each one representing a unique cluster (the other designs can be
obtained by circular permutation of the design points, and they give the same pre-
diction variance for the total).

In Fig. 5.5 there are the plot of the relative variances of the predicted value of
the grand total according to the pinpointed LH designs: LHs 1, 2, 3, 4 in top dis-
play and 8, 10, 11, together with the design consisting of the four corners in the
bottom display. Also in such a case the different behaviours of the predictors based
on the LH designs are not noteworthy. A major discrepancy may be detected in the
comparison with the predictor based on a factorial design with the same number of
the design points as well. A possibility would be a 4(2−1) design, such as the four
corners design we have used. The comparison is in favour of any LH designs, even
considering the not truly space filling ones. This picture may be an assist in choos-
ing the proper LH design among the many available according to the criterion of
maximum variance of the grand total predictor.

These comparisons were performed in order to aid the selection of the design
points. In fact, it can be rather tricky to define the appropriate design according
to the universal Kriging model (5.4): if the choice of the design is made to fulfil
the goodness requirements of the regression part of the model (i.e., β′f(x)), it is
advisable to use a classical factorial design; on the other hand, if the design should
favor the stochastic process component Z(x), a space-filling design (like the LH
designs) is better.
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Fig. 5.4 Representation of the
array of design points in each
of the 4! LH designs with two
variables and four levels. It
is evident that there are are
only eight relevant designs,
because the remaining designs
can be obtained by rotating
these eight designs

5.5 Conclusions

We have discussed the Kriging model, where the covariance depends on the Man-
hattan distance between the points on a regular grid of location. After analyzing the
3×3 and 4×4 cases, we can draw the following conclusions:

1. The efficiency of an LH design in terms of the relative mean square error of the
conditional expectation step is better than those of other designs with the same
number of points, even those that are optimal for regression problems.
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Fig. 5.5 Relative variance
of the predicted value of the
grand total for the LHs 1,
2, 3, 4 (top), 8, 10, 11 and
the design consisting of the
four corners (bottom). The
line types, in order, are: solid,
dashed, dotted, dotdash. The
parameter θ ranges from 0.5
to 2.5 and p = 1.2

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LH 1 2 3 4

R
el

at
iv

e 
va

ria
nc

e

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LH 8 10 11 and corners

R
el

at
iv

e 
va

ria
nc

e

2. All LH designs have essentially the same efficiency for small grids (3× 3 and
4× 4 here). This contrasts with the current suggestion: to look for an LH with
good spatial coverage.

3. We suggest that a preliminary analysis of this type should be performed in order
to single out a suitable class of LH design and randomize the LH in this class,
rather then to choose a good-looking design a priori.

4. Up to the dimensions considered, symbolic exact computations are feasible and
could provide some extra insight.
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Chapter 6
New Sampling Procedures in Coordinate
Metrology Based on Kriging-Based Adaptive
Designs

Paola Pedone, Daniele Romano, and Grazia Vicario

Abstract This chapter describes an interesting case of process innovation gener-
ated by transferring two statistical technologies from their native application fields
to a different one. The technologies are prediction by Kriging models and sequen-
tial experiments, originally developed for geostatistics applications and clinical tri-
als, respectively. The combination of the two, i.e., sequential experiments driven by
Kriging predictions, has been successfully applied in coordinate metrology. The lat-
ter is a vast technical sector, widespread in industry, devoted to assessing product
compliance to geometrical specifications by measuring a set of point coordinates on
the part to be inspected. Preliminary results indicate that this technology transfer
has produced a remarkable improvement in the performance of the measurement
process, in terms of both quality and productivity.

6.1 Introduction

An essential problem for researchers and engineers is the reconstruction of a sur-
face of a manufactured product on the basis of a set of measured points. The set of
points is obtained by a measurement process performed by a coordinate measuring
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Fig. 6.1 A schematic view
of a coordinate measuring
machine

machine (CMM). CMMs are finding increasing use, both online for production con-
trol and offline for the inspection of finished products. They can work under either
operator control (for one-at-a-time jobs) or computer control (for repetitive tasks).

A CMM inspection (see Fig. 6.1) is typically performed by sequentially logging
the coordinates of points where a ball-end touch-fire probe contacts the surface of
the piece under consideration and sends back a set S = {x1,x2, . . .,xn} of Cartesian
coordinates (in one or more dimensions: x j ∈ IRd , with 1≤ d ≤ 3 and j = 1,2, . . .,n)
pertaining to contact points between the device (touch probe) and the surface ex-
plored; polar and cylindrical coordinates are also used whenever convenient.

Point-by-point exploration is a sampling process, and the size of the sample is
necessarily limited by time and cost constraints. Moreover, the coordinates returned
by the machine are affected by random errors whose effects on the final result of
the control have to be assessed. These facts make the evaluation of form errors
with CMMs quite a challenging statistical problem, especially when complex con-
trols are involved. To make the inferential problem even more difficult, form errors,
as defined by tolerancing standards (ASME Y14.5.1M, 1994), depend heavily on
extreme values of the deviations in form over the surface, so a full-field inspec-
tion is virtually required. As an example, straightness is defined as “the minimum
distance between two parallel lines enclosing the actual feature” (minimum zone
criterion). Hence, a few points, the most “outward” and “inward” points, determine
straightness, whereas the others are irrelevant; see Fig. 6.2. In statistical terms, this
is equivalent to making inference on parameters that are dependent on tail units of
the population of form deviations, which are unlikely to occur in a small sample.
In spite of this, industrial practice envisages the use of very simple sampling meth-
ods (uniform, stratified, random) and the evaluation of form error by deterministic
methods based only on the sample data, thus neglecting the statistical nature of the
estimation problem.
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Fig. 6.2 Form error depends
only on a few extreme points
in the surface pattern

critical points

Figure 6.3 shows an example of the two most commonly used methods. The or-
thogonal least squares (OLS) method encloses the points between a pair of lines,
both of which are parallel to the orthogonal least squares line (minimizing the
sum of the squared orthogonal deviations between the probed points and the line).
Straightness is measured as the minimum distance between two such lines. The
other method, the convex hull method (CH), assesses the minimal convex set con-
taining the probed points. For each side of the convex hull, orthogonal distances
between that side and each vertex are computed and the largest is saved. Straight-
ness is then obtained as the smallest of these largest distances.

The purely deterministic evaluation of form errors provided by both methods is
naturally prone to underestimating the actual error (Dowling et al. 1997): points
of the actual surface external to the region enclosed by the parallel lines would
generally produce a larger error. In several instances, this downward bias can be
high enough to accept parts which should have been rejected.

One way to overcome these inherent difficulties is to exploit some additional in-
formation on the actual surface to be inspected: in-process information and a priori
information. The differences depend on whether the additional information is col-
lected during the inspection stage or before (e.g., knowledge of the manufacturing
processes applied, preliminary detailed inspection of a few parts). In this chapter,
we consider in-process information, which is only poorly explored in the technical
literature (Badar et al. 2003; Edgeworth and Wilhelm 1999). In particular, we fo-
cus on the construction of a sequential inspection plan where information collected
up the current probed point is exploited to select the next point. The plan is then
terminated on reaching a stopping criterion.

Since the construction of the sequential design relies heavily on the prediction
of the surface pattern at each step of the procedure, a good design requires a good

tOLS

tCH

tOLS

tCH

tOLS

tCH

CH method

Convex hull

tOLS

tCH

OLS method

OLS line

tOLS

tCH

tOLS

tCH

tOLS

tCH

Fig. 6.3 The main sample-based methods used for form error computation (five points have been
probed on a nominally straight line). Left: orthogonal least squares (OLS). Right: convex hull (CH)
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predictive mechanism. We use Kriging models for their recognized ability to provide
good predictions (Kleijnen and van Beers 2004; Simpson et al. 2001).

Section 6.2 offers an overview of the Kriging model and on the issue of parame-
ter estimation. The good predicting ability of Kriging models is then demonstrated
in Sect. 6.3 through a comparison with regression models in a selected test case.
Section 6.4 is devoted to a description of the adaptive approach for generating se-
quential sampling plans. Its application is then illustrated by two case studies based
on real CMM measurements. A final discussion encouraging the use of the proposed
approach concludes the chapter.

6.2 Kriging Models

Kriging models are named after a South African engineer, Daniel G. Krige (1951),
who first referred to them when analyzing mining data. Facing the problem of hav-
ing to make accurate predictions of response based on a rather small set of spatial
data, he put the reasonable idea that response values that are spatially close together
are much more alike than values that are more distant (smoothness of the response)
in statistical terms. Consequently, when predicting at an untried location, observa-
tions that are closer to it should exert more influence on the prediction. His intuition
was further developed in geostatistics by other authors (Matheron 1971; Cressie
1993 and 1997; Goovaerts 1997). Then, at the end of the 1980s, a group of statis-
ticians (Sachs et al. 1989a,b) set up a framework that used Kriging to model the
deterministic output of a computer program.

Let D ⊂ IRd be the region where we want to predict the response y observed
at a set of experimental points xn = (x1,x2, . . .,xn), with xi ∈ D for i = 1,2, . . .,n.
Response y(x), for x ∈ D, is considered a realization of a Gaussian random pro-
cess Y (x):

Y (x) = β′f(x)+ Z (x) (6.1)

where f(x) = ( f1(x), f2(x), . . ., fm(x))′ is a set of specified trend functions and β =
(β1,β2, . . .,βm)′ is a set of coefficients. Z(x) is a Gaussian random process with zero
mean and stationary covariance over D, so that:

E [Y (x)] = β′f(x)

Cov(Y (x),Y (x+ h)) = σ2
ZR(h;θ) (6.2)

where σ2
Z is the process variance, R is the stationary correlation function (SCF),

which only depends on the displacement vector h between any pair of points in D
and on a set of parameters θ. Model (6.1) is known as universal Kriging. A con-
venient choice for the correlation function is found within the power exponential
family (the most common model adopted in the computer experiment literature):

R(h;θ) =
d

∏
l=1

exp{−θl |hl|p} = exp

{
−

d

∑
l=1

θl |hl|p
}

with 0 < p ≤ 2 (6.3)
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where θ = (θ1,θ2, . . .,θd , p)′, θl are positive scale parameters and p is a common
smoothing parameter. Parameter θl describes how rapidly the correlation decays in
direction l with increasing distance hl . The assumption in (6.3), that the positive
correlation between outputs diminishes with increasing distance between the input
sites, is a formalization of Krige’s original idea. Notice that if θl = θ ∀l, the cor-
relation depends only on the distance |h| between any pair of points x and x + h
(isotropic SCF). Parameter p describes the pattern of correlation decay. When p = 2
we have the (inappropriately) termed “Gaussian SCF,” which is suitable for very
smooth, infinitely differentiable, responses. In general, the less smooth the response,
the lower p is. The practitioners in computer experiments restrict the choice of the
SCF to functions with the desired smoothness properties; for a formal treatment of
the subject, see Abrahamsen (1997).

Kriging modeling lends itself to a sound theoretical framework for predicting
the output. Let Yn = (Y (x1),Y (x2), . . .,Y (xn))′ be the set of process variables at xn.
Then, under the hypothesis (consistent with (6.1) and (6.2)) that the joint random
variable (Y (x0),Y (x1),Y (x2), . . .,Y (xn)) is a multivariate normal, the mean of Y (x)
at the untried point x0 conditional on the process data, Ŷ0 = E(Y (x0)|Yn), is:

Ŷ0 = f′0β+ r′0R−1 (Yn −Fβ) (6.4)

where f0 is the m × 1 vector of the trend functions in x0; F is the n×m matrix
{ f j(xi)} i = 1, . . .,n

j = 1, . . .,m
of the trend functions computed in (x1,x2, . . .,xn), r0 is the cor-

relation vector (R(x0 − x1), . . .,R(x0 − xn))′, and R is the n× n correlation matrix
whose (i, j) element is R(hi j = xi −x j).

The predictor Ŷ0 = E(Y (x0)|Yn) is the best linear unbiased predictor (BLUP) of
Y (x0), because it minimizes the mean squared prediction error E[(Ŷ0 −Y0)2], and
it is also the only one. Predictor (6.4) can also be regarded as the weighted linear
combination of the observations that minimizes the mean squared prediction error
under the constraint of being unbiased, E[Ŷ0] = E[Y0].

The predictor is the sum of the regression term and the correction term
r′0R−1(Yn − Fβ). The correction term can be interpreted as being a linear com-
bination of the residuals of the fitted regression model that forces the predictor to
interpolate the observed data. It is the key element of Kriging, as the correlation
structure acts through it. It generally produces good predictions even when the re-
gressive term is unable to capture the actual trend. In fact, the model typically used
in geostatistics, referred to as ordinary Kriging, reduces the regressive term to a con-
stant (i.e., β′f(x) = β ) without suffering losses in prediction fidelity (Sacks 1989).
Therefore, we use ordinary Kriging both because we assume that no knowledge on
the surface error is available a priori to drive the choice of β, and because this allows
a faster inspection plan, as a lower number of parameters will be estimated at each
step.

The mean squared prediction error:

MSPE
[
Ŷ0
]
= E

(
(Ŷ0 −Y(x0))2)= σ2

z

(
1− r′0R−1r0

)
, (6.5)
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usually called the Kriging variance, is a measure of prediction uncertainty. It is large
when x0 is far from the experimental points and small when it is close to them. Due
to the interpolatory nature of Kriging, it vanishes at the experimental points.

However, Eqs. 6.4 and 6.5 only hold when β and R(h;θ) are known, which is
hardly ever the case in practical situations. When β is unknown, its generalized least
squares estimator β̂ = (F′R−1F)−1F′R−1Yn must replace β in (6.4) to yield the new
predictor. In this case, the Kriging variance is larger than (6.5) and becomes:

E
((

Ŷ0 −Y (x0)
)2
)

= σ2
z

(
1− r′0R−1r0 + c′0

(
F′R−1F

)−1
c0

)
(6.6)

with c0 = f0 −F′R−1r0.
The most common case is when the vector θ in R(h;θ) is unknown. It can then be

estimated by maximum likelihood, cross-validation, or posterior mode (for a thor-
ough reading see Santner et al. 2003). The maximum likelihood estimate is:

θ̂ML = arg(min(n log σ̂2
z (θ )+ log(det(R(θ))))) (6.7)

where:
σ̂2

Z (θ) =
(

yn −Fβ̂(θ)
)′

R(θ)−1
(

yn −Fβ̂(θ)
)

(6.8)

is the MLE of the process variance. In (6.8), yn is the vector of the observations, and
the estimate β̂(θ) is provided by generalized least squares. The predictor obtained
by plugging the estimates r̂0 = r0(θ̂ML) and R̂ = R(θ̂ML) into (6.4) is termed the
empirical best linear unbiased predictor (EBLUP). However, the predictions are no
longer linear in the observations, as r̂0 and R̂ can have a highly nonlinear depen-
dence on observations. Another notable consequence of using the EBLUP is that
(6.6) underestimates the prediction variance as it does not account for the extra vari-
ability transmitted to r̂0, R̂ and β̂ by θ̂. Possible ways of overcoming this problem
include resorting to an empirical estimate of the variance. Den Hertog et al. (2006)
use parametric bootstrap, and Kleijnen and van Beers (2004) use cross-validation
and jackknife.

6.3 Prediction Capability: Kriging vs. Regression

In this section, we compare the prediction capabilities of Kriging models with those
of standard regression models using a test case selected ad hoc. Regression is the
most common global model for statistical interpolation. In contrast, Kriging mod-
els, though formally global (see Eq. 6.1), can be regarded as local due to the flexible
spatial correlation mechanism that they are based on. Different behavior can there-
fore be expected. The test case is peculiar in that the response exhibits fast and
complex variations in one input variable, but very slow variations in the remain-
ing two variables. The test case is selected according to a wider research activity
aimed at designing an optical profilometer based mainly on a stochastic simulation
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Fig. 6.4 Graphical scheme of the simulation experiment. The third factor is omitted for ease of
representation

model of the whole measurement process (see Fig. 6.4). The design, carried out at
the Dept. of Mechanical Engineering of the University of Cagliari, was performed
using a new robust design procedure (Giovagnoli and Romano 2008), and culmi-
nated with an innovative prototype that exhibits improved performance and reduced
production costs (Pedone 2006; Baldi et al. 2006). The simulator was validated by
physical trials (Baldi et al. 2006; Baldi and Pedone 2005).

The test case involves experiments with three control factors. The first factor is
the size of the mirror displacement (p); the other two are the scatter (standard devi-
ation) in the mirror displacement (σx) and the scatter in the gray-tone levels of the
pixels of digital images acquired by a video camera (σCCD). The experimental region
is the hypercube (0.1μm,0.3μm)× (0.005μm,0.015μm)× (0.008μm,0.016μm).
The comparison is performed using two different sampling strategies: full factorial
designs and latin hypercube (LH) designs.

The response of interest is the measurement uncertainty, computed as the sample
standard deviation for 104 replications performed for each design treatment (i.e.,
combination of levels of the controlled factors). In each replication, all of the un-
controlled errors associated with the mirror displacement and the gray-tones of the
image pixels are simulated by drawing from their assumed distributions (zero-mean
normal with standard deviations σx and σCCD, respectively). After the experiments
have been conducted, response models are estimated using both regression and Krig-
ing. Models are used to obtain predictions at untried points within the experimental
region. Predictions are then assessed by comparing them with the corresponding
values obtained by the simulator. At the prediction stage, the response is evaluated
using 106 replications of the stochastic simulator, i.e., with more precision than for
the training data. The whole test procedure is represented in Fig. 6.5.

Three different sample sizes are considered for the training designs, namely
n = 27, 125, and 225. The full factorial experiments involve 33, 53 and 9 × 52

designs, respectively. In the first two experiments, all factors are given three and
five equispaced levels covering the factor ranges. In the last experiment, the mirror
displacement—the most influential factor—has nine levels, while the two standard
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deviations have five. To construct the latin hypercube design, each factor domain is
divided into n strata with equal marginal probabilities 1/n, and one level is selected
from each stratum by random sampling. Then the n design points are obtained by
random sampling without replacement from the set of levels of each factor. The dis-
tinctive features of LH designs are the wide variety of factor levels and the freedom
to choose any size of experiment.

Regression models are polynomials; the degree of the polynomial is constrained
by the type of experimental design used. They are estimated by the stepwise proce-
dures available in the Minitab software. For Kriging models, both universal (model
(6.1)) and ordinary Kriging (i.e., Y (x) = β + Z(x)) are considered. The models are
estimated using two software packages available on the web: PErK (Parametric Em-
pirical Kriging) and DACE (Design and Analysis of Computer Experiments). The
latter is also compatible with the MATLAB code. The two packages implement dif-
ferent correlation functions: the full exponential family and the Matèrn I1 for PErK,
and only the Gaussian (exponential family with the restriction p = 2) for DACE.
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Fig. 6.6 Uncertainty vs. mirror displacement: the function is computed for several input levels
with the factors σx and σCCD held constant

1 The Matèrn I correlation function is: R(h) =
d
∏
j=1

1
Γ (ν)2ν−1

(
2
√

ν|h j |
θ j

)ν j

Kν

(
2
√

ν|h j |
θ j

)
where θ j is

the scale parameter and Kν is the modified Bessel function of order ν > 0.
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The parameters of the correlation functions are estimated by an MLE procedure in
both the packages.

The particular relationship between the mirror displacement and the response,
which presents marked variations with local maxima and minima, is shown in
Fig. 6.6. Factors σx and σCCD, which barely affect the response, are held at fixed
values in the diagram. To smooth the response pattern, models are estimated for the
natural logarithm of the response.
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Fig. 6.7 Comparison of the prediction capabilities of regression and Kriging models for six com-
binations of design type and size used for model estimation. Left column: factorial designs; right
column: LH designs. Top row: 27 points; middle row: 125 points; bottom row: 225 points
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The test sample used to assess the predictive capabilities of the models comprises
201 points. The levels of mirror displacement are uniformly partitioned across the
factor range, while the levels of σx and σCCD are selected at random within their
ranges. Figure 6.7 displays a comparison between the actual and predicted responses
for the six combinations of design type (factorials, LH) and size (27,125,225). The
graphs are two-dimensional, with only the dominant factor, p, explicitly represented
on the x-axis. In fact, the effects of σx and σCCD are much smaller and introduce only
tiny variations into the graphs compared to the pattern in Fig. 6.6. Factorial designs
with a low number of levels penalise all models. However, for the design where
p has nine levels, Kriging models capture the wavy pattern, with DACE being the
more effective. Kriging predictions are remarkably good when LH designs are used,
even with 27 points—where the predictions from regression are totally wrong. Re-
gression slightly improves with the two largest design sizes, but completely misses
the first maximum and the first minimum. Kriging models with a more flexible cor-
relation function (implemented in the PErK package) produce excellent predictions.
This indicates that the Gaussian correlation function, which has the same smoothing
parameter (equal to 2) for the three factors, is inadequate in a situation where the
factors have very unequal leverage on the response. These results provide enough
evidence of the suitability of Kriging for driving the construction of sequential sam-
pling plans for the metrological application presented before.

6.4 Adaptive CMM Inspection Plans

When experimental runs are expensive, it is desirable to produce accurate predic-
tions from a design that is as small as possible. Under these circumstances, sequen-
tial designs are natural candidates. Unlike conventional one-stage designs, where all
runs are decided prior to the experiment, in sequential designs the factor setting for
each run is adaptively selected based on the data acquired up to that time. Sequential
designs are generally considered more efficient than one-stage designs (Ghosh and
Sen 1991; Park et al. 2002). In fact, delayed allocation of runs is more informative,
since one can also exploit the newly acquired observations. Eventually, the design
is stopped when enough information has been collected for the purpose of the ex-
periment. The selection criteria for the next run may be to maximize a measure of
the collected information, to use the alphabetic optimality criteria, or to meet a spe-
cific objective of the application at hand, e.g., by selecting the location where the
prediction is lowest if the objective is response minimization.

There is a great deal of literature on sequential designs driven by Kriging models,
nearly always for computer experiments (Romano 2006). Crary (2002) discusses
G-optimal and I-optimal adaptive designs that iteratively minimize the maximum
mean squared prediction error (MSPE) and the average (integrated) MSPE respec-
tively. Jones et al. (1998) use a Bayesian approach to response optimization, where
the next input site is chosen by a heuristic criterion maximizing the expected im-
provement in the search for an unconstrained optimum. The procedure is driven by
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the posterior density of the improvement function, conditional on all data available
at each step. Variations of this method accommodating for the presence of con-
straints are proposed by Shonlau et al. (1998), while Williams et al. (2000) and
Lehman et al. (2004) use a Bayesian sequential strategy that deals with noise vari-
ables to solve a robust design problem. Kleijnen and van Beers (2004) use a fre-
quentist approach and select the next point based on where the prediction variance
is at its maximum. For a comprehensive discussion of criteria for Kriging-based
sequential designs, see Sasena et al. (2002).

These methods generally start with a space-filling design, like a latin hypercube
sampling design, a distance-based design, or a uniform design (Santner et al. 2002;
Fang et al. 2006); then, once the sequential procedure is activated, the estimates
for the parameters of the correlation function of the Gaussian process are updated
using some method (e.g., maximum likelihood, cross-validation, least squares) at
each step or, to reduce the computational burden, after a few steps.

In this chapter, we use the sequential designs described in the flow diagram in
Fig. 6.8; for a detailed description, see Pedone et al. (2008).

The procedure starts with a fixed-size design of n0 equispaced points, including
the extreme points of the domain to avoid extrapolation when predicting with Krig-
ing models. In the case study, we take n0 = 4, which is the minimum number of data
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Fig. 6.8 Flow diagram of the general adaptive procedure for buiding sequential designs. The set-
tings used in the two case studies discussed in this chapter are reported on the right of the diagram
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points needed to estimate all of the parameters of the ordinary Kriging model. The
design is then iteratively built up by adding one point at a time according to a pre-
determined rule. The added design point is selected from a set of candidate points;
the size of this set is allowed to vary from one step to another because the prediction
reliability improves with design size (it is sensible to increase the number of can-
didate points with the step number). The augmentation rule, also used by Kleijnen
and Van Beers (2004), is a dynamic one and allows us to focus on particular area of
the domain if necessary.

During the sequential construction of the plans, two main criteria are taken into
consideration. One is informative and one is problem-specific. The informative cri-
terion is the maximum prediction variance (MaxVar), i.e., the next point xi is se-
lected on the basis of where the Kriging predictions are most uncertain:

xi = xi j∗ , j∗ = arg

(
max

1≤ j≤mi
Var(ŷi j)

)
MaxVar criterion (6.9)

where ŷi j is the Kriging prediction at the candidate xi j, and mi is the number of can-
didate points at step i. A variant of MaxVar is also considered by combining MaxVar
with the ancillary criterion that wide areas of the domain should not be unexplored.
According to this, the winning candidate is the one that maximizes the product of the
prediction variance and the distance of the candidate from the nearest design point.
This can be regarded as a weighted MaxVar criterion (MaxWVar) where weights
favor areas with a lower density of design points.

The problem-specific criterion (MaxtInc) chooses the next point xi according to
which candidate would give the maximum expected increase in form error when
added to the current design:

xi = xi j∗ , j∗ = arg

(
max

1≤ j≤mi
(t̂i j − ti)

)
MaxtInc criterion (6.10)

where ti and t̂i j are the form errors obtained by applying one numerical method
(e.g., OLS or CH) to the point set already observed up to the i−1-th step, and to the
same set augmented with the Kriging prediction at candidate xi j, respectively. This
criterion directly attempts to cut down the systematic downward bias mentioned
in Sect. 6.1. Notice that when the maximum increase of t̂i j − ti is not greater than
zero, the criterion is no longer interesting. Thus, we adopt a composite rule (Switch)
which switches from MaxtInc to the informative criterion (MaxVar) if the maximum
expected increase is not positive. Therefore MaxtInc and MaxVar compete with each
other to choose the next design point.

After the winning candidate is designated, the response is observed at this new
site. Then the Kriging correlation function is estimated by maximum likelihood,
based on the current dataset. The new Kriging model is then used to provide predic-
tions for the response over the input space. Since such predictions are inexpensive,
it is possible to predict over a fine regular grid. Finally, the estimate t̂i for the current
form error is computed by applying OLS or CH methods to the large point sample
comprising both the current experimental points and the freshly obtained predic-
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tions. In the case studies, we compute predictions for all current candidates and at
all points in-between each candidate pair, and form errors are calculated by the CH
method.

The final design size N is the step at which the stopping rule is met. However, in
this study we do not apply any stopping rule; instead, we terminate the experiment
at a size N = 50, i.e., after 46 cycles of the algorithm. In fact, the research is ex-
ploratory in nature, as it aims to assess the potential of new inspection plans for the
particular application. Moreover, as the number of measured points per part is the
main industrial constraint in CMM operations, a maximum budget of fifty points is
a reasonable choice.

6.5 Application to Straightness and Roundness

In this section we describe the application of the sequential procedures to two case
studies. The procedures are not applied online. In fact, the goodness of the approach
is best tested if the true value of the form error is known. Thus, a preliminary large
point sample is inspected over the surface, so that the computed form error, obtained
by either the OLS or the CH method, is a good approximation of the true one.
Then the sequential plan is iteratively created with the constraint that all points
belong to the large sample. As the surface is inspected in a dense regular grid, the
approximation made by replacing the next point, dictated by the relevant criterion,
with the nearest grid point is indeed negligible. The accuracy of the estimated error
at the i-th step is defined as:

Ai =
t̂i

ttrue

∼= t̂i
tLS

(6.11)

where ttrue is the true unknown form error, tLS is its large-sample approximation,
and t̂i is its estimate at the i-th step. In the following, the accuracy obtained from se-
quential procedures is compared with that obtained from simple fixed-size sampling
methods. Among such methods, pure random sampling (PRS) and latin hypercube
sampling (LHS) are considered here.

6.5.1 Case 1: Straightness

Point data are taken for a selected area on a rectangular plate. Measurements were
made by scanning 62 parallel lines over the area with a step size of 0.5 mm (Buon-
adonna et al. 2007). The case study involves one line (line 34) over the rectangular
area, comprising a total of 331 probed points. Large sample measurements are plot-
ted in Fig. 6.9 as the lighter solid line. Note that only three points (R,S,T in Fig. 6.9)
determine the straightness error (tLS = 53.4μm). To be successful, the procedure
should chase only those points. The application of the three previously defined rules
leads to the sequential plans plotted in Fig. 6.9. Dots represent the design sites up
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Fig. 6.9 Kriging-based sequential designs with N = 50 points for the straightness case study. Next-
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Fig. 6.10 Accuracy (%) of the computed straightness error vs. the number of inspected points
for sequential and nonsequential designs. The sequential designs were obtained by three rules:
MaxVar (darker dashed line), MaxWVar (darker solid line), Switch (darker dash-dotted line). The
nonsequential designs are: pure random sampling (lighter solid line) and latin hypercube sampling
(light dashed line). For the latter designs, the data are averages of 20 replications

to N = 50, while the darker solid line represents the Kriging prediction at the last
step of the procedure. The differences are quite evident. The MaxVar criterion tends
to concentrate points into areas of high variation (three major details are well de-
scribed), but leaves wide unexplored pieces in-between. This means that some inter-
esting features may go undetected (see, for example, the z-shaped detail in the upper
right corner). This behavior is mitigated when MaxVar is weighted by the inverse of
the point density. Each area is sufficiently represented and no major detail is miss-
ing. The pattern from the switch criterion appears similar to the others; however, the
time order of the points is different and leads to a fast increase in accuracy over the
first few steps. This can be seen in Fig. 6.10, which displays the accuracy (%) of the
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plans derived by the three criteria. The Switch criterion yields an accuracy of more
than 80% with six design points (only two sequential points added) and 90% with
ten. The diagram also reports the accuracies of the PRS and LHS plans (the data are
the averages of 20 replications), which are generally much inferior to those of the
sequential plans, especially for a small-to-medium sample size. It is instructive to
see how the good performance of the Switch criterion is generated: in the first six
steps, the MaxtInc criterion wins, producing a rapid rise in accuracy.

6.5.2 Case 2: Roundness

The second case is taken from the technical literature (Edgeworth and Wilhelm
1999), and refers to the roundness error of a fully circular profile on a manufac-
tured part. It is one of the few sequential inspection plans which can be found in the
scientific journals of the metrological sector. The method is similar to that presented
before: 360 points are measured on the circle, from 0◦ to 359◦ in steps of 1◦; then
design points are selected one at a time from the large dataset. Edgeworth and Wil-
helm used a deterministic mechanism for next-point selection based on piecewise
cubic splines interpolation.

The profile exhibits large variation and the typical wavy pattern caused by im-
perfect drilling operations (see the lighter line in Fig. 6.11). In particular, four lobes
are observed, one of which peaks more than the others, and is the most responsible
for the roundness error of the profile, which amounts to tLS = 33.7μm. Roundness
is defined as the minimum orthogonal distance between two concentric circles en-
closing the actual profile. Under the mild assumption that the common center of the
enveloping circles is the average of the measured points, roundness can be computed
in the same way as straightness, i.e., by applying the CH method to the lighter line
in Fig. 6.11.

The 50-run sequential designs obtained by the three rules are displayed in the
three plots of Fig. 6.11. Here again, the MaxVar criterion focuses primarily on ar-

0 50 100 150 200 250 300 350

Experimental Design PointsKriging Prediction

0 50 100 150 200 250 300 3500 50 100 150 200 250 300 350-10

-5

0

5

10

15

20

25

x [deg]

y 
[μ

m
]

SwitchMaxVar MaxWVar

0 50 100 150 200 250 300 350

Experimental Design PointsKriging Prediction

0 50 100 150 200 250 300 3500 50 100 150 200 250 300 350-10

-5

0

5

10

15

20

25

x [deg]

y 
[μ

m
]

250

Experimental Design PointsKriging Prediction

-10

-5

0

5

10

15

20

25

x [deg]

y 
[μ

m
]

SwitchMaxVar MaxWVar

Fig. 6.11 Kriging-based sequential designs with N = 50 points for the straightness case study.
Next-point selection rules are: MaxVar (left), MaxWVar (middle), Switch (right)
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Fig. 6.12 Accuracy (%) of the computed roundness error vs. the number of inspected points for
sequential and nonsequential designs. Sequential designs are obtained by three rules: MaxVar (dark
dashed line), MaxWVar (dark solid line), Switch (dark dash-dotted line). Nonsequential designs
are: pure random sampling (light solid line) and latin hypercube sampling (light dashed line). For
these designs, the data are averages of 20 replications. Note that the Switch rule collapses to the
MaxVar rule

eas of high variation. It is the only rule capable of fully capturing the most promi-
nent lobe (thus reaching some 90% accuracy in the estimation of roundness, see
Fig. 6.12), but it spends half of the point budget to do this. As a drawback, the
signal approximation in other pieces of the domain is poor (Fig. 6.11). Conversely,
a satisfactory reconstruction of the overall signal is provided by the MaxWVar rule.
As the MaxtInc criterion is never triggered in this case, the Switch rule collapses to

Fig. 6.13 Approximations of
the original signal provided
by the Kriging-based adaptive
design (N = 50). The rule is
MaxVar. The deterministic
approximation by Edgeworth
and Wilhelm is based on cubic
splines (dashed line) x [deg]
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the MaxVar rule. The comparison with PRS and LHS is interesting. These sampling
methods are not outperformed by the sequential procedures until step 21 for Max-
Var and Switch, and step 26 for MaxWVar. This is probably due to the fact that this
signal has a higher information content than that in the first case study. Therefore,
more points are needed before Kriging predictions become reliable, thus making the
sequential procedures more effective than the nonsequential ones. Finally, Fig. 6.13
shows how the signal reconstructed by the Kriging-based method with the MaxWVar
rule compares with the original signal and with the approximation by Edgeworth and
Wilhelm based on cubic splines for the same number (50) of collected data points.
Note that the deterministic approach misses the highest peak, thus attaining only
51% accuracy.

6.6 Conclusions

The software implementing the adaptive Kriging-based inspection plans can easily
be incorporated into the computer control system for the CMM and then run in
real time. Thus the tool is fast, simple to automate and inexpensive. In addition
to this, this chapter has demonstrated, using two applications, that Kriging plans
are significantly better than those currently used in industry. We pinpoint at least
two advantages of them. First, the inspection is more informed, as we allow the
data to drive the sampling plan and its size. Secondly, Kriging predictions allow
for a statistical (model-based) evaluation of the form error as opposed to a purely
sample-based evaluation, which is plagued by a systematic downward bias. Overall,
the method proposed can be regarded as a cost-effective innovation of the CMM
measurement process.

An automated stopping rule, though desirable in principle, might not be good for
all possible types of surface deviations; therefore, the issue of when the inspection
should be stopped has not been directly addressed in the chapter. We plan to ap-
ply the method to two-dimensional form tolerances, like flatness and cylindricity.
Although this extension is not difficult in theory, it may be a challenge to keep the
computational time compatible with real-time operations.
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Chapter 7
Product and Process Innovation by Integrating
Physical and Simulation Experiments

Daniele Romano

Abstract Technical innovation in industry can massively benefit from an investiga-
tion strategy which properly combines experiments in the field with experiments on
a simulation model of the product or the process. However, a methodological frame-
work for the effective integration of the two kinds of investigation is still missing.
On the one hand, simulation and lab tests are routinely used together in R&D activi-
ties of hi-tech companies, although generally not in the form of statistically designed
experiments. On the other hand, design of experiments and computer experiments
are sound methodologies for running experiments in physical and numerical set-
tings, respectively, but they have practically disregarded the integration issue so far.
This chapter outlines a broad approach to running a sequence of physical and simu-
lation experiments from the viewpoint of incremental system innovation. Although
the approach is still qualitative, it introduces all of the elements (system innova-
tion, model calibration, model validation and modification, building of mechanistic
models) needed to tackle a new and industrially relevant problem. The approach is
demonstrated through its application to the design of an engineering system and the
improvement of a production process.

7.1 Experiments and Innovation

There is undoubtedly a strong link between innovation and experiments. Innova-
tion is the epitome of a discovery. The latter, when it does not happen by chance,
comes from a deliberate process of knowledge building. The most effective of these
processes is the scientific method, of which experimentation is an integral part.

In fact, the scientific method is the combination of two phases: the formulation
of new hypotheses by an expert on the grounds of the currently accepted body of
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knowledge (deductive phase), and the verification of these hypotheses by direct ob-
servation of the system of interest (inductive phase). These two phases, repeated
sequentially, are the engine of progress in science and technology. As deductive
reasoning has presumably been a human skill for a very long time (Aristotle’s foun-
dation of logic is proof of this), experiments are the missing link that previously
prevented mankind from achieving the vast progress we have experienced over the
last four centuries. From this viewpoint, the value of design of experiments (DoE),
the discipline associated with the rational management of the inductive phase, is
very clear. A statistical experiment is efficient and informative: it makes it possible
to test multiple hypotheses with controlled reliability and cost.

In the history of DoE, there is one fundamental contribution which is inspired by
the incremental nature of the scientific method. It is the approach of sequential ex-
perimentation, introduced by George Box in the 1950s (Box and Wilson 1951; Box
1999), which was particularly aimed at improving industrial systems. The optimal
setting for the system is obtained by a sequence of experimental stages with varying
objectives: ruling out inactive factors (screening); locating the region in the factor
space where the performance shows a maximum (improvement); providing accurate
prediction models for the performance by which optimal factor setting can be found
(prediction and optimization); verifying the optimal setting in the field (confirma-
tion). The different stages represent a variable trade-off between the accuracy and
the extent (number of factors) of the analysis. While highly fractionated two-level
factorials are initially used to screen several factors, three-level response surface
designs are run in the space of the few surviving factors for prediction and opti-
mization purposes. This results in an efficient and balanced allocation of the avail-
able budget. Notice that the statistical tools of sequential experimentation are not
particularly sophisticated nor completely new. The added value is that the method-
ology introduces an investigation strategy for a practical objective, i.e., achieving
system improvements at controlled costs. As this goal is highly relevant to industry,
sequential experimentation is an excellent example of how statistics can respond to
real industrial needs. Naturally, this is possible only if these needs are known. The
main elements of the strategy are reported in Table 7.1.

Table 7.1 Main features of the sequential experimentation approach

Phase Purpose Method Designs

Screening Rule out inactive
factors

ANOVA Highly fractionated
2-level factorials

Exploration Search for a good
operating region

Steepest ascent 2-level factorials

Prediction Estimate accurate
response models

Fitting of second-order
response models

3-level response
surface designs

Optimization Find optimal factor
setting

Analytic optimization
(canonical analysis)

–

Validation Confirm the results Confirmatory runs
near the optimum

–
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7.2 Physical vs. Computer Experiments

In recent decades, another approach to investigating complex systems has become
available due to the advent of computer science. The use of computer models to sim-
ulate the behavior of real systems is widespread in science and technology. As the
input/output relationship of a computer model is not usually available in an explicit
functional form, but rather as an I/O function which only provides the numerical out-
put corresponding to a given input, an experimental approach is fully justified when
the computing time per run is non-negligible. Thus experiments can be conducted
on a system’s simulator, and these represent a new source of knowledge about the
system.

An important question arises: how do physical and computer investigations com-
pare to each other? It is instructive to evaluate them on three relevant features: fea-
sibility, cost, and fidelity to reality. If one was superior to the other in all three fea-
tures there would be no point in using both! However, this is hardly ever the case:
physical and computer runs generally realize a different mix of the features. Let us
consider feasibility. In complex systems made up of many parts or many working
mechanisms (acting at different scales, e.g., the micro or macro scales), it may be
unfeasible to do physical experiments on some parts or some mechanisms due to
an inability to control some inputs and/or measure some outputs, or because it is
prohibitively expensive to do so. On the other hand, this can often easily be done on
a simulation model. One example is measuring the internal stresses of components
in mechanical design. Another two examples are found in the second case study
described in Sect. 7.4, related to measurements of the electric field and the determi-
nation of trajectories of small fibers in a production process. Thus, simulation can
be a substitute for a physical set-up by necessity. When both kinds of investigation
are feasible, they generally provide a different trade-off between cost and fidelity.
Roughly speaking, physical trials cost more, while simulations are less reliable. Set-
ting up a physical experiment can require significantly higher expenditure than the
preparation of a computer code. Moreover, the latter is often faster to run than its
physical counterpart. Even in cases where computer runs are currently very time-
consuming, progress in computer hardware will rapidly alleviate the problem. On
the other hand, it is important to consider the risk that the computer code is unfit to
reproduce the system’s functioning1.

The above discussion clearly calls for the integration of physical and computer
investigations. This already occurs to some extent in advanced industrial sectors,
like the aerospace, automotive, microelectronics and telecommunications industries.
Here, simulations and lab trials are routinely practiced in R&D activities but not in
the form of a logical sequence of experiments that are properly designed and related
to each other.

1 Of course, a similar risk occurs when one generalizes results obtained by experimenting on
a physical prototype of the product, or on a pilot configuration of the process.
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The situation is much worse in the applied statistical literature, where physical
and simulation experiments are dealt with separately and hence integration is still
not an issue. Computer experiments has been an autonomous discipline since the
end of the 1980es (Sacks et al. 1989; Santner et al. 2003), but it provides a lim-
ited view of what a “computer experiment” can represent in an industrial setting.
The computer model is considered expensive to run, and its output is strictly de-
terministic, while this is not true in several instances. In industrial research, the
computer model is a tool for representing reality, and thus a subject to be improved
by modifications and extensions. Real systems are inherently uncertain, since they
are affected by chance and uncontrolled variables. A more consistent simulation
of these systems should be a stochastic one. Yet stochastic simulation has been an
important tool in many technical fields for a long time. Important examples are dis-
crete event simulators of queueing systems used to analyze inventory, production,
and telecommunication facilities where arrival and service times (of parts, phone
calls, etc.) are random (Bashyam and Fu 1998). Only recently, Van Beers and Kleji-
nen (2005) reported an application of Kriging models, the models typically adopted
in computer experiments, in a stochastic simulation setting. Procedures for robust
design (Taguchi and Wu 1980) developed in the context of computer experiments
(Williams et al. 2000; Lehman et al. 2004) do not consider the potential of using
stochastic simulation. An adaptation of the robust design logic to stochastic simu-
lation is a very recent contribution (Giovagnoli and Romano 2008). It will be intro-
duced in Chap. 5.

Moreover, an experienced researcher in process and product simulation is aware
of the variety of ways an analysis may be carried out, all compatible with the prob-
lem at hand. Selection of the mesh replacing the real geometry of an object in finite
element analysis, the choice of different competing algorithms, and decisions about
convergence thresholds and the maximum number of iterations, are just some exam-
ples. Thus, a kind of “numerical uncertainty” is often present in simulation, and it
is an important piece of information to consider when deciding whether the design
solution is actually a good one. For an example related to nonlinear finite element
simulation, see Romano and Vicario (2002).

Regarding “integration,” contributions to the literature mostly address the prob-
lem of calibrating the computer model based on field data. The problem consists of
considering a set of system parameters, different from the design parameters, which
cannot be measured in the field but must be given a suitable value in the code (cal-
ibration). Their values are generally selected so that the simulation and field data
are best matched over a target input space. This problem has been addressed with
a frequentist approach (Park 1991), but more often with a Bayesian one (Bernardo
et al. 1992; Craig et al. 1996; Aslett et al. 1998; Goldstein and Rougier 2003; Reese
et al. 2004). However, a weakness of this approach is that it can yield an artificial
match for the numerical and physical data while leaving possible model inadequa-
cies undetected. The danger is that one has the illusion that the code is reliable and
thus believes that it is safe to apply it outside the calibration region. The history of
numerical studies in engineering is full of failures derived from this misunderstand-
ing. A more sound viewpoint is to consider model calibration as only one piece of
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the more general problem of model validation, i.e., assessing how well the model
represents reality. In fact, the computer code may be an unacceptable approximation
of the physics of the system because the underlying mathematical model is inade-
quate or too simplified. Numerical algorithms implementing the model can also be
incorrectly chosen. A good deal of work in combining calibration with validation
has been done by a group of researchers at the Sandia Laboratory (Easterling 1999,
2003; Hills and Trucano 2002; Hills and Leslie 2003). In this context, Kennedy
and O’Hagan (2001) introduce a fully Bayesian approach for modeling the bias be-
tween the computer model and the physical system data, and also provide for the
uncertainty of predictions using a Kriging emulator of the simulation model. Their
approach has been recently used by Bayarri et al. (2007) to build a framework for
model validation. However, the framework is quite entangled and does not lend it-
self to easy application in industrial problems. It is worth mentioning an interesting
attempt to integrate two simulators with different accuracies and speeds in order to
generate a surrogate model which provides a convenient trade-off between accuracy
and speed (Osio and Amon 1996; Qian et al. 2004). A final consideration is that, in
this body of research, the role of physical observations is ancillary: they are often
scarce and are not subject to design.

In this chapter, we envisage an approach for effectively integrating physical and
simulation experiments. Although the approach is still broad and qualitative, it in-
troduces the elements of a problem which is of high practical relevance: obtaining
innovative findings; validating modifying the computer model in order to improve
its ability to describe the real system; creating hybrid mechanistic models combining
both sources of information; effectively integrating engineering and methodological
expertise; and demonstrating the sequential nature of investigation. The approach is
presented in Sect. 7.3. Then, two case studies, one referring to the design of a climb-
ing robot and the other to the improvement of a manufacturing process in the textile
sector, are described in Sect. 7.4. A general discussion including thoughts on future
developments concludes the chapter.

7.3 An Integrated Approach

As physical and simulation experiments realize different trade-offs in feasibility,
cost, and fidelity, there is an added value involved in integrating them. This sec-
tion presents an approach that attempts to introduce a systemic view in this context;
see Fig. 7.1. The scope is rather broad. Although the final goal is the incremental
innovation of a real system, important additional objectives are improving the vali-
dation of the computer model and creating new models that incorporate the knowl-
edge drawn from the two sources of investigation. In principle, the approach can
be regarded as an extension of the conventional scientific method. The latter com-
bines the deductive reasoning of an expert in posing new research questions with the
physical observations needed to answer them, represented respectively by the mid-
dle and right branches in Fig. 7.1. The approach includes simulated observations
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Fig. 7.1 A schematic view of the approach to generating innovation in engineering design via
integrated physical and simulation experiments

as an additional source of information (left branch in Fig. 7.1). Interestingly, these
observations incorporate both induction and deduction. Induction comes from the
interrogation of the code at chosen inputs, but the code itself is deduced from for-
malized models representing the current state of knowledge in the specific technical
sector.

The approach envisages a sequential strategy managed by an expert (Fig. 7.1,
middle) who, at each step, makes new conjectures based both on his technical
knowledge and the freshly collected information, and then decides which source
of information (physical or numerical) to use next and which experiment to run.
The whole process proceeds sequentially and stops when a satisfactory level of
improvement/innovation is realized. In the typical situation, where the simulator
is cheaper (faster) and the physical set-up is more reliable, it is sensible to use
simulation experiments to explore the space of the design variables in depth in
order to get innovative findings, and to use a moderate amount of costly physi-
cal trials to verify the findings. This is particularly wise in product development
projects, where the cost of prototypes is a major concern. In such a case, it is prefer-
able to search for interesting product configurations using numerical experiments,
and to only build the physical prototype afterwards in order to prevent practical
constraints like time, cost, and manufacturability from limiting the designer’s cre-
ativity at a very early stage. An example is shown in the application presented in
Sect. 7.4.1. If findings obtained by simulation are not confirmed in the field, the
computer code should be revised accordingly. The rationale is that the comparison
of physical and numerical results should allow not only for model calibration but
should also provide the expert with some hints on how to modify the mathemati-
cal model of the simulator in order to improve its ability to reproduce the system.
This of course implies a high level of technical expertise regarding the physics of
the system and the simulation models, and it generally requires qualified teamwork.
Thus physical experiments can play different roles. They are used not only to test
expert hypotheses but also to verify numerical results and to support dynamic code
review.
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The key element is the expert–computer interaction. Exploration brings unex-
pected results to the expert who, in turn, activates creative thinking from them. This
synergistic loop makes the path towards innovation easier and systematic, and, in
some cases, can breed radical innovation. Successful applications to the design of
a force transducer can be found in Barbato et al. (1997) and Baldi et al. (2006).
In both cases, innovative design solutions that gave results well beyond the initial
designers’ expectations were achieved. Another outcome of the approach can be
a hybrid model of the product or the process that integrates the information drawn
from physical and computer experiments. An example of such model is found in the
application described in Sect. 7.4.2.

7.4 Applications to Product and Process Development

Two case studies are now presented to illustrate the integrated approach. They refer
to product design and process improvement, respectively. Schematic views of the
sequence of steps involved in the integrated approach are provided in Fig. 7.2. Each
experimental step, either physical or numerical, is followed by a step representing
the expert’s deductive activity (data analysis, conjectures, design of new experi-
ments), on which the next experimental step is based. The description follows the
stylized structure of the sequential procedure.

Fig. 7.2 Application of the approach to new product design (left) and to process improvement
(right)
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7.4.1 Product Innovation: The Climbing Robot

This application concerns the design of a pneumatic climbing robot, realized at the
Dept. of Mechanical Engineering of the University of Cagliari, Italy (Manuello et al.
2003; Atzori 2003). The device (Fig. 7.3) must be capable of reaching the tops of
vertical structures—posts, trees, bridge cables—while carrying equipment that will
allow it make diagnoses and possibly operate on the structures. In order to cling
onto the post, the robot exploits a passive stop mechanism using locking rings. The
elimination of a dedicated actuator for clinging makes the robot lighter. The design
objective is to make the upward motion of the robot fast and stable regardless of
the surface conditions of the post. This is a robust design study where the friction
between the post material and the locking rings is an external noise factor. The
design strategy is made up of 18 steps, which are now concisely described.

Steps 1 and 2. A set of 21 factors, including geometrical and mechanical vari-
ables, are selected for a vast exploration campaign to be performed on the computer.
The simulation model is built using a commercial package for mechanical design,
Working Model. This exploration would never have been made with physical exper-
iments as it would have required a dozen different prototypes. Six important fac-
tors are identified via two screening experiments (a 32-run Plackett–Burman design
and a 32-run 214−9 fractional factorial) and a response surface estimated (Fig. 7.4)
with a 49-run Box–Behnken design (Myers and Montgomery 2002). The response
is an indicator of the robot’s ability to climb with the zero level discriminating be-
tween climbing (positive) and falling (negative). An important discovery made at
this stage is that, by changing the position of its center of mass, the robot is also
able to descend in a controlled fashion, which is beyond the initial design intent.
Thus computer exploration has promoted innovation.

Steps 3 to 6. A physical prototype is realized on the basis of these results. After
characterizing the mechanical parameters via a set of static measurements, its abil-
ity to climb up a Plexiglas tube is proven in a small set of dynamic tests (step 4). In
these tests, only two easy-to-change factors are varied. However, a direct compari-
son with the simulation is done only at step 6, since the measured pre-loading force
of the transverse spring of the prototype, which was found to be the most influential
factor, is outside the range explored in step 2. In fact, a cost constraint prevented
the designer from adopting a configuration in line with the numerical analysis. Had
the prototype been realized first, a great deal of information would never have been
collected. This pinpoints the importance of starting with extensive computer explo-
ration, almost free of practical constraints.

Steps 7 and 8. As the feasibility analysis for the prototype has modified the design
region, a new cycle of computer experiments is needed to search for a region where
the robot is capable of climbing with a fast and regular motion on virtually all post
surfaces. This is achieved with a sequence of two experiments, a six-factor Box–
Behnken design, and a four-factor central composite design. In the first experiment,
three factors do not belong to the influential set identified after the first computer
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Fig. 7.3 The prototype of the robotic device in the lab set-up

Fig. 7.4 The surface response
marking the limit between
climbing and falling condi-
tions in the space of the three
most influential factors

 -1
0

1

-1
-0

,8
-0

,6
-0

,4
-0

,2 0
0,

2
0,

4
0,

6
0,

8 1

-3
-2,5

-2
-1,5

-1
-0,5

0
0,5

1
1,5

P    

K

A

exploration. These are easy-to-change factors that replace the same number of fac-
tors that have feasible fixed values in the physical prototype. The experiment turns
out to be extremely instructive for the expert, as it reveals several robot behaviors
(monotonic climb, nonmonotonic climb, climb and then fall, no move, no move and
then fall, descend in control, fall). Moreover, it provides evidence that when the an-
gle between the locking rings and the post direction approaches 90◦, the robot is
robust to variations in the friction conditions in the ring–post contact. The second
experiment is aimed at identifying a region where the robot can always climb.
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Fig. 7.5 Left: physical system vs. simulation: before model validation (A); after model valida-
tion (B). Right: Contour lines of the mean (solid, mm) and the variance (dashed, mm2) of the
climbing step length for the optimized design configuration

Steps 9 to 12. A confirmatory experiment (a 23 factorial plus center point with two
replications) is run in the lab using the most important factors from the previous
analysis (steps 9 and 10). This confirms the findings regarding robustness. Since
the design region was slightly resized for feasibility reasons, an identical computer
experiment is run in the resized region for model validation (steps 11 and 12). Al-
though there is reasonable agreement, the model is shown to be inadequate (although
only moderately so), see Fig. 7.5, left (curves A).

Steps 13 and 14. By contrasting the physical and simulation results, the expert is
in an ideal position to conjecture about the possible causes of this inadequacy of
the model. This leads to two modifications of the computer code: a more accurate
definition of the axial stiffness of the robot as a function of its elongation, and a sim-
ulation of the stick and slip mechanism governing the contact of the two surfaces
for very low relative motion. Using the revised code for a new computer replica of
the physical experiment made at step 9, the agreement is improved. Now the three
largest effects on the robot climbing step and the signs of the others coincide.

Steps 15 to 18. The 23 factorial is augmented with center and axial runs (step 15
and 16) for robust design optimization (step 17, Fig. 7.5, right). The optimum is
eventually confirmed by one lab test (step 18, Fig. 7.5, left (curve B)). The total
experimental cost was quite reasonable, as demonstrated by the allotment of runs in
the two settings: only 12% physical runs and 88% computer runs.

7.4.2 Process Innovation: The Flocking Process

The second application was developed in an industrial research project. A medium-
sized Italian textile firm produces flocked yarn; after weaving, this fabric is used
in a wide range of technical applications. Typical end-products are coverings for
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seats and other components in car interiors. The yarn is formed from finely cut
polyamide fibers (flock) applied to an adhesive coated carrier thread. The flock con-
fers a smooth texture and other important technical characteristics to the surface,
like water repellency, resistance to abrasion and to light. The project was motivated
by the need to enhance product quality. One of the most critical quality character-
istics is the “title,” related to the flock density on the yarn. It is measured in dtex
(1 dtex is the mass, in grams, per 104 m yarn length). Out-of-spec conditions for the
title were experienced all too often in terms of both low average title and excessive
scatter.

The basic flocking process is illustrated in Fig. 7.6. While an array of parallel
coated threads passes in-between the electrodes of a high-voltage capacitor (the
actual production lines contain three consecutive capacitors), the flock fibers are fed
to a conveyer belt which takes them into the electric field generated by the capacitor.
The electrostatic force aligns the flock fibers (which have been conditioned to have
sufficient conductivity) and pushes them upwards until they hit a thread and attach
to it. As each thread also spins on its axis, the flock implants itself all around it. The
unsuccessful fibers are recovered and brought back to the flock feeder.

The integrated approach is described according in Fig. 7.2. Several sources of in-
formation are used. Physical experiments are conducted in a pilot plant, in produc-
tion lines and in a lab set-up. Two simulation models are developed and integrated
in order to predict the basic mechanisms involved in the process: the electric field
generated by the electrodes and the rising path of the flock between the electrodes.

An initial analysis of a huge mass of historical process data measured during
production runs revealed—quite surprisingly—weak correlations between process
variables and the title. Even the electrical variables (electrode voltages), the driv-
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Fig. 7.6 Schematic view of the flocking process
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Table 7.2 List of the selected process parameters, classified by type

Selected process parameters (units)

Electrical Mechanical Geometrical Environmental

Voltage of lower plate,
V− (kV)

Thread speed,
vt (m/min)

Flock size,
F (qualitative)

Absolute humidity,
Ha (g/kg of dry air)

Voltage of upper plate,
V + (kV)

Thread pull force,
P (N)

Groove of glue shaft,
G (qualitative)

Relative humidity,
Hr (%)

– Conveyer speed,
vc (m/min)

– –

ing force of flock motion, appeared nearly inert in this respect. It was decided that
new process data would be collected under strictly controlled conditions for two
consecutive days. This time, the expected input–output correlations clearly stood
out. A close enquiry revealed that operators measured parameters at the beginning
of their shift but omitted to track the manual adjustments they made to parameters
during the shift. This was a decisive discovery that convinced the company to em-
bark on a structured experimental investigation. Technicians were then asked to list
the most important parameters; see Table 7.2. Notice that, since the voltage of the
lower electrode is always negative, factor V− is taken to be the absolute value of the
voltage. The 13 steps of the integrated approach are described below.

Step 1. Conjecture 1. As the threads are kept at ground potential (0 kV), the typi-
cally adopted antisymmetric voltage setting of the electrodes, V + = −(−V−), gen-
erates an approximately uniform electric field with straight field lines in the flock-
ing chamber. The consequence is that the flocks that fail to hit the threads during
their rise are push towards the upper electrode and must be recycled. This causes
a substantial efficiency loss in the process. In principle, by establishing symmetry,
V + = (−V−), the electric field could virtually push the flock towards the thread at
both sides of the chamber. Since this operating condition was considered highly un-
safe by the technicians, it would never have been tried in the field. In this case, the
finite element electrostatic simulator (SIM 1) turns out to be very useful. It has also
a high fidelity level, as it solves a system of linear differential equations.

Step 2. Simulation experiment 1 on SIM 1. A 32 full factorial design with factors
V− (levels: 10/15/20 kV) and V+ (levels: −15/0/+15 kV) is run over a wide region
ranging from the antisymmetric condition to the symmetric one. The flow lines of
the electric field in the first two plots of Fig. 7.7 confirm the previous conjecture.
Electrical symmetry forces the flock to point towards the threads in both halves of
the chamber (Fig. 7.7, center). However, at the threads, the electric field exhibits
a large discontinuity which might cause discharges between close flock particles.
Anyway, field discontinuity can be mitigated by increasing the upper voltage. When
it is set to zero, the flow lines of the electric field seem to be acceptable while the
advantage of realizing flocking in the upper part of the chamber is also maintained
(see Fig. 7.7, right).
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Fig. 7.7 Flow lines of the electric field in three voltage settings. Left: V− = −15 kV, V + = 15 kV;
center: V− = −15, V + = −15; right: V− = −15 kV, V + = 0 kV

Step 3. Conjecture 2. The innovative process setting with null voltage at the upper
electrode is worth testing in the field. However, since it is still too far from the
current setting, it is not safe enough to be tried on production lines. Therefore, it
was decided that an old pilot plant would be reconditioned, which, although it is
a simplified and smaller version of the real plant, has the advantage that the flocks
rising in-between the electrodes can be seen. This is extremely useful in order to
check the flock trajectories induced by the electric field.

Step 4. Physical experiment 1 in the pilot plant. An 11-run 27−4 fractional fac-
torial of resolution III plus one quasi center point replicated three times is run
for screening purpose. The factors are: V− (levels: 24/33.5/43 kV), V+ (levels:
grounded/disconnected), thread speed (levels: 7.75/9.3/10.85m/min), thread pull
force (levels: 9/−10.75/12.5 N), ratio between thread speed and conveyer speed
(levels: 1.2/1.5/1.8), flock size (levels: small/large), absolute humidity (levels: 12.5/
14.5/16.5 g/kg). On each of the four yarns, five measurements of the title are taken
by weighing a fixed yarn length. The analyzed responses are the title average and
scatter, computed over both the yarns and the repeated measurements. The voltage
of the lower electrode is by far the dominant factor for the average title, while, con-
trary to the technicians’ belief, the effect of humidity is not significant (Fig. 7.8,
left). The title is significantly higher than the value obtained with the typical pro-
duction setting (+64% on average), but the scatter is also excessive and it increases
with time, indicating that the process is not stable (Fig. 7.8, right). Only the effect
of flock size appears significant for scatter. Pictures taken during operations confirm
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Fig. 7.9 Efficient but turbu-
lent flocking during physi-
cal experiment 1 (run with
V− = −43 kV, V + = 0 kV).
Flock rising from the sides
rains down the threads

that flocking now occurs in both halves of the chamber. In Fig. 7.9, one can see the
curved flock trajectories pointing from the sides to the center, consistent with the
field lines observed in the simulation. However, it also shows rather chaotic flock-
ing operations, with the flock particles colliding with each other. Discharges were
often observed. The effect of flock size on scatter is probably due to the fact that
larger particles are more likely to collide.

Step 5. Conjecture 3. Conditions for a much higher process yield have been ob-
tained but operations are still unsafe. A more conservative voltage for the upper
electrode should stabilize the process while preserving the enhanced yield. A deci-
sion is made not to experiment on the production line yet.

Step 6. Physical experiments 2 and 3 in the pilot plant. Another 11-run 27−4 frac-
tion is run, with the exception here that V+ is a quantitative factor whose levels are
positive (+18/+24/+30kV), albeit inferior to the corresponding levels of V−. The
good outcomes of this experiment suggested that a foldover experiment should be
run in order to break aliasing (see Myers and Montgomery (2002) for details on
fold-over designs) between the main effects and two-factor interactions. Results in-
dicate that the process is now stable, and conditions that increase the average title
and decrease its scatter can be found, as shown in Fig. 7.10. Dot plots of experi-
mental responses show that results are always better than those obtained with the
typical voltage setting used in production. The process is governed by the elec-
trode voltages. In particular, V− controls the average and V + the variability. A high
V− and a positive but low V + increase the average title and reduce its variability.
Higher thread speed yields a lower title, as expected. However, this effect is easily
compensated for by increasing V−. This finding is the key to increasing productiv-
ity.

Step 7. Conjecture 4. As a satisfactory process improvement has been realized in
the pilot plant, it is important to assess whether it can be transferred to production.

Step 8. Physical experiments 4 and 5 on the production line. A 20-run 27−3 fraction
of resolution IV +2 quasi center points replicated twice is run. Factors are: V− (lev-
els: 15/20/25 kV), V+ (levels: 5/10/15 kV), thread speed (levels: 14/17.5/21 m/min),
thread pull force (levels: 8/9/10 N), relative flock density (levels: 30/50/70%), size
of grooves (levels: small/large), relative humidity (levels: 50/60/70%). A small flock
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Fig. 7.10 Outcomes of physical experiments 2 + 3 in the pilot plant. Responses are title average
and dispersion. Top: dot plots of responses; bottom: normal probability plot of responses

size was used. Since the thread traction system is more efficient on the production
line, the speed can be increased in order to verify whether higher production rates
are feasible, as suggested by the experiment in the pilot plant. Five title measure-
ments were taken on six yarns belonging to an 80-thread array (the innermost pair
and the two outermost pairs). Results generally confirmed the expectation of pro-
cess improvement in terms of increased title (see Fig. 7.11). Title variability was also
within the admissible range. The good results prompted a search for the optimal pro-
cess conditions, and a response surface design (a 15-run Box–Behnken design with
three center points) was run, restricting attention to the most influential and easy-
to-change process variables: V− (levels: 20/25/30 kV), V+ (levels: 4/12/20 kV), and
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Fig. 7.12 Outcome of physical experiment 5 on the production line. Surface responses (i.e., aver-
age title) for two voltage settings of the upper electrode (left: V + = 20 kV, right: V + = 4 kV)

thread speed (levels: 14/19/24 m/min). The nominal title can be now achieved at
nearly double the original production rate (current rate: 14–15 m/min; new rate:
24 m/min or more) by proper tuning of the electrode voltages. As an example, new
exploitable operating regions are spotted in the response surfaces plotted in Fig. 7.12
for two different settings of the voltage of the upper electrode.

Step 9. Conjecture 5. The creation of a full mechanistic model of the flocking pro-
cess would be very useful for design purpose. This requires the development of
a dynamic simulator of the flock rising (SIM2) to be integrated with the electric
simulator. The idea is that, for a given process configuration, the electric field ob-
tained by SIM1 is input to SIM2, which, upon computing the flock trajectories for
all starting positions on the conveyer belt, verifies whether the flock hits a thread or
not. SIM2 was developed in MATLAB by integrating the laws of motion for a flock
particle under the influence of the electric field, gravity and air resistance.

A typical output of the program is depicted in Fig. 7.13, which shows flock tra-
jectories for two different voltage settings of the pilot plant set-up. The plots clearly
confirm the finding that decreasingV+ and increasing V− (right) leads to much more
efficient flocking than that achieved in the setting adopted formerly. However, this

0.05 0.1 0.15 0.2 0.25 0.3

0.02

0.04

0.06

0.08

0.1

0.12

0.05 0.1 0.15 0.2 0.25 0.3

0.02

0.04

0.06

0.08

0.1

0.12

y, my, m

z,
 m

z,
 m

Fig. 7.13 Flock trajectories from the flock rising simulator in the pilot plant configuration. Left:
V + = 30 kV, V− = −24 kV, right: V + = 0 kV, V− = −33.5 kV
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information is not sufficient to build a full mechanistic model, because SIM2 only
helps to determine whether a flock will hit the thread. It does not provide the rising
rate of the flocks packed on the conveyer belt. An ad hoc experiment was designed
that exploited a lab set-up called electrostatic jump, which was routinely used to test
flock conductivity. In this test, a fixed amount of flock is lifted from a plate under
the pull of a known electric field. The time needed to empty the plate is an indicator
of flock conductivity. By discontinuing the electric field at different points in time
and weighing the quantity of flock remaining on the plate at each step, it is easy to
estimate the rising rate as dn/dt(t = ti) ∼ m−1

f Δmi/Δti, where n is the number of
lifted flocks, Δmi is the mass of lifted flocks in the time lag Δti = ti − ti−1, and mf is
the mass of a single particle.

Step 10. Physical experiment 6 in the lab. A 22-run 3× 2× 3 full factorial de-
sign with two quasi center points replicated twice is run in two blocks. The factors
are: the electric field on the plate (levels: 3/7.15/5.3 Kv/cm), the flock type (small,
large), the initial amount of flock on the plate (0.25/0.50/0.75×10−3 kg). As shown
in Fig. 7.14, the results support a prey–predator differential model for flock ris-
ing, where the rising rate is proportional to the number of flocks available on the
plate

dn
dt

= a(n0 −n) , n(0) = 0 (7.1)

Here n(t) is the number of flocks lifted up to time t, n0 is the number of flocks
initially present on the plate, and a is the diffusion parameter. This parameter char-
acterizes the process and depends on both the flock type and the electric field on the
starting plate, as is apparent in Fig. 7.14. The solution to Eq. 7.1, n(t)= n0(1− e−at),
impies that flocking becomes less and less efficient over time, i.e., with as the con-
veyer belt becomes increasingly empty. A practical consequence of this is that
the more efficient flocking could be exploited to simplify the process by elim-
inating one or two pairs of electrodes in the current configuration (which has
three).
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Step 11. Conjecture 6. There is now enough information for a mechanistic model
for the title to be deduced. Consider the contribution dni from flock implanting on
yarn i, i = 1 to N, during the time interval dt around time t, that comes from the
elementary area dA around the point (x,y) on the conveyer belt:

dni = dn ·S(x,y) (7.2)

where S(x,y) is a binary function that is one if the flock rising from location (x,y)
hits the thread i and zero otherwise. Note that function S is the outcome of the
integrated simulator SIM1+SIM2. Using Eq. 7.1, where n0 must be replaced by the
initial flock quantity on the element of area dA, i.e., n0L−1W−1 dxdy for a uniform
flock distribution on the conveyer belt, Eq. 7.2 can be rewritten as:

dni = an0L−1W−1 e−atS(x,y)dxdydt (7.3)

Using process stationarity (t = xv−1
c ) and integrating (7.3) over the whole conveyor

belt (0 ≤ x ≤ L, 0 ≤ y ≤W ) and over the time interval T needed to allow 104 m of
yarn to pass into the chamber (T = 104v−1

t ), one obtains the model for the title on
each yarn i of the array:

titlei = 104mt + nimf (7.4)

where mt is the mass of one meter of thread.
Conjecture 7. The flock motion simulator requires validation and calibration. For

validation, the air resistance opposing the motion can be modeled by either aerody-
namic resistance or viscous friction. In each case there is only one parameter to be
tuned: the drag coefficient for aerodynamic resistance and the viscosity coefficient
for viscous friction. Another calibration parameter is flock charge.

Step 12. Simulation experiments 2 and 3 on SIM1+ SIM2. For each modeling
choice a 72-run factorial experiment is run where two factors at three levels (flock
charge and drag coefficient for the aerodynamic resistance model; flock charge and
viscosity coefficient for the viscous friction model) are fully crossed with the eight
different electrical settings tested in the physical experiments (1, 2 and 3) performed
in the pilot plant. The plots in Fig. 7.13 are based on two runs of simulation experi-
ment 2.

Step 13. Validation/calibration of SIM2. Validation and calibration are performed
in a combined way. Each of the two models (aerodynamic resistance and viscous
friction) will be calibrated in order to minimize the bias between the title obtained
via the mechanistic model (Eq. 7.4) and that resulting from the physical experiments
(1, 2 and 3) in the pilot plant (on each of the four yarns in that set-up). The model
with the minimum overall bias will be validated and the relevant calibration adopted.
This activity is still ongoing. Then the validated model will be used as an important
tool for process design.
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7.5 Discussion and Future Developments

It is instructive to assess whether the case studies support the statement that the in-
tegrated use of physical and simulation experiments is better than using physical
experiments alone. In the first case study, an unexpected design innovation, that the
robot can descend steadily without any active mechanism by simply changing its
mass distribution, came from the initial computer exploration covering 21 factors.
The location of the center of mass would not have been included in the factor set if
an expensive physical experiment had been done instead. The optimized robot can
climb at a speed that is seven times higher than that of the initial design configura-
tion, and it is also robust, i.e., it can climb on slippery posts too. These results were
obtained with 28 physical trials, only 12% of the total, made with just one prototype,
and built according to the indications from the computer exploration. More than two
hundred simulations were run on a reliable engineering package that required only
a small amount of computing time. This is the best scenario for generating innova-
tion: expensive physical runs and cheap simulations. Switching to the second appli-
cation, the total number of runs was practically the same (243), but more than one
third of these were physical. Experimenting in existing facilities (pilot plant, produc-
tion lines, a lab set-up that was already used for compulsory tests on raw materials)
meant that physical trials were not very expensive while computer runs (flock trajec-
tories were obtained by the integration of a nonlinear dynamic system) were not that
cheap. This is a different situation which is more likely to produce an improvement.
Indeed, the improvement in the process was remarkable. The company learnt that
the process is ruled by its electrical parameters, and that these can be used in a flexi-
ble way, i.e., the desired title can be obtained over a much wider specification range
than the one used in the past. This knowledge can be exploited in different ways.
First, productivity can be massively increased. Second, the process can be simpli-
fied. The nominal title can be obtained using only one pair of electrodes, as was the
case in the pilot plant. Third, more efficient flocking means less recycled flock, and
this in turn leads to better yarn quality, since flock properties deteriorate with each
passage through the chamber. Finally, the ability to achieve a significantly higher
title than before resulted in the generation of new ideas for products in previously
unexplored market sectors, like clothing and cleaning. Therefore, process flexibil-
ity opens the door to product innovation. Could this also have been achieved using
only physical experiments? Operating conditions considered unsafe would undoubt-
edly have been ignored in field tests. Likewise, the hybrid mechanistic model of the
process is a unique outcome of the integrated approach.

It is important to emphasize that the approach presented here has a loose struc-
ture. It does not go much beyond the definition of the elements of the problem. The
decisions that determined the sequential paths in Fig. 7.2 were mostly subjective.
This makes the success of the investigation critically dependent on the presence of
a team of experts that combine, and possibly share, skills in statistics, engineer-
ing, and computer science. Admittedly, this is more natural for a high-level strategy
where the objective could change as a result of feedback produced by the evolving
knowledge. Commenting on the sequential experimentation approach, George Box
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warned: “The reader should notice the degree to which informed human judgment
decides the final outcome” (Box et al. 1978, p. 537). However, there is the need
for quantitative methods that support the decisions involved in the approach. Dif-
ferent decision levels need to be handled. High-level decisions include: whether to
stop or continue the whole investigation; whether to conduct the next experiment on
the physical system or on its simulator; and defining the purpose of the experiment
(exploration, improvement, confirmation, model validation). Intermediate-level de-
cisions include the location of the experimental region and the run size. A low-level
decision is the choice of the experimental design. Decisions should balance a num-
ber of criteria, including measures of expected improvement, the cost of runs, and
the fidelity level. The author is currently working on this topic.

On a few occasions in the history of design of experiments, comprehensive
methodologies addressing actual industrial needs have been devised. Two of the
most significant are sequential experimentation and robust design (Taguchi and Wu
1980). The integration of physical and computer experiments is expected to be an-
other of these methodologies. It should be an asset for industries that are willing to
search for systematic technical innovations in our knowledge-based society.
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Chapter 8
Continuous Innovation
of the Quality Control of Remote Sensing Data
for Territory Management

Elisabetta Carfagna and Johnny Marzialetti

Abstract This chapter deals with the problem of assessing the quality of land-cover
databases, since only high-quality products are useful for gaining knowledge about
and managing territory. After a brief analysis of the main aspects of quality control
and validation of land-cover databases, the main concepts of statistical quality con-
trol methods are recalled in order to show how some quality control procedures for
land-cover databases can be formalized and improved by taking advantage of sta-
tistical quality control methods. Then, sequential and two-step adaptive procedures
with various quality indices are proposed that continuously improve the quality of
land-cover databases during the production process, in order to satisfy the user’s
needs.

8.1 Land-Cover Databases

Several land-cover databases have been produced over at least the past few decades
that use aerial photos or high-, medium- and coarse-resolution satellite data. These
types of databases have become the most important instrument for gaining knowl-
edge about and managing the territory at various scales, depending on the kind of
utilization required, ranging from a local to a global scale. Since these databases
give information about land cover and land cover dynamics (when used repeatedly
over time), they are the main source of information for very different activities, such
as simulating the impact of alternative policies in a region in order to improve the
utilization of the territory, estimating soil pollution and planning incentives for farm-
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ers in order to reduce their pollution of the soil, stratifying the territory, estimating
parameters of models for research into global changes, and so on.

Public administrations and the scientific community are the main users of land-
cover databases, which are basically digital maps. They are produced by the pho-
tointerpretation of images on the screen or by the semiautomatic classification of
a set of measures of the electromagnetic radiation reflected by a unit area of the
Earth’s surface. These unit areas are called pixels and they can range in size from
less than 1 m to 5 km.

Various kinds of classifiers have been developed for semiautomatic classification;
some of them perform the classification pixel-by-pixel (e.g., maximum likelihood
classifier), some others classify contiguous groups of pixels (e.g., parallelepiped
classification), while some perform supervised classification and some others per-
form unsupervised classification.

Supervised classification, as well as photointerpretation of remote sensing data, is
performed according to a land-cover legend that is defined in advance. In the legend,
each class (or label) represents a land-cover type. In semiautomatic classification,
more classes than the ones foreseen by the legend are often used in order to catch
the variability inside the training set; some classes are then aggregated.

The result of photointerpretation or semiautomatic classification is a database
created in a geographic information system (GIS) whose basic elements are pixels
(in a raster approach) or polygons (in a vectorial approach) of specific land-cover
types. The raster approach is commonly used when pixel-by-pixel semiautomatic
classification is performed. The GIS allows many kinds of operations to be per-
formed on the polygons, such as the division of a polygon into two pieces, merging,
overlaying different polygons, and so on.

A land-cover database is useful if its quality is evaluated and is high and so
the database can be considered reliable. Sometimes, reliability is confused with the
scale of the product: the more detailed the scale, the higher the reliability.

The scale of remote sensing data represents only the level of detail of the basic
material and cannot be considered the quality of the land-cover database. Moreover,
the scale of the remote sensing data used is strictly linked to the reasons for the
project. In other words, for some purposes, such as for global projects, coarse reso-
lution data must be used and the reliability depends on the quality of the production
process and on the consequent quality of the product itself, given the scale required
for the purposes of the project.

8.2 Quality of Land-Cover Databases

In a recent book published by the Office for Official Publication of the European
Communities, Global Land Cover Validation Recommendations for Evaluation and
Accuracy (Strahler et al. 2006), the authors give important recommendations and
say: “As a guideline, producing a global land cover map should consist of three
more-or-less equal parts: data preparation, classification, and validation. Without
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proper validation, any land cover map, whether at global, regional, or local scale,
remains an untested hypothesis.”

Then, in another part of the same document, the authors write: “We urge map
producers, as well as funding agencies, to accept the challenge of providing proper,
statistically-based accuracy assessments. A validation plan and sample design should
be part of every proposed and funded effort to map global land cover.”

Indeed, it is often the case that only minimal resources are devoted to quality
control of the photointerpretation (or classification) process and to the validation of
the database, that is the assessment of the level of agreement between the database
and another representation of reality which is considered more reliable.

Due to cost and time, quality control of the photointerpretation as well as vali-
dation can only be performed on the basis of a sample of polygons or points in the
methodological framework of statistical inference.

When polygons are delineated by photointerpretation, quality control should be
performed by repeating the production process for a sample of polygons using the
same basic material and the same procedure.

In order to validate a land-cover map, a sample of polygons is compared with
the corresponding ground truth, provided the scale of the remote sensing data is
compatible with ground truth; otherwise, the comparison is generally made with
other remote sensing data taken at a more detailed scale.

If a land-cover map is produced by the semiautomatic classification of remote
sensing data, its quality can be controlled and validated using a variety of units
(e.g., pixels, blocks of pixels or polygons, when delineated).

“A practical problem associated with statistical validation is the high cost of car-
rying out a global probabilistic sampling design, both in the effort required to collect
and analyze a sufficient sample and in acquisition of the data such as ground data or
the fine-resolution imagery (depending on the scale) that make it possible” (Strahler
et al. 2006). Thus, sometimes other approaches are followed; for example, existing
datasets are used.

Generally, when a statistical sample design is adopted for validation, it is per-
formed in the framework of design-based inference, due to the minimal assump-
tions required to justify the validity of the quality estimators and their precision.
This characteristic is important when many uses and users can be foreseen and as-
sumptions must be explicit and accepted by all users.

“An inference framework heavily dependent on a model or other assumptions
would require the cumbersome task of not only explicitly identifying these assump-
tions and model structures, but also justifying that they were satisfied for the par-
ticular application. The multitude of uses and users of a global map would suggest
that validating assumptions may be even more difficult because of the large number
of different analyses to which the data would be subject. Lastly, the objectivity pro-
vided by the randomization protocol of probability sampling provides assurance that
the sample has not been selected, either consciously or unconsciously, to produce
favorable accuracy results.” (Strahler et al. 2006).

The result of the validation process is the level of accuracy, which is measured by
various kinds of parameters. A common one is the total percent correct, which can
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be evaluated on pixels, blocks of pixels or polygons. Often, 85 percent correct (along
with a variation in accuracy across the classes that is not too large) is considered
an acceptable level of accuracy. However, some applications may require higher
accuracy; for example, when the map is used to estimate the areas of the various
land-cover types through pixel counting or the sum of the areas of the polygons (see
Carfagna and Gallego 2005).

8.3 Statistical Quality Control by Acceptance Sampling

8.3.1 Classical Methods

Following the previous brief analysis of the main aspects of the quality control and
validation of land-cover databases, let us now recall the main concepts of the clas-
sical theory of statistical quality control in order to show how some quality control
procedures for land-cover databases can be formalized and improved by taking ad-
vantage of existing quality control methods.

When we talk about controlling the quality of a process or a manufactured prod-
uct, there are a lot of aspects which are involved in the evaluation of quality, so
there is no unique definition of quality. In general, a product must conform to the re-
quirements and preferences of the consumers, and this purpose is achieved when the
product respects fixed standards of production and specified levels of acceptance.

The modern approach to the definition of the quality of a product (Montgomery
2001) focuses on the concept of variability. In every production process, a certain
amount of variability is present, and this implies that no unit produced is exactly
equal to another: if we were to measure the same characteristic in each product,
we would note a certain variability among the units. If this variability exceeds cer-
tain limits, the final product will not respect the expected characteristics and conse-
quently will not meet the needs of the consumers. Therefore, quality improvement
is achieved if there is a reduction in the variability of the process or product con-
sidered. Since variability can be expressed in statistical terms, the use of statistical
techniques is essential in order to identify the causes of undesirable process behav-
ior.

One of the oldest aspects of quality assurance is acceptance sampling, which was
widely used during the 1930s and 1940s. It concerns the inspection of items from
a given lot, e.g., a sample of raw materials or finished products, in order to decide
whether to accept or reject the whole lot.

Several different sampling plans are used in acceptance sampling. The simplest
plan is single sampling, where a random sample of units is selected from the produc-
tion lot and some quality characteristics of the products are inspected. With double
sampling plans, an initial sample is selected and a decision is taken to either ac-
cept the lot, reject it, or select a second sample; in the latter case, the information
collected from both samples is used to decide whether to accept or refuse the lot.
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Multiple sampling is a generalization of double sampling and consists of selecting,
if necessary, more than two samples to make a final decision about the inspection.

This terminology is not standard, since some authors talk of double and multiple
sampling while others call these two-phase and multiple-phase sampling or two-
stage and multiple-stage sampling.

8.3.2 Sequential Acceptance Sampling

In quality control by acceptance sampling, the maximum number of samples is fixed
in advance. In sequential acceptance sampling, a sequence of samples is selected
from the lot and, at each stage, a decision is taken about whether to accept or reject
the lot or whether to select a further sample. This process continues until a decision
to either accept or reject the lot is made. Theoretically, the sequential sampling may
continue indefinitely, until the while lot has been inspected. If the sample size at
each step is equal to one, this procedure is usually called item-by-item sequential
sampling. If the sample size at each step is greater than one, the procedure is defined
as group sequential sampling. The item-by-item sequential sampling procedure can
be illustrated by means of a Cartesian diagram where the abscissa is the total number
of items selected up to that time, and the ordinate is the total number of defective
items. The boundaries of acceptance and rejection are drawn on the basis of the
sequential probability ratio test theory developed by Wald (1947). If the plotted
points stay within the boundaries, another sample is selected; if a point falls above
the upper line, the lot is rejected; if a point falls below the lower line, the lot is
accepted.

What makes the sequential procedure different from the usual single sample
inspection is the fact that the number of observations required for the sequential
approach is not predetermined, since at any stage of the process the decision to
terminate the inspection depends on the results of the previous observations. In gen-
eral, the sequential procedure requires an expected number of observations that is
considerably smaller than the fixed number of observations needed by the classical
sampling procedure: Wald (1947) showed that the sequential probability ratio test
leads to an average saving of about 50% in the number of observations required as
compared with the most powerful classical test with the same errors of the first and
second kind as the sequential test.

In the section that follows, we will examine how the quality of land-cover
databases is actually controlled. We will see that very few statistical principles are
applied in actual practice. In later sections, we will illustrate some proposals of ours
that were inspired by both sequential acceptance sampling methods and adaptive
sampling (see Thompson and Seber 1996).
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8.4 Examples of Quality Control and Land-Cover Databases
Validation

So far, only a few land-cover products have been validated using statistical sampling.
Sometimes, stratified random sampling is adopted in order to estimate class-specific
accuracy. Regions are also taken into account when the stratification is created, in
order to estimate region-specific accuracies. For small or very important classes,
proportional allocation of the sample is not appropriate since it does not guaran-
tee an adequate accuracy assessment; thus, a higher sampling fraction is adopted
for these classes. Budget constraints often limit the number of strata that can be
effectively employed.

8.4.1 The International Geosphere–Biosphere Programme:
Global Land-Cover Data Set

The International Geosphere–Biosphere Programme: Data and Information System
(IGBP-DIS) DISCover (Version 1.0) 1 kilometer Global Land-Cover Data Set was
submitted for validation of thematic accuracy (see Scepan 1999). Landsat Thematic
Mapper and SPOT satellite data were used as a more reliable representation of re-
ality. 379 sample units (pixels) were selected from the IGBP DISCover product
using a stratified random sampling procedure. The goal was to verify a minimum
of 25 pixels per DlSCover class; this was accomplished for 13 of the 15 verified
classes; 2 out of the 17 IGBP classes (“water and snow” and “ice”) were excluded
from validation. Three regional expert image interpreters independently verified
each sample unit, and a majority decision rule was used to determine the accuracy.
For the 15 DISCover classes validated, the average class accuracy was 59.4% with
the per-class accuracy ranging from 40 to 100%. If the areas of the various classes
are taken into account, an area-weighted accuracy can also be computed. The overall
area-weighted accuracy of the data set was found to be 66.9 percent. This accuracy
level includes geolocation errors.

8.4.2 The Global Land Cover Map 2000 Validation
and Quality Control

Another example of a land-cover map validated through a probabilistic sample de-
sign is the Global Land Cover Map 2000 (GLC2000, Mayaux et al. 2006). The gen-
eral objective of the European Commission’s “Global Land Cover 2000” was to pro-
vide, for the year 2000, a harmonized land-cover database covering the whole globe.
To achieve this objective, GLC 2000 used the VEGA 2000 data set: 14 months of
preprocessed daily global data acquired by the VEGETATION instrument onboard
SPOT 4.
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The sampling strategy used was a two-stage stratified sampling. The stratifica-
tion was based on the proportion of priority classes and on the landscape complex-
ity. The two-stage clustering was selected due to clear advantages in terms of cost
and applied on the Landsat World Reference 2 System (WRS-2). In order to as-
sign each GLC2000 pixel to one and only one Landsat scene, whatever the latitude,
Voronoi polygons (primary sampling units—PSUs) were computed from the WRS-
2 centroids. PSUs were selected according to systematic sampling on an irregular
stratification with different sampling rates for each stratum.

For each selected Voronoi polygon, five boxes of 3× 3 km (the secondary sam-
pling units) were selected. Boxes were chosen for the interpretation in order to re-
duce the impact of geolocation errors. Each 3×3 km box was interpreted according
to a series of classifiers describing the basic parameters of the landscape (vege-
tated/unvegetated, natural/artificial, dominant layer), the water conditions (regime,
seasonality, quality), and details about the tree, shrub and grass layers (cover, height,
leaf type, and phenology). When the box was covered by many spatially distinct
land-cover classes, the two largest classes were described along with the fraction
of the box covered by each type. Then, each box was translated to the GLC2000
legend to measure the accuracy. 554 homogeneous sample sites were selected and
the area-weighted global accuracy was 68.6%.

A type of quality control that does not appear to be very statistically sound, based
on a qualitative comparison with ancillary data, was also performed to get an idea
of the overall quality of the global product through a quick survey. The qualitative
quality control was based on a systematic descriptive protocol in which each cell of
the map was visually compared with reference material. The grid size was adapted
to the characteristics of the landscape, the map, and the reference material. Each cell
examined during the quality control procedure was characterized by a few param-
eters: the composition and the spatial pattern of the cell, its comparison with other
existing global land-cover products, the overall quality of the cell, and the nature of
any problems.

8.4.3 CORINE Land Cover

The first Corine land-cover (CLC) inventory for the EU-15 and most of the new
member states was implemented between 1985 and 1996. It was carried out in order
to characterize the land surface. A uniform nomenclature across Europe at a scale
of 1:100,000 was used. The CLC nomenclature mostly included land-cover items,
though land-use elements could also be found.

When the first update of the CLC database was performed (i.e., CLC2000), sev-
eral improvements over the first inventory were introduced to improve the quality
of the process. The CLC Technical Team (under the responsibility of the European
Topic Centre on Terrestrial Environment) carried out a validation at the end of the
project as well as a quality control during the production process (see European
Environment Agency 2006).
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Validation was not performed by acquiring new ground data. The LUCAS
2001/2002 survey originally carried out for agroenvironmental purposes was used
instead. The accuracy of the CLC database was assessed by reinterpreting the LU-
CAS field photographs (in combination with IMAGE2000 and other LUCAS statis-
tics), which were provided for 8,231 locations in the 18 × 18 km sampling grid.
The total percent correct was 87.0±0.8. However, since LUCAS was not originally
intended to validate Corine Land Cover, 22 of the 44 CLC classes could not be vali-
dated due to low representativeness in LUCAS; thus, the reliability of CLC for half
of the classes could not be evaluated by LUCAS. Moreover, the LUCAS survey was
available only for 18 of the 29 countries where CLC was created.

The quality control during the production process was meant to monitor and pro-
vide guidelines about where to improve the production of the CLC database in the
different countries. The feedback given at this stage was qualitative and its overall
objective was to realize a homogeneous and comparable database at European level.
The main actions supporting the production process were:

• The training of a local team of photointerpreters
• Verification of the database after 50% of the area had been produced in order to

identify problems and to ensure pan-European comparability in the output
• Final analysis of the technical quality (e.g., topology, valid codes, completeness,

documentation) of the different data sets to assess whether they fulfil the stan-
dards defined at the beginning of the project in order to ensure the integration of
the different national databases into a common European database.

8.4.4 The ISTAT Experiment

In the projects described above, the validation procedure respects a statistical crite-
rion, although with some difficulties; instead, the quality control during the produc-
tion process is qualitative, does not utilize any statistical method, and its main aim
is to check whether the database shows great differences between the various areas.

Now let us talk about an example of quality control during the production process
which follows the statistical procedures of acceptance quality control (Carfagna and
Gallego 1998).

In 1999, the Italian Statistical Institute (ISTAT) carried out an experiment funded
by Eurostat. ISTAT produced a land-cover/land-use database with a detailed
CORINE legend and a scale of 1:25,000 for the Arezzo province. The aim of the
experiment was to test the difficulties that could potentially be encountered when
such a detailed database is created for the whole of Italy. In this experiment, as well
as qualitative analysis, the statistical acceptance quality control of lots of polygons
was carried out using a parametric hypothesis test. The null hypothesis was that the
lot respected the specified quality parameters. The characteristics of the polygons
under scrutiny were the class of the legend assigned to the polygon, the location
and the borders of the polygon. The controller, a more experienced photointerpreter,
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repeated the photointerpretation for a sample of polygons, and a polygon was con-
sidered incorrect if:

• The class of the legend attributed by the controller was different from the one
assigned by the photointerpreter

• The difference between the areas of the two polygons (the one delineated by
the controller and the one of the photointerpreter) was larger than the minimum
mapping unit

• After overlaying the two polygons, the distance between the two borders was
larger than 25 m

• The controller picked out, within the polygon of the photointerpreter, at least one
homogeneous area that was larger than the minimum mapping unit

Due to the fact that the probability of erroneous classification of polygons is influ-
enced by the land-cover/land-use class, as well as to guarantee the quality control
of each class, a stratified sampling was adopted where the strata were the classes of
the legend. Three lots were created, and in each lot 120 polygons were scrutinized.
The null hypothesis was represented by the acceptable level of quality, and the al-
ternative hypothesis was an error that was larger than or equal to 12.5%. A binomial
probability distribution was assumed, the probability of erroneously rejecting the
null hypothesis (the first kind of error) was fixed at 0.04, and the probability of erro-
neously refuting the alternative hypothesis (the second kind of error) was 0.10; thus
the lot was accepted if the number of incorrect polygons was less than or equal to 10.
Selected polygons were photointerpreted by the controller. All of the lots had fewer
than ten incorrect polygons and were accepted (Carfagna and Napolitano 2000).

8.5 Unbiased Estimates of the Quality Parameters
with Adaptive Sequential Sampling

The efficiency of sequential sample designs for acceptance control can be improved
by taking advantage of the information collected during the survey through an adap-
tive approach.

Adaptive sampling refers to designs in which the selection of the units is based
on the values of the variables of interest observed during the survey. Therefore, the
sampling plan changes during the course of the survey.

In general, adaptive procedures are more complicated to design and analyze than
conventional ones, and in some settings they are more difficult to implement. More-
over, adaptive sampling introduces biases into conventional estimators, so new un-
biased estimators are needed.

However (Thompson 1992; Thompson and Seber 1996), adaptive sampling has
a major advantage: the enhanced gathering of important observations, which can
result in higher quality estimates of parameters such as the mean and the variance of
the variable of interest. Therefore, for a given sample size and cost, more valuable
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information can be obtained than is possible with conventional designs, sometimes
significantly so.

Since a sequential adaptive procedure allows a hypothesis to be tested with a sam-
ple size that is not fixed in advance and is generally smaller than in the case of
classical sampling, we have proposed an adaptive sequential sampling procedure
for testing whether the production process does not respect the specified quality and
thus should be modified as soon as possible during the production (Carfagna and
Marzialetti 2007). The aim of this approach is to monitor and improve the produc-
tion process at the same time. In order to save economic resources, the same sample
units used when monitoring the production process should be used to estimate the
quality of the product, which should be expressed by one or more suitable parame-
ters.

Accurate estimates of these parameters should be given. However, an adaptive
sequential procedure does not produce unbiased estimates, for the same reasons that
it allows very efficient hypothesis testing: data collected on already selected sample
units drive the selection of successive sample units and determine the sample size,
through a sample selection stopping rule linked to the parameters to be estimated.

Therefore, our aim has been to create an adaptive sequential procedure that al-
lows us to reach decisions with the smallest sample size and in the shortest time in
order to continuously improve the production process and, at the same time, pro-
duce efficient and unbiased estimates of the quality (see Carfagna 2007a, 2007b;
Carfagna and Marzialetti 2007).

We have achieved this aim by adopting:

• An efficient stopping rule that is not linked to the parameter to be estimated
• An adaptive sequential method for computing the sample size in stratified sam-

pling with Neyman’s allocation (Cochran 1977) that depends on the data col-
lected in previous steps

• A sequential selection procedure for sample units that is independent of the data
collected in previous steps

We have proposed stratified sampling in order to guarantee that all of the character-
istics represented by the different strata are controlled and to improve the sampling
efficiency. We have adopted Neyman’s allocation, which maximizes the efficiency
of the sample design; moreover, the parameters that guide Neyman’s allocation are
continuously updated by adaptive estimates during the various steps of the sequen-
tial procedure.

In order to guarantee that the data collected in the previous steps influence the
sample size but not the sample selection, in each stratum we have proposed that the
sample units should selected according to the permanent random numbers method
(Ohlsson 1995): “Each unit in the list frame is assigned a random number drawn
independently from the uniform distribution on the interval [0,1]. Let Xi denote the
random number assigned to unit i. The frame units are sorted in ascending order
of the Xi. The sample is composed of the first n units in the ordered list. Ohlsson
(1992) presents a formal proof that this technique produces a srswor” (simple ran-
dom sampling without replacement).
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8.6 An Adaptive Sequential Procedure

We have created an adaptive sequential procedure which guarantees efficient mon-
itoring of the production process, efficient and unbiased estimates of the quality
parameters, and continuous improvement of the production process (see Carfagna
and Marzialetti 2007).

Let us briefly describe the adaptive sequential procedure. A first stratified random
sample is selected with a probability that is proportional to the stratum size, using
the permanent random numbers method and selecting at least two sample units from
each stratum. Call n the sample size for the whole area; it is small, since the main aim
of this first sample is to produce first estimates for the standard errors of the variable
to be estimated in the various strata in order to compute Neyman’s allocation with
sample size n + 1.

If in one stratum the estimate of the variability is zero, we do not know whether
this result is due to an absence of variability in the stratum or to the low sample
size; thus, the variance estimated in the stratum with the lowest positive variance
is assigned to the stratum with zero variance. Otherwise, when the stratum is small
and not very important, it can be merged into a similar one with positive variance.

Then, Neyman’s allocation is computed with a sample size of n + 1. The differ-
ence between the number of sample units assigned by the two allocations is com-
puted, and one unit is selected in the stratum where the sample size is farthest below
the size assigned by Neyman’s allocation.

The quality parameter and its precision are estimated. If the precision is accept-
able, the process stops; otherwise, Neyman’s allocation is computed with the sample
of size n + 2, and a sample unit is selected in the stratum with the maximum dif-
ference between actual allocation and Neyman’s allocation. Then the correspond-
ing precision of the quality parameter is computed and tested, and so on, until the
precision considered to be acceptable is reached. At each step of the process, the
estimates of standard deviation which guide the allocation are updated.

The aim of this procedure is to select the smallest sample that allows the pre-
assigned precision of the estimate to be reached. When the sample size is pre-
assigned, the sequential procedure stops when this sample size is reached, although
the precision can be lower then the chosen one, and the aim of the adaptive sequen-
tial procedure is then to maximize the efficiency of the sample allocation.

8.7 Two-Step Adaptive Procedure

In some cases, the parameters that guide Neyman’s allocation cannot be updated
continuously during the adaptive sequential procedure. Thompson and Seber (1996,
Sect. 8.2.3) faced the problem of sample allocation without previous information
on the variability inside the strata by suggesting a stratified random survey in two
phases or, more generally, in k phases (phases are sampling steps), which allows the
variability by the first (or previously selected) samples to be estimated.
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The estimator of the total at the k-th phase is unbiased if at the k-th phase a com-
plete sample is selected (each of the strata need to be sampled), with allocation
based on the variability inside the strata estimated by the data collected in the pre-
vious phases. The weighted average of the estimators of the total in the various
phases is an unbiased estimator if the weights are fixed in advance and do not de-
pend on observations made during the survey and if units are selected from each
stratum at each phase. These conditions have a negative effect on the efficiency of
the procedure. Thus, Carfagna (2007b) proposed adaptive sampling in two steps
with permanent random numbers.

A permanent random number is assigned to all sampling units in each stratum.
Then, a first stratified random sample of size n1 is selected with a probability pro-
portional to stratum size. As in the sequential approach, the main aim of this first
sample is to estimate the standard errors of the quality parameter, so its sample size
is small. However, unlike the sequential procedure, the standard deviations in the
various strata are estimated only once—they are not sequentially updated, so the
first sample size should be large enough to produce reliable estimates of the to-
tal sample size that allow the prefixed precision to be reached and efficient sample
allocation.

Once the standard deviations of the quality parameter in the different strata have
been estimated, the total sample size (n1 + n2) corresponding to the desired stan-
dard deviation can be computed, as well as Neyman’s allocation. In some strata, the
optimum sample size (nh) can be less than or equal to the number of sample units
already selected (n1h). In such cases, due to the use of permanent random numbers,
no other sample units are selected, unlike Thompson and Seber’s approach, where
a complete sample has to be selected at each step.

Carfagna (2007b) proved that, in the approach described here, the sample size
and the sample allocation are influenced by the data collected, but the sample selec-
tion is not. Thus the two-step adaptive procedure with permanent random numbers
guarantees that the direct expansion estimator is unbiased and more efficient than
the two-phase estimator proposed by Thompson and Seber.

If the sample size is pre-assigned, the advantage offered by the proposed two-step
procedure is the efficient allocation of the sample among the various strata.

8.8 Continuous Improvement of a Database
of Remote Sensing Data

The theoretical research described above was triggered by the need to develop pro-
cedures for continuously improving databases of polygons derived from the pho-
tointerpretation of remote sensing data when quality control is centralized.

The controller, a very experienced photointerpreter, repeats the photointerpreta-
tion on selected polygons, and a polygon is considered incorrect if conditions like
the ones stated in the Istat experiment occur (concerning the locations of the poly-
gons, the distance to be considered depends on the scale of the remote sensing data).
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The quality is characterized by some parameters such as the area, the percent-
age of the area, and the percentage of polygons correctly photointerpreted. We have
sequentially estimated the parameters of interest using a stratified sample with Ney-
man’s allocation for performing continuous quality control during the production
of the database, not after its completion. The aim is to continuously improve the
production process by modifying its parameters (Carfagna 2007a; Carfagna and
Marzialetti 2007).

We have performed several simulations corresponding to different permanent
random number selections and applied our adaptive sequential procedure. The result
is that the standard deviations of the estimates decrease as the sample size increases,
although this decrease is not strictly monotonous, as showed in Fig. 8.1.
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Fig. 8.1 Standard deviation of the percentage of area correctly photointerpreted for different sam-
ple sizes

75

80

85

90

95

100

105

30 40 50 60 70 80

Sample size

Es
tim

at
e 

of
 th

e 
%

 o
f a

re
a 

co
rr

ec
tly

ph
ot

o-
in

te
rp

re
te

d

Fig. 8.2 Convergence of the estimator to the percentage of area correctly photointerpreted in the
population
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Figure 8.2 shows that with increasing sample size, and consequently with de-
creasing standard deviation, the estimator tends to converge to the value of the per-
centage of area correctly classified in the population, which is 83.67%.

We have compared this procedure with stratified sampling with proportional al-
location and fixed sample size. We found that adaptive sequential sampling is much
more efficient.

We have also proposed an analogous sequential procedure for continuous valida-
tion during the production process in order to:

• Detect discrepancies between the database and reality that make the product in-
appropriate for the customer’s needs in a timely manner

• Evolve the characteristics of the product such that they progressively become
closer to the customer’s needs; note that the customer is often not aware of his/her
requirements until he/she starts using the database

• Test and, if needed, change some aspects of the production process in a timely
manner; for example, the legend for photointerpretation could be changed during
the photointerpretation process in order to identify the most appropriate legend
for the specific area

• Perform a cost–benefit analysis in order to identify the kind of remote sensing
data that should be adopted based on the required spatial, spectral and tempo-
ral resolution, since using data that are more detailed than required by the user
results in unjustified costs

Indeed, the sequential procedure is not easy to implement when the validation is
performed by collecting ground data, since the sequential procedure requires the
continuous updating of the parameters that guide Neyman’s allocation in order to
select the next polygon to be validated; thus, we proposed the two-step adaptive
procedure with permanent random numbers described above.

The result is that this procedure is much more efficient than the two-phase sample
design proposed by Thompson and Seber, whichever weights are assigned to the
estimators of the two phases. Moreover, in all of the simulations we have performed,
the efficiency of the two-step adaptive procedure with permanent random numbers
is comparable with the efficiency of the sequential procedure.

We have also considered another very common index of quality: Cohen’s kappa
(Agresti 2002; Banerjee et al. 1999; Cohen 1960; Fleiss et al. 1969; Tanner and
Young 1985), which measures the beyond-chance agreement between the photoint-
erpreter and the controller. We have also adopted an adaptive sequential procedure
with permanent random numbers for Cohen’s kappa (Carfagna et al. 2008). This
investigation is still to be completed.

8.9 Conclusions and Future Developments

In this chapter, we have shown that, although the importance of the quality control
and validation of land-cover databases has been clearly stated in recent years by
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important authors, procedures based on randomly selected sample data acquired on
purpose are rare.

In most cases, quality control and validation are based on qualitative and sub-
jective judgment. In these cases, quantitative measurements of the quality and the
accuracy of the database, which express the reliability of the quality measurement,
cannot be estimated with a certain level of precision.

We have described how statically sound procedures for quality control and vali-
dation can be performed, and we have suggested efficient methods for continuously
improving the production process in order to satisfy the user’s needs.

Possible future developments in this research concern the effect on Cohen’s
kappa index of an adaptive sequential procedure with permanent random numbers,
and the adaptation of the experimental design approach to the quality control and
validation of land-cover databases in order to identify the main variables that affect
the production process and tune the parameters of the process better.
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Chapter 9
An Innovative Online Diagnostic Tool
for a Distributed Spatial Coordinate
Measuring System

Fiorenzo Franceschini, Maurizio Galetto,
Domenico Maisano, and Luca Mastrogiacomo

Abstract There is currently an increasing trend for accurate measurements of large-
scale lengths; in particular, 3D coordinate metrology at length scales of 5 m to
60 m has become a routine requirement in industries such as aircraft and ship con-
struction. This chapter focuses on the Mobile Spatial coordinate Measuring System
(MScMS), a new system developed at the Industrial Metrology and Quality Engi-
neering Laboratory of DISPEA of the Politecnico di Torino. Based on a distributed
sensor network structure, MScMS is designed to perform simple and rapid indoor
dimensional measurements of large-size objects. Using radiofrequency (RF) and
ultrasound (US) signals, the system makes it possible to localize—in terms of spa-
tial coordinates—the points “touched” by a wireless mobile probe. To protect the
system from potential causes of error, such as US signal diffraction and reflection,
external uncontrolled US sources (key jingling, neon blinking, etc.) or unacceptable
software solutions, MScMS implements some statistical tests in order to perform on-
line diagnostics. One of these tests is analyzed in depth in this chapter: the “energy
model-based diagnostics test.” Although it is specifically developed for the MScMS
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system, this test can easily be extended to other recent large-scale metrology sys-
tems based on distributed devices—such as the Metris indoor-GPS, the Metronor
Portable CMM, and the 3rd Tech Hi-Ball.

9.1 Introduction

In many industrial fields (automotive, aerospace, etc.), it is necessary to quickly and
easily take dimensional measurements of large-size objects (Bosch 1995; Cauchick-
Miguel et al. 1996; Hansen and De Chiffre 1999; Franceschini et al. 2007; Frances-
chini and Galetto 2007). At present, this problem can be handled using various
metrological systems based on different technologies (optical, mechanical, electro-
magnetic, etc.). These systems are more or less adequate, depending on the mea-
suring conditions, the user’s experience and skill, the cost, accuracy, portability, etc.
When measuring medium-to-large-size objects, portable systems are generally pre-
ferred to fixed ones. Transferring the measuring system to the location of the object
to be measured is often more practical than moving the object to the measuring
system (Bosch 1995).

The performances of most measuring systems, independent of their technology
and features, can be affected by several sources of error, such as temperature, hu-
midity, light, vibrations, etc. For this reason, the use of diagnostic tools to control
measuring activities and to assist in the detection of abnormal functioning can be
very helpful.

This chapter analyzes some online diagnostic tools implemented in the Mobile
Spatial coordinate Measuring System (MScMS) that can be used to continuously
monitor the reliability of its measurements.

MScMS, which was developed at the Industrial Metrology and Quality Engineer-
ing Laboratory of DISPEA of the Politecnico di Torino, is based on a distributed
sensor network structure (Franceschini et al. 2008b). The system is designed to
perform dimensional measurements of medium-to-large-size objects (longerons of
railway vehicles, airplane wings, fuselages, etc.). These objects are difficult to mea-
sure using traditional coordinate measurement systems such as coordinate measure-
ment machines (CMMs) because of their limited working volumes (ISO 10360,
part 2 2001; Bosch 1995). The working principle of MScMS is very similar to
that adopted by the well-known NAVSTAR GPS (NAVigation Satellite Timing And
Ranging Global Positioning System) (Hofmann-Wellenhof et al. 2001). The main
difference is that MScMS is based on US technology aimed at evaluating spatial
distances instead of RF. MScMS is easily adaptable to different measuring environ-
ments and does not require complex procedures for installation, start-up or calibra-
tion (Franceschini et al. 2008b).

Although the diagnostic tools presented in this chapter are specifically devel-
oped for the MScMS system, they can be easily extended to other recent large-scale
metrology systems consisting of distributed devices, such as the Metris indoor-GPS,
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the Metronor Portable CMM and the 3rd Tech Hi-Ball (Metris 2008; Metronor 2008;
Welch et al. 2001).

9.2 The Concept of the “Reliability of a Measurement”

When we refer to the field of CMMs, the concept of “online metrological per-
formance verification” is strictly related to the notion of “online self-diagnostics”
(Gertler 1998; Franceschini and Galetto 2007). In some senses, this approach is
complementary to that of uncertainty evaluation (ISO/TS 15530–6 2000; Phillips
et al. 2001; Savio et al. 2002; Piratelli-Filho and Di Giacomo 2003; Feng et al.
2007). In general, an online measurement verification is a guarantee of the preser-
vation of a measurement system’s characteristics (including accuracy, repeatabil-
ity and reproducibility) (VIM 2004; GUM 2004). The effect of measuring system
degradation is the production of unreliable measurements.

In general, we can define the concept of the “reliability of a measurement” as
follows.

For each measurable value x, we can define an acceptance interval [LAL,UAL]
(where LAL stands for lower acceptance limit and UAL for upper acceptance limit):
LAL ≤ x ≤ UAL.

The measure y of the quantity x, obtained by a given measurement system, may
be considered the realization of a random variable Y . It is considered “reliable” if
LAL ≤ y ≤ UAL.

Therefore, the I and II type probability errors (misclassification rates) corre-
spond, respectively, to:

α = Pr{Y /∈ [LAL,UAL] |LAL ≤ x ≤ UAL} (9.1)

and
β = Pr{LAL ≤ y ≤ UAL |x /∈ [LAL,UAL]} (9.2)

from the point of view of the measurement system.
LAL and UAL are not usually known a priori.
The acceptance interval is defined by considering the metrological characteristics

of the measurement system (accuracy, reproducibility, repeatability, etc.), as well as
the required quality level of the measurement result (VIM 2004; GUM 2004).

The problem of online system self-diagnostics is not a recent matter, and many
strategies have been proposed in different fields to address it (Clarke 1995; Henry
and Clarke 1992; Isermann 1984). In the most critical sectors, such as the aeronau-
tical and nuclear ones, where there is an absolute need to promptly detect every
malfunction, the typical approach is based on “physical redundancy”. This princi-
pally consists of instrumentation and system control device replication. Although
effective, this method can affect system cost and complexity (Gertler 1998).

An alternative and/or complementary method to physical redundancy is “model-
based redundancy” (also called “analytical redundancy”). This approach replaces
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the replication of physical instrumentation with the use of appropriate mathematical
models. Such models may be derived from applying physical laws to experimental
data or from self-learning methods (for example, neural networks). These kinds
of diagnostics allow the detection of system failures by comparing measured and
model-elaborated process variables (Gertler 1998; Reznik and Solopchenko 1985;
Franceschini and Galetto 2007).

The basic idea behind the self-diagnostic method described in this chapter is to
define an acceptance interval. If the measurement value (y) is included in this inter-
val, the acceptance test gives a positive response and the measured result is consid-
ered reliable. Otherwise, the measurement is rejected (Franceschini et al. 2008a).

After a general description of MScMS, the chapter focuses on the online diag-
nostic tool. A numerical example is presented and discussed. The following aspects
are analyzed in detail: a theoretical description of the test; empirical definitions of
the test parameters and acceptance limits; trial runs and preliminary experimental
results; critical aspects and possible improvements.

9.3 MScMS Technological and Operating Features

The MScMS prototype is made up of three main components (see Fig. 9.1) (Frances-
chini et al. 2008b):

• A constellation (network) of wireless devices (“Crickets”), which are oppor-
tunely distributed around the working area

• A measuring probe that communicates via ultrasound transceivers (US) with con-
stellation devices in order to obtain the coordinates of the touched points

• A computing and control system (PC), which receives and processes data sent by
the mobile probe in order to evaluate the geometrical features of objects

D5 

D4 
D3 D2 

 D1 

 (xB, yB, zB) (xA, yA, zA) 

(xV, yV, zV) Y
X

Z

D1÷D5 constellation’s wireless devices
A and B probe’s wireless devices 

distances among wireless devices 

PC

measured 
object

V

(V) point touched by the probe tip
Bluetooth communication

B A

Fig. 9.1 MScMS working scheme
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Fig. 9.2 Mobile probe prototype. The distance between the two probe devices is a construction
parameter defined during the probe design phase

The measuring probe comprises a mobile system that hosts two wireless devices,
a tip to touch the surface points of the measured objects, and a trigger to activate
data acquisition (see Fig. 9.2) (Franceschini et al. 2008b).

Given the geometrical characteristics of the mobile probe, the tip coordinates
can be univocally determined by means of the spatial coordinates of the two probe
Crickets (Franceschini et al. 2008b).

The Crickets are being developed by the Massachusetts Institute of Technology
and Crossbow Technology Inc. They utilize one radiofrequency (RF) and two ul-
trasound (US) transceivers in order to communicate and evaluate mutual distances
(see Fig. 9.3) (MIT CSAIL 2004). Mutual distances are estimated by a technique
known as TDoA (time difference of arrival) (Gustafsson and Gunnarsson 2003). RF
communication allows each Cricket to rapidly find out distances between the de-
vices. A Bluetooth transmitter connected to one of the two probe Crickets sends this
distance information to the PC, which is equipped with ad hoc software that can
analyze it.

The system makes it possible to calculate the location—in terms of spatial
coordinates—of the object points that are “touched” by the probe. More precisely,
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Fig. 9.3 Cricket structure (MIT CSAIL 2004); reproduced here with permission
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when the trigger mounted on the mobile probe is pulled, the current distances be-
tween the probe Crickets and the constellation ones are sent to the PC. These data
are utilized to calculate the touched point coordinates. In this way, different types
of calculations can be performed, such as determinations of distances, geometrical
tolerances, geometrical curves or object surfaces (Franceschini et al. 2008b).

The constellation devices (Crickets) operate as reference points (beacons) for the
mobile probe. The spatial location and the calibration of the constellation devices
are achieved by a specific procedure that utilizes a “trilateration” technique (Lee and
Ferreira 2002a, 2002b; Franceschini et al. 2008b).

To uniquely determine the location of a point in 3D space, at least four reference
points are generally needed (Chen et al. 2003; Sandwith and Predmore 2001; Ak-
can et al. 2006). In general, a trilateration problem can be formulated as follows.
Given a set of N nodes with known coordinates (xi,yi,zi), i = 1, . . . ,N, and a set
of measured distances dMi from a given point P ≡ (xP,yP,zP), the following sys-
tem of nonlinear equations needs to be solved to compute the unknown coordinates
(xP,yP,zP) of P (see Fig. 9.4):⎡

⎢⎢⎢⎢⎣
(x1 − xP)2 +(y1 − yP)2 +(z1 − zP)2

(x2 − xP)2 +(y2 − yP)2 +(z2 − zP)2

...
(xN − xP)2 +(yN − yP)2 +(zN − zP)2

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

d2
M1

d2
M2
...

d2
MN

⎤
⎥⎥⎥⎥⎦ (9.3)

If this trilateration problem is over-defined (i.e., four or more reference points
are available), it can be solved using a least mean squares approach (Savvides et al.
2001).

Y
X 

Z

C1 
(x1, y1, z1) 

C2

(    x2, y2, z2)

C3 
(x3, y3, z3) 

C4 
(x4, y4, z4) 

C5 
(x5, y5, z5) 

C6

(x6, y6, z6)

P 
(xP, yP, zP) 

dM3 

dM2 

dM1 

dM4 

dM5 

dM6 C8

(x8, y8, z8)

C7 
(x7, y7, z7) 

distances utilized for the location of a device P 
C1÷C6 devices within device P communication range P communication range

Fig. 9.4 Location of a generic device P
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The location of each unknown node can be estimated by performing iterative
minimization of the following error function (EF(xP)) (Franceschini et al. 2008b):

EF(xP) ≡ ∑N
i=1 (dCi −dMi)

2

N
(9.4)

where:

• N is the number of reference points xi = (xi,yi,zi), i = 1, . . . ,N known a priori
• xP = (xP,yP,zP) are the unknown coordinates of the point P in the localization

space ξ ⊆ IR3

• dMi is the measured distance between the i-th reference point and P
• dCi is the Euclidean distance between the i-th reference point and P:

dCi =
√

(xP − xi)2 +(yP − yi)2 +(zP − zi)2 . (9.5)

The problem of finding the minimum of the function EF(xP) can be treated as the
problem of finding the point of equilibrium for a mass–spring system (lowest poten-
tial energy) (Moore et al. 2004; Franceschini et al. 2008a).

As an example, let us consider the 2D situation described in Fig. 9.5. A unitary
mass is associated with each network node. The node with an unknown location is
connected to three reference nodes by three springs. Each of these has a rest length
equal to the measured distance and a unitary force constant.

Knowing the rest lengths (dMi) and the locations of the masses, the system po-
tential energy is given by:

U(xP) =
N

∑
i=1

1
2

(√
(xP − xi)2 +(yP − yi)2 −dMi

)2

. (9.6)

)10;0(1 −=x

)0;3(2 =x

)10;0(3 =x

)y;x( pp=x     

x

y

Fig. 9.5 An example of 2D mass–spring system. Three reference nodes (x1,x2,x3) with known
locations are linked by springs to the point to be localized (xP)
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Fig. 9.6 a EF(xP) behavior for the mass–spring system described in Fig. 9.5. Finding the mini-
mum point means localizing the node P that has an unknown location. b Isoenergetic curves for
the mass–spring system described in Fig. 9.5. Note that xP is the global minimum point of poten-
tial energy. The maxima correspond to the reference points (x1,x2,x3). Black curves refer to low
energy levels, gray curves refer to high energy levels

Figure 9.6 shows 3D and 2D visualizations of EF(xP). Since EF(xP) ∝ U(xP), they
have the same minima. As expected, the global minimum represents the position of
the node that we wish to locate (P ≡ (−10;0)).

9.4 MScMS Diagnostic System

Since it is based upon US technology, MScMS is sensitive to many influential fac-
tors. US signals may be diffracted and reflected by obstacles interposed between two
devices, uncontrolled external events can become undesirable US wave sources, or
positioning algorithms can produce unacceptable solutions. These and other poten-
tial causes of accidental measurement errors must be checked for to ensure proper
levels of accuracy.

In order to protect the system, MScMS implements a series of statistical tests
for online diagnostics. The one analyzed in this chapter is the “energy model-based
diagnostics test.”
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9.5 Energy Model-Based Diagnostics

EF(xP) is non-negative by definition (see Eq. 9.6). In particular, EF(xP) = 0 when
dMi = dCi , for i = 1, . . . ,N. Because of the natural variability of the measuring in-
strument, two typical situations may occur:

• EF(xP) is strictly positive, even at the correct point of localization.
• EF(xP) shows a global minimum at a point that is not the correct one. In other

words, due to the “noise” in distance measurements, a local minimum may turn
into a global minimum and vice versa.

Energy model-based diagnostics introduces a criterion in order to identify all un-
acceptable minima solutions for EF(xP) and thus prevent system failures. Such a
criterion enables the MScMS system to distinguish between reliable and unreliable
measurements.

Consider a solution x∗P to the problem minxP∈ξ EF(xP). In general, if the problem
is overdetermined (i.e., there are more than three distance constraints in the 3D case
and more than two in the 2D case) and the individual measurements are affected by
noise, the solution that satisfies all distance constraints at the same time does not
exactly fit the real location of the node (see Fig. 9.7).

In such a case, the differences between measured and Euclidean distances may
be defined as residuals (εi ≡ (dMi − dCi)). Generally, in the absence of systematic
sources of error, it is reasonable to hypothesize a normal distribution for the random
variables εi, i.e.:

εi ≡ (dMi −dCi) ∼ N
(
0,σ2

i

)
. (9.7)

x

y   

*
Px

1x
2x

3x

4x Measured distances 
Reference nodes 

Node optimized

Real distances

Residuals

Real node

Fig. 9.7 An example of possible node localization. Measured distances are not equal to real dis-
tances
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If σ2
i = σ2, ∀i (this is true in the absence of spatial/directional effects), Eq. 9.4

becomes:

EF(xP) =
N

∑
i=1

(dMi −dCi)
2

N
=

N

∑
i=1

ε2
i

N
=

σ2

N
·

N

∑
i=1

ε2
i

σ2 =
σ2

N
·

N

∑
i=1

(εi

σ

)2
=

σ2

N
·

N

∑
i=1

z2
i .

(9.8)
Equation 9.8 can be seen as the sum of N independent normal squared random
variables with zero mean and unit variance, multiplied by the constant term σ 2

N .
It should be noted that the sum in Eq. 9.8 has only N − 1 independent terms.

Equation 9.8 causes the loss of a degree of freedom. This implies that, once N − 1
terms are known, the N-th one is univocally determined.

When χ2
P is defined as χ2

P =
N
∑

i=1
( εi

σ )2, EF(xP) in Eq. 9.8 has a chi-square distri-

bution with N −1 degrees of freedom:

EF(xP) =
σ2

N
· χ2

P . (9.9)

The residual variance σ2 can be estimated a priori for the whole measuring space,
for example during the phase of installation and calibration of the system.

Every time a measurement is performed for each probe Cricket, the MScMS
diagnostic software computes the following quantity (experimental chi-square):

χ2∗
P = EF(x∗P)

N
σ2 . (9.10)

Assuming that the risk α is a type I error, a one-sided confidence interval for variable
χ2

ν,α can be calculated. χ2
ν,α is a chi-square distribution with ν = N −1 degrees of

freedom and a confidence level of 1−α . The confidence interval is assumed to be
the acceptance interval for the test of the reliability of the measurement.

The test arrives at the following two alternative conclusions:

• χ2∗
P ≤ χ2

ν,α → the measurement is not considered unreliable; hence it is not re-
jected

• χ2∗
P > χ2

ν,α → the measurement is considered unreliable; hence it is rejected and
the operator is asked to perform another one

It is important to note that this test can be applied in many other different contexts
in which trilateration or triangulation are utilized for coordinate measurement (3rd
Tech Hi-Ball, Leica T-Probe, Metris Laser Radar and i-GPS, etc.) (Welch et al. 2001;
Rooks 2004).
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9.5.1 Setting Up the Test Parameters

The risk α is defined by the user according to the required level of performance of
the system. A high value of α prevents unacceptable solutions to the optimization
problem, minimizing the type II error β .

On the other hand, while a low value of α speeds up the measurement proce-
dure, it may result in inaccurate data being collected due to the high level of II type
error β .

The estimation of the residual variance can be evaluated in two ways: by applying
the uncertainty composition law to the calculation of the coordinates, starting from
the measurement uncertainty of the distances between the constellation beacons and
the probe crickets (GUM 2004), or empirically, on the basis of experimental distance
measurements. In this case, it is estimated from a sample of residuals obtained by
measuring a set of points that are randomly distributed across the whole working
volume. This method requires knowledge of the locations of the measured points
a priori. It can be easily implemented during the initial phase of setting up and
calibrating the system.

In the following, we focus on this second estimation procedure.
Given a set of M points distributed in the measurement space ξ ⊆ IR3, randomly

measured by a single Cricket (i.e., with a random sequence of measurements and
a random position and orientation of the Cricket), a set of Nj residuals can be calcu-
lated for each point j, j = 1, . . . ,M.

It should be noted that the number of residuals Nj may change due to the different
number of distances detected during each measurement.

In the absence of systematic sources of error and time or spatial/directional ef-
fects, it is reasonable to hypothesize the same normal distribution for all the random
variables εi j, j = 1, . . . ,M, i = 1, . . . ,Nj , i.e.:

εi j ≡ (dMi −dCi) j ∼ N(0,σ2) . (9.11)

The variance σ2 may be estimated as follows:

σ̂2 =
M

∑
j=1

Nj

∑
i=1

(εi j −0)2

∑M
j=1 Nj

=
M

∑
j=1

Nj

∑
i=1

(εi j)2

∑M
j=1 Nj

. (9.12)

The value obtained for σ̂2 is considered the reference value for the test.
With this notation, Eq. 9.10 becomes:

χ2∗
P = EF(x∗P) · N

σ2
∼= EF(x∗P) · N

σ̂2 . (9.13)
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9.5.2 An Example of the Application of Energy Model-Based
Diagnostics

A preliminary empirical investigation was carried out to verify the accuracy of this
approach.

Considering that ultrasound sensors are able to achieve uncertainties of about
10 mm for distance measurements (confidence level 1−α = 0.95, i.e., a covering
factor k ∼= 2, according to GUM 2004) in a network consisting of five reference
points (constellation beacons) placed in the measurement volume schematized in
Fig. 9.8, σ̂2 was empirically estimated as follows:

• M = 253 points randomly distributed in the working volume were measured by
a single Cricket.

• The coordinates x j, j = 1, . . . ,M, of each node were evaluated using the “mass–
spring” localization algorithm and a sample of 1123 residuals were obtained.

• A normal residual distribution was tested using a chi-square test (Montgomery
2005).

• The residual variance was estimated by Eq. 9.12. The value obtained was σ̂2 =
100.0 mm2 (see Table 9.1 for a summary of the data).

The acceptance limit for EF(xP), assuming a type I risk α = 0.05 and ν = N −1 =
5−1 = 4 degrees of freedom, is:

EF(x∗P) ≤ σ̂2

N
· χ2

ν=4,α=0.05 ⇒ EF(x∗P) ≤ 189mm2 (9.14)

Consider now a typical situation that can occur when the ultrasound technology is
used to estimate distances: US reflection. Referring to the configuration in Fig. 9.9,
suppose that a generic point P inside the measurement volume (for example, P ≡
(1067.2;−122.5;925.8)) has to be localized.

Table 9.1 Details of data analysis for estimating the standard deviation of the residuals

Sample size: NTOT =
M

∑
j=1

Nj 1123

Estimate for the mean: μ̂ =
M

∑
j=1

Nj

∑
i=1

εi j

M
∑
j=1

Nj

0.3 mm

Estimate for the variance: σ̂ 2 =
M

∑
j=1

Nj

∑
i=1

(εi j)2

M
∑
j=1

Nj

100.0 mm2

Maximum: εMAX = max
{

εi j|i = 1, . . .,Nj, j = 1, . . . ,M
}

42.7 mm

Minimum: εMIN = min
{

εi j|i = 1, . . . ,Nj, j = 1, . . . ,M
}

–37.1 mm



9 An Innovative Online Diagnostic Tool for a Distributed Spatial Measuring 173

( )1 1181.5;1149.5;2472.0=x

( )2 1560.7; 575.0;2495.0= −x

( )3 754.9;351.8;2678.0=x

( )4 27.7;1467.1;2307.0=x

( )5 503.6; 288.2;2478.0= − −x

1000 500 2000 1500 

Reference nodes 

1000 

y

x-1000 

-500 

0

500 

1500 

0-500 

Fig. 9.8 Scheme showing the positions of the reference nodes (constellation beacons) in the mea-
surement volume (point coordinates in millimeters [mm])

A Cricket positioned in P is able to correctly measure distances from all of the
reference nodes except for one of them. An obstacle (for example, the operator
performing the measurement) is interposed between P and that node, preventing
direct US signal propagation. At the same time, a wall placed close to the two nodes
causes US signal reflection. The consequence is that the estimate for the pairwise
distance between those two nodes is 100 mm larger.

The measured distances are:

dM1 = 2104.8mm

dM2 = 1713.4mm

dM3 = 1831.4mm

dM4 = 2355.6mm

dM5 = 2215.2mm (9.15)

In this case, the algorithm produces the following wrong localization solution
(see Fig. 9.10): x∗P′ ≡ (1022.6;−187.3;911.8), characterized by a high level of “en-
ergy:” EF(x∗P) ∼= 904mm2 > 189mm2.

Because of this result, the energy model-based diagnostics indicate that the mea-
surement should be rejected.

Upon removing the obstacle, the distance from beacon 1 becomes dM1 =
2004.8mm, and we obtain the correct localization solution:

x∗P ≡ (1067.2;−122.5;925.8) . (9.16)

The new “energy” value is: EF(x∗P) ∼= 41mm2 < 189mm2, so x∗P cannot be con-
sidered unreliable and the measurement is not rejected.
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Fig. 9.9 Scheme illustrating a potentially misleading situation: walls and obstacles can result in
wrong distance estimates (point coordinates are given in millimetres [mm]; see Fig. 9.8). In this
case, the measured distance between node 1 and node P is higher than the actual distance
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Fig. 9.10 Scheme illustrating a wrong localization solution (P′) due to a wrong estimate for the
distance between node 1 and node P (point coordinates are given in millimetres [mm]; see Fig. 9.8)
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9.6 Conclusions

MScMS is an innovative wireless measuring system that is complementary to
CMMs. A prototype of this system has been developed at the Industrial Metrol-
ogy and Quality Engineering Laboratory of DISPEA of the Politecnico di Torino. It
is portable, not very expensive, and suitable for large-scale metrology (which is not
easy to perform with conventional CMMs).

Some innovative aspects of the system concern its online diagnostic tools. When
dealing with measurement systems, good measurement diagnostics are crucial to
applications in which errors can lead to serious consequences.

The diagnostics tool described in this chapter, which is based on the concept of
the “reliability of a measurement,” enables MScMS users to reject measurements
which do not satisfy a statistical acceptance test with a given confidence coefficient.

After rejection, the operator is asked to perform the measurement again, changing
the orientation/positioning of the probe; or, if necessary, to rearrange the beacons in
the system network.

Preliminary results from the application of this online diagnostic tool reveal that
it exhibits acceptable efficiency in preserving the system from measurement failures.
However, in some cases the system requires the measurement to be repeated too
many times, resulting in excessive duration of the measuring process.

Future work, as well as improvements in the power of the existing tools, will
be aimed at enriching the MScMS control system by implementing additional tools
that are able to steer the operator during measurement. For example, they could
suggest the position of the probe in the measuring volume, or propose possible ex-
tensions to the network of beacons, or automatically filter and/or correct corrupted
measurements.

References

Akcan, H., Kriakov, V., Brönnimann H., Delis A.: GPS-free node localization in mobile wireless
sensor networks. In: Proceedings of MobiDE’06, Chicago, IL, USA, 25 June (2006)

Bosch, J.A.: Coordinate Measuring Machines and Systems. Marcel Dekker, New York (1995)
Cauchick-Miguel, P., King, T., Davis, J.: CMM verification: a survey. Measurement 17(1), 1–16

(1996)
Chen, M., Cheng, F., Gudavalli, R.: Precision and accuracy in an indoor localization system (Tech-

nical Report CS294-1/2). University of California, Berkeley, CA (2003)
Feng, C.X.J., Saal, A.L., Salsbury, J.G., Ness, A.R., Lin, G.C.S.: Design and analysis of experi-

ments in CMM measurement uncertainty study. Precis. Eng. 31(2), 94–101 (2007)
Franceschini, F., Galetto, M.: A taxonomy of model-based redundancy methods for CMM on-line

performance verification. Int. J. Technol. Manage. 37(1–2), 104–124 (2007)
Franceschini, F., Galetto, M., Maisano, D.: Management by Measurement—Designing Key Indi-

cators and Performance Measurement Systems. Springer-Verlag, Berlin (2007)
Franceschini, F., Galetto, M., Maisano, D., Mastrogiacomo, L.: A review of localization algorithms

for distributed wireless sensor networks in manufacturing. Int. J. Computer Integr. Manuf. (in
press) (2008a). doi:10.1080/09511920601182217



176 Fiorenzo Franceschini et al.

Franceschini, F., Galetto, M., Maisano, D., Mastrogiacomo, L.: Mobile Spatial coordinate Mea-
suring System (MScMS)—introduction to the system. Int. J. Prod. Res. (in press) (2008b).
doi:10.1080/00207540701881852

Gertler, J.J.: Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker, New York
(1998)

GUM: Guide to the Expression of Uncertainty in Measurement. International Organization for
Standardization, Geneva (2004)

Gustafsson, F., Gunnarsson, F.: Positioning using time difference of arrival measurements. Proc.
IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP 2003), Hong Kong 6,
553–556 (2003)

Hansen, H.N., De Chiffre, L.: An industrial comparison of coordinate measuring machines in Scan-
dinavia with focus on uncertainty statements. Precis. Eng. 23(3), 185–195 (1999)

Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J.: GPS. Theory and Practice. Springer, Wien
(2001)

ISO: 10360, part 2: Geometrical Product Specifications (GPS)—acceptance and reverification tests
for coordinate measuring machines (CMM). International Organization for Standardization,
Geneva (2001)

ISO/TS: 15530-6 (Working Draft): Geometrical product specifications (GPS)—coordinate mea-
suring machines (CMM): techniques for determining the uncertainty of measurements. Part 6:
Uncertainty assessment using uncalibrated workpieces. International Organization for Stan-
dardization, Geneva (2000)

Lee, M.C., Ferreira, P.M.: Auto-triangulation and auto-trilateration. Part 1. Fundamentals. Precis.
Eng. 26(3), 237–249 (2002a)

Lee M.C., Ferreira P.M.: Auto-triangulation and auto-trilateration—Part 2: Three-dimensional ex-
perimental verification. Precis. Eng. 26(3), 250–262 (2002b)

Metris: Webpage. http://www.metris.com/large_volume_tracking__positioning/ (2008)
Metronor: Webpage. http://www.metronor.com (2008)
MIT Computer Science and Artificial Intelligence Lab: Cricket v2 User Manual. http://cricket.

csail.mit.edu/v2man.html (2004)
Montgomery, D.C.: Introduction to Statistical Process Control. Wiley, New York (2005)
Moore D., Leonard J., Rus D., Teller S.S.: Robust distributed network localization with noisy range

measurements. Proceedings of SenSys 2004, Baltimore, MD, pp. 50–61, 3–5 Nov. (2004)
Phillips, S.D., Sawyer, D., Borchardt, B., Ward, D., Beutel, D.E.: A novel artifact for testing large

coordinate measuring machines. Precis. Eng. 25(1), 29–34 (2001)
Piratelli-Filho, A., Di Giacomo, B.: CMM uncertainty analysis with factorial design. Prec. Eng.

27(3), 283–288 (2003)
Reznik, L.K., Solopchenko, G.N.: Use of a-priori information on functional relations between mea-

sured quantities for improving accuracy of measurement. Measurement 3(3), 98–106 (1985)
Rooks, B.: A vision of the future at TEAM. Sensor Rev. 24(2), 137–143 (2004)
Sandwith, S., Predmore, R.: Real-time 5-micron uncertainty with laser tracking interferometer

systems using weighted trilateration. Proc. 2001 Boeing Large Scale Metrology Seminar, St.
Louis, MO, 13–14 Feb. (2001)

Savio, E., Hansen, H.N., De Chiffre, L.: Approaches to the calibration of freeform artefacts on
coordinate measuring machines. Ann. CIRP 51/1, San Sebastian, Spain, pp. 433–436 (2002)

Savvides, A., Han, C., Strivastava, M.B.: Dynamic fine-grained localization in ad hoc networks of
sensors. Proc. ACM/IEEE 7th Annu. Int. Conf. on Mobile Computing and Networking (Mobi-
Com’01), pp. 166–179, July (2001)

VIM: International Vocabulary of Basic and General Terms in Metrology. International Organiza-
tion for Standardization, Geneva (2004)

Welch, G., Bishop, G., Vicci, L., Brumback, S., Keller, K.: High-performance wide-area optical
tracking. The HiBall Tracking System. Presence Teleoper. Virtual Env. 10(1), 1–21 (2001)



Chapter 10
Technological Process Innovation
via Engineering and Statistical Knowledge
Integration
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Abstract This chapter shows the strategic role that a systematic approach to plan-
ning for a designed industrial experiment plays in technological process innova-
tion. Guidelines already proposed in the literature emphasizing the pre-experimental
planning phase are customized and applied in a case study concerning the laser
drilling process of a combustion chamber in aerospace industry. The team approach
is the real driving force for pre-experimental activities; it enables the integration of
engineering and statistical knowledge, catalyzes process innovation and, moreover,
it allows a virtuous cycle of sequential learning to be put into action. The inno-
vative technological results obtained in the first screening experimental phase are
presented. Since these results arise from a sound systematic approach, they enable
a future experimental phase on optimization and robustness to be planned. The case
study of a laser drilling process provides a best-practice guide to synergic collabo-
ration and partnership between academic statisticians and industrial practitioners; it
was developed by AVIO, an aerospace company at the leading edge of propulsion
technology.
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10.1 Introduction

In industry today, there is a general awareness that one-factor-at-a-time (OFAT) ex-
periments are always less useful than statistically designed experiments (Wu and
Hamada 2000; Montgomery 2001; Box et al. 2005). Ilzarbe et al. (2008) pointed
out that, although the design of experiments (DOE) methodology has been applied
in industry for many years, it is still not used as it should be. In fact, many engineer-
ing applications are of little educational value, since they include the experimental
matrix and the analysis of the results associated with them but lack any details about
the pre-experimental steps performed.

The first practical and systematic framework that effectively tries to answer
“how” to plan activities in the pre-experimental phase (i.e., the phase that precedes
the actual experiment) was proposed in Coleman and Montgomery (2003), where
predesign master guide sheets and supplementary sheets were designed and applied
in a case study involving the CNC machining of a jet engine impeller. Quoting Cole-
man and Montgomery (2003, p. 2): “The guide sheets are designed to be discussed
and filled out by multidisciplinary experimentation team [. . . ];” “The sheets are in-
tended to encourage the discussion and resolution of generic technical issue needed
before the experimental design is developed;” “The guide sheets [. . . ] outline a sys-
tematic script for the verbal interaction among the people on the experimentation
team. When the guide sheets are completed, the team should be well equipped to
proceed with the task of designing the experiment.”

The aim of this chapter is to apply the approach proposed in Coleman and Mont-
gomery (2003) in the context of laser drilling, highlighting the strategic role that
this systematic approach plays in technological process innovation and, moreover,
as the critical starting point for a virtuous cycle of sequential learning.

The process of sequential learning (Box 2001)—in other words, continuous im-
provement based on the Shewhart–Deming cycle (Plan-Do-Check-Act) (Deming
1982)—comes from team work in which statistical and technological competencies
are fully exploited. “A new environment calls for a new strategy for statisticians”
(Hahn 2007, p. 646); in order to be a “proactive statistician” (Hahn 2007) or, in other
words, a “statistical colleague” (Hunter 1981), a “statistical catalyst” (Box 2001),
or a “statistical leader” (Deming 1982), it is necessary to work as a team member
by directly sharing in the excitement of problem solving and the responsibility for
project success.

This is a chapter that involves both statistical and technological aspects. The sta-
tistical methodologies applied in this first screening experimental phase—two-level
fractional factorial design and ANalysis Of VAriance (ANOVA)—are extensively
treated in the literature (for example in Montgomery 2005), and so they will be
applied without any explicit introduction or analytical formulation. Technological
aspects related to the laser-drilling process are only briefly introduced so as to sup-
port the technological interpretation of statistical results.

The case study involving the laser-drilling process was developed by AVIO, an
aerospace company at the leading edge of propulsion technology.
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10.2 Technological Context and Case Study

In the aerospace industry, laser drilling is the most economical process for drilling
many thousands of high-quality, small-diameter effusion holes in order to improve
the cooling capacities of engine components such as blades or combustion cham-
bers.

Three different laser-drilling methods are usually used to drill a combustion
chamber: trepanning, percussion and drilling on the fly (DOF). The first of these in-
volves cutting the circumference of the hole. The percussion method makes the hole
by shooting the place to drill several times, without any relative motion between the
laser and the workpiece. In the DOF method, the laser pulses are delivered to the
workpiece while it is rotating around its own axis; the rotation of the part is syn-
chronized with the laser pulse, ensuring that multiple pulses are always delivered
at the exact position of the hole, so that the hole is created after a fixed number of
workpiece rotations.

The DOF method is better than the others in terms of productivity (i.e., it takes
less time), but it is not always better in terms of the quality of the hole. High produc-
tivity and high-quality holes are the key competitive factors for industries involved
in laser-drilling processes.

The quality of the hole is related to several geometrical and metallurgical pa-
rameters (see Fig. 10.1): (a) taper (i.e., the acylindricity of the hole) and barreling
(i.e., a measure of the presence of irregular depressions on the side wall of the hole);
(b) recast layer (i.e., the degree of accumulation of material on the side wall of the

Fig. 10.1a–d Main metallurgical and geometrical defects associated with laser-drilled holes: a ta-
per and barreling; b recast layer; c spatter; d dross
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hole); (c) spatter (i.e., the amount of resolidified material at the entrance to the hole);
(d) dross (i.e., the amount of resolidified material at the exit of the hole).

The case study described here concerns the drilling of a combustion chamber
that has been partially coated by an internal thermal barrier. AVIO usually make
the holes in the area without the thermal barrier by the DOF method; the holes
in the coated area are made by trepanning because of the unsatisfactory quality of
the holes achieved by the DOF method. The aim of the Manufacturing Technologies
Department is to extend the DOF method to the whole combustion chamber in order
to increase productivity and ensure that geometrical and metallurgical requirements
continue to be met.

10.3 Pre-experimental Planning

Following the systematic approach to planning a designed industrial experiment
proposed in Coleman and Montgomery (2003), two pre-design sheets (i.e., the main
and secondary sheets) were conceived and implemented. We customized the pro-
posed guide sheets in order to make them more appropriate and comprehensive in
the specific technological and organizational context in which they are used. These
two kinds of sheets force the experimenter to address fundamental questions from
the early phases of the experimental activity and, moreover, they enable the results
of the interaction between statistical and technological competences to be recorded
during face-to-face discussion.

These sheets are the only official document that circulates within the team in-
volved in the experimentation. The main sheets contain information about the ob-
jective of the experimentation, the relevant background, the response variables and
the factors (i.e., control, held-constant and nuisance factors). The secondary sheets
detail the technological relationship between the control factors and the response
variables, in terms of the expected main effects and interactions.

In this first experimental phase, the objective was to characterize the drilling
process; that is, to detect which factors affect the quality of the hole.

The relevant background was derived from previous laser-drilling experiments
carried out by AVIO, bibliographic research, expert opinion, and physical laws.
Previous experiments performed by AVIO adopted what is essentially an OFAT ap-
proach; unfortunately, when only one factor is varied at a time while all of the others
are kept fixed, the experimental results cannot account for interactions between fac-
tors (Czitrom 1999).

Achieving optimum hole quality during laser drilling is one of most important
issues in this specific research area. Several parametric studies that studied the rela-
tionship between laser parameters and hole quality characteristics for different sev-
eral aerospace materials are available in the scientific literature. In particular, two
papers (Low et al. 1999, 2001) offered specific contributions to the experimental
activities. These papers highlight the influence of temporal pulse train modulation
during laser percussion drilling of aerospace materials in terms of good overall hole
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geometry (i.e., taper and barreling) and metallurgical characteristics (i.e., spatter and
recast layer). The new proposed temporal pulse train modulation, called “sequential
pulse delivery pattern control” (SPDPC), increases the laser pulse energy linearly
throughout the pulse train. This is a novel approach in laser percussion drilling; in
the traditional approach, called the “normal delivery pattern” (NDP), the energy is
constant in each pulse. Note that, before this, SPDPC had never been used by AVIO.

Taper and recast layer thickness were the response variables that were taken into
consideration. For each variable, the normal operating level, the range, the mea-
surement precision and the relationship to the objective were specified on the main
sheets.

The study of the factors involved in the experimentation is a crucial task and re-
quires intensive knowledge transfer. The first brainstorming step involved listing all
of the factors that, according to different technological points of view and compe-
tencies, came out during team discussions. The second step consisted of classifying
each factor as a control, held-constant or nuisance factor (Coleman and Montgomery
2003). Obviously, different classifications are possible, each strictly related to the
specific aims of the experiment.

In this first screening experimental phase, the following control factors were
adopted: peak power (A), defocus (B), pulse width (C), delivery pattern (D) and
assist gas pressure (E). Factors A and C are quantitative laser pulse parameters; fac-
tor B is the distance between the laser focal spot and the workpiece surface; factor E
is the pressure of the gas used in tandem with the laser beam to enhance the removal
of material; factor D, as previously mentioned, is a qualitative factor that refers to
the specific form of temporal pulse train modulation adopted. On the secondary
sheets, for each quantitative control factor, the normal level and range as well as the
measurement precision were specified. Moreover, particular attention was paid to
the task of attempting to elicit the effects of each control factor as well as the effects
of two-factor interactions on the response variables. Such efforts are very important
when the results require technological interpretation (Sect. 10.5.2).

Held-constant factors are controllable factors whose effects are not of interest
in this experimental phase. In particular, laser-drilling experiments were performed
on a 250 W Nd:YAG laser emitting at a wavelength of 1.063 μm with a fixed beam
delivery. The laser beam was approximately 14 mm in diameter; it was focused with
a 200 mm focal length lens, giving a spot size of approximately 0.47 mm diameter
(M2 value of ∼25). Oxygen assist gas was used since the results of previous experi-
mentation by AVIO indicated that it was the most suitable gas for this process. Each
experiment was performed through a conical copper nozzle with 1.15 mm-diameter
orifice, and the beam beam was always inclined at 30◦ to the surface, as this config-
uration was identified by AVIO as being the one that is most critical to this process.
The materials used to produce the combustion chamber (i.e., external surface: su-
peralloy; internal surface: thermal coating barrier) and their thicknesses are omitted
here for industrial confidentiality reasons.

Nuisance factors are uncontrolled factors—factors which cannot be controlled
from a technological or economical point of view. There are some potential nuisance
factors that could influence the laser-drilling experiments. Laser light deterioration
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and the metallurgical/geometrical characteristics of the thermal barrier appear to be
the most influential nuisance factors. In this first screening experimental phase, both
of these factors were avoided by adopting a new laser light source and an appropriate
experimental set-up (Sect. 10.4). Since the first encouraging technological results
obtained (Sect. 10.5) arose from the application of a sound systematic approach,
they enabled future experimental phases focused on optimization and robustness to
be planned. Future experimentation will be required in order to elucidate technolog-
ical and statistical aspects related to different sources of variation, which are usually
classified into three categories: those external to the process, process nonuniformity,
and process drift (Phadke 1989).

10.4 Experimental Design and Set-Up

In the pre-experimental phase, five factors were considered important and a 25−1

design was adopted. This design, with I = ABCDE (defining relation), is a resolu-
tion V design, so no main effect or two-factor interaction is aliased with other main
effects or two-factor interactions, but each main effect is aliased with a four-factor
interaction, and each two-factor interaction is aliased with a three-factor interaction.
Since three-factor (and higher) interactions are negligible, the experimental 25−1 de-
sign enables reliable information to be obtained about main effects and two-factor
interactions. Table 10.1 summarizes the levels of control factors and their settings.

The delivery pattern (D) is a qualitative factor (set as NDP or SPDPC); it is
related to the shape of the overall laser pulse pattern applied during the pulse train
required to drill a hole. To drill a single hole by DOF, four pulses are required,
one for each revolution of the workpiece. In NDP, each laser pulse has the same
peak power (A) and pulse width (C). In SPDPC, each pulse may have a different
peak power (A) and/or pulse width (C). In this first experimental phase, a simple
laser pulse pattern (four pulses) was used; its shape is omitted here for industrial
confidentiality reasons.

Table 10.2 shows the 25−1 design matrix. For each treatment, three replications
were executed, giving a total of 48 experimental runs. This unusual number of repli-
cations (usually two replications of each treatment are executed in a screening exper-

Table 10.1 Control factors and their settings

Control factors Labels Low (−) High (+) Unit

Peak power A 13.5 16.7 kW
Defocus B 0 2.5 mm
Pulse width C 0.9 1.2 ms
Delivery Pattern D NDP SPDPC –
Assist gas pressure E 4.4r 6.8r bar



10 Innovation via Engineering and Statistical Knowledge Integration 183

Table 10.2 Matrix for the 25−1 design (defining relation I = ABCDE)

Treatment A B C D E = ABCD

1 – – – – +
2 + – – – –
3 – + – – –
4 + + – – +
5 – – + – –
6 + – + – +
7 – + + – +
8 + + + – –
9 – – – + –

10 + – – + +
11 – + – + +
12 + + – + –
13 – – + + +
14 + – + + –
15 – + + + –
16 + + + + +

iment) was adopted to provide more consistent response repeatability, in particular
for the recast layer thickness, during this first experimental phase.

The quality control test for laser-drilled microholes, in terms of taper and recast
layer thickness, is a destructive test. Therefore, all of the experiments were car-
ried out on a cylindrical artefact made out of the same material as the combustion
chamber (i.e., external surface: superalloy; internal surface: thermal coating barrier).
Figure 10.2 shows the application of the laser-drilling process to the: (a) combustion
chamber; (b) cylindrical artefact.

In order to reduce the laser downtime and avoid technological difficulties related
to laser calibration optics, only the treatment order was randomized. For each treat-
ment, three set of holes were sequentially created at different positions on the cylin-
drical artefact in order to reduce the effects of lurking variables (some of which are
potentially due to metallurgical and geometrical characteristics of the thermal bar-

Fig. 10.2a,b Laser drilling process in action: a combustion chamber; b cylindrical artefact
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Fig. 10.3 Measurement of recast layer

Impact
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Fig. 10.4 Measurement of taper (beta – alpha)

rier). After drilling, each set of holes was cut out using the laser. For each set, one
hole was chosen at random, isolated and sectioned, and then cold-mounted in resin
under vacuum and polished in order to allow microscopic analysis. Finally, each
obtained sample was chemically treated in order to analyze the recast layer thick-
ness and heat-affected zone microstructures. Figure 10.1a,b shows typical images
obtained by this method.

Both the taper and the recast layer thickness of the hole were measured using
a microscope with different levels of zoom. The maximum recast layer thickness
was measured along the longitudinal edge of the hole; see Fig. 10.3.

Taper was instead measured as the difference between the “beta” angle and the
“alpha” angle, as illustrated in Fig. 10.4.

10.5 Analysis of Results and Technological Interpretation

10.5.1 Analysis of Results

The ANOVA method was applied in order to test the statistical significance of the
main effects and the two-factor interactions for the taper and the recast layer. Diag-
nostic checking was successfully performed via graphical analysis of residuals. The
experimental results for the taper and the recast layer thickness are shown, using
Pareto charts of standardized effects (α = 0.05), in Fig. 10.5.
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Fig. 10.5a,b Pareto charts of standardized effects (α = 0.05): a taper; b recast layer

The two-factor interactions DE (delivery pattern–pressure) and BD (defocus–
delivery pattern), for taper and recast layer, respectively, were the true “discoveries”
of the first screening experimental phase. Both interactions were of the antisynergic
type (Fig. 10.6) and involved the factor D (delivery pattern), up to then set to NDP
by AVIO. The practitioner, even one considered expert in laser drilling, would have
never been able to anticipate this type of interaction during the pre-experimental
phase.

Figures 10.7 and 10.8 show the main effects plots for taper and recast layer thick-
ness, respectively; for each response variable, the significant main effects (α = 0.05)
result from Fig. 10.5. An exhaustive technological interpretation of the results is
given in Sect. 10.5.2.
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Fig. 10.6a,b Antisynergic interactions: a DE for taper; b BD for recast layer thickness

10.5.2 Technological Interpretation of Results

The technological interpretation of the results is a very important phase. Compar-
ing the technological “expectations”, elicited in the pre-experimental phase (sec-
ondary sheets) with the statistical results allows practitioners to gain technological
knowledge and to determine the added value of a systematic approach to planning
a designed industrial experiment. In fact, positive results from such a comparison
will strengthen the trust of practitioners in experimental activities; negative results
from the comparison will force the practitioner to look deeper at the technological
interpretation of the results.

In Sects. 10.5.2.1 and 10.5.2.2, we consider the technological interpretation of
the results for taper and recast layer thickness, respectively, in more depth.
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Fig. 10.7 Main effects plot for taper

Fig. 10.8 Main effects plot for recast layer thickness

10.5.2.1 Taper

In laser drilling, the hole taper is often related to two main concurrent physical
phenomena associated with the erosion of material: crater-generator and beam-
divergence effects. The former occurs at the higher layers of the drilled workpiece,
while the latter typically occurs at the lower layers, where the laser beam usually
loses its power to both penetrate and ablate due to its natural divergence.

A low setting for the peak power (A) is preferable in order to reduce taper; see
Fig. 10.7. Low peak power (A), often connected with low pulse energy, reduces the
crater-generator effect as it decreases hole-wall erosion at the higher layers of the
drilled piece.

A high setting for defocus (B) is able to reduce taper, Fig. 10.7. For the levels
of pressure (E) and pulse energy tested, in terms of their effects on taper, the beam-
divergence effect dominates over the crater-generator effect when the defocus (B) is
set to a high level, while the crater-generator effect dominates when the defocus (B)
is set at low level.
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In order to reduce taper, preferable levels of delivery pattern (D) and pressure (E)
can be chosen by analyzing their interaction plot; see Fig. 10.6a. The best results can
be obtained by either setting the delivery pattern (D) to SPDPC and the pressure (E)
at a high level, or by setting the delivery pattern (D) to NDP and the pressure (E) to
a low level. The former approach is preferable since it yields a better internal hole
shape for drilling by SPDPC. In this case, a reduced taper is mainly caused by the
two following issues, both of which are related to the presence of oxygen as assist
gas: (i) in the first shots, where the crater–generator effect is usually dominant, the
high pressure (E) constrains the development of an exothermic combustion reaction
that would increase the rate at which material is removed from the higher layers
of the drilled piece; (ii) in the last shots, when using SPDPC, the pulse energy in-
creases and this allows an exothermic reaction take place; this reaction results in
more material being removed from the lower layers of the drilled piece and opposes
the beam-divergence effect that would cause taper.

The pulse width (C) and all two-factor interactions involving it are not significant
(α = 0.05), and thus this factor can be excluded from future experimental phases.

10.5.2.2 Recast Layer

The presence of a recast layer along the internal walls of the holes is mainly caused
by the physics of the removal of material that occurs during laser drilling. Material is
usually removed by vaporization or by melting. Recast layer thickness particularly
depends on the rate of removal and the amount of melting material generated during
laser drilling.

Drilling with the peak power (A) set to a high level is preferable for obtaining
smaller recast layers, Fig. 10.8. The heat surge of material resulting from the sud-
den temperature load caused by the high-energy laser pulse that occurs with high
peak power (A) causes the vaporization of most of the removed material, and thus
a smaller amount of recast material on the walls of the drilled holes.

Recast layer thickness can be reduced by using high levels of both defocus (B)
and pressure (E). In fact, a higher level of defocus (B) promotes material removal
by vaporization rather than melting, and thus enables the growth of the recast layer
to be suppressed. In the one hand, high pressure (E) constrains the development of
an exothermic combustion reaction that could result in the removal of more material
(when less material is removed, there is less remelt material and so the thickness of
the recast layer is reduced). On the other hand, a high pressure (E) increases the rate
at which material is removed. In this way, the ejection of material from the drilled
hole speeds up and the remelting along the internal walls of the hole decreases.

In order to reduce recast layer thickness, preferable levels of delivery pattern (D)
and defocus (B) can be chosen by analyzing their interaction; see Fig. 10.6b. The
best results can be obtained by either setting the delivery pattern (D) to SPDPC and
the defocus (B) to a low level, or by setting the delivery pattern (D) to NDP and
the defocus (B) to a high level. The former option is preferable because it reduces
spatter and dross in the holes drilled by SPDPC. In this configuration, the smallest
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spot size and the highest energy density are obtained at the surface of the material
with a low level of defocus (B). The high density promotes the removal of material
by vaporization rather than melting, and this occurs mainly in the higher layers of
the drilled part. On the other hand, the use of SPDPC reduces downward melt ma-
terial, due to the gradual heating of the drilled part prior to any significant material
removal. Both effects significantly help to reduce the recast layer thickness.

The pulse width (C) and all two-factor interactions involving it do not have a sig-
nificant effect (α = 0.05) on recast layer thickness.

10.6 Conclusion

This chapter has shown the strategic role that a systematic approach to planning for
a designed industrial experiment plays in technological process innovation.

The team approach is the real driving force of pre-experimental activities; it en-
ables engineering and statistical knowledge to be integrated, it catalyzes process
innovation, and, moreover, it allows a virtuous cycle of sequential learning to be
implemented.

The results obtained in this first screening experimental phase enabled the factors
that affect the quality of the holes made by drilling process, in terms of taper and
recast layer thickness, to be discerned. In particular, a new type of delivery pattern,
that had not previously been applied by AVIO, has been successfully adopted; the
antisynergic two-factor interactions between this new factor (delivery pattern) and
pressure (which affects the taper)/defocus (which affects the recast layer thickness),
are the true “discoveries” of this first experimental phase.

Moreover, technological interpretation of the results has allowed practitioners to
gain technological knowledge and to see the added value of a systematic approach
to planning for a designed industrial experiment.

Since the results obtained arise from a sound systematic approach, they enable
future experimental work focused on optimization and robustness to be planned.
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Chapter 11
Bayesian Reliability Inference on Innovated
Automotive Components

Maurizio Guida and Gianpaolo Pulcini

Abstract The need to assess the reliability of new automotive products in a timely
manner compels manufacturers to make use of early failure warranty data. However,
the narrow observation period and the moderate sizes of early warranty data sets re-
sult in reliability estimates that are not very accurate. Nevertheless, when a new
product is not revolutionary but instead the result of making improvements to its
predecessors, past failure data in conjunction with corporate technical knowledge
are a valuable source of information which can be usefully exploited in a Bayesian
estimation framework. To this end, a Bayesian procedure was developed which is
based on a rigorous formalization of both objective information provided by ob-
served failure data for past products as well as subjective information on the effec-
tiveness of design or process modifications introduced into new products to improve
their reliability. Information on modified working conditions is also formalized, and
the effect of requested cost reductions for outsourced components is considered.
The proposed procedure is then applied to a case study relating to a newly revised
component that is assembled in a car model that was already on the market, and its
ability to support reliability estimates and management decisions is addressed.

11.1 Introduction

Automotive manufacturers perform reliability analyses on their new products in or-
der to satisfy the reliability expectations of their customers and to control the costs
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of repairs and substitutions during the warranty period. Reliability analyses aim to
both estimate the reliability of the product and verify whether a given reliability tar-
get is attained for specified operating time t0 (e.g., the warranty period). If the target
is not achieved, then the main failure modes must be identified and design and/or
process modifications that are capable of removing the causes of failure must be
incorporated in a timely manner to improve the reliability of the component.

Of course, in order to minimize the undesirable consequences of a low reliability
level, the reliability of the component should be accurately estimated as soon as
possible.

Data sources used for reliability estimation often consist of failure data based
on field observations during the warranty period (“field failure warranty data”) that
provide the number and the type of repairs carried out at authorized dealerships.
However, when a timely estimate of product reliability is required, the available
field data consist only of early warranty claims related to vehicles produced during
the first few production months and observed over operating periods of less than t0.
Thus, narrow observation periods and moderate sample sizes generally produce re-
liability estimates that are not very accurate.

Nevertheless, many new automotive products are evolutionary, not revolutionary,
since they are the result of making design improvements to their predecessors (past
products). In such cases, information on past products is generally available, and
this information, when properly formalized, can be used in conjunction with field
data on new products in order to obtain more accurate reliability estimates.

Here, a Bayesian procedure is proposed which uses all the available informa-
tion to achieve this goal for evolutionary automotive components. This procedure
is based on a rigorous formalization of both the objective information provided by
observed failure data on past products, and the subjective information on the effec-
tiveness of design/process modifications introduced into new products to improve
their reliability (Guida and Pulcini 2002, 2006; Guida et al. 2008). In particular, the
effectiveness of each modification is measured by taking into account factors such
as:

• The designer’s uncertainty about the effectiveness of each planned improvement
• The environment and operating conditions of the new product, which may differ

from those of the past product
• Possible requested reductions in the costs of outside suppliers

The reliability characteristics of new products at the end of the warranty period t0
are evaluated via:

• A point and interval estimate of the reliability at t0
• A prediction of the number of failures that will be observed over the whole war-

ranty period in a future population of vehicles

Such reliability estimates are carried out in the following two phases:

• Before starting mass production (i.e., on the basis of past data and prior informa-
tion only), in order to provide the management with a tool for deciding whether
planned modifications are satisfactory or not
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• During the early commercialization phase of the product, by combining prior
information with field failure data observed early on in the warranty period

Finally, a case study relating to a newly revised component that is assembled in
a car model that was already on the market is analyzed to illustrate the ability of
the proposed procedure to support reliability estimation and decision making. The
application refers to some real data that have been slightly modified for the sake of
industrial confidentiality.

11.2 Prior Inference on the Failure Probability

11.2.1 Past Data

Information on the failure probability of the past product is generally provided
by the fraction of failures p̄0 observed in the population of past products during
the warranty period t0. By assigning each component failure to one single part i
(i = 1,2, . . .) of that component, past data consist of the fraction of failures p̄0,i ex-
perienced by each part i, and the failure probability of the whole component is given
by p̄0 = ∑i p̄0,i.

Note that this can be considered the worst case, where it is assumed that no
information on the vehicle age t or the number of kilometers x covered by the vehicle
up to the failure of the past component is available.

11.2.2 Formalizing Modification Effectiveness

During the development phase of a new product, an attempt is made to remove the
critical failure modes by making design or process modifications to its parts. When
effective, such modifications will cause a reduction in the failure probability p0,i of
the part i in the new product.

We assume that the designer is able to elicitate, for each part i, an expected limit
L0,i for the failure probability of that part; such a limit is achieved only when the
planned modification is fully effective and no new defect is introduced by this mod-
ification. This predicted value refers to the same environment and operating condi-
tions in which the past product was working.

When the modification of part i is not fully effective, the failure probability of
that part will lie within the interval bounded by the predicted limit L0,i and the past
failure probability p̄0,i. We then assume that the designer is also able to express his
“subjective” uncertainty about the ability to actually attain the planned improvement
by assigning a value to the “uncertainty factor” ρi (ρi = 1,2,3,4) on the basis of the
following criteria:
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1. Safe prediction (ρi = 1): the planned improvement is based on layout modifica-
tions, in which case the predicted limit will almost certainly be achieved

2. Highly likely prediction (ρi = 2): the planned modification is fairly complex,
but in similar cases it produced the expected improvement; the predicted limit
can then be achieved

3. Uncertain prediction (ρi = 3): the modification implies an innovative design
with the support of theoretical and/or experimental studies, such as failure mode
and effects analysis, fault tree analysis, . . .

4. Risky prediction (ρi = 4): the modification implies an innovative design that
lacks the support of theoretical and/or experimental studies

The failure probability p0,i of each part is then treated as a random variable that is
uniformly distributed in the interval (L0,i,U0,i), where the upper limit U0,i depends
on the observed failure probability p̄0,i of the past product, on the predicted lower
limit L0,i, and on the “uncertainty factor” ρi as follows:

U0,i = L0,i + ρi · (p̄0,i −L0,i)/4 . (11.1)

If no modification is planned for a given part i, then the failure probability p0,i of
such a part is assumed to be a constant equal to p̄0,i. As depicted in Fig. 11.1, for
given p̄0,i and L0,i values, the more risky the prediction, the higher the uncertainty
about the failure probability. The failure probability p0 of the whole new component
is the sum of the p0,i values: p0 = ∑i p0,i.

Because no further information on a possible dependence among the p0,i values
can be formulated by the analyst, the hypothesis that the p0,i values are independent
random variables is assumed. Under this maximum entropy hypothesis, the mean
and the standard deviation of p0 are given, respectively, by:

E[p0|pd] = ∑
i

(U0,i + L0,i)/2

σ [p0|pd] =
√

∑
i

(U0,i −L0,i)2/12 , (11.2)

where pd denotes the dependence of these moments on the failure data of the past
product (past data).

11.2.3 Effect of Working Conditions and Cost Reduction

In Sect. 11.2.2, the expert is assumed to be able to predict the failure probability
limits for the parts of the new component under the same environment and operat-
ing conditions, i.e., under the same working conditions that characterized the past
product.
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Fig. 11.1 Distribution of the
failure probability p0,i of part i
in the new product according
to the prediction uncertainty
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When the working conditions change, the failure probability generally changes,
and so the prediction of the failure probability for the new component needs to be
modified to take these changes into account.

The proposed approach accounts for the effect of modifications separately from
the effect of working conditions. This strategy was chosen because the same com-
ponent will generally be mounted on a number of car models that are each used in
different conditions, thus implying different working conditions for the same com-
ponent. By using arguments in Grahowski et al. (1976) and Vianello (1981), the
working conditions are classified into five different classes:

1. Greatly improved conditions
2. Slightly improved conditions
3. Unchanged conditions
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Table 11.1 Working factors for the mean and the standard deviation
of the failure probability of the new component

Conditions δW ηW

Greatly improved 0.5 0.8
Slightly improved 0.8 1.0
Unchanged 1.0 1.0
Slightly deleterious 1.2 2.0
Greatly deleterious 1.8 3.0

4. Slightly deleterious conditions
5. Greatly deleterious conditions

It is assumed that the designer is able to indicate the working conditions under which
the new product will actually operate.

The new working conditions are assumed to modify the mean and the standard
deviation in (11.2) of the failure probability p0 of the whole component through the
multiplicative “working factors” δW and ηW, so that:

E[p0|pd] = δW ·∑
i

(U0,i + L0,i)/2

σ [p0|pd] = ηW ·
√

∑
i

(U0,i −L0,i)2/12 , (11.3)

Guide values of such factors, which are the result of a large amount of experience
accumulated by Fiat Auto, are given in Table 11.1. Of course, accurate values for
such factors strictly depend on component type and on corporate experience. If the
component is produced by an outside supplier, one factor that can greatly influence
its failure probability is the cost reduction that is eventually requested of the sup-
plier. Experience suggests that any cost reduction inevitably implies an increase in
the failure probability, even when the contractual requirements for product reliabil-
ity remain unchanged. This is often because new failure modes arise that can also
involve parts that were previously free of failures.

We assume that both the predicted limit L0,i and the “working factors” δW and
ηW refer to unreduced costs (i.e., the designer quantifies the effectiveness of the
design/process modifications and the effects of different working conditions while
being unaware of the cost reduction), and that the effect of possible cost reductions
on the failure probability of the whole new component is formalized later, according
to the “size” of the requested reduction, classified as:

• A moderate cost reduction, e.g., ≤25%
• A large cost reduction, e.g., >25%

Cost reduction then acts on the failure probability p0 by modifying the mean and
the standard deviation (11.3) through the multiplicative “cost factors” δC and ηC,
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Table 11.2 Cost factors for the mean and the standard deviation
of the failure probability of the new component

Cost reduction δC ηC

Moderate reduction 1.5 1.5
Large reduction 2.0 2.0

respectively. Thus:

E[p0|pd] = δC ·δW ·∑
i

(U0,i + L0,i)/2

σ [p0|pd] = ηC ·ηW ·
√

∑
i

(U0,i −L0,i)2/12 , (11.4)

are the predicted mean and standard deviation of the failure probability of the new
product, taking into account planned design or process modifications, environmental
and operating conditions, and possible cost reductions. Table 11.2 gives plausible
values of “cost factors.” However, if the cost reduction is totally or partially due to
the removal of some parts in the new product, then the actual cost reduction must
be computed by deducting the cost of the removed parts from the cost of the whole
product before using Table 11.2.

11.2.4 Prior Inference on the Failure Probability
of the New Product

For mathematical tractability, prior information on the failure probability p0 of the
new product, given the warranty data for the past product and all subjective informa-
tion on modification effectiveness, working conditions and possible cost reductions,
is formalized through the beta density:

g(p0|pd) =
pa−1

0 (1− p0)b−1

B(a,b)
, 0 ≤ p0 ≤ 1 . (11.5)

The mean and standard deviation of this equal the predicted values in (11.4), so that
the beta parameters a and b are:

a =
E2[p0|pd](1−E[p0|pd])

σ2[p0|pd]
−E[p0|pd]

b = a

(
1

E[p0|pd]
−1

)
. (11.6)

Figure 11.2 compares the exact distribution of p0 = ∑i p0,i (obtained by using the
values in Table 11.3 and assuming no change in working conditions and no cost
reduction) to the beta density (11.5) with a mean and a variance that match the exact
values given by (11.2). The beta approximation appears to work well.
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Fig. 11.2 Exact ( ) and moment-matching beta (– – –) (prior) densities of the failure probability
p0 of a new product with no change in working conditions and no cost reduction

Table 11.3 Past product failure frequency and prior information
on design/process modifications in the case study

Part i p̄0,i L0,i ρi U0,i

XX12A 0.00237 0 4 0.00237
XX12B 0.00096 0.00096 0.00096
XY11A 0.00048 0 1 0.00012
XY11B 0.00237 0 4 0.00237
ZY09A 0.00048 0.00048 0.00048
ZZ22A 0.00285 0 3 0.00214
ZZ22B 0.00048 0 1 0.00012
ZZ22C 0.00144 0.00144 0.00144
ZZ22D 0.00426 0.00300 2 0.00363
XZ02A 0.00048 0 4 0.00048
XZ01B 0.00048 0.00048 0.00048

In Fig. 11.3, some prior densities (11.5) that correspond to different designer’s
judgments about the working conditions of the new product are depicted, assuming
no cost reductions and the following (arbitrary but plausible) values for the mean
and the standard deviation, respectively:

∑
i

(U0,i + L0,i)/2 = 0.01 and
√

∑
i

(U0,i −L0,i)2/12 = 0.002 . (11.7)

The prior density (11.5) provides a predictive estimate of the failure probability
of the new product at the end of the warranty period t0. In particular, a γ upper
credibility limit on p0, say pγ , can be obtained by numerically solving:∫ pγ

0
g(p0|pd)dp0 = IB(pγ ;a,b) = γ (11.8)

where IB(pγ ;a,b) is the incomplete beta function.
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Fig. 11.3 Prior densities of the failure probability p0, based on the judgements of different design-
ers about the working conditions of the new product

11.2.5 Prior Prediction of the Number of Failed Items

On the basis of the prior density (11.5), the number m(t0) of items in the future new-
product population that will fail during the warranty period can easily be predicted.
Let N be the planned size of the future population. The predictive likelihood of
m(t0), given p0, is then:

P[m(t0) = m|p0] =
(

N
m

)
pm

0 (1− p0)N−m , m = 0,1,2, . . . , (11.9)

and the prior predictive distribution of m(t0), given past data and technical informa-
tion, is obtained by integrating the product of the predicted likelihood (11.9) and the
prior density (11.5) over p0:

P[m(t0) = m|pd] =
∫ 1

0
P[m(t0) = m|p0]g(p0|pd)dp0

=
(

N
m

)
B(a + m,b + N−m)

B(a,b)
(11.10)

where the dependence on past data is implicitly conveyed by the beta parameters
a and b. Prior prediction limits on m(t0) can also be obtained from (11.10). For
example, a conservative γ upper limit for, say mγ(t0|pd), is the smallest value of mU

that satisfies the inequality:

mU

∑
m=0

P[m(t0) = m|pd] ≥ γ . (11.11)
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11.3 Field Failure Data for the New Product

While failure data for the past product refer to the warranty period t0, field failure
data for the new product refer to the homogeneous population of a given type of
vehicle that uses the upgraded component and is mostly observed during the early
part t (with t < t0) of the warranty period. This occurs because the reliability team
aims to estimate the failure probability of the new product in a timely manner, and so
it analyzes failure data for the new product as vehicles are sold and authorized deal-
erships carry out repairs. Field failure warranty data for the new product typically
consist of the number of vehicles sold in each month and the component failures
experienced by these vehicles. For each failure, the warranty database registers both
the calendar repair date and the approximate number of kilometers x covered by the
vehicle up to the failure. In fact, for most components, “life” is measured better by
the number x of covered kilometers than by the calendar time t.

Failure data in a warranty database are generally grouped into bands of dis-
tance traveled (“mileage”) with a convenient band width (e.g., 3000 km), because
the recorded mileage of the vehicle up to the occurrence of component failure is
often inaccurate. In fact, when the failure is not catastrophic, the vehicle is often
brought to the authorized dealership some time after the failure has occurred. In
addition, a sound analysis of the warranty data requires that the number of vehicles
with components that have not failed should be distributed in the mileage bands, on
the basis of both the operating time t of each vehicle and ad hoc surveys on vehicle
mileage distribution (Campean et al. 2001; Lu 1998; Rai and Singh 2005).

Because a vehicle is a repairable system, the warranty data may include multiple
claims for the same vehicle relating to a given component. However, multiple fail-
ures usually represent a very small fraction of the failures observed in the warranty
period; hence, we assume that no multiple failures are present, and that the effect of
such an assumption on the analysis is negligible.

Warranty data for the new product are classified in terms of:

• The number mk of failures in the kth mileage band (xk−1,xk) (k = 1,2, . . . , l)
• The number ck of vehicles suspended in the kth mileage band, i.e., the number of

vehicles in the population for which the component has not failed and that have
covered a number of kilometers within the band (xk−1,xk) during their operating
time

Hence, by assuming that the mileage covered by suspended vehicles coincides with
the midpoint of the band, say yk = (xk−1 + xk)/2 (see, for example, Attardi et al.
2005), the likelihood function for the new data, say nd, is given by:

L(nd|R) ∝
l

∏
k=1

{[R(xk−1)−R(xk)]mk R(yk)ck}R(xl)cl+1 (11.12)

where R = (R(x1), . . . ,R(xl),R(y1), . . . ,R(yl)) is the vector of the reliability of the
new product at ages x1, . . . ,xl ,y1, . . . ,yl , x0 = 0, and cl+1 denotes the number of
vehicles surviving beyond the last mileage band.
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Before using these data to estimate the failure probability p0 of the new product
up to t0, we must consider two issues.

First, the failure probability p0 is not exactly the component unreliability, be-
cause the component life is measured by the mileage covered and items installed in
different vehicles accumulate different mileages up to t0. More correctly, the fail-
ure probability p0 can be viewed as an “average unreliability” in t0 (Lu and Rudy
2000) when averaging the unreliability function F(x) with respect to the distribution
f (x|t0) of the kilometers covered in t0 over the population of the owners:

p0 =
∫ ∞

0
F(x) f (x|t0)dx . (11.13)

However, the average unreliability is well approximated by the unreliability eval-
uated at the average mileage x̄0 ≡ E[x|t0] covered by the vehicles during t0 (Lu
1998):

p0 � F(x̄0) ≡ F0 . (11.14)

The second consideration is that a functional form must be chosen for the reliabil-
ity R(x), because the new product data refer to different mileages. For a high-quality
production process, infant mortality is negligible and this ensures that deterioration
failures constitute most of the failures observed over the whole warranty period. In
this case, the two-parameter Weibull function:

R(x) = exp[−(x/α)β ] , α > 0; β > 1 (11.15)

is a suitable choice (Guida and Pulcini 2002). From (11.14) and (11.15), we note
that αβ = −x̄β

0 / ln(1−F0). Then, substituting R(z) = (1−F0)(z/x̄0)β
into (11.12),

the likelihood function is reparameterized in terms of β and F0 ≡ F(x̄0):

L(nd|F0,β ) ∝
l

∏
k=1

[(1−F0)(x j−1/x̄0)β − (1−F0)(x j/x̄0)β
]mk(1−F0)X(β ) , (11.16)

where:

X(β ) =
l

∑
k=1

ck(yk/x̄0)β + cl+1(xl/x̄0)β .

The two-parameter Weibull assumption can be checked by performing a graphical
analysis. A nonparametric estimate of the reliability of the new product at the upper
bound of each mileage band is given by the actuarial recursive formula (Nelson
1982):

R̃(xk) = R̃(xk−1)
[

1− mk

rk −0.5ck

]
(11.17)

where the term −0.5ck adjusts for the censored units (which cover about half of the
mileage band), R̃(x0) ≡ 1, and rk = ∑l

i=k (mi + ci)+ cl+1 (with k = 1, . . . , l) is the
number of vehicles at risk at the beginning of band k. The estimated reliability values
can then be plotted on Weibull paper against the upper bound xk of each mileage
band. If the model is adequate, the plot should be reasonably close to a straight line.
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11.4 Posterior Inference on the New Product

11.4.1 Posterior Inference on the Reliability

The likelihood function (11.16) of the new data is now parameterized in terms
of the unreliability F0 and the shape parameter β , and hence a joint prior density
g(F0,β |pd) for F0 and β , given the data on past products, must be formalized. Un-
der the assumption that F0 and β are prior independent random variables, the den-
sity g(F0,β |pd) is the product of the prior density for F0 and the prior density for β .
Within the approximation (11.14), the prior density (11.5) for p0 can be immediately
converted into the prior information for F0, such that:

g(F0|pd) =
Fa−1

0 (1−F0)b−1

B(a,b)
, 0 ≤ F0 ≤ 1 . (11.18)

When formulating the “subjective” prior density for the Weibull parameter β ,
technical knowledge about the failure-causing mechanism can be usefully exploited.
In fact, the assumption of the Weibull model relies on deterioration being the domi-
nant failure mechanism, and this implies β > 1. Moreover, when a Weibull analysis
based on past data is available, the estimated β value can be used as a guide to setting
at least an interval (β1,β2) of plausible values for β . With no further information
available, uniform density over this interval appears to be a plausible choice:

g(β ) =
1

β2 −β1
, β1 ≤ β ≤ β2 . (11.19)

By combining the likelihood function (11.16) with the product of (11.18) by (11.19),
the joint posterior density for F0 and β , given all data ad (i.e., the warranty data for
the past product plus the early failure data for the new product), follows:

π(F0,β |ad) =
1
D

l

∏
k=1

[(1−F0)(xk−1/x̄0)β − (1−F0)(xk/x̄0)β
]mk (1−F0)X(β )+b−1Fa−1

0 ,

(11.20)
where the dependence on past data is implicitly conveyed by the beta parameters a
and b (see relations (11.6)). The normalizing constant D is:

D =
∫ 1

0

∫ β2

β1

l

∏
k=1

[
(1−F0)(xk−1/x̄0)β −(1−F0)(xk/x̄0)β

]mk
(1−F0)X(β )+b−1Fa−1

0 dβ dF0 .

(11.21)
Thus, the marginal posterior density π(F0|ad) for the unreliability of the new prod-
uct at the average mileage x̄0 is obtained by (numerically) integrating the joint den-
sity (11.20) over β :

π(F0|ad) =
∫ β2

β1

π(F0,β |ad)dβ . (11.22)
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By considering the approximation (11.14) between p0 and F0, the posterior den-
sity (11.22) can also be viewed as the posterior density π(p0|ad) for the failure
probability p0 of the new product during the warranty period t0, given the warranty
data for the past product, the judgements of the designers, and the early failure data
for the new product.

A γ probability limit on p0, say pγ , can be obtained from the posterior density
(11.22) by iteratively solving:

∫ pγ

0
π(p0|ad)dp0 = γ . (11.23)

11.4.2 Posterior Prediction of the Number of Failed Items

A posterior prediction of the number m(t0) of new-product items that will fail during
the warranty period among the future population of N vehicles can also be made. By
integrating the product of the predicted likelihood (11.9) and the posterior density
(11.22), the posterior predictive distribution of m(t0), given all data ad, results in:

P[m(t0) = m|ad] =
∫ 1

0
P[m(t0) = m|p0]π(p0|ad)dp0 . (11.24)

From (11.24), a conservative γ posterior prediction limit on m(t0), say mγ(t0|ad),
can also be obtained.

11.5 A Case Study

The case study described here involves predicting the reliability of a newly revised
simple subsystem assembled in a car model that was already on the market. All data
have been slightly modified for the sake of industrial confidentiality.

The automotive manufacturer intends to estimate the probability that the up-
graded version of the outsourced component C will fail up to a warranty period
of t0 = 3 years. The upgraded component will be mounted on different car models
that will presumably operate under different working conditions.

Estimates of the failure probability p̄0,i of each part i (i = 1, . . . ,11) of the orig-
inal (past) version of the component C, defined as the fraction of failures that oc-
curred during the warranty period over the population of the past component, are
given in Table 11.3. The failure frequency of the past component as a whole, say
p̄0 = 0.01665, is judged to be too high, and so design and process modifications are
planned for some parts of the past component in an attempt to reduce the failure
frequency of the upgraded version.

The designer indicates a lower limit L0,i for the failure probability of each mod-
ified part, taking into account the planned modifications; if a part is not modified,
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then L0,i is set equal to p̄0,i. These limits are predicted, for the moment, with the
designer being unaware of any possible changes in the working conditions of the
upgraded component and/or potential requests to reduce supplier costs. Then, for
each modified part, the designer quantifies his uncertainty over the ability to actually
attain the planned improvement by assigning a value to the “uncertainty factor” ρi.
On the basis of this information, an upper limit U0,i for the failure probability of
each part of the upgraded component is evaluated accordingly to (11.1). The pre-
dicted mean and standard deviation of the upgraded component, under unchanged
conditions, are then:

E[p0|pd] = ∑
i

(U0,i + L0,i)/2 = 0.010474

σ [p0|pd] =
√

∑
i

(U0,i −L0,i)2/12 = 0.001171 (11.25)

Table 11.3 provides all of the information formulated by the designer regarding the
expected effectiveness of the planned modifications.

For a given car model M that will include the upgraded componentC, the working
conditions are known to be slightly more deleterious than those associated with the
past component, so the “working factors” δW and ηW are set equal to δW = 1.2 and
ηW = 2.0 (see Table 11.1).

Moreover, the automotive manufacturer has requested a moderate cost reduc-
tion for the component C from the supplier, so the “cost factors” are δC = 1.5 and
ηC = 1.5 (as suggested in Table 11.2). Thus, from (11.4), the predicted mean and
standard deviation of the failure probability p0 of the new product included in car
model M are, respectively:

E[p0|pd] = 0.01885 and σ [p0|pd] = 0.003513 . (11.26)

Once the prior mean and standard deviation of p0 have been predicted, the parame-
ters of the beta prior density (11.5) on p0 are found to be a = 28.232 and b = 1469.2.
Then, from (11.9), the γ = 0.90 upper limit on p0 is p0.90 = 0.2347.

On the basis of the informative prior density for p0, the 0.05 and 0.95 conser-
vative limits for the number m(t0) of items of the upgraded component that will
fail during the warranty period in a future population of N = 200,000 vehicles are
m0.05(t0|pd) = 2688 and m0.95(t0|pd) = 5000, respectively (see also the first line of
Table 11.4).

Table 11.4 Prior and posterior inference on the failure probability and the number of future failures
of the new product

E[p0|•] σ [p0|•] p0.90 m0.05(t0|•) m0.95(t0|•)
Informative prior 0.01885 0.003513 0.02347 2688 5000
Informative posterior 0.01931 0.003245 0.02348 2839 4976
Vague posterior 0.02117 0.009047 0.03305 1935 7643
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The predicted values of p0 and m(t0) allow the management to decide that, con-
sidering both the more deleterious working conditions and the moderate cost re-
duction, the planned modifications are satisfactory and no further improvements are
needed before starting mass production.

One year after mass production of the upgraded component has begun, the relia-
bility team updates the reliability estimate on the basis of early field failure warranty
data. These data refer to 18,000 vehicles with the upgraded version of the compo-
nent C that were sold during the last 12 months.

A total of 18 failures occurred. On the basis of a log-normal distribution for the
vehicle mileage (with a mean equal to 15,000 km per year and a standard deviation
of 7000 km per year) and for the age of the vehicle, the number of vehicles for which
the component has not failed is distributed in l = 9 mileage bands each with a width
of 3000 km, as shown in Table 11.5. Likewise, the 18 failures are assigned to the
mileage bands. Table 11.6 gives, for each mileage band, the number mk of failures,
the number ck of suspended vehicles, and the number rk of vehicles at risk.

By using the recursive formula (11.17), a nonparametric estimate for the relia-
bility of the new component is obtained and plotted on Weibull paper. As depicted
in Fig. 11.4, the two-parameter Weibull model seems to adequately fit the observed
failure data, and the absence of infant mortality appears plausible.

The beta prior density for p0 (with a = 28.232 and b = 1469.2) is then used
in conjunction with the uniform prior density (11.19) for β over the interval (1,5).
Note that this choice does not make use of the β estimate available from the Weibull
plot. Thus, the “informative” marginal posterior density for p0 is obtained from
(11.20), and the mean and standard deviation for this, respectively, are:

E[p0|ad] = 0.01921 and σ [p0|ad] = 0.003245 . (11.27)

From (11.23), the 0.90 posterior probability limit for p0 results in p0.90 =
0.02348.

Table 11.5 Number of vehicles for which the component has not failed, distributed into mileage
bands (in km)

Mileage band Vehicle age [in months]
xk−1 xk 1 2 3 4 5 6 7 8 9 10 11 12

0 3000 619 1175 796 510 205 59 21 7 3 1 1 0
3000 6000 9 379 1027 1604 1264 632 361 190 125 69 44 25
6000 9000 0 21 157 567 780 595 486 342 281 188 144 89
9000 12,000 0 1 24 136 283 300 320 282 284 235 216 165

12,000 15,000 0 0 4 31 94 123 162 168 196 186 192 164
15,000 18,000 0 0 1 10 32 52 74 86 113 119 133 124
18,000 21,000 0 0 0 2 9 17 34 44 63 71 85 86
21,000 24,000 0 0 0 1 3 7 13 20 32 42 53 56
24,000 27,000 0 0 0 0 1 2 6 9 16 22 30 35
27,000 ∞ 0 0 0 0 1 2 4 8 16 23 37 46

Total 628 1576 2009 2861 2672 1789 1481 1156 1129 956 935 790
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Table 11.6 Field warranty data for the new component

Mileage band No. of failures No. of suspended vehicles No. of vehicles at risk

xk−1 xk mk ck rk

0 3000 1 3397 18,000
3000 6000 5 5729 14,602
6000 9000 2 3650 8868
9000 12,000 3 2246 5216

12,000 15,000 1 1320 2967
15,000 18,000 3 744 1646
18,000 21,000 2 411 899
21,000 24,000 0 227 486
24,000 27,000 1 121 259
27,000 ∞ 0 137 137
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Fig. 11.4 Nonparametric estimate of the reliability of the new product

On the basis of the “informative” marginal posterior density for p0, the 0.05 and
0.95 posterior limits for the number m(t0) of failed items among the future popula-
tion of 200,000 vehicles are, respectively, m0.05(t0|ad) = 2839 and m0.95(t0|ad) =
4976 (see also the second line of Table 11.4).

By comparing prior and posterior results, we note that the use of early failure
warranty data for the new product in conjunction with prior information on β yields:

1. A slight reduction in the uncertainty over the failure probability p0

2. A confirmation of the value of the 0.90 upper limit on p0

3. A reduction in the uncertainty over the number of failed items among the future
population of upgraded components.

For comparative purposes, the reliability characteristics of the upgraded component
are also estimated under the assumption that prior information on the failure prob-
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ability of the new product cannot be elicited (i.e., no past data are available), and
only the uniform prior density (11.19) of β over the interval (1,5) is used.

The last line of Table 11.4 provides the inferential results obtained by using the
resulting vague prior gV (F0,β ) (see the Appendix). Upon comparing the “informa-
tive” and “vague” estimation results, it appears that the use of the informative prior
density of p0 sensibly reduces the uncertainty over the reliability of the new prod-
uct, both in terms of the failure probability (the standard deviation of p0 is reduced
by a factor of three), and in terms of the number of failed items among the future
population of vehicles (the width of the 0.90 predictive interval on m(t0) is halved).

The gain provided by the technological information on p0 is clearly shown by
Fig. 11.5, where the “informative” and “vague” posterior densities of p0 are com-
pared.

11.6 Conclusions

The proposed procedure has been found to be suitable for making inferences on the
reliability of innovated automotive components when technical knowledge about
the design modifications is actually available or the designers and technologists can
be asked about qualitative factors.

This methodology is very useful for exploiting reliability predictions in all the
main phases of the product development process: from the very beginning, when
the product and process design choices must be validated, to much later on, when
commercialization has begun and the actual reliability as perceived by the customers
must be certified.
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Moreover, the reliability estimates, which are initially based on very limited fail-
ure data for the innovated product, can easily be updated as new field data become
available to the reliability team, without the need to wait for the warranty period of
each vehicle to elapse.

Appendix

The noninformative prior of the Weibull parameter α is gN(α) ∝ 1/α (Evans and
Nigm 1980). By changing variables α = x0/[− ln(1−F0)1/β ], the noninformative
prior density of F0 ≡ F(x̄0) is:

gN(F0) ∝ − 1
β (1−F0) ln(1−F0)

, 0 ≤ F0 ≤ 1 . (11.28)

By using density (11.28) as the prior of the failure probability p0 together with the
uniform prior (11.19) of β , the vague joint prior density follows (assuming that p0

and β are prior independent random variables):

gV (F0,β ) = gN(F0) ·g(β ) ∝
1

β (1−F0) ln(1−F0)
, 0 ≤ F0 ≤ 1 , β1 ≤ β ≤ β2 .

(11.29)
The marginal posterior density of p0, given the new data nd, results in:

πV (F0|ad) =
1

DV

∫ β2

β1

∏l
k=1 [(1−F0)(xk−1/x̄0)β − (1−F0)(xk/x̄0)β

]mk

β (1−F0)1−X(β ) ln(1−F0)
dβ , (11.30)

where the normalizing constant DV is:

DV =
∫ 1

0

∫ β2

β1

∏l
k=1 [(1−F0)(xk−1/x̄0)β − (1−F0)(xk/x̄0)β

]mk

β (1−F0)1−X(β ) ln(1−F0)
dβ dF0 . (11.31)
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Chapter 12
Stochastic Processes for Modeling the Wear
of Marine Engine Cylinder Liners

Massimiliano Giorgio, Maurizio Guida, and Gianpaolo Pulcini

Abstract In this chapter, a stochastic process-based approach is adopted to formu-
late the reliability function for cylinder liners of diesel engines used for marine
propulsion, which fail when their wear exceeds a specified limit. In order to de-
scribe the wear process, three different stochastic models are proposed. The first
two are based on age-dependent processes, namely a shock model with independent
nonstationary increments and a gamma process. The third model is based on a state-
dependent homogeneous Markov chain. All of these models have been applied to
the analysis of a real case study relating to the cylinder liners of some diesel engines
used in ships of the Grimaldi Group.

12.1 Introduction

The standard (statistical) approach to reliability modeling consists of selecting
a model from a limited list of candidate parametric models and determining its
unknown parameters. The candidates are usually prepacked black-box models. The
model is selected via goodness of fit tests and/or based on considerations concerning
the ability of the model to capture the characteristics of the aging of the system under
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study. The values of the unknown parameters are determined using well-established
estimation procedures. Both of these tasks are usually performed on the basis of
failure data only.

This approach is not always fruitful or, at least, it is not always the most effective
one. The most frequent reasons for this inadequacy are a scarcity of failure data, and
the fact that the standard approach does not allow the direct use of other information
and experimental data that are often available in practice. In addition, depending on
the context, the reliability model often needs to have specific features that standard
black-box models do not possess.

In these cases it may be convenient to adopt alternative solutions which can cap-
italize on all other available pieces of information to allow the formulation of ad
hoc (customized) models. Over the last few decades, increasing effort has been de-
voted to the formulation of reliability models obtained by stochastic modeling of the
failure-causing mechanism and/or the dependence of the system lifetime on endoge-
nous and/or exogenous factors (see Singpurwalla 1995 for an excellent overview of
this kind of model).

In this chapter, a stochastic process-based approach is adopted in order to for-
mulate the reliability function of cylinder liners of diesel engines used for marine
propulsion, which are wearing components that fail when the wear level reaches
a specified limit.

This reliability function is formulated through the following two-step approach:

• Describe the wear process via a monotonically increasing stochastic process
• Obtain the reliability function from the distribution of the first (and sole) passage

time to the wear limit

Three models are discussed in what follows. These models differ in the stochastic
process adopted in order to describe the wear process. The first two are based on
age-dependent processes, namely a shock model with independent nonstationary
increments and a gamma process, respectively. The third model is based on a state-
dependent homogeneous Markov chain.

None of these models represent a fully precise description of the failure-causing
mechanism, however. Indeed, this mechanism is not completely known even to ex-
perts of diesel engines. In addition, the available experimental data do not enable
one to perform the empirical calibration and validation of models based on highly
complex hypotheses, since only measures of the wear level at the moments at which
periodic inspections are performed are available. Thus, any model of practical util-
ity must possess a simple mathematical structure, and must be based on a few, clear
hypotheses, with the aim of capturing the leading features of the underlying wear
mechanism. In accordance with this principle, the first model uses a nonhomoge-
neous Poisson shock arrival process and treats the effects of traumatic events as be-
ing unknown but deterministic. Thus, this model accounts for the stochastic nature
of shock arrivals but does not account for the randomness of shock effects. The sec-
ond model describes the wear process through a gamma process. The gamma pro-
cess can be considered a shock model where the shocks occur randomly in a Pois-
son process; this model also has gamma-distributed shock effects, where the Poisson
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rate tends to infinity while the sizes of the effects tend to zero in proportion (Lawless
et al. 2004). Thus, this model puts the focus directly on the distribution of cumu-
lative wear increments, but does not explicitly account for the rate of occurrence
of shocks. The third model describes the wear process through a state-dependent
homogeneous Markov chain. Thus, it assumes that the wear growth in a future time
interval depends on the present state of the liner and that, given the state, this growth
is independent of the age of the liner.

All of the abovementioned models are simple and present a small number of pa-
rameters. Moreover, all of them treat the dependence of the residual life of a liner on
its wear status in an explicit way. These features produce the following advantages:

• They allow one to simply implement all of the necessary inferential procedures
on the basis of data that are actually available in practice, i.e., wear data. In order
to avoid costly engine failures, the wear status of a liner is periodically observed
during specific inspections, and a liner is replaced when the measured wear is
close to a limit set beforehand. As a collateral effect, this effective condition-
based maintenance strategy provides a large amount of wear data but strongly
limits the size of lifetime samples.

• They enable one to easily perform wear-based predictions of the residual life of
a liner. This feature becomes very useful when condition-based maintenance is
of concern. In fact, the crucial issue when developing this maintenance strategy
is to identify the replacement time that enables one to avoid both operational
failures and unnecessary or premature preventive actions.

All of the proposed models have been applied to the analysis of a real wear data set
relating to cylinder liners of diesel engines used by ships of the Grimaldi Group.
Model parameters were estimated by ad hoc estimation procedures. Moreover, the
accumulation of wear after pre-fixed time intervals was predicted given the present
age or status of the liner. Finally, the residual life distribution function and the mean
residual life were estimated. A comparison of the results provided by the three pro-
posed models closes the chapter.

12.2 The Case Study: System Description, Technological
Information and Experimental Data

One of the main factors in the failure of heavy-duty diesel engines used for marine
propulsion is the cylinder liner wear (see, e.g., Kodali et al. 2000; Li et al. 2002;
Gadow et al. 2003). In such engines, wear usually occurs in the top region of the
liner (the top death center, TDC), where the maximum mechanical and thermal load
occurs (Li et al. 2002). Many studies agree that in this region:

• Wear is mainly due to the presence on the piston surface of abrasive particles
produced by the combustion of heavy fuels and oil degradation (soot)
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Table 12.1 Wear data for 30 cylinder liners (t [hours]; w [mm])

i ni ti,1 wi,1 ti,2 wi,2 ti,3 wi,3 ti,4 wi,4

1 3 11,300 0.90 14,680 1.30 31,270 2.85
2 2 11,360 0.80 17,200 1.35
3 2 11,300 1.50 21,970 2.00
4 2 12,300 1.00 16,300 1.35
5 3 14,810 1.90 18,700 2.25 28,000 2.75
6 3 9700 1.10 19,710 2.60 30,450 3.00
7 3 10,000 1.20 30,450 2.75 37,310 3.05
8 3 6860 0.50 17,200 1.45 24,710 2.15
9 3 2040 0.40 12,580 2.00 16,620 2.35

10 3 7540 0.50 8840 1.10 9770 1.15
11 3 8510 0.80 14,930 1.45 21,560 1.90
12 4 18,320 2.20 25,310 3.00 37,310 3.70 45,000 3.95
13 3 10,000 2.10 16,620 2.75 30,000 3.60
14 2 9350 0.85
15 1 13,200 2.00
16 1 7700 1.05
17 1 7700 1.60
18 1 8250 0.90
19 1 3900 1.15
20 1 7700 1.20
21 1 9096 0.50
22 1 19,800 1.60
23 1 10,450 0.40
24 1 12,100 1.00
25 3 12,000 1.95 27,300 2.70 49,500 3.15
26 1 8800 1.40
27 1 2200 0.40
28 2 33,000 2.90 38,500 3.25
29 2 8800 0.50 27,500 2.15
30 1 8250 0.70

• Wear is also due to the action of corrosive agents, identified as sulfuric acid,
nitrous/nitric acids and water

As a consequence, according to the experts, the wear at a given age t can be viewed
as a nondecreasing cumulative damage process.

Wear data for this case study (see Table 12.1) refer to 30 cylinder liners of diesel
engines used in ships of the Grimaldi Group.

The wear was measured during periodic inspections by an ad hoc measurement
instrument with a sensitivity of 0.05 mm. Thus, the data consist of a number ni

(i = 1, . . . ,30) of inspections performed on each liner, the age ti, j ( j = 1, . . . ,ni) [in
operating hours] of the liner at the moment of inspection, and the accumulated wear
W (ti, j) [in mm] observed during each inspection.

Figure 12.1 shows the wear paths of the 30 liners under study (the measured
points of each liner have been linearly interpolated in this graphical presentation).
The behavior of the wear paths is in accordance with results reported in the lit-
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Fig. 12.1 Observed wear processes

erature. In fact, the observed (interpolated) processes are closely interwoven, thus
indicating the nondeterministic nature of the wear process. Moreover, as is usually
the case for these kinds of paths (see, for example, Gertsbakh et al. 1969), it is
possible to discern an early phase (accommodation period) where the rate of wear
decreases noticeably and a subsequent zone with a quasi-constant rate.

We note that, in the present application, the accommodation phase occupies al-
most the entire observed portion of each liner’s lifetime, since warranty clauses
specify that the liner should be substituted before it accumulates a rather “low”
wear level (4 mm), in order to avoid catastrophic and very expensive failures.

12.3 Formulating the Models

12.3.1 Model 1: Shock Model with a Deterministic
and Constant Effect

The wear process is described by the following shock model (Esary and Marshall
1973):

W (t) =
N(t)

∑
i=1

Yi , (12.1)
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where the shock effect, Yi, is assumed to be unknown, deterministic and constant:

P[Yi = c] = 1 , ∀i = 1,2, . . . ,N(t) , (12.2)

and {N(t);t ≥ 0} is a nonhomogeneous Poisson process:

P

[
k⋂

i=1

[N(ui)−N(hi) = ni]

]
=

k

∏
i=1

P[N(ui)−N(hi) = ni]

=
k

∏
i=1

[∫ ui
hi

z(t)dt
]ni

ni!
exp

[
−
∫ ui

hi

z(t)dt

]
, hi < ui ≤ hi+1 (12.3)

The resulting wear process is a nondecreasing independent incremental process. The
increments are nonstationary, however, unless z(t) is constant. The mean function
is:

E[W (t)] ≡ E[cN(t)] = c
∫ t

0
z(u)dz , (12.4)

and this process can account for the presence of a trend. The variance function is:

Var[W (t)] ≡ Var[cN(t)] = c2
∫ t

0
z(u)dz , (12.5)

which is a nondecreasing function. Since:

P [W (t) = ck] = P [N(t) = k] =

[∫ t
0 z(u)du

]k

k!
exp

[
−
∫ t

0
z(u)du

]
, (12.6)

the reliability function can be expressed as:

R(t) ≡ P[T > t] = P[W (t) < wmax] = P[N(t) < kmax]

=
kmax−1

∑
k=0

[∫ t
0 z(u)du

]k

k!
exp

[
−
∫ t

0
z(u)du

]
(12.7)

where T is the liner lifetime, wmax is the pre-fixed wear limit, and kmax = int[wmax/c]
is the smallest integer greater than or equal to wmax/c.

The residual life distribution, given the liner’s status at time t, results in:

P[T − t ≤ τ|W (t) = wt ] = P[W (t + τ) ≥ wmax|W (t) = wt ]

=
∞

∑
k=Δkmax

[∫ t+τ
t z(u)du

]k

k!
· exp

[
−
∫ t+τ

t
z(u)du

]
; τ > 0 , wt < wmax (12.8)

where Δkmax = int[(wmax −wt)/c].
This model was used to describe the wear process of the abovementioned cylin-

der liners on the basis of a reduced data set in Bocchetti et al. (2006) and Giorgio
et al. (2007) by assuming both a log-linear mean function:

M(t) ≡ E[N(t)] = (a/b)[exp(bt)−1] , (12.9)
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and a power-law (PL) mean function:

M (t) ≡ E[N(t)] =
( t

a

)b
. (12.10)

Note that the mean function (12.9) is bounded. In contrast, function (12.10) is un-
bounded. For many degradation processes the use of a bounded mean function may
be appropriate. Nevertheless, the use of a bounded mean function can produce esti-
mates for the residual life that are too optimistic, especially when very old compo-
nents that are hardly degraded are of interest.

This issue is not discussed any further in this chapter. Thus, in the following, only
the more conservative model (12.10) is considered, termed the “PL shock model”
here.

The mean and variance functions for the PL shock model are:

E[W (t)] = c
( t

a

)b
and Var[W (t)] = c2

( t
a

)b
. (12.11)

12.3.2 Model 2: Gamma Wear Process

The gamma wear process (Cinlar 1980; Dufresne et al. 1991; Van Noortwijk et al.
2004) is formulated as follows:

P

[
k⋂

i=1

[W (ui)−W(hi) > wi]

]
=

k

∏
i=1

P[W (ui)−W(hi) > wi]

=
k

∏
i=1

∞∫
wi

wν(ui)−ν(hi)−1

Γ [ν(ui)−ν(hi)]ην(ui)−ν(hi)
exp(−w/η)dw , hi < ui ≤ hi+1 , (12.12)

where ν(t) is a nondecreasing function defined for t ≥ 0 with ν(0) = 0 and η > 0.
Thus, the gamma process has gamma-distributed independent increments. These

increments are nonstationary, unless ν(t) is a linear function of t. The mean function
of the gamma wear process is:

E[W (t)] = ην(t) , (12.13)

and it can be nonlinear; thus, this model can account for the presence of a trend.
The variance:

Var[W (t)] = η2ν(t) , (12.14)

is a nondecreasing function of t. The probability density function of W (t) is:

fW (t)(w) =
wν(t)−1

Γ [ν(t)]ην(t) exp(−w/η) , (12.15)
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and the reliability function can be expressed as:

R(t) ≡ P[T > t] = P[W (t) < wmax] =
wmax∫
0

wν(t)−1

Γ [ν(t)]ην(t) exp(−w/η)dw . (12.16)

The residual life distribution, given the status at time t, results in:

P[T − t ≤ τ|W (t) = wt ] = P[W (t + τ) ≥ wmax|W (t) = wt ]

=
∞∫

wmax−wt

wν(t+τ)−ν(t)−1

Γ [ν(t + τ)−ν(t)]ην(t+τ)−ν(t) exp(−w/η)dw , τ > 0; wt < wmax .

(12.17)

A typical choice for ν(t) is the power law function:

ν (t) =
( t

α

)β
, (12.18)

and the resulting mean and variance functions are, respectively:

E[W (t)] = η
( t

α

)β
and Var[W (t)] = η2

( t
α

)β
. (12.19)

This specific gamma process has been widely applied. As an example, in Elling-
wood et al. (1993) the values β = 1, β = 2 and β = 0.5 were used to describe
the degradation of concrete due to the corrosion of reinforcement, sulfate attack and
diffusion-controlled aging, respectively. In Cinlar et al. (1977), β = 1/8 was adopted
to model creep propagation. Finally, in Hoffmans et al. (1995) and Van Noortwijk
et al. (1999), β = 0.4 was used to model degradation due to erosion (expected scour-
hole depth).

12.3.3 Model 3: State-Dependent Markov Wear Process

This model assumes that W (t) is a homogeneous, monotonically increasing Markov
process. Thus, the wear increment dW (t) = W (t + dt)−W(t) in the interval (t,t +
dt) depends on the wear level at time t, W (t), while, due to homogeneity, and given
W (t), it does not depend on t. In addition, the expected value of dW (t) is assumed
to decrease exponentially with W (t):

E[dW(t)] ∝ exp[−BW (t)] . (12.20)

Then a discrete-time approximation is made by dividing the time axis into contigu-
ous and equally spaced intervals of length h. Under such an approximation, W (tm)
denotes the wear level at time tm = m ·h, with W (0) being the initial state at t0 = 0.
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Further, a discrete-state approximation is made by considering a nondecreasing
Markov chain with countable state space (0,Δw,2Δw, . . .), where Δw is a constant
that represents the sensitivity of the measuring instrument (namely, Δw = 0.05mm).

Using such approximations, the probability that the wear level at the time tm =
m ·h is equal to W (tm) = rm ·Δw, given that the wear level W (tm−1) = rm−1 ·Δw at
the time tm−1 = (m−1) ·h is assumed to be a Poisson probability:

Prm−1,rm ≡ P[W (tm) = rm ·Δw|W (tm−1) = rm−1 ·Δw]

=

⎧⎨
⎩

[Aexp(−Brm−1Δw)]rm−rm−1

(rm − rm−1)!
exp[−Aexp(−Brm−1Δw)] , rm ≥ rm−1

0 , rm < rm−1

,

(12.21)

where A ·exp(−B ·rm−1 ·Δw)= A ·exp[−B ·W(tm−1)] is the expected wear increment
in the elementary interval [(m−1) ·h,m ·h], given the state W (tm−1) at the time tm−1.
This Markov process will henceforth be called the Poisson Markov process.

Thus, the probability that the wear level at the time tm = m ·h is equal to W (tm) =
rm ·Δw, given the initial state W (0) = r0 ·Δw at the time t0 = 0, can be calculated as:

P [W (tm) = rm ·Δw |W (0) = r0 ·Δw ] = [Pm]r0,rm , (12.22)

where P is the one-step transition matrix of the Markov chain, whose elements are
given by Eq. 12.21.

The reliability function can be expressed as:

P [W (tm) < rmax ·Δw |W (0) = r0 ·Δw ] =
rmax−1

∑
r=0

[Pm]r0,r , (12.23)

where rmax = wmax/Δw (note that, since Δw is the measuring instrument sensitivity,
both rmax and any ri = W (ti)/Δw are integers).

Finally, the residual life distribution, given the wear status W (ti) = ri ·Δw, at time
ti = i ·h, results in:

P[T − ti ≤ τ|W (ti) = ri ·wi]

= P[W (ti + τ) ≥ wmax|W (ti) = ri ·wi] =
∞

∑
r=Δrmax

[Pm]r0,r , τ > 0 , wi < wmax ,

(12.24)

where Δrmax = rmax − ri.
Given the initial state W (0) = r0 ·Δw, the mean and variance of W (ti) are, re-

spectively:

E [W (ti) |W (0) = r0 ·Δw ] =
∞

∑
r=r0

rΔw[Pi]r0,r , (12.25)
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and:

Var[W (ti)|W (t0) = r0 ·Δw]

=
∞

∑
r=r0

{r ·Δw−E[W(ti)|W (t0) = r0 ·Δw]}2[Pi]r0,r . (12.26)

This model has already been used to describe the degradation process of catalytic
converters in Barone et al. (2008).

12.4 Numerical Application and Results

All of the proposed models have been applied to the wear data of Table 12.1. Their
unknown parameters were estimated by the procedures described in the Appendix,
and the following numerical values were obtained:

PL shock model: â = 660.0h, b̂ = 0.7244, ĉ = 0.1661mm,
Gamma process: α̂ = 611.6h, β̂ = 0.7351, η̂ = 0.1513mm,
Poisson Markov process: Â = 1.334 ·10−4 mm, B̂ = 0.2696mm−1.

Based on these estimates, the mean wear functions for the three models were com-
puted. These curves are plotted in Fig. 12.2 along with the “observed” average wear
at selected times, obtained by averaging over the lines which interpolate the mea-
sured wear levels of each liner. It appears that all of the proposed models adequately
fit the observed data, since the mean wear curves follow the “observed” trend.

In particular, note that the curves of the age-dependent models (namely, the PL
shock model and the gamma process) are very close to each other.

Mean wear within PL shock model
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Average of observed wear 
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Fig. 12.2 Average observed wear (•) and estimates of the expected values of W (t)
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Fig. 12.3 Estimated 90% probability intervals for W (t) according to the proposed wear models

Figure 12.3 shows the approximate 90% probability intervals for W (t) according
to the proposed models. The band for each age-dependent model includes a fraction
of the observed wear points which is very close to the exact probability that a point
will occur inside the band: 5 points out of a total of 58 fall outside the 90% prob-
ability band. On the other hand, the 90% probability band for the state-dependent
model appears to be too narrow, since it includes only 73% of the observed wear
points.

This can be explained by the fact that the Poisson Markov process is indexed by
only two parameters (instead of three parameters, as in the other models), which
means that this model is not able to accurately describe both the behavior of the
mean curve and the behavior of the process variance. Thus, further studies are now
exploring more flexible forms of transition probabilities by relaxing the Poisson
distribution (12.21) and adopting models indexed by a larger number of parameters.

For a number of liners, namely the liners labeled 8, 13, and 23, we estimated the
wear growth after a time interval Δt = 10,000 hours, given the present age ti,ni or
the present wear W (ti,ni) of the selected liner. These liners were chosen because:

• Liner 8 accumulated a wear of 2.15 mm up to t8,3 = 24,710 hours, which is close
to the estimated expected wear E[W (24,710)]∼= 2.30 mm,

• Liner 13 accumulated a wear of 3.60 mm up to t13,3 = 30,000 hours, which is
much larger than the estimated expected wear E[W (30,000)]∼= 2.70 mm,

• Liner 23 accumulated a wear of 0.40 mm up to t23,1 = 10,450 hours, which is
much smaller than the estimated expected wear E[W (10,450)]∼= 1.20 mm.
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Table 12.2 Predicted wear growth (in mm) after a future time interval of 10,000 hours

Liner Wear model Expected growth 90% Probability interval

#8 PL shock model 0.64 (0.17,1.16)
Gamma process 0.65 (0.23,1.25)
Poisson Markov process 0.68 (0.40,0.95)

#13 PL shock model 0.61 (0.17,1.16)
Gamma process 0.62 (0.22,1.20)
Poisson Markov process 0.48 (0.25,0.70)

#23 PL shock model 0.77 (0.17,1.33)
Gamma process 0.78 (0.31,1.41)
Poisson Markov process 1.05 (0.70,1.40)

Table 12.2 gives both the expected growth E[ΔW ] and the 90% probability inter-
val for ΔW for each combination of liner and model. We first note that, for all of
the liners analyzed, the age-dependent models, namely the PL shock model and the
gamma process, provide fairly similar estimates for the expected wear growth and
probability intervals.

In addition, the estimates of E[ΔW ] for liner 8 are close to each other, because its
present level of wear is close to the expected wear of a liner that is as old as liner 8.
For liner 13, the age-dependent models overestimate the wear growth compared
to the state-dependent model, because this liner has much more wear than a liner
with the same age, and so its wear growth in the future is expected to be smaller in
a state-dependent model than in an age-dependent model.

On the other hand, the age-dependent models underestimate the wear growth of
liner 23 with respect to the state-dependent model, because this liner has much less
wear than would be expected of a liner of its age. Hence, its future wear growth is
expected to be larger in a state-dependent model than in an age-dependent model.

Finally, the Poisson Markov process provides probability intervals that are much
narrower than those provided by the other models. This can be explained by the fact
that this process is not able to describe the whole process variance.

Figures 12.4–12.6 depict the estimates for the residual reliability of the selected
liners according to the proposed models. Table 12.3 shows the estimates for the
mean residual lifetimes (corresponding to the areas under each residual reliabil-
ity curve) of the selected liners. These results are in full agreement with those of
Table 12.2.

Table 12.3 Estimated residual lifetimes (in hours) of the liners labeled 8, 13, and 23

Wear model Liner 8 Liner 13 Liner 23

PL shock model 34,192 8179 60,232
Gamma process 32,100 7614 59,163
Poisson Markov process 32,850 9371 51,270
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Fig. 12.5 The estimated residual reliability of liner 13
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The estimates for the residual lifetime of liner 8 are close to each other, because
the present wear of this liner is close to the average wear of a liner that is as old
as liner 8. In contrast, both of the the age-dependent models underestimate (com-
pared to the state-dependent model) the residual reliability of liner 13, because it
has accumulated more wear than an average liner of its age, and they overestimate
the residual reliability of liner 23, which exhibits less wear than would be expected
at its age.

The residual reliability functions estimated using the Poisson Markov process are
less dispersed than the reliability functions estimated using the age-dependent mod-
els, since this model is not able to describe the whole variance of the wear process.

12.5 Conclusions

In this chapter, three reliability models were proposed for cylinder liners of diesel
engines used for marine propulsion. The proposed models were obtained through
stochastic modeling of the failure-causing wear process of these components, and
by deriving the reliability function based on the distribution of the first passage time
to a fixed, pre-assigned, wear limit. The proposed models differ in their stochastic
descriptions of the wear process. The first model is a shock model, where the shocks
are driven by a nonhomogeneous Poisson process; the second model is a gamma
process, and the third one is a homogeneous Markov process. The PL shock model
and the gamma process have independent increments, whereas the homogeneous
Markov process has increments that depend on the liner’s state.

All of these models were applied to wear data obtained from cylinder liners used
in ships of the Grimaldi Group. Models parameters were estimated by adopting
ad hoc estimation procedures. In addition, the growth in wear after pre-fixed time
intervals was predicted. Moreover, the residual lifetime distribution function and the
mean residual lifetime were estimated.

Based on the results obtained, it is possible to draw the following two main con-
clusions:

1. The PL shock model and the gamma process (which provide very similar re-
sults) fit the data well. On the other hand, the Poisson Markov process does not
adequately model the process variance.

2. When the wear of the liner is very different from the level of wear expected
for a liner of its age, age-dependent and state-dependent processes provide very
different predictions, in terms of both future wear growth and residual life.

The drawback of the Poisson Markov model alluded to in (1) is not a serious one,
since it can be overcome by adopting a more flexible Markov model, indexed for
example by three or more parameters. The point made in (2) is a slightly trickier
issue. Indeed, it shows that the predictions made strongly depend on the model used,
so model selection appears to be a crucial task. In general, it is not easy to select an
adequate model. The selection is often based on goodness-of-fit tests and on ex post
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analyses. In many cases, however, this statistical approach gives poor results due
to the inadequacy or scarcity of experimental data. Hence, when possible, model
selection should be preferably guided by physical or technical knowledge rather
than statistical procedures.

For the application presented in the chapter, technical information suggests
that a state-dependent model is more appropriate than an independent increment
model. Thus, further studies are now in progress to formulate a more flexible state-
dependent Markov model and to assess its performance in terms of goodness-of-fit
and prediction ability.

A Appendix: Estimation Procedures

A.1 PL Shock Model

The PL shock model is indexed by three parameters, namely the PL parameters a
and b and the elementary wear c. The likelihood function based on the observed
wear data W (ti, j) (i = 1, . . . ,m; j = 1, . . . ,ni) is:

L(a,b,c) =

{
m

∏
i=1

ni

∏
j=1

[(ti, j/a)b − (ti, j−1/a)b]Wi, j/c

(Wi, j/c)!

}
exp

[
−

m

∑
i=1

(ti,ni/a)b

]
, (12.27)

where Wi, j = W (ti, j)−W (ti, j−1) is the wear accumulated by liner i during the in-
spection interval (ti, j−1,ti, j) (with W (ti,0)≡ 0 and ti,0 ≡ 0), and ti,ni is the age of liner
i at the time of the last inspection. The log-likelihood function can then be written as:

�(a,b,c) =
m

∑
i=1

ni

∑
j=1

Wi, j

c

[
ln
(

tb
i, j − tb

i, j−1

)
−b ln(a)

]
−

m

∑
i=1

ni

∑
j=1

[ln(Wi, j/c)!]

−
m

∑
i=1

(ti, j/a)b . (12.28)

Unfortunately, both ab and c act as multiplicative factors for the cumulated wear,
and consequently the maximum likelihood estimation (MLE) procedure is not able
to estimate ab and c separately. Thus, to overcome this estimation problem, the
following five-step estimation procedure, which combines the maximum likelihood
method with the first moment estimation method, is proposed (see Giorgio et al.
2007 for a detailed description):

1. Obtain the MLE of b by numerically solving the equation:

m

∑
i=1

ni

∑
j=1

Wi, j
tb
i, j ln(ti, j)− tb

i, j−1 ln(ti, j−1)

tb
i, j − tb

i, j−1

−
m

∑
i=1

W (ti,ni)
∑m

i=1 tb
i,ni

ln(ti,ni)

∑m
i=1 tb

i,ni

= 0 ,

(12.29)
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where Wi, j = W (ti, j)−W (ti, j−1), and W (ti,ni) is the wear accumulated by the
liner i up to the last inspection.

2. Obtain the MLE of θ = c/ab:

θ̂ =
∑m

i=1 W (ti,ni)

∑m
i=1 t b̂

i,ni

. (12.30)

3. Estimate the expected wear accumulated by the liner i during (ti, j−1, ti, j):

Ê[Wi, j] = θ̂
(

t b̂
i, j − t b̂

i, j−1

)
, i = 1, . . . ,m, j = 1, . . . ,ni , (12.31)

and compute:

ŷk =
Wi, j − Ê[Wi, j]√

Ê[Wi, j]
, k = 1, . . . ,N =

m

∑
i=1

ni , (12.32)

where k = j + ∑i−1
l=0 nl.

4. Estimate the elementary wear c:

ĉ = Var[ŷk] =
∑N

k=1 (ŷk −Ave[ŷk])2

N −1
, (12.33)

where Ave[ŷk] = ∑N
k=1 ŷk/N is the sample mean of ŷk.

5. Estimate the PL parameter a:

â = (ĉ/θ̂)1/b̂ . (12.34)

Note that the accuracy of the estimate of c, and hence of a, depends on the accuracy
of Ê[Wi, j] and on the size N of the sample of ŷk. Clearly, a larger N leads to a
more accurate estimate for c. If the sample mean of ŷk is close to 0, then we can be
confident that the estimate of c is accurate. In particular, in the present case study,
the sample mean of ŷk is equal to 0.0243. This value is much less than the sample
standard deviation σ(ŷk) = 0.16610.5 = 0.408, making us confident that the estimate
of c is sufficiently accurate.

A.2 Gamma Process

Under the assumption of a gamma process, the likelihood function of the observed
data is:

L(α,β ,η) =

⎛
⎝ m

∏
i=1

ni

∏
j=1

W
(ti, j/α)β−(ti, j−1/α)β−1
i, j

η(ti, j/α)β−(ti, j−1/α)β Γ [(ti, j/α)β − (ti, j−1/α)β ]

⎞
⎠

× exp

[
−

m

∑
i=1

ni

∑
j=1

Wi, j/η

]
(12.35)
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and the ML estimates for α , β , and η can be obtained by maximizing the logarithm
of the likelihood L(α,β ,η) through a numerical optimization procedure.

A.3 Poisson Markov Process

Assuming a Poisson Markov process, the likelihood function based on the observed
data ri, j = Wi, j/Δ (i = 1, . . . ,m; j = 1, . . . ,ni) is given by:

L(A,B) =
m

∏
i=1

ni

∏
j=1

[Pmi, j−mi, j−1 ]ri, j−1,ri, j , (12.36)

where mi, j = int[ti, j/h + 0.5]. The model parameters A and B are then estimated by
maximizing the logarithm of the likelihood L(A,B) through a numerical optimiza-
tion procedure.
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Chapter 13
A New Control Chart Achieved via Innovation
Process Approach

Pasquale Erto and Giuliana Pallotta

Abstract An alternative title for this chapter could be “Innovation for Statistics”,
which would be equally appropriate to illustrate its contents. In fact, the chapter
shows how to perform the innovation process approach in order to fulfill a scientific
research need in a specific application area. More specifically, this chapter describes
the incremental development of a new control chart of the Weibull percentile (i.e.
the reliable life) as a practical example of a product attained following an innovation
process approach. More specifically, the design of the chart required three “short”
operative steps of innovation process, in order to provide the original chart with new
peculiar features incrementally.

13.1 Introduction

The proposed control chart is a case study of a new product attained following an
incremental innovation process approach.

It is well known that the Statistical Process Control (SPC) methods are exten-
sively used in several contexts in order to monitor and improve the quality of pro-
duction processes and service operations. Within this framework, the relevance of
common control charts is recognized but, obviously, do not cover all the potential
needs and/or application areas.
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In particular, dealing with manufacturing industry, any technological product
must ensure a specified reliability level, otherwise the company will incur high costs
due to defective items, that include costs of reworking and/or scraping, costs of re-
turns, costs of failures in-service, warranty replacements and the loss of good-will,
hardly restorable. Once the reliability target levels have been achieved by means
of a good design and tests, an outstanding need is monitoring the reliability per-
formance of the item, launched on the market. This needed monitoring is generally
performed through a control chart in order to detect unusual reliability variation
due to “assignable causes” and to adopt the necessary corrective actions as soon as
possible.

Nearly always, the distributions of the reliability parameters are skewed and the
classical Shewhart control charts are not effective, due to the frequent small size
of the available samples that prevent one to use the so called “normalizing effect”.
Unfortunately, very few papers dealing with non-normal populations and reliability
control can be found in literature such as (Padgett and Spurrier 1990), (Kanji and
Arif 2001), (Xie et al. 2002), (Shore 2004), (Zhang and Chen 2004), (Nichols and
Padgett 2005).

In this context, many new needs can be identified. Among them, we found the
following one: the transformation of also non-statistical data (i.e. data not in a quan-
titative statistical form) into useful information for reliability control. In fact, the
possibility of exploiting also non-statistical data provides the analyst with a com-
petitive advantage, allowing him to face situations where the data are scarce and/or
the responsiveness of the chart is crucial. Consequently, the analyst is primarily
concerned with the identification of non-statistical data sources and then with the
generation of useful information from them.

In the following sections we will list out the “short” operative steps of the inno-
vation process which led to the development of the new chart.

13.2 Identifying the New Needed Estimation Features

The reliability control based on pure classical estimation procedures is carried out
ignoring a great amount of non-statistical data, usually available as prior techno-
logical knowledge in engineering field. On the other hand the frequent scarcity of
statistical reliability data (caused by the low number of the items in operation, the
very high level of their reliability, etc.) makes the use of non “classical” reliability
estimators competitive.

Facing these new needs, in order to innovate the estimation process we can use
more effective (non “classical”) reliability estimators like those based on the appli-
cation of the Bayes theorem, which allows one to merge statistical and technological
data. In this way, the estimators could provide the estimation process with more ef-
ficiency not wasting any kind of data achieved by usual engineering design and
process control practice.
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We found adequate using specific Bayesian reliability estimators known as “Prac-
tical Bayes Estimators” (PBE) since they were developed from an Engineers’ point
of view and applied in several technological contexts during past years (Erto 1982);
(Erto 2005); (Erto and Lanzotti 1991); (Erto and Giorgio 1996); (Erto and Giorgio
2000). They reinforce the statistical experimental information by easily incorpo-
rating the available Engineers’ prior technological knowledge into the estimation
procedure.

Differently from other Bayesian reliability estimators, the PBE require only the
specification of those parameters, of the “prior distributions”, into which the Engi-
neers’ prior technological knowledge can really be converted, leaving the remaining
parameters unspecified. Moreover, in (Erto 2005) we can find two practical exam-
ples proving the effectiveness of PBE compared to the Maximum Likelihood ones,
when few statistical data are available but a significant amount of technological data
is available.

Acronyms and Notation

Sf{·} survival function

pdf{·} probability density function
R reliability level
K constant equal to ln (1/R)
xR equivalent to the 1−R percentile of the Weibull distribution such as that Sf{xR} = R
x data set
n sample size
k order number of the current sample (initial value k = 1)
α tail area of a pdf
δ , β scale and shape parameters of the Weibull distribution
β1, β2 prior numerical interval for β
∧ implies an estimate
PBE Practical Bayes Estimators (or Estimates)
L Likelihood

Among all the distributions used in technology, the Weibull distribution is the most
widely used as a reliability model. The Weibull survival function is:

Sf{x;δ ,β} = exp
[
−(x/δ )β

]
; x ≥ 0; δ ,β > 0 (13.1)

being δ and β the scale and shape parameters of the Weibull distribution respec-
tively.

Since the available (non-statistical) Engineers’ information can be more easily
converted in terms of reliable life xR and shape parameter β , around these two pa-
rameters the whole estimation process has to be centred. Consequently, we must
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reparameterize the (13.1) in terms of these parameters:

Sf{x;xR,β} = exp
[
−K (x/xR)β

]
; x ≥ 0; xR,β > 0

K = ln(1/R) (13.2)

xR and n both being unknown.
As a matter of fact, in reliability problems, the control of the Weibull percentile

xR is strategic. The choice of xR is justified by the wide use of this parameter in:

• defining warranty conditions;
• developing contractual specifications;
• expressing key-indicators in engineering catalogues.

In practical situations the control of a specific Weibull percentile becomes crucial
when the quality characteristic of interest is the breaking strength of brittle mate-
rials (such as carbon and boron) or the tensile adhesive strength (Park 1996). In
these contexts, monitoring process mean and variance (by means of classical con-
trol charts) could be seriously less effective than monitoring a specific percentile
since a small variation in mean and/or variance can produce a significant shift in the
percentile of interest (Padgett and Spurrier 1990).

Moreover, in life tests, the Weibull percentile measures the reliable life xR useful
to evaluate the performance of mechanical devices. In this applicative field, we must
outline that, if the reliability level R of the tested items is very high, we are able to
collect very few data which prevent us to use classical control charts. In these cases,
the proposed Bayesian approach may result an appropriate approach.

In engineering, very often some knowledge exists about the mechanism of fail-
ure under consideration, which can be converted into quantitative statistical form
about β. Moreover, an engineer presumably knows more than the simple order of
magnitude of the life which the designed item has, e.g. he has a quite precise knowl-
edge about xR. Then, with both these pieces of information, he can formulate a nu-
merical interval (β1,β2) for β and an anticipated value for xR. The PBE adopt some
specific priors which are suitable to express this kind of prior technological knowl-
edge about xR and β and, moreover, are tractable too. For a comprehensive and
detailed discussion see (Erto 1982).

Combining the two priors for xR and β by multiplying the conditional prior for
xR and the prior for β , we can obtain a joint prior probability density function for xR

and β :
pdf{xR,β} = pdf{xR|β}×pdf{β} . (13.3)

Then the joint prior (13.3) can be integrated with the experimental data, usually
available as a sample array of n data, resulting from reliability tests.

So, we can use the Bayes theorem that substantially says:(
joint posterior
of unknown xR and β

)
∝

(
joint prior
of xR and β

)
×
(

likelihood function
of the sample

)
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to obtain a joint posterior probability density function for xR and β . “Prior” and
“posterior” mean before and after obtaining experimental data respectively. So, in
this way, the theorem fuses the technological prior knowledge, summarized into the
joint prior, with all the information (data and shape of the reliability model) included
into the likelihood function.

We can say that the joint posterior density function describes the residual uncer-
tainty which exists about the two parameters. So we could estimate the parameters
xR and β adopting their modal or median or mean values. The PBE choose the last
ones, that is, the expectations of xR and β .

It is interesting to note that using a random variable transformation, the joint pos-
terior probability density function for xR and β can be transformed into a standard
Gamma. This property can be used to calculate the percentiles of the marginal poste-
rior probability density function for xR as those needed to draw an xR control chart,
the control limits being simple transformations of the percentiles of the standard
Gamma. For technical details see Appendix B in (Erto and Pallotta 2006).

13.3 Developing the Innovative Estimation Procedure

In the following subsections we will present the innovation steps which led to the
development of the new chart. We report an incremental analysis of its innovative
features, gradually examined.

13.3.1 First Innovation Step: A Shewhart-Type Control Chart
of the Weibull Percentile

First we developed a Shewhart-type control chart of the Weibull percentile, which
can be easily drawn thanks to its similarity to the common Shewhart charts.

Following a classical approach, the chart works as a “single sample” scheme
since it only uses the information about the process contained in the last plotted
point. As shown in Fig. 13.1, the estimation procedure processes samples one by
one, being the single plotted point representative of the current sample information
combined with the initial prior information.

Moreover this “first step” chart is static since its design parameters (sample
size n, sampling interval, control limits) are left unchanged.

Thanks to the Bayesian nature of our estimation process, we can use all the avail-
able data to gain useful information about future values of xR. Thus, on the basis of
the overall posterior distribution of xR, derived applying the PBE to the whole col-
lected dataset, we are able to anticipate a credibility interval for the parameter xR.
In this way, we can predict that our xR estimates will likely and fairly vary within
the anticipated range if no significant change in reliability happens. Therefore, our
control chart plays a predictive role very similar to that of all the Shewhart-type
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Fig. 13.1 The working engine of a “single sample” estimation procedure

control charts. For a comprehensive discussion see (Erto and Pallotta 2007). For
a description of the chart as an example of a Data Technology product see (Erto
et al. 2008).

The following real applicative example, using in control and out-of-control
datasets proposed in (Padgett and Spurrier 1990) respectively reported in Table 13.1
and Table 13.2, is presented to show the operative use of the chart.

The control of the first percentile (equivalent to the reliable life xR) of the break-
ing strength distribution of a certain type of carbon fibers is considered. This kind
of carbon fiber is produced to manufacture composite materials which need fibers
with a breaking strength greater than 1.22 GPa (Giga-Pascal) with 99% probability.

With the objective to control that this specification (xR = 1.22, R = 0.99) is met,
a sample of n = 5 fibers, each 50 mm long, is selected from the manufacturing pro-
cess periodically, and the breaking stress of each fiber is measured.

When the process was certainly in-control, ten samples of size n = 5 of breaking
stress of these carbon fibers were sampled (see Table 13.1). On the basis of some
past knowledge and experience, the Weibull distribution is considered to closely fit
such breaking stress and is assumed to be the underlying distribution of the control
chart (being the assumption also supported by some goodness-of-fit tests for the
Weibull distribution, not reported here).

Figure 13.2 shows the control chart of the first percentile estimated by means of
the PBE, depicting the sequence of xR estimates in time domain. The chart is drawn
using the data of Table 13.1. On the basis of the information provided in (Padgett
and Spurrier 1990), the prior interval (2.8,6.8) for β and the anticipated (mean)
value 1.22 for xR are adopted. Applying the PBE estimators to the whole data set
(50 data), the posterior estimate for β is 4.69 and the posterior estimate for xR is
1.20. So, the central line (CL) is 1.20; given α = 0.27%, the lower control limit
(LCL) and the upper control limit (UCL), are respectively 0.97 and 1.67.
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Table 13.1 Breaking stresses (GPa) of carbon fibers
(in control state, xR = 1.22, R = 0.99)

k-th sample Stress

1 3.70 2.74 2.73 2.50 3.60
2 3.11 3.27 2.87 1.47 3.11
3 4.42 2.41 3.19 3.22 1.69
4 3.28 3.09 1.87 3.15 4.90
5 3.75 2.43 2.95 2.97 3.39
6 2.96 2.53 2.67 2.93 3.22
7 3.39 2.81 4.20 3.33 2.55
8 3.31 3.31 2.85 2.56 3.56
9 3.15 2.35 2.55 2.59 2.38
10 2.81 2.77 2.17 2.83 1.92

Fig. 13.2 Shewhart-type control chart of the Weibull percentile (xR, R = 0.99) using the in-control
process data (Table 13.1) with n = 5

Using always the same prior interval (2.8,6.8) for β and the anticipated (mean)
value 1.22 for xR, the ordinates of the ten points (i.e. the estimates of the breaking
strength) corresponding to the ten samples of size n = 5 are calculated.

As we can see, the iterative application of the estimation process results to be
practicable and viable, since we can combine the same prior technological informa-
tion (achieved from non-statistical data) together with the statistical data available
at each sampling step.

In order to show the responsiveness of the chart, we can consider the ten samples
in Table 13.2. Differently from previous samples, they are representatives of an
out-of-control state, simulated by shifting the first percentile to 0.26 GPa from the
original value of 1.22 GPa. It is interesting to note that this shift could really be
originated by a decrease in the mean and an increase in the variance of the breaking
stress and expresses a likely process deterioration. As anticipated in Sect. 13.2, this
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Table 13.2 Breaking stresses (GPa) of carbon fibers
(out-of-control state, xR = 0.26, R = 0.99)

k-th sample Stress

1 1.41 3.68 2.97 1.36 0.98
2 2.76 4.91 3.68 1.84 1.59
3 3.19 1.57 0.81 5.56 1.73
4 1.59 2.00 1.22 1.12 1.71
5 2.17 1.17 5.08 2.48 1.18
6 3.51 2.17 1.69 1.25 4.38
7 1.84 0.39 3.68 2.48 0.85
8 1.61 2.79 4.70 2.03 1.80
9 1.57 1.08 2.03 1.61 2.12
10 1.89 2.88 2.82 2.05 3.65

simultaneous change turn out to be the most critical out-of-control state, hardly
detectable by means of classical control charts.

Then, the above chart is used to process these new data. As before, the prior
interval (2.8,6.8) for β and the anticipated (mean) value 1.22 for xR are adopted, in
order to calculate the estimates from all the ten samples of size n = 5.

As shown in Fig. 13.3, the diagnostic property of the chart is good. The graph-
ical position of the points on the chart depicts the out-of-control state, caused by
a significant change in the reliability parameters.

However, the drawback of this Shewhart-type control chart is not keeping mem-
ory of the past sampled data. In fact, although the results of previous samples are
recorded on the chart, none is used in the “single sample” scheme whose decision
depends solely on the last sample, as pointed out in (Lai 1995).

Fig. 13.3 Shewhart-type control chart of the first Weibull percentile (xR, R = 0.99) using the out-
of-control process data (Table 13.1) with n = 5
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This feature causes a relative insensitiveness of Shewhart-type control charts to
moderate shifts in the process, which results to be particularly critical for reliability
control. So, a further innovation step is motivated.

13.3.2 Second Innovation Step: A Bayesian Cumulative Control
Chart of the Weibull Percentile

In order to improve the responsiveness of control chart, another feature has been
added to the proposed chart, starting from the opportunity provided by the Bayes
Theorem to continually update the knowledge about the parameters of interest as
soon as a new sample becomes available. Thus, we used the PBE to perform a re-
cursive estimation procedure which is the core of the proposed Bayesian cumulative
control chart.

As a matter of fact, this “second step” chart shows a great similarity to the
CUSUM charts since it incorporates past data into the estimation procedure. Page
in (Page 1954) first proposed the Cumulative Sum charts (commonly known as
CUSUM charts) where current and past data are accumulated to effectively detect
small shifts in the mean. In this way, he first fulfilled a need for new, more effective,
control schemes, after the launch of the Shewhart control charts.

Even if it is similar to CUSUM charts, the proposed chart differs from them
due to a new feature: it is able to combine both current and past data together with
the technological knowledge about the process by applying recursively the Bayes
Theorem sample by sample. Thus, exploiting the PBE under recursive use, each
point, plotted on the chart, is representative of the whole information accumulated
until that moment (as shown in Fig. 13.4).

In order to show its effectiveness, the cumulative estimation procedure is com-
pared to a “single sample” procedure. In Fig. 13.5 the same data (reported in Ta-
ble 13.1 and Table 13.2) are plotted collecting them in samples of size n = 5. The
Bayesian cumulative sequence of points (formed of the ten in control points fol-
lowed by the ten out-of-control ones) is graphically connected by a solid line. The
corresponding “single sample” sequence is graphically connected by a dashed line.
A vertical dashed line is traced in correspondence to the occurrence of the out-
of-control state. The control limits are calculated pooling all the available in con-
trol data, leaving them unchanged. For a detailed description see (Erto and Pallotta
2006).

As we can see, the cumulative procedure results more effective than the “single
sample” one and the resulting chart can successfully compete with the few known al-
ternative ones (Padgett and Spurrier 1990), (Kanji and Arif 2001), (Xie et al. 2002),
(Zhang and Chen 2004), (Nichols and Padgett 2005).

However this “second step” chart lacks the following feature, very appreciated in
recent research in SPC, which could differentiate the chart from the static Shewhart-
type control charts: the opportunity to update at least one of its design parameters
(sample size n, sampling interval or control limits) in response to the current sample
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Fig. 13.4 The working engine of a cumulative estimation procedure

Fig. 13.5 Bayesian cumulative (solid line) and “single sample” (dashed line) sequence of points
(xR, R = 0.99) representatives of the 10 out-of-control samples (Table 13.1) which follow the 10 in
control ones (Table 13.1) with n = 5

information. We found adequate to apply the cumulative estimation procedure, used
to obtain the points to be plotted, to compute the control limits too. So, almost
naturally, the subsequent research need turns out to be the design of adaptive control
limits.
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13.3.3 Third Innovation Step: A Bayesian Cumulative
and Adaptive Control Chart of the Weibull Percentile

Thus, in order to fulfill the new identified need and to provide a more reliable pic-
ture of the process to be monitored, we adopted a control policy based on adaptive
control limits.

For a conservative behavior of the chart, we set the following decision rule about
the possibility to update the control limits:

If x̂R,k ∈ [LCLk−1,UCLk−1] ⇒ update:

{
LCL = LCLk

UCL = UCLk

If x̂R,k /∈ [LCLk−1,UCLk−1] ⇒ do not update:

{
LCL = LCLk−1

UCL = UCLk−1
(13.4)

In this way, the rule aims at pointing out a critical situation, leaving the control limits
unchanged if an out-of-control state is suspected. This empirical rule conforms to
the human physiological behavior, which consists in reacting by freezing whenever
a peril is felt.

The benefit of the procedure is clear: the adaptive estimation of the control limits
allows the chart to choose the control policy which better fits the current situation.
Thus the policy exploits the whole current state of knowledge, attaining the time-
varying control limits as suggested in (Steiner 1999) and (Mastrangelo and Brown
2000).

Fig. 13.6 Bayesian sequence of points (xR, R = 0.99) representatives of the 10 out-of-control sam-
ples (Table 13.2) which follow the 10 in control ones (Table 13.1) plotted against the adaptive
(boldface line) control limits and unchanged ones with n = 5
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In order to show the advantage deriving from adapting control limits over time,
the same data (reported in Table 13.1 and Table 13.2) are plotted collecting them
in samples of size n = 5 (Fig. 13.6) and updating the limits according to the pro-
posed “physiological-type” control rule. Again, a vertical dashed line is traced in
correspondence to the occurrence of the out-of-control state. As we can see the di-
agnostic properties of the chart improve and, thanks to their time-varying nature,
more likely control limits, narrowed over time, result.

13.4 Conclusions

The scientific research which led to the new chart has been inspired to a continuous
innovation process. At each operative step:

• firstly a new need in control charting is identified, a choice to fulfill the identified
need is taken and a new feature is added to the chart;

• secondly, the deriving advantages are evaluated and, starting from the analysis
of the drawbacks, a further need is identified and a new innovation step is stimu-
lated.

Following this approach, the responsiveness of the chart has gradually but continu-
ously improved. The chart can support the analyst in facing some critical scenarios
where small samples are available, the values of the process parameters have to be
estimated, being unknown, and very prompt decisions are needed.

Obviously, the attained result must be considered as a research process step itself,
since further study about the statistical properties of the chart is needed.
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Chapter 14
A Critical Review and Further Advances
in Innovation Growth Models

Pasquale Erto and Amalia Vanacore

Abstract In recent decades, the literature on technology management has proposed
S-curves as promising tools for analyzing the life-cycle of technological innovation
in order to support company strategies and policies.
Nevertheless, the scant attention devoted to the analytical foundations of the S-curve
model has limited its capacity to actually model the performance of technological
innovation.
In this work, the main mathematical and statistical characteristics of the most pop-
ular S-curve models are analyzed in order to verify their suitability for modeling
technological innovation processes. In particular, the properties of the linearity of
each model have been studied, since they are needed in order to make some useful
inferences.
Critical comparative analysis has been carried out using some real data sets for three
different technologies: piston aero-engines, jet aero-engines, and digital signal pro-
cessors.

14.1 Introduction

Innovation is any technological change that enables the ratio between the ex-
pected/obtained benefits and the investment required to be improved. In other words,
a company innovates when it uses a technology—not necessary the most advanced
one—to gain a competitive edge.
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In order to completely manage technological processes, the company should rely
on a model that allows the evolution of the performance of the technology to be
analyzed. In the literature on technology management, the S-curve is a very popular
(although often only qualitative) model used to analyze the innovation life-cycle.
Proposed by Richard Foster (1986), it is based on a fairly straightforward concept:
the curve tracks the growth in performance as a function of the effort devoted to
developing the technology, or as an appropriate function of time.

The name of the model derives from the observation that the plot of performance
growth is usually approximately S-shaped. In fact, at the beginning, the performance
growth of any new technology is slow. Then, as a critical mass of technology exper-
tise builds up, this growth becomes rapid. After a while, as the technology matures,
the growth slows again until it reaches a saturation limit. Thus, starting from the
curve’s inflection point, ploughing further work into an old technology will result
in diminishing returns (Asthana 1995). In the literature on technology management,
the S curve model has been mainly used a posteriori to analyze the growth in the
performance of a technology. Nevertheless, it is undoubtedly true that the S-curve
model is best applied to a priori analysis. For example, it can be employed to opti-
mize the productivity of a technology, forecast the evolution of the technology, and
monitor the effects of management initiatives during the innovation process. How-
ever, it is also true that the proper use of the S-curve model as a useful strategic tool
requires a deep knowledge of its genesis as well as of its analytical aspects.

The contribution presented in this chapter deals with the main methodological
aspects that should be investigated in order to choose a suitable S-curve to model
the performance growth of a specific technological innovation.

The findings reported in the following were first discussed in a large, unpublished
research report (Erto and Vanacore 2005). These findings greatly contributed to the
research activity that was begun in our department due to the pioneer work of Erto
and Lanzotti (1995), and they gave rise to many research papers (e.g., Erto 1997;
Vanacore 2005, 2007; D’Avino and Erto 2006, 2007; Erto and Vanacore 2008) and
some theses (Di Lorenzo 1996; Medagli 2004; D’Avino 2008).

14.2 A Comparison Among Different S Curve Models

Several mathematical functions have been proposed as S-curve models in the liter-
ature. Among the most popular ones, these include the logistic, the Gompertz, the
log–logistic, the Richards and the Weibull-type functions.

The main mathematical features of the models under review will be briefly illus-
trated here with the aid of the formulae reported in Table 14.1. Note that t represents
the effort devoted to developing the technology, or an appropriate function of the
time (under the assumption that the effort strictly depends on the time); I(t) repre-
sents technological performance as a function of t; I0 is a known value representing
the performance level at the beginning of the innovation process; Ilim is the asymp-
totic value of the performance level that can be reached using the adopted technol-
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Table 14.1 Main mathematical features of the models under review

Model Formula Technological
performance
at t = 0

Coordinates
of the inflection point
t∗, I(t∗)

Logistic
(Verhulst 1838)

I(t) =
Ilim

1+ eα−kt

Ilim

1+ eα t∗ =
α
k

;

I(t∗) =
Ilim

2

Gompertz
(Gompertz 1825)

I(t) = Ilim e−eα−kt Ilim

eeα t∗ =
α
k

;

I(t∗) =
Ilim

e

Log–logistic
(Tanner 1978)

I(t) =
Ilim

1+ eα−k ln(t)
0 t∗ =

(
eα (k−1)

k +1

)1/k

;

I(t∗) = Ilim

(
1+

k +1
k−1

)−1

Richards
(Richards 1959)

I(t) =
Ilim

(1+ eα−kt)1/s

Ilim

(1+ eα )1/s
t∗ =

α
k
− lns

k
;

I(t∗) =
Ilim

(1+ s)1/s

Generalized
Weibull
(Yang et al. 1978;
Erto et al. 1995)

I(t) = I0 +
[
1− e−kts

]
× (Ilim − I0)

I0 t∗ =
(

s−1
ks

)1/s

;

I(t∗) = I0 +
(

1− e(1−s)/s
)

× (Ilim − I0)

ogy (sometimes this is known, and in other cases it has to be estimated); α and k are
scale parameters, whereas s is a shape parameter.

The coordinates of the inflection point in Table 14.1 suggest a preliminary classi-
fication of the reviewed model functions into two main categories: inflexible S-curve
models (logistic and Gompertz) and flexible ones, which are classified according to
whether the ordinate of the inflection point depends on the model’s parameters or
not.

It is obvious that using an inflexible S curve to model the performance growth of
a technological innovation is risky. Indeed, the effects of the factors that influence
the performance level of a technology are highly variable, and so it is unreasonable
to assume that all technologies reach their maximum growth rate at a fixed distance
from Ilim.

The logistic and the Gompertz models are far and away the most commonly
used S-curve models. They were originally applied to population growth processes.
The logistic model is based on the hypothesis that, at the beginning, the growth
rate increases exponentially, and then, as growth reaches its saturation limit, the
growth rate decreases towards zero. Unlike the logistic curve, the Gompertz model
does not show initial exponential growth, and it is not symmetric with respect to its
inflection point, which is reached when 37% of the growth saturation limit has been
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attained. Both the log–logistic model and the Richards one originate from attempts
to obtain a flexible S-curve model. The log–logistic model is obtained directly from
the logistic one by substituting the variable t with the function ln t.

The flexibility of the Richards curve is obtained at the cost of greater compu-
tational complexity. In fact, the function associated with this model is obtained by
adding a third parameter, s, to the original formula for the logistic curve. The ordi-
nate of the inflection point depends on the value of this parameter. For s = 1, the
inflection point of the Richards model coincides with the inflection point of the lo-
gistic one, I(t) = Ilim/2; for s > 1 (for s < 1), the inflection point of the Richards
curve is obtained at a value I(t) > Ilim/2 (at a value I(t) < Ilim/2); finally, as s tends
towards zero, the Richards growth curve approaches the Gompertz one.

Unlike the above growth models, the Weibull-type S curve derives from a mor-
phological analogy rather than theoretical remarks. In fact, the idea of applying the
Weibull probability function to growth analysis was suggested by its flexibility and
the analogy between growth rate curves and probability density curves.

14.3 Criteria Used to Compare the Models

The comparison among the S curve models in Table 14.1 was carried out by consid-
ering the following six criteria:

1. Flexibility
2. Consistency with the dynamics of technological performance growth
3. Sustainability of the assumptions of linearity
4. Stability of parameter estimates versus different assumptions about the error

term
5. Goodness of fit
6. Computational simplicity

We have already discussed flexibility. In order to ascertain the other comparison
criteria listed above, we analyze model/data set combinations, since a specific set
of observed data in conjunction with a specified model determines its behavior
(Ratkowsky 1990). In order to make the results of the analysis as general as possible,
three widely representative data sets have been chosen, relating to the technologies
of piston aero-engines, jet aero-engines and digital signal processors (DSP).

The first two data sets are reported in Lee et al. (1988); the third data set (available
from www.ti.com) refers specifically to the class of 32-bit floating DSPs introduced
by Texas Instruments from 1988 to 2005.

The technological performance indicator for both the piston aero-engines and the
jet aero-engines is the engine power at take-off. For the DSP data set, the techno-
logical performance is measured by its processing efficiency (proportional to the
inverse of the cycle time), as suggested in Nieto et al. (1998). For all three data sets,
Ilim is estimated to be a little bit greater than the last observed level of technological
performance, since all three technologies are mature.
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Fig. 14.1 Evolution of technological performance for DSP technologies

In Fig. 14.1, the performance growth of Texas Instruments’ DSP technology is
shown graphically using three S-curves. The plain curve represents the growth in the
processing efficiency of the first generation of 16-bit fixed DSPs (introduced from
1982 to 1999); the dashed curve represents the growth in the processing efficiency of
the second generation of 16-bit fixed DSPs (introduced from 2001 to 2005); finally,
the dotted curve represents the growth in the processing efficiency of the 32-bit
floating DSPs (introduced from 1988 to 2005).

14.3.1 Consistency of the Properties of the Model
with the Dynamics of Technological Performance Growth

This criteria was assessed by means of a growth index called “force of obsoles-
cence,” and was defined as follows (Erto and Lanzotti 1995):

r(t) =
dI(t)/dt

Ilim − I(t)
=

i(t)
Ilim − I(t)

(14.1)

where i(t) gives, for each t, the growth rate of the obsolescence; that is, the “speed”
at which the technological performance level approaches its asymptotic value Ilim.

Unlike other growth indices proposed in the literature (Fitzhugh and Taylor
1971), r(t) measures the growth rate taking the difference Ilim − I(t) (i.e., the resid-
ual improvement until obsolescence) as unity instead of Ilim.

According to the common dynamics of technological performance growth, the
probability that a technology will become obsolete—and thus stop being used, be-
cause it is replaced by a new and more competitive technology—increases with
time. This means that the force of obsolescence in (14.1) associated with a consis-
tent model of technological performance growth must tend to infinity as t tends to
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Table 14.2 Force of obsolescence of each of the models under review

Model Force of obsolescence

Logistic r(t) =
k

1+ eα−kt ; lim
t→+∞

r(t) = k

Gompertz r(t) =
ke−(eα−kt−α+kt)

1− e−eα−kt ; lim
t→+∞

r(t) = k

Log–logistic r(t) =
k

t
(
1+ eα−k ln(t)

) ; lim
t→+∞

r(t) = 0

Richards r(t) =
keα−kt

s(1+ eα−kt)
[
(1+ eα−kt )1/s −1

] ; lim
t→+∞

r(t) = k

Generalized Weibull r(t) = ksts−1; lim
t→+∞

r(t) =
{

+∞ if s > 1
k if s = 1

infinity. The force of obsolescence of each model under review was formulated and
is reported in Table 14.2.

Only the Generalized Weibull model shows a force of obsolescence that tends to
infinity as t tends to infinity, on the condition that the parameter s is greater than
one. The force of obsolescence of the log–logistic curve tends to zero as t tends to
infinity; this implies that we are assuming (inconsistently) that the growth in techno-
logical obsolescence reaches a stopping point. The remaining models show a force
of obsolescence that tends to a constant k as t tends to infinity, and thus they (incon-
sistently) imply that the growth towards obsolescence settles at a certain value. In
other words, the ageing of the technology becomes independent of its current degree
of obsolescence. Obviously, this is not the common case for technologies.

14.3.2 The Stability of Least Squares Estimates Versus Different
Assumptions About the Error Term

In a situation where it is difficult or impossible to guarantee the assumed behav-
ior (additive or multiplicative) of the stochastic term, it is clearly desirable for the
parameter estimates of a model to remain stable under both assumptions. The sta-
bility of the parameter estimates has been evaluated by comparing the parameter
estimates obtained under the assumption of additive error with the ones calculated
under the assumption of multiplicative error, as suggested in Ratkowsky (1990). The
least square (LS) estimates of the parameters and the residual variance, σ2, for each
model/data set combination are reported in Table 14.3, and the plots of the S-curve
models estimated under the assumption of additive error are shown in Fig. 14.2.
The results in Table 14.3 highlight that only the generalized Weibull model shows
stable LS estimates when combined with the three considered data sets. All of the
other models reviewed here, when combined with the DSP data set, exhibit unstable
LS estimates. The logistic model and the Gompertz one, when used in combination
with the two aero-engine data sets, present relatively stable LS estimates. The log–
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logistic model and the Richards one show the worst results. Moreover, the LS pa-
rameter estimates obtained for the combination Richards model/DSP data set under
the assumption of multiplicative error are not reported (n.r.), since they are affected
by significant numerical errors.
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14.3.3 Sustainability of the Assumption of Linearity

For nonlinear models, such as the S-curve, the LS estimators have unknown prop-
erties for samples of finite size. A nonlinear model whose properties are close to
being what one expects from a linear one is preferable to a model whose behavior
is far from linear. In fact, in this case: (a) it is easier to obtain the LS estimates; (b)
interpretation is relatively straightforward; (c) the predicted values of the response
variable, I(t), are almost correct; (d) the shape of the joint confidence region for the
parameters is nearly ellipsoidal (Ratkowsky 1990).

The approach used in order to assess the nonlinear behavior of the S-curves re-
ported in Table 14.1 is the one proposed in Bates and Watts (1998), which quantifies,
using two indices, the curvature of the parameter lines on the solution locus (intrin-
sic nonlinearity, IN) and their lack of parallelism and unequal spacing (parameter-
effects nonlinearity, PE). Unlike the intrinsic nonlinearity, the parameter-effects
nonlinearity can often be reduced by a suitable reparameterization. The curvature
measures of Bates and Watts have been calculated for each reviewed model/data
set combination. The statistical significance of each of the IN and PE indices is as-
sessed by comparing its value with 1/(2

√
F), where F indicates the 1−γ percentile

of the F distribution with p and n− p degrees of freedom (n and p are the number of
observations and parameters, respectively). The results are reported in Table 14.4,
with the critical values (for γ = 0.05) given in parentheses. The values in bold indi-
cate the model/data set combinations for which the specific linearity assumption is
rejected.

The results show that:

• All of the reviewed models, when combined with the DSP data set, are charac-
terized by significant nonlinearity.

• The Richards model is characterized by significant nonlinearity for all of the data
sets considered here.

Table 14.4 Curvature measures of Bates and Watts and critical values (γ = 0.05) for each
model/data set combination

Curvature
measures

Logistic Gompertz Log–
logistic

Richards Generalized
Weibull

Piston
aero-engines

IN 0.0902
(0.2606)

0.1680
(0.2606)

0.1582
(0.2606)

0.3391
(0.2734)

0.0929
(0.2606)

PE 0.1199
(0.2606)

0.1785
(0.2606)

0.1666
(0.2606)

2.817
(0.2734)

19.464
(0.2606)

Jet
aero-engines

IN 0.1417
(0.2537)

0.1883
(0.2537)

0.1313
(0.2537)

1.095
(0.2640)

0.2217
(0.2537)

PE 0.1641
(0.2537)

0.1636
(0.2537)

0.1844
(0.2537)

6.0034
(0.2640)

43.73
(0.2537)

32-Bit
floating DSP

IN 0.2975
(0.2368)

0.4669
(0.2368)

0.3321
(0.2368)

0.9434
(0.2398)

0.4223
(0.2368)

PE 0.4895
(0.2368)

0.5042
(0.2368)

0.5207
(0.2368)

393.57
(0.2398)

85.21
(0.2368)
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Table 14.5 Box’s percentage bias index for each model/data set combination

Logistic Gompertz Log–logistic Richards Generalized
Weibull

Piston
aero-engines

α 0.3681 0.7343 0.7544 6.550 –
k 0.3590 0.6363 0.7432 6.190 27.27
s – – – 8.131 0.352

Jet
aero-engines

α 0.9443 1.105 1.185 53.84 –
k 0.9390 1.023 1.766 51.49 116.93
s – – – 60.65 1.158

32-Bit
floating DSP

α 5.425 5.607 5.811 –724.333 –
k 5.321 5.144 5.731 36.023 488.137
s – – – 187.9 6.015

• The logistic, the Gompertz, and the log–logistic models show close-to-linear be-
havior when combined with the two aero-engine data sets

• The generalized Weibull model, when combined with the two aero-engine data
sets, is characterized by a significant PE index.

A significant PE index means that at least one parameter in the model exhibits be-
havior that is far from being linear. The percentage bias (i.e., the bias expressed as
a percentage of the LS estimate) is a useful quantity for identifying the parameter(s)
responsible for high value(s) of the PE index. A good rule of thumb is that an ab-
solute percentage bias that is higher than 1% indicates nonlinear behavior. Box’s
percentage bias index (Ratkowsky 1990) has been calculated for each parameter of
each model/data set combination, and these values are reported in Table 14.5.

The results in Table 14.5 confirm those shown in Table 14.4. Moreover, for the
generalized Weibull model, the Box percentage bias index values suggest that the
high values of PE index are mainly due to the parameter k, and so most of the
nonlinearity can be removed by seeking a good reparameterization for k.

14.3.4 Seeking a Good Reparameterization
for the Generalized Weibull Model

In order to obtain suggestions for a good reparameterization of k for the generalized
Weibull model, a simulation study was carried out (Erto and Vanacore 2005). For
each of the first two applicative examples, 1000 pseudo-random data sets were con-
sidered (generating the stochastic terms from the normal model). The histograms
of the LS estimates for k̂ obtained in relation to the two aero-engine data sets are
reported in Fig. 14.3.

The shapes of the two histograms suggest that the nonlinear behavior of the gen-
eralized Weibull model can be reduced by using an exponential reparameterization.
In particular, since the LS estimates k̂ for each data set are lower than one, the chosen
reparameterization is a negative exponential, exp(−k′), which provides positive val-
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Fig. 14.3a,b Histograms of k̂ for: a piston aero-engines data set; b jet aero-engines data set

ues of k̂′ where k̂′ = ln(1/k̂). Thus, the reparameterized generalized Weibull model
could be:

I(t) = I0 +(1− e−e−k′ ts
)(Ilim − I0) . (14.2)

The percentage bias and the PE index for all combinations of the new model func-
tion (14.2) with the three data sets have been calculated and compared with the
ones relating to the original model function (reported in Table 14.1). The results are
reported in Table 14.6.

As a result of reparameterization, the values of the PE index as well as the per-
centage biases are substantially decreased and the new model function in (14.2) is
much closer to linearity than the original one.

To confirm the reduction in nonlinearity resulting from the reparameterization,
the error sum of squares (SSE) function and the approximate (0.90, 0.95, 0.99)%
confidence contours for the parameters of both model functions after the functions
are applied to the piston aero-engines data set are shown in Fig. 14.4 (note that the
plots obtained for the the jet aero-engines data set are absolutely analogous to these
plots).

The closer the model is to being linear, the closer the contours are to being ellipti-
cal. Thus, the change from the asymmetric “banana-shaped” contours of the original
generalized Weibull model (Fig. 14.4b) to the elliptical contours of the reparameter-
ized generalized Weibull model (Fig. 14.4d) demonstrates the reduction in nonlinear
behavior (Draper and Smith 1981).

Table 14.6 Percentage biases and PE indices for the parameter k in the generalized Weibull model,
and for the parameter k′ in the reparameterized generalized Weibull model (critical values for the
PE index are shown in parentheses)

Generalized
Weibull
k

Reparameterized
generalized Weibull
k′

Piston
aero-engines

Percentage bias 27.27 0.3505
PE 19.464 (0.2606) 0.1157 (0.2606)

Jet
aero-engines

Percentage bias 116.93 1.147
PE 43.73 (0.2537) 0.2047 (0.2537)
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Fig. 14.4 Error sum of squares function (a) and approximate confidence contours (b) for the pa-
rameters of the generalized Weibull model to the piston aero-engines data set; error sum of squares
function (c) and approximate confidence contours (d) of the reparameterized generalized Weibull
model after the model has been applied to the piston aero-engines data set

14.3.5 The Goodness of Fit of Each Model

The goodness of fit of each of the models compared here was evaluated via the
mean absolute percentage error (MAPE) (Carrillo and González 2002). This index
is defined as follows:

MAPE =
1
n

n

∑
t=1

∣∣∣∣ I (t)s − I (t)o

I (t)o

∣∣∣∣×100 (14.3)

where I(t)s is the technological performance estimated with the model function, and
I(t)o is its observed value. The calculated MAPEs for each model/data set combi-
nation are reported in Table 14.7.
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Table 14.7 MAPE for each model/data set combination

Logistic Gompertz Log–logistic Richards Reparameterized
generalized
Weibull

Piston aero-engines 18.88 25.87 25.81 16.00 12.73
Jet aero-engines 33.23 25.34 29.30 60.26 18.59
32-Bit floating DSP 37.08 43.07 40.80 41.69 31.58

Obviously, it is not possible to state which model provides the best fit to any such
data, but it is worth underlining that the reparameterized generalized Weibull gives
the best fit for all three data sets examined here.

14.4 Conclusions

This chapter has provided a critical review of some of the most popular S-curve
models. Six criteria were used to compare the models under review, carefully con-
sidering the dynamics of the technological innovation process as well as manage-
ment needs.

An overview of the results of the comparisons is given in Table 14.8, where the
crosses indicate properties held by a specific model.

Clearly, we cannot generalize these results for the three examples used here
to any data set. However, it is worth noting that the reparameterized generalized
Weibull is the only S-curve model reviewed in this chapter that has all of the prop-
erties that are desirable when modeling the performance growth of technological
innovation.

Table 14.8 Properties held by the models under comparison

Logistic Gompertz Log–logistic Richards Reparameterized
generalized
Weibull

Consistency with
technological growth
dynamics

X

Computational
simplicity

X X X X

Flexibility X X X

Stability X X X

Sustainability of the
assumption of linearity

X X X X

Goodness of fit X
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engineering characteristics 4, 7, 11, 20, 22,

23
error sum of squares 257
estimation procedure 235
EVA method 30, 31, 33, 36
expert knowledge 196

F

factorial design 134, 139
field failure warranty data 202
finite element analysis 126
force of obsolescence 251
form error 104
fractional factorial 130, 135

G

gamma process 219
Gaussian random process 93
Gaussian stationary process 71
generalized Weibull 249, 252, 255, 256
Global Land Cover Map 150
Gompertz 248, 249, 252, 255, 256, 259
goodness of fit 258
grand total 96
growth models 247
growth rate 251

H

House of Quality
HOQ 8, 12, 20, 22

human–machine interface 44–46, 48, 62

I

inflection point 248, 249
integrated mean squared error 75

integrated parameter and tolerance design 68
internal noise factor 68
intrinsic nonlinearity 255

J

Joint angles 48, 49

K

Kano model 5, 8, 10, 12, 13, 23, 28, 29
Kansei engineering 9, 10, 23, 28, 29, 32
Kansei engineering and QFD 11
key system ergonomic characteristics 45, 47
knowledge elicitation 195
Kriging 66, 127
Kriging model 93, 106, 126

L

land-cover databases 145, 146, 148–150,
158, 159

laser-drilling methods 179
laser-drilling process 178
latin hypercube 93
latin hypercube design 110
latin hypercube sampling 67
log–logistic 248, 249, 252, 253, 255, 256,

259
logistic 248, 249, 252, 255, 256, 259

M

main effects 184
MAPE 258
Markov process 220
maximin design 67
maximum expected increase of form error

114
maximum likelihood design 77
maximum mean squared error 75
maximum prediction variance 114
mean absolute percentage error 258
mean residual life 215
mean square prediction error 96, 107
metamodels 69
mini-car user packaging 44, 56–58
mixture 44, 48, 55, 62
model calibration 123, 126, 128
model validation 123
model-based redundancy 163
modification effectiveness 195
MScMS 164

N

noise factor 130
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non-normal populations 234
non-statistical data 234
nonlinear model 255

O

obsolescence 251
office chair 62, 63
one-factor-at-a-time 178
online self-diagnostics 163
optical profilometer 69
optimal concept 30, 33, 34, 36
optimal design approach 70
out-of-control state 240

P

parameter-effects nonlinearity 255
Pareto charts 184
participatory design 28, 30
past product 195
performance growth 248
performance of the technology 248
periodic inspections 216
permanent random numbers 154–159
photointerpretation 146, 147, 153, 156, 158
physical experiments 125, 128, 130, 140,

141
physical redundancy 163
Plackett–Burman design 130
Poisson Markov process 221
posterior probability density function 237
power exponential family 72
power law process 219
power law shock model 219
practical Bayes estimators 235
pre-experimental phase 178
prediction capability 108
predictive distribution 201
prior information 239
prior technological knowledge 234
problem solving 178
product attributes 11, 12
product concept 5, 10, 22
product development process 5, 7, 22, 23

Q

quality control 145, 147–153, 157–159
quality elements 29, 30, 32, 33, 40
quality evaluation 30, 33, 40
quality function deployment

QFD 5, 7, 11, 23

R

randomization 77
randomized sequential Kriging 79
re-parameterization 256
recast layer thickness 184
reliability 193
reliability control 234
reliability of a measurement 163
reliable life 236
remote sensing 146, 147, 156, 158
reparameterization 256
reparameterized generalized Weibull 257,

259
residual reliability 215
response surface designs 124
Richards 248, 249, 252, 253, 255, 256, 259
robust design 31, 45, 47, 126, 130, 132, 142
robust engineering 68
robust ergonomic virtual design 44, 45, 62

S

scientific method 123, 124, 127
screening 124, 130, 135
screening experimental phase 189
S-curve 247
sequential

design 76, 112
experimentation 124, 141, 142
experiments 76
Kriging design 78
learning 178
procedure 149, 154–159
pulse delivery pattern control 181
sampling 149, 153, 154, 158

shape parameter 235
Shewhart control charts 234
shock model 217
simulation experiments 123, 126–128, 141
simulators 66
sketches 28, 30, 32, 33, 37
space-filling 70
SSE 257
state-dependent process 215
stationary correlation function 94
statistical design for innovation 27–30, 32,

34
Statistical Process Control 233
stochastic modeling 214
stochastic simulation 126
stochastic simulators 68
stopping rule 78
surrogate 69
system optimization 66
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T

taper 184
team approach 189
technological process innovation 178
training set 92
trilateration problem 166
two-factor interactions 184
two-phase 149, 156, 158
two-step 145, 156, 158

U

user-centered 28, 40

V

validation 127, 145–148, 150–152, 158, 159
virtual lab 46, 48, 56
virtual reality 28, 30, 32, 33, 35, 40
voice of customer 5, 6

W

wear growth 215
wear process 215
Weibull distribution 203, 235
Weibull percentile 236
Weibull-type functions 248
weighted comfort loss 44, 51, 53
working conditions 196
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