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Preface 

Victor R. Basili, Dieter Rombach, and Kurt Schneider 

Introduction 

In 1992, a Dagstuhl seminar was held on “Experimental Software Engineering 
Issues” (seminar no. 9238). Its goal was to discuss the state of the art of empirical 
software engineering (ESE) by assessing past accomplishments, raising open 
questions, and proposing a future research agenda.  

Since 1992, the topic of ESE has been adopted more widely by academia as an 

interesting and promising research topic, and in industrial practice as a necessary 

infrastructure technology for goal-oriented, sustained process improvement. At the 

same time, the spectrum of methods applied in ESE has broadened. For example, in 

1992, the empirical methods applied in software engineering were basically restricted 

to quantitative studies (mostly controlled experiments), whereas since then, a range of 

qualitative methods have been introduced, from observational to ethnographical 

studies. Thus, the field can be said to have moved from experimental to empirical 

software engineering.  
We believe that it is now time to again bring together practitioners and 

researchers to identify both the progress made since 1992 and the most important 
challenges for the next five to ten years.  

Objectives 

The purpose of this workshop was to gather those members of the software 
engineering community who support an engineering approach, based on empirical 

studies, to: 

• Identify the progress of ESE since 1992 (Dagstuhl Seminar No. 9238*)  

• Summarize the state of the art in ESE  

• Summarize the state of the practice in ESE in industry  

• Develop an ESE roadmap for research, practice, education and training  

Three sessions were set up to discuss some of the most eminent challenges in ESE: 

1   The Empirical Paradigm (Lead: Dieter Rombach) 

The two topics addressed in this session were “Approaches for Empirical Validation” 

and “Exploration versus Confirmation.” The session was complemented by a 

historical review. 

Approaches for Empirical Validation  
Numerous types of approaches are used for empirical validation. Questions relevant 
in this context include: 
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Which approaches are useful in what situation? How do we combine quantitative and 
qualitative studies? Which new and innovative approaches have surfaced lately? 

Exploration versus Confirmation 
Empirical studies range from exploring new, badly understood software engineering 
approaches for the purpose of incremental learning to confirming well-defined 
software engineering approaches. This raises a number of questions: 
Which of these study forms is appropriate under what circumstances? How do we 
deal with validity threads (especially for exploratory studies)? 

Historical Review 
Guest Speaker: Mike Mahoney, a science historian from Princeton, provided a 
historical review on how other disciplines have dealt with the issue of “exploratory 
versus confirmatory studies.” He then suggested some ideas for software engineering. 

2   Measurement and Model Building (Lead: Victor Basili) 

The two topics addressed in this session were “Data Sharing” and “Effective Data 
Interpretation.” 

Data Sharing  
We have not yet established clear rules for handling ownership of empirical data – 
like those in other disciplines such as physics. This raises the following questions: 
What is the value of empirical data, testbeds, and other study artifacts? How should 
they be shared for replication? What are the limits of sharing? How should ownership 
be recognized in publications? How can the probability of misuse be minimized? 

Effective Data Interpretation 
Proper interpretation of empirical data is a challenging task. The most obvious 
questions in this context include: 
What are scientifically acceptable means of interpretation? What new approaches 
(e.g., visualization, simulation) can help? How do we combine evidence from 
individual studies into more abstract evidence? 

3   Technology Transfer and Education (Lead: Kurt Schneider) 

The two topics addressed in this session were “Technology Transfer” and 
“Education.” They are two facets of making an impact with empirical work.  

Technology Transfer  
Empirical studies can be used to facilitate and speed up technology transfer into 
practice. Relevant questions in this context include: 
How do we package results for different purposes and contexts? How can we use 
empirical software engineering to speed up technology transfer? What information 
do practitioners need from empirical studies? What is most convincing for 
practitioners? 
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Education  
Empirical methods have to be taught, on the one hand; on the other hand, empirical 
studies can be used to teach other computer science and software engineering topics 
better. This raises a number of questions: 
What are the experiences for effectively teaching empirical study competence? What 
are the experiences and approaches for integrating empirical studies into computer 
science or software engineering curricula? What educational methods are suitable for 
teaching empirical or evidence-based software engineering? How can education be 
improved? 

Workshop Organization 

To address the aforementioned challenges, an international workshop on the topic of 
“Empirical Software Engineering” was organized and held at the International 
Conference and Research Center for Computer Science (IBFI) at Dagstuhl Castle in 
Germany. The motivation for this workshop was to provide a forum for a relatively 
small but representative group of leading experts in software engineering with an 
emphasis on empirical studies from both universities and industry to meet and reflect on 
past successes and failures, assess the current state of the practice and research, identify 
challenges, and define future directions. An Organizing Committee identified key topics 
and key people who should participate in the workshop. The topics were chosen for 
discussion along with the session chairs and the people who were to present 
introductory talks. A final session was aimed at devising a roadmap for future work.  

After the selection of discussion topics, introductory talks, and session chairs, 
approximately 30 more participants were invited to submit position statements on the 
selected topics. The participants came from Europe, the USA and Canada, Asia, and 
Australia.  

The workshop was scheduled to run from Tuesday, June 26, 2006, through noon on 
Friday, June 30, 2006. Three full-day sessions were devoted to the topics listed. A 
half-day session was devoted to the development of a roadmap.  

Session Organization 

During each session, the Chair set the stage, by summarizing the state of 1992 and 

introducing the two selected topics. Two introductory presentations per topic set the 

tone and raised issues for discussion by identifying the progress made since the 1992 

Dagstuhl Workshop, raising issues and challenges for the next five to ten years, and 

providing a list of provocative statements. Based on the issues raised by the 

introductory presentations and additional issues raised by other seminar participants, 

lively discussions took place. The discussions were deepened in up to four parallel 

working groups. Each working group was asked to provide a summary of their 

discussion. The session was concluded with the presentations of the working groups 

and final discussions. The material contained in this volume includes, for each 

session, the keynote address, introductory talks, position papers, summaries of the 

working groups, and a discussion summary. 
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Results  

In session 1, on the empirical paradigm, the topics of approaches for empirical validation 
and of exploration versus confirmation were discussed. Workshop participants agreed 
that the community has matured since 1992 but is still in a very early phase compared 
to other disciplines. Improvements were suggested, among others, with regard to 
types of studies (e.g., longitudinal case studies), complementary usage of quantitative 
and qualitative studies, and theories for aggregating results across studies. 

In session 2, the topics of data sharing and effective data interpretation were 
discussed in the context of measurement and model building. Clearly, as a community 
we need to build on each other’s work in order to build models that represent the 
knowledge of the discipline better. We need effective approaches to interpret these 
models across multiple domains, environments, contexts, etc. Workshop participants 
agreed on these goals but did not always agree on how to achieve them. Discussions 
ran from debates on the necessity of protocols, to the use of open source data as 
opportunities of study, to ways of combining the results from individual studies, to 
building theories based on multiple studies. 

In session 3, technology transfer and education were discussed. These issues are 
tightly interwoven. Good empirical education will lead to competent graduates. In 
their industrial careers, they are more likely to use and adopt empirical results than 
others. However, this will be a long-term effect. Workshop participants agreed there 
need to be explicit, short-term technology transfer mechanisms. Discussions and 
working groups discussed achievements and pointed to future research agendas.  

Past Achievements 

Since 1992, the community’s understanding of how to perform empirical studies in 
the area of SE has improved. Consequently, the amount of empirical study activity 
has grown dramatically and there are many more sources of data and results from 
studies than there were then. Furthermore, the community was able to provide a body 
of knowledge from empirical studies in a few software engineering areas (e.g., 
inspections). 

There have been a fair number of collaborations, some sharing of data, attempts at 
combining evidence from various studies and even the beginnings of the development 
of theories.  Some of these results come from the enlargement of the community of 
researchers and some come from the availability of vehicles for publication and 
sharing of knowledge, e.g., ISERN: the International Software Engineering Research 
Network (started in 1993), the Journal of Empirical Software Engineering (started in 
1996), and the International Symposium on Empirical Software Engineering (started 
in 2001). Some of the data have begun to be shared by different research groups, often 
involving some form of collaboration. But there are problems associated with 
successful sharing, e.g., regarding the overhead. Open source has become a major 
source of new data and opportunity for study. Various mechanisms are being studied 
for combining results of individual studies using experience bases and evidence-based 
approaches. Very little has been done in building theories from multiple studies but 
the problem has been identified as an area for further research. 
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Since 1992, empirical methods have been taught at many universities today. All 
courses discussed were created and designed after the 1992 workshop. The necessity 
to study empirical work in software engineering was seen on different levels of 
education, from Bachelor to graduate levels. Today, there is a clear shift to expecting 
empirical validation of results in software engineering publications. Papers are less 
likely to be accepted without them. PhD students, the potential next generation of 
researchers, are exposed to ESE techniques in a growing number of institutions.  

Empirical validations do not necessarily require controlled experiments. During the 
last few years, well-prepared case studies in a realistic environment added an 
important facet. In a real industry project, a technique can prove its scalability and its 
fit to a specific industry context. Therefore, collaborations between academia and 
industry have been widely acknowledged in the meantime. They are a key to making 
an impact with empirical results. This awareness has grown significantly since 1992. 

Key Points of Dissent 

Probably the biggest source of dissent was the need for protocols in the sharing of 
data. Some felt that there should be some organized set of protocols for sharing data 
that would promote the sharing activity and protect the integrity of the data, while 
others felt a more free form of exchange was more appropriate. The concept of 
whether the experimenter owned the data was hotly debated and the view that 
programs are often considered the intellectual property of the developer was 
considered a detriment to data sharing. 

Much empirical work is based on identifying problems, goals, or hypotheses, and 
then identifying the kind of design that should be applied and data that should be 
collected. There was some concern that studying open source was more of a bottom-
up approach and that the data needed might not always be available, leading to a poor 
study or a change of focus for the study to satisfy the data that are there. 

Although there is a general trend towards offering courses on empirical techniques, 
there is no consent on their contents or structure. Depending on the teachers’ attitude, 
courses either tend to be focused on statistical methods or on conveying a more 
general view of research and evidence. Different books on empirical results 
emphasize different styles. Stimulating reflection in students is the common driver of 
both attitudes.  

Collaboration with industry is seen as an important prerequisite. Researchers want 
to transfer their results to industrial use. Often, this is associated with funding through 
a company. Many see consulting and industry validation almost as synonyms. 
However, some participants stressed the two-way character of such a collaboration. 
Not only will practitioners learn from researchers, but researchers will also need to 
learn from practice: What are relevant research questions? What are valid arguments 
to sell a result? Researchers and industry experts need to meet on middle ground.  

Important Topics for Future Work 

A historian’s perspective yielded the insight that ESE should not feel that it is behind, 
but there is a normal progress in the maturing of science that, as history shows, takes 
some time; ESE still needs to probe / explore what the important factors are in 
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software engineering. Much of science rests on engineering experience and ESE 
needs to accept that wrong models can be useful to advance science. 

Generalization remains a major issue for controlled experiments performed under 
laboratory conditions. Generalization can be approached by building (logical) models. 
Extend the body of knowledge from empirical studies by incorporating the whole 
range of empirical evidence, ranging from controlled experiments to longitudinal case 
studies, by also integrating quantitative and qualitative research methods. 

To better support reuse of empirical knowledge (combination of results), 
standardized ways, not only for performing empirical studies but also for reporting the 
results, have to be agreed upon. 

Combining the results of various studies is necessary to evolve our understanding 
of the software engineering discipline. There is a need to share data and artifacts 
across research groups so that results of varying studies can be analyzed, models built 
and evolved, and influencing variables identified. An article offering various 
protocols for the sharing of data and artifacts has been published in the Journal of 

Empirical Software Engineering (2007). The future work involved here is to test out 
the protocols and evolve them based on experience. 

In many ways, empirical study in software engineering is opportunistic, and we 
need to find those opportunities for data and artifacts. Open source is one such 
opportunity. We need to experiment with mechanisms that allow us to use open 
source projects in more effective ways, e.g., by letting an empiricist be part of the 
study from the beginning. 

Identifying and experimenting with ways to combine data from multiple studies are 
one of the most important areas of research if we are to be successful in building 
effective models in the software engineering discipline. We still struggle with how to 
do it effectively. 

Abstracting from models to theories is a natural progression for most disciplines. 
Research is needed in approaches to building theories, representing them, 
documenting them, schematizing them, and evaluating them. 

Teaching empirical techniques requires good teaching material, such as textbooks. 
Sample documents and free data would be of great help to try established empirical 
techniques. Participants suggested exchanging study material on specific Web sites. 
These could be shared among the empirical research community.  

Establishing and maintaining collaborations between industry and academia will be 
even more important in the future. Many (junior) researchers find it challenging to 
approach a company successfully. Even senior researchers admit there can be many 
failures and disappointments before a fruitful collaboration emerges. More guidance 
and more examples in the area of collaborations would lower the threshold. 

How to select rewarding topics for ESE research was discussed several times. 
While research had important successes in fields such as reviews and inspections in 
the past, many believe the agenda needs to be broadened. Different schemes were 
proposed to visualize current areas of work. Industry will have a say in defining future 
research roadmaps.  

Established, well-understood areas of empirical work, such as inspections, make 
good candidates for a common repository of education material. Every student who 
wants to become a mature empirical researcher should replicate some of the classical 
inspection studies!  
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The Empirical Paradigm  

Introduction 

Dieter Rombach 

Abstract. The session on the empirical paradigm focused on two main aspects, 

(1) approaches for empirical validation and (2) exploration versus confirmation. 

The main conclusions are that the community has matured since 1992 but is still 

in a very early phase compared to other disciplines. Improvements were 

suggested, among others, with regard to realism of studies, quality of studies, 

and complementary usage of quantitative and qualitative methods. 

1   Introduction 

The session on the empirical paradigm emphasized the following topics: (1) 
Approaches for empirical validation, and (2) Exploration version confirmation. 

2   Approaches for Empirical Validation 

“Approaches for Empirical Validation” aimed at discussing the numerous types of 
approaches that are used for empirical validation. The following questions were used 
to initiate a discussion. 

• Which approaches are useful in what situation?  

• How do we combine quantitative and qualitative studies?  

• Which new and innovative approaches have surfaced lately?  

The two introductory talks of this session were given by Marvin Zelkowitz on 

“Techniques for Empirical Validation” and by Walter Tichy on “Status of Empirical 

Research in Software Engineering”.  

The topic “Approaches for Empirical Validation” is complemented by short papers 

by Marcus Ciolkowski on the aggregation of empirical evidence, by Lionel Briand on 

empirical evaluation in software engineering: role, strategy, and limitations, by 

Markku Oivo on new opportunities for empirical research, by Carolyn Seaman on the 

empirical paradigm, and by Austen Rainer on the value of empirical evidence for 

practitioners and researchers. 

3   Exploration Versus Confirmation 

“Exploration versus Confirmation” aimed at discussing the use of empirical studies as 
they range from exploring new, badly understood software engineering approaches 
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for the purpose of incremental learning to confirming well-defined software 
engineering approaches. The following questions were used to initiate a discussion: 

• Which of these study forms is appropriate under what circumstances?  

• How do we deal with validity threads (especially for exploratory studies)?  

The two introductory talks were given by Victor Basili on “The Role of Controlled 
Experiments in Software Engineering Research” and by Barbara Kitchenham on 
“Empirical Software Engineering – Problems and Opportunities”. 

The topic “Exploration versus Confirmation” is complemented by short papers by 
James Miller on creating real value in software engineering experiments, by 
Guilherme Horta Travassos, who discussed issues from silver bullets to philosophers' 
stones, by Helen Sharp on social and human aspects of software engineering, by 
Tracy Hall on longitudinal studies in evidence-based software engineering, and by 
Jeffrey Carver on the use of grounded theory in empirical software engineering. 

4   Working Groups 

Four working groups were formed to address issues raised in previous discussions: 

• “Increase reputation of empirical research & domains of study”, led by Larry 
Votta. 

• “Return on Investment for empirical research - most valuable insights so far”, led 
by Lutz Prechelt. 

• “Combination of different types of studies for more realistic investigations” (such 
as controlled experiments and case studies), led by C. Seaman. 

• “Role of controlled experiments”, led by Lionel Briand and Andreas Jedlitschka. 

5   A Historical Perspective 

Mike Mahoney, a science historian from Princeton, provided a historical review on 
how other disciplines have dealt with the issue of “exploratory versus confirmatory 
studies”. He suggested some ideas for software engineering. 

6   Results 

The main results of this session are: 

• There is still room for improving the marketing of empirical software engineering, 
e.g., by providing an empirically based software engineering handbook. 

• In order to complement findings from quantitative analysis, more emphasis should 
be placed on qualitative methods. 

• The community should strive for  

• more realistic studies, e.g., industrial project observations, and 

• a common research agenda. 
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• The quality of studies, from design to reporting (incl. publication), shall be 
improved further. 

As presented by Mike Mahoney in his historical perspective, where he compared 
empirical software engineering with other disciplines, empirical SE should not feel 
that it is behind, but that there is normal progress in the maturing of science; empirical 
software engineering is still in a phase where it needs to probe and explore what the 
important factors are. 
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Techniques for Empirical Validation 

Marvin V. Zelkowitz 

Abstract. In 1998 a survey was published on the extent to which software 

engineering papers validate the claims made in those papers. The survey looked 

at publications in 1985, 1990 and 1995. This current paper updates that survey 

with data from 2000 and 2005. The basic conclusion is that the situation is 

improving. One earlier complaint that access to data repositories was difficult  

is becoming less prevalent and the percentage of papers including validation is 

increasing. 

1   Introduction 

Any science advances by the process of developing new abstract models and then a 

series of experiments to test those models against reality. However, all too often in the 

software engineering domain, models (e.g., programs, theories) are described without 

any corresponding validation that those models have any basis in reality.  
In order to determine the status of experimental validation in software engineering, 

in 1998 a paper by Zelkowitz and Wallace [4] surveyed the research literature in order 
to classify the experimental methods used by authors to validate any technical claims 
made in those papers. A total of 612 papers, published in 1985, 1990 and 1995, were 
studied. Of these, 62 were deemed not applicable, leaving 560 research papers. The 3 
data sources used for this survey were: 

• ICSE – Proceedings of the International Conference on Software  
 Engineering 

• TSE – IEEE Transactions on Software Engineering 
• SW – IEEE Software Magazine 

Each of the research papers was classified according to a 14-scale taxonomy: 

1. Project monitoring. Collect the usual accounting data from a project and then 
study it. 

2. Case study. Collect detailed project data to determine if the developed product 
is easier to produce than similar projects in the past. 

3. Field study. Monitor several projects to collect data on impact of the 
technology (e.g., survey). 

4. Literature search. Evaluate published studies that analyze the behavior of 
similar tools. 

5. Legacy data. Evaluate data from a previously-completed project to see if 
technology was effective. 

6. Lessons learned. Perform a qualitative analysis on a completed project to see if 
technology had an impact on the project. 
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7. Static analysis. Use a control flow analysis tool on the completed project or 
tool. 

8. Replicated experiment. Develop multiple instances of a project in order to 
measure differences. 

9. Synthetic. Replicate a simpler version of the technology in a laboratory to see 
its effect. 

10. Dynamic analysis. Execute a program using actual data to compare 
performance with other solutions to the problem.  

11. Simulation. Generate data randomly according to a theoretical distribution to 
determine effectiveness of the technology. 

12. Theoretical. Formal axiom-proof style paper describing a new theory. 
13. Assertion. Informal feasibility study of the technology. (More of an existence 

proof rather than an evaluation of the claims of the technology). 
14. No experimentation. The default classification if a paper fails to fall into any of 

the preceding classification. 

The first eleven categories represented various empirical validation methods. 
Method 12 (Theoretical) indicated that the paper was a formal model of some 
property. (The original 1998 paper did not include a separate theoretical category, as 
methods 12 and 14 were combined as one category.)  There was a thirteenth quasi-
validation method, called an assertion. Assertion papers were those where the author 
knew that an experimental validation would be appropriate, but only a weak form of 
validation was applied. (For example, a paper describing a new programming 
language might only show that it was feasible to write programs in that language, not 
whether the programming language solved any underlying problem that needed to be 
solved.) All other papers were characterized as “No experimentation,” indicating that 
some form of validation was appropriate, but was lacking. 

The basic conclusion was that approximately half of the papers had an inadequate 
level of validation. Similarly, Walter Tichy in 1994 [2] did his own literature search 
using a different protocol, yet came up with a similar conclusion. The general result 
was that the software engineering community was not doing a good job in developing 
a science of software development. 

It is now ten years after these two surveys, so it seemed appropriate to redo the 
1998 study in order to see if the situation had changed. One of the conclusions in the 
Zelkowitz and Wallace paper was that the situation seemed to be improving. Since 
two more 5-year milestones have since passed, it is worthwhile to revisit that initial 
survey to see how the research world has changed in the approximately 10 years since 
the original survey was conducted. 

If we were to redo in total, a slightly different taxonomy would be chosen than the 
14-point scale given above. However, one goal was to understand how the research 
world has changed since the 1990s, so the same classification model was used. One 
problem today is that we don’t have an agreed upon model for classifying software 
engineering research methods. Two other surveys compiled in the interim period [1] 
[3] use a different classification model for determining the experimental validation 
method used. 

Table 1 presents the basic data from both the original and 2006 survey. In the 2006 
survey, an additional 361 papers were evaluated, with 35 not applicable, leaving 326 
additional research papers to classify. 
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2   Observations  

The percentages (excluding the “not applicable” category) for each of the 13 
validation methods are given in Figure 1. Case study remains the most popular 
method, increasing in each survey period from 8.3% of the papers in 1985 to 18.8% in 
2005. The “classical” experimentation method of a controlled replicated study 
(represented as the sum of synthetic and replicated in Figure 1) grew slightly to 5.3% 
of the papers in 2005 from 2.6% in 1985. Dynamic analysis dominated the 
experimental methods in 2005 with 20% of the papers. A possible reason why this is 
so is given later. 

Table 1. Classification data from 973 papers: 1985-2005 
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Total 
 ICSE 0 5 1 1 1 7 1 1 3 0 2 12 3 13 6 56 

  TSE 0 12 1 3 2 4 1 0 1 0 10 54 18 38 3 147 

  SW 0 2 0 1 1 5 0 0 1 0 0 13 1 10 6 40 

1985 Total 0 19 2 5 4 16 2 1 5 0 12 79 22 61 15 243 

 ICSE 0 7 0 1 2 1 0 0 0 0 0 12 1 7 4 35 

  TSE 0 6 1 1 2 8 0 1 4 3 11 42 19 22 2 122 

  SW 1 6 0 5 0 4 0 0 1 0 0 19 0 8 16 60 

1990 Total 1 19 1 7 4 13 0 1 5 3 11 73 20 37 22 217 

 ICSE 0 4 1 0 1 5 0 1 0 0 1 4 3 7 5 32 

  TSE 0 10 2 2 1 8 2 3 2 4 6 22 7 7 1 77 

  SW 0 6 1 3 1 7 0 0 0 0 1 14 0 3 7 43 

1995 Total 0 20 4 5 3 20 2 4 2 4 8 40 10 17 13 152 

 ICSE 0 10 0 0 1 4 0 2 2 4 1 11 3 20 10 68 

  TSE 0 9 3 1 0 0 0 0 4 4 7 11 10 15 2 66 

  SW 0 7 3 1 1 3 0 0 3 0 0 4 1 11 19 53 

2000 Total 0 26 6 2 2 7 0 2 9 8 8 26 14 46 31 187 

 ICSE 0 14 1 0 1 0 0 0 3 8 1 10 1 3 0 42 

  TSE 0 9 4 1 5 0 2 1 2 13 5 13 1 8 2 66 

  SW 0 9 4 1 5 0 2 1 2 13 5 13 1 8 2 66 

2005 Total 0 32 9 2 11 0 4 2 7 34 11 36 3 19 4 174 
 

More important than individual methods is the general “health” of the software 
engineering research field. This is summarized by Figure 2. Except for 2000, the 
percent of “No experimentation” papers dropped from 26.8% in 1985 to only 10.9% 
in 2005. Assertions dropped from 34.6% in 1985 to 21.2% in 2005. The percent of 
papers that used one of the 11 validation methods rose from 29% to 66% in 2005. 
(The percentage rose from 39% to 68% when theoretical papers were also included.) 
Clearly the situation is improving. This is consistent with an alternative study of the 
International Software Engineering conferences (ICSE) [3]. Using a sampling 
technique over all 29 ICSE proceedings, they found that 19 of 63 papers included no 
empirical study (30%). This present study indicates that 50 out of 208 ICSE papers 
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Fig. 1. Percentages of each validation method 

(26%) had no experimentation. They also found a statistically significant increase in 
evaluation papers between the conferences prior to 1990 and those since then. 

Unlike in the Zannier et al study [3], no attempt was made to evaluate the quality 
of the validation presented in those papers. (It was beyond our knowledge to 
understand and evaluate all 886 papers, but it was fairly easy to understand hoe the 
authors proposed to evaluate that technology.) If the paper stated an hypothesis about 
the technology described in the paper (even if stated indirectly) and then proceeded to 
describe a validation method for that hypothesis, we considered it as validated. 
Perhaps the hardest part of the study was trying to understand what the underlying 
hypothesis really was and how the authors would proceed to evaluate it. As stated 
earlier, we need a common terminology in which to describe validation methods. 
Many of the authors used terms like “experiment,” “case study,” “simulation,” 
“controlled,” etc. in very different ways.  

Several anecdotal observations are buried in the data. A common complaint 20 

years ago was the lack of published data sources that others could have access to. 

That seems to be changing. Many of the papers used the various open source 
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Fig. 2. Changes over time in validated papers 

repositories, looking at the development history of products such as the Apache web 

server or Mozilla, as sources for data. This use of historical data using open source 

and other data repositories was one of the reasons for the rise in the dynamic analysis 

category in Figure 1. Similarly, data mining through theses sources led to the rise in 

the legacy data category. 

3   Conclusions 

There are several threats to the validity of this study. 

1. The 2006 classification was performed about 9 years after the earlier study. 
While the same classification process was used to classify the papers according to the 
14-point taxonomy, undoubtedly the intervening years may have changed our views 
of some of the validation methods. Consistency of this somewhat subjective 
classification method is a problem. For example, in [1], they report 0 and 3 controlled 
studies in ICSE for 1995 and 2000, respectively, while Table 1 shows 1 and 4, 
respectively, for those years in our classification). While this may have affected 
individual percentages in Figure 1, it should not have had much of an impact on the 
overall results as given by Figure 2. 

2. As with the earlier 1998 study, each paper source for each year was managed by 
a different editor or conference chair. This has an effect on the overall acceptance rate 
of various papers submitted to that source. For example, the rise in “No 
experimentation” in 2000 was partially due to the largest number of ICSE papers (68) 
in the entire survey and the relatively large number of “No experimentation” papers 
(20) in those proceedings. Although such variances affect individual sources in a 
given year, the overall trends seem consistent. 
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3. There was a change in the scope of IEEE Software between 1995 and 2000. In 
the earlier survey, this magazine often published longer articles that had a research 
component. However, more recently the papers have been shorter with more regular 
columns appearing in each issue. Regular columns were not included in this survey 
and a value judgment was made on the remainder of the papers. If a paper discussed 
many solutions to a given problem, the paper was considered a tutorial or survey and 
listed as “Not applicable,” but if the paper focused on a particular technique (often the 
author’s), then it was considered a research paper. 

The greatest limitation to this study, however, was mentioned earlier – the quality 
of the evaluation was not considered in classifying a paper. If the field is to mature as 
a scientific discipline, not only do we need empirical validation of new technology, 
we also need quality evaluations. However, that study still needs to be done. 

In spite of these limitations, the results should prove of interest to the community. 
It provides a general overview of the forms of validation generally used by the 
computer science community to validate the various research results that are 
published and it does show that the field is maturing. Computer science seems to be 
developing an empirical culture so necessary to allow it to mature as a scientific 
discipline. 
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Status of Empirical Research in Software Engineering 

Andreas Höfer and Walter F. Tichy 

Abstract. We provide an assessment of the status of empirical software 

research by analyzing all refereed articles that appeared in the Journal of 

Empirical Software Engineering from its first issue in January 1996 through 

June 2006. The journal publishes empirical software research exclusively and it 

is the only journal to do so. The main findings are: 1. The dominant empirical 

methods are experiments and case studies. Other methods (correlational studies, 

meta analysis, surveys, descriptive approaches, ex post facto studies) occur 

infrequently; long-term studies are missing. About a quarter of the experiments 

are replications. 2. Professionals are used somewhat more frequently than 

students as subjects. 3. The dominant topics studied are measurement/metrics 

and tools/methods/frameworks. Metrics research is dominated by correlational 

and case studies without any experiments. 4. Important topics are underrepr- 

esented or absent, for example: programming languages, model driven develop- 

pment, formal methods, and others. The narrow focus on a few empirically 

researched topics is in contrast to the broad scope of software research.  

1   Introduction 

During the 10½ years that have elapsed since the first issue of Empirical Software 
Engineering (ESE) appeared in January 1996, the journal has become the major venue 
for publishing empirical results in software research. It is the only journal exclusively 
dedicated to empirical studies in software. Thus, ESE can be seen as a good indicator 
for the status and health of empirical software research. We wanted to know what 
topics are addressed by empirical research, which research methods are used, and 
where the data comes from. Further, we were interested in the question whether there 
are important topics that are insufficiently covered by empirical research. To answer 
these questions, we performed an in-depth bibliographic study of all reviewed articles 
in ESE from volume 1, number 1 to volume 11, number 2. 

2   Related Work 

In 2005 Segal et al. [4] presented a study that investigated the nature of the empirical 

evidence reported in 119 papers which appeared in ESE between 1997 and 2003. The 

classification scheme used in this paper is based on the one developed by Glass et al. 

[2]. Segal et al. [4] found among other things, that about half of the papers focused on 

measurement/metrics and inspections/reviews, that authors were almost as interested 

in formulating as in evaluating, and that other disciplines are referenced rarely. 
The classification scheme introduced by Glass et al. [2] differentiates papers in the 

field of computing based on five characteristics: topic, research approach, research 
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method, reference discipline, and level of analysis. Glass and his colleagues applied 
the scheme to 369 articles published in six leading software engineering journals over 
the period from 1995 to 1999. They conclude that software engineering research is 
diverse in topic but narrow in its research approach and method. Glass also found that 
98 % of the papers examined do not reference another discipline. 

Zelkowitz and Wallace [6] define a taxonomy for the classification of papers within 
the field of software engineering. They classified 612 articles published during the years 
1985, 1990, and 1995 in the journals IEEE Transactions on Software Engineering and 
IEEE Software as well as in the proceedings of the International Conference on 
Software Engineering. One of their findings is that about 30 % of all classified papers 
lack experimental validation, but note that this situation is improving. 

Sjøberg et al. [5] selected controlled experiments from 5,434 articles published in 
nine journals (including ESE) and proceedings of three conferences. The 103 papers 
describing controlled experiments were characterized according to topic, subjects, 
tasks, and environment of the experiment. One of the main results of Sjøberg and his 
co-authors is that controlled experiments constitute only a small fraction (1.9 %) of 
articles published. 

Lukowicz et al. [3] compare the percentage of papers with experimental validation 
in several computer science journals and conference proceedings to the percentage of 
experimental work in the two journals Neural Computation and Optical Engineering. 
The findings of this study, which classified 403 articles, indicate that there is a lack of 
empirical validation in computer science. 

The present paper concentrates on empirical work in software engineering in the 
journal dedicated to this type of work and attempts to get an indication of research 
quality and breadth. It is closest to the work of Segal et al. [4], but surveys a longer 
time span, classifies research method according to accepted categories in 
psychological research, and divides the largest of the categories in the work by Segal 
et al. [4], software life-cycle, into subcategories. We also identify gaps in the 
coverage of research topics. 

3   Research Method 

3.1   Selection of the Articles 

We gathered all issues of ESE from January 1996 to June 2006 and selected all 
reviewed articles. Titles, authors, and keywords of those papers were entered into a 
table for classification. We deliberately excluded 50 editorials, 30 viewpoints/position 
papers, 15 conference and workshop reports, and 6 comments/correspondence papers 
from the literature analysis. In total, we selected 133 reviewed articles. 

3.2   Classification of the Articles 

In order to develop a classification scheme for the articles, the authors jointly studied 
titles, keywords, and abstracts of all the articles that appeared in the first year of ESE. 
Out of this study, a first version of the classification scheme was developed. This 
scheme was refined during the classification process. Each paper was classified 
according to the three dimensions topic, method, and source of data. 
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Table 1. Topics 

Topic 

Design/Architecture 

Diagrams/Notations 

Empirical methods 

Inspections/Reviews 

Maintenance 

Measurement/Metrics 

Project planning/Estimation 

Quality estimation/Fault prediction 

Requirements 

Software engineering process 

Testing 

Tools/Methods/Frameworks 

Other 

• Topic: The subject area of the paper within software engineering. Table 1 
provides the list of topics. The categories are self-explanatory, except for the 
following: 

o The category Empirical methods covers tools or approaches to 
conduct empirical work; such papers aim to improve research 
methods. 

o There are categories for all major phases in software development 
(Design/Architecture, Inspections/Reviews, Maintenance, etc.), 
except implementation (this class is empty). The class Software 
engineering process includes papers that address more than one phase 
(usually the overall software development process).  

o The class Tools/Methods/Frameworks covers papers that introduce a 
novel tool, method or framework for software development, coupled 
with an empirical study (typically a case study). 

• Method: The empirical research method used for the study. We use categories 
from psychological research according to Christensen [1]. We only present 
non-empty categories1: case study, correlational study, ethnography, 
experiment, ex post facto study, meta analysis, phenomenology, survey (see 
Table 2). Papers were classified according to the main method. For example, if 
a paper contains a survey as a preliminary step for an experiment, then it 
would be classified as experiment. 

• Source of data: This characteristic categorizes the origin of the data used for 
empirical research (see Table 3). 

The following topics were sub-classified: Empirical method, Measurement/Metrics, 
and Tools/Methods/Frameworks. The reason is that papers in these classes typically 
address an additional topic. For instance, an empirical method might be specific to 

                                                           
1 Empty categories are: Longitudinal and cross-sectional study, naturalistic observation. 
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project planning, a metrics paper might apply to fault prediction, or a tool might be 
specific to the topic Requirements. Instead of double classification (which would be 
the alternative), we show the subcategories separately, in order to make the 
distribution of topics more transparent. 

Table 2. Research Method 

Method Definition 

Case study In-depth analysis of a particular project, event, 
organization, etc. 

Correlational study Measuring variables and determining the degree of 
relationship that exists between them. 

Ethnography Description and interpretation of the culture of a group 
of people. 

Ex post facto study Study in which the variables of interest are not subject 
to direct manipulation, but must be chosen after the 
fact (e.g., when analyzing software repositories). 

Experiment Quantitative study to test cause-and-effect 
relationships. 

Meta analysis Integrates and/or describes the results of several 
studies. 

Phenomenology Description of an individual’s or a group’s experience 
of a phenomenon. 

Survey Data is collected by interviewing a representative 
sample of some population. 

Table 3. Sources of Data 

Source Definition 

Professionals Data acquired from professionals directly by using them as 
subjects in an experiment or indirectly by collecting data from 
projects with professionals. 

Students Data acquired from students directly by using them as subjects in 
an experiment or indirectly by collecting data from a project with 
students. 

Both Data acquired from students and professionals. 

Benchmarks Benchmarks are artificially composed data designed to measure the 
performance of a tool, method, algorithm, etc. 

Software The source Software refers to data derived from operational 
software (such as reliability data) irrespective of the methods of 
development for such software. 

Studies Data acquired from other studies (meta analysis). 

Unknown Unstated source of data. Some articles do not state how the data 
was gathered or whether their subjects were students or 
professionals. 
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The classification process worked as follows. The first author initially classified all 

papers. If title, keywords, abstracts, and conclusions were not sufficient for 

classification, the whole article was studied. Doubtful assignments were tagged for 

the second author. After the first author had classified all articles, the second author 

checked the classification table for plausibility, spot-checked classifications in detail, 

and tagged additional doubtful classifications. The tagged classifications were then re-

checked together and corrected if necessary. 

4   Findings 

4.1   Topic 

Figure 1 depicts the distribution of topics. This dimension is dominated by the 

categories Measurement/Metrics and Tools/Methods/Frameworks followed by 

Inspections/Reviews and Software engineering process. The rest are all below 10 %. 

The categories Usability and Reliability were under 2 %, so we combined them with 

the papers that did not fit any category (class Other). 

As mentioned, several categories have subtopics, which are not included in Figure 

1. Of the 22 papers in the Measurement/Metrics category, half dealt with Project 

planning/Estimation and 27.3 % with Quality estimation/Fault prediction. Other 

topics are each under 5 %. 

There are 20 Tools/Methods/Frameworks papers, but the topics are more spread 

out: 25.0 % Software engineering process, 20.0 % Quality estimation/Fault 

prediction, 15.0 % Project planning/Estimation, and 10.0 % Usability. The class 

Empirical methods contains 11 papers, with 36.4 % General (no particular topic) and 

27.3 % dealing with project planning. 

4.2   Research Method of the Papers Surveyed 

The preferred research methods are Experiment and Case study (see Figure 2). 
Among the 50 papers describing an experiment 13 (26.0 %) were replications.  

An interesting question is what methods were used in the top three topics. 

Among the 22 Measurement/Metrics papers, 36.4 % use correlational studies and 

31.8 % case studies; there are no experiments and thus no systematic inquiries into 

cause and effect. For Tools/Methods/Frameworks, 55.0 % of 20 papers employ case 

studies, and 25.0 % experiments. Of the 17 articles with the topic 

Inspections/Reviews, 15 (88.2 %) use experiments, the remaining two papers 

contain case studies. Studies of Inspections/Reviews have the largest number of 

experiments. Diagrams/Notations is next with 7, followed by Design/Architecture 

with 6, and Project planning/Estimation as well as Tools/Methods/Frameworks each 

with 5. The high proportion of Inspections/Reviews combined with a high rate of 

experiments reflects the maturity of this area, as researchers are exploring causal 

relationships. 
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Fig. 1. Topic (Categories with subtopics are highlighted in orange.) 

 

Fig. 2. Research Method 

4.3   Source of Data 

Figure 3 shows the source of data. Papers employing professionals and students 

dominate. In 63 publications, professionals only were used, and solely students in 36.  
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There were 10 papers using both, for example comparing professionals and students. 

Figure 4 shows a cumulative graph of the distribution of papers with professional and 

student subjects. Though the proportion of papers with students and professional 

subjects varies from year to year, it can be seen that cumulatively, articles using 

professionals outnumber those using students over the years. 

 

Fig. 3. Source of Data 

As empirical work is often criticized for relying on students, we looked at the data 

source with respect to research method. It turns out that 78.9 % of case studies used 

professionals, 5.3 % students, and 2.6 % both. The situation is nearly reversed for 

experiments: 60.0 % used students, 22.0 % professionals, and 14.0 % used both 

students and professionals (see also Table 4). These findings are in line with those of 

Sjøberg et al. [5]. On a much larger sample of experiments, Sjøberg and his co-

authors report that 72.6 % of experiments employed students, 18.6 % professionals 

and 8.0 % both. 

Table 4. Proportion of Professionals and Students in the Top Three Research Methods 

% (Number of Papers) 
Type of Study 

Professionals Students Both 

Experiment 22.0 (11) 60.0 (30) 14.0   (7) 

Case study 78.9 (30) 5.3   (2) 2.6   (1) 

Correlational study 66.7 (10) 13.3   (2) 13.3   (2) 

All types 50.4 (63) 28.8 (36) 8.0 (10) 
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Fig. 4. Data from Students and Professionals 

5   What is Missing? 

Overall, it is a positive sign that studies with professionals outnumber those with 
students by a healthy margin. However, in experiments, student subjects dominate. 
This situation may reflect the difficulties of conducting controlled experiments 
outside a laboratory. More effort should be expended to repeat important experiments 
with professionals in order to improve generalizability of the results. 

The Measurement/Metrics area is dominated by case studies and correlational 
studies, without any experiment. The lack of research into cause and effect seems to 
be a major weakness. It is well known that a correlation between two variables does 
not constitute a causal relationship; the values of both of these variables may be 
determined by other, hidden variables. There is strong evidence that causal 
relationships have not been identified: It is straight-forward for programmers to 
corrupt the indicator variables used today and thereby subvert any prediction based on 
them. By contrast, in the software inspections area, which is about as old as the 
metrics area, researchers have developed experimental techniques to successfully 
explore causal relationships. 

Overall, the range of software topics studied empirically is rather narrow. Some 
important topics are missing completely. In particular, studies about programming 
languages and programming paradigms are conspicuously absent. As these topics are 
obviously important and subject to intense debate, studies comparing imperative vs. 
functional vs. scripting vs. object oriented languages are urgently needed, to inform 
further development of these languages and enable rational choices. Also missing are 
studies that compare programming approaches with standardized software that  
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substitute customization for programming. Program verification is not represented, 
but if verification is a practical approach, even in a limited domain, empirical studies 
are needed to determine efficacy. Absent were articles covering recent areas such as 
model driven development or aspect orientation. Furthermore, we expected to find 
papers illuminating the relationship between developer’s personal characteristics and 
their optimal mode of work. Such studies would require collaboration with other 
disciplines such as social sciences and psychology, but references from software 
engineering to these disciplines are rare, as observed by Glass et al. [2] and Segal et al. 
[4]. Long-term studies of programming methods, such as agile methods were missing, 
too. Large gaps as to topic are confirmed by Sjøberg et al. [5] and Segal et al [4]. 

A discussion with participants of the Dagstuhl seminar brought up additional 

topics that are missing. Unclear are the feasibility bounds of techniques—i.e., 

determining in what situation or in what context a particular method or approach is 

preferable to another. Closely related are cost/benefit tradeoffs covering the 

development cycle, for example models for determining the relative effort to be 

spent on requirements, design, quality assurance, and so on. In other words, what is 

needed is an answer to the question of what has to be done when, and how much of 

it. A unifying theory about defect causation and detection would help guide quality 

assurance efforts. Finally, the grand challenge for software research was seen as 

developing an understanding of which software methods work and why. Such an 

understanding should provide a suitable foundation for predictable software 

processes and products. 

6   Threats to Validity 

The first threat to validity concerns the fact that articles reporting on empirical work 
are published in other venues as well. Thus, ESE might not provide a representative 
sample of all empirical research. But Sjøberg et al. [5] confirm some of our findings 
on a larger sample, restricted to controlled experiments. 

We guarded against classification errors by a careful definition of classes and a 
cross check by a second person as described in section 3.2. Nevertheless, there are 
some borderline cases, and other raters might classify differently. 

7   Conclusions 

We conducted a literature review of all refereed articles published in ESE within the 
period form January 1996 to June 2006. We found that the use of professionals in 
78.9 % of case studies is encouraging, while controlled experiments are 
predominantly conducted with students. The range of topics continues to be narrow 
and should be broadened considerably. The metrics area would benefit from 
emphasizing investigations into cause-and-effect relationships. The area of 
inspections and reviews appears to be methodologically mature with a high proportion 
of experiments. 
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Aggregation of Empirical Evidence 

Marcus Ciolkowski 

One of the most important challenges in empirical software engineering today is to 
better integrate empirical studies with decision support, and to collect appropriate data 
and experiments. The required steps are to identify the information needed, to collect 
appropriate studies, and to (objectively) aggregate (i.e., summarize) their results. To 
be able to make informed decisions on introducing, changing, or evolving 
technologies and processes in practice as well as research, these decisions have to be 
based on aggregated trustable (i.e., corroborated) evidence and statements. The 
benefits of such an approach include reducing the risk of introducing / changing 
technologies (from industrial point of view), and that it is possible to identify 
evidence gaps (from research point of view). 

Today, the “state of the art” of aggregation in software engineering is to summarize 
a set of studies in a tabular form, which is a form of vote counting. Vote counting 
typically aggregates studies by counting the outcome of significance tests. Intuitively, 
if a large proportion of studies generate statistically significant results, then the 
overall effect can be interpreted as being non-zero. Vote counting, however, can be 
erroneous. In particular, for studies with small effect size and a low number of 
subjects (i.e., most of the studies in software engineering), vote counting can be 
strongly biased towards the conclusion that the treatment has no effect. This bias is 
not reduced as the number of studies increase. 

Meta-analysis techniques promise to solve these problems in other fields, such as 
medicine or psychology. However, attempts at applying these techniques in software 
engineering have failed so far, as the meta analysis techniques used were not adequate 
to be applied at current software engineering experiments.  

In other words, the problem is that systematic approaches are missing for (1) 
corroborating statements with (aggregated) trustable evidence, and (2) identifying the 
need for future studies.  

To make progress to solve the stated problem, a framework is needed for goal-
oriented aggregation of empirical results, linking empirical results with the goal of 
aggregation. In other words, the goal is to build corroborated statements from existing 
evidence. 

The framework comprises a model of atomic evidence, knowledge packages 
(representing aggregated evidence), and aggregation operators to generalize and 
abstract knowledge. 

Evidences /

Knowledge Packages

Operators

Object QF Hypothesis

Ef fect Signif icance

Context

⊕
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Empirical Evaluation in Software Engineering: Role, 

Strategy, and Limitations 

Lionel C. Briand 

Though there is a wide agreement that software technologies should be empirically 

investigated and assessed, software engineering faces a number of specific challenges 

and we have reached a point where it is time to step back and reflect on them. 

Technologies evolve fast, there is a wide variety of conditions (including human 

factors) under which they can possibly be used, and their assessment can be made 

with respect to a large number of criteria. Furthermore, only limited resources can be 

dedicated to the evaluation of software technologies as compared to their 

development. If we take an example, the development and evaluation of the Unified 

Modeling Language (UML) as an analysis and design representation, major revisions 

of the standard are proposed every few years, many specialized “profiles” of UML are 

being developed (e.g., for performance and real-time) and evolved, it can be used 

within the context of a variety of development methodologies which use different 

subsets of the standard in various ways, and it can be assessed with respect to its 

impact on system comprehension, the design decision process, but also code 

generation, test automation, and many other criteria. Given the above statement and 

example, important questions logically follow: (1) What can be a realistic role for 

empirical investigation in software engineering? (2) What strategies should be 

adopted to get the most out of available resources for empirical research? (3) What 

does constitute a useful body of empirical evidence?  
It is evident that we cannot possibly assess and validate every single software 

technology being used or adopted under every possible relevant set of conditions with 
respect to every possible criterion. Empirical studies should therefore (a) target 
specific technologies which are of economic importance, (b) for which there is 
significant uncertainty in terms of cost-effectiveness, and (c) which must be 
investigated under the most representative or plausible conditions. Nevertheless, such 
assessments will always involve a significant amount of judgment and interpolation. 
Instead of focusing on unquestionable scientific evidence, our objective is rather to 
buy information to support decision making. Furthermore, because of the impact of 
human factors on the cost-effectiveness of many technologies (e.g., education, 
training, management structure), to be fully understood, the quantitative results of 
studies must be complemented with qualitative analysis and an investigation of 
subjective, human perceptions. There are many strategies to do so, ranging from 
simple questionnaire surveys to think aloud protocols.  

An empirical body of evidence in software engineering can therefore be described 

as a set of studies, each performed under certain explicit conditions, for which both 

quantitative and qualitative, subjective and objective data have been collected, and 

based on which certain conclusions and interpretations have been provided. This may 

be completed by some form of meta-analysis attempting to find an emerging pattern 

across studies. However, how to make such information reusable in practice? 
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New Opportunities for Empirical Research 

Markku Oivo 

Software engineering community has widely recognized the need for more empirical 

work due to “advocacy research". New methods and tools have been proposed to 

industry without providing solid empirical evidence to support the claimed benefits. 

In addition to this need, we suggest new opportunities for empirical research in 

software engineering and ICT research in general. We propose the Experimental and 

Explorative Research (EER) strategy to address (1) tool development in software 

engineering research, and more importantly, (2) application and service development 

in other ICT areas like research in mobile applications and services. These kinds of 

projects provide a much more realistic environment for experimentation than 

traditional student projects, yet they can be controlled much more easily than pure 

industry projects. 

The actual software development work in research projects (not only the use of the 

tool) is an excellent candidate for empirical research. Tool development process in 

research projects can be treated as an experiment or quasi-experiment. These projects 

may include large amounts of professional effort for developing prototype tools and 

services. Very often the conclusions overlook the development process and are purely 

related to the end result. They may be similar to an industrial feasibility study and 

results are product oriented. They ignore development issues, validity concerns are 

not dealt with, and conclusions mostly lack empirical data from the development 

process. Influencing factors for success (or failure) of prototype development are not 

addressed. Generalizability and human factors in the development phase are mostly 

ignored.  

Experimental and Explorative Research (EER) research strategy combines 

experimental software engineering with exploratory research of new technologies. 

EER is based on our several years experience of using and developing the approach in 

research of future mobile applications. In large international projects (e.g. EU 

projects) explorative application development includes often both industrial software 

developers and experienced researchers. This kind of an experimental research 

environment alleviates the subject problems found in student experiments. 

Furthermore, it does not have the same difficulties found in experimental design and 

control of industrial projects that are constrained by strict commercial conditions.  

EER strategy provides benefits for both worlds: (1) experimental software 

engineering research benefits from almost industry level projects that can be used as 

experimentation environments, and (2) future mobile and telecom application 

research benefits from better control and understanding of the characteristics of the 

applications and their development methods and processes.  
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Empirical Paradigm: Position Paper 

Carolyn B. Seaman 

The distinction between “exploratory” and “confirmatory” work is crucial but is too 

often blurred in current literature.  The term “exploratory” refers to empirical work 

that has as a goal the discovery of new and unforeseen insight.  “Confirmatory” 

research, on the other hand, normally begins with some type of hypothesis or 

proposition (that has some type of support in previous literature), the confirmation of 

which is the aim of the study. 

My observation in recent literature, however, is that the term “exploratory” is often 

used as an apologia for a study that is smaller, has less significant results, or is less 

rigorous than the authors had hoped.  This implies that exploratory work has lower 

standards for size, significance, and rigor.  This is not the case.  One could argue that 

the standards for exploratory work should in fact be higher than that for confirmatory.  

Confirmatory results are rarely interpreted on their own; they are compared to, and 

interpreted in light of, a body of related work that together sheds light on the validity 

of a hypothesis.  However, exploratory studies are intended to be used to justify 

further expenditure of resources in the form of future studies.  Thus a poorly executed 

exploratory study potentially has a greater negative impact on the field than a poorly 

executed confirmatory study. This is not to say that there is no room in our body of 

literature for reporting exploratory studies that are not perfect.  The key is to present 

our work along with its limitations (which, as an aside, I believe we are getting much 

better at) and to recognize the contributions of results that we did not expect.   

It is my position that qualitative research methods are appropriate for both 

exploratory and confirmatory research.  Further, the most appropriate approach to 

addressing nearly any research problem in either category is a combination of the two.  

However, qualitative studies are often confined to the exploratory side of the 

equation.  I would argue that this is due more to the comfort level of reviewers and 

researchers in our community than on any inherent methodological limitations.  There 

exist guidelines, techniques, and tools from other disciplines for qualitative 

confirmatory analysis.  These would need tailoring and translating to be useful for 

software engineering and norms would have to emerge about how such studies should 

be presented.  But the largest obstacle to the use of qualitative methods for 

confirmatory analysis is our own stomach for accepting the idea of hypothesis testing 

without p-values and tables of statistical summaries.  This requires some pioneering 

examples of rigorous qualitative confirmatory analysis that are both well presented 

and relevant to our discipline. 
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The Value of Empirical Evidence for Practitioners and 

Researchers 

Austen Rainer 

The empirical software engineering research community has two general aims: 

1. To understand how software is actually developed and maintained; and 
2. To understand what improvements should be made to software development 

and maintenance, and how those improvements should be implemented. 

Empirical software engineering research, therefore, is about both contemplation 

and action. It is a discipline which attempts to understand phenomena whilst at the 

same time trying to change those very phenomena (in order to improve them). And it 

is a discipline that, by definition, promotes empirical evidence as the primary source 

of reliable knowledge for achieving these two general aims. 

While the research community promotes empirical evidence as the primary source 

of reliable knowledge, software practitioners do not seem to value empirical evidence 

in quite the same way; indeed, software practitioners seem to treat empirical evidence 

as one among a number of sources of knowledge (others being personal preferences 

and values, personal experience, the opinions of local experts, and local constraints) 

where the value of each of these kinds of knowledge varies from situation to situation: 

for example, in one situation (perhaps a CMM Level 4 company), a decision is made 

on the basis of empirical evidence; in another situation (a CMM Level 1 company), a 

decision is made on the basis of local expertise. 

As a research community we of course need to (further) strengthen our 

collaborations with industry, because industry is both the most appropriate source of 

empirical evidence for developing our understanding (the research communities’ first 

general aim) and the intended target for action (the research communities’ second 

general aim). We also need to be aware that industry is also the most appropriate 

source for these other kinds of knowledge; and that practitioners are not necessarily 

persuaded to collaborate and to change and to improve primarily because of 

empirically-based knowledge (particularly quantitative data).  

Practitioners’ preferences for different kinds of knowledge are implicitly 

acknowledged in, for example, the design of the Capability Maturity Model (where 

the lower Levels of the model do not promote the collection and use of quantitative 

data) and more explicitly acknowledged by, as an alternative example, Evidence 

Based Software Engineering (derived from Evidence Based Medicine) which seeks to 

combine various kinds of knowledge to improve practitioners’ decision-making about 

technology adoption. 

Given these circumstances, perhaps the most appropriate and helpful 

recommendations for improvement that the research community can offer to industry 

are heuristics (rules-of-thumb) based on the careful aggregation of different kinds of 

empirical and non-empirical evidence. 
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Empirical Paradigm – The Role of Experiments 

Barbara Kitchenham 

Abstract. This article discusses the role of formal experiments in empirical 

software engineering. I take the view that the role of experiments has been 

overemphasised. Laboratory experiments are not representative of industrial 

software engineering tasks, so do not provide us with a reliable assessment of 

the effect of our techniques and tools. I suggest we need to concentrate a larger 

proportion of our research effort on industrial quasi-experiments and case 

studies. Methodologies for these empirical methods are well-understood in the 

social science and would appear to be appropriate mechanisms for investigating 

many software engineering research questions. In addition, I believe we need to 

make the results of empirical software engineering more visible and relevant to 

practitioners. To influence practitioners I suggest that we need to produce 

evidence-based text books and evidence-based software engineering standards. 

1   Introduction 

In this paper, I discuss the role of formal experiments in empirical software 
engineering. I believe that we may have over-emphasised the role of formal 
experiments in empirical software engineering and as a result we have both failed to 
identify the limitations and risks inherent in software engineering experiments and 
given insufficient consideration to other empirical methods. 

My basic assumption is that the goal of empirical software engineering is to 
influence the practice of software engineering. This implies that we need empirical 
methods that provide us with insights into how software engineering works in practice 
and how changes to the process can result in changes to the outcomes of the process.  

In order to explain my concern about formal experiments, I will identify some 
areas where the nature of software engineering practice is at odds with the 
requirements of formal experiments and discuss some of the risks that arise because 
of this. Then I will suggest that quasi-experimental design and case studies might be 
better suited to some types of empirical study than formal experiments. Finally, I will 
indicate how we might make the results of empirical studies more visible to 
practitioners. 

2   Software Engineering Practice and Experimental Methodology 

Software engineering in practice involves coordinating and integrating many different 

tasks (analysis, design, coding, testing, quality assurance, project management etc.) 

that rely heavily on human expertise often in the context of developing innovative 

products using new technologies. For large scale software engineering, this basic 

complexity is compounded by the involvement of many different engineers and 
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managers working in cooperating teams (sometimes distributed) within one or more 

industrial cultures. In general it is difficult to identify one task or a single decision and 

consider its impact in total isolation from its surrounding context.  
In comparison, formal experiments abstract tasks away from industrial contexts in 

order to study in detail specific isolated elements of a process, an event or an artefact. 
In general the more isolated the object of study is from its environment the easier it is 
to manipulate and study, but there is a risk that the results will not apply in more 
complex industrial situations. 

Software engineering researchers often debate the use of student subjects, but in 
my opinion the choice of subjects is far less critical that the selection of materials, 
tasks and contexts. If our materials are small scale documents with known solutions, 
our tasks are restricted to those that take less than 2 hours, and the rich industrial 
context in which software tasks are planned and performed is removed, what is the 
value of the outcomes of our formal experiments? Clearly there are some cases when 
we can rely on formal experiments but there are significant risks. We need to consider 
more that just the scale-up problem, or the student subject problem, for example: 

• We may fail to recognise the value of techniques that are not cost effective for 
small scale tasks but would be valuable for large scale activities (techniques that 
increase overheads such as documentation, project management or quality 
assurance would fit this category). 

• We may not be able to define realistic control situations leading to experimental 
results that cannot be interpreted by practitioners (e.g. comparing task results based 
on training people with a new technique with results obtained from people given 
no training is poor experimental practice; new techniques are best compared with 
current best practice). 

• We may over estimate the impact of our techniques when they are used in 
controlled situations without the variety inherent in industry practice. This may 
lead to over-optimistic ROI estimates. 

• We may find ourselves examining phenomena that are a result of abstracting the 
technology away from its usage context not characteristics of the technology itself.  

• We may blame practitioners for failure to use our methods when the real problem 
is our failure to understand the complexity of the context in which our techniques 
will be used. 

If we look at what happens in other human intensive disciplines, we observe that 
either they are able to perform realistic experiments such as randomised controlled 
trials in medicine or they use quasi-experimental methods such as those developed by 
social scientists and educationalists.  

The critical property of a randomised controlled trial is that it is a real trial of a 
treatment (e.g. a new drug or other health care intervention) in a real hospital (or 
health centre) involving real patients and real doctors, with outcomes that directly 
affect the health and well-being of the participants. It is extremely rare that we are 
able to undertake trials of such direct relevance to practitioners in software 
engineering. In fact I am aware of only one experiment (undertaken by Jørgensen and 
Carelius [1]) that incorporated a genuine randomised experiment within actual 
practice. Thus, I do not see software engineering being able to adopt randomised 
controlled trials as a standard experimental protocol.  
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It might be argued that we are better served by considering our laboratory 
experiments to be exploratory studies. However, formal experiments were designed 
with hypothesis testing in mind. It is not clear that they are as well suited to exploratory 
studies as other empirical methods such as industrial case studies. 

Adding a qualitative element to formal experiments does not overcome the 
objection that they were designed for hypothesis testing, certainly not in the context 
of laboratory experiments with student subjects. Petticrew and Roberts [2] suggest 
qualitative research is more appropriate that randomised controlled trials for purposes 
of salience (whether the technology/service matters), process of service delivery, 
acceptability (whether the technology/service will be taken up by potential users), 
appropriateness (whether the technology/service is right for the proposed users, 
satisfaction (whether users are satisfied with the technology or service). However, to 
investigate these issues, researchers would need to obtain the opinion of potential 
users in a realistic context not surrogate users such as students trying out a small scale 
task in a laboratory.  

I conclude that we should be more ready to perform industrial studies using quasi-
experimental designs to support hypothesis testing (or confirmation) and qualitative 
studies (particularly case studies) to support hypothesis generation (or exploration). I 
discuss these approaches in more detail in the next section. 

3   Quasi-experiments and Case Studies 

The social sciences have developed a large number of quasi-experimental designs for 
large-scale field experiments, and have a clear understanding of the strengths and 
weaknesses of these designs. Quasi-experimental designs are designs in which it is 
impossible to allocate subjects/participants to treatment conditions at random. I 
suggest that empirical researchers in software engineering need to become more 
familiar with these types of designs and more open to the opportunities they offer to 
improve the rigour of large-scale industrial studies.  

Quasi-experimental designs began with simple before and after designs which 
immediately confound treatment effects with the passage of time, but have evolved 
into far more robust designs. Shadish et al. [3] provide a catalogue of basic quasi-
experimental designs incorporating multiple pre- and post-measures and control 
groups. They also describe designs such as interrupted time-series analysis and 
regression discontinuity that are almost as rigorous as formal experiments, but have 
the ability to monitor the impact of large-scale social interventions.  

The rigour of quasi-designs has improved as researchers have continued to criticize 

and improve them. A major element of the criticism will be familiar to most empirical 

software engineers since it is based on an assessment of study validity. Indeed the 

validity terms that we use in software engineering have been obtained directly from 

validity issues associated with quasi-experiments undertaken in education and social 

policy (not formal experiments). For example, maturity validity is particularly 

important in studies that deal with children since the impact of various social and 

education programs will be confounded with the children’s basic skills increasing as 

they grow older. Similar a history threat is a major problem if families living in 

poverty that are eligible for one support program (e.g. housing support) may also be 
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receiving another (e.g. food stamps). However, the studies of validity threats do not 

end with generic threats applicable to any design but have been refined to identify 

validity threats specific to particular types of quasi-design. For example, Shaddish et 

al. [3] provide a detailed list of validity threats for case control studies, and discuss 

validity issues for other quasi-designs. 

3.1   Case Control and Cohort Studies 

As examples of fairly common quasi-experimental design consider case control 

studies and cohort studies. In case control studies, we identify experimental units 

(e.g. humans, organizations, artifacts) that exhibit some undesirable characteristic 

(e.g. a project that significantly overruns its budget and timescale). We then match 

one or more controls with each case. The controls are units that do not exhibit the 

undesirable property but in all other respects match one of the cases. Differences 

between each case and its control(s) are investigated to look for possible reasons for 

the undesirable characteristic.  

Retrospective case control studies are the standard design used to identify risk 

factors associated with medical conditions. They would seem an obvious candidate 

for determining project risk factors. This design has many limitations (see Shaddish et 

al. [3] Table 4.3 for a complete list). A major problem with such designs is to find the 

correct characteristics to match the cases and the control. Another problem is that 

case-control studies are usually backward looking (retrospective) studies. Other 

problems associated with data collection include: 

• Underlying cause bias: Project managers of failing projects may reflect about 

possible causes and thus exhibit different recall than project managers of controls. 

• Expectation bias: Observers may systematically err in measuring and recording 

data so that they concur with prior expectations. 

• Exposure suspicion bias: Knowledge of the status (i.e. case or control) may 

influence the intensity and outcome of a search for exposure to a risk factor. 

• Recall bias: Questions about specific exposures may be asked several times of 

cases and only once of control. 

One approach to reducing bias resulting from questioning people about past events 

is to ensure that interviewers are kept “blind” to case status (i.e. the interviewers who 

interrogate project staff should not know whether the project was a failure or a 

success). Although this sounds strange, it is the standard practice for studies that 

interrogate people about their exposure to medical risk factors. 

An alternative design is a forward looking (prospective) study. Cohort studies are 

often prospective. In this type of study we identify a sample of experimental units and 

observe their progress over time. Medical cohort studies involve millions of subjects 

over long periods of time (up to 20 years) so this type of design is suitable for large-

scale, long-term studies. They are often used to identify the incident rate of diseases 

in the general population, so they would seem to be appropriate for issues such as the 

rate of project failures. However, there have been no prospective studies of this type 

performed in software engineering. 
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3.2   Evaluating Technology Impact 

Two recent studies of the impact of ISO/IEC 15504 (SPICE) have been based on 

correlation studies ([4], [5]). Correlation studies are observational studies which are 

weaker methodologically than experiments or quasi-experiments. They always suffer 

from the problem that they cannot confirm causality. Significant correlations may 

occur by chance (particularly when a large number of variables are measured), or as a 

result of a “latent” variable (i.e. an unmeasured variable that affects two measured 

variables and gives rise to an apparent correlation between the measured variables).  

A more reliable approach is to monitor the impact of technology adoption in 

individual organizations by measuring project achievements before and after adoption 

utilizing multiple measurement points before and after technology changes. This 

approach has been adopted by several researchers for CMM evaluations. For example, 

Dion [6] recorded cost of quality and productivity data for 18 projects, undertaken 

during a five year process improvement activity. The first two projects were started 

before the process changes were introduced; the subsequent projects were started as 

the series of process changes were introduced. Simple plots of the results show an 

ongoing improvement over time consistent with an ongoing process improvement 

exercise. However, the provision of data on projects started prior to the process 

changes gives additional confidence that the effect was due to the process change 

rather than other factors. Steen [7] provides another endorsement of Dion’s 

methodology. He reviewed 71 experience reports of CMM-based SPI and identified 

Dion’s study as the only believable report of Return on Investment (ROI) of CMM-

based SPI. 
In another study, McGarry et al. [8] plotted project outcomes before and after the 

introduction of CMM level 2. The data spanned a 14-year period and included 89 
projects. The graphs showed that improvements in productivity and defect rates were 
not due to the introduction of CMM. The same improvement rate had been observed 
prior to the introduction of CMM and could be attributed to the general process 
improvement activities taking place before and during CMM adoption not specifically 
the adoption of CMM (i.e. McGarry observed a history effect). In contrast, 
improvements in estimating accuracy did appear to be a result of adopting CMM.  

3.3   Industrial Case Studies 

Quasi-experimental designs allow us to perform quantitative studies investigating 
factors such as the effectiveness of techniques, or the relative importance of project 
risk factors. Industrial case studies in contrast allow us to look in detail at the how and 
why of software engineering phenomena [9].  

It is important to identify what I mean by a case study. A case study should be a 
genuine industrial software engineering project (or project activity), not a toy project, 
nor a special project performed for the purpose of evaluating a technology or training 
new staff. All too often researchers use the term case study when they mean example 
(i.e. recreating a previously constructed software artefact using a new technology). In 
principle, an industrial software project should act as a host for a case study. In fact, 
as Yin points out the most convincing case studies are those that have a strong 
rationale for case selection. This means that the host project should have 
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characteristics that make it suitable to address the issues being investigated by the 
case study. If we are concerned about investigating the way technology works in 
practice and its impact on practitioners, industrial case studies are likely to be a more 
reliable methodology than small-scale experiments with an added qualitative element.  

4   Visibility of Empirical Software Engineering Results 

Several recent publications have made the point that software engineering academics 

and practitioners trust expert opinion more than objective evidence ([10], [11]). I 

conclude that that empirical software engineering will not have much relevance to 

practitioners, if empirical studies have no visibility. For this reason, we need to find a 

suitable outlet for our results. There are two areas that empirical software engineering 

should address to make empirical ideas visible to practitioners: text books, which can 

influence software engineers during their training, and international standards, which 

are likely to impact industrial practitioners. 

We need software engineering text books that incorporate empirical studies to 

support their discussion of technologies that identify the extent to which technologies 

have been validated, or under what conditions one technology might be more 

appropriate than another. Endres and Rombach [12] have made a start at this type of 

text book, but we need more general software engineering text books that include 

empirical evidence. Furthermore, text books require summarised evidence not simply 

references to individual empirical studies, so I we need more systematic literature 

reviews to provide rigorous summaries of empirical studies ([13], [2]). 

We also need evidence-based standards. In my experience the quality of 

international software engineering standards is woeful. I have no objection to 

standards related to arbitrary decisions, such as the syntax of a programming 

language, which are simply a matter of agreement. However, standards that purport to 

specify best practice are another issue. Software standards of this type often make 

unsupported claims. For example ISO/IEC 2500 [14] says: 

“The purpose of the SQuaRE set of International Standards is to assist 

developing and acquiring software products with the specification and 

evaluation of their products. It establishes criteria for the specification 

of software product quality requirements, their measurement and 

evaluation.” 

I imagine a large number of researchers and practitioners would be surprised to 

find that the means of specifying, measuring, and evaluating software quality is so 

well-understood that it can be published in International Standard.  

Compare this “International Standard” with the more modestly named “Research-

based web design and usability guidelines” [15]. The web-guidelines not only 

explicitly reference the scientific evidence that supports them; they also define the 

process by which the guidelines were constructed. Each individual guideline is rated 

with respect to its importance and the strength of evidence supporting it. The software 

engineering industry deserves guidelines and standards of the same quality. 
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5   Conclusions 

In this article, I have argued that we have overemphasised the role of formal 
experiments in empirical software engineering. That is not to say that there is no place 
for formal experiments in software engineering. Formal experiments can be used for 
initial studies of technologies such as proof of concept studies. There are also 
undoubtedly occasions when formal experiments are the most appropriate 
methodology to study a software engineering phenomenon (for example, performance 
studies of alternative coding algorithms). However, the nature of industrial software 
engineering does not match well with the restrictions imposed by formal experiments. 
We cannot usually perform randomised controlled trials in industrial situations and 
without randomised controlled trials we cannot assess the actual impact of competing 
technologies, nor can we assess the context factors that influence outcomes in 
industrial situations.  

To address the limitations of formal experiments, I suggest that empirical software 
engineering needs to place more emphasis on industrial field studies including case 
studies and quasi-experiments. In addition, we need to make empirical results more 
visible to software engineers. I recommend that the empirical software engineering 
community produce evidence-based text books and campaign for evidence-based 
standards. Evidence-based text books would prepare future software engineers to 
expect techniques to be supported by evidence. Evidence-based standards might help 
practitioners address their day-to-day engineering activities and lead to a culture in 
which evidence is seen to benefit engineering practice. 
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The Role of Controlled Experiments in Software 

Engineering Research 

Victor R. Basili 

1   The Experimental Discipline in Software Engineering 

Empirical studies play an important role in the evolution of the software engineering 
discipline. They allow us to build a body of knowledge in software engineering that 
has been supported by observation and empirical evidence. These studies allow us to 
test out theories, identify important variables and to build models that can be 
supported by empirical evidence.  

But what kinds of empirical studies should we focus on?  
There are a variety of study types that can be performed. In many cases the type of 

study will depend on the circumstances. Much of what we do in the software 
engineering domain is opportunistic and we are often limited by the situation 
available.  

I will use the word study here to mean the act of discovering something unknown 
or of testing a hypothesis.  Studies can be driven by hypotheses or simply a need to 
understand. They can use quantitative or qualitative analysis, or a mix of both. They 
can vary from controlled experiments to quasi-experiments or pre-experimental 
designs, to simply observations. These latter studies tend to involve more of a 
qualitative analysis component, including at least some form of interviewing. 

The type of study can be an experiment or an observation. On one end of the 
spectrum, studies can be cause-effect, allowing us to understand the effect of the 
independent variable on the dependent variable. Sometimes we can do a correlational 
study, where we can at least recognize that two variables are related. However, 
sometimes the best we can do is a descriptive study in which we can observe a 
particular situation. The subject may vary in experience from novice to expert. The 
experimental setting can be in vivo or in vitro. The type of analysis can be 
quantitative or qualitative or a mix of both. 

The goals of our studies vary from trying to understand the effects of processes and 
techniques on products to evaluating the product characteristics themselves, from 
predicting cost and schedule to trading off environmental constraints.  For example, 
when introducing any form of process, method or tool, the organization needs to 
evaluate its feasibility, usability, and effectiveness in context. These goals help the 
researcher build knowledge about the discipline as well as help the practitioner 
understand how to build software systems better.  

The varied reasons for study, the immaturity of the discipline in terms of well 
formulated models, and the opportunistic nature of the circumstances requires a palate 
of many kinds of studies, types of analyses, settings, experience levels, etc. Each has 
it benefits and drawbacks and provides insight into our body of knowledge about 
software engineering. One of our biggest problems is how to combine them to form a 
coherent body of knowledge.  
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Approaches vary in cost, level of confidence in the results, insights gained, balance 
between quantitative/qualitative research, etc. When we are studying a single team the 
costs are reasonable, we can observe large projects in realistic (in vivo) settings. Our 
analysis is more qualitative. Examples here include case studies and interviews. If we 
can study a population over time, we can use quasi-experimental designs. If we can 
study multiple teams performing the same activity the costs are high, the projects tend 
to be small, but we can gain statistical confidence in the results. Examples here 
include fractional factorial designs and pretest /post test control group designs. Thus 
the ideal is to be able to combine types of study to build the body of knowledge [1]. 

Thus all forms of study help contribute to knowledge. 

2   Use of Controlled Experiments in Empirical Software 

Engineering 

Controlled experiments offer several specific benefits. They allow us to conduct well-
defined, focused studies, with the potential for statistically significant results. They 
allow us to focus on specific variables, measures, and the relationships between them. 
They help us formulate hypotheses by forcing us to clearly state the question being 
studied and allow us to maximize the number of questions being asked. Such studies 
usually result in well defined dependent and independent variables and well-defined 
hypotheses. They result in the identification of key variables and good proxies for 
those variables. They allow us to measure the relationships among variables. 

So, for example, to identify which of two techniques are best for identifying a 
certain class of defects, a controlled experiment forces the specification of the 
treatment techniques, creates training materials. 

The very act of defining a controlled experiment forces specification and provides 
many insights. In running a controlled experiment we are forced to state clearly what 
questions the investigation is intended to address and how we will address them, even 
if the study is exploratory. We have to specify context. We have to address the issue 
of process conformance along with communicable technique definition when we are 
studying a technique. We can create a design that allows us to maximize the number 
of questions asked. We can analyze small variations in the variables, such as human 
ability, experience, learning effects, process conformance, domain understanding, 
technique definition, etc.  

A controlled study provides good insights into why relationships and results do and 
do not occur. It forces us to analyze the threats to validity, leading to insights in the 
identification of where replications or alternate studies are needed and where 
variations might show different effects.  

However, a single controlled experiment, outside the context of a larger set of 
studies, has little value. Controlled studies need to be replicated, varying conditions 
(to understand the effects in different context), designs (to make up for threats to 
validity in any one design and context), and allowing for the answering of new and 
evolving questions from earlier studies. We can combine small focused studies to 
build knowledge. Each study can be a small contribution to the knowledge tapestry. 

In the tapestry of studies it is also important to integrate negative results. Negative 
results and repeated experiments are important and valuable. 
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Of course there are drawbacks to controlled experiments. They are expensive. They 
tend to deal with a microcosm of reality as each study is limited to a specific set of 
context variables and a specific design. As stated above, you need several such studies 
where you can vary the context and the design. There are often issues with small 
sample size, small artifacts analyzed, learning effect issues, unknown underlying 
distributions, and potentially huge variations in human behavior. 

A major threat to validity is the generalization from in vitro to in vivo.  
Although a good design has many of the benefits, it is not always easy to achieve. 

It is easy to miss important points. It is easy to contaminate subjects. TA good 
controlled experiment usually involves the collaboration of several experimenters and 
the more people you can get to review your design, the better. 

In all forms of empirical study there are problems. Scaling up is difficult and the 
empirical methods change as the scale grows. It is hard to compare a new technique 
against the current technique because of the learning curve. You cannot expect 
perfection or decisive answers. However, insights about context variables alone are 
valuable. 

3   Building a Body of Knowledge 

We need to combine studies to build knowledge where each study is a small 
contribution to the knowledge tapestry. We can build up knowledge by “replication”. 
Replication can take many forms. We can keep the same hypothesis, combining 
results, we can vary the context variables, e.g., subject experience. We can vary the 
experimental design, e.g., order of events and activities, study type, artifact size and 
type. This allows us to balance threats to validity and expand our knowledge. 

We can expand our studies by varying the independent variable. For example, we 
can change the specification or procedure associated with the process,  e.g., changing 
the specificity of the process or technique. We can select another technique from the 
class of techniques.  

We can expand, evolve, change the hypotheses, adding new context variables or 
evolving the dependent variables. 

4   Example Use of Controlled Experiments 

We have used controlled experiments in three ways as part of a larger set of studies. 
 

Studying the effects of reading [2, 3, 4, 5]: This is an example of studying the scale 
up a technique to larger problems. Here we began with a fractional factorial 
experiment to study the effects of a specific reading technique (reading by stepwise 
abstraction) versus two specific testing techniques (structural testing with 100% 
statement coverage and boundary value testing). Based upon the positive results for 
reading we ran a control group controlled experiment to study the effect of reading by 
stepwise abstraction on a team development with larger artifacts (Cleanroom study). 
Based again on positive results, we applied the technique on a real project at NASA 
Goddard Space flight Center using a quasi-experimental design (case study) to study 
the scale up of the effects of reading by stepwise abstraction. The next step was to 
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apply the Cleanroom technique to a series of projects. At each stage we were able to 
scale up to larger studies using different empirical methods and learn different things 
about the effects of reading techniques on defect detection and development costs. At 
each stage we gained the needed confidence in the approach to apply it to larger and 
larger live projects, perturbing actual developments at Goddard. 
 

Studying different reading techniques [5, 6, 7]: This is an example of replicating a 
series of controlled experiments, varying the techniques, artifacts, and context. Based 
upon the studies at NASA using stepwise abstraction as the reading technique, we 
recognized the need for reading earlier documents than code as well as the need to 
focus the reading on particular perspectives and defect classes. We ran several studies 
using Perspective-Based reading. We varied the level of specificity of the techniques, 
we varied the artifacts being analyzed (requirements, object oriented design 
documents) and notation of the artifacts (English language, Software Cost Reduction  
(SCR), notation, UML) being read, and varied the context (students, professionals) 
including the cultural biases in applying the techniques (U.S, Germany, Norway, 
Brazil). This allowed us to study and compare the effects of changes to various 
independent, dependent, and context variables. 
 

Building knowledge about the high end computing development domain [8, 9]: 
The High Productivity computing Systems project has the to goal of shrinking the 
time to solution for the development and execution of high end computing systems. In 
order to better understand software development for HPC systems we are developing 
and evolving models, hypotheses, and empirical evidence about the bounds and limits 
of various programming models (e.g., MPI, Open MP, UPC, CAF), the bottlenecks to 
development, the cost of performance improvement, and the best ways to identify and 
minimize defects. The idea is to provide some confidence in what works best under 
what conditions and for whom.  The project involves the use of numerous empirical 
studies with novices and professionals all done in concert, rather than sequentially. 
Study types include: controlled experiments (grad students), observational studies 
(professionals, grad students), case studies (class projects, HPC projects in academia), 
and surveys and interviews (HPC experts). Results are stored in an experience base 
with chains of evidence connected to hypotheses on one end and implications for 
various stakeholders on the other end. This mix allows early use of incomplete results 
rather than the confidence built over a sequential set of studies, each attacking a 
particular issue. 

No particular empirical method is stand alone, but controlled experiments play an 
important role in building the discipline of software engineering. 
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Creating Real Value in Software Engineering 

Experiments 

James Miller 

Undertaking empirical work to understand the software engineering process is an 

increasingly common activity. However, due to the nature of most software 

engineering studies, drawing reliable conclusions from a single study is inherently 

dangerous. A single study undertaken by a small group of practitioners, in a single 

location, with a single group of subjects, will possess a large number of parameters, 

some controlled, some completely unconstrained. Any one of which can potentially 

cause a significant change in the result of the study; and hence their effect must be 

controlled, eliminated or understood, if reliable results are to be derived. The normal 

method of achieving this objective is to repeat the study, often while changing some 

of the parameters, to see if the original result is stable with regard to repetition and 

alteration of some of its components. Without this confirming power, empirically 

based claims in software engineering should be regarded as having at best limited 

value and at worst with suspicion and mistrust. Hence, despite their now significant 

volume, software engineering experiments impact has been rather limited upon 

industrial software processes. The potential problems with single software 

engineering empirical studies are three-fold: low statistical power; large number of 

potential covariates with the treatment variable; and the verification of the process 

and products of the study. 

The normal way to tackle these limitations is by replication of the study. Perhaps a 

more relevant alternate, to the Software Engineering community, is to create a single 

experiment, which internally contains multiple versions of the experimental theme all 

based around a common sub-set of hypotheses. This would allow the experiment to 

amass enough “evidence” to be convincing (if successful) based upon its direct 

solution of the three aforementioned issues. But while the design of such meta-

experiments might seem obvious, the logistical problems associated with their 

successful implementation are massive. Solutions needing to be found to allow the 

successful collaboration of such large, and geographically disperse, network of 

researchers include: (A) the co-ordination of the information flow and experimental 

design; (B) ensuring suitable knowledge, training and skill levels across all subjects; 

(C) understanding any, and all, culture issues which may exist between sites; (D) how 

to obtain funding for such cross jurisdictional projects; and the resolution of clashing 

ethical, privacy; (E) and general human rights issues between the various sites and 

jurisdictions. 
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From Silver Bullets to Philosophers' Stones: Who Wants 

to Be Just an Empiricist? 

Guilherme H. Travassos 

For a long time scientists have been committed to describe and organize information 

acquired by observations from the field. To improve the comprehension and 

testability of the observed information, Bacon's works proposed to organize the way 

that the experiences should be structured and somehow formalized, starting with the 

experimental method idea. From that point in time, the ideas regarding 

experimentation have been explored and evolved into different scientific areas, 

including physics, agriculture, medicine, engineering and social sciences among 

others. It has not been different in Software Engineering. By applying the scientific 

method to organize their experimental studies, software engineers have intensively 

worked to understand the application and evolution of software processes and 

technologies. Acquiring knowledge through different categories of experimental 

studies has supported researchers and practitioners to build a Software Engineering 

body of knowledge. Families of studies start to be planed and shared among the 

research community, composing a common research agenda to enlarge such body of 

knowledge. Based on this, evidence based software engineering is becoming a reality. 

Nowadays, besides the experimental studies, the experimentation approach represents 

an important tool to allow the transfer of software technology to the industry and to 

improve software processes.  

Empirical Software Engineering relates to “software engineering based on 

observation or experience”. However, the significance of the word empirical
1 does 

not have enough power to capture the ideas regarding the scientific method 

(experimentation). By being just empirical, software engineers rely on their own 

experience or myths to observe and report the field. In general, there is no consensus 

regarding the experimental studies formalization, no common terminology or theory, 

and replication is not an easy task since a common research agenda can not be 

identified. In this case, empirical sounds like an ad-hoc approach, used to explore 

some particular research interest. It can represent one of the first steps (Aristotelian 

approach) towards the scientific method, but still far from it.  
Our Software engineering community needs to go one step further, looking for 

ways to better spread and internalize knowledge regarding the scientific method. 
Observing other more mature areas of science (i.e. physics, medicine, and social 
sciences) with well defined terminology, theories, studies protocols and common 
research agenda, empirical results has low value. It can also represent a risk for the 
software engineering scientific area. Software Engineering should not be interpreted 
as just empirical neither observational. It must evolve to be scientifically sounded 
and, of course, experimental!  

                                                           
1 © 2002 Merriam-Webster, Inc. 
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Social and Human Aspects of Software Engineering 

Helen Sharp 

The people-intensive nature of software engineering has been understood for some 
time. Curtis et al [1] cite a number of studies in a variety of contexts demonstrating 
"the substantial impact of behavioural (i.e. human and organisational) factors on 
software productivity", while [2] believe that software companies are particularly 
vulnerable to people problems. Despite this recognition, however, McDermid and 
Bennett [3] argue that the neglect of people factors in software engineering research 
has had a detrimental impact on progress in software engineering. 

There is much to be learned from quantitative empirical studies of software 
engineering that focus on the code and software process artifacts, but we should not 
focus on these to the detriment of studies that investigate human and social aspects of 
software engineering. Such studies may be quantitative or qualitative in nature, and 
they may be field-based or experimental. For example, experimental studies may seek 
to investigate the effects of different support tools or other work artifacts on an 
individual’s performance or cognitive workload; field studies may seek to understand 
better the information flows around and within a team of agile software developers.  

Conducting such studies and analyzing the results in a meaningful way is likely to 
require collaboration with researchers from social and cognitive sciences, but I 
believe that the insights to be gained are substantial. 

In my own work I conduct qualitative studies ‘in the wild’, working with 
practitioners and real business problems. This approach has its drawbacks, including 
issues of repeatability and generalisability. One way to address these drawbacks is to 
perform multiple studies and look for similarities. Another approach is to use these 
exploratory studies to identify hypotheses that can then be pursued through more 
focused experimental studies.  

My current work focuses on agile software teams (e.g. [5]) and motivation in 
software engineering; previous work has focused on software quality management 
systems, and object-oriented development (e.g. 4). In each case, I have stressed the 
people and their goals rather than the technology they are using. 
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Longitudinal Studies in Evidence-Based Software 
Engineering 

Tracy Hall 

Longitudinal studies (LS) generate particularly valuable empirical data. There are 
many reasons for this, most of which are related to the fact that LS are usually large 
scale. This allows for a range of rich data to be collected. It also means that the scale 
of data collected should enable statistically significant results to be generated. 
Furthermore there are also strong temporal aspects to longitudinal studies. These 
allow changes over time to be tracked which means that the life of a system can be 
better understood. It also means that the temporal aspects of process change can be 
identified. The scale and richness of data, collected over the lifetime of a development 
project, makes for a valuable empirical investigation.  

LS can provide more opportunity for contextual data to be collected. Variation in 
software development environments means that contextual data is particularly 
important in software engineering. Collecting rigorous contextual data at the right 
level of granularity means that research findings are more portable. This allows 
organizations to customize and adapt findings from empirical research and transfer 
them into their own projects or environments. 

LS are rare in software engineering. Researchers find it difficult to access large-
scale industrial software development projects over extended periods of time. Such 
studies are also expensive and time consuming to run. Consequently many empirical 
studies in software engineering are either short snapshots of industrial projects or else 
experiments conducted in laboratories isolated from the industrial context. The 
efficacy of many snapshot empirical studies is compromised by confounding factors. 
LS allow a sophisticated understanding of software development to emerge. We argue 
that data collected in such studies can contribute significantly to the maturation of 
empirical software engineering research. 

Extensive use of LS has been made in medicine, for example Remsberg used LS to 
identify risk factors for developing cardiovascular disease [1]. The usefulness of LS 
has also been experienced in a few software engineering research studies. Maximilien 
and Williams [2] conducted a year-long study with an IBM software development 
group to examine the efficiency of test-driven development.  

LS can produce reliable and comprehensive findings that combine technical and 
social factors in software development. These findings can be presented in a 
contextualized form that allows them to be more appropriately transferred to other 
environments. Such findings can directly contribute to the development of bodies of 
software engineering evidence.  
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 The Use of Grounded Theory in Empirical Software 

Engineering 

Jeffrey Carver 

Empirical software engineering research has much in common with social science 
research (e.g. Cognitive Science, Psychology). Both types of research focus on 
understanding how people behave and react in different situations. An important 
research method for developing hypotheses and insight that is commonly used in 
these other fields is grounded theory. The basic principle behind grounded theory is 
that the hypotheses and theories emerge bottom-up from the data rather than top-
down from existing theory. Using this approach, a researcher begins with an existing 
data set and abstracts a hypothesis or a theory that accurately describes that data. 
Then, as more data sets become available, the hypotheses and theories are refined so 
that they continue to accurately describe all of the extant data.  

In empirical software engineering, grounded theory can be very helpful in building 
a body of knowledge about topics of interest. The grounded theory approach helps 
researchers develop the right set of questions and hypotheses for a new study or series 
of studies. This approach can be useful for both the exploratory and confirmatory 
stages of experimentation. By analyzing the data from existing studies and generating 
new or refined hypotheses from the bottom up, researches can get an idea both of 
which hypotheses will be likely to find support in a new study (confirmatory) as well 
as which hypotheses or research questions have not yet been addressed by the existing 
data (exploratory). These gaps in the data also provide a useful starting point for 
planning new studies that will extend the body of knowledge. We have successfully 
applied this approach to the large body of data on software inspections to generate 
hypotheses about the impact of an inspector’s background and experience on their 
performance during an inspection. 
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Exploration and Confirmation: An Historical  

Perspective 

Michael S. Mahoney 

1   Looking to History 

In organizing this session, Dieter Rombach invited me to provide historical 
perspective on a debate that he anticipated but that did not materialize. Expected to 
take strong stands on opposite sides of a putative disjunction between exploratory and 
confirmatory experimentation, the papers by Vic Basili and Barbara Kitchenham 
instead agreed that, given the nature of the subject and the current state of the field, 
both are necessary. Before one has something to confirm, one must explore, seeking 
patterns that might lend themselves to useful measurement. The question was not 
whether experiments of one sort or the other should be carried out, but rather how 
experiments of both sorts might be better designed. Nonetheless, some historical 
perspective might still be useful, not least because discussions of experimentation 
usually involve assumptions about its historical origins and development. It is part of 
the foundation myth of modern science that experiment lies at the heart of the 
“scientific method” created (or, for those of Platonist leaning, discovered) in the 
seventeenth century. That “method” often serves as a touchstone for efforts to make a 
scientific discipline of an enterprise and thus forms the basis for much common 
wisdom about where and how experiment fits into the process. 

However, over the past several decades historians and sociologists of science have 
subjected scientific experiments, both historical and current, to critical study, 
revealing the complexity and uncertainty that have attended experimentation from the 
beginning [1]. What tradition has portrayed as straightforward applications of 
empirical common sense to a readily accessible phenomenal world turn out on closer 
examination to have involved a delicate interplay of experience, theory, and inspired 
guesswork, as well as subtle negotiation between the experimenters and the audience 
they were seeking to persuade. When first carried out and reported, experiments that 
we now assign to students as canonical examples of scientific method turn out to have 
been ambiguous in their results and difficult to replicate, and to have provoked 
disagreement rather than settling it [2]. 

Moreover, experiment turned out not to have played the role previously attributed 
to it in the formative period. In “Mathematical vs. Experimental Traditions in the 
Development of Physical Science” Thomas S. Kuhn sought to break down the 
monolithic image conveyed by the notion of the Scientific Revolution in the 16th and 
17th centuries, a phenomenon also referred to as “the origins of modern science” [3]. 
The felt need to encompass all the sciences had led historians of science to extend the 
notion of “revolution” to areas where it was not appropriate, to expand the period well 
into the 18th century to cover a “delayed revolution” in chemistry, and – perhaps most 
pernicious – to impose 19th-century categories on a range of empirical and 
experimental endeavors concerning heat and electricity. Kuhn argued for a more 
modest view, restricting revolution to a small group of sciences, namely astronomy, 
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mechanics, and optics, all of which had mathematical traditions reaching back to 
classical antiquity. For our purposes, it is only in this area that one can find 
experiments that might be called confirmatory. 

2   Discovering What to Measure 

Confirmation presupposes that one knows what to measure, how to measure it, and 
what the measurements mean [4]. Until one knows enough to isolate a phenomenon 
by means of a hypothesis that specifies its determinative parameters, one has no 
choice but to explore its behavior more generally. That exploration may take the form 
of systematic experimentation, but in many cases it emerges from experience. 
Experiments in mechanics in the early 17th century provide a good example. Classic 
among them is Galileo’s inclined-plane experiment to confirm the law of falling 
bodies, to wit, that the distance traversed from rest under natural acceleration varies as 
the square of the time of fall. However, that experiment rested on the premise that a 
ball rolling down an inclined plane models the essential quantitative behavior of 
vertical free fall. To establish that principle, Galileo described a series of experiments 
with pendulums, showing that, friction and air resistance aside, a bob dropped from a 
initial height rises again to that same height irrespective of a change of trajectory 
caused by shortening the length of pendulum by means of a nail on the center line. 
Behind those experiments lay earlier studies of the bent-arm balance and its relation 
to the pendulum and the inclined plane. Hence, behind the experiment confirming a 
quantitative law, and underpinning it, lay a series of exploratory experiments, through 
which Galileo, guided by considerations from philosophical sources, teased out the 
parameters of natural acceleration and the means of displaying and measuring their 
interaction. 

In Galileo’s case, however, the question is how the study of motion became 
experimental at all. It had not been up to that time. Galileo presented his results as the 
second of “two new sciences” (the first was the strength of materials), noting at the 
start of his exposition that: 

We set forth a very new science concerning a very old subject. Perhaps nothing in 
nature is more ancient than Motion, and volumes neither few nor small have been 
written by Philosophers about it. Nevertheless, I have discovered several essential 
properties that are worth knowing but that hitherto have been neither observed nor 
demonstrated. Some more obvious things have been noted, for example that the 
natural motion of falling bodies is continually accelerated. But according to what 
proportion its acceleration occurs has so far not been established; no one, as far as I 
know, has demonstrated that the distances traversed in equal times by a body falling 
from rest stand in same relation to one another as do the odd numbers starting from 
unity. It has been observed that missiles, or projectiles, trace out some sort of curved 
line, but no one has established that it is a parabola. That it is, and several other things 
no less worth knowing, have been demonstrated by me, and, what is more important, 
they open the way to a most broad and excellent science, for which these our labors 
will be the starting point from which minds sharper than mine will penetrate into the 
deepest recesses [5]. 
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Although Galileo published his Two New Sciences in 1638, he was reporting on 
work carried out during the period 1592-1609, when he taught mathematics and 
related subjects at the University of Padua and acted as engineering consultant to the 
Arsenal of Venice. Writing the treatise in the form of a dialogue, he set the action in 
the Arsenal, where, in his opening words, “everyday practice provides speculative 
minds with a large field for philosophizing.” His remark points to a larger background 
against which the emergence of the new subject and its mathematical and 
experimental methods must be viewed.  

As Galileo proposed, his new science of motion was the starting point for the 
development of mechanics as the mathematical theory of abstract machines, which 
culminated in Newton’s definition of the subject as “the science of motions resulting 
from any forces whatsoever, and of the forces required to produce any motions, 
accurately proposed and demonstrated”[6]. Quite apart from the conceptual issues 
involved, the very combination of machines, motion, and mathematics brought 
together subjects that had been traditionally pursued in quite separate realms. 
Machines were the business of artisans and engineers. Theories of motion were the 
business of natural philosophers. From Antiquity through the Renaissance, the two 
groups had nothing to do with one another. Before machines could become the 
subject of mathematical theory, they had to come to the attention of the philosophers, 
that is, they had to become part of the philosophical agenda. That process began with 
the engineers, who during the Renaissance increasingly aspired to learned status, 
which meant putting their practice on some sort of theoretical basis, that is, expressing 
what they knew how to do in the form of general principles. In the new literature on 
machines that appeared over the course of the 16th century, one can see such 
principles emerging in the form of what I have called elsewhere “maxims of 
engineering experience” [7]. Though expressed in various ways, they come down to 
such things as: 

You can't build a perpetual motion machine. 
You can't get more out of a machine than you put into 
it; what you gain in force, you give up in distance. 
What holds an object at rest is just about enough to 
get it moving. 
Things, whether solid or liquid, don't go uphill by 
themselves. 
When you press on water or some other liquid, it pushes 
out equally in all directions. 

Over the course of the 17th century in the work of Galileo, Descartes, Huygens, 
Newton, and others, these maxims acquired mathematical form, not just as equations 
expressing laws but also as structures of analytical relations. At the hands of 
Torricelli, for example, the fourth maxim took the form that two heavy bodies joined 
together cannot move on their own unless their common center of gravity descends. 
Combining that principle with Galileo’s work on the pendulum and on natural 
acceleration, Huygens reformulated it as the principle that the center of gravity of a 
system of bodies will rise to the same height from which it has fallen, irrespective of 
the individual paths of the bodies. Expressed mathematically, the principle is an early 
form of the conservation of kinetic energy expressed as mv

2. 
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The laws of classical mechanics have been tested and retested experimentally since 
the 17th century, and every student in high school physics is invited to confirm them 
in a carefully designed laboratory exercise. We do not invite them to look beyond the 
exercise to appreciate the centuries of exploratory experience in machine building and 
the construction of buildings and waterworks from which the laws of motion took 
their start. Nor do we have them read the ancient and medieval philosophical 
literature that wrestled with the nature and measure of motion. Before Galileo ever 
started rolling balls down an inclined plane and measuring the times and distances 
traversed, he pretty much knew what he would find. Indeed, the experiment doesn’t 
make sense except in terms of the expected results [8]. 

Galileo’s own efforts in other areas make the point clear. The laws of natural 
acceleration constituted the second of two new sciences. The first was the strength of 
materials, and there Galileo had less accumulated experience on which to draw. His 
experiments in this realm were much more of a cut-and-try variety, as he explored 
possible various ways to test an idea that the cohesion of bodies might have 
something to with nature’s resistance of the vacuum. His successors in the Academia 
del Cimento picked up where he left off, pursuing a range of experimental inquiries 
without much sense of where they might lead. 

3   Discovering What Happens 

In drawing out the contrast between the two traditions, Kuhn pointed to the quite 
different treatments of magnetism and electricity in William Gilbert’s De Magnete 
(On the Magnet, 1600), considered one of the classics of early experimental science. 
In experimenting on the magnet, Gilbert drew on a large inventory of empirical data 
provided by earlier experimenters and in particular by mariners, whose experience of 
the variation and declination of the compass suggested systematic lines of inquiry. By 
contrast, when Gilbert turned to electrostatically charged bodies, he had no similar 
body of experience on which to draw. Hence, his experiments were based for the most 
part on analogies to the properties of magnets. In general, Kuhn noted,  

When [Baconian] practitioners, men like Gilbert, Boyle, 
and Hooke, performed experiments, they seldom aimed to 
demonstrate what was already known or to determine a 
detail required for the extension of existing theory. 
Rather they wished to see how nature would behave under 
previously unobserved, often previously nonexistent, 
circumstances. (43) 

17th century experiments on and with the vacuum quite nicely reveal the different 
patterns. The experiments began with an effort to account for the observed 
phenomenon that even the best suction pumps could not raise water more than about 
30 feet. At first, it was generally attributed to nature’s avoidance of a vacuum, and 
Galileo even proposed an experiment to measure the force of the vacuum. However, 
by the 1640s people began to understand the phenomenon in terms of the balance 
between the weight of the column of water and the force of the air pressing on the 
surface of the water on which it was standing. Such an explanation lent itself to 
experiments varying the density of the fluid and the pressure of the air, gradually 
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confirming the hypothesis. The result was the barometer, both as a scientific 
phenomenon and as a scientific instrument for measuring air pressure.  

The experiments involved a closed glass tube, filled with the liquid, and then 
inverted and placed in an open basin. The fluid would flow out into the basin until the 
weight of the column and the weight of the air reached equilibrium. Left behind was 
an empty space at the top of the tube and the question of what, if anything, it 
contained. Clearly, light passed through it. How about sound? Could an insect fly in 
it? What would happen to a small animal placed in it? How about a plant? How about 
chemical reactions? And so on.  

The barometer, whether water or mercury, did not lend itself to experiments on 
these questions, so several people, in particular Otto von Guericke and Robert Hooke 
(working for Robert Boyle), devised pumps for evacuating the air from a glass 
receiver or bell jar, making it possible not only to create something close to a vacuum 
but to vary the air pressure (as measured now by a barometer in the receiver) with 
some degree of control. For much of the later 17th century, the vacuum became a 
major site of experimentation, almost all of which was what we would call 
“exploratory”. People placed things in a vacuum to see what happened, and they 
recorded their observations. But what the observations meant, how they fit with other 
observations, and how they might be explained, remained open questions. Place a 
mouse in the vacuum and reduce the pressure. The mouse dies. Why? Air pressure? 
Something in the air? Something in the mouse? What? How do we find out? Trace the 
course of any of the experiments in vacuum, and a century or more will pass before 
empirical exploration gradually gives way to experimental confirmation. 

A major hurdle facing the use of experiment to confirm hypotheses was the nature 
of the hypotheses themselves. The new science of the 17th century rested on the 
premise that the physical world consisted ultimately of small particles of matter 
moving according to laws of motion expressible as mathematical relationships. 
Newton summed it up in Query 31 added to the second edition of his Optics in 1710: 

Have not the small Particles of Bodies certain Powers, 
Virtues, or Forces, by which they act at a distance, 
not only upon the Rays of Light for reflecting, 
refracting, and inflecting them, but also upon one 
another for producing a great Part of the Phenomena of 
Nature? For it's well known, that Bodies act one upon 
another by the Attractions of Gravity, Magnetism, and 
Electricity; and these Instances show the Tenor and 
Course of Nature, and make it not improbable but that 
there may be more attractive Powers than these. For 
Nature is very consonant and conformable to her Self. 
How these attractions may be performed, I do not here 
consider. What I call Attraction may be performed by 
impulse, or by some other means unknown to me. I use 
that Word here to signify only in general any Force by 
which Bodies tend towards one another, whatsoever be 
the Cause. For we must learn from the Phænomena of 
Nature what Bodies attract one another, and what are 
the Laws and Properties of the Attraction, before we 
enquire the Cause by which the Attraction is performed.  
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What had worked so well in accounting for the system of the planets, uniting their 
motion and the motion of bodies on earth under the same laws, should now work at 
the submicroscopic level. And it should work by experimental means: 

There are therefore Agents in Nature able to make the 
Particles of Bodies stick together by very strong 
Attractions. And it is the Business of experimental 
philosophy to find them out. 

As promising as that agenda looks in retrospect, it posed a daunting challenge to 

researchers at the time, not only to come up with explanations of the requisite 

mechanical sort but also to devise experiments that confirmed them. Nature proved 

very hard to grasp at the submicroscopic level, where our senses cannot reach without 

instruments that depend in turn on an understanding of the phenomena being 

measured. For the 18th and much of the 19th century, experiments aimed at 

discovering regularities at the macromechanical level that might give clues to 

behavior at the micromechanical level, while often purporting to demonstrate the 

working of hypothetical entities such as the “subtle fluids” that explained the behavior 

of light (ether), electricity (electrical fluid, later ether), heat (caloric), and chemistry 

(phlogiston). In short, a lot of exploratory experimentation intervened between 

Newton’s “atomic” chemistry and Dalton’s atomic theory of the elements, and much 

of the science of the 19th century would be directed toward devising models, 

experiments, and instruments that tied the directly observable world to an underlying 

reality of matter in motion. Increasingly precise and decisive in confirming 

mathematical theory, none of that work would have been possible without the 

exploratory experiments that preceded it. It was a slow process at first, and there is no 

reason to think that experimental software engineering should follow a different path 

of development. 
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Combining Study Designs and Techniques  

Working Group Results 

Carolyn B. Seaman 

1   Background 

On Tuesday, June 27, 2006, as part of the “Empirical Paradigm” session of the 

Dagstuhl Seminar, an ad hoc working group met for approximately 1.5 hours to 

discuss the topic of combining study designs and techniques.  The ad hoc group 

members were: 

Carolyn Seaman, Guilherme Horta Travassos, Marek Leszak, Helen Sharp, Hakan 

Erdogmus, Tracy Hall, Marcus Ciolkowski, Martin Host, James Miller, Sira Vegas, 

Mike Mahoney. 

This paper attempts to capture and organize the discussion that took place in the ad 

hoc working group. 

2   The Question 

The group spent some time at the beginning of the session coming to a consensus on 

the boundary and meaning of the question we were addressing.  We decided that we 

were to discuss, from an empirical design point of view, the issues involved in 

designing a group of studies of different types, or a single study employing several 

empirical research techniques, to address a single research question. We explicitly 

excluded from the discussion the issue of combining results from different, already 

completed, studies, i.e. meta-analysis. 

3   Motivation 

Why is it desirable to combine methods, within or between studies, to address a single 

research question? One motivation offered had to do with the drawbacks of 

replication. Replicating a previous study, using the same study design, will often also 

replicate the flaws in the design of the original study, thus magnifying the effects of 

those flaws.  

Because no study is perfect, using a variety of study designs will diminish the 

effects of flaws in any one design.  Also, different types of studies produce new 

knowledge at different levels. This knowledge might not be directly comparable, but 

that’s not the point.  Their complementarity, not their comparability, is the goal. 

Some of the literature in the social sciences talk about three different motivations 

or goals of mixing study designs: combination, complementarity, and triangulation.  

These three motivations are closely related and often difficult to separate cleanly. 
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4   Current State of the Art 

We discussed examples in the literature of research designs which incorporated 
multiple research approaches and techniques, either within one study or among a set 
of complementary studies.  We were able to come up with very few, but we did elicit 
a set of forms that such studies or sets of studies tend to take. These models are 
enumerated below. 

 

Model 1: We termed this model the “sequential model”. It consists of a linear 
sequence of studies, all addressing different aspects of a research problem or question, 
employing a variety of study forms and methods.  Often, this takes the form of an 
iteration between exploratory and confirmatory studies, where the exploratory studies 
investigate unexpected issues and results that arose from the confirmatory studies, and 
the confirmatory studies aim to test hypotheses that arise from the exploratory studies.  
An example of this type of structure is the NASA Software Engineering Laboratory 
(SEL) Cleanroom studies, which later gave rise to the Perspective-Based Reading 
(PBR) studies at Maryland. 

 

Model 2: This model is referred to as the “parallel” model.  This involves a set of 
coordinated studies, all addressing the same (at least general) research question, 
utilizing a variety of (hopefully complementary) research designs.  The ongoing VTT 
research, conducted by Pekka Abrahamsson, on agile methods, was raised as one 
possible example of this type of study structure.  Another example is Lorin 
Hochstein’s recently-completed doctoral dissertation at the University of Maryland. 

 

Model 3: This model consists of a single, central study, which is usually quantitative 
and confirmatory, with one or more dependent “studies” (or instances of data 
collection and analysis, even if considered part of the main study), usually qualitative 
and exploratory.  For example, a classroom experiment comparing the effectiveness 
(in terms of defect detection) of two different reading techniques, might include some 
post-experiment interviews in order to gather data to help explain the results.  Or, a 
formal hypothesis-testing experiment might be preceded by a focus group in order to 
help define relevant variables and identify confounding factors that might arise in the 
experiment.  The consensus of the working group was that there are many examples 
of this in the literature, but in most cases the dependent data and analysis are not 
reported well.  More knowledge could be gained if this other data were collected and 
reported in as careful a manner as for the central study. 

 

Model 4: The last model, for which we could think of no current examples, consists 
of a central study that uses current data (i.e. data collected directly from ongoing 
activities) but also uses historical and benchmark data (collected and analyzed using 
different methods) to help support and interpret the findings of the central study. 

5   Goals 

The working group articulated several inter-related goals in this area, although several 
of them seemed to extend a bit beyond the scope of our discussion.  That is, some of the 
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goals that we felt were necessary for improving the community’s ability to effectively 
combine study types to address research questions were goals that also improved the 
level of quality of empirical software engineering research across the board. 

The goals we articulated are: 
 

1. Better and more explicit connections between published studies. Empirical 
software engineering researchers need to make better use of the literature by being 
more familiar with the literature and properly placing their own work in that 
literature.  At a basic level, we all need to read more of each other’s work, 
communicate more about our work to each other, and explain the relationships 
between different pieces of work in our papers. Ideally, a researcher makes these 
connections with other work a priori, before designing and conducting a study.  
This involves thoroughly reviewing the literature and defining an appropriate 
“gap”, then carrying out a study that fills that gap and explaining the literature 
boundaries of that gap when writing up the study.  It also involves identifying other 
studies whose results can be interpreted in light of the study being reported. We 
believe this is a short-term goal, and has several concrete sub-goals: 

a. more uniform terminology for empirical software engineering (ESE) 
that can facilitate the comparison and describing of related studies in 
papers; 

b. more uniform content structure of ESE papers, i.e. standard templates; 
c. better publication control of ESE papers with respect to making sure that 

papers include sufficient and thorough related work sections, by training 
and briefing of conference and journal referees/reviewers. 

2. Better contextualization of studies.  This may necessitate the definition of a set of 
standard contextual factors that should be reported for all studies.  Although it 
would not be possible to capture all relevant contextual factors for all studies in a 
standardized way, an initial set would go along way towards facilitating 
comparability.  Better reporting of context facilitates comparison of studies 
addressing the same question, even if data is not comparable. 

3. Collection of example archetypical method combinations.  This would help 
researchers identify combinations of study designs that work well for particular types 
of research questions and goals.  It would also explain the particular design issues that 
arise with different combinations.  Seaman, 1999, provides a start on such a set, and 
we look forward to the upcoming (due in early 2007) special issue of  the Information 
and Software Technology Journal, on qualitative studies of software engineering, to 
address some of these issues, at least for qualitative research. 

6   Other Issues 

Several issues were discussed by the working group that did not evolve into goals.  
One is the interplay between exploratory and confirmatory research.  The question 
was raised as to whether or not there is a necessary link between them, i.e. must all 
confirmatory work be preceded by exploratory work in order to ground the 
hypotheses being tested?  If not, then what criteria should be used to determine 
whether or not a proposed hypothesis is worth committing the resources to testing?  
This is considered an open issue, although there was some discussion of the 
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appropriateness (although often not publishability) of testing a hypothesis based on 
“common wisdom”.   

We also briefly discussed simulation, and whether or not it was a valid study 
design to be considered when envisioning a set of related studies.  There are no 
guidelines for how simulation might fit in, in a synergistic or complementary way, 
with other types of studies.  We discussed an extended taxonomy to classify such 
studies (i.e., in virtuo and in silico).  Good examples of these types of studies can be 
found in the ISESE 2005 proceedings, PROSIM and elsewhere. Also, such a 
taxonomy was introduced at the ISERN meeting in Italy, 2003. 

An issue that came up several times is the difficulty of publishing papers that fully 
address all methodological issues, because of space limitations.  Reviewers do not 
always appreciate all the detail, even if space is not a consideration.  More space is 
needed to, for example, properly contextualize a study, fully explain data from 
secondary activities (e.g. follow-up interviews), or completely place the study in the 
body of literature.  During the discussion with the plenary group, it was proposed that 
technical reports are a convenient way to make all the relevant detail available, 
without putting it all into a published paper.  Another possibility that helps in some 
situations is the use of online sources as supplementary material, but publishers 
should provide better means for ensuring the persistency of such resources. 

Mike Mahoney, the resident historian of science with us at the Dagstuhl seminar, 
helped our ad hoc group with some context on some of these issues and how they are 
dealt with in other scientific disciplines.  He explained that it is common practice, for 
example, not to submit full papers prior to conferences, but to submit an abstract, 
make a presentation of the work at the conference, and write the full paper after the 
conference, shaped by feedback gained.  These papers tend to be longer than ours, and 
include a lot more “methodology talk”.  These practices all seemed, to the working 
group, worth considering in our discipline, although they would require considerable 
discussion and tailoring. 

Finally, the group felt that a cohesive research agenda for empirical software 
engineering was essential not only for improving the state of the practice of 
conducting empirical work in general, but also for our topic specifically.  That is, 
there can be much more experience sharing and synergy in terms of combining 
research designs when more people are following a common agenda and addressing 
similar problems. 
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Optimizing Return-On-Investment (ROI) for Empirical 

Software Engineering Studies  

Working Group Results 

Lutz Prechelt 

1   The Notion of ROI 

Return-on-investment (ROI) is a concept from the financial world. In the dynamic 
view, ROI describes the periodically recurring profits (returns) from fixed financial 
capital (investment). In the static view, ROI describes the one-time income or saving 
(return) realized as a consequence of a one-time expenditure (investment). In this 
case, if the return does not occur within a short time, later parts of the return may be 
discounted for interest. For our purposes, we will use the static view and ignore 
discounting. We will call the return benefit and the investment cost. 

The notion of ROI can be generalized to any domain (in particular engineering) in 
which both cost and benefit can be quantified on a rational scale and both scales use 
the same units. Most commonly, the scale is either money or time. 

ROI can be used for retrospective analysis of the performance of an investment 
(controlling) or as an aid for decision-making about potential investments (planning). 

In the former case, both cost and benefit may be known and the ROI is a single 
fixed number. Values greater than 1 indicate successful investments, values smaller 
than 1 indicate failed ones. In the latter case, however, there is usually some 
uncertainty about the cost and almost always significant uncertainty about the benefit; 
both expected cost and expected benefit are best described by probability distributions 
and hence the ROI is also a distribution. 

In many cases, the uncertainty can be factored into a base case plus a number of 
identifiable risks, each of which increase cost or reduce benefit. 

2   ROI of Empirical Studies: Industrial View 

The view of an industrial organization onto an empirical study in software 
engineering is well compatible with the definition of ROI as stated above: The study 
is considered an investment that is made in order to produce a return; the expected 
ratio of benefit to cost determines whether a suggested study will be performed or not. 

When considering how to optimize ROI we may therefore list the kinds of costs 
and kinds of benefits that typically occur and collect suggestions for improving each 
of these. 

The major kinds of costs are: 

− C1. Effort for determining the precise research question. 

− C2. Researcher effort for designing the study. 

− C3. Researcher effort for performing the study. 
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− C4. Industrial participant effort for performing the study. 

− C5. Researcher effort for evaluating and reporting the study. 

− C6. Indirect cost (for instance losses in time-to-market, product quality, or devel-
oper motivation). 

Note that C2 may involve learning about empirical methods first (in particular for 
industrial researchers) or learning about the application domain first (in particular for 
academic researchers). 

The major kinds of benefits are: 

− B1. Process effectiveness impact: Improved process capabilities with respect to qu-
ality or cycle-time. 

− B2. Process efficiency impact: Improved process capabilities with respect to cost. 

− B3. Morale impact: Improved staff motivation and cooperation, e.g. due to resolu-
tion of a dispute. 

− B4. Indirect benefit: Improved process capabilities for further process improve-
ment (for instance via further empirical studies). 

Note that B1 and B2 apply in particular to technology evaluation studies. They 

break down into (a) better estimates for the cost and risk of applying the technology, 

(b) better understanding of its benefits and limitations, (c) initial technology training 

for subsequent change agents, and (d) improved chance of successfully adapting the 

technology if it is valuable and rejecting it if it is not. 

There may be secondary benefits beyond those listed, such as the publicity if the 

study results in a scientific publication. 

2.1   Optimizing ROI in the Industrial View 

We can now use the above partitioning of cost and benefit into elements as a guide for 

formulating a few general hints how to reduce cost or increase benefit in an empirical 

study. The various hints work in different ways: each may target a reduction of base 

cost, an increase of base benefit, the management of a specific class of risk factors, or 

may just generally reduce the variance of study results (also in the sense of risk 

management). 

− C1. Plan whole research programmes at once rather than individual studies. 

− C2. Reuse or adapt the design of a previous study. 

− C3. Reuse existing infrastructure (such as instructions, checklists, automation) for 

data collection. 

− C4. Use continuous data evaluation in order to stop using further participants as 

soon as the study result becomes sufficiently clear; avoid collecting non-essential 

data; use automation to minimize the work and disruption of the participants; 

embed the study in the standard software process and adapt your manipulations so 

as to become indistinguishable from normal project management. 

− C5. Use checklists for data evaluation and report in standardized formats. 

− C6. Include the empirical study as a risk factor in your project risk management. 
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− B1. Favor studies whose results can be turned into process improvements easily. 
Assess the major threats to validity and confounding influences explicitly during 
the study. 

− B2. Ditto. 

− B3. Perform empirical studies specifically in areas that have both high relevance 

and high disagreement; make sure everybody accepts the study design as unbiased. 

Carefully explain study results and discuss their implications with the stakeholders. 

− B4. Introduce explicit experience management. 

These hints could be formulated more concretely and in more detail if we 

discussed different types of research methodology separately (e.g. experiments, 

surveys, case studies, post-hoc studies, benchmarks). 

3   ROI of Empirical Studies: Scientific View 

From a scientific point of view, most of what has been said above about cost does 
apply, however the benefit structure is completely different. 

The major kinds of benefits from a scientific point of view are: 

− B1. The specific, immediate insight gained from the study. 

− B2. New conjectures that help in formulating preliminary theories and correspo-
nding research programs. 

− B3. Impact on theory: Partial validation or refutation of a previous conjecture or 
theory. 

− B4. Impact on research agenda: Improved ideas and empirical capabilities for 
future studies. 

− B5. Indirect benefit: Improved trust with industrial partners (or at least an extended 
track record) and thus increased likelihood of opportunities for empirical studies. 

The above formulations use the term theory in a rather broad sense; most 
statements about mechanisms and relationships that are somewhat abstract qualify as 
theories. 

3.1   Optimizing ROI in the Scientific View 

− B1. Make sure the study design provides insight even if the expected results do not 
occur. 

− B2. Observe sufficiently many different variables or phenomena at once so that 
you will probably be able to formulate a new conjecture.  In particular, do not 
unnecessarily restrict the study to quantitative observation only. 

− B3. Always formulate some kind of expectation, even if the study is mostly 
exploratory. 

− B4. Perform a post-mortem for an empirical study much like you should do for a 
software project; keep good ideas and identify mistakes. 

− B5. Work on human relationships along with working on the study. 
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4   Conclusion 

While the concept of ROI can be directly applied to individual empirical software 
engineering studies if an entirely industrial view (focusing on cost efficiency) is used, 
it should be obvious that ROI in a strict sense cannot be applied to scientific 
considerations of research benefits, as this would require assigning a monetary value 
to insights (and do so before you even had them!), which does rarely make any sense. 

Nevertheless, the above partitioning of cost and benefit into components and 
subsequent reflection on ways for optimizing each component suggest that ROI 
considerations can provide useful guidelines for optimizing research efficiency. 
Concrete examples for such optimizations can be found in many published studies 
and are waiting to be reused. 
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The Role of Controlled Experiments  

Working Group Results 

Andreas Jedlitschka and Lionel C. Briand 

Abstract. The purpose of this working group was to identify which role 

controlled experiments play in the field of empirical Software Engineering. The 

discussions resulted in a list of motivational factors, challenges, and 

improvements suggestions. The main outcome is that, although the empirical 

Software Engineering community, over the last 14 years, has matured with 

regard to doing controlled experiments, there is still room for improvement. By 

now the community has understood under which conditions it is possible to 

empirically evaluate Software Engineering methods, techniques, and tools, but 

the way controlled experiments are designed, performed, and reported still lacks 

the level of quality of other disciplines such as social sciences or medicine. The 

generalizability of the results of controlled experiments is one major concern. 

Furthermore, more emphasis should be put on the role of empirical Software 

Engineering education. 

1   Introduction 

The working group on “The Role of Controlled Experiments” consisted of (in 
alphabetic order): Lionel Briand (chair), Giovanni Cantone, Jeffrey Carver, Tore 
Dyba, Andreas Jedlitschka, Natalia Juristo, Sandro Morasca, Nachiappan Nagappan, 
Markku Oivo, and Elaine Weyuker. 

Working method: The chair introduced the points that were to be addressed by the 
participants. Each participant was asked to give a short statement with regard to the 
topic at hand, by preferably raising points that had not been addressed before.  
Topics of discussion:  

• The first round was dedicated to the motivations for doing controlled experiments, 
which not only imply artificial settings but very often student as subjects. 

• During the second round, participants were asked to reflect about the challenges 
faced during controlled experiments, e.g., difficulties experienced while con-
ducting an experiment or while analyzing its results. Improvement suggestions 
were also debated while reflecting on these challenges. 

1.1   Working Definition of Controlled Experiments 

The first thing to be clarified was to agree upon a working definition of the main 
characteristics of controlled experiments (CE) in software engineering. They usually 
imply the following: 

• Small samples 

• Random assignment (but not necessarily random sampling) to treatments 
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• Control of extraneous factors (blocking, counterbalancing, etc.) 

• Artificial, lab settings 

• Well-defined (but small) tasks and (artificial) artifacts 

• Proper training for the tasks at hand 

• Student or professional subjects 

A summary of the working group results was presented during the discussion and 
summary session by the chair. The comments made on the topics throughout the 
workshop are summarized in the following sections. 

2   Motivation 

The working group discussed the motivations for the use of CE in software 
engineering and came up with the following consolidated list: 

• CE are used to investigate/understand cause-effect relationships.  

• CE are a good mechanism to gather initial evidence about such relationships. 

• CE are also useful for feasibility studies as a preparatory step to field studies. The 
argument is that, in many cases, if an approach does not work in laboratory 
settings, it will likely be unsuccessful in more realistic settings. In addition, CE 
help to identify contextual factors, better control assignments to treatments, and 
refine measurement before a more extensive and expensive field study. 

• CE can also be used to convince industry to invest in larger field studies by 
showing promising initial results. 

• CE give more control over extraneous variables, by using measures like blocking 
e.g., with regard to the subjects’ level of expertise. 

• CE can be used as an education mechanism, showing students that it is possible to 
empirically validate software technologies and using experiments to convince them 
of innovative technologies. 

• CE are necessary in case a technique is not yet used in practice and/or if the 
training of practitioners would be prohibitive. 

• For certain kinds of questions, CE are a better trade-off in terms of threats to 
validity. 

• CE tend to be easier to replicate as they are more controlled.   

As a side effect, the discussion also raised some points with regard to using students 
as subjects in CE. 

• Pro students: 

• For certain tasks students are much better trained than most practitioners. 

• They are much less expensive than practitioners. 

• Contra students: 

• They do not know anything about the real world of software engineering. 

• They do not have comparable experience. 

Comment from the authors: There are several papers that discuss the pros and cons of 
using students as subjects [1], [3], [5]. There is no common agreement on this point. 



60 A. Jedlitschka and L.C. Briand 

Nevertheless, it is accepted that CE in a real industry setting are very challenging in 
terms of cost and time (for all parties involved), though few examples have been 
reported. 

3   Challenges and Difficulties 

The working group also discussed common difficulties encountered while performing 
CE or while using CE results to perform further research: 

• The average quality of the reporting of CE results is considered to be low in 
software engineering. In contrast to other disciplines, there is no commonly agreed 
standard way of reporting results [4], though we can probably get good guidelines 
from other experimental fields.  

• Crucial information is often missing, not only for practical use but also for 
researchers to build on existing results, e.g., context information (such as, skills 
and experience of subjects).  

• The context of CE is often not realistic in many ways: 

• The long term effect of the treatment is not measured,  

• Typical project pressure is missing, e.g., through multiple parallel projects,  

• Interruptions, e.g., by customers, cannot be simulated, 

• There are no tight time constraints as in a typical project context,  

• There is no turnover like on regular project 

• Though they are crucial, negative results (the null hypothesis cannot be rejected) 
are often not reported. They tend not to be accepted by journals or conferences and 
researchers are too often reluctant to provide evidence that there are no benefits for 
their novel approaches.  

• Conformance to treatment: a certain level of lack of conformance is unavoidable, 
but should be minimized. Therefore, we need a mechanism to detect lack of 
conformance so that we can account for it during data analysis. Conformance of 
subjects to treatment is often far from perfect. In other words, it is often the case 
that subjects do not conform perfectly to the procedures they are prescribed to 
follow. This is hard to measure, but must be taken into account while performing 
the data analysis.  

• The experimenters can unduly influence results. There were several comments that 
such kind of distortion has to be reduced to the maximum extent possible. 

• CE are not suitable for certain research questions, e.g., questions that aim at 
measuring the long-term effects of a technology. 

• It also seems that in past software engineering research, controlled experiments 
were also probably used for questions that do not lend themselves to such an 
experimental strategy – a key, but difficult, issue is to decide on the appropriate 
strategy (research method) to answer a given question. 

• Due to small samples, there is usually low statistical power. This is particularly 
true if the effect size is small. It was reported [2] that the average power of 
detecting a medium-sized effect size (according to Cohen's definition) was found 
to be 0.36. Thus the chance of detecting phenomena with medium effect sizes is 
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around one in three. The general conclusion was that the statistical power of 
software engineering experiments falls substantially below accepted norms. 

• Replications: We face difficulties when replicating experiments that sometimes 
result in unintentional changes, and furthermore, intentional changes are 
unavoidable, as replications are usually performed under different constraints and 
with different objectives in mind. As show in recent studies [7], replications tend to 
confirm the original findings when they are conducted by the original authors, 
while the opposite seems to be the case when the replications are performed by 
other authors. Furthermore, replications tend to change several aspects of the 
original study (e.g., training, material). Though such changes have to be expected, 
if not carefully planned or unintentional, such changes can make any interpretation 
of differences in results difficult. Furthermore, it was mentioned that experimental 
packages are not that clear, e.g., regarding the context.  

• Generalization of or extrapolation from CE is often difficult and only suitable for 
certain questions. In particular, this argument was raised with regard to the usage 
of students as subjects and the artificial setting of CE. Even CE in industrial 
contexts present difficulties, as the subjects involved are often not representative 
and the project conditions are not realistic.  

4   Improvement and Suggestions 

The following suggestions for improvement arose from the discussions: 

• The generalization issue can be alleviated through qualitative analysis (to 
understand why and how the effect takes place) [6], a focus on potential effect 
instead of average effect, and a solid theory in the context of which to interpret 
results.  

• Controlled experiments should be used as low-risk pilot studies to prepare larger 
studies. 

• Any experiment design should include a mechanism to detect subjects’ deviations 
from prescribed experiment procedures, e.g., whether they actually used the 
techniques they were supposed to use to perform a task. This can then be used as a 
factor in the subsequent data analysis.  

• More effort should be spent on increasing the number of industrial case studies, as 
there is clearly an imbalance in the current research literature, which focuses 
mostly on controlled experiments in artificial settings.  

5   Conclusions 

The group discussions converged towards a consensus. Controlled experiments are a 
useful means for investigating cause-effect relationships, collecting initial evidence, 
and performing pilot studies. However, generalization is a difficult issue and 
interpretation always has some level of subjective judgment. It is also of the outmost 
importance to interpret results in the context of well-defined theories. But theories 
must also be grounded in experience, and in order to build theories, it would be 
necessary, though costly, to plan families of experiments, as no single experiment can 
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yield a generalizable result. Furthermore, the design and reporting of controlled 
experiments has yet to improve in software engineering. For example, we need the 
design to account for the subjects’ possible lack of conformance to prescribed 
procedures and report results in a way that enables future meta-analysis and 
replications. Software engineering must develop specific procedures for designing 
and reporting controlled experiments in a way that fits its needs.  
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The Empirical Paradigm  

Discussion and Summary 

Marcus Ciolkowski, Barbara Kitchenham, and Dieter Rombach 

1   Introduction 

The session was structured into fours parts:  

1. Two presentations, which addressed the use of empirical validation in software 
engineering. 

2. Two presentations about exploratory versus confirmatory experiments. 
3. A working session, which addressed questions that arose from the presentations 

and which involved splitting into three working groups to address different issues 
followed by a plenary feedback session. 

4. A wrap-up by Mike Mahoney from a historian’s perspective. 

2   Approaches for Empirical Validation 

Marvin Zelkowitz and Walter Tichy provided the introductory papers for this session. 

They both presented reviews of published papers with the aim of identifying trends in 

the extent and nature of empirical validation in software engineering. 

Marvin Zelkowitz presented an update of a previous study undertaken with 

Dolores Wallace in 1998, which classified papers in ICSE, TSE, and IEEE Software 

according to the type of validation (if any) reported in the paper. Compared with the 

previous study, papers written between 1995 and 2005 contained more validation. 

There were more case studies, dynamic analysis studies and use of data repositories, 

the later two findings being related to the analysis of open source software. The level 

of controlled experiments remained stable but low at 7%. 

Walter Tichy reviewed papers in the Journal on Empirical Software Engineering 

over the 10½ years of its existence. He used a classification scheme based on 

psychological research. He found that studies concentrated on metrics, software 

process, inspections, and project planning / estimation. Topics such as programming 

languages and programming paradigm were not addressed. Overall, he found more 

professional subjects than students, but students were used more often than 

professionals in experiments. He noted that 26% of experiments are replications. 

2.1   Discussion 

Following these presentations, the workshop participants discussed the issues they 
raised for empirical software engineering. Issues and questions included:  

• What are really important empirical results? We are in competition with other 
fields for research funding, and also in competition for research students. What 
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have we achieved in empirical software engineering that would appear interesting 
to students? 

• We still have a limited understanding of empirical studies in other fields, and a 
naïve view of what it means to do empirical studies. 

• It takes a lot of expertise to scope questions for investigation. Often, people with  
an ESE background are not experts in the domain, and vice versa. A good research 
team needs empirical expertise and domain expertise. 

Further discussion identified a list of important issues for empirical software 
engineering: 

• How can we increase the acceptance rate for ESE papers? 

• How can we assure the quality of validations? 

• How can we increase collaboration with other CS/IS fields and generally increase 
the involvement of ESE researchers in the CS community at large? 

• How can we come up with more realistic studies? 

• What would be the most interesting topics/domains for the next five years?  

• Can we apply ROI to empirical research? 

• Can we learn from best studies and identify why they were successful? 

• Should we perform root-cause analysis of why ESE is not valued; what can we do, 
as a community, to increase the reputation of ESE work? 

• How do we stand with regard to CS? 

• Do we need to have benchmarks? 

• Are there constructive ways to increase the reputation of ESE? 

• How can simulation contribute to empirical software engineering? 

• We are in the business of buying information for decision making; we need 
realistic expectations of the outcomes of ESE. 

• We need more synergy between domains. 

3   Exploration Versus Confirmation 

Empirical studies range from exploratory studies of new, badly understood software 
engineering approaches for the purpose of incremental learning, to confirmatory 
studies of the properties of well-defined software engineering approaches. Victor 
Basili and Barbara Kitchenham presented their views on the use of controlled 
experiments for these types of study, addressing the following questions:  

• Which of these study forms is appropriate under what circumstances?  

• How do we deal with validity threads (especially for exploratory studies)? 

Victor Basili pointed out the importance of controlled experiments in 

understanding causal relationships. He pointed out the need to learn how to combine 

different types of studies and presented examples of reading experiments and clean 

room experiments. Using controlled experiments, we can formulate hypotheses, study 

variations in context factors, improve and refine tools, and identify and study 

variations of context (explaining the results of replications including negative results). 
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However, he acknowledged that generalization was a major problem and proposed 

generalization by means of a “family tree” of related experiments. 
Barbara Kitchenham took the view that empirical software engineering had 

concentrated too much effort on controlled experiments, which, by their very nature, 
were very different from industrial software engineering practice. She advocated more 
industrial studies using case study methods and quasi-experimental designs. She also 
suggested that we need to change the views of industry and government about the 
importance of objective evidence by supporting evidence-based standards and 
evidence-based text books. 

3.1   Discussion 

The discussion showed that the term “confirmation” may be misleading, and that the 
term “hypothesis testing” should be considered instead. Other issues included: 

• How can we capture context and related work in order to better position our own 
research? 

• How do we ensure the quality of empirical evaluations? 

• We need to capture context-related information from empirical studies more 
systematically. 

4   Working Groups 

Based on the discussions in the previous sessions, the participants decided to form 
three working groups: one that addressed the questions of how to combine study 
designs, one on how to assess the ROI of empirical studies, and one that aimed at 
defining the role of controlled experiments within ESE. 

Carolyn Seaman chaired the working group on Combining Study Designs and 
Techniques. The group identified four different models of research designs that 
incorporate multiple research domains: 

1. The sequential model, which is a linear sequence of studies addressing different 
aspects of the same research problem or question. 

2. The parallel model, where different coordinated studies address the same research 
question, each using different research designs. 

3. The single central study (confirmatory) with dependent studies (exploratory). 
4. The central study, which uses current data with historical and benchmark data to 

help interpret findings. 

The working group identified several goals in this area: 

• Better and more explicit connections between published studies (short-term). 

• Better and more formal explication of secondary data collection and analysis. 

• Better contextualization (“standard” context factors). 

• Collections of good examples of method combinations. 

Lutz Prechelt chaired the working group on ROI. Costs are incurred while finding 
the research question, performing the study and disseminating the results. Combining 
study designs and techniques is an important topic to improve the ROI of studies. 
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The working group considered the benefits of ESE: 

• Valuable insights come from summaries / reviews;  

• Counter-intuitive results were perceived more valuable; because often, we have 
beliefs but no evidence. However, evidence that confirms beliefs is not considered 
as valuable. 

• One problem is that even when evidence is available, this does not necessarily 
imply any impact in practice (see inspections/reviews).  

It was noted that risk is also an important aspect of ROI assessment that the working 
group had not considered. 

Lionel Briand chaired the working group on the Role of Controlled Experiments. 
They agreed on a definition of controlled experiments: controlled manipulation of 
independent variables to study the effect on dependent variables while keeping all 
other influences constant; one technique to achieve this is randomization.  

They noted a number of challenges: 

• Generalization, assuring conformance to treatment. 

• Controlled experiments are more suited to evaluating the potential of a technique, 
not to evaluate an average effect. 

• Lack of power, small size effect in controlled experiments. 

One problem is that controlled experiments are sometimes used to answer research 
questions where they are not appropriate. In general, more published case studies are 
needed. 

• There are many industrial case studies, but industrial people are not encouraged to 
publish / write them up; so this knowledge is lost. 

• Other important issues are the embarrassment factor (i.e., hiding bad results) or 
sensitivity. 

5   Exploring and Confirming – A Historian’s Perspective 

Mike Mahoney, a science historian from Princeton, provided us with a historical 
review on how other disciplines have dealt with the issue of “exploratory versus 
confirmatory studies”. 

In particular, he considered how engineering disciplines emerged from theoretical 
sciences when practical applications could be envisioned. For example, machines 
became part of the philosophical agenda in the 15th / 16th century, which was quite a 
revolution to medieval views. Material sciences emerged from engineering with the 
need to scale up to large scales. 

Engineering problems led to “real-object” experimentation, for example, 
magnetism vs. static electricity; and many of the original studies were exploratory. 
Replication was often not possible (the machinery was too expensive, and/or too great 
a level of expertise was required). 

ESE should not feel that we are behind, but this is normal progress in the maturing 
of science; we still need to probe / explore what the important factors are in software 
engineering. Much of science rests on engineering experience (we can build before 
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we understand) and we need to accept that wrong models can be useful to advance 
science (and useful for predictions in practice). 

6   Discussion and Summary 

Experiments allow us to investigate cause-effect relationships. However, this is partly 
a social process, which involves us as a community accepting certain results. 

Generalization remains a major issue for controlled experiments undertaken under 
laboratory conditions. We need to be aware that we are not interested in how 
something works on a particular subject, but on a larger population. The question is 
how can we extract / generalize from formal experiments to industrial settings? We 
need to both combine studies properly and be able to assess the validity of our studies. 

Generalization can be approached by building models. Biologists used to build 
models from data gathered during experiments. However, building models through 
controlled experiments is dangerous, as this can be misleading and lead to false 
models (“laboratory world”). Biologists initially followed this approach, then they 
reversed the approach. Now, they first create a logical model, test that in the 
laboratory, and later in the real world. 

Other questions that ESE needs to address include: 

• How to combine results effectively (i.e., meta analysis) in order to build an 
accepted body of knowledge. 

• How to combine the different kinds of studies. 

• What the role of controlled experiments is within ESE.  

• How we can develop testable models and hypotheses. 
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Measurement and Model Building  

Introduction 

Victor R. Basili 

Abstract. The goal of empirical study is to build, test, and evolve models of a 

discipline. This requires studying the variables of interest in multiple contexts 

and building a set of models that can be evolved, discredited, or used with 

confidence. This implies we need to perform multiple studies, both replicating 

as closely as possible and varying some of the variables to test the robustness of 

the current model. It involves running many studies in different environments, 

addressing as many context variables as possible and either building well 

parameterized models or families of models that are valid under different 

conditions. This is beyond the scope of an individual research group. Thus it 

involves two obvious problems: how do we share data and artifacts across 

multiple research groups and what are good methods for effectively interpreting 

data, especially across multiple studies. 

1   Data Sharing 

How do we share and combine data from multiple studies, given the issues like the 
protection of intellectual property, proprietary corporate data, data ownership, etc. 
This leads to questions like: 

• How should data, testbeds, and artifacts, be shared?  

• What limits should be placed? What credit should be given? How does one limit 
potential misuse? 

• What is the appropriate way to give credit to the organization that spent the time 
and money collecting the data, developing the testbed, building the artifact? 

• Once shared, who owns the combined asset and how should it be shared? 

• How are the data and artifacts maintained? Who pays for it? 

At this base level, guidelines need to be followed to make sure there is access to all 
kinds of data and the laboratory manuals used to record how that data was collected. 

2   Effective Data Interpretation 

Once we have performed a study, run the experiment and saved the quantitative 
results in a data base of some form or performed a structured interview as part of the 
case study, we need to perform effective analysis and interpret the data in the context 
in which it was collected and against other contexts where data has been collected.  

Interpreting the results of a study in the larger context is complex enough, but the 
idea of combining the results from multiple studies, is a really difficult one. This is a 
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fact even when the studies are of the same type, e.g., two controlled quantitative 
experiments, because the context is almost always different. It is more difficult when 
the studies are of different types, e.g., a quantitative experiment and qualitative case 
study.  

When we find agreement how much can we generalize, how do we incorporate the 
context variables in the interpretation, how do we assign the degree of confidence in 
the interpretation? When we find disagreement, do we expand the model, identify two 
different contexts, or reject the model?  

When we add this to the problem that the studies may have been done by different 
research groups, the problems are multiplied. 

We need guidelines that support the sharing of data and data interpretation methods 
that allow us to combine the results of multiple studies. The former is a matter of 
getting community agreement and support for maintainable data bases. The latter 
requires more research into better interpretation methods.  
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Data Collection, Analysis, and Sharing Strategies for 

Enabling Software Measurement and Model Building 

Richard W. Selby 

Abstract. Successful software measurement and model building require eff-

ective strategies for data collection, analysis, and sharing. We summarize a 

template for data sharing arrangements, apply this template to two data 

collection environments, and illustrate the resulting data analyses using actual 

empirical studies. 

1   Introduction 

Current and future technological systems are increasingly software-intensive and 
large-scale in terms of system size, functionality breadth, component maturity, and 
supplier heterogeneity [Boe95]. Organizations that tackle these large-scale systems 
and attempt to achieve ambitious goals often deliver incomplete capabilities, produce 
inflexible designs, reveal poor progress visibility, and consume unfavorable schedule 
durations. Successful management of these systems requires the ability to learn from 
past performance, understand current challenges and opportunities, and develop plans 
for the future. Effective management planning, decision-making, and learning 
processes rely on a spectrum of data, information, and knowledge to be successful. 
However, many organizations and projects possess insufficient or poorly organized 
data collection and analysis mechanisms that result in limited, inaccurate, or untimely 
feedback to managers and developers. Organization and project performance suffers 
because managers and developers do not have the data they need or do not exploit the 
data available to yield useful information. 

Measurement-driven models provide a unifying mechanism for understanding, 
evaluating, and predicting the development, management, and economics of large-
scale systems and processes. Measurement-driven models enable interactive graphical 
displays of complex information and support flexible capabilities for user 
customizability and extensibility. Data displays based on measurement-driven models 
increase visibility into large-scale systems and provide feedback to organizations and 
projects. Successful software measurement and model building requires effective 
strategies for data collection, analysis, and sharing. We summarize a template for data 
sharing arrangements, apply this template to two data collection environments, and 
illustrate the resulting data analyses using actual empirical studies. 

2   Template for Data Collection and Sharing Agreements 

A draft working paper [Bas06] outlines properties of shared software artifacts:  

• permission,  

• credit,  
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• feedback,  

• protection,  

• collaboration, and  

• maintenance. 

This paper also organizes these properties into a “licensing structure” that has the 
following elements: 

• lifetime,  

• data,  

• transfer to third party,  

• publication,  

• help,  

• costs, and  

• derivatives. 

Some foundational issues regarding data organization, attribution, and distribution 
are outlined as follows. For a data organization approach, what data formats facilitate 
data sharing and useful interpretation? Research groups desire a concise summary of 
data source, data collection method, data validation approach, etc. This concise 
summary includes descriptions of observations and attributes/metrics for each 
observation and incorporates any limitations or cautions on data usage. A basic data 
sharing format uses standard tables of data organized in columns and rows where, for 
example, each row is an observation (“data point”) such as a project, component, 
process, etc. and each column is an attribute (symbolic or numeric “metric”) for the 
observations. An example environment that uses this data format is the University of 
Maryland Software Engineering Laboratory (SEL) that has data descriptions and a set 
of tables with one table for component metric data, one table for effort data, one table 
for change/defect data, etc. For a data attribution approach, what attribution 
approaches facilitate data sharing and useful interpretation? A useful approach is to 
have one standard acknowledgement for each data set and one or more standard 
citations. An example environment that uses this data attribution approach is the 
University of Southern California Center for Software Engineering (CSE) that has 
data sharing and standard acknowledgement agreements among its COCOMO 2.0 
industrial affiliates. For a data distribution approach, what approaches for data 
distribution facilitate data sharing and useful interpretation? A useful approach is to 
have a written agreement or license, and these arrangements have many variations, 
including fees, in-kind contributions, unrestricted rights, restricted rights (each user 
needs “approval”), access for data contributors only, access for researchers only, etc. 
There are many examples and analogies of data distribution approaches including 
public domain, open source, license without fee, license with fee, intellectual property 
model (such as protection/royalty for some period), etc. 

3   Example Data Collection and Sharing Environment: Software 

Engineering Laboratory (SEL) 

The SEL environment contains over 25 projects in the problem domain of ground 
support software for unmanned spacecraft control. The projects range in size from a 
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few thousand source lines to over several hundred thousand source lines. There are 
tens to hundreds of software modules in each project. The projects vary in 
functionality, but the overall problem domain has an established set of algorithms and 
processing methods. Software personnel at the NASA Goddard Space Flight Center in 
Greenbelt, Maryland, U.S.A. record information about their development processes 
and products into repositories on an ongoing basis using a set of data collection forms 
and tools [Sof83]. Data collection occurs during project startup, continues on a daily 
and weekly basis throughout development, captures project completion information, 
and incorporates any post-delivery changes. For example, effort, fault, and change 
data are collected using manual forms while source code versions are analyzed 
automatically using configuration management and static analysis tools. Personnel 
validate the data through a series of steps including training, interviews, independent 
crosschecks, tool instrumentation, and reviews of results by external researchers. 
Personnel organize the validated data into a relational database for investigation, 
analysis, and evaluation by internal NASA personnel as well as external researchers 
[Sel88] [Wei85]. 

Using the template, the SEL data sharing arrangement is: 

• Lifetime: the data is shared on an ongoing basis with no lifetime restrictions 

• Data: project- and module-level data are shared in three primary categories: static 
code analysis, effort, and faults/changes 

• Transfer to third party: transfers are not allowed 

• Publication: publications are encouraged and attribution to the SEL is required  

• Help: resource limitations constrain the level of support available, but external 
researchers are encouraged to coordinate and collaborate on results with SEL 
researchers 

• Costs: there is no specific cost structure for sharing 

• Derivatives: external researchers are encouraged to coordinate and collaborate on 
any potential derivatives with SEL researchers 

4   Example Data Collection and Sharing Environment: Center for 

Software Engineering (CSE) 

The CSE environment has over 30 industry and government affiliates that help 
researchers investigate technology, applications, and economic trends through 
participation in annual workshops and collaborative projects. These interactions cover 
such areas as value-based spiral model extensions, COCOMO cost-schedule-quality 
estimation model extensions, software architecture languages and tools, COTS-based 
system development, and agile methods. In most interactions, industry affiliates 
contribute project data to the CSE that reflect past and current systems and 
experiences. The type of data sharing varies based on the research needs and 
interaction methods, but one common example is the sharing of COCOMO-type 
parameters and predicted and actual project values [Boe81] [Boe95]. In addition, 
experience-based Delphi sessions define initial values for new parameters and 
models. Researchers work together with industrial affiliate project personnel to 
understand and validate project data at various points throughout development 
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projects. Researchers organize the validated data into a relational database for 
investigation, analysis, and evaluation. Among other benefits, the affiliates gain 
visibility into early and evolving results and models prior to their broader distribution. 

Using the template, the CSE data sharing arrangement is: 

• Lifetime: the data is shared on an ongoing basis with no lifetime restrictions 

• Data: project-level data are typically shared, and there is usually a specific purpose 
for the data sharing such as the development of a specific model 

• Transfer to third party: transfers are not allowed 

• Publication: publications of model definitions and results are encouraged and 
attribution to the affiliates is required  

• Help: resource limitations constrain the level of support available, but extensive 
interactions occur between affiliates and CSE researchers to understand the data 
and interpretations 

• Costs: industry and government organizations pay an annual fee to become a CSE 
affiliate and collaborate with the researchers 

• Derivatives: any potential derivatives are coordinated among the affiliates and 
researchers to ensure validity of the data and usage 

5   Example SEL Empirical Study on Software Reuse 

Software reuse enables developers to leverage past accomplishments and facilitates 
significant improvements in software productivity and quality. Software reuse 
catalyzes improvements in productivity by avoiding redevelopment and 
improvements in quality by incorporating components whose reliability has already 
been established. This example study [Sel05] addresses a pivotal research issue that 
underlies software reuse – what factors characterize successful software reuse in 
large-scale systems? The research approach is to investigate, analyze, and evaluate 
software reuse empirically by mining software repositories from a NASA software 
development environment that actively reuses software. This software environment 
successfully follows principles of reuse-based software development in order to 
achieve an average reuse of 32% per project, which is the average amount of software 
either reused or modified from previous systems. We examine the repositories for 25 
software systems ranging from 3000 to 112,000 source lines from this software 
environment. We analyze four classes of software modules: modules reused without 
revision, modules reused with slight revision (< 25% revision), modules reused with 

major revision (≥ 25% revision), and newly developed modules. We apply non-
parametric statistical models to compare numerous development variables across the 
2954 software modules in the systems. We identify two categories of factors that 
characterize successful reuse-based software development of large-scale systems: 
module design factors and module implementation factors. We also evaluate the fault 
rates of the reused, modified, and newly developed modules. 

The module design factors that characterize module reuse without revision were 
(after normalization by size in source lines): few calls to other system modules, many 
calls to utility functions, few input-output parameters, few reads and writes, and many 
comments. The module implementation factors that characterize module reuse 
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without revision were small size in source lines and (after normalization by size in 
source lines): low development effort and many assignment statements. The modules 
reused without revision had the fewest faults, fewest faults per source line, and lowest 
fault correction effort. The modules reused with major revision had the highest fault 
correction effort and highest fault isolation effort as well as the most changes, most 
changes per source line, and highest change correction effort. 

6   Example CSE Empirical Study on Software Cost Modeling 

Current software cost estimation models, such as the 1981 Constructive Cost Model 
(COCOMO) for software cost estimation and its 1987 Ada COCOMO update, have 
been experiencing increasing difficulties in estimating the costs of software developed 
to new lifecycle processes and capabilities [Boe81]. These difficulties include non-
sequential and rapid-development process models; reuse-driven approaches involving 
commercial off the shelf (COTS) packages, reengineering, applications composition, 
and applications generation capabilities; object-oriented approaches supported by 
distributed middleware; and software process maturity initiatives. This example study 
[Boe95] defines the baseline COCOMO 2.0 model that supports these new forms of 
software development. The major new modeling capabilities of COCOMO 2.0 are a 
tailorable family of software sizing models, involving Object Points, Function Points, 
and Source Lines of Code; nonlinear models for software reuse and reengineering; an 
exponent-driver approach for modeling relative software diseconomies of scale; and 
several additions, deletions, and updates to previous COCOMO effort-multiplier cost 
drivers. The COCOMO 2.0 model is serving as a framework for an extensive current 
data collection and analysis effort to further refine and calibrate the model’s 
estimation capabilities. 

7   Future Studies Benefiting from Software Data Sharing 

An example study underway that is benefiting from software data sharing across 
projects and organizations is focusing on software requirements metrics [Sel04]. 
Software requirements metrics are leading indicators of project scope, growth, 
stability, and progress. Software requirements metrics characterize the “problem 
space” that a project is addressing, as opposed to metrics such as source-lines-of-code 
that characterize the “solution space.” Software requirements metrics are also 
available very early in a project and can form the basis for early analyses and 
predictions of project plans, alternatives, risks, and outcomes. Using software 
requirements metrics also helps resolve the counting issues associated with reused 
design or code and whether components are developed in-house or from commercial-
off-the-shelf (COTS) suppliers. The project requirements, in terms of functionality 
and performance, are typically the same regardless of whether the implementation 
reuses software design and code or incorporates COTS components. Of course, the 
project requirements, in terms of organization and process, may vary depending on 
the degree of software reuse and usage of COTS components. 
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Fig. 1. Software requirements metrics for the projects 

The data analyzed originates from 14 large-scale projects that use measurement-
driven models to actively manage their development activities and evolving products. 
Figure 1 displays the software requirements metrics for the projects. For these 
projects, the number of requirements is defined to be the number of “shall” statements 
in the requirements specification documents. For example, a requirements document 
may contain the following statement “the system shall determine the three-
dimensional location of a vehicle within an accuracy of 0.1 meter.” This “shall” 
statement would count as one requirement. In order to facilitate consistency within 
and across projects, requirement specification standards and guidelines need to be 
defined to enforce the breadth and depth of functionality expressed in a single 
requirement. Of course, just counting the “shall” statements oversimplifies the project 
requirements, but this metric does provide an initial basis for project scope, growth, 
stability, and progress. 

Initial data analysis of the software requirements metrics reveals the following 
observations: 

• The ratio of requirements in a system-level parent specification to requirements in a 
software specification ranges from 1:300 for early projects to 1:6 for mature projects. 

• The ratio of requirements in a software specification to delivered source-lines-of-
code averages 1:81 for mature projects and has a median of 1:35. 

• When Project #14 is excluded (see Figure 1), the ratio of requirements in a 
software specification to delivered source-lines-of-code averages 1:46 for mature 
projects and has a median of 1:33. 

• Projects that far exceeded the 1:46 requirements-to-code ratio, such as Projects #13 
and #14, tended to be more effort-intensive and defect-prone during verification. 
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8   Conclusions 

Our ongoing research investigates principles for effective data collection, analysis, 
and sharing strategies for enabling software measurement and model building for 
development and management of large-scale systems. We illustrate a data sharing 
agreement template and apply it successfully to two data collection environments. 
The agreement template seems useful for capturing essential elements of data sharing 
and facilitating fruitful interactions. Successful development, management, and 
improvement of large-scale systems require the creation of measurement and model 
building paradigms as well as data collection, analysis, and sharing strategies to 
support investigations of organizations, projects, processes, products, teams, and 
resources. 
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Knowledge Acquisition in Software Engineering Requires 

Sharing of Data and Artifacts 

Dag I.K. Sjøberg 

Abstract. An important goal of empirical software engineering research is to 

cumulatively build up knowledge on the basis of our empirical studies, for 

example, in the form of theories and models (conceptual frameworks). Building 

useful bodies of knowledge will in general require the combined effort by 

several research groups over time. To achieve this goal, data, testbeds and 

artifacts should be shared in the community in an efficient way. There are 

basically two challenges: (1) How do we encourage researchers to use material 

provided by others? (2) How do we encourage researchers to make material 

available to others in an appropriate form? Making material accessible to others 

may require substantial effort by the creator. How should he or she benefit from 

such an effort, and how should the likelihood of misuse be reduced to a 

minimum? At the least, the requester should officially request permission to use 

the material, credit the original developer with the work involved, and provide 

feedback on the results of use as well as problems with using the material. 

There are also issues concerning the protection of data, maintenance of artifacts 

and collaboration among creators and requestors, etc. A template for a data 

sharing agreement between the creator and requestor that addresses these issues 

has been proposed. 

1   Introduction 

A prerequisite for the evolution of most sciences is that researchers build on the work 
of other researchers. In empirical sciences, this includes the sharing of data and 
experimental material. For example, to evaluate, compare and generalize results from 
empirical studies, one should replicate them, and preferably develop theories or 
models that represent the current knowledge in the field. If replication of studies, 
meta-analysis, theory development and other research that builds on others’ work is 
stimulated by editors, program chairs and reviewers of journals and conferences, this 
would be an incitement for individuals to reuse material produced by others. 

This chapter is organised as follows. The next section motivates, within the context 
of empirical software engineering, the need for more replication of studies conducted 
by other than the original researcher, and the need for more theory building. To 
support rapid progress in these areas, an increase in the sharing of data and artifacts 
among software engineering researchers would be required. However, there are 
several challenges to such a sharing, which is the topic of the subsequent section. 
Then follow a section that describes a concrete proposal for a template for a data 
sharing agreement that may help ensure that the reuse of data and material is 
performed in a way that is satisfactory for both creators and users. The conclusion 
section ends the chapter. 
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2   Motivation 

The purpose of this section is to demonstrate two important areas in empirical 
software engineering, replication and theory building, whose progress is dependent on 
the sharing of data and artifacts among several researchers. 

2.1   Replication of Studies 

“Methodological authorities generally regard replication, or what is also referred to as 
“repeating a study,” to be a crucial aspect of the scientific method” [1]. In a literature 
survey, 113 experiments were identified in 103 articles extracted from of a total of 
5,453 articles published in major software engineering journals and conferences in the 
decade 1993-2002 [2]. Only 18 percent of the surveyed experiments were 
replications. Moreover, of the 20 replications, five can be considered as close 
replications in the terminology of Lindsay and Ehrenberg [1], i.e., one attempts to 
retain, as much as is possible, most of the known conditions of the original 
experiment. The other replications are considered to be differentiated replications, i.e., 
they involve variations in essential aspects of the experimental conditions. One 
prominent variation involves conducting the experiment with other kinds of subject 
(for example, professionals instead of students, undergraduates instead of graduates, 
etc.), application system, task, etc. Table 1 shows that experiments that are replicated 
by the same authors tend to confirm the results of the original experiments, and 
experiments that are replicated by others tend to have different results. This may 
indicate that when you replicate your own experiments, it is difficult not to be biased. 
Consequently, replications should preferably be conducted by others. 

Table 1. Proportion of differentiated replicated studies that confirm result of the original study 

Result Same authors Other authors Total

Confirmation 7 1 8

Different results 1 6 7

Total 8 7 15
 

2.2   Theory and Model Building  

There are many arguments in favour of theory use, such as structuring, conciseness, 
precision, parsimony, abstraction, generalisation, conceptualisation and comm-
unication [3,4,5]. Such arguments have been voiced in the software engineering 
community as well [6,7,8,9]. Theory provides explanations and understanding in 
terms of basic concepts and underlying mechanisms, which constitute an important 
counterpart to knowledge of passing trends and their manifestations. When 
developing better software engineering technology for long-lived industrial needs, 
building theory is a means to go beyond the mere observation of phenomena, and to 
try to understand why and how these phenomena occur. In general, hypotheses in 
software engineering are often isolated and have generally a much simpler form than 
has a theory: 
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Hypothesis: Technology (process, method, technique, tool language) A is better than 
technology B. 

Theory: When and why is A better than B, and how much? Depending on category of 
developers, tasks, systems, support materials and technology, company culture and 
other environmental factors, A is X percent better than B, because … etc.  

 

A systematic review of the explicit use of theory in the set of 103 articles reporting 
controlled experiments (described above), was conducted by Hannay et al. [10]. Of 
the 103 articles, 24 use a total of 40 theories in various ways to explain the cause-
effect relationship(s) under investigation. Only two of the extracted theories are used 
in more than one article, and only one of these is used in articles written by different 
authors. Hence, there is little sharing of empirically-based theories within the software 
engineering community, even within topics. 

3   Challenges of Sharing Data and Artifacts 

We have identified several challenges related to the sharing of artifacts [11]. They 
concern the permission to use the items, the credit that should be given to the original 
creator, the opportunities for collaboration between the original creator and the 
requestor, the kind of feedback on the results of use, as well as problems with using 
the artifact or data that should be reported to the original creator, the protection of the 
data and artifacts, and the maintenance of these artifacts: 

 

Permission: Does one have to request permission to use the material? Is it simply 
publicly available? What should be the rules? If publicly available, how (or should) 
one provide some form of controlled access to the artifacts? There might be a request 
to use the artifact with a commitment to provide feedback after or during use (method, 
results, other data) and reference the items in all work using them. A mechanism that 
could effectively restrict access would be to require that the requestor write a short 
proposal to the data owner. Then the item can be used: 

- freely, in the public domain, 
- with a data sharing agreement or license, or 
- with a service fee for use (by industry) to help maintain the data. 

 

Credit: How should the original group gathering the data or developing the artifact be 
given credit? What would be the rewards for the artifact or data owner? The type of 
credit is related to the amount of interaction. If there is an interaction, depending on 
the level, co-authorship may be of value. If it is used without the support of the data 
owner, some credit should still be given, e.g., acknowledge and reference the data 
owner. Thus, if the requestor uses it but the owner is not interested in working on the 
project, the minimal expectation is a reference or an acknowledgement. (There are 
various possibilities for how that reference should be made, e.g., the paper that first 
used the artifact, a citation provided by the artifact or data developer, or some 
independent item where the artifact itself exists a reference.) It is also possible that 
some form of “associated” co-authorship might be appropriate.  
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Collaboration: In general, it has been suggested that the requestor keep the option 
open of collaboration on the work. Funding agencies are often looking for “new” 
ideas, so it is often difficult to be funded for a continuing operation. What options are 
there for funding collaborations? If collaboration is not desired by the owner of the 
artifacts, what are the rights of the requestor? It is probably too strong to require 
collaboration as a requirement for any requestor.  

 

Feedback: By requiring permission, there is a sense that the originators of the 
material know that someone is using their materials. However, some form of feedback 
can act as payment, i.e., updated versions of artifacts, data so it can be used in some 
form of meta-analysis, some indication of the effectiveness of technology on the 
experimental environment. A related issue is assuring that the quality of the data, 
analysis, and new knowledge being returned to the originator is acceptable and 
consistent within the context of the original experiment.  

 

Protection: There are a large number of issues here. How does one limit potential 
misuse? How does one support potential aggregation and assure it is a valid 
aggregation. How does one deal with proprietary data? What about confidentiality? 
What is required of the originators? Should they be allowed to review results before a 
paper is submitted for external publication? Does the artifact owner have any rights to 
stop publication of a paper with invalid results based upon the original artifacts or is 
the “marketplace of ideas” open to badly written papers? Should there be some form 
of permission required by reviewers? Who has the rights to analyze and synthesize 
and create new knowledge based upon the combined results of multiple studies? 
Again here, how is credit given, authorship determined? How does one limit potential 
misuse? On the other hand, how do we protect scientific integrity? If users of data 
find gross negligence on the part of those who created it, what are their obligations to 
reveal those issues (e.g., the South Korean scandal over stem cell research1)? Can 
licensing requirements be an impediment imposed by the guilty to hide their actions? 

 

Maintenance: A large physical device (e.g., particle accelerator) generally is built 
and supported over the long term. But the same has not been true of computer 
software, which has an ethereal quality of simple residing hidden in a computer file 
system. Who pays for the cost of maintaining the experience base? There are only 
three possibilities here toward maintenance: (1) Owner of the data, (2) Users via a 
licensing fee, (3) Everyone via an open source arrangement. “Owner of the data” 
generally will not work since few have such resources, ”Licensing fee” may work, but 
costs will limit use; researchers will not generally pay for something they view as a 
“free resource.” “Open source” is a possibility.  

4   A Proposal for a Data and Artifact Sharing Agreement 

To help address the challenges described above, a template for a data and artifact 
sharing agreement has been proposed [11]. The template is shown in Table 2. It has 
been developed on the basis of experiences from several projects in which data and  
 

                                                           
1 http://en.wikipedia.org/wiki/Hwang_Woo-Suk 
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Table 2. Data/artifact sharing agreement taxonomy 

Attribute Property Value Definition

Single use Can use artifact only for one application

Limited Can use artifact repeatedly for a set period of time

Lifetime Permission

Unlimited Unlimited use of the artifact

Specific

project

Can use artifact only for one project

Specific

research

Can use artifact within one research area

Area Permission

Unlimited Unlimited use of the artifact

Sanitized No personal information containedData Protection

Proprietary Data contains information that uniquely identifies

individuals of specific organizations

No Only signer of agreement can use artifact

Yes Signer of agreement can pass on artifact under the same 

agreement conditions to another. This may require a non-

disclosure agreement with either this signer or owner of 
artifact.

Transfer to
3rd party

Permission

Yes after 

period

Signer of agreement can pass on artifact after a period of 

time (e.g., restricted for 3 years then available to anyone)

None Signer of agreement is free to use artifact in any way.

Prior
results

Signer of agreement has to send results of using artifact to 
owner of artifact prior to writing a paper on the topic

Acknow-

ledge

Signer of agreement has to acknowledge creator of 

artifact in publication. Agreement will state how this
acknowledgement will occur.

Publication Credit,

Feedback

Review Artifact owner has rights to review paper based on artifact 

prior to publication submission

Data only Signer of agreement obtains the data “as is.” No help is 

provided from artifact owner.

Limited Artifact owner is willing to provide limited help to signer 

of agreement to use artifact.

Help Collabo-

ration

Extensive Artifact owner is willing to provide significant
collaboration and may want to be co-author on

publications.

None Artifact is free to signer of agreement, with perhaps a 
minimal cost for a tape or CD of data

Costs Maintenance

Payment A set amount is specified to obtain artifact. If successful, 

this may help provide funding for maintenance of artifact 
repository.

None Derived artifact is owned by signer of agreement. (May 

be separate clauses covering derived software and related 

artifacts or derived data using meta-analysis)

Creator Derived artifact is owned by original artifact creator and 

creator must get a copy of the derived artifact.

Derivatives Permission,

Feedback,

Protection,
Maintenance

Open-

source

An agreement such as used by the open source

community from the Free Software Foundation. Any 

derived work has the same usage requirements as the 

original artifact.  

artifact sharing has been undertaken [11]. I have used it successfully myself in two 
recent projects: one small project where most of the attributes were not considered 
relevant, and another, larger project in which we had to include many details that 
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were not in the template. Note that the purpose of the template is to provide a general 
framework that in most cases would need adaptations depending on the actual project. 

5   Conclusions 

To make progress in empirical software engineering, we need to build on the work of 
each other; we need to share data, testbeds and other artifacts. The proposed basic 
data sharing agreement must evolve based on the feedback from actual use. Hence, 
we hope that as many as possible will start using this template and report experiences 
and suggestions for change to the author of this chapter or one of the authors of [11]. 

References 

1. R.M. Lindsay and A.S.C. Ehrenberg, The Design of Replicated Studies, The American 

Statistician, vol. 47, pp. 217-228, Aug. 1993. 

2. D.I.K. Sjøberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A. Karahasanović, N.-K. 

Liborg, and A.C. Rekdal. A survey of controlled experiments in software engineering. 

IEEE Transaction on Software Engineering, 31:733–753, September 2005. 

3. S.B. Bacharach. Organizational theories: Some criteria for evaluation. Academy of 

Management Review, 14(4):496–515, 1989. 

4. J.W. Lucas. Theory-testing, generalization, and the problem of external validity. 

Sociological Theory, 21:236–253, 2003. 

5. D.G. Wagner. The growth of theories. In M. Foschi and E.J. Lawler, editors, Group 

Processes, pages 25–42. Nelson–Hall Publishers, Chicago, 1994. 

6. V.R. Basili. Editorial. Empirical Software Engineering, 1(2), 1996. 

7. A. Endres and D. Rombach. A Handbook of Software and Systems Engineering. Empirical 

Observations, Laws and Theories. Fraunhofer IESE Series on Software Engineering. 

Pearson Education Limited, 2003. 

8. B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C. Hoaglin, K. El Emam, 

and J. Rosenberg. Preliminary guidelines for empirical research in software engineering. 

IEEE Transaction on Software Engineering, 28(8):721–734, August 2002. 

9. W.F. Tichy. Should computer scientist experiment more? 16 excuses to avoid 

experimentation. IEEE Computer, 31(5):32–40, May 1998. 

10. J.E. Hannay, D.I.K. Sjøberg, T. Dybå, A Systematic Review of Theory Use in Software 

Engineering Experiments, IEEE Transaction on Software Engineering, 33(2): 87–107 

February 2007. 

11. V. Basili, M. Zelkowitz, D. I.K. Sjøberg, P. Johnson and T. Cowling, Protocols in the use 

of Empirical Software Engineering Artifacts, Empirical Software Engineering. 2007. 

(forthcoming) 



V. Basili et al. (Eds.): Empirical Software Engineering Issues, LNCS 4336, pp. 83 – 90, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Effective Data Interpretation 

Jürgen Münch 

Abstract. Data interpretation is an essential element of mature software project 

management and empirical software engineering. As far as project management 

is concerned, data interpretation can support the assessment of the current 

project status and the achievement of project goals and requirements. As far as 

empirical studies are concerned, data interpretation can help to draw 

conclusions from collected data, support decision making, and contribute to 

better process, product, and quality models. With the increasing availability and 

usage of data from projects and empirical studies, effective data interpretation is 

gaining more importance. Essential  tasks such as the data-based identification 

of project risks, the drawing of valid and usable conclusions from individual 

empirical studies, or the combination of  evidence from multiple studies require 

sound and effective data interpretation mechanisms. This article sketches the 

progress made in the last years with respect to data interpretation and states 

needs and challenges for advanced data interpretation. In addition, selected 

examples for innovative data interpretation mechanisms are discussed. 

1   Introduction 

Software practitioners and researchers increasingly face the challenging task of effec-
tively interpreting data for project control and decision making, and gaining knowl-
edge on the effects of software engineering technologies in different environments. 
This is caused, for instance, by the increasing necessity to use quantitative ap-
proaches in practice in order to climb up maturity ladders or the need for justifying 
software-related costs in the context of business strategies and business value. In the 
area of empirical research, there is a need to come up with sufficiently general, yet  
significant context-oriented evidence on the effects of software technologies based on 
data from individual or multiple studies.  

This article focuses on three areas where data interpretation is relevant: (1) Inter-
pretation of data for project control. Here, the focus is on project execution. Factors 
such as the increasing distribution of development activities, the need for monitoring 
risks, or regulatory constraints have accelerated the introduction of data-based project 
management techniques into practice. However, making valuable use of collected 
data is challenging and requires effective mechanisms for data interpretation. (2) 
Interpretation of data for individual empirical studies. Due to the specifics of software 
engineering studies, the data gained from such studies typically does not allow for the 
application of statistical analysis and interpretation techniques that are successfully 
applied in other fields (e.g., methods that require a significant amount of normally 
distributed data). Methods for data analysis and interpretation are needed that can 
cope with typical specifics of software engineering data. (3) Combination of evidence. 
Here, the focus is on aggregating evidence from multiple individual studies. Data or 
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results from different individual studies are typically heterogeneous and stem from 
different contexts. Interpreting data in order to gain aggregated combined evidence 
requires strategies and techniques to cope with these difficulties. 

For these three areas, the article sketches the progress made in the last years with 
respect to data interpretation and states needs and challenges for advanced data inter-
pretation. In addition, selected examples for innovative data interpretation mecha-
nisms are discussed. 

2   Data Interpretation for Project Control 

Measurement is an important means for managing software development and mainte-
nance projects in a predictable and controllable way. This requires particularly accu-
rate and precise monitoring of process and product attributes. Systematic support for 
detecting and reacting on critical project states in order to achieve planned goals is 
needed. Single points of control are required to monitor, coordinate, and synchronize 
distributed development activities.  

Progress 

During the last years, we have observed several trends that are relevant for data 
interpretation for project control, especially: 

• Increased industry awareness for data-driven project management and quantitive 
approaches. This is partially motivated by the application of maturity models, but 
there are also other reasons such as distributed development and globalization. 

• Dashboards are currently being widely installed in industry. One of the reasons is 
that regulatory constraints often require higher process transparency. 

• Measurement has begun to enter the acquisition process. There is, for instance, a 
trend for OEMs in the automotive industry to enforce measurement-based 
assessment of supplier software. 

• Software is increasingly entering domains (such as transportation systems or 
medical engineering) that demand quantitative assurance of critical processes and 
product properties. 

Selected Needs 

We see the following selected needs as being important with respect to data 
interpretation for project control:  

• Establish quantitative project control mechanisms. 

• Obtain single point of control. 

• Define process interfaces quantitatively. 

• Integrate business and engineering processes. Currently, project controlling on the 
engineering level and on the higher management level are widely separated. 
Linking business goals to goals of the software organization of a company and to 
measurement goals is necessary for integrating these two levels of control. 
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Challenges 

We see the following essential research challenges with respect to data interpretation 
for project control:  

• How to interpret data in the context of software goals and business goals? 

• How to visualize data in a purpose-, role-, and context-oriented manner? 

• How to tailor and combine analysis, interpretation, and visualization techniques? 

• How to integrate heterogeneous data from different sources? 

Example: Software Project Control Centers (SPCC) 

One means to institutionalize measurement on the basis of explicit models (i.e., 

process models, product models, resource models, and quality models) is the 

development and establishment of so-called software project control centers (SPCC) 

for systematic quality assurance and management support [7,9,10]. An SPCC can be 

defined as a means for process-accompanying interpretation and visualization of 

measurement data: It consists of (1) underlying techniques and methods to control 

software development projects and additional rules to select and combine them, (2) a 

logical architecture that defines logical interfaces to its environment, and (3) 

supporting tool(s) that implements (parts of) the logical architecture. Its input 

information includes, but is not limited to, information about project goals and 

characteristics, project plan information (e.g., target values per development phase), 

measurement data of the current project, and empirical data from previous projects. 

Its output information includes a context-, purpose-, and role-oriented visualization of 

collected and interpreted measurement data. That is, the visualization depends upon 

the context of the project, the purpose of the usage (e.g., monitoring), and the role of 

the user project manager. Its tasks include collecting, interpreting, and visualizing 

measurement data in order to provide context-, purpose-, and role-oriented 

information for all involved stakeholders (e.g., project managers, quality assurer, 

developers) during the execution of a software development project. This includes, for 

instance, monitoring profiles, detecting abnormal effort deviations, cost estimation, 

and cause analysis of plan deviations. 

3   Data Interpretation for Individual Studies 

Understanding the effects of software engineering techniques and processes under 
varying conditions can be seen as a major prerequisite towards predictable project 
planning and guaranteeing software (or system) quality. Evidence regarding the 
effects of techniques and processes for specific contexts can be gained by individual 
studies. Due to the fact that software development is a human-based and non-
deterministic activity, the data gained in such studies typically has several limitations 
(e.g., limited validity and completeness) and is context-dependent. Effective data 
interpretation has to cope with this and support the derivation of results that are 
sufficiently general on an acceptable significance level. 
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Progress 

During the last years, we have observed several trends that are relevant for data 
interpretation for individual studies, especially: 

• New or enhanced analysis techniques and tools, e.g., 

• for analysis of little and/or imperfect data sets 

• for combining quantitative data and expert opinion 

• for data mining 

• Tools with new or enhanced capabilities, e.g.,  

• visualization tools (isolated cases) 

• tailorable product (and process) measurement tools 

Selected Needs 

We see the following selected needs as being important with respect to data 
interpretation for individual studies:  

• Effectively interpret results for different stakeholders. 

• Effectively develop or calibrate quantitative models for different purposes (e.g., 
reliability prediction). 

• Preprocess imperfect data sets appropriately as prerequisite for applying data 
analysis techniques. 

Challenges 

We see the following essential research challenges with respect to data interpretation 
for individual studies:  

• How to combine different analysis/interpretation techniques (e.g., statistical 
analysis and visualization)? 

• How to guarantee data validity in industrial settings? 

• How to preprocess imperfect data sets for analysis and interpretation? 

• How to select quantitative models based on goals and available data? 

• What kind of data is needed? 

• Gap analysis: What data is missing for building the models? 

• How to visualize data appropriately? 

• What are appropriate metaphors? Can they be standardized to a certain extent?  

Example: Visualization 

One approach to data interpretation is to use the visual capabilities of people. 
Visualization mechanisms support the understanding of the data and aspects under 
consideration, the abstract and compact representation of information, and the 
creation of a mental model of the data. Special visual environments have interactive 
capabilities and allow, for instance, easy navigation through the data by flexibly 
changing perspectives and abstraction levels (see, for instance, [14]).  
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4   Combination of Evidence from Individual Studies 

One of the challenges of empirical research is to overcome the typically narrow scope 
of validity of the results. From the viewpoint of a practitioner, an important question 
is whether the results are valid for his own development context. A promising way to 
broaden the scope of empirical evidence is to summarize and organize evidence 
through integration and aggregation [5]. Integration means accumulating different 
kinds of evidence — ranging from quantitative results to qualitative practical 
experiences and human judgements. Aggregation means accumulating evidence from 
different contexts. Both, integration and aggregation, require effective interpretation 
mechanisms. 

Gaining more evidence about processes, products or qualities should be packaged 
in explicit models. This requires a process for systematically evolving such models 
and creating variations of the models, if necessary. Fig. 1 illustrates such a process for 
evolving models. The process has been proposed by Rombach [6] and can be seen as 
a basis for packaging models in an experience base [3].  

Experience Base

Model M1

Context C1

Significance S

Experience Base

Model M1
Context C1

Significance S+1

Experience Base

Model M2

Context C1

Significance 1

Experience Base

Model M2
Context C2

Significance 1

Model M1

Context C1

Significance S

The model was 
correct

The assumed project 
context was incorrect

The model was 
incorrect

 

Fig. 1. A Process for Evidence-based Model Evolution [6] 

Progress 

During the last years, we have observed several trends that are relevant for combining 
evidence: 

• Collections of empirical evidence (handbook, repositories) have been created. 

• Many (company-specific) data repositories are available. 

• The concept of virtual laboratories was developed. 

• Variability concepts for products have been established. 
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Selected Needs 

We see the following selected needs as being important with respect to combining 
evidence:  

• Effectively derive, maintain, and present aggregated trustable evidence and 
statements (bottom-up). 

• Verify aggregated evidence and identify lacks of evidence (top-down). 

• Select and customize processes, techniques, tools, and products based on evidence. 

Challenges 

We see the following essential research challenges with respect to combining 
evidence:  

• How to define appropriate operators for aggregating empirical evidence by taking 
the project context into account? 

• How to present/visualize combined evidence for different stakeholders? 

• How to identify lacks of evidence? 

• How to reengineer GQM plans [2,13] from data repositories? 

• How to describe process variability? 

• How to represent available evidence and lacks of evidence for specific context 
variations? 

• How to integrate evidence into process, product, and quality models as well as into 
tools? Evidence-based decision models for product lines and variant-rich processes 
are needed. 

• How to evolve process, product, and quality models? 

Example: Virtual Laboratory 

Combining process simulation [1] and real experiments is a promising way to fill the 

areas of missing evidence between individual studies (e.g., combinations of impact 

factors that are not covered by real studies). This is addressed by the concept of 

Virtual Software Engineering Laboratories (VSEL), which was introduced at first in 

[12] and refined in [11]. One major motivation for such a virtual software engineering 

laboratory is cost reduction by simulating human behavior and the process 

environment of the method to be examined. Additionally, such a laboratory allows for 

better demonstrating the effects of a method in an understandable way. In particular, a 

multitude of variations of an experiment that is often necessary to cover different 

impact factors can be performed, and costs can be reduced enormously. 

Consequently, learning cycles can be shortened. In particular, empirical studies and 

process simulation can be combined in such a way that 1) empirical knowledge is 

used for the development and calibration of simulation models, 2) results from 

process simulation are used for supporting real experiments, 3) real experiments and 

process simulation are performed in parallel (i.e., online simulation). 
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5   Conclusions 

Effective data interpretation plays an important role in software project management 

and for gaining evidence from empirical studies. Appropriate data interpretation, 

presentation, and dissemination of results can be seen as a major acceptance and 

success factor for quantitative project management and empirical studies. Concluding, 

we recommend the following when considering effective data interpretation: 

• Make sure that the study is relevant and important before conducting the study 
(“test first“). For industry, the following questions might be relevant: Is there a 
need for the evidence? By whom? How will it be used? How does it relate to 
business goals? What is the cost/benefit relation of gaining the evidence? Is there a 
dissemination and exploitation strategy? For research, the following questions 
might be relevant: Is there a lack of evidence? How could the results be combined 
with other evidence?  

• The combination of different analysis and interpretation techniques promises to 
broaden the scope of the evidence and provide new insights. Example techniques 
are visualization, simulation, qualitative analysis, quantitative analysis, and meta 
analysis. 

• Consider data interpretation mechanisms early on during the establishment of 
project controlling mechanisms or the design of empirical studies. 
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Software Support Tools and Experimental Work 

Audris Mockus 

1   Introduction 

Presently it is difficult to imagine a software project without version control and 

problem tracking systems. This may be partly attributed to the emergence of open 

source projects where participants never meet each other and increasingly popular 

commercial globally distributed projects where groups of developers are often 

separated by many time zones. Version control and problem tracking tools are a 

basic necessity in such communication-poor environments. However, their value is 

getting more and more recognized in small co-located projects because information 

stored in these tools represent most of the project's decision making history. 

Therefore, the idea to use repositories of software support tools to explain and 

predict phenomena in software projects and to create tools that improve software 

productivity, quality, and lead times appears to be promising. This is particularly 

salient to many open source software projects where all project related discussion 

and decisions are externalized in the mailing lists and other tools. In many such 

projects it is considered inappropriate to discuss project matters in private 

discussions not recorded on the relevant mailing lists. 

The study of open source projects has other significant motivations as well. Such 

projects present a conundrum from software engineering perspective as they 

apparently lack key aspects such as requirements and design that are thought to be 

essential for project's success. The motivation of volunteer participants can not be 

convincingly explained using current economic theories. Open source is considered 

to be the new technological commons that, instead of being destroyed by over-use, 

is, on the contrary, benefiting from it. Tragedy of the commons is a concept of 

individually optimal decisions (for example, having a lager herd) leading to 

suboptimal outcomes for everyone (common grazing lands destroyed). 

A typical analysis of software repositories includes retrieval, summarization, and 

validation of data from software project's version control and problem tracking 

systems. Unfortunately, extracting, cleaning and validating, and drawing conclusions 

from such data poses formidable challenges because data sources are not designed as 

measurement tools, and the tools involved as well as practices of using the tools vary 

from project to project. 

The topic has recently attracted substantial attention including a special issue of the 

Transactions on Software Engineering (Vol. 31, No. 6) and an annual workshop on 

"Mining Software Repositories".  

Here we attempt to outline the overall methodology and list some of the 

opportunities and challenges of using project support systems in empirical work. 

We start from the overview of the tools used, continue with methodology and its 

benefits, and conclude with the list of remaining challenges. 
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2   Tools Supporting Software Development 

Although software tools are used to support virtually any software development 

project there are important differences in the tools and the ways they are used. The 

first broad distinction can be made between open source projects and commercial 

projects. Open source projects tend to use three core tools. Version control systems 

such as CVS [3] (and now, increasingly, Subversion [4]) are used to keep track of the 

changes to the code and to grant permission to make changes to project members. 

Every change is usually accompanied by an automatic email sent to the special 

change mailing list to notify other project participants. Problem tracking systems, 

such as Bugzilla or Scarab, provide a way to report and track the resolution of issues. 

Finally, mailing lists provide a forum to discuss issues other than changes or 

problems. Most projects have a developer mailing list to discuss features, design, and 

implementation, and a user mailing list to discuss installation and usage of the 

product. 

Commercial projects tend to contain more numerous and varied tools to track 

various aspects of the development and deployment processes. Although some of 

these systems contain little information helpful in analyzing software production this 

may change as the objectives and scope of the analyses evolve in the future. Sales and 

marketing support systems may contain customer information and ratings, purchase 

patters, and customer needs in terms of features and quality. The accounting systems 

that track purchases of equipment and services contain information about installation 

dates for releases. Maintenance support systems should have an inventory of installed 

systems and their support levels. Field support systems include information about 

customer reported problems and their resolution. Development field support systems 

contain software related customer problem tracking and patch installation tracking. 

Development support systems are similar to open source projects and contain feature, 

development, and test tracking. Common version control tools in commercial 

environments include ClearCase [25] and Source Code Control System (SCCS) [26] 

and its descendants. Most projects employ a change request management system that 

keeps track of individual requests for changes, which we call Modification Requests 

(MRs). Problem tracking systems, unlike change management systems, tend not to 

have built-in relationship between MRs (representing problems) and changes to the 

code. Extended Change Management System (ECMS) [14] is an example of change 

management system that uses SCCS for version control. 
Large software products employ a number of service support tools to help 

predicting and resolving customer problems. Such systems may be used to model 
software availability [17], though their description is beyond the scope of this 
presentation. 

3   Basic Methodology 

The amount and complexity of available data necessitates the use of analysis tools 
except, possibly, in the smallest projects. Such analysis systems contain the following 
capabilities [8]:  
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− Retrieve the raw data from the underlying systems via access to the database used 
in the project support tools or by "scraping" relevant information from the web 
interfaces of these systems. For example, CVS changes can be obtained via cvs log 
command, and Bugzilla data is stored in MySQL relational database.  

− Clean and process raw data to remove artifacts introduced by underlying systems. 
Verify completeness and validity of extracted attributes by cross-matching 
information obtained from separate systems. For example, match changes from 
CVS mail archives, from cvs log command or matching CVS changes to bug 
reports and identities of contributors.  

− Construct meaningful measures that can be used to assess and model various 
aspects of software projects.  

− Analyze data and present results.  

These capabilities represent processing levels that help users cope with complexity 

and evolution of the underlying support systems or the evolution of the analysis goals 

by separating these concerns into separate levels that can (and should) be validated 

independently. Each level refines data from the previous stage producing successively 

better quality data, however it is essential that links to raw data are retained to allow 

automatic and manual validation. 
In summary, the key desirable features of the analysis include:  

1. Iterative refinement of data with each iteration obtaining quantities that may be 
more interpretable and more comparable across projects.  

2. Each item produced at every stage retains reference to raw data to facilitate 
validation.  

3. Each processing level has tools to accomplish the step and validation techniques to 
ensure relevant results. Because the projects and the processes may differ, it is 
essential to perform some validation on each new project.  

The main stages and the tools needed to perform them are described in the subsections 
below. More detail on tools used for open source projects may be found in [15]. 

3.1   Development Process 

The changes to the source code tend to follow a well-defined process. Unfortunately, 
that process may greatly vary with project, therefore it has to be obtained from project 
development FAQ or from another document on development practices. The practices 
need to be validated by interviewing several developers and testers (or other 
participants administering or using project support tools) on a small subset of their 
recent MRs or changes. 

In rough terms, the new software releases or software updates are product 

deliveries that contain new functionality (features) and fixes or improvements to the 

code. Features are the fundamental design unit by which the system is extended. 

Large changes that implement a feature or solve a problem may be decomposed into 

smaller self-contained pieces of work often called modification requests (MRs). 
To perform the changes a developer or a tester (or, in open source projects even the 

end user) can "open" MRs. The MR is then assigned (or self-assigned) to a developer 
who makes the modifications to the code (if needed), checks whether the changes are 
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satisfactory, and then submits the MR. In some instances of development processes 
the tester or code owner may then inspect and approve the MR. The MR ID is usually 
included in a the comments or as a separate field in the attributes of the change 
recorded by the version control system. 

Version control systems (VCS) operate over a set of source code files. An editing 
change to an individual file is embodied in a delta: conceptually the file is "checked 
out," edited and then "checked in." An atomic change, or delta, to the program text 
consists of the lines that were deleted and those that were added in order to make the 
change. Deltas are usually computed by a file differencing algorithm (such as Unix 
diff), invoked by the VCS, which compares an older version of a file with the current 
version. Included with every delta is information such as the time the change was 
made, the person making the change, and a short comment describing the change. 
Whereas a delta is intended to keep track of lines of code that are changed, an MR is 
intended to be a change made for a single purpose. Each MR may have many deltas 
associated with it. 

3.2   Retrieval of Raw Data 

Software changes are obtained from version control systems and contain developer 
login, timestamp of the commit, change comment, file, and version id.  

Once the set of revisions (and their attributes) are extracted, the underlying code 

changes can be extracted by obtaining all versions of all files and the differences 

between their subsequent versions. This is the most involved operation but it allows 

fully to reconstruct the code evolution in each file and is necessary to obtain the exact 

content of each change. The content of a change can then be used to determine if the 

change involved comments or code and to identify what functions or statements were 

changed. 

Problem (or bug) reports typically contain MR ID, severity, development stage at 

which the problem was detected, software release, description, status history (identity 

of individuals, dates, and status changes), and various attachments needed to explain 

the nature of the problem or the way it was resolved. Unlike CVS, most problem 

tracking systems store information in a relational database. If access to such database 

is difficult to obtain, it may be possible to retrieve web pages for each problem report 

and extract the relevant attributes from these web pages. 

Mailing lists tend to be archived and are, therefore, easy to download and process. 

Tools that identify and count threads, extract relevant dates, and patches may be helpful. 
Extracting raw data, although time consuming, contains few pitfalls. However, 

different projects may use slightly different format or slightly different attributes even 
if they use the same systems. The most common issue is likely to be that network 
congestion or version control locking issues may prevent obtaining the full set of 
items. A more robust option is to retrieve data in smaller chunks. 

3.3   Augmenting Raw Data 

System generated artifacts involve data points that do not represent activity of 
interest. An example of such artifact is an empty delta where the code is not modified. 
Such changes are common when creating branches in the version tree. Another 
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common problem is copying of CVS repository files. In such case, duplicate delta 
from two or more files that had the same origin or are included in several modules are 
eliminated. 

MRs are groups of delta done to perform a particular task. In cases where MR is 
indicated in the comment of a delta such grouping can be established. Many projects 
using CVS do not follow that practice. A common approach is to group delta that 
share login and comment and are submitted within a brief time period. The drawback 
of this approach is difficulty of determining the right interval to create breaks and the 
possibility that delta with different comments may belong to the same MR. A sample 
of groupings needs to be inspected to determine the most suitable time window. 

In cases where MR IDs (or other information needed for the analysis) are 
embedded within delta comment their ID has to be extracted from the comment and 
associated with appropriate delta. This tends to be fairly straightforward using pattern 
matching techniques because MR IDs have a well defined format. 

The step of augmenting raw data may involve cleaning attribute values that are 
entered manually, because manual input is always associated with errors. If, for 
example, a release number is typed (instead of selected from a list of choices), it may 
be necessary to inspect all unique values (in their frequency order) and process the 
output to change at least the most frequent misspellings to their intended values. 

3.4   Producing Change Measures 

Before various measures are produced, the semantics of the attributes may need 
clarification. For example, each MR may be associated with a release where the 
problem was found and with all releases where it was fixed. Many large projects track 
the problem not just for a release where it was found but also for the future (and in 
rare cases for the past) releases where the problem may manifest itself. Typically, the 
problem is first resolved for the release where it has been reported because subsequent 
releases are often still in development stages. This has important implications for 
measurement. If we are analyzing the number of problems found in a release, we have 
to count such MR only once for the release it was detected in. However, if we are 
looking at effort and schedule, we have to investigate all MRs resolved in a particular 
release because it requires effort to resolve the same MR for each release. Therefore, 
MRs resolved for several releases would affect effort and schedule for each release.  

Several change measures are described in [21]. Change diffusion measures the 
files, modules, and subsystems affected by the change or the developers and 
organizations involved in making the change. Change size may be operationalized as 
the number of lines of code (LOC) added or deleted and LOC in the files touched by 
the change. A convenient proxy for both size and diffusion is the number of delta in a 
change. The duration of a change may be measured conservatively as the time elapsed 
between the first and the last delta or by comparing MR creation and submission or 
resolution dates. Often it is helpful to separate bug fix MRs from MRs used to track 
new features [20] and identify MRs associated with customer reported problems. 
Measures of experience (number of delta) or productivity (number of MRs resolved 
per year) can be associated with a developer or organization and measures of 
faultiness (fraction of MRs reported by customers or post unit-test) can be associated 
with files or modules. 
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The choice of measures may be dictated by the needs of a particular study, but 
basic summaries tend to be useful in most studies.  

3.5   Models and Tools 

There has been a substantial amount of work involved in modeling software changes. It 
was found that past changes are the best predictor of module faults [9] and that the 
diffusion and expertise of developers affects the likelihood that a patch will break [21]. 

The idea that files frequently touched together but not with other files define 
chunks that can be maintained independently was investigated in the context of 
globally distributed software development in [22] and it was found that MRs spanning 
such chunks take longer to complete [11]. It turns out that MRs involving 
geographically separated developers take more than twice as long to complete [12]. 

Models of expertise and relevance can provide most relevant experts [19], most 
relevant files  [27, 13], or most relevant defects [5]. 

A general topic of evaluating the effect of software engineering tools and practices 
relies on the ability to estimate developer effort [10]. Work in [1, 2, 7] investigates the 
effort savings of version sensitive editor, visual programming environment, and 
refactoring of a legacy domain. 

A number of hypotheses on how open source and commercial software 
engineering practices differ and their effect on productivity quality and lead time 
are investigated in [18, 6]. 

At a much higher level entire releases are modeled via changes to predict release 
schedule [23]. The work assumes that a random number of fix MRs are generated 
with a random delay from each new feature MR. An assumption that the work flow of 
MRs in the past releases is similar to the work flow of the current release is used to 
predict release readiness [16]. 

A probability that a customer will observe a failure related to a software problem is 
modeled in [24]. 

4   Advantages and Pitfalls of Using Project Support Systems 

Probably the most obvious advantage of using project support systems such as 
customer problem tracking system is that the data collection is non-intrusive because 
such systems are already deployed and used. However, that does not reduce the need 
for in-depth understanding of a project's development process and, in particular, of 
how the support systems are used. 

A long history of past projects whose data has been captured in project support 
systems enables historic comparisons, calibration, and immediate diagnosis in 
emergency situations. 

The information obtained from the support systems is often fine grained, at the 
trouble ticket/software alarm/customer installation level. However, links to aggregate 
attributes, such as features and releases, is often tenuous.  

The information tends to be complete, as every action involving development or 
support is recorded. However the information about what the action pertains to may 
be nontrivial to infer and some of the data entries, especially those not essential for 
the domain of activity, tend to be inconsistently or rarely supplied.  
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The data are uniform over time as the project support systems are rarely changed 
because they tend to be business-critical and, therefore, difficult to change without 
major disruptions. That does not, however, imply that the process was constant over 
the entire period one may need to analyze. 

Even fairly small projects contain large volumes of information in the project 
support systems making it possible to detect even small effects statistically. This, 
however, depends on the extractability of the relevant quantities. 

The systems are used as a standard part of the project, so the software project is 
unaffected by experimenter intrusion. We should note that this is no longer true when 
such data are used widely in organizational measurement. Organizational 
measurement initiatives may impose data collection requirements that the 
development organizations might not otherwise use and modify their behavior in 
order to manage the measures tracked by these initiatives. 

The largest single obstacle for using the project systems for analysis is the 
necessity to understand the underlying practices and the way the support systems are 
used. This requires validation of the values in fields used by the developers and 
support technicians to assess the quality and usability of the attribute. Common and 
serious issues involve missing and, especially, default values that may render an 
attribute unusable. Any fields that do not have a direct role in the activities performed 
using the project system are highly suspect and, often provide little value in the 
analysis. As the systems tend to be highly focused to track issues or versions, 
extracting reliable data needed for analysis may pose a challenge. 

It is worth noting that analyzing data from software support systems is labor 
intensive. At least 95% of effort should be expected to involve understanding the 
practices of tool use, cleaning and validating data, and designing relevant measures. 
There is no guarantee at the outset of the study that the phenomena of interest would be 
extractable with sufficient accuracy. All too often, such obstacles lead to temptation to 
model easily-to-obtain yet irrelevant measures, to study phenomena of no practical 
significance, and to get fascinated by oddities of the tool generated artifacts.  

5   Challenges 

The motivation to deploy support system based measurement can come from 
immediate and relatively straightforward applications in project management, such as 
dashboards showing MR inflow and outflow that help visualize when the project is 
getting late or to anticipate the completion date. 

Although the information in software support systems represents a vast amount of 
untapped resources for empirical work, it remains a challenge to create models of key 
problems in software engineering based on that data and to simplify and streamline 
the data extraction and validation process. This raises a question of how best to 
improve version control and problem tracking tools to facilitate measurement and 
analysis. Unfortunately, it is not simply a question of what attributes to add - many 
fields in the existing systems are empty or contain noise in cases where they provide 
no clear value to the system users. Therefore, it is of interest to study what 
information developers would willingly, easily, and accurately enter in problem 
tracking and version control systems. 
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It remains to be seen how best to characterize a single software project based on its 
software repositories and what validation is necessary for that characterization. What 
models would be plausible for a single software project?  

To confirm findings based on studies of an individual project it may be necessary 
to investigate a larger collection of similar projects. How to minimize the effort 
needed to validate the compatibility of practices in such a large sample of software 
projects?  

This leads to questions about the role of software repositories in design, planning, 
execution, and analysis of experiments. Because the models of projects, people, and 
code tend to be based on the properties of changes it is of interest to know which 
properties are the most important. In other words, what is the "sufficient statistic" for 
a software change?  A sufficient statistics is a statistical term meaning a summary 
information that is needed to know all the relevant properties of a sample. For 
example, a sample from Gaussian distribution can be summarized with just two 
numeric values - sample mean and sample variance. 

Even though it appears that the use of software repositories should enable 
answering novel software engineering questions, most of these questions have yet to 
be identified. 
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Measurement and Interpretation of Productivity and 

Functional Correctness 

Hakan Erdogmus  

Measuring developer productivity and functional correctness is central to evaluating 
software practices and techniques. Researchers use a wide variety of measurement 
and reporting methods. As such, the interpretation, aggregation and comparison of 
experimental results become difficult. The problems often reduce to the proper ways 
of defining units of development work and quantifying developer output. For 
example, when is it appropriate to measure productivity in terms of elapsed problem 
solving time vs. output per unit time? Is number of lines of source code an eternally 
damned output measure in all situations? How do we define task completion to 
measure problem solving time? What are the consequences of having a cut-off time? 
When is a minimum quality or usability criterion necessary? How should such a 
criterion be defined? What are some good output metrics that proxy external 
functionality? How can we effectively measure these metrics? When is it acceptable 
to define functional correctness as a binary variable? What are the pros and cons of 
objective vs. subjective measures?   

While defining measures that are universally meaningful and applicable is not 
feasible, researchers, reviewers, and end readers would benefit from metric selection 
and reporting guidelines for some common contexts. Selecting proper measures will 
remain largely a matter of reconciling the several trade-offs involved in experimental 
design. However, guidelines that explicitly identify these trade-offs may prevent their 
arbitrary resolution, thus both streamlining and facilitating their interpretation.  

Emerging approaches for automated acceptance testing [1] and process telemetry 
[2] raise some interesting possibilities for the definition, measurement, and selection 
of quasi-standard measures of productivity and correctness. It would be worthwhile to 
investigate the possibility of leveraging these developments to assist experimental 
researchers. 
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Synthesising Research Results 

Barbara Kitchenham 

I am currently working on the Evidence-Based Software Engineering (EBSE) project 
(EP/C51839X/1) awarded by the UK Engineering and Physical Sciences Research 
Council. We are investigating how readily the concept of evidence-based practice can 
be adapted to Software Engineering. Evidence-based practice relies on research 
synthesis, aggregating and analysing relevant ‘primary studies’ by using the 
methodology of systematic literature reviews. Much of the original impetus came 
from medical research and emphasised synthesis of high-quality quantitative 
experiments (i.e. double-blind randomised controlled trials) using statistical meta-
analysis.  

As part of our research we are reviewing the use of evidence-based practice in 
social science related domains which have empirical practices that are more similar to 
Software Engineering than those of medicine [1] Research originating in these 
disciplines has identified sound methods for synthesising evidence from different 
types of studies, including qualitative studies [2]. 

In particular, research synthesis of mixed study types needs to: 

• Assess the quality of each primary study using criteria appropriate to the study 
type.  

• Use study quality and study type as “moderator variables” to assist interpreting 
data. 

• Synthesise studies based on different methods separately. 

This approach can be used for research synthesis of systematic reviews including 
both qualitative and quantitative primary studies. For example, a cross-study synthesis 
of .a quantitative systematic review and a qualitative systematic review should assess 
the extent of agreement between the reviews. Interventions considered important in 
both types of survey are likely to be the most beneficial.  
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On the Quality of Data 

Thomas Ostrand 

Accurate and reliable data is critical to derive conclusions from software engineering 
empirical studies. Our experience in collecting data from several large industry 
projects has taught us that raw data frequently is not what it seems, and that great care 
must be taken in interpreting information provided by software developers and testers.  

A reliable contact person within a project, preferably someone who has been 
associated with the project for its entire lifetime, is an invaluable resource for 
describing the project's databases, and explaining how to access them. Such a contact 
can also provide insight into the project history, explain the project's culture, and 
frequently resolve the meaning of otherwise obscure entries in the databases. 

Online software databases are typically populated both by programs and by human 
users. Both types of information can be misleading, as shown by the following examples:  

• We collected data from 35 consecutive releases of a large system. The version 
control system automatically recorded the initialization date of each release, which 
is a key value for our models. It turned out that this recorded start date wasn't 
necessarily the real start date. Sometimes, the release was entered into the database 
well before it was actually populated with any files. We ended up using the first 
date of file population as the release start date. 

• The problem report forms have a severity (1-4) associated with each MR. This 
value is supposed to indicate the importance of the problem, and be a guide to the 
urgency of fixing it. Unfortunately, we have found that the value chosen can 
sometimes be based on social reasons, rather than providing a realistic evaluation 
of the problem's importance. 

• Fields in online report forms may have default values; if the user enters nothing, 
the default is used. If the project doesn't emphasize the importance of the user 
actually making a choice, this can seriously skew the result totals. 

Recommendations for data collection: 

• Understand exactly how fields in data collection forms are filled out 

− Are default values supplied if the user doesn't make a choice? 

− If possible, ask the project management to eliminate default values in forms. 

− What are the available options for users? 

− Do users choose from a drop-down list, from a radio list, or do they fill in free text. 

• Understand the semantics of values that are provided 

− Fields such as category, phase, and severity may have different meanings to 
different projects, even within the same company. 

− The meanings of values may change over time even within a single project. 

• Validate collected data 

− If the amount of collected data is manageable, examine each individual entry to 
assess its consistency and reasonableness. 

− If the data set is too large for individual examination, validate a randomly selected 
subset. 
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Potential of Open Source Systems as Project Repositories 

for Empirical Studies 

Working Group Results 

Nachiappan Nagappan  

Abstract. This paper is a report on the working group discussion on the poten-

tial of open source systems as project repositories for empirical studies. The 

discussions of this working group focused more generally on the typical ques-

tions that can be answered using the open source data, the challenging issues 

that can be addressed in future, and a discussion on the results to date.  

1   Introduction 

The working group consisted of the following participants (in alphabetical order): 
Giovanni Cantone, Audris Mockus (lead), Sandro Morasca, Nachiappan Nagappan, 
Lutz Prechelt, Giulherme Travassos, Larry Votta. 

Open source software repositories contain a wealth of valuable information for 
empirical studies in software engineering. Unlike most commercial repositories that 
miss information verbally exchanged by developers, they contain all archived com-
munications among project participants and record the rationale for decisions 
throughout the life of a project. This completeness is attributable to the fact that email 
archives, problem tracking systems, and version control systems represent the only 
way to exchange information among project participants who reside in multiple conti-
nents and develop software projects without ever meeting in person. 

Several studies have used this data to study various aspects of software develop-
ment such as software design/architecture, development process, software reuse, and 
developer motivation. These studies have highlighted the value of collecting and ana-
lyzing this data. Yet the methodology and tools to address the challenge of utilizing 
such data to perform empirical research are complex and not embraced by all re-
searchers. 

The discussion in this working group was primarily in two area’s, (i) typical open 
source data sources (ii) challenging issues that can be addressed using open source 
data and some of the results obtained using open source data. In this discussion we 
also provide some related avenues for typical research on open source. 

2   Open Source Data  

Several interesting questions can be discussed using data from open source systems. 
The open source repositories contain information that is available for public use to 
facilitate volunteer participation in these projects and to ensure the software can be 
maintained by anyone having such need and resources. Some of the more commonly 
available artifacts that can be extracted are, 
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• Structural information 

• source code via the version control systems 

• program dependences 

• Process 

• test results (for example, Fitnesse)  

• build results from a commonly used tinderbox tool 

• coverage information (for example, jcoverage) 

• bug database (for example, Bugzilla) 

• some project management tools (like feature management tools, ef-
fort tracking tools etc.)  

• Organizational structure and communication patterns 

• project participant behaviour from their participation in code 
changes, problem reports, and mailing lists 

• Design decisions and rationale from mailing lists 

Such data can be used to generate more exploratory hypotheses. An important 
point to be noted is the analysis is strongly dependent on what the research(-er) group 
is willing to invest. A related chapter in this book titled “Software Support Tools and 
Experimental Work” discusses in detail the tools that support software development and 
the raw data retrieval. Further, based on the discussions in our working group, joining 
the project to implement research techniques or test more involved hypotheses not only 
provides better validation and interpretation of research results but also serves to answer 
some of the ethical questions of giving back to the open source projects. 

3   Research Challenges in Open Source Systems 

Spinellis and Szyperski (in 2004) [11] discuss the number of open source projects 
available to developers. Table 1 summarizes [11] some of the numbers they discuss. 
This data is not an exclusive sample as the authors identify that many projects appear 
on more than one of the locations listed. But what is interesting is the sheer number of 
projects available for empirical study. Since the number of projects available for use 
is large, researchers should carefully understand the projects used in empirical study. 
Generalizations are often difficult in this environment. An issue with trying to draw 
generalizations is the criteria that are to be used to select open source projects. 

Table 1. Open source project repositories 

Repository Number of projects 

http://freshmeat.net  30,000 

http://sourceforge.net (of vary-
ing quality, completeness, and 
stability) 

70,000 

www.cpan.com (Comprehen-
sive Perl Archive Network) 

5400 modules 

FreeBSD operating system 10,000 ports all regularly tested are 
distributed with the FreeBSD system 
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As an example, in order to predict post-release field quality based on automated unit 

testing, (Trouble reports – TR) the following criteria was used for selecting projects 

from an open source repository (Sourceforge) [7]. 

• software development tools. All of the chosen projects are software devel-

opment tools, i.e. tools that are used to build and test software and to detect 

defects in software systems.  This is to ensure all projects used in the analy-

sis belong to a similar application domain. 

• download ranking of 85% or higher. In Sourceforge, the projects are all 

ranked based on their downloads on a percentile scale from 0-100%.  For ex-

ample, a ranking of 85% means that a product is in the top 85% based on the 

number of downloads.  We chose this criterion because we reasoned that a 

comparative group of projects with similarly high download rates would be 

more likely to have a similar usage frequency by customers that would ulti-

mately reflect the post-release field quality.    

• automated unit testing. The projects needed to have automated tests.   

• defect logs available. The defect log needed to be available for identifying 

TRs with the date of the TR reported.  

• active fixing of TRs. The TR fixing rate is used to indicate the system is still 

in use. The time between the reporting of a TR and the developer fixing it 

serves as a measure of this factor. Projects that had open TRs that were not 

assigned to anyone for a period of three months were not considered as they 

indicated projects that were no longer actively supported. 

• Sourceforge development stage of 4 or higher. This denotes the development 

stage of the project (1-6) where 1 is a planning stage and 6 is a mature phase.  

We chose a cut-off of 4 which indicates the project is at least a successful 

beta release. This criteria indicates that the projects that are at a similar stage 

of development and are not projects too early in the development lifecycle. 

The working group discussions also involved the issue of scale. Techniques that 

don’t scale well may still be the best choice for investigating smaller open source pro-

jects. Some interesting research questions that could be investigated using open 

source systems that came up during the working group discussion were, 

• Comparing programming languages, e.g. C vs Java 

• Evaluating build, test tools, process 

• Do software assertions work? Can we leverage the JUnit data there is with 

problem reports 

• What is the nature of social interactions in an open source environment 

• How does the global distribution of developers affect the process? What are 

the needs in terms of tools, techniques and processes? 

Further, in this section we also discuss recent research using open source systems 

to server as starting pointers for further investigation.  Table 2 provides such a de-

scription based on the systems analyzed. 
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Table 2. Example recent work on open source systems 

Open source system Example research literature description  

Mozilla  Email archives of source code change history and problem 
reports are used to quantify aspects of developer participa-
tion, core team size, code ownership, productivity, defect 
density, and problem resolution intervals (Mozilla and 
Apache) [6]. 

Apache  Estimating fault-proneness for Apache 2.0 using software 
metrics data from Apache 1.3 [3]. 

Games (e.g. Quake) software development practices, social processes, techni-
cal system configurations, organizational contexts, and 
interrelationships [9]. 

Linux Investigates the extent and the evolution of code duplica-
tions in the Linux kernel [1]. 

FreeBSD Understanding the open source process for FreeBSD [4] 

Eclipse Investigate if import dependences can predict failures [10] 

PostgreSQL Investigates large scale software evolution using linker-
based extraction [12]. 

OpenBSD Predicting field defects using software reliability growth 
models and metrics based modeling approach [5].  

4   Conclusions 

Open source software systems provide a tremendous public repository of data that can 
be mined to understand and provide insights into the overall software process, tools 
and social interactions related to software development in general. But as with all 
empirical studies in software engineering drawing general conclusions from empirical 
studies in software engineering is difficult because any process depends to a large  

 
Table 3. Example venues for open source systems work 

Resource Description 

International Con-
ference on Open 
Source Systems 
(OSS) 

http://oss2005.case.unibz.it/ . The OSS2005 conference fo-
cused (i) the development of open source systems and the 
underlying technical, social, and economics issues and (ii) the 
adoption of OSS solutions and the implications of such adop-
tion both in the public and the private sector.  

PROMISE Soft-
ware Engineering 
Repository [8] 

http://promise.site.uottawa.ca/SERepository/ . This repository 
consists of publicly available datasets and tools to serve re-
searchers to build predictive models. 

Mining Software 
Repositories 
workshop 

http://msr.uwaterloo.ca/msr2006/ . The goal of this workshop 
is to establish a community of researchers and practitioners 
who are working to recover and use the data stored in soft-
ware repositories to further understanding of software devel-
opment practices. 
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degree on a potentially large number of relevant context variables. For this reason, we 
cannot assume a priori that the results of a study generalize beyond the specific envi-
ronment in which it was conducted [2].  Researchers should understand the complexi-
ties and the intricacies involved in the development process while mining the open 
source repositories. There is always a danger of misinterpreting the data as it is easy 
to extract and publicly available, yet the interviews with project participants needed to 
verify the methodology and the interpretation of results may be hard or impossible to 
obtain. In the coming years studies using open source systems can provide great in-
sight into software development and to software engineering in general.  
(Table 3 lists some example venues for open source data and related scientific 
events). 
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Data Sharing Enabling Technologies 

Working Group Results 

Marvin V. Zelkowitz 

Attendees: M. Zelkowitz (chair), V. Basili, R. Glass, M. Host, M. Mueller,  

T. Ostrand, A. Rainer, C. Seaman and H. Sharp 

Issues 

If empirical software engineering is to prosper as a research domain, the field needs a 
mechanism for the sharing of data and artifacts developed by one group that may be 
useful to another group desiring to work in the same area. In the opening session, the 
workshop discussed a forthcoming position paper entitled “Protocols in the use of 
Empirical Software Engineering Artifacts” [1]. This paper describes a taxonomy of 
properties that are necessary in order to appropriately share information. These 
properties include who has permission to use this data, what protection (e.g., privacy) 
is given to the subjects who provided the data, what credit does the user of this data 
owe the provider of the data, what are the roles governing joint collaboration of the 
activity, who must maintain the integrity and access to the data, and what feedback 
does the user of the data owe the creator of the data? The breakout session discussed 
this taxonomy is greater detail focusing on both qualitative and quantitative data and 
on what enabling technologies were needed in order to further advance the needs for 
data ownership and sharing. 

The data that is shared can be broken down into 4 classes of artifacts: 

1. Quantitative data that is the result of measuring an activity. In the software 
development domain this usually means time data (effort in hours or calendar 
dates), error data (number and types of defects), and product data (names and 
sizes of components, execution times, results of testing, etc.) 

2. Artifacts produced such as source code, design documents, test plans, etc. 
3. Tools needed to collect data, such as test harnesses, data collection tools, such as 

Hackystat, etc. 
4. Procedures for collecting data, such as reporting forms, requirements documents, 

provided test data, etc. 

Qualitative data generally consists of the latter 3 classes. The collected data is often 
the artifact that is produced. In many cases, such as with ethnographic studies, the 
collected data consists of interview notes, or tape and video recordings of the subjects 
of the study.  

For both classes of data (i.e., quantitative and qualitative) the proposed taxonomy 
[1] is still incomplete and still needs additional work in the areas of: 

1. Addressing the proper context of the data. Understanding the work environment 
and the proposed application domain for the product under study plays an 
important role in understanding what the data means.  
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2. Understanding common terminology. Before any meaningful discussion on data 
sharing can occur, there needs to be a shared understanding of what the objects 
under study are. During this workshop, three speakers all referenced taxonomies 
for classifying research methods, and all were different [2, 3, 4]. 

3. Need agreement with subjects of what is owned by each. For example, if data 
represents a developed program, who owns the rights to that program? Do 
students own the results of their programming, does the university where the 
student is enrolled own those programs, or does the research group using the data 
own those programs? This still is an unresolved issue. 

4. Adherence to national standards and laws. Related to the previous ownership 
issue is the fact that rules differ by locality. Various national laws exist governing 
the collection and dissemination of collected data. It is not obvious how to 
generate a useful taxonomy usable by the worldwide empirical software 
engineering community that meets all national and international regulations. 

5. Ethics. With ownership comes responsibility. What are the obligations and 
responsibilities of the owner of the data to ensure that the data is used correctly 
and what are the obligations and responsibilities of the user of the data that 
results are provided using the proper context for the data? 

6. Provenance. While maintenance and integrity of the data has already been 
identified in the taxonomy, the issue of provenance has not been separately 
identified. As a data set evolves over time, and it will if it represents useful data, 
then the set of artifacts must be traceable back to their origins and all data must 
also be accounted for in an unbroken string from its creation to its eventual use. 

Enabling Technologies 

The focus of the breakout session was to define a roadmap of what enabling 
technologies, and related research, were needed in order for the data sharing concept 
to become accepted by the empirical software engineering community. The 
underlying principle for acceptance of this concept was that “use breeds additional 
use.” If a successful taxonomy can be developed and used by much of the empirical 
software engineering community, then the rest will follow along. So the issue was 
how to get an acceptable policy acceptable to most in the field? 

The first step is to give the proposed taxonomy wide distribution, with requests for 
comments and feedback. Copies of the paper [1] were distributed to all workshop 
attendees and the paper was submitted for publication in Empirical Software 

Engineering. The paper is also scheduled for discussion at the September 2006 
International Software Engineering Research Network (ISERN1) meeting in Rio de 
Janeiro, Brazil. 

Two other models of sharing were also discussed.  

1. SourceForge.net. 

a. SourceForge.net, a widely used repository of open source software, 
maintains a licensing agreement for individuals wanting to use or 
modify SourceForge products. The success of that licensing policy 
needs to be studied as an indicator of the problems and issues our 
empirical software engineering data sharing policy will face. 

                                                           
1 http://www.cos.ufrj.br/~ght/isern2006.htm 
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b. The open source community, as represented by SourceForge, seems to 
have developed a viable economic model that includes free access to the 
software. For example, the basic system is free, but add-on features cost 
extra. This is a major issue in the empirical software engineering data 
sharing process. We would like data to remain viable for many years, 
yet it takes funding to maintain the databases. Universities do not have 
that source of funds and funding agencies are not willing to fund these 
activities. Perhaps the Open Source model provides a solution. 

2. A Material Transfer Agreement (MTA) is a contract that governs the transfer of 
tangible research materials between two organizations. The MTA defines the rights 
of the provider and the recipient with respect to the materials and any derivatives. 
While biological materials are the most commonly transferred items, MTAs may 
also be used for other types of materials, such as some types of software. 

A proposal was discussed covering the ethics issues mentioned earlier. Any paper 
submitted to a journal using data from an existing source would have an additional 
review by the creator of that data to ensure that the data was used correctly. This 
additional review would not be an accept/reject decision (after all, the new paper may 
correctly say something negative about the original data source, which the additional 
reviewer may not appreciate), but would provide the editor with additional non-
binding comments about the appropriateness of the data analysis used in the paper. 

In addition, it was discussed that conferences and journals should provide a small 
amount of space (and time at a conference) to describe a data source so that others 
interested in using that data has the opportunity to learn about it and secure a copy.  
The paper should describe the data set, what it contains, the various constraints in the 
data, and various experiences that others have had in using the data. The more these 
are described at meetings, the bigger the market will grow in using data. 

We have anecdotal information that advertising data sets do get them used. In 
revising the 1998 survey on validating computer technology [4] to include data from 
the years 2000 and 2005 for this workshop, it was noticed that the number of papers 
using existing data sets greatly increased over the 1998 survey. Most of this increase 
was in papers using Open Source libraries for such products as Eclipse, the Apache 
web serve and the Mozilla browser. Given a reliable source of data, researchers are 
very willing to obtain it for their own research. Formalizing the process with an 
evaluated taxonomy can only help the process of increasing the supply of good 
experimental data. 
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Documenting Theories 
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Jedlitschka, Barbara Kitchenham, Dietmar Pfahl, Dag Sjøberg (chair), Sira 

Vegas and Laurie Williams 

1   The Need for Theories 

There are many arguments in favour of theory use, such as structuring, conciseness, 
precision, parsimony, abstraction, generalisation, conceptualisation and communi-
cation [1,9,11]. Such arguments have been voiced in the software engineering 
community as well [2,3,8,10]. Theory provides explanations and understanding in 
terms of basic concepts and underlying mechanisms, which constitute an important 
counterpart to knowledge of passing trends and their manifestations. When 
developing better software engineering technology for long-lived industrial needs, 
building theory is a means to go beyond the mere observation of phenomena, and to 
try to understand why and how these phenomena occur. 

The issue of this workshop was how empirically-based theories in software 
engineering should be documented. Since some work in this area had already been 
reported by some of the attendees in the paper [5], the highlights of that paper, 
including Table 1, were presented using a projector. (The paper was sent by email to 
the attendees after the workshop.) A graph was also presented that showed which 
controlled experiments in software engineering used which theories in what ways.  

It was suggested that it would be useful with information about which theories 
were used in other study types as well, not only experiments. Since such systematic 
reviews are formidable jobs, it was suggested to first focus on certain sub-areas of 
software engineering. One attendee said he would start collecting the theories used 
within requirements analysis.  

2   Schemes for Documenting Theories 

Table 1 shows the scheme used to document theories in the systematic review reported 
in [5]. The general feeling of the attendees was that this scheme seemed useful.  

It was then shown how a web site in the information systems field collects and 
documents theories [7]. The scheme used is shown in Table 2. It was discussed 
whether one would like a similar web page within software engineering. The 
attendees were positive, but some people in the plenary session were critical when the 
summary from this workshop was reported afterwards. It was argued that there was a 
risk that one would collect many useless theories. Addressing this issue would require 
a careful inclusion acceptance procedure. Table 3 shows the guidelines that are used  
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Table 1. Attributes of theory used in [5] 

Metadata 
- Name. The name given for the theory by the authors of the reviewed article, or by us if no 

explicit name is given. 
- References. The literary references given for the theory. 
- Terminology (theory, model, none). Indicates explicit use of the word ‘theory’, ‘model’ 

and their derivatives in referring to the theory. 
- Reference discipline. The discipline(s) of an article’s literary sources to the theory. 
- Topic. The topic of the article in which the theory is used. 

 

Structural components – Generic (adapted from [4]) 
- Means of representation (words, tables, diagrams, mathematics, logic). The way the 

theory is presented. 
- Constructs and relationships. Examples of main constructs and relationships found for the 

theory. 
- Boundary conditions. Indications given of the theory’s boundary conditions. 

 

Structural components – Contingent on theory type (adapted from [4]) 
- Causal explanations. Indications that the theory gives statements of relationships among 

phenomena that show causal reasoning (not covering law or probabilistic reasoning 
alone). 

- Predictions. Indications that the theory gives statements of relationships between 
constructs in such a form that their operationalisations can be tested empirically. 

- Prescriptive statements. Indications that the theory gives statements that specify how 
people can accomplish something in practice, e.g., construct an artefact or develop a 
strategy. 

 

Theory role:  
- design: the experiment’s research questions and hypotheses are justified or motivated by 

the theory 
- post hoc explanation: the theory is used after the experiment to explain observed 

phenomena 
- tested: the theory is tested by the experiment – derivation: derivation of theory, instance: 

instance of theory 
- modified: the theory is enhanced, refined, conditionalised, etc. based on the experimental 

findings 
- proposed: a major part of the theory is proposed by the author(s) in the current reviewed 

article, and the theory is used in one of the preceding roles or is based on treatment-
outcome relations of the experiment 

- basis: the theory is used as a basis for other theory used in one of the preceding roles. 
 
Calls for Theory: Records any calls for theory or comments on the lack of theory being 

problematic. 

 
for contributors to the IS theory web site. This seems like a good starting point for 

guidelines to contributors to a theory web site for software engineering. Hence, 

Simula Research Laboratory has began building a similar site for SE theories and has 

initiated collaboration with those managing the IS theory web site. 
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Table 2. Attributes of theories used in the IS Field dataset [7] 

- Name of theory 
- Acronym 
- Alternate name(s) 
- Main dependent construct(s)/factor(s)/variable(s) 
- Main independent construct(s)/factor(s)/variable(s) 
- Concise description of theory (max 500 words) 
- Diagram/schematic of theory 
- Originating author(s) 
- Originating article(s) - capture in separate worksheet/document 
- Originating area (economics, psychology, etc) 
- Level of analysis (individual, group, firm, industry, etc.) 
- Hyperlinks to WWW sites describing theory with brief description of link 
- Links from this theory to other theories 
- IS articles that use theory - capture in separate worksheet/document 
- Contributor(s) 
- Date of latest summary 

Table 3. Guidelines for contributors to the IS Field dataset [7] 

1. Contributors of new theory summaries should use the format of present summarized 
theories and electronically submit the text to the editors using this template.  

2. New summaries should be complete; summaries missing significant portions will not be 
accepted.  

3. Corrections or additions to existing theory summaries are welcomed, and should be 
justified to the editors.  

4. References should be in the standard MISQ reference format: 
(http://www.misq.org/roadmap/standards.html).  

5. All contributors agree that any information submitted to this site becomes the property of 
the site and is presented publicly under a GNU Free Documentation License.   

6. Contributions will be acknowledged by email, reviewed by the editors, and may be 
forwarded to the site advisors for comment. Accepted contributions will, in due course, be 
posted on the site with attribution to the contributor.  

Table 4. Attributes of theories in psychology collected at [6] 

- Description 
- Example 
- So what? 

- Using it 
- Defending 

- See also (other theories) 
- References 

 
Another web site to look at is one that records theories in psychology [6]. Their 

format of theory description is relatively simple, see Table 4. This scheme can be 
compared with the scheme of the IS web site by looking at, for example, the cognitive 
dissonance theory, which is described at both sites. The workshop did not discuss in 
detail what kind of scheme would be appropriate in a possible theory web site for 



114 D.I.K. Sjøberg 

software engineering, but the schemes shown in Tables 1, 2 and 4 are certainly good 
starting points. 
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Measurement and Model Building  

Discussion and Summary 

Sira Vegas and Vic Basili 

1   Introduction 

This chapter summarizes the discussions that took place during the Measurement and 

Model Building session of the Dagstuhl seminar on Empirical Software Engineering 
(ESE). The goal of this session was to address questions concerning two topics: data 
sharing and effective data interpretation. 

The chapter has been organized as follows. Section 2 presents the discussions 
during the data sharing presentations. Section 3 deals with the discussions of effective 
data interpretation presentations. Section 4 summarizes the topics that were discussed 
by parallel groups after the presentations. Section 5 sums up the session outcomes. 

2   Data Sharing 

This section reviews the discussions that took place during Dag Sjøberg’s and 
Richard Selby’s presentations concerning data sharing. These two talks are detailed in 
the Knowledge Acquisition in Software Engineering Requires Sharing of Data and 

Artifacts and Data Collection, Analysis, and Sharing Strategies for Enabling Software 

Measurement and Model Building chapters of this book, respectively.  

2.1   Knowledge Acquisition in Software Engineering Requires Sharing of Data 
and Artifacts (by Dag Sjøberg) 

Building bodies of knowledge by accumulating knowledge from empirical studies 
requires the sustained efforts of several research groups. To achieve this goal, 
experimental artifacts have to be shared. However, making material accessible to 
others may require substantial effort by the creator. How should this creator benefit 
from such an effort, and how should the likelihood of misuse be reduced to a 
minimum? This talk explores these issues. 

This presentation prompted discussion of the following topics: the definition of the 
term theory, replications by the same vs. different researchers, why a license is 
needed, who are the owners of the data, and license expiration. 

• Definition of the term theory. The term theory is not yet well understood by the 
community, as illustrated by the fact that several people in the audience asked for 
an example.  

• Replications by the same vs. different researchers. A study has shown that more 
confirmatory results are obtained when a study is replicated by the same 
researchers than when it is replicated by different ones. The speaker pointed out the 
possibility of a bias. However, there is no agreement with respect to this issue as 
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some people in the audience remarked that it could be due to human interaction or 
implicit context variables that differ. 

• Why a license is needed. There is no agreement in the community on whether a 
license is really needed. According to the people who are in favor of licensing, the 
license proposal is motivated by several issues: wanting to know who is using the 
data artifacts, and any results obtained from its use, the possibility of some 
researchers misinterpreting or misusing the data without support from the original 
researchers. However, one suggestion was that we use the Open Source (OS) 
model about sharing data and artifacts. The risk of misinterpretation or misuse also 
exists in OS, and this does not stop them from being open. 

Another suggestion was that we should look at what people in physics and 
medicine do. But a follow up comment was that each field has its own particular 
problems and issues and we have to tailor any such rules to the ESE field.  

• Who the owners of the data are. The speaker questioned researchers’ ownership of 

data. However, it is not clear who the real owners of the data are, as different 

people suggest different options. Should it be the people who provide researchers 

with the data? The organization these people belong to? The experimental 

subjects? The government in the case of government-funded projects?  

• Maintaining the data and artifacts. The issue was raised that data storage, retrieval, 
evolution costs are real and there is no source of funding that allows data and 
artifacts to be maintained, quality assured, etc. 

• License expiration. Somebody in the audience brought up the timing issue. For 
how long can the people who borrow the data use it? 

2.2   Data Collection, Analysis, and Sharing Strategies for Enabling Software 

Measurement and Model Building (by Richard Selby) 

Successful software measurement and model building require effective strategies for 

data collection, analysis, and sharing. This talk presents a template for data sharing 

arrangements, along with its application to two environments.  

The discussion during this presentation focused on the following points: why data 

sharing is a problem, its scope, and students as owners of data. Some issues had 

already been raised in Dag’s talk, and they are discussed here in more detail, 

specifically the issue of data sharing and data ownership. 

• The problem of data sharing. Some participants did not understand why data 

sharing is a problem. It was explained that data sharing entails a number of 

problems. One of them is that it is very costly to maintain data (and the owners 

have to maintain it). Another one is that some data is private and cannot be shared. 

This is the case of the data gathered from a company. To illustrate the problem, 

two examples were given. The first example was that years ago it was possible to 

use various forms of student programs obtained for experiments, but now these 

programs are considered the intellectual property of the student and cannot be 

easily shared. The second example was that the data used to develop various 

models like COCOMO are often company owned and cannot be shared.  
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It was also explained that the point is not to obstruct the work of the people who 
are borrowing the data, but to restrict what they can do with it, and acknowledge 
the people who own it. 

However, some people questioned how real the problem is. They believe that 
researchers are usually willing to share their data, e.g. the NASA SEL shared its 
data via a database at the Rome Air Development Center DACS. 

• What the solution is. Some people doubted that restricting what can be done with 
the data or acknowledging the people who own it would motivate data owners to 
lend it. Other proposals were made, like co-authorship of papers (to reflect joint 
work). 

• Scope of the problem. Another issue that came up was whether sharing issues 
affect just data or also extend to any kind of artifact used to run empirical studies. 

• Students as owners of data. Some people believe that when running experiments 
with students, they are the owners of their data. In that particular case, we should 
ask them whether they mind the whole ESE community using their data. 

3   Effective Data Interpretation 

This section summarizes the discussions that took place during Jürgen Münch’s and 
Audris Mockus’ presentations about data interpretation. These two talks are detailed 
in the Effective Data Interpretation and Software Support Tools and Experimental 

Work chapters of this book, respectively.  

3.1   Effective Data Interpretation (by Jürgen Münch) 

Drawing useful conclusions from individual empirical studies and combining results 
from multiple studies requires sound and effective data interpretation mechanisms. 
This talk sketches the progress made in data interpretation in the last few years and 
presents needs and challenges for advanced data interpretation.  

Only one discussion topic came up in this presentation. It focused on: 

• Integrating project monitoring into empirical studies. The results obtained from 
project monitoring activities cannot serve as a substitute for running empirical 
studies. However, project monitoring can be used to help interpret the results of 
empirical studies. The data from the empirical studies can be used to calibrate 
models and run simulations. 

3.2   Software Support Tools and Experimental Work (by Audris Mockus) 

Using software support tool repositories to explain and predict phenomena in software 
projects is a promising idea. This presentation outlines the opportunities and 
challenges of using project support systems in empirical work.  

The discussion in this presentation focused on understanding data in OS 
repositories and the role of OS in ESE: 

• Understanding data in repositories. Although OS repositories are a potential 
source of data, somebody asked whether it is possible to understand this data. The 
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answer was that e-mails are particularly useful in these projects. OS people do not 
sit and talk, but they do everything via e-mail. Therefore, a lot of information can 
be gathered from e-mails. However, you still need to talk to them, although less so 
than in closed environments. 

• The role of OS in Empirical Software Engineering. Somebody asked if it was being 
suggested that future empirical studies should be derived from OS projects. The 
answer was no. It is just that OS repositories are a rich source of data, often 
containing more information than closed environments. 

4   Discussion and Summary 

The topics proposed for further investigation in parallel working groups were: 

• Potential of OS systems as project repositories for empirical studies. 

• Documenting theories. 

• Data sharing enabling technologies. 

• Licensing and sharing issues of qualitative data. 

• Prescribing some sort of format for project data sets. 

After the voting, the fourth topic was merged with the third one, and the fifth was 
omitted. This led to the formation of three parallel working groups. 

4.1   Potential of OS Systems as Project Repositories for Empirical Studies  

The results from the working group examining OS systems as potential project 
repositories were presented by Audris Mockus and are summarized in the Potential of 

OS Systems as Project Repositories for Empirical Studies chapter in this book. 
Only one discussion topic was raised during this presentation, related to the role of 

the empiricist in the OS project.  

• The role of the empiricist in the OS project. It was originally suggested that an 
empiricist should join an OS project as a regular team member. However, 
somebody asked whether (s)he should not join simply in the role of an empiricist 
instead. It is possible to join the team as an empiricist as long as you do not bother 
people with too many questions. But the reason for joining as a team member is 
that there are always outstanding tasks that an empiricist can easily do 
(documentation issues, etc.) to help the team out. This way the empiricist is not 
viewed as an intruder. 

4.2   Data Sharing Enabling Technologies 

The results of the working group looking at sharing issues were presented by Marvin 
Zelkowitz and are summarized in the Ways to share data chapter in this book. 

There was no discussion in the strict sense during this presentation. However, two 
remarks were made: 

• VTT will make all project-related information (including videos, etc.) available via 
web (for six months) 
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• It was suggested that this topic should be added to the next ISERN agenda, and the 

suggestion was accepted.  

4.3   Documenting Theories 

The results from the working group investigating theory-related questions were 

presented by Dag Sjøberg and are summarized in the Documenting theories chapter in 

this book. 

The topics of discussion raised during this presentation were related to: 

documenting a theory and the scope a theory should have: 

• Documenting a theory. Currently there are a lot of theories, but many are still 

missing. We should know not only what our own theories are, but also how to 

document them. The http://www.istheory.yorku.ca/ web page was presented as an 

example of the contents of a theory. The question is whether we should use a 

similar format. There was agreement on the usefulness of the table associated with 

each theory, but some people disagreed on whether we could represent our theories 

using the same format. There was also agreement that we need a way to represent 

what we currently know, and the table could be used as a guide. 

• Scope of theories. Another problem is how to articulate theories with respect to 

their scope. Some people agree that current theories are too specific. Unless you 

narrow the task, they are useless. These specific theories are not useful for generic 

phenomena. On the other hand, theories that are generic turn out to be vague. The 

point is that we should be able to break down theories to the level of abstraction 

necessary to avoid misfit. Perhaps we are mixing the generic with the specific in 

our theories. Therefore, we need to examine our theories one by one and decide 

whether or not they are useful. Somebody pointed out that vague theories are also 

useful, as they can help to unify terminology. 

5   Conclusions 

By way of a conclusion of this session, we are going to present the main 

achievements, key points of dissent and key issues to be solved in the coming years. 

They are summarized in Table 1.  

The main achievements identified are related to the findings about the need to 

share data and artifacts to build bodies of knowledge and theories, OS as an 

opportunity to study project data under certain circumstances and theories as a way of 

integrating and motivating empirical studies. 

The key points of dissent identified during the session are related to the data 

ownership topic. Part of the community does not believe it is a real problem, and 

therefore they do not see the usefulness of licensing. Finally, there is no agreement on 

who the owners of the data are. 

Finally, several key issues to be solved in the coming years have been identified. 

They are related to the definition, scope and documentation of theories, how to get  
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Table 1. Conclusions from the session 

 TOPIC EXPLANATION 

Share data and 
artifacts 

We need to share data and artifacts to build 
bodies of knowledge and theories 

Use Open Source  
OS is an opportunity to study project data 
when there is a good email trail 

Main 
achievements 

Build theories 
Theories offer a way of integrating and 
motivating empirical studies 

Data sharing Is it a real problem? 

Data ownership Who are the owners of the data? 
Key points of 

dissent 
Licensing Are licenses really needed? 

Theories Definition, scope and documentation 

Replication 
How to get confirmatory results in 
replications by different researchers 

Data ownership  How to acknowledge ownership 

Understanding data Describe data in a repository 

Key issues to be 
solved in the 
coming years 

Maintaining 
data/artifacts 

How do we find the funding to maintain 
data and artifacts for sharing? 

successful replications, how to acknowledge owners of data in a paper, how to 

describe the data contained in a repository so that it can be easily understood by 

everyone who uses it and, finally, how to find the funding to maintain data and 

artifacts for sharing. 
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Technology Transfer and Education  

Introduction 

Kurt Schneider 

Abstract. This session discusses two aspects of making an impact with 

empirical software engineering results. Improving industrial practices will lead 

to an obvious, economic benefit. In order to achieve that, researchers will need 

to partner with practitioners. Empirical software engineering also needs to be 

integrated into computer science education in order to make an impact later. 

This session is about all aspects of raising good research questions, and making 

sure the answers are exploited in practice. 

1   Impact of Empirical Software Engineering 

The final purpose of empirical software engineering research is to improve industrial 
practice. A company can achieve that effect by adopting research results, and 
researchers will be happy to cooperate.  

What may seem straight-forward is not so easy in reality. This session addresses 
issues of identifying good research topics, matching company needs with research 
agendas, and using education as an important bridge between the two camps. There 
are several ways to make an impact with empirical research. 

1.1   A Discipline in Its Adolescence Must Learn to Reflect 

Software engineering is still a rather young discipline. It was first proclaimed in 1968 
at the famous NATO Science Committee meeting in Garmisch-Patenkirchen. Even 
compared to Computer Science, software engineering is still in its adolescence. Like 
human teenagers, software engineering is pushing forward to create more and more 
complex software systems. Some of the achievements during that period are highly 
remarkable. The young discipline pushes forward and shows only a limited desire to 
reflect on what it has constructed and done so far.  

Despite the growing power of software development techniques, uncertainty about 
many methods and techniques has also grown. How does a company know what 
testing strategy to follow? Is object-orientation appropriate for a certain kind of 
embedded software systems? Is it wise to invest in agile practices and let 
programmers work in pairs? Many questions are highly interesting for researchers to 
discuss. Industrial decision makers, on the other hand, need answers for their work.  

Empirical software engineering has its biggest impact when it is able to answer 
relevant questions in practice and, thus, directly improve the practice of software 
development. In our software-dependent world, this contribution will create economic 
benefit and support our society. 
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1.2   Matching Interests 

A number of prerequisite hurdles need to be taken before we enter into the ideal 
scenario described above. The order of the steps may vary. 

1. Identify crucial questions for industry 
2. Make research aware of those questions and their significance 
3. Consider questions studied by researchers on their own initiative 
4. Match industry problems and research agendas 
5. Filter out those questions that can effectively be studied using empirical methods 
6. Carry out effective experiments and studies 
7. Report findings in a way suitable for practitioners and decision makers 
8. Decision makers appreciate and adopt the findings to practical implementation 

 

Fig. 1. Technology transfer as a cooperative process 

This lengthy list sheds some light on the issue of “technology transfer” of empirical 
software engineering research. For the purpose of this session, technology transfer is 
defined as any process or practice that helps to adopt research results in practice.  

“Practice” means real projects in a company. Future research results are also 
included in this definition; technology transfer is not necessarily a one-way flow of 
knowledge and innovation, and the intended research will often not be finished when 
technology transfer starts.  

In Figure 1, most steps refer to establishing and using the relationship between two 
partners. The above-mentioned steps sketch one possible process to bridge that gap. It 
is dominated by industrial demands and can, thus, be called “pull” technology 
transfer. Step 3 indicates the alternative of “push” technology transfer in which 
research offers results to industry. In many real-world situations, push and pull 
aspects will be interwoven. Technology transfer will often be more complex than 
indicated by the sketch above. Step 6 refers to the laborious work of planning, setting 
up, and carrying out empirical studies. But also steps 7 and 8 are important and need 
to be taken seriously: The answers to good research questions need to find their way 
back to practice. And it is a common task to “pave that way back to practice” – all 
hurdles of acceptance need to be removed. 

1.3   Education as Long-Term Technology Transfer 

Beyond improving industrial practices directly, empirical results can improve them 
indirectly: by improving education of future software engineers. From the viewpoint 
of universities and colleges, high-quality education is an important goal in itself. This 
session explicitly included education as the second road to empirical software 
research impact. In 1992, a corresponding session was entitled “technology transfer” 
only, but M. Lehman [1] made it perfectly clear that “Software development has 
traditionally been treated as a people intensive activity. Thus even when potential 
benefit is demonstrated, management will oppose moves to a capital intensive 
approach. Until educated otherwise they will resist change and investment, despite the 
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general trend to industrial mechanisation.” This observation still holds. There are 
good reasons to combine education and technology transfer in one session.  

2   Technology Transfer of Empirical Software Engineering Results 

Many publications of research results are aimed at the research community. Others 
are more directed to practitioners. In a written publication, results stand for 
themselves. When results are supposed to be “transferred” to industry, they need to be 
revised. The presentation and “packaging” of results has been an aspect studied by 
many [2, 3]. 

The organizers consider the following questions crucial for a better understanding 
of enabling factors. They determine the opportunities of technology transfer (1) of 
empirical results and (2) of new technologies that were studied by empirical results: 

 

• How do we package results for different purposes and contexts?  

• How can we use empirical software engineering to speed up technology transfer?  

• What information do practitioners need from empirical studies? 

• What kind of presentation is suitable for practitioners?  

2.1   Technology Transfer by People Transfer 

In a classical example of technology transfer, a student or researcher carries out an 
empirical study at a university; the study is initiated or sponsored by a company. 
When that student graduates or the researcher quits and is hired by that same 
company, there is a smooth and highly individual technology transfer: no need to 
package material or convince adopters. Education of students turns into a vital 
prerequisite of technology transfer. This leads to our second topic in this session: 
How can empirical work impact education? 

3   Empirical Software Engineering and Education 

Software engineering is still not sure about the impact of many techniques and 
methods. Empirical results can help to clarify things, and to teach students about new 
insights. Better-educated students will spread the knowledge in future projects, and in 
industry.  

We need a way to effectively spread what we learn during empirical studies. This 
raises a number of questions. 

 

• Who will carry out empirical studies?  

• How can we teach empirical methods to software engineering students? 

• How can we integrate empirical results in our teaching and our curricula?   
What are approaches and experiences? 

• What educational methods are suitable for teaching empirical or evidence-based 
software engineering? 
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Software engineering is perceived as a constructive engineering discipline. Students 
often need to be convinced of the benefit of empirical work. On the other hand, 
engineering disciplines are used to refer to experiments and studies when they 
recommend one technique over another.  

4   Making an Impact 

Good education is a value in itself. Integrating courses on empirical methods into 
software engineering curricula is a good way to make an impact through education. In 
the long run, this will also impact industrial practice. However, empirical software 
engineering also needs faster ways to transfer its results into practice. A good 
relationship between an industrial and a research partner will facilitate this transfer.  
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Empirical Studies as a Basis for Technology Transfer 

Elaine J. Weyuker 

1   Introduction 

The ultimate goal of all software engineering research should be to have an impact on 
the way software is engineered. This might involve making it more dependable, more 
economical to produce, more easily understood, or in some way improve the 
production or quality of software. This should be true whether the research is 
theoretical in nature or more pragmatic. In the former case the timescale for impact 
will likely be longer than one would expect if the research involves the proposal of a 
new specification, development, architecture or testing technique, or a new metric or 
way of assessing some software artifact. Nonetheless, it should ultimately allow 
practitioners to build “better” systems. 

The primary question we consider in this note is how to effect or facilitate that 
impact. More specifically, how should we transfer new technology introduced in 
research to the practitioners who are actually involved in some stage of the 
development of software systems? 

Our experience is that empirical studies are among the best ways to demonstrate to 
practitioners how the technology works or is to be used, and to convince practitioners 
that the technology will actually be usable by their project. This, of course, assumes 
that the empirical studies are believable and relevant to the types of projects that the 
practitioners are actually building. For this to be the case, it is generally necessary to 
perform these studies using “real” projects. The question then becomes, how do we 
get projects to participate, and how do we distribute the results so that the technology 
eventually gets transferred? These two issues are the subject of this paper. 

2   Finding Candidates for Case Studies and Performing Them 

Not surprisingly, we have observed that it is most difficult to find the initial project to 
participate in an empirical study. Some of the strategies that we have used include the 
following. 

• Do a small study to be used as a proof of concept. Even an empirical study done 
using a "toy" program, might convince a project to agree to be a subject of a study 
if it allows practitioners to see what benefits they may conceivably get from the 
technology. The more relevant and important the benefits appear to be from this 
small study, the more likely it is to get a project interested in being a subject of a 
follow-on study. However, as researchers, we have to be aware that participating in 
an empirical study involves many risks for a production project. Realistically, it 
may provide few, if any, benefits to the project that is being studied. It is only later 
projects that will benefit in these cases. Researchers must be careful not to make 
promises that they will not be able to deliver. The good will of practitioners for 
future studies is necessary and so it is essential that claims be kept realistic. 
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• Volunteer to give talks particularly aimed at practitioners. One way to get potential 
project recruits is to have researchers describe the proposed technology to 
practitioners and to explicitly outline the goals of the study. If preliminary results 
are available, they should be presented to provide as much detail as possible. Again 
be careful not to make grandiose claims when they cannot be substantiated, and 
remember that many practitioners are wary of researchers because they have seen 
very few benefits of past research. 

• Promise not to intrude. It is important to be aware that projects that do agree to 
participate in case studies are taking risks and that their time is very valuable 
because they generally have very strict time constraints when preliminary artifacts 
or new releases have to be ready. By promising to be as unobtrusive as possible, to 
minimize the amount of resources we use, and to ask as few questions as possible, 
the project is more likely to feel that you understand and appreciate their time 
pressures. 

• Make it clear to the project how much their willingness to participate in a study is 
appreciated. Make it clear that you recognize that they are helping you (rather than 
coming in with the attitude that you have all the answers and that they should 
consider themselves lucky to have your attention and great ideas focused on them). 

• Offer to provide extra help if necessary to make up for their help, and deliver on 
that offer if asked. For example, we have been asked to help out with testing when 
time was running short and to compute metrics for them. This was done willingly 
and graciously and we believe that they appreciated this and therefore are likely to 
be helpful again in the future. Remember, personnel on this project have friends on 
other projects and will themselves be personnel on other later projects that you 
may want as subjects. Therefore goodwill generated on this project is likely to help 
you win other candidate projects for later studies. 

Once initial subjects for empirical studies have been found and results have been 
generated, recruiting additional projects to be subjects is generally somewhat easier 
since they can see that your technology does scale and produces promising results 
(assuming that's the case). One case study is almost certainly not enough to get a 
production project to adapt your new technology, and so additional empirical studies 
will generally be necessary. 

Now is the time to begin in earnest trying to present your results to practitioners. 
Volunteer for any appropriate venue. Do not expect to be paid for telling them about 
your research, or even as a consultant if you convince a project to be an empirical 
study subject. Remember they are helping you at least as much as you are likely to be 
helping them. Once your research is “proven” because it has been used in several 
large industrial empirical studies, if the technology is deemed useful, your tool, 
technology, or you are all likely to be marketable and in demand. If you or it are not 
in demand, then perhaps the technology is not as useful as you believe, at least in its 
current form, or you have not yet made enough people aware of it. 

3   Transferring the Technology 

The empirical studies that have been performed are often the best way to win 
customers for your technology. If you can demonstrate that you have applied your 
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technology to several large production projects, having different characteristics, 
perhaps you can find a project that is just starting up and willing (or eager) to actually 
use your technology. In some cases, empirical studies that have been performed will 
have been retrospective rather than prospective. We have found it most convincing to 
have done at least one prospective study before trying to actually transfer the 
technology. In that way candidate for the technology can see it in use, and speak with 
active project personnel about their experiences. 

In order to get widespread acceptance of new technology, it is often necessary to 
build a high-quality tool that automates the technology. If it requires one or more 
Ph.D. researchers to apply the technology, it probably is not ready for transfer, nor is 
it likely to be adopted by practitioners. It is sometimes possible to get a project who is 
interested in using the technology to make it into a product or production-grade tool. 
It may also be possible to license the technology to a professional tool-building 
organization. This automation should facilitate the transfer of technology. 

Once the technology has been automated, it is important to continue to both 
publish written descriptions of the technology in appropriate venues, and also to make 
presentations to practitioners to show them your successful results in the empirical 
studies. Being able to demonstrate how the technology works on real projects is still 
the best way to get the technology transferred. 
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Relationships and Responsibilities of  

Software Experimentation 

Giovanni Cantone 

The Empirical software engineering (ESE) research community is twenty years old 
but still growing mainly on the internal side rather than in terms of external 
relationships. Let us reason on the most important of those ESE relationships and 
consequent responsibilities. We sketch on a static view of the problem domain 
entities, and their relationships, in case stereotyped relationships. 

ESE Research Groups aim to improve Organizations, a term that generalizes on 
Developers, Producers, and Service-agencies. Organizations enact their own Pro-
cesses, use Methods, utilize Tools, and employ People. Associations of (types of) 
Organizations do produce Standards, and (Production | Development | Service) 
Guidelines, including Good Production | Development Practices. The main goal is to 
filter products, hence organizations, which are allowed for a certain market.  

Some Products, Methods, Tools are for use or consume by End–customers or for 
use in the processes enacted by Agencies, which provide services to organizations and 
citizens, who generally are not aware of the details concerning the short and long term 
impacts of that technology on themselves and the environment. Hence, the need and 
role of Authorities, which enact Ethical Control, and emit Guidelines; these include 
Verification guidelines and Good Laboratory Practices, (GLP)s. Because the labs of 
an Organization live a context that applies standards and good practices, they usually 
also apply (GLP)s. Vice versa, concerning other types of labs,  e.g. academic labs, the 
application of those practices probably vary from context to context.  

Software organizations are development organizations. They develop technology 
for end-customers and all types of organizations. Hence, there are three relevant types 
of software technology transfer: from software developer to software developer, or 
producer, or service provider, respectively. Concerning the latter, for instance, 
software technology has been proposed for the continual learning of physicians and 
paramedics. ESE should hence investigate all those types of technology transfer. 

The ESE research has dependence relationships with Ethical control, (GLP)s, and 
related Guidelines. In other fields there are many types of experiments, to conduct 
orderly (in case of success only!) E0 acts on things, “in-vitro”; experimenters are the 
only humans allowed to come in contact; ESE scientists should simulate their 
experiment processes before involving volunteers. E1 acts on primary animals; seems 
not applicable for ESE experiments. E2 acts on formally informed human volunteers 
performing as subjects. En>2 act on dependent humans: the lower is n the greater is the 
level of dependency of the involved subjects. Based on the ESE practices, to the best 
or our knowledge, ESE experiments usually skip the stages E0, and still limit to enact 
(part of) E2, which is a quite frustrating fact that we should work to remove. 
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The (Practical) Importance of SE Experiments 

Tore Dybå 

Much experimental SE research involves testing a hypothesis regarding a relationship 
or difference between two variables. Typically, a null hypothesis (H0) of a zero 
correlation or no difference between the means of the two populations is posited. The 
standard way of reporting results from such statistical hypothesis testing is by 
presenting p-values or information about the rejection or acceptance of H0.  

However, in an applied discipline such as SE, it is not enough to find out that one 
method or technique is better than another – we need evidence of how much better. 
Such evidence can be expressed in terms of an effect size. So, whereas p-values reveal 
whether a finding is statistically significant, effect size indices are measures of 
practical importance. Interpreting such effect sizes is critical, because it is possible 
for a finding to be statistically significant but not meaningful, and vice versa. 

In an ongoing systematic review at the Simula Research Laboratory [2] we found 
that more than two thirds of SE experiments did not report any effect size measure. 
This lack of effect size reporting can lead to serious inferential problems and 
effectively reduces the practical utility of experimental results. For those experiments 
that reported effect sizes, or included enough descriptive statistics for effect size 
indices to be calculated, the median effect size was d = 0.6. At the same time a 
quantitative assessment of statistical power revealed that the experiments, on average, 
only had a one-thirds chance of detecting phenomena with such medium effect sizes 
[1]. These results indicate that SE experiments currently are both underpowered and 
underreported. 

To further advance the field of empirical software engineering we must not only 
address relevant topics, we must also plan for acceptable power and report the results 
of our studies in a manner that could be put to use. What we regard as practically 
important effect sizes vary depending on the goal of the research and the fields within 
which its results are applied. However, in order to seriously discuss these issues and 
inform judgement about practical importance, effect size, or sufficient descriptive 
statistics for relevant effect size indices to be calculated, must be reported as part of 
our experimental results. 
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How to Improve the Use of Controlled Experiments as a 

Means for Early Technology Transfer 

Andreas Jedlitschka 

As stated by Robert Glass in Communications of the ACM [1], there seems to exist a 
gap between the information needed by industrial people and the information 
provided by researchers. We have, on the one hand, investigated the information need 
of industrial decision makers and, on the other hand, surveyed a set of controlled 
experiments with regard to their entropy (defined as a measure for relevant 
information content). The studies among industrial decision makers confirm the need 
for information regarding SE technology’s impact on overall project cost, quality and 
schedule, whereas the survey of controlled experiments indicates that this information 
is hardly available. Accepting the importance of controlled experiments for our 
discipline, we conclude that in order to improve their wide-spread acceptance (usage 
and usability) by industrial decision makers, it is important to provide at least 
minimum information with regard to their need. 

In terms of currently available reports of controlled experiments, we observed that 
the aforementioned problem is not the only one. A further problem has been 
identified, which hinders the widespread acceptance of the study results: It is difficult 
to locate relevant information. Therefore, we would like to enforce the use of 
reporting guidelines, which are expected to support a systematic, standardized 
presentation of empirical research, thus improving reporting in order to support 
readers in (1) finding the information they are looking for, (2) understanding how an 
experiment is conducted, and (3) assessing the validity of its results. We argue [2] that 
especially for the first issue, currently available guidelines do not provide the level of 
support that would be necessary for improving the use of controlled experiments as a 
means for early technology transfer. Whereas publishing reports of controlled 
experiments for the research community seems to be straightforward, the situation is 
different for publishing results for practitioners. They certainly care about the context, 
the overall results, and transfer issues, but do they care about the design and statistical 
analysis? Therefore, we foresee that there will be no one-size-fits-all guideline, but 
rather different guidelines for different user groups and purposes, e.g., for researchers 
aiming at aggregation or for practitioners aiming at decision support.  
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Extending Empirical Studies to Cover More Realistic 

Industrial Development and Project Management Issues  

Marek Leszak  

"Real development" issues, observable in many medium size to large size software 
systems need to be tackled more intensively by empirical research, to increase 
applicability and concrete transfer of scientific results into practice. This is illustrated 
by three areas, covering typical problems in today’s software project management. 

Many predictive and prescriptive models rely on the assumption of steady-state 
project dynamics, at least for main driving factors. But industrial software deve-
lopment is facing an increasing amount of global development, offshore outsourcing, 
high turnover rate, requirements volatility, constrained resources (both in interval and 
in cost), mental project pressure, unforeseen project events, etc..  

Granularity of empirical studies is often on overall system level. At least for large-
scale and complex systems this is often not adequate.  If the data would be collected 
and analyzed on subsystem level (product) or team level (process/project) some 
interesting insights can be revealed [1,2], not available if the system is studied from a 
'black-box' perspective. Characteristics of different subsystems tend often not to be 
homogenous, causally due to e.g. different team size and expertise, and architectural 
dependencies. E.g. one of our case studies on defect and file distribution [2] provided 
evidence that a) per subsystem, delivered defects are a good estimator of in-process 
defects, and 2) per subsystem, the number of product requirements is highly 
correlated with in-process defects. In this case study such significance could neither 
be observed on system-level nor on module-level. 

Another often neglected aspect of current empirical research is their scope w.r.t. 
the lifecycle phases studied. If extended towards overall development lifecycle the 
research results would widen their scope, leading to intensified and value-added 
collaboration with industrial software development. E.g. most research results on 
software reviews and inspections focus on code artifacts, although in real develop-
ment projects typically a much higher amount of effort is spent on reviewing 
requirements, design documents, and test plans. It is not surprising to see evidence for 
review effectivity & efficiency being highly dependent (also) on type of artifact [3]. 

These exemplified levels of detail, in turn, requires on the industrial organization a 
high degree of data quality, typically not found in lower maturity organizations. 
Including more realistic factors from large software systems and real-life projects into 
empirical studies would improve model adequacy and their predictive power. 
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Empirical Case Studies in Industry: Some Thoughts 

Nachiappan Nagappan  

This position paper deals with empirical case studies from an industry perspective. 
Empirical Software Engineering at Microsoft spans several areas including traditional 
software engineering, program analysis, and HCI. From the perspective of transfer-
ring ideas, tools and techniques into the product teams Microsoft Research more or 
less behaves like an academic department, being closer to the problem. Some of the 
factors to conduct empirical studies from an industry view point to get a conversation 
started are described below. In general empirical studies are costly in industry due to 
the working environment constraints and the risks associated with failure.  

Cost: Cost is an important factor in most industrial empirical studies. Commercial 
software developers like to get an initial estimate of the cost of deploying a new soft-
ware system or process. This helps them make cost benefit decisions and perform risk 
analysis if they are willing to adopt the new techniques. 

Scale: Scale is a very important factor than needs to be understood and acknowl-
edged in most industrial case studies. Techniques that work well with smaller sys-
tems, groups of people might not work with large systems. Understanding the reasons 
for such failures early on can help avoid costly mistakes. 

Logistics: Conducting empirical studies in an industry environment involve a con-
siderable amount of organizational logistics. Very often it requires becoming part of 
the development organization to understand trends, data, tools and techniques in order 
to collect in-process, important contextual information. 

Tools: Most data collection, not requiring any human input has to be automated to 
minimize intrusion into developer’s normal work. For example, tools to collect code 
coverage information, measure code churn etc. Such tools need to scale for large sys-
tems and should work in reasonable time with a high degree of accuracy to be adopted 
by product teams. 

Privacy: Most product teams expect a high degree of privacy while doing empiri-
cal studies. They do not wish to have any personally identifiable information mapped 
backed to them with respect to their development practices. 

The above factors are by no means complete or comprehensive and are just to 
serve as a starting point for discussion in this area. 
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Software Process Simulation Frameworks in Support of 

Packaging and Transferring Empirical Evidence 

Dietmar Pfahl 

Empirical research is essential for developing a theory of software development, and 
– subsequently – for transforming the art of software development into engineering. 
In particular the latter point deals with providing evidence on the efficiency and 
effectiveness of tools and techniques in different application contexts. An application 
context is defined, firstly, by organizational aspects such as process organization, 
resource allocation, developer team size and quality, management rules, etc., and 
secondly, by the set of all other tools and techniques applied in a development project. 

Controlled experiments and case studies are expensive in terms of effort and time 
consumption. Support for making decisions on which experiments and case studies to 
spend effort and time would be helpful. Such support could be provided by a software 
process simulation framework that is adaptable to various process configurations and 
accepts local efficiency and effectiveness values of tools and techniques as inputs. 
Simulation can generate estimates for the impact on overall project performance. 

Inspired by the idea of frameworks in software development, adaptable software 
process simulation systems can be constructed from reusable components. The scope 
of a reusable component comprises construction, verification, and validation 
activities, and associated input/output products and resources. In order to capture the 
main dimensions of project performance, i.e., project duration (time), project effort 
(cost), and end product quality, each component has three dimensions which represent 
recurring patterns in software process models: functional view (activities), resource 
view (people, techniques, tools), and quality view (products). 

Besides their cost-effectiveness due to reusability, software process simulation 
frameworks yield the following benefits:  

• Focused improvement of techniques and tools, and associated conduct of 
controlled experiments and case studies, thus accelerating the generation of 
interesting new empirical evidence about the efficiency and effectiveness of 
development techniques and tools. 

• Standardized representation and packaging of empirical evidence about local 
effectiveness and efficiency of techniques and tools in varying contexts, facilitating 
the systematic exploration of the impact on (global) project performance at low cost. 

• Improved knowledge transfer, education, and training through visualization of the 
impact of local effects on global performance. 
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Structuring Families of Industrial Case Studies 

Laurie Williams 

Practitioners are most influenced by results of research conducted in industrial 
settings. Evidence of the efficacy of a software development practice or process is 
best obtained through a triangulation of research findings obtained through a variety 
of empirical studies in various contexts. The use of an evaluation framework can 
enable a family of related industrial case studies in different contexts to be meta-
analyzed and/or combined. Such an evaluation framework could consists of templates 
for specific quantitative measures to collect with associated instructions on what to 
include/exclude for consistent measurement collection as well as protocols for 
surveys and/or interviews. Groups of researchers interested in the same research 
question(s) can customize and evolve an evaluation framework for the technology 
under study.  

We have developed and evolved such a framework for the study of Extreme 
Programming, the Extreme Programming Evaluation Framework (XP-EF), which is 
available as a North Carolina State University Technical Report. XP-EF is currently at 
Version 1.4. The composition of Version 1.0 was initially developed from relevant 
literature. We refined the framework in several research cycles with industrial 
partners on four multi-release industrial case studies. We have also revised the 
process based upon input from anonymous reviews of our publications from 
researchers in the community, through discussions with members of the International 
Software Engineering Research Network (ISERN), and through presentation of our 
work to researchers and practitioners. Through these cycles of use and external 
feedback, the research and practitioner communities have provided input on the 
guidelines and artifacts embodied in the framework. We have conducted four case 
studies guided by the XP-EF.  The reported results of these case studies reference the 
evaluation framework used, enabling precise replication of metrics collection and data 
analysis. 
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Empirical Software Engineering: Teaching Methods  

and Conducting Studies 

Claes Wohlin 

Abstract. Empirical software engineering has grown in importance in the 

software engineering research community over the last 20 years. This means that 

it has become very important to also include empirical studies systematically into 

the curricula in computer science and software engineering. This chapter presents 

several aspects and challenges to have in mind when doing this. The chapter 

presents three different educational levels to have in mind when introducing 

empirical software engineering into the curricula. An introduction into the 

curricula also means increased possibilities to run empirical studies in student 

settings. Some challenges in relation to this is presented and the need to balance 

educational and research objectives is stressed. 

1   Introduction 

Empirical software engineering has established itself as a research area within 
software engineering during the last two decades. 20 years ago Basili et al. [Basili86] 
published a methodological paper on experimentation in software engineering. Some 
empirical studies were published at this time, but the number of studies was limited 
and very few discussed how to perform empirical studies within software engineering. 
Since then the use of empirical work in software engineering has grown considerably, 
although much work still remains. A journal devoted to empirical software 
engineering was launched in 1996 and conferences focusing on the topic have also 
been started. Today, empirical evaluations and validations are often expected in 
research papers. However, the progress in research must reflect on education. 
Computer scientists and software engineers ought to be able to run empirical studies 
and understand how empirical studies can be used as a tool for evaluation, validation, 
prediction and so forth within the area. 

This chapter presents some views on education in empirical software engineering. 

In particular, the chapter contributes by identifying three different educational levels 

for empirical software engineering. Furthermore, the chapter stresses the possibility to 

run both experiments and case studies as part of courses and how this facilitates 

research. However, to perform research as part of courses, with the educational goals 

of a course in mind, requires a delicate balance between different objectives. The 

research goals must be carefully balanced with the educational goals. Different 

aspects to have in mind when balancing the different objectives are presented. Finally, 

the need to develop guidelines for running empirical studies in a student setting is 

stressed. Guidelines are needed both to ensure a proper balance between different 

objectives and to, within the given constraints, get the maximum value from empirical 

studies run in a student setting. It is too simplistic to disregard empirical studies with 
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students just because they are students instead there is a need to increase our 

understanding of how empirical studies with students should be conducted and to 

what extent results from them could be generalized. 
The chapter is outlined as follows. Section 2 provides an overview of some related 

work. In Section 3, three different educational levels to consider when introducing 
empirical studies into the curricula are presented, and different types of empirical 
studies to use in relation to courses are discussed. Section 4 presents some aspects to 
have in mind when balancing educational goals and research goals. Finally, a brief 
summary and conclusions are provided in Section 5. 

2   Related Work 

The literature on education in empirical software engineering is limited. The literature 
primarily describes either specific experience from a course, such as [Höst02], or from 
performing a research study with students as subjects [Thelin03]. Most empirical studies 
conducted in an educational setting are controlled experiments, although some articles 
are more related to studies of student projects and hence could be classified as case 
studies [Höst02, Berander04]. Some exceptions exist, where authors discuss the use of 
students in empirical studies for different purposes [Carver03].  

Anyway, there is a need to improve the way we both teach and conduct empirical 

studies in software engineering. However, there are many challenges. Software 

engineering is primarily concerned with large scale software development and hence, 

for example, the use of controlled experiments in laboratory setting is not 

straightforward. This is true both when it comes to student learning and to conducting 

research in an academic setting. We have to understand and define how to conduct 

controlled experiments in laboratories to make them useful in a larger context. This 

makes the challenges quite different from other disciplines using experimentation. There 

is a lot to learn from other disciplines, but there is also a need to address the specific 

challenges when conducting experiments in software engineering. 
When experimentation was introduced into software engineering, the main focus 

was on running experiments. As the work progressed, more focus has been put on the 
actual methods used. The two books on experimentation [Wohlin99, Juristo01] are 
good examples. Researchers have also started addressing how results from different 
empirical studies should be combined either through meta-analysis [Hayes99, 
Miller99] or using a more evidence-based approach [Kitchenham04]. Other 
researchers have addressed the challenge of building families of experiments 
[Basili99] and hence plan for combining experiments rather than trying to combine 
existing studies. This is also closely related to the issue of replication [Shull02]. Some 
experiences from conducting realistic experiments are presented in [Sjøberg02], in 
particular the article argues for funding running experiments and hiring professionals 
to participate in them. This is one possible way. However, we believe that we have to 
better understand how to transfer results from laboratory experiments with students as 
a complement to running larger experiments and hence also much more expensive 
experiments with professionals. In particular, it is a challenge to both teach empirical 
methods in an effective way and to simultaneously run studies that are valuable from 
a research perspective or from a technology transfer perspective. 
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When it comes to actually trying to understand the role of students as subjects in 
controlled experiments in software engineering, the first article addressing the topic 
explicitly was published in 2000 [Höst00]. The article presents an empirical study 
where both students and professionals participate, and then the article compares the 
two subject groups. In this case, no differences could be identified in performance. In 
another study, it is concluded that it is better to experiment within project courses than 
as separate exercises [Berander04]. Based on the conviction, that it is too simplistic to 
look solely at students vs. professionals, a scheme has been developed to include both 
experience and motivation [Höst05]. In another study, an interesting observation was 
made when a situation was found where the results from experiments with students 
became possible to generalize. It was a situation when the students knew one of the 
methods used much better but still the other method came out as being the best to use 
[Staron06]. When it comes to work on objects to use in experiments, the research is 
very limited. It is mentioned in passing in books, but no research actually addresses 
the challenges that have been identified. 

In addition to the above, a large number of actual experiments have been published. 
A survey is presented in [Sjøberg05]. Furthermore, two books with a collection of 
empirical studies, including controlled experiments, have also been published 
[Juristo03, Wang03].  

3   Teaching Empirical Methods 

This section addresses issues to consider when teaching empirical software 
engineering on different educational levels, including bachelor, master and PhD level. 
Furthermore, the section discusses the use of different empirical methods in particular 
experiments and case studies. 

3.1   Educational Levels 

Empirical software engineering may be taught in at least three distinct ways: 

•  Integration in software engineering courses 
     One way of making empirical studies a natural part of evaluating and assessing 

different methods, techniques and tools is to integrate empirical work as assignments 
or studies within other courses. This means that in, for example, a course on software 
design different ways of performing a design can be compared and evaluated 
empirically. Another example is to include an experiment in a verification and 
validation course, where, for example, unit testing and inspection could be compared. 
In particular, it may be interesting to evaluate which type of faults that are found with 
the different techniques. Integration into courses early in the curricula means that 
students get exposed to and used to apply empirical methods. 

• Separate course 
 It is also possible to run a separate course on empirical software engineering. The 

major advantage is that the course becomes very focused on empiricism and hence 
it becomes easier to provide assignments that include designing studies, reviewing 
empirical work and also possible write an empirical paper. The latter may be done 
without actually running a study, i.e. the focus could be in identifying, designing 
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and discussing an empirical study. A potential drawback may be that it is hard to 
get a separate course on empirical software engineering into the curricula. It is 
often many different topics that should be covered in a software engineering 
program. 

• Inclusion in research methodology course 
 The need for a research methodology course normally becomes evident when 

students are approaching their thesis work, independent of whether it is a bachelor, 
master or PhD thesis. Thus, it may be natural to include an empirical software 
engineering component in a more general research methodology course. Other 
components may be the use of an analytical approach or the use of simulation. 

The above three alternative ways of teaching empirical software engineering may be 
mapped to educational levels. The mapping is based on experiences at Blekinge 
Institute of Technology to integrate empirical software engineering into a general 
software engineering program. At Blekinge, students may get five different degrees in 
software engineering. The first three are regarded as being on undergraduate and 
graduate level and they are (counting years from the start at the university):  
1) university diploma in software engineering after two years, 2) a bachelor degree 
after three years and 3) a master degree after 4.5 years. The two latter includes a 
thesis, where the thesis on the master level normally is more research-oriented than 
the thesis on bachelor level. On a research level, two different degrees are awarded: 1) 
licentiate degree after two years of research studies and 2) a doctoral degree after four 
years of research studies. The licentiate degree includes a year of course work and a 
thesis equivalent to one year of full time research. The doctoral degree includes 1.5 
years of course work and a thesis equivalent to 2.5 years of research. The work to 
licentiate level is expected to be included in the doctoral degree. To simplify a little 
and make the Swedish system comparable to an international context, the main focus 
is set on the bachelor, master and PhD levels. These three levels are also the ones 
included in a joint agreement within the European community to ensure compatibility 
between countries within the community. 

In our experience, it is suitable to try to integrate assignments with some empirical 
parts into courses on the bachelor level. It is also possible to successfully perform 
experimental studies with students as subjects on the bachelor level. However, it is 
crucial to ensure a very clear educational goal with such studies. This is particularly 
important on the bachelor level since the students are still quite far from research. 

On the master level, it is still important to integrate empirical methods and studies 
into other courses. The students are now approaching the research level and in 
particular they are expected to write theses with a research component, and hence it is 
possible to run experimental studies that are more research focused. However, it is 
still very important to discuss the outcome of the studies and relate to whatever topic 
they are studying. Before the master thesis, it is suitable to run a course on either 
empirical software engineering or a more general research methodology course with 
an empirical component. The actual choice is dependent on whether the thesis work is 
expected to be only empirical or if other research approaches are also possible. It also 
matters whether the objective is to run a joint course between several programs, for 
example, a joint course between software engineering and computer science. The 
latter is the situation at Blekinge and hence methods for empirical studies are included 
in a more general research methodology course. 
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Finally, on the PhD level, we have experience from teaching specific courses on 

controlled experiment in software engineering, empirical software engineering and 

also a course on statistical methods for software engineers. The latter course is based 

on having data from a number of empirical studies in software engineering. The 

course is given using a problem-based approach. This means that the students are 

given a set of assignments connected to the data sets provided. No lectures are given 

on how to solve the problems and no literature on statistics are provided. It is up to 

the students to find suitable literature and hence statistical methods to use based on 

the assignments and the data available to them. The students practice statistical 

methods useful both for case study data and data from controlled experiments. 

Students provide individual solutions that are peer reviewed before a discussion 

session. In the discussion session, differences in solutions are discussed and the 

teacher shares her or his experience with the students. The sessions include 

discussions on both the statistical methods used and the interpretation of the analysis 

in a software engineering context. This course is run for the second time in 2006 with 

participants from five different Swedish universities. 

3.2   Different Types of Studies 

Most empirical studies run in a student context are controlled experiments. This poses 

some challenges. First of all, it is important to ensure that any study run contribute to 

the learning process of the students. Controlled experiments are often run with small 

artifacts and they are run standalone, i.e. they are not normally integrated into a 

development project. Given that the students in most cases will work in software 

projects, it is crucial to show how the knowledge gained from an experiment may be 

important also in the larger development context. Second, it is important that the main 

objective is on the educational goals. Controlled experiments may be important either 

from a research perspective or from a technology transfer perspective, but they may 

not be the most important study for the researcher if using students as subjects. A 

discussion on these challenges when conducting controlled experiment with students 

is provided in Section 4. 

Experiments are most common when involving students. However, case studies 

should not be forgotten. They could often provide valuable information in a more 

project-like context. In many software engineering educations, development projects 

are an important part of the curricula. This does not only include individual projects. 

In many cases, smaller (4-6 students) projects or more large scale (12-18 students) 

software projects are run. These projects are not industrial projects, but they have a 

number of things in common with industrial projects, such as requiring that people 

contribute to a common goal. In some cases, these types of projects may have 

industrial customers. An important research question would be to identify in which 

cases student projects would be relevant to use in research. Once again, the research 

focus should not interfere with the educational goals. In [Berander04], an example is 

provided where it was shown that students working in projects behaved more as in 

industry than students participating in a controlled experiment. 
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4   Balancing Objectives 

A particular challenge is to balance different objectives when conducting empirical 
studies as part of the curricula. If a study is part of a course, then the research 
objectives should not be allowed to dominate over the educational goals. In other 
instances, it is not only a matter of research; it is also a matter of using an empirical 
study in an academic context as a stepping stone in a technology transfer process. In 
other words, a researcher would like to evaluate a method, technique or tool in an 
academic setting before moving it out to, for example, an industrial research partner. 
The balance between objectives puts some constraints on the actual empirical study 
from a research perspective: 

• Clearly connected to educational goals. 

• Use of students is always challenged. 

• Mandatory participation may affect the results, but optional participation is not 
necessarily better. 

• Objects in the study must be reasonable for the different perspectives. 

• Comparisons between competing methods, techniques or tools must be fair.  

The latter two items may require some further elaboration. Students as subjects have 
been discussed more in the literature than the use reasonable objects, for example, in 
[Höst00, Carrver03]. From an educational perspective objects in a study should not be 
too large due to time constraints for the students. Moreover, it may be preferable if the 
objects contain certain aspects or constructs that relate to what have been taught in a 
course. This may include, for example, certain constructs in a design method. From a 
research perspective, it may be preferred if the objects resemble industrial use. This 
may mean that objects ought to be larger, and it may also mean that certain parts of, 
for example, a design method should not be used or should be used. This may 
particularly be the case when the research is conducted as part of a technology 
transfer process to a specific company in which case it would be preferable to 
resemble that actual intended use at that specific company. This may be contradictory 
to the educational objectives. This requires both a delicate balance between objectives 
and an increased understanding of how objects should be constructed to help in 
balancing the objectives. 

The other issue related to the objects is the fairness. It is not fair to teach one 
method and briefly introduce another method, and then compare them. This would 
clearly favor the method having been taught. Thus, it is important that methods, 
techniques and tools are introduced in similar ways to ensure comparability from a 
research perspective. There is one potentially valuable exception. If students have a 
thorough introduction to one out of two competing, for example, test methods and a 
brief introduction to the second method, and the second method comes out as the best 
then it is interesting. This is interesting since the opposite would normally be 
expected and hence it seems like the second method is not only better; it is probably 
superior. 

In summary, too much focus is set on the use of students in research studies. There 
is a need to better understand the whole context of an empirical study in a student 
setting. The challenge is to develop our research methodology so that we better know 
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how to gain the most knowledge from empirical studies with students. To simply 
disregard such studies is too simplistic and it may mean that learning opportunities are 
lost. As realistic studies as possible is good for both education and research. Thus, we 
must work with improving our understanding of how to run and how to make use of 
empirical studies within education. 

5   Summary and Conclusions 

This chapter presents some ways to integrate empirical software engineering into the 
curricula. Some issues related to this introduction are highlighted. In particular, the 
need to balance educational objectives with research objectives is stressed. It is 
argued that both education and research would benefit from as realistic empirical 
studies as possible when performing studies involving students. Thus, it can be 
concluded that the challenge is to integrate empirical software engineering and 
empirical studies into the curriculum and maintain research relevance and quality. 
Instead of being negative towards studies with students, we should increase our 
understanding of how empirical studies with students can be used as part of our 
research process. We must address questions such as: 

• How is empirical software engineering best introduced into the curricula to ensure 
that students are both able to run empirical studies and capable of understanding 
their value? 

• Is it possible to effectively combine educational and research objectives when 
performing empirical studies in a student setting?  

• Can empirical studies with students be a natural stepping stone in technology 
transfer? 

Empirical software engineering has established itself as an important area within 
software engineering. However, it still remains to effectively introduce it into 
computer science and software engineering curricula, and to address several 
challenges in relation to the introduction. 
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Educational Objectives for Empirical Methods 

Natalia Juristo 

Abstract. Empirical Methods (EM) cover a broad field and not all software 

professionals need to be equally acquainted with this area. A BSc student of 

Computing, an MSc student or a PhD student will put EM to different uses in 

their professional life. Therefore, we should train them differently. To decide 

what to teach to whom we have analyzed what are the EM educational 

objectives based on the target behavior for different job profiles. In this paper, 

we discuss each type of student and the reasons for the target EM behaviors to 

be achieved through the training.  

Keywords: Empirical Software Engineering, Education, Experimentation. 

1   Introduction 

Today most software engineers extol the virtues of a particular technology or 
technique based on their opinions. In SE subjective opinions are more prevalent than 
objective data. For software development to really be an engineering discipline and be 
able to predictably build quality software, practitioners must transition from 
developing software based on speculation to software development based on facts.  

If we want future developers to lay aside perceptions and build on data, we have to 
focus on training today’s students. We need practitioners trained in working with facts 
rather than assumptions. We need practitioners that understand the importance of 
demanding proof of a particular technology’s superiority before jumping into its use. 
We want practitioners that know how to measure and monitor improvements and 
changes that occur during their developments.  

For future practitioners to reach this level of maturity they need to be trained in 

EM [1]. Unfortunately, there is no agreement on what they should be taught about this 

subject. A main difficulty is that EM is a very large area encompassing many topics. 

At the lowest level, the field is confined to understanding the value of data. At the 

most advanced end of the spectrum, it covers topics like the accumulation of evidence 

through aggregation of results from different empirical studies (ES). To further 

complicate this issue, different types of students (undergraduate, MSc, PhD…) need 

different EM training.  
The content of this paper is based on the experience of teaching EM to students at 

undergraduate, master and PhD levels and our observations of students’ reactions to 
their exposure to different EM topics. 

To decide what to teach each type of student we have studied how we expect a 
person who is now a student to behave towards EM in his or her future professional 
life. In other words, we have analyzed EM educational objectives based on the target 
behavior for different job profiles.  
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The paper is organized as follows. Section 2 identifies possible EM student types. 
Section 3 presents educational objectives for each identified student type. The other 
sections focus on each type of student, the reasons for the target EM behavior to be 
achieved through the training, and how to reach such educational objective. Section 4 
deals with undergraduate students, section 5 discusses MSc students, section 6 
focuses on SE PhD students and section 7 discusses the training for future 
experimental researchers.  Finally, section 8 presents the conclusions. 

2   Use of Empirical Methods in Different Job Profiles  

EM covers a broad field, and not all software professionals need to be equally 
acquainted with this area. A BSc student of Computing, an MSc student or a PhD 
student will put EM to different uses in their professional life. Therefore, their EM 
training should be different too.  

To establish the contents of the EM training for different student types, we have 
defined the use to which four different job profiles put EM: 

• Developers (analysts, designers, testers, etc.) have to be aware that not all software 
technologies are universally applicable and some are better than others depending 
on the context. They should learn that objective data are helpful for finding out 
more about reality, while subjective opinions can lead to mistaken perceptions of 
reality. Developers should be aware that engineering disciplines are grounded on 
objectivity.  

This job profile fits BSc in Computing or SE graduates. 
 

• Project managers should appreciate the value of objective data for making 
grounded decisions. Managers should know how to collect data from software 
projects and how to analyze it. Understanding publications that report on ES can 
help them to better evaluate technologies. Finally, software managers may find it 
useful to perform case studies to test technologies in their organization.  

We match this job profile to holders of an MSc in SE. 
 

• SE researchers should be able to understand the results of ES, as this will be of 
benefit to their own research. This knowledge can stimulate a deeper and more 
regular collaboration with Empirical SE (ESE) researchers. For instance, providing 
relevant hypotheses to be checked in ES, working with ESE researchers on 
interpreting the results, etc. 

This job profile fits holders of a PhD in SE. 
 

• For Empirical SE researchers EM are the object and material of their work. They 
perform ES to generate the SE empirical body of knowledge. Therefore they need 
to be EM experts.  

We match this job profile to holders of a PhD in SE specialized in ESE. 

3   Target Behaviors for Empirical Methods  

The goal of the teaching/learning process is to transform student behavior as a result 
of educational situations. Educational objectives are useful to describe the learning  
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Table 1. Bloom’s taxonomy of objectives 

DOMAIN CATEGORY MEANING 

Knowledge Acquisition of knowledge 

Comprehension Grasp the meaning of information 

Application Use of learned information to solve problems 

Analysis Breaking down of a whole into its component parts 

Synthesis Applying items or parts to form a new whole 

Cognitive 

Evaluation Judging something based on particular values 

Reception Awareness of the existence of certain phenomena 

Response  Active participation 

Valuing Internalization of a set of values 

Organization  Form an internally consistent value system 

Affective 

Characterization Creation of a particular lifestyle from values 

transformations to be achieved in the student. In other words, they are a statement 
specifying the expected student learning outcomes. 

To understand the appropriate training on EM for the different student types we 
have worked on educational objectives. We use Bloom’s taxonomy [2], shown in 
Table 1, as a means of more systematically formulating the learning objectives. 

Bloom’s classification makes a distinction between two domains within learning. 
The cognitive domain encompasses knowledge-related learning, whereas the affective 
domain contains the goals that describe attitudes, interests and values. 

The affective domain objectives are often left out of instruction on other computing 
subjects. But they need to be considered in EM training since it is just as important to 
produce a change in future software engineers’ attitudes and values with respect to 
empiricism as it is to convey knowledge. Therefore, it is necessary to work at the 
affective, not only at the cognitive level. 

Table 2 lists the educational objectives for EM training for the different student types 
that we have identified. Notice that the different types of student are conceived as rungs 
further up the educational ladder. Therefore, the educational objectives at a one level 
assume that the student already satisfies the educational objectives of lower levels. 

In the following sections we detail the educational objectives for each student type 
and how a course can achieve these goals. 

4   EM for Undergraduate Students 

For undergraduate students there are educational objectives in both the affective and 
cognitive domains. Affective domain objectives are critical for this type of students 
since the main goal here is to produce a change in their outlook. This change in 
today’s students should produce a shift in tomorrow’s software professionals’ 
attitudes and values towards EM.   

We should teach students that opinions and beliefs are not always true. To achieve 
this goal it is not enough to just tell them. The best way to change future software  
 



1
4

6
 

N
. Ju

risto
 

Table 2. Educational objectives for EM in SE

LEVEL DOMAIN CATEGORY MEANING

Reception Be aware that opinions and beliefs can be wrong

Response Evaluate reality based on objective dataAffective

Valuing Accept the importance of collect ing and using data

Knowledge Acquire measurement and data analysis terminology

Comprehension Interpret measurements

Undergraduate

Cognitive

Application Use data analysis techniques

Reception Be aware that own perceptions can be wrong

Response Participate in ES as subjects and compare perceptions with collected data 

Valuing Accept the importance of data for decision making
Affective

Organization Accept the role of data collection and ES in a software organization

Knowledge Acquire basic notions of EM

Comprehension Interpret ES results to understand findings

Master

Cognitive

Application Perform case studies

Affective Characterization Behave in line with the philosophy of EM

Knowledge Acquire advanced knowledge about EM

Comprehension Interpret ES and relate them to theoretical research

Application Conduct ES

PhD in SE
Cognitive

Analysis Identify the appropriate ES to be run under certain circumstances

Synthesis Plan and design ES 
PhD in ESE Cognitive

Evaluation Evaluate ES design, quality, results, etc. 
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engineers’ attitude towards EM is for them to actually experience the fact. A way to 
do this is through exercises and games. Play at analyzing situations where they can 
form a predictive opinion and show them how data contradict their beliefs. 

We set our students the following game. Imagine you are a project manager. Some 
projects have to be done within a very short time. You want to choose the more 
efficient of two programmers, Mary or Susan, to work on a project. Mary arrives at 
work early and stays till late. Susan usually arrives later than Mary and leaves before 
her. Susan spends less time at work than Mary. If you need the task to be done fast, 
who will you choose? We encourage students to discuss the situation and think 
whether they need more information to make a decision. Students tend to select Mary 
for the project.  

We then provide students with productivity data. This data set shows that Mary is 
more productive than Susan. We now discuss metrics with students. We make them 
understand that productivity rather than working time was the metric they needed to 
ground their decision. We want them to understand that data also have their risks. 

Finally, we analyze the productivity data sets using data analysis techniques. The 
result is that there is no significant difference between Mary’s and Susan’s 
productivity. We discuss at this point the utility of data analysis techniques and how 
very often just looking at the data is not enough. 

Apart from this exercise, we play other similar games with the students to work on 
the affective domain and make them value objectivity, data, metrics, analysis 
techniques, etc.  

The main cognitive content of the EM course is basic concepts of EM and data 
analysis techniques. In theory, if all faculty subscribed to an EM philosophy, a 
separate course would not be necessary, as the affective and cognitive objectives 
could be distributed across several degree subjects. Unfortunately, this is not the case 
at all computing schools. Until ESE has permeated the SE community, a course that 
covers these teaching objectives is necessary.  

In our program the students have knowledge of both statistics and SE when they 
choose this EM elective. However, there are possible variations on this scenario. For 
example, students may have no knowledge of statistics, SE or either. Table 3, shows 
alternatives for these situations. If students have no knowledge of statistics, the 
objectives related to data analysis would have to be removed. Instead of teaching by 
examples that the students themselves analyze, they would be given examples that 
have already been analyzed. Another option is for the EM course to cover the basics 
of statistics. If the students have no knowledge of SE, the examples used would have 
to be substituted for examples with which the students are familiar (using examples 
and data taken from everyday life, for instance.). 

Table 3. Variations on the EM course for undergraduate students 

 No knowledge of SE Basic knowledge of SE 

No knowledge of 
Statistics 

− Without data analysis 

− Examples from outside SE 

− Without data analysis 

− Examples from SE 

Basic knowledge of 

Statistics 

− All objectives 

− Examples from outside SE 

− All objectives 

− Examples from SE 
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5   EM for MSc Students 

Again the educational objectives for this student type build upon the affective domain. 
We go one step further in modifying students’ attitudes and values. We aim to show 
students that even their own perceptions can be wrong. Besides we want future 
software managers to make a commitment to incorporate data collection and ES in 
their organizations. 

At this level, students will benefit from participating as subjects in an experiment. 
The goal is twofold. On the one hand, they will form perceptions of the techniques 
they have been using during the experiment. Their perceptions about these techniques 
will now be based on first hand use rather than opinions or beliefs. They tend to 
believe that their own experience is more reliable than opinions. We discuss their 
perceptions in the classroom: which technique of those used during the experiment 
seems to be more efficient, for instance. Afterwards we show them the results of 
analyzing the data. Very often their perceptions do not match the objective results 
yielded by analyzing the data collected during the experiment. This exercise lays 
stress on the importance of collecting data to support decisions, rather than using 
manager perceptions. 

The second goal of participating in an experiment is to get experience on how to 
perform ES. The students do not just participate as blind subjects in the experiment, 
we teach them experimental design, analysis, etc. So they get some insight into 
organizing ES. 

The cognitive course content is basic EM concepts, data collection, types of ES, 
performance of case studies, and data analysis techniques. This content trains future 
software managers in the collection of data during software development, the 
execution of case studies, and the interpretation of publications of ES to assess their 
utility and be able to use the results. 

Note that participating in an experiment as subjects implies that they have the 
knowledge to apply the techniques used during the experiment. There are different 
ways of implementing this. One way is to do the ES outside the EM course. In this 
case, the experiment would be part of the course that teaches the topic exercised in the 
experiment. If the ES is run as part of a different course, there are two possibilities: 

• The two courses are taught one after the other. In this case, the support course (on 
which the experiment is to be conducted) should be taught before the EM course. 
The discussion of the students’ perceptions during the ES, the analysis of the data, 
etc., will be part of the EM course. 

• The two subjects are taught simultaneously. In this case, they should be scheduled 
to assure that the experiment has already been conducted by the time the discussion 
on perceptions starts and data analysis techniques are taught. 

If the experiment is run outside the EM course, there are additional benefits for the 
support course. It has been found [3] that participating as subjects in an ES during a SE 
course is well received by the students compared to other more conventional ways of 
teaching/learning (lectures, book, exam, literature study, etc.). Other benefits of student 
participation in ES are [4]: students’ attention is kept at a good level, student 
evaluation is not based en episodes, students are encouraged to develop a critical mind. 
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6   EM for PhD Students 

As Table 2 shows, we make a distinction between SE PhD students and what we have 

called ESE PhD students. The main difference is the research area of these PhD 

students. The latter are researching in ESE, and their thesis is an empirical one. This 

does not necessarily mean they are taking different PhD programs. 

We want future SE researchers to be acquainted with the need to validate research 

and the existence of methods to experimentally validate SE research. We do not 

expect to make an EM expert of every SE researcher. Our aim is for SE researchers to 

at least check the feasibility of the solutions they propose. It would be asking too 

much to expect them to perform ES to validate their ideas. In other fields (like 

physics, for instance) there are theoreticians and experimentalists. We see ESE 

researchers as the experimentalists of SE. ESE PhD students are the future ESE 

researchers.  

Although we do not expect SE PhD students to become experts in ESE, they 

should be capable of designing an experiment for their thesis. Also they should know 

how to analyze data, as well as to interpret whether or not an ES is sound and the 

implications of its results. This will give SE PhD students a good enough 

understanding of the techniques involved in ESE to be able to work side by side with 

experimenters. On the one hand, this implies being able to understand the ES 

performed, as well as the results they yield, which they might use to direct their own 

theoretical research. On the other hand, it entails taking part in running ES. 

The contents of a course on EM for SE PhD students include: an introduction to 

ESE (terminology, types of ES, etc.), design and analysis of experiments. 

The teaching methodology proposed to achieve this goal is again eminently 

practical. We want the students to do exercises applying the theory. Therefore, we 

give them a case (completed experiment) that they use to apply the theory. The 

students apply each stage of experimentation to this case. We ask the students to 

prepare a design, and discuss with them the different designs proposed, including 

ours. Then we provide the data we collected and ask the students to analyze it. We 

show and discuss the results of our analysis. 

The course contains another practical part. We ask the students to plan and design 

an experiment to test the ideas they propose in their thesis. This does not mean we 

expect the experiments to be performed. This depends on how difficult it is to get 

subjects for the ES, the type of thesis, and many other details. But the exercise of 

thinking about how this experiment should be run gives the future SE researcher some 

practice in ES that can help to close the gap between ESE and SE. 

It is important for what we have called ESE PhD students to expand their 

knowledge of more advanced areas of ESE, like, for instance, qualitative techniques, 

experiment replication, aggregation of ES results, etc. This knowledge expansion can 

be achieved by students attending courses on different ESE subjects. One possible 

scenario is a joint doctorate among several universities with ESE researchers. The 

experts on advanced ESE topics could teach courses at different universities or 

students could visit other universities to attend seminars.  
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7   Conclusions 

The goal of the teaching/learning process is to transform student behavior as a result 
of educational situations. Educational objectives are a statement specifying the 
expected student learning outcomes. In this paper we have analyzed what to teach to 
different types of students considering how a software practitioner is expected to 
behave with respect to EM in her profession. 

To do this analysis we have divided software professionals into three groups: 
developers, project managers and SE researchers. Here we propose a number of EM 
educational objectives and how they can be achieved within a course. The discussion has 
been organized around three different type of students: undergraduate, master and PhD. 

If you would like to learn more about EM courses that are being taught visit 
http://openseminar.org/ese 
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On “Landscaping” and Influence of Empirical Studies 

Frank Houdek 

Experimentation is considered to be an important element in technology transfer. 

Empirical results on new approaches should help to persuade decision makers to 

apply these approaches in their environment. But to what degree are decisions for new 

approaches driven by empirical results at all? From a subjective point of view, 

decisions for new approaches seem often to neglect empirical results at all. What are 

the reasons for this? To analyze this situation, we first have to see that there are at 

least three dimensions that affect technology selection: 

1. Point in time for selection of new approaches. Usually, industry is not waiting for 

new approaches to be suggested. Established processes are maintained and 

sometimes improved evolutionarily. The window of opportunity, i.e. the period of 

time when a company seeks for new approaches is usually comparably small. 

Often, this window opens in conjunction with improvement initiatives (e.g. a 

CMMI assessment and a follow up program to cure identified deficits). Pushing 

approaches outside that window might only help to increase awareness – 

technology adoption is bound to these windows. 

As a consequence, proposals for new approaches should be (1) available during 

that time window and (2) related to typical deficits identified during such 

assessments (to be provocative: no one cares about optimal reading techniques it 

itself, but a efficient set of technologies to improve the KPA quality management 

might be very welcome). 

2. Subjective degree of relevance. Technology adoption is driven by two main 

factors: need for change and trust that proposed technology might help (i.e. the risk 

of the particular technology is comparably low). 

3. Relevant empirical results. Let us assume that the amount of relevant empirical 

knowledge in software engineering is depicted as a world map, we would see that 

only limited areas have already been discovered yet. Many areas are still 

completely unknown. Unfortunately, there is even no such map yet and building 

such a map should be a major activity in the next year. 

However, a number of criteria to identify promising trails that should be 

followed (i.e. questions that should be taken into account) can be already 

identified. Three examples are given below: 

− Cost-Benefit trade-off analysis (not primarily looking for best technique, but for 

the cost-efficient one) 

− Robustness: Likeliness that technique survives even under project pressure 

− Required background: Can the technique be beneficial be used with, e.g. 

electrical or mechanical engineers? 
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Involving Industry Professionals in Empirical Studies 

with Students 

Letizia Jaccheri and Sandro Morasca 

Empirical studies are often carried out with students because they are viewed as 

inexpensive subjects for pilot studies. Though the literature has mostly focused on 

their external validity, we believe that there are a number of other issues that need to 

be investigated in empirical studies with students. In our past research, we have 

identified four viewpoints, each of which needs to be taken into account when 

carrying out successful empirical studies with students: researchers, teachers, 

students, and industry professionals. Each viewpoint can be seen as a stakeholder of 

an empirical study with students, with specific and possibly conflicting goals. The 

stakeholders also have risks from participating in empirical studies, which need to be 

identified and minimized. 

At any rate, the final goal of carrying out empirical studies with students is carrying 

out empirical studies in industrial organizations and establishing collaborations with 

them. It is therefore useful to involve industry professionals in empirical studies with 

students, and they should actually play all of the stakeholders’ roles. 

• Professionals as students. This is the case of industrial training or continuous 

education, and it may be the case of the participation of industrial professionals in 

university software engineering classes. This could help establish a strong 

communication channel between academia and industry by showing empirical 

software engineering may provide value added to them. 

• Professionals as customers. Professionals can play the role of the customers for the 

empirical studies with students in software engineering classes. This may not entail 

any direct or deep involvement with the empirical study itself. Showing interesting 

results may help establish a good collaboration. 

• Professionals as researchers. Empirical investigations may be at least partially 

designed and run in the context of software engineering courses by industrial 

professionals who are interested in the research results. Here, the degree of 

involvement is certainly higher than in the previous case, as is the interest in 

cooperating with academia. 

• Professionals as teachers. Professionals may be invited by academic institutions to 

share their expertise with students, for a few lessons in a class or teaching entire 

classes. In this context, professionals may be willing to carry out studies with 

students and even be the main driving force behind them. Being both teachers and 

researchers, professionals will have to find an optimal trade-off between the 

conflicting goals of either role. Carrying out empirical studies with students is a 

learning experience for professionals (as well as for professors). The experience 

that professionals and teachers gather by running empirical studies with college 

students can be used when running empirical studies with professionals in 

industrial settings.  
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Industry-Research Collaboration 

Working Group Results 

Lutz Prechelt and Laurie Williams 

During this working group, we gathered a set of guidelines for establishing and 
maintaining fruitful industry-research collaborations.  We divided these guidelines 
into the collaboration phase (awareness, contact, setup, and research, as will be 
defined) and, within each phase, to whom the guideline applied (researchers, 
practitioners, or both).  The agreed-upon deliverable from this session was for a 
subset of the group to submit a longer version of this report to IEEE Software or the 
Empirical Software Engineering journal as a set of guidelines.   

1   The Awareness Phase 

During the awareness phase, both the research and practitioner organizations learn 
about the typical constraints, expectations, and interests of the other side and reflect 
on their consequences for collaboration and on the opportunities that can arise. 

Research organization: 

• Be aware that the practitioner organization will be concerned that the research 
has a return on investment for the software process improvement (SPI). 

• Understand that business comes first. The practitioner organization cannot go 
out of their way to accommodate research. The degree to which this applies 
depends on the current pressure in the organization. 

• Understand that the research must fit with the timelines of the practitioner 
organization. Be ready when the window of opportunity opens.   

• Understand that finding a perfect project without limitations is unlikely. Trade 
scientific weaknesses for industrial realism in these studies. 

Industrial organization: 

• A collaboration with a research organization is especially well-suited for 
strategic improvement activities. Maintaining and evolving technology-based 
unique selling points in the long run usually requires such collaborations. 

• Do not expect a research organization to solve all of the most urgent problems, 
rather, expect important contributions to the solution. 

• Understand that researchers may be deeply interested in issues you deem to be 
uninteresting. Work together to determine if this disconnect of interest can be 
reconciled or if it is because the researcher is interested in a state-of-the-art 
problem which is perhaps too theoretical in current form or if the researcher is 
interested in a research topic that is unlikely to have practical value.    

• Understand that research organizations are not able to be flexible are with 
respect to manpower (because both the researcher’s time and the supply of 
graduate students may be limited) and scheduling (which may depend on 
semester and graduation rhythms). 
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• Collaborating with a research organization may provide you with an inside 
track to capable graduates-to-be. 

• Published results of studies conducted with your organization can be helpful 
for marketing and public relations. 

• Research funding is often necessary.  The academic does not have the time for 
detailed analysis, and student research assistants usually expect to be paid.    

Both: 

• Realize that one beauty of the collaboration is the sharing of perspective.  
Respect your differences in priorities and background and what the other 
accomplishes in their own field, and learn from each other.   

2   The Contact Phase 

During the contact phase, both organizations identify one another as suitable 
collaboration partners, meet representatives of the other side, and build initial trust. 

Research organization: 

• To meet potential practitioner collaboration partners, visit practitioner 
conferences, interest group meetings, and fairs. Learn about the problems they 
consider important. Give understandable presentations that relate to these 
problems. Talk about relevant related work in addition to your own.  

• Contact your former graduates to see if they are possible research partners. 

• Have practitioner-oriented information on your web pages, posted 
prominently. Usually this does not replace active partner acquisition but it can 
substantiate a first contact that was established via other channels.   

• Prepare a one-minute elevator pitch: Who are you? What research questions 
are you interested in? Why?   

• Understand the current business goals that drive a specific practitioner’s 
interest in a collaboration.  Discriminate between their urgent and important 
problems and merely interesting ones. Working on the latter will not get you 
solid, continuous support. 

• If the practitioner organization may be right but the relationship with your first 
contact person does not work out, ask that person to help identify a contact in 
that organization that is more appropriate, open, supportive, and influential.   

Industrial organization: 

• To find potential research collaboration partners, get to know the research 
groups of nearby universities. Visit them. Invite them to visit your company. 
Challenge their research approach and see whether they are open to 
collaboration. 

• Advertise specific collaboration interests at suitable scientific meetings. 

• Perform a reality check of the research organization: The researchers cannot 
know the details of your situation, but they should understand the basic 
realities, constraints, and forces of practical software development. 

• When you propose research to a research organization, try to understand how 
attractive that research is scientifically and how it could be made more so. 
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Both: 

• Collaborations in which both parties are local are generally more effective. 
Frequent, direct contact may alleviate communication problems and 
subsequent conflicts.  However, geographically-separated collaborations can 
work as well.    

• In discussing research proposals, work together on the question "What's the 
benefit for the practitioner organization?"   

3   The Setup Phase 

In this phase, representatives of both organizations identify and agree on a specific 

study that they want to pursue together and both explicitly formulate their respective 

goals and hence increase mutual trust. Further stakeholders meet, buy-in to the 

research, and get to know each other. 

Research organization: 

• Understand the current software process at the practitioner organization.  

• Plan for making the economic payoff of your research highly plausible; 

perhaps extend the study setup accordingly. 

• Unless you perform action research, carefully minimize the invasiveness of 

your study design. Explain to the practitioners where and how you reduced 

invasion, where you could not, and why. Find alternative routes together. 

• When you present the research goals and approach to practitioner 

stakeholders, tailor the presentation to their various roles, viewpoints, 

language, and level of expertise.  For each stakeholder group, clearly answer 

why they might be interested in the research or at least its results. 

• Make it clear that scientific publication is for the researcher what production is 

for the practitioner, and that scientific publication requires detail.  A 

publication strategy describing what will be published, how the data will be 

sanitized and what will be confidential should be defined early.     

• Consider accepting unattractive research content if attractive opportunities 

appear to be feasible in the future, but only if you are competent at pursuing 

the former. 

• Participants may be concerned if they feel that the study can be used for 

individual monitoring purposes. Ensuring that this is not the case may improve 

the cooperation from them.  

Industrial organization: 

• Identify a champion who will drive the study with the development team. 

• Specify how you will reserve the resources required for continuously 

supporting the research and describe the method of escalation, if needed. 

• Be ready to accept publication of information coming from within your 

organization. Make sure you clarify early what you cannot accept at all to be 

published and where sanitizing (e.g. by normalization or anonymisation) will 

be required. 
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• Obtain broad support for the research, so that the study can continue despite 
organizational change or personnel turnover. 

• Determine if any practitioners want to become co-authors of the resulting 
publications.  These practitioners should be active participants in both the 
research and the writing (as prescribed by the Vancouver Convention1 article). 

Both: 

• Consider running a pilot study first to assess risks. 

• Avoid having more than one intermediary on each side.  Stakeholders that 

actively participate in the research should be allowed to communicate as 

directly as possible. Research is just like software development in this respect. 

Direct communication is usually cheaper and always much more reliable. 

• Intellectual Property issues need to be discussed and settled, particularly if it is 
expected that a patent-able asset will be created.  The research team may need 
to sign a non-disclosure agreement.         

• Make sure there is sufficient management support on both sides. 

• Formulate your expectations for the collaboration: Research opportunities, 

active support from within the organization, permission to publish. 

• Likewise, formulate your minimum requirements for a barely acceptable 

collaboration. This may weaken your position for negotiations, but is helpful 

for building trust and is essential for long-term collaboration. 

4   The Research/Deployment Phases 

The partners execute the study, work together, build further trust, obtain results, and 
deploy new technology into other projects. 

Research organization: 

• Get to know as many stakeholders of the practitioner software process as you 

can. Build personal relationships. They are often the source of crucial insights 

and the basis for keeping up the research until a successful conclusion. 

• Have a plan for making faster progress during the practitioner organizations’ 

low-pressure periods, when the practitioners can offer better support. 

• If your research will modify the process of the practitioner organization, make 

sure you provide initial training and continuing support.   

• Treat the practitioner organization like a customer: Speak with one voice, be 

solution-oriented, gently work around idiosyncrasies. 

• Steer clear of company politics.   

• During the study, provide timely and accurate feedback, not just of 

preliminary results, but also of other observations that may be of value for the 

practitioner organization.   

• Demonstrate both the short- and long-term payoff from your research.   

                                                           
1
 Authorship: rules, rights, responsibilities and recommendation. 

http://www.jpgmonline.com/article.asp?issn=0022-
3859;year=2000;volume=46;issue=3;spage=205;epage=10;aulast=Sahu 
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• Plan to sanitize the results obtained from the research prior to publication such 
that proprietary information about the company cannot be obtained or even 
extrapolated from the publication. Allow adequate time (at least a week or 
two) for company lawyers to review publications prior to their submission. 

Industrial organization: 

• Make sure the researchers receive adequate support from your staff. 

• Students graduate, so expect researcher turnover. 

• Treat the researchers like consultants: Assume they know more about their 
field of specialty but need to be informed about the peculiarities of your 
situation. 

• During the study, provide timely and accurate feedback, regarding both the 
content of the research and your perception of the collaboration. 

• Deploy the practices that can be considered successful research into additional 
development projects.    

• Deploy the practices that can be considered successful research into additional 
development projects.    

Both: 

• Regularly review and revise your common research plan. Communicate 
problems and complaints openly. Perform risk management (analysis, 
planning, monitoring, mitigation, follow-up). 

• For long-term collaboration, always perform a short postmortem on each study 
for mutual feedback and optimization of the future research process. 
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Teaching Empirical Methods to Undergraduate  

Students Working Group Results 

Austen Rainer, Marcus Ciolkowski, Dietmar Pfahl, Barbara Kitchenham,  
Sandro Morasca, Matthias M. Müller, Guilherme H.Travassos, and Sira Vegas 

1   Introduction 

In this paper, we report the experiences of a working group who met, as part of the 

2006 Dagstuhl Seminar on Empirical Software Engineering, to discuss the teaching of 

empirical methods to undergraduate students. The nature of the discussion meant that 

the group also indirectly considered teaching empirical methods to postgraduate 

students, mainly as a contrast to understand what is appropriate to teach at 

undergraduate and postgraduate level. The paper first provides a summary of the 

respective experiences of the participants in the working group. This summary is then 

used to informally assess the progress that has been made since the previous Dagstuhl 

Seminar, held in 1992. The paper then reviews some issues that arise when teaching 

methods to undergraduate students. Finally, some recommendations for the future 

development of courses are provided. 

2   Progress Since the 1992 Dagstuhl Seminar 

Table 1 and Table 2 provide a summary of the working group participants’ 

experiences of teaching empirical methods to software engineering students on under-

graduate and post-graduate degree programmes at Universities around the world. The 

table indicates a wide range of experiences. Of particular interest is the age of the 

course. Table 1 indicates that all of the courses started sometime after the 1992 

Dagstuhl Seminar. This suggests that the empirical software engineering community 

has made progress in establishing ‘mechanisms’ for preparing the next generation of 

researchers and industry practitioners in using and interpreting the output from 

empirical methods. 
The two tables indicate that some clear differences between the courses offered on 

the different degrees, for example: 

• Between those courses that concentrate on detailed issues (e.g. statistical analysis, 

measurement, experimental design) and those courses that concentrate on more 

general issues (e.g. project management, software technology evaluation). 

• Between those courses that emphasise the development of a research focus (e.g. 
investigate a research question), and those courses that emphasise a practitioner 
focus (e.g. an investigation to aid practical decision-making). 

• Between those courses that primarily focus on empirical methods, and those 
courses that primarily focus on some aspect of software engineering (e.g. software 
design, software quality) but incorporate material on empirical methods. 
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Table 1. Summary of empirical methods courses offered on degree programmes 

University (Country) 
   Degree / course title Duration 

First 
started 

Keele University (UK)   

   MSc IT* / Professional practice 2 semesters 2002 

   MSc IT and Management / Professional practice 2 semesters 2002 

   MSc / Project 16 weeks 2003 

   BSc CS and Information Systems / SE project management 1 semester 2000 

   BSc CS / SE  1 semester 2005 

Universität Karlsruhe (Germany)   

   4th year of Diploma in Informatics / Empirical SE 1 semester 2002 

University of Calgary (Canada)   

   3rd year of BSc SE / Software Metrics 1 semester 2002 

University of Hertfordshire (UK)   

   3rd year of BSc / Empirical evaluation in SE (elective) 2 semesters 2005 

   MSc / Research methods (required) 2 semesters 2002 

Federal University of Rio de Janeiro/COPPE (Brazil)   

   DSc and Msc Systems Engineering and CS / Experimental SE 1 quarter  2001 

   DSc and Msc Systems Engineering and CS/ Advanced SE 1 quarter 2004 

Universidad Politécnica de Madrid (Spain)   

   5th year of BSc Computing / Advanced SE (elective) 1 semester 2002 

   PhD Computing / Experimentation techniques in SE (elective) 1 semester 2002 

*IT: Information Technology ; SE: Software Engineering; CS: Computer Science 

Although there are clear differences in the structure and content of the courses, there 

was general agreement about the need to encourage students to become reflective 

practitioners (cf. [1]). Participants differed, however, in what content they considered 

was required to help encourage that reflection. For example, some participants 

considered that a statistical understanding is important for reflective practice, whilst 

others believed that a broader understanding of the general nature of research and 

evidence would be important for reflective practice.  

3   Some Issues 

Various issues were identified by the participants: 

• Most students do not yet have experience of industrial software projects. 

Consequently, practical activities that encourage students to reflect (using 

empirical methods) on their own, personal software engineering may be more 

effective than activities that encourage students to reflect on software projects. 

Similarly, it may be more effective to teach empirical methods as part of a course 

that focuses on some aspect of a software project e.g. using empirical methods to 

evaluate software quality.  
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• An undergraduate course on empirical software engineering research may be very 
different in content to many other courses on BSc Computer Science and Software 
Engineering degrees (e.g. programming, computer systems and networks, formal 
systems, database) therefore undergraduate students may struggle with the unusual 
content of a course on empirical software engineering research. 

• Students are unlikely to have experience of reading and understanding academic 
journals and conference papers. The more practitioner-oriented journals (e.g. IEEE 

Software) and trade magazines (e.g. Computer Weekly) can provide suitable 
material for some courses. 

Table 2. An indication of the content of some of the empirical methods courses 

University 
 course title: Topics 

Keele University 

    SE project management: Evidence based SE, including systematic review  

 SE: Evidence based SE, including systematic review 

Universität Karlsruhe 
 Empirical SE: Empirical research methods; methodology of controlled experiments; Data 

representation, analysis and interpretation; statistical methods 

University of Calgary 
 Software metrics: Measurement theory; empirical research (e.g. types of studies, general 

guidelines); GQM 

University of Hertfordshire 
 Empirical evaluation in SE (elective): Evidence based SE; argumentation; high-level 

reflection on evidence; practical decision making 

Federal University of Rio de Janeiro/COPPE 
  Experimental SE: experimental research methods; methodology of experimental studies; 

Data representation, analysis and interpretation, statistical methods.  

   Advanced SE: Evidence Based SE including systematic review; Meta-Analysis.  

Universidad Politécnica de Madrid 
 Advanced SE (elective):  Introduction to measurement; introduction to experimentation; 

data analysis techniques 

4   Where Next? Some Recommendations 

The participants considered how we can help lecturers teach empirical methods to 

undergraduate students, and what we might learn from other disciplines in the 

teaching of empirical methods. 

Two broad approaches were considered to help lecturers teach empirical methods to 

undergraduate students: the sharing of resources through a website, and the 

development and use of textbooks that emphasis empirical evidence. 
A website was considered to be a potentially useful mechanism for sharing resources 

because it would overcome intranet obstacles, and would allow originators of materials 
to decide what to share. For the site to be successful originators of material would need 
to maintain their own material over time. Examples of resources to share include: 
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• Materials e.g. copies of lecture slides, tutorial exercises, small practical 
experiments. 

• Articles, or references to articles e.g. the course on Empirical Evaluation in 
Software Engineering at the University of Hertfordshire uses the Standish Group’s 
1994 CHAOS Report, and Jørgensen and Moløkken’s [2] and Glass’s [3] critiques 
of that CHAOS report as a basis for discussion. 

• Guidelines and standards e.g. a number of courses (some listed in Table 2; see also 
[4]) use the guidelines of Evidence Based Software Engineering. Other courses 
will use guidelines for conducting experiments, reporting statistical results etc. 

• Common terminology. The empirical software engineering research community 
does not seem to have settled on a standard (common) terminology. For example, 
the term ‘experiment’ has a range of different meanings within the community, 
from referring to a randomised, controlled trial to a ‘pseudo-experiment’ to a pilot 
study to any kind of empirical study. Consequently, there is a need for the research 
community to settle on a standard terminology, and for this terminology to be 
communicated to the next generation of researchers and research-aware software 
practitioners. 

A range of textbooks that include evidence was also identified, and distinctions where 
made between those textbooks that provide a review of the empirical work conducted in 
an area (e.g. [5]), those textbooks that concentrate on empirical research methods (e.g.  
[6-9]), those textbooks that use evidence to support the statement of laws and theories 
(e.g. [10]) and those textbooks that use empirical evidence to support 
recommendations being made about how to conduct software engineering (e.g. [10, 
11]). The later category of textbook (i.e. those that use evidence to support 
recommendations) seems to be the most lacking, and the most needed by 
undergraduate students. 

The participants briefly considered how other disciplines may contribute to the 
teaching of empirical methods to undergraduate students on computer science and 
software engineering degree programmes. Four broad examples were suggested: 

• Nursing, specifically midwifery: researchers in this field rarely have the 
opportunity to conduct controlled experiments and most often rely on observational 
field studies for their investigations. 

• Education: a degree of training is often needed for an intervention to have an affect 
(e.g. a teacher must be trained in a certain educational technique) and so the 
training effects may also affect the outcome of the study. 

• Human-computer interaction: there are some well-defined, ‘small’ experimental 
studies in human-computer interaction that could be used as examples of empirical 
studies when teaching empirical methods to undergraduate students. 

• Behavioural sciences: the behavioural sciences have a long history, and therefore 
experience, of designing studies that take account of human subjects e.g. risks to 
the validity of an experiment. In other words, the behavioural sciences can make a 
contribution to the teaching of methodological issues. 

The group also recognised, however, that one needs to be careful in borrowing from 
other disciplines, because technologies may not work outside of their original 
contexts or may need to be modified carefully in some way. 
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5   Conclusion 

The experience of these working group participants is that the teaching of empirical 
methods has progressed considerably since 1992, with a number of degree 
programmes either now offering courses specifically on empirical methods, or 
including empirical methods on related courses (e.g. software quality). At the under-
graduate level in particular, the focus of these modules should typically be on 
encouraging students to become effective reflective practitioners rather than effective 
researchers.  Subsequent postgraduate courses can then develop research skills. 
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Technology Transfer and Education  

Discussion and Summary 

Andreas Jedlitschka, Dietmar Pfahl, and Kurt Schneider 

Abstract. This is a short summary of the talks and discussions during the 

Technology Transfer and Education session. The main theses of the keynote 

presentations are summarized and a short summary of remarkable discussion 

points is presented.  

1   Overview 

The session started with four keynote presentations, two on technology transfer and 
two on education. Although it is not useful to repeat those contributions in detail, their 
basic messages are summarized and complemented with observations from the group 
work and the plenary discussions. 

2   Keynotes on Technology Transfer 

2.1   Elaine Weyuker: Mutual Learning 

In the first keynote, Elaine Weyuker pointed out that technology transfer is a way of 
educating both practitioners and academics (professors and students). Empirical 
studies within software companies are of particular value. They will be challenged by 
the complexity of real-world software development. Practitioners appreciate empirical 
results much more if they demonstrate that an innovative software engineering 
concept actually works in a real environment. Typically, practitioners will only be 
convinced of a new technology if studies provide not only a proof of concept, but also 
a proof of scalability of the concept to industrial complexity.  

However, proof of concept and scalability through empirical research is not 

sufficient to transfer a new technology into industry. Empirical studies need to be 

conducted in different types of projects, in order to show that a new concept works in 

various environments. This is also a good way to understand how a new technology 

might have to be adjusted to different environments in order to unfold its full 

potential. Empirical studies conducted in industry are an important source of learning 

for academia. The real environment cannot be emulated by laboratory experiments 

conducted with students in a university environment.   

Other important issues for successful (large-scale) technology transfer include the 

provision of tool support for a new technology and the willingness to educate 

practitioners appropriately. The latter does not refer to the writing of scientific papers 

that are presented at academic conferences, but to giving talks to practitioners using 

their language and exciting them with success stories.  
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2.2   Larry Votta: Individuals, Not Institutions Collaborate 

In the second keynote, Larry Votta stressed the point that technology transfer is based 

on collaboration between individuals, not institutions. Successful technology transfer 

can only happen when both sides, individuals from academia and industry, identify 

common goals and problems and develop a model of mutual education. Larry Votta 

sees technology transfer as a game of “give and take” for both involved parties. While 

academia has the resources to build up in-vitro laboratories that can experiment with 

new ideas and come up with prototypes and models that represent the core idea of a 

new technology without overloading it with all the necessities imposed by the 

complexities of industrial software development, practitioners can help academic 

researchers to check the validity of their models in real environments (in-vivo 

laboratories) and to adjust them to the needs of industry. 

2.3   Insights from the Plenary Discussion 

The plenary discussion following immediately after the keynotes on technology 

transfer generated insights that were shared by the group, but also raised new 

questions without being able to give converging answers.  

• Technology transfer can only be successful if the technology is mature enough, i.e., 

sufficiently tested in various contexts, scalable, and supported by tools. 

• (Academic) Researchers need to understand that their collaboration with industry is 

not about receiving money for consulting services but about the opportunity to test 

a new technology in a realistic environment.  

• For academic researchers, it is essential to know the state-of-the-art. This supports 

technology transfer, because it helps to avoid the “not-invented-here” syndrome 

and the temptation to exclusively try to sell one’s own technologies.  

• Furthermore, for academic researchers it is essential to know the state-of-the-

practice, because that helps them to speak the language of the practitioners.  

• The complete life-cycle of technology development and transfer is important, i.e., 
combining initial feasibility studies (often in vitro) with studies in industrial 
environments (in vivo). 

• In order to assist technology scouts from industry in finding new and interesting 

research results, it is essential that academia keeps their web pages related to 

technology development up-to-date and informative. 

There was also a number of issues that could not be resolved during the discussion: 

• The need of academia to frequently publish new research results nurtures the 

tendency to reduce the complexity of research problems. How can the aspiration of 

academia towards simplification and generalization be brought into congruence 

with the needs of industry to find customized solutions for complex products and 

processes? 
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• Due to the lack of opportunity and time, academic researchers tend to lack hands-

on-experience with real industrial software development. How can this threat to 

successful technology transfer be mitigated? 

• It is often difficult to make the first step: Young researchers and new research 

groups need to establish those relationships described by Votta and Weyucker. 

When empirical research results are presented to practitioners who did not yet have 

a chance to work with empirical software engineering researchers, they also need a 

path to a good relationship.  

3   Keynotes on Education 

3.1   Natalia Juristo: Teaching Empirical Study Skills 

In her keynote, Natalia Juristo reported her experience with teaching empirical 

software engineering to different groups of students, i.e., undergraduates, graduate 

students (Master level), graduate students (PhD level), and PhD students with a 

research focus on empirical software engineering. She pointed out that the main 

challenge was to identify which aspects of empirical software engineering should be 

taught to which group of students. 

Based on experience from teaching different classes at different levels at the 

Universidad Politécnica de Madrid, the following focus areas were identified per 

student group:  

• Undergraduate: 

understand data and perform data analyses for small data sets; 

• Graduate (Master level):  

 understand empirical studies; prerequisite: involvement as experimental unit in a 

previous course; 

• Graduate (PhD level; general software engineering):  

 understand and practice the design and planning of empirical studies; apply 

knowledge to empirically validate one’s own PhD research; 

• Graduate (PhD level; focused on empirical software engineering): 

 understand and practice advanced topics of empirical software engineering, e.g., 

qualitative methods, aggregation, and replication. 

It was pointed out that graduate students pursuing a Master degree need to know 

empirical methods but do not necessarily have to validate their research results by 

means of a controlled experiment. According to Natalia Juristo, teaching empirical 

methods to undergraduate students is the biggest challenge, since students on that 

level are not made aware sufficiently that software engineering is a feedback-driven 

discipline. Possible ways to overcome this difficulty is to better integrate empirical 

software engineering with the core software engineering disciplines. In order to 

stress that empirical software engineering is not a discipline but an attitude, it might 

be helpful to change the label “empirical software engineering” to “evaluation of 

software engineering technologies”. 
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3.2   Claes Wohlin: Integrated or Separate Empirical Software Engineering 

Courses 

In the second keynote, Claes Wohlin raised the question of whether empirical 

software engineering should be taught as a separate course or better be integrated with 

canonical software engineering courses. Based on his experience, he suggested that 

undergraduate students and first-year graduate students participate in studies, while 

more advanced students should actively study empirical methods, review papers that 

report on empirical studies, and conduct empirical studies. This should be done in a  

problem-based manner. Towards the end of his keynote, Claes Wohlin raised 

questions related to the teaching of empirical methods to software engineering 

students: 

• What is the best way to combine research and teaching? Can it be supported by 

involving students as experimental units, or would this conflict with the teaching 

objectives? 

• What are suitable objects of empirical studies involving students? This question 

arises in particular for case studies. Does it make sense to do case study research 

with student projects? What are the requirements that these kinds of case studies 

need to fulfill in order to be useful? 

• Can empirical studies be a starting point for technology transfer, or is there a 
potential conflict? Is there a danger that the teaching objectives are compromised if 
industry-oriented research is integrated into teaching? 

3.3   Insights from the Plenary Discussion 

The discussion triggered by both keynotes brought up several observations and 
conclusions.  

• The most important being the suggestion to develop a wide spectrum of interaction 

between universities and industry, involving students. Some universities make sure 

that graduate students do their Master or PhD related work within companies, and 

integrate empirical studies with that. This arrangement creates a setting similar to 

real-world project work, with external requirements and project management, and 

focus on products that actually are useful for local industry. A successful example 

of that kind of collaboration is Barry Boehm’s project repository of student 

projects which has been maintained for several years. 

• Frank Houdek used the metaphor of a research “world map” of empirical research 

topics and suggested to explore blank areas rather than the crowded islands (like 

reviews and inspections). 

4   Reports from the Working Groups 

Following the keynotes and discussions one working group per topic was set up:  

• Working Group 1: Industry collaborations 

• Working Group 2: Experiences in teaching empirical methods 
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The results of both working groups were presented by their respective leaders, Laurie 
Williams and Austen Reiner (in this volume), and subsequently discussed.  

The group on industry collaboration distinguished several phases of building a 
relationship between researcher and company.: 

• During the awareness phase, the contact phase, and the set-up phase, it is important 
for researchers to consider the other party’s point of view.  

• During that period, psychological issues, misunderstandings, and unrealistic 
expectations play a big role.  

Their work group summary contains a rich collection of concrete hints and 
recommendations for all phases of industry collaboration. 

The education working group raised a couple of important issues: 

• One could take advantage of general empirical methods courses without explicit 
connection to software engineering. This allows for providing many different 
examples, including non-software examples from other engineering disciplines. 

• Student internships in software organizations have proven to be effective in many 
ways; in particular, they give students a taste of real-world problems in software 
development, and they help software organizations to get in touch with potential 
future employees or research collaborators. 

• Students should be given the opportunity to conduct small experiments. When 
doing this, it is important to allow them to fail, and give them a chance to learn 
from mistakes (related to both the empirical work and the research under study – in 
case they are evaluating their own work results). 
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Empirical Software Engineering Research Roadmap 

Introduction 

Richard W. Selby 

1   Roadmap Motivation 

The gathering of leading Empirical Software Engineering researchers at Dagstuhl 
provides a unique opportunity to capture the current challenges facing the field.  Our 
gathering enables deep discussions that identify critical issues, discuss promising 
opportunities, and outline future directions.  A typical framework for organizing ideas 
and plans from thought leaders is the definition of a roadmap for a field, and the 
researchers gathered at Dagstuhl have agreed to define a roadmap for Empirical 
Software Engineering research.   

The following sections describe what we mean by a roadmap and elaborate on the 
roadmap process, uses, benefits, types, and structure.  We then introduce an example 
skeletal roadmap for Empirical Software Engineering that serves as a starting point 
for Dagstuhl working group discussions.  In the subsequent sections, we document the 
working group’s outcomes and describe the resulting overall roadmap in a final 
summary. 

2   Roadmaps Overview 

Robert Galvin, who is the former Chairman of the Board of Directors for Motorola, 
states “a ‘roadmap’ is an extended look at the future of a chosen field of inquiry 
composed from the collective knowledge and imagination of the brightest drivers of 
change in that field” [Gal98].  The optimal process for gathering and selecting the 
content of roadmaps is to include as many professionals as possible in workshop 
discussions.  This process allows all suggestions to be considered and evaluates 
objectively the consensuses that emerge.  The process should incorporate treatment for 
minority views and individual advocacies.  The following steps help illustrate the 
process: 

• Step 1: Identify goals 

• Step 2: Identify key functions supporting the goals 

• Step 3: Identify key technologies supporting the functions 

• Step 4: Identify the contribution of Empirical Software Engineering to the tech-
nologies, functions, and goals 

Roadmaps provide multifaceted uses and benefits.  Roadmaps communicate 

visions, attract resources from business and government, stimulate investigations, and 

monitor progress [Gal98].  They become the inventory of future possibilities for a 

particular field.  They facilitate interdisciplinary networking and teamed pursuit.  

Roadmap rationale and visual “white spaces” can conjure promising investigations.  
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Roadmaps typically establish directions and facilitate coordination and assessment of 

progress.  For example, science and technology roadmaps identify or set future 

directions and facilitate technology assessments.  Industry and government roadmaps 

set industry directions and coordinate execution.  Corporate roadmaps set and monitor 

directions, coordination execution, and help manage products, platforms, and 

portfolios. 
According to Galvin [Gal98], roadmaps can comprise: 

• statements of theories and trends,  

• formulation of models,  

• highlighting of linkages among and within sciences,  

• identification of discontinuities and knowledge voids, and  

• interpretation of investigations and experiments. 

Roadmaps can also include the identification of instruments, charts, and graphs 
needed to solve problems as well as potential showstopper challenges.  A roadmap’s 
structure commonly adopts an application domain centric viewpoint in order to: 

• describe the state of the art, 

• describe the state of the practice, 

• identify overall key issues and social benefits and impacts, 

• agree on a vision for the future, 

• determine criteria for achieving progress, 

• identify enabling research, 

• determine enabling technologies, and 

• build chaired working groups. 

3   Roadmaps for Empirical Software Engineering 

For an Empirical Software Engineering (ESE) roadmap, some important questions to 
ask for different application domains are as follows: 

• Economical and societal driving forces 
– Why is there a need for ESE research? 

• Objectives 
– What goals should be attained? 
– What solutions can ESE offer to the stated needs? 

• Scientific challenges 
– What are the challenges we – as scientists – are facing? 

• Technological driving forces 
– Which key technologies are expected to push development in this area? 

• Bottlenecks that hinder progress 
– What hinders the development of ESE in a specific area? 
– What are the societal, economical, and technological obstacles? 

• Future research activities 
– Which activities should be (financially) supported? 
– What are the coarse timeframes of development in the areas? 
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At Dagstuhl, our specific roadmapping approach defines the following objectives: 

• Identify important organizational “dimensions” for the ESE field 

• Define goals for each dimension 

• Identify current status for each dimension  

• Establish progress scales along each dimension from current status to goals 
including short-term, mid-term, and long-term 

To initiate discussion, we present an example roadmap for Empirical Software 
Engineering: 

Evidence Maturity

X  Observations

X  Regularities/common patterns

X  Theories

Domains/Topics

X  Analytic/Isolated

X  Constructive/isolated

X  Integrated

Maturity of Field
X  Common Terminology/Agenda

X  All know agenda

X  All accept & join

Methodol. Maturity

X  isolated techniques

X  integrated techniques

Individual/local agendas X

 

- 2012/14

- 2009/11

- 2006/08

Goals

Goals

Goals

Enabling

Research

Enabling

Research

Enabling

Research

Domains/Topics Methodol. 

Maturity

Evidence 

Maturity

Field

Maturity

Curr. Status
Isolated tech. Observations Incons. 

Terminology
Analytic/ Isolated

Mature Comm.TheoriesInt. ApproachKey Method.

 

In support of the roadmap, the above example table provides potentially additional 
detail. 
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The following sections document the working group’s outcomes and describe the 
resulting overall roadmap in a final summary. 

Reference 

[Ga198] Robert Galvin, “Science Roadmaps,” Science, Vol. 280, May 8, 1998, p. 803. 
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Roadmapping  

Working Group 1 Results 

Ross Jeffery 

1   Introduction 

The group discussion developed the chart shown in Figure 1 below. In this chart we 
show four dimensions: 

1. Industry relevance and impact 
2. Confidence of understanding 
3. Cohesiveness and maturity of the research field 
4. Rigor of research, methodological consensus and trust in the research. 

Confidence of understanding

Cohesiveness/maturity
of the field

Industry relevance and impact

Rigor/methodological
consensus/trust

Empirically-based
accepted theories

Candidate theories,
observations and beliefs

Individual/local agendas

Common terminology/
agendas

All know agenda

All accept and join

Industry shift

Wide adoption

Isolated local examples

Published objective standards

Subjective views

Isolated techniques

Integrated techniques

Regularities/common patterns

 

Fig. 1.  Kiviat-style Chart of Empirical Software Engineering Research Roadmap 

It was decided that research domain or topics of research was not one of the 

dimensions of this chart but rather an over-riding characteristic that applied to all 

instances of the chart.  This means that the chart would be instantiated for each 

research topic or domain investigated, such as domains like embedded software, 

financial systems, defence systems, automotive systems or topics like testing, 

inspections, architecture and so on.  This recognises that the current understanding 

and agreement might be at different stages of maturity for different domains or topics.  

The chart shows the standard characteristic of rigor versus relevance that has been 

explored in the past in research in the information systems community, and adds 
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aspects of confidence of understanding and maturity of the field.  It is likely that even 

these two dimensions are related to rigor and relevance. However the group did not 

explore these possible relationships.  

2   Industry Relevance and Impact 

This dimension was seen to be able to progress from isolated examples through wide 
adoption to a significant shift in industry practice.   

3   Cohesiveness and Maturity of the Field 

This dimension begins with isolated research agendas and proceeds to a point where 
the research community has all accepted the agendas and joined in the research.  The 
mid points might be described as firstly some groups having common terminology 
and agendas, followed by all in the field knowing these agendas, before finally all 
accept. 

4   Rigor, Methodological Consensus and Trust 

This dimension progresses from isolated subjective views with limited or no empirical 
support, followed by isolated techniques which have been subject to some local 
rigorous investigation and justification.  The next stage seen by the group was when 
these isolated techniques become further integrated with other groups of researchers 
and other ideas to form a set of accepted integrated research techniques.  The final 
stage is the publication of accepted research method standards which are widely used 
by the community. 

5   Confidence of Understanding 

Whereas the previous dimension concerned the rigor of the investigative method, this 
dimension concerns the belief in the understanding generated by the investigation.  
Initially we might have only candidate theories, some observations and/or beliefs 
about a phenomenon, a relationship or a technology.  At this stage we have limited 
evidence to support these.  At the other extreme we have empirically validated and 
accepted theories that explain the phenomena under consideration.  Between these3 
two end points we might have regular patterns observed or partially validated 
candidate theories. 

6   Time Stamping the Development of the Empirical Research 

Roadmap 

Table 1 shows the dimensions of Figure 1 mapped into a possible time scale.  This 
table also reveals example mechanisms proposed to achieve some of the outcomes 
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noted in the Kiviat chart. For example, it is proposed that an indirect measure of the 
field having achieved industry relevance and impact would be to have achieved a 
successful merged industry and academic conference on empirical software 
engineering by 2012.  Other entries in this table indicate the type of outcome that will 
be needed if we are to further mature the research discipline as opposed to suggested 
measures of the outcome.  An example of this is the suggested need for a mechanism 
to referee research agendas in order to have a cohesive research agenda by 2009.  

Table 1. Empirical Software Engineering Timed Research Roadmap 

2012/14 Successful, 
merged 
industry/ 
academic 
ESE
conference 

Published objective 
research standards 

Empirically 
based accepted 
theories

Accepted 
and
defined
research 
agendas

Goals

2009/11 Mechanism to
collect and validate 
techniques, 
proposed standards 

Mechanism
for
refereeing 
agendas

Goals

2006/08 Isolated
examples of 
joint
industry 
academic 
conferences 

Isolated techniques Candidate 
beliefs and 
observations

Proposed
agendas

Goals

 Industry 
relevance 
and impact 

Rigor and 
methodological
consensus

Confidence of 
understanding 

Cohesiveness,
maturity 
of the 
field
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Roadmapping  

Working Group 2 Results 

Marcus Ciolkowski and Lionel Briand 

1   Introduction 

Commonly agreed roadmaps are an indicator for mature research fields. This also 
implies that roadmaps are revised and updated on a regular basis. During the Dagstuhl 
seminar, four parallel working groups addressed this issue. This chapter summarizes 
the results of one discussion group. Instead of looking at the initial roadmap in its 
breadth, we decided to detail it in one dimension. 

2   Detailing the Roadmap 

We picked the Methodology Maturity to detail the roadmap. Methodology can be 
refined into several subdimensions, among them the mode of investigation, the type 
of data analysis, data collection procedures, and others, such as purpose (explorative, 
confirmative). The result of the working group is by no means complete or final. 

2.1   ESE Methodology Maturity Refined 

The mode of investigation concerns the type of study conducted. This can be a 
controlled experiment, quasi-experiment, case study, action research, a survey, or 
even a simulation. Thereby, controlled experiments are currently only done in 
academic settings; that is, not in the field (¬F), quasi-experiments have be executed in 
the laboratory and in the field, while all other modes of investigations have been done 
online, in field studies (F), with the exception of simulation, where this classification 
does not apply.  

Data analysis: Numerous approaches for data analysis for empirical data exist. 
This includes application of statistics or hypotheses tests, grounded theory, meta- 
analysis or systematical reviews, data mining approaches, content analysis, discourse 
analysis, or qualitative analysis. Most empirical studies today apply either statistical 
methods or data mining approaches, while few use qualitative analysis of data. 

Data Collection: Approaches for gathering data from studies include interviews, 
questionnaires, data collection / analysis tools (for code analysis; static & dynamic), 
(manual) collection/analysis of code (static), or audio/video recording. The 
application of audio or video recording is rare, as this refers to qualitative analysis. 

Today, most empirical studies combine controlled experiments with statistical test 
and some qualitative analysis, usually using data collection tools when examining 
products, or using manual data collection and analysis otherwise.  Some use 
interviews or questionnaires to address qualitative analysis in experiments or case 
studies.  In particular, we believe that we need to see a wider variety of empirical 
methods employed, and a stronger emphasis on field studies. 
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ESE Methodology Maturity

Mode of Investigation Data Analysis Data Collection

Controlled Exp. (++) (¬F)

Quasi-Exp (+) (F, ¬F)

Case Study (++) (F)

Action Research (0) (F)

Survey (+) (F)

Simulation (+) (n/a)

Statistics (++)

Grounded Theory (+)

Meta-Analysis /Syst. Rev. (+)

Data Mining (++)

Content Analysis (0)

Discourse Analysis (0)

Qualitative Analysis (+) ++

Interviews (++)

Questionnaires (++)

Collection /Analysis tools (++)

(static&dynamic)

(manual) collection/Analysis 

(++)   (static) 

Audio/video recording (0)

… (eg, purpose:

explorative, 

confirmative,…)

 

Fig. 1. ESE Methodology maturity refined. In bold: Most common combinations seen in 
studies today. (++): applied very often (+) applied in some studies; (0) only few applications. 

3   Implications for ESE Roadmap 

Implications for research can be separated into two areas: Enabling research; that is, 

research that enhances empirical capabilities, and quantitative increase; that is, more 

studies of a certain type are needed to increase our knowledge. 

3.1   Short-Term (2008) 

In the short term, the ESE community needs to improve its opportunity for empirical 
studies, in particular field studies, for example, through more contact with industry, 
more lobbying for grants, through targeted (conference) sessions on combining 
methodologies, through use of practitioner conferences and channels, or through 
improving empirical education of researchers and practitioners. 

In addition, we need to increase the number of studies in some areas; for example, 
we need to increase the number of studies that combine quantitative and qualitative 
approaches within case studies and experiments, we need to conduct more 
experiments in field (quasi-experiments), and in general, more field studies.  

That is, in the short term, enabling research is of less importance than application 
of available empirical capabilities. 

3.2   Mid-Term (2009/11) 

In the mid term, it is necessary to raise the awareness of the diversity of available 
techniques, as well as make use of more advanced empirical approaches, such as 
triangulation, concurrent combination of studies, and approaches to share and build on 
results. 

Again, enabling research as such is not the main concern in the mid-term roadmap, 
rather awareness and application of the range of available techniques. One exception is 
the approach to share and build on previous results; in this area, there are currently only 
few applicable approaches, and further research is necessary. 
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3.3   Long-Term (2012/14) 

In the long term, the challenge in ESE methodology seems to be that we need to be 
able to define a research program through sequential combination of studies; that is, 
to be able to define an optimal sequence of studies that can answer a research 
question. This includes using combination of different types of studies, such as in 
vivo/vitro, or simulation. A prerequisite for this step in methodology maturity is the 
adaptation of simulation models into empirical procedures. 
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Roadmapping  

Working Group 3 Results 

Frank Houdek 

1   Introduction 

Commonly agreed roadmaps are an indicator for mature research fields. This also 

implies that roadmaps are revised and updated on a regular basis. During the Dagstuhl 

seminar, four parallel working groups addressed this issue. This chapter summarizes 

the results of one discussion group. 

2   Identification of Maturity Indicators 

The first step on building/refining a roadmap was to identify indicators of maturity of 

the research field “empirical software engineering”. The next step was then to identify 

measures to take to achieve progress with respect to some maturity indicators (see 

Section 3). Figure 1 depicts graphically the identified maturity indicators. They are by 

no means complete or in-depth well-defined.  

The two axis “Topic/Domain Engineering” and “Topic/Domain Management” 

indicate which areas of software engineering methodology and their interplay has 

been considered by empirical investigations yet. Current studies usually put emphasis 

on investigating individual methodologies (e.g. reviews, cost estimation, design 

patterns). Today, in the engineering area, we see emphasis on studies on analytic 

techniques. There are fewer studies on constructive technologies, and it is hard to find 

studies on integrated engineering methodology sets. Similar levels of “challenge” can 

be identified in the field of management studies. There are quite some studies that 

investigate software management practices in isolated environments (e.g. cost 

estimation using space projects). There are less studies that investigate management 

techniques in multiple environments; integrated studies that consider various 

management techniques or their interplay with engineering methodologies are hard to 

find.  

The axis “Evidence/Maturity” identifies levels of knowledge that might be 

achieved over time. Initially, there is a speculative theory. Over time, this might be 

confirmed by observations; many observations – if well analyzed – may help to 

identify regularities/rules/common patterns. The ultimate goal in the area of 

evidence/maturity is a well-defined theory. A well-defined theory as explanatory 

power, i.e. it can be used to predict behavior in environments that has not yet been 

investigated before.  

The tree axis “Cohesiveness”, “Research Group Capabilities” and “Planning of 

Research Programs/Appropriateness” are field maturity indicators in the narrow 

sense. They characterize the current capabilities of the research field.  
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Topic/Domain
„Engineering“ Topic/Domain

„Management“

Integrated

Constructive

Analytic

Integrated

isolated
(wider spectrum)

isolated
(limited scope)

Evidence/
maturity

speculative theory

observations

regularities/common pattern

theory (with explanatory power),
well-established, validated

planning of 
research programs
„appropriateness“

small, immature

mid

large, mature

research group capability

ad-hoc

defined

repeatable
(consistent standard)

cohesiveness

local agenda

coherent & relevant 
terminology/agenda

all accept & join

Maturity of the field
 

Fig. 1. Dimensions of maturity 

 “Cohesiveness” characterizes the common understanding – understanding of 
terminology, relevant research questions, research methodologies, explanatory power 
of studies and so on. It ranges from local agendas, i.e. each research group identifies 
locally relevant questions and works on them, but there is no common understanding 
of relevant questions and mechanisms to work collaboratively on answering these 
questions. With local agendas, each researcher contributes bricks to a large 
construction project, but there is no shared plan or vision on the outcome of the 
construction endeavor. 

“Research Group Capabilities” characterizes the way studies are planned, 
conducted, and analyzed, ranging from ad-hoc methodology to repeatable. Repeatable 
means that similar research questions are treated with similar (commonly accepted) 
investigation techniques, the results are independent of the particular research 
responsible for the study. 

“Planning of Research Programs/Appropriateness” characterizes to which extend 
the used research program is appropriate for the question under consideration. 

3   Implications for ESE Roadmap 

For three axis (“Cohesiveness”, “Evidence/Maturity”, “Planning of Research 
Programs/Appropriateness ”) we subsequently identified some short, mid, and long 
term activities in order to improve the current state with respect the to axis.  

Figure 2 shows these activities in a matrix. Again, these findings are by no means 
complete.  
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Evidence maturity

Access to experiment protocolls
--> Review with students

synthesis papers

systematic reviews as standard

Long term

Mid Term

Short term

Appropriateness

virtual research groups

evaluation formats

intensive collaborations

Cohesiveness

Landscaping

finding coherent terminology

 

Fig. 2. Activities to improve current situation 

Identified activities with respect to “Evidence/Maturity” strongly recommend to 
strengthen the concept of assembling bricks to larger entities instead of adding new 
bricks to the pile, only.  

Conducting an appropriate study is hard. Often it requires to evaluate a certain set 
of technologies in multiple environments, under varying conditions, in different 
combinations. Especially investigating integrated topics (see axis “Topic/Domain”) 
requires large studies and thus the intense collaboration of numerous researchers. 
Virtual research groups or virtual research labs seem to be the appropriate way for 
this.  

An important element in achieving more cohesiveness is to better understand the 
current situation. There are already literally hundreds of empirical studies, each one 
contributing in some way to a big picture. But there is no such picture available. 
Drawing at least larger fragment of such a picture, i.e. landscaping the field, is a most 
relevant activity. If these landscapes become commonly accepted and every member 
of the empirical community feels to be responsible to contribute to this map of 
knowledge, this would significantly help to harmonize research agendas. 
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Roadmapping  

Working Group 4 Results 

Laurie Williams, Hakan Erdogmus, and Rick Selby 

Our group
1
 carefully considered the factors involved with the maturity of the field of 

Empirical Software Engineering (ESE).  A graphical representation of the consensus 
of the group can be found in the polar chart of Figure 1.  Each of the six axes 
represents a factor.  Milestones points in the progress of the factors are delineated on 
each axis whereby a milestone indicates that the majority of work in ESE is at that 
level.  The distances between the milestones are not drawn to scale.  By this, we mean 
that the progress to move linearly along an axis is not proportional to the amount of 
work that must take place.   

A point on each of the axes is joined via a line.  The resulting shape of these lines 
is our indication of the current state-of-the practice of ESE.  In general, the point the 
furthest away from the center of the chart indicates the ultimate goal in a mature field 
of ESE. However, due to their nature, the ultimate goal may be an interim point for 
certain families of study/domains.  Each of the factors and the milestones will be 
discussed below, beginning with Domain/Coverage and progressing clockwise around 
the polar chart.   

Domain/Coverage.  Research results are only valid in the context in which the 
research was conducted.  For this reason, we cannot assume a priori that the results of a 
study generalize beyond the specific environment in which it was conducted [1].  
Researchers become more confident in a theory when similar findings emerge in 
different contexts [1].   Initial research results generally involve an isolated study of one 
artifact.  Progression occurs with the examination of multiple artifacts in a system and 
then to multiple artifacts on a variety of systems in one domain.  This research is then 
replicated in multiple domains.  Finally, the family of empirical studies on a topic has 
been replicated in and/or ported to a comprehensive and representative set of domains.  

Evidence Maturity.  Researchers begin a line of research with a conjecture (or 
initial theory) which predicts an outcome.   Empirical analyses are conducted to 
determine if the conjecture can be supported or refuted via observations.  A set of 
analyses are then examined to extract common patterns from the results.  The ultimate 
goal is to obtain a validated theory that is predictive or causal.   

Research Methodology Maturity. We consider four general classes of techniques:  

in vitro (research conducted in a laboratory), in vivo (research conducted in a live 

setting), in virtuo (subjects interact with a simulated environment) and in silico (both 

subjects and objects are simulated).   Initial research results will likely begin with one of 

these techniques.  Ultimately, a respected empirical evaluation will contain results of an 

integration of all four of these techniques. We also consider a progression from mono-

method qualitative or quantitative techniques to multi-method, combinations of 

qualitative and quantitative techniques.  

                                                           
1 The group consisted of Hakan Erdogmus, Natalia Juristo, Marek Leszak, Sandro Morasca, 

Rick Selby, Elaine Weyuker, Laurie Williams, Claes Wohlin, Sira Vegas, Marv Zelkowitz. 
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Fig. 1. Empirical Software Engineering Roadmap by Group #4 

Impact. The ultimate goal of software engineering research is to impact the 
practice of software engineering.  As the field of ESE matures, its practices will be 
progressively integrated and accepted by researchers in the field of ESE, then by 
researchers in software engineering in general, then by researchers in computer 
scientists, and finally by researchers in the industrial fields of information technology 
and systems engineering.   

Maturity of ESE. Several artifacts must be developed and understandings must 

evolve for the field of ESE to be mature. As far as artifacts, first an agreed-upon 

glossary of terminology must be developed and approved by the community.  This 

can be spearheaded by a small working group, whose output can then be reviewed and 

commented on by the larger community. Using this common terminology, researchers 

in the community should produce and publish guidelines on ESE practices which can 

be commented on and evolved by others in the community.  A potential venue for 

developing and publishing these guidelines is a dedicated track of the Empirical 

Software Engineering journal.  Over time, these guidelines can evolve to a set of 

accepted and published standards.  The set of these standards can then be published in 

a handbook also containing the glossary of terminology.  Simultaneously, the field 

will evolve from the point that every researcher/research group has his/her/their own 

research agenda to a point where the field has a set of known research agendas and 

has strategies for jointly tackling relevant topics to produce a validated set of theories 

in a comprehensive set of domains. 
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Techniques/methods/phases. In the simplest case, research will focus on a 
particular technique in one particular development phase (e.g. inspections during the 
coding phase). Next, this technique will be studied in a variety of phases (e.g. 
requirements inspections, design inspections, code inspections, test plan inspections).  
The research could at the next step extend to a comprehensive set of techniques across 
multiple phases of development.  Ultimately, the research will involve several 
techniques and/or entire processes.      

Reference 

[1] V. R. Basili, F. Shull, and F. Lanubile, "Building Knowledge Through Families of 

Experiments," IEEE Transactions on Software Engineering, vol. 25, no. 4, 1999, pp.  

456 - 473. 
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Empirical Software Engineering Research Roadmap 

Discussion and Summary 

Richard W. Selby 

1   Roadmap Discussions 

The Dagstuhl working groups’ discussions provide many insightful perspectives and 

suggestions for defining a roadmap for Empirical Software Engineering (ESE) 

research.  This summary attempts to consolidate these ideas into an overall roadmap.  

As emphasized in the roadmapping introduction, defining a roadmap is an ongoing 

process and the resulting roadmap needs to be considered a “living document.”  New 

ideas and changing environments will continue to influence the roadmap, and 

consequently, the roadmap will need to be updated periodically to incorporate these 

new ideas and environments. 

2   Roadmap Categories, Dimensions, and Progress Indicators 

Each roadmap dimension defines one important aspect of ESE research.  The overall 

ESE roadmap consists of four categories that organize and group together nine 

different dimensions.  The ESE roadmap categories and dimensions are as follows 

with dimensions indented below categories: 

• Maturity 

• Cohesiveness of field 

• Research methodology 

• Coverage 

• Process/technique/phase 

• Problem domain 

• Artifact scale 

• Subject expertise level 

• Understanding 

• Evidence 

• Impact 

• Science/engineering 

• Industry 

Each of the nine dimensions has several “signposts” or indicators that signify 

progress along the dimension, and each dimension has a final progress indicator that 

defines the ultimate goal for the dimension.  The ordering of these progress indicators 

suggests a logical path or maturation along a dimension.  In some cases, researchers 

may pursue many steps in parallel so the definition of a strict linear ordering of steps 
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can be challenging.  The overall ESE roadmap consisting of four categories, nine 

dimensions, and numerous progress indicators is outlined as follows with progress 

indicators indented below dimensions and listed in ascending order of progress: 

• Category: Maturity 

• Dimension: Cohesiveness of field 

• Individual research plan 

• Common terminology 

• Guidelines 

• Standards 

• Common research plan 

• Handbook 

• Dimension: Research methodology 

• Subjective views 

• Isolated techniques 

• Understand technique tradeoffs 

• Integrated techniques 

• Repeatable methods 

• Objective framework, standards 

• Category: Coverage 

• Dimension: Process/technique/phase 

• Single technique/phase 

• Multiple techniques or phases 

• Multiple techniques and phases 

• Comprehensive processes, techniques, and phases 

• Dimension: Problem domain 

• Single artifact 

• Single project 

• Single domain 

• Multiple domains 

• Comprehensive domain coverage 

• Dimension: Artifact scale 

• Units/components 

• Subsystems 

• Small-scale systems 

• Large-scale systems 

• System-of-systems 

• Dimension: Subject expertise level 

• Junior expertise 

• Intermediate expertise 

• Advanced expertise 

• Category: Understanding 

• Dimension: Evidence 
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• Research conjectures 

• Supportive observations 

• Common patterns/similarities 

• Replicated results 

• Validated theories 

• Category: Impact 

• Dimension: Science/engineering 

• Subset of Empirical Software Engineering 

• Empirical Software Engineering 

• Software Engineering 

• Computer Science 

• Systems Engineering and/or Information Technology 

• Dimension: Industry 

• Isolated examples 

• Organizational adoption 

• Multi-organizational adoption 

• Industry-wide shift 

3   Roadmap Visualization 

Figure 1 displays a Kiviat-style or “spiderweb” graph of the ESE roadmap.  

Researchers can assess progress along each dimension by evaluating research 

activities and results according to each dimension’s progress indicators.  An 

overall assessment of the ESE field emerges when researchers assess all the 

dimensions simultaneously.  One such combined assessment calibrates the ESE 

field as follows: 

Dimension Current Progress Indicator 

Cohesiveness of field Individual research plan 

Research methodology Isolated techniques 

Process/technique/phase Single technique/phase 

Problem domain Single project 

Artifact scale Units/components 

Subject expertise level Junior expertise 

Evidence Supportive observations 

Science/engineering Subset of Empirical Software Engineering 

Industry Isolated examples 

Future workshops will need to update the proposed ESE roadmap and reassess 

progress. ESE continues to be a very fruitful area for rich software engineering 

research, and we look forward to continued progress in the field.  



 Empirical Software Engineering Research Roadmap Discussion and Summary 187 

:YTIRUTAM
dleiF fo ssenevisehoC

 ygolonimret nommoC
 senilediuG

 sdradnatS
 nalp hcraeser nommoC

 koobdnaH

 nalp hcraeser laudividnI

:YTIRUTAM
ygolodohteM hcraeseR

 sweiv evitcejbuS

 seuqinhcet detalosI

 sffoedart euqinhcet dnatsrednU

 seuqinhcet detargetnI

 sdohtem elbataepeR

 sdradnats ,krowemarf evitcejbO

:EGAREVOC
esahP/euqinhceT/ssecorP

 /euqinhcet elgniS
 esahp

 seuqinhcet elpitluM
 sesahp ro 

 seuqinhcet elpitluM
 sesahp dna 

 ,sessecorp evisneherpmoC
 sesahp dna ,seuqinhcet

U :EGAREVOC
niamoD melborP

 tcafitra elgniS

 tcejorp elgniS

 niamod elgniS

 sniamod elpitluM

 egarevoc niamod evisneherpmoC

:EGAREVOC
elacS tcafitrA

 stnenopmoc/stinU

 smetsysbuS

 smetsys elacs-llamS

 smetsys elacs-egraL

 smetsys-fo-smetsyS

:EGAREVOC
leveL esitrepxE tcejbuS

 esitrepxe roinuJ
 esitrepxe etaidemretnI

 esitrepxe decnavdA

:GNIDNATSREDNU
ecnedivE

 serutcejnoc hcraeseR

 snoitavresbo evitroppuS

 seitiralimis/snrettap nommoC

 stluser detacilpeR

 seiroeht detadilaV

U :TCAPMI
U gnireenignE/ecneicS

 ygolonhceT noitamrofnI

 laciripmE fo tesbuS
 gnireenignE erawtfoS

 erawtfoS laciripmE
 gnireenignE

  erawtfoS
 gnireenignE

  retupmoC
ecneicS

 ro/dna gnireenignE smetsyS
:TCAPMI

yrtsudnI

 selpmaxe detalosI

 noitpoda lanoitazinagrO

 noitpoda lanoitazinagro-itluM

 tfihs ediw-yrtsudnI

YTIRUTAM

EGAREVOC

GNIDNATSREDNUTCAPMI

yadoT

 sraeY 5+

 sraeY 01+

 

Fig. 1. Empirical Software Engineering Research Roadmap 



V. Basili et al. (Eds.): Empirical Software Engineering Issues, LNCS 4336, pp. 188 – 192, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

List of Participants 

 

Organizing Committee 

Victor Basili 
Univ. of Maryland at College Park 
Dept. of Computer Science 
Room 4111 
A.V. Williams Bldg. 
MD 20742 College Park, (USA) 
Fax: +1-301-405-3691 
E-Mail: basili@cs.umd.edu 
 
 

Dieter Rombach  
Fraunhofer Institut- Experimentelles 
Software Engineering (Fh IESE) 
Fraunhofer Platz 1 
D-67663 Kaiserslautern, (D) 
Tel: +49-631-6800-1000 
Fax: +49-631-6800-1099 
E-Mail: rombach@iese.fraunhofer.de 
 
 

Kurt Schneider 
Universität Hannover 
Institut für Praktische Informatik 
FG Software Engieering 
Welfengarten 1 
D-30167 Hannover, (D) 
Tel: +49-511-762-19666 
Fax: +49-511-762-19679 
E-Mail: kurt.schneider@inf.uni-
hannover.de 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Academic Invitees 

Lionel C. Briand 
Carleton University 
Dept. of Systems & Computer 
Engineering 
Minto CASE Buildings, Room 7082 
1125 Colonel By Drive 
ON-K1S 5B6 Ottawa, (CDN) 
Tel: +1-613-520-2600 
Fax: +1-613-520-5727 
E-Mail: briand@sce.carleton.ca 
 
 

Giovanni Cantone 
Università di Roma "Tor Vergata" 
Dept. of Informatics, Systems and 
Productioning 
DISP - Facoltà di Ingegneria 
Via del Politecnico 1 
I-00133 Roma, (I) 
Fax: +39 06 7259 7460 
E-Mail: cantone@uniroma2.it 

 

 

Jeffrey Carver 
Mississippi State University 
Dept. of Computer Science and 
Engineering 
P.O. Box 9637 
MS 39762-9627 Mississippi State, 
(USA) 
Tel: +1-662-325-0004 
Fax: +1-662-325-8997 
E-Mail: carver@cse.msstate.edu 
 
 

Marcus Ciolkowski 
TU Kaiserslautern 
FB Informatik 
Postfach 3049 

D-67653 Kaiserslautern, (D) 
Tel: +49 (631) 6800-2233 
E-Mail: ciolkows@informatik.uni-kl.de 
 
 



  List of Participants 189 

Tore Dybå 
SINTEF ICT 
S.P. Andersens vei 15B 
N-7465 Trondheim, (N) 

Tel: +47-73-59-29-47 
Fax: +47-73-59-29-77 
E-Mail: tore.dyba@sintef.no 

 
 
Hakan Erdogmus 
National Research Council 
Institute for Information Technology 

M-50 Montreal Road 
ON-K1A OR6 Ottawa, (CDN) 
E-Mail: 

Hakan.Erdogmus@nrc-cnrc.gc.ca 

 
 
Robert Glass 
Griffith University 
School of Computing & Information 
Technology 
170 Kessels Road 
Nathan 
QLD 4111 Brisbane, (AU) 
E-Mail: rlglass@acm.org 

 

 
Tracy Hall 
University of Hertfordshire 
Department of Computer Science 
College Lane 
AL10 9AB Hatfield, (GB) 
Fax: +44 1707 28 4303 
E-Mail: t.hall@herts.ac.uk 

 

 
Martin Höst 
Lund University 
Dept. of Communication Systems 
Box 118 
SE-22100 Lund, (S) 
Tel: +46-46-222 9016 
Fax: +46-46-145 823 
E-Mail: martin.host@telecom.lth.se 

 
 

Andreas Jedlitschka 
Fraunhofer Institut 
IESE - Experimentelles Software 
Engineering 
Fraunhofer-Platz 1 
D-67663 Kaiserslautern, (D) 
Tel: +49-631-6800-2260 
Fax: + 49-631-6800-1599 
E-Mail: jedlitschka@iese.fraunhofer.de 
 

 
Ross Jeffery 
National ICT Australia 
ESE 
Locked Bag 9013 
NSW 1435 Alexandria, (AU) 
Tel: +61 2 8374 5512 
Fax: +61 2 8374 5520 
E-Mail: rossj@cse.unsw.edu.au 
 
 

Natalia Juristo 
Universidad Politecnica de Madrid 
Facultad de Informática 
Campus de Montegancedo 
E-28660 Boadilla del Monte, Madrid, 
(E) 
Tel: +34 91336 6922 
Fax: +34 91336 6917 
E-Mail: natalia@fi.upm.es 
 

 

Barbara Kitchenham 
Keele University 
Dept. of Computer Science 
ST5 5BG Staffordshire, (GB) 
Tel: +44-1782 583413 
Fax: +44-1782 713082 
E-Mail: 

barbara.kitchenham@cs.keele.ac.uk 
 
 

Michael S. Mahoney 
Princeton University 
Department of History 
303 Dickinson Hall 
NJ 08544 Princeton, (USA) 
Tel: +1-609-258-4157 
Fax: +1-609-258-5326 
E-Mail: mike@princeton.edu 
 
 



190        List of Participants 

James Miller 
University of Alberta 
Electrical & Computer Engineering 
Research Dept. 
2nd Floor - ECERF - 9107 - 116 Street 
T6G 2V4 Edmonton AB, (CDN) 
Tel: +1-780-492-1181 
Fax: +1-780-492-6153 
E-Mail: jm@ee.ualberta.ca 
 
 

Sandro Morasca 
Università dell'Insubria della Cultura, 
Politiche 
Dipartimento di Scienze e 
dell'Informazione 
Via Valleggio 11 
I-22100 Como, (I) 
Tel: +39-031-238-6228 
Fax: +39-031-238-6119 
E-Mail: sandro.morasca@uninsubria.it 
 

 

Matthias Müller 
Universität Karlsruhe 
Fakultät für Informatik 
50.34 Informatik-Hauptgebäude 372 
Postfach 6980 
D-76128 Karlsruhe, (D) 
Fax: +49-721/608-7343 
E-Mail: muellerm@ira.uka.de 
 
 

Jürgen Münch 
Fraunhofer Institut 
Experimentelles Software Engineering 
(Fh IESE) 
Fraunhofer-Platz 1 
D-67663 Kaiserslautern, (D) 
Fax: + 49 631 6800 1301 
E-Mail: 

juergen.muench@iese.fraunhofer.de 
 
 

Markku Oivo 
University of Oulu 
Department of Information Processing 
Science (TOL) 
P.O. Box 3000 
FIN-90014 Oulu, (FIN) 
Tel: +358-40-822-7702 
Fax: +358-8-5531-890 
E-Mail: Markku.Oivo@oulu.fi 

Dietmar Pfahl 
University of Calgary 
Dept. of Computer Science & 
Electrical Engineering 
Schulich School of Engineering 
2500 University Drive N.W. 
T2N 1N4 Calgary, (CDN) 
Fax: +1-403-282-6855 
E-Mail: dpfahl@ucalgary.ca 
 

 
Lutz Prechelt 
Freie Universität Berlin 

FB Mathematik und Informatik 

Takustr. 9 

D-14195 Berlin, (D) 

Tel: +49-30-838-75115 

Fax: +49-30-838-75218 

E-Mail: prechelt@inf.fu-berlin.de 

 
 
Austen W. Rainer 
University of Hertfordshire 

Department of Computer Science 

College Lane 

AL10 9AB Hatfield, (GB) 

Tel: +44-1707-284-763 

Fax: +44-1707-284-303 

E-Mail: a.w.rainer@herts.ac.uk 

 
 
Carolyn Seaman 
Univ. of Maryland at Baltimore 

Country (Seaman) 

CSEE Dept. 

Room 444 

1000 Hilltop Circle 

MD 21250 Baltimore, (USA) 

Fax: +1 410 455 1073 

E-Mail: cseaman@umbc.edu 

 
 
Helen C. Sharp 
The Open University 

Mathematics & Computing Department 

MK7 6AA Milton Keynes, (GB) 

Tel: +44-1908-653638 

Fax: +44-1908-652140 

E-Mail: h.c.sharp@open.ac.uk 



  List of Participants 191 

Dag Sjøberg 
Simula Reseach Laboratory 

Software Engineering 

Martin Linges Vei 17, Fornebu 

Post Box 134 

N-1325 Lysaker (Fornebu), (N) 

Fax: +47 67 82 82 01 

E-Mail: dagsj@simula.no 
 
 

Walter F. Tichy 
Universität Karlsruhe 
Inst. für Programmstrukturen und 
Datenorganisation (IPD) 
Am Fasanengarten 5 
Postfach 6980 
D-76128 Karlsruhe, (D) 
Tel: +49-721-608-3934 
Fax: +49-721-608-7343 
E-Mail: tichy@ira.uka.de 

 
 
Guilherme Horta Travassos 
Federal University of Rio de Janeiro 
Graduate School of Engineering 
(COPPE) 
PO Box 68511 
21945-972 Rio de Janeiro, (BR) 
Tel: +55-21-2562-8712 
Fax: +55-21-2562-8676 
E-Mail: ght@cos.ufrj.br 

 
 
Sira Vegas 
Universidad Politecnica de Madrid 
Facultad de Informática 
Campus de Montegancedo 
E-28660 Madrid, (E) 
Tel: +34 91336 6929 
Fax: +34 91336 6917 
E-Mail: svegas@fi.upm.es 

 
 
Laurie Williams 
North Carolina State University 
Computer Science Department 
EB2, Room 3272 
890 Oval Drive 
NC 27695 Raleigh, (USA) 
Fax: +1-919-513-1895 
E-Mail: williams@csc.ncsu.edu 

Claes Wohlin 
Blekinge Institute of Technology 
Dept. of Systems and Software 
Engineering 
School of Engineering 
SE-37225 Ronneby, (S) 
Fax: +46-457-271-25 
E-Mail: claes.wohlin@bth.se 

 
Marvin Zelkowitz 
Univ. of Maryland at College Park 
Dept. of Computer Science 
MD 20742 College Park, (USA) 
Fax: +1-301-405-3691 
E-Mail: mvz@cs.umd.edu 

Industrial Invitees 

Frank Houdek 
DaimlerChrysler AG 

Forschung & Technik / 

Prozeßgestaltung 

Wilhelm-Runge-Str.11 

Postfach 2360 

D-89081 Ulm, (D) 

Tel: +49-731-505-2855 

Fax: +49-731-505-4218 

E-Mail: 

frank.houdek@daimlerchrysler.com 

 
 
Marek Leszak 
Lucent Technologies 
Bell Labs MNS Software Development 
Thurn-und-Taxis-Str. 10 
D-90411 Nürnberg, (D) 
Tel: +49-911-526-3382 
E-Mail: mleszak@lucent.com 

 
 
Audris Mockus 
Avaya Labs. 
SW Technology Research Dept. 
233 Mt. Airy Road 
NJ 07920 Basking Ridge, (USA) 
Tel: +1-908-696-5608 
Fax: +1-908-696-5401 
E-Mail: 

audris@research.avayalabs.com 



192        List of Participants 

Nachiappan Nagappan 
Microsoft Research 
Software Reliability Research (SRR) 
One Microsoft Way 
WA 98052-6399 Redmond, (USA) 
Fax: +1-425-936-7329 
E-Mail: nachin@microsoft.com 
 
 

Tom Ostrand 
AT&T Labs Research 
E 237 
180 Park Avenue 
NJ 07932 Florham Park, (USA) 
Tel: +1-973-360-8134 
E-Mail: ostrand@research.att.com 

 
 
Rick Selby 
Northrop Grumman Space Technology 
R4/2011B 
One Space Park 
CA 90278 Redondo Beach, (USA) 
Tel: +1-310-813-5570 
Fax: +1-310-814-4941 
E-Mail: rick.selby@ngc.com 

 
 
Lawrence G. Votta 
Sun Microsystems 
CARE; MS MPK17-119; Room 1374 
17 Network Circle 
CA 94025 Menlo Park, (USA) 
Tel: +1-425-829-2786 
Fax: +1-650-786-2328 
E-Mail: larry.votta@sun.com 

 
 
Elaine Weyuker 
AT&T Labs Research 
C213 
180 Park Avenue 
NJ 07932 Florham Park, (USA) 
Tel: +1-973-360-8645 
Fax: +1-973-360-8077 
E-Mail: weyuker@research.att.com 



Author Index

Basili, Vic 115

Basili, Victor R. 33, 68

Briand, Lionel C. 21, 58, 175

Cantone, Giovanni 128

Carver, Jeffrey 42

Ciolkowski, Marcus 20, 63, 158, 175

Dyb̊a, Tore 129

Erdogmus, Hakan 100, 181

Hall, Tracy 41
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