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Preface

Earning tenure at an academic institution and running a steeplechase
race successfully have a lot in common. Both require extensive training before
the event begins, both involve hurdles to overcome and pitfalls to avoid, and
both are grueling events that inevitably lead to a few twisted ankles or broken
marriages. Unlike the steeplechase race where there exists a single winner
(second place is considered ‘‘first loser’’), multiple winners can be found in
the tenure race, however.

Tenure decisions are often based on some institutionally defined, linear
combination of teaching, research, and service to the community. However,
not all institutions share the same values, nor do they have the same goals.
While some institutions focus mainly on teaching and others focus primarily
on research, they all share the common theme of ensuring that competent and
caring teachers are interfacing with their students.

For those colleges and universities that emphasize research in the tenure
portfolio, another common theme is that they all want their new hires to be
successful in their research endeavors. This usually means providing reduced
teaching loads for those new faculty during the first academic year, assigning
mentors to oversee new faculty teaching and/or research strategies so as to
help them avoid pitfalls that might derail an otherwise successful career,
and providing startup funding so that those new faculty members can obtain
the requisite equipment, supplies, and personnel needed to jump-start their
research careers.

One often hears, anecdotally, how much a particular institution paid in
startup funding to attract a highly regarded candidate to accept its offer in lieu
of one from a competing institution. Sometimes those funds include valuable
but inflationary content such as laboratory renovation costs, machine time
fees, repair shop costs, partial summer salaries, and so on, which, superficially,
balloon the startup costs to the point of extravagance. So, what are the startup
packages in academic laboratories nowadays, and, are those packages really as
extravagant as some are saying? Moreover, with respect to the readership of
this book series, how do computational chemists fare with respect to experi-
mentalists in this regard?
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Some of these questions can be answered with data provided by the
American Chemical Society’s Petroleum Research Fund (PRF). The PRF asks
new faculty members applying for a grant to delineate startup costs along with
other information such as space allocations, teaching loads, etc. Figures 1 and
2 contain a random selection of startup packages during the 2006–2007 aca-
demic year. These plots show the data (sorted by increasing amount) for
approximately 100 new investigators applying from universities with doctoral
programs (Figure 1) and 45 new investigators from BS and MS granting insti-
tutions (Figure 2). Note that the scales are NOT the same in these figures, with
doctoral institutions, providing significantly more research startup funds than
do primarily undergraduate institutions, as expected.

The data in these plots are for Chemistry Departments only; excluded are
data from engineering, geology, and physics departments (data for new inves-
tigators in the fields of chemical biology were not available). Parenthetically,
chemists do significantly better in terms of their startup packages than do the
people in these excluded groups, but this is a topic for another day. Also
omitted are startup packages from non-American institutions because,
frequently, one ends up comparing apples versus oranges in this regard.

The data depicted include real dollars made available for new investiga-
tors at American chemistry departments to use as they feel would be best for
their research careers. Removed from these numbers are the costs of labora-
tory renovations and other such obligatory spending by an institution,
as well as ‘‘in-kind’’ funds such as nuclear magnetic resonance (NMR) or
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Figure 1 Representative set of startup packages provided by American chemistry
departments in doctoral-granting institutions during the 2006–2007 academic year.
Black lines are for computational chemists.
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computer time, glass and machine shop time, and so on, each of which are
desirable and meant to help the new faculty member but that were removed
nonetheless because not all new faculty would think to put this kind of infor-
mation into their PRF grant application. Also removed were summer salaries,
travel monies, months of teaching assistant (TA) support, new journal costs,
and other types of support that is already earmarked by a department for a
particular use. What remains, then, is a noninflated, barebones, startup pack-
age that the new faculty member can use for what he or she thinks will best
ensure success for the research component of his or her tenure portfolio. The
data provided here, then, represents a lower bound on the level of support
given by American institutions.

While some doctoral institutions are providing startup packages in
excess of $800,000, most are giving $600,000 or less. Is this extravagant or
is this necessary? The answer to that question clearly depends on the expecta-
tions each of those institutions have for their faculty, but also on their ability
to provide those funds, especially when two or three new faculty are being
hired in the same year (many institutions spread out their startup costs over
2–3 years). Given the cost of glassware, solvents/chemicals, spectrometers,
chromatographs, and research assistantship line items, we will let you decide
if these startup packages are reasonable or extravagant.

The undergraduate/MS-level schools can, in some cases, rival some of the
doctoral program startup packages, but their packages are significantly less
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Figure 2 Representative set of startup packages provided by American chemistry
departments in BS- and MS-granting institutions during the 2006–2007 academic year.
Black lines are for computational chemists.
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than those provided by doctoral institutions in general. Some institutions pro-
vide more than $100,000, but the majority of them provide startup packages
between $20,000 and $75,000 (it is not clear if these funds are to be used
exclusively for research or if they are intended also for teaching/curriculum
development). Nonetheless, a clear gradation in research support exists for
both undergraduate and doctoral institutions alike.

What is surprising and somewhat disconcerting is that computational
chemists are given far fewer startup dollars to jumpstart their careers than is
given to experimentalists. A decade ago a Silicon Graphics workstation with
dual processors cost about $25,000, a cost that was comparable to a liquid
chromatograph. One can argue that chromatographic columns are costly
(some columns were typically $1500 each and prone to easy degradation),
as are the costs for high-purity solvents to justify more funding for the experi-
mentalist, but, that chromatograph would likely last for 10–15 years with
proper maintenance while the workstation would be outdated and in need
of replacement every 3–5 years. One might also argue that the computational
scientist could use departmental or school computing resources (if they exist)
or perhaps receive a user’s grant from a nationally funded supercomputing
center, but, that does not obviate the fact that experimentalists usually have
access to expensive department-provided resources such as NMR and mass
spectrometers. What is not arguable, however, is that the costs of hiring a
postdoctoral researcher to get any new faculty member’s research going on
a fast track is exactly the same for computational chemists as it is for experi-
mentalists at a given institution, yet it appears, on the whole, that computa-
tional scientists are being short changed in their startup packages. This is an
issue that senior computational chemists need to pay attention to and insist,
when new hires are made, that theorists be treated on the same footing as
experimentalists. The irony in all this is that a disproportionate number of
computational chemists are cited heavily in the scientific literature compared
to researchers in other disciplines. Indeed, in the preface of Volume 13 of this
book series, we carried out a thorough assessment of citation trends and
pointed out that 25% of the top-cited chemists are computational scientists,
even though computational chemists constitute only about 5% of all chemists.
Despite the shortcomings associated with less funding for computational
chemistry than for experimental chemistry, we can say that computational
chemists, as a group, are doing more than their fair share of having an impact
on science.

Because computational chemistry is so important in today’s laboratory
setting, we know that many experimentalists want to use the theories and
the associated software developed by computational scientists for their own
needs. The theoretical underpinnings and philosophical approaches used by
theorists and software developers are often buried in terse mathematics or
hidden in other ways from the view of a traditional black-box-using bench
chemist who has little time to become truly proficient as a theorist, or who
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might stumble into some theoretical pitfall that would detract from the expla-
nations of their scientific findings. Yet, those experimentalists want very much
to use computational tools to rationalize their results or, in some instances, to
make predictions about what next to do along their research trajectory.
Because of this need we started the Reviews in Computational Chemistry
book series that, in hindsight, could just as well have been called ‘‘Tutorials
in Computational Chemistry.’’

Because the emphasis of the material covered in this book series is direc-
ted toward the novice bench chemist wanting to learn about a particular
method to solve his or her problems (or for that matter, the seasoned veteran
computational chemist needing to learn a new technique with a modicum of
effort), we have again asked our authors to provide a tutorial on the topic to
be covered in that chapter. As before, they have risen to the occasion and
prepared pedagogically driven chapters with the novice in mind.

We begin this volume with a tutorial on quantum mechanical calcula-
tions of noncovalent p interactions because of their significance in directing
crystal packing, supramolecular assembly, protein folding, drug binding,
and the like. These interactions, especially p stacking of aromatic rings in
the domain of organic and biological science, have a history of being perplex-
ing to understand and difficult to assess numerically because they are generally
weak interactions and they compete with other kinds of stabilizing interac-
tions. In Chapter 1 C. David Sherrill outlines the challenges for computing
p interactions by describing the problems associated with computing those
interactions. He describes the application of robust electronic structure meth-
ods to compute p interactions reliably and reliable approximations one can
make for speeding up the calculations. Covered are electron correlation and
basis set requirements, counterpoise corrections, and additive basis/correlation
approximations. The emphasis in this tutorial is on the prototype of aromatic
p–p interactions, the benzene dimer. Many of the traps one could fall into with
modern commercially available software are uncovered and revealed for the
novice in the first part of the chapter. In the second part of the chapter the
author explains how one can reduce computational costs while still maintain-
ing a reasonable degree of accuracy. Described are truncated basis sets, Paul-
ing points, and resolution of the identity, along with spin-component-scaled
second-order Møller–Plesset (MP2) and explicitly correlated R12 and F12
methods to accelerate convergence to the complete basis set limit. Sherrill
ends the tutorial by focusing on symmetry-adapted perturbation theory to
compute the individual components of intermolecular interactions, e.g., elec-
trostatic, induction, dispersion, and exchange repulsions, so that a rational
framework can be constructed for describing the binding of even simple
systems such as the benzene–toluene sandwich complex.

Gregory S. Tschumper expands on this topic in Chapter 2 where he
describes ab initio and density functional calculations for weak, noncovalent
interactions in clusters. Following an introduction that defines the scope of the
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chapter and a historical perspective of the nature of weak interactions, the
author provides a tutorial for the novice on fundamental concepts with a sim-
ple model system consisting of cyclic hydrogen fluoride molecules (trimer,
tetramer, and pentamer). The rigid monomer approximation and supermole-
cular dissociation and interaction energies are described first, followed by a
pedagogical section on counterpoise corrections for treating basis set superpo-
sition errors. Two-body approximations and cooperative/nonadditive effects
are defined and described. Higher order cooperative effects are also described
and a many-body decomposition scheme for weakly bound clusters is
explained in detail with an application to hydrogen fluoride (HF) clusters.
Because energy is an extensive property, a pedagogical section on size consis-
tency and extensivity is provided for the reader. A section on high-accuracy
computational strategies is then presented, beginning with a primer on elec-
tron correlation and a primer on atomic orbital (AO) basis sets that includes
extrapolation methods and explicitly correlated methods. Linear scaling meth-
ods are described and a tutorial on estimating Eint in the CCSD(T) CBS (com-
plete basis set) limit is given. The author balances this with a section on less
demanding computational strategies using MP2 and density functional theory
(DFT) techniques. Other computational issues are brought to light and illu-
strated with results from calculations on water clusters. Aspects of computing
geometries and vibrational frequencies for noncovalent clusters are presented.

The theme of quantum mechanics is continued in Chapter 3 where Peter
Elliott, Filipp Furche, and Kieron Burke describe how to compute excited-state
properties using time-dependent density functional theory (TDDFT). Ground-
state DFT has become the de facto standard, especially for chemists, biologists,
and materials scientists for predicting ground-state properties of molecules,
but it cannot in its typical implementation treat electronic excitations. TDDFT
can be used to do this, and here the authors provide a state-of-the-art overview
of the method. They begin with a review of the ground state covering the
formalism, approximate functionals, and basis sets, and then introduce
time-dependent theory. Here the Runge–Gross theorem is explained, Kohn–
Sham equations described, and linear response to external fields is presented.
While formally exact, a TDDFT calculation also requires an approximation
for the exchange–correlation (XC) potential, and those approximations are
then introduced. With that background the authors describe the implementa-
tion of TDDFT and the basis sets used commonly nowadays, using as an
example the naphthalene molecule. That section is followed by one that
assesses the performance of TDDFT, using naphthalene as an example. The
authors examine the influence of the ground-state potential, the influence of
the XC kernel, the errors in potential versus kernel, and then they describe
how to understand linear response TDDFT. Also included in the chapter is
a close look at how well TDDFT performs for noble-gas atoms. The authors
then take a look beyond standard functionals by examining double excita-
tions, polymers, solids, and charge-transfer systems. The chapter ends with
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coverage of topics where TDDFT is being applied and where development
goes beyond simple extractions from linear response theory.

The theme of quantum mechanics is again continued in Chapter 4 where
Thomas Vojta provides a tutorial on quantum phase transitions. Understand-
ing and describing phase transitions is important because of their ubiquitous
nature and how they shape our world. The phase transitions that most of us
are aware of take place at nonzero temperature where, for example, the
ordered state of ice becomes less ordered water at the melting point or where
iron loses its ferromagnetic character at its Curie point to become paramag-
netic. Attention has now shifted to the study of another type of phase transi-
tion that occurs at zero temperature and is induced by nonthermal parameters
such as pressure, magnetic field strength, or even chemical composition. Thus,
at an applied magnetic field strength, of about 5 T, LiHoF4 undergoes a phase
transition from a ferromagnet to a paramagnet; one can envision the impact
that such transitions have in defining magnetic, optical, and electrical proper-
ties of materials that technologists will soon employ to make advanced pro-
ducts for consumption. The purpose of this chapter is to introduce the
theory of quantum phase transitions, showing similarities to and differences
from typical thermal transitions that most of us are more familiar with and
to point out the computational challenges presented by quantum phase transi-
tions and successful approaches used to meet those challenges. Vojta begins by
describing phase transitions and critical behavior. Landau theory, scaling, and
renormalization group theory, finite-size scaling, and quenching disorder are
then covered. Then, classical versus quantum phase transitions are described
including quantum scaling and quantum-to-classical mapping, going beyond
the Landau–Ginzburg–Wilson paradigm, and impurity quantum phase transi-
tions. There exist formidable challenges to computing quantum transitions,
which are explained clearly by the author. Also covered in this chapter are
the classical Monte Carlo (MC) approaches, including the simplest models dis-
playing quantum phase transitions—the quantum Ising model in a transverse
field, the dissipative transverse-field Ising chain, and other such methods. This
is followed by a discussion of quantum Monte Carlo approaches to the pro-
blem, including the world-line MC algorithm and the stochastic series expan-
sion algorithm. The chapter ends with a brief overview of other computational
approaches to quantum phase transitions.

We continue in the ensuing chapters with several tutorials tied together by
the theme of how to exploit and/or treat multiple length scales andmultiple time
scales in simulations. In Chapter 5 Thomas Beck introduces us to real-space and
multigrid methods used in computational chemistry. Real-space methods are
iterative numerical techniques for solving partial differential equations on grids
in coordinate space. They are used because the physical responses from many
chemical systems are restricted to localized domains in space. This is a situation
that real-space methods can exploit because the iterative updates of the desired
functions need information in only a small area near the updated point.
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A problem with this approach, however, is that the solver tends to stall due to
the long wavelength components of the errors if the iterations are performed on
only a single, fine grid. Multigrid methods overcome this problem by using
information from a range of length scales. In this tutorial Beck gives us a
few examples of where such computational methods can be used and then
introduces us to the basics of representing partial differential equations in real
space. Two of the most basic and useful equations used by computational
chemists and engineers are considered: the Poisson equation and the Schrödinger
equation. Finite-element representations, finite-difference representations, itera-
tive updates of functions, and limitations of real-space methods for a single, fine
grid are described. Multigrid methods are then introduced and explained in a
pedagogical manner. Because eigenvalue problems are more difficult to solve
than those encountered in solving the Poisson equation, a section is dedicated
to this. Thereafter, treatments for nonlinear scaling for electronic structure
calculations are described. Other nonlinear problems such as solving the
Poisson–Boltzmann and Poisson–Nernst–Planck equations are then introduced
and explained. The author provides some tips and advice about writing
multigrid solvers and then provides a literature review of applications in
chemistry, biophysics, and materials science. The chapter ends with a listing
of real-space and multigrid codes for use in the areas of electronic structure,
electrostatics, and transport, and speculation on research directions that may
be pursued in the near future.

In Chapter 6 Francesca Tavazza, Lyle E. Levine, and Anne M. Chaka
provide a tutorial on hybrid methods for atomic-level simulations that span
multiple length scales in the solid state. To examine the mechanical behavior
of materials, one needs to account for bond making/breaking, atom rearrange-
ments, or defect properties using simulation techniques on the atomistic,
nanoscale, but, one also needs to account for micro- or macroscale phenomena
such as long-range stress fields that cover hundreds of nanometers and larger.
Because one cannot yet simulate macroscopically large systems with atomic-
level resolution, the use of hybrid technologies is commonly implemented
where different length scales are simulated simultaneously in a coupled fash-
ion. The main obstacle to overcome is the development of efficient and physi-
cally correct coupling schemes. The interface between different computational
models is a region that is sometimes called the ‘‘handshake’’ region where non-
physical forces (ghost forces) can arise due to the intrinsically different inter-
action range associated with each of the computational models employed and
where, for hybrid methods that deal with dynamical processes, wave reflec-
tions can occur at artificial boundaries. In this tutorial the authors divide
the methodologies into two main classes: those dealing with coupling classical
atomistic models to continuum models and those coupling classical atomistic
models to quantum models. In the section on atomistic-continuum coupling
the authors begin with zero temperature equilibrium methods including
FEAt (finite-element coupled with atomistic modeling), the quasi-continuum
(QC) method, the coupled atomistic and discrete dislocation method, the
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atomic size finite-element method, and Green’s function boundary condition
methods. Finite-temperature equilibrium methods are then discussed including
the QC-free energy functional method, the quasi-continuum Monte Carlo
method, and others before turning to hybrid methods used to explore the
dynamical evolution of systems composed of a continuum region. These sys-
tems are usually described with finite-element methods coupled to a discrete-
described region that is usually modeled with molecular dynamics algorithms
implementing classical potentials. Domain decomposition methods, adaptive
model refinement techniques, coarse-grain molecular dynamics, and boundary
conditions methods are introduced and then described in a straightforward
manner. The second half of the tutorial involves the coupling of classically
described domains to quantum mechanically described regions. Static and
semistatic methods are described along with the first-principles Green’s func-
tion boundary condition method and the quantum atomistic static interface
method. Then the authors describe dynamics methodologies including the
coupling of length scales method, the learn-on-the-fly method, and Ogata’s
method. The authors provide examples of applications of each method as
they appear throughout the chapter. Also provided are easy to comprehend
diagrams that illustrate what is being described.

The focus shifts in Chapter 7 from materials science to biology, but the
theme remains multiscale modeling. In this chapter Alfredo E. Cárdenas and
Eric Barth present a tutorial on extending the time scale in atomically detailed
simulations. The authors begin by introducing the Verlet method and the
potential functions used in molecular dynamics (MD) simulations. They
then explain what multiple time step (MTS) methods are, and then they exam-
ine several such techniques. Cárdenas and Barth begin with the idea of split-
ting the forces that require different time steps for numerical resolution based
on a simple distance parameter, and then they describe an alternative method
of numerical integration with force splitting to deal with fast and slow com-
ponents of the forces. An assessment of limitations on the size of the time steps
allowed is presented before Langevin dynamics is introduced. Then a
MATLAB-based tutorial is presented on impulse and extrapolation MTS
methods. While MTS methodologies can extend simulation time scales some-
what, they are not useful for many applications such as examining large con-
formational changes in proteins. Accordingly, the authors introduce a different
approach to extending the time scale that involves techniques that are gener-
ally referred to as ‘‘path methods.’’ This includes transition path sampling,
maximization of the diffusive flux (MaxFlux), discrete path sampling with
the string method, and optimization of action. The latter path method
described by the authors emphasizes the stochastic difference equation in
length (SDEL). Here they use literature examples from the realm of biology
such as protein folding, B-Z DNA transitions, and the like to make their point.
An appendix containing MATLAB scripts for the tutorial is included.

The final chapter returns to the topic of materials science. In Chapter 8
Edward J. Maginn provides a historical account of atomistic simulations of

Preface xiii

www.ebook3000.com

http://www.ebook3000.org


ionic liquids, especially room temperature ionic liquids (RTILs). After defining
what RTILs are, he provides a short (pre)history of computational efforts in
this field. Then, in a didactic fashion, Maginn reviews the history of early
simulations by first introducing the potential functions used, then assessing
the limitations of those functions, and, finally, examining sampling issues asso-
ciated with simulations of this class of liquids, which differ (electrostatically)
from most traditional liquids that have been studied to date. With that back-
ground Maginn delves into more refined models for RTILs focusing on how
best to compute structures, energies, properties such as heat capacities,
Henry’s law constants, and other issues related to solubility in ionic liquids.
Of particular note, especially for novices, are the implications of slow
dynamics of RTILs when computing transport properties. Because of this
potential ‘‘road block,’’ the author presents a full section dedicated to this
topic. That section is followed by one on computing macroscopic properties
such as self-diffusivities, viscosities, electrical conductivities, and thermal con-
ductivities of ionic liquids. Compared and contrasted are equilibrium and
nonequilibrium methods used for calculating these properties. Coarse-graining
techniques and ab initio MD methods are then described. Finally, Maginn
takes the novice modeler through a tutorial on how to carry out an RTIL
simulation. This tutorial contains an ample selection of ‘‘Do’s and Don’ts’’
associated with the selection of codes one might use, the choice of force field
to implement, how to analyze the data derived from the simulations, and the
use of operating systems and parallel computing for large-scale atomistic
simulation.

Reviews in Computational Chemistry is highly rated and well received
by the scientific community at large; the reason for these accomplishments
rests firmly on the shoulders of the authors we have contacted to provide
the pedagogically driven reviews that have made this ongoing book series so
popular. To those authors we are especially grateful.

We are also glad to note that our publisher now makes our most recent
volumes available in an online form through Wiley InterScience. Please consult
the Web (http://www.interscience.wiley.com/onlinebooks) or contact referen-
ce@wiley.com for the latest information. For readers who appreciate the
permanence and convenience of bound books, these will, of course, continue.

We thank the authors of this and previous volumes for their excellent
chapters.

Kenny B. Lipkowitz
Washington

Thomas R. Cundari
Denton

February, 2008
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CHAPTER 1

Computations of Noncovalent
p Interactions

C. David Sherrill

Center for Computational Molecular Science and Technology,
School of Chemistry and Biochemistry, and College of
Computing, Georgia Institute of Technology, Atlanta, Georgia

INTRODUCTION

Noncovalent interactions govern such processes as protein folding,
supramolecular assembly, crystal packing of organics, and drug binding. After
hydrogen bonding and strong electrostatic interactions (e.g., charge–charge,
charge–dipole, and dipole–dipole), the most significant noncovalent interactions
in biological applications are probably those involving aromatic p systems.1 For
example, p–p interactions between aromatic rings help stabilize the double helix
of DNA and RNA.2 Protein structures are influenced by a variety of noncovalent
interactions including p–p,3,4 C–H/p,5 and S/p interactions6–8 between side
chains. Drugs that intercalate between base pairs in DNA and RNA are bound
largely due to p–p and cation–p interactions.9 Proteins that bind DNA or RNA
utilize such noncovalent interactions as cation–p,10,11 p–p,11 and C–H/p.12

These p interactions can be equally critical in materials chemistry applications,
including self-assembled supramolecular architectures.13,14 For example, mole-
cular wires can be formed from stacks of aromatic macrocycles.15 The binding of
small molecules to carbon nanotubes16 and attraction between graphene sheets17

are both determined by noncovalent p interactions. The crystal structure and
charge-transport properties of p-conjugated organic materials are also largely
determined by p–p interactions.18
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Because of their widespread importance to so many areas of chemistry,
biology, and materials science, noncovalent p interactions are a crucial topic of
study. Moreover, a clear understanding of such interactions is indispensable
for the rational design of new drugs and organic materials. Unfortunately,
at present, many basic properties of noncovalent interactions—particularly
those involving p systems—remain unknown.19 Experiments aimed at eluci-
dating the details of noncovalent interactions face a number of serious obsta-
cles. Often the chemical systems of greatest interest are complex ones (e.g., a
drug in the active site of a protein) where several different types of noncovalent
interactions may contribute simultaneously. Indeed, even in model systems
specifically designed to study a particular noncovalent interaction, it has often
proven challenging to separate the interaction of interest from unexpected
secondary interactions or solvent effects.20–22

Gas-phase studies of bimolecular complexes afford more control, but
these can be quite challenging. Most noncovalent interactions between
small molecules feature small binding energies (on the order of a few kilo
calories per mole or less), often meaning that very low temperatures must
be used to avoid thermal dissociation of the complex. Additionally, it is fre-
quently necessary to use mass selection techniques to ensure that the sample
contains only the complex of interest and not larger or smaller clusters.
Furthermore, the potential energy surfaces for these systems tend to be
fairly flat, meaning that the complexes may be fluxional without a well-
defined structure. If the potential surface features two or more potential
minima, conversion between them will be easy and rapid except at very
low temperatures.

Due to these experimental difficulties, there are great opportunities for
the computational chemist to answer important questions about the funda-
mental nature of noncovalent interactions and how they influence particular
chemical systems. A significant advantage of computational studies is that
one can directly study prototype systems featuring the noncovalent interaction
of interest, in the absence of competing interactions or solvation effects. Com-
putational studies of noncovalent interactions have therefore become increas-
ingly popular over the past 5 years and have led to important insights. Until
now, these studies have been rather difficult to carry out because the most
commonly used computational chemistry techniques do not give reliable
results for noncovalent interactions. It is the purpose of this review to explain
how noncovalent interactions can be computed reliably using more robust
electronic structure methods, and then to describe what approximations
appear to be valid and helpful for speeding up the computations. Our focus
is specifically on p interactions, but in terms of which techniques are appropri-
ate to use, there are not large differences between these and other noncovalent
interactions. Thus, the review on weakly interacting clusters in Tschumper23 is
directly relevant to the issues discussed here. For pedagogical reasons, we have
retained some overlap in the topics discussed in the two reviews.

2 Computations of Noncovalent p Interactions



CHALLENGES FOR COMPUTING p INTERACTIONS

Many chemical problems can be addressed easily and reliably using
Hartree–Fock molecular orbital theory or Kohn–Sham density functional
theory with modest-sized basis sets. Unfortunately, p interactions, and non-
covalent interactions in general, are not among them. In this section we con-
sider the electron correlation and basis set requirements for computations of p
interactions.

To illustrate the difficulties in finding a suitable theoretical method for
the reliable computation of p interactions, let us consider the simplest possible
prototype of aromatic p–p interactions, the benzene dimer. Despite a large
number of theoretical24–28 and experimental studies,26,29–36 a clear picture
of the the geometrical preferences and binding energy of the benzene dimer
was not available until high-level theoretical studies were conducted by Tsu-
zuki’s group37 and our group38 in 2002 using a combination of coupled-
cluster theory and large-basis second-order Møller–Plesset (MP2) perturbation
theory computations. Figure 1 shows the three most commonly studied geome-
trical configurations of the benzene dimer.

Electron Correlation Problem

One of the primary challenges for computing p interactions is that differ-
ent theoretical methods can give quite different results. This is illustrated in
Figure 2, which shows potential energy curves for the sandwich benzene dimer
when the distance between the rings is systematically varied; the monomers are
frozen at the recommended geometry of Gauss and Stanton.39 Figure 2 com-
pares the results from restricted Hartree–Fock (RHF), the very popular B3LYP
hybrid density functional method,40,41 MP2 perturbation theory [also referred
to as many-body perturbation theory through second order, or MBPT(2)],
coupled-cluster theory with single and double substitutions (CCSD),42 and
coupled-cluster through perturbative triple substitutions, CCSD(T),43 all using

R1

R2

RR

CBA

Figure 1 Three most commonly studied configurations of the benzene dimer: the
sandwich (A), T-shaped (B), and parallel-displaced (C) configurations.
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Dunning’s augmented correlation-consistent valence double-� basis set, aug-
cc-pVDZ.44 Of these approaches, CCSD(T) is considered the most sophisti-
cated and reliable.

As one can see, none of the other methods provide a good approximation
to the most complete treatment of electron correlation, CCSD(T). Particularly
disappointing is the performance of Hartree–Fock and B3LYP, which are not
even qualitatively correct for this problem. MP2 and even CCSD become good
approximations only at large intermolecular separations. Clearly, the choice of
theoretical method is of great importance in computational studies of p inter-
actions, and to achieve good reliability, it would appear that of the methods
considered, only CCSD(T) is adequate. This is unfortunate, given that CCSD
(T) is very expensive computationally, scaling as OðN7Þ, where N is propor-
tional to the size of the system. Fortunately, however, it is possible to use the
CCSD(T) results as benchmarks in a search for less expensive yet still reliable
computational approaches, as we discuss later.

Given the large discrepancies between the theoretical methods consid-
ered, one might ask whether CCSD(T) itself is adequate for highly accurate
computations of p interactions. Although Figure 2 does not prove convergence
with respect to the treatment of electron correlation, there are two good
reasons to consider the CCSD(T) results to be very close to exact for a given
basis set. First, a great deal of experience with large-basis-set CCSD(T) com-
putations demonstrates their excellent agreement with experiment for proper-
ties such as geometries and vibrational frequencies.45 Although diradicals,
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Figure 2 Interaction energy for the sandwich benzene dimer as a function of the
intermolecular distance using various methods and the aug-cc-pVDZ basis, with the
rigid monomer geometries of Ref. 39. Energies not counterpoise corrected.
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transition metals, and unimolecular bond-breaking reactions can cause diffi-
culties for CCSD(T) due to the presence of electronic near degeneracies,46

such issues are not a concern for typical noncovalent interactions. Second, a
study by Hopkins and Tschumper47 indicates that quadruple substitutions
make only small contributions to the interaction energies of small van der
Waals complexes (perhaps about 5% or less).

Basis Set Problem

Compounding the difficulty of accounting for electron correlation effects
properly, accurate computations of noncovalent interactions also require very
large basis sets. This is not surprising because London dispersion interactions
can be expressed in terms of the polarizabilities of the weakly interacting
molecules, and polarizability computations are known to have large basis
set requirements. In many weakly bound complexes, the dispersion terms
can be the dominant ones.

Figure 3 again considers the potential energy curve for the sandwich ben-
zene dimer, this time fixing the theoretical method to MP2 and varying the
basis set. We consider Dunning’s augmented, correlation-consistent basis
sets44 from double-� through quadruple-� (i.e., aug-cc-pVDZ, aug-cc-pVTZ,
and aug-cc-pVQZ). These basis sets are the most commonly used for accurate
computations of noncovalent interactions because they have been designed to
converge smoothly to the complete (infinite) basis set limit. Note that these are
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Figure 3 Interaction energy for the sandwich benzene dimer as a function of the
intermolecular distance using the MP2 method and various basis sets, with and without
counterpoise (CP) correction, using the rigid monomer geometries of Ref. 39.
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the augmented correlation-consistent basis sets. The aug- prefix denotes that a
set of diffuse functions has been added for every angular momentum present in
the basis set. This makes the aug-cc-pVXZ basis sets truly enormous for large-
basis-set cardinal numbers X. For example, the cc-pVQZ basis set for carbon
contains 5 (contracted) s functions, 4 sets of p functions, 3 sets of d functions,
2 sets of f functions, and a set of g functions, for a total of 55 functions. The
augmented version, aug-cc-pVQZ, adds a single set of diffuse s, p, d, f, and
even g functions, or an additional 25 functions, to yield a total of 80 con-
tracted basis functions for a single carbon atom! Note that our counting of
basis functions assumed so-called pure angular momentum or spherical har-
monic functions (somewhat misnamed because they are not actually complex
functions), meaning that there are 5 d functions, 7 f functions, 9 g functions,
etc. We note for the sake of pedagogy that some programs default to using
these pure angular momentum functions, while others default to using Carte-
sian functions — e.g., 6 d functions, x2, y2, z2, xy, xz, and yz. It is important to
know whether Cartesian functions or pure angular momentum functions are
being used and to be aware of this when attempting to compare your results to
published results or to results from other programs that might have different
defaults.

The aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ basis sets thus
contain 384, 828, and 1512 contracted Gaussian functions, respectively,
for the benzene dimer. Straightforward application of the MP2 method
with these basis sets to the sandwich benzene dimer yields the dotted curves
in Figure 3. Compared to the largest and most complete basis set, aug-cc-
pVQZ, the aug-cc-pVDZ basis greatly overestimates the binding energy
near equilibrium (by more than 2 kcal mol�1, or 50%). Improving the basis
from aug-cc-pVDZ to aug-cc-pVTZ yields results much closer to the aug-cc-
pVQZ values, but the binding energy remains overestimated by 0.7 kcal
mol�1. Given the huge differences between MP2 energies with these basis
sets, Figure 3 gives us no confidence that even the enormous aug-cc-pVQZ
basis has yet reached the complete basis set (CBS) limit.

Basis Set Superposition Errors and the Counterpoise
Correction

The reason that the MP2/aug-cc-pVXZ results approach the MP2/CBS
limit from below is that weakly bound complexes feature large basis set super-
position errors (BSSEs). A tutorial on BSSEs, in theory and in practice, was
presented earlier in this book series.48 Qualitatively, each molecule in the com-
plex desires more basis functions to describe electron correlation effects more
accurately. Each molecule can gain access to more basis functions, and can
thus be stabilized, by moving closer to another molecule. This creates an arti-
ficial stabilization that lowers the energy when the molecules come closer
together—simply because the electrons around each molecule can be stabilized
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by partially occupying the other molecule’s basis functions. The counterpoise
(CP) correction of Boys and Bernardi49,50 is a technique to remove this kind of
basis set superposition error, and it is widely employed in studies of weakly
interacting complexes. In the absence of the CP correction, interaction energies
such as those in Figure 3 can be computed by simply subtracting the sum of the
monomer energies from the dimer energy. For a dimer, the CP correction is
determined by evaluating the energy of each monomer in the dimer basis:
that is, a monomer’s energy is evaluated using all the basis functions of that
monomer and the basis functions of the other monomer of the dimer. When
one wishes to include basis functions at a particular point in space, but with-
out the associated nuclear charge and electrons, this is called using a ghost
atom. Most electronic structure programs have the ability to use ghost atoms
to facilitate CP correction computations. The difference between a monomer’s
energy in isolation and the monomer’s energy in the presence of the ghost
functions of the other monomer constitutes the CP correction for that mono-
mer. Of course, one must evaluate the CP correction for each monomer in a
dimer (unless the monomers are symmetry equivalent, in which case only one
computation is required because the other monomer would give the same
results, and so the correction could be multiplied by 2).

It is helpful to look at some simple equations to see exactly how the CP
correction is applied. We may write the interaction energy of a bimolecular
complex consisting of molecules A and B as

Eint ¼ EAB
AB � EA

A � EB
B ½1�

where EAB
AB represents the energy of the bimolecular complex (subscript AB)

using its usual basis set (the union of the basis sets on A and B, denoted by
superscript AB), and EA

A and EB
B represent the energies of the isolated molecules

A and B using their own usual molecular basis sets. The degree of ‘‘artificial’’
stabilization, or CP error, that molecule A experiences due to the presence of
the basis functions of molecule B present in the dimer computation is

ECP err
A ¼ EAB

A � EA
A ½2�

Of course, a similar equation holds for molecule B:

ECP err
B ¼ EAB

B � EB
B ½3�

If one then subtracts the total CP error, ECP err
A þ ECP err

B , from the equation for
the interaction energy, Eint, in Eq. [1], one obtains an equation for the CP-
corrected interaction energy:

ECP corr
int ¼ EAB

AB � EAB
A � EAB

B ½4�
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Notice that the individual molecular energies, EA
A and EB

B, have canceled out.
Thus the CP-corrected interaction energies do not require the energies of the
isolated monomers, but only the energies of the monomers in the composite
basis of the bimolecular complex (evaluated using ghost atoms). One downside
of this CP correction scheme is that the ghost atom computations required to
determine EAB

A and EAB
B must be performed at every bimolecular geometry of

interest (because the positions of the ghost functions depend on the geometry of
the complex). Another downside is that one may lose symmetry (and therefore
increase computational cost) in dimer computations if one of the monomers is
replaced by ghost atoms; a ghost atom is never symmetry equivalent with a real
atom. For the benzene dimer, the symmetry of the sandwich configuration is
D6h, and most programs will use the highest nondegenerate subgroup of this,
which is D2h. In a CP computation, however, the symmetry is lowered to C6v

(with a highest nondegenerate computational subgroup of C2v). Possibly offset-
ting this increase in computational cost due to loss of symmetry, however, is
the fact that the ghost atom computations involve fewer electrons.

Situations exist where the CP correction ‘‘overcorrects,’’ leading to
answers that are even worse than the uncorrected values, particularly for smal-
ler basis sets.51,52 One can understand overcorrection by realizing that not all
of the basis functions of molecule B are available to molecule A in the dimer—
some of molecule B’s basis functions are already occupied by electrons from
molecule B itself. One situation where this overcorrection occurs is for hydro-
gen-bonded complexes.53 On the other hand, our own experience for p com-
plexes indicates that the CP correction gives greatly superior results. The solid
curves in Figure 3 are the CP-corrected MP2/aug-cc-pVXZ curves. One imme-
diately notices a great reduction in the gaps between the various (CP-corrected)
curves as the basis is improved from double to triple to quadruple-�. Indeed,
the difference between the aug-cc-pVTZ and aug-cc-pVQZ curves is small (a
few tenths of 1 kcal mol�1). The CBS curve will lie somewhere between the
solid (CP-corrected) and dashed (uncorrected) aug-cc-pVQZ curves, but based
on the convergence behavior seen in Figure 3 (and on even more elaborate
computations performed by our group), it lies much closer to the CP-corrected
curve. Our experience so far indicates that the CP correction is generally help-
ful for p interactions, although it is possible that in some situations it may lead
to overcorrection as it does for H-bonded complexes.

Although we are concerned primarily with computations of bimolecular
complexes in this review, it is worth mentioning how the CP correction scheme
can be extended to trimers or larger clusters. For a trimeric system, the CP-
corrected interaction energy may be written as

ECP corr
int;ABC ¼ EABC

ABC � EABC
A � EABC

B � EABC
C ½5�

where now the superscript ABC denotes computations using the trimer basis.
It is convenient to decompose such interaction energies in terms of their
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two-body components (the interaction due to pairs within the trimer) and the
three-body component (the nonadditive part of the trimer energy not due to
pairwise interactions). Hankins et al.54 define many-body interactions in terms
of lower order interaction energies. The two-body interactions would be
defined as

�2ECP corr
int;AB ¼ EABC

AB � EABC
A � EABC

B ½6�
�2ECP corr

int;AC ¼ EABC
AC � EABC

A � EABC
C ½7�

�2ECP corr
int;BC ¼ EABC

BC � EABC
B � EABC

C ½8�

The total interaction energy is then written as a sum of these two-body inter-
action energies plus a three-body interaction energy:

ECP corr
int;ABC ¼ �2ECP corr

int;AB þ�2ECP corr
int;AC þ�2ECP corr

int;BC þ�3ECP corr
int;ABC ½9�

The total interaction energy can be computed according to Eq. [5] so that the
three-body term can be obtained by subtraction:

�3ECP corr
int;ABC ¼ ECP corr

int;ABC ��2ECP corr
int;AB ��2ECP corr

int;AC ��2ECP corr
int;BC ½10�

This scheme can be extended to tetramers and larger clusters.
We have ignored the possibility that the monomer geometries change

when in the presence of other molecules in our discussion of the CP correction.
In most studies of p interactions in our group to date, such geometry changes
are very small, leading us to freeze the monomer geometries to simplify the
computations. However, if the monomer geometries do change appreciably
in the cluster, this rigid monomer approximation is no longer valid, and a
full geometry optimization would be appropriate. Doing this can be proble-
matic because most programs do not allow for full geometry optimization
while using the CP correction. Moreover, there is some ambiguity in the
appropriate generalization of the CP equations above to allow for relaxation
of monomer geometries in the complex.55

Additive Basis/Correlation Approximations

At this stage, we face a dilemma because we have seen that both electron
correlation and basis set effects are important for computing accurately p inter-
actions. Unfortunately, at the time of this writing (2008), it is not possible to
perform CCSD(T) computations using basis sets much larger than aug-cc-
pVDZ for systems as large as the benzene dimer without resorting to massively
parallel software running on large computer clusters. Fortunately, however, we
can mimic large basis set CCSD(T) results using a relatively simple additive
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scheme combining modest basis CCSD(T) with large basis MP2. This approach
takes advantage of the fact that higher order correlation effects are more rapidly
convergent with respect to basis set than are lower order correlation effects. This
fact has been exploited in a number of composite computation schemes includ-
ing the Gaussian-n56,57 and Weizmann-n58 thermochemical methods, and it
underpins Allen’s focal-point analysis.59,60

For our purposes, the approximation we need is

Elarge-basis
CCSDðTÞ � Elarge-basis

MP2 þ Esmall-basis
CCSDðTÞ � Esmall-basis

MP2 ½11�

This approximation can be viewed in two equivalent ways. First,
Esmall-basis
CCSDðTÞ � Esmall-basis

MP2 can be considered a ‘‘coupled-cluster correction,’’
�CCSD(T), which corrects the large basis MP2 results for higher order corre-
lation effects. Second, one could consider Elarge-basis

MP2 � Esmall-basis
MP2 as a basis set

extension correction that can be added to correct the small-basis CCSD(T)
results. We will adopt the first viewpoint here. As demonstrated by Table 1,
the coupled-cluster correction �CCSD(T) is insensitive to the basis set used,
so long as a basis of approximately aug-cc-pVDZ quality is used.61 For exam-
ple, the difference between the aug-cc-pVDZ and truncated aug-cc-pVTZ
basis is no more than 0.03 kcal mol�1 for the three benzene dimer configura-
tions considered. Neglect of diffuse functions can seriously degrade the effec-
tiveness of the approximation, however, causing discrepancies in �CCSD(T)
as large as 0.7 kcal mol�1 (parallel displaced configuration with the cc-pVDZ
basis). Recent work by Janowski and Pulay62 using parallel algorithms to per-
form explicit (and very costly) QCISD(T)/aug-cc-pVTZ computations for the
benzene dimer suggests that the higher order correlation correction is not
quite converged when computed with the aug-cc-pVDZ basis (errors around
0.1 kcal mol�1). However, this level of error is probably acceptable in most
applications. Moreover, it is possible that the �CCSD(T) correction may
be somewhat less sensitive to basis set improvements than the �QCISD(T)
correction evaluated by Janowski and Pulay.62

Table 1 Estimates of ‘‘Coupled-Cluster Correction,’’ �CCSD(T) (in kcal mol�1) for
various Configurations of the Benzene Dimera

Basis S T PD

cc-pVDZb 1.29 0.71 1.43
cc-pVTZb 1.59 0.83 1.79
aug-cc-pVDZ*c 1.84 0.91 2.18
aug-cc-pVDZ 1.83 0.89 2.18
aug-cc-pVTZ(-f/-d)d 1.83 0.92 2.21

aAt the MP2/aug-cc-pVTZ optimized intermonomer distances (Ref. 38) and using the best
estimates of the monomer geometry (C��C ¼ 1:3915; C��H ¼ 1:0800Å, Ref. 39).

bRef. 37.
cThis is an aug-cc-pVDZ basis for carbon and a cc-pVDZ basis for hydrogen.
dThis is an aug-cc-pVTZ basis minus f functions on carbon and d functions on hydrogen.
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Using CCSD(T) with a basis of roughly aug-cc-pVDZ quality or better,
in combination with MP2 computations using aug-cc-pVTZ or aug-cc-pVQZ
basis sets, should thus yield interaction energies (intermolecular binding ener-
gies relative to separated molecules) accurate to a few tenths of 1 kcal mol�1

for noncovalent p interactions between two small molecules. As indicated by
Figures 2 and 3 (see also Table 2), intermolecular distances are not very sen-
sitive to improvements in the basis set (changes of around 0.1 Å or less) and
are only mildly sensitive to improvements in electron correlation model
(around 0.1–0.2 Å). This means that the additive MP2/CCSD(T) scheme dis-
cussed here can provide very reliable results for small prototype systems mod-
eling various kinds of noncovalent p interactions, opening up a large number
of possible applications. This procedure has been widely used in recent years
by several groups to publish high-quality results for many interesting systems.

REDUCING COMPUTATIONAL COST

The additive scheme described above in which electron correlation
effects beyond MP2 can be captured very accurately using a smaller basis
set to yield a �CCSD(T) correction greatly reduces the computational cost
relative to a large-basis CCSD(T) computation. Nevertheless, the computa-
tional costs remain high. Using an aug-cc-pVQZ basis, or even an aug-cc-
pVTZ basis, for the MP2 computation can be computationally expensive
except for the smallest molecules (recall that the augmented functions make
these basis sets much larger than the unaugmented ones). Additionally, even

Table 2 Benzene Dimer Intermolecular Distances (in Å)a

PD

Method Basis S T R1 R2

MP2 aug-cc-pVDZ0 3.9 5.0 3.5 1.6
aug-cc-pVDZ*b 3.8 5.0 3.4 1.6
aug-cc-pVDZ 3.7 4.9 3.4 1.6
aug-cc-pVTZ 3.7 4.9 3.4 1.6
aug-cc-pVQZ*c 3.7 4.9 3.4 1.6
aug-cc-pVQZd 3.7 4.9 — —

CCSD(T) aug-cc-pVDZ*b 4.0 5.1 3.6 1.8
aug-cc-pVDZd 4.0 5.1 3.6 1.8

estd. CCSD(T)/aug-cc-pVQZ* 3.9 5.0 3.6 1.6
Expte 4.96

aAll intermonomer parameters obtained using rigidmonomers (C��C ¼ 1:3915; C��H ¼ 1:0800Å;
Ref. 39). Data from Ref. 61 except as noted.

bThis is aug-cc-pVDZ for carbon and cc-pVDZ for hydrogen.
cThis is aug-cc-pVQZ less g functions for carbon and less f functions for hydrogen.
dRef. 66.
eRef. 35.
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the aug-cc-pVDZ basis is large enough to make CCSD(T) computations very
expensive for molecules the size of the benzene dimer or larger—particularly if
they lack any symmetry. For example, in 2008, a CCSD(T)/aug-cc-pVDZ
computation on benzene dimer with no symmetry takes approximately
2 weeks on a 3.2-GHz Intel EM64T Nocona workstation. For routine appli-
cations, then, computational studies require a less expensive procedure. In the
following several sections, we will examine several possible approximations,
all with the aim of maintaining a fairly high reliability in the computational
results.

Truncated Basis Sets

One possible computational shortcut is to reduce the size of the basis
sets used by throwing out certain functions. With respect to the correlation-
consistent family of basis sets, this runs counter to the philosophy used in con-
structing the basis sets, where functions of similar energetic importance are
added together in shells as the size of the basis is increased.44,63 This may
also degrade the smooth convergence toward the complete basis set limit
and make it harder to perform basis set extrapolation. However, these con-
cerns are more important for benchmark-quality studies than for routine che-
mical applications. We have examined the possible elimination of some groups
of diffuse functions in studies of p interactions,61,64 and a study by Wilson’s
group65 indicates that some higher angular momentum functions can be
removed from the (nonaugmented) cc-pVXZ basis sets without serious degra-
dation of the total energies of several isolated small molecules.

In earlier studies of the potential energy curves of prototype configura-
tions of the benzene dimer,61 because we desired many points along the curve,
we found it necessary to use basis set truncations to make the computations
feasible (these computations were performed again later66 without the basis
set truncations). We originally used a truncated aug-cc-pVDZ basis, which
we denoted aug-cc-pVDZ*, for the CCSD(T) computations, speeding them
up significantly. This is the usual aug-cc-pVDZ basis, except that diffuse func-
tions from hydrogen atoms were removed. For our symmetry-adapted pertur-
bation theory (SAPT) computations,67 an even smaller basis set was used that
also deleted diffuse d functions from carbon; we denoted this basis set aug-cc-
pVDZ0. The quadruple-� MP2 computations were sped up significantly by
another basis set truncation. Instead of using the full aug-cc-pVQZ basis set
(with an enormous 1512 basis functions for the benzene dimer), we removed
g functions for carbon and f functions for hydrogen, yielding a basis we
denoted aug-cc-pVQZ*.

Any time such approximations are used, it is important to evaluate the
consequences of the basis set truncation on the quality of the results. Table 2
presents optimized intermolecular distances for the configurations of the ben-
zene dimer depicted in Figure 1 using the monomer geometries of Gauss and
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Stanton. Table 3 presents the corresponding interaction energies. Tables 2 and 3
contain some comparisons of these truncated basis sets against the correspond-
ing full basis sets. Examining MP2 geometries using the aug-cc-pVDZ basis or
its truncated versions, aug-cc-pVDZ* or aug-cc-pVDZ0, we see very little
change in the optimum intermolecular distances for each of the configurations
considered (we scanned the surface with a resolution of 0.1 Å around the mini-
ma). The distances generally agree within 0.1 Å. Similar results are observed
when comparing CCSD(T) geometries using the aug-cc-pVDZ or aug-cc-
pVDZ* basis sets. Again, when considering the aug-cc-pVQZ basis to its trun-
cated version aug-cc-pVQZ*, the MP2 geometries are virtually identical. This
suggests that, when necessary (and after careful benchmarking), some diffuse
functions and/or higher angular momentum functions may be safely removed
from the aug-cc-pVXZ basis sets for the prediction of intermolecular geome-
tries. However, the main point of Table 2 is that the intermolecular distances
for the benzene dimer are fairly insensitive to the basis set used. Electron corre-
lation also has only a minor effect, typically increasing the intermolecular dis-
tances by about 0.2 Å upon improving the model from MP2 to CCSD(T).

When considering the interaction energies in Table 3, the truncated aug-
cc-pVDZ basis sets can lead to significant differences. Although the aug-cc-
pVDZ* basis (lacking only diffuse functions on hydrogens) remains within
0.1 kcal mol�1 for MP2 interaction energies, the smaller aug-cc-pVDZ0 basis
(which excludes also diffuse d functions on carbon) is in error by as much as
1.3 kcal mol�1 compared to the MP2 values using the full basis. Thus, for
comparison to results for a given electron correlation model, care should be
exercised in any attempts to reduce the size of the basis by truncating certain
functions. This is not to say, however, that the MP2/aug-cc-pVDZ0 results
are not useful. Quite the contrary—they seem to exhibit a very favorable

Table 3 Interaction Energies (kcal mol�1) for the Benzene Dimera

Method Basis S T PD

MP2 aug-cc-pVDZ0 �1.88 �2.35 �2.89
aug-cc-pVDZ*b �2.83 �3.00 �4.12
aug-cc-pVDZ �2.90 �3.07 �4.22
aug-cc-pVTZ �3.25 �3.44 �4.65
aug-cc-pVQZ*c �3.35 �3.48 �4.73
aug-cc-pVQZ �3.37 �3.53 —

CCSD(T) aug-cc-pVDZ*b �1.33 �2.24 �2.22
aug-cc-pVDZd �1.39 �2.31 �2.30

estd. CCSD(T)/aug-cc-pVQZ* �1.70 �2.61 �2.63
aUnless otherwise noted, all computations used intermonomer distances optimized at each level

of theory with rigid monomers (C��C ¼ 1:3915; C��H ¼ 1:0800Å; Ref. 39). Data from Ref. 61
except as noted.

bThis is aug-cc-pVDZ for carbon and cc-pVDZ for hydrogen.
cThis is aug-cc-pVQZ less g functions for carbon and less f functions for hydrogen.
dData from Ref. [66].
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cancellation of errors when compared to our most reliable results, as discussed
in more detail below.

Pauling Points

As we have been discussing, it takes two components to specify a level of
theory: the basis set and the electron correlation model. In computations of
molecular structure, it has long been known that larger basis sets tend to yield
shorter bond lengths, while more complete treatments of electron correlation
tend to yield longer bond lengths. The best results tend to be those where a
good balance exists between the basis set and the theoretical method; such a bal-
ance comes from favorable cancellation of errors between the incompleteness of
the basis set and the incompleteness of the electron correlation model. The situa-
tionwhere a good result can arise even though an incompletemodel is being used
has been referred to as a Pauling point, after the famous chemist Linus Pauling.

Given the extreme expense of large-basis CCSD(T), we have sufficient
motivation to seek theoretical Pauling points for p interactions. Returning to
Tables 2 and 3, we observe that the MP2/aug-cc-pVDZ0 results are in remark-
ably good agreement with the best theoretical benchmark values. Although
MP2/aug-cc-pVDZ0 slightly overestimates intermolecular distances compared
to MP2 with the full aug-cc-pVDZ basis, this overestimation is just what is
needed for good agreement (within 0.1 Å) with the benchmark values. The per-
formance for interaction energies is even more impressive. Although MP2/aug-
cc-pVDZ0 greatly underbinds compared to MP2/aug-cc-pVDZ, this underbind-
ing is just what is needed for better agreement with the benchmark results. For
the three prototype configurations of the benzene dimer, all of the interaction
energies agree within 0.4 kcal mol�1 of the large-basis CCSD(T) results. Note
that MP2 with the slightly larger aug-cc-pVDZ*, or the full aug-cc-pVDZ basis,
yields much poorer agreement with the benchmark CCSD(T) results. Going to
larger basis sets withMP2 gives even worse results due to dramatic overbinding.
This suggests that, in the context of conventional quantum chemical computa-
tions, the MP2 method with a basis set such as aug-cc-pVDZ0 may be the most
cost-effective approximation to large-basis CCSD(T). However, it should be
noted that the good agreement between MP2/aug-cc-pVDZ0 and large-basis
CCSD(T) may not hold for other weakly bound complexes. This is a topic
our research group hopes to investigate in more detail. In the meantime, as dis-
cussed below, there may be some alternative approximations that may be even
more effective at providing high-quality results at reduced computational cost.

Resolution of the Identity and Local Correlation
Approximations

Even within the context of a given target level of theory, e.g., MP2/aug-cc-
pVTZ, there exist various approximations that allow one to estimate the desired
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value at a significantly reduced computational cost. One such approach is the
resolution of the identity (RI) approximation,68,69 also referred to as the density
fitting (DF) approximation.70 Applied with a well-chosen auxiliary basis, this
approach introduces errors that are tiny compared to the error made by using
a noninfinite basis set.71,72

In the RI/DF approximation, computing the necessary two-electron inte-
grals is sped up by introducing an auxiliary basis set and representing products
of orbitals as71

nðrÞmðrÞ �
X
i

cPnmPiðrÞ ½12�

If one evaluates this product on a grid instead of using atom-centered Gaussian
functions for the auxiliary functions PiðrÞ, one then obtains the very similar
pseudospectral approximation.73,74 Minimizing the self-interaction error, the
four-index electron repulsion integrals,

ðmnjrsÞ ¼
ð
mðr1Þnðr1Þ 1

r12
rðr2Þsðr2Þ d3r1 d3r2 ½13�

may be approximated as71

ðmnjrsÞ �
X
PQ

ðmnjPÞðPjQÞ�1ðQjrsÞ ½14�

where ðPjQÞ is a two-index electron repulsion integral and ðmnjPÞ and ðQjrsÞ
are three-index electron repulsion integrals:

ðPjQÞ ¼
ð
Pðr1Þ 1

r12
Qðr2Þ d3r1 d3r2 ½15�

and

ðmnjPÞ ¼
ð
mðr1Þnðr1Þ 1

r12
Pðr2Þ d3r1 d3r2 ½16�

This RI approximation can be applied to the four-index integrals needed dur-
ing a Hartree–Fock computation,68,71 and also to the integrals needed for
post-Hartree–Fock procedures such as MP2.69,70

Although the above equations show that the RI approximation makes
the formalism somewhat more complex, this speeds up the computation
because it can be broken down into less costly steps. Formally, computing
all of the possible four-index integrals would scale as OðN4

bfÞ (with Nbf the
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number of basis functions), but the most expensive step under the RI approx-
imation scales as OðNauxN

2
bf Þ (with Naux the number of auxiliary functions).

Another way to reduce the cost of a given computation is to apply local
approximations. Because the electron repulsion between the product
mðr1Þnðr1Þ and rðr2Þsðr2Þ in the integral ðmnjrsÞ depends inversely on the dis-
tance r12 between electrons 1 and 2, at sufficiently large distances this interaction
can be approximated by multipole expansions or even neglected entirely. Such
local approximations have made Hartree–Fock and density functional theory
computations feasible for systems with hundreds of atoms or more.75,76 Simi-
larly, one can employ local approximations to correlated electronic structure the-
ories.70,77–85 These approaches, pioneered by Pulay and Saebø,77–79 localize the
molecular orbitals and then exploit the fact that the motion of two electrons will
only be correlated if those electrons are in nearby orbitals. Moreover, one may
safely neglect virtual (unoccupied) orbitals that are not spatially close to the occu-
pied orbitals in a given excitation. One advantage of local correlationmethods is
that they neglect some of the terms that lead to basis set superposition error.86

To date, very little work has been done to investigate either RI or local
correlation approximations87,88 for p interactions. However, it is likely that
both will be very beneficial for speeding up computations significantly while
introducing only small errors. The RI approximation will be particularly use-
ful for computations involving large basis sets. Local approximations, on the
other hand, only become helpful for computations of large molecules because
they involve a certain ‘‘overhead’’ cost that can only be recovered once the
molecule reaches a certain size (called the crossover point). It is possible to
employ both approximations simultaneously, and in 2003 Werner, Manby,
and Knowles reported a linear scaling resolution of the identity (RI) local
MP2 method (RI-LMP2 or DF-LMP2).70 This method has since been made
available in the MOLPRO program.89

To demonstrate how these approximations may be helpful in computa-
tions of p interactions, Table 4 provides interaction energies for three prototype
configurations of the benzene dimer using canonical MP2, the resolution of the

Table 4 MP2 Interaction Energies and Errors for Approximations to MP2 (kcal mol�1)
for Various Configurations of the Benzene Dimera

MP2 RI-MP2 LMP2 RI-LMP2

Sandwich �3.195 (14.2) 0.005 (3.3) 0.015 (29.4) 0.013 (3.9)
T-Shaped �3.355 (13.7) 0.005 (3.8) 0.002 (28.3) 0.004 (4.3)
Parallel Displaced �4.659 (17.1) 0.008 (2.7) 0.155 (35.4) 0.155 (4.5)

aEvaluated using the aug-cc-pVTZ basis set and the rigid monomer geometries of Gauss and
Stanton (Ref. 39) with the counterpoise-corrected MP2/aug-cc-pVDZ optimized intermonomer
distances (Ref. 38). RI energies and errors for sandwich and T-shaped configurations from
Ref. 88. Computations performed on a 3.2-GHz Intel EM64T Nocona workstation. RI and local
computations were performed without the use of point-group symmetry. Local methods not
counterpoise corrected. CPU times in parentheses (h).
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identity (RI-MP2), the local approximation (LMP2), and both approximations
simultaneously (RI-LMP2). All comparisons are made using the reasonably
large aug-cc-pVTZ basis, and results were obtained with the MOLPRO pro-
gram.89 Considering first the RI approximation, we see that it leads to errors
smaller than 0.01 kcal mol�1 for binding energies, while decreasing computa-
tional times from 14–17 h per point to 3–4 h per point, a substantial savings.
This reduced computational cost is even more impressive given that the canoni-
cal computation used point-group symmetry, whereas for technical reasons the
RI and local approximations in MOLPRO do not.

Considering next the local approximation, the LMP2 errors are some-
what larger but are still modest (the largest error is 0.155 kcal mol�1 for the
parallel-displaced configuration). Disappointingly, the computational cost for
LMP2 is actually greater than that of conventional MP2 for this test case. This
is probably because the conventional computation has the advantage of point-
group symmetry while the LMP2 computation does not, and the benzene
dimer is too small a system to have reached the crossover point where
LMP2 becomes less computationally expensive. Adding the RI approximation
to the LMP2 approximation (the RI-LMP2 column) decreases the computa-
tional time again, but the computational cost remains greater than that of
RI-MP2. The errors for RI-LMP2 are essentially the same as for LMP2.

It should be noted that the RI and local approximations are not comple-
tely ‘‘black box.’’ For the RI approximation, one must choose an auxiliary basis
set. In Table 4 we have used the coulomb/exchange-fitting (JK-fitting) auxiliary
basis71 for the Hartree–Fock part of the computation, and the MP2-fitting aux-
iliary basis72 for the computation of the correlation energy. It is possible that
further investigation might yield even more efficient auxiliary basis sets.

In the local correlation methods, the program must determine the orbital
domains that specify which pairs of orbitals should be correlated. This can be a
little problematic for studies ofweakly interactingmolecules because as one scans
the potential energy surface, twomoleculesmight suddenly become close enough
that the orbital domains change, leading to a discontinuity in the potential energy
surface.90 The simplest solution to thismaybe to define the orbital domainswhen
the molecules are a large distance away, and fix the domains in this form for the
entire study, as was done in the LMP2 study of Takatani and Sherrill.88

Additionally, we were surprised to discover that the local approximation
in LMP2 can show significant errors when paired with the aug-cc-pVDZ basis
for several example noncovalent interactions.88 This error was reduced by using
larger basis sets or if one removed diffuse functions on hydrogen.More systema-
tic investigations may shed light on which basis sets are best to use for LMP2
computations.

Spin-Component-Scaled MP2

Grimme has argued that the MP2 method exhibits a bias toward same-
spin excitations because Hartree–Fock-based methods already include some
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degree of same-spin electron correlation due to the Pauli principle.91 This led
him to introduce separate scale factors for the same-spin and opposite-spin
pair correlation energies, yielding the spin-component-scaled (SCS) MP2
method.91 The scaling factors used by Grimme are 1

3 for same-spin and 6
5 for

opposite-spin components of the correlation energy. The introduction of these
two parameters does not increase the computational cost, but it leads to
improved properties such as bond lengths and vibrational frequencies.92 A
related approach of Head-Gordon and co-workers93 is the spin-opposite-
scaled MP2 (SOS-MP2) method, which neglects the same-spin term and scales
the opposite-spin term.

The SCS-MP2-type methods have generated significant interest from
scientists, particularly for applications to noncovalent interactions. One inves-
tigation of SCS-MP2 for the benzene dimer94 by Hill, Platts, and Werner
demonstrated interaction energy errors of only 0.1–0.2 kcal mol�1 when com-
pared to benchmark61 CCSD(T) results. Hill and Platts later reoptimized the
SCS-MP2 scaling parameters using nucleic acid base-pair interactions to
obtain better results for a wider array of p interactions.95 These workers
dubbed the SCS-MP2 method with the new parameters (1.76 for same-spin
terms, and neglecting the opposite-spin terms) as SCSN-MP2, where the N
denotes the nucleic acids used in the parameterization. When applied to the
S22 test set96 of intermolecular interaction energies, the (density-fitted, local)
MP2-based methods had mean absolute deviations of 0.81 (DF-LMP2), 0.27
(DF-SCSN-LMP2), 1.26 (DF-SCS-MP2), and 1.97 kcal mol�1 (DF-SOS-
LMP2).95 Another study by Antony and Grimme97 of 165 biologically rele-
vant, noncovalent complexes showed a clear improvement of SCS-MP2 over
MP2 when comparing to CCSD(T) results in the complete-basis-set limit.
Additionally, a good cancellation of errors was observed when using SCS-
MP2 with polarized triple-� basis sets (without diffuse functions or counter-
poise correction). However, in some saturated systems (e.g., methane dimer),
the original MP2 method is accurate, and spin-component scaling degrades the
quality of the results.

Apart from the first study of Hill et al.,94 most of these studies consid-
ered only single-point energies. Our group investigated potential energy
curves for a variety of prototype noncovalent complexes, with and without
local correlation approximations.88 In general, we found that both SCS-MP2
and SCSN-MP2 results are better than MP2 results for p interactions,
but both lead to larger errors for the methane dimer. Except for that test
case, the SCS-MP2 potential curves in the complete-basis-set limit tend
to lie slightly above, and SCSN-MP2 curves slightly below, the benchmark
CCSD(T) curves. SCSN-MP2 tends to overbind slightly at large intermole-
cular separations. On the other hand, more recent work98 suggests that
the original SCS-MP2 method may be more reliable than SCSN-MP2
for the potential energy curves of parallel-displaced configurations of p–p
interactions.
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To illustrate the performance of SCS-MP2 and SCSN-MP2, Figure 4 pre-
sents errors in the potential energy curves for several p-interaction complexes
when compared to estimated CCSD(T)/CBS benchmark curves. The MP2/CBS
curves are significantly overbound and are not included in Figure 4. In all
cases, the errors vs. the benchmark values are only a few tenths of 1 kcal
mol�1. The largest errors are observed for SCS-MP2 at shorter intermonomer
separations, and SCS-MP2 tends to have positive errors (underbinds) while
SCSN-MP2 tends to have negative errors (overbinds) in the CBS limit.

Table 5 presents benchmark, estimated CCSD(T) binding energies for
several noncovalent complexes and the errors for the MP2, SCS-MP2, and
SCSN-MP2 methods. Also included are local versions of the SCS-type methods
(SCS-LMP2 and SCSN-LMP2). As already mentioned, in every case but the
methane dimer, the MP2 method greatly overbinds in the CBS limit. The
SCS-MP2 results are greatly improved over MP2 for all cases but the methane
dimer, where the error increases from 0.04 to 0.27 kcal mol�1. This remains a
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Figure 4 Errors in SCS-MP2/CBS (upper panel) and SCSN-MP2/CBS (lower panel)
interaction energies vs. estimated CCSD(T)/CBS values for various bimolecular
noncovalent complexes. Data from Ref. 88.
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small error in an absolute sense, although it is somewhat large in a relative
sense compared to the benchmark result of �0.54 kcal mol�1. The local
approximation hardly changes the SCS-MP2 results and increases errors by
0.06 kcal mol�1 or less. The SCSN-MP2 results are generally better than
SCS-MP2 for these test cases, although the error for methane dimer is about
the same as it was for SCS-MP2. Again, the local correlation approximation
changes the error only by a small amount (and for these systems tends to
decrease it).

Given the good performance of SCS-MP2 methods, one might ask how
much results would be improved by scaling the spin components of the
coupled-cluster singles and doubles (CCSD) method42 to yield a SCS-CCSD
method. Although SCS-CCSD would be more computationally expensive
than SCS-MP2, scaling as OðN6Þ instead of OðN5Þ, the increased accu-
racy might justify the expense in some applications. Moreover, SCS-CCSD
would remain much less expensive than the CCSD(T) method, OðN7Þ, it
would be meant to mimic. This is particularly true given that, to date, it
has been easier to apply RI and local approximations to CCSD than to
CCSD(T).99–102 Even canonical CCSD computations have been performed102

on systems as large as (glycine)16, so suitable approximations will allow even
larger computations.

Our group implemented an SCS-CCSD method and obtained scaling
parameters by fitting to 48 reaction energies.103 The scaling parameters are
1.13 and 1.27 for same- and opposite-spin components, respectively. These
parameters are closer to one than those of the SCS-MP2 methods, reflecting
the more robust electron correlation model of CCSD compared to MP2.
Table 6 presents results for SCS-CCSD compared to MP2, SCS-MP2,
SCSN-MP2, CCSD, and CCSD(T) for the optimal intermonomer distance
and interaction energy for the methane dimer and the sandwich benzene
dimer. The SCS-CCSD results provide the best comparison to CCSD(T).
Additional study will examine the performance of SCS-CCSD for a wider
range of systems.

Table 5 CCSD(T) Interaction Energies and Errors for MP2-Type Methods at the
Extrapolated CBS Limita

CCSD(T) MP2 SCS-MP2 SCS-LMP2b SCSN-MP2 SCSN-LMP2b

Sandwich Benzene
Dimer �1.833 �1.337 �0.032 0.036 �0.082 �0.049

T-Shaped Benzene
Dimer �2.871 �0.728 0.439 0.496 �0.046 �0.033

Methane-Benzene �1.466 �0.352 0.252 0.266 0.035 0.023
H2S-Benzene �2.843 �0.776 0.204 0.258 �0.180 �0.168
Methane Dimer �0.541 0.043 0.266 0.265 0.277 0.216

aIntermolecular energies and errors are evaluated at estimated CCSD(T)/CBS optimized
geometries. All energies and errors in kcal mol�1. Density fitting approximations applied to all
methods except for CCSD(T). Data from Ref. 88.

bLocal methods not counterpoise corrected.
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Explicitly Correlated R12 and F12 Methods

One way to accelerate convergence to the complete-basis-set limit is to
employ explicitly correlated methods, which make the electronic wave func-
tion depend explicitly on the distances between electrons. These methods
have been motivated by the observation that the shape and size of the Cou-
lomb hole around an electron (i.e., the effect that the electron has on decreas-
ing the probability of finding another electron in the same vicinity) is slowly
convergent with respect to the size of the basis set. However, convergence is
improved greatly by introducing interelectronic distances into the expression
of the wave function, as first noted by Hylleraas in 1929 in his work on the
helium atom.104 Interest in such methods has been limited because they are
more mathematically complex than conventional approaches, and they can
lead to a large number of integrals that are difficult to evaluate. However, a
number of strategies have been developed to avoid these formal difficulties,
one of the most successful of which is the ‘‘linear R12’’ approach of Kutzelnigg
and Klopper,105,106 which introduces terms linear in the interelectronic dis-
tance and prescribes standard approximations for the elimination of some
integrals and the estimation of others using a resolution of the identity. Our
group used such an approach in conjunction with the MP2 method, known
as MP2-R12/A,105,106 to estimate the CBS MP2 results with a custom basis
set smaller than the explicit aug-cc-pVQZ basis.38

These linear R12 approaches, while helpful for very careful benchmark-
ing studies, have had the drawback that they are rather expensive to use. One
of the main reasons for this is that the particular resolution of the identity
approximation they have typically employed is valid only when a large basis
set is used. However, a number of recent developments indicate that in the

Table 6 SCS-CCSD and Other Correlated Methods in Comparison to Estimated
CCSD(T) Resultsa

Sandwich
Benzene Dimerb Methane Dimerc

�E Re �E Re

MP2 �3.25 3.7 �0.50 3.7
SCS-MP2 �1.76 3.9 �0.32 3.8
SCSN-MP2 �1.83 3.9 �0.36 3.8
CCSD �0.89 4.1 �0.41 3.7
SCS-CCSD �1.63 3.9 �0.57 3.6
CCSD(T) �1.64 3.9 �0.54 3.6

aEnergies in kcal mol�1 and distances in angstroms. Data from Ref. 103.
bEvaluated with the aug-cc-pVTZ basis set. Coupled-cluster methods estimated via an addition

of the difference between MP2 and coupled-cluster correlation energies with the aug-cc-pVDZ
basis set to the MP2/aug-cc-pVTZ energies.

cExtrapolated to the CBS limit.
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near future explicitly correlated methods may be the preferred electronic struc-
ture approach for problems with large basis set requirements. Theorists have
improved the efficiency of integral evaluation,107 allowed for the use of a dif-
ferent basis set for the resolution of the identity versus the other components
of the computation,108,109 and reformulated the resolution of the identity to
make it more stable numerically,110 among other achievements.

Perhaps more importantly, faster convergence to the complete basis set
limit has been observed by replacing the linear R12 terms with alternative
correlation factors that might be more complex functions of the interelectro-
nic distance.111,112 These new approaches are called F12 methods, and
although they remain in a development and testing phase as this chapter is
being written, it is anticipated that they are likely to move into mainstream
use in only a few years. Already, MP2-R12 computations can be performed
in a number of program packages, including MOLPRO,89 MPQC,113 TUR-
BOMOLE,114 and PSI.115 As more experience is gained in benchmarking and
using R12 and F12 methods, they will become more accessible to a wider
array of users.

Density Functional Approaches

Despite its tremendous success in a wide variety of chemical applications,
density functional theory (DFT)116,117 has not yet had much impact on studies
of weakly bound complexes. In principle, density functional theory with the
exact functional would provide exact results for any chemical system, includ-
ing van der Waals complexes. In practice, however, the Kohn–Sham formula-
tion of DFT with mainstream functionals is not capable of capturing
dispersion effects, even qualitatively.28,118,119 This deficiency arises from the
fact that these approaches lack the long-range, nonlocal terms required to
model dispersion. This is true even of gradient-corrected functionals (which
are sometimes confusingly referred to as ‘‘nonlocal’’ functionals) because
including information about the gradient of the density does not extend the
range of electron correlations very far. Hybrid functionals include some frac-
tion of Hartree–Fock exchange,40 which is nonlocal. However, dispersion is
related to dynamical electron correlation, not exchange, and hence hybrid den-
sity functionals also fail to include the proper physics to model dispersion
interactions.

Because DFT is so successful in other areas, and because it has become a
familiar tool to many chemists, there is a great desire to use it for studies of
noncovalent interactions, even though currently popular formulations are
really not appropriate for such studies. The reader is urged to avoid giving
in to this temptation, for the simple reason that there would be no reason to
believe the results for properties such as interaction energies or intermolecu-
lar distances. In an eye-opening study, Johnson, Wolkow, and DiLabio119

found that out of 25 different density functionals, all of them were in error
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by 1 kcal mol�1 or more for the sandwich benzene dimer. Even worse, only 2 of
the 25 functionals even bound the sandwich dimer at all; the rest gave the com-
pletely false picture that the potential curve is purely repulsive (see Figure 2 for
the example of B3LYP). In light of such erroneous predictions, it is best to
avoid standard DFT methods at all costs for studies of systems where disper-
sion is a dominant interaction. If the system is too large to use higher quality ab
initio methods, then the reader is advised to use molecular mechanics instead,
or perhaps one of the new DFT approaches being developed.

These deficiencies with DFT for noncovalent interactions have captured
the interest of a large number of theorists, and as this review is being written,
serious effort is being devoted to developing improved methods based upon
DFT that can describe dispersion properly. Because the purpose of this chapter
is more to give an introduction and tutorial in computing p interactions than it
is to give an exhaustive technical review, I will not attempt to provide a com-
plete summary of the voluminous work that has been done in this area in the
past few years. However, the reader should be aware that initial results are
very promising, and DFT methods adapted for dispersion may come into
mainstream use in the near future.

One very simple but seemingly effective approach is to simply add an
empirical dispersion correction to DFT energies. Because long-range disper-
sion interactions are reasonably well modeled in molecular mechanics
approaches by pairwise �C6r

�6 between atoms, it seems promising to add
such terms to DFT. These contributions must be damped at small distances
to avoid becoming too large (and to help avoid double counting by this empiri-
cal parameter and by the density functional). A number of researchers have
tried this approach, which has been referred to as DFT plus dispersion
(DFT-D).120–132 A systematic study by Grimme125 on 29 weakly bound com-
plexes suggests that DFT-D with polarized triple-� basis sets can provide ener-
gies that are accurate to about 10–30% (better performance than large-basis
MP2). DFT-D with double-� basis sets is not as good, however. Grimme
recommends using tight convergence and large grids for these computations
because of the flatness of the potential energy surfaces.125 More recent sys-
tematic studies have arrived at similar conclusions.127–132

A less empirical approach has been to augment DFT with certain nonlo-
cal terms. This strategy can be successful so long as the cost of computing
the nonlocal terms is not allowed to become too large. Röthlisberger and
co-workers have added effective atom-centered nonlocal potentials that have
been fit to benchmark ab initio data.133,134 Langreth, Lundqvist, and co-
workers have introduced a van der Waals density functional (vdW-DF) that
adds nonlocal terms to the correlation energy functional.135 This approach
has been tested for the benzene dimer136 and substituted benzene dimers,137

with reasonably good success (although the sandwich configuration is over-
bound). Energy changes due to substituents, which are somewhat easier to
compute than binding energies, are reproduced well by this approach.
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Becke has proposed a novel approach that formulates the dispersion
interaction in terms of the dipole moment that would be created when consid-
ering an electron and its exchange hole.138–140 Like DFT-D, these methods
appear to be more reliable than MP2 for noncovalent interactions. Alterna-
tively, other workers141,142 have combined DFT with symmetry-adapted per-
turbation theory (SAPT)67 (discussed below). These DFT-SAPT approaches
evaluate the dispersion term via the frequency-dependent density susceptibility
functions of time-dependent DFT, an approach that appears to be theoretically
sound.

There have also been attempts to parameterize new functionals within
the current standard framework, up to and including hybrid, meta-generalized
gradient approximation functionals that depend on the local density, its gra-
dient, and the kinetic energy density, and that mix in Hartree–Fock exchange
(see, e.g., Refs. 143–145). Some of these functionals appear to be
improved129,146 over the most popular currently available functionals for non-
covalent interactions between molecules that are close to each other (what
Zhao and Truhlar have called medium-range correlation);146 however, with-
out truly nonlocal, nonexchange terms in the functional, such approaches are
unlikely to work at larger distances and thus would not appear to be as pro-
mising in the long run as the more generally applicable approaches discussed
above.

Semiempirical Methods and Molecular Mechanics

As discussed earlier, one of the simplest ways to correct the deficiencies
of popular density functionals for noncovalent interactions is to add an empiri-
cal dispersion term proportional to r�6, as is done in molecular mechanics
methods. Given that this appears to work well, one may ask about the perfor-
mance of purely empirical, molecular mechanics force-field methods. These
approaches have the advantage that they are much simpler computationally
and can be applied to systems with thousands of atoms. To date, there has
been limited testing of force-field methods against high-quality quantum
data for noncovalent interactions (in part because such benchmark data is
only now becoming available for a reasonable number of systems). AMBER
has been found to provide good results for intercalators in comparison to
MP2 data with a modified 6-31G* basis set, but only after modification of
some of the terms.147 In tests of the benzene dimer, Macias and MacKerell148

found binding energies within a few tenths of 1 kcal mol�1 using a refined
CHARMM force field. Similarly good results have been reported using polar-
izable force fields.149,150

Using data from our recent work,151 Figure 5 illustrates the performance
of some popular force-field methods (namely, CHARMM,152 AMBER,153

MM3,154 and OPLS155) compared to our estimated CCSD(T) complete basis
set results66 for the sandwich benzene dimer. Overall, CHARMM and OPLS
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perform well for this test case, while AMBER is somewhat underbound and
MM3 is significantly overbound.

Finally, we should also briefly discuss the performance of semiempirical
methods. These are methods that neglect some of the more expensive integrals
in Hartree–Fock molecular orbital theory and replace others with empirical
parameters. Because semiempirical methods are based on Hartree–Fock theo-
ry, and because Hartree–Fock theory does not capture dispersion effects, semi-
empirical methods are not suitable for computing dispersion-dominated
noncovalent interactions. Semiempirical methods yield repulsive potentials
for the sandwich benzene dimer, just as Hartree–Fock does. However, given
that semiempirical methods already contain empirical parameters, there is
no reason not to fix this deficiency by adding terms proportional to r�6, as
is done in force-field methods and the empirical DFT-D methods. Such an
approach has been tested for some base pairs and sulfur-p model systems.130

ANALYSIS USING SYMMETRY-ADAPTED
PERTURBATION THEORY

So far in this review, we have focused on various approaches to comput-
ing the strength and geometries of noncovalent p interactions. However, not
only can computational chemistry provide such information, but it can also
provide a means of analyzing that information. In studies of complex phenom-
ena, data analysis can be the most important step if it yields a rational
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Figure 5 Interaction energy for the sandwich benzene dimer as a function of the
intermolecular distance using various force field methods compared to benchmark
quantum data. Data from Refs. 151 and 66.
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framework for thinking about similar problems. To give just one example, the
conventional wisdom about substituent effects in p–p interactions is that they
are governed by electrostatic terms, as proposed by Hunter and Sanders156 on
the basis of a very simple mathematical model and experimental data. How-
ever, direct computations on substituted benzene dimers in our labora-
tory157,158 show that this picture is oversimplified and cannot explain such
phenomena as the greater binding of sandwich phenol–benzene and
toluene–benzene complexes relative to the benzene dimer. Our explanation
of this situation, which is summarized in a recent review,159 relied heavily
on analysis tools provided by SAPT.67

Symmetry-adapted perturbation theory is a well-motivated theoretical
approach to compute the individual components of intermolecular interac-
tions, namely, the electrostatic, induction, dispersion, and exchange-repulsion
terms. The approach is a double-perturbation theory that uses a Hartree–Fock
reference, with a Fock operator F written as the sum of Fock operators for the
individual molecules. Both the intramolecular correlation potential (W) and
the intermolecular interactions (V) are treated as perturbations, so that the
Hamiltonian is expressed as

H ¼ F þ V þW ½17�

These perturbations may be treated using second-order perturbation theory,
resulting in an approach that is referred to as SAPT2.67,160 One can also
include certain higher order terms using coupled-cluster techniques, which
yields the full SAPT. The approximate SAPT2 approach is less expensive com-
putationally, but it appears to give good results for qualitative analysis of
intermolecular interactions.

The SAPT energy may be written as

Eint ¼ EHF
int þ Ecorr

int ½18�

where EHF
int is the Hartree–Fock component of the energy, which may be bro-

ken down as

EHF
int ¼ E

ð10Þ
elst þ E

ð10Þ
exch þ E

ð20Þ
ind;resp þ E

ð20Þ
exch-ind;resp þ dEHF

ind;resp ½19�

The superscripts in Eq. [19] refer to orders in the two perturbations, V and W,
respectively. The terms denoted ‘‘resp’’ refer to the inclusion of higher order
terms via the coupled-perturbed Hartree–Fock equations.160 The term
E
ð20Þ
exch�ind;resp is a cross term involving both exchange and induction. The

term dEHF
ind;resp includes higher order Hartree–Fock induction as well as

exchange-induction contributions.
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Under the SAPT2 approximation, the correlation energy is comprised of
the following individual contributions:67

Ecorr
int ¼ E

ð12Þ
elst;resp þ E

ð11Þ
exch þ E

ð12Þ
exch þt E

ð22Þ
ind þt E

ð22Þ
exch-ind þ E

ð20Þ
disp þ E

ð20Þ
exch-disp ½20�

Again, cross terms involving two types of interactions appear—here, both
exchange-induction and exchange-dispersion terms. Based on a subjective ana-
lysis of SAPT2 results for p–p interactions, we have decided somewhat arbi-
trarily to classify the exchange-induction and exchange-dispersion terms as
induction and dispersion, respectively. This yields the following scheme:

EðelectrostaticÞ ¼ E
ð10Þ
elst þ E

ð12Þ
elst;resp ½21�

EðexchangeÞ ¼ E
ð10Þ
exch þ E

ð11Þ
exch þ E

ð12Þ
exch ½22�

EðinductionÞ ¼ E
ð20Þ
ind;resp þ E

ð20Þ
exch-ind;resp þ dEHF

int;resp þt E
ð22Þ
ind þt E

ð22Þ
exch-ind ½23�

EðdispersionÞ ¼ E
ð20Þ
disp þ E

ð20Þ
exch-disp ½24�

Our group has obtained SAPT results using the programs of Szalewicz
and co-workers, which are freely available.161 The Appendix gives an example
of the output from this program and how to extract the energetic components
in Eq. [21]–[24].

In our experience, the SAPT computations can be time demanding even
at second order (SAPT2), motivating the use of truncated basis sets. Fortu-
nately, as discussed above, a fortuitous cancellation of error exists when using
MP2 with the truncated aug-cc-pVDZ basis, aug-cc-pVDZ0, which removes
diffuse functions from hydrogen and diffuse d functions from all heavier
atoms. Because the SAPT2 results mimic MP2 for interaction energies, this
means that SAPT2/aug-cc-pVDZ0 results should be fairly reliable.

As an example of the application of SAPT, consider the two C2v configura-
tions of theH2S-benzene complex162,163 shown in Figure 6. The hydrogens-down

S

HH

H

S

H

BA

Figure 6 Two symmetric configurations of the H2S–benzene complex.
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configuration, A, binds significantly more favorably (�3.15kcal mol�1, SAPT2/
aug-cc-pVDZ) than the hydrogens-up configuration, B (�1.27kcal mol�1).
SAPT analysis can help explain this difference.

As shown in Table 7, the individual components of the interaction
energy change significantly between the hydrogens-down and hydrogens-up
configurations. The exchange-repulsion and dispersion terms are the most sen-
sitive to geometry. In fact, in our studies of substituent effects in p–p interac-
tions, we have usually kept the distance between the p rings constant when
comparing different substituted complexes, even when they might have
slightly different optimal vertical separations, simply to make the comparison
of the SAPT components more straightforward.157 In the case of configura-
tions A and B for H2S–benzene, there is an unavoidable significant difference
in the geometries. The hydrogens-down configuration has a much larger
exchange energy (4.19 kcal mol�1) because the hydrogens are much closer to
the p cloud of the benzene, leading to greater steric repulsion. When the hydro-
gens are rotated away from the benzene, the steric repulsion is much less
(1.03 kcal mol�1). On the other hand, differences in exchange-repulsion ener-
gies usually lead to roughly opposite changes in dispersion interactions. Here,
as one goes from A to B, the exchange energy becomes more favorable (less
repulsive), but the dispersion energy becomes less favorable (less attractive).
In such situations, it is often helpful to consider the sum of the exchange
and dispersion terms. In this case, the change in the repulsion term is even lar-
ger than that in the dispersion term, so the sum of exchange and dispersion is
attractive for configuration B (�1.11 kcal mol�1) while it is almost zero for
configuration A. This is consistent with the expectation that the (net) disper-
sion interaction should be larger for configuration B because the sulfur lone
pairs will have a more favorable dispersion interaction with the benzene p
cloud than will the hydrogens.

However, the change in the electrostatic term is even larger than this;
configuration A is favored by 2.38 kcal mol�1 electrostatically compared to
configuration B. This is consistent with the expectation that the partial positive
charge on the hydrogens will interact much more favorably with a partial
negative charge on the p cloud of benzene than would the sulfur lone pairs.

Table 7 SAPT2/aug-cc-pVDZ Results for Contributions to
the Interaction Energy (kcal mol�1) at CCSD(T)/aug-cc-pVQZ
Intermolecular Distances for Two Configurations of H2S-
Benzenea

Energy A B

Eelst �2.37 0.01
Eexch 4.19 1.03
Eind �0.81 �0.17
Edisp �4.16 �2.14
Eint (SAPT2) �3.15 �1.27
Eint (MP2) �3.06 �1.21

aData from Ref. 162.
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This change in the electrostatic term is larger than the change in the sum of
exchange and dispersion, and it is also larger than the change in the induc-
tion term (which is probably describing mainly polarization of the p cloud
due to the dipole of H2S). For all these reasons, we would say that, loosely
speaking, electrostatics appear to dominate the geometric preferences of the
H2S–benzene complex, and that the most important net interaction in this sys-
tem is that between the partially positive hydrogens of H2S and the negatively
charged p cloud. Such an analysis, although ultimately losing much of the
quantitative information present in the SAPT results, can be helpful in think-
ing (generally) about how noncovalent systems may interact.

CONCLUDING REMARKS

Noncovalent interactions, particularly those involving aromatic p sys-
tems, are of great significance to current research thrusts in supramolecular
chemistry, nanostructured materials, crystal engineering, and drug design.
We are at an exciting stage when many of the fundamental interactions gov-
erning these important areas are being revealed in unprecedented detail.
Although computations of noncovalent p interactions remain challenging for
current methods, a large number of promising possibilities are already on the
horizon that may make reliable computations on such systems routine in the
near future. This tutorial has provided some guidance in the selection of
appropriate methods and in the avoidance of possible pitfalls in computational
studies of noncovalent p interactions.

APPENDIX: EXTRACTING ENERGY COMPONENTS
FROM THE SAPT2006 PROGRAM

It may be helpful for readers who have not yet used the SAPT programs
of Szalewicz and co-workers161 to provide an example of how to extract the
energetic components of Eq. [21]–[24], although it is fairly straightforward to
do so based on the available documentation. The following lines of the SAPT
summary table are extracted to compute the components of the interaction
energy of the benzene dimer as an example.

Correction mHartree Kcal/mol 1/cm
---------- -------- -------- ----

--- SCF (SAPT_super) ---
E^{HF}_{int} 15.431383270 9.68334732 3386.7971
E^{(10)}_{elst} �7.301432558 �4.58172194 �1602.4792
E^{(10)}_{exch} 24.641729459 15.46293165 5408.2345
E^{(20)}_{ind,resp} �10.363352572 �6.50310737 �2274.4930
E^{(20)}_{ex-ind,r} 9.863057594 6.18916727 2164.6909
\delta^{HF}_{int,r} �1.408618652 �0.88392229 �309.1561
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--- CORRELATION ---
E^{(12)}_{elst,resp} �0.435841575 �0.27349495 �95.6562
E^{(11)}_{exch} 0.941343304 0.59070234 206.6010
E^{(12)}_{exch} �1.206428145 �0.75704573 �264.7804
^tE^{(22)}_{ind} 0.159009259 0.09977990 34.8985
^tE^{(22)}_{ex-ind}* �0.151333024 �0.09496299 �33.2138
E^{(20)}_{disp} �20.876202931 �13.10002610 �4581.7969
E^{(20)}_{exch-disp} 3.616236015 2.26922426 793.6721

--- TOTAL (hybrid) ---
SCF+SAPT_{corr,resp} �2.521833826 �1.58247594 �553.4785

Here EHF
int is the interaction energy of the complex calculated with the Hartree–

Fock method. The SCF+SAPTcorr,resp term is the sum of all of the other terms
and represents the total interaction energy.

The program prints additional energy terms in the SAPT summary table
for completeness, but these data provide redundant information for the pur-
pose of computing the individual components of the interaction energy accord-

ing to, e.g., Eq. [21]–[24]. For example, E
ð10Þ
exchS

2 and E
ð10Þ
exch � S2 need not be

included because their sum is already present in the table as E
ð10Þ
exch. The term

E
ð20Þ
ex�ind has a corresponding response term that is included. eps

ð1Þ
elst;rðkÞ,

eps
ð1Þ
exchðkÞ, and E

ð2Þ
dispðkÞ are the same as E

ð12Þ
elst;resp, E

ð11Þ
exch þ E

ð12Þ
exch, and E

ð20Þ
disp , respec-

tively. The terms SAPT SCFresp, SAPTcorr, SAPTcorr,resp, and SCF + SAPTcorr

are the sums of other terms already included.
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CHAPTER 2

Reliable Electronic Structure
Computations for Weak Noncovalent
Interactions in Clusters

Gregory S. Tschumper

Department of Chemistry and Biochemistry, University
of Mississippi, University, Mississippi

INTRODUCTION AND SCOPE

If you are reading this chapter, you are most likely already aware of the
importance of weak attractive interactions between molecules (and atoms),
such has hydrogen bonding and London dispersion forces, in chemistry and
related fields. The relatively weak interactions between uncharged molecules
(and/or atoms) are also called nonbonded interactions and sometimes collec-
tively referred to as van der Waals forces. These intermolecular forces are not
only prevalent throughout chemistry, but they often provide the governing influ-
ence in a wide variety of chemical, physical, and biological processes.1–7 Some
general examples include, but are certainly not limited to, solvation, condensa-
tion, crystallization, asymmetric catalysis, bulk-phase properties, directed self-
assembly of nanomaterials, chromatographic separation, micelle formation,
molecular recognition, drug transport, as well as the structure and function of
biomolecules. The initial step in HIV infection, for instance, involves the forma-
tion of a weakly bound (noncovalent) complex of the viral envelope and cellular
receptor glycoproteins, HIV-gp120 and CD4, respectively.8,9 The delivery
and transport of pharmaceuticals in mammals frequently occurs through
subcovalent complexation with blood-soluble proteins such as human serum
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albumins.10 The formation of weakly bound heterogeneous clusters plays a key
role in the chemistry of the atmosphere on Earth and elsewhere.11,12 Noncova-
lent interactions dictate not only the structure and function of biomolecules,
from simple dipeptides to enzymes and DNA,13–16 but also molecular recogni-
tion events.17 In the closely related and rapidly growing field of nanotechnology,
highly selective, directional supramolecular self-assembly can be achieved with
the aid of intermolecular hydrogen bonding and p-type interactions.18,19 Hydro-
gen bonding also affects the chemical shielding, and therefore the electronic
properties, of metal atoms in metalloproteins.20,21 These weak inter- and intra-
molecular forces are even used to control diastereoselectivity and mediate cata-
lysis in important classes of organic reactions.22,23 The very existence of the
condensed phase (i.e., solids and liquids) is dependent on the noncovalent inter-
actions between molecules (or atoms), as are phase transitions, liquid structure,
diffusion, crystal structure, and solvation/solutions.24,25 These ubiquitous inter-
actions have even led to the development and refinement of many cardinal che-
mical concepts such as hydrophilicity and hydrophobicity as well as the very
definition of the chemical bond.

Over the past decade, there have been numerous books26–31 and arti-
cles32–44 reviewing ab initio and density functional theory (DFT) computations
of hydrogen bonding and other weak noncovalent interactions. In fact, the
very first chapter of this entire review series examines basis sets for noncova-
lent interactions between atoms and/or molecules,45 while a chapter in the sec-
ond volume reviews ab initio methods for hydrogen bonding.46 Three thematic
issues of Chemical Reviews have been dedicated to van der Waals interactions
(Vol. 88, No. 6, 1988; Vol. 94, No. 7, 1994; and Vol. 100, No. 11, 2000).
Two articles in the centennial issue of the Journal of Physical Chemistry dis-
cuss weakly bound clusters and solvation.47,48 It is also worth noting that p-
type stacking interactions are very topical at the moment and are the subject
not only of a separate chapter in this volume of Reviews in Computational
Chemistry49 but also of a special issue of Physical Chemistry Chemical Physics
(Vol. 10, No. 19, 2008).

This chapter is intended to serve two very distinct purposes. Readers new
to the subject matter will find a fairly thorough introduction to reliable elec-
tronic structure computations for weakly bound clusters (including a step-by-
step tutorial). For more experienced readers, this chapter also reviews many of
the significant advances made in the field since the turn of the twenty-first cen-
tury, particularly current state-of-the-art benchmark studies. This work also
offers some valuable perspective and will attempt to illustrate the importance
of balancing what is possible with what is practical.

Clusters and Weak Noncovalent Interactions

Defining the scope of a chapter for Reviews in Computational Chemistry
on clusters of molecules (and/or atoms) held together by hydrogen bonding,
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London dispersion forces, and/or similar interactions is not a simple task. Che-
mical bonding, whether noncovalent, covalent, ionic, or metallic, covers a
broad, continuous spectrum of electronic interactions and energies. Conse-
quently, the classification of a bond or interaction (e.g., double versus triple50

or covalent versus noncovalent51) is sometimes open to interpretation. As a
result, there is no unique criterion or set of criteria that can be used to define
weak interactions or noncovalent interactions. In the second volume of this
review series, Scheiner already notes this issue and highlighted the difficulties
associated with defining the hydrogen bond.46 Here, matters are even more
complicated because other weak interactions are also considered.

To limit the breadth of the present chapter, it focuses on the most com-
mon types of weakly bound clusters, namely those composed of neutral frag-
ments. (The following discussion also assumes the weakly bound clusters are
composed of closed-shell fragments that are in their ground electronic states
and dominated by a single Hartree–Fock (HF) reference function. It is cer-
tainly feasible to perform reliable computations on systems composed of
open-shell, excited state, or multireference fragments; however, by assuming
the monomers have a ‘‘well-behaved’’ electronic structure, we can focus on
computational methods that will accurately describe the weak noncovalent
interactions within a cluster.) Clusters containing one or two charged species
are mentioned (e.g., solvated ions or ion pairs). However, clusters with numer-
ous charged species (e.g., room temperature ionic liquids52) fall outside the
scope of this review. This emphasis still leaves a wide spectrum of weak che-
mical interactions that bind the clusters together (as depicted in Figure 1).

Figure 1 Weak noncovalent interactions between neutral fragments cover a wide
spectrum of interactions and energies.
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At one extreme (bottom of the figure), one finds complexes held together pri-
marily by dispersion forces (rare gas dimers, He nanodroplets, etc.). On the
opposite extreme (top of the figure) are clusters dominated by electrostatic
interactions such as hydrogen bonding (formic acid dimer, water clusters,
etc.). Of course, most interfragment interactions fall somewhere between these
two extremes. [In this work, the term interfragment (or intermonomer) inter-
action is used because it is more general than and implicitly includes both
interatomic and intermolecular interactions. Note that some researchers object
to the latter adjective when describing weakly bound clusters because it is
technically incorrect. For example, if (HF)3 is considered an independent
molecular species then, by definition, there can be only intramolecular interac-
tions.] A more detailed analysis of this continuum of weak noncovalent inter-
actions is presented below.

Given the current flurry of activity in the area of p-type interactions and
halogen bonding (a specific case of sigma-hole interactions), special attention
will be paid to these two types of weak interactions. In fact, an entire chapter in
this volume ofReviews inComputationalChemistry is dedicated to noncovalent p
interactions.49 It should be noted that, although most examples are for relatively
small (dimers, trimers, tetramers, and pentamers) homogeneous clusters, the
principles discussed here can readily be extended to larger, heterogeneous systems.

Computational Methods

Although a wide variety of theoretical methods is available to study
weak noncovalent interactions such as hydrogen bonding or dispersion forces
between molecules (and/or atoms), this chapter focuses on size consistent elec-
tronic structure techniques likely to be employed by researchers new to the
field of computational chemistry. Not surprisingly, the list of popular electro-
nic structure techniques includes the self-consistent field (SCF) Hartree–Fock
method as well as popular implementations of density functional theory
(DFT). However, correlated wave function theory (WFT) methods are often
required to obtain accurate structures and energetics for weakly bound clus-
ters, and the most useful of these WFT techniques tend to be based on
many-body perturbation theory (MBPT) (specifically, Møller–Plesset pertur-
bation theory), quadratic configuration interaction (QCI) theory, and
coupled-cluster (CC) theory.

This review concentrates on the fundamentals of supermolecule model
chemistries for clusters of atoms/molecules held together by weak chemical
forces. The principles behind the appropriate selection of theoretical method
and basis set for a particular class of weak noncovalent interactions provide
the foundation for understanding more complex computational schemes that
might require the user to specify more than just a method and/or basis set, such
as highly efficient fragmentation schemes [e.g., the effective fragment potential
(EFP) method,53,54 the fragment molecular orbital (FMO) method,55,56 the
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n-body decomposition (NBD) scheme,57 and the multicentered integrated
method (MC QM:QM or MC ONIOM) for clusters.58–60]

Some readers may have noticed that methods based on intermolecular per-
turbation theory such as symmetry-adapted perturbation theory (SAPT),61–64

have not been mentioned. These methods are not discussed in this chapter
because most versions of SAPT are actually 2-body methods. (See below for a
description of 2-body, 3-body, and many-body interactions in clusters.) SAPT is
not inherently limited to 2-body interactions; a 3-body implementation
exists.65–67 However, the author is not aware of higher order SAPT programs,
let alone a general n-body program for clusters composed of n fragments. While
SAPT can certainly be used to study trimers, tetramers, and larger clusters, such
applications require a great deal of a priori knowledge about the nonadditivity
(or cooperativity) in the system and are certainly not for novices.

Molecular mechanics methods are also omitted from the present discus-
sion for similar reasons. Although very sophisticated force fields are available
for water (including polarizable models), most force fields for weakly bound
clusters are essentially 2-body (dimer) potentials that have been adjusted
empirically to reproduce bulk-phase properties.68–71 This procedure leads to
very reliable descriptions of liquid water, but diminishes the quality of results
for small clusters. Although force fields that include 3-body interactions are
beginning to appear,69,70 the effects of higher order interactions (4-body,
5-body, etc.) are still untested. Furthermore, the composition of a weakly
bound cluster, not just its size, is a major concern with molecular mechanics
force fields. The highly refined potentials that have been developed for
water68,71 are not necessarily transferable to other weak noncovalent systems
(methanol, acetone, etc.).

WEAK NONCOVALENT INTERACTIONS

This section presents an overview of the nature of weak noncovalent
interactions between molecules (and atoms). Readers interested in more detail
are directed to classic references such as the 1954 text by Hirschfelder, Curtiss
and Bird,72 the 1971 book by Margenau and Kestener,73 the 1996 monograph
by Stone,4 as well as some more recent sources.7,27,31,74

Historical Perspective

Theoretical treatments of attractive forces between molecules (and/or
atoms) in the gas phase can be traced as far back as 1873 to the efforts by
van der Waals to describe the deviation of real gases from ideal behavior at
relatively high densities.75 By the early 1930s, theoretical explanations of
the origins of van der Waals’ attractive forces began to emerge from the likes
of Keesom,76,77 Debye,78,79 Falckenhagen,80 and London.81,82 This body of
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work established that there are four rigorously defined fundamental compo-
nents that contribute to interactions between a pair of uncharged molecules
or atoms: electrostatic, induction (sometimes referred to as polarization), dis-
persion, and exchange-repulsion83 (or simply exchange). The first two contri-
butions to the interaction energy were readily explained in terms of classical
electromagnetic theory. Interactions involving two permanent electrostatic
multipole moments (dipole, quadrupole, etc.) are relatively easy to understand
for anyone who has ever played with a pair of magnets; opposite poles (þ=�)
attract each other, and like poles (þ=þ and �=�) repel each other. Similarly,
adhering a balloon to a wall with static electricity provides a macroscopic ana-
log for induction. However, quantum mechanics was required to rationalize
the dispersion and exchange energies. The latter is a simple consequence of
the Pauli exclusion principle, but an explanation of the dispersion energy is
more involved.

London was the first to describe the dispersion interaction.81,82 Through
a quantum mechanical perturbation theory treatment of the interaction
energy, he demonstrated that, at second, order attractive terms can arise due
to the simultaneous electron correlation between two fragments even if they
possess no permanent electrostatic moment (e.g., a pair of rare gas atoms).
London dubbed the attraction dispersion forces because similar oscillator
strengths appear in equations describing the dispersion of electromagnetic
radiation (light). The attractive forces of these interactions are typically attrib-
uted to fluctuations (thermal or quantum mechanical) in the electron density
that give rise to an instantaneous dipole in one fragment that induces a dipole
in a neighbor. This semiclassical model was introduced after London’s initial
work, and its physical significance is not manifest since there are no expres-
sions in the quantum mechanical derivation that can be interpreted as interac-
tions between instantaneous dipoles. At the very least, this fluctuating charge
or electrodynamic model provides a useful mnemonic.

As discussed in Paresegian’s recent book,7 the modern view of dispersion
interactions has its roots in the the Casimir effect.84 Rather than charge fluc-
tuations, the phenomenon can be viewed in terms of zero-point electromag-
netic-field fluctuations in the vacuum as allowed by the Heisenberg
uncertainty principle ð�E�t � �h=2pÞ. Atoms and molecules can absorb
some of these frequencies, namely those frequencies that are resonant with
transitions between the quantum mechanical energy levels of the system as
determined by its electronic structure. This absorption of the electromagnetic
fluctuations gives rise to attractive forces between two bodies.

We now recognize that ‘‘empty space’’ is a turmoil of electromagnetic waves of all
frequencies and wavelengths. They wash through and past us in ways familiar from
watching the two-dimensional version, a buoy or boat bobbing in rough water.We
can turn the dancing charges idea around. From the vacuum point of view, imagine
two bodies, such as two boats in rough water or a single boat near a dock, pushed
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by waves from all directions except their wave quelling neighbor. The net result is
that the bodies are pushed together. You get close to a dock, you can stop rowing.
The waves push you in. We can think of electromagnetic modes between the two
bodies as the fluctuations that remain as tiny deviations from the outer turmoil.
The extent of quelling is, obviously, in proportion to the material-absorption spec-
tra. So we can think of absorption spectra in two ways: those at which the charges
naturally dance; those at which charge polarization quells the vacuum fluctuations
and stills the space between the [fragments].7

It will become evident in later sections that the nature of the weak non-
covalent interactions in a cluster dictate which computational methods will
produce accurate results. In particular, it is far more difficult to compute reli-
able properties for weakly bound clusters in which dispersion is the dominant
attractive component of the interaction. For example, Hartree–Fock supermo-
lecule computations are able to provide qualitatively correct data for
hydrogen-bonded systems like (H2O)2

85 even with very small basis sets, but
this approach does not even bind Ne2.

86 What is the origin of this inconsis-
tency? Dispersion is the dominant attractive force in rare gas clusters while
the electrostatic component tends to be the most important attractive contri-
bution near the equilibrium structure (H2O)2. As London’s work demon-
strated,81,82,87,88 dispersion interactions are inherently an electron correlation
problem and, consequently, cannot be described by Hartree–Fock computa-
tions.89 To this day, dispersion interactions continue to pose a significant
challenge in the field of computational chemistry, particularly those involving
systems of delocalized p electrons.49

Some Notes about Terminology

Because the van der Waals equation of state preceeded ‘‘The General
Theory of Molecular Forces,’’82 the interactions between molecules and/or
atoms became known collectively as van der Waals forces. From a historical
perspective, van der Waals interactions encompass the entire spectrum of
weak interactions depicted in Figure 1, from the dispersion forces holding a
He nanodroplet together to the hydrogen bonds in a cluster of water mole-
cules. Although many researchers today associate van der Waals forces only
with weak dispersion interactions, this review adopts the historical definition
of van der Waals interactions and uses the term to collectively refer to all weak
chemical interactions between uncharged molecules (and/or atoms).

Additional linguistic dilemmas are encountered in this area of research. For
example, these weak chemical forces are sometimes referred to as nonbonding
interactions despite meeting Pauling’s utilitarian definition of a chemical bond
introduced in 1939 (which is still one of themost useful andmost widely used):90

There is a chemical bond between two atoms or groups of atoms in the case
that the forces acting between them are such as to lead to the formation of an
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aggregate with sufficient stability to make it convenient for the chemist to consider
it as an independent molecular species.

The term noncovalent interaction does not completely resolve the matter
since ionic interactions (e.g., salt bridges) are frequently included in this cate-
gory, particularly in the biochemistry community.15 In this work, the moniker
weak noncovalent interaction is used to denote the continuum of weak chemi-
cal forces between electrically uncharged molecules (and/or atoms).

FUNDAMENTAL CONCEPTS: A TUTORIAL

Model Systems and Theoretical Methods

Because of their relatively small size and high symmetry, the cyclic
hydrogen fluoride clusters, ðHFÞn where n ¼ 3� 5, are very useful prototypes
for studying hydrogen bonding. In this section, these model systems will be
used to illustrate several aspects of computations on weakly bound clusters.
These planar hydrogen-bonded complexes have Cnh symmetry and are shown
in Figure 2. Their structures can be specified completely by three internal coor-
dinates: R(HF), which is the length of the HF covalent bond; R(FF), which is
the distance between neighboring F atoms; and y(HFF), which is the small
angle the H atoms make out of the ring formed by the F atoms.

The RHF method and aug-cc-pVDZ basis set have been adopted in this
tutorial for two practical reasons. All calculations can be run in a few minutes
on a reasonably modern desktop or laptop with a few hundred megabytes
of memory, and all results should be reproduced readily regardless of the elec-
tronic structure software package you happen to be using. In contrast, electro-
nic energies from DFT calculations will differ because the various electronic
structure programs often employ different numerical integration grids. It is
important to note that this particular model chemistry (RHF method and
aug-cc-pVDZ basis set) is not expected to give reliable results. Correlated
WFT methods such as second-order Møller–Plesset perturbation theory

Figure 2 Cyclic hydrogen fluoride trimer, (HF)3, tetramer, (HF)4, and pentamer, (HF)5,
are planar structures with C3h, C4h, and C5h symmetry, respectively.
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(MP2) or coupled-cluster methods would certainly provide more reliable
results, but they are not appropriate for a tutorial because the computations
become rather time consuming. Furthermore, matching results from correlated
WFT methods can be difficult for users not familiar with the frozen core or
deleted virtual approximations because some software packages correlate all
electrons by default while others exclude core electrons (i.e., adopt the frozen
core approximation) by default. Computations in this work employed spheri-
cal harmonic (5d, 7f , etc.) rather than Cartesian (6d, 10f , etc.) functions,
which gives 32 basis functions per HF monomer.

The geometrical parameters given in the top half of Table 1 for the HF
clusters are from RHF/aug-cc-pVDZ optimizations and have been rounded off
to three significant figures for bond lengths and two significant figures for bond
angles. Although the values differ appreciably from the ‘‘best estimates’’ of
Ref. 91, the bond lengths and angles are appropriate for the computational
methods adopted for this tutorial. The electronic energies of these fixed struc-
tures (i.e., single-point energies) listed in Table 1 are from RHF computations
with the aug-cc-pVDZ basis set. Step 1 in this tutorial is to reproduce the RHF/
aug-cc-pVDZ electronic energies in Table 1. Sample input files for several pop-
ular software packages are available online.92

Rigid Monomer Approximation

Frequently, computational studies of weakly bound clusters employ the
rigid monomer approximation (RMA). The RMA assumes that geometries of
the monomers do not change as they coalesce to form the cluster. Because
the interactions between the fragments of such clusters are, by their very defi-
nition, weak, the electronic structure, and hence the geometry, of the mono-
mers does not change appreciably. This approach can simplify dramatically
theoretical descriptions of the cluster because the intramolecular geometrical

Table 1 Geometrical Parameters and Electronic Energies of (HF)n, n ¼ 1; 3� 5a

Symmetry R(FF) R(HF) y(HFF) E

HF C1v n/a 0.900 n/a �100:033816

Fully Optimized Clusters

(HF)3 C3h 2.71 0.910 25 �300:120482
(HF)4 C4h 2.64 0.915 13 �400:169746
(HF)5 C5h 2.61 0.916 6.6 �500:216512

Rigid Monomer Approximation

(HF)3 C3h 2.72 0.900 26 �300:120162
(HF)4 C4h 2.65 0.900 13 �400:168826
(HF)5 C5h 2.63 0.900 7.1 �500:215113

aBond lengths (R) in Å, bond angles (y) in degrees, and electronic energies (E) in Eh are from
RHF/aug-cc-pVDZ calculations.
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parameters are fixed. For example, by employing the RMA, geometry optimi-
zations of weakly bound clusters need only consider the interfragment degrees
of freedom. For a system as simple as (H2O)2, the RMA already reduces the
full 12-dimensional problem to a more tractable 6-dimensional intermolecular
potential energy hypersurface.

This approximation is typically valid for clusters held together by hydro-
gen bonds or van der Waals forces because the geometrical distortions tend to
be modest and do not qualitatively change the structure of the monomers. As
can be seen in bottom half of Table 1, fixing the intramolecular R(HF) distance
at 0.900 Å for the HF trimer, tetramer, and pentamer has relatively little effect
on the optimized interfragment parameters [R(FF) changes by no more than
0.02 Å and y(HFF) by less than a degree]. This constraint also has relatively
little effect on the electronic energies of (HF)3, (HF)4, and (HF)5, which
increase by only � 1 mEh on average.

These limited results demonstrate that the RMA can be accurate even for
relatively strong hydrogen bonds, which can induce some of the largest geome-
trical distortions in weakly bound molecular clusters. The effect of the RMA
on interaction energies will be discussed next. However, the RMA can break
down if large qualitative geometrical changes occurs as the complex forms
(e.g., conformational changes or isomerization).

Supermolecular Dissociation and Interaction Energies

Within the supermolecule approach, the dissociation energy ðDeÞ or inter-
action energy ðEintÞ of a cluster is obtained by calculating the energy difference
between the cluster and the noninteracting fragments. This energy difference is
depicted in Figure 3. Note thatDe andEint are essentially the same quantity. The
only significant difference is the sign ðDe ¼ �EintÞ. A more subtle, technical dis-
tinction is that the term dissociation energy should be applied only to minima on
the potential energy surface (PES) while interaction energies are more general
and can describe any point on the surface.

When using a size-consistentmethod, the dissociation of homogeneous sys-
tem such as ðHFÞn into n identical HF monomers [ðHFÞn ! nHF] can be deter-
mined by computing the energy of the cluster and the energy of the monomer:

Eint ¼ E½ðHFÞn� � nE½HF� ½1�

In the more general case of a heterogeneous cluster composed of N frag-
ments (f1f2f3 . . . fN ! f1 þ f2 þ f3 þ � � � þ fN), up to N þ 1 computations need
to be performed to determine Eint or De:

Eint ¼ E½f1f2f3 . . . fN� � E½f1� � E½f2� � E½f3� � � � � � E½fN�

¼ E½f1f2f3 . . . fN� �
XN
i¼1

E½fi� ½2�
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Figure 3 Interaction energies (Eint) and dissociation energies (De) are simply the energy
difference between the cluster and the isolated fragments.

For example, to obtain Eint for the HF� � �H2O� � �CH3OH trimer requires four
separate computations: E[HF], E[H2O], E[CH3OH], as well as the electronic
energy of the cluster. The number of computations can be reduced if some of
the fragments are identical (e.g., HF� � �H2O� � �HF).

Interaction Energies: Rigid Monomers vs. Fully Optimized Clusters
The interaction energies reported toward the left side of Table 2 for the

HF clusters were calculated with the electronic energies from Table 1 and
Eq. [2] (which reduces to Eq. [1] for these homogeneous HF clusters). A simple
conversion factor was used to convert Eint from Eh to kilojoule per mole
(1Eh � 2625:5kJmol�1). Step 2 of this tutorial is to calculate the interaction
energies on the left side of Table 2.

Because the RMA had relatively little effect on the electronic energies of
the HF clusters (Table 1), it is not surprising that the approximation has only a
modest effect on the interaction energies (Table 2). For all three clusters, the
magnitude of Eint and ECP

int decreases slightly when the RMA is employed.
Comparison of the values for Eint from the top of Table 2 to those at the bot-
tom reveals that the change does not exceed 3% [�49:97 vs. �49:13 or 1.7%
for (HF)3, �90:53 vs. �88:12 or 2.7% for (HF)4 and �124:53 vs. �120:86 or
2.9% for (HF)5], which is tolerable for many applications. For systems with
even smaller cluster-induced geometrical perturbations, such as p-type van
der Waals interactions, the RMA has almost no discernable effect on the inter-
action energies.93

Note that the RMA must, by definition, decrease the magnitude of the
interaction energy (for variational electronic structure methods). This result
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is readily illustrated with Figure 3. Although the RMA does not affect the
asymptote associated with the noninteracting fragments, it does shift the bot-
tom of the well up because the cluster is not allowed to reach its optimal geo-
metry, which necessarily decreases the magnitude of Eint and De.

Counterpoise Corrections for Basis Set Superposition Error

The procedure outlined in Eq. [2] introduces an inconsistency when
small, finite basis sets are used. Effectively, the monomers are using a larger
basis set when the computation is performed on the cluster than when the
computation is performed on the isolated monomer fragment. In the cluster
calculation, monomer A can utilize the basis functions on monomers B, C,
etc. When the computation is performed on the isolated monomer A, those
basis functions are no longer available. This inconsistency was noted as early
as 196894 and later termed basis set superposition error (BSSE).95 A tutorial
covering the theory and practice of basis set superposition errors has appeared
earlier in this book series.96 The most common procedure to correct for BSSE
is the counterpoise (CP) procedure developed independently by Jansen and
Ros in 196997 and Boys and Bernardi in 1970.98 BSSE and CP corrections
are discussed in greater detail below, and this portion of the tutorial merely
demonstrates how to perform the necessary computations. Before proceeding,
however, it is worth noting that BSSE is not limited to weakly interacting sys-
tems. It is a concern in any type of dissociation process (such as breaking a
covalent bond) where the energies of fragments are compared to those of
the whole system.

Table 2 Interaction Energies of (HF)n, n ¼ 3� 5 Computed at the RHF/aug-cc-pVDZ
Level with (ECP

int ) and without (Eint) a Counterpoise Correctiona

Eint
b E½HF�cluster basiscluster geom E½HF�monomer basis

cluster geom ECP
int

c

Fully Optimized Clusters

(HF)3 �49:97 �100:034072 �100:033695 �47:00
(HF)4 �90:53 �100:034030 �100:033543 �85:41
(HF)5 �124:53 �100:034011 �100:033506 �117:90

Rigid Monomer Approximation

(HF)3 �49:13 �100:034175 d �46:30
(HF)4 �88:12 �100:034287 d �83:17
(HF)5 �120:86 �100:034292 d �114:61

aThe monomer electronic energies for the counterpoise correction are also listed (E½HF�).
Electronic energies are in Eh, and the interaction energies are in kJmol�1.
bObtained via application of Eq. [1] or [2] to energies in Table 1.
cObtained via application of Eq. [7] or [8] to energies in Tables 1 and 2.
dEqual to monomer energy from Table 1 which implies ERLX ¼ 0 in Eq. [7].
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In this part of the tutorial, the standard Boys–Bernardi CP correction is
applied to the interaction energies of the HF clusters in Figure 2 using the geo-
metrical parameters in Table 1. Unfortunately, these corrections call for some
rather hideous notation that denotes both the geometry and the basis set
employed for computations on the monomers. The basic goal of the CP cor-
rection is to compute the energy of the monomer in the basis set of the cluster
ðE½HF�cluster basismonomer geomÞ. This is readily accomplished within the rigid monomer
approximation because the geometry of the monomer is the same in the com-
plex as in the isolated fragment ðE½HF�cluster basismonomer geom ¼ E½HF�cluster basiscluster geomÞ, and the
CP-corrected interaction energy within the RMA is simply

ECP;RMA
int ¼ E½ðHFÞn� � nE½HF�cluster basiscluster geom ½3�

Again, this expression for the HF clusters can readily be generalized for the
case of a heterogeneous cluster composed of N fragments:

ECP;RMA
int ¼ E½f1f2f3 . . . fN� �

XN
i¼1

E½fi�cluster basiscluster geom ½4�

Let us use (HF)3 in Figure 2 to illustrate the procedure. To perform a
CP correction on the bottom HF unit in the trimer, the computations must
place H and F basis functions, but not nuclei or electrons, at the appropriate
coordinates of the other HF monomers at the top of the figure. In most com-
putational chemistry programs this is accomplished with the use of ghost
atoms or ghost orbitals. (Note, dummy atoms are also used to designate
coordinates where nuclei are not present, but dummy atoms do not place
basis functions at those locations.) Frequently, the input file for the CP-
corrected monomer computation is created by modifying the input file
from a cluster calculation such that the charges of all atoms are set to zero
(i.e., the ghost atoms) except those in the monomer of interest. Because each
computational chemistry software program has its own set of keywords for
the specification of ghost atoms and nuclear charge, some sample input files
for the CP corrections to the ðHFÞn interaction energies are available
online.92

When the monomers are allowed to relax as the complex forms, the
procedure becomes a bit more complicated because there is no straightfor-
ward, consistent manner by which a computation on the optimized mono-
mer can be performed in the basis set of the cluster. Consequently,
E½HF�cluster basismonomer geom 6¼ E½HF�cluster basiscluster geom when the RMA is not employed. In
other words, the energy of the monomer in the cluster basis set is too
high (too positive) because the monomer is not at its optimal geometry.
This overestimation of the monomer energy can be corrected easily by
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calculating the energy liberated as the distorted monomers (complex geom)
relax to their optimal structures in the (monomer geom) in the monomer
basis set,

ERLX½HF� ¼ E½HF�monomer basis
monomer geom � E½HF�monomer basis

cluster geom ½5�

or more generally

ERLX½fi� ¼ E½fi�monomer basis
monomer geom � E½fi�monomer basis

cluster geom ½6�

Comparing the nearly optimal energy of the HF monomer in Table 1 to
E½HF�monomer basis

cluster geom in Table 2 reveals that the monomer energies at the distorted
cluster geometries are too high by a range of roughly 0:1mEh for the trimer to
0:3mEh for the pentamer. This relaxation energy (ERLX) can then be used to
correct the monomer contributions to the CP-corrected interaction energy:

ECP
int ¼E½ðHFÞn��nðE½HF�cluster basiscluster geomþERLX½HF�Þ

¼E½ðHFÞn��nðE½HF�cluster basiscluster geomþE½HF�monomer basis
monomer geom�E½HF�monomer basis

cluster geom Þ ½7�

Returning to the general case of a heterogeneous cluster composed of N frag-
ments, an equivalent expression is obtained by summing over the fragments of
the system:

ECP
int ¼ E½f1f2f3 . . . fN� �

XN
i¼1

ðE½fi�cluster basiscluster geom þERLX½fi�Þ

¼ E½f1f2f3 . . . fN� �
XN
i¼1

ðE½fi�cluster basiscluster geom þE½fi�monomer basis
monomer geom �E½fi�monomer basis

cluster geom Þ

½8�

Note that when the RMA is applied, ERLX vanishes since E½fi�monomer basis
monomer geom ¼

E½fi�monomer basis
cluster geom so that Eq. [8] reduces to Eq. [4] (and Eq. [7] reduces to Eq. [3]).

Step 3 in this tutorial is to reproduce the RHF/aug-cc-pVDZ electronic
energies in Table 2. Sample input files for several popular software packages
are available online.92 To get the most out of this tutorial, it is recommended
that you do not utilize features in some software packages that automatically
perform the CP corrections for you. Step 4 of this tutorial is to calculate the
interaction energies on the right side of Table 2 by applying Eq. [7] (or more
generally Eq. [8]) to the electronic energies in Tables 1 and 2.
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Interaction Energies: CP Corrected vs. CP Uncorrected
The rightmost column of Table 2 contains the CP-corrected interaction

energies. The values of ECP
int were obtained by applying Eq. [8] to the electro-

nic energies in Tables 1 and 2. With the relatively small aug-cc-pVDZ basis
set, the BSSE at the RHF level is nearly 3 kJmol�1 (or 6%) for (HF)3, and it
creeps up to more than 6 kJmol�1 (or 5%) for (HF)5. These values can change
dramatically when different theoretical methods and/or basis sets are
employed.

The magnitude of ECP
int is smaller than that of Eint for all three clusters. As

with the RMA (discussed above), CP corrections for the BSSE also tend to
decrease the magnitude of the interaction energy but for a different reason.
With CP corrections, it is the monomer calculation that changes rather than
the cluster calculation. Consequently, the bottom of the well in Figure 3 is
unaffected by the procedure. The asymptote, however, is generally shifted
downward because the larger basis set lowers the energies of the monomers.
While this trend ðjECP

int j < jEintjÞ is generally true of most WFT conventional
methods, CP corrections can actually increase the magnitude of the interaction
energy when using resolution of the identity or techniques that employ auxili-
ary basis sets.99

A cautionary note concerning the deleted virtual approximation and CP
corrections is offered. For appropriately constructed basis sets, high-lying
unoccupied orbitals can be excluded from post-Hartree–Fock correlated com-
putation in the same manner that low-lying core orbitals are omitted in the
frozen core approximation. When performing monomer computations in the
basis set of the cluster (particularly the heterogeneous variety), the ghost orbi-
tals can sometimes have higher energies than the virtual orbitals centered on
the monomer of interest. In such cases, most default procedures for the deleted
virtual approximation will exclude the wrong virtual orbitals and special care
must be taken to ensure the correct unoccupied orbitals are deleted (such as by
reordering the orbitals).

Two-Body Approximation and Cooperative/Nonadditive
Effects

Interactions in weakly bound clusters can frequently be dominated by
2-body interactions between pairs of fragments within the system. In other
words, the sum of the interactions between each pair of fragments within
the cluster can be used to approximate Eint. Conceptually, this 2-body approx-
imation is straightforward when presented within the rigid monomer approx-
imation because the geometries of the isolated monomers (½f1�, ½f2� . . . ½fN�)
are identical to the monomer geometries in the cluster (½f �1 �, ½f �2 � . . . ½f �N�). (In
this section, an asterisk denotes that the fragment or group of fragments is
at the cluster geometry.) For a trimer f1f2f3, the pairwise or 2-body interaction
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energy (E2-body
int ) is simply the sum of the interaction energies of each pair of frag-

ments (f1f
�
2 , f1f

�
3 , and f2f

�
3 ) within the cluster. This RMA prescription for a tri-

mer can be extended readily to a cluster of arbitrary size,N, and composition in
which there are N

2

� � ¼N!=ð2!ðN � 2Þ!Þ ¼NðN � 1Þ=2 unique pairwise interac-
tions:

E2-body
int ½f1f2 . . . fN� ¼

XN�1

i¼1

XN
j>i

E½fif �j � � E½f �i � � E½f �j � ½9�

The pairwise approximation tends to be accurate in weakly coupled sys-
tems. For example, Tauer and Sherrill demonstrated that more than 98% of
the interaction energy of various benzene tetramer structures can be recovered
by simply adding together the pairwise interactions (or ‘‘dimers’’) in the sys-
tem.100 Despite ignoring higher order cooperative effects (3-body and 4-body
in this case), E2-body

int differs from Eint by no more than 2% for the benzene tet-
ramer configurations examined in the study. Because the higher order contri-
butions account for deviations between the pairwise additive 2-body
approximation and Eint, they are also frequently called nonadditive or coop-
erative effects (or just the nonadditivity or cooperativity). These many-body
terms will be defined more precisely in the next section.

The nonadditivity tends to increase for more strongly coupled systems
(sometimes dramatically), and, consequently, the quality of the 2-body approx-
imation deteriorates.101,102 In clusters of HF and/or H2O, the nonadditivity
can account for more than half of Eint, which necessarily implies that the error
associated with the 2-body approximation can exceed 50%.59 This section of
the tutorial will use (HF)3, (HF)4, and (HF)5 to demonstrate the procedure for
calculating these 2-body interactions as well as higher order (3-body, . . . N-
body) contributions via a many-body decomposition of Eint.

Many-Body Decomposition
The most common rigorous many-body decomposition scheme for

weakly bound clusters is based upon the approach introduced by Hankins,
Moskowitz, and Stillinger in 1970.103 Two lucid descriptions of the procedure
can be found in Ref. 104 and 105. Technically, a many-body decomposition
of Eint decomposes the energy of the cluster E½f1f2 . . . fN� into 1-body (E1),
2-body (E2), . . ., N-body (EN) contributions:

Eint ¼ E½f1f2f3 . . . fN� �
XN
i¼1

E½fi�

¼ fE1 þ E2 þ E3 þ � � � þ ENg �
XN
i¼1

E½fi� ½10�
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Each n-body term is obtained by adding together the energies of each unique
subset of n fragments within the cluster and subtracting from that the lower
order (1-body, 2-body, . . ., (n� 1)-body) contributions. The first-order correc-
tion is merely a sum of ‘‘monomer’’ energies in the cluster:

E1 ¼
XN
i¼1

E½f �i � ½11�

Note that the monomer energies (at the cluster geometry) in this summation
can be combined with monomer energies (at monomer geometry) from the
summation in Eq. [10] to obtain the energy associated with the distortion of
the monomers from their optimal structure to their geometry in the cluster
(much like the relaxation energy for CP corrections in Eq. [6]). By definition,
the contribution of EDIST to the interaction energy is positive (net repulsive
effect) when the clusters are fully optimized while EDIST ¼ 0 in the rigid mono-
mer approximation:

EDIST ¼
XN
i¼1

ðE½f �i � � E½fi�Þ ½12�

Eint ¼ EDIST þ E2 þ E3 þ � � � þ EN ½13�

The second-order term is obtained from the energies of each of the
N
2

� � ¼ NðN � 1Þ=2 unique pairs of fragments (or ‘‘dimers’’) from each of

which 2
1

� �
1-body contributions must be subtracted:

E2 ¼
XN�1

i¼1

XN
j>i

�2E½fif �j � ½14�

�2E½fif �j � ¼ E½fif �j � � ðE½f �i � þ E½f �j �Þ ½15�

One should recognize this expression for E2 since it is identical to the 2-body
interaction energy from Eq. [9] (i.e., E2 ¼ E2-body

int ). This relationship provides
a rigorous definition of the nonadditivity or cooperativity:

Eint ¼ EDIST þ E2-body
int þ E3 þ � � � þ EN

¼ EDIST þ E2-body
int þ dEnonadd ½16�

¼ EDIST þ Emany-body
int ½17�
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Continuing to the third-order expression gives N
3

� � ¼ NðN � 1ÞðN � 2Þ=6
unique ‘‘trimers.’’ There are 3

2

� �
2-body and 3

1

� �
1-body contributions that

must be removed from each trimer energy:

E3 ¼
XN�2

i¼1

XN�1

j>i

XN
k>j

�3E½fifjf �k � ½18�

�3E½fifjf �k � ¼E½fifjf �k �
�ð�2E½fif �j �þ�2E½fif �k �þ�2E½fjf �k �Þ�ðE½f �i �þE½f �j �þE½f �k �Þ ½19�

For the 4-body contribution, there are N
4

� �
‘‘tetramer’’ energies from each of

which 4
3

� �
3-body, 4

2

� �
2-body, and 4

1

� �
1-body terms are subtracted:

E4 ¼
XN�3

i¼1

XN�2

j>i

XN�1

k>j

XN
l>k

�4E½fifjfkf �l � ½20�

�4E½fifjfkf �l � ¼E½fifjfkf �l ��ð�3E½fifjf �k �þ�3E½fifjf �l �þ�3E½fifkf �l �
þ�3E½fjfkf �l �Þ�ð�2E½fif �j �þ�2E½fif �k �þ�2E½fif �l ��2E½fjf �k �
þ�2E½fjf �l �þ�2E½fkf �l �Þ� ðE½f �i �þE½f �j �þE½f �k �þþE½f �l �Þ ½21�

A new indexing notation is introduced to help provide a generalized
expression for the n-body contribution to the (interaction) energy of a cluster
withN components. The indices i; j; k; . . . are replaced with i1; i2; i3; . . . ; in�1; in
to emphasize that this n-body component, En, contains n nested summations

giving rise to N
n

� � ¼ N!=ðn!ðN � nÞ! terms:

En ¼
XN�nþ1

i1¼1

XN�nþ2

i2>i1

� � �
XN�1

in�1>in�2

XN
in>in�1

�nE½fi1fi2 fi3 . . . fin�1
f �in � ½22�

Again, each �nE term is obtained by removing the lower order contributions
from the electronic energy of the n-mers composed of fragments

fi1fi2fi3 . . . fin�1
fin . That is, one must subtract n

1

� �
1-body terms, n

2

� �
2-body

terms, . . ., n
n�1

� �ðn� 1Þ-body terms from E½fi1fi2fi3 . . . fin�1
f �in �. To denote these

terms; the indices a1; a2; . . . ; an�1 are used to run over the values of a particular
set of fragment indices, S ¼ fi1; i2; i3; . . . ; in�1; ing. Note that the index aj cor-
responds to the jth element in S and, therefore, fragment fij . It does not neces-
sarily have anything to do with fragment fj. This is a subtle but important
distinction. For example, f1 does not appear in�3E½f3f5f7� even though a loops
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over 1, 2, 3 to give ia1 ¼ 3, ia2 ¼ 5, and ia3 ¼ 7.

�nE½fi1fi2fi3 . . . fin�1
f �in �

¼E½fi1 fi2fi3 . . . fin�1
f �in �

�
Xn
a¼1

E½f �ia �

�
Xn�1

a1¼1

Xn
a2>a1

�2E½fia1 f �ia2 �

�
Xn�2

a1¼1

Xn�1

a2>a1

Xn
a3>a2

�3E½fia1 fia2 f �ia3 �

� � � �

�
XX

� � �
Xn

1�a1<a2���<an�2

�n�2E½fia1 fia2 fia3 . . . f �ian�2
�

�
XX

� � �
XXn

1�a1<a2���<an�2<an�1

�n�1E½fia1 fia2 fia3 . . . fian�2
f �in�1

� ½23�

By expanding �2E;�3E; . . . ;�nE, the expressions for the components of
the cluster energy (and therefore interaction energy via Eq. [10] and [13]) can
be simplified. In the following form, it is easier to see a connection between
this many-body decomposition and the inclusion–exclusion principle (also
known as the sieve principle) from combinatorial mathematics:

E2 ¼
XN�1

i¼1

XN
j>i

E½fif �j �

� ðE½i�� þ E½j��Þ ½24�

E3 ¼
XN�2

i¼1

XN�1

j>i

XN
k>j

E½fifjf �k �

� ðE½fif �j � þ E½fif �k � þ E½fjf �k �Þ
þ ðE½f �i � þ E½f �j � þ E½f �k �Þ ½25�

E4 ¼
XN�3

i¼1

XN�2

j>i

XN�1

k>j

XN
l>k

E½fifjfkf �l �

� ðE½fifjf �k � þ E½fifjf �l � þ E½fifkf �l � þ E½fjfkf �l �Þ
þ ðE½fif �j � þ E½fif �k � þ E½fif �l � þ E½fjf �k � þ E½fjf �l � þ E½fkf �l �Þ
� ðE½f �i � þ E½f �j � þ E½f �k � þ E½f �l �Þ ½26�
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Again, a general expression for En can be obtained in the same manner from
Eq. [22]:

En ¼
XX

� � �
XXXN

1�i1<i2���<in�2<in�1<in

E½fi1fi2fi3 . . . fin�2
fin�1

f �in �

þ ð�1Þ1
XX

� � �
XXN

1�i1<i2���<in�2<in�1

E½fi1fi2fi3 . . . fin�2
f �in�1

�

þ ð�1Þ2
XX

� � �
XN

1�i1<i2���<in�2

E½fi1 fi2fi3 . . . f �in�2
�

þ � � �

þ ð�1Þn�3
XN�2

i1¼1

XN�1

i2>i1

XN
i3>i2

E½fi1 fi2f �i3 �

þ ð�1Þn�2
XN�1

i1¼1

XN
i2>i1

E½fi1f �in2 �

þ ð�1Þn�1
XN
i1¼1

E½f �i1 � ½27�

Application to HF Trimer, Tetramer, and Pentamer
Because the cyclic ðHFÞn clusters (n ¼ 3� 5) used in this tutorial are sym-

metric, the number of computations required to perform a many-body decom-
position of the interaction energy is reduced dramatically. In general,
application of the decomposition procedure to a pentamer could require as
many as 25 additional calculations: 5

4

� � ¼ 5 for the tetramer subsets, 5
3

� � ¼ 10
for the trimer subsets, and 5

2

� � ¼ 10 for the dimer subsets. For (HF)5, however,
symmetry reduces this to 5 calculations (1 unique tetramer computation, 2
unique trimer computations, and 2 unique dimer computations).

For (HF)3, there is only a single unique 2-body energy since E½f1f �2 � ¼
E½f1f �3 � ¼ E½f2f �3 � while there are two such quantities for (HF)4 and (HF)5
(E½f1f �2 � ¼ E½f1f �4 � ¼ E½f2f �3 � ¼ E½f3f �4 � � E½fif �j � and E½f1f �3 � ¼ E½f2f �4 � � E½fif �k �).
These values are reported Table 3 for both relaxed and rigid monomers. One
finds a single unique 3-body energy (E½f1f2f �3 �¼E½f1f2f �4 �¼E½f1f3f �4 �¼ E½f2f3f �4 �)
for (HF)4 but two for (HF)5 (E½f1f2f �3 �¼E½f1f2f �5 �¼E½f1f4f �5 �¼ E½f2f3f �4 � ¼
E½f3f4f �5 � �E½fifjf �k � and E½f1f2f �4 �¼E½f1f3f �4 �¼E½f1f3f �5 �¼ E½f2f3f �5 �¼ E½f2f4f �5 ��
E½fifjf �l �). Of course, (HF)5 has only one unique 4-body energy, which is given
in Table 3 along with all of the 2- and 3-body energies.

Step 5 in this tutorial is to reproduce the RHF/aug-cc-pVDZ electronic
energies in Table 3. Sample input files for several popular software packages
are available online.92 It is worth noting that these computations could just as
easily be performed in the entire basis set of the complex, thereby yielding a
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CP-corrected many-body decomposition. However, that would increase the
time of the computations for this tutorial substantially.

The monomer energies from Tables 1 and 2 have been used to determine
the EDIST values (Eq. [12]) shown in Table 4. (Again, a conversion factor of
1Eh � 2625:5 kJmol�1 has been adopted.) For these symmetric cyclic ðHFÞn
(n ¼ 3� 5) clusters, EDIST is simply n	 ðE½HF�� � E½HF�Þ ¼ n	 ð�ERLXÞ.
The many-body interaction energy can then be calculated from Eint and EDIST

via Eq. [17]. Recall that within the RMA, EDIST ¼ 0 so that in the bottom
half of Table 4 Emany-body

int is the same as Eint.
The 2-body through 5-body contributions to the many-body interaction

energy shown in Table 4 are relatively simple to compute because there are
only a few symmetry-unique terms. As mentioned earlier, there exist at most
two unique 2-body energies [in (HF)4 and (HF)5] and two unique 3-body energies
[in (HF)5]. Furthermore, all monomers in a given cluster are identical, and the cor-
responding energies can be obtained from Table 2 (E½HF�� ¼ E½HF�monomer basis

cluster geom ).

Table 3 Unique Many-Body Electronic Energies (in Eh) for (HF)n, n ¼ 3� 5
Computed at the RHF/aug-cc-pVDZ Level

E½fif �j � E½fif �k � E½fifjf �k � E½fifjf �l � E½fifjfkf �l �
Fully Optimized Clustersa

ðHFÞ3b �200:072923 — — — —

ðHFÞ4b �200:072748 �200:069328 �300:116161 — —

ðHFÞ5b �200:072425 �200:068570 �300:115003 �300:109494 �400:160289

Rigid Monomer Approximationc

ðHFÞ3b �200:073038 — — — —

ðHFÞ4b �200:073100 �200:069755 �300:116246 — —

ðHFÞ5b �200:072990 �200:069093 �300:115406 �300:110113 �400:160256

aSee Tables 1 and 2 for 1-body energies.
bSee Table 1 for the full n-body energies for ðHFÞn.
cSee Table 1 for 1-body energy.

Table 4 Many-Body Decomposition of Eint for (HF)n, n ¼ 3� 5a

Edist Emany-body
int E2 E3 E4 E5 dEnonadd

Fully Optimized Clusters

(HF)3 þ0:96 �50:93 �43:58 �7:34 — — �7:34
(HF)4 þ2:87 �93:40 �71:23 �20:65 �1:51 — �22:17
(HF)5 þ4:08 �128:61 �91:52 �33:43 �3:38 �0:27 �37:08

Rigid Monomer Approximation

(HF)3 — �49:13 �42:58 �6:55 — — �6:55
(HF)4 — �88:12 �68:56 �18:27 �1:28 — �19:55
(HF)5 — �120:86 �89:51 �28:45 �2:66 �0:24 �31:35

aAll values were computed at the RHF/aug-cc-pVDZ level and are reported in kJmol�1.
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Consequently, Eq. [27] and the preceding equations end up with fairly simple
forms for ðHFÞn, n ¼ 3� 5:

EDIST½HFn� ¼ �n	 ERLX½HF� ½28�
E2½HF3� ¼ 3E½fif �j � � 6E½HF�� ½29�
E2½HF4� ¼ 4E½fif �j � þ 2E½fif �k � � 12E½HF�� ½30�
E2½HF5� ¼ 5E½fif �j � þ 5E½fif �k � � 20E½HF�� ½31�
E3½HF4� ¼ 4ðE½fifjf �k � � f2E½fif �j � þ E½fif �k �g þ 3E½HF��Þ ½32�
E3½HF5� ¼ 5ðE½fifjf �k � þ E½fifjf �l � � 3fE½fif �j � þ E½fif �k �g þ 6E½HF��Þ ½33�
E4½HF5� ¼ 5ðE½fifjfkf �l � � 2fE½fifjf �k � þ E½fifjf �k �g

þ 3fE½fif �j � þ E½fif �k �g � 4E½HF��Þ ½34�

The full n-body contribution to each ðHFÞn cluster can be obtained in
different ways, the easiest of which is to subtract the lower order contributions
(E2;E3; . . . ;En�1) from Emany-body

int . Alternatively, Eq. [27] can be simplified in
the same manner as the lower order terms:

E3½HF3� ¼ E½HF3� � 3E½fif �j � þ 3E½HF�� ½35�
E4½HF4� ¼ E½HF4� � 4E½fifjf �k � þ 4E½fif �j � þ 2½fif �k � � 4E½HF�� ½36�
E5½HF5� ¼ E½HF5� � 5E½fifjfkf �l � þ 5E½fifjf �k � þ 5½fifjf �l �

� 5E½fif �j � � 5½fif �k � þ 5E½HF�� ½37�

Although every contribution to the interaction energies of these HF clus-
ters are attractive, this does not always hold. In certain cases, some of the
many-body components may actually be repulsive.100 In step 6, you should
calculate components of Eint in Table 4 (EDIST;E2;E3;E4;E5) by applying
Eqs. [12], [16], [17], [25]–[27] to the electronic energies in the Tables 1, 2,
and 3.

Size Consistency and Extensivity of the Energy

Energy is an extensive property. This fundamental thermodynamic prin-
ciple is introduced early in most general chemistry textbooks, and it provides
the foundation for the supermolecule description of intermolecular interac-
tions. Unfortunately, not all electronic structure techniques are size con-
sistent106 (or more generally size extensive107). That is, the energy computed
by some methods does not scale properly with the number of noninteracting
fragments. Readers interested in more detail may be interested in the sections
discussing size consistency and extensivity in the review of coupled-cluster
theory by Crawford and Schaefer.108

60 Reliable Electronic Structure Computations



To illustrate the point, consider two noninteracting (i.e., well-separated)
HF molecules. (This can effectively be achieved in a computation by placing
the HF molecules on the z axis and separating them by � 1000 Å so that the
F atoms are at 0 and 1000 Å while the H atoms are at 0.900 and 1000.900
Å.) Using the data in Table 1, we know the electronic energy of a single HF
molecule is �100:033816Eh when computed with the SCF method and the
aug-cc-pVDZ basis set. As you would expect, the corresponding energy
of two noninteracting HF molecules (i.e., separated by 1000 Å) is exactly
2	�100:033816 ¼ �200:067632Eh but only because the SCF method is
size consistent. Truncated configuration interaction (CI) methods such as the
one including only single and double configurations (CISD) are not. The
CISD/aug-cc-pVDZ energy is �100:253275Eh if all electrons are correlated
while that of two monomers separated by 1000 Å is �200:488703Eh, which
is significantly different than 2	�100:253275 ¼ �200:506551Eh. As men-
tioned in the Introduction, this review only focuses on size-consistent electronic
structure techniques. In the final step (step 7) of this tutorial, you should com-
pute the SCF and CISD (all electrons correlated) energies of two HF monomers
separated by 1000 Å. Compare these energies to those of a single monomer.

Summary of Steps in Tutorial

1. Reproduce electronic energies in Table 1.
2. Calculate Eint values on the left side of Table 2 (Eq. [2]).
3. Reproduce electronic energies in Table 2.
4. Calculate ECP

int values on the right side of Table 2 (Eq. [8]).
5. Reproduce electronic energies in Table 3.
6. Calculate components of Eint in Table 4 (Eqs. [12], [16], [17], [25]–[27]).
7. Reproduce the electronic energies discussed in the proceedings section and

check the size consistency of the results obtained with the SCF and CISD
methods.

Sample input files for various software packages are available online.92 If the elec-
tronic energies that you compute do not agree with those presented here, make
sure that the energy is converged to at least eight decimal places in the SCF pro-
cedure and that tolerances for integral screening are no larger than 10�10. Addi-
tionally, discrepancies on the order of 1	 10�6 Eh have been observed in some
cases that can be attributed to differences in the conversion factor used to change
angstroms to bohrs. Finally, rounding errors may lead to discrepancies on the
order of 0:01 kJmol�1 for the other data presented in Tables 2 and 4.

HIGH-ACCURACY COMPUTATIONAL STRATEGIES

Although quantum mechanical studies of weak interactions can be
traced back to Slater’s 1929 work on He,109 the first supermolecule ab initio
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investigations of hydrogen bonding (reminiscent of those outlined above) were
conducted approximately four decades ago.85,110,111 Accuracy has been and
continues to be one of the major challenges facing theoreticians (as well as
experimentalists) working with weakly bound clusters. Consider, for example,
covalent versus noncovalent interactions. An error of a few kilojoules per mole
(chemical accuracy) per covalent bond may be acceptable because it typically
represents a relative error of just a few percent. However, for weak noncovalent
bonding an absolute error of a few kilojoules per mole could easily amount to a
relative error in excess of 100%. Fortunately, by carefully applying the arsenal
of sophisticated electronic structure techniques available today, it is possible to
reduce the major sources of error (basis sets and electron correlation) to accep-
table levels.

One of the most important lessons learned over the years is that not all
weak noncovalent interactions are created equal. A particular quantum model
chemistry that provides quantitatively reliable results for hydrogen bonding
may yield qualitatively incorrect results for something like p stacking. For
example, second-order Møller–Plesset (MP2) perturbation theory and several
popular density functional (DFT) techniques can characterize the water dimer
and trimer with a reasonable degree of accuracy. However, the former method
overestimates p-stacking interactions in benzene by a factor of 2, while the lat-
ter fail to yield any sort of attractive interaction between two stacked benzene
molecules. Consequently, it is imperative that ‘‘the right answer’’ is obtained
for ‘‘the right reason’’ rather than relying on (or hoping for) some sort of error
cancellation. Fortunately, well-established procedures exist by which one can
converge to ‘‘the right answer.’’ The most common of these convergent
approaches to high-accuracy computational chemistry systematically improve
(i) the correlated electronic structure techniques and (ii) the atomic orbital
(AO) basis sets. This dual extrapolation scheme is depicted in Figure 4.

Figure 4 Example of convergent quantum chemistry scheme that employs AO basis sets
that systematically approach the 1-particle or complete basis set (CBS) limit along with
correlated electronic structure techniques that systematically approach the n-particle or
full configuration interaction (FCI) limit.
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Primer on Electron Correlation

The first component of convergent approaches to quantum chemistry is
the computational procedure used to treat the electron correlation problem
(depicted along the horizontal axis of Figure 4). A tutorial on treating electron
correlation has been published earlier in this book series.112 References 113 and
114 provide two additional excellent overviews of the subject. In any system
with n interacting bodies (classical or quantum), the instantaneous motions of
the bodies are correlated. Except for the simplest cases (e.g., certain one-electron
systems), exact solutions to this n-particle (or many-body) problem cannot be
obtained. Mean-field approximations (such as Hartree–Fock theory) neglect
the instantaneous correlated motions of the bodies. The ‘‘missing’’ energy that
corresponds to these simultaneous and instantaneous interactions is the correla-
tion energy. In electronic structure theory, the correlation energy is typically
(although not unambiguously) defined as the difference between the exact (non-
relativistic) electronic energy and the Hartree–Fock energy.115

Configuration interaction (CI) theory, coupled-cluster (CC) theory, and
many-body perturbation theory (MBPT), of which Møller–Plesset (MP) per-
turbation theory is a specific case, are three of the most popular and relevant
approaches that have been developed to systematically improve the computa-
tional description of electron correlation that is absent in Hartree–Fock theo-
ry. (Density functional methods are not mentioned here. Although DFT
provides a very cost-effective means of recovering part of the electron correla-
tion energy, the systematic improvement of individual functionals is proble-
matic.) The missing correlation energy is recovered by constructing the wave
function out of many different electron configurations (or Slater determinants)
that are generated by ‘‘exciting’’ electrons from the occupied orbitals of the
Hartree–Fock reference configuration to unoccupied (or virtual) orbitals.
These additional (or excited) configurations are typically classified by excita-
tion (or substitution) level: S for single excitations/substitutions, D for double,
T for triple, etc.

Approximate many-electron wave functions are then constructed from
the Hartree–Fock reference and the excited-state configurations via some
sort of expansion (e.g., a linear expansion in CI theory, an exponential ex-
pansion in CC theory, or a perturbative power series expansion in MBPT).
When all possible excitations have been incorporated (S, D, T, . . . ; n for an
n-electron system), one obtains the exact solution to the nonrelativistic electro-
nic Schrödinger equation for a given AO basis set. This n-particle limit is typi-
cally referred to as the full CI (FCI) limit (which is equivalent to the full CC
limit). As Figure 5 illustrates, several WFT methods can, at least in principle,
converge to the FCI limit by systematically increasing the excitation level (or
perturbation order) included in the expansion technique.

It is particularly important to note that while the linear CI expansion
necessarily converges and all evidence suggests the exponential CC expansion
always converges, the MBPT (or MP) series does diverge occasionally.116,117
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Consequently, the most popular progression toward the FCI limit is MBPT2
ðor MP2Þ ! CCSD(T) rather than MBPT2 ðor MP2Þ ! MP3 ! MP4. The
CCSD(T) method, which includes a perturbative estimate of triple substitu-
tions, is often referred to as the ‘‘gold standard’’ of quantum chemistry
because (i) it generally provides results that are close to the FCI limit, espe-
cially for the systems that are the focus of this chapter, and (ii) it can be
applied feasibly to moderately sized systems (a few dozen atoms). [Estimates
of higher order correlation effects (e.g., quadruple substitutions) suggest that
the CCSD(T) method provides converged results for the entire spectrum of
noncovalent interactions.118–120] The CCSD ! CCSD(T) sequence is also
useful but is less commonly used because the CCSD method has more signifi-
cant computational demands than MP2. These computational demands (or
computational overhead) are the topic of the discussion below on the scaling
problem.

Primer on Atomic Orbital Basis Sets

To introduce the concepts of a basis set and basis functions, we begin with
a simple (unknown) function of a single variable, f ðxÞ. A variety of procedures
can be used to ‘‘fit’’ (or estimate) this function. For example, a simple power
series could be used to approximate this simple function of the variable x:

f ðxÞ � c0 þ c1xþ c2x
2 þ c3x

3 ½38�
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Figure 5 Convergence of correlated methods to the FCI bond length of N2. All results
were obtained with the cc-pVDZ basis set. The CCSDTQ bond length was computed for
this work while all other data points were taken from Ref. 116.
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Here we are using a basis set to approximate the unknown function f ðxÞ. The
basis functions are fxi : i ¼ 0; 1; 2; 3g. The expansion coefficients, ci, are deter-
mined by some sort of procedure that adjusts their values in order to obtain
the best fit to the function f ðxÞ. The approximation can generally be improved
by using a larger basis set,

f ðxÞ � c0 þ c1xþ c2x
2 þ c3x

3 þ c4x
4 þ c5x

5 ½39�

and it becomes exact in the limit of an infinitely large or complete basis set
(CBS):

f ðxÞ ¼ c0 þ c1xþ c2x
2 þ c3x

3 þ � � � ¼
X1
i¼0

cix
i ½40�

In quantum chemistry we are concerned with approximating a molecular
wave function, c, rather than a simple function of a single variable, f ðxÞ. In the
Hartree–Fock approximation, the many-electron wave function, c, is approxi-
mated with the antisymmetrized product of one-electron molecular orbitals
(MOs). As you might expect, powers of x are not necessarily the best choice
for a basis set in which to expand these one-electron functions. It does not
require too much chemical intuition to recognize that the analytical wave func-
tions for one-electron atoms (i.e., the s, p, and d orbitals shown in general chem-
istry textbooks) might provide a good set of basis functions in which to expand
themolecular orbitals. After all, molecules are made of atoms. So, why not build
molecular orbitals out of atomic orbitals? This is, of course, the familiar linear
combination of atomic orbitals to form molecular orbitals (LCAO-MO)
approximation. Both Slater and Gaussian atomic orbitals (AOs) provide fairly
convenient basis functions for electronic structure computations. Of course, not
all basis sets need to have a chemically motivated origin. For example, plane
wave basis sets owe their success to computational efficiency.

Unfortunately, a bigger AO basis set does not necessarily give better
results. Bigger is better only if the basis sets are properly constructed. In
1989, Dunning introduced the correlation-consistent family of basis sets,121–
123 which was a huge advance in the field of convergent quantum chemistry.
They were designed to converge systematically to the complete basis set (CBS)
or 1-particle limit. These basis sets are typically denoted cc-pVXZ where X
denotes the maximum angular momentum of the Gaussian atomic orbitals
in the basis set (2 for d functions, 3 for f functions, etc.) and is also referred
to as the cardinal number of the basis (D for double-� basis set, T for triple-�,
etc.). Because of the convergence properties of these basis sets, we can expect the
larger basis sets to be more reliable. [X ¼ 4 (or Q) is better than X ¼ 3 (or T),
which is better thanX ¼ 2 (or D).] The same is not true of other families of basis
sets [e.g., 6-311G(2df ; 2pd) vs. 6-31G(d; p) or TZ2P vs. DZP].
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In the examples shown along the y axis in Figure 4, the ‘‘aug-’’ prefix
indicates that the correlation-consistent basis sets have been augmented with
diffuse basis functions.122 These functions have small orbital exponents
and are therefore spatially extended as can be seen in the radial plots shown
in Figure 6. Diffuse functions are useful in computations for weakly bound
clusters because they help describe the long-range interactions between frag-
ments. (Basis sets augmented with diffuse functions are also commonly used
to improve the description of negatively charged ions.) In fact, diffuse func-
tions are practically essential for such applications. In some situations, diffuse
functions need only be added to nonhydrogen atoms. However, results for
weak noncovalent interactions obtained without diffuse functions must be
analyzed carefully because CP corrections for basis set superposition error
can still leave an unacceptably large basis set incompleteness error (see discus-
sion below).

Extrapolation Techniques
Because of the systematic nature of the correlation-consistent family of

basis sets, it is possible to use extrapolation techniques to estimate the CBS
limit. For example, the three-parameter exponential function introduced by
Feller nicely describes the convergence of SCF energy to the CBS limit with
respect to the cardinal number of the basis set, X.124,125 By fitting data from
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Figure 6 Diffuse basis functions are more spatially extended than their valence
counterparts. The dashed curve represents the radial plot of the normalized diffuse 1s
Gaussian basis function for H from the aug-cc-pVDZ basis set while the solid curve is
for the corresponding contracted valence 1s basis function.
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three or more basis sets to this function, one can estimate the SCF CBS limit:

ESCF ¼ ECBS
SCF þ a expð�bXÞ ½41�

Various formulas have been proposed to describe the convergence
behavior of the correlation energy (Ecorr), which is distinctly different from
and slower than that for the SCF energy. Here a few common examples are
introduced. Note that the following extrapolation procedures are applied
only to the correlation energy, not the total energy. In other words, Ecorr ¼
Etotal � ESCF. The simple two-parameter formula suggested by Helgaker et
al.126 is popular:

Ecorr ¼ ECBS
corr þ

b

X3
½42�

because it can be manipulated into an expression that utilizes only the two
most accurate data points. No fitting is required with the resulting equation.
One simply inserts the correlation energies from the two largest basis sets with
cardinal numbers Xmax and Xmax � 1:

ECBS
corr ¼

EXmax
corr ðXmaxÞ3 � EXmax�1

corr ðXmax � 1Þ3
ðXmaxÞ3 � ðXmax � 1Þ3 ½43�

For the fitting of correlation energies obtained with extremely large hextuple-
and heptuple-zeta (6Z and 7Z) basis sets, the following revision to Eq. [43] has
been suggested based on MP2 pair energies:127

ECBS
corr ¼

EXmax
corr ðXmax þ 0:5Þ3 � EXmax�1

corr ðXmax � 0:5Þ3
ðXmax þ 0:5Þ3 � ðXmax � 0:5Þ3 ½44�

Also, Martin has proposed a two-parameter fit to a quartic polynomial
(Schwartz4) and a three-parameter fit to a sixth-degree polynomial
(Schwartz6):128

Ecorr ¼ ECBS
corr þ

a

ðXþ 1
2Þ4

þ b

ðXþ 1
2Þ6

b ¼ 0 Schwartz4
b 6¼ 0 Schwartz6

�
½45�

Although many more incarnations describing the convergence of the cor-
relation energy with respect to X can be found in the literature, they tend to
adhere to the same philosophy as that adopted in Eqs. [42]–[45]. It is worth
noting that better results are generally obtained when only the most accurate
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data points are used in the extrapolation.129,130 For example, if MP2 correla-
tion energies are available for cc-pVDZ, cc-pVTZ, cc-pVQZ, cc-pV5Z, and
cc-pV6Z basis sets, then the most reliable extrapolation schemes can be
obtained by fitting the Q/5/6 data points or just the 5/6 data points. Some
examples of these extrapolation procedures are presented in the tutorial
below.

Explicitly Correlated Methods
A serious implication of the equations presented in the previous section is

that the correlation energy converges to the CBS limit slowly with respect to
the cardinal number (or angular momentum) of the basis set. In response, dra-
matic progress has been made in the development of explicitly correlated R12
methods that ‘‘ bypass the slow convergence of conventional methods, by aug-
menting the traditional orbital expansions with a small number of terms that
depend explicitly on the interelectronic distance r12.’’131 Through various
approximations (e.g., the resolution of the identity) and by changing the linear
r12 dependence to a different functional form (f12), these R12 and F12 meth-
ods can provide correlation energies (typically at the MP2 level) that are con-
verged to the CBS limit with only TZ or possibly even DZ quality basis sets.
Readers interested in more details are strongly encouraged to consult the out-
standing review by Klopper and co-workers.

Scaling Problem

Thanks to the concurrent development of more efficient computer algo-
rithms and affordable high-performance computing hardware, the sophisti-
cated electronic structure techniques described in the primer on electron
correlation above can be brought to bear on weakly bound clusters of ever-
increasing size (and with larger/better basis sets such as the correlation-
consistent basis sets described in the preceding section). The drawback of these
correlated electronic structure techniques is that their computational demands
(memory, CPU time, disk space) increase sharply with the size of the system.
For example, the ‘‘gold standard’’ of single-reference, ground-state quantum
chemistry [i.e., the CCSD(T) method] scales as the 7th power of the size of
the system, OðN7Þ. The practical consequences of this are devastating. Sup-
pose you have the facilities to perform a CCSD(T) computation on the water
hexamer with the aug-cc-pVTZ basis set (552 basis functions). By the time this
chapter is printed, high-performance personal computers might be fast enough
to perform a serial (nonparallel) computation of this magnitude in approxi-
mately 1 week. If one wishes to perform the same calculation on (H2O)18,
the computational requirements will increase by 37 ¼ 2187 since the system
has tripled in size. That means the time required to perform the computation
would increase from 1 week to more than 42 years on the same computer. (A
nice overview of the scaling requirements of some popular methods can be
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found in Ref. 113, and a tutorial on linear scaling in quantum chemistry has
appeared in this book series.132) Parallelization does not solve the issue. If a
parallel CCSD(T) code executed on a high-performance cluster can reduce
the time for the (H2O)6 computation to 1 day, the (H2O)18 calculation will
still take 6 years to finish. Even if time was not a factor, these ludicrous com-
putations would not be feasible because memory and disk requirements also
increase by the same factor of 2187.

Estimating Eint at the CCSD(T) CBS Limit:
Another Tutorial

High-accuracy model chemistries (for all types of chemical systems, not
just weakly bound clusters) typically rely on additive schemes because of the
hefty computational demands of highly correlated electronic structure techni-
ques (see preceding section). In this section we demonstrate how to reliably
estimate the CCSD(T) CBS limit even though it is generally not feasible to
compute CCSD(T) energies for weakly bound clusters with basis sets large
enough to yield a meaningful extrapolation to the CBS limit. This feat can
be achieved because contributions from higher order (triple, quadruple, etc.)
excitations tend to converge quickly with respect to the size of the AO basis
set even though the total correlation energy converges slowly to the CBS limit
(discussed above). As a result, the general strategy is to combine the CBS limit
for a less demanding correlated method that includes only lower order excita-
tions (e.g., MP2, CCSD, CISD) with a correction for higher order correlation
effects obtained with small basis sets. The most popular combination is to use
the MP2 CBS limit with a CCSD(T) correction.

Table 5 contains the MP2, CCSD, and CCSD(T) correlation energies for
the HF monomer and trimer obtained with a series of correlation-consistent
basis sets where diffuse functions are added only to the heavy (nonhydrogen)
atoms, denoted haXZ. The frozen core approximation was adopted for all of
the calculations (i.e., electrons in the 1s-like orbitals on F were not included in
the correlation procedure). The SCF energies converge very quickly. The
ha5Z and ha6Z data points are within 1mEh of the SCF CBS limit that was
obtained by fitting all five SCF energies (haDZ–ha6Z) to Eq. [41]. In contrast,
the MP2 correlation energy converges more slowly. The ha5Z values are still
more than 9mEh away from the MP2 CBS limit that was obtained by simply
applying Eq. [43] to the ha5Z and ha6Z MP2 correlation energies (not the
total MP2 electronic energies). The CCSD and CCSD(T) correlation energies
are also provided for the haDZ, haTZ, and haQZ basis sets. No CCSD and
CCSD(T) CBS limits are given, however, because extrapolations with smaller
basis sets tend not to be as reliable as when larger correlation-consistent basis
sets (e.g., pentuple- or sextuple-�) are used to obtain the correlation ener-
gies.129,130,133 Unfortunately, such computations are often prohibitively
demanding.
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Step 1 in the tutorial associated with this section is to reproduce the SCF
and correlation energies in Table 5. However, this step is optional because sev-
eral of the computations require a good deal of time and resources. As such, it
may not be worth the effort for most readers interested in the tutorial.

Step 2 in the tutorial, however, is more important and should not be con-
sidered optional. Readers should be able to reproduce the MP2 CBS limit by
plugging the ha5Z and ha6Z data from Table 5 into Eq. [43]:

ECBS
MP2 ¼

216ðEha6Z
MP2 Þ � 125ðEha5Z

MP2 Þ
91

½46�

Similarly, you should be able to reproduce the SCF CBS limit by fitting all five
SCF energies (haDZ–ha6Z) to Eq. [41]. This process is a bit more involved
since it generally requires software capable of performing a nonlinear fit. For-
tunately, a variety of freely available programs (including gnuplot134) can
fit data to nonlinear equations.

The data in Table 5 have been used to compute the interaction energies
ðEintÞ of (HF)3 shown in Table 6. Here it is easier to achieve rapid convergence
of higher order correlation effects. While the MP2 and CCSD(T) interaction
energies continue to change appreciably as X increases, the difference between
the two (dCCSDðTÞ

MP2 ) converges very quickly to � �1:5kJmol�1. Thus the CCSD

Table 5 SCF Electronic Energies and MP2, CCSD, and CCSD(T) Correlation
Energies (in Eh) of HF and (HF)3 Obtained with a Series of Correlation Consistent
Basis Sets

Basis seta ESCF EMP2 ECCSD ECCSDðTÞ

HF Monomer

haDZ (28) �100:033348 �0:220691 �0:224524 �0:228425
haTZ (60) �100:061354 �0:278496 �0:279840 �0:287214
haQZ (110) �100:068993 �0:300097 �0:299628 �0:307789
ha5Z (182) �100:071047 �0:309009 — —
ha6Z (280) �100:071251 �0:313005 — —
CBS �100:071625b �0:318494c — —

HF Trimer

haDZ (84) �300:119318 �0:665993 �0:676952 �0:689508
haTZ (180) �300:202077 �0:840519 �0:844137 �0:867192
haQZ (330) �300:224732 �0:905371 �0:903564 �0:929013
ha5Z (546) �300:230791 �0:932136 — —
ha6Z (840) �300:231389 �0:944120 — —
CBS �300:232512b �0:960582c — —

ahaXZ denotes cc-pVXZ for H and aug-cc-pVXZ for F. Number of basis functions in
parentheses.
bObtained by fitting the haDZ–ha6Z data to Eq. [41].
cObtained by applying Eq. [43] to the ha5Z and ha6Z MP2 correlation energies.
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(T) can be reasonably estimated by adding the dCCSDðTÞ
MP2 correction obtained

from smaller basis sets to the MP2 CBS limit of Eint:

E
CCSDðTÞ=CBS
int � E

MP2=CBS
int þ dCCSDðTÞ

MP2 ½47�

For this example, the CCSD(T) correction of �1:49 kJmol�1 obtained with
the haQZ basis set is combined with the MP2 CBS limit to produce an estimate
of �61:19 kJmol�1 for the CCSD(T) CBS interaction energy of (HF)3. Square
brackets have been placed around these numbers in Table 6 to denote that they
are based upon the additive approximation in Eq. [47] rather than an extra-
polation of the correlation energy.

Step 3 in the tutorial associated with the section is to calculate the SCF
and MP2 interaction energies (including the CBS values) in Table 6 from the
energies given in Table 5.

Step 4 in the tutorial is to calculate the CCSD(T) Eint and dCCSDðTÞ
MP2 values

for the haDZ, haTZ, and haQZ basis sets.
Step 5 in the tutorial is to use Eq. [47] to estimate the CCSD(T) CBS limit

of Eint for (HF)3.

Accurate Potential Energy Surfaces

The systematic computational strategy outlined in this section of the
review is necessary albeit demanding. The approach provides an accurate
description of the entire spectrum of noncovalent interactions between frag-
ments in a cluster. One can be confident in the calculated results regardless
of cluster composition [i.e., whether examing the (H2O)6, ðC6H6Þ2, or a mix-
ture of the two]. Less obviously but more importantly, one can also be confi-
dent in the calculated results across the entire (intermolecular) potential energy

Table 6 SCF, MP2, and CCSD(T) Interaction Energies (Eint) of
(HF)3 Obtained with a Series of Correlation-Consistent Basis Setsa

Basis setb SCF MP2 dCCSDðTÞ
MP2 CCSD(T)

haDZ �50:60 �60:89 �0:82 �61:71
haTZ �47:30 �60:50 �1:37 �61:87
haQZ �46:61 �59:94 �1:49 �61:44
ha5Z �46:34 �59:75 — —
ha6Z �46:30 �59:71 — —
CBS �46:31c �59:70c ½�1:49� ½�61:19�

aCCSD(T) corrections for higher order correlations effects are also reported
relative to the MP2 values (dCCSDðTÞ

MP2 ). All values are in kjmol�1. Square
brackets denote values obtained with the additive approximation described
in the text.
bhaXZ denotes cc-pVXZ for H and aug-cc-pVXZ for F.
cObtained from data in Table 5.
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surface (PES). The nature of the interactions not only depends on the identities
of the fragments, but it is also highly sensitive to their separations and relative
orientations in the cluster.135

The practical consequences of these dependencies can be severe. Consid-
er, for example, the pairing of nucleic acid bases through both hydrogen bond-
ing and stacking interactions.136 If a particular quantum model chemistry does
not properly describe both the dispersion interactions that play a major role in
the latter configuration and the electrostatic interactions that dominate in the
former orientation, qualitatively incorrect conclusions about the relative stabi-
lity of stacked and hydrogen-bonded base pairs will be derived. The benzene
dimer also illustrates this point nicely. The convergent approach outlined in
this section has identified two isoenergetic, low-energy configurations on the
PES, a T-shaped structure and a parallel displaced stacked structure.137–139

Even at the CBS limit, the MP2 method overestimates the Eint for both struc-
tures. The more serious problem, however, is that the error is much larger for
the stacked structure than for the parallel displaced structure because the nat-
ure of the interactions in the two configurations is different. By not considering
high-order correlation effects, one arrives at the specious conclusion that the
parallel displaced configuration is nearly 1:5 kcalmol�1 (6 kJ mol�1) more
stable than the T-shaped structure. Clearly, it is imperative that any computa-
tional strategy give consistent results across the entire PES, not just at one par-
ticular configuration (e.g., the global or a local minimum).

LESS DEMANDING COMPUTATIONAL STRATEGIES

The previous section outlined demanding computational procedures that
provide the right answer for the right reason. Those convergent techniques32,36

provide very accurate interaction energies across the entire PES for weakly bound
clusters that can then be used as benchmarks41,42,140–142 against which less
demanding computational procedures may be measured. In this section, we
review the performance of less demanding quantum model chemistries for differ-
ent classes of weak noncovalent interactions, focusing onMP2 andDFTmethods.

Second-Order Møller–Plesset Perturbation Theory

In general, second-order Møller–Plesset perturbation theory (a specific
case of second-order many-body perturbation theory) is the workhorse of elec-
tronic structure techniques for weakly bound systems because the method
tends to provide a reliable description of a wide range of weak interactions.
For most hydrogen-bonding scenarios, MP2 energetics are extremely accurate
and nearly identical to those from CCSD(T) computations with the same basis
set. In fact, a recent study revealed that MP2 interaction energies obtained
with an appropriate triple-� basis set agree favorably with CCSD(T) CBS
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benchmark values.143 Even for high-energy saddle points and structures with
bifurcated hydrogen bonds, the deviations still tend to be less than a few tenths
of a kilocalorie per mole per hydrogen bond.118,119 Only for cyclic hydrogen-
bonding motifs (like that found in the formic acid dimer), do MP2 interaction
energies deviate substantially from CCSD(T) values.143

At the other end of the spectrum of weak interactions (Figure 1), the
MP2 method can still provide a reasonable description of dispersion-bound
clusters despite having a tendency to slightly overestimate the interaction ener-
gies between molecules relative to CCSD(T) results. For example, MP2 calcu-
lations yield interaction energies that are just a few tenths of a kilocalorie per
mole larger than the CCSD(T) values for n-alkane dimers142 and even some
simple p-stacked dimers such as ðN2Þ2 and ðC2H2Þ2.120 If the p systems are
delocalized, however, the MP2 errors can become massive (vida infra). Even
the interactions between rare gas atoms are described reasonably well by the
MP2 method.144 However, MP2 tends to underbind the Ne2 and He2 by an
amount that is small in an absolute sense but large in a relative sense, particu-
larly in the case of He2.

TheMP2method is not perfect, however, and the most notable (and fairly
dramatic) failure of the MP2 method in the field of weak noncovalent interac-
tions occurs for delocalized p stacking.137–139 In fact, a separate chapter of this
volume is dedicated to these p-type interactions.49 The MP2 method overesti-
mates dramatically the stability of ‘‘face-to-face’’ or ‘‘stacked’’-type configura-
tions relative to ‘‘edge-to-face’’ or ‘‘T-shaped’’ orientations that leads to a
qualitatively incorrect description of delocalized p stacking as illustrated with
the benzene dimer in described above. Consider the parallel-displaced stacked
and T-shaped configurations of the diacetylene dimer (H��C������C��C������C��H)2
(shown in Figure 7) along with the analogous configurations of the acetylene

Figure 7 Parallel displaced and T-shaped configurations of the diacetylene dimer.
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dimer (H��C������C��H)2. In agreement with the ‘‘gold standard’’ of quantum
chemistry [i.e., the CCSD(T) method], MP2 calculations correctly predict an
attractive interactions in each case. (See data in Table 7.) However, for the
dimers composed of fragments containing a delocalized p electron network,
the MP2 method substantially overestimates the interaction energy (by more
than 1 kcalmol�1, which represents a relative error in excess of 80%) while
the difference between the CCSD(T) and MP2 results (dCCSDðTÞ

MP2 ) is modest for
(H��C������C��H)2 (less than 0:17kcalmol�1 or 10%). Matters are made even
worse by the fact that the MP2 error is not uniform across the entire potential
surface, which can lead to qualitatively incorrect conclusions about the nature
of delocalized p-type interactions. With MP2 computations, one would con-
clude that the stacked configuration of (H��C������C��C������C��H)2 is more stable
than the T-shaped structure. However, the opposite (and correct) conclusion
is reached when the effects of higher order excitations are included via CCSD
(T) calculations.

Spin-Scaled MP2
Several approaches have been introduced that attempt to address this

shortcoming of MP2 for delocalized p interactions. In 2003, Grimme intro-
duced the spin-component-scaled second-order Møller–Plesset perturbation
theory (SCS-MP2) method where the parallel spin ("") and antiparallel spin
("#) pair correlation energies (which are related to the singlet and triplet com-
ponents of the correlation energy) were assigned different weights.145 The
empirical scaling parameters (p"" ¼ 6

5 and p"# ¼ 1
3) improve MP2 results signif-

icantly not only for a variety of reaction energies and atomization energies but
also for interaction energies between delocalized p systems (including the ben-
zene dimer). The approach has no additional computational overhead relative
to MP2, and it preserves the size consistency of the MP2 method. Other var-
iations of these scaling parameters have since been introduced in an attempt to
further improve the description of noncovalent interactions and/or reduce the
computational demands.146–149 Of particular interest is the SCSN-MP2 meth-
od of Platts and Hill in which the scaling parameters were optimized using

Table 7 MP2 and CCSD(T) Interaction Energies of the Stacked and T-shaped Dimers
of Acetylene and Diacetylenea

Orientation Dimer CCSD(T) MP2 dCSDðTÞ
MP2

Stacked (H��C������C��C������C��H)2
b �1:31 �2:38 þ1:07

T-shaped (H��C������C��C������C��H)2
b �1:63 �1:94 þ0:31

Stacked (H��C������C��H)2
c �1:72 �1:99 þ0:17

T-shaped (H��C������C��H)2
c �2:32 �2:45 þ0:13

aAll values are in kcalmol�1.
bReference 93
cReference 120
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benchmark interaction energies for nucleic acid bases.149 More recently, Taka-
tani and Sherrill assessed the performance of several of these spin-scaled MP2
methods and found that the SCSN parameters reproduce nicely CCSD(T)/CBS
interaction energies across the entire PES for a variety of dispersion-bound
dimers.150

RI-MP2 and LMP2
Because the MP2 method has been so successful, there has also been a

great deal of work done to reduce its computational demands, thereby further
improving its price-to-performance ratio. These include schemes that employ
localized orbitals (such as LMP2)151–153 as well as the resolution of the iden-
tity approximation (RI), which is also known as density fitting (DF).154–158

Werner, Manby, and Knowles have even introduced the DF-LMP2 method
that incorporates both local approximations and density fitting.159 (Those
interested in more details about localization and RI techniques should consult
their paper and the references contained therein.) Readers should be aware of
a potential pitfall of some localization schemes. At certain points, the domain
definitions can change, which leads to discontinuous PESs.160 In large systems
with many degrees of freedom, such discontinuities could lead to difficulties
with geometry optimization procedures needed to locate minima or other sta-
tionary points on the PES. Fortunately, it is possible to construct local correla-
tion models that are free of this problem.161

By reducing the overhead of MP2 computations substantially, these
methods are helping to extend the domain of reliable electronic structure com-
putations for noncovalent interactions to larger and larger systems (within the
limits of the MP2 method). The RI-MP2 technique has been shown to yield
structures and interaction energies that are virtually identical to canonical
MP2 results when an extended basis set containing f functions is used while
reducing the computational time by up to an order of magnitude.44,162 The
DF-LMP2 method has already been coupled with the aforementioned SCS
approach of Grimme. The spin component scaled for nucleobases (SCSN)
parameters were obtained from DF-LMP2 interaction energies.149

Density Functional Theory

As the previous millennium drew to a close, it became clear that density
functional theory was not sufficiently reliable for the study of noncovalent
interactions (including hydrogen bonding).32,163–166 It was widely accepted
at the time that the MP2 method and a high-quality triple-� (or larger) basis
set were required to obtain chemically significant results for noncovalent inter-
actions. Subsequently, a massive effort has been directed toward the develop-
ment and calibration of new density functionals for noncovalent interactions.

Before proceeding, readers should be aware that caution must be exer-
cised when drawing conclusions or making generalizations from a particular
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systematic analysis (or calibration) of DFT methods, particularly in the case of
weak interactions. Results depend heavily not only on the identity of the den-
sity functional167 and the basis set168,169 but also on the numerical integration
grid, which differs from one quantum chemistry software package to the next
(sometimes substantially).170 Additionally, the criteria for a ‘‘reliable’’ DFT
method are very different for someone trying to discern the energetic order
of several low-lying minima than from someone merely trying to determine
that a stable structure exists. While it is clear that some progress has been
made, this section demonstrates that DFT methods are often reliable in the lat-
ter sense but rarely in the former sense.

For noncovalent interactions dominated by the electrostatic component
of the interaction energy, it is likely that one of the well-established density
functionals will produce reliable results. For example, it has been known for
some time that DFT methods can provide an accurate description of charge–
charge and charge–dipole interactions.166,171,172 DFT methods can sometimes
provide a reasonable description of hydrogen bonding when suitable basis sets
are used,39,166,173–177 especially for water.178,179 Interestingly, despite the ten-
dency of DFT interaction energy to converge rapidly to the 1-particle CBS lim-
it (typically with aug-cc-pVTZ or aug-cc-pVQZ basis sets),168 results are still
sensitive to the type basis set used for the calculations.169 The ‘‘best’’ func-
tional tested with the correlation-consistent aug-cc-pVDZ and aug-cc-pVTZ
basis sets will be far from the best when the split-valence Pople-style basis
sets (e.g., 6-31þþG*) are employed.

Some of the most disturbing news regarding the applicability of density
functional methods to hydrogen bonding came in 2004 when Ireta, Neuge-
bauer, and Scheffler noticed that, for the Perdew, Burke, Ernzerhof (PBE) func-
tional, errors in Eint increase as hydrogen bonds deviate from linearity.180

Shortly thereafter, Cybulski and Severson examined 12 popular functionals
and reported a closely related observation that none can describe intermolecu-
lar PESs properly because they failed to reproduce the angular and distance
dependencies of Eint.

181 A study from the author’s lab noted that DFT methods
can have problems characterizing the nature of transition states and higher
order saddle points (i.e., the correct number of imaginary frequencies) for a
system as simple as the water dimer.182 Nevertheless, these studies suggest
that the functionals can be used to identify minima in cases where electrostatic
interactions dominate in that region of the PES.

Density functional theory methods should not be used when dispersion
plays a significant role in the noncovalent interactions. Conventional DFT
methods do not include dispersion, and the chemical consequences of this
deficiency have been known for quite some time,183,184 but the renewed inter-
est in p-type interactions has fueled a great deal of work in this area.141,185–188

A recent overview of these efforts can be found in Ref. 188. Of the three main
ways to incorporate dispersion into DFT (empirical, nonempirical, and
modification of existing functionals), the DFT method with an empirical
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dispersion term (DFT-D) appears to be promising.187–189 The DFT-D method,
however, is still not nearly as reliable as high-accuracy WFT approaches such as
those outlined above. While the nonempirical approaches (such as those
of Becke190–192) are certainly appealing, they currently do not outperform
DFT-D. The last approach, which attempts to include dispersion in DFT via
modification of existing functionals, is by far the most popular of the
three.174,177,193–195 Unfortunately, it seems that modifications to the exchange
functional leading to a successful description of dispersion interactions also
happen to destroy any ability to reliably describe hydrogen bonding. When
examining the performance of newly developed functionals, it is important to
note that rare gas dimers are a poor model for dispersion-bound molecular
clusters. Just because a functional gives reasonable results for rare gas
dimers does not mean that similar performance can be expected for molecular
dimers.

Guidelines

Although being an oversimplification, noncovalent interactions can be
divided into three categories to help select less demanding computational pro-
cedures when studying a particular weakly bound cluster.

Category 1 (Easy) Strong noncovalent interactions that are dominated by the
electrostatic component of the interaction energy tend to be fairly easy to
compute. MP2 will provide excellent results while most DFT methods will
generally provide reliable results near minima on the PES.

Category 2 (Hard) Interactions in which dispersion plays a non-negligible
role tend to be more difficult to compute. MP2 will provide reasonable
results while conventional DFT methods will not even provide a
qualitatively correct description of these interactions across the PES.

Category 3 (Problematic) Dispersion interactions involving one or more
delocalized p electron systems are exceptionally difficult to describe. MP2
will overbind in a manner that is inconsistent across the PES, and
conventional DFT methods still provide an unphysical description of the
interactions.

OTHER COMPUTATIONAL ISSUES

Basis Set Superposition Error and Counterpoise
Corrections

As noted when introducing the Boys–Bernardi CP correction above,
BSSE is a concern whenever the supermolecule method is used to compare
the energies of fragments to the energy of the entire cluster [i.e., when comput-
ing the dissociation ðDeÞ or interaction ðEintÞ energy].
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Although many arguments for and against CP corrections have been
made over the years, this part of the chapter will briefly illustrate three impor-
tant concepts related to this issue.

The CP procedure can lead to unphysical descriptions of PESs that are not
easily corrected.

CP corrections often do not improve calculated interaction energies. In fact,
the procedure can even make results worse.

BSSE is a poor diagnostic for the quality of a computed De or Eint. The crucial
quantity is the basis set completeness error (BSCE).

While the CP procedure is useful when examining specific structures, it is
sometimes desirable to examine a path across the PES or reaction profile that
might include, for example, reactants, products, and a transition state (TS).
Generating a CP-corrected potential energy curve or reaction profile can intro-
duce a new set of problems in certain circumstances. As demonstrated by
Lendvay and Mayer, the Boys–Bernardi CP procedure (and variations thereof)
can actually produce discontinuities in the PES near the TS and even give dif-
ferent TS energies for the forward and reverse reactions.196 Fortunately, this
unphysical behavior is normally limited to regions near the TS.

To illustrate the last two points, consider the De of (H2O)2 and (H2O)3.
The MP2 CBS limits have been determined from explicitly correlated MP2-
R12 computations with the K2–� basis set to be 20:76kJmol�1 for the Cs

global minimum of (H2O)2 and 66:12 kJmol�1 for the cyclic C1 global mini-
mum of (H2O)3.

118,119,197 (The K2–� basis set is constructed by removing
functions with the two highest angular momentum values from Klopper’s
K2 basis set,198 which corresponds to f and g functions for H, and g and h
functions for O.) Figures 8 and 9 show how CP-corrected and uncorrected
MP2 calculations deviate from the corresponding CBS limit when using the
aug-cc-pVXZ and haug-cc-pVXZ (diffuse functions only added to O atoms)
families of basis sets. The height of a particular bar above the x axis indicates
the basis set completeness error (BSCE) for that basis set while the combined
height of a bar above and its CP-corrected counterpart below the x axis repre-
sents the magnitude of BSSE for that basis set. For both (H2O)2 and (H2O)3,
the MP2 dissociation energies converge systematically to the CBS limit from
below when the CP procedure is applied and from above when it is not.

Closer examination of the data presented in Figures 8 and 9 reveals that
the errors associated with the CP-corrected dissociation energies are almost
always larger than those that are not corrected for BSSE (i.e., the bars below
the x axis are larger than those above it). Only for aug-cc-pVQZ, aug-cc-
pV5Z, and aug-cc-pV6Z De values for (H2O)2 does the CP procedure offer
any improvement (and merely on the order of 0:1 kJmol�1). In these particular
cases, the CP corrections are clearly not worth the substantial additional effort.

Although these trends have been observed elsewhere,133,199 they do not
necessarily apply to all weakly bound complexes. Sinnokrot and Sherrill have
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noted the opposite trend for benzene dimer interaction energies, and they
report that the CP-corrected values converge to the CBS limit more rapidly
than the uncorrected ones.135

The data in Figure 9 demonstrate nicely why BSSE should not be used to
judge the quality of a particular De. The CP-corrected haug-cc-pVTZ De

Figure 8 Errors relative to the MP2 CBS limit De for (H2O)2 using data from Ref. 118.

Figure 9 Errors relative to the MP2 CBS limitDe for (H2O)3 using data from this work
and Ref. 119. The errors with the double-� basis sets are so large that they have been
omitted.
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underestimates the MP2 CBS limit by 3:99kJmol�1 (striped bar) while the
uncorrected value overestimates it by 0:43kJmol�1 (solid black bar). The dif-
ference between the two values, 4:42 kJmol�1, is the BSSE. If the MP2 CBS
limit was not known, one would conclude that the haug-cc-pVTZ basis set
is rather poor because of this large BSSE. However, the haug-cc-pVTZ is an
excellent basis set for the De of the water trimer because the basis complete-
ness error (BSCE) is only 0:43 kJmol�1 (or � 0:1 kcalmol�1).

Beyond Interaction Energies: Geometries and
Vibrational Frequencies

Care must be taken when interpreting computed equilibrium geometries
and vibrational frequencies44 when dealing with the extremely flat PESs of
weakly bound clusters. For example, the vibrational frequencies associated
with the large amplitude intermolecular motions are highly anharmonic. Con-
sequently, estimates of the zero-point vibrational energy (ZPE or ZPVE) based
on harmonic vibrational frequencies can be misleading. Furthermore, these
harmonic frequencies for floppy vibrational modes can be sensitive to both
the electronic structure method and basis set used, even for simple hydrogen
bonding prototypes.182,200

In the case of equilibrium structures, the flat nature of the PESs can actu-
ally be an asset because it implies that the energy of a weakly bound cluster is
fairly insensitive to changes in the intermolecular geometrical parameters.
Consequently, MP2 optimizations with a sufficiently flexible triple-� basis
set [e.g, TZ2P(f ; d)þdif, aug-cc-pVTZ, TZVPP] usually provide sufficiently
reliable structures for an accurate assessment of the interaction energy.44,201

[Although ‘‘sufficiently flexible’’ is not a very precise description, it is generally
agreed that the basis set needs to include two sets of polarization functions as
well as at least one set of higher angular momentum functions (e.g., f func-
tions for C, N, O, and F) and possibly diffuse functions.] However, the phy-
sical significance of these structures is not always clear since the ZPVE of the
cluster may be larger than the barrier(s) separating minima on the PES.

Concluding Remarks

As with all areas of computational chemistry, the study of noncovalent
interactions in weakly bound van der Waals clusters has benefited from the
rapid improvements in hardware and software. As a result, high-accuracy
benchmark databases that span the entire spectrum of weak interactions are
now available.42,177 Although relatively new, these collections of interaction
energies have already been used to calibrate less demanding quantum model
chemistries in the hopes of identifying methods that can be applied confidently
to larger systems. However, a need exists for similar high-accuracy data for
clusters (trimers, tetramers, etc.), not just dimers. Given the significant role
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that cooperative effects can play in hydrogen-bonding networks, it is impera-
tive that methods be able to describe the nonadditivity as well as the 2-body
interactions. A consistent benchmark cluster database for the entire range of
noncovalent interactions will play an essential role in the development of prac-
tical computational strategies for large clusters and explicit solvation models.

ACKNOWLEDGMENTS

I thank the current and former members of my research group at the University of
Mississippi for their assistance and input during the preparation of this review, and I would
also acknowledge the National Science Foundation for financial support (CHE-0517067,
EPS-0132618).

REFERENCES

1. G. C. Pimentel and A. L. McClellan, The Hydrogen Bond, Freeman, San Francisco, 1960.

2. S. N. Vinogradov and R. H. Linnell,Hydrogen Bonding, Van Nostrand Reinhold, New York,
1971.

3. G.A. JeffreyandW.Saenger,HydrogenBonding inBiological Structures, Springer, Berlin, 1991.

4. A. J. Stone, The Theory of Intermolecular Forces, Oxford University Press, Oxford, UK, 1996.

5. G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, Oxford, UK,
1997.

6. C. Desfrançois, S. Carles, and J. Schermann, Chem. Rev., 100, 3943 (2000). Weakly Bound
Clusters of Biological Interest.

7. V. A. Parsegian, Van der Waals Forces, Cambridge University Press, New York, 2006,
page 10.

8. J. S. McDougal, M. S. Kennedy, J. M. Sligh, S. P. Cort, A. Mawle, and J. K. A. Nicholson,
Science, 231, 382 (1986). Binding of HLV-III/LAV to T4þ Cells by a Complex of the 110K
Viral Protein and the T4 Molecule.

9. C. Borchers and K. B. Tomer, Biochemistry, 38, 11734 (2000). Characterization of the
Noncovalent Complex of Human Immunodeficiency Virus Glycoprotein 120 with Its
Cellular Receptor CD4 byMatrix-Assisted Laser Desorption/IonizationMass Spectrometry.

10. T. Peters, Ed., All about Albumin: Biochemistry, Genetics and Medical Applications, Aca-
demic, San Diego, 1996.

11. V. Vaida and J. Headrick, J. Phys. Chem. A, 104, 5401 (2000). Physicochemical Properties of
Hydrated Complexes in the Earth’s Atmosphere.

12. W. Klemperer and V. Vaida, Proc. Nat. Acad. Sci. U.S.A., 103, 10584 (2006). Cluster
Chemistry and Dynamics Special Feature: Molecular Complexes in Close and Far Away.

13. P. Schuster and P. Wolschann, Monat. Chem., 130, 947 (1999). Hydrogen Bonding: From
Small Clusters to Biopolymers.

14. C.-D. Poon and E. T. Samulski, J. Am. Chem. Soc., 122, 5642 (2000). Do Bridging Water
Molecules Dictate the Structure of a Model Dipeptide in Aqueous Solution?

15. A. Karshikoff,Non-Covalent Interactions in Proteins, Imperial College Press, London, 2006.
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CHAPTER 3

Excited States from Time-Dependent
Density Functional Theory

Peter Elliott,a Filipp Furche,b,c and Kieron Burkec

aDepartment of Physics and Astronomy, University of California,
Irvine, California
bInstitut für Physikalische Chemie, Universität Karlsruhe,
Karlsruhe, Germany
cDepartment of Chemistry, University of California, Irvine,
California

INTRODUCTION

Ground-state density functional theory1–3 has become the method
of choice for calculating ground-state properties of large molecules because
it replaces the interacting many-electron problem with an effective single-
particle problem that can be solved much more quickly. It is based on rigorous
theorems1,2,4 and a hierarchy of increasingly accurate approximations, such
as the local density approximation (LDA), generalized gradient approxima-
tions (GGAs),5–7 and hybrids of exact exchange with GGA.8 For example, a
recent ground-state calculation9 for crambin (C203H317N55O64S6), a small
protein, using TURBOMOLE10 on a 1.5-GHz HP Itanium workstation took
less than 7 h, which is extraordinarily fast for 2528 electrons, with 5587 con-
tracted Cartesian Gaussian basis functions. Formally, however, ground-state
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density functional theory predicts only ground-state properties, not electronic
excitations.

Time-dependent density functional theory (TDDFT),11–15 in contrast,
applies the same philosophy as ground-state DFT to time-dependent problems.
Here, the complicated many-body time-dependent Schrödinger equation is
replaced by a set of time-dependent single-particle equations whose orbitals
yield the same time-dependent density. We can do this because the Runge–
Gross theorem16 proves that, for a given initial wave function, particle statis-
tics and interaction, a given time-dependent density can arise from, at most,
one time-dependent external potential. This means that the time-dependent
potential (and all other properties) is a functional of the time-dependent
density.

Armed with a formal theorem, we can then define time-dependent
Kohn–Sham (TDKS) equations that describe noninteracting electrons that
evolve in a time-dependent Kohn–Sham potential but produce the same den-
sity as that of the interacting system of interest. Thus, just as in the ground-
state case, the demanding interacting time-dependent Schrödinger equation
(TDSE) is replaced by a much simpler set of equations. The price of this enor-
mous simplification is that the exchange–correlation piece of the Kohn–Sham
potential has to be approximated.

The most common time-dependent perturbation is a long-wavelength
electric field, oscillating with frequency o. In the usual situation, this field
is a weak perturbation to the molecule, and one can therefore perform a
linear response analysis. From the linear response, we can extract the optical
absorption spectrum of the molecule due to electronic excitations. Thus,
linear response TDDFT can be used to predict the transition frequencies to
electronic excited states (along with many other properties), and this has
been the primary use of TDDFT so far, with many applications to large
molecules.

Figure 1 compares TDDFT and experiment for the electronic Circular
Dichroism (CD) spectrum of the chiral fullerene C76. A total of 240 optically
allowed transitions were required to simulate the spectrum. The accuracy is
clearly good enough to assign the absolute configuration of C76. TDDFT cal-
culations of this size typically take less than a day on low-end personal com-
puters.

A random walk through some recent studies using TDDFT gives some
feeling for the breadth of applications. Most are in the linear response
regime. In inorganic chemistry, the optical response of many transition metal
complexes20–35 has been calculated, as have some X-ray absorption
spectra.36,37 In organic chemistry, heterocycles38–43 have been examined
among others,44–46 including the response of thiouracil,47 s-tetrazine,48

and annulated porphyrins.49 We also see TDDFT’s use in studying various
fullerenes.50–55 TDDFT is also finding many uses in biochemistry56–66 where,
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for example, DNA bases are under examination (an overview of this area
may be found in Ref. 67). In photobiology, potential energy curves for the
trans–cis photoisomerization of the protonated Schiff base of retinal68

have been calculated, and calculations for green and blue fluorescent proteins
have also been performed.69,70 In the realm of photochemistry,71 properties
of chromophores72–76 and dyes77–83 have been computed. For these and
other systems, there is great interest in charge-transfer excitations,84–92

but, as we later discuss, intermolecular charge transfer is a demanding pro-
blem for TDDFT.

Another major area of application of TDDFT involves clusters, large and
small, covalent and metallic, and everything in between,93–112 as, for example,
Met-Cars.113 Several studies include solvent effects,114–122 one example being
the behavior of metal ions in explicit water.123 TDDFT in the realm of linear
response can also be used to examine chirality,124–127 including calculating
both electric and magnetic circular dichroism,26,128–132 and it has been applied
to both helical aromatics133 and to artemisinin complexes in solution.134

There exist applications in materials135,136 and quantum dots,137 but, as dis-
cussed below, the optical response of bulk solids requires some nonlocal
approximations.138

Beyond the linear regime, there is also growing interest in second- and
third-order response139–142 in all these fields. In particular the field of non-
linear optics has been investigated heavily,143–145 especially the phenomenon
of two-photon absorption.146–153
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Figure 1 TDDFT calculation and experiment for the electronic CD spectrum of
fullerene (fA)-C76. Calculations were performed with the BP86 functional and an
augmented SVP basis set.17 The RI-J approximation together with TZVP auxiliary basis
sets18 were used. Experimental data (in CH2Cl2) are from Ref. 19.
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In fact, TDDFT yields predictions for a huge variety of phenomena that
can largely be classified into three groups: (1) the nonperturbative regime, with
systems in laser fields so intense that perturbation theory fails, (2) the linear
(and higher order) regime, which yields the usual optical response and
electronic transitions, and (3) back to the ground state, where the fluctuation–
dissipation theorem produces ground-state approximations from TDDFT
treatments of excitations.

Overview

This chapter focuses primarily on the linear response regime. Through-
out, we emphasize the difference between small molecules (atoms, diatomics,
etc.) and the larger molecules that are of greater practical interest, where
TDDFT is often the only practical first-principles method that can be used.
We use naphthalene (C10H8) as an example to show how the selection of
both the basis set and the exchange–correlation (XC) functional affects com-
puted excitation energies and oscillator strengths. Small molecules are some-
what exceptional because they usually exhibit high symmetry that prevents
strong mixing of the Kohn–Sham (KS) states due to configuration interaction,
and also because basis set requirements are often exacerbated for small sys-
tems. Naphthalene is large enough to avoid these effects; reasonably accurate
gas-phase experiments exist and correlated wave function calculations are still
possible for such a molecule.

We will use atomic units (e2 ¼ �h ¼ me ¼ 1) throughout this tutorial, so
that all energies are in hartrees (1Eh ’ 27:2 eV ’ 627:5 kcal=mol) and dis-
tances in bohr (’ 0:529 Å) unless otherwise noted. For brevity, we drop com-
ma’s between arguments wherever the meaning is clear. In DFT and TDDFT,
there is a confusing wealth of acronyms and abbreviations. Table 1 is designed
to aid the readers’ navigation through this maze.

The content of this review is organized as follows. The second and
third main sections cover the basic formalism of the theory that is needed
to understand where it comes from, why it works, and where it can
be expected to fail. The fourth section focuses on details of implementation,
especially basis-set selection, while the fifth section is devoted to perfor-
mance and analyzing the sources of error in the basis-set limit. In the sixth
section, we examine a few atoms in microscopic detail: Because we know
the exact ground-state Kohn–Sham potential in such cases, we can assess
the performance of TDDFT. The seventh section covers the many attempts
that go beyond standard functionals approximations and highlights where
such nonstandard functionals are needed. The eighth section covers topics
outside the usual linear response approach to excitations, including
ground-state functional derived from TDDFT, challenges for strong fields,
and transport through single molecules. The last section summarizes this
tutorial/review.
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GROUND-STATE REVIEW

We review ground-state DFT rather quickly in this section and recom-
mend reading Ref. 154 for a more comprehensive review. Many of the results
discussed here are also referred to in later sections.

Formalism

Ground-state DFT is a completely different approach to solving the many-
electron problem than is done in the traditional solution of the Schrödinger

Table 1 Table of Acronyms and Abbreviations

A Adiabatic
AC Asymptotically corrected
ALDA Adiabatic LDA
B88 Becke GGA of 1988
B3LYP Hybrid functional using Becke exchange and LYP correlation
CASPT2 Complete active space second-order perturbation theory
CC Coupled cluster
CIS Configuration-interaction singlets
ee electron–electron
ext external
EXX Exact exchange
GGA Generalized gradient approximation
H Hartree
HF Hartree–Fock
HK Hohenberg–Kohn
HXC Hartree plus exchange–correlation
KLI Krieger-Li-Iafrate approximation for exact exchange
KS Kohn–Sham
LB94 van Leeuwen–Baerends asymptotically corrected functional
LDA Local density approximation
LHF Localized Hartree–Fock (accurate approximation to EXX)
LSDA Local spin density approximation
LYP Lee–Yang–Parr correlation
MAE Mean absolute error
OEP Optimized effective potential
PBE Perdew–Burke–Ernzerhof GGA
PBE0 Hybrid based on PBE
QD Quantum defect
QMC Quantum Monte Carlo
RG Runge–Gross
RPA Random-phase approximation
SPA Single-pole approximation
TDCDFT Time-dependent current density functional theory
TDKS Time-dependent Kohn–Sham
TDSE Time-dependent Schrödinger equation
XC Exchange–correlation
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equation. The Hohenberg–Kohn (HK) theorem1 of 1964 states that for a given
nondegenerate ground-state density nðrÞ of fermions with a given interaction,
the external potential vextðrÞ that produced that density is unique (up to an addi-
tive constant). Hence if the density is known, vextðrÞ is then known and so Ĥ, the
Hamiltonian, is known. From this and the number of particles (determined by
the integral of the density), all properties of the system may be determined. In
particular, the ground-state energy of the system E would be known. This is
what we mean when we say these properties are functionals of the density,
e.g., E½n�. It was later shown that the HK theorem holds even for degenerate
ground states,4 and modern DFT calculations use an analogous theorem applied
to the spin densities, naðrÞ; nbðrÞ, where a; b ¼ �1

2, respectively.
The total energy forN electrons consists of three parts: the kinetic energy

T½��, the electron–electron interaction Vee[�], and the external potential
energy Vext½��, each of which is defined in Eqs. [1], [2], and [3], respectively:

T½�� ¼ �j � 1

2

XN
i

r2
i j�

* +
½1�

Vee½�� ¼ �j 1
2

XN
i

XN
j6¼i

1

jri � rjj j�
* +

½2�

Vext½�� ¼ �j
XN
i

vextðriÞj�
* +

½3�

By the Rayleigh–Ritz principle, we find

E ¼ min
�

h�jĤj�i
¼ min

�
ðT½�� þ Vee½�� þ Vext½��Þ ½4�

If we rewrite the minimization as a two-step process,155 we find

E ¼ min
na;nb

min
�!ðna;nbÞ

ðT½�� þ Vee½�� þ Vext½��Þ
� �

where the inner search is over all interacting wave functions yielding spin den-
sities na; nb. We may pull the last term out of the inner minimization to give

E ¼ min
na;nb

F½na; nb� þ
X
s

ð
d3r vextsðrÞnsðrÞ

 !

¼ min
na;nb

ðE½na; nb�Þ ½5�

96 Excited States from Time-Dependent Density Functional Theory



where

F½na; nb� ¼ min
�!ðna;nbÞ

ðT½�� þ Vee½��Þ ½6�

¼ T½na; nb� þ Vee½na; nb� ½7�

is a universal functional independent of vextsðrÞ.
Minimizing the total energy density functional, Eq. [5], for both spin

densities by taking the functional derivative d=dns, and using the Euler–
Lagrange multiplier technique leads to

dF½na; nb�
dns

þ vextsðrÞ ¼ m ½8�

where m is the chemical potential of the system.
Next we imagine a system of noninteracting electrons with the same spin

densities. Applying the HK theorem to this noninteracting system, the poten-
tials, vSs, that give densities nsðrÞ as the ground-state spin densities for this
system are unique. This is the fictitious Kohn–Sham (KS) system,2 and the fully
interacting problem is mapped to a noninteracting one that gives the exact
same density. Solving the KS equations, which is computationally simple (at
least compared to the fully interacting problem, which becomes intractable
for large particle numbers), yields the ground-state density. The KS equations
are

�
� 1

2r2 þ vSsðrÞ
�
fjsðrÞ ¼ EjsfjsðrÞ ½9�

with spin densities

nsðrÞ ¼
XNs

j¼1

jfjsðrÞj2 ½10�

where vSa, vSb are the KS potentials and Ns is the number of spin s electrons,
(Na þNb ¼ N).

In the top panel of Figure 2, we plot the exact density for the He atom
from a highly accurate wave function calculation, and below that we plot the
exact KS potential for this system. One can see that the KS potential is very
different from the external potential. This is due to the fact that the KS single
effective potential for the noninteracting system must give the correct interact-
ing electron density. Because the Coulomb repulsion between the electrons
shields the nucleus, and makes the charge density decay less rapidly than
e�4r, the KS potential is more shallow than vextðrÞ.
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To derive an expression for vSsðrÞ, note that the Euler equation yielding
the KS equations is

dTS½na; nb�
dns

þ vSsðrÞ ¼ m ½11�

Here TS is the kinetic energy of the KS electrons,

TS ¼
X
s

XNs

j¼1

ð
d3r

1

2
jrfjsðrÞj2

Rewriting F½na; nb� in terms of the KS system gives

F½na; nb� ¼ TS½na;nb� þU½n� þ EXC½na; nb� ½12�

Figure 2 (Top panel) Exact radial density for the He atom found via the quantum
Monte Carlo method.156 (Bottom panel) The external and KS potentials for the He
atom. The KS potential is found by inverting the KS equations using the exact KS
orbitals (easily found for He if the exact density is known).
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where U½n� is the Hartree energy, given by

U½n� ¼ 1

2

X
ss0

ð
d3r d3r0

nsðrÞns0 ðr0Þ
jr� r0j ½13�

and the exchange–correlation (XC) energy is defined by Eqs. [7] and [12]:

EXC½na; nb� ¼ T½na;nb� � TS½na;nb� þ Vee½na; nb� �U½n� ½14�

Inserting Eq. [14] into Eq. [8] and comparing that to Eq. [11] gives a definition
of the KS potential:

vSsðrÞ ¼ vextðrÞ þ vHðrÞ þ vXCsðrÞ ½15�

where the Hartree potential is the functional derivative of U½n�:

vHðrÞ ¼ dU½n�
dnðrÞ ¼

X
s0

ð
d3r0

ns0 ðr0Þ
jr� r0j ½16�

while the XC potential is given by the functional derivative of the XC energy:

vXCsðrÞ ¼ dEXC½na; nb�
dnsðrÞ ½17�

This derivation then closes the relationship between the KS system and
the original physical problem. Once EXC½na; nb� is known exactly or is
approximated, vXCsðrÞ is determined by differentiation. The KS equations
can be solved self-consistently for the spin densities and orbitals, and the total
energy found by inserting those densities and orbitals into the total energy
functional E ¼ TS þU þ EXC þ Vext. Unfortunately EXC½na; nb� is not known
exactly and must be approximated. There exists in the scientific community a
functional soup of many different approximations of varying accuracy and
computational cost, many of which are discussed in the following section.

For the He atom, when the KS equation is solved with the exact potential
as shown in Figure 2, the highest occupied molecular orbital (HOMO) level is
at �24:592 eV, the negative of the ionization energy of helium. In exact DFT,
Koopmans theorem, which states I ¼ �EHOMO, is exactly true.157 In ground-
state DFT, this is the only energy level of the fictitious KS system that has an
immediate physical interpretation.

Before leaving our tutorial on ground-state formalism, we mention the
optimized effective potential (OEP) method158,159 in which the XC functional
is written as a functional of the KS orbitals (which in turn are functionals of
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the density). The exchange energy is then given by the familiar Hartree–Fock
(HF) definition:

EX ¼ � 1

2

XN
i;j¼1

X
s

ð
dr dr0

f�
isðrÞf�

jsðr0ÞfjsðrÞfisðr0Þ
jr� r0j ½18�

In contrast to HF, however, a single effective potential vXX
S ðrÞ is found via the

chain rule. Accurate orbital-dependent functionals for the correlation energy
are extremely difficult to find, so only exchange is often used. In DFT, this
is called exact exchange (EXX), because exchange is usually treated only
approximately. EXX gives useful features such as derivative discontinuities
and the correct asymptotic decay of the KS potential,160 which, as we will
see later, are important for TDDFT linear response.

Approximate Functionals

In any ground-state DFT calculation, we must use approximations for
the functional dependence of the XC energy on the spin densities, and there
now exists a hierarchy of such approximations. The simplest of these is the
local density approximation (LDA), where the XC energy at a point r0 is cal-
culated as if it were a uniform electron gas with the spin densities ns ¼ nsðr0Þ
in a constant positive background. The exchange energy for the uniform gas
can be deduced analytically, but the correlation contribution is found using a
combination of many-body theory and highly accurate quantum Monte Carlo
(QMC) simulations for the electron gas of different densities.161–164 The local
spin density approximation (LSDA) is the simple generalization of LDA for
different spins.

The local density approximation works remarkably well given the vast
differences between homogeneous electron gases and atoms or molecules.
Total energies are generally underestimated, however. Typically, the XC
energy is underestimated by about 7%. When the performance of LDA is
examined carefully, this small underestimation is due to a nice (but not com-
pletely accidental) cancellation of errors between the exchange part (underes-
timated by about 10%) and correlation (overestimated by 200–300%), which
is typically four times smaller than exchange.

An obvious improvement to LDA would be to include information about
how rapidly the density is changing via its gradient. This leads to the general-
ized gradient approximation (GGA). In the original Kohn–Sham study of
1965,2 the simplest of these approximations was suggested. The gradient
expansion approximation (GEA) was found by examining the slowly varying
limit of the electron gas.165 However it was soon found that GEA failed to
improve the accuracy of LDA, and it sometimes made things worse. It was
not until the late 1980s that accurate GGAs were constructed, the most
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popular of which are BLYP [B885 (Becke) for exchange and LYP6 (Lee, Yang,
and Parr) for correlation] and PBE7 (Perdew, Burke, Ernzerhof). These GGAs
generally reduce atomization errors of LDA by a factor of 2–5.

The PBE functional is designed to improve upon the performance of
LDA without losing the features of LDA that are correct. As such, it reduces
to LDA for the uniform electron gas. A GGA should also satisfy as many exact
conditions as possible, such as the Lieb–Oxford bound166 or the form of the
exchange energy in the slowly varying limit of the electron gas. In this regard,
PBE is a nonempirical functional where all parameters are determined by exact
conditions; and, because of its ability to treat bulk metals, it is the functional
of choice in solid-state calculations and increasingly so in molecular quantum
chemistry. When choosing a GGA, whether to use PBE or not should no longer
be a question (although the crambin calculation of the introduction of this
chapter used BP86,5,316 for reasons explained in Ref. 9).

Finally, hybrid functionals mix in some fraction of exact exchange with a
GGA. This is the Hartree–Fock exchange integral, Eq. [18], evaluated with the
KS orbitals (which are functionals of the density). Only a small fraction of
exact exchange (20–25%) is mixed in, so as to preserve the cancellation of
errors that GGAs make use of.167 The most widely used functional in chemis-
try is the hybrid functional B3LYP, which contains three experimentally fitted
parameters6,8,168 (although the parameter in B88 has recently been derived169).
Other hybrid functionals include PBE0, where 25% of exact exchange is mixed
in with the PBE functional.170

A less well-known feature to users of ground-state DFT is that while
their favorite approximations may yield very good energies (and therefore
structures, vibrations, thermochemistry, etc.) and rather good densities, they
have poorly behaved potentials, at least far from nuclei. Figure 3 illustrates
this for the He atom, showing the LDA potential compared to the exact KS
potential. While the potential is generally good in the region r < 2, it decays
much too fast far from the nucleus. The true KS potential falls off as �1=r,

Figure 3 Exact and LDA KS potentials for the He atom. While the exact potential falls
off as �1=r, the LDA decays much too quickly. This fast decay is common for nearly all
existing functional and has major consequences for TDDFT.
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whereas LDA decays exponentially. Accordingly, the KS eigenvalues and
eigenvectors will be poor for the higher energy levels. To understand why
poor potentials do not imply poor energies (and why these potentials are
not as bad as they look), we recommend you read Ref. 171. But, as we shall
see when we discuss performance, this has major consequences for TDDFT.

The technology for treating orbital-dependent functionals has developed
over the past decade, and such functionals have helped cure this problem.158

This technology is called the optimized effective potential (OEP)172–174

described above. The first useful orbital functional was LDA-SIC, the self-
interaction-corrected LDA of Perdew and Zunger.162 More generally, the
OEP method can handle any orbital-dependent functional, including treating
exchange exactly. Orbital-dependent functionals naturally avoid the self-
interaction error that is common in explicit density functionals. An (almost)
exact implementation of the OEP equations is the localized Hartree–Fock
(LHF) algorithm,175,176 available in TURBOMOLE.10

Basis Sets

To actually solve the KS equations, the KS orbitals fpsðrÞ are expanded
in a finite set of basis functions wnðrÞ:

fpsðrÞ ¼
X
n

CpnswnðrÞ ½19�

The most common choice, by far, for the basis functions in quantum chemistry
are atom-centered contracted Cartesian Gaussians177

wnðrÞ ¼
X
i

cinx
lxðnÞylyðnÞzlzðnÞe��inðr�RnÞ2 ½20�

where lxðnÞ, lyðnÞ, and lzðnÞ are positive integers or zero, and lðnÞ ¼
lxðnÞ þ lyðnÞ þ lzðnÞ is somewhat loosely called l-quantum number of
wn. [l ¼ 0; 1; 2; 3; . . . corresponds to s;p; d; f ; . . . type Cartesian Gaussians.]
The exponents �im and the contraction coefficients cin are optimized in atomic
calculations. Other common basis functions in use include Slater-type orbitals,
plane waves, and piecewise defined functions on a numerical grid.

The approximation of the orbitals fpsðrÞ by a finite linear combination
of basis functions (also called LCAO, linear combination of atomic orbitals),
Eq. [19], leads to a finite number of molecular orbitals (MOs). Thus, the KS
equations and all derived equations are approximated by finite-dimensional
matrix equations, which can be treated by established numerical linear and
nonlinear algebra methods. When the basis set size is increased systematically,
the computed properties converge to their basis set limit.
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In a finite basis set, all operators become finite matrices; the matrix
elements are integrals, as illustrated, for example, by Eq. [21]:

Hmns½n� ¼
ð
d3r wmðrÞHs½n�wnðrÞ ½21�

The calculation and processing of such integrals is the main effort in almost
all DFT numerical calculations. Gaussian basis functions have the distinct
advantage that (1) most integrals can be evaluated analytically, and (2)
they are spatially local. The latter advantage implies that many integrals
vanish and need not be calculated. Whether a certain integral vanishes or
not can be decided in advance by prescreening techniques.178

To illustrate the effect of basis set selection, we show in Table 2 the
reaction energy for naphthalene combustion in the gas phase:

C10H8 þ 12O2 ! 10CO2 þ 4H2O ½22�

The basis sets are listed in order of increasing size and are well known in
quantum chemistry (and are described in detail later in the chapter). We see that
hydrogen polarization functions (basis sets ending in P) are important because
C–H bonds are broken and O–H bonds are formed. Augmentation (aug-) with
diffuse functions (small exponent) improves somewhat the smaller basis set
results but is not economical in this case. Using the resolution of the identity
(RI) for the Coulomb operator saves computational time, with no loss of

Table 2 Single-Point Calculations (with the PBE/TZVP/RI Geometry) Using PBE
Functional for Reaction Energy for Naphthalene Combustion

Basis Set Negative Reaction Energy (kcal/mol) CPUa (s)

SV 916.8 9
SV(P) 1060.0 9
6-31G* 1047.1 25
SVP 1108.6 9
aug-SV(P) 1115.5 35
TZVP 1124.5 295
TZVPP 1131.2 420
cc-pVTZ 1129.0 375
aug-TZVP 1130.2 2525
aug-TZVP/RI 1130.2 155
QZVP 1140.3 5734
Reference Valueb 1216.3

aCPU denotes the CPU time is seconds.
bComputed using standard enthalpies of formation (from NIST179) using thermal and ZVPE

corrections at the PBE/TZVP/RI level.
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accuracy. Reasonable results are found with SVP, but convergence improves all
the way to TZVP. We can see that after the TZVPP result, the basis set error is
well below the functional error and the reaction energy is effectively converged.
That is to say, we have reached the stage where adding more orbitals, which
increases the computational cost, will no longer improve the result drastically.
[This should be compared to the crambin calculation mentioned in the introduc-
tion, which is very large, and where only an SV(P) basis set could be used.]

Compared to the reference value we find quite a large error, �E ¼ 76
kcal/mol. However, given that 48 electron pair bonds are broken and formed,
the error per carbon atom is only 7.6 kcal/mol, a value that is typical for this
functional.

TIME-DEPENDENT THEORY

In this section we introduce all of the basic elements of TDDFT and how
it differs from the ground-state case.

Runge–Gross Theorem

The analog of the Hohenberg–Kohn theorem for time-dependent pro-
blems is the Runge–Gross (RG) theorem.16 Consider N nonrelativistic elec-
trons, mutually interacting via the Coulomb repulsion, in a time-dependent
external potential. The Runge–Gross theorem states that the densities nðrtÞ
and n0ðrtÞ evolving from a common initial state �0 ¼ �ðt ¼ 0Þ under the influ-
ence of two external potentials vextðrtÞ and v0extðrtÞ (both Taylor-expandable
about the initial time 0) are always different provided that the potentials differ
by more than a purely time-dependent (r-independent) function:

�vextðrtÞ 6¼ cðtÞ ½23�

where

�vextðrtÞ ¼ vextðrtÞ � v0extðrtÞ ½24�

Thus, there is a one-to-one mapping between densities and potentials, and we
say that the time-dependent potential is a functional of the time-dependent
density (and the initial state).

The RG theorem was proven in two distinct parts. In the first part (RGI),
one shows that the corresponding current densities differ. The current density
is given by

jðrtÞ ¼ h�ðtÞĵjðrÞj�ðtÞi ½25�
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where

ĵðrÞ ¼ 1

2i

XN
j¼1

½rjdðr� rjÞ þ dðr� rjÞrj� ½26�

is the current density operator. The equation of motion for the difference of
the two current densities gives16

q�jðrtÞ
qt

����
t¼0

¼ �n0ðrÞr�vextðr; 0Þ ½27�

If the Taylor expansion of the difference of the two potentials about t ¼ 0 is
not spatially uniform for some order, the Taylor expansion of the current
density difference will then be nonzero at a finite order. Thus, RGI establishes
the fact that the external potential is a functional of the current density,
vext½j;�0�ðr; tÞ.

In the second part of the theorem (RGII), continuity is used:

qnðrtÞ
qt

¼ �r� jðrtÞ ½28�

which leads to

q2�nðrtÞ
qt2

����
t¼0

¼ r� ½n0ðrÞr�vextðr; 0Þ� ½29�

Suppose now that �vextðr; 0Þ is not uniform everywhere. Might not the left-
hand side of Eq. [29] still vanish? Apparently not, for real systems, because
it is easy to show:180

ð
d3r�vextðr; 0Þr� ½n0ðrÞr�vextðr; 0Þ�

¼
ð
d3r½r � ð�vextðr; 0Þn0ðrÞr�vextðr; 0ÞÞ

� n0jr�vextðr; 0Þj2�

½30�

Using Green’s theorem, the first term on the right vanishes for physically
realistic potentials (i.e., potentials arising from normalizable external charge
densities) because for such potentials, �vextðrÞ falls off at least as 1=r. But,
the second term is definitely negative, so, if �vextðr; 0Þ is nonuniform, the inte-
gral must be finite, causing the densities to differ in second order in t. This
argument applies to each order and the densities nðr; tÞ and n0ðr; tÞ will become
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different infinitesimally later than t. Thus, by imposing these boundary condi-
tions, we have shown that the external potential, vext½n;�0�ðrtÞ, is a functional
of the time-dependent density nðrtÞ and the initial wave function �0.

In this regard please note that:

1. The difference between nðrtÞ and n0ðrtÞ is nonvanishing already in first
order of �vextðrtÞ, ensuring the invertibility of the linear response operators
described later.

2. Because the density determines the potential up to a time-dependent
constant, the wave function is in turn determined up to a time-dependent
phase, which cancels out of the expectation value of any operator.

3. We write vext½n; �0�ðrtÞ because the potential depends on both the history
of the density and the initial wave function. The functional vext½n; �0�ðrtÞ
is a very complex one, much more so than the ground-state case;
knowledge of it implies solution of all time-dependent Coulomb
interacting problems.

4. If we always begin in a nondegenerate ground state,181,182 the initial-state
dependence can be subsumed by the Hohenberg–Kohn theorem,1 then
vextðrtÞ is a functional of nðrtÞ alone: vext½n�ðrtÞ.

5. A spin-dependent generalization exists,183 so that vextðrtÞ will be a func-
tional of the spin densities na, nb. This is usually used in practical
calculations.

6. Since RGI establishes that the external potential is a functional of the
current density, one could choose to use the current density as the basic
variable instead of the density. This is known as time-dependent current
density functional theory (TDCDFT) (See discussion below on solids.)

Kohn–Sham Equations

Once we have a proof that the potential is a functional of the time-
dependent density, it is simple to write the time-dependent Kohn–Sham
(TDKS) equations as

i
qfjsðrtÞ

qt
¼ �r2

2
þ vSs½n�ðrtÞ

� �
fjsðrtÞ ½31�

whose potential is uniquely chosen (via the RG theorem) to reproduce the
exact spin densities of the interacting system. For simplicity, the initial-state
dependence of the KS potential is not written explicitly. As noted, if we start
in a nondegenerate ground state, this dependence is subsumed into the density.

nsðrtÞ ¼
XNs

j¼1

jfjsðrtÞj2 ½32�
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We define the exchange–correlation potential via

vSsðrtÞ ¼ vextsðrtÞ þ
ð
d3r0

nðr0tÞ
jr� r0j þ vXCsðrtÞ ½33�

where the second term is the familiar Hartree potential.
Here the following should be noted:

1. The exchange–correlation potential, vXCsðrtÞ is in general a functional of
the entire history of the densities, nsðrtÞ, the initial interacting wave
function �ð0Þ, and the initial Kohn–Sham wave function, �ð0Þ.182 But if
both the KS and interacting initial wave functions are nondegenerate
ground states, it becomes a simple functional of nsðrtÞ alone.

2. By inverting the single doubly occupied KS equation for a spin-unpolarized
two-electron system, it is straightforward (but technically demanding) to
find the TDKS potential from an exact time-dependent density, a task that
has been done several times184–186 for simple model systems.

3. Some approximation is used for vXCðrtÞ as a functional of the density in
practical calculations, so that modifications of traditional TDSE schemes
are needed for the propagation.187

4. Unlike the ground-state case, there is no self-consistency, merely forward
propagation in time, of a density-dependent Hamiltonian.

5. Again, unlike in the ground state, there is no central role played by a single-
number functional, such as the ground-state energy. In fact, while an action
was provided in the original RG study, extremizing it was later shown to
not yield the TDKS equations.188

Linear Response

The most common application of TDDFT is the response of a system to a
weak, long-wavelength, optical field:

dvextðrtÞ ¼ �x expðiotÞz ½34�
In the general case of the response of the ground state to an arbitrary weak
external field, the system’s first-order response is characterized by the nonlocal
susceptibility:

dnsðrtÞ ¼
X
s0

ð
dt0
ð
d3r0 wss0 ½n0�ðr; r0; t � t0Þdvexts0 ðr0t0Þ ½35�

This susceptibility w is a functional of the ground-state density, n0ðrÞ. A similar
equation describes the density response in the KS system:

dnsðrtÞ ¼
X
s0

ð
dt0
ð
d3r0 wSss0 ½n0�ðr; r0; t � t0ÞdvSs0 ðr0t0Þ ½36�
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Here wS is the Kohn–Sham response function, constructed from KS energies
and orbitals:

wSss0 ðrr0oÞ ¼ dss0
X
q

�qsðrÞ��
qs0 ðr0Þ

o� oq þ i0þ
� ��

qsðrÞ�qs0 ðr0Þ
oþ oq � i0þ

� �
½37�

where q is a double index, representing a transition from occupied KS orbital i
to unoccupied KS orbital a, oqs ¼ Eas � Eis, and �qsðrÞ ¼ f�

isðrÞfasðrÞ. 0þ
means the limit as 0þ goes to zero from above (i.e., along the positive real
axis). Thus, wS is determined completely by the ground-state KS potential.
It is the susceptibility of the noninteracting electrons sitting in the KS
ground-state potential.

To relate the KS response to the true response, we examine in Eq. [38]
how the KS potential in Eq. [33] changes:

dvSsðrtÞ ¼ dvextsðrtÞ þ dvHXCsðrtÞ ½38�

Because dvHXCsðrtÞ is due to an infinitesimal change in the density, it may be
written in terms of its functional derivative, i.e., as in Eq. [39]:

dvHXCsðrtÞ ¼
X
s0

ð
d3r0

ð
dt0 fHXCss0 ðrr0; t � t0Þdns0 ðr0t0Þ ½39�

where

fHXCss0 ½n0�ðrr0; t � t0Þ ¼ dvHXCsðrtÞ
dns0 ðr0t0Þ

����
n0

½40�

The Hartree contribution is found by differentiating Eq. [16]:

fH½n0�ðrr0; t � t0Þ ¼ dvHðrtÞ
dns0 ðr0t0Þ

¼ dðt � t0Þ
jr� r0j ½41�

while the remainder, fXCss0 ½n0�ðrr0; t � t0Þ, is known as the XC kernel.
By the definition of the KS potential, dnsðrtÞ is the same in both Eqs. [35]

and [36]. We can then insert Eq. [39] into Eq. [36], equate that result with
Eq. [35], and solve for a general relation for any dnsðrtÞ. After Fourier
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transforming in time, the central equation of TDDFT linear response189 is a
Dyson-like equation for the true w of the system:

wss0 ðrr0oÞ ¼ wSss0 ðrr0oÞ þ
X
s1s2

ð
d3r1

ð
d3r2wSss1

ðrr1oÞ

� 1

jr1 � r2j þ fXCs1s2
ðr1r2oÞ

� �
ws2s0 ðr2r0oÞ ½42�

It is to be noted here that:

1. The XC kernel is a much simpler quantity than vXCs½n�ðrtÞ because the
kernel is a functional of only the ground-state density.

2. The kernel is nonlocal in both space and time. The nonlocality in timemanifests
itself as a frequency dependence in the Fourier transform, fXCss0 ðrr0oÞ.

3. When fXC is set to zero in Eq. [42], physicists call it the random-phase
approximation (RPA). The inclusion of fXC is an exactification of RPA, in
the same way that the inclusion of vXCðrÞ in ground-state DFT was an
exactification of Hartree theory.

4. The Hartree kernel is instantaneous; it is local in time, i.e., it has no
memory and will have no frequency dependence when Fourier transformed
to the frequency domain. Thus, it is given exactly by an adiabatic
approximation.

5. The frequency-dependent kernel is a very sophisticated object since its
frequency dependence makes the solution of an RPA-type equation yield
the exact w (including all vertex corrections at every higher order term). The
kernel defies physical intuition; thus arguments based on the structure of
the TDDFT equations are at best misleading. If any argument cannot be
given in terms of many-body quantum mechanics, Eq. [42] cannot help.

6. The kernel is, in general, complex, with real and imaginary parts related via
a Kramers–Kronig relation.190

The poles of the linear susceptibility, wðrr0oÞ, are the excitation frequencies
of the true system. In order to extract these frequencies Casida191 used ancient
RPA technology to produce equations in which these poles of w are found as the
solution to an eigenvalue problem. In order to see this, first do an expansion of
the density change in the basis of KS transitions. We write dnsðrtÞ as

dnsðroÞ ¼
X
q

½PqsðoÞ��
qsðrÞ þ P�qsðoÞ�qsðrÞ� ½43�

where �q ¼ ða; iÞ if q ¼ ði; aÞ. This representation is used to solve Eq. [36]
self-consistently using Eq. [39], and yields two coupled matrix equations:192

A B
B� A�

� �
� o

�1 0
0 1

� �� �
X
Y

� �
¼ � dv

dv�

� �
½44�
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where Aqsq0s0 ¼ dqq0dss0oqs þ Kqsq0s0 , Bqsq0s0 ¼ Kqsq0s0 , Xqs ¼ Pqs, Yqs ¼
P�qs, and

Kqsq0s0 ðoÞ ¼
ð
dr

ð
dr0 �qsðrÞfHXCss0 ðrr0oÞ��

q0s0 ðr0Þ ½45�

with

dvqsðoÞ ¼
ð
dr�qsðrÞdvextðroÞ ½46�

When dv ¼ 0, then o will be an excitation frequency of the true system. If the
KS orbital are chosen as real and using the fact that ðA� BÞ will be positive
definite, then we can simplify Eq. [44] as the eigenvalue problem in Eq. [47]:

X
q0s0

~�qsq0s0 ðoÞ~aq0s0 ¼ o2~aqs ½47�

where

~� ¼ ðA� BÞ1=2ðAþ BÞðA� BÞ1=2 ½48�

or

~�qsq0s0 ðoÞ ¼ o2
qsdqq0dss0 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oqsoq0s0

p
Kqsq0s0 ½49�

Oscillator strengths fq may be calculated191 from the normalized eigenvectors
using

fqs ¼ 2
3 ðj~xTS�1=2~aqsj2 þ j~yTS�1=2~aqsj2 þ j~zTS�1=2~aqsj2Þ ½50�

where

Sqq0 ¼ dqq0dss0

wq0s0
½51�

Figure 4 shows the results of exact DFT calculations for the He atom. On
the left side of the diagram, we consider just transitions from the exact ground-
state KS occupied orbital (1s) to unoccupied orbitals. These are not the true
excitations of the system, nor are they supposed to be. However, applying
TDDFT linear response theory, using the exact kernel with the exact orbitals,
yields the exact excitation frequencies of the He atom. Spin decomposing pro-
duces both singlet and triplet excitations.
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Approximations

While all the equations above are formally exact, as in the ground-state
case, a TDDFT calculation requires an approximation for the unknown XC
potential. The most common approximation in TDDFT is the adiabatic
approximation194,195 in which

vadiaXCs½n�ðrtÞ ¼ vgsXCs½n0�ðrÞjn0sðrÞ¼nsðrtÞ ½52�

This means the XC potential at any time is simply the ground-state XC poten-
tial at that instant. This obviously becomes exact for sufficiently slow pertur-
bations in time, in which the system always stays in its instantaneous ground
state. Although most applications are not in this slowly varying regime, results
obtained within the adiabatic approximation are, nevertheless, remarkably
accurate in many cases.

Any ground-state approximation (LDA, GGA, hybrid) provides an adia-
batic approximation for use in TDDFT automatically. The most famous is the
adiabatic local density approximation (ALDA).194,195 It employs the func-
tional form of the static LDA with a time-dependent density:

vALDA
XCs ½n�ðrtÞ ¼ vunifXC ðnaðrtÞ; nbðrtÞÞ ¼ deunifXC

dns

����
ns¼nsðrtÞ

½53�
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Figure 4 Transitions for the helium atom using only ground-state DFT on the left and
TDDFT on the right. In both cases, the exact functionals have been used. The results for
employing the exact XC kernel in TDDFT linear response were deduced from
calculations using Ref. 193. In each pair of lines on the right, the triplet is below the
singlet.
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Here eunifXC ðna; nbÞ is the accurately known exchange–correlation energy density
of the uniform electron gas of spin densities na, nb. For the time-dependent
exchange–correlation kernel of Eq. [40], Eq. [53] leads to

fALDA
XCss0 ½n0�ðrt; rt0Þ ¼ dð3Þðr� r0Þdðt � t0Þ d

2eunifXC

dnsdns0

����
ns¼n0sðrÞ

½54�

The time Fourier transform of the kernel has no frequency dependence at all in
any adiabatic approximation. Via a Kramers–Kronig relation, this implies that
it is purely real.190

Thus, any TDDFT linear response calculation is carried out in two steps:

1. An approximate ground-state DFT calculation is done, finding a self-
consistent KS potential. Transitions from occupied to unoccupied KS
orbitals provide zero-order approximations to the optical excitations.

2. An approximate TDDFT linear response calculation is done on the orbitals
of the ground-state calculation. This corrects the KS transitions into the
true optical transitions.

In practice both of these steps contain inherent errors. We shall dissect
the relative importance of both of these errors later in the chapter.

IMPLEMENTATION AND BASIS SETS

Time-dependent DFT has the ability to calculate various physical and
quantum quantities, and different techniques are sometimes favored for each
type. For some purposes as, for example, if strong fields are present, it can be
better to propagate forward in time the KS orbitals using either a real space
grid196,197 or plane waves.198 For finite-order response, Fourier transforming
to frequency space with localized basis functions may be preferable.199 We dis-
cuss in detail below how the latter approach works, emphasizing the impor-
tance of basis set convergence.

Density Matrix Approach

We can write the dynamics of the TDKS systems in terms of the one-
particle density matrix gsðrr0tÞ of the TDKS determinant, rather than the
orbitals. gsðrr0tÞ has the spectral representation

gsðrr0tÞ ¼
XN
j¼1

fjsðrtÞf�
jsðr0tÞ ½55�

which means the Ns TDKS orbitals are the eigenfunctions of gs. The eigenva-
lue of all TDKS orbitals, which is their occupation number, is always 1,
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reflecting the fact that the TDKS system is noninteracting. Equivalently, gs
satisfies the idempotency constraint

gsðrr0tÞ ¼
ð
dr1 gsðrr1tÞgsðr1r0tÞ ½56�

The normalization of the TDKS orbitals implies that the trace of gs be Ns.
Using the TDKS equations [31], one finds that the time evolution of gs is

governed by the von Neumann equation:

i
q
qt

gsðtÞ ¼ ½Hs½n�ðtÞ; gsðtÞ� ½57�

where Hs½n�ðrtÞ ¼ �r2=2þ vss½n�ðrtÞ is the TDKS one-particle Hamiltonian.
Although gs has no direct physical meaning, it provides the interacting density
and current density. The density is simply

nsðrtÞ ¼ gsðrrtÞ ½58�

and the KS current density can be obtained from

jSsðrtÞ ¼
1

2i
ðrr �rr0 Þgsðrr0tÞ

����
r0¼r

½59�

Thus, one can either propagate the TDKS orbitals using the TDKS equations
[31] or equivalently one can propagate the TDKS one-particle density matrix
gs using the von Neumann equation [57], subject to the idempotency con-
tstraint [56], and normalized to Ns.

It is often preferable to use gs instead of the TDKS orbitals in practice. gs
is unique (up to a gauge transformation), while the orbitals can be mixed arbi-
trarily by unitary transformations. Both ns and js are linear in gs, while they
are quadratic in the orbitals; also, the TDKS response equations are inhomo-
geneous in the orbitals (i.e., the response of each orbital is coupled to the
response of all other orbitals) due to the density dependence of Hs, while
they are homogeneous in gs. A response theory based on the TDKS density
matrix is therefore considerably simpler than one based on orbitals. Finally,
the use of gs is computationally more efficient than using orbitals.199

Basis Sets

In response theory, the basis functions wnðrÞ are usually chosen to be
time independent; for strong fields or coupled electron-nuclear dynamics,
time-dependent basis functions can sometimes be more appropriate.
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Convergence for Naphthalene

Table 3 shows the basis set convergence of the first six singlet excitation
energies of naphthalene computed using the PBE XC functional for both the
ground-state and TDDFT calculations; the corresponding oscillator strengths
for some of the transitions are also given. In this table Nbf denotes the number
of Cartesian basis functions, and CPU denotes the CPU time (seconds). Similar
basis set convergence studies on small model systems should precede applica-
tions to large systems. However, the systems and the states of interest, the tar-
get accuracy, the methods used, and the computational resources available will
determine which basis set is appropriate in practice. With a model small mole-
cule such as naphthalene, we can find the basis set convergence limit of a given
method. For this hydrocarbon both excitation energies and oscillator strengths
are essentially converged within the aug-QZVP basis set in Table 3. QZVP
stands for a quadruple-zeta valence basis set with polarization functions,202

and the prefix aug- denotes additional diffuse functions on nonhydrogen
atoms, which were taken from Dunning’s aug-cc-pVQZ basis set.203 For C
and H, this corresponds to ½8s5p4d3f2g� and ½4s3p2d1f �, respectively, where
the numbers in brackets denote shells of contracted Gaussian-type orbitals
(CGTOs), as usual. We will take the aug-QZVP results as a reference to assess
the effect of smaller basis sets.

Double-Zeta Basis Sets

The smallest basis in Table 3 is of split valence (SV) or double-zeta valence
quality,204 without polarization functions. This basis set consists of two CGTOs
per valence orbital and one per core orbital, i.e., ½3s2p� for C and ½2s� for H.
Another popular double-zeta valence basis set is 6-31G.205 The SV basis set
can be used to obtain a very rough qualitative description of the lowest valence
excited states only, e.g., in this example 11B3u and 11B2u. Higher and diffuse
excitations, such as 11Au, are much too high in energy or can be missed comple-
tely in the spectrum. Because unpolarized basis sets also give poor results for
other properties such as bond lengths and energies, their use is generally discour-
aged nowadays.

Polarization Functions

The SV results for valence excitations can be improved considerably at
moderate computational cost by adding a single set of polarization functions
to nonhydrogen atoms. The resulting basis set is termed SV(P) and consists of
½3s2p1d� for C and [2s] for H.204 The basis set errors in the first two valence
excitation energies are reduced by about 50%. There is also a dramatic
improvement in the oscillator strength of the dipole-allowed transitions.
This improvement is expected from the limiting case of a single atom, where
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the first dipole-allowed transition from a valence shell of l quantum number lv
generally involves orbitals with l-quantum number lv þ 1. Basis sets of SV(P)
or similar quality are often the first choice for TDDFT applications to large
systems, especially if only the lowest states are of interest and/or if diffuse exci-
tations are quenched due, e.g., to a polar environment. The popular 6-31G*
basis set205,206 has essentially the same size as SV(P) but performed slightly
worse in our example above.

Adding a single set of p-type polarization functions to hydrogen atoms
produces the SVP basis set.204 These functions describe mainly C-H s�-type
excitation in molecules, which usually occur in the far ultraviolet (UV) and
are rarely studied by most scientists. Going from SV(P) to SVP has no signifi-
cant effect in our example. Such an observation may be different for molecules
containing strongly polarized hydrogen element or hydrogen bridge bonds,
however.

The aug-SV(P) is an SV(P) basis set augmented by a ½1s1p1d� set of pri-
mitive Gaussians with small exponents, often called ‘‘diffuse functions’’ (from
Dunning’s aug-cc-pVDZ203). The effect of diffuse augmentation is a moderate
downshift of less than 0.1 eV for the first two singlet excitation energies, as
shown in Table 3. This behavior is typical of lower valence excited states hav-
ing a similar extent as the ground state. The naphthalene example also shows
that diffuse functions can have a significant effect on higher excitations. An
extreme case is the 11Au state, which is an excitation into the 10au orbital hav-
ing the character of a 3s Rydberg state (any state with principal quantum num-
ber higher than HOMOs) of the entire molecule. The excitation energy of this
state is lowered by more than 1 eV upon diffuse augmentation.

While polarization functions are necessary for a qualitatively correct
description of transition dipole moments, additional diffuse polarization func-
tions can account for radial nodes in the first-order KS orbitals, which further
improves computed transition moments and oscillator strengths. These bene-
fits are counterbalanced with a significant increase of the computational cost
involved: In our example, the aug-SV(P) basis increased the computation time
by about a factor of 4. For molecules with more than 30–40 atoms, most exci-
tations of interest are valence excitations, and the use of diffuse augmentation
may become prohibitively expensive because the large spatial extent of these
functions confounds integral prescreening.

Triple-Zeta Basis Sets

For large molecules where the use of diffuse augmentation is prohibi-
tive, an alternative is to use triple-zeta valence (TZV) basis sets. The
TZVP (def-2-TZVP207) basis set corresponds to ½5s3p2d1f � on C and
½3s1p� on H. It also includes a second set of polarization functions on nonhy-
drogen atoms and provides a description of the valence electrons that is

116 Excited States from Time-Dependent Density Functional Theory



accurate for many purposes when density functionals are used. The excita-
tion energies of valence states are essentially converged in this basis set
(see Table 3). However, the diffuse states are too high in energy. Little
change takes place when going to the TZVPP basis, which differs from
TZVP only by an additional set of polarization functions on H. The perfor-
mance of Dunning’s cc-pVTZ basis set208 is similar to TZVP and TZVPP.
We point out that Dunning basis sets are based on a generalized contraction
scheme for valence orbitals, as opposed to the segmented contracted SV,
TZV, and QZV basis sets, the latter of which are more efficient for larger
systems because more integrals vanish.

Diffuse Functions

By adding a ½1s1p1d1f � set of diffuse functions to TZVP, we obtain the
aug-TZVP basis set. The aug-TZVP excitation energies of all states of
naphthalene, except the 11Au Rydberg state, are within 0.01 eV of the refer-
ence aug-QZVP results and can be considered essentially converged. A similar
observation can be made for the oscillator strengths in Table 3.

When going to the larger quadruple-zeta valence (QZV) basis sets, the
results change only marginally, but the computation times increase substan-
tially. In density functional theory, these basis sets are mainly used for bench-
marks and calibration.

Resolution of the Identity

We have included in Table 3 a result for the aug-TZVP basis set that was
obtained using the resolution of the identity approximation for the Coulomb
energy (RI-J).209,210 It is obvious that the error introduced by the RI-J approx-
imation is much smaller than the basis set error, while the computation time is
reduced by a factor of 5. The RI-J approximation is so effective because the
computation of the Coulomb (Hartree) energy and its response is the bottle-
neck in conventional (TD)DFT calculations. RI-J replaces the four-index
Coulomb integrals by three-index and two-index integrals, considerably low-
ering the algorithmic prefactor.211 It is generally safe to use with the appropri-
ate auxiliary basis sets. As soon as hybrid functionals are used, however, the
computation of the exact exchange becomes rate determining.

Summary

For larger molecules than naphthalene, SV(P) or similar basis sets are often
appropriate due to their good cost-to-performance ratio. We recommend check-
ing the SV(P) results by a TZVP calculationwhenever possible. Diffuse functions
should be used sparingly for molecules with more than about 20 atoms.
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PERFORMANCE

This section of the tutorial is devoted to analyzing the performance of
TDDFT, assuming basis set convergence. Here we dissect many of the sources
of error in typical TDDFT calculations.

To get an overall impression of how well TDDFT does, we recommend
reading a small survey by Furche and Ahlrichs.212 Most chemistry calculations
are done with the B3LYP168 functional, and the results of those calculations
are transition frequencies within 0.4 eV of experiment. Moreover, structural
properties of excited states are almost as good as those of ground-state calcu-
lations (bond lengths to within 1%, dipole moments to within 5%, vibrational
frequencies to within 5%). Most importantly, the level of accuracy of most
TDDFT calculations appears sufficient to qualitatively identify the nature of
the most intense transitions, often debunking cruder models that have been
used for interpretation for decades. This is proving especially useful for the
photochemistry of biologically relevant molecules.69

Example: Naphthalene Results

As an illustration of the performance of TDDFT, we compare various
density functionals and wave function methods for the first singlet excited
states of naphthalene in Tables 4, 5, and 6. All calculations were performed
using the aug-TZVP basis set, while the complete active space self-consistent
field (SCF) with second-order perturbation theory (CASPT2) results from
Ref. 200 were obtained in a smaller double-zeta valence basis set with some
diffuse augmentation. The experimental results correspond to band maxima
from gas-phase experiments; however, the position of the band maximum
does not necessarily coincide with the vertical excitation energy, especially if

Table 4 Performance of Density Functionals for First Six Singlet Excitation Energies
(in eV) of Naphthalene

Methoda 11B3u 11B2u 2 lAg 11B1g 21B3u 11Au

Pure Density Functionals

LSDA 4.191 4.026 5.751 4.940 5.623 5.332
BP86 4.193 4.027 5.770 4.974 5.627 5.337
PBE 4.193 4.031 5.753 4.957 5.622 5.141

Hybrids

B3LYP 4.393 4.282 6.062 5.422 5.794 5.311
PBE0 4.474 4.379 6.205 5.611 5.889 5.603

‘‘best’’b 4.0 4.5 5.5 5.5 5.5 5.7
aAn aug-TZVP basis set and the PBE/TZVP/RI ground-state structure was used.
bThe ‘‘best’’ estimates of the true excitations were from experiment and calculations, as

described in text.
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the excited-state structure differs significantly from the ground-state structure.
For the lower valence states, the CASPT2 results can therefore be expected to
be at least as accurate as the experimental data. For higher excited states, the
basis set used in the CASPT2 calculations appears rather small, and the
approximate second-order coupled-cluster values denoted RICC2213–215

might be a better reference with which to make comparisons. Thus, our best
guess (denoted ‘‘best’’ in the tables) is from experiment for the first four tran-
sitions, CASPT2 for the fifth transition, and RICC2 for the sixth transition.

We begin with some general observations:

1. The excitation energies predicted by the GGA functionals BP86 and PBE
differ marginally from the LSDA results (an exception being the 11Au

Rydberg state, whose PBE excitation energy is substantially lower than
those of all other methods). Note, however, that GGA functionals generally
improve the results compared to LSDA results for other excited-state
properties such as structures or vibrational frequencies.

Table 5 Performance of Wave Function Methods for Excitations of Table 4

Method 11B3u 11B2u 21Ag 11B1g 21B3u 11Au

CISa 5.139 4.984 7.038 6.251 6.770 5.862
CC2a 4.376 4.758 6.068 5.838 6.018 5.736
CASPT2b 4.03 4.56 5.39 5.53 5.54 5.54
Expt. 3.97, 4.0 4.45, 4.7 5.50, 5.52 5.28, 5.22 5.63, 5.55 5.89
‘‘best’’b 4.0 4.5 5.5 5.5 5.5 5.7

aThe aug-TZVP basis set and the PBE/TZVP/RI ground-state structure was used.
bCASPT2 results and experimental results are from Ref. 200.

Table 6 Performance of Density Functional and Correlated
Wave Function Methods for Oscillator Strengths of First Three
Dipole-Allowed Transitions of Naphthalene

Methoda 11B3u 11B2u 21B3u

LSDA 0.0000 0.0405 1.1517
BP86 0.0000 0.0411 1.1552
PBE 0.0000 0.0407 1.1402
B3LYP 0.0000 0.0539 1.2413
PBE0 0.0000 0.0574 1.2719
LHF/LSDA 0.0000 0.0406 1.2089
LHF/PBE 0.0000 0.0403 1.2008
CIS 0.0002 0.0743 1.8908
CC2 0.0000 0.0773 1.4262
CASPT2 0.0004 0.0496 1.3365
expt. 0.002 0.102, 0.109 1.2, 1.3

aAn aug-TZVP basis set and the PBE/TZVP/RI ground-state structure
was used for all except the CASPT2 results, which were taken from
Ref. 200.
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2. The use of hybrid functionals leads to systematically higher excitation
energies. On average, this is an improvement over the GGA results, which
are systematically too low. However, while diffuse excitations benefit from
mixing in some exact exchange due to a reduction of the self-interaction
error, valence excitation energies are not always improved, as is obvious for
the 11B3u and 21B3u valence states.

3. The 11B2u state is erroneously predicted below the 11B3u state by all density
functionals in Table 4, which is a potentially serious problem for
applications in photochemistry. This is not corrected by hybrid mixing.

4. The configuration–interaction singles (CIS) method, which uses a Hartree–
Fock reference that is computationally as expensive as hybrid TDDFT,
produces errors that are substantially larger than the hybrid TDDFT
results, especially for valence states. The coupled-cluster (CC) and CASPT2
methods are usually more accurate but are far more CPU expensive, and
they scale prohibitively as the system size grows. The cost of CASPT2 scales
exponentially with the number of correlated electrons, while the cost of
CC2 grows with the fifth power of the system size. This severely limits the
application of these methods to larger molecules.

The 11B2u excitation is polarized along the short axis of the naphthalene
molecule. In Platt’s nomenclature of excited states of polycyclic aromatic
hydrocarbons (PAHs), 11B2u corresponds to the 1La state, which has more
ionic character than the 11B3u (or 1Lb) state. Parac and Grimme have pointed
out216 that GGA functionals underestimate the excitation energy of the 1La

state in PAHs considerably. Our example of naphthalene agrees with this
observation. The 11B2u excitation is computed to be 0.4–0.5 eV too low in
energy by LSDA and GGA functionals, leading to an incorrect ordering of
the first two singlet excited states.

Influence of the Ground-State Potential

From the very earliest calculations of transition frequencies,189,191 it was
recognized that the inaccuracy of standard density functional approximations
(LDA, GGA, hybrids) for the ground-state XC potential leads to inaccurate KS
eigenvalues. Because the approximate KS potentials have incorrect asymptotic
behavior (they decay exponentially, rather than as �1=r, as seen in Figure 3
and its discussion), the KS orbital eigenvalues are insufficiently negative, the
ionization threshold is far too low, and the Rydberg states are often unbound.

Many methods have since been developed to asymptotically correct
potentials217,218 to correct this unfortunate behavior. Any corrections to the
ground-state potential are dissatisfying, however, as the resulting potential is
not a functional derivative of an energy functional. Even mixing one approx-
imation for vXCðrÞ and another for fXC has become popular in an attempt to
rectify the problem. A more satisfying route to asymptotically correct
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potentials is to use the optimized effective potential (OEP) method159,174 and
include exact exchange or other self-interaction-free functionals.219 OEP
produces a far more accurate KS potential, with the correct asymptotic
behavior. The major remaining error is simply the correlation contribution
to the position of the HOMO, i.e., a small shift. Unfortunately, we do not
yet have an accurate correlation energy functional to match with exact
exchange for energetics.

N2, a Very Small Molecule
To illustrate the influence of different ground-state potentials consider

the N2 molecule. In all the cases discussed below, a SCF step was carried
out using the ground-state potential to find the KS levels, which are then
used as input to Eq. [47] with the ALDA XC kernel.

The KS energy levels and KS orbitals for the LDA functional are shown
in Table 7. The orbitals are calculated with two different numerical methods,
the first is fully numerical basis set free (i.e., solved on a real space grid) while
the other uses the Sadlej (52 orbitals) basis set220 [the OEP results for the EXX
(KLI) approximation shown in Table 7 are also calculated basis set free]. Note
that the eigenvalues for the higher unoccupied states are positive. This is due to
the LDA potential being too shallow and not having the correct asymptotic

Table 7 Orbital Energies of the KS Energy Levels for N2 at Separation
R ¼ 2:0744 a.u.

Energies in (eV)

LDA LDA OEP
Orbital Basis Set Freea Sadlejb Basis Set Freea

Occupied Orbitals
1sg �380:05 �380:82 �391:11
1su �380:02 �380:78 �391:07
2sg �28:24 �28:52 �35:54
2su �13:44 �13:40 �20:29
1pu �11:89 �11:86 �18:53
3sg �10:41 �10:38 �17:15

Unoccupied Orbitals

1pg �2:21 �2:23 �8:44
4sg �0:04 0.66 �5:05
2pu >0 1.93 �4:04
3su >0 1.35 �3:54
1dg >0 — �2:76
5sg >0 3.20 �2:49
6sg >0 — �2:33
2pg >0 3.89 �2:17
3pu >0 — �2:04

aFrom Ref. 221.
bFrom Ref. 222.
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behavior as mentioned eariler. When comparing the basis set calculation with
the basis set free calculation, the occupied orbitals are found to be in good
agreement. However, for the unoccupied states that are unbounded in LDA,
basis sets cannot describe these states correctly, giving a positive energy value
that can vary greatly from one basis set to another.

For the LDA results calculated with the Sadlej basis set, the bare KS tran-
sition frequencies between these levels are shown in Table 8. Note that they
are in rough agreement with the experimental values and that they lie in
between the singlet–singlet and singlet–triplet transitions.226 The ALDA XC
kernel fACDA

XC then shifts the KS transitions toward their correct values. Also
given in Table 8 are the mean absolute errors for each method; errors in par-
entheses are calculated for the lowest eight transitions only. For the eight low-
est transitions LDA does remarkably well, the mean absolute error (MAE)
being 0.27 eV for the Sadlej basis set. For higher transitions LDA fails drasti-
cally, the MAE increasing to 0.54 eV when the next four transitions are
included. This increase in the MAE is attributed to a cancellation of errors
that lead to good frequencies for the lower transitions.221 Because LDA binds

Table 8 Comparison of Vertical Excitation Energies for First 12 Excited States of N2

Calculated Using Different Methods for SCF Step

Excitation Energy (eV)

State Excitation BARE KSa ALDAa ALDAb LB94c OEPd Expte

Singlet ! Singlet Transitions

w1�u 1pu ! 1pg 9.63 10.20 10.27 9.82 10.66 10.27
a01
P�

u 1pu ! 1pg 9.63 9.63 9.68 9.18 10.09 9.92
a1�g 3sg ! 1pg 8.16 9.04 9.23 8.68 9.76 9.31
a001
Pþ

g 3sg ! 4sg — — 10.48 — 12.47 12.20
o1�u 2su ! 1pg — — 13.87 — 14.32 13.63
c1�u 1pu ! 4sg — — 11.85 — 13.07 12.90

Singlet ! Triplet Transitions

C3�u 2su ! 1pg 11.21 10.36 10.44 10.06 11.05 11.19
B03P�

u 1pu ! 1pg 9.63 9.63 9.68 9.18 10.09 9.67

W3�u 1pu ! 1pg 9.63 8.80 8.91 8.32 9.34 8.88
B3�g 3sg ! 1pg 8.16 7.50 7.62 7.14 8.12 8.04

A3Pþ
u 1pu ! 1pg 9.63 7.84 8.07 7.29 8.51 7.74

E3Pþ
g 3sg ! 4sg — — 10.33 12.32 11.96 12.00

Mean Absolute Error (0.61) (0.27) 0.54 (0.63) 0.34
aUsing the Sadlej basis set. From Ref. 222.
bBasis set free. From Ref. 221.
cFrom Ref. 223.
dUsing KLI approximation. From Ref. 221.
eComputed in Ref. 224 from the spectroscopic constants of Huber and Herzberg.225
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only two unoccupied orbitals, it cannot describe transitions to higher orbitals
accurately. In basis set calculations, the energies of the unbound orbitals that
have converged will vary wildly and give unreliable transition frequencies.

One class of XC functionals that should not have this problem are the
asymptotically corrected (AC) functionals.217,218,227–229 LB94230 is one of
these functionals, and its performance is shown in Table 8. AC XC potentials
tend to be too shallow in the core region, so the lower KS energy levels will be
too low while the AC piece forces the higher KS states to be bound and their
energies will cluster below zero. Thus, it can be expected that when using AC
functionals, the computed transition frequencies will be consistently underes-
timated.

The KS orbitals found using the OEP method are self-interaction free,
and they are usually better approximations to the true KS orbitals. OEP
also has the correct asymptotic behavior, and as we can see in Table 7, all
orbital energies are negative. In Table 8, the MAE for OEP is 0.34 eV , which
is much lower than that for LDA. Because OEP binds all orbitals, it allows
many more transitions to be calculated. A common OEP functional is exact
exchange (or an approximation231 to it called KLI), which neglects correla-
tion effects, which are generally small contributions to the KS orbital
energies. Using exact exchange with the ALDA for fXC (which does contain
correlation) leads to good transition frequencies as shown in Table 8.
Although LDA is sometimes closer to the experimental values for the lower
transitions, the value of OEP lies in its ability to describe both the higher as
well as the lower transitions.

Napthalene, a Small Molecule
Returning to our benchmark case of naphthalene: in Table 4 the LHF

(an OEP exact exchange method described above) method is used to find
the orbitals, which are then used with an LSDA or PBE kernel to find the tran-
sition frequencies. Also given are the results if the LSDA/PBE functional had
been used for both steps. We find that excitation energies from combining
LHF with a LDA/PBE kernel are in between the GGA and the hybrid results
(given in Table 4), except for the 11Au Rydberg state, whose excitation energy
is significantly improved. The results do not change significantly whether the
LSDA kernel or the PBE GGA kernel is used together with an LHF potential.

The 11B1g and especially the 11Au states of naphthalene are diffuse, so
it is not surprising that their excitation energies are considerably underesti-
mated in the LSDA and GGA treatment. Using the asymptotically correct
LHF potential corrects the excitation energy of the 11Au state, which is a
pure one-particle excitation out of the 1au valence orbital into the 10ag
Rydberg orbital, the latter of which may be viewed as a 3s orbital of the
C10H

þ
8 ion. In contrast, a strong mixture of valence and Rydberg excitations

occurs in the 11B1g state. The LHF potential improves the GGA results only
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marginally here, suggesting that more accurate XC kernels are required to
account properly for valence–Rydberg mixing.

Analyzing the Influence of the XC Kernel

As mentioned earlier, the TDDFT kernels used in practice are local or
semilocal in both space and time. Even hybrids are largely semi-local, as
they only mix in 20–25% exact exchange.

In these practical calculations, both the ground-state XC potential and
TDDFT XC kernel are approximated. A simple way to separate the error in
the XC kernel is to examine a test case where the exact KS potential is known.
Figure 5 shows the spectrum of He using the exact KS potential, but with the
ALDA XC kernel. The ALDA XC kernel does rather well232 (very well, as we
shall see later when we examine atoms in more detail), and very similar results
are obtained with standard GGAs.

The errors in such approximate kernels originate from the locality in
space and time. We can test the error of locality separately from the local
time error for the He atom, by studying the exchange limit for the XC kernel.
For two spin-unpolarized electrons, fx ¼ �1=2jr� r0j, i.e., it exactly cancels
half the Hartree term. Most importantly, it is frequency-independent so that
there is no memory, meaning that the adiabatic approximation is exact. In Fig-
ure 6, we compare ALDAx, which is the ALDA for just exchange, to the exact
exchange result for He. ALDA makes noticeable errors relative to exact
exchange, showing that nonlocality in space is important in this example.

Thus, the hybrid functionals, by virtue of mixing some fraction of exact
exchange with GGA, will have slightly different potentials (mostly in the
asymptotic region), but noticeably different kernels.

19

20

21

22

23

24

25

Exact KS Exact TDDFT

Continuum

2S

2P

3S
3P

4S
5S
6S

ALDAxc

E
xc

ita
tio

n 
E

ne
rg

ie
s 

(e
V

)

Figure 5 Spectrum of helium calculated using the ALDAXC kernel232 with the exact KS
orbitals.
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Errors in Potential vs. Kernel

It has long been asserted that fixing the defects in the potential, especially
its asymptotic behavior, is the major challenge to improving TDDFT
results.227–229 We argue here that this assertion is overly simplistic, and base
this upon tests carried out on atoms and small molecules. In large molecules,
where the scientific interest is in the many low-lying transitions, the potential
can be sufficiently accurate, while the kernel may play a larger role.

The analysis done for naphthalene above can shed some light of the gen-
eral failure of TDDFT in underestimation of the 1La transitions in PAHs.
Using the self-interaction free LHF potential does not obviate this problem,
as is illustrated in Table 9. To the best of our knowledge, the cause of this
shortcoming of TDDFT is not well understood. We note, however, that the
same incorrect ordering of 1La and 1Lb occurs in the CIS approximation,
which is also self-interaction free. The analysis here shows that this is a failure
of approximations for the XC kernel rather than to the ground-state potential.
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Figure 6 Spectrum of helium calculated using the ALDAx kernel and the exact exchange
kernel232 with the exact KS orbitals. The importance of nonlocality for the XC kernel
can be seen, as the exchange part of ALDA gives a noticeable error compared to the
exchange part of the true functional (the AEXX kernel for He).

Table 9 Naphthalene: Effect of Ground-State Potential on the Excitations of Table 4

Method 11B3u 11B2u 21Ag 11B1g 21B3u 11Au

LSDA 4.191 4.026 5.751 4.940 5.623 5.332
LHF/LSDA 4.317 4.143 5.898 5.097 5.752 5.686
PBE 4.193 4.031 5.753 4.957 5.622 5.141
LHF/PBE 4.295 4.121 5.876 5.091 5.741 5.693
‘‘best’’ 4.0 4.5 5.5 5.5 5.5 5.7
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Understanding Linear Response TDDFT

Several simple methods have evolved for understanding TDDFT results
qualitatively. The most basic of these methods is the single-pole approxima-
tion (SPA),189 which includes only one pole of the response function. The
easiest way to see the SPA is to truncate Eq. [47] to a 1� 1 matrix, yielding
an (often excellent) approximation to the change in transition frequency away
from its KS value:196,233

o2 � w2
qs þ 2oqsKqsqs ðSPAÞ ½60�

(The original SPA was on an unsymmetric system yielding o � wqs þ Kqsqs,
which for a spin-saturated system, becomes o � oq þ 2Kqq.

232) The SPA can
also provide a quick and dirty estimate for the transition frequencies since only
KS transitions and one integral over fXC are needed to calculate each transition
frequency. While SPA allows an estimate of the shift of transitions from their
KS energy eigenvalue differences, it says nothing about oscillator strengths,
which are unchanged from their KS values. A careful analysis234 of the
TDDFT equation shows that oscillator strengths are particularly sensitive to
even small off-diagonal matrix elements, whereas transition frequencies are
less sensitive to these elements.

A more advanced method for understanding TDDFT results qualitatively
is the double-pole approximation235 (DPA), which is applicable when two
transitions are strongly coupled to one another, but not strongly coupled to
the rest of the transitions. Under these conditions one can show explicitly
the very strong influence off-diagonal elements have on oscillator strengths,
where, sometimes, an entire KS peak can have almost no contribution to the
absorption spectra. One also sees pole repulsion in the positions of the transi-
tions, a phenomenon again missing from SPA.

The DPA was used recently and found to explain successfully X-ray edge
spectroscopy results for 3d transition-metal solids as one moves across the
periodic table.236 These transitions form a perfect test case for DPA because
the only difference between those transitions is caused by the spin–orbit
splitting (several electron volts) of the 2p1=2 and 2p3=2 levels. In a ground-state
KS calculation, this leads to a 2 : 1 branching ratio for the two peaks, based
simply on degeneracy, as all matrix elements are identical for the two transi-
tions. Experimentally this ratio is observed for Fe, but large deviations occur
for other elements. These deviations were replicated in full TDDFT calcula-
tions and attributed to strong core–hole correlations. The SPA, while nicely
accounting for the shifts in transition frequencies relative to bare KS transi-
tions, yields only the ideal 2 : 1 branching ratio. However, the DPA model
gives a much simpler interpretation. The sensitivity of oscillator strengths to
off-diagonal matrix elements means that, even when the off-diagonal elements
are much smaller than diagonal elements (of order 1 eV), they cause rotations
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in the 2-level space, and alter greatly the branching ratio. Thus a KS branching
ratio occurs even with strong diagonal ‘‘correlation,’’ so long as off-diagonal
XC contributions are truly negligible. But even small off-diagonal correlation
can lead to large deviations from KS branching ratios.

We can use DPA to understand the lowest 1B3u transitions in naphtha-
lene. The TDDFT matrix elements for the PBE calculation of the two nearly
degenerate KS transitions, 1au ! 2b3g and 2b1u ! 2b2g are listed in Table 10,
along with their corresponding KS transition frequencies. Contour plots of the
four orbitals involved are shown in Figure 7. We note first that these two KS
transitions are essentially degenerate, and therefore we cannot treat them at all
within SPA. The degeneracy is lifted by the off-diagonal elements, which cause
the transitions to repel each other, and strongly rotate the oscillator strength
between the levels, removing almost all of the oscillator strength from the
lower peak.235 The DPA yields almost the correct frequency and oscillator
strength (i.e., none) for the lower transition, but the higher one is overesti-
mated, with too much oscillator strength. This overestimation arises from
coupling to other higher transitions neglected in the DPA. In fact, in the
DPA for this example, the higher transition lands right on top of the third
transition, so strong coupling occurs there too. This naphthalene example
illustrates (1) that solution of the full TDDFT equations is typically required
for large molecules having many coupled transitions, and (2) that simple
models can aid in the interpretation of such complex results. The message
we convey here is that while models developed for well-separated transitions
can provide some insight for specific transitions in large molecules, the number
and density of transitions make such models only semiquantitative at best.

ATOMS AS A TEST CASE

In this section, we look more closely at how well TDDFT performs for a
few noble-gas atoms. As explained earlier, TDDFT’s behavior for atoms is far
from representative of its behavior for large molecules, but the examination of
TDDFT on atoms does allow careful study of the electronic spectra without

Table 10 Transition Frequencies and Oscillator Strengths (OS) Calcu-
lated Using the Double-Pole Approximation (DPA) for the Lowest 1B3u

Transitions in Naphthalenea

KS DPA Full TDDFT

o OS o OS o OS

11B3u 4.117 (1.02) 4.245 (0.001) 4.191 (0)
21B3u 4.131 (1.00) 6.748 (2.02) 5.633 (1.14)

aThe PBE functional was used with an aug-TZVP basis set on top of a PBE/
TZVP/RI ground state structure.
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other complications. Most importantly, we have essentially exact ground-state
KS potentials from Umrigar and co-workers156,237 for the He, Be, and Ne
atoms, allowing us to dissect the sources of error in TDDFT calculations.

Quantum Defect

The KS orbital energy level diagram of the helium atom is shown in
Figure 8. The zero is set at the onset of the continuum and is marked with a

Figure 7 Four orbitals involved in the first two 1B3u transitions (contour value�0:07a.u.).
Starting from the bottom, the orbitals shown are the 2b1u, 1au, 2b2g, and 2b3g orbitals,
respectively. The PBE functional and an aug-TZVP basis set were used to derive these
orbitals.
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dotted line. For closed-shell atoms and for any spherical one-electron potential
that decays as �1=r at large distances, the bound-state transitions form a
Rydberg series with frequencies

onl ¼ I � 1

2ðn� mnlÞ2
½61�

where I is the ionization potential, and mnl is called the quantum defect (QD).
Quantum defect theory was developed by Ham238 and Seaton239 before the
Hohenberg–Kohn theorem.1

The great value of the quantum defect is its ability to capture all the
information about the entire Rydberg series of transitions in a single slowly
varying function of energy, mlðE ¼ o� IÞ, which can often be fit by a straight
line or parabola. We compile extremely accurate singlet and triplet values
from wave function calculations201 for the helium atom in Table 11,
along with results156 from the exact ground-state KS potential shown in
Figure 2. For each column, the transition frequencies are on the left, while
the corresponding quantum defects are on the right. Note how small the dif-
ferences between transitions become as one climbs up the ladder, and yet the
quantum defect remains finite and converges to a definite value.

Figure 8 Singlet energy level diagram for the helium atom. The Rydberg series of
transition frequencies clustered below the ionization threshold can be seen. The
frequencies cluster together, making it difficult to assess the quality of the TDDFT
calculated spectra. As discussed in the text, the quantum defect is preferable for this
purpose.
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All of the information concerning the levels in Figure 8 and the transi-
tions of Table 11 is contained in the QD shown in Figure 9. This figure illus-
trates that the quantum defect is a smooth function of energy and is well
approximated (in these cases) as a straight line. The quantum defect is thus
an extremely compact and sensitive test of approximations used to compute
transition frequencies. We recommend that any approximate ground-state
KS potential suggested for use in TDDFT should have its quantum defect

Table 11 Transition Energies ðoÞ and Quantum Defects (QD) for He
Atom s-Rydberg Series (a.u.)a

Singletb Tripletb KSc

Transition o QD o QD o QD

1s ! 2s 0.7578 0.1493 0.7285 0.3108 0.7459 0.2196
1s ! 3s 0.8425 0.1434 0.8350 0.3020 0.8391 0.2169
1s ! 4s 0.8701 0.1417 0.8672 0.2994 0.8688 0.2149
1s ! 5s 0.8825 0.1409 0.8883 0.2984 0.8818 0.2146
1s ! 6s 0.8892 0.1405 0.8926 0.2978 0.8888 0.2144
1s ! 7s 0.8931 0.1403 0.8926 0.2975 0.8929 0.2143

aThe ionization energy is 0.90372 a.u.
bAccurate nonrelativistic calculations from Ref. 201.
cThe differences between the KS eigenvalues obtained with the exact potential from

Ref. 156.
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compared with the exact KS quantum defect. Any approximate XC kernel
should produce accurate corrections to the ground-state KS quantum defect,
which are typically on the scale of Figure 9.

To demonstrate the power of QD analysis, we test two common approx-
imations to the ground-state potential, both of which produce asymptotically
correct potentials (exact exchange240 (see the discussion on approximate func-
tionals above and LB94230). Exact exchange calculations are more CPU
demanding than are traditional DFT calculations, but they are becoming pop-
ular because of the high quality of the potential.241,242 In comparison, LB94
provides an asymptotically correct potential at little extra cost beyond tradi-
tional DFT.218,229,243 In Figure 10 we show the p Be quantum defect obtained
with LB94, OEP, and exact KS potentials. Note the high quality of the exact
exchange potential; the quantum defect curve is almost identical to the exact
one, offset by about 0.1. Contrarily, the quantum defect of LB94 is poor for all
cases studied.244,245 Figure 10 shows that just having an asymptotically correct
potential alone is not sufficient to get a good quantum defect.

Testing TDDFT

To see how well TDDFT really does, we can plot quantum defects for
atoms, using the He atom as our prototype in this section. In Figure 11, we
plot first the KS quantum defect and the exact singlet and triplet lines, as
was done in Figure 9. We consider the Hartree approximation, which is
equivalent to setting the XC kernel to zero. This approximation changes the
position of the singlet curve but leaves the triplet curve unchanged from its KS
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Figure 10 The Be p quantum defect of LB94, exact exchange (OEP), and KS, and their
best fits. While both functionals give the correct asymptotic behavior of the KS potential,
we can learn more about their performance by calculating the quantum defect.

Atoms As A Test Case 131



value because the direct term includes no spin flipping. The Hartree approxi-
mation definitely improves the KS for the singlet. Finally, we include ALDA
XC corrections. Only if these latter corrections significantly improve the
results compared to the Hartree curves can we say TDDFT is really working
here. Clearly it does, reducing the Hartree error enormously.

The results of Figure 11 are also typical of He p transitions, and Be s and
p transitions; however, for unknown reasons, the s ! d transitions fail badly
for both of these systems.244,246

Saving Standard Functionals

The incorrect long-range behavior of the potential from standard density
functionals is a problem only when Rydberg excitations are needed. It would
be unsatisfactory to perform a completely different type of calculation such as
OEP in order to include such excitations, especially if the cost of that calcula-
tion is untenable.

It is possible, with some thought and care, however, to extract the
Rydberg series from the short-ranged LDA potential by using quantum defect
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Figure 11 Corrections due to using the Hartree and ALDA kernel on the exact KS s
quantum defect of He. The Hartree kernel affects only the singlet defect, shifting them to
values that are too low. If a good XC kernel is then used, both the triplet and singlet
quantum defects should move from the Hartree kernel toward the exact QD values.245

In this case, ALDA does a good job and is performing well.
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theory. To see this, consider Figure 12, which shows both the bare KS response
and the TDDFT-corrected response as a function of o for the He atom. The
d-function absorptions at the discrete transitions have been replaced by
straight lines, whose height represents the oscillator strength of the absorption
multiplied by the appropriate density of states.250 In the top panel, just the KS
transitions are shown for both the exact KS potential and the LDA potential of
Figure 3. The exact curve has a Rydberg series converging to 0.904 h
(24.592 eV), which is the exact ionization threshold for He. The LDA curve,
on the other hand, has a threshold at just below 0.6 h. Nonetheless, its optical
absorption clearly mimics that of the exact system, even in the Rydberg series
region, and is accurate to about 20%. The TDDFT ALDA kernel corrections
are small and overcorrect the bare LDA results, but the LDA/ALDA spectra
still follows the exact one closely.

Why do the LDA spectra look so similar to the exact one? Is this just
a coincidence? Returning to Figure 3, we notice that the LDA (or a GGA)
potential runs almost exactly parallel to the true potential for r92, i.e., where
most of the density is. Thus, the scattering orbitals of the LDA potential, with
transition energies between 0.6 and 0.9 h, almost match exactly the Rydberg
orbitals of the exact KS potential with the same energy.253 When defined
carefully, i.e., when we use phase space factors for the continuum relative to
bound states, the oscillator strengths for both the LDA and exact KS
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Figure 12 Optical intensities (in inverse hartrees) as a function of o (in hartrees) for the
He atom. (Top panel) The exact KS and LDA spectra. (Lower panel) The TDDFT
corrected spectra. LDA/ALDA results are from Ref. 247 but unshifted. The exact
calculations are from Ref. 248, multiplied by the density of states factor (see text), and
the experimental results are from Ref. 249.
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transitions are about the same. This similarity is no coincidence but, due to the
lack of a derivative discontinuity in LDA, the potential LDA differs from the
exact one by roughly a constant.

The ‘‘fruitfly’’ of TDDFT benchmarks is the p ! p� transition in
benzene. This transition occurs at about 5 eV in a ground-state LDA calcula-
tion, and ALDA shifts it correctly to about 7 eV.233 Unfortunately, this value
lies in the LDA continuum, which starts at about 6.5 eV! This shift is an
example of the same general phenomenon we saw above for He, where
LDA has pushed some oscillator strength into the continuum, but its overall
spectra remains about right.

We can take the observation that the LDA potential is roughly a constant
shift from the exact KS potential in a core region and go one step further to
deduce the energies of individual transitions. While the existence of a quantum
defect requires a long-ranged potential, its value is determined by the phase
shift caused by the deviation from �1=r behavior in the interior of the
atom. The quantum defect extractor (QDE)251 is a formula for extracting
the effective quantum defect from a scattering orbital of a short-ranged KS
potential, such as that of LDA. The QDE is

d lnf
dr

¼ 1

n�
� n�

r
� 1

r

Uð�n�; 2; 2r=n�Þ
Uð1� n�; 2; 2r=n�Þ ½62�

Here k ¼ ffiffiffiffiffiffiffiffiffi
2jEjp

is written as k ¼ ðn�Þ�1, with n� ¼ ðn� mnÞ, where n numbers
the bound state, and mn is the quantum defect; U is the confluent hypergeo-
metric function.252 If the extractor is applied to an orbital of a long-ranged
potential, it rapidly approaches its quantum defect.

The results of the QDE for the He atom, applied to both the exact KS
potential and the LDA potential are plotted in Figure 13. The LDA potential
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Figure 13 Solution of Eq. [62] for m as a function of r for the He atom. The n ¼ 20
orbital was used for the exact case, and the scattering orbital or energy E ¼ I þ ELDA

1s was
used for the LDA.
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runs parallel to the exact potential in the region 1 < r < 2 (where m1 can
already be extracted accurately), and orbitals corresponding to the same
frequency (exact and LDA) are therefore spatially very similar in that region.
Thus, the difference between the exact energy-normalized 20s orbital (which is
essentially identical to the zero energy state in the region 0 < r < 6) and the
LDA scattering orbital of energy I þ ELDA

1s ¼ 0:904� 0:571 ¼ 0:333 h is small
in the region 1 < r < 2, as can be seen in Ref. 251.

We show in Figure 13 the solution of Eq. [62] when this LDA scattering
orbital is employed. Clearly, the plateau of the LDA curve in the 1 < r < 2
region is an accurate estimate of the quantum defect. The value of m on this
plateau is 0.205, which is an underestimate by less than 4%.

Thus, given the ionization potential of the system, LDA gives a very
accurate prediction of the asymptotic quantum defect. The ionization poten-
tial is needed to choose the appropriate LDA scattering orbital, but the results
are not terribly sensitive to it. We repeated the same procedure with the LDA
ionization potential [defined as ELDA(He)�ELDAðHeþÞ ¼ 0:974 h� instead of
the exact ionization potential, and found mLDA

1 ¼ 0:216, overestimating the
exact m1 by just 1%.

Electron Scattering

In this final section, we mention recent progress in developing a theory
for low-energy electron scattering from molecules because scattering was
one of the original motivations for developing TDDFT. One approach to
calculating electron scattering would be to evolve a wave packet using the
TDKS equations, but a more direct approach has been developed254,255 in
terms of the response function w of the N þ 1 electron system (assuming it
is bound).

This latter approach to computing electron scattering uses similar
technology to the discrete transition case described in detail earlier. Initial
results for the simplest case of electron scattering from Heþ suggest a level
of accuracy comparable to bound–bound transitions, at least for low energies
(the most difficult case for traditional methods, due to bound-free correla-
tion256). Using the exact ground-state potential and ALDA produces more
accurate answers than when using static exchange,254 a traditional low-cost
method that is often used for larger molecules.257,258

In contrast to Heþ, this method fails when applied to electron scattering
from hydrogen because the approximate solution of the TDDFT equations
(very similar to the single-pole approximation discussed above) fails, as a
result of stronger correlations in hydrogen scattering. To overcome this strong
correlation problem, a much simpler, but still general, method has been
developed.259 It uses an old scattering trick260 to deduce scattering phase shifts
from bound-state energies when the system is placed in a box261 and yields
excellent results for a very demanding case.
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BEYOND STANDARD FUNCTIONALS

We surveyed and illustrated in the previous sections some of the many
present successful applications of TDDFT. In those applications, standard
approximations (local, gradient-corrected, and hybrid) were used for both the
ground-state calculation and the excitations, via the adiabatic approximation.
In this section, we survey several important areas in which the standard functio-
nals have been found to fail, and we explain what might be done about it.

The errors in standard TDDFT are due to locality in both space and time,
both of which are intimately related. In fact, all memory effects, i.e., depen-
dence on the history of the density,185 implying a frequency dependence in
the XC kernel, can be subsumed into an initial-state dependence,181 but proba-
bly not vice versa. Several groups are attempting to incorporate such effects
into new approximate functionals,262–273 but none have yet shown universal
applicability.

The failure of the adiabatic approximation is most noticeable when high-
er order excitations are considered; these excitations are found to be missing in
the usual linear response treatment.191 The failure of the local approximation
in space is evident, for example, when TDDFT is applied to extended systems,
e.g., polymers or solids. Local approximations yield short-ranged XC kernels
that become irrelevant compared to Hartree contributions in the long-wave-
length limit. The Coulomb repulsion between electrons generally requires
long-ranged ð1=rÞ exchange effects when long-wavelength response is being
calculated.

Several approaches to correcting these problems have been developed
and applied in places where the standard formulation has failed. These
approaches fall into two distinct categories. First, where approximations
that are local in the density fail, one can try approximations that are local
(or semilocal) in the current density. In fact, for TDDFT, the gradient expan-
sion, producing the leading corrections to ALDA, only works if the current is
the basic variable.274 Using the gradient expansion itself is called the Vignale–
Kohn (VK) approximation,275,276 and it has been tried on a variety of pro-
blems. The second category involves constructing orbital-dependent approxi-
mations with explicit frequency dependence.277,278 This can work well for
specific cases, but it is difficult to construct general density functional approx-
imations from these examples. More importantly, solution of the OEP
equations is typically far more CPU expensive than for the simple KS
equations, making OEP impractical for large molecules.

Double Excitations

Casida191 first pointed out that double excitations appear to be miss-
ing279 from TDDFT linear response within any adiabatic approximation.
Experience280,281 shows that, as in naphthalene, adiabatic TDDFT will
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sometimes produce a single excitation in about the right region, in place
of two lines, where a double excitation has mixed strongly with a single
excitation.

When a double excitation lies close to a single excitation, elementary
quantum mechanics shows that fXC must have a strong frequency depen-
dence.277 Post-adiabatic TDDFT methodologies have been developed277,282,283

recently for including a double excitation when it is close to an optically active
single excitation, and such post-adiabatic methodologies appear to work well
for small dienes.277,284 By going beyond linear response, one might hope that
nontrivial double excitations are naturally included in, e.g., ALDA. It has
been proven that, in the higher order response in ALDA, the double excitations
occur simply as the sum of single excitations.285 Thus, the scientific community
does not currently know how best to approximate these excitations. The pro-
blem with higher order excitations is particularly severe for quantum wells,
where the external potential is parabolic, leading to multiple near degeneracies
between levels of excitation.282

For example, based on a HF reference, the 21Ag state of naphthalene has,
according to the RICC2 results, a considerable admixture of double excita-
tions. This admixture is consistent with the fact that the CIS method yields
an excitation energy that is too high by 1.5 eV compared to experiment.
The TDDFT results are much closer to experiment, yet still too high by several
tenths of an electron volt.

Polymers

An early triumph of the VK functional was its success in predicting the
static polarizabilities of long-chain conjugated polymers. These polarizabilites
are greatly underestimated by both LDA and GGA functionals, with the error
growing rapidly with the number of monomer units in the polymer.289 In con-
trast, HF does rather well and does not overpolarize. The VK correction to
LDA yields excellent results in many (but not all) cases, showing that a cur-
rent-dependent functional can sometimes correct the overpolarization pro-
blem. Naturally, orbital-dependent functionals also account for this
effect,290 but they do at a much higher computational cost. A comparison
of the methods is given in Figure 14.

Solids

When using TDDFT to calculate the optical response of insulators, local
approximations have again been shown to fail badly. Most noticeably, local
approximations do not describe excitonic effects,291 or the exciton spectrum
within the band gap. Moreover, the computed gap is usually much smaller
than experiment because adiabatic approximations cannot change the gap
size from its KS value.
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One approach to calculating optical responses of insulators is to use the
approximation in TDCDFT. This has proven successful, although a single
empirical factor was needed for results to agree with experiment.292–294 An
alternative approach to fixing TDDFT for solids is to study the many-body
problem.295 and determine which expressions the XC kernel must include in
order to yield an accurate absorption spectrum.296,297 However, all the
schemes presently available require an expensive GW calculation in the first
place.298 The GW method is a common approximation to the self-energy in
many-body Green’s function theory. A recent review of how many-body tech-
niques can improve TDDFT be found in Ref. 299.

Charge Transfer

Whenever a method is shown to work well, it inevitably gets applied to
many scientific investigations, and specific failures then appear. Charge-transfer
excitations are of great importance in photochemistry, especially of biological
systems, but many workers are now finding abysmal results with TDDFT for
such cases.280,300,301

The genesis of the failure of TDDFT can be traced to the fact that
TDDFT is a linear response theory. When an excitation moves charge from
one area in a molecule to another, both ends of that molecule will geometri-
cally relax. While charge transfer between molecules can be well approxi-
mated by ground-state density functional calculations of the total energies
of the species involved, TDDFT must deduce the correct transitions by
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(infinitesimal) perturbations around the ground state, without relaxation.
Thus, linear response is a poor method to use for problems involving charge
transfer and many researchers are attempting to find practical solutions
around it.88,302–305

OTHER TOPICS

We now discuss several topics of specialized interest where TDDFT is
being applied and where development has been beyond simple extraction of
excitations from linear response theory. First we will show how TDDFT can
be used to construct entirely new approximations to the ground-state XC
energy, which is particularly useful for capturing the long-range fluctuations
that produce dispersion forces between molecules that are notoriously absent
from most ground-state approximations. We will then survey strong field
applications in which TDDFT is being used to model atoms and molecules
in strong laser fields. Finally, we discuss the more recent and hot area of mole-
cular electronics. Here, many workers are using ground-state DFT to calculate
transport characteristics, but a more careful formulation can be done only
within (and beyond) TDDFT.

Ground-State XC Energy

A more sophisticated ground-state approximate energy functional can be
constructed306–310 using the frequency-dependent response function of linear
response TDDFT. We now introduce the basic formula and then discuss
some of the systems this method is being used to study.

To construct the ground-state energy functional we use the long known
adiabatic connection fluctuation–dissipation (ACFD) formula:

EXC½n0� ¼ 1

2

ð1
0

dl
ð

d3r

ð
d3r0

Plðr; r0Þ
jr� r0j ½63�

where the pair density is

Plðr; r0Þ ¼ �
X
ss0

ð1
0

do
p

wlss0 ½n0�ðrr0; ioÞ
 !

� n0ðrÞdð3Þðr� r0Þ ½64�

and the coupling constant l is defined so as to multiply the electron–electron
repulsion in the Hamiltonian but where the external potential is adjusted to
keep the density fixed.311,312 The quantity wlss0 is given by Eq. [42] with the
XC kernel f lXCss0 . Any approximation to the XC kernel yields a sophisticated
XC energy EXC½n�.
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Note that when we set XC effects to zero in conventional DFT, we end
up with the highly inaccurate Hartree method of 1928. However, when
calculating the linear response, if the XC kernel is zero (i.e., if it is within
the random phase approximation), the XC energy calculated by Eq. [63] still
gives useful results.306

The ACFD procedure is far more demanding computationally than is
conventional DFT, but as the previous paragraph has shown, even poor
approximations to the XC kernel can still lead to good results. Using
Eq. [63] to find the XC energy allows one to capture effects such as dynamical
correlation or van der Waals interactions, which are missing from conven-
tional ground-state DFT approximations and which are important in biologi-
cal and other systems.

The energy decay coefficient between two atoms or molecules (C6 in
E ! �C6=R

6, where R is their separation) can be evaluated accurately (within
about 20%) using a local approximation to the frequency-dependent polari-
zability.308,313–315 The van der Waals binding energy curve for two
helium atoms is shown in Figure 15. Using the fluctuation–dissipation
formula, Eq. [63], with the PBE0 XC kernel gives more accurate results than
those calculated with the semilocal functionals (BP86, PBE). The frequency
integral in Eq. [63] has been performed explicitly, albeit approximately, yielding

Figure 15 Binding energy for the helium dimer interacting via van der Waals (vdW)
forces, from Ref. 306. New XC energy functional may be constructed from any ground-
state functional using the fluctuation–dissipation theorem (FDT). Curves from the
standard ground-state functionals BP865,316 and PBE7 are given, along with FDT curves
constructed from these two functionals as input. The FDT is needed to describe vdW
interaction accurately. A BP86 ground state density is used.
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an explicit nonlocal density functional308,310,313,317–322 applicable at all separa-
tions, which shows great promise for including dispersion forces in standard
DFT calculations. TDDFT response functions have also been used in the frame-
work of symmetry-adapted perturbation theory to generate accurate binding
energy curves of van der Waals molecules.323

One can also use Eq. [63] for bond lengths.324,325 In fact, Eq. [63]
provides a KS density functional that allows bond breaking without artificial
symmetry breaking.309 In the paradigm case of the H2 molecule, the binding
energy curve has no Coulson–Fischer point, and the bond dissociation
correctly gives two isolated H atoms. Unfortunately, while simple approxima-
tions provide correct results near equilibrium and at infinite bond lengths, they
produce an unphysical repulsion at large, but finite separations. This repulsion
can be traced back309 to the lack of double excitations in any adiabatic fXC.
Study of the basis set convergence of EXC has also revealed an obvious flaw in
the ALDA kernel at short distances.306

Further research is needed to find accurate XC kernels. One method307

that can be used to test these new kernels is to examine the uniform electron
gas because the frequency-dependent susceptibility can be found easily with
the well-known Lindhard function. Different approximate XC kernels may
thus be tested,326 and their results can be compared to results from highly
accurate Monte Carlo simulations.

Strong Fields

We now turn our attention to the nonperturbative regime. Due to
advances in laser technology over the past decade, many experiments are
now possible where the laser field is stronger than the nuclear attraction.11

The time-dependent field cannot be treated perturbatively, and even solving
the time-dependent Schrödinger equation in three dimensions for the evolution
of two interacting electrons is barely feasible with present-day computer
technology.327

Wave function methods are prohibitive for more than a few electrons in
the regime of (not too high) laser intensities where the electron–electron inter-
action is still important. TDDFT is essentially the only practical scheme avail-
able328–334 for dealing with many electrons in these kinds of time-dependent
fields. There exists a host of phenomena that TDDFT might be able to predict
including: high harmonic generation, multiphoton ionization, above-threshold
ionization, above-threshold dissociation, etc., but these predictions will be
possible only if accurate approximations are available.

With the recent advent of atto-second laser pulses, the electronic time
scale has become accessible experimentally. Theoretical tools needed to ana-
lyze the dynamics of excitation processes on the atto-second time scale will
consequently become more and more important to scientists studying such
fast processes. An example is the time-dependent electron localization
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function335,336 (TDELF), which allows one to compute the time-resolved
formation, modulation, and breaking of chemical bonds, thus providing a
visual understanding of the dynamics of excited electrons, as, for example,
in Ref. 337. The natural way of calculating the TDELF is from the TDKS
orbitals.

High harmonic generation (HHG) is the production of many harmonics
(sometimes hundreds) of the input frequency from medium intensity lasers.
Here TDDFT calculations have been successful for some atoms338–340

and molecules.341,342 Several experiments have used the HHG response of
molecules to determine their vibrational modes,343 and calculations have
been performed using traditional scattering theory.344 If HHG response
develops into a new spectroscopy, the electron scattering theory discussed
above may be of utility to treat large molecules.

Multiphoton ionization (MPI) occurs when an atom or molecule loses
more than one electron in an intense electromagnetic field. It was discovered
to be a nonsequential process, meaning that the probability of double ioniza-
tion can be much greater than the product of two independent ionization
events, thus leading to a ‘‘knee’’ in the double ionization probability as a func-
tion of intensity.345–347 TDDFT calculations have been unable to reproduce
this knee accurately, and it has been shown that a correlation-induced deriva-
tive discontinuity is needed in the time-dependent KS potential186 for the
method to give proper results.

Above-threshold ionization (ATI) refers to the probability of ionization
when the laser frequency is below the ionization potential, i.e., it does not
occur in linear response.348,349 Both ATI and MPI require knowledge of the
correlated wave function, which is not directly available in a KS calculation,
hence neither are given well in a TDDFT calculation.

Because the ionization threshold plays a crucial role in most strong field
phenomena, Koopman’s theorem, which relates the energy level of the KS
HOMO to the ionization energy, should be satisfied. As standard functionals
fail to satisfy Koopman’s theorem due to their poor potentials (see Figure 3),
this suggests the use of self-interaction free methods such as OEP159,174 or
LDA-SIC.

The field of quantum control350 involving the femto-second control of
chemical bonding has concentrated mainly on the motion of the nuclear
wave packet on a given set of precalculated potential energy surfaces. With
the advent of atto-second pulses, control of electronic dynamics has come
within reach. A marriage of optimal control theory together with TDDFT
appears to be the ideal theoretical tool to tackle these problems.351,352 The
ability of TDDFT to predict the coherent control of quantum wells using
terahertz lasers has been shown,353–355 although, once again, the lack of access
to the true wave function is a difficulty. Many difficulties and challenges
remain in order to develop a general-purpose theory, including the coupling
between nuclei and electrons.356–358
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Electron Transport

Electron transport through single molecules may become a key compo-
nent of future nanotechnology.359 Present theoretical formulations rely on
ground-state density functionals to describe the stationary nonequilibrium
current-carrying state,360 but suggestions have been made to consider this as
a time-dependent problem361–364 and use TD(C)DFT for a full description of
the situation. Imagine the scenario of Figure 16 where a conducting molecule
is sandwiched between two contacts that are connected to semi-infinite leads.
The Landauer formula for the current is

I ¼ 1

p

ð1
�1

dETðEÞ½fLðEÞ � fRðEÞ� ½65�

where TðEÞ is the transmission probability for a given energy and fL=RðEÞ is
the Fermi distribution function for the left/right lead. The transmission proba-
bility of the system can be written using nonequilibrium Green’s functions
(NEGF). Ground-state DFT is used to find the KS orbitals and energies of
the extended molecule and also used to find the self-energies of the leads.
These orbitals and energies are then fed into the NEGF model to determine
TðEÞ and hence the current.

The NEGF scheme has had a number of successes, most notably for
atomic-scale point contacts and metallic wires. Generally, it does well for
systems where the conductance is high, but it was found that the conductance
is overestimated by 1–3 orders of magnitude for molecular wires.

Various explanations for this overestimation and the problems with DFT
combined with NEGF in general have been suggested. First, the use of the KS

Figure 16 Schematic representation of a benzene-1,4-di-thiol molecule between two
gold contacts. The molecule plus gold pyramids (55 atoms each) constitute the extended
molecule as used in the DFT calculations for the Landauer approach.
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orbitals and energy levels has no theoretical basis. The KS orbitals are those
orbitals for the noninteracting problem that reproduce the correct ground-
state density. They should not be thought of as the true single-particle excita-
tions of the true system. However, as we have seen, the KS orbitals often
reproduce the single-particle excitations qualitatively, so it is not clear to
what extent their use in NEGF affects the conductance. Second, the geometry
of the conducting molecules was also suggested as a source of error. DFT first
relaxes the molecule to find its geometry, whereas in the experiments the mole-
cule may be subject to stresses that could rotate parts of it and/or squash parts
together. Calculations365 have shown that the geometry corrections are small.
Finally, the approximation that the nonequilibrium XC functional is the same
as for the static case has been suggested as a major source of error. In fact,
neither the HK theorem nor the RG theorem are strictly valid for current-
carrying systems in homogeneous electric fields. A dynamical correction to
the LDA functional for the static case has been derived using the Vignale–
Kohn functional TDCDFT, but these dynamical corrections were found to
yield only small improvements to ALDA.366

In a similar vein, the lack of the derivative discontinuity and the
existence of self-interaction errors (SIE) in the approximations to the XC
functional may be the source of this overestimation problem.365 In Hartree–
Fock calculations (and also in OEP calculations290 with EXX, exact exchange)
that have no SIE, the conductances are found to be much lower.367 Calcula-
tions have also been done on a simple model368 containing a KS potential with
a derivative discontinuity. The current-voltage (I-V) curves for this model sys-
tem are significantly different from those predicted by LDA. The discrepancy
was found to be most severe when the molecule was not coupled strongly to
the leads, but goes away when it is bonded covalently. Recent OEP calcula-
tions of the transmission along a chain consisting of H atoms verify these
features.367

Quantitative results can be found for molecular devices despite these
problems. By examining the bias at which a KS energy level gets moved
between the two chemical potentials of the leads (from Eq. [65] this gives a
peak in the conductance), one can predict369 positions of these peaks qualita-
tively, although the magnitude of the conductance may be incorrect by orders
of magnitude.

Because electron transport is a nonequilibrium process, we anticipate
that static DFT will not be able to accurately predict some features of electron
transport. A number of methods have been developed that allow one to use
TDDFT for these purposes. For example, Kurth et al.370 present a practical
scheme using TDDFT to calculate current. The basic idea is to ‘‘pump’’ the
system into a nonequilibrium initial state by some external bias and then allow
the KS orbitals to evolve in time via the TDKS equations. The RG theorem
then allows one to extract the longitudinal current using the continuity
equation. Using transparent boundary conditions that solve problems with
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propagating KS orbitals in the semi-infinite leads, and using an iterative pro-
cedure to get the correct initial state, the authors were able to find a steady-
state current.

An alternative TDDFT formulation for electron transport uses periodic
boundary conditions and includes dissipation.371 In the Landauer–Büttiker
formalism, dissipation effects arising from electron–electron interaction and
electron–phonon interaction can be neglected because the molecule is smaller
than the scattering length. However, there would be scattering in the leads.
Imagine a molecule in the ring geometry of Figure 17, with a spatially constant
electric field; via a gauge transformation, the electric field can be replaced by a
constant time-dependent magnetic field through the center of the ring. If no
dissipation exists, the electrons keep accelerating indefinitely and never reach
a steady state.

In the classical Boltzmann equation for electron transport, scattering is
included via a dissipation term using t, the average collision time. A master
equation approach is basically a generalization of the Boltzmann equation
to a fully quantum mechanical system. The master equation is based on the

Figure 17 Ring geometry for gauge transformation of electric fields. Black dots
represent a conducting molecule while gray dots represent the electrically conducting
leads. (Top panel) Single molecule in a bias electric field attached to semi-infinite leads.
(Middle panel) Same system with periodic boundary conditions, while the lower panel
shows how the middle panel can be imagined as a ring with the electric field gauge
transformed to a magnetic one.
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Louville equation in quantum mechanics, and, for a quantum mechanical den-
sity coupled to a heat bath (or reservoir), it is written as

d

dt
r̂ðtÞ ¼ �{½H; r̂ðtÞ� þ C½r̂ðtÞ� ½66�

where C is a superoperator acting on the density whose elements are calculated
using Fermi’s golden rule with Vel-ph in a certain approximation (weak cou-
pling and instantaneous processes). A KS master equation364 can be derived,
modifying C for single-particle reduced-density matrices, so that it gives the
correct steady state. The TDKS equations are then used to propagate forward
in time until the correct steady-state density is found, and the current is then
extracted from this. Recent calculations have shown that this master equation
approach can give correct behavior, such as hysteresis in I-V curves.363;372

SUMMARY

We have conveyed some of the spirit and excitement of development and
uses of TDDFT in this review. We explained what TDDFT is and where it
comes from. While it often works well for many molecular excitations, its use-
fulness lies neither in high accuracy nor reliability but instead in its qualitative
ability to yield roughly correct absorption spectra for molecules of perhaps
several hundred atoms. We emphasize that there are usually many excitations
of the same symmetry, all coupled together, and that under these circum-
stances the theory will be of greatest use. TDDFT is now a routine tool that
produces accurate results with reasonable confidence for many molecular
systems.

That said, we have discussed some of the areas where TDDFT (in its
current incarnation) is not working, such as double excitations, charge trans-
fer, and extended systems. But there has been significant progress in all of
these, both in understanding the origin of the problem and finding alternative
approaches using orbital-dependent expressions that may ultimately yield a
practical solution. We also examined how well TDDFT works for a few cases
where the exact ground-state solution is known, describing the accuracy of
different functionals, and we surveyed some applications beyond simple linear
response for optical absorption, such as ground-state functionals from the
adiabatic connection, strong fields, and electron transport. In each of these
areas, more development is needed before TDDFT calculations can become
a routine tool with the accuracy needed by scientists and engineers.

Many wonder how long DFT’s preeminence in electronic structure
theory can last. For sure, Kohn–Sham DFT is a poor player that struts and frets
its hour upon the stage of electronic structure and then is heard no more.373

After all, its predecessor, Thomas–Fermi theory,374,375 is now obsolete, being
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too inaccurate for modern needs. Although many alternatives for electronic
excitations, such as GW, are becoming computationally feasible for interesting
systems, we believe DFT, and TDDFT, should dominate for a few decades yet.
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233. I. Vasiliev, S. Öğüt, and J. R. Chelikowsky, Phys. Rev. B, 65, 115416 (2002). First-Principles
Density-Functional Calculations for Optical Spectra of Clusters and Nanocrystals.

234. H. Appel, E. K. U. Gross, and K. Burke, Phys. Rev. Lett., 90, 043005 (2003). Excitations in
Time-Dependent Density-Functional Theory.

235. H. Appel, E. K. U. Gross, and K. Burke, Int. J. Quantum Chem., 106, 2840 (2006). Double-
Pole Approximation in Time-Dependent Density Functional Theory.

236. A. Scherz, E. K. U. Gross, H. Appel, C. Sorg, K. Baberschke, H. Wende, and K. Burke, Phys.
Rev. Lett., 95, 253006 (2005).Measuring the Kernel of Time-Dependent Density Functional
Theory with X-ray Absorption Spectroscopy of 3d Transition Metals.

237. C. J. Umrigar and X. Gonze, in High Performance Computing and Its Application to the
Physical Sciences, Proceedings of the Mardi Gras 1993 Conference, D. A. Browne, Ed.,
World Scientific, Singapore, 1993, pp. 43–59. Comparison of Approximate and Exact
Density Functionals: A Quantum Monte Carlo Study.

238. F. Ham, Solid State Phys., 1, 127 (1955). The Quantum Defect Method.

239. M. J. Seaton, Mon. Not. R. Astron. Soc., 118, 504 (1958). The Quantum Defect Method.

240. J. D. Talman and W. F. Shadwick, Phys. Rev. A, 14, 36 (1976). Optimized Effective Atomic
Central Potential.

241. A. Görling, Phys. Rev. Lett., 83, 5459 (1999). New KS Method for Molecules Based on an
Exchange Charge Density Generating the Exact Local KS Exchange Potential.

242. S. Ivanov, S. Hirata, and R. J. Bartlett, Phys. Rev. Lett., 83, 5455 (1999). Exact Exchange
Treatment for Molecules in Finite-Basis-Set Kohn-Sham Theory.

243. M. Gruning, O. V. Gritsenko, S. J. A. van Gisbergen, and E. J. Baerends, J. Chem. Phys., 114,
652 (2001). Shape Corrections to Exchange-Correlation Potentials by Gradient-Regulated
Seamless Connection of Model Potentials for Inner and Outer Region.

244. M. van Faassen and K. Burke, J. Chem. Phys., 124, 094102 (2006). The QuantumDefect: The
True Measure of TDDFT Results for Atoms.

245. M. van Faassen, Int. J. Quantum Chem., 106, 3235 (2006). The Quantum Defect as a
Powerful Tool for Studying Rydberg Transition Energies from Density Functional Theory.

246. M. van Faassen and K. Burke,Chem. Phys. Lett., 431, 410 (2006). ANewChallenge for Time-
Dependent Density Functional Theory.

247. M. Stener, P. Decleva, and A. Görling, J. Chem. Phys., 114, 7816 (2001). The Role of
Exchange and Correlation in Time-Dependent Density-Functional Theory for Photoioniza-
tion.

248. A. Kono and S. Hattori, Phys. Rev. A, 29, 2981 (1984). Accurate Oscillator Strengths for
Neutral Helium.

249. J. A. R. Samson, Z. X. He, L. Yin, and G. N. Haddad, J. Phys. B, 27, 887 (1994). Precision
Measurements of the Absolute Photoionization Cross Sections of He.

250. H. Friedrich, Theoretical Atomic Physics, 2nd ed., Springer, New York 1998.

251. A. Wasserman and K. Burke, Phys. Rev. Lett., 95, 163006 (2005). Rydberg Transition
Frequencies from the Local Density Approximation.

252. M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions, Dover, New
York, 1972.

253. A. Wasserman, N. T. Maitra, and K. Burke, Phys. Rev. Lett., 91, 263001 (2003). Accurate
Rydberg Transitions from LDA Potentials.

254. A. Wasserman, N. T. Maitra, and K. Burke, J. Chem. Phys., 122, 133103 (2005). Electron-
Molecule Scattering from Time-Dependent Density Functional Theory.

255. A. Wasserman and K. Burke, Lect. Notes Phys., 706, 493 (2006). Scattering Amplitudes from
TDDFT.

256. R. K. Nesbet, Phys. Rev. A, 62, 040701 (2000). Bound-Free Correlation in Electron Scattering
by Atoms and Molecules.

References 159



257. S. Tonzani and C. H. Greene, J. Chem. Phys., 122, 014111 (2005). Electron-Molecule
Scattering Calculations in a 3D Finite Element R-Matrix Approach.

258. S. Tonzani and C. H. Greene, J. Chem. Phys., 124, 054312 (2006). Low-Energy Electron
Scattering from DNA and RNA Bases: Shape Resonances and Radiation Damage.

259. M. van Faassen, A. Wasserman, E. Engel, F. Zhang, and K. Burke, Phys. Rev. Lett., 99,
043005 (2007). Time-Dependent Density Functional Calculation of e-H Scattering.

260. U. Fano,Nuovo Cimento, 12, 154 (1935). On the Absorption Spectrum of Noble Gases at the
Arc Spectrum Limit. [Translation: cond-mat/0502210 (2005).]

261. V. A. Mandelshtam, T. R. Ravuri, and H. S. Taylor, Phys. Rev. Lett., 70, 1932 (1993).
Calculation of the Density of Resonance States Using the Stabilization Method.

262. E. K. U. Gross and W. Kohn, Phys. Rev. Lett., 55, 2850 (1985). Local Density-Functional
Theory of Frequency-Dependent Linear Response. [Erratum: Phys. Rev. Lett., 57, 923
(1986).]

263. J. F. Dobson, M. Bünner, and E. K. U. Gross, Phys. Rev. Lett., 79, 1905 (1997). Time-
Dependent Density Functional Theory beyond Linear Response: An Exchange-Correlation
Potential with Memory.

264. C. A. Ullrich and K. Burke, J. Chem. Phys., 121, 28 (2004). Excitation Energies from Time-
Dependent Density-Functional Theory beyond the Adiabatic Approximation.

265. C. A. Ullrich and I. V. Tokatly, Phys. Rev. B, 73, 235102 (2006). Nonadiabatic Electron
Dynamics in Time-Dependent Density-Functional Theory.

266. C. A. Ullrich, J. Chem. Phys., 125, 234108 (2006). Time-Dependent Density-Functional
Theory beyond the Adiabatic Approximation: Insights from a Two-Electron Model System.

267. G. Vignale, Int. J.Mod. Phys. B, 15, 1714 (2001). Time-Dependent Density Functional Theory
beyond the Adiabatic Approximation.

268. J. M. Tao and G. Vignale, Phys. Rev. Lett., 97, 036403 (2006). Time-Dependent Density-
Functional Theory beyond the Local-Density Approximation.

269. Y. Kurzweil and R. Baer, J. Chem. Phys., 121, 8731 (2004). Time-Dependent Exchange-
Correlation Current Density Functionals with Memory.

270. Y. Kurzweil and R. Baer, Phys. Rev. B, 72, 035106 (2005). Generic Galilean-Invariant
Exchange-Correlation Functionals with Quantum Memory.

271. Y. Kurzweil and R. Baer, Phys. Rev. B, 73, 075413 (2006). Quantum Memory Effects in the
Dynamics of Electrons in Gold Clusters.

272. I. V. Tokatly, Phys. Rev. B, 71, 165104 (2005). Quantum Many-Body Dynamics in a
Lagrangian Frame: I. Equations of Motion and Conservation Laws.

273. I. V. Tokatly, Phys. Rev. B, 71, 165105 (2005). Quantum Many-Body Dynamics in a
Lagrangian Frame: II. Geometric Formulation of Time-Dependent Density Functional
Theory.

274. G. Vignale, Lect. Notes Phys., 706, 75 (2006). Current Density Functional Theory.

275. G. Vignale and W. Kohn, Phys. Rev. Lett., 77, 2037 (1996). Current-Dependent Exchange-
Correlation Potential for Dynamical Linear Response Theory.

276. G. Vignale, C. A. Ullrich, and S. Conti, Phys. Rev. Lett., 79, 4878 (1997). Time-Dependent
Density Functional Theory beyond the Adiabatic Local Density Approximation.

277. N. T. Maitra, F. Zhang, R. J. Cave, and K. Burke, J. Chem. Phys., 120, 5932 (2004). Double
Excitations in Time-Dependent Density Functional Theory Linear Response.

278. A. Marini, R. Del Sole, and A. Rubio, Lect. Notes Phys., 706, 161 (2006). Approximate
Functional from Many-Body Perturbation Theory.

279. B. G. Levine, C. Ko, J. Quenneville, and T. J. Martinez,Mol. Phys., 104, 1039 (2006). Conical
Intersections and Double Excitations in Time Dependent Density Functional Theory.

280. D. J. Tozer, R. D. Amos,N. C.Handy, B. O. Roos, and L. Serrano-Andres,Mol. Phys., 97, 859
(1999). Does Density Functional Theory Contribute to the Understanding of Excited States
of Unsaturated Organic Compounds?

160 Excited States from Time-Dependent Density Functional Theory



281. D. J. Tozer and N. C. Handy, Phys. Chem. Chem. Phys., 2, 2117 (2000). On the Determina-
tion of Excitation Energies Using Density Functional Theory.

282. F. Zhang and K. Burke, Phys. Rev. A, 69, 052510 (2004). Adiabatic Connection for Near
Degenerate Excited States.

283. M. E. Casida, J. Chem. Phys., 122, 054111 (2005). Propagator Corrections to Adiabatic Time-
Dependent Density-Functional Theory Linear Response Theory.

284. R. J. Cave, F. Zhang, N. T. Maitra, and K. Burke, Chem. Phys. Lett., 389, 39 (2004). A
Dressed TDDFT Treatment of the 21Ag States of Butadiene and Hexatriene.

285. S. Tretiak and V. Chernyak, J. Chem. Phys., 119, 8809 (2003). Resonant Nonlinear
Polarizabilities in the Time-Dependent Density Functional (TDDFT) Theory.

286. M. van Faassen, P. L. de Boeij, R. van Leeuwen, J. A. Berger, and J. G. Snijders, Phys. Rev.
Lett., 88, 186401 (2002). Ultranonlocality in Time-Dependent Current-Density-Functional
Theory: Application to Conjugated Polymers.

287. M. van Faassen, P. L. de Boeij, R. van Leeuwen, J. A. Berger, and J. G. Snijders, J. Chem. Phys.,
118, 1044 (2003). Application of Time-Dependent Current-Density-Functional Theory to
Nonlocal Exchange-Correlation Effects in Polymers.

288. M. van Faassen, Int. J. Mod. Phys. B, 20, 3419 (2006). Time-Dependent Current-Density-
Functional Theory Applied to Atoms and Molecules.

289. S. J. A. van Gisbergen, P. R. T. Schipper, O. V. Gritsenko, E. J. Baerends, J. G. Snijders, B.
Champagne, and B. Kirtman, Phys. Rev. Lett., 83, 694 (1999). Electric Field Dependence of
the Exchange-Correlation Potential in Molecular Chains.
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CHAPTER 4

Computing Quantum Phase
Transitions

Thomas Vojta

Department of Physics, Missouri University of Science and
Technology, Rolla, Missouri

PREAMBLE: MOTIVATION AND HISTORY

A phase transition occurs when the thermodynamic properties of a mate-
rial display a singularity as a function of the external parameters. Imagine, for
instance, taking a piece of ice out of the freezer. Initially, its properties change
only slowly with increasing temperature, but at 0� C, a sudden and dramatic
change occurs. The thermal motion of the water molecules becomes so strong
that it destroys the crystal structure. The ice melts, and a new phase of water
forms, the liquid phase. At the phase transition temperature of 0� C the solid
(ice) and the liquid phases of water coexist. A finite amount of heat, the so-
called latent heat, is required to transform the ice into liquid water at 0� C.
Phase transitions involving latent heat are called first-order transitions.
Another well-known example of a phase transition is the ferromagnetic transi-
tion of iron. At room temperature, iron is ferromagnetic, i.e., it displays a
spontaneous magnetization. With rising temperature, the magnetization
decreases continuously due to thermal fluctuations of the spins. At the transi-
tion temperature (the so-called Curie point) of 770� C, the magnetization
vanishes, and iron is paramagnetic at higher temperatures. In contrast to the
previous example, there is no phase coexistence at the transition temperature;
the ferromagnetic and paramagnetic phases instead become indistinguishable.
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Consequently, there is no latent heat. This type of phase transition is called a
continuous (second-order) transition or critical point.

Phase transitions play an essential role in shaping the world. The large-
scale structure of the universe is the result of phase transitions during the early
stages of its development after the Big Bang. Phase transitions also occur dur-
ing the production of materials, in growth processes, and in chemical reac-
tions. Understanding phase transitions has thus been a prime endeavor of
science. More than a century has gone by from the first (modern) discoveries
of phase transitions in gases and liquids by Andrews1 and van der Waals2 until
a consistent picture of the nature of those transitions started to emerge. How-
ever, the theoretical concepts established during this development, viz., scaling
and the renormalization group3,4 now belong to the central paradigms of mod-
ern physics and chemistry.

The examples of phase transitions mentioned above occur at nonzero
temperature. At these so-called thermal or classical transitions, the ordered
phase (the ice crystal or the ferromagnetic state of iron) is destroyed by ther-
mal fluctuations. In the last two decades or so, considerable attention has
focused on a very different class of phase transitions. These new transitions
occur at zero temperature when a nonthermal parameter such as pressure, che-
mical composition, or magnetic field is changed. The fluctuations that destroy
the ordered phase in these transitions cannot be of a thermal nature. Instead,
they are quantum fluctuations that are a consequence of Heisenberg’s uncer-
tainty principle. For this reason, these zero-temperature transitions are called
quantum phase transitions.

As an illustration of this phenomenon, consider the magnetic phase dia-
gram5 of the compound LiHoF4 in Figure 1. In zero external magnetic field,
LiHoF4 undergoes a phase transition from a paramagnet to a ferromagnet

Figure 1 Phase diagram of LiHoF4 as function of temperature and transverse magnetic
field.
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at about 1.5K. This transition is a thermal continuous phase transition analo-
gous to the Curie point of iron discussed above. Applying a magnetic field per-
pendicular to the ordering direction of the ferromagnet induces quantum
fluctuations between the spin-up and spin-down states and thus reduces the
transition temperature. At a field strength of Hc � 50 kOe (corresponding to
a field of Bc � 5T), the transition temperature drops to zero. Thus, at 50 kOe
LiHoF4 undergoes a quantum phase transition from a ferromagnet to a para-
magnet. At first glance, quantum phase transitions would seem to be a purely
academic problem since they occur at isolated values in parameter space and at
zero temperature, which is not accessible in a real experiment. However, it is
now clear that the opposite is true; quantum phase transitions do have impor-
tant, experimentally relevant consequences, and they are believed to provide
keys to many new and exciting properties of condensed matter, including
the quantum Hall effects, exotic superconductivity, and non-Fermi liquid
behavior in metals.

The purpose of this chapter is twofold: In the following two sections,
Phase Transitions and Critical Behavior and Quantum vs. Classical Phase Tran-
sitions, we give a concise introduction into the theory of quantum phase transi-
tions, emphasizing similarities with and differences from classical thermal
transitions. After that, we point out the computational challenges posed by
quantum phase transitions, and we discuss a number of successful computa-
tional approaches together with prototypical examples. However, this chapter
is not meant to be comprehensive in scope. We rather want to help scientists
who are taking their first steps in this field to get off on the right foot. Moreover,
we want to provide experimentalists and traditional theorists with an idea of
what simulations can achieve in this area (and what they cannot do, . . . yet).
Those readers who want to learn more details about quantum phase transitions
and their applications should consult one of the recent review articles6–9 or the
excellent textbook on quantum phase transitions by Sachdev.10

PHASE TRANSITIONS AND CRITICAL BEHAVIOR

In this section, we briefly collect the basic concepts of the modern theory
of phase transitions and critical phenomena to the extent necessary for the
purpose of this chapter. A detailed exposition can be found in, e.g., the text-
book by Goldenfeld.11

Landau Theory

Most modern theories of phase transitions are based on Landau theory.12

Landau introduced the concept of an order parameter, a thermodynamic quan-
tity that vanishes in one phase (the disordered phase) and is nonzero and gener-
ally nonunique in the other phase (the ordered phase). For the ferromagnetic
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phase transition, the total magnetization is an order parameter, for example. In
general, the order parameter can be a scalar, a vector, or even a tensor. Landau
theory can be understood as a unification of earlier mean-field theories such
as the van der Waals theory of the liquid–gas transition2 or Weiss’s molecular
field theory of ferromagnetism.13 It is based on the crucial assumption that the
free energy is an analytic function of the order parameter m and can thus be
expanded in a power series:

F ¼ FLðmÞ ¼ F0 þ rm2 þwm3 þ um4 þOðm5Þ ½1�

Close to the phase transition, the coefficients r,w,u vary slowly with respect to
the external parameters such as temperature, pressure, and electric or mag-
netic field. For a given system, the coefficients can be determined either by a
first-principle calculation starting from a microscopic model, or, phenomeno-
logically, by comparison with experimental data. The correct equilibrium
value of the order parameter m for each set of external parameter values is
found by minimizing FL with respect to m.

Let us now discuss the basic properties of phase transitions that result from
the Landau free energy, Eq. [1]. If the coefficient r is sufficiently large, the mini-
mum of FL is located atm ¼ 0, i.e., the system is in the disordered phase. In con-
trast, for sufficiently small (negative) r, the minimum is at some nonzero m,
putting the system into the ordered phase. Depending on the value of w, the
Landau free energy describes a first-order or a continuous transition. If
w 6¼ 0, the order parameter jumps discontinuously from m ¼ 0 to m 6¼ 0, i.e.,
the transition is of first order. If w ¼ 0 (as is often the case due to symmetry),
the theory describes a continuous transition or critical point at r ¼ 0. In this
case, r can be understood as the distance from the critical point, r / T � Tc.
Within Landau theory, the behavior close to a critical point is superuniversal,
meaning that all continuous phase transitions display the same behavior.
For instance, the order parameter vanishes asm ¼ ð�r=2uÞ1=2 when the critical
point r ¼ 0 is approached from the ordered phase, implying that the criti-
cal exponent b, which describes the singularity of the order parameter at the
critical point via m / jrjb / jT � Tcjb, always has the mean-field value 1

2.
In experiments, the critical exponent values are usually different fromwhat

Landau theory predicts; and while they show some degree of universality, it is
weaker than the predicted superuniversality. For instance, all three-dimensional
Ising ferromagnets (i.e., ferromagnets with uniaxial symmetry and a scalar order
parameter) fall into the same universality class with b � 0:32 while all two-
dimensional Ising magnets have b � 1

8. All three-dimensional Heisenberg
magnets [for which the order parameter is a three-component vector with
O(3) symmetry] also have a common value of b � 0:35, but this value for
Heisenberg magnets is different from that in Ising magnets.

The failure of Landau theory to describe the critical behavior correctly
was the central puzzle in phase transition theory over many decades. It was
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only solved in the 1970s with the development of the renormalization
group.3,4 We now understand that Landau theory does not include adequately
the fluctuations of the order parameter about its average value. The effects of
these fluctuations in general decrease with increasing dimensionality and with
increasing number of order parameter components. This observation suggests
that Landau theory might actually be correct for systems in sufficiently high
space dimension d. In fact, the fluctuations lead to two different critical dimen-
sionalities, dþ

c and d�
c , for a given phase transition. If d is larger than the upper

critical dimension dþ
c , fluctuations are unimportant for the critical behavior,

and Landau theory gives the correct critical exponents. If d is between the
upper and the lower critical dimensions, dþ

c > d > d�
c , a phase transition still

exists but the critical behavior is different from Landau theory. For dimension-
alities below the lower critical dimension, fluctuations become so strong that
they completely destroy the ordered phase. For the ferromagnetic transition
at nonzero temperature, dþ

c ¼ 4, and d�
c ¼ 2 or 1 for Heisenberg and Ising

symmetries, respectively.

Scaling and the Renormalization Group

To go beyond Landau theory, the order parameter fluctuations need to
be included. This can be achieved by writing the partition function as a func-
tional integral

Z ¼ e�F=kBT ¼
ð
D½f�e�S½f�=kBT ½2�

where S½f� is the Landau–Ginzburg–Wilson (LGW) free energy or ‘‘action,’’ a
generalization of the Landau free energy, Eq. [1], for a fluctuating field fðxÞ
representing the local order parameter. It is given by

S½f� ¼
ð
ddx½cðrfðxÞÞ2 þ FLðfðxÞÞ � hfðxÞ� ½3�

Here, we have also included an external field h conjugate to the order para-
meter (in the case of the ferromagnetic transition, h is a uniform magnetic
field). The thermodynamic average m of the order parameter is given by the
average hfi of the field with respect to the statistical weight e�S½f�=kBT .

In the disordered phase, the thermodynamic average of the order para-
meter vanishes, but its fluctuations are nonzero. When the critical point is
approached, the spatial correlations of the order parameter fluctuations, as
characterized by the correlation function Gðx� yÞ ¼ hfðxÞfðyÞi, become
long-ranged. Close to the critical point, their typical length scale, the correla-
tion length x, diverges as

x / jrj�n ½4�
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where n is called the correlation length critical exponent. This divergence was
observed in 1873 in a famous experiment by Andrews:1 A fluid becomes milky
when approaching its critical point because the length scale of its density fluc-
tuations reaches the wavelength of light. This phenomenon is called critical
opalescence.

Close to the critical point, x is the only relevant length scale in the sys-
tem. Therefore, the physical properties must be unchanged, if all lengths in the
system are rescaled by a common factor b, and at the same time the external
parameters are adjusted in such a way that the correlation length retains its old
value. This gives rise to a homogeneity relation for the free energy density
f ¼ �ðkBT=VÞlogZ,

f ðr; hÞ ¼ b�df ðrb1=n; hbyhÞ ½5�

The scale factor b is an arbitrary number, and yh is another critical exponent.
Analogous homogeneity relations for other thermodynamic quantities can be
obtained by taking derivatives of f. These homogeneity laws were first
obtained phenomenologically14 and are sometimes summarily called the scal-
ing hypothesis. Within the framework of the modern renormalization group
theory of phase transitions,3,4 the scaling laws can be derived from first
principles. The diverging correlation length is also responsible for the above-
mentioned universality of the critical behavior. Close to the critical point, the
system effectively averages over large volumes rendering microscopic system
details irrelevant. As a result, the universality classes are determined only by
symmetries and the spatial dimensionality.

In addition to the critical exponents n and yh defined above, other expo-
nents describe the dependence of the order parameter and its correlations on
the distance from the critical point and on the field conjugate to the order
parameter. The definitions of the most commonly used critical exponents
are summarized in Table 1. These exponents are not all independent from
each other. The four thermodynamic exponents a, b, g, d all derive from the

Table 1 Definitions of Critical Exponents

Exponent Definitiona Conditions

Specific heat a c / jrj�a r ! 0; h ¼ 0
Order parameter b m / ð�rÞb r ! 0�; h ¼ 0
Susceptibility g w / jrj�g r ! 0; h ¼ 0
Critical isotherm d h / jmjdsgnðmÞ r ¼ 0; h ! 0
Correlation length n x / jrj�n r ! 0; h ¼ 0
Correlation function Z GðxÞ / jxj�dþ2�Z r ¼ 0; h ¼ 0
Dynamical z xt / xz

Activated dynamical c ln xt / xc

am is the order parameter, and h is the conjugate field. The variable r denotes the distance from
the critical point, and d is the space dimensionality. The exponent yh defined in Eq. [5] is related to
d via yh ¼ dd=ð1þ dÞ.
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free energy, Eq. [5], which contains only two independent exponents. They are
therefore connected by the scaling relations

2� a ¼ 2bþ g

2� a ¼ bðdþ 1Þ ½6�

The correlation length and correlation function exponents are related by

2� a ¼ dn

g ¼ ð2� ZÞn ½7�

Exponent relations involving the dimensionality d explicitly are called hypers-
caling relations. They only hold below the upper critical dimension dþ

c . Above
dþ
c they are destroyed by dangerously irrelevant variables.11

In addition to the diverging length scale x, a critical point is characterized
by a diverging time scale, the correlation time xt. It leads to the phenomenon
of critical slowing down, i.e., very slow relaxation toward equilibrium near a
critical point. At generic critical points, the divergence of the correlation time
follows a power law xt / xz where z is the dynamical critical exponent. At
some transitions, in particular in the presence of quenched disorder, the diver-
gence can be exponential, ln xt / xc. The latter case is referred to as activated
dynamical scaling in contrast to the generic power-law dynamical scaling.

Finite-Size Scaling

The question of how a finite system size influences a critical point is
important for the application of computational methods and also for many
experiments, for example, in layered systems or nanomaterials. In general, a
sharp phase transition can exist only in the thermodynamic limit, i.e., in an
infinite system. A finite system size results in a rounding and shifting of the
critical singularities. A quantitative description of finite-size effects is provided
by finite-size scaling theory.15–17 Finite-size scaling starts from the observation
that the inverse system size acts as an additional parameter (analogous to r or
h) that takes the system away from the critical point. Because the correlation
length of the infinite system x1 is the only relevant length scale close to the
critical point, finite-size effects in a system of linear size L must be controlled
by the ratio L=x1 only. We can therefore generalize the classical homogeneity
relation of Eq. [5] for the free energy density by including the system size

f ðr; h;LÞ ¼ b�df ðrb1=n; hbyh ;Lb�1Þ ½8�

By taking derivatives and/or setting the arbitrary scale factor b to appropriate
values, Eq. [8] can be used to derive scaling forms of various observables. For
instance, by setting b ¼ L and h ¼ 0, we obtain f ðr;LÞ ¼ L�d�f ðrL1=nÞ where
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�f ðxÞ is a dimensionless scaling function. This can also be used to find how the
critical point shifts as a function of L in geometries that allow a sharp transi-
tion at finite L (e.g., layers of finite thickness). The finite-L phase transition
corresponds to a singularity in the scaling function at some nonzero argument
xc. The transition thus occurs at rcL

1=n ¼ xc, and the transition temperature
TcðLÞ of the finite-size system is shifted from the bulk value T0

c by

TcðLÞ � T0
c / rc ¼ xcL

�1=n ½9�

Note that the simple form of finite-size scaling summarized above is only valid
below the upper critical dimension dþ

c of the phase transition. Finite-size scal-
ing can be generalized to dimensions above dþ

c , but this requires taking dan-
gerously irrelevant variables into account. One important consequence is that
the shift of the critical temperature, TcðLÞ � T0

c / L�j is controlled by an
exponent j that in general is different from 1=n.

Finite-size scaling has become one of the most powerful tools for analyz-
ing computer simulation data of phase transitions. Instead of treating finite-
size effects as errors to be avoided, one can simulate systems of varying size
and test whether or not homogeneity relations such as Eq. [8] are fulfilled.
Fits of the simulation data to the finite-size scaling forms of the observables
then yield values for the critical exponents. We will discuss examples of this
method later in the chapter.

Quenched Disorder

Realistic systems always contain some amount of quenched (frozen-in)
disorder in the form of vacancies, impurity atoms, dislocations, or other types
of imperfections. Understanding their influence on the behavior of phase transi-
tions and critical points is therefore important for analyzing experiments. In this
section, we focus on the simplest type of disorder (sometimes called weak dis-
order, random-Tc disorder, or, from the analogy to quantum field theory,
random-mass disorder) by assuming that the impurities and defects do not
change qualitatively the bulk phases that are separated by the transition. They
only lead to spatial variations of the coupling strength and thusof the local critical
temperature. In ferromagnetic materials, random-Tc disorder can be achieved,
for example, by diluting the lattice, which means by replacing magnetic atoms
with nonmagnetic ones. Within a LGW theory such as Eq. [3], random Tc dis-
order can be modeled by making the parameter r (which measures the distance
from the critical point) a random function of spatial position, r ! rþ drðxÞ.

The presence of quenched disorder naturally leads to the following ques-
tions:

. Will the phase transition remain sharp or will it be rounded?

. Will the order of the transition (first order or continuous) remain the
same as in the clean case?
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. If the transition is continuous, will the ‘‘dirty’’ system show the same
critical behavior as the clean one or will the universality class change?

. Will only the transition itself be influenced or will the behavior also be
changed in its vicinity?

An important early step toward answering these questions came from the
work of Harris18 who considered the stability of a critical point against disor-
der. He showed that if a clean critical point fulfills the exponent inequality

dn > 2 ½10�

now called the Harris criterion, it is perturbatively stable against weak disor-
der. Note, however, that the Harris criterion only deals with the average beha-
vior of the disorder at large length scales; effects due to qualitatively new
behavior at finite length scales (and finite disorder strength) are not covered.
Thus, the Harris criterion is a necessary condition for the stability of a clean
critical point, not a sufficient one.

The Harris criterion can serve as the basis for a classification of critical
points with quenched disorder according to the behavior of the average disor-
der strength with increasing length scale. Three classes can be distinguished:19

(1) The first class contains critical points fulfilling the Harris criterion. At these
phase transitions, the disorder strength decreases under coarse graining, and
the system becomes homogeneous at large length scales. Consequently, the cri-
tical behavior of the dirty system is identical to that of the clean system.
Macroscopic observables are self-averaging at the critical point, i.e., the rela-
tive width of their probability distributions vanishes in the thermodyna-
mic limit.20,21 A prototypical example is the three-dimensional classical
Heisenberg model whose clean correlation length exponent is n � 0:711 ful-
filling the Harris criterion. (2) In the second class, the system remains inhomo-
geneous at all length scales with the relative strength of the disorder
approaching a finite value for large length scales. The resulting critical point
still displays conventional power-law scaling, but it is in a new universality
class with exponents that differ from those of the clean system (and fulfill
the inequality dn > 2). Macroscopic observables are not self-averaging, but
in the thermodynamic limit, the relative width of their probability distribu-
tions approaches a size-independent constant. An example in this class is the
classical three-dimensional Ising model. Its clean correlation length exponent,
n � 0:629, does not fulfill the Harris criterion. Introduction of quenched dis-
order, for example, via dilution, thus leads to a new critical point with an
exponent of n � 0:684. (3) At critical points in the third class, the relative
magnitude of the disorder counterintuitively increases without limit under
coarse graining. At these so-called infinite-randomness critical points, the
power-law scaling is replaced by activated (exponential) scaling. The probabil-
ity distributions of macroscopic variables become very broad (even on a loga-
rithmic scale) with their width diverging with system size. Infinite-randomness
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critical points have been found mainly in quantum systems, starting with Fish-
er’s seminal work on the random transverse field Ising model22,23 by means of
the Ma–Dasgupta–Hu renormalization group.24

The above classification is based on the behavior of the average disorder
strength at large length scales. In recent years it has become clear, however,
that an important role is often played by strong disorder fluctuations and
the rare spatial regions that support them. These regions can show local order
even if the bulk system is in the disordered phase. Their fluctuations are very
slow because they require changing the order parameter in a large volume.
Griffiths25 showed that the contributions of the rare regions lead to a singular
free energy not only at the phase transition point but in an entire parameter
region around it. At generic thermal (classical) transitions, the rare region con-
tributions to thermodynamic observables are very weak since the singularity in
the free energy is only an essential one.26,27 In contrast, at many quantum
phase transitions, rare disorder fluctuations lead to strong power-law quantum
Griffiths singularities that can dominate the thermodynamic beha-
vior.22,23,28,29 In some systems, rare region effects can become so strong that
they destroy the sharp phase transition by smearing.30 A recent review of rare
region effects at classical, quantum, and nonequilibrium phase transitions can
be found in Ref. 31.

QUANTUM VS. CLASSICAL PHASE TRANSITIONS

In this section, we give a concise introduction into the theory of quantum
phase transitions, emphasizing similarities with and differences from classical
thermal transitions.

How Important Is Quantum Mechanics?

The question of how important quantum mechanics is for understanding
continuous phase transitions has several facets. On the one hand, one may ask
whether quantum mechanics is even needed to explain the existence and prop-
erties of the bulk phases separated by the transition. This question can be
decided only on a case-by-case basis, and very often quantum mechanics is
essential as, e.g., for the superconducting phase. On the other hand, one can
ask how important quantum mechanics is for the behavior close to the critical
point and thus for the determination of the universality class to which the tran-
sition belongs. It turns out that the latter question has a remarkably clear and
simple answer: Quantum mechanics does not play any role in determining the
critical behavior if the transition occurs at a finite temperature; it does play a
role, however, at zero temperature.
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To understand this remarkable observation, it is useful to distinguish
fluctuations with predominantly thermal or quantum character (depending
on whether their thermal energy kBT is larger or smaller than the quantum
energy scale �hoc, where oc is the typical frequency of the fluctuations). As dis-
cussed in the last section, the typical time scale xt of the fluctuations generally
diverges as a continuous transition is approached. Correspondingly, the typi-
cal frequency scale oc goes to zero and with it the typical energy scale

�hoc / jrjnz ½11�

Quantum fluctuations will be important as long as this typical energy scale is
larger than the thermal energy kBT. If the transition occurs at some finite tem-
perature Tc, quantum mechanics will therefore become unimportant if the dis-
tance r from the critical point is smaller than a crossover distance rx given by
rx / T

1=nz
c . Consequently, we find that the critical behavior asymptotically

close to the transition is always classical if the transition temperature Tc is
nonzero. This justifies calling all finite-temperature phase transitions ‘‘classical
transitions,’’ even if they occur in an intrinsically quantum mechanical system.
Consider, as an example, the superconducting transition of mercury at 4.2K.
Here, quantum mechanics is obviously important on microscopic scales for
establishing the superconducting order parameter, but classical thermal fluc-
tuations dominate on the macroscopic scales that control the critical behavior.
In other words, close to criticality the fluctuating clusters become so big (their
typical size is the correlation length x) that they behave classically.

In contrast, if the transition occurs at zero temperature as a function of a
nonthermal parameter such as pressure or magnetic field, the crossover dis-
tance rx vanishes; in this situation quantum mechanics is important for the cri-
tical behavior. Consequently, transitions at zero temperature are called
quantum phase transitions as described earlier. In Figure 2, we show the
resulting schematic phase diagram close to a quantum critical point. Suffi-
ciently close to the finite-temperature phase boundary, the critical behavior
is purely classical, as discussed above. However, the width of the classical cri-
tical region vanishes with vanishing temperature. Thus, an experiment along
path (a) at sufficiently low temperatures will mostly observe quantum beha-
vior, with a very narrow region of classical behavior (which may be unobser-
vable) right at the transition. The disordered phase comprises three regions,
separated by crossover lines. In the quantum disordered region at low tem-
peratures and when B > Bc, quantum fluctuations destroy the ordered phase,
and the effects of temperature are unimportant. In contrast, in the thermally
disordered region, the ordered phase is destroyed by thermal fluctuations while
the corresponding ground state shows long-range order. Finally, the so-called
quantum critical region is located at B � Bc and extends (somewhat counter-
intuitively) to comparatively high temperatures. In this regime, the system is
critical with respect to B, and the critical singularities are cut-off exclusively
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by the temperature. An experiment along path (b) thus explores the tempera-
ture scaling of the quantum critical point. The phase diagram in Figure 2
applies to systems that have an ordered phase at finite temperatures. Some sys-
tems, such as Heisenberg magnets in two dimensions, display long-range order
only at exactly zero temperature. The corresponding schematic phase diagram
is shown in Figure 3. Even though the system is always in the disordered phase
at any nonzero temperature, the quantum critical point still controls the cross-
overs between the three different regions discussed above.

Figure 2 Schematic phase diagram close to a quantum critical point for systems having
an ordered phase at nonzero temperature. The solid line is the finite-temperature phase
boundary while the dashed lines are crossover lines separating different regions within
the disordered phase. QCP denotes the quantum critical point.

Figure 3 Same as Figure 2 but for systems that display long-range order only at exactly
zero temperature.
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Quantum Scaling and Quantum-to-Classical Mapping

In classical statistical mechanics, static and dynamic behaviors decouple.
Consider a classical Hamiltonian Hðpi; qiÞ ¼ HkinðpiÞ þHpotðqiÞ consisting of
a kinetic part Hkin that depends only on the momenta pi and a potential part
Hpot that depends only on the coordinates qi. The classical partition function
of such a system, Z ¼ Ð dpie�Hkin=kBT

Ð
dqie

�Hpot=kBT , factorizes into kinetic and
potential parts that are independent of each other. The kinetic contribution to
the free energy generally does not display any singularities since it derives from
a product of Gaussian integrals. One can therefore study the thermodynamic
critical behavior in classical systems using time-independent theories such as
the Landau–Ginzburg–Wilson theory discussed above. The dynamical critical
behavior can be found separately.

The situation is different in quantum statistical mechanics. Here, the
kinetic and potential parts of the Hamiltonian do not commute with each
other. Consequently, the partition function Z ¼ Tre�Ĥ=kBT does not factorize,
and one must solve for the dynamics together with the thermodynamics. The
canonical density operator e�Ĥ=kBT takes the form of a time–evolution opera-
tor in imaginary time, if one identifies 1=kBT ¼ �it=�h. Thus, quantum
mechanical analogs of the LGW theory, Eq. [3], need to be formulated in
terms of space- and time-dependent fields. A simple example of such a quan-
tum LGW action takes the form

S½f� ¼
ð1=kBT

0

dt
ð
ddx½aðqtfðx;tÞÞ2þ cðrfðx;tÞÞ2þFLðfðx;tÞÞ�hfðx;tÞ� ½12�

with t being the imaginary time variable. This action describes, for example,
the magnetization fluctuations of an Ising model in a transverse field.

This LGW functional also illustrates another remarkable feature of
quantum statistical mechanics. The imaginary time variable t effectively
acts as an additional coordinate whose extension becomes infinite at zero
temperature. A quantum phase transition in d-space dimensions is thus equi-
valent to a classical transition in d þ 1 dimensions. This property is called
the quantum-to-classical mapping. In general, the resulting classical system
is anisotropic because space and time coordinates do not enter in the same
fashion. A summary of the analogies arising from the quantum-to-classical
mapping is given in Table 2.

The homogeneity law, Eq. [5], for the free energy can be generalized easily
to the quantum case (see, e.g., Ref. 10). For the generic case of power-law dyna-
mical scaling, it takes the form

f ðr; h;TÞ ¼ b�ðdþzÞf ðrb1=n; hbyh ;TbzÞ ½13�
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The appearance of the imaginary time direction also modifies the hyperscaling
relations of Eq. [7]: The spatial dimensionality d has to be replaced by d þ z. If
space and time enter the theory symmetrically (as in the example given in
Eq. [12]), the dynamical exponent is z ¼ 1, but in general, it can take any posi-
tive value. Note that the quantum-to-classical mapping is valid for the thermo-
dynamics only. Other properties such as the real-time dynamics at finite
temperatures require more careful considerations. Moreover, the interpreta-
tion of the quantum partition function as being a classical one in a higher
dimension is only possible if the statistical weight is real and positive. If this
is not the case (consider, e.g., Berry phase terms in the spin functional inte-
gral), the quantum-to-classical mapping cannot be applied directly.

The quantum-to-classical mapping can be exploited for computational
studies of quantum phase transitions. If one is only interested in finding the
universal critical behavior at the quantum critical point (i.e., in the critical
exponents) and not in nonuniversal quantities, it is often easier to perform a
simulation of the equivalent classical system instead of the original quantum
system. We will come back to this point later in the chapter.

Beyond the Landau–Ginzburg–Wilson Paradigm

It has become clear in recent years that some quantum phase transitions
cannot be described satisfactorily by the LGW approach, i.e., by considering
long-wavelength fluctuations of a local order parameter only. In this section
we briefly discuss mechanisms that can invalidate the LGW approach.

Generic Scale Invariance
The derivation of the LGW theory as a regular expansion of the free

energy in terms of the order parameter fluctuations relies on those fluctuations
being the only gapless (soft) modes in the system. If other soft modes exist,
such as those due to conservation laws or broken continuous symmetries,
they lead to long-range power-law correlations of various quantities even
away from the critical point. This phenomenon is called generic scale invar-
iance.32–34 If one insists on deriving an LGW theory in the presence of other
gapless modes, the resulting functional has singular coefficients and is thus ill-
defined. One should instead work with a coupled theory that keeps all soft

Table 2 Analogies between Important Quantities in Quantum-to-Classical Mapping

Quantum System Classical System

d space, 1 time dimensions d þ 1 space dimensions
Coupling constant Classical Temperature T
Inverse physical temperature 1=kBT Finite size Lt in the ‘‘time’’ direction
Spatial correlation length x Spatial correlation length x
Inverse energy gap � Correlation length xt in ‘‘time’’ direction

After Ref. 6.
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modes at the same footing. This mechanism is discussed in detail in Ref. 9, and
it is important for metallic quantum ferromagnets as an example.

Deconfined Quantum Criticality
Certain two-dimensional S ¼ 1

2 quantum antiferromagnets can undergo a
direct continuous quantum phase transition between two ordered phases, an
antiferromagnetic Néel phase and the so-called valence-bond ordered phase
(where translational invariance is broken). This is in contradiction to Landau
theory, which predicts phase coexistence, an intermediate phase, or a first-
order transition, if any. The continuous transition is the result of topological
defects that become spatially deconfined at the critical point and are not con-
tained in an LGW description. Recently, there has been a great interest in the
resulting deconfined quantum critical points.35

Heavy-Fermion Quantum Criticality
Nonconventional quantum critical point scenarios may also be impor-

tant for understanding the magnetic transitions in heavy-fermion systems. In
experiments,36 many of these materials show pronounced deviations from the
predictions of the standard LGW theory of metallic quantum phase transi-
tions.37,38 The breakdown of the conventional approach in these systems
may be due to Kondo fluctuations. The standard theory37,38 assumes that
the heavy quasi-particles (which arise from Kondo hybridization between f
electrons and conduction electrons) remain intact across the transition. How-
ever, there is now some fairly direct experimental evidence (from de-Haas–
van-Alphen and Hall measurements) for the Kondo effect breaking down right
at the magnetic transition in some materials. This phenomenon cannot be
described in terms of the magnetic order parameter fluctuations contained in
the LGW theory. Several alternative scenarios are being developed, including
the so-called local critical point,39 and the fractionalized Fermi liquid leading
to one of the above-mentioned deconfined quantum critical points.40,41 A
complete field theory for these transitions has not yet been worked out.

Impurity Quantum Phase Transitions

An interesting type of quantum phase transition are boundary transitions
where only the degrees of freedom of a subsystem become critical while the
bulk remains uncritical. The simplest case is the so-called impurity quantum
phase transitions where the free energy contribution of the impurity (or, in
general, a zero-dimensional subsystem) becomes singular at the quantum cri-
tical point. Such transitions occur in anisotropic Kondo systems, quantum
dots, and in spin systems coupled to dissipative baths as examples. Impurity
quantum phase transitions require the thermodynamic limit in the bulk
(bath) system but are completely independent from possible phase transitions
of the bath. A recent review of impurity quantum phase transitions can be
found in Ref. 42.
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QUANTUM PHASE TRANSITIONS:
COMPUTATIONAL CHALLENGES

Computational studies of quantum phase transitions generally require a
large numerical effort because they combine several formidable computa-
tional challenges. These include (1) the problem of many interacting degrees
of freedom, (2) the fact that phase transitions arise only in the thermodynamic
limit of infinite system size, (3) critical slowing down and supercritical
slowing down at continuous and first-order transitions, respectively, and
(4) anisotropic space–time scaling at quantum critical points. In disordered
systems, there is the additional complication (5) of having to simulate large
numbers of disorder configurations to obtain averages and probability distri-
butions of observables. In the following, we discuss these points in detail.

1. The Quantum Many-Particle Problem Computational studies of
quantum phase transitions require simulating interacting quantum many-
particle systems. The Hilbert space dimension of such systems increases
exponentially with the number of degrees of freedom. Thus, ‘‘brute-force’’
methods such as exact diagonalization are limited to very small systems
that are usually insufficient for investigating properties of phase transitions.
In many research areas of many-particle physics and chemistry, sophisticated
approximation methods have been developed to overcome this problem, but
many of those approximations are problematic in the context of quantum
phase transitions. Self-consistent field (SCF) or single-particle-type approx-
imations such as Hartree–Fock or density functional theory (see, e.g.,
Refs. 43–45), by construction, neglect fluctuations because they express the
many-particle interactions in terms of an effective field or potential. Because
fluctuations have proven to be crucial for understanding continuous phase
transitions (as discussed in the section above on Phase Transitions and Cri-
tical Behavior), these methods must fail at least in describing the critical
behavior close to the transition. They may be useful for approximately locat-
ing the transition in parameter space, though. Other approximation meth-
ods, such as the coupled cluster-method,46 go beyond the self-consistent
field level by including one or several classes of fluctuations. However, since
the set of fluctuations included is limited and has to be selected by hand,
these methods are not bias free. Quantum critical states are generally very
far from any simple reference state so they are particularly challenging for
these techniques. One important class of methods that are potentially
numerically exact and bias free are quantum Monte Carlo methods.47–49

They will be discussed in more detail later in this chapter. However, quan-
tum Monte Carlo methods for fermions suffer from the notorious sign pro-
blem that originates in the antisymmetry of the many-fermion wave function
and hampers the simulation severely. Techniques developed for dealing with
the sign problem often reintroduce biases into the method, via, for instance,
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forcing the nodes of the wave function to coincide with those of a trial wave
function.

2. Thermodynamic Limit Sharp phase transitions only arise in the ther-
modynamic limit of infinite system size, but this does not mean one has to
actually simulate infinitely large systems. The critical behavior of a continuous
phase transition can be extracted by simulating finite systems using finite-size
scaling (see section on Phase Transitions and Critical Behavior). This still
requires sufficiently large system sizes, however, that are in the asymptotic
finite-size scaling regime where corrections to scaling forms such as Eq. [8]
are small. In general, it is not clear a priori how large the system sizes have
to be to reach this asymptotic regime, so, one must simulate a range of system
sizes and test the validity of the scaling forms a posteriori.

3. Critical and Supercritical Slowing Down As discussed in the section
on Phase Transitions and Critical Behavior, critical points display critical
slowing down, i.e., the system dynamics becomes arbitrarily slow when one
approaches the transition. First-order transitions can display an even more
dramatic supercritical slowing down where the correlation time increases
exponentially with the length scale. The same slowing down problem occurs
in many Monte Carlo methods, in particular if the updates (elementary moves)
are local. This means that the necessary simulation times diverge when
approaching the transition point. Critical and supercritical slowing down
can be overcome by more sophisticated Monte Carlo methods including clus-
ter update techniques50,51 for critical points and flat-histogram methods52,53

for first-order transitions.
4. Anisotropic Space–Time Scaling at Quantum Critical Points Many

commonly used quantum Monte Carlo algorithms work at finite temperatures
and require an extrapolation to zero temperature to extract information on
quantum phase transitions. The data analysis in such simulations thus implies
finite-size scaling not only for the spatial coordinates but also for the imag-
inary time direction. This finite-size scaling will in general be anisotropic in
space and time with an unknown dynamical exponent z. Therefore, system
size and (inverse) temperature have to be varied independently, increasing
greatly the numerical effort.

5. Disordered Systems Computational studies of disordered systems in
general require the simulation of a large number (from 100s to several
10,000s) of samples or disorder configurations to explore the averages or dis-
tribution functions of macroscopic observables. This is particularly important
for finite-disorder and infinite-disorder critical points (which occur in many
quantum systems) because at these critical points, the probability distributions
of observables remain broad or even broaden without limit with increasing
system size. The numerical effort for simulating a disordered quantum
many-particle system can thus be several orders of magnitude larger than
that for the corresponding clean system.
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CLASSICAL MONTE CARLO APPROACHES

We describe here computational approaches to quantum phase transi-
tions that rely on the quantum-to-classical mapping. The number of transi-
tions that can be studied by these approaches is huge; our discussion is
therefore not meant to be comprehensive. Following an introduction to the
method, we discuss a few representative examples, mostly from the area of
magnetic quantum phase transitions.

Method: Quantum-to-Classical Mapping and Classical
Monte Carlo Methods

In the section on Quantum vs. Classical Phase Transitions, we pointed
out that the partition function of a d-dimensional quantum many-particle sys-
tem can be written as a functional integral over space and (imaginary) time-
dependent fields. If the statistical weight in this representation is real and posi-
tive, it can be interpreted as the statistical weight of a classical system in d þ 1
dimensions with the extra dimension corresponding to the imaginary time
direction. This classical system can now be simulated very efficiently using
the well-developed machinery of classical Monte Carlo methods.54,55 Often,
this quantum-to-classical mapping is exact only for the asymptotic low-energy
degrees of freedom. Therefore, this approach works best if one is mostly inter-
ested in the universal critical behavior at the transition, i.e., in the overall scal-
ing scenario and the values of the critical exponents, rather than in
nonuniversal quantities that depend on microscopic details such as the critical
coupling constants or numerical values of observables.

In some simple cases, the classical system arising from the quantum-to-
classical mapping belongs to one of the well-known universality classes of clas-
sical phase transitions whose critical behavior has been studied in great detail
in the literature. In these cases, the quantum problem can be solved by simply
‘‘translating’’ the known classical results and by calculating specific obser-
vables, if desired. The first two examples discussed below will be of this
type. However, more often than not, the classical system arising from the
quantum-to-classical mapping is unusual and anisotropic (space and imagin-
ary time directions do not appear in a symmetric fashion). In these cases,
the behavior of the classical system has likely not been studied before, but it
can nonetheless be simulated efficiently by classical Monte Carlo methods.

Transverse-Field Ising Model

The first example we consider is arguably the simplest model displaying a
quantum phase transition—the quantum Ising model in a transverse field. It
can be viewed as a toy model for the magnetic quantum phase transition of
LiHoF4 discussed in the introductory section. For this system, we explain
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the quantum-to-classical mapping in detail, identify the equivalent classical
model and then discuss the results for the quantum critical behavior.

The transverse-field Ising model is defined on a d-dimensional hypercubic
(i.e., square, cubic, etc.) lattice. Each site is occupied by a quantum spin-12. The
spins interact via a ferromagnetic nearest-neighbor exchange interaction J > 0
between their z components. The transverse magnetic field hx couples to the x
components of the spins. The Hamiltonian of the model is given by

Ĥ ¼ �J
X
hi;ji

Ŝzi Ŝ
z
j � hx

X
i

Ŝxi ½14�

For J � hx, the system is in a ferromagnetic state, with a nonzero spontaneous
magnetization in the z direction. In contrast, for J � hx, the z magnetization
vanishes, and the system is a paramagnet. The two phases are separated by a
quantum phase transition at J � hx. The starting point for our investigation of
the critical behavior of this transition is the partition function Z ¼ Tr e�Ĥ=kBT .
We now show how to map this partition function onto that of a classical sys-
tem. The procedure is analogous to Feynman’s path integral for the quantum
mechanical propagator.56

Because the z and x components of the spin operators do not commute,
the partition function cannot be factorized simply into an interaction part and
a transverse-field part. However, we can use the Trotter product formula,57

eÂþB̂ ¼ limN!1ðeÂ=NeB̂=NÞN, for Hermitean operators Â and B̂ to slice the
imaginary time direction and then factorize the exponential in each slice.
The partition function now reads

Z ¼ Tr lim
N!1

exp eJ
X
hi;ji

Ŝzi Ŝ
z
j exp ehx

X
i

Ŝxi

0
@

1
A

N

½15�

where e ¼ 1=ðkBTNÞ is the step in imaginary time direction. We now insert
resolutions of the unit operator in terms of Ŝz eigenstates between each pair
of time slices as well as resolutions of the unit operator in terms of Ŝx eigen-
states between the interaction and field terms within each slice. Applying all Ŝz

operators onto Ŝz eigenstates and all Ŝx operators onto Ŝx eigenstates, we can
express the partition function in terms of the eigenvalues (which are classical
variables) only. The sums over the Ŝx eigenvalues can be easily carried out, and
up to a constant prefactor, the partition function is given by

Z / lim
N!1

X
fSi;ng

exp eJ
X
hi;ji;n

Si;nSj;n þ K
X
i;n

Si;nSi;nþ1 ½16�

where Si;n ¼ �1 is the Ŝz eigenvalue of the spin at site i and time slice n. The
interaction K in imaginary time direction takes the form K ¼ 1

2 ln cothðehxÞ.
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This representation of the partition function of the transverse-field Ising model
is identical to the partition function of an anisotropic classical Ising model in
d þ 1 dimensions with coupling constants eJ in the d-space dimensions and K
in the timelike direction. The classical Hamiltonian reads

Hcl

kBT
¼ �eJ

X
hi;ji;n

Si;nSj;n � K
X
i;n

Si;nSi;nþ1 ½17�

Because the interactions are short ranged (nearest neighbor only) in both
space- and timelike directions, the anisotropy does not play a role in the cri-
tical behavior of this classical model. We thus conclude that the quantum
phase transition of the d-dimensional quantum Ising model in a transverse field
falls into the universality class of the (d þ 1)-dimensional classical Ising model.
This establishes the quantum-to-classical mapping (for a slightly different deri-
vation based on transfer matrices; see Ref. 10).

The classical model arising from the mapping is a well-studied model of
classical statistical mechanics in this example. We can thus simply translate the
known results. Specifically, the one-dimensional transverse-field Ising model is
equivalent to the two-dimensional classical Ising model that was solved
exactly in a seminal study58 by Onsager more than 60 years ago. The exponent
values are a ¼ 0, b ¼ 1

8; g ¼ 7
4; d ¼ 15, n ¼ 1, Z ¼ 1

4. Since space and time
directions are equivalent, the dynamic exponent is z ¼ 1. The critical beha-
vior of various thermodynamic quantities can now be obtained from the
homogeneity relation of Eq. [13]. For instance, by differentiating Eq. [13]
twice with respect to h, we obtain the homogeneity relation for the magnetic
susceptibility

wðr; h;TÞ ¼ bg=nwðrb1=n; hbyh ;TbzÞ ½18�

Note that the field h appearing in Eq. [18] is a field conjugate to the order
parameter, i.e., it is a magnetic field in the z direction, not the transverse field
hx. By setting r ¼ 0, h ¼ 0 and b ¼ T�1=z, we find the temperature dependence
of the zero-field susceptibility at criticality to be wðTÞ / T�g=nz ¼ T�7=4. Other
thermodynamic observables can be determined analogously. The energy gap
�, an important property of the quantum system close to criticality, is related
to the correlation length xt of the equivalent classical system in imaginary time
direction via ��1 / xt.

The two-dimensional transverse-field Ising model maps onto the three-
dimensional classical Ising model, which is not exactly solvable. However,
the critical behavior has been determined with high precision using Monte
Carlo and series expansion methods (see, e.g., Ref. 59). The exponent values
are b � 0:326, g � 1:247, n � 0:629. The other exponents can be found
from the scaling and hyperscaling relations of Eqs. [6] and [7]. In dimensions
three and higher, the transverse-field Ising model displays mean-field critical
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behavior because the equivalent classical model is at or above the upper criti-
cal dimension dþ

c ¼ 4. (Precisely at dþ
c , there will be the usual logarithmic cor-

rections.11)

Bilayer Heisenberg Quantum Antiferromagnet

A (single-layer) two-dimensional Heisenberg quantum antiferromagnet
consists of quantum spins-12 on the sites of a square lattice. They interact via
the Hamiltonian

Ĥ ¼ Jk
X
hi;ji

Ŝi	Ŝj ½19�

where Jk > 0 is the nearest-neighbor exchange interaction. In contrast to
Eq. [14], the interaction is isotropic in spin space. This model describes, for
example, the magnetic properties of the CuO planes in undoped high-Tc cup-
rate perovskites. Even though quantum fluctuations (caused by the noncom-
mutativity of the spin components) reduce the staggered magnetization from
its classical value of 1

2 to about 0.3, the ground state displays long-range anti-
ferromagnetic (Néel) order as will be discussed in the section on Quantum
Monte Carlo Methods. To induce a quantum phase transition to a paramag-
netic state, one has to increase the quantum fluctuations. This can be done,
e.g., by considering two identical layers with the corresponding spins in the
two layers coupled antiferromagnetically by an interaction J? > 0 (see Figure 4
for a sketch of the system).

The Hamiltonian of the resulting bilayer Heisenberg quantum antiferro-
magnet reads

Ĥ ¼ Jk
X
hi;ji

ðŜi;1	Ŝj;1 þ Ŝi;2	Ŝj;2Þ þ J?
X
i

Ŝi;1	Ŝi;2 ½20�

Figure 4 Sketch of the bilayer Heisenberg quantum antiferromagnet. Each lattice site is
occupied by a quantum spin-12.
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where the second index of the spin operator distinguishes the two layers. For
J? � Jk, the corresponding spins in the two layers form singlets that are mag-
netically inert (i.e., J? increases the fluctuations away from the classical Néel
state). Thus, the system is in the paramagnetic phase. In contrast, for J? � Jk,
each layer orders antiferromagnetically, and the weak interlayer coupling
establishes global antiferromagnetic long-range order. There is a quantum
phase transition between the two phases at some J? � Jk.

We now map this quantum phase transition onto a classical transition.
Chakravarty and co-workers60 showed that the low-energy behavior of two-
dimensional quantum Heisenberg antiferromagnets is generally described by a
ð2þ 1Þ-dimensional quantum rotor model with the Euclidean action

S ¼ 1

2g

Z1=kBT

0

dt

"X
i

ðqtniðtÞÞ2 �
X
hi;ji

niðtÞ	njðtÞ
#

½21�

or by the equivalent continuum nonlinear sigma model. Here niðtÞ is a three-
dimensional unit vector representing the staggered magnetization. For the
bilayer Hamiltonian Eq. [20], the rotor variable niðtÞ represents Ŝi;1 � Ŝi;2
while the conjugate angular momentum represents Ŝi;1 þ Ŝi;2 (see Chapter 5
of Ref. 10). The coupling constant g is related to the ratio Jk=J?. By reinter-
preting the imaginary time direction as an additional space dimension, we
can now map the rotor model Eq. [21] onto a three-dimensional classical Hei-
senberg model with the Hamiltonian

Hcl

kBT
¼ �K

X
hi;ji

ni	nj ½22�

Here the value of K is determined by the ratio Jk=J? and tunes the phase tran-
sition. (Since the interaction is short ranged in space and time directions, the
anisotropy of Eq. [21] does not play a role in the critical behavior.)

As in the first example, the classical system arising from the quantum-to-
classical mapping is a well-known model of classical statistical mechanics.
While it is not exactly solvable, its properties are known with high precision
from classical Monte Carlo simulations.61,62 The critical exponents of the
phase transition are a � �0:133, b � 0:369, g � 1:396, d � 4:783,
n � 0:711, and Z � 0:037. Because space and time directions enter Eq. [22]
symmetrically, the dynamical exponent is z ¼ 1. The critical behavior of
observables can be obtained from the homogeneity relation of Eq. [13] as
before. Note that the field h appearing in the homogeneity relation is not a uni-
form magnetic field but rather the field conjugate to the antiferromagnetic
order parameter, i.e., it is a staggered magnetic field. Including a uniform mag-
netic field in the quantum-to-classical mapping procedure leads to complex
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weights in the partition function. As a result, the uniform magnetic field has no
analog in the classical problem. Investigating the effects of a uniform field
beyond linear response theory is thus outside the quantum-to-classical map-
ping approach.

Dissipative Transverse-Field Ising Chain

The quantum-to-classical mapping in the two examples above resulted in
systems where space and time directions appear symmetrically, implying a
dynamical exponent z ¼ 1 from the outset. We now turn to an example where
space and time directions scale differently, and where the dynamical exponent
has to be determined from the simulation data.

The dissipative transverse-field Ising chain consists of a one-dimensional
transverse-field Ising model, as discussed in the first example above, with each
spin coupled to a heat bath of harmonic oscillators. The Hamiltonian reads

Ĥ ¼ �J
X
hi;ji

Ŝzi Ŝ
z
j � hx

X
i

Ŝxi þ
X
i;k

½ckŜzi ðayi;k þ ai;kÞ þ oi;ka
y
i;kai;k� ½23�

Here ayi;k and ai;k are the creation and destruction operators of harmonic oscil-
lator k coupled to spin i. The oscillator frequencies oi;k and coupling constants
ck are chosen such that the spectral function JðoÞ ¼ 4p

P
k c

2
kdðo� oi;kÞ ¼

2pao for o less than some cutoff oc, but vanishes otherwise. This defines Ohmic
(linear) dissipation with dimensionless dissipation strength a.

The quantum-to-classical mapping for this system follows the same
‘‘Feynman path integral’’ procedure used in the first example. The harmonic
oscillator degrees of freedom lead to Gaussian integrals and can thus be inte-
grated out exactly. The resulting classical Hamiltonian reads

Hcl

kBT
¼ �eJ

X
hi;ji;n

Si;nSj;n � K
X
i;n

Si;nSi;nþ1 � a
X
i;n 6¼m

p
N

� �2 Si;nSi;m

sin2ðp=Njn�mjÞ ½24�

Here Si;n ¼ �1 are classical Ising variables at site i and imaginary time step n.
The time interval e is related to the inverse temperature via e ¼ 1=ðkBTNÞ, and
the coupling constant K is given by K ¼ 1

2 ln cothðehxÞ, as before. The coupling
to the Ohmic baths has introduced a long-range interaction in the time direc-
tion that behaves as 1=t2 in the Trotter limit N ! 1. This long-range inter-
action breaks the symmetry between space and time directions.

The classical Hamiltonian, Eq. [24], can now be studied using classical
Monte Carlo algorithms. To reduce the computational effects of critical
slowing down close to the transition, cluster algorithms are helpful. How-
ever, the commonly used Swendsen–Wang50 and Wolff51 algorithms are
not very efficient for long-range interactions because they have to go over
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all neighbors of each site when building a cluster. Luijten and Blöte63 devel-
oped a version of the Swendsen–Wang algorithm that is suitable and efficient
for long-range interactions. Werner et al.64 used this algorithm to simulate
the Hamiltonian of Eq. [24]. Since space and time directions are not equiva-
lent, the data analysis via finite-size scaling is not entirely trivial. An efficient
way for determining the critical point and the dynamical exponent z self-
consistently was suggested by Guo, Bhatt and Huse65 as well as by Rieger
and Young.66 It is based on analyzing dimensionless observables such as
the Binder cumulant:

B ¼ 1� hm4i
3hm2i2 ½25�

where m is the magnetization (i.e., the order parameter). This quantity
approaches well-known limits in both bulk phases: In the ordered phase, all
spins are correlated, and the magnetization has small fluctuations around a
nonzero value, so,hm4i � hm2i2, and the Binder ratio approaches 2

3. In the dis-
ordered phase, the system consists of many independent fluctuators. Conse-
quently, hm4i can be decomposed using Wick’s theorem giving
hm4i � 3hm2i2, and the Binder ratio approaches zero. Since the Binder ratio
is dimensionless, the finite-size scaling homogeneity relation for this quantity
reads

Bðr;L;LtÞ ¼ Bðrb1=n;Lb�1;Ltb
�zÞ ½26�

where L and Lt are the linear system sizes in space and time direction, respec-
tively. Setting the arbitrary scale factor b ¼ L leads to the scaling form

Bðr;L;LtÞ ¼ �BðrL1=n;Lt=L
zÞ ½27�

with �B a dimensionless scaling function. The following important character-
istic holds: For fixed L, B has a peak as a function of Lt. The peak position
Lmax
t marks the optimal sample shape, where the ratio Lt=L behaves roughly

like the corresponding ratio of the correlation lengths in time and space direc-
tions. (If the aspect ratio deviates from the optimum one, the system can be
decomposed into independent units either in space or in time direction, and
thus B decreases.) At the critical point, the peak value Bmax is independent of
L. Thus, plotting B vs. Lt=L

max
t at the critical point should collapse the data,

without the need for a value of the dynamical exponent z. Instead, z can be
extracted from the relation Lmax

t / Lz. An example of such an analysis is
shown in Figure 5. Once the dynamical exponent z is found, the other expo-
nents can be derived from one-parameter finite-size scaling as in the classical
case.15–17
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Werner et al.64 used these techniques to investigate the phase diagram of
the Hamiltonian and the quantum phase transition between the ferromagnetic
and paramagnetic phases. They found the critical behavior to be universal (i.e.,
independent of the dissipation strength a for all a 6¼ 0). The exponent values
are n � 0:638;Z � 0:015, and z � 1:985, which agree well with the results of
perturbative renormalization group calculations.67,68 The other exponents can
be found from the scaling and hyperscaling relations of Eqs. [6] and [7].

Diluted Bilayer Quantum Antiferromagnet

We have seen that dissipation can lead to an effective long-range inter-
action in time and thus break the symmetry between space and time directions
in the last example. Another mechanism to break this symmetry is quenched
disorder (i.e., impurities and defects), because this disorder is random in space
but perfectly correlated in the time direction.

Consider the bilayer Heisenberg quantum antiferromaget, Eq. [20]. Ran-
dom disorder can be introduced by randomly removing spins, for example,
from the system (in an experiment, one would randomly replace magnetic
atoms with nonmagnetic atoms). If the substitutions in the two layers are
made independent of one another, the resulting unpaired spins lead to com-
plex weights in the partition function that cannot be expressed in terms of a
classical Heisenberg model. Here, we therefore consider dimer dilution, that
is, the case where the corresponding spins in the two layers are removed
together. The Hamiltonian of the dimer-diluted bilayer Heisenberg quantum

Figure 5 Scaling analysis of the Binder cumulant B of the classical Hamiltonian,
Eq. [24], at criticality (a ¼ 0:6, eJ ¼ 0:00111, K ¼ 1:153) with a dynamical exponent
z ¼ 2. (Taken with permission from Ref. 64.)
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antiferromagnet is given by

Ĥ ¼ Jk
X
hi;ji

mimjðŜi;1	Ŝj;1 þ Ŝi;2	Ŝj;2Þ þ J?
X
i

miŜi;1	Ŝi;2 ½28�

where the mi are independent random variables that can take the values 0 and 1
with probability p and 1� p, respectively. The zero temperature phase dia-
gram of this model has been worked out by Sandvik69 and Vajk and Greven70

and is shown in Figure 6. For small J?, magnetic long-range order survives up
to the percolation threshold of the lattice, pp � 0:4072, and a multicritical
point exists at J?=Jk � 0:16, p ¼ pp. Thus, the dimer-diluted bilayer Heisen-
berg antiferromagnet has two quantum phase transitions, the generic transi-
tion for p < pp and a quantum percolation transition at p ¼ pp, J? < 0:16Jk.

The quantum-to-classical mapping follows the same procedure as for the
clean bilayer quantum Heisenberg model above. The result is an unusual
diluted three-dimensional classical Heisenberg model. Because the impurities
in the quantum system are quenched (time-independent), the equivalent clas-
sical Heisenberg model has line defects parallel to the imaginary time direc-
tion. The classical Hamiltonian is given by

Hcl

kBT
¼ �K

X
hi;ji;n

mimj ni;n	nj;n � K
X
i;n

mi ni;n	ni;nþ1 ½29�

where i and j are the spatial indices while n is the index in the timelike direc-
tion. The line defects break the symmetry between space and time directions;
we thus expect anisotropic scaling with a dynamical exponent z 6¼ 1.

Figure 6 Phase diagram of the dimer-diluted bilayer Heisenberg antiferromagnet, as a
function of J?=Jk and dilution p. The dashed line is the percolation threshold; the open
dot is the multicritical point. (Taken with permission from Ref. 71.)
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Sknepnek, Vojta and Vojta71 and Vojta and Sknepnek72 have performed
large-scale Monte Carlo simulations of the classical Hamiltonian, Eq. [29], by
means of the Wolff cluster algorithm.51 Because of the disorder, all simula-
tions involve averages over a large number (up to several 10,000) of disorder
configurations. Let us first discuss the generic transition (p < pp). As explained
above, the scaling behavior of the Binder cumulant can be used to self-
consistently find the critical point and the dynamical exponent z. A typical
result of these calculations is presented in Figure 7. It shows the Binder cumu-
lant at the critical point for a system with impurity concentration p ¼ 1=5. As
seen in the main panel of this figure, the data scale very well when analyzed
according to power-law scaling while the inset shows that they do not fulfill
activated (exponential) scaling. Analogous data were obtained for impurity
concentrations 1

8,
2
7, and

1
3. The dynamical exponent of the generic transition

now follows from a power-law fit of the maximum position Lmax
t vs. L,

as shown in Figure 8. Taking the leading corrections to scaling into account
gives a universal value z � 1:31. The correlation length exponent can be deter-
mined from the off-critical finite-size scaling of the Binder cumulant, giving
n � 1:16. Note that this value fulfills the inequality dn > 2 as required for a
sharp transition in a disordered system (see discussion on quenched disorder
in the section on Phase Transitions and Critical Behavior). Analyzing the mag-
netization and susceptibility data at criticality yields b=n � 0:53, g=n � 2:26.

Figure 7 (Upper panel) Binder cumulant of the classical Hamiltonian, Eq. [29], at the
critical point as a function of Lt for various L and impurity concentration p ¼ 1

5. (Lower
panel) Power-law scaling plot of the Binder cumulant. (Inset) Activated scaling plot of
the Binder cumulant. (Taken with permission from Ref. 71.)
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Vojta and Sknepnek72 also performed analogous calculations for the
quantum percolation transition at p ¼ pp, J? < 0:16Jk and the multicritical
point at p ¼ pp, J? ¼ 0:16Jk. A summary of the critical exponents for all three
transitions is found in Table 3. The results for the percolation transition are in
reasonable agreement with theoretical predictions of a recent general scaling
theory73 of percolation quantum phase transitions: b=n ¼ 5=48, g=n ¼ 59=16
and a dynamical exponent of z ¼ Df ¼ 91

48 (coinciding with the fractal dimen-
sion of the critical percolation cluster).

Random Transverse-Field Ising Model

To illustrate the rich behavior of quantum phase transitions in disor-
dered systems, we now consider the random transverse-field Ising model, a
random version of our first example. It is given by the Hamiltonian

Ĥ ¼ �
X
hi;ji

JijŜ
z
i Ŝ

z
j �

X
i

hxi Ŝ
x
i ½30�

Figure 8 Lmax
t vs. L for four impurity concentrations. The solid lines are fits to

Lmax
t ¼ aLzð1þ bL�oÞ with z ¼ 1:31, o ¼ 0:48. (Taken with permission from Ref. 71.)

Table 3 Critical Exponents of the Generic Transition, Percolation Transition, and
Multicritical Point of the Dimer-Diluted Bilayer Quantum Heisenberg Antiferromagnet

Exponent Generic Transition Multicritical Point Percolation Transition

z 1.31 1.54 1.83
b=n 0.53 0.40 0.15
g=n 2.26 2.71 3.51
n 1.16

From Ref. 72.
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where both Jij > 0 and hxi > 0 are random functions of the lattice site. In one
space dimension, the critical behavior of the quantum phase transition can be
determined exactly22,23 by means of the Ma–Dasgupta–Hu ‘‘strong-disorder’’
renormalization group.24 This calculation predicts an exotic infinite-randomness
critical point, characterized by the following unusual properties: (1) the effective
disorder increases without limit under coarse graining (i.e., with increasing
length scale), (2) instead of the usual power-law dynamical scaling one now
has activated scaling, ln xt / xc, with c ¼ 1

2, (3) the probability distributions
of observables become very broad, even on a logarithmic scale, with their widths
diverging when approaching the critical point, (4) average and typical correla-
tions behave differently: At criticality, the average correlation function CavðrÞ
falls off with a power of the distance r, while the typical correlations decay
much faster, as a stretched exponential lnCtypðrÞ / r�c. These results have
been confirmed by extensive and efficient numerical simulations74,75 based on
mapping the spin systems onto free fermions.76

In dimensions d > 1, an exact solution is not available because the strong
disorder renormalization group can be implemented only numerically.19

Moreover, mapping the spin system onto free fermions is restricted to one
dimension. Therefore, simulation studies have mostly used Monte Carlo
methods. The quantum-to-classical mapping for the Hamiltonian in Eq. [30]
can be performed analogously to the clean case. The result is a disordered
classical Ising model in d þ 1 dimensions with the disorder perfectly correla-
ted in one dimension (in 1þ 1 dimensions, this is the famous McCoy–Wu
model77,78). The classical Hamiltonian reads

Hcl

kBT
¼ �

X
hi;ji;n

ðeJijÞSi;nSj;n �
X
i;n

KiSi;nSi;nþ1 ½31�

with Jij > 0 and Ki ¼ 1
2 ln cothðehxi Þ > 0 being independent random variables.

Pich et al.79 performed Monte Carlo simulations of this Hamiltonian in
2þ 1 dimensions using the Wolff cluster algorithm.51 As in the two examples
above, they used the scaling behavior of the Binder cumulant to find the criti-
cal point and to analyze the dynamical scaling. The resulting scaling plot is
shown in Figure 9. The figure shows that the curves do not scale when ana-
lyzed according to the usual power-law dynamical scaling, xt / xz, but rather
get broader with increasing system size. In the inset, the data for L 
 12 scale
quite well according to activated scaling, ln xt / xc, with c � 0:42. Pich
et al.79 also studied the behavior of the correlation function at criticality.
They found a power-law decay of the average correlations and a stretched ex-
ponential decay of the typical correlations, as in one dimension. These results
provide strong simulational evidence for the quantum critical point in the two-
dimensional random transverse-field Ising model being of exotic infinite ran-
domness type. This agrees with the prediction of the numerically implemented
strong-disorder renormalization group19 and with a general classification of
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phase transitions in disordered systems according to the effective dimensional-
ity of the defects.31

Dirty Bosons in Two Dimensions

The examples discussed so far are all magnetic quantum phase transi-
tions. Our last example in this section on quantum-to-classical mapping is a
quite different transition, viz. the superconductor–insulator transition in
two-dimensional dirty boson systems. Experimentally, this transition can be
realized in helium absorbed in a porous medium or in granular superconduct-
ing films as an example.

The minimal model for describing the superconductor–insulator transi-
tion in the general case of both charge and phase fluctuations being relevant
is the boson Hubbard model with a random local chemical potential.80,81 The
Hamiltonian (defined on a square lattice) takes the form

ĤBH ¼ U

2

X
i

N̂2
i �

X
i

ðmþ vi � ztÞ N̂i � t
X
hi;ji

ð�̂y
i �̂j þ �̂y

j �̂iÞ ½32�

Here, U is the onsite repulsion, m is the chemical potential, z is the number of
nearest neighbors, and vi represents the random onsite potential. The hopping
strength is given by t, and �̂y

i , �̂i are the boson creation and destruction opera-
tors at site i. The number operator is given by N̂i ¼ �̂y

i �̂i.

Figure 9 Binder cumulant of the classical Hamiltonian in Eq. [31] at the critical point.
(Main panel) Power-law scaling plot. (Inset) Scaling plot according to activated scaling.
(Taken with permission from Ref. 79.)
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If the boson density is an integer (per site), and, in the absence of disor-
der, charge (amplitude) fluctuations are small. If we set �̂i ¼ j�̂ij eiŷi and inte-
grate out the amplitude fluctuations, we obtain a phase-only model that can be
written as an O(2) quantum rotor model:

ĤQR ¼ �U

2

X
i

q2

qy2i
� t
X
hi;ji

cosðyi � yjÞ ½33�

This Hamiltonian describes, among other systems, an array of coupled Joseph-
son junctions.

In the spirit of this section, we now discuss the quantum-to-classical
mapping for the dirty boson problem. We first consider the case of integer
boson density and no disorder, i.e., the Hamiltonian in Eq. [33]. In this
case, the quantum-to-classical mapping can be performed analogously to the
transverse-field Ising model: The partition function is factorized using the
Trotter product formula leading to a path integral representation. By reinter-
preting the imaginary time direction as an extra dimension and rescaling space
and time appropriately (which does not change universal properties), we
finally arrive at an isotropic three-dimensional classical XY model with the
Hamiltonian

Hcl

kBT
¼ �K

X
hi;ji

cosðyi � yjÞ ½34�

where yi is a classical angle in the interval ½0; 2p�. This is again a well-known
model of classical statistical mechanics that can be simulated efficiently using
Monte Carlo cluster algorithms and series expansions (see, e.g., Ref. 82). The
resulting critical exponents are a � �0:015, b � 0:348, g � 1:318, d � 4:780,
n � 0:672, and Z � 0:038. Since space and time enter symmetrically, the dyna-
mical exponent is z ¼ 1.

The general case of noninteger boson density and/or the presence of the
random potential is more realistic. However, it leads to broken time-reversal
symmetry for the quantum rotors because the particle number is represented
by the quantity canonically conjugate to the phase variable, that is, by angular
momentum. The quantum-to-classical mapping procedure sketched above,
therefore, leads to complex weights in the partition function, and the system
cannot be interpreted in terms of a classical XY model. Wallin et al.81 found
an alternative quantum-to-classical mapping that avoids the complex weight
problem. They expressed the partition function in terms of the integer-valued
angular momentum variables of the rotors. The resulting link current (Villain83)
representation is a classical ð2þ 1Þ-dimensional Hamiltonian:

Hcl

kBT
¼ 1

K

X
i;t

1

2
J2i;t � ð~mþ ~viÞJti;t

� �
½35�
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Here, i and t are the site indices in space- and the timelike direction, respec-
tively. The dynamic variable J ¼ ðJx; Jy; JtÞ is a three-dimensional ‘‘current’’
with integer-valued components. It must be divergenceless, i.e., the sum over
all currents entering a particular site must vanish; ~m and ~vi represent the che-
mical and random potentials, renormalized by U.

To perform Monte Carlo simulations of the classical Hamiltonian, one
must construct updates that respect the zero divergence condition for the cur-
rents. This prevents using the usual type of cluster algorithms.50,51 For this rea-
son, early simulations81 used algorithms with local updates that suffered from
significant critical slowing down. Alet and Sorensen84 developed a cluster
algorithm in which the link currents are updated by moving a ‘‘worm’’
through the lattice. This algorithm is efficient and performs comparably to
the Wolff algorithm51 for classical spin systems. Alet and Sorensen first con-
firmed the three-dimensional XY universality class for the clean case at integer
boson density using this algorithm. In the presence of the random potential,
they found a different universality class with exponents n � 1:15 and z � 2.

QUANTUM MONTE CARLO APPROACHES

If one is only interested in the universal critical behavior of a quantum
phase transition, then the quantum-to-classical mapping method discussed in
the last section (if available) is usually the most efficient approach. If one is
also interested in nonuniversal quantities such as critical coupling constants
or numerical values of observables, however, the quantum system has to be
simulated directly. This can be done, for example, by quantum Monte Carlo
methods that are the topic of this section.

The name quantum Monte Carlo refers to a diverse class of algorithms
used for simulating quantum many-particle systems by stochastic means (for
an overview see Ref. 47). Some of these algorithms, such as variational
Monte Carlo85,86 and diffusion Monte Carlo,87,88 aim at computing the
ground-state wave function (and are thus zero-temperature methods). Other
algorithms including path-integral (world-line) Monte Carlo89,90 sample the
density matrix at finite temperatures. Before discussing quantum phase tran-
sitions, it is useful to illustrate the wide spectrum of problems that can be
attacked by quantum Monte Carlo methods today along with the challenges
involved.

One branch of quantum Monte Carlo research aims at providing a quan-
titative first-principle description of atoms, molecules, and solids beyond the
accuracy of density functional theory.48,49 If the basic physics and chemistry
of the material in question is well understood at least qualitatively, as is the
case for many bulk semiconductors, for example, good trial wave functions
such as the Jastrow–Slater type can be constructed. These functions can
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then be used in variational or diffusion Monte Carlo simulations to provide
accurate results for the correlation energy and for other quantities. In contrast,
different problems arise for materials whose behavior is not even qualitatively
understood, such as when dealing with many strongly correlated electron sys-
tems. These systems are often studied by using simple models that capture the
new properties of a whole class of materials without adding too many (realis-
tic) details. However, the absence of even a qualitative understanding of such
systems severely hampers the construction of trial wave functions with the
right properties (symmetries, etc.). Ideally, this class of problems should be
studied by (bias-free) methods that do not rely on trial wave functions at all.

Studies involving the simulation of quantum phase transitions belong to
the second class of problems. While variational or diffusion Monte Carlo cal-
culations can be very useful in locating approximately the quantum phase
transition of a particular system in parameter space, they are much less suita-
ble for studying the quantum critical state itself (because it is generally far
away from any simple reference state). Significant progress in simulating
quantum phase transitions of boson and spin systems has been achieved by
path-integral (world-line) Monte Carlo89,90 and the related stochastic series
expansion (SSE) method91,92 in recent years. Fermion systems pose a much
harder problem to solve because the antisymmetry of the many-fermion
wave function generically leads to the notorious sign problem, an issue that
we shall return to at the end of the section. In the following we introduce
briefly the world-line and SSE methods and then discuss a few representative
examples of quantum phase transitions in boson and spin systems.

World-Line Monte Carlo

The world-line Monte Carlo algorithm is a finite-temperature method
that samples the canonical density matrix of a quantum many-particle system.
It may appear counterintuitive at first glance to use a finite-temperature method
to study quantum phase transitions that occur at zero temperature, but a finite-
temperature method is suitable for the following two reasons: (1) One of
the (experimentally) most interesting regions of the phase diagram close to a
quantum critical point is the quantum critical region located at the critical
coupling strength but at comparatively high temperatures (see the section on
Quantum vs. Classical Phase Transitions). Finite-temperature methods are
thus required to explore it. (2) Assessing the dependence of observables on
temperature is an efficient tool for determining the dynamical scaling beha-
vior of the quantum critical point (analogous to finite-size scaling, but in the
imaginary time direction).

The general idea89,90 of the world-line Monte Carlo algorithm is similar
to that of the quantum-to-classical mapping discussed in the last section. The
Hamiltonian is split into two or more terms Ĥ ¼Pi Ĥi such that the matrix
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elements of each exponential term e�eĤi can be calculated easily. Even if the Ĥi

do not commute, we can use the Trotter product formula to decompose the
canonical density operator

e�Ĥ=kBT ¼ lim
N!1

Y
i

e�eĤi

 !N

½36�

with e ¼ 1=kBTN. Inserting complete sets of states between the different
factors leads to a representation of the Boltzmann factor in terms of matrix
elements of the e�eĤi . If all of these matrix elements are positive, their product
can be interpreted as a statistical weight, and Monte Carlo algorithms can be
constructed to sample this weight. (If some of the matrix elements are
negative, we have an instance of the notorious sign problem in quantum
Monte Carlo.) TheN factors of the Trotter decomposition can be interpreted
as N time slices in the imaginary time direction, and the spin or particle con-
figurations form ‘‘world lines’’ in the resulting ðd þ 1Þ-dimensional space–
time. This gives the method its name. A specific implementation of the
world-line Monte Carlo method will be discussed in our first example later
in this tutorial. More details of this technique can also be found in Chapter 3
of Ref. 47.

Applications of the world-line algorithm to quantum phase transitions
require three extrapolations: (1) to infinite system size, (2) to temperature
T ! 0, and (3) to imaginary time step e ! 0. The first two extrapolations
can be handled conveniently by finite-size scaling in the space and time direc-
tions, respectively. The systematic error of the Trotter decomposition arising
from a finite e was originally controlled by an explicit extrapolation from
simulations with different values of e. In 1996, Prokofev et al. showed that
(at least for quantum lattice models) the algorithm can be formulated in con-
tinuous time, taking the limit e ! 0 from the outset.93 World-line Monte
Carlo algorithms with local updates of spin or particle configurations suffer
from critical slowing down close to quantum critical points. This problem is
overcome by using the loop algorithm94 and its continuous time version.95

These algorithms, which are generalizations of the classical cluster algo-
rithms50,51 to the quantum case, have been reviewed in detail in Ref. 96.
Further improvements for systems without spin-inversion or particle-hole
symmetry include the worm algorithm97 and the directed loop method.98

Stochastic Series Expansion

The stochastic series expansion (SSE) algorithm91,92 is a generalization
of Handscomb’s power-series method99 for the Heisenberg model. To derive
an SSE representation of the partition function, we start from a Taylor
expansion in powers of the inverse temperature. We then decompose the
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Hamiltonian into two or more terms Ĥ ¼Pi Ĥi such that the matrix elements
with respect to some basis can be calculated easily, giving

Z ¼ Tr e�Ĥ=kBT ¼
X1
n¼0

1

n!

1

kBT

� �n

Trð�ĤÞn ¼
X1
n¼0

1

n!

1

kBT

� �n

Tr �
X
i

Ĥi

 !n

½37�

Inserting complete sets of basis states between the different Ĥi factors then
leads to a similar representation of the partition function and a similar
world-line picture as in the world-line Monte Carlo method. Because there
is no Trotter decomposition involved, the method is free of time discretization
errors from the outset. Early applications of the SSE method employed local
updates, but more efficient cluster-type updates have been developed more
recently to overcome the critical slowing down. They include the operator-
loop update100 and the previously mentioned directed-loop algorithm.98

The source code for some of the algorithms discussed above is available
on the Internet as part of the ALPS (Algorithms and Libraries for Physics
Simulations) project.101 SSE programs for the Heisenberg model can also be
found on the homepage of A. Sandvik.102

Spin-12 Quantum Heisenberg Magnet

We will use our first example, the spin-12 quantum Heisenberg magnet, to
further illustrate the world-line quantum Monte Carlo method. The model we
present is the quantum XXZ model:

Ĥ ¼
X
hi;ji

½JxðŜxi Ŝxj þ Ŝyi Ŝ
y
j Þ þ JzŜ

z
i Ŝ

z
j � ¼

X
hi;ji

Jx
2
ðŜþi Ŝ�j þ Ŝ�i Ŝ

þ
j Þ þ JzŜ

z
i Ŝ

z
j

� �
½38�

where Ŝxi , Ŝ
y
i , Ŝ

z
i are the components of the quantum spin-12 operator at site i,

Ŝþi ; Ŝ
�
i are the associate raising and lowering operators, and the sum is over

all pairs of nearest neighbors. We now divide the Hamiltonian into pieces
such that the matrix elements of each piece can be evaluated easily. For
the XXZ Hamiltonian, a convenient choice is the so-called checkerboard
decomposition.103 We illustrate it by considering one space dimension (see
also Figure 10). We then write Ĥ ¼ Ĥ1 þ Ĥ2 where Ĥ1 contains the bonds

Figure 10 Checkerboard decomposition of the one-dimensional XXZ Hamiltonian.
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between sites i and iþ 1 for all even i while Ĥ2 contains those for all odd i. To
find a world-line representation we now insert this decomposition into the
Trotter formula [36]. Since Ĥ1 and Ĥ2 each consist of independent two-
site terms, the matrix elements in a Ŝz basis of e�eĤi factorize completely
into terms of the type

e�eJzSzi;nS
z
iþ1;n Szi;nS

z
iþ;n exp�e

Jx
2
ðŜþi Ŝ�iþ1 þ Ŝ�i Ŝ

þ
iþ1Þ

����
����Szi;nþ1S

z
iþ;nþ1

� 	
½39�

where n is the Trotter index. The remaining matrix elements are easily calcu-
lated. They read [with ĥ ¼ JxðŜþi Ŝ�iþ1 þ Ŝ�i Ŝ

þ
iþ1Þ=2) as

hþ þ je�eĥj þ þi ¼ h� � je�eĥj � �i ¼ 1

hþ � je�eĥj þ �i ¼ h� þ je�eĥj � þi ¼ cosh
eJx
2

� �

hþ � je�eĥj � þi ¼ h� þ je�eĥj þ �i ¼ � sinh
eJx
2

� � ½40�

All other matrix elements are zero. The only nonvanishing matrix elements are
those between states with the same total spin in the two Trotter slices, reflect-
ing the spin conservation of the Hamiltonian. Note that the off-diagonal
matrix elements are negative if Jx is antiferromagnetic ðJx > 0Þ. This prevents
interpreting the matrix elements as a statistical weight and is indicative of the
sign problem. However, for our one-dimensional chain, or more generally, on
any bipartite lattice, we can eliminate the sign problem by rotating every other
spin by 180�, which changes the sign of Jx.

The allowed spin configurations can be easily visualized in a ð1þ 1Þ-
dimensional space–time picture by drawing lines connecting space–time points
where the z component of the spin points up (see Figure 11). Because the num-
ber of such sites is conserved, the resulting ‘‘world lines’’ are continuous.
Moreover, the periodic boundary conditions implied by the trace require
that the world lines also connect continuously from the last imaginary time
slice to the first.

As the last ingredient for the Monte Carlo algorithm, we have to specify
the Monte Carlo moves within the restricted class of allowed spin configura-
tions. Single spin flips are not allowed, as they break the continuous world
lines. Instead, the simplest Monte Carlo moves consist of proposing a local
deformation of the world line (an example is shown in Figure 11) and accept-
ing or rejecting it with a suitable (Metropolis) probability that is determined
by the changes in the matrix elements involved. As discussed above,
algorithms based on such local moves suffer from critical slowing down
near a quantum critical point. In the more efficient loop algorithm,94–96 one
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builds large world-line loops and then changes the spin direction along the
entire loop.

Let us now focus on the special case of the isotropic ðJx ¼ Jz > 0Þ
Heisenberg quantum antiferromagnet on the square lattice (see also the
Hamiltonian of Eq. [19]). This model has played an important role in the his-
tory of high-temperature superconductivity studies because it describes the
magnetic properties of the copper oxide planes in the undoped parent cuprate
perovskites. An important early problem was establishing, beyond doubt, that
the ground state of the square lattice Heisenberg model is antiferromagneti-
cally (Néel) ordered and finding the value of the staggered magnetization.
Reger and Young104 performed world-line Monte Carlo simulations of the
square lattice Heisenberg antiferromagnet using a two-dimensional version
of the algorithm described above. Since the ground state of the Heisenberg
model for any finite system size is rotationally invariant, the expectation value
of the staggered magnetization vanishes. To determine the macroscopic value,
which assumes that the symmetry has been broken spontaneously, Reger and
Young104 computed both the (staggered) structure factor SðQÞ at the ordering
wave vector Q ¼ ðp; pÞ and the correlation function CL=2 between spins as far
apart as possible on the lattice. Both quantities reduce tom2

s =3, wherems is the
staggered magnetization in the thermodynamic limit. Figure 12 shows the
extrapolation of SðQÞ and CL=2 to infinite system size (the extrapolations
T ! 0 and e ! 0 have already been carried out). From the intercept with
the vertical axis, Reger and Young found ms ¼ 0:30� 0:02 establishing

Figure 11 World-line configuration for the XXZ Hamiltonian of [38]. The world lines
(thick lines) connect space–time points where the z component of the spin points up.
They can be either straight or cross the shaded squares, which showwhere the imaginary
time evolution operators e�eĤ1 and e�eĤ2 act. The dotted line shows the configuration
change after a local Monte Carlo update.
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clearly that the ground state is antiferromagnetically ordered. In later work,
the staggered magnetization value was further refined by simulations using a
continuous time loop algorithm,95 giving the value ms ¼ 0:3083� 0:0002.

Bilayer Heisenberg Quantum Antiferromagnet

While quantum fluctuations reduce the staggered magnetization of a
single-layer Heisenberg quantum antiferromagnet from its classical value of
1
2, they are not strong enough to induce a quantum phase transition. As
discussed in the section on Classical Monte Carlo Approaches, the strength
of the quantum fluctuations can be tuned if one considers a system of two
identical, antiferromagnetically coupled layers defined by the bilayer
Hamiltonian of Eq. [20]. If the interlayer coupling J? is large compared to
the in-plane coupling Jk, the corresponding spins in the two layers form
magnetically inert singlets. In contrast, for J? � Jk, the system orders antifer-
romagnetically. There is a quantum phase transition between these two phases
at some critical value of the ratio J?=Jk.

In the section on Classical Monte Carlo Approaches we used the
quantum-to-classical mapping to discuss the universal critical behavior of
this quantum phase transition and found it to belong to the three-dimensional
classical Heisenberg universality class. However, this approach does not give
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Figure 12 World-line Monte Carlo results for the square lattice Heisenberg antiferro-
magnet: Structure factor S and the long-distance limit C of the correlation function as
functions of the linear system size L. The intercept on the vertical axis can be used to find
the staggered magnetization. (Taken with permission from Ref. 104.)
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quantitative answers for nonuniversal observables such as the critical value of
the ratio J?=Jk, which can only be obtained by a true quantum algorithm.
Sandvik and Scalapino105 have performed quantum Monte Carlo simulations
of the bilayer Heisenberg quantum antiferromagnet employing the stochastic
series expansion method. By analyzing the staggered structure factor and the
staggered susceptibility, they found a critical ratio of ðJ?=JkÞc ¼ 2:51� 0:02
(see the vertical axis in Figure 6). More recently, Wang and co-workers106

performed a high-precision study of the same model using the stochastic series
expansion algorithm with operator loop update.100 Using the Binder cumu-
lant, the spin stiffness and the uniform susceptibility, they obtained a value
of ðJ?=JkÞc ¼ 2:5220� 0:0001 for the critical coupling. In addition, they
computed the correlation length exponent and found n ¼ 0:7106� 0:0009,
which agrees within error bars with the best value of the three-dimensional
classical Heisenberg exponent62 (as expected from the quantum-to-classical
mapping).

Diluted Heisenberg Magnets

In the example above, we saw that increased quantum fluctuations (as
induced by the interlayer coupling J? in the bilayer system) can cause a quan-
tum phase transition in the two-dimensional Heisenberg quantum antiferro-
magnet. Another way to increase the fluctuations is by dilution, i.e., by
randomly removing spins from the lattice. The phases and phase transitions
of diluted Heisenberg quantum antiferromagnets have been studied exten-
sively during the last few years and many interesting features have emerged.

Consider the site-diluted square lattice Heisenberg model given by the
Hamiltonian

Ĥ ¼ J
X
hi;ji

mimjŜi	Ŝj ½41�

where the mi are independent random variables that can take the values 0 and 1
with probability p and 1� p, respectively. As discussed above, the ground
state of the clean system ðp ¼ 0Þ is aniferromagnetically ordered. It is clear
that the tendency toward magnetism decreases with increasing impurity
concentration p, but the location and nature of the phase transition toward
a nonmagnetic ground state remained controversial for a long time. The
most basic question to ask is whether the magnetic order vanishes before
the impurity concentration reaches the percolation threshold of the lattice
pp � 0:4072 (the transition would then be caused by quantum fluctuations)
or whether it survives up to pp (in which case the transition would be of per-
colation type). Magnetic long-range order is impossible above pp because the
lattice is decomposed into disconnected finite-size clusters. Early studies, both
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analytical and numerical, gave values between 0.07 and 0.35 for the critical
impurity concentration, suggesting a transition driven by quantum fluctua-
tions.

Sandvik107 performed quantum Monte Carlo simulations of the
Heisenberg Hamiltonian on the critical infinite percolation cluster ðp ¼ ppÞ
using the stochastic series expansion method with operator loop update.100

He computed the staggered structure factor and from it the staggered
ground-state magnetization of the cluster. Figure 13 shows the extrapolation
of this quantity to infinite system size. The data demonstrate that the ground
state is magnetically ordered, with a sizable staggered magnetization of about
ms ¼ 0:150 (roughly half the value of the undiluted system). This means that
even right at the percolation threshold pp, the quantum fluctuations are not
strong enough to destroy the magnetic long-range order. The phase transition
to a paramagnetic ground state occurs right at pp. It is driven by the geometry
of the underlying lattice and is thus of percolation type. More recently, Wang
and Sandvik108 studied the dynamical quantum critical behavior of this transi-
tion (the static behavior is given by classical percolation). They found a
dynamical critical exponent of z � 3:7, which is much larger than the value
z ¼ Df ¼ 91

48 found for the dimer diluted bilayer72,73 (see discussion in the
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Figure 13 Squared staggered ground-state magnetization of the Heisenberg model on a
site-diluted lattice at p ¼ pp. The two curves correspond to two different ways of
constructing the percolation clusters in the simulation. (Solid circles) Largest cluster on
L� L lattices. (Open Circles) Clusters with a fixed number Nc sites. (Taken with
permission from Ref. 107.)
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section on Classical Monte Carlo Approaches). This difference is most likely
caused by unpaired spins (uncompensated Berry phases) that exist in the
site-diluted single layer (but not in the dimer-diluted bilayer) and prevent
the quantum-to-classical mapping onto a classical Heisenberg model.

Because the ground state of the diluted Heisenberg model remains long-
range ordered up to the percolation threshold, one has to increase the quantum
fluctuations to induce a quantum phase transition for p < pp. One way to
achieve this is by going to the dimer-diluted bilayer, as in the clean system,
and tuning the fluctuations with the interlayer coupling J?. (The quantum
phase transitions in this system were discussed in the section on Classical
Monte Carlo Approaches.) Yu et al.109 found a different way of increasing
the quantum fluctuations. They suggested introducing an inhomogeneous
bond dilution, which is a scenario where not all bonds (interactions) are
removed with the same probability. If the occupation probabilities for
different types of bonds are chosen in such a way that the system preferably
forms dimers and ladders, a nontrivial quantum phase transition to a para-
magnetic ground state can be achieved while the underlying lattice is still in
the percolating phase.

Superfluid–Insulator Transition in an Optical Lattice

Having considered several examples of magnetic quantum phase
transitions, we now turn to the superfluid–insulator transition in many-boson
systems. In the section on Classical Monte Carlo Approaches we discussed
how the universal critical behavior of this transition can be determined
by mapping the Bose–Hubbard model, Eq. [32], onto the classical ðd þ 1Þ-
dimensional link current Hamiltonian, Eq. [35], which can then be simulated
using classical Monte Carlo methods.

It is now possible to observe this transition experimentally in ultracold
atomic gases. For instance, in the experiments by Greiner et al.,110 a gas of
87Rb atoms was trapped in a simple cubic optical lattice potential. This system
is well described by the Bose–Hubbard Hamiltonian, Eq. [32], with an addi-
tional overall harmonic confining potential, and, the particle density as well as
the interparticle interactions can be controlled easily. To study the properties
of the gas in the experiment, the trapping and lattice potential were switched
off, and absorption images of the freely evolving atomic cloud were taken to
give direct information about the single-particle momentum distribution.

To provide quantitative predictions about how to detect the superfluid–
insulator transition in these experiments, Kashurnikov, Prokof’ev and
Svistunov111 performed quantum Monte Carlo simulations of the single-
particle density matrix rij ¼ h�̂y

i �̂ji. They used the Bose–Hubbard model
with harmonic confining potential and carried out world-line Monte Carlo
simulations with the continuous-time Worm algorithm.97 The diagonal
elements of the density matrix provide the real-space particle density, and
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the momentum distribution can be obtained by Fourier transforming rij. The
real-space density of several example systems is shown in Figure 14. These
plots show the development with increasing density of a shell-type structure
with insulator phases visible as plateaus at integer local density. Specifically,
system (a) is in the superfluid phase. If the Hubbard interaction U is raised
to about the critical value of the superfluid–insulator transition [system (b)],
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Figure 14 Superfluid–insulator transition in an optical lattice: Particle density (per
lattice site) as a function of distance from the trap center for various parameters and
filling factors. (Taken with permission from Ref. 111.)
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an insulating domain appears at the center of the trap (if the density there is
close to commensurate). Increasing U further reduces the correlation length
[system (c)] because the system moves away from the transition. Systems
(d)–(f) show how the second shell forms when the density is increased.

The corresponding momentum distributions are shown in Figure 15. The
superfluid sample (a) shows a single narrow peak at zero momentum.
(The broadening of the d-function contribution of the condensate expected
in a superfluid arises from the harmonic confining potential.) When a domain
of the insulating phase appears, the momentum distribution develops a
pronounced fine structure [clearly visible in systems (b) and (c)]. System (e)
is similar to (a) except for the large momentum tail due to the insulating shell.
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Figure 15 Superfluid–insulator transition in an optical lattice: Single-particle momen-
tum distribution. Panels (a)–(f) correspond to the systems shown in Figure 14. (Taken
with permission from Ref. 111.)
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System (f) again displays the fine structure associate with the appearance of an
insulating domain in the second shell. These quantitative results can be used to
identify the superfluid–insulator transition in experiments.

Fermions

So far, we have discussed quantum Monte Carlo approaches to quantum
phase transitions in boson and spin systems. In these systems, the statistical
weight in the Monte Carlo procedure is generally positive definite, so there
is no sign problem. Note that for spin systems, this is only true if there is no
frustration. Frustrated spin systems in general do have a sign problem.

Unfortunately, the sign problem generally exists for fermions because it
is rooted in the antisymmetry of the many-fermion wave function. The
problem can be understood by recognizing that boson and spin operators on
different lattice sites commute. The signs of the matrix elements appearing in a
quantum Monte Carlo scheme are thus determined locally. Contrarily, fer-
mion operators on different lattice sites anticommute, thus leading to extra
nonlocal minus signs. In fact, it was shown that a generic solution to the
sign problem is almost certainly impossible to obtain by proving that the
sign problem belongs to the NP (nondeterministic polynomial) hard computa-
tional complexity class.112 This means that a generic solution of the sign
problem would also solve all other NP hard problems in polynomial time.

One way of circumventing (if not solving) the sign problem is to force the
nodes of the many-fermion wave function to coincide with that of a trial wave
function. The resulting fixed-node quantum Monte Carlo method88,113 has
been successful in determining with high precision the ground-state properties
of real materials. It is clear that the accuracy of the method depends crucially
on the quality of the trial wave function. This implies that the fixed-node
Monte Carlo method will work well if the ground-state properties are under-
stood at least qualitatively. However, quantum critical states are, in general,
very far from any simple reference state, which means that simple trial wave
functions cannot be constructed easily. Fixed-node methods are therefore not
well suited for studying the properties of fermionic systems close to quantum
phase transitions (although they may be useful for locating the transition in
parameter space).

While a general solution of the fermionic sign problem is likely
impossible to find, several nontrivial fermionic systems exist for which the
sign problem can be avoided. Hirsch et al.90 developed a world-line Monte
Carlo simulation scheme for fermions that, in strictly one dimension, avoids
the sign problem. (Generalizations to higher dimensions still suffer from the
sign problem.) A more general quantum Monte Carlo approach to fermions
is the so-called determinantal Monte Carlo method.114 Its basic idea is to
decouple the fermion–fermion interactions bymeans of aHubbard–Stratonovich
transformation,115 leading to a system of noninteracting fermions coupled to a
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bosonic field. The fermions can now be integrated out in closed form, and the
partition function is given as the sum over configurations of the bosonic field
with the weight being a fermionic determinant. This sum can be performed
by Monte Carlo sampling. In general, the fermionic determinant will have a
fluctuating sign, again reflecting the fermionic sign problem. In some special
cases, however, the determinant can be shown to be positive definite. For
instance, the determinant is positive definite for the two-dimensional repulsive
Hubbard model on bipartite lattices at exactly half filling (because of particle-
hole symmetry).116 For the attractive Hubbard model, sign-problem free algo-
rithms can even be constructed for all filling factors, and such algorithms have
been used to study the superconducting transition in two and three spatial
dimensions. In two dimensions, the transition is classified as being of the
Kosterlitz–Thouless type.117–119 In three dimensions, the model displays a con-
ventional second-order transition, and an interesting crossover takes place
between the Bardeen–Cooper–Schrieffer (BCS) and the Bose–Einstein condensa-
tion (BEC) scenarios.120 Another attack on the sign problem is by the so-
called meron-cluster algorithm that can be applied to certain fermionic
Hamiltonians.121 It has been used, for example, to study the effects of disorder
superconductivity in fermion models with attractive interactions.122

Despite this progress, the utility of quantumMonte Carlo simulations for
studying quantum phase transitions in fermionic systems is still rather limited.
Many of the most interesting problems, such as the ferromagnetic and antifer-
romagnetic quantum phase transitions9,36,123 in transition-metal compounds
and heavy-fermion materials, are still too complex to be attacked directly by
microscopic quantum Monte Carlo methods.

OTHER METHODS AND TECHNIQUES

In this section we discuss briefly—without any pretense of completeness—
further computational approaches to quantum phase transitions. The
conceptually simplest method for solving a quantum many-particle problem is
(numerically) exact diagonalization. However, as already discussed in the
section on Quantum Phase Transitions: Computational Challenges, the
exponential increase of the Hilbert space dimension with the number of degrees
of freedom severely limits the possible system sizes. One can rarely simulate
more than a few dozen particles even for simple lattice systems. Systems of
this size are too small to study quantum phase transitions (which are a property
of the thermodynamic limit of infinite system size) with the exception of,
perhaps, certain simple one-dimensional systems. Even in one dimension,
however, more powerful methods have largely superceded exact diagonaliza-
tion.

One of these techniques is the density matrix renormalization group
(DMRG) proposed by White in 1992.124 In this method, one builds the
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eigenstates of a large many-particle system iteratively from the low-energy
states of smaller blocks, using the density matrix to decide which states to
keep and which to discard. In one space dimension, this procedure works
very well and gives accuracies comparable to exact diagonalization for
much larger system sizes. Since its introduction, the DMRG has quickly
become a method of choice for many one-dimensional quantum many-particle
problems including various spin chains and spin ladders with and without
frustration. Electronic systems such as Hubbard chains and Hubbard ladders
can be studied efficiently as well because the DMRG is free of the fermionic
sign problem. An extensive review of the DMRG method and its applications
can be found in Ref. 125.

In the context of our interest in quantum phase transitions, however, we
note that the accuracy of the DMRG method suffers greatly in the vicinity of
quantum critical points. This was shown explicitly in two studies of the one-
dimensional Ising model in a transverse field, as given by the Hamiltonian of
Eq. [14].126,127 Legaza and Fath127 studied chains of up to 300 sites and found
that the relative error of the ground-state energy at the quantum critical point
is several orders of magnitude larger than off criticality. (This is caused by the
fact that the quantum critical system is gapless; it thus has many low-energy
excitations that must be retained in the procedure.) Andersson, Boman and
Östlund128 studied the behavior of the correlation function in a DMRG study
of gapless free fermions (or equivalently, a spin-12 XX model). They found that
the DMRG result reproduces the correct power law at small distances, but it
always drops exponentially at large distances. The fake correlation length
grows as M1:3 with the number of states M retained in each DMRG step.
When studying a critical point, this fake correlation length should be larger
than the physical correlation length, which increases greatly the numerical
effort. While the standard DMRG method does not work very well in dimen-
sions larger than one, an interesting generalization129,130 has arisen recently in
the quantum information community. It is based on so-called projected
entangled-pair states (PEPS). First applications to quantum many-particle
systems look promising (e.g., Ref. 131 reports a study of bosons in a two-
dimensional optical lattice), but the true power of the method has not been
explored fully.

Another useful technique for studying one-dimensional spin systems
involves mapping the system onto noninteracting fermions. This method
was developed by Lieb, Schultz and Mattis76 in the 1960’s and was applied
to the nonrandom transverse-field Ising model of Eq. [14] by Katsura132 and
Pfeuty.133 The resulting fermionic Hamiltonian can be solved analytically by
Fourier transformation in the nonrandom case. Young and Rieger74,75 applied
the same method to the random transverse-field Ising chain, Eq. [30]. The
mapping onto fermions now results in a disordered system; the fermionic
Hamiltonian must therefore be diagonalized numerically. However, since
one is simulating a noninteracting system, the numerical effort is still much
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smaller than with other methods. Using this approach, Young and Rieger con-
firmed numerically the analytical result22,23 that the quantum critical point in
the random transverse-field Ising chain is of exotic infinite-randomness type.

The investigation of quantum phase transitions in disordered systems has
benefited in recent years from the strong-disorder renormalization group that
was introduced originally by Ma, Dasgupta, and Hu.24 The basic idea of their
method is to successively integrate out local high-energy degrees of freedom in
perturbation theory. The quality of this method improves with increasing dis-
order strength, in contrast to many other techniques; and it becomes asympto-
tically exact at infinite-randomness critical points (where the effective disorder
strength diverges). This approach has been applied to a variety of classical and
quantum disordered systems, ranging from quantum spin chains to chemical
reaction-diffusion models with disorder. A recent review can be found in
Ref. 134. In one space dimension, the strong-disorder renormalization group
can often be solved analytically in closed form, as is the case for the random
transverse-field Ising chain22,23 or the random S ¼ 1

2 antiferromagnetic
Heisenberg chain as examples.24,135 In higher dimensions, or for more compli-
cated Hamiltonians, the method can only be implemented numerically. For
instance, Montrunich et al.19 studied the quantum phase transition in the
two-dimensional random transverse-field Ising model. In analogy with the
one-dimensional case,22,23 they found an infinite randomness critical point,
but the critical exponents take different values. Schehr and Rieger136 studied
the interplay between dissipation, quantum fluctuations, and disorder in the
random transverse-field Ising chain coupled to dissipative baths. In agreement
with theoretical predictions,30,31 they found that the dissipation freezes the
quantum dynamics of large, locally ordered clusters, which then dominate
the low-energy behavior. This leads to a smearing of the quantum phase tran-
sition.30

Let us also mention a class of methods that are not numerically exact but
have greatly fostered our understanding of quantum many-particle systems:
the dynamical mean-field theory (DMFT). Its development started with the
pioneering work of Metzner and Vollhardt137 on the Hubbard model in infi-
nite dimensions. The basic idea behind this approach is a natural generaliza-
tion of the classical mean-field theories to quantum problems: The quantum
many-particle Hamiltonian is reduced to a quantum impurity problem
coupled to one or several self-consistent baths.138 This impurity problem is
then solved self-consistently, either by approximate analytical methods or by
numerical methods. In contrast to classical mean-field theories such as
Hartree–Fock, the DMFT contains the full local quantum dynamics. (This
means that the DMFT suppresses spatial fluctuations but keeps the local imag-
inary time fluctuations.) DMFT methods have now been applied to a wide
variety of problems ranging from model Hamiltonians of strongly correlated
electrons to complex materials. For instance, the DMFT was instrumental in
understanding the Mott metal–insulator phase transition in the Hubbard
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model; and, more recently, it was combined with realistic band structure
calculations to investigate many-particle effects and strong correlations in
real materials. Reviews of these developments can be found in Refs. 139
and 140.

Let us finally point out that we have focused on bulk quantum phase
transitions. Impurity quantum phase transitions42 require a separate discus-
sion that is beyond the scope of this chapter (Note, however, that within the
DMFT method a bulk quantum many-particle system is mapped onto a self-
consistent quantum impurity model.) Some of the methods discussed here such
as quantum Monte Carlo can be adapted to impurity problems. Moreover,
there are powerful special methods dedicated to impurity problems, most
notably Wilson’s numerical renormalization group.141–143

SUMMARY AND CONCLUSIONS

We have discussed quantum phase transitions in this chapter. These are
transitions that occur at zero temperature when a nonthermal external para-
meter such as pressure, magnetic field, or chemical composition is changed.
They are driven by quantum fluctuations, which are a consequence of Heisen-
berg’s uncertainty principle. At first glance, it might appear that investigating
such special points in the phase diagram at the absolute zero of temperature is
purely of academic interest, however, it has become clear in recent years that
the presence of quantum phase transitions has profound consequences for the
experimental behavior of many condensed-matter systems. In fact, quantum
phase transitions have emerged as a new ordering principle for low-energy
phenomena that allows us to explore regions of the phase diagram where
more conventional pictures, based on small perturbations about simple
reference states, are not sufficient.

In the first part of the tutorial, we provided a concise introduction to the
theory of quantum phase transitions. We contrasted the contributions of ther-
mal and quantum fluctuations, and we explained how their interplay leads to a
very rich structure of the phase diagram in the vicinity of a quantum phase
transition. It turns out that the Landau–Ginzburg–Wilson (LGW) approach,
which formed the basis for most modern phase transition theories, can be
generalized to quantum phase transitions by including the imaginary time as
an additional coordinate of the system. This leads to the idea of the quantum-
to-classical mapping, which relates a quantum phase transition in d-space
dimensions to a classical one in d þ 1 dimensions. We also discussed briefly
situations in which the LGW order parameter approach can break down, a
topic that has attracted considerable interest lately.

The second part of this chapter was devoted to computational
approaches to quantum phase transitions with the emphasis being on Monte
Carlo methods. If one is mainly interested in finding the universal critical
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behavior (i.e., the overall scaling scenario, the critical exponents, and the
critical amplitude ratios), using a purely classical simulation scheme based
on quantum-to-classical mapping is often most efficient. We illustrated this
approach for the transverse-field Ising model with and without dissipation,
for the bilayer Heisenberg antiferromagnet, and for dirty bosons in two
dimensions. If one is interested in nonuniversal questions such as quantitative
results for critical coupling constants or observables, a true quantum
algorithm must be used. We have reviewed several quantum Monte Carlo
approaches to quantum spin and boson Hamiltonians and discussed their
results for the quantum phase transitions in these systems. We have also
considered fermionic systems and the extra complications brought about by
the generic appearance of the notorious sign problem.

It is probably fair to say that Monte Carlo simulations of model systems
that are free of the sign problem (bosons, spin systems without frustration, and
some special fermionic systems) have become so powerful that the properties
of their quantum phase transitions can be determined quantitatively with high
precision (see, e.g., the accuracy of some of the exponent values quoted in the
preceding sections). For many frustrated spin systems, in contrast, the results
are limited to a qualitative level, and for quantum phase transitions in generic
fermionic systems (with sign problem), direct computational attacks are still of
limited utility.
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63. E. Luijten and H. W. J. Blöte, Int. J. Mod. Phys. C, 6, 359 (1995). Monte Carlo Method for
Spin Models with Long-Range Interactions.

64. P. Werner, K. Völker, M. Troyer, and S. Chakravarty, Phys. Rev. Lett., 94, 047201 (2005).
Phase Diagram and Critical Exponents of a Dissipative Ising Spin Chain in a Transverse
Magnetic Field.

65. M. Guo, R. N. Bhatt, and D. A. Huse, Phys. Rev. Lett., 72, 4137 (1994). Quantum Critical
Behavior of a Three-Dimensional Ising Spin Glass in a Transverse Magnetic Field.

66. H. Rieger and A. P. Young, Phys. Rev. Lett., 72, 4141 (1994). Zero-Temperature Quantum
Phase Transition of a Two-Dimensional Ising Spin Glass.

67. S. Pankov, S. Florens, A. Georges, G. Kotliar, and S. Sachdev,Phys. Rev. B, 69, 054426 (2004).
Non-Fermi-Liquid Behavior from Two-Dimensional Antiferromagnetic Fluctuations: A
Renormalization-Group and Large-N Analysis.

68. S. Sachdev, P. Werner, and M. Troyer, Phys. Rev. Lett., 92, 237003 (1992). Universal
Conductance of Nanowires near the Superconductor-Metal Quantum Transition.

69. A. Sandvik, Phys. Rev. Lett., 89, 177201 (2002). Multicritical Point in a Diluted Bilayer
Heisenberg Quantum Antiferromagnet.

70. O. P. Vajk and M. Greven, Phys. Rev. Lett., 89, 177202 (2002). Quantum versus Geometric
Disorder in a Two-Dimensional Heisenberg Antiferromagnet.

71. R. Sknepnek, T. Vojta, and M. Vojta, Phys. Rev. Lett., 93, 097201 (2004). Exotic versus
Conventional Scaling and Universality in a Disordered Bilayer Quantum Heisenberg Anti-
ferromagnet.

72. T. Vojta and R. Sknepnek, Phys. Rev. B, 74, 094415 (2006). Quantum Phase Transitions of
the Diluted O(3) Rotor Model.

73. T. Vojta and J. Schmalian, Phys. Rev. Lett., 95, 237206 (2005). Percolation Quantum Phase
Transitions in Diluted Magnets.

74. A. P. Young and H. Rieger, Phys. Rev. B, 53, 8486 (1996). Numerical Study of the Random
Transverse-Field Ising Spin Chain.

75. A. P. Young,Phys. Rev. B, 56, 11691 (1997). Finite-Temperature andDynamical Properties of
the Random Transverse-Field Ising Spin Chain.

76. E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (N.Y), 16, 407 (1961). Two Soluble Models of
an Antiferromagnetic Chain.

77. B.M.McCoy and T. T.Wu, Phys. Rev. Lett., 21, 549 (1968). Random Impurities as the Cause
of Smooth Specific Heats near the Critical Temperature.

78. B. M.McCoy and T. T.Wu, Phys. Rev., 176, 631 (1968). Theory of a Two-Dimensional Ising
Model with Random Impurities. I. Thermodynamics.

79. C. Pich, A. P. Young, H. Rieger, and N. Kawashima, Phys. Rev. Lett., 81, 5916 (1998).
Critical Behavior and Griffiths–McCoy Singularities in the Two-Dimensional Random
Quantum Ising Ferromagnet.

218 Computing Quantum Phase Transitions



80. M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Phys. Rev. B, 40, 546 (1989).
Boson Localization and the Superfluid-Insulator Transition.

81. M. Wallin, E. S. Sorensen, S. M. Girvin, and A. P. Young, Phys. Rev. B, 49, 12115 (1994).
Superconductor–Insulator Transition in Two-Dimensional Dirty Boson Systems.

82. M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev. B, 63,
214503 (2001). Critical Behavior of the Three-Dimensional XY Universality Class.

83. J. Villain, J. Phys. (Paris), 36, 581 (1975). Theory of One- and Two-Dimensional Magnets
with an Easy Magnetization Plane. II. The Planar, Classical, Two-Dimensional Magnet.

84. F. Alet and E. S. Sorensen, Phys. Rev. E, 68, 026702 (2003). Directed Geometrical Worm
Algorithm Applied to the Quantum Rotor Model.

85. W. L. McMillan, Phys. Rev., 138, A442 (1965). Ground State of Liquid 4He.

86. D. Ceperley, G. V. Chester, and M. H. Kalos, Phys. Rev. B, 16, 3081 (1977). Monte Carlo
Simulation of a Many-Fermion Study.

87. R. C. Grimm and R. G. Storer, J. Comput. Phys., 7, 134 (1971). Monte Carlo Solution of
Schrödinger’s Equation.

88. J. B. Anderson, J. Chem. Phys., 63, 1499 (1975). A Random-Walk Simulation of the
Schrödinger Equation: Hþ

3 .

89. M. Suzuki, Commun. Math. Phys., 51, 183 (1976). Generalized Trotter’s Formula and
Systematic Approximants of Exponential Operators and Inner Derivations with Applica-
tions to Many-Body Problems.

90. J. E. Hirsch, R. L. Sugar, D. J. Scalapino, and R. Blankenbecler, Phys. Rev. B, 26, 5033 (1982).
Monte Carlo Simulations of One-Dimensional Fermion Systems.

91. A. W. Sandvik and J. Kurkijärvi, Phys. Rev. B, 43, 5950 (1991). Quantum Monte-Carlo
Method for Spin Systems.

92. A. W. Sandvik, J. Phys. A, 25, 3667 (1992). A Generalization of Handscomb’s Quantum
Monte-Carlo Scheme—Application to the 1D Hubbard Model.

93. N. V. Prokofev, B. V. Svistunov, and I. S. Tupitsyn, JETP Lett., 64, 911 (1996). Exact
Quantum Monte Carlo Process for the Statistics of Discrete Systems.

94. H. G. Evertz, G. Lana, andM.Marcu, Phys. Rev. Lett., 70, 875 (1993). Cluster Algorithm for
Vertex Models.

95. B. B. Beard and U. J. Wiese, Phys. Rev. Lett., 77, 5130 (1996). Simulations of Discrete
Quantum Systems in Continuous Euclidean Time.

96. H. G. Evertz, Adv. Phys., 52, 1 (2003). The Loop Algorithm.

97. N. V. Prokof’ev, B. V. Svistunov, and I. S. Tupitsyn, JETP, 87, 310 (1998). Exact, Complete,
and Universal Continuous-Time Worldline Monte Carlo Approach to the Statistics of
Discrete Quantum Systems.

98. O. F. Syljuasen and A. W. Sandvik, Phys. Rev. E, 66, 046701 (2002). QuantumMonte Carlo
with Directed Loops.

99. D. Handscomb, Proc. Cambridge Philos. Soc., 58, 594 (1962). The Monte Carlo Method in
Quantum Statistical Mechanics.

100. A. W. Sandvik, Phys. Rev. B, 59, 14157(R) (1999). Stochastic Series Expansion Method with
Operator-Loop Update.

101. ALPS Project (Algorithms and Libraries for Physics Simulations). Available: http://alps.
comp-phys.org.

102. A. W. Sandvik, Available: http://physics.bu.edu/�sandvik.

103. M. Barma and B. S. Shastry, Phys. Rev. B, 18, 3351 (1978). Classical Equivalents of One-
Dimensional Quantum-Mechanical Systems.

104. J. D. Reger and A. P. Young, Phys. Rev. B, 37, 5978 (1988). Monte Carlo Simulations of the
Spin-1/2 Heisenberg Antiferromagnet on a Square Lattice.

References 219



105. A. W. Sandvik and D. J. Scalapino, Phys. Rev. Lett., 72, 2777 (1994). Order-Disorder
Transition in a Two-Layer Quantum Antiferromagnet.

106. L.Wang, K. S. D. Beach, and A.W. Sandvik, Phys. Rev. B, 73, 014431 (2006). High-Precision
Finite-Size Scaling Analysis of the Quantum Critical Point of S ¼ 1=2 Heisenberg Anti-
ferromagnetic Bilayers.

107. A. W. Sandvik, Phys. Rev. B, 66, 024418 (2002). Classical Percolation Transition in the
Diluted Two-Dimensional S ¼ 1=2 Heisenberg Antiferromagnet.

108. L. Wang and A. W. Sandvik, Phys. Rev. Lett., 97, 117204 (2006). Low-Energy Dynamics of
the Two-Dimensional S ¼ 1=2 Heisenberg Antiferromagnet on Percolating Clusters.

109. R. Yu, T. Roscilde, and S. Haas, Phys. Rev. Lett., 94, 197204 (2005). Quantum Percolation in
Two-Dimensional Antiferromagnets.

110. M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature, 415, 39 (2002).
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Thomas L. Beck

Departments of Chemistry and Physics, University of Cincinnati,
Cincinnati, Ohio

INTRODUCTION

Real-space methods are iterative numerical techniques for solving partial
differential equations on grids in coordinate space. The physical responses due to
many chemical phenomena are restricted to domains that are relatively local in
space, and real-space methods are well suited to exploit that physical locality.
In real-space methods, the iterative updates of the desired functions require
information only in a small neighborhood near the updated point. The draw-
back with this approach is that, if the iterations are performed only on a single
(finest) grid, the solver tends to stall due to the long-wavelength components of
the errors. Multigrid methods overcome this stalling by utilizing information
from a wide range of length scales. With the incorporation of multiscale ideas,
solvers can often be designed for which the cost scales linearly with system size.
In the last 15 years, real-space and multigrid methods have been developed for a
wide range of problems in computational chemistry. Those problems include
electronic structure, Poisson and Poisson–Boltzmann equations, and transport
models. This reviewwill first give a tutorial introduction to real-space andmulti-
grid methods and then present some case studies illustrating how these techni-
ques have been applied in chemistry, nanomaterials, and biology.
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Physical Systems: Why Do We Need Multiscale Methods?

Modern computational chemistry research frequently examines problems
that require treating multiple-length and time scales. It is instructive to consider
first two example systems that exemplify the need to develop methods for hand-
ling multiple scales. These two examples come from recent research projects in
the author’s group; they are limited in scope but representative of challenging
computational problems in biophysics and nanoscience.

Consider first ion channels and transporters, which are large proteins
embedded in biological membranes.1–3 Their function is to control the flux
of ions across the membrane selectively. In channels,4 ions move based on dif-
fusion driven by an electrochemical potential gradient. The transport down
the gradient is typically controlled by a gating mechanism, which in turn
requires conformational transitions in the protein. The pore is often extremely
small, on the order of the size of the ions, and very specific physical/chemical
interactions lead to selectivity. Transporters are also membrane proteins, but
they can move one ion uphill in electrochemical potential if a gradient
in another ion is maintained. [That gradient in the second ion is created
by a separate membrane pump that utilizes chemical energy in the form of
adenosine 50-triphosphate (ATP).] The ions or molecules moved by a transpor-
ter can either propagate in the same direction (co-transport) or in the opposite
direction (exchange).

One interesting and recent example of channel and transporter behavior
is the chloride channel family;5,6 the three-dimensional X-ray structure (see
Figure 1) of a bacterial homolog was discovered,7,8 leading to extensive mod-
eling efforts over the last several years.9–18 (Several discussions of computa-
tional methods for ion channels have appeared recently; see Refs. 4, 19–27
for some examples.) The bacterial chloride channel homolog reveals a compli-
cated homodimeric architecture. Each monomer contains a large number of a
helices that possess a wide range of tilt angles relative to the membrane nor-
mal. The arrangement of those helices leads to an hourglass structure with two
aqueous vestibules separated by a narrow filter region. The N-terminal
domains of the helices tend to point toward the selectivity filter, creating a
large positive electrostatic potential in the central part of the pore. Several
small anions can move through the pore—these anion channels and transpor-
ters are less selective than the cation (Kþ and Naþ) counterparts,28 probably
due to the fact that chloride ions are the dominant anions in biological fluids.29

Recently, it has been discovered that the bacterial chloride channel homo-
log is not a channel as previously thought but is rather a transporter that
exchanges two chloride ions for one proton.30–32 The exchangemechanism leads
toanet chargedisplacementof three! Following this surprisingfinding, twomem-
bers of the eukaryotic chloride channel family (ClC-4 and ClC-5) were also
shown to be chloride/proton antiporters,33,34 and plants utilize related transpor-
ters for nitrogen uptake.35 So the question arises, how does this protein
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‘‘magically’’ perform this ion exchange?Both experiments31,36 andmodeling stu-
dies17 have begun to address this issue.

Several aspects of this membrane protein system require the use of multi-
scale modeling. Anion transport through the pore definitely requires a molecu-
lar-level treatment because the pore in the selectivity filter is close in size to
that of a single chloride ion, and protein fluctuations clearly play a role during
ion motion.20 Electrostatic forces are crucial in anion selection, and the corre-
sponding interaction energies are very large. If a single ion is placed at a cen-
tral binding site in the pore, the free energy relative to that in water is tens of
kT energy units lower; a second anion is required to enter the pore to desta-
bilize the first anion through repulsive interactions. Experiments indicate such
multiion transport.37 One motivation for implementing a multiscale approach,
therefore, is that while the local interactions in the pore must be handled at the
molecular level, parts of the protein and the membrane far from the pore may
be treated in a time-saving, coarse-grained fashion. A second motivation is
simply that we need efficient solutions of the Poisson equation in determining
the electrostatic interactions for a given configuration. A third motivating
point concerns the gating mechanism: A glutamate (weak acid) residue is stra-
tegically situated at the extracellular entrance to the filter, and this gate

Figure 1 Bacterial chloride channel homolog (PDB code 1KPL). This transporter exists
as a homodimer—the plane separating the two dimers is oriented vertically in the middle
of this figure. The extracellular side is on top. The viewing direction is from the side, and
the two shaded areas are the rough locations of the boundaries of the membrane. The
two darkly shaded groups in each of the monomers are weak acid groups (glutamates,
E148 on top and E203 on the bottom), which are important for proton transport
through the structure. The E148 group also acts as a gate for chloride ion transport.
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apparently swings open upon protonation.8,17 The time scales for the opening
and closing events can occur on the order of microseconds, and these times are
beyond the capabilities of existing molecular dynamics simulations (more than
100,000 atoms must be simulated for a full atomic-level simulation that
includes the membrane).

In addition to these justifications for multiscale modeling, a quantum
treatment may be needed in at least two places for this type of problem. First,
the transporter exchanges a proton for two chloride ions. How does the pro-
ton hop through what appears to be a largely hydrophobic protein domain?
Quantum mechanics may be required here to account for the nuclear tunneling
of the proton through potential barriers and for treating the specific interac-
tions of that proton with chemical groups along its pathway.38 Second, exten-
sive work has shown that anion solvation phenomena tend to be more
complex than for their cation counterparts.39–42 The well-known Hofmeister
series for specific ion effects exhibits remarkable behavior for a wide range of
physical properties in ionic solutions,39 and these behaviors are not explained
by simple ionic solution statistical mechanical models. Anion polarizability is
typically omitted or modeled crudely in ionic solutions, but recent efforts indi-
cate a range of Hofmeister effects can be rationalized when the polarizability is
properly included. So, we should include quantum effects for proton motion
and anion polarizability even if these ions are embedded in such a large system.

A second model system that shows the need for implementing multiscale
modeling strategies concerns electron transport through molecular electronic
devices. Chemically synthesized molecular transistors assembled reliably
onto electrode substrates could lead to large advances in computing capabil-
ities, and to better understand electron transport in such devices, several
groups have recently been modeling current–voltage behavior for molecules
sandwiched between electrodes (Figure 2).43–48 One such example is the ben-
zene dithiol molecule attached chemically to two gold electrodes. This system

Au Molecule

Electrons

Au

Figure 2 Schematic illustrating electron flow through a molecule sandwiched between
two gold electrodes. A gradient in the electron electrochemical potential creates the
driving force for the transport. The quantum states of the molecule and the coupling of
the molecule to the two electrodes determine the conductance properties.
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has been examined experimentally49 and has provided a benchmark model for
computational studies. Since we are interested in electron propagation through
the molecule, clearly a quantum treatment is necessary. (See Chapter 3 in this
volume by Elliott, Furche, and Burke50 on using time-dependent density func-
tional theory for exactly this system.)

Electron transport through nanoscale devices is often handled at the
Landauer theory level,51 where the electrons are assumed to move coherently
from one electrode to the other without inelastic collisions. The current can
be determined by computing the transmission function TðE;VÞ, which
depends on energy for a given applied voltage. The functional form of
TðE;VÞ arises from the quantum states of the molecule that is coupled
to the two electrodes. The most general computational methods used to com-
pute those states have employed Green’s function techniques to obtain the
current self-consistently.43–48,51

This problem brings to the fore the need for treating multiple-length
scales for an accurate determination of the current. Details of the chemical
bonding of the molecule to the electrode atoms are crucial for determining
both peak locations and widths in TðE;VÞ. The densities of states in the metal
electrodes affect the coupling of the molecule to the electron bath. The applied
potential, if large, can lead to significant changes in TðE;VÞ, implying non-
linear effects. Accordingly, this problem requires an accurate quantum chemi-
cal treatment for the molecule and for parts of the electrodes, even though this
central domain may include up to tens or hundreds of atoms, depending on the
size of the molecular device. Contrarily, the distant regions of the electrodes
can be treated at a much coarser or a mean-field level of theory since they
just provide the source of electrons that propagate through the device. Even
with accurate quantum calculations at the density functional theory (DFT)
level, predictions of currents may be off by two orders of magnitude in relation
to experiment,47,49 presenting major challenges at both the basic theory and
computational levels for such problems.

Why Real Space?

A chapter in an earlier volume in this series devoted to quantum
Monte Carlo (QMC)52 methods noted that ‘‘there are many ways to skin
a cat’’; this chapter discusses yet another! In quantum chemistry, the domi-
nant theme over many decades has been basis set calculations.53 The basis
sets consist of localized Slater-type orbitals or Gaussian functions that are
adapted to provide accurate representations of the electron states in atoms.
The main advantage of this approach is that the basis sets typically do not
have to be terribly large in size since they already contain a lot of the
detailed atomic information. A disadvantage is that it can be difficult to
obtain an unambiguously converged result due to factors such as basis
set superposition errors.54
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The predominant computational motif for solid-state physicists, in
contrast, has centered on expansions of wave functions in plane-wave basis
sets.55–57Advantages of this approach include: (1) simplicity of the basis, (2) abil-
ity to use efficient fast Fourier transform (FFT) operations during minimization,
(3) systematic convergence to the exact result with increasing basis set size (for a
given model), and (4) lack of Pulay forces during molecular dynamics simula-
tions.56 While this basis is well suited for periodic systems, a disadvantage is
that it is entirely delocalized in coordinate space—the basis functions have uni-
form magnitudes over all space. Thus, if we are interested in a localized system,
a lot of effort must be expended to add up many functions so as to get a result of
zero for regions that are far away from the molecule or cluster.

Real-space methods58–62 are conceptually situated somewhere between
the two limits of traditional basis functions and plane waves. The desired func-
tions (electrostatic potential, wave functions, electron density, etc.) are repre-
sented directly on a grid in coordinate space, and several techniques exist for
real-space representations of the partial differential equations to be solved on
those grids. The simplest is finite differences (FD);58–61 here the functions are
Taylor expanded about a grid point, and those expansions are manipulated to
obtain approximate representations of the derivatives. An important technical
point is that this approach is not necessarily variational in the sense of yielding
a result above the ground-state energy. The computed energy can lie above or
below the ground-state energy depending on the sign of terms omitted in the
expansion. The calculations do converge to the exact result as the grid spacing
is reduced, however.

Another real-space approach is to use a finite-element (FE) basis.62–64

The equations that result are quite similar to the FD method, but because loca-
lized basis functions are used to represent the solution, the method is varia-
tional. In addition, the FE method tends to be more easily ‘‘adaptable’’ than
the FD method; a great deal of effort has been devoted to FE grid (or mesh)
generation techniques in science and engineering applications.65–67 Other real-
space-related methods include discrete variable representations,68–70 Lagrange
meshes,71,72 and wavelets.73–83

The main feature of real-space methods is that, if we represent the Lapla-
cian operator (Poisson equation) or Hamiltonian (eigenvalue problem) on a
grid, the application of the operator to the function requires information
only from a local region in space. We will develop these concepts below,
but here we note that only several neighboring grid points are required in gen-
eral to solve such problems (depending on the approximation order). The
matrix representation of these operators is thus highly banded, and application
of the operator to one function requires a number of operations that is the
width of the band times the number of grid points.

As we noted above, in an FD or FE solution, the exact result emerges as the
grid spacing is reduced; in that respect we can call these methods fully numerical
in the same spirit as the plane-wave approach from physics. An added advantage
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of real-space methods is that it is not terribly difficult to place different resolu-
tion domains in different parts of space.62,64,84–88 That is, the methods can uti-
lize adaptivity, and this can be done without sacrificing the numerical efficiency
of the real-space solver. In contrast, plane-wave methods utilize FFT operations
at their core, and it is difficult (although not impossible89) to develop adaptive
meshes for these processes. Finally, real-space methods, due to their near local-
ity, are ideal for parallel computing. We can partition the problem into domains
in space—most of the operations are contained within each of the domains, with
relatively low communication overhead across the boundaries.

The real strength of real-space methods comes into play when we combine
the localized computational representation together with the physical localiza-
tion that exists in most chemical systems. For example, it is well known in
chemistry that relatively localized orbitals can represent accurately directional
chemical bonds in large molecules, thus allowing us to employ localized (often
nonorthogonal) orbitals as we minimize the total electronic energy.55,90 Those
localized orbitals are set to zero outside a specified domain in space. So, by
operating solely in real space, we can exploit this physical locality directly.
Despite the claims in chaos theory that a butterfly flapping its wings on the
other side of the globe might affect the weather here, small chemical changes
at a point in space typically do not have a great influence far away due to
screening. Kohn calls this the near-sightedness principal of matter.91 The com-
bination of a localized computational representation and physical locality can
lead to linear-scaling algorithms for electronic structure,55,92 a major aim in
computational chemistry.

This chapter discusses numerical methods for solving several important
differential equations in computational chemistry. It does not cover the con-
ceptually related problem of coarse-grained modeling of large amplitude
motions in polymers and biological macromolecules.93–97

REAL-SPACE BASICS

As outlined above, several means of representing partial differential
equations in real space exist. Here, for the most part, we choose the simplest
(the FD representation), restrict ourselves to second-order-accurate representa-
tions, and operate in one dimension so as to bring out all the important con-
cepts and avoid getting wrapped up in details. A short introduction to FE
representations is also included.

Equations to Be Solved

We consider here two of the most basic equations in computational
chemistry: the Poisson equation and the Schrödinger equation. The Poisson
equation yields the electrostatic potential due to a fixed distribution of
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charges, and the time-independent Schrödinger equation produces the wave
functions and energy levels for stationary quantum systems. The Poisson equa-
tion in one dimension is

d2fðxÞ
dx2

¼ �4prðxÞ ½1�

where fðxÞ is the electrostatic potential, and rðxÞ is the charge density. The
Schrödinger eigenvalue equation is

� 1

2

d2cðxÞ
dx2

þ VðxÞcðxÞ ¼ EcðxÞ ½2�

where cðxÞ is the wave function, VðxÞ is the potential, and E is the energy
eigenvalue. Atomic units are assumed throughout this chapter. In typical elec-
tronic structure theory, such as Hartree–Fock or density functional calcula-
tions, the potential VðxÞ depends on the charge density produced by all the
electrons and nuclei; thus, the calculation is termed self-consistent since, at
convergence, the effective potential ceases to change. Prior to convergence, a
solver must go back and forth between updates of the wave functions and the
effective potential that depends on those wave functions.

We begin with a word on the general properties of these equations and
how they can be ‘‘derived.’’ Even though the FD representation is not varia-
tional in the sense of bounds on the ground-state energy, the iterative process
by which we obtain the solution to the partial differential equations (PDEs)
can be viewed variationally, i.e., we minimize some functional (see below)
with respect to variations of the desired function until we get to the lowest
‘‘action’’ or ‘‘energy.’’ This may seem rather abstract, but it turns out to be
practical since it leads directly to the iterative relaxation methods to be dis-
cussed below. (See Ref. 98 for a more complete mathematical description of
minimization and variational methods in relation to the FE method.)

For the Poisson problem, we make up an action functional S½f� that,
when minimized, yields the Poisson equation:

S½f� ¼ � 1

2

ð
f
d2f
dx2

dx� 4p
ð
rf dx ½3�

A functional yields a number when the function over the whole domain
(f here) is specified. We then write a pseudodynamical equation (actually a
steepest-descent equation) for the updates of f:

qf
qt
¼ � dS½f�

df
½4�
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The expression on the right side of Eq. [4] is called a functional derivative. The
easiest way to think about the functional derivative is to develop an FD repre-
sentation for the right-hand side of Eq. [4] (see below). To do this we take the
usual derivative with respect to the value of the potential at one point on the
grid, divide by the grid spacing, and take the limit of decreasing grid spacing.
When those steps are taken, we get Eq. [5]:

qf
qt
¼ q2f

qx2
þ 4pr ½5�

This equation, when iterated, will repeatedly move downhill on the action
surface until the minimum is reached. Notice that this equation looks like a
diffusion equation with a source term. It can be proved mathematically that,
for this case, there is only one extremum, and it is a minimum. At the mini-
mum (which is the point where the potential stops changing),

qf
qt
¼ q2f

qx2
þ 4pr ¼ 0 ½6�

and we obtain the Poisson equation. PDEs like the Poisson equation are called
elliptic equations. Other PDEs of importance are parabolic (diffusion) and
hyperbolic (wave) equations.99

Solution of the Schrödinger equation can be viewed similarly.65 The
quantum energy functional (analog of the Poisson action functional above) is

E½c� ¼ � 1

2

ð
c�

d2c
dx2

dx�
ð
c�Vc dx ½7�

We seek to minimize this energy, but for this case we need a constraint
during the minimization, namely for the normalization of the wave function.
(If we are seeking many wave functions, we then need to have constraints
for orthonormality—each eigenfunction must be normalized and orthogonal
to all the other wave functions.) The augmented functional with the Lagrange
multiplier constraint is

Ec½c� ¼ � 1

2

ð
c�

d2c
dx2

dxþ
ð
c�Vc dx� E

ð
c�c dx ½8�

Now our steepest-descent update equation becomes

qc
qt
¼ � dEc½c�

dc�
¼ 1

2

q2c
qx2
� ½V � E�c ½9�

which when iterated to the minimum, yields the Schrödinger equation.
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Finite-Difference Representations

How do we represent the above equations with FD methods on a grid?
The answer is that a function is Taylor expanded about a central point xi in the
forward and backward directions:

f ðxiþ hÞ � f ðxiÞ þ f ð1ÞðxiÞhþ 1
2f
ð2ÞðxiÞh2þ 1

6f
ð3ÞðxiÞh3þ 1

24f
ð4ÞðxiÞh4þ . . . ½10a�

f ðxi� hÞ � f ðxiÞ � f ð1ÞðxiÞhþ 1
2f
ð2ÞðxiÞh2� 1

6f
ð3ÞðxiÞh3þ 1

24f
ð4ÞðxiÞh4þ . . . ½10b�

where the grid spacing is h. The two equations are added together and then
solved for f ð2ÞðxiÞ, resulting in

f ð2ÞðxiÞ � 1
h2
½f ðxi � hÞ � 2f ðxiÞ þ f ðxi þ hÞ� � 1

12f
ð4ÞðxiÞh2 þ . . . ½11�

This shows that the error in our 3-point formula for the second derivative is of
order h2. Higher order forms can be easily derived,100 with a gain in accuracy
of two orders with each pair of extra terms. Such high-order forms have been
used extensively in electronic structure calculations.58–60 It is clear from the
above approximation that the sign and magnitude of f ð4ÞðxiÞ over the domain
will be important for determining the value of the total energy.

Using the above formula for the second derivative, we can represent the
Poisson equation as

1

h2
½fðxi�1Þ � 2fðxiÞ þ fðxiþ1Þ� ¼ �4prðxiÞ ½12�

which in matrix form with six points is

1

h2

�2 1 0 0 0 0
1 �2 1 0 0 0
0 1 �2 1 0 0
0 0 1 �2 1 0
0 0 0 1 �2 1
0 0 0 0 1 �2

2
6666664

3
7777775

fðx1Þ
fðx2Þ
fðx3Þ
fðx4Þ
fðx5Þ
fðx6Þ

2
6666664

3
7777775
¼ �4p

rðx1Þ
rðx2Þ
rðx3Þ
rðx4Þ
rðx5Þ
rðx6Þ

2
6666664

3
7777775

½13�

In an iterative procedure that applies the appropriate update matrix to the
function many times, the boundary values of the function (at points 1 and 6
above) are typically fixed (or periodic boundaries are enforced). We can write
Eq. [13] in the simple matrix form

LU ¼ f ½14�

where L is the Laplacian matrix, U is the potential that solves Eq. [14], and f
is �4p times the charge density.
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During the solution process, the progress can be monitored by comput-
ing the residual

r ¼ f � Lu ½15�

and plotting its magnitude averaged over the domain. As the residual is
reduced in magnitude toward 0, we approach the exact solution on the grid
(but not the exact solution of the PDE, since there are numerical errors in
our FD approximation.) The lowercase u is used to signify the current approx-
imation to the exact solution U.

This chapter is directed at describing a new development in computa-
tional chemistry, but it should be noted that, already in Pauling and Wilson’s
classic quantum chemistry text from 1935,101 there is a section on variational
methods that includes a discussion of FD approximations for the Schrödinger
equation!

Finite-Element Representations

Here again we consider a simple Poisson problem, but the same general
procedure can be applied to the eigenvalue or total energy minimization pro-
blems. As we discussed above, one approach is to minimize the action func-
tional of Eq. [3], using an FD representation of the Laplacian inside the
integral (or summation on a grid when the integral is discretized) and specified
boundary conditions (e.g., fixed or periodic). Alternatively, we can integrate
by parts the action term involving the Laplacian in Eq. [3] to obtain

S½f� ¼ 1

2

ð
df
dx

� �2

dx� 4p
ð
rf dx ½16�

assuming that the values of the potential or its derivative vanish on the bound-
aries.65 We can then minimize this alternate form of the action with respect to
variations in the potential f.98 Once the minimum is reached, the potential f
is the solution. If we assume that we have that minimizing solution f, an
approximate form of the potential can be represented as fþ ev, where v is
any function that vanishes on the boundaries. If we substitute this general
form into Eq. [16], take the derivative with respect to e, and set e equal to
0, we obtain the following variational expression:

ð
df
dx

� �
dv

dx

� �
dx ¼ 4p

ð
rv dx ½17�

If Eq. [17] is true for all arbitrary v, then f satisfies Poisson’s equation. This
equation is called the variational boundary value problem for the Poisson
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equation98 and is true for all continuously differentiable functions v that exist
in the domain and vanish on the boundaries.

The next step in the development of the FE method is to represent the
solution in a finite-dimensional space as a superposition of basis functions.
The basis functions are quite different from those typically employed in quan-
tum chemistry (Gaussians or linear combinations of atomic orbitals—
LCAOs). The FE basis is taken as polynomial functions that are strictly zero
outside of a small local domain centered at a given grid point (or node). We
then represent the function approximately as a linear combination of these
localized basis functions:

fn ¼
Xn
i¼1

biwi ½18�

and we minimize the action functional with respect to variations of the coeffi-
cients bi in the expansion. If the above expansion is inserted into the formula
for the action, we obtain

S½vn� ¼ 1

2

ð
dfn

dx

� �
dfn

dx

� �
dx� 4p

ð
rfn dx

¼ 1

2

ð
b1

dw1
dx
þ b2

dw2
dx
þ . . .

� �
b1

dw1
dx
þ b2

dw2
dx
þ . . .

� �

dx� 4p
ð
rðb1w1 þ b2w2 þ . . .Þ dx

¼ 1

2

Xn
i;j¼1

Kijbibj �
Xn
i¼1

Fjbj ½19�

where

Kij ¼
ð
dwi
dx

dwj
dx

dx ½20�

and

Fj ¼ 4p
ð
rwj dx ½21�

If we then minimize this function by varying the coefficients bi, this leads to a
matrix equation of the form

Ka ¼ F ½22�
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where the vector a solves the minimization problem. We see that Eq. [22] is
very similar to the FD matrix Eq. [13], since the localized nature of the basis
leads to a highly banded matrix K. The last piece of the puzzle concerns how
to choose the polynomial basis functions wi. Brenner and Scott102 work
through a simple example using piecewise linear functions for the basis, and
for that basic case the analogy between the FD and FE formulations is appar-
ent. Higher order polynomial forms for the basis functions are described in the
review of Pask and Sterne.62

Besides the basis set nature of the FE approach, the essential difference
between the FE and FD methods is manifested in Eq. [17] and the nature of the
boundary conditions. For the FE case, the general boundary condition
fð0Þ ¼ c1 is required on one side of the domain, while a second boundary con-
dition f0ð1Þ ¼ c2 is automatically implied by satisfaction of the variational
condition. (These two constants were assumed to be 0 for some of the discus-
sion above.) The first boundary condition is termed essential, while the second
is called natural. The FE method is called a weak formulation, in contrast to
the FD method, which is labeled a strong formulation (requiring both bound-
ary conditions from the start and twice differentiable functions). A clear state-
ment of these issues is given in the first chapter of Ref. 103, and the
equivalence of the strong and weak formulations is proven there. Most electro-
nic structure applications of FE methods have utilized zero or periodic bound-
ary conditions.

We can now see that a similar matrix representation is obtained for both
the FD and FE methods due to their near-local nature. If the grid is highly
structured and a low-order representation is assumed, the two representations
become virtually indistinguishable. The FE method has the advantages that it
is variational from the beginning, and it allows for greater flexibility in the
arrangement of the mesh. On the other hand, the FD method is nonvariational
in the sense of convergence from above, but the numerical representation is
highly structured and generally more banded (fewer terms to represent the
action of the Laplacian operator) than for the FE case. Thus, the preferred
choice between the FD and FE representations depends on the nature of the
problem, and the tastes of the practitioner.

Iterative Updates of the Functions, or Relaxation

To solve the Poisson equation iteratively, we make an initial guess for the
function values over the domain and then update Eq. [5] numerically. We first
write the spatial part of Eq. [5] in FD form:

qfðxiÞ
qt

¼ 1

h2
½fðxi�1Þ � 2fðxiÞ þ fðxiþ1Þ� þ 4prðxiÞ ½23�
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Next, we replace the denominator on the left side ðdtÞ by t and call this the
time-step size. Eq. [23] can then be written as an update equation:

fnþ1ðxiÞ ¼ fnðxiÞ þ t
h2
½fnðxi�1Þ � 2fnðxiÞ þ fnðxiþ1Þ� þ 4ptrðxiÞ ½24�

where n labels the iteration number. This equation can be rearranged to give

fnþ1ðxiÞ ¼ ð1� oÞfnðxiÞ þ o
2
½fnðxi�1Þ þ fnðxiþ1Þ þ 4prðxiÞh2� ½25�

where o ¼ 2t=h2. The update equation above is called the weighted Jacobi
method. If o ¼ 1, it is termed the Jacobi method.99,104,105 As will be shown
below, there is a limit on the value of o; if it becomes too large, the values
of the function diverge during repeated iterations.

One simple modification leads to two other update schemes. As the sol-
ver scans through the grid, the values at grid points are typically updated in
sequence. Thus, when we update the function at the (i) point, the ði� 1Þ value
has already been changed. Eq. [25] can then be altered to

fnþ1ðxiÞ ¼ ð1� oÞfnðxiÞ þ o
2
½fnþ1ðxi�1Þ þ fnðxiþ1Þ þ 4prðxiÞh2� ½26�

This relaxation scheme is named successive overrelaxation (SOR), and if
o ¼ 1, it is the Gauss–Seidel method. This slight change alters the underlying
spectral properties of the update matrix, most often favorably. It turns out that
Gauss–Seidel iterations are particularly well suited for multigrid calcula-
tions—they tend to efficiently smooth the errors on wavelengths characteristic
for a given grid level.105

The same methods can be applied to the Schrödinger equation, but the
eigenvalue E needs to be updated after each iteration, and the wave function
must be normalized.106 If the lowest n states are desired, the wave functions
must be orthogonalized (Gram–Schmidt procedure) and then normalized.
Given normalized approximate eigenfunctions, the approximate eigenvalues
are given by Eq. [27]:

Ei ¼
ð
ci �

1

2

d2

dx2
þ V

� �
ci dx ¼ hcijHjcii ½27�

This formula can be approximated on the grid by utilizing the FD methods
discussed above.

What Are the Limitations of Real-Space Methods on a
Single Fine Grid?

If we iterate toward the solution as discussed above, the residual
decreases quickly at first, but then the convergence slows considerably. This
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behavior gets worse as the grid spacing decreases. To address why this hap-
pens, we will look at the solution of the Laplace equation [Poisson equation
with rðrÞ ¼ 0], since it illustrates the important features of the slowing down.
The analysis will be performed for the weighted Jacobi method discussed
above.

The update or relaxation Eq. [25] can be written as a matrix equation.
We are interested in the mathematical properties of the update matrix, so
we will calculate the eigenvalues of that matrix. Let the update matrix act
upon a plane wave with wavevector k. Then our eigenvalue equation is

o
2
eikðx�hÞ þ ð1� oÞeikx þ o

2
eikðxþhÞ ¼ lke

ikx ½28�

where lk is the eigenvalue of the update matrix. Using the relation
eix ¼ cos xþ i sin x, and a trigonometric identity, we find

lk ¼ 1� 2o sin2
kh

2

� �
½29�

We can imagine that if the eigenvalues of this matrix exceed one in magnitude,
the iterations will numerically ‘‘explode.’’ This implies that o � 1 for the
weighted Jacobi method. When you write your first relaxation code, it is
easy to test this assertion, and indeed it is true! It turns out that, for the
SOR algorithm, the stability criterion is o � 2. This corresponds effectively
to a larger ‘‘time step’’ during the iterations and can lead to greater efficiency.
An added bonus of Gauss–Seidel and SOR methods is that, since the updated
values are used rather than the previous values, we need not store an extra vec-
tor for the old and new function values. Thus, the memory requirements are
reduced.105

For small k, we can expand the sin function to give

lk � 1� ok2h2

2

� �
½30�

Small k corresponds to a long-wavelength mode, and the above approxima-
tion tells us that the eigenvalues corresponding to the longest wavelength
modes in the errors approach 1 as the grid spacing is reduced toward
zero. This means that errors with the longer wavelengths do not get removed
efficiently. (The error reduction efficiency is related to the eigenvalue raised
to a power of the number of iterations.) This, in a nutshell, is the origin of
‘‘critical slowing down,’’ which motivated the development of multigrid
(MG) methods.105
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MULTIGRID METHODS

The MG method was developed in the late 1960s and early 1970s. Early
multilevel ideas from Fedorenko were fully developed by Brandt, Hackbusch,
and others into highly efficient PDE solvers.105,107–109 This method cleverly
utilizes multiple grid levels to accelerate the convergence rate of iterative sol-
vers. The trick is to design a coarse-grid representation such that, if we had the
exact numerical solution on the fine grid, nothing would happen during the
coarse-grid correction process. This is termed zero correction at convergence.

How Does Multigrid Overcome Critical Slowing Down?

The basic idea of the original MG method is to set up a series of coarser
grids, with each next-coarser grid typically having a grid spacing twice that on
the finer level. After a few iterations on the fine grid, the problem is passed to
the coarser level, iterated there, and then moved to a yet coarser level. This is
repeated until the coarsest grid is reached. For some problems, such as the
Poisson equation, the coarsest grid can contain only one interior point. In
other problems, like the eigenvalue problem, the coarsest level must contain
enough resolution to at least approximately represent the wiggles in the eigen-
functions, so there can be limits on how coarse we can go.

Why does this process work? The main explanation is that components
of the error having wavelengths roughly the size of a small multiple of the grid
spacing on a given level get removed efficiently by the relaxation process.105 A
careful analysis of the spectral properties of the Gauss–Seidel method shows
that errors with those wavelengths get decimated quickly. Thus, by proceeding
through a range of coarser levels, errors with all wavelengths can be removed.
This is one of the few cases in computational science where it almost seems as
if we get something for nothing—in three dimensions, the cost of the updates
on the next coarser level is one eighth that on the fine level, yet by going to the
coarser level, we are solving the hardest part of the problem.

Full Approximations Scheme (FAS) Multigrid, and Full
Multigrid (FMG)

The question one might ask is: Can we design a coarse-grid problem that
possesses the important zero correction at convergence property? Here we will
discuss the full approximation scheme (FAS) multigrid method, since it is gen-
eral in scope.105,107,108 The FAS approach can be employed to solve both lin-
ear and nonlinear problems, and many of the problems in which we are
interested are nonlinear in nature (Poisson–Boltzmann, eigenvalue, etc.).

We first introduce some of the basic operations in an MG process. We
have already discussed the FD representation, but we need operations that
pass functions between the grid levels. Those are restriction (fine to coarse)
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and interpolation (coarse to fine); see Figure 3. Every numerical operation we
perform in an MG solver has a numerical order associated with it. It turns out
we need not be particularly worried about the orders of the restriction and
interpolation operators (the orders of these two operations must add up to
the order of the differential equation, which in all of the cases of interest
here is 2).105,108 In our own work, we have typically used full weighting
restriction and linear interpolation (or sometimes cubic interpolation in the
eigenvalue problem). These operations sound like involved mathematical tasks
but are actually quite simple.

Full weighting restriction is just a trapezoid-rule numerical integration:
Take the central point on the fine grid and average it with the two closest
neighbors (as in Eq. [31] for one dimension):

f Hj ¼ 1
4 f

h
i�1 þ 1

2 f
h
i þ 1

4 f
h
iþ1 ½31�

Here the fine-grid point i coincides with the coarse-grid point j. The three fine-
level points yield the coarse-grid value when averaged. Of course, in two and
three dimensions, the trapezoid rule gets slightly more complicated and
involves more points, but those values can be easily worked out from the
one-dimensional example. The weights in the integration formula add up to
1. Symbolically we represent the restriction operator as IHh , where h is the
fine-grid spacing, and H is the coarse-grid spacing.

Linear interpolation is also simple. For the points on the fine grid that
coincide with the coarse-grid points, simply inject the function value:

f hi ¼ fHj ½32�

For the intermediate points, average the two neighboring coarse-grid points:

f hiþ1 ¼ 1
2ðf Hj þ fHjþ1Þ ½33�
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Figure 3 Illustration of the restriction and interpolation operations. Full weighting
restriction (left) averages the three fine-grid values to yield the coarse-grid value.
Interpolation injects the values from the coarse grid, which are included in the fine grid,
and averages two coarse values to generate the intermediate fine-grid value.
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In this last formula the coarse-grid index j is located at the point just to the left
of the fine-grid point (Figure 3). In higher dimensions, the best way to enact
the interpolation is to perform the operation as a series of interpolations on
lines, that is, as a series of one-dimensional operations. This has the same
approximation order and is easy to code. The symbol used for the interpola-
tion operator is IhH.

Now that we have the two transfer operations in hand, how do we
design the coarse-grid problem? Consider again the matrix representation of
the Poisson equation:

LhUh ¼ f h ½34�

Here we use the uppercase Uh to represent the exact numerical solution on the
fine grid. We now pass that exact solution to the coarse grid by restriction and
examine the same type of equation:

LHuH ¼ fH ½35�

where

uH ¼ IHh U
h ½36�

and

fH ¼ IHh f
h ½37�

The difficulty here is that uH does not solve the coarse-grid equation (which is
why lowercase was used for this function above). This situation immediately
becomes a problem because once we have the exact solution on the fine grid,
nothing should happen on the coarse grid. Brandt introduced a clever solution
to this problem called the FAS method.107,108

We modify the coarse-grid equation (Eq. [35]), with an added function
tH, the defect correction, defined as follows (assuming we have the exact fine-
grid solution Uh for now—of course, we do not have that function during the
solution process, but this argument illustrates a key point):

tH ¼ LHIHh U
h � IHh L

hUh ½38�

This term is added to the right side of the coarse-grid equation [35] to obtain

LHUH ¼ fH þ tH ¼ IHh f
h þ LHIHh U

h � IHh L
hUh ¼ LHIHh U

h ½39�
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since

LhUh ¼ f h ½40�

Thus, we have an identity, and iterations on the coarse grid will not change the
function. This development by Brandt thus satisfies the zero correction at con-
vergence condition. In general, tH is not zero even when the solution has con-
verged to the exact result, so its inclusion is crucial. The defect correction tH is
a difference between the coarse-grid Laplacian acting on the coarse-grid func-
tion and the restriction of the fine-grid Laplacian acting on the fine-grid func-
tion. It tends to be large in places where the final result changes rapidly; for
example, if we have a single-point charge located at a grid point, the potential
that solves the Poisson equation varies dramatically near that point, and a
peak in tH is observed.

So far we have been concerned with only two grid levels, with grid spa-
cings h (fine) and H (coarse). We now need one addition to the above discus-
sion. If we use many grid levels, the coarse-grid defect correction on levels two
or more removed from the fine level must include a term that restricts the pre-
vious level’s defect correction. Here we label the general coarse-grid level k
(typically l is used then for the finest level):

tk ¼ LkIkkþ1u
kþ1 � Ikkþ1L

kþ1ukþ1 þ Ikkþ1t
kþ1 ½41�

In Eq. [41] we input the current approximation uk for the function on a given
level, which is what is done in the solver as it progresses toward the exact solu-
tion, Ul. The coarsest grid level is labeled by the smallest k. It is a good exer-
cise to show that Eq. [41] is required on levels two or more removed from the
finest level. Notice that the defect correction on level k requires information
only from the next-finer ðkþ 1Þ level.

Once the coarsest level is reached, some iterations are performed there,
and then the solver begins to head back to the fine level (Figure 4). The final
part of the FAS-MG process to be discussed is the correction step. Once the
iterations are completed on the coarsest level, the next-finer level is updated
as follows:

ukþ1  ukþ1 þ Ikþ1k ðuk � Ikkþ1u
kþ1Þ ½42�

This step interpolates the change in the coarse-grid function during iterations
onto the next-finer level and corrects the current approximation there.

Once corrected, a few iterations are performed on the current level, the
next-finer level is corrected, and the process is repeated until the finest level
is reached. The whole procedure of starting on the fine level, proceeding to
coarser levels, and then correcting and iterating along a path back to the fine
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level, is termed a V-cycle (Figure 4). The solver can loop back around the
V-cycle as many times as desired until a specified magnitude of the residual
is obtained. If the MG Poisson solver is working properly, the residual
should be reduced by an order of magnitude during each V-cycle. The author
still remembers the first working Poisson MG code he wrote, and how dra-
matic the difference in convergence rate is once the multiple levels are incor-
porated! See Figure 5.

In the preceding discussion, we started on the finest level with some initi-
al approximation and then proceeded through the V-cycle. This approach
works fine, but there is a way to obtain a good initial approximation with little
computational cost called the FMG method (Figure 6). In this approach, itera-
tions are first performed by taking the coarsest level as the starting point (mak-
ing it the current finest grid). The current approximation is then interpolated
to the next level, and one or more V-cycles are performed there. This process is
repeated until the finest grid is reached, at which point a very good preliminary
estimate of the solution on the finest level is generated. The total cost of this
‘‘preconditioning’’ is very low, and it is almost always a good idea to use FMG
if we have little or no prior knowledge about the solution on the fine level. If
we do have a good initial guess at the solution, it then makes sense to use that
guess and start with V-cycles on the finest level.

For the Poisson problem, the total number of grid points for all the
grid levels in three dimensions is only a small constant (greater than one)
times the number of fine-grid points (indicated by Ng).

58 It is observed that
the convergence rate does not depend on the system size, and the residual
decreases exponentially with the number of iterations, i.e., a plot of the log
of the residual vs. the number of iterations decreases linearly. Thus, the

h

2h

4h

Restrict

Restrict Interpolate

Interpolate

Repeat V-cycle

Figure 4 The V-cycle in a multigrid solver. An initial guess is made on the fine level,
iterations are performed, and then the approximate solution is passed to the coarser
level. This process is repeated until the coarsest grid is reached. The solver then
progresses through interpolation (correction) steps back to the finest level. The V-cycle
can be repeated.
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computer time required scales linearly with system size, which is the best
we can do for an electrostatic problem. We do point out, though, that
on uniform grids, FFT methods for solving the Poisson problem scale as
Ng logNg, and the log term grows very slowly with system size. So FFT
and MG are competitive methods for obtaining the Poisson potential
over the whole domain of a uniform grid.58
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Figure 5 Convergence rates for a simple one-dimensional Poisson problem in a finite
domain with 65 points. The potential was fixed at 0 on the boundaries, and two discrete
charges were placed in the domain. The figure plots the number of fine-grid relaxation
iterations vs. the log(10) of the residual. The top curve (crosses) is for Gauss–Seidel
relaxation on the fine grid alone. The lower curve (x’s) is for repeated cycling through
MG V-cycles with 6 levels. The apparent ‘‘stalling’’ after 40 iterations for the MG
process occurs because machine-precision zero has been reached for the residual.

Figure 6 Full multigrid cycle (FMG); see also Figure 4. Instead of starting with an initial
guess on the finest level and performing V-cycles from that point, iterations are begun on
the coarsest level and the solver progresses toward the finest level. By the time the left
side of the finest-level V-cycle has been reached, an excellent initial approximation to the
function has been obtained for little computational cost.
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EIGENVALUE PROBLEMS

It was mentioned earlier that aspects of eigenvalue problems exist that
make them more difficult to solve than the Poisson equation. Typically, we
would like to solve for the first q eigenfunctions for a given Hamiltonian
operator. This is what is done in a Kohn–Sham DFT calculation,110,111 where
those q states are populated with 2q electrons, and the self-consistent solution
process minimizes the total electronic energy when converged. The most
difficult part of a DFT calculation is the eigenvalue problem, which can
be solved directly or cast in a different format, such as a density-matrix formu-
lation.112,113 Even though the Hamiltonian operator is a linear operator,
solving the eigenvalue part of the problem is a nonlinear process since we
seek both the eigenvalues and the eigenfunctions.106

First consider iterations on a single, fine grid. The relaxation step,
Eq. [9], is similar to the Poisson problem. Following the relaxation, additional
operations must be performed, however. Those operations correspond to
orthonormalizing the eigenfunctions in a Gram–Schmidt procedure and updat-
ing the eigenvalues (Eq. [27]). The Gram–Schmidt orthogonalization method
is discussed in applied mathematics texts (see Ref. 114 as an example). In this
step, the dot products of eigenvectors (the values of the wave function on the
grid) with all other eigenvectors must be computed. This operation thus scales
as q2Ng, or N

3
e , where Ne is the number of electrons. (The number of eigen-

functions q is typically Ne=2, and the number of grid points required increases
linearly with the number of electrons.) This is a major bottleneck for eigenva-
lue problems in which the eigenfunctions span the whole physical domain.
Notice also that the updates of all the eigenvalues by Eq. [27] and the relaxa-
tion step for the eigenfunctions both scale as qNg or N2

e . It is clear from this
discussion that the only possible way to obtain linear scaling in real space is to
utilize localized functions of some sort.

Multigrid for the Eigenvalue Problem

We do not lay out in great detail here the FAS-MG method for the eigen-
value problem. An original effort in this direction was developed in 1983 by
Brandt, McCormick, and Ruge.106 Their article presents a clear discussion of
the FAS method applied to eigenvalue problems. The algorithm contains all
the basic features discussed above for the Poisson equation but adds several
necessary modifications. Those additions will be summarized here briefly; the
reader is referred to the original article for the technical details.106

One complication in the eigenvalue problem that becomes apparent
when writing a solver is that the wave functions are oscillatory for states above
the ground state. This suggests that the coarsest grid that may be used must
still have enough resolution to at least approximately represent the eigenfunc-
tion variations. This in turn slows down the convergence rates relative to the
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Poisson problem. A second complication is that constraints must be imposed
during coarse-scale iterations to at least approximately maintain eigenfunction
orthonormality. An interesting feature of the FAS approach is that such global
constraints can be imposed on coarse levels (when they are properly formu-
lated). An important point to note is that, even if we had the exact eigenfunc-
tions on the fine level, they are no longer orthogonal or normalized when
restricted to the coarse level. A third complication is that the eigenvalues
must be updated during coarse-scale iterations. They are calculated on coarse
levels with the following formula:

Ei ¼ hH
kck

i � tki jck
i i

hck
i jck

i i
½43�

It is an interesting analytical exercise to show that, at convergence, the eigen-
values computed in this way are the same on all levels. This is why no level
index k is placed on the eigenvalue. On the finest level, since tli ¼ 0, we get
back the usual formula for the eigenvalue.

A final feature of the Brandt, McCormick, and Ruge106 algorithm that
deserves comment is the Ritz projection operation performed on the finest
level. In the Ritz projection, the Hamiltonian matrix is constructed using as
a basis the current approximation for the eigenfunctions. This Hamiltonian
matrix is thus of dimension q� q. The matrix is then diagonalized by standard
matrix methods. New eigenvalues are obtained, and the eigenfunctions are
updated using the dimension-q vector from the diagonalization routine.
What this operation does is to ‘‘purify’’ the occupied subspace of the q
eigenfunctions—it makes the errors orthogonal to the occupied subspace. The
problem with this step, as with the Gram–Schmidt orthogonalization process,
is that it scales as q2Ng (to construct the Hamiltonian matrix), or N3

e , so we
are back to the same scaling problem. In spite of the cubic scaling, this algorithm
is efficient and has been utilized in the development of DFT-MG solvers.58,115

Following the original FAS algorithm of Brandt and co-workers, modi-
fications were proposed by Costiner and Ta’asan116,117 to move the costly
orthogonalization and Ritz projection to coarser levels. For small to medium-
sized systems, where the eigenfunctions span the whole physical domain, their
method effectively scales as qNg. This method has been incorporated into a
computational algorithm recently for the Kohn–Sham equations.118,119 The
original Costiner–Ta’asan algorithm did not converge properly for large quan-
tum chemical problems, and the method was subsequently modified to regain
proper convergence.119

Self-Consistency

Quantum chemical calculations require self-consistent solution, and we
illustrate this here with a standard Kohn–Sham DFT calculation. We make
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an initial guess at the wave functions or charge density, the Poisson equation
is solved to yield the electrostatic potential, and the exchange–correlation
potential is computed. This yields the effective potential in the Kohn–
Sham approach, and then we solve the eigenvalue problem approximately
to get new approximations to the eigenfunctions. In an MG approach, we
can then make a choice as to how to proceed. The first way, which follows
closely standard electronic structure methods, is to perform an MG V-cycle
for the eigenvalue problem, holding the effective potential fixed during
the iterations. Then, at the end of the V-cycle, the charge density and effec-
tive potential can be updated on the finest level. The solver goes back and
forth between solution of the eigenvalue problem and generation of the
effective potential.

A second strategy would be to update the effective potential on coarse
levels during the V-cycle so that the eigenfunctions and effective potential
evolve together.116 This approach fits nicely into the overall MG philosophy
and has been implemented successfully in DFT calculations.119,120 However, it
was found in Ref. 119 that simultaneously updating the potential on coarse
levels does not lead to a significant improvement in overall efficiency. The rea-
sons for this are not entirely clear.

LINEAR SCALING FOR ELECTRONIC STRUCTURE?

It was argued above that many chemical systems exhibit some degree of
localization. What this means is that if one atom moves by a small amount, the
electrons and nuclei relax in a way that screens out, over some length scale,
the effects of that movement. This concept can be quantified by looking at
the one-electron density matrix.110 In a Kohn–Sham calculation, the electron
density at a point r is given by

rðrÞ ¼ 2
XNe=2

i¼1
jciðrÞj2 ½44�

A generalization of Eq. [44] yields the one-electron density matrix:

gðr; r0Þ ¼ 2
XNe=2

i¼1
ciðrÞc�i ðr0Þ ½45�

The total energy in Hartree–Fock theory or DFT can be expressed entirely in
terms of this density matrix. It can be shown that, for systems with a band gap
(that is, a separation between the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO) energies)121 or for
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metals at finite temperature,122 the density matrix defined above decays expo-
nentially with distance:

gðr; r0Þ / expð�cjr� r0jÞ ½46�

where c is a constant that depends on the magnitude of the band gap and/or
the temperature. (Metals at zero temperature are more difficult to handle since
the decay with distance is then only algebraic.55) Thus, in principle, we should
be able to represent the density matrix in some basis of localized functions and
discard information beyond a specified cutoff. This truncation should have lit-
tle impact on computed energies if it is chosen to be large enough to include
most of the relevant physical information (oscillations in the density matrix).

The MG eigenvalue method discussed above possesses computational
scaling that is more than linear in several parts of the algorithm. A goal of
modern computational chemistry is to drive that scaling down to near linear,
and a great deal of effort has been directed at achieving this optimal scaling.92

Attempts at linear scaling have been made in traditional basis set algo-
rithms,123–126 and in real-space solvers;90,112,113,127 here we discuss the real-
space approaches. If the wave functions span the whole physical domain,
the basic relaxation step scales as qNg, orN

2
e . The only way to reduce this scal-

ing is to enforce some form of localization on the orbitals being updated. If the
orbitals are restricted to have nonzero values only within some specified dis-
tance from a chosen center, the relaxation step will then scale as the number of
orbitals times the constant number of grid points within the local domain.

Even more challenging are theN3
e -scaling orthogonalization and Ritz pro-

jection steps. If the problem is reformulated in a localized-orbital representation,
those costly operations can be reduced or eliminated, at the expense of other
processes that crop up. One MG approach to solving this problem was devel-
oped by Fattebert and Bernholc,90 who utilized localized, nonorthogonal orbi-
tals to represent the electronic states. In this method the total electronic energy is
minimized while enforcing the localization constraint. The formulation requires
computation of the overlap matrix and its inverse and leads to a generalized
eigenvalue problem in the basis of the localized orbitals. Thus, there still remain
N3

e operations in the solver, but their prefactor tends to be small. Fattebert and
Bernholc90 observed that the cubic-scaling operations comprise only a small
amount of the total work for large systems. This localized-orbital method has
been generalized to an FAS-MG form by Feng and Beck.127

Two apparent drawbacks of the localized-orbital approach exist. First, the
convergence of the total energy stalls at a value above the exact numerical solu-
tion depending on the size of the cutoff radius for the orbitals.128 This makes
sense because physical information is lost in the truncation. Second, the conver-
gence rate appears to slow somewhat with increasing system size.127 The
observed convergence rates are still good, and competitive with other numerical
methods, but this slowdown does not fit with standard MG orthodoxy—the
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convergence rates should not depend on size for a properly functioning multi-
scale solver. An excellent discussion of the various linear-scaling approaches
to electronic structure is presented in the book by Martin.55

OTHER NONLINEAR PROBLEMS: THE POISSON—
BOLTZMANN AND POISSON—NERNST—PLANCK
EQUATIONS

Poisson–Boltzmann Equation

A second nonlinear problem to consider is the Poisson–Boltzmann (PB)
mean-field theory of ionic solution electrostatics.129–134 This approximate
theory has found wide application in biophysics involving problems such as
protein–protein and protein–membrane interactions. At a qualitative level,
the PB equation arises from replacement of the exact mobile-ion charge distri-
bution by its average, assuming that the average is given by the Boltzmann
factor for the ions interacting with the mean electrostatic potential:

r � ½eðrÞrfðrÞ� ¼ � 4p½rf ðrÞ þ znþ expð�bzfðrÞ � vðrÞÞ
� zn� expðbzfðrÞ � vðrÞÞ� ½47�

where a three-dimensional representation has been used, and b ¼ 1=kT.
Besides assuming an average distribution of mobile ions determined by the
Boltzmann factor, this equation assumes that the underlying medium (water,
membrane, protein) is a continuum dielectric with spatially varying dielectric
constant eðrÞ. For example, in a membrane protein calculation, it is common
to use values of 80 for water, 4–20 for the protein interior, and 2 for the
hydrophobic part of the membrane. On the right-hand side (rhs) of Eq. [47]
there are three contributions to the charge density: one for fixed, discrete
charges (the partial or full charges on the protein atoms), and one each
for the distributed positive and negative mobile ions. The charge z is the mag-
nitude of the charge on the mobile ions. (The physical assumptions underlying
the PB equation generally imply accurate results only for z ¼ 1.) The added
potential vðrÞ excludes ions from parts of space such as the membrane or pro-
tein interior domains. The variables nþ and n� are the bulk concentrations of
the positive and negative ions in the aqueous solution far from the region of
interest (where the potentials have decayed to zero due to screening).

If the electric potential happens to be small, the exponential terms in
Eq. [47] can be linearized to produce

r � ½eðrÞrfðrÞ� ¼ �4p½rf ðrÞ þ bz2ðnþ þ n�ÞfðrÞ� ½48�
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in regions of space outside the excluded volume zones specified by vðrÞ. If
Eq. [48] is solved in an isotropic region in which the dielectric constant
does not vary in space, that dielectric constant can be moved to the other
side, and the coefficient of the potential in the linearized term becomes

k2 ¼ 4pbz2

e
ðnþ þ n�Þ ½49�

which is the square of the inverse Debye screening length. If Eq. [48] is solved
for a single point charge in spherical coordinates, the exponential screening is
apparent:

fðrÞ ¼ Z

e
e�kr

r
½50�

The quantity 1=k determines the length scale over which the potential decays
due to screening from the ion cloud in this Debye–Hückel theory.

The physical effects missing from Eq. [47] are: (1) the surrounding med-
ium is treated as a continuum, (2) the ions are assumed to be points with no
excluded volume, and (3) there are no correlation effects between the ions. The
PB theory has been modified to treat some of these missing effects;135 Eq. [47]
can also be derived as the mean-field limit of an exact statistical field
theory,136–139 or from more traditional statistical mechanical procedures in
the theory of liquids.140,141 Once the potential is computed by solving
Eq. [47], the free energy of the ion distribution can be calculated.136,137

The PB equation is nonlinear in a way quite different from the eigenvalue
problem. Although we are solving for a single function fðrÞ over the whole
domain as in the Poisson equation, a strong nonlinearity arises due to
the exponential terms on the right side of Eq. [47]. Treatment of nonlinearities
in MG solvers has been discussed extensively in the early work of Brandt and
co-workers107,108 and in Ref. 105. The FAS-MG method described above is
designed to handle both linear and nonlinear problems. We do not go through
all the technical details of solving the PB equation with MG methods, but note
below some of the stumbling blocks that had to be overcome. Further details
can be found in Refs. 58 and 142–147. Other biophysical electrostatics
methods will also be discussed in the applications section below.

Discrete charges in Eq. [47] lead to large electrostatic potentials. There-
fore, the nonlinearity can be substantial near those charges, while away from
the discrete charges, the potential gets screened by the mobile ions, and the
nonlinearity is smaller. Several points need to be highlighted. First, the fine
grid must be of high enough resolution to contain at least several points
over the distance corresponding to the Debye screening length; if this condi-
tion is not met, the solver can become unstable. Second, as noted in
Ref. 58, the continuum form of Eq. [47], as written, does not conserve charge
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over the domain (when discretized on a lattice). A lattice field theory136–138

includes a normalization step that does lead to exact charge balance in the
examined domain, by adjusting the bulk densities self-consistently. This
is an important point because the lack of conservation may become more
pronounced on coarser levels without the normalization. Third, the defect
correction must contain terms related to the nonlinearity. Fourth, the driving
term f h (see Eq. [40]) includes the nonlinear terms during the relaxation
steps. Finally, discontinuities in the dielectric constant can lead to numerical
difficulties. We have found, however, that for typical dielectric constants in
biological problems (80 for water, 2 for the internal parts of membranes,
and 4–20 for protein interiors), these issues can be handled directly in FAS
solvers58,142,148 without the special techniques developed in Ref. 149.

Poisson–Nernst–Planck (PNP) Equations for Ion Transport

All of the problems discussed so far pertain to static or equilibrium solu-
tions of partial differential equations. Many problems in chemistry are none-
quilibrium in nature, however, and here we discuss briefly one approximate
means of modeling transport (the PNP theory),4,19,150 and techniques used
for solving the relevant equations with MG methods. The underlying equa-
tions first involve solution of the diffusion equation in the presence of an exter-
nal potential, and then solution of the Poisson equation to generate a new
potential. The two equations must be solved repeatedly—one equation affects
the other. If the transport process is steady state (i. e., the particle densities do
not change with time), the problem can then be recast as two Poisson-type
equations that must be solved self-consistently. The nonlinearity arises from
the coupling of the two equations. Typical applications would include the
study of ion transport through a semiconductor device or through an ion chan-
nel in biology.

The conservation law for the ion transport is

qrðr; tÞ
qt

¼ �r � jðr; tÞ ½51�

where rðr; tÞ is the particle number density, and jðr; tÞ is the current. There is a
conservation equation for each of the chemical species, but we omit those
labels here. The diffusion (or Smoluchowski) equation results from the
assumption that the particles move in a medium where their motion is rapidly
damped and thermalized;151 this is the Brownian motion assumption. Then

jðr; tÞ ¼ DðrÞ½rrðr; tÞ þ brfðrÞrðr; tÞ� ½52a�
¼ DðrÞ exp½�bfðrÞ�r exp½bfðrÞ�rðr; tÞ ½52b�

250 Real-Space and Multigrid Methods in Computational Chemistry



A particle charge of 1 has been assumed here. Three regimes for this equation are
possible. First, if there is no current ½jðr; tÞ ¼ 0�, Eq. [52] along with the Poisson
equation [which determines the potential fðrÞ] lead to the PB equation; this is
the equilibrium situation. Second, if the particle densities are not changing
[rðr; tÞ ¼ constant], the steady-state (Nernst–Planck) case is obtained:

r � jðr; tÞ ¼ 0 ½53�

By insertion of Eq. [52b] for jðr; tÞ into this equation, it is easy to see that a
Poisson-type equation is obtained (actually a Laplace equation, with the rhs
equal to zero). If the diffusion coefficient is a constant over the domain,
then that variable drops out. Notice that, in Eq. [52b], an effective ‘‘dielectric
constant’’ [expð�bfðrÞÞ] appears, and this expression can vary over orders of
magnitude due to large variations in the potential. Finally, if we seek a solu-
tion to the time-dependent problem, we must solve the full Smoluchowski
equation iteratively. The particle density then depends explicitly on time.

The well-known PNP transport equations correspond to the steady-state
case. Any transients are assumed to have died out, so the particle number den-
sities are constant; transport still occurs in a way that maintains those constant
particle densities. The PNP-type equations have found wide application in
semiconductor physics152 and more recently in ion channel biophysics. A
recent study has moved beyond the steady-state regime to examine real-time
transport related to enzyme kinetics.153

At the PNP level, our group has developed an efficient FAS-MG solver
for the coupled equations, and we found that the choice of relaxation and
interpolation schemes plays a crucial role in stability and efficiency. The Pois-
son part of the problem is standard and requires no special considerations. The
Nernst–Planck part, however, contains strongly varying functions (as dis-
cussed above), and this is where focus on the relaxation and interpolation
operations is required.

The Laplace equation for the diffusion part of the PNP equations (for
one of the ionic species) can be written as

r½yðrÞrcðrÞ� ¼ 0 ½54�

where

yðrÞ ¼ exp½�bzfðrÞ� ½55�

and

cðrÞ ¼ exp½bzfðrÞ�rðr; tÞ ½56�
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The particle charge z has been added to show that these functions depend
strongly on the charge. The equation is discretized at the point ri by employing
Gauss’s law for a small cube of volume V ¼ h3, where h is the grid spacing:

V

h

X6
J¼1

1
2½yðri þ hjÞ þ yðriÞ� cðri þ hjÞ � cðriÞ

h

� �
¼ 0 ½57�

where the vectors j are directed to the six faces of the cube. The right-hand side
is not zero on coarser levels in an FAS solver due to the defect correction. If Eq.
[55] and [56] are substituted into Eq. [57], and the resulting equation solved
for the density, the following expression is obtained:

rðriÞ ¼

P6
j¼1

1þ exp
z

kT
ðfðri þ hjÞ � fðriÞÞ

n oh i
rðri þ hjÞ

P6
j¼1

1þ exp � z

kT
ðfðri þ hjÞ � fðriÞÞ

n oh i ½58�

This formula involves only the exponential of differences of the potential
(between neighboring grid points), and thus it is relatively well behaved. So
long as the potential is relatively smooth, a further approximation can be
made:

rðriÞ ¼

P6
j¼1

1þ z

2kT
ðfðri þ hjÞ � fðriÞÞ

h i
rðri þ hjÞ

P6
j¼1

1� z

2kT
ðfðri þ hjÞ � fðriÞÞ

h i ½59�

Recall that a term for the defect correction must be added to the numerator for
coarse-grid iterations in an FAS V-cycle. On the finer grids, Eq. [59] works
well since the potential does not vary much between grid points. On coarser
grids, however, the linearization may not be feasible, and use of Eq. [58] may
be necessary instead (this, of course, depends on the actual physical problem
being examined). For the steady-state case, Eqs. [58] and [59] are also possible
choices for the interpolation operator. Successive overrelaxation (SOR) was
utilized by us for the relaxation steps, and the old and new charge densities
were mixed with a weighting factor during the self-consistent updates to
ensure stability.

The above-described algorithm was developed and tested successfully on
several simple model systems. The method was further tested on the more
challenging gramicidin A channel; our results correspond well with the pub-
lished results in Refs. 154 and 155. The main conclusion from our work is
that the FAS-MG approach leads to one order-of-magnitude improvement in

252 Real-Space and Multigrid Methods in Computational Chemistry



the convergence rate relative to SOR on a single level. The code is available
upon request.156

SOME ADVICE ON WRITING MULTIGRID SOLVERS

It may be helpful to share a few lessons we have learned in writing grid-
based codes. The first advice is to start with very simple problems; a good
place to start in fact is with the Poisson equation in one dimension, with a
finite domain (see Fig. 5). The potential can be fixed at 0 on the edges of
the domain, and if a single-point charge is placed somewhere in the domain,
the solution fðxÞ is in the shape of a V (oriented normally or upside down
depending on the charge). The first step is to write a relaxation code and
test it on a modest-sized domain: say 65 grid points including the boundary
points. The relaxations will converge to the exact numerical answer rather
quickly. (Hundreds or even thousands of iterations may be required but,
with such a small number of grid points, the calculation is, nonetheless, fast.)

There are two measures of error in a numerical grid solution.108 One is
the error between the current approximation on the grid and the exact grid
result. That difference is a measure of the progress to the numerical solution.
The other error measure is the difference between the exact numerical solution
and the analytical solution (where that exists). There is no reason to converge
the numerical solution beyond the point where the first error is smaller than
the second. It is useful at the initial stages, however, to make sure the grid
equations are correct and the code is error free by continuing iterations until
machine precision zero is obtained for the residual.

It is then best to write a two-level MG-FAS code. This involves writing
new routines for calculation of the defect correction and the interpolation and
restriction operations. For the Poisson problem, if Gauss–Seidel iteration is
employed on each level, and only a few relaxations are performed, the residual
should decrease by roughly one order of magnitude per full V-cycle. With only
two levels, the residual reduction will likely be smaller than this theoretical
expectation. It is recommended to allow for repeated V-cycles as in Figure 4
to test whether the code can converge the residual to machine precision zero.
Once a two-level code is written, most of the important steps are in place, and
it is easy to go to many levels. As discussed earlier, an additional term is
required in the defect correction for levels two or more removed from the fin-
est level. For the Poisson problem, it is good to use a coarsest grid with only
one central point.

One key recommendation for writing MG codes is to make the code as
modular as possible, with separate routines for each operation. Once relaxation,
restriction, defect correction, and interpolation codes are developed, these can
be used repeatedly for a wide range of problems. Also, preplanning and organi-
zation before starting to write the code can save a great deal of time and effort.
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After successfully writing a one-dimensional Poisson code, the next step is
to move to two or three dimensions. A good model problem is to solve the three-
dimensional Poisson equation for a single charge at the center of the domain.
The boundary values for the potential can be set to the analytical 1=r values
and fixed. The numerical solution is finite at the origin since the charge is
smeared over the grid volume h3; the computed solution approaches the 1=r
potential quickly as we move away from the origin, however, even with a sec-
ond-order numerical approximation for the Laplacian. At any rate, once you
have a working three-dimensional solver for this problem, your Poisson code
is ready to go for general problems.

A next stage might be to adapt the Poisson code to run on a parallel clus-
ter using Message Passing Interface (MPI) coding. A first step here is to parti-
tion the fine-scale domain into subdomains; the communication between the
subdomains is limited to the boundary areas. If higher order Laplacians are
used, however, the communication overhead increases.

Eigenvalue problems present a higher level of complexity. We recom-
mend going back to one dimension when starting to write an eigenvalue
code following the algorithm of Brandt, McCormick, and Ruge.106 Additional
routines are required to enforce wave function constraints (Gram–Schmidt
orthogonalization, Ritz projection, etc.). The one-dimensional harmonic oscil-
lator is a good model problem on which to work initially. Remember that the
number of coarse levels can be limited—the coarsest level must still have
enough resolution to represent, at least partially, the oscillations in the eigen-
function corresponding to the highest eigenvalue.

One issue encountered repeatedly by the author is the treatment of bound-
aries. On several occasions, the solver apparently worked, but then stalled at
some finite residual. Almost invariably, that stalling was traced back to a slight
error on the boundaries in one of the routines (restriction, interpolation, relaxa-
tion, etc). So a word of warning is: If the solver stalls before complete conver-
gence, look first at the boundaries and how they have been handled in the code!

The author has found several basic sources to be instructive, especially in
the early stages of learning about multigrid techniques. This is strictly a perso-
nal bias, but the book by Briggs, Henson, and MeCormick105 and the early
review studies by Brandt107,108 have been particularly helpful and are recom-
mended. They lay out both the theory and applications in clear language and
are less mathematically oriented than some other multigrid sources.

APPLICATIONS OF MULTIGRID METHODS
IN CHEMISTRY, BIOPHYSICS, AND MATERIALS
NANOSCIENCE

In this section, we discuss recent progress in algorithms and some case
studies of the application of real-space and MG methods in computational
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chemistry. Because the applications have covered a wide range of topics over the
last decade, this section cannot review the whole field. Rather, some representa-
tive examples will be considered from the electronic structure, electrostatics, and
transport areas. The focus will be onmethods that utilizeMG techniques in con-
junction with real-space representations, but several of the publications dis-
cussed have employed alternative real-space techniques for solving the
eigenvalue (and/or total energy minimization), electrostatic, and transport pro-
blems.

Electronic Structure

In June of 2005 a CECAM workshop was held in Lyon, France, on the
topics of real-space, embedding, and linear-scaling techniques for electronic
structure. A special issue of Physica Status Solidi B157 is devoted to the proceed-
ings of that meeting, and several review articles appear there that thoroughly
cover current methods development activities and applications. Accordingly,
that is a good place to start when entering the literature of real-space methods
for electronic structure. Another review covers earlier developments in the
field,58 and a recent book provides an excellent introduction to real-space meth-
ods applied to nanostructure modeling.158

The initial stages of real-space methods development focused on the
underlying representations (FD and FE) and test studies on small sys-
tems59,63,159–163 (e.g., diatomic molecules) to determine the accuracy of
the methods, convergence with approximation order, and the rate of con-
vergence to the exact numerical result as a function of the number of self-
consistency iterations. Here we discuss the substantial progress over the last
several years, which has centered on linear-scaling algorithms, alternative
representations, and applications to large systems at the nanoscale. The
review will be organized based on the methods of representation: finite dif-
ferences, finite elements, and other approaches (such as wavelets, atomic
orbitals, etc.).

In the discussion to follow, we note the difference between solving the
eigenvalue problem and minimizing the total electronic energy in some orbital
or density matrix representation. This distinction is important for labeling the
various algorithms. If we solve the Kohn–Sham equations of DFT as an eigen-
value problem in real space, the wave functions must satisfy restrictions (as
discussed above), namely they cover the whole physical domain and they
must be normalized and orthogonal since they are the eigenfunctions of a Her-
mitian operator. Given those restrictions, the scaling of any real-space numer-
ical method must go formally as cq2Ng, where c is a constant prefactor, q is
the number of eigenfunctions (typically equal to Ne=2), and Ng is the number
of grid points in the domain. With specialized techniques (below), this scaling
may be effectively reduced to cqNg, which corresponds to the cost of updating
all the wave functions on the grid.
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Enforcing some localization constraint on the solved-for orbitals leads to
a different kind of problem than the eigenvalue problem. The total energy can
be expressed in terms of the localized orbitals, and then solving the electronic
structure problem corresponds to minimizing that total energy with respect to
variations of the values of the functions on the grid. Often the localized orbi-
tals are allowed to be nonorthogonal. So for the present discussion, the rele-
vant definitions are: (1) wave functions or eigenfunctions are solutions to the
Kohn–Sham system of equations; they possess the properties of normalization
and orthogonality, and they span the whole physical domain, and (2) orbitals
may be localized functions on the grid that are used to represent the total elec-
tronic energy. They are often used to construct the density matrix. For case 2
we do not solve the eigenvalue problem in its standard form. Another common
term from quantum chemistry is basis function; basis functions are used to
‘‘build up’’ the eigenfunctions or orbitals from simpler functions. The basis
functions could be finite elements, Gaussian functions, or atomic-like func-
tions. The FD method is not a basis function method since it results from a
Taylor expansion of the function about a grid point.

The FD representation is the simplest approach and is thus the easiest to
implement in MG solvers. It leads to a highly structured and banded Hamil-
tonian matrix, as can be inferred from Eq. [13] for the Poisson problem. That
highly structured form is helpful when passing functions between grids of dif-
ferent resolution, which makes MG code development more straightforward.
Several early works in real-space electronic structure employed FD representa-
tions, usually using high-order forms.59–61,159,160,163 The high-order FD repre-
sentation can yield accurate DFT results on grids with reasonable spacings
(roughly 0.2–0.3 au).

After initial testing on small systems, Chelikowsky’s group extended
their real-space code (now called PARSEC) for a wide range of challenging
applications.164 The applications include quantum dots, semiconductors,
nanowires, spin polarization, and molecular dynamics to determine photoelec-
tron spectra, metal clusters, and time-dependent DFT (TDDFT) calculations
for excited-state properties. PARSEC calculations have been performed on sys-
tems with more than 10,000 atoms. The PARSEC code does not utilize MG
methods but rather employs Chebyshev-filtered subspace acceleration165,166

and other efficient techniques167 during the iterative solution process. When
possible, symmetries may be exploited to reduce the numbers of atoms treated
explicitly.

Two of the first efforts to adapt MG methods for DFT calculations were
made by the groups of Bernholc60,61,163 and Beck.58,85,115,159–162 The method
developed by Briggs, Sullivan, and Bernholc60 employed an alternative FD
representation called the Mehrstellen discretization. In this discretization,
both the kinetic and potential portions contain off-diagonal contributions in
the real-space Hamiltonian, as opposed to the standard high-order FD repre-
sentation, where the kinetic energy piece contains off-diagonal terms, but the
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potential is diagonal. The advantage of the Mehrstellen form is that the spatial
range of the kinetic or potential pieces is smaller than that for the correspond-
ing high-order form; this allows for lower communication overhead in a par-
allel implementation. A disadvantage is that more multiplications are required
to update an orbital value at a grid point relative to the same order in the high-
order FD form.58 The MG algorithm of Ref. 60 leads to a significant efficiency
gain relative to iterations on a single level, but the eigenvalue problem was lin-
earized during the MG V-cycles. The method in this original work was applied
to the study of several large systems, including 64-atom Si and diamond super-
cells for testing purposes. A similar algorithm was developed by Ancilotto,
Blandin and Toigo.168

Iyer, Merrick, and Beck utilized a high-order FD representation and first
developed a one-way multiple-grid approach.159 A significant acceleration in
the solution process was found proceeding from coarse to fine grids. Some resi-
dual stalling occurred, however. Lee, Kim, and Martin169 proposed a related
one-way multiple-level approach. While these methods accelerate the solution
process, the earlier discussion of the FAS method helps to explain why this is
not a true MG solver. Imagine there are only two levels, and iterations are per-
formed on the coarser level until the problem is nearly converged. The pro-
blem is then interpolated to the finest level and iterations are performed
there. The coarse-level processing removes a significant fraction of the long-
wavelength errors, but not all of them. One way to look at this is that the initial
coarse iterations are performedwith no defect correction from a finer level. Even
if the exact solution is obtained on the coarse level, residual errors remain on the
finest level that are due to the neglect of the defect correction (which does not
exist until the finest level is reached and iterations are performed there). Thus,
true MG efficiency can only be obtained with V-cycle processes as displayed in
Figures 4–6. In subsequent work, Wang and Beck115 adapted the nonlinear FAS
eigenvalue method of Brandt, McCormick, and Ruge106 to the Kohn–Sham
DFT problem. Calculations were performed on simple atomic and diatomic
molecular problems at the all-electron level, and excellent convergence rates
were observed in relation to linearized MG approaches.

Fattebert and Bernholc90 developed a near-linear scaling approach by
minimizing the total energy represented with localized nonorthogonal orbitals.
Multiscale preconditioning was used to accelerate the solution process. Loca-
lization removes the computational overhead of orthogonalizing all of the
eigenfunctions, but some N3

e operations remain due to required solution of
a generalized eigenvalue problem and inversion of an overlap matrix. Those
cubic-scaling operations are only of the form q3, however, so for modest-sized
systems they do not dominate, and near-linear scaling is observed. The method
was applied initially to electronic structure calculations on the C60 molecule
and carbon nanotubes. Feng and Beck127 generalized the Fatterbert–Bernholc
algorithm by deriving the nonlinear FAS formulation for the same set of equa-
tions. The performance of the FAS algorithm was tested on convergence rates
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for benzene, C20, and C60. Further applications of the linear-scaling approach,
including electron transport studies, are described in a recent review of nanos-
tructure modeling by Bernholc et al.170 Fattebert and Gygi128,171–174 have
extended the localized orbital algorithm of Ref. 90 to molecular dynamics
simulations of large systems, including Si, disordered dense hydrogen, and
liquid water.

As another route to lower the effective scaling of traditional eigenvalue
solvers, Costiner and Ta’asan117 took the FAS eigenvalue method106 a step
further by moving the expensive orthogonalization and Ritz projection steps
to coarse levels. Their work was discussed above briefly. A general lesson
from the FAS ‘‘philosophy’’ is that global constraints or other global opera-
tions (involving integrals over the whole physical domain) can be processed
efficiently on coarse levels without destroying the convergence of the algo-
rithm. Wijesekera, Feng, and Beck118 adapted the Costiner–Ta’asan method
to DFT and found that, while the algorithm converges nicely for highly sym-
metric systems with clear eigenvalue structure in the spectrum, it failed to
converge for larger DFT problems with less symmetry. This failure is linked
to harsher and less symmetric potentials in the DFT problem relative to the
model potentials in Refs. 116 and 117. In a recent study,119 the convergence
of the algorithm was restored by performing Ritz projections for clusters of
eigenfunctions on the finest level. The effective scaling of the algorithm is qNg

for medium-sized systems (cubic scaling will take over for very large systems).
Convergence rates were tested for benzene, benzene dithiol, C20, and several
monomeric and dimeric amino acids. While this method does not scale line-
arly (since the eigenfunctions span the whole physical domain), it converges
fully to the exact numerial grid result. Methods that truncate the orbitals and/
or the density matrix inevitably throw away some physical information,
which can lead to stalling in the energy convergence at values above the exact
grid result.

One other aspect of the nonlinear FAS approach for self-consistent elec-
tronic structure deserves comment. When all the eigenfunctions and eigenva-
lues are updated on coarse levels, as in the FAS method, it is also possible to
update the effective potential simultaneously there116 rather than cycling back
and forth between the eigenvalue problem and generation of the effective
potential (which is typically done in traditional electronic structure methods).
This is potentially a very attractive feature of the multiscale approach. It is a
common problem for instabilities to arise in self-consistent electronic structure
calculations. This is often due to charge sloshing56,57 in large systems, where
the electron density can undergo large oscillations during the self-consistency
iterations. Mixing of the old and new charge densities can eliminate that
problem. Other forms of charge preconditioning can also help.112 We have
found in our own work that the multiscale approach, by handling the long-
wavelength modes of the error on coarse grids, can eliminate a significant
amount of the charge-sloshing problem. Wang et al.120 and Wijesekera,
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Feng, and Beck119 have developed MG methods that allow for the simulta-
neous update of the potential on coarse levels. Wang et al.120 found rapid con-
vergence for a method in which the charge density and resulting potential were
updated on coarse levels. Wijesekera, Feng, and Beck employed the simulta-
neous algorithm proposed by Costiner and Ta’asan but did not observe a sig-
nificant efficiency gain in relation to the sequential approach. This topic
deserves further exploration for large-scale calculations.

There have been several other advances in real-space FD methodology.
The Multigrid Instead of k-Space (MIKA) project has developed several var-
iants of real-space solvers, including FD representations and MG methods.
The review article by Torsti et al.73 discusses recent algorithm development
work in that group thorougly; here we just mention their large-scale applica-
tions concerning quantum dots, quantum Hall effects, surface nanostructures,
positron interactions with matter, all-electron finite elements, electron trans-
port through nanodevices, and new wavelet algorithms. Hirose, Ono, and
co-workers have developed alternative large-scale (order-Ne) FD methods
for modeling nanostructures158,175,176 and have applied these methods to
study electron transport through sodium bulk/wire contacts and C60 bridges.
They have also proposed a ‘‘double-grid’’ technique for efficient pseudopoten-
tial calculations. Hoshi and Fujiwara177–179 have developed linear-scaling FD
methods and, more recently, highly efficient numerical schemes for simulating
nanostructure processes.

One advantage of real-space calculations is the ability to place domains of
higher resolution in localized regions of space84,85 without sacrificing algorithm
efficiency. This is particularly difficult to accomplish in the context of plane-wave
calculations due to their nonlocality. As an alternative to placing a localizedmesh
refinement at a specific locationona coarsermesh,84,85 several groups have devel-
opedmethods for curving the grids to generate higher resolution near nuclei.87,88

It is sensible to have higher resolution near the nuclear locations because, even
with pseudopotentials to remove the core electrons, the potential varies most
rapidly there. The grid-curving methods have been found to enhance accuracy
without a large gain in computational cost. Two potential disadvantages of these
methods are that the Laplacian operator can become less banded relative to FD
discretization on a Cartesian grid, and the grid curving transformation can be
rather nonlocal (see the grid pictures in Ref. 88). These drawbacks appear to
have been enough to limit the further development of the grid curving
approaches. Local refinements embedded in coarser domains, which maintain
the same Cartesian structure, are likely a better alternative.

An ambitious goal is to model materials at the all-electron level. Typi-
cally, for large-scale materials calculations in DFT, the core electrons are
removed and replaced by a nonlocal pseuodopotential. Mortensen, Hansen,
and Jacobsen180 have taken the first steps to perform all-electron DFT calcula-
tions with FD difference representations and MG acceleration. They employ
the projection augmented wave method in the frozen-core approximation.
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Their code is termed Gpaw, and their computational method was tested on 20
small-molecule examples and bulk-aluminum solids.

The FD representation and MG methods of solution have found applica-
tion in other related areas as well. Schmid et al.181,182 developed a Car–Parri-
nello scheme for updating the electron wave functions, computing forces, and
moving the nuclei in a molecular dynamics simulation. In this algorithm, MG
methods are used for solving the Poisson equation. Kümmel183 has employed
MG methods to solve orbital-dependent DFT problems, namely the optimized
effective-potential (OEP) approach. The OEP method addresses the problem
of self-interaction, which occurs in DFT formulations. FD representations
have found wide application in time-dependent DFT (TDDFT) calculations,
yielding accurate electronic excitation energies for complex systems. Besides
the PARSEC code164 discussed above, the octopus code184 developed by
Castro et al. is largely centered around TDDFT methodology for finite or per-
iodic systems. The real-space real-time grid propagation scheme of Yabana
and Bertsch185 can be applied to highly nonlinear response properties of mate-
rials. Finally, novel FD kinetic energy representations have been developed to
yield better accuracy and to overcome the nonvariational character of the stan-
dard FD representation.186–189

A great deal of progress has been made in recent years in developing FE
methods for large-scale DFT calculations. That progress has been reviewed
thoroughly by Pask and Sterne.62 Their review also presents several applica-
tions to problems such as Si and GaAs crystals and positron distributions
in the vicinity of a Cu precipitate in Fe. The positron study involved the com-
putation of a single eigenstate (for the positron) moving in the potential of
5488 atoms. In the FE method, a local polynomial basis set is utilized to repre-
sent the wave functions or orbitals. A more general but related ‘‘blip-function’’
representation has been employed in the CONQUEST code.112,190 That repre-
sentation allows for the utilization of nonpolynomial, yet still near-local, basis
functions. As discussed above, the resulting matrix representations of the FD
and FE methods are quite similar, however, reflecting the real-space banded-
ness of the Laplacian and/or Hamiltonian. Moreover, the same length-scale
preconditioning issues arise for both methods.102

The CONQUEST code112 has been developed with linear-scaling appli-
cations in mind for large systems. The underlying algorithm is thus formulated
in a density matrix representation, and the orbitals are truncated in space to
utilize the physical ‘‘nearsightedness’’ condition for insulators. Methods for
computing forces on nuclei during molecular dynamics propagation have
been incorporated. This computational approach has been tested on large Si
crystals (512 atoms) and other related semiconductor systems. Reference
112 presents numerical results for a 23,000-atom system consisting of a Ge
hut on top of a Si(001) crystal. The CONQUEST code presently allows for
the use of both blip-function and localized atomic-orbital bases. The latter
approach reduces the size of the basis significantly but can lead to other basis
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set convergence issues; a similar strategy has been employed in the SIESTA
code (below).191–193 When comparing the various codes and sizes of applica-
tions, it is important to remember that different systems examined can lead to
very different grid size requirements; for example, O atoms may require a grid
spacing three times smaller than Si atoms due to the harsher pseudopotential
near the O nucleus, and this, in turn, implies 27 times more grid points.

Tsuchida and Tsukada have developed an adaptive FE algorithm for
large-scale electronic structure calculations.194–196 They utilize a three-dimen-
sional cubic Hermite basis to represent the electron orbitals and have extended
their method to linear-scaling complexity.197 MG techniques were employed
in the solution of the Poisson problem, and accurate forces suitable for mole-
cular dynamics simulations were computed. The method was tested on dia-
mond and cubic BN lattices and the C60 molecule. The FE code has also
been applied to simulate liquid formamide at the ab initio level.196 Those
simulations were used to assess the accuracy of previous simulations using
empirical force fields. The current version of the Tsuchida–Tsukada code is
called FEMTECK;197 this code incorporates their recently developed linear-
scaling technology.

The MIKA project has developed FE solvers in addition to FD methods.73

The FE portion of their code is based on the Elmer package. The p-element basis
employed is based on underlying Legendre polynomials. It is pointed out in Ref.
73 that high-order polynomials are better suited for smooth functions. Near a
nucleus, for example, where the wave function varies rapidly, it is better to use
lower order elements. TheMIKA project FE code has been tested successfully on
small-to-medium-sized molecular cases. More recently it has been applied to
examine electron currents through nanostructures.198

In other FE work, the Kaxiras199 and Vashishta200,201 groups have devel-
oped multiscale methods that seamlessly link a central ab initio DFT region with
coarser classical molecular dynamics levels and terminate with a continuum FE
domain. These new algorithms allow for the accurate modeling of a central
atomic resolution domain while still incorporating forces from more distant
regions treated at a continuum mechanics level; crucial applications of this
kind of work are stress distributions and the propagation of cracks through
solids. Finally, Yamakawa and Hyodo202 have developed a hybrid Gaussian/
FE mixed basis for all-electron DFT calculations, and the new method was suc-
cessfully tested on several small-molecule cases. The use of Gaussians for the
core electrons allows for a coarser FE grid for the valence electrons.

We complete this section with a listing of other algorithmic develop-
ments in real-space electronic structure. As mentioned above, the PARSEC
code has incorporated alternative techniques for accelerating the solution of
the eigenvalue problem based on Chebyshev-filtered subspace methods,165,166

thus circumventing the need for multiscale methods. Jordan and Mazziotti167

have developed new spectral difference methods for real-space electronic
structure that can yield the same accuracies as the FD representation with
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less computational work. These techniques have been incorporated in the
PARSEC and HARES codes. High-order evolution operator forms and collec-
tive approximations for response can enhance the convergence to the exact
numerical solution in DFT calculations significantly;203,204 these new methods
lead to at least one order-of-magnitude improvement in convergence rates
relative to second-order schemes.

Several groups have developed linear-scaling approaches that generally
rely on the spatial localization of the density matrix. Some of those algorithms
have been discussed above in relation to particular applications: CON-
QUEST,112 MGMol (Fattebert),128,174 our own FAS solver,127 MIKA,73 Hoshi
andFujiwara’s code,177 FEMTECK,197 andOnoandHirose’s code.158Vashishta
and co-workers205,206 have developed a divide-and-conquer/cellular decomposi-
tion algorithm for large-scale, linear-scaling DFT. Other linear-scaling codes
include the SIESTA191–193 and ONETEP207 programs. SIESTA utilizes a loca-
lized, numerical atomic-orbital basis, as do the Seijo–Barandiaran Mosaico208

and Ozaki OpenMX codes,209,210 while ONETEP employs plane-wave ideas to
generatea localizedpsincbasis.Thesemethods incorporatemixturesof real-space
and alternative representations. Other real-space representations based on
Lagrange functions71,72 or discrete variable representations (DVRs)68–70,211,212

appear to offer advantages over the FD and FEmethods. Linear-scalingGaussian
codes have also been developed.123–125 Earlier linear-scaling developments are
thoroughly summarized by Goedecker.92 Applications of linear-scaling codes to
very large problems have appeared recently.206

Real-space methods have found recent application in QM/MM methods,
which couple central quantum regions with more distant molecular mechanics
domains.213,214 Wavelet applications to electronic structure are at an earlier
stage of development than are the methods discussed here, but they continue
to hold a great deal of promise due to their inherent multiscale nature. Several
recent studies suggest that wavelets will find wide application in future electro-
nic structure codes.73–80,82,83

Electrostatics

Real-space numerical solutions to problems in electrostatics have
been a predominant theme in biochemistry and biophysics for some
time.129–131,133,215 In condensed-matter physics, on the other hand, FFT
methods for periodic systems have dominated electrostatic calculations.56

One reason for this difference is that computations in chemical and biophy-
sical electrostatics typically focus on large, but finite, molecules bathed in a
solution. Thus, periodic boundary conditions are often not appropriate.
Also, increased resolution near molecular surfaces is much easier to enact
with a real-space approach. The early biophysics computational work
focused on solving the PB equation for solvation free energies of molecules
and ions. Recent efforts have been directed at more efficient solvers and
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applications to large-scale systems.58,129,134 We reiterate here that continuum
electrostatic methods can yield insights into solvation phenomena, but care
should be taken in applying these methods because they do not account for
ion correlations, finite ion sizes, and specific interactions between ions and
solvent, all of which can be important for detailed free energy studies. (MG
methods have been developed to go beyond the mean-field PB level of theory
while still maintaining the grid representation.135) In this section we describe
some of the recent progress in real-space electrostatic calculations. After dis-
cussion of continuum dielectric approaches, applications of MG methods used
to compute electrostatic forces in molecular-level simulations will be pre-
sented, along with some alternative views of electrostatic calculations.

In the 1990s, several groups developed FD-MG solvers for the nonlinear
PB equation.58,142–148,216 As noted above, a significant nonlinearity arises due
to the exponential terms for the equilibrium charge densities, and these non-
linearities can lead to numerical difficulties. This earlier work has been sum-
marized, along with some of the potential pitfalls in PB calculations, by
Coalson and Beck,142 Beck,58 and Baker.134 Once a solution is obtained, the
output of a PB calculation consists of the potential over the domain, from
which the continuous charge distributions of the mobile ions can be computed.
In addition, the potential yields an approximation for the free energy of the ion
‘‘gas,’’ so potentials of mean force (PMFs) can be computed for interactions
between large biological molecules.

Significant effort has been directed at deriving more accurate, efficient,
and parallel solutions of the PB equation.217–221 Those efforts have included
adaptive FE approaches that automatically refine the mesh based on a poste-
riori error estimates from a coarse-level calculation. A discretize–solve–
estimate–refine procedure is repeated until a solution of nearly uniform quality
is obtained over the whole domain. Holst, Baker, and Wang220 found this FE
algorithm to outperform standard uniform-mesh discretization in terms of
overall accuracy and efficiency. In a second study, Baker, Holst and
Wang221 tested the algorithm on challenging electrostatics problem in biophy-
sics, namely a 36-mer DNA structure and three proteins.

Baker et al.218 subsequently extended the adaptive focusing method to
FD representations and developed a massively parallel version of their code.
The algorithm obtains linear-scaling complexity due to the use of multiscale
techniques. They applied the method to examination of electrostatic effects
in extremely large biological nanosystems including a million-atom microtu-
bule and the ribosome. Examination of the electrostatic potential profile for
the microtubule structure identified potential drug binding sites. Similarly,
the studies of the ribosome revealed interesting electrostatic effects near the
active site. The potential utility of this efficient PB solver in dynamics simula-
tions of large structures was noted.

In work simulating flexible polyelectrolyte structures with free energies
determined by solution of the PB equation, Tsonchev et al.148 modeled the
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polyelectrolytes moving in the background of an ion gas. In these Monte Carlo
simulations, the PB equation was solved for each test conformation, and the
solution produced the free energy for the conformation. The PB equation
was solved with an FD-MG algorithm (and compared with more standard
solution techniques). The most efficient method presented in Ref. 148 was
the MG algorithm coupled with a configurational-bias Monte Carlo
(CBMC) procedure for simulating the flexible chains. In that approach, a lin-
earized form of the PB potential (the Debye–Hückel potential),
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was employed to guide the generation of a new trial chain in the CBMC pro-
cess. In Eq. [60], Z is the charge, lB is a physical parameter termed the Bjer-
rum length (which is about 7 Å in water), and k is the inverse of the Debye–
Hückel screening length. Then, following chain growth, the full PB equation
was solved to yield a correction to the free energy beyond the Debye–Hückel
level. That is, the simulation moves on the free energy surface determined by
the nonlinear PB level of theory. Tens of thousands of numerical solutions of
the PB equation were required. Simulations were performed for a range of
polyelectrolyte charge densities both above and below the Manning condensa-
tion limit. This kind of simulation is similar in spirit to the Born–Oppenheimer
ab initio simulation methods discussed above in the electronic structure sec-
tion; in those methods the nuclei move based on forces determined by the
ground-state electronic surface (Hellman–Feynman forces).182 Here the
mobile ion distribution is assumed to relax quickly for a given polymer con-
figuration, and the free energy of the configuration is computed from that
equilibrium distribution. These ideas have also been applied to simulations
of large-scale colloid systems and proteins.222–225 In addition, the accuracy
of the PB approximation for ions near DNA has been addressed by Ponomar-
ev, Thayer, and Beveridge.226

While real-space grid methods have been applied to continuum dielectric
problems for some time, their utilization for computations of electrostatic
forces in molecular-level simulations is rather new. Long-ranged forces such
as the Coulomb potential present difficult challenges for molecular simulation,
and those components of molecular dynamics codes typically consume a large
fraction of the computational time. Significant efforts have been directed at
improving the speed and scaling of electrostatics calculations.

The Coulomb potential in simulations of periodic systems is typically
computed with the Ewald method.227 This clever idea from 1921 partitions
the problem into a locally screened potential and a long-range part that can
be handled with a momentum space sum. The method formally scales as
N3=2 if an optimal width parameter is used for the often-used Gaussian screen-
ing functions. The locally screened part of the potential decays rapidly with
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distance from a given nucleus, so that part of the calculation scales linearly
with system size. An alternative to the momentum-space sum is to discretize
the continuous Gaussian functions on a grid and solve the long-ranged
part with either an FFT228 or real-space MG method.229 This approach results
in N logN (FFT) or N (MG) scaling and is called the particle-mesh-Ewald
(PME) method. It is now a standard for large-scale biomolecular simulations,
and the method has been extended to include fixed and induced dipolar
interactions.230

It should be emphasized that the proper handling of long-ranged electro-
statics has been shown to be crucial for accurate free energy calculations in
molecular simulations. Errors of many kilo calories/mole can occur if the elec-
trostatic potential is artificially truncated. In addition, if proper self-energy
corrections are included, accurate free energies for charged systems can be
obtained with remarkably few solvent (water) molecules in the simulation
box.227,231,232 In fact, it makes more sense physically in modeling ion free ener-
gies to calculate those free energies for a charged system, since neutralization
with an ion of the opposite charge necessarily creates a high-concentration
environment. These issues have not been widely recognized until recently.

Finally, we list some interesting developments related to alternative
forms of electrostatics calculations. Pask and Sterne233 pointed out that real-
space electrostatic calculations for periodic systems require no information
from outside the central box. Rather, we only need the charge density within
the box and the appropriate boundary conditions to obtain the electrostatic
potential for the infinite system. These ideas were used earlier in an initial
MG effort to compute Madelung constants in crystals.160 So long as charge
balance exists inside the box, the computed potential is stable and yields an
accurate total electrostatic energy. Thus, questions about conditional summa-
tion of the 1=r potential to obtain the physical electrostatic energy are unne-
cessary. This has also been noted in the context of Ewald methods for the
simulation of liquids (See Chapter 5 in Ref. 227).

Thompson and Ayers234 presented an interesting new technique for sol-
ving the Poisson equation ‘‘inside the box.’’ The electrostatic potential is
expanded in a set of sine functions, which leads to simple analytic forms for
the Coulomb energy for systems of electrons in a box. The method is closely
related to FFT methods and scales linearly with system size. Both finite and
periodic systems were considered. Juselius and Sundholm235 developed a FE
method for electrostatics that employs Lagrange interpolating polynomials
as the basis. Rather than utilizing an iterative approach (as in the MG meth-
od), innovative procedures for direct numerical integration on the grid result
in N3=2 computational complexity. A parallel implementation was shown to
scale linearly with system size since the matrix multiplications in the innermost
loop are independent.

In the spirit of real-space methods, where all of the function updates in
solving the Poisson equation are near-local in space, Maggs and Rossetto236
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have developed a new local view of electrostatic interactions. In this approach,
the electric field is the physical quantity of interest, and the canonical partition
function is written in terms of this field. The Hamiltonian for the total electro-
static energy is then a grid sum of the field variable squared, times a constant.
The field has a value for each neighbor link on the grid. The basic algorithm
consists of solution of Gauss’s law for a starting charge configuration, provides
updates of the fields by shifts of the link variables, and updates the particle
locations using a Monte Carlo procedure. This algorithm has been modified
to overcome sampling difficulties inherent in the original approach.237–239

Transport Problems

Most of the problems considered above involved solving for the electron
distribution given a static nuclear configuration or solving for the static Pois-
son or equilibrium PB electrostatic potential. In the field of ab initio simula-
tion, the nuclei are propagated classically in real time based on forces
determined by the other nuclear locations and the electron distribution, but
the electrons are generally assumed to move on the ground-state surface. In
many important physical systems, such as molecular electronic devices and
membrane proteins, the system exists out of equilibrium, however. Thus,
we must deal with electron or ion transport. These nonequilibrium cases are
at a much earlier stage of development than their equilibrium counterparts,
both in terms of fundamental theory and numerical applications. Here we
briefly review some recent progress in modeling electron and ion transport
through nanosystems.

Modeling electron transport requires a quantum treatment, as discussed
in the introduction to this chapter. It is beyond the scope of this review to dis-
cuss details of the nonequilibrium Green’s function approach, which is the
most rigorous ab initio method at the present time.51 Suffice it to say that
the Green’s function methods allow for modeling of a molecular device
coupled to electrodes at the DFT level. Several computational methods have
been developed to carry out the transport calculations.43,44,46–48,175 Real-
space methods are ideally suited for this purpose because the physical system
involves two semi-infinite metal surfaces, with a localized molecule sand-
wiched between them. The use of a localized-orbital representation allows
for relatively easy construction of the necessary Green’s functions that enter
the Landauer theory of transport. An alternative is to set up the electrode
system as a scattering problem, with incident, penetrating, and reflected waves
that assume a plane-wave form in the bulk electrodes. A clear description of
this second approach is detailed by Hirose et al.,158 along with its relationship
to the Green’s function method (with a further discussion of the alternative
Lippman–Schwinger scattering theory240). Real-space methods have found
application in both the Green’s function and scattering wave function
approaches.
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Taylor, Guo, andWang43 utilized a localized nonorthogonal atomic-orbi-
tal (Fireball) basis to represent the states in a DFT calculation in an early effort
at an ab initio nonequilibrium Green’s function approach for electron transport.
The localized representation is crucial for the computation of the separate con-
tact and molecule Green’s functions. MG methods were used to solve the Pois-
son equation during the self-consistency cycles. Attention was focused on the
role of boundary conditions in the construction of the density matrix and
Green’s functions. The authors applied the method successfully to a carbon
nanotube–metal interface. The conductance was found to be roughly half that
for infinite perfect metallic nanotubes due to the contact resistance. In a similar
vein, localized numerical atomic orbitals developed for the SIESTA code were
employed in a self-consistent Green’s function method for transport (TranSIES-
TA);44,45 the method was applied to carbon and gold nanowires, nanotubes, and
molecular electronic devices. Xue and Ratner46 proposed a related algorithm
based on a Gaussian basis function representation and then studied current–
voltage behavior of potential molecular electronic devices.

In terms of real-space grid calculations, Nardelli, Fattebert, and Bern-
holc48 extended the linear-scaling DFT MG method of Fattebert and Bernholc
to transport calculations. In their first application of the method, the transmis-
sion function, T(E), was computed at zero bias, which yields the linear
response conductance. The method was applied to study electron transport
through nanotubes in contact with metal surfaces, and in more recent work,
the Bernholc group extended this approach to finite-potential contacts.170 The
method has been generalized to an FAS-MG form by Feng and Beck.47 In addi-
tion, Feng and Beck explored the use of a new constrained current
approach241,242 for electron transport, which differs from the full Green’s
function method in that the current is imposed on the system and the driving
potential drop must then be computed. It was found, however, that the charge
density is invariant to a change of sign of the current, indicating that the meth-
od will always predict zero potential drop. Bokes and Godby243,244 presented
a maximum entropy theory that rationalizes this observation. Further work is
necessary to relate the constrained current/maximum entropy picture to the
Green’s function approach.

In related work, Sasaki, Ono, and Hirose developed a linear-scaling FD
code for semi-infinite systems176 that was used to examine electron transport
through atomic nanowires and, more recently, to study conduction properties
of C60 bridges. Doping with Li atoms was found to increase the conductivity
through the bridge significantly. In addition to FD representations for the elec-
tron states, FE methods have been utilized for transport calculations applied
to nanostructures.73,198 The group developing the real-space octopus
code for TDDFT calculations184 is planning applications to molecular electro-
nic transport.

We close the discussion of real-space applications in transport calcula-
tions with a brief overview of work on ion (as opposed to electron) transport.
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We discussed above solution of the PNP equations, which couple Poisson and
diffusion problems to solve for the steady-state transport.4,20 The PNP theory
is a mean-field theory where, like in the PB equation, the ions are assumed to
be pointlike and uncorrelated. In addition, the surrounding solvent is treated
as a dielectric continuum. These methods are thus adequate for studying
transport through pores that are much larger than the size of the ions, but
unsatisfactory for some of the most important ion channels in biology where
the pore size is comparable to the ion size. Nevertheless, by incorporating
physically reasonable diffusion constants and dielectric profiles, decent
results can be obtained in some cases, and if the pores are larger, accurate
results are possible.

In the field of continuum-modeled ion transport through channels,
pioneering work has been done by the Eisenberg4 and Coalson20 groups.
Kurnikova et al.245,246 first developed a numerical real-space three-
dimensional solver for the PNP equations and applied that method to
examining cation transport through the gramicidin channel. In their work,
a successive overrelaxation method (on a single grid) was employed to obtain
convergence. MGmethods can significantly accelerate the rate of convergence
to the solution, as discussed above.

More recently, Cheng et al.153 developed an FE numerical technique to
model diffusion in large biomolecular systems. Their simulations do not
assume steady-state diffusion, but rather, solve the time-dependent Smolu-
chowski equation directly; the steady-state limit may emerge as the solution
progresses. Rates for inhibitor binding to acetylcholinesterase were computed
for several ionic strengths. Electrostatic steering was found to be important.

If we want to go beyond the rather severe physical limitations of the PNP
theory, a first step is to model the transport via Brownian dynamics.11,132,247–249

Here the ions are modeled discretely, but the solvent and surroundingmacromo-
lecules are treated as dielectric continua. Additionally, when considering ion
transport through channels, the protein is typically maintained in a fixed config-
uration. Ion correlations are accounted for with this approach, however, at least
approximately. Even though it is a challenging goal tomodel ion transport at the
all-atom level, efforts are progressing on this front as well.250,251 The necessary
system size for ion channels as an example is often over 100,000 atoms, and one
ion transit event can be expected to occur on the tens of nanoseconds time scale.
To compute currents accurately, simulations approaching microseconds are
thus required.

EXISTING REAL-SPACE AND MULTIGRID CODES

Compiled here are existing electronic structure, electrostatics, and trans-
port codes that utilize real-space and MG or multiscale methods. The vitality
of this field of computational science is self-evident.
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Electronic Structure

� SIESTA: General-purpose electronic structure code. Uses localized
numerical atomic orbitals and real-space grids for computation of
Hartree and gradient-corrected exchange–correlation potentials. Linear-
scaling capabilities. Can perform ab initio molecular dynamics simula-
tions. Available: http://www.uam.es/departamentos/ciencias/fismateriac/
siesta/. The Mosaico code has been implemented in the SIESTA package.

� MIKA: Real-space MG code. Recent developments in the MIKA code
and affiliated methodology are thoroughly discussed by Torsti et al.73

Available: http://www.csc.fi/physics/mika.

� ONETEP: Plane-wave-based method that utilizes a psinc localized/
orthogonal basis. Linear-scaling capabilities. Thorough discussion
presented by Skylaris et al.113 Available: http://www.onetep.soton.ac.uk/.

� PARSEC: High-order FD code from the Chelikowsky group. Many
applications and capabilities summarized by Kronik et al.164 Available:
http://www.ices.utexas.edu/	mtiago/parsec/index.html.

� MGmol: Real-space MG code for MD simulations developed by J.-L.
Fattebert at Lawrence Livermore National Laboratory. Available: http://
www.llnl.gov/casc/MolecularDynamics/.

� Bernholc group code: Real-space MG code with applications to a wide
range of nanosystems. Available: http://nemo.physics.ncsu.edu/	luw/.

� ACRES: Adaptive-grid real-space code from the Kaxiras group. A
modified version is called HARES. Available: http://cst-www.nrl.navy.
mil/	singh/acres/info.html.

� GPaw: All-electron real-space code using projected augmented wave
method and frozen core approximation. Available: http://www.camd.
dtu.dk/software.aspx.

� OpenMX: Linear-scaling method that utilizes variationally optimized
atomic orbitals. Available: http://www.openmx-square.org/.

� FEMTECK: Finite-element code from Tsuchida’s group. Linear-scaling
capabilities. Available: http://unit.aist.go.jp/rics/research-e.html.

� MADNESS: Wavelet code from Oak Ridge National Laboratory.
Available: http://www.csm.ornl.gov/ccsg/html/projects/madness.html.

� octopus: Real-space code specifically directed at time-dependent DFT
(TDDFT) calculations. Available: http://www.tddft.org/programs/octo-
pus.

Electrostatics

� APBS: Adaptive PB solver developed by Holst/Baker/McCammon et al.
FE methods with adaptivity to solve PB equation for biomolecular
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complexes. Also time-dependent diffusional processes (below). Available:
http://apbs.sourceforge.net/.

� UHBD: Solves the linearized or nonlinear PB equation. Available: http://
mccammon.ucsd.edu/uhbd.html.

� Charmm PB: APBS codes utilized in the CHARMM package. Available:
http://biowulf.nih.gov/apps/charmm/charmmdoc/c33b2/apbs.html, or
FD approach http://biowulf.nih.gov/apps/charmm/charmmdoc/c33b2/
pbeq.html.

� DelPhi: Code to solve the linearized PB equation. Available: http://wiki.
c2b2.columbia.edu/honiglab_public/index.php/Main_Page.

� PME in AMBER: Sagui’s group has contributed MG solvers to the PME
forcefields. Available: http://amber.scripps.edu/.

Transport

� APBS (above): Models for ion and large biomolecule transport.

� PNP solver: Beck group MG-PNP solver for ion transport is freely
available on request. Contact thomas.beck@uc.edu.

� TranSIESTA: General-purpose electronic structure code (above),
adapted to electron transport calculations.

� MIKA: General-purpose real-space electronic structure code (above),
adapted to electron transport calculations.

� octopus: Real-space electronic structure code (above) with emphasis
on TDDFT and electron transport codes planned.

This list is not complete, but it should provide a good entry into available soft-
ware for real-space calculations. It is interesting to note that the real-space
field has gone from a few developmental studies to a wide range of relatively
mature codes in about 15 years.

SOME SPECULATIONS ON THE FUTURE

This last section presents a few speculations on research directions that
may be pursued in the future.

Chemistry and Physics: When Shall the Twain Meet?

Chemists are steeped in the tradition of wave functions and basis set cal-
culations.53 This mindset has come about mainly because the wave function/
orbital picture has been extremely helpful in the development of chemical
ideas. Physicists, on the other hand, have traditionally focused on periodic
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systems, convergent plane-wave expansions, and alternative statistical repre-
sentations such as the Thomas–Fermi theory for electron densities.55 It is inter-
esting that most of the recent real-space developments have come out of
academic physics groups and national laboratories around the world, with
the initial motivation often being the modeling of nanostructures. It is likely
that the real-space, localized orbital ideas will have growing influence in chem-
istry in the future since a great deal of modern chemical research is directed at
nanosystems and biological macromolecules. Sometimes it takes a decade or
more for a major shift to take hold.

Elimination of Molecular Orbitals?

As discussed above, wave functions and basis set expansions have had a
wide influence in chemistry. But long ago, Coulson suggested that quantum
chemical computations should focus instead on the one- and two-electron den-
sity matrices252 because these physical quantitites yield a much-reduced, yet
complete, description of the electronic structure. This goal has been pursued
off and on since Coulson’s comments, and there continue to be developments
in this area.253 It is likely that this way of looking at electronic structure will
have a large impact in the future, perhaps coupled with ideas from quantum
Monte Carlo methods and stochastic differential equations.254 An even more
aggressive step away from wave functions is the integral formulation of
DFT.110,255,256 While there has been significant interest in this formal theory,
and some developments of orbital-free methods,257,258 this appproach has not
reached its full potential in computational electronic structure. It is the one
approach to DFT that is truly in the spirit of the Hohenberg–Kohn theorem
because the only object that enters the theory is the physical electron density.

Larger Scale DFT, Electrostatics, and Transport

Ever-larger systems are being examined in biochemical and biophysical
research, as exemplified by studies on microtubules and the ribosome,218 and
new algorithms and more powerful massively parallel machines will propagate
this trend. In terms of increased complexity, the author believes that more and
more biological phenomena will be shown to require a quantum treatment, at
least in a local region of space. An example discussed in this chapter is the solva-
tion of anions in ion channels and in water where the polarizability is an impor-
tant physical quantity linked to the pervasive Hofmeister series that continues to
crop up in a wide array of biological and colloid systems.39 Quantum effects are
also important for studies of reaction dynamics where tunneling occurs as out-
lined by Truhlar et al. in a previous volume of this series.259 It might seem that
ever-larger computers will lead the way, but the author predicts that novel algo-
rithms and new physical ideas will ‘‘win out’’ over hardware advances in how
we model complex chemical and biological phenomena. Of course, these
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advances can occur together, and they often mutually influence each other. It
is comforting to note that several new physical ideas for solving the Poisson
equation have appeared in the last few years, and this equation and various
traditional methods of solution are as old as the hills!

Reiteration of ‘‘Why Real Space?’’

One predominant theme in this chapter is computational and physical
locality. It has been argued that the conjunction of physical localization due
to screening and computational locality resulting from real-space approaches
is the physically ‘‘preferred’’ way to proceed for large-scale modeling. That
conclusion is not likely to change in the near or even far future. Multiscale sol-
vers are required in order to overcome ‘‘critical slowing down’’ in the solution
process once this locality has been exploited. The adaptivity feature of real-
space methods (without loss of efficiency) provides another bonus. For these
reasons, it appears that real-space approaches for accurate modeling of large
systems will be a major theme in computational chemistry for years to come.

To end this tutorial, we mention a new physical theory of liquid solutions
that presents a statistical mechanical version of real-space partitioning. In this
quasi-chemical theory,227 the space around a distinguished solute is divided
into inner-shell and outer-shell domains. The final result for the solvation free
energy does not depend on the choice for the cutoff. Approximations may be
inserted once the basic theory is formulated, however, and that is where errors
may crop up in the computation of free energies. For example, a quantum che-
mical treatment can be employed for the inner-shell region, where specific inter-
actions may be strong if considering a system like a multiply charged ion in
water. The more distant regions may then be treated at a classical molecular
dynamics level or even a dielectric continuum level. The key chemical interac-
tions are modeled accurately in this way, while the more averaged distant con-
tributions are treated approximately. Accurate solvation free energies for ions
have been obtained with this theory. The important point here is that real-space
computational approaches need to be incorporated into a physically motivated
and accurate statistical mechanical theory to predict reliably the free energies
that are the driving forces for chemical processes.

ACKNOWLEDGMENTS

This research was supported by the National Science Foundation (CHE-0112322, CHE-
0709560) and the Department of Defense (Army) MURI program (DAAD19-02-1-0227). I thank
Achi Brandt, Rob Coalson, Lawrence Pratt, Michael Paulaitis, and members of my research group
for stimulating discussions and collaborations. I also thank Jean-Luc Fattebert and Eduardo Her-
nandez for reading and commenting on the manuscript prior to publication. I especially thank
Zhifeng Kuang for his contributions to the chloride channel research and to the development of
the PNP code discussed in this chapter.

272 Real-Space and Multigrid Methods in Computational Chemistry



REFERENCES

1. B. Hille, Ion Channels of Excitable Membranes, Sinauer Associates, Sunderland, 2001.

2. W. D. Stein, Channels, Carriers, and Pumps: An Introduction to Membrane Transport,
Academic, New York, 1990.

3. F. M. Ashcroft, Ion Channels and Disease, Academic, New York, 2000.

4. M. Saraniti, S. Aboud, and R. Eisenberg, in Reviews in Computational Chemistry, K. B.
Lipkowitz, T. R. Cundari, and V. J. Gillet, Eds., Wiley, Hoboken, NJ, 2006, Vol. 22, pp.
229–293. The Simulation of Ionic Charge Transport in Biological Ion Channels: An
Introduction to Numerical Methods.

5. T. J. Jentsch, I. Neagoe, and O. Scheel, Curr. Opin. Neurobiol., 15, 319–325 (2005). CLC
Chloride Channels and Transporters.

6. M. Pusch, G. Zifarelli, A. R. Murgia, A. Picollo, and E. Babini, Exp. Physiol., 91, 149–152
(2006). Channel or Transporter? The CLC Saga Continues.

7. R. Dutzler, E. B. Campbell, M. Cadene, B. T. Chait, and R. MacKinnon, Nature, 415, 287–
294 (2002). X-ray Structure of a ClC Chloride Channel at 3.0 Angstrom Reveals the
Molecular Basis of Anion Selectivity.

8. R. Dutzler, E. B. Campbell, and R. MacKinnon, Science, 300, 108–112 (2003). Gating the
Selectivity Filter in ClC Chloride Channels.

9. J. Yin, Z. Kuang, U. Mahankali, and T. L. Beck, Proteins: Struct., Func., Bioinform., 57, 414–
421 (2004). Ion Transit Pathways and Gating in ClC Chloride Channels.

10. O. Moran, S. Traverso, L. Elia, and M. Pusch, Biochemistry, 42, 5176–5185 (2003).
Molecular Modeling of p-Chlorophenoxyacetic Acid Binding to the CLC-0 Channel.

11. B. Corry, M. O’Mara, and S. H. Chung, Biophys. J., 86, 846–860 (2004). Conduction
Mechanisms of Chloride Ions in ClC-type Channels.

12. D. Bisset, B. Corry, and S. H. Chung, Biophys. J., 89, 179–186 (2005). The Fast Gating
Mechanism in ClC-0 Channels.

13. J. Cohen andK. Schulten,Biophys. J., 86, 836–845 (2004).Mechanismof Anionic Conduction
Across ClC.

14. F. L. Gervasio, M. Parrinello, M. Ceccarelli, and M. L. Klein, J. Mol. Biol., 361, 390–398
(2006). Exploring the Gating Mechanism in the ClC Chloride Channel via Metadynamics.

15. D. L. Bostick and M. L. Berkowitz, Biophys. J., 87, 1686–1696 (2004). Exterior Site
Occupancy Infers Chloride-Induced Proton Gating in a Prokaryotic Homolog of the ClC
Chloride Channel.

16. G. V. Miloshevsky and P. C. Jordan, Biophys. J., 86, 825–835 (2004). Anion Pathway and
Potential Energy Profiles Along Curvilinear Bacterial ClC Cl� Pores: Electrostatic Effects of
Charged Residues.

17. Z. Kuang, U. Mahankali, and T. L. Beck, Proteins: Struct., Funct., Bioinform., 68, 26–33
(2007). Proton Pathways and Hþ/Cl� Stoichiometry in Bacterial Chloride Transporters.

18. M. H. Cheng, A. B. Mamonov, J. W. Dukes, and R. D. Coalson, J. Phys. Chem. B, 111, 5956–
5965 (2007). Modeling the Fast Gating Mechanism in the ClC-0 Chloride Channel.

19. B. Roux, T. Allen, S. Berneche, and W. Im, Quart. Rev. Biophys., 37, 15–103 (2004).
Theoretical and Computational Models of Biological Ion Channels.

20. R. D. Coalson and M. G. Kurnikova, IEEE Trans. Nanobiosci., 4, 81–93 (2005). Poisson-
Nernst-Planck Theory Approach to the Calculation of Current through Biological Ion
Channels.

21. A. Warshel, Proc. Natl. Acad. Sci. U.S.A., 102, 1813–1814 (2005). Inverting the Selectivity of
Aquaporin 6: Gating versus Direct Electrostatic Interaction.

22. A. Burykin and A.Warshel, FEBS Lett., 570, 41–46 (2004). On the Origin of the Electrostatic
Barrier for Proton Transport in Aquaporin.

References 273



23. M. Kato, A. V. Pisliakov, and A. Warshel, Proteins: Struct., Funct., Bioinform., 64, 829–844
(2006). The Barrier for Proton Transport in Aquaporins as a Challenge for Electrostatic
Models: The Role of Protein Relaxation in Mutational Calculations.

24. A. Burykin and A. Warshel, Biophys. J., 85, 3696–3706 (2003). What Really Prevents Proton
Transport through Aquaporin? Charge Self-Energy versus Proton Wire Proposals.

25. S. Braun-Sand, A. Burykin, Z. T. Chu, and A. Warshel, J. Phys. Chem. B, 109, 583–592
(2005). Realistic Simulations of Proton Transport along the Gramicidin Channel: Demon-
strating the Importance of Solvation Effects.

26. M. Kato, A. V. Pisliakov, and A. Warshel, Proteins: Struct., Funct., Bioinform., 64, 829–844
(2006). The Barrier for Proton Transport in Aquaporins as a Challenge for Electrostatic
Models: The Role of Protein Relaxation in Mutational Calculations.

27. S. H. Chung,O. S. Anderson andV. Krishnamurthy, Eds.,BiologicalMembrane Ion Channels:
Dynamics, Structure, and Applications, Springer, New York, 2007.

28. D. A. Doyle, J. Morais Cabral, R. A. Pfuetzner, A. Kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait,
and R. MacKinnon, Science, 280, 69–77 (1998). The Structure of the Potassium Channel:
Molecular Basis of Kþ Conduction and Selectivity.

29. M. Maduke, C. Miller, and J. A. Mindell, Annu. Rev. Biophys. Biomol. Struct., 29, 411–438
(2000). A Decade of CLC Chloride Channels: Structure, Mechanism, and Many Unsettled
Questions.

30. A. Accardi and C. Miller, Nature, 427, 803–807 (2004). Secondary Active Transport
Mediated by a Prokaryotic Homologue of ClC Cl-Channels.

31. A. Accardi, S. Lobet, C. Williams, C. Miller, and R. Dutzler, J. Mol. Biol., 362, 691–699
(2006). Synergism between Halide Binding and Proton Transport in a CLC-type
Exchanger.

32. C. Miller, Nature, 440, 484–489 (2006). ClC Chloride Channels Viewed through a Trans-
porter Lens.

33. O. Scheel, A. A. Zdebik, S. Lourdel, and T. J. Jentsch,Nature, 436, 424–427 (2005). Voltage-
Dependent Electrogenic Chloride/Proton Exchange by Endosomal CLC Proteins.

34. A. Picollo andM. Pusch,Nature, 436, 420–423 (2005). Chloride/ProtonAntiporter Activity of
Mammalian CLC Proteins ClC-4 and ClC-5.

35. A. De Angeli, D. Monachello, G. Ephritikhine, J. M. Frachisse, S. Thomine, F. Gambale, and
H. Barbier-Brygoo, Nature, 442, 939–942 (2006). The Nitrate/Proton Antiporter AtCLCa
Mediates Nitrate Accumulation in Plant Vacuoles.

36. A. Accardi, M. Walden, W. Nguitragool, H. Jayaram, C. Williams, and C. Miller, J. Gen.
Physiol., 126, 563–570 (2005). Separate Ion Pathways in a Cl�=Hþ Exchanger.

37. M. Pusch, U. Ludewig, A. Rehfeldt, and T. J. Jentsch,Nature, 373, 527–531 (1995). Gating of
the Voltage-Dependent Chloride Channel CIC-0 by the Permeant Anion.

38. G. A. Voth, Acc. Chem. Res., 39, 143–150 (2006). Computer Simulation of Proton Solvation
and Transport in Aqueous and Biomolecular Systems.

39. W. Kunz, P. Lo Nostro, and B. W. Ninham, Curr. Opin. Coll. Interface Sci., 9, 1–18 (2004).
The Present State of Affairs with Hofmeister Effects.

40. P. Jungwirth, B. J. Finlayson-Pitts, and D. J. Tobias, Chem. Rev., 106, 1137–1139 (2006).
Introduction: Structure and Chemistry at Aqueous Interfaces.

41. H. I. Petrache, I. Kimchi, D. Harries, and V. A. Parsegian, J. Am. Chem. Soc., 127, 11546–
11547 (2005). Measured Depletion of Ions at the Biomembrane Interface.

42. P. Jungwirth and D. J. Tobias, Chem. Rev., 106, 1259–1281 (2006). Specific Ion Effects at the
Air/Water Interface.

43. J. Taylor, H. Guo, and J. Wang, Phys. Rev. B, 6324, 245407 (2001). Ab Initio Modeling of
Quantum Transport Properties of Molecular Electronic Devices.

44. M. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B, 65, 165401
(2002). Density-Functional Method for Nonequilibrium Electron Transport.

274 Real-Space and Multigrid Methods in Computational Chemistry



45. K. Stokbro, J. Taylor, M. Brandbyge, J. L. Mozos, and P. Ordejon, Comput. Mat. Sci., 27,
151–160 (2003). Theoretical Study of the Nonlinear Conductance of Di-thiol Benzene
Coupled to Au(111) Surfaces via Thiol and Thiolate Bonds.

46. Y. Q. Xue andM. A. Ratner, Phys. Rev. B, 68, 115406 (2003).Microscopic Study of Electrical
Transport through Individual Molecules with Metallic Contacts. I. Band Lineup, Voltage
Drop, and High-Field Transport.

47. G. G. Feng, N. Wijesekera, and T. L. Beck, IEEE Trans. Nanotech., 6, 238–244 (2007). Real-
Space Multigrid Method for Linear-Response Quantum Transport in Molecular Electronic
Devices.

48. M. B. Nardelli, J. L. Fattebert, and J. Bernholc, Phys. Rev. B, 64, 245423 (2001). O(N) Real-
Space Method for Ab Initio Quantum Transport Calculations: Application to Carbon
Nanotube-Metal Contacts.

49. M. A. Reed, C. Zhou, C. J.Muller, T. P. Burgin, and J.M. Tour, Science, 278, 252–254 (1997).
Conductance of a Molecular Junction.

50. P. Elliott, F. Furche, and K. Burke, in Reviews in Computational Chemistry, K. B. Lipkowitz
and T. R. Cundari, Eds., Wiley, Hoboken, NJ, 2009, Vol. 26, pp. 91–165. Excited States
from Time-Dependent Density Functional Theory.

51. S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cam-
bridge, UK, 1995.

52. J. B. Anderson, inReviews in Computational Chemistry, K. B. Lipkowitz andD. B. Boyd, Eds.,
Wiley-VCH, New York, 1999, Vol. 13, pp. 133–182. Quantum Monte Carlo: Atoms,
Molecules, Clusters, Liquids, and Solids.

53. A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced
Electronic Structure Theory, 1st, rev. ed., McGraw-Hill, New York, 1989.

54. N. R. Kestner and J. E. Combariza, in Reviews in Computational Chemistry, K. B. Lipkowitz
and D. B. Boyd, Eds., Wiley-VCH, New York, 1999, Vol. 13, pp. 99–132. Basis Set
Superposition Errors: Theory and Practice. See also I. N. Levine, Quantum Chemistry,
5th ed., Prentice-Hall, Upper Saddle River, NJ, 2000.

55. R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, Cambridge Uni-
versity Press, Cambridge, UK, 2004.

56. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys.,
64, 1045–1097 (1992). Iterative Minimization Techniques for Ab Initio Total-Energy
Calculations—Molecular-Dynamics and Conjugate Gradients.

57. G. Kresse and J. Furthmuller, Phys. Rev. B, 54, 11169–11186 (1996). Efficient Iterative
Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set.

58. T. L. Beck,Rev. Mod. Phys., 72, 1041–1080 (2000). Real-SpaceMesh Techniques in Density-
Functional Theory.

59. J. R. Chelikowsky, N. Troullier, and Y. Saad, Phys. Rev. Lett., 72, 1240–1243 (1994). Finite-
Difference-Pseudopotential Method—Electronic-Structure Calculations without a Basis.

60. E. L. Briggs, D. J. Sullivan, and J. Bernholc,Phys. Rev. B, 54, 14362–14375 (1996). Real-Space
Multigrid-Based Approach to Large-Scale Electronic Structure Calculations.

61. E. L. Briggs, D. J. Sullivan, and J. Bernholc, Phys. Rev. B, 52, R5471–R5474 (1995). Large-
Scale Electronic-Structure Calculations with Multigrid Acceleration.

62. J. E. Pask and P. A. Sterne, Model. Simul. Mater. Sci. Eng., 13, R71–R96 (2005). Finite
Element Methods in Ab Initio Electronic Structure Calculations.

63. S. R. White, J. W. Wilkins, and M. P. Teter, Phys. Rev. B, 39, 5819–5833 (1989). Finite-
Element Method for Electronic-Structure.

64. J. L. Fattebert, R. D. Hornung, and A. M. Wissink, J. Comput. Phys., 223, 759–773 (2007).
Finite Element Approach for Density Functional Theory Calculations on Locally-Refined
Meshes.

65. L. R. Ramdas Ram-Mohan, Finite Element and Boundary Element Applications in Quantum
Mechanics, Oxford, University Press, Oxford, UK, 2002.

References 275



66. V. D. Liseikin, Grid Generation Methods, Springer, Heidelberg, 1999.

67. I. Babuska, Ed., Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial
Differential Equations, Springer, Heidelberg, 1995.

68. H. S. Lee and M. E. Tuckerman, J. Phys. Chem. A, 110, 5549–5560 (2006). Ab Initio
Molecular Dynamics with Discrete Variable Representation Basis Sets: Techniques and
Application to Liquid Water.

69. H. S. Lee and M. E. Tuckerman, J. Chem. Phys., 125, 154507 (2006). Structure of Liquid
Water at Ambient Temperature from Ab Initio Molecular Dynamics Performed in the
Complete Basis Set Limit.

70. Y. Liu, D. A. Yarne, and M. E. Tuckerman, Phys. Rev. B, 68, 125110 (2003). Ab Initio
Molecular Dynamics Calculations with Simple, Localized, Orthonormal Real-Space Basis
Sets.

71. K. Varga and S. T. Pantelides, Phys. Stat. Sol. B, 243, 1110–1120 (2006). Lagrange-Function
Approach to Real-Space Order-N Electronic-Structure Calculations.

72. D. Baye, Phys. Stat. Sol. B, 243, 1095–1109 (2006). Lagrange-Mesh Method for Quantum-
Mechanical Problems.

73. T. Torsti, T. Eirola, J. Enkovaara, T. Hakala, P. Havu, V. Havu, T. Hoynalanmaa, J. Ignatius,
M. Lyly, I. Makkonen, T. T. Rantala, J. Ruokolainen, K. Ruotsalainen, E. Rasanen, H.
Saarikoski, and M. J. Puska, Phys. Stat. Sol. B, 243, 1016–1053 (2006). Three Real-Space
Discretization Techniques in Electronic Structure Calculations.

74. S. Goedecker and C. Chauvin, J. Theor. Comput. Chem., 2, 483–495 (2003). Combining
Multigrid and Wavelet Ideas to Construct More Efficient Multiscale Algorithms.

75. T. D. Engeness and T. A. Arias, Phys. Rev. B, 65, 165106 (2002).Multiresolution Analysis for
Efficient, High Precision All-Electron Density-Functional Calculations.

76. T. A. Arias, Rev. Mod. Phys., 71, 267–311 (1999). Multiresolution Analysis of Electronic
Structure: Semicardinal and Wavelet Bases.

77. T. Yanai, R. J. Harrison, and N. C. Handy,Mol. Phys., 103, 413–424 (2005).Multiresolution
Quantum Chemistry in Multiwavelet Bases: Time-Dependent Density Functional Theory
with Asymptotically Corrected Potentials in Local Density and Generalized Gradient
Approximations.

78. R. J. Harrison, G. I. Fann, T. Yanai, Z. T. Gan, and G. Beylkin, J. Chem. Phys., 121,
11587–11598 (2004). Multiresolution Quantum Chemistry: Basic Theory and Initial
Applications.

79. T. Yanai, G. I. Fann, Z. T. Gan, R. J. Harrison, and G. Beylkin, J. Chem. Phys., 121, 6680–
6688 (2004). Multiresolution Quantum Chemistry in Multiwavelet Bases: Hartree–Fock
Exchange.

80. T. Yanai, G. I. Fann, Z. T. Gan, R. J. Harrison, and G. Beylkin, J. Chem. Phys., 121, 2866–
2876 (2004). Multiresolution Quantum Chemistry in Multiwavelet Bases: Analytic Deri-
vatives for Hartree–Fock and Density Functional Theory.

81. R. J. Harrison and G. Beylkin, Abst. Papers Am. Chem. Soc., 225, U464–U464 (2003).
Multiresolution Quantum Chemistry in Multiwavelet Bases.

82. R. J. Harrison, G. I. Fann, T. Yanai, and G. Beylkin, Comput. Sci.—ICCS 2003, Pt Iv, Proc.,
2660, 103–110 (2003). Multiresolution Quantum Chemistry in Multiwavelet Bases.

83. R. Schneider and T.Weber,Appl. Numer.Math., 56, 1383–1396 (2006).Wavelets for Density
Matrix Computation in Electronic Structure Calculation.

84. J. L. Fattebert, J. Comput. Phys., 149, 75–94 (1999). Finite Difference Schemes and Block
Rayleigh Quotient Iteration for Electronic Structure Calculations on Composite Grids.

85. T. L. Beck, J. Comput. Chem., 20, 1731–1739 (1999). Multigrid High-Order Mesh Refine-
ment Techniques for Composite Grid Electrostatics Calculations.

86. D. Bai and A. Brandt, SIAM J. Sci. Stat. Comput., 8, 109–134 (1987). Local Mesh Refinement
Multilevel Techniques.

276 Real-Space and Multigrid Methods in Computational Chemistry



87. F. Gygi and G. Galli, Phys. Rev. B, 52, R2229–R2232 (1995). Real-Space Adaptive-Coordinate
Electronic-Structure Calculations.

88. N. A. Modine, G. Zumbach, and E. Kaxiras, Phys. Rev. B, 55, 10289–10301 (1997).
Adaptive-Coordinate Real-Space Electronic-Structure Calculations for Atoms, Molecules,
and Solids.

89. F. Gygi, Phys. Rev. B, 48, 11692–11700 (1993). Electronic-Structure Calculations in Adaptive
Coordinates.

90. J. L. Fattebert and J. Bernholc, Phys. Rev. B, 62, 1713–1722 (2000). Towards Grid-Based
O(N) Density-Functional Theory Methods: Optimized Nonorthogonal Orbitals and Multi-
grid Acceleration.

91. W. Kohn, Phys. Rev. Lett., 76, 3168–3171 (1996). Density Functional and Density Matrix
Method Scaling Linearly with the Number of Atoms.

92. S. Goedecker, Rev. Mod. Phys., 71, 1085–1123 (1999). Linear Scaling Electronic Structure
Methods.

93. R. Faller, in Reviews in Computational Chemistry, K. B. Lipkowitz and T. R. Cundari, Eds.,
Wiley, Hoboken, NJ, 2007, Vol. 23, pp. 233–262. Coarse-Grain Modeling of Polymers.

94. W. G. Noid, J. W. Chu, G. S. Ayton, and G. A. Voth, J. Phys. Chem. B, 111, 4116–4127
(2007). Multiscale Coarse-Graining and Structural Correlations: Connections to Liquid-
State Theory.

95. J. Zhou, I. F. Thorpe, S. Izvekov and G. A. Voth, Biophys. J., 92, 4289–4303 (2007). Coarse-
Grained Peptide Modeling Using a Systematic Multiscale Approach.

96. J. W. Chu, S. Izveko, and G. A. Voth, Mol. Simul., 32, 211–218 (2006). The Multiscale
Challenge for Biomolecular Systems: Coarse-Grained Modeling.

97. D. Bai and A. Brandt, in Multiscale Computational Methods in Chemistry and Physics, A.
Brandt, J. Bernholc, and K. Binder, Eds., IOS Press, Amsterdam, 2000, pp. 250–266.
Multiscale Computation of Polymer Models.

98. B. D. Reddy, Introductory Functional Analysis with Applications to BoundaryValue Problems
and Finite Elements, Springer, Heidelberg, 1998.

99. K. W. Morton and D. F. Mayers, Numerical Solution of Partial Differential Equations, 2nd
ed., Cambridge University Press, Cambridge, UK, 2005.

100. R. W. Hamming, Numerical Methods for Scientists and Engineers, Dover, New York, 1962.

101. L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics with Applications to
Chemistry, Dover, New York, 1935.

102. S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Elements, Springer,
Heidelberg, 1994.

103. T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element
Analysis, Dover, Mineola, NY, 2000.

104. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C,
2nd ed., Cambridge University Press, Cambridge, UK, 1992.

105. W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, 2nd ed., SIAM,
Philadelphia, 2000.

106. A. Brandt, S. McCormick, and J. Ruge, SIAM J. Sci. Stat. Comput., 4, 244–260 (1983).
Multigrid Algorithms for Differential Eigenproblems.

107. A. Brandt,Math. Comput., 31, 333–390 (1977). Multi-level Adaptive Solutions to Boundary-
Value Problems.

108. A. Brandt, Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics,
Gesellschaft fur Mathematik und Datenverarbeitung, Bonn, 1984.

109. W. Hackbusch, Multi-grid Methods and Applications, Springer, New York, 1985.

110. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford
University Press, New York, 1989.

References 277



111. F. M. Bickelhaupt and E. J. Baerends, in Reviews in Computational Chemistry, K. B.
Lipkowitz and D. B. Boyd, Eds., Wiley, Hoboken, NJ, 2000, Vol. 15, pp. 1–86. Kohn–
Sham Density Functional Theory: Predicting and Understanding Chemistry.

112. D. R. Bowler, R. Choudhury,M. J. Gillan, and T.Miyazaki, Phys. Stat. Sol. B, 243, 989–1000
(2006). Recent Progress with Large-Scale Ab Initio Calculations: The CONQUEST Code.

113. C. K. Skylaris, P. D. Haynes, A. A.Mostofi, andM. C. Payne, Phys. Stat. Sol. B, 243, 973–988
(2006). Implementation of Linear-Scaling PlaneWaveDensity Functional Theory on Parallel
Computers.

114. P. Dennery and A. Krzywicki, Mathematics for Physicists, Dover, Mineola, NY, 1995.

115. J. Wang and T. L. Beck, J. Chem. Phys., 112, 9223–9228 (2000). Efficient Real-Space Solution
of the Kohn–Sham Equations with Multiscale Techniques.

116. S. Costiner and S. Ta’asan, Phys. Rev. E, 52, 1181–1192 (1995). Simultaneous Multigrid
Techniques for Nonlinear Eigenvalue Problems—Solutions of the Nonlinear Schrödinger–
Poisson Eigenvalue Problem in 2 and 3 Dimensions.

117. S. Costiner and S. Ta’asan, Phys. Rev. E, 51, 3704–3717 (1995). Adaptive Multigrid
Techniques for Large-Scale Eigenvalue Problems—Solutions of the Schrödinger-Problem
in 2 and 3 Dimensions.

118. N. Wijesekera, G. G. Feng, and T. L. Beck, J. Theor. Comput. Chem., 2, 553–561 (2003).
Multiscale Algorithms for Eigenvalue Problems.

119. N. Wijesekera, G. Feng, and T. L. Beck, Phys. Rev. B, 75, 115101 (2007). Efficient Multiscale
Algorithms for Solution of Self-Consistent Eigenvalue Problems in Real Space.

120. J. Wang, Y. Wang, S. Y. Yu, and D. Kolb, J. Phys.: Cond. Matt., 17, 3701–3715 (2005).
Nonlinear Algorithm for the Solution of the Kohn–Sham Equations in Solids.

121. S. Ismail-Beigi and T. A. Arias, Phys. Rev. Lett., 82, 2127–2130 (1999). Locality of the Density
Matrix in Metals, Semiconductors, and Insulators.

122. S. Goedecker, Phys. Rev. B, 58, 3501–3502 (1998). Decay Properties of the Finite-Tempera-
ture Density Matrix in Metals.

123. V. Weber and M. Challacombe, J. Chem. Phys., 125, 104110 (2006). Parallel Algorithm for
the Computation of the Hartree-Fock Exchange Matrix: Gas Phase and Periodic Parallel
ONX.

124. A. M. N. Niklasson, V. Weber, and M. Challacombe, J. Chem. Phys., 123, 044107 (2005).
Nonorthogonal Density-Matrix Perturbation Theory.

125. S. Goedecker andG. E. Scuseria,Comput. Sci. Eng., 5, 14–21 (2003). Linear Scaling Electronic
Structure Methods in Chemistry and Physics.

126. C. Ochsenfeld, J. Kussmann, andD. S. Lambrecht, inReviews in Computational Chemistry, K.
B. Lipkowitz and T. R. Cundari, Eds., Wiley-VCH, Hoboken, NJ, 2007, Vol. 23, pp. 1–82.
Linear-Scaling Methods in Quantum Chemistry.

127. G. C. Feng and T. L. Beck, Phys. Stat. Sol. B, 243, 1054-1062 (2006). Nonlinear Multigrid
Eigenvalue Solver Utilizing Nonorthogonal Localized Orbitals.

128. J. L. Fattebert and F. Gygi,Comput. Phys. Commun., 162, 24–36 (2004). Linear Scaling First-
Principles Molecular Dynamics with Controlled Accuracy.

129. G. Lamm, in Reviews in Computational Chemistry, K. B. Lipkowitz, R. Larter, and T. R.
Cundari, Eds., Wiley-VCH, Hoboken, NJ, 2003, Vol. 19, pp. 147–365. The Poisson–
Boltzmann Equation.

130. J. D. Madura, M. E. Davis, M. K. Gilson, R. C. Wade, B. A. Luty, and J. A. McCammon, in
Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds., Wiley-VCH,
Hoboken, NJ, 1994, Vol. 5, pp. 229–268. Biological Applications of Electrostatic Calcula-
tions and Brownian Dynamics Simulations.

131. C. J. Cramer and D. G. Truhlar, inReviews in Computational Chemistry, K. B. Lipkowitz and
D. B. Boyd, Eds., Wiley-VCH, Hoboken, NJ, 1995, Vol. 6, pp. 1–72. Continuum Solvation
Models: Classical and Quantum Mechanical Implementations.

278 Real-Space and Multigrid Methods in Computational Chemistry



132. J. D. Madura, J. M. Briggs, R. C. Wade, M. E. Davis, B. A. Luty, A. Ilin, J. Antosiewicz, M. K.
Gilson, B. Bagheri, L. R. Scott, and J. A. McCammon, Comput. Phys. Commun., 91, 57–95
(1995). Electrostatics and Diffusion of Molecules in Solution: Simulations with the Uni-
versity of Houston Brownian Dynamics Program.

133. W. L. Briggs and J. Antosiewicz, inReviews in Computational Chemistry, K. B. Lipkowitz and
D. B. Boyd, Eds., Wiley-VCH, New York, 1999, Vol. 13, pp. 249–311. Simulation of pH-
Dependent Properties of Proteins Using Mesoscopic Models.

134. N. A. Baker, in Reviews in Computational Chemistry, K. B. Lipkowitz, R. Larter, and T. R.
Cundari, Eds., Wiley-VCH, Hoboken, NJ, 2005, Vol. 21, pp. 349–379. Biomolecular
Applications of Poisson–Boltzmann Methods.

135. S. Tomac and A. Graslund, J. Comput. Chem., 19, 893–901 (1998). Multi-Multigrid Solution
of Modified Poisson-Boltzmann Equation for Arbitrarily Shaped Molecules.

136. R. D. Coalson and A. Duncan, J. Chem. Phys., 97, 5653–5661 (1992). Systematic Ionic
Screening Theory of Macroions.

137. R. D. Coalson, A. M. Walsh, A. Duncan, and N. Bental, J. Chem. Phys., 102, 4584–4594
(1995). Statistical-Mechanics of a Coulomb Gas with Finite-Size Particles—A Lattice Field-
Theory Approach.

138. R. D. Coalson and A. Duncan, J. Phys. Chem., 100, 2612–2620 (1996). Statistical Mechanics
of a Multipolar Gas: A Lattice Field Theory Approach.

139. S. F. Edwards and A. Lenard, J. Math. Phys., 3, 778–792 (1962). Exact Statistical Mechanics
of a One-Dimensional System with Coulomb Forces. II. The Method of Functional Integra-
tion.

140. J. G. Kirkwood, J. Chem. Phys., 2, 767–781 (1934). On the Theory of Strong Electrolyte
Solutions.

141. J. G. Kirkwood and J. C. Poirier, J. Phys. Chem., 58, 591-596 (1954). The Statistical
Mechanical Basis of the Debye-Hückel Theory of Strong Electrolytes.

142. R. D. Coalson and T. L. Beck, in Encyclopedia of Computational Chemistry, P. von Rague
Schleyer, Ed., Wiley, New York, 1998, pp. 2086–2100. Numerical Methods for Solving
Poisson and Poisson-Boltzmann Type Equations.

143. M. Holst and F. Saied, J. Comput. Chem., 14, 105–113 (1993). Multigrid Solution of the
Poisson–Boltzmann Equation.

144. M.Holst, R. E. Kozack, F. Saied, and S. Subramaniam, J. Biomol. Struct. Dyn., 11, 1437–1445
(1994). Protein Electrostatics—Rapid Multigrid-Based Newton Algorithm for Solution of
the Full Nonlinear Poisson–Boltzmann Equation.

145. M. Holst, R. E. Kozack, F. Saied, and S. Subramaniam, Proteins: Struct., Funct., Gen., 18,
231–245 (1994). Treatment of Electrostatic Effects in Proteins—Multigrid-Based Newton
Iterative Method for Solution of the Full Nonlinear Poisson–Boltzmann Equation.

146. M. Holst, R. E. Kozack, F. Saied, and S. Subramaniam, Biophys. J., 66, A130–A130 (1994).
Multigrid-Based Newton Iterative Method for Solving the Full Nonlinear Poisson–Boltz-
mann Equation.

147. M. J. Holst and F. Saied, J. Comput. Chem., 16, 337–364 (1995). Numerical-Solution
of the Nonlinear Poisson–Boltzmann Equation—Developing More Robust and Efficient
Methods.

148. S. Tsonchev, R. D. Coalson, A. P. Liu, and T. L. Beck, J. Chem. Phys., 120, 9817–9821 (2004).
Flexible Polyelectrolyte Simulations at the Poisson–Boltzmann Level: A Comparison of the
Kink-Jump and Multigrid Configurational-Bias Monte Carlo Methods.

149. R. E. Alcouffe, A. Brandt, J. E. Dendy, and J. W. Painter, SIAM J. Sci. Stat. Comput., 2, 430–
454 (1981). TheMulti-GridMethod for theDiffusion Equationwith StronglyDiscontinuous
Coefficients.

150. R. D. Coalson and M. G. Kurnikova, IEEE Trans. Nanobiosci., 4, 81–93 (2005). Poisson–
Nernst–Planck Theory Approach to the Calculation of Current through Biological Ion
Channels.

References 279



151. N. G. van Kampen, Stochastic Processes in Physics and Chemistry, rev. ed., Elsevier,
Amsterdam, 1992.

152. M. Lundstrom, Fundamentals of Carrier Transport, 2nd ed., Cambridge University Press,
Cambridge, UK, 2000.

153. Y. H. Cheng, J. K. Suen, D. Q. Zhang, S. D. Bond, Y. J. Zhang, Y. H. Song, N. A. Baker, C. L.
Bajaj,M. J. Holst, and J. A.McCammon, Biophys. J., 92, 3397–3406 (2007). Finite Element
Analysis of the Time-Dependent Smoluchowski Equation for Acetylcholinesterase Reaction
Rate Calculations.

154. M. G. Kurnikova, R. D. Coalson, P. Graf, and A. Nitzan, Biophys. J., 76, 642–656 (1999). A
Lattice Relaxation Algorithm for Three-Dimensional Poisson–Nernst–Planck Theory with
Application to Ion Transport through the Gramicidin A Channel.

155. A. E. Cardenas, R. D. Coalson, and M. G. Kurnikova, Biophys. J., 79, 80–93 (2000). Three-
Dimensional Poisson–Nernst–Planck Theory Studies: Influence of Membrane Electrostatics
on Gramicidin A Channel Conductance.

156. Z. Kuang and T. L. Beck, (2007). The PNP code is available on request. Contact thomas.
beck@uc.edu.

157. E. Artacho, T. L. Beck and E. Hernandez, Phys. Stat. Sol. B, 243, 971–972 (2006), Preface.

158. K. Hirose, T. Ono, Y. Fujimoto, and S. Tsukamoto, First-Principles Calculations in Real-Space
Formalism: Electronic Configurations and Transport Properties of Nanostructures, Imperial
College Press, London, 2005.

159. K. A. Iyer,M. P.Merrick, and T. L. Beck, J. Chem. Phys., 103, 227–233 (1995). Application of
a Distributed Nucleus Approximation in Grid Based Minimization of the Kohn–Sham
Energy Functional.

160. M. P. Merrick, K. A. Iyer, and T. L. Beck, J. Phys. Chem., 99, 12478–12482 (1995).Multigrid
Method for Electrostatic Computations in Numerical Density-Functional Theory.

161. T. L. Beck, Int. J. Quant. Chem., 65, 477–486 (1997). Real-Space Multigrid Solution of
Electrostatics Problems and the Kohn–Sham Equations.

162. T. L. Beck, K. A. Iyer, andM. P.Merrick, Int. J,Quant. Chem., 61, 341–348 (1997).Multigrid
Methods in Density Functional Theory.

163. J. Bernholc, J. Y. Yi, and D. J. Sullivan, Faraday Discussions, 91, 217–228 (1991). Structural
Transitions in Metal-Clusters.

164. L. Kronik, A.Makmal,M. L. Tiago,M.M. G. Alemany,M. Jain, X. Y. Huang, Y. Saad, and J.
R. Chelikowsky, Phys. Stat. Sol. B, 243, 1063–1079 (2006). PARSEC—The Pseudopotential
Algorithm for Real-Space Electronic Structure Calculations: Recent Advances and Novel
Applications to Nano-Structures.

165. Y. K. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky, J. Comput. Phys., 219,
172–184 (2006). Self-Consistent-Field Calculations Using Chebyshev-Filtered Subspace
Iteration.

166. Y. K. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky, Phys. Rev. E, 74, 066704
(2006). Parallel Self-Consistent-Field Calculations via Chebyshev-Filtered Subspace
Acceleration.

167. D. K. Jordan and D. A. Mazziotti, J. Chem. Phys., 120, 574–578 (2004). Spectral Differences
in Real-Space Electronic Structure Calculations.

168. F. Ancilotto, P. Blandin, and F. Toigo, Phys. Rev. B, 59, 7868–7875 (1999). Real-Space Full-
Multigrid Study of the Fragmentation of Li-11ðþÞ Clusters.

169. I. H. Lee, Y. H. Kim, and R. M. Martin, Phys. Rev. B, 61, 4397–4400 (2000). One-Way
Multigrid Method in Electronic-Structure Calculations.

170. J. Bernholc, W. Lu, S. M. Nakhmanson, P. H. Hahn, V. Meunier, M. B. Nardelli, and W. G.
Schmidt, Mol. Phys., 105, 147–156 (2007). Atomic Scale Design of Nanostructures.

171. J. L. Fattebert and F. Gygi, J. Comput. Chem., 23, 662–666 (2002). Density Functional Theory
for Efficient Ab Initio Molecular Dynamics Simulations in Solution.

280 Real-Space and Multigrid Methods in Computational Chemistry



172. J. L. Fattebert and F. Gygi, Int. J. Quant. Chem., 93, 139–147 (2003). First-Principles
Molecular Dynamics Simulations in a Continuum Solvent.

173. F. Gygi, J. L. Fattebert, and E. Schwegler, Comput. Phys. Commun., 155, 1–6 (2003).
Computation of Maximally Localized Wannier Functions Using a Simultaneous Diagona-
lization Algorithm.

174. J. L. Fattebert and F. Gygi, Phys. Rev. B, 73, 115124 (2006). Linear-Scaling First-Principles
Molecular Dynamics with Plane-Waves Accuracy.

175. T. Ono and K. Hirose, Phys. Rev. Lett., 98, 026804 (2007). First-Principles Study of Electron-
Conduction Properties of C-60 Bridges.

176. T. Sasaki, T. Ono, and K. Hirose, Phys. Rev. E, 74, 056704 (2006). Order-N First-Principles
Calculation Method for Self-Consistent Ground-State Electronic Structures of Semi-Infinite
Systems.

177. T. Hoshi and T. Fujiwara, J. Phys.: Cond. Matter, 18, 10787–10802 (2006). Large-Scale
Electronic Structure Theory for Simulating Nanostructure Processes.

178. T. Hoshi and T. Fujiwara, J. Phys. Soc. Jpn., 69, 3773–3776 (2000). Theory of Composite-
Band Wannier States and Order-N Electronic-Structure Calculations.

179. T. Hoshi and T. Fujiwara, J. Phys. Soc. Jpn., 66, 3710–3713 (1997). Fully Self-Consistent
Electronic-Structure Calculation Using Nonorthogonal Localized Orbitals Within a Finite-
Difference Real-Space Scheme and Ultrasoft Pseudopotential.

180. J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. B, 71, 035109 (2005). Real-
Space Grid Implementation of the Projector Augmented Wave Method.

181. R. Schmid, J. Comput.Chem., 25, 799–812 (2004). Car-Parrinello Simulations with a Real
Space Method.

182. R. Schmid, M. Tafipolsky, P. H. Konig, and H. Kostler, Phys. Stat. Sol. B, 243, 1001–1015
(2006). Car-Parrinello Molecular Dynamics Using Real Space Wavefunctions.

183. S. Kümmel, J. Comput. Phys., 201, 333–343 (2004). Damped Gradient Iteration and
Multigrid Relaxation: Tools for Electronic Structure Calculations Using Orbital Density-
Functionals.

184. A. Castro, H. Appel, M. Oliveira, C. A. Rozzi, X. Andrade, F. Lorenzen, M. A. L. Marques, E.
K. U. Gross, and A. Rubio, Phys. Stat. Sol. B, 243, 2465–2488 (2006). Octopus: A Tool for
the Application of Time-Dependent Density Functional Theory.

185. K. Yabana, T. Nakatsukasa, J. I. Iwata, and G. F. Bertsch, Phys. Stat. Sol. B, 243, 1121–1138
(2006). Real-Time, Real-Space Implementation of the Linear Response Time-Dependent
Density-Functional Theory.

186. S. K. Gray and E. M. Goldfield, J. Chem. Phys., 115, 8331–8344 (2001). Dispersion Fitted
Finite Difference Method with Applications to Molecular Quantum Mechanics.

187. C. K. Skylaris, O. Dieguez, P. D. Haynes, and M. C. Payne, Phys. Rev. B, 66, 073103 (2002).
Comparison of Variational Real-Space Representations of the Kinetic Energy Operator.

188. C. K. Skylaris, A. A. Mostofi, P. D. Haynes, C. J. Pickard, and M. C. Payne, Comput. Phys.
Commun., 140, 315–322 (2001). Accurate Kinetic Energy Evaluation in Electronic Structure
Calculations with Localized Functions on Real Space Grids.

189. P. Maragakis, J. Soler, and E. Kaxiras, Phys. Rev. B, 64, 193101 (2001). Variational Finite-
Difference Representation of the Kinetic Energy Operator.

190. E. Hernandez, M. J. Gillan, and C. M. Goringe, Phys. Rev. B, 55, 13485–13493 (1997). Basis
Functions for Linear-Scaling First-Principles Calculations.

191. E. Artacho, D. Sanchez-Portal, P. Ordejon, A. Garcia, and J. M. Soler, Phys. Stat. Sol. B, 215,
809–817 (1999). Linear-Scaling Ab-Initio Calculations for Large and Complex Systems.

192. M.Calleja, C.Rey,M.M.G.Alemany, L. J.Gallego, P.Ordejon,D. Sanchez-Portal, E. Artacho,
and J. M. Soler, Phys. Rev. B, 60, 2020–2024 (1999). Self-Consistent Density-Functional
Calculations of the Geometric, Electronic Structures, and Magnetic Moments of Ni-Al
Clusters.

References 281



193. P. Ordejon, Phys. Stat. Sol. B, 217, 335–356 (2000). Linear Scaling Ab Initio Calculations in
Nanoscale Materials with SIESTA.

194. E. Tsuchida and M. Tsukada, Phys. Rev. B, 54, 7602–7605 (1996). Adaptive Finite-Element
Method for Electronic-Structure Calculations.

195. E. Tsuchida and M. Tsukada, J. Phys. Soc. Jpn., 67, 3844–3858 (1998). Large-Scale
Electronic-Structure Calculations Based on the Adaptive Finite-Element Method.

196. E. Tsuchida, J. Chem. Phys., 121, 4740–4746 (2004). Ab InitioMolecular-Dynamics Study of
Liquid Formamide.

197. E. Tsuchida, J. Phys. Soc. Jpn., 76, 034708 (2007). Augmented Orbital MinimizationMethod
for Linear Scaling Electronic Structure Calculations.

198. P. Havu, V. Havu, M. J. Puska, and R. M. Nieminen, Phys. Rev. B, 69, 115325 (2004).
Nonequilibrium Electron Transport in Two-Dimensional Nanostructures Modeled Using
Green’s Functions and the Finite-Element Method.

199. G. Lu, E. B. Tadmor, and E. Kaxiras, Phys. Rev. B, 73, 024108 (2006). From Electrons to
Finite Elements: A Concurrent Multiscale Approach for Metals.

200. E. Lidorikis, M. E. Bachlechner, R. K. Kalia, A. Nakano, P. Vashishta, and G. Z. Voyiadjis,
Phys. Rev. Lett., 87, 086104 (2001). Coupling Length Scales for Multiscale Atomistics-
Continuum Simulations: Atomistically Induced Stress Distributions in Si/Si3N4 Nano-
pixels.

201. S. Ogata, E. Lidorikis, F. Shimojo, A. Nakano, P. Vashishta, and R. K. Kalia, Comput. Phys.
Commun., 138, 143–154 (2001). Hybrid Finite-Element/Molecular-Dynamics/Electronic-
Density-Functional Approach to Materials Simulations on Parallel Computers.

202. S. Yamakawa and S. Hyodo, Phys. Rev. B, 71, 035113 (2005). Gaussian Finite-Element
Mixed-Basis Method for Electronic Structure Calculations.

203. M. Aichinger and E. Krotscheck, Comput. Mater. Sci., 34, 188–212 (2005). A Fast Config-
uration Space Method for Solving Local Kohn–Sham Equations.

204. E. R. Hernandez, S. Janecek, M. Kaczmarski, and E. Krotscheck, Phys. Rev. B, 75, 075108
(2007). Evolution-Operator Method for Density Functional Theory.

205. F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashishta, Comput. Phys. Commun., 167, 151–
164 (2005). Embedded Divide-and-Conquer Algorithm on Hierarchical Real-Space Grids:
Parallel Molecular Dynamics Simulation Based on Linear-Scaling Density Functional
Theory.

206. A. Nakano, R. K. Kalia, K. Nomura, A. Sharma, P. Vashishta, F. Shimojo, A. C. T. van Duin,
W. A. Goddard, R. Biswas, and D. Srivastava, Comput. Mater. Sci., 38, 642–652 (2007). A
Divide-and-Conquer/Cellular-Decomposition Framework for Million-to-Billion Atom
Simulations of Chemical Reactions.

207. P. D. Haynes, C. K. Skylaris, A. A. Mostofi, and M. C. Payne, Phys. Stat. Sol. B, 243, 2489–
2499 (2006). ONETEP: Linear-Scaling Density-Functional Theory with Local Orbitals and
Plane Waves.

208. L. Seijo and Z. Barandiaran, J. Chem. Phys., 121, 6698–6709 (2004). Parallel, Linear-Scaling
Building-Block and Embedding Method Based on Localized Orbitals and Orbital-Specific
Basis Sets.

209. T. Ozaki and H. Kino, J. Chem. Phys., 121, 10879–10888 (2004). Variationally Optimized
Basis Orbitals for Biological Molecules.

210. T. Ozaki, Phys. Rev. B, 67, 115108 (2003). Variationally Optimized Atomic Orbitals for
Large-Scale Electronic Structures.

211. H. S. Lee andM. E. Tuckerman, J. Chem. Phys., 126, 164501 (2007). Dynamical Properties of
Liquid Water from Ab Initio Molecular Dynamics Performed in the Complete Basis Set
Limit.

212. J. A. Morrone, K. E. Hasllinger, and M. E. Tuckerman, J. Phys. Chem. B, 110, 3712–3720
(2006). Ab Initio Molecular Dynamics Simulation of the Structure and Proton Transport
Dynamics of Methanol-Water Solutions.

282 Real-Space and Multigrid Methods in Computational Chemistry



213. H. Takahashi, T. Hori, H. Hashimoto, and T. Nitta, J. Comput. Chem., 22, 1252–1261
(2001). A Hybrid QM/MM Method Employing Real Space Grids for QM Water in the
TIP4P Water Solvents.

214. H. Takahashi, N. Matubayasi, M. Nakahara, and T. Nitta, J. Chem. Phys., 121, 3989–3999
(2004). A Quantum Chemical Approach to the Free Energy Calculations in Condensed
Systems: The QM/MM Method Combined with the Theory of Energy Representation.

215. B. Honig and A. Nicholls, Science, 268, 1144–1149 (1995). Classical Electrostatics in Biology
and Chemistry.

216. H. Oberoi and N. M. Allewell, Biophys. J., 65, 48–55 (1993). Multigrid Solution of the
Nonlinear Poisson–Boltzmann Equation and Calculation of Titration Curves.

217. M. Holst, N. Baker, and F. Wang, J. Comput. Chem., 22, 475–475 (2001). Adaptive
Multilevel Finite Element Solution of the Poisson–Boltzmann Equation I. Algorithms and
Examples.

218. N. A. Baker, D. Sept, S. Joseph,M. J. Holst, and J. A.McCammon, Proc.Natl. Acad. Sci. USA,
98, 10037–10041 (2001). Electrostatics of Nanosystems: Application to Microtubules and
the Ribosome.

219. N. A. Baker, D. Sept, M. J. Holst, and J. A. McCammon, IBM J. Res. Devel., 45, 427–438
(2001). The AdaptiveMultilevel Finite Element Solution of the Poisson–Boltzmann Equation
on Massively Parallel Computers.

220. M. Holst, N. Baker, and F. Wang, J. Comput. Chem., 21, 1319–1342 (2000). Adaptive
Multilevel Finite Element Solution of the Poisson–Boltzmann Equation I. Algorithms and
Examples.

221. N. Baker, M. Holst, and F. Wang, J. Comput. Chem., 21, 1343–1352 (2000). Adaptive
Multilevel Finite Element Solution of the Poisson–Boltzmann Equation II. Refinement at
Solvent-Accessible Surfaces in Biomolecular Systems.

222. F. Fogolari, A. Brigo, and H. Molinari, Biophys. J., 85, 159–166 (2003). Protocol for MM/
PBSA Molecular Dynamics Simulations of Proteins.

223. B. Z. Lu, W. Z. Chen, C. X. Wang, and X. J. Xu, Proteins: Struct., Funct.,Gen., 48, 497–504
(2002). Protein Molecular Dynamics with Electrostatic Force Entirely Determined by a
Single Poisson–Boltzmann Calculation.

224. B. Z. Lu, X. L. Cheng, T. J. Hou, and J. A. McCammon, J. Chem. Phys., 123, 084904 (2005).
Calculation of the Maxwell Stress Tensor and the Poisson–Boltzmann Force on a Solvated
Molecular Surface Using Hypersingular Boundary Integrals.

225. J. L. Smart, T. J. Marrone, and J. A. McCammon, J. Comput. Chem., 18, 1750–1759 (1997).
Conformational Sampling with Poisson–Boltzmann Forces and a Stochastic Dynamics
Monte Carlo Method: Application to Alanine Dipeptide.

226. S. Y. Ponomarev, K.M. Thayer, and D. L. Beveridge, Proc. Natl. Acad. Sci. USA, 101, 14771–
14775 (2004). Ion Motions in Molecular Dynamics Simulations on DNA.

227. T. L. Beck,M. E. Paulaitis, and L. R. Pratt,The Potential Distribution Theorem andModels of
Molecular Solutions, Cambridge University Press, Cambridge, UK, 2006.

228. T. Darden, D. York, and L. Pedersen, J. Chem. Phys., 98, 10089–10092 (1993). Particle Mesh
Ewald—An N log(N) Method for Ewald Sums in Large Systems.

229. C. Sagui and T. Darden, J. Chem. Phys., 114, 6578–6591 (2001). Multigrid Methods for
Classical Molecular Dynamics Simulations of Biomolecules.

230. A. Toukmaji, C. Sagui, J. Board, and T. Darden, J. Chem. Phys., 113, 10913–10927 (2000).
Efficient Particle-Mesh Ewald Based Approach to Fixed and Induced Dipolar Interactions.

231. G. Hummer, L. R. Pratt, and A. E. Garcia, J. Phys. Chem., 100, 1206–1215 (1996). Free
Energy of Ionic Hydration.

232. G. Hummer, L. R. Pratt, and A. E. Garcia, J. Phys. Chem. A, 102, 7885–7895 (1998).
Molecular Theories and Simulation of Ions and Polar Molecules in Water.

233. J. E. Pask and P. A. Sterne, Phys. Rev. B, 71, 113101 (2005). Real-Space Formulation of the
Electrostatic Potential and Total Energy of Solids.

References 283



234. D. C. Thompson and P.W. Ayers, Int. J. Quant. Chem., 106, 787–794 (2006). Thinking Inside
the Box: Novel Linear Scaling Algorithm for Coulomb Potential Evaluation.

235. J. Juselius andD. Sundholm, J. Chem. Phys., 126, 094101 (2007). Parallel Implementation of a
Direct Method for Calculating Electrostatic Potentials.

236. A. C. Maggs and V. Rossetto, Phys. Rev. Lett., 88, 196402 (2002). Local Simulation
Algorithms for Coulomb Interactions.

237. A. Duncan, R. D. Sedgewick, and R. D. Coalson, Phys. Rev. E, 71, 046702 (2005). Improved
Local Lattice Approach for Coulombic Simulations.

238. A. Duncan, R. D. Sedgewick, and R. D. Coalson, Comput. Phys. Commun., 175, 73–77
(2006). Fast Fourier Transform Simulation Techniques for Coulomb Gases.

239. A. Duncan, R. D. Sedgewick, and R. D. Coalson, Phys. Rev. E, 73, 016705 (2006). Local
Simulation Algorithms for Coulomb Gases with Dynamical Dielectric Effects.

240. M. Di Ventra and N. D. Lang, Phys. Rev. B, 65, 045402 (2002). Transport in Nanoscale
Conductors from First Principles.

241. D. S. Kosov, J. Chem. Phys., 116, 6368–6375 (2002). Schrödinger Equation for Current
Carrying States.

242. D. S. Kosov, J. Chem. Phys., 119, 1–5 (2003). Kohn–Sham Equations for Nanowires with
Direct Current.

243. P. Bokes and R. W. Godby, Phys. Rev. B, 68, 125414 (2003). Maximum-Entropy Theory of
Steady-State Quantum Transport.

244. P. Bokes, H.Mera, and R.W. Godby, Phys. Rev. B, 72, 165425 (2005). Current-Constraining
Variational Approaches to Quantum Transport.

245. M. G. Kurnikova, R. D. Coalson, P. Graf, and A. Nitzan, Biophys. J., 76, A211–A211 (1999).
A Lattice Relaxation Algorithm for 3D Poisson–Nernst–Planck Theory with Application to
Ion Transport through the Gramicidin A Channel. (Meeting abstract).

246. M. G. Kurnikova, R. D. Coalson, P. Graf, and A. Nitzan, Biophys. J., 76, 642–656 (1999). A
Lattice Relaxation Algorithm for Three-Dimensional Poisson–Nernst–Planck Theory with
Application to Ion Transport through the Gramicidin A Channel.

247. P. Graf, A. Nitzan,M. G. Kurnikova, and R. D. Coalson, J. Phys. Chem. B, 104, 12324–12338
(2000). A Dynamic Lattice Monte Carlo Model of Ion Transport in Inhomogeneous
Dielectric Environments: Method and Implementation.

248. M. H. Cheng, A. B. Mamonov, J. W. Dukes and R. D. Coalson, J. Phys. Chem. B, 111,
5956–5665 (2007). Modeling the Fast Gating Mechanism in the CIC-O Chloride Channel.

249. P. Graf, M. G. Kurnikova, R. D. Coalson, and A. Nitzan, J. Phys. Chem. B, 108, 2006–2015
(2004). Comparison of Dynamic Lattice Monte Carlo Simulations and the Dielectric Self-
Energy Poisson–Nernst–Planck Continuum Theory for Model Ion Channels.

250. H. W. de Haan, I. S. Tolokh, C. G. Gray, and S. Goldman, Phys. Rev. E, 74, 030905 (2006).
Nonequilibrium Molecular Dynamics Calculation of the Conductance of the KcsA Potas-
sium Ion Channel.

251. P. S. Crozier, R. L. Rowley, N. B. Holladay, D. Henderson, andD. D. Busath, Phys. Rev. Lett.,
86, 2467–2470 (2001). Molecular Dynamics Simulation of Continuous Current Flow
through a Model Biological Membrane Channel.

252. A. J. Coleman and V. I. Yukalov, Reduced Density Matrices: Coulson’s Challenge, Springer,
Heidelberg, 2000.

253. D. A. Mazziotti, in Reduced-Density-Matrix Mechanics, with Applications to Many-Electron
Atoms and Molecules, D. A. Mazziotti, Ed., Wiley, Hoboken, NJ, 2007, Vol. 134,
pp. 21–59. Variational Two-Electron Reduced-Density-Matrix Theory.

254. J. M. Thijssen, Computational Physics, Cambridge University Press, Cambridge, UK, 1999.

255. R. A. Harris and L. R. Pratt, J. Chem. Phys., 82, 856–859 (1985). Discretized Propagators,
Hartree, and Hartree–Fock Equations, and the Hohenberg–Kohn Theorem.

284 Real-Space and Multigrid Methods in Computational Chemistry



256. R. A. Harris and L. R. Pratt, J. Chem. Phys., 82, 5084–5088 (1985). Discretized Propagators in
Hartree and Hartree–Fock Theory. 2. Responses to Static Electric and Magnetic-Fields.

257. T. J. Frankcombe, G. J. Kroes, N. I. Choly, and E. Kaxiras, J. Phys. Chem. B, 109, 16554–
16562 (2005). Orbital-Free Density Functional Theory Applied to NaAlH4.

258. B. Zhou and E. A. Carter, J. Chem. Phys., 122, 184108 (2005). First Principles Local
Pseudopotential for Silver: Towards Orbital-Free Density-Functional Theory for Transition
Metals.

259. A. Fernando-Ramos, B. A. Ellingson, B. C. Garrett, and D. G. Truhlar, in Reviews in
Computational Chemistry, K. B. Lipkowitz and T. R. Cundari, Eds., Wiley-VCH, Hoboken,
NJ, 2007, Vol. 23, pp. 125–232. Variational Transition State Theory withMultidimensional
Tunneling.

References 285



CHAPTER 6

Hybrid Methods for Atomic-Level
Simulations Spanning Multiple–Length
Scales in the Solid State

Francesca Tavazza, Lyle E. Levine, and Anne M. Chaka

National Institute of Standards and Technology,
Gaithersburg, Maryland

INTRODUCTION

When investigating the properties of the solid state, very different length
scales must be probed, depending upon the quantities of interest. For instance,
when studying the mechanical behavior of materials, micro- and macroscale
(hundreds of nanometers and larger) phenomena such as long-range stress fields
must be considered. On the other hand, when effects such as bond breaking,
atomic (re)arrangements, or defect properties are of primary importance, simu-
lations at the nanoscale (one to hundreds of nanometers) or atomic (angstrom)
scale are required.1,2 For a given problem, it is the trade-off between the need for
detailed information and the computational cost that determines which compu-
tational methodology provides the optimal approach. Thus, depending upon the
length scale under examination, different computational methodologies should
be used. Continuum mechanics are usually the optimum tool to simulate events
occurring at the macroscale because there is no need to consider the behavior of
each individual atom, while it is crucial to include all of the long-range effects. In
contrast, atomistic simulations using classical potentials are generally the best
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approach for studying nanoscale phenomena, where atomic behavior becomes
important but including quantum-level effects is less vital than modeling rela-
tively large systems (up to many millions of atoms). Lastly, quantummechanical
simulations are often the most appropriate way to investigate atomic-scale pro-
cesses where the detailed electronic behavior can be crucial.

We begin by briefly reviewing some of the computational methodologies
most commonly used in studies of the solid state, starting with the finite-
element method (FEM). The FEM (see Refs. 3–6 among many) is the compu-
tational technique most commonly used to investigate macroscale processes
such as stress–strain and thermal behaviors; it is based upon the idea of discre-
tizing the continuum into a set (mesh) of discrete subdomains (elements). The
partial differential equations that determine the material behavior are solved
at each mesh point (node). The behavior away from the nodes is then
determined using an interpolation scheme.

Atomistic modeling using semiempirical classical potentials (e.g., see
Refs. 7–13) is widely used to model phenomena at the nanoscale. In this
approach, the interatomic potential energy function is computed either using
a relatively simple analytic functional form or an interpolation of empirical
data points. In both cases, the information describing the specific material is
entered into the model through empirical parameters that are determined by
fitting experimental or ab-initio data. The equilibrium atomic configuration
of the system is then found using minimization procedures such as conjugate
gradient14 or Monte Carlo techniques (see Refs. 15–17 among many). Using
semiempirical classical potentials, the dynamical evolution of the system can
be determined as well, by deriving the forces acting on the atoms from the
expression for the energy, and applying a molecular dynamics (MD)
approach.18–21 In this level of theory, no quantum mechanical behavior is
explicitely included, so results are only as good as the parametrization used,
which also means that transferability can be a problem.

Finally, the atomic scale can be investigated by using tight-binding (TB),
density functional theory (DFT), or even lower level ab initio calculations. All
of these methodologies are within the quantum mechanical framework, with
TB22–24 being the least accurate (because of the many approximations) but
also the least computationally demanding. TB describes the electronic states
starting from the limit of isolated-atom orbitals, and is well suited for the inves-
tigation of materials characterized by fairly localized electrons, such as transition
metals and their alloys, or by covalent bonding, such as semiconductors and insu-
lators. A significant advantage of TB, beyond its computational speed, is that it
can be easily coupled with molecular dynamics (TBMD), providing a computa-
tionally efficient way to investigate the dynamical evolution of a system, while
retaining the most important aspects of its quantum behavior. In most applica-
tions, TB is used in its semiempirical form, i.e., the energy is approximated as the
sum of a ‘‘band structure’’ energy and a ‘‘repulsive’’ energy, where only the band
structure energy is actually found through a quantum mechanical calculation.
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The repulsive part of the total energy is approximated by the sum of short-range
two-body interactions with empirically fitted parameters. Also, empirical para-
meters enter into the determination of the band structure energy as well, substi-
tuting for the explicit calculation of the two-center integrals hfRi

=H=fRj
i (fRi

is
the wave function of atom iwith positionRi andH the Hamiltonian). Therefore,
transferability can be a problem in thismethodology just as it is for semiempirical
classical potentials. DFT is an ab initio approach where the energy of an interact-
ing system of fermions is found using its density, not its many-body wave func-
tion. DFT is based on the Hohenberg–Kohn theorems,25 which demonstrate a
one-to-one correspondence between the ground-state electron density and the
ground-state wave function of a many-particle system. This ground-state density
minimizes the total electronic energy of the system. Moreover, the most com-
monly used form of DFT is the Kohn–Sham DFT,25 where the many-body pro-
blem of interacting electrons in a real potential is reduced to a problem of
noninteracting electrons moving in an effective potential.

Traditionally, multiscale material behavior has been investigated follow-
ing a ‘‘serial’’ approach, where the empirical parameters required for large-
length-scale simulations are obtained from more exact calculations of smaller
systems. For example, as mentioned above, parameters for classical potentials
or semiempirical TB are often determined through the fitting of ab initio data.
However, the unspoken assumption behind this approach is that different
length scales can be decoupled without significantly affecting the results of
the calculations. In other words, it is assumed that a process can be correctly
simulated considering just one length scale at a time: A process modeled by a
quantum mechanical method will not be significantly affected by being simu-
lated in a very small system, while one modeled with classical methods will not
suffer from the absence of both an atomic quantum description and long-range
forces, and so on. This assumption is very reasonable when studying a great
number of physical problems, but it does not hold, for instance, for micro-
scopic phenomena that are driven by macroscopic forces, or, conversely, for
macroscopic phenomena that are significantly affected by small-scale effects.
More generally, a serial approach is not suitable for describing mechanisms
characterized by a continuous exchange of information between the different
length scales. Physical mechanisms of this kind are defined as multiscale phe-
nomena and include problems such as crack formation and propagation,
stress-induced defect processes, nanoindentation, and so on. For instance,
when a crack is propagating inside a solid, localized electronic rearrangements
may affect the strength of the interatomic bonding; the bonding, in turn, dic-
tates the atomic restructuring, and the atomic structure controls the macro-
scopic mechanical properties of the material. Therefore, to correctly
simulate multiscale phenomena, it is necessary to simultaneously include
detailed descriptions at both the atomic and macroscopic levels.

Despite impressive improvements in computer capabilities over recent
years, it is still not possible to simulate macroscopically large systems with
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atomic-level resolution. Therefore, the avenue most commonly explored to
bypass such an impasse is the use of hybrid methodologies. Here, different
length scales are simulated simultaneously in a coupled fashion. The main
obstacle to overcome when producing such a hybrid simulation method is
developing an efficient and physically correct coupling scheme. Hybrid meth-
odologies, coupling schemes, and applications will be discussed in detail in the
next section.

A related topic is the issue of time scales. Dynamic simulations of atomic
behavior generally require time steps that are short enough to capture the
vibrational modes of the system, whereas changes at the macroscopic scale
usually occur over vastly longer time scales. Coupling between such widely
varying time scales is a very important challenge, but it is not within the scope
of this review. However, the problem of multiple-time-scale simulations will
be discussed briefly in the discussion of dynamical methods.

The need for coupled methodologies is definitely not limited to the phy-
sics of the solid state, and the subject has a long history. The first application
of hybrid methods to the solid state are the works of Gehlen et al.26 and
Sinclair,27 where continuum elasticity was used to provide realistic boundary
conditions for atomistic simulations. However, only recently, hybrid meth-
odologies have become widespread in solid-state physics, primarily because
of the explosion of interest in nanotechnology. Coupled methods have been
a key investigation technique for quite some time in many other fields as
well. In chemistry, for instance, combining quantum mechanics (QM) and
molecular mechanical (MM) potentials was started by Warshell and Levitt
in 197628 and has been common practice ever since. Several reviews of hybrid
QM/MM methods can be found.29–32 However, these methodologies are not
necessarily well suited for studying many of the materials of interest in the
solid state, metals in particular. This is because QM/MM methods are
designed for covalently bonded organic molecules, i.e., materials where the
bond is strongly localized, while in metals bonds are strongly delocalized.
Hybrid methodologies have also been extensively applied to the investigation
of fluid behavior. In this field, we find extensive use of static coupling between
continuum and atomistic regimes, as in the Navier–Stokes/Monte Carlo
method of Dejong et al.33 or Garcia et al.,34 or the coupling of Monte Carlo
to fluid simulations proposed by Sommerer et al.35 and Bogaerts et al.,36

just to mention a few. Even more coupling schemes have been developed
to explore the dynamics of fluids. Among many, we want to mention the
continuum-to-molecular dynamics methods developed by O’Connell et al.,37

by Hadjiconstantinou and Patera,38 Hadjiconstatinou,39 by Li et al.,40 and
more recently by Wang and He.41 Hybrid methodologies based solely on the
exchange of fluxes have been proposed as well, such as those by Flekkoy
et al.42,43 Magnetism,44 electromagnetism,45 toxicology,46 biology, and so
on are just a few other examples of fields that currently make systematic use
of hybrid methodologies.
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Lastly, it is important to mention that hybrid methodologies are not the
only possible avenue to follow when investigating phenomena that require
very large systems and/or very long times together with atomistic resolution,
at least locally. Several other approaches have been proposed, including kinetic
Monte Carlo,47–52 histogram reweighting Monte Carlo,53–56 replica exchange
Monte Carlo,57–60 and, especially worthmentioning, the ‘‘acceleratedmolecular
dynamics’’ of Art Voter and co-workers.61–64 It is beyond the scope of this
review to discuss such methods, so we redirect the interested reader to the
more specific studies listed above.

General Remarks about Hybrid Methods

Hybrid methodologies are designed to investigate phenomena that
require large system sizes but also contain smaller critical regions that must
be treated with a level of theory that is too computationally expensive to be
used for the whole simulation. The basic assumption for the applicability of
a coupled methodology is the ‘‘locality’’ of the process that needs to be
described at a higher level. In other words, the simulation of such a process
should not be significantly affected by the fact that the higher level theory is
used only on a smaller region of space, and that far away the system is treated
using a different computational approach.

The most critical component of any hybrid methodology is the interface
between the different computational models. Such a region is usually referred
to as the ‘‘hand-shake’’ region. Here, unphysical forces (ghost forces) may
arise because intrinsically incompatible descriptions of the material are
matched to each other. Such an incompatibility originates largely from the
difference in interaction range between the computational models. More spe-
cifically, in a continuum description, the displacement of any point inside an
element is completely determined by the displacements of that element’s
nodes, while in an atomistic description, the displacement of one atom
directly affects all atoms that are within the cutoff of the potential, not
only its nearest neighbors. Similarly, in classical atomistic simulations, the
energy of one atom does not directly depend upon the position of atoms
that are beyond the potential interaction range (cutoff), while in quantum
mechanical calculations it depends upon the positions of all atoms in the sys-
tem. To clarify how this produces ghost forces, let us consider the following.
Atomistic-to-continuum hybrid methodologies usually add pseudoatoms on
the continuum side of the interface to provide a complete set of neighbors
to the atoms near the interface itself. This is done to avoid dealing with the
nonphysical surface that would be created by sharply terminating the atomis-
tic region. These pseudoatoms are seen by the atoms in the atomistic calcula-
tion but are treated as part of the continuum. Let us consider a real atom and a
pseudoatom such that their distance is larger than the nearest-neighbor dis-
tance but smaller than the classical potential cutoff distance. Displacing the
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pseudoatom will generate a force on the real atom because of the range of the
classical potential. However, displacing the real atom will not produce a force
on the pseudoatom because of the nearest-neighbor nature of the continuum
interactions. It is such a mismatch in the forces that results in the formation of
ghost forces.

For hybrid methodologies dealing with dynamical processes, the need to
connect different computational models creates a second, very significant, pro-
blem: Wave reflections may occur at the artificial boundary. Such a reflection
arises because of the mismatch in wave spectra between the regions; a classical
atomistic region, for instance, emits waves that are significantly shorter than
those that can be captured by a continuum finite-element (FE) region.

Depending upon how the coupling between computational methods has
been handled, different classes of hybrid methodologies can be defined. A pos-
sible classification is in terms of the nature of the hand-shake region: Is it a
sharp interface between the computational domains or an extended area (as
in the example above)? Methodologies can also be divided depending upon
how the energy functional is constructed, whether a single energy functional
is used for the whole system or a different functional is constructed for each
domain, in which case an iterative procedure is then used to find equilibrium.
Lastly, coupling methodologies can also be separated into adaptive refinement
methods and domain decomposition methods. Adaptive refinement methods
are coupling schemes where a single macroscale model is considered over
the whole system; such a model is more highly refined over the area of interest
than away from it. Conversely, domain decomposition methods employ a
macroscale model only far from the area of interest, while in the vicinity of
it they make use of an atomistic model. In this review, examples of all of these
approaches will be presented.

Complete-Spectrum Hybrid Methods

In this review, methods are divided into two main classes: methodologies
dealing with the coupling of classical atomistic simulations to continuum ones
and methodologies coupling classical atomistic models to quantum mechani-
cal formulations. However, it is important to mention that a few methods
have been designed to cover the whole span from the continuum to the quan-
tum scale. Examples of these methods are the coupling of length scales (CLS)
method of Abraham et al., the orbital-free density functional theory—quasi-
continuum method (OFDFT-QC), the method developed by Ogata et al.,
and the transparent interface method by Cheng et al. All of these methodolo-
gies will be discussed in this review, with each coupling scheme in its appro-
priate section, i.e., the part of the method that deals with continuum/atomistic
coupling will be presented in the Atomistic/Continuum Coupling section, and
the part dealing with classical/quantum coupling in the Classical/Quantum
Coupling section.
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About this Review

The application of hybrid methodologies to the solid state is surging and
new coupling schemes are being introduced at a rapid pace. Several reviewworks
are available on this topic.47,48,65–77 However, these works invariably concen-
trate on a narrow range of hybrid methods that are examined in great detail.
Instead, this reviewwas written to introduce newcomers to the field by providing
a broad, easily understandable discussion of the full range of hybrid methodol-
ogies that are currently available for solid-state studies (for static or dynamical
problems, for continuum-to-classical or classical-to-quantum coupling, and so
on), so that they could easily choose the most appropriate approach for their
specific problem. Although a significant number of methodologies is covered,
we obviously could not include every method that has ever been developed.
However, we tried to present at least one methodology for each major approach.

To retain coherence with the more detailed descriptions found in the
references, the equations and descriptions in this chapter closely follow the
referenced works whenever possible. In particular, this means that the variable
definitions are not uniform throughout the chapter but are defined with respect
to each specific coupling methodology. Also, since it is expected that many
readers will refer primarily to individual sections, several commonly used
acronyms are defined more than once and a table of acronyms is included at
the end of this chapter.

ATOMISTIC/CONTINUUM COUPLING

Zero-Temperature Equilibrium Methods

In this section, we will discuss methods designed to find lattice static
solutions, i.e., determining equilibrium atomic positions for a given geometry
and externally imposed forces or displacements. These methods are usually
significantly faster than dynamical ones, so they are a very convenient choice
when static properties, such as energy differences between equilibrium config-
urations, are the object of the investigation. Our goal in this section is the
exploration of atomistic-to-continuum coupling procedures, so the individual
modeling methods will only be described to the extent necessary to understand
the coupling. A great deal of attention will be devoted to the unphysical effects
that intrinsically arise with any sort of hybrid methodology. In addition to the
methodologies included in this review, several other coupling schemes have
been proposed, as, for instance, those discussed in Refs.78–80.

Atomistic/Continuum Coupling to Simulate Static Loads
A simple case of atomistic/continuum coupling is the methodology

devised by Kwon and Jung to study the atomic behavior of materials under
static loads.81 In this case, the coupling to a continuum description is

Atomistic/Continuum Coupling 293



introduced only as a way to simplify the application of static loads, allowing
the loads to be imposed as boundary conditions on an FE model instead of on
the atomistic system.

Figure 1 schematically displays the coupling procedure. The system is
subdivided into three zones: the atomistic domain, modeled by an interatomic
potential such as the embedded atom method (EAM)9,10 or Morse potential,11

the continuum domain, where an FE approach is used, and an interface
domain, where atoms and FE meshes overlap.

No single energy functional is defined for the whole system; instead, the
atomistic and FE models are solved independently in a staggered manner, and
the computation continues iteratively until convergence is achieved. Each
iteration consists of several steps. First, the equations for the FE region are
solved, and new positions are determined for the FE nodes. Next, the displace-
ments for the interface atoms are computed by interpolating the FE nodal dis-
placements at the atomic positions. Keeping the interface atoms fixed in their
new positions, the displacements for all of the other atoms are then calculated
using the interatomic potential. Once all of the new displacements have been
computed, the interatomic forces on the interface atoms are determined. Next,
the equivalent nodal forces on the finite elements containing the interface
atoms are calculated. With the nodal forces computed, the new FE solution
is obtained and the next iteration is started.

This method has been tested by studying atomic rearrangements for
two-dimensional (2D) systems with a dislocation under shear, tensile, and
compressive forces. The atomistic domain was modeled with the Morse
potential. A 2D system was chosen only for computational convenience;
nothing in the algorithm is limited to such a dimensionality.

Continuum Domain (FEM)

Static Load

Interface Domain

Atomistic Domain

Figure 1 Schematic representation of the coupling between the atomistic and continuum
domains. The finite-element method (FEM) is used in the continuum region. The arrows
represent the static load on the system. The shaded area indicates the interface domain.
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FEAt Method
The finite-element combined with atomistic modeling (FEAt)

method,82–86 developed by Kohlhoff et al. in 1988, is one of the oldest atomistic/
continuum coupling methods, and it was inspirational in the development of
several other coupling schemes (e.g., the one used in the CADD methodology
discussed below).

This method is based on three main ideas: first, to only use displacements
in the coupling procedure; second, to use a mutual-displacement boundary
conditions scheme; and third, to match the elastic constants in order to equili-
brate the stresses between the atomistic and the continuum domains. The
reason for the first assumption is that, because of the local nature of the con-
tinuum and the nonlocal nature of the atomistic regime, the stress principles
governing the two regions are significantly different, and they should not enter
the coupling procedure. In other words, the use of forces is explicitly avoided
in this scheme, so no direct interaction occurs between the stress fields of the
two media. We will now illustrate the mutual-displacement boundary condi-
tions scheme. As shown in Figure 2, the atomistic core region is connected to
the large continuum domain through a transition region (shaded area in the
figure) where the two representations overlap, i.e., in this area atoms and
nodes coincide. The transition region is subdivided into two zones: one
(labeled II in the figure) provides the boundary conditions for the continuum,
and the other (labeled III) provides the boundary conditions for the atomistic
region. More specifically, in zone II the displacements of the finite-element
nodes are determined by the displacements of the atoms with which they coin-
cide, while in zone III the nodal displacements dictate how the atoms in that
zone should move. This procedure ensures equality of the displacement fields
in the atomistic region and in the continuum.

I III
II IV

Transition Region

Atomistic Region

Continuum Region

Figure 2 Schematic representation of the FEAt coupling scheme. The atomistic region
(I) is embedded inside a continuum region (IV) and the two zones are coupled through
an extended interface zone (shaded area). The transition region is divided into two zones
(II and III), each providing boundary condition for either the continuum (zone II) or the
atomistic region (zone III).
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Sizewise, for three-dimensional problems zone II is actually a surface
(a line for a 2D problem), while zone III should be sufficiently wide to provide
a complete set of neighbors to those atoms in III that interact with atoms in II.
This means that the width of zone III should be at least equal to the cutoff
distance of the interatomic potential that is being used in the calculations.
However, for density-dependent potentials or potentials containing three-
body terms, the zone III width should be twice that distance.

Lastly, as pointed out earlier, no matching of the forces between the
atomistic and the continuum regions has been introduced. Therefore, it is
necessary to impose additional conditions to guarantee stress equilibrium
between the two domains. To do so, the elastic energy is first expanded in a
Taylor series with respect to the strain E:

EðEÞ ¼ Eð0Þ þ qE
qEij

����
0

Eij þ 1

2

q2E
qEijEkl

����
0

EijEkl

þ 1

6

q3E
qEijEklEmn

����
0

EijEklEmn þ . . .

½1�

then all coefficients are set equal in the atomistic and continuum regions (the
strains had already been set equal because of the coupling procedure). This
condition is therefore equivalent to the matching of the elastic constants
between the two media:

cij ¼ qE
qEij

����
0

first order

cijkl ¼
q2E
qEijEkl

����
0

second order

cijklmn ¼ q3E
qEijEklEmn

����
0

third order

. . .

½2�

The main approximation of the FEAt coupling method is therefore given
by the truncation of the Taylor series expansion [1]. Within the framework of
linear local elasticity theory, it is enough to retain (and match) terms only up
to the second order. However, if nonlinear elastic effects need to be included,
third-order elastic constants must also be matched. Moreover, because the
first-order elastic constants in the continuum are zero by definition, such a
matching condition requires the interatomic potential to yield zero stress in
a perfect lattice.

Applications The FEAt methodology has been extensively applied to the
study of crack propagation in body-centered cubic (bcc) metals (iron and
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tungsten), both on cleavage and non-cleavage planes. Failure mechanisms for
brittle fracture in nickel have been investigated as well, under mixed-mode
loading conditions.82–86

The Quasi-continuum Method
The quasi-continuum (QC) method was first introduced in 1996 by

Tadmor et al.87,88 for the investigation of deformation in solids. Ever since,
this method has been one of the most powerful and widely applied hybrid meth-
odologies. Its primary applications include the study of dislocation nucleation,
cracks, interfaces, grain boundary structure and deformation, nanoindentation
phenomena, and so on. Various applications are discussed in more detail below.
Since its appearance, the model has been improved and expanded,89–94 and
these more complete versions are briefly presented here. If additional details
are needed, several specialized reviews are available.71,95–98

The idea behind the QC method is to consider the atomistic description
(classical or quantum mechanically based) as being the correct way to model a
material. Continuum assumptions are then progressively introduced to reduce
the degrees of freedom of the system, making it computationally tractable.
However, a fully atomistic resolution can be maintained wherever it is needed.
The reduction of degrees of freedom occurs only through the introduction of
kinematic constraints, i.e., where most of the atomic displacements are com-
pletely determined by the calculated positions of a much smaller subset of
atoms. As a consequence, and this is one of the key features of the model,
the coupling between the continuum and the atomistic regions is almost or
completely seamless (depending upon which implementation of the method
is considered). The coupling is seamless because the only difference between
the two regions is the degree of coarsening, i.e., the constitutive properties
of the continuum, as well as those of the atomic region, are always obtained
from the atomistic level. This feature also garantees that key properties of the
material, such as crystal symmetries and slip invariance, are automatically
included. This makes the QC treatment of the continuum region significantly
different from traditional continuum calculations, where constitutive
properties are derived from assumed phenomenological forms.

A second key feature of the method is adaptive meshing,99 i.e., the ability
to shift the location of the atomistic/continuum boundary and to refine or
coarsen the continuum grid during a single simulation. This feature makes
the QC method particularly suited for investigating phenomena such as the
diffusion of defects.

Lastly, any underlying atomistic model can be used, whether quantum
mechanically or classically based. In practice, semi empirical interatomic
potentials such as EAM9,10 and Stillinger–Weber8 (three-body interaction)
potentials have usually been used to model the atomistic regime.

The reduction of the degrees of freedom in the QC method is based on
the assumption that, under a smoothly changing deformation gradient, it is not
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necessary to directly compute the displacement of every atom to determine the
equilibrium configuration of the system. Under such circumstances, a subset of
atoms can be used to represent the whole system. The displacement of such
atoms, called representative atoms or repatoms, is therefore explicitly treated,
while the displacement of the remaining atoms is approximated through inter-
polation. For an interpolation scheme, the QC method makes use of the finite-
element method (FEM). Here, the solid is partitioned into a finite number of
regions (‘‘elements’’). The deformation within each element is interpolated
from the corresponding nodal displacements. A repatom is chosen for each
element, and around it a small cluster of atoms (crystallite) is considered.
This crystallite is distorted according to the continuum displacement field,
and the energy of the repatom is computed using the atomistic model of
choice. Figure 3 shows an example of such a coarsening mechanism. Of all
of the atoms in the system (open circles) only a few (solid circles) are chosen
as repatoms. In some QC formulations, the repatoms coincide with the FEM
nodes. The density of the repatoms is adjusted according to the severity of the
deformation gradient (in the example, there are many more repatoms near the
dislocation core than away from it).

Mathematically, if a semiempirical model is used, then the total
energy of the system, EtotðuÞ, can be written as the sum of the energies of
each atom:

EtotðuÞ ¼
XN
i¼1

EiðuÞ ½3�

Figure 3 Example of repatom selection near a dislocation core. The repatoms (solid
circles) become the nodes of a linear triangular mesh for the FEM. The density of the
repatoms increases close to the dislocation core because the deformation gradient is
larger.
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where u is the atomic displacement field for the entire sample andN is the total
number of atoms in the system. The first approximation of the QC method is
to replace Eq. [3] with

Etot;h ¼
XN
i¼1

EiðuhÞ ½4�

where uh are exactly calculated displacements for the repatoms (if coinciding
with the FEM nodes) and interpolated displacements for all other atoms. An
important point is that the displacement of nonrepresentative atoms inside an
element (atom P in Figure 3, e.g.) is completely determined by the displace-
ments of the nodes defining the element itself (atoms A, B, and C in the figure).
Thus,

uhðXPÞ ¼
X
j

NjðXPÞuj j ¼ A;B;C ½5�

whereNj are the finite-element shape functions andXP is the position of such a
non-representative atom. This makes computing the total energy of the system
(Eq. [4]) much faster than in the explicit case (Eq. [3]). However, because the
summation in Eq. [4] still includes all of the atoms in the system, further
approximations are needed to make the computations feasible for large
systems. Depending upon which approximation is chosen, different formula-
tions of the method (local, nonlocal, or mixed) are obtained.

Local QC The local formulation of the QC method65,87,88 is the most
straightforward and computationally efficient way to relate the atomic
positions to the continuum displacement field. This formulation is based on
two main approximations. First, the total energy of the system is obtained by
adding the energies of each element, instead of each atom. Second, the
element energy is computed using the Cauchy–Born rule,100,101 i.e., assuming
uniform deformation inside the element. More specifically, the Cauchy–Born
rule states that the deformed structure of a crystal subject to a uniform
deformation gradient F can be found by simply applying F to the undeformed
crystal lattice basis Ai and then reconstructing the crystal from the altered
basis vectors ai (i.e., ai ¼ FAi). Therefore, one atom (repatom) is chosen
inside each element (near the quadrature point), such that its crystallite is
completely enclosed in the element itself [see Figure 4(a)], so that the same
deformation gradient can reasonably be assumed for the entire crystallite.
Then, its energy is found by calculating the energy of the corresponding
perfect, periodic crystal that is generated using the deformed basis vectors
ai ¼ FAi, where F is the deformation gradient for the chosen repatom. Finally,
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the energy of the element is obtained by multiplying the energy of the repatom
by the number of atoms in the element, or, more precisely:

Etot;h0 ¼
XNelements

e¼1

�eeeðFeÞ ½6�

eeðFÞ ¼ E0ðFÞ
�0

½7�

where �e is the volume of element e; ee is its energy density, �0 is the unit cell
volume, and E0 is the energy of the unit cell.

Clearly, this method for computing the element energy is very fast. Also,
because it only requires the energy of a single unit cell with periodic boundary
conditions (PBC), the local QC method allows the use of quantum mechanical
models, such as tight-binding22–24 and DFT, that cannot be written as a sum
over individual atom energies. However, the local QC approximation is rea-
sonable only for displacements that vary slowly from one element to the next.
The Cauchy–Born rule, for one, does not allow relaxation of the basis atoms
inside the unit cell. More importantly, inhomogeneous structural features such
as surfaces, interfaces, and stacking faults can not be modeled.

Fully Nonlocal QC The nonlocal formulation of the QC method was
developed for modeling inhomogeneous structural features. A first formulation
was presented in the original QC studies;87,88 this method was later expanded
(see, e.g., Ref. 89) and, finally, the fully nonlocal QC (FNL-QC) method was
developed by Knap and Ortiz.102–104 The key point of the nonlocal
formulation is that each atom within the representative crystallite is displaced
according to the actual continuum displacement field at its position. Thus, the
displacement field considered when computing the energy (or force) of a
repatom can be nonuniform. In the original formulation, the repatoms are

(a) (b) (c)

x

Figure 4 Schematic of sampling choices for various QC formulations. (a) Local QC: The
repatom and its crystallite are completely contained inside one element (X indicates the
quadrature point). (b) Nonlocal QC in the energy formulation: The repatom is still
contained inside the element, but its crystallite is not. (c) Fully nonlocal QC: The
repatoms coincide with the FEM nodes, and the atoms comprising their crystallites are
individually considered in the energy calculation.
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placed near the quadrature point of each element (as they are in the local QC
method), so nonuniform displacement fields are included in the calculations if
a given element is smaller than its crystallite [Figure 4(b)]. In such a case, the
crystallite includes atoms belonging to different elements and therefore
experiences different displacement fields. In later formulations, however, the
repatoms are placed at the nodes of the finite-element grid [Figure 4(c)], so they
are always experiencing nonuniform displacement fields.

The nonlocal QC method has been formulated in both energy-based and
force-based forms. In the first, the energy of the system is approximated by the
weighted sum of the energies of the repatoms:

Etot;h ¼
XNrep

a¼1

naEaðuhÞ ½8�

na ¼ weight function such that
XNrep

a¼1

na ¼ N ½9�

and, again, the energy of each repatom is obtained by selecting a cluster of
atoms around the repatom, displacing each atom in the cluster as dictated
by the interpolated displacement field at that point and then computing the
energy of the cluster using the classical potential of choice. Forces on all of
the repatoms can then be obtained as derivatives of Eq. [8] with respect to
the repatom positions.

In the forced-based form,102–104 the equilibrium configuration is found
by working directly with an approximate expression for the forces. Again, a
spherical cluster (crystallite) is defined around each repatom, and every
atom in it is displaced according to the interpolated displacement field at
that point. To avoid the overlapping of such clusters in regions of high repa-
tom density, the clusters are suitably truncated. The optimal cluster size is a
balance between computational efficiency and error in the approximation
and was found by Knap and Ortiz102 to be on the order of first or second
neighbor shells.

The main advantage of the nonlocal QC method is that it reduces exactly
to the lattice static solution when refined down to the atomic scale. The main
disadvantage of this formulation is its computational cost, as compared to the
local approach. Each energy or force evaluation requires the mapping of a
cluster of atoms and their neighbors to their deformed configuration at each
repatom, followed by the interatomic potential evaluation necessary to com-
pute the energy or forces for the cluster. Another problem with this formula-
tion is that surface or interface effects can be significantly overestimated. If a
repatom near an inhomogeneous structural feature belongs to a large element,
its high energy is going to be multiplied by a large weight, and its contribution
to Eq. [8] will be artificially large, leading to an overestimate of the final
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energy. An obvious, but computationally expensive solution to this problem is
to only consider very small (ideally atomic size) elements very close to highly
inhomogeneous features.

QC-Mixed: Coupled Local/Nonlocal QC A way to exploit the accuracy of
the nonlocal QC method in regions where atomic resolution is needed or
inhomogeneities are present, without paying the high computational price
that this formulation requires, is to couple it to the local formulation. Thus,
the local approach is used where the elastic displacement field is changing
slowly, and the nonlocal method is used only in proximity to defects,
surfaces, interfaces, and so on. This general prescription leads to a very
effective methodology, the coupled local/nonlocal QC method. Here, each
repatom is treated either as being local or nonlocal, and the total energy of
the system is given by the sum of the repatom energies:

Etot;h ¼
XNnonloc

a¼1

naEaðuhÞ þ
XNloc

e¼1

�eeeðFeÞ ½10�

The disadvantage of this formulation is the creation of a local/nonlocal
interface, i.e., a region across which the computational methodology is
abruptly changed. This does not happen in the two previous formulations.
Even though a detailed prescription is given (Ref. 95, e.g.) for avoiding double
counting the energy contributions from interface repatoms, it is not possible
to avoid the formation of unphysical forces (ghost forces) if a unique energy
functional is considered for the whole system (e.g., as in eq. [10]).

Ghost Forces If a coupled local/nonlocal QC method is used in its standard
formulation (with a unique energy functional for the whole system), then the
mismatch between the local (continuum) and nonlocal (atomistic)
formulations produces nonphysical forces in the hand-shake region. As a
result, atoms close to the local/nonlocal interface have nonzero forces acting
on them even for a perfect crystal in its ground state, i.e., local displacements
at the interface will unphysically lower the total energy of the system. These
forces, named ghost forces, come into play because of the asymmetry in the
contributions to the repatom energies between the local and nonlocal cases.
The origin of such an asymmetry is the following. Since a nonlocal repatom
treats all of the repatoms in its crystallite as neighbors (even those that do not
belong to adjacent elements), their displacements affect the nonlocal repatom’s
energy. However, the energy of a local repatom depends only on the
displacements of the adjacent repatoms. This asymmetry leaves unbalanced
forces. A more explicit treatment of these forces can be found in Ref. 71.

Ghost Force Reduction Methods (QC-GFC, SCF-HACG, . . .) Several
methods have been developed to alleviate or eliminate the effect of ghost
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forces. For example, the QC developers themselves95,99 suggested adding
corrective forces as static loads. In this methodology, the exact ghost forces
are calculated for the initial reference state, and then the negative of these
forces is applied, throughout the entire simulation, to the atoms in the
interface region. The energy functional is then obtained by adding a term
associated with the work done by these dead-load forces to the standard
QC energy functional. However, if the meshing is changed during the
simulation, the ghost forces have to be recalculated after each remeshing
step, and the procedure becomes much more computationally intensive.
Also, and more importantly, these correction forces are nonconservative,105

which leads to major problems with energy conservation during molecular
dynamic simulations.

Alternatively, Mortensen et al.106 suggest using two different approxi-
mate force expressions for the local nodes and the nonlocal repatoms. The
two expressions will differ from the negative derivative of the energy only in
the interface region. As with the previous method, this approach involves non-
conservative forces.

A different solution to the ghost forces problem was suggested by
Shimokawa et al.,105 and then later generalized by E et al.107 In the
Shimokawa approach, atoms at the local/nonlocal interface are considered
quasi-nonlocal, i.e., they act as local atoms when interacting with ‘‘real’’ local
repatoms and as nonlocal atoms when interacting with nonlocal repatoms.
E et al.107 expanded this idea and determined a necessary and sufficient geo-
metric condition for locally uniform first-order accuracy at the local/nonlocal
interface that contains the quasi-local approach as a special case and guarantees
the elimination of the ghost forces.

An alternative scheme to eliminate ghost forces (QC-ghost forces corrected
or QC-GFC71) is to abandon the requirement of a unique energy functional for
the entire system and, as done in the force-based FNL-QC formulation, to seek
equilibrium by determining the atomic configuration for which the forces on all
the repatoms is zero. In this case, the local and nonlocal regions are not directly
coupled, except through the overlapping of their domains.

Similarly, the newly proposed SCF-HACG method (self-consistent-field
approach for the hybrid atomistic coarse-grained treatment of multiscale pro-
cesses), by Diestler et al.,108 also suggests dividing the system into two regions,
the near region (the area of most interest, where significant changes occur) and
the far region. These regions are iteratively relaxed using a Monte Carlo algo-
rithm, until the whole system has self-consistently reached equilibrium. Only
the far region is coarse grained; the remainder is described strictly at the atom-
ic scale. A two-stage Monte Carlo algorithm is used, where, in stage I, the
nodes of the coarse-grained far region are held fixed while the near region
atoms are subjected to random displacements. In stage II, the atoms in the
near region are kept fixed in the final configuration of stage I, while the far-
region nodes are given random trial displacements sequentially. More details
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on the potential energy governing the acceptance of the trial displacements, the
functional form of the force, and the ‘‘all-local’’ approximation used in deter-
mining the change in potential energy accompanying the trial move of each
node are given in Refs. 108 and 109. Lastly, it must be noted that this meth-
odology also allows for a finite-temperature treatment of the system (see dis-
cussion below).

QC and FNL-QC Applications The QCmethod has been applied to the study
of a wide variety of materials and mechanical problems. From a materials stand
point, it has been used tomodel bothmetals [especially face-centered cubic (fcc)]
and semiconductors (mostly Si110–112). As examples, some of the most recent
works that utilized QC methods to investigate the behavior of metals include
studies of copper,106,113–118 nickel,119,120 aluminum,104,113,120–123 silver,116

palladium,116 gold,103,120 and fcc metals in general.124 With respect to
mechanical behavior, the phenomena most commonly investigated using QC
methods are grain boundary structures,113,114,121 nanoindentation and
dislocation nucleation,115,116,119–121,123 cracks,118,122 interfaces,117,118 the
formation and strength of dislocation junctions,124 and cross slip and
mobility of dislocations.106 References to several other application studies can
be found, for instance, in Ref. 71.

A more complete, and continously updated list of QC-related publications
can be found on the Web at http://www.qcmethod.com/qc\_publications. html.

Extensions of the QC Method Because of its versatility, the QC method has
been widely applied and, naturally, extended as well. While its original
formulation was for zero-temperature static problems only, several groups
have modified it to allow for finite-temperature investigations of equilibrium
properties as well. A detailed discussion of some of these methodologies is
presented in the discussion of finite-temperature methods below. Also,
Dupoy et al. have extended it to include a finite-temperature alternative to
molecular dynamics (see below). Lastly, the quasi-continuum method has
also been coupled to a DFT description of the system in the OFDFT-QC
(orbital-free DFT-QC) methodology discussed below.

Coupled Atomistic and Discrete Dislocation Method
The coupled atomistic and discrete dislocation (CADD) method was

developed by Shilkrot, Miller, Dewalt, and Curtin71,125–128 as a continuum/
atomistic hybrid methodology where defects (specifically dislocations) are
allowed to move, can exist in both the atomistic and the continuum region,
and, lastly, are permitted to cross the boundary between such domains. The
methodology has later been expanded to model finite temperature as well.129

Similarly to the FEAt and CLS methods, CADD is based on a spatial
separation of the physical problem into regions, which are modeled by either
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atomistic potentials or a continuum finite-element method. However, neither
FEAt nor CLS allow for the existence of continuum dislocations in the finite-
element region, nor can they easily modify the size of the atomistic region to
model a propagating defect. The quasi-continuum method (see above) is able
to follow a moving defect because of an adaptive remeshing algorithm, but it
does not support a continuum description of dislocations. This means that in
the QC model, each dislocation has to be completely embedded in an atomistic
region, therefore substantially limiting the number of dislocations that can be
treated because of their computational cost. In the CADD methodology, not
only the presence and movement of continuum discrete dislocations in the
continuum regime is possible, but also their interactions with each other
and with atoms in the atomistic region.

In its current implementation, the CADD method can only deal with 2D
problems, i.e., problems where the dislocations all have a line direction per-
pendicular to the modeled plane. However, the method does not contain
any limitation on the dislocation character (edge, screw, or mixed) because
periodic boundary conditions along the z direction are used in the atomistic
region and three degrees of freedom (displacements ux, uy, and uz) are consid-
ered in the two-dimensional (x-y) continuum region. The extension of the
methodology to the 3D case is not trivial and is currently being explored.

It must also be noted that this is an iterative method (no unique energy
functional exists) that covers both the atomistic and the continuum regions.
This is because of the methodology adopted to minimize the ghost forces,
which will discussed in more detail below. A modified conjugate-gradient
algorithm is used to search for the point of zero forces on all degrees of free-
dom in order to drive the system to equilibrium. While doing so, atomic coor-
dinates and dislocation positions are updated simultaneously.

There are four main components to the CADD approach: the atomistic
model, the discrete dislocation framework, the coupling between these
regions, and the method for detecting and passing dislocations through the
atomistic/continuum boundary. The atomistic model most commonly used
in CADD simulations is the EAM.9,10 However, more complex atomistic
approaches could be utilized as well. The adopted discrete dislocation frame-
work is that of van der Giessen and Needleman.130 It is beyond the scope of
this review to illustrate such a methodology and how it is incorporated into the
CADD model, so we refer the interested reader to the original studies71,125–128

and references within. That also applies to the description of the algorithm
used to detect and move dislocations through the atomistic/continuum
boundary. In the following we will describe the coupling mechanism between
zones.

The general boundary value problem that the CADD method wishes to
solve is the following: A body, containingN continuum dislocations, is divided
into an atomistic region �A and a continuum region �C. Such a system is
subject to a known traction T ¼ T0 and initial displacements u ¼ u0. The
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atomistic and continuum domains are joined at an interface (q�l) that is defined
by a line of atoms [Figure 5(a)]. Because tractions applied on boundary atoms
are inherently discrete, they are more intuitively treated as lumped forces fA on
individual atoms. The CADD approach solves this boundary value problem for
the equilibrium stress s, strain E, displacement fields u, and discrete dislocation
positions di in the continuum, and, simultaneously, for the equilibrium positions
of the atoms, as a function of the imposed boundary conditions.

In the atomistic region, any number of defects can be present (disloca-
tions, grain boundaries, vacancies, etc.), and the only assumption is that near
the atomistic/continuum interface the atoms should behave in a way that
approaches the linear elastic response used to describe the continuum. The
only exceptions to this rule are the atoms constituting the core of a dislocation
moving across the atomistic/continuum interface. In the continuum domain,
the only allowed defects are continuum dislocations. Summarizing, the
degrees of freedom in the continuum region are given by the dislocation posi-
tions di and by the finite-element nodal displacements UC and UI (where C
indicates a continuum quantity and I indicates an interface quantity). In
the atomistic region, the degrees of freedom are simply given by the atomic
positions, rA and rI (A is for ‘‘quantity associated with the atomistic region,’’
while, again, I indicates a quantity associated with the atomistic/continuum
interface). To minimize the effect of the atomistic/continuum transition,
the discretization of the continuum region matches the atomistic lattice at
the interface: The interface atoms rI also act as interface nodes with
displacement UI.

u0

0T

u0

(b)(a)

AΩ

C

AΩ
l

Ω

Ω

Figure 5 Schematic representation of the continuum/atomistic coupling in the CADD
method. In (a) the system is portrayed: The atomic region �A and the continuum one �C

are joined at an interface q�I defined by a line of atoms (not necessarily straight) and are
subject to a prescribed traction, T0, and initial displacements, u0. In (b) the continuum/
atomistic interface is displayed in detail: Solid circles represent real atoms in the bulk,
gray circles represent real atoms on the interface, and unfilled circles represent pad
atoms. Pad atoms are situated in the continuum region. The finite-element mapping is
shown in the continuum region as well.
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To connect the two regions while making sure that the real atoms near
and at the interface are correctly coordinated, pad atoms are added to the sys-
tem in the continuum region [see Figure 5(b)]. This treatment of the hand-
shake region is inspired by the one used in the FEAt method. The pad thickness
is crucial for obtaining correct results, and not only should it be larger than the
range of the atomistic interactions rcut, but the real atoms must continue to be
correctly coordinated even after dislocations have crossed the boundary
between the atomistic and continuum zones, a phenomenon that generates
slip steps at the interface. The positions, rP, of the pad atoms are obtained
by interpolating the FE nodal displacements to their reference positions, i.e.,
they are considered a ‘‘continuum region’’ quantity and are instantaneously
perceived as fixed by the real atoms. However, the expression for the total
energy of the atomistic domain includes interactions with the pad atoms:

Ea ¼
X

i2ðA;I;PÞ
EiðrA; rI; rPÞfA�uA ½11�

where uA are the atomic displacements, fA are the lumped forces, and the sum
includes the pad atoms even though they are not degrees of freedom. The full
atomistic forces on the atoms are then obtained by taking the partial deriva-
tives of Ea with respect to positions rA and rI. It is important to notice that
only the partial derivatives of Ea with respect to the pad atom positions would
contain unphysical forces, but they are not needed because the pad atom
displacements are completely determined by those of the FE nodes. The total
energy functional for the continuum domain is given by a sum over the
energies, Em, of the finite elements, m, plus boundary work terms:

Ec ¼
X
m

EmðUI;UC; d
iÞ �

ð
q�T

T0udA ½12�

It is important to mention that the displacement of the interfacial nodes, UI,
are not degrees of freedom in the continuum calculation: Because the interfa-
cial nodes coincide with interface atoms, rI, they are moved as atoms and
appear as fixed nodes with prescribed displacements to the other elements of
the continuum region. Lastly, it must be remarked that this formulation of the
continuum/atomistic coupling does not allow for the use of a unique energy
functional because Ea includes the elastic energy of the pad atoms, whose
energy is already implicitly contained in the continuum energy, Ec.

Before concluding the analysis of the hybrid coupling utilized in the
CADD method, it is important to briefly discuss the issue of ghost forces.
As in all of the other coupled methodologies, in CADD the main cause for
such spurious forces is that the atomistic region is inherently nonlocal since
the range of realistic interatomic potentials is larger than the nearest-neighbor
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distance. The continuum region, however, is local since stresses at a point are
completely determined by the deformation at that point. Moreover, CADD, as
well as most of the other continuum/atomistic hybrid methodologies, assumes
linear elasticity in the entire continuum region, and something very close to it
in the atomistic region near the atomistic/continuum interface. However, core
regions of real dislocations are strongly nonlinear, and hence such an assump-
tion is significantly violated when a dislocation comes close to the atomistic/
continuum interface. This issue is particularly important here because CADD’s
main purpose is dealing with dislocations, and, in particular, allowing disloca-
tion motion through such an interface. To significantly reduce the spurious
forces that arise when a dislocation crosses the atomistic/continuum boundary,
the CADD’s authors devised a specific method, the template method, to be
added to the above-described treatment of the interface.128 It is beyond the
scope of this review to give a detailed description of such a methodology, we’ll
just mention that it is based on the idea of generating a template of true ato-
mistic positions for the dislocation core, which is consistent with a far-field
anisotropic linear elasticity solution, and using it as a discrete atomistic displa-
cement field whenever the core of the dislocation is close to the atomic/
continuum interface.

Applications The CADD method has been successfully applied to the
investigation of Brinell nanoindentation to large penetration depth (up to
60Å) in hexagonal (2D) aluminum131 and to the study of edge dislocation
pile-ups interacting with a grain boundary in Al, under different loading
conditions.132

Atomic Size Finite Element Method
The atomic size finite-element method (AFEM)133,134 is an iterative

procedure built on the idea that the use of a unified theoretical framework
for atomistic and continuum calculations will lead to a seamless coupling
between the two length scales. To accomplish that, the atomistic calculations
are performed using the same formal structure that is used in the continuum
FEM. A second important point in this methodology is the use, during the
energy minimization, of both the first and the second derivatives of the system
total energy, which leads to a much faster convergence than standard
conjugate-gradient methods.

In the atomistic part of the procedure, particles are used as FEM nodes,
even though, as will become clearer in the following, an AFEM element is
quite different from the standard FEM definition. As for any zero-temperature
equilibrium method, the objective is to determine the state of lowest energy,
i.e., the system configuration such that

qEtot

qx
¼ 0 ½13�
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To do so, a Taylor expansion of the energy is considered, up to the quadratic
term:

EtotðxÞ � Etotðx0Þ þ qEtot

qx

����
x¼x0

ðx� x0Þ

þ 1

2
ðx� x0ÞT q2Etot

qx qx

����
x¼x0

ðx� x0Þ ½14�

where x0 ¼ ðxð0Þ1 ; x
ð0Þ
2 ; . . . ; x

ð0Þ
N ÞT is an initial guess of the equilibrium state.

Substituting Eq. [14] into Eq. [13], and defining u ¼ x� x0 as the atomic
displacement, produces an equation typical of the continuum FEM:

Ku ¼ P ½15�

where, following the FEM nomenclature, K ¼ q2Etot=qx qxjx¼x0
is the stiffness

matrix, and P ¼ qEtot=qxjx¼x0
is the nonequilibrium force vector. The main

difference between the AFEM and the standard FEM is in the definition and
properties of the elements. In AFEM an element i is defined as the ensemble of
atoms that contribute to the computation of the atomic energy Ei [similar to
the definition of crystallite in the fully nonlocal quasi-continuum method (dis-
cussed above)]. Clearly, the size and shape of the elements depend on the
atomic structure and chosen interatomic potential. However, in AFEM the
‘‘elements’’ overlap in space, to account for multibody atomistic interactions,
while in the FNL-QC method the crystallites were suitably truncated to avoid
overlapping. This means that, in AFEM, the energy is not partitioned into
elements, as it is in standard FEM, and that all of the atoms inside an element
contribute to the energy calculations, not only the nodes. Equation [15] is then
solved iteratively until P reaches zero. When both atomistic and continuum
region are considered (i.e., the AFEM is used in an hybrid methodology),
the total energy of the system is minimized simultaneously with respect to
both atomic positions (in AFEM) and FEM nodes (in continuum FEM).

Applications The AFEM methodology has been applied to the investigation
of properties of single carbon nanotubes (e.g., deformation under
compression), and of woven nanostructures of carbon nanotubes.134 The
same methodology has also been applied to simulate postbuckling135 and
critical strain136 of carbon nanotubes.

Green’s Function Boundary Condition Methods
In the following, we explore the possibility of imposing boundary condi-

tions as a way to relieve incompatibility stresses at the interfaces between
computational domains, while, at the same time, allowing the use of a minimal
atomistic region. More specifically, boundary condition (BC) methods can be
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used to simulate phenomena where the elasticity solution does not change with
the defect size (outside of a predefined core region) and phenomena where,
instead, the elasticity solution evolves in the neighborhood of the defect. Simu-
lations of a dislocation core, or of kinks on a dislocation, are examples of the
first class of phenomena, while the investigation of crack propagation is an
example of the second class. Green’s function boundary condition (GFBC)
methods are well suited for the investigation of the former class of processes,
while boundary condition methodologies that couple finite-element-continuum
domains to atomistic regions are designed for modeling the latter. This second
class of boundary condition methods is examined below. Several groups have
proposed GFBC methodologies,137–141 and, in the following, as an example,
we will discuss the one suggested by Sinclair et al.140 and then expanded by
Rao et al.141

The simplest approach to simulate an infinite dislocation line is to
consider an atomistic cell of cylindrical shape, aligned along the dislocation
line itself, and embed it into a fixed continuum region [Figure 6(a)]. Such a
configuration is usually referred to as 2D because the thickness of the cell along

Figure 6 Simulation cells for studying dislocation cores in the 2D case. (a) In the fixed
boundary approach, region 1 is the atomistic region, where atoms are allowed to relax,
while region 3 is the fixed outer shell mimicking the continuum medium. (b) In the
GFBC method of Rao et al.,141 an intermediate shell (region 2) is inserted between the
atomistic (region 1) and the continuum domains (region 3).
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the dislocation line direction is minimal, just the amount needed to fully describe
the crystal structure. The use of such a configuration allows for the modeling of
a single straight dislocation, but not of complex defects such as dislocation inter-
action or kinks. The thickness of the continuum region (region 3 in the figure)
corresponds to the maximum range of the classical potential, i.e., all of the
atoms in the core (region 1) are given a computationally complete set of neigh-
bors. Periodic boundary conditions are applied along the direction of the dislo-
cation line, and atoms inside the atomistic region are allowed to relax during the
simulation. Because the external shell is kept fixed at all times, we can label this
approach as fixed boundary. The downside of such a simple approach is that
incompatibility forces arise at the continuum/atomistic interface and become
negligible only when very large atomistic regions are considered.

To overcome this difficulty, and to allow for the use of a much smaller
core region, Rao et al.141 took the GFBC method originally developed by
Sinclair et al.140 for 2D simulations and extended it to the 3D case. For sim-
plicity, let us examine the 2D scenario (the same principle applies to 3D simu-
lations as well). Now, a cylindrical shell of thickness equal to the range of the
classical potential [region 2 in Figure 6(b)] is inserted in between the atomistic
and the continuum domains. Because of its thickness, such a shell contains all
of the atoms in the continuum domain on which atoms in region 1 may exert a
force. The simulation is started by placing all of the atoms in the system
(regions 1, 2, and 3) into positions determined using a linear elastic displace-
ment field. Then, atoms in region 1 are individually relaxed, while atoms in
region 2 and 3 are displaced collectively, according to the Green’s function
solution for a line force acting on a perfect lattice.142,143 Equilibrium is
reached through an iterative procedure, where region 1 is relaxed first, and
then the forces still acting on atoms in region 2 are used to determine a cor-
rective displacement field on all three regions from a superposition of Green’s
functions. Details on the relaxation procedure, the Green’s function solutions,
and the extention of the methodology to the 3D case can be found in the
original studies. Using such a computational technique, Rao et al.141 managed
to reduce simulation cell sizes by as much as 90%.

Applications Sinclair et al.140 used the GFBCmethod to investigate [100] edge
dislocations in a iron, while Rao et al.141 applied their expanded version to the
study of straight screw dislocations in Ni, kinks (isolated or as a periodic array)
on a screw dislocation in bcc Fe, screw dislocations in Mo, and 3D cross-slip
core structures of screw dislocations in fcc metals.141,144,145

Finite-Temperature Equilibrium Methods

In the following, we present some finite-temperature static/semistatic
methods that utilize a coupled atomistic/continuum description of the system.
As with the zero-temperature case, they are a better choice than dynamical
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methods if only equilibrium properties are investigated, because they (1) are
usually computationally faster than dynamical ones, (2) can probe a larger
part of the configurational space, and (3) are not affected by the spurious
wave reflections at the atomistic/continuum interface as happens with most
dynamical methods. The key difference between zero-temperature and finite-
temperature equilibrium methods is that in the former it is sufficient to mini-
mize the effective energy, while in the latter an effective free energy must be
constructed and then minimized. However, if dealing with the free energy
directly is computationally too expensive, alternative routes can also be used.
One of the most popular of these is the Monte Carlo (MC) method,15–17 where
a random sampling of the phase space is used to reach equilibrium, instead of
directly minimizing the free energy. To conclude, it is worth noticing that most
of the methods discussed in this section can be considered as extentions of the
zero-temperature quasi-continuum (QC) method (see above).

Basic Approximations
The majority of the finite-temperature equilibrium methods that we are

about to discuss make use of a few key approximations in order to minimize
the computational load. To begin with, an harmonic approximation of the
atomistic potential is used,110,146 both when computing the Helmholtz free
energy directly and when determining the effective energy to use in MC calcu-
lations. In the harmonic approximation of the potential, only terms up to the
second order are retained in the Taylor expansion of the total potential energy.

A second, very important, approximation is the local harmonic approx-
imation (LHA),147–149 which states that all of the atoms in the system can be
treated as independent oscillators, i.e., the Einstein model can be used to
describe the material, all of the atoms have the same vibrational frequencies,
and the correlation between the vibrations of different atoms is neglected. The
introduction of this approximation greatly simplifies the calculations, but also
significantly diminishes the accuracy of the results. Therefore, the next three
computational methods are discussed in order of increasing theoretical accu-
racy, with the first method being the least accurate (and therefore the most
computationally tractable) because it uses the LHA for describing both the
representative and slave atoms. The second method is an intermediate treat-
ment (the LHA is used only for slave atoms), and the third method is the
most accurate since it does not use the LHA at all.

A third approximation often used is the high-temperature classical
limit,147 where sinhðhoik=4pkBTÞ � hoik=4pkBT. Using such an approxima-
tion greatly simplifies computing the Helmholtz free energy or the effective
energy, but it is not valid at temperatures above one half of the melting
point.146,149 Lastly, we would like to mention that the methods presented
here are just some of the proposed methodologies that expand the QC idea
to finite temperature (for others, see, e.g., Ref. 146).
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QC Free Energy Functional Method
Diestler et al. have proposed several extensions of the QC method for the

case of finite temperature.109,150–152 In their earlier work, this group suggested
Monte Carlo approaches,150–152 while more recently they developed a free
energy functional treatment for the investigation of finite-temperature quasi-
static multiscale processes [109]. Here we’ll discuss such a free energy func-
tional methodology, while an example of the QC Monte Carlo approach
will be discussed in the next section.

This treatment is based on the idea of replacing the zero-temperature QC
potential energy function (e.g., Eq. [10]) with a free energy functional, Fc. The
nonzero-temperature equilibrium is then found by minimizing such a free
energy using a standard conjugate gradient algorithm [14]. The method is
designed for investigating systems under constant temperature, T, and density
conditions, so the relevant free energy to be minimized is the Helmholtz free
energy, F,

F ¼ E� TS ½16�

where E is the energy of the system and S is the entropy. Assuming that both
the local and nonlocal elements comprising the finite-element coarse-graining
mesh that covers the entire system are subject only to homogeneous deforma-
tion, then the Helmholtz free energy for the coarse-grained system can be
approximated by

F ¼
XNe

e¼1

Ne
afe ½17�

where the summation is over all of the Ne elements, Ne
a is the number of atoms

in element e, and fe is the Helmholtz free energy per atom. Using the local har-
monic approximation147–149 (see next section), the Helmholtz free energy per
atom is approximated by

fe ¼ ue þ 3kBT ln
hðdetDeÞ1=6

2pkBT

" #
½18�

where h is Plank’s constant, ue is the potential energy per atom at zero tem-
perature (using the Lennard-Jones interatomic potential, e.g.), and De is the
dynamical matrix associated with the representative atom, again calculated
for the zero-temperature system. Computationally, the evaluation of fe for a
local element is not too demanding: ue is obtained by applying the Cauchy–
Born rule, and, likewise, De is computed as the dynamical matrix associated
with an atom in an infinite crystal subject to the same deformation as the
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representative atom under investigation. However, if the element is nonlocal,
then the representative atom has neighbors in both its and other elements.
Since the positions of atoms in different elements depend on the configurations
of all the nodes of those elements, clearly the evaluation of fe for nonlocal
representative atoms is computationally much more involved.

Applications Up to now this method has only been applied to the computation
of stresses in the simple case of a 3D, fcc Lennard-Jones crystal.109 To avoid
dealing with ghost forces, the method’s authors choose to treat all the
elements as local, irrespective of their true status. Such a crude approximation
worked well in this test case, possibly because of the simplicity of the problem
under examination.

Quasi-continuum Monte Carlo
Shenoy et al.98,153 in 1999 proposed the quasi-continuum Monte Carlo

(QCMC) method as a way to extend the quasi-continuum method to the study
of equilibrium properties of materials at finite temperature. The objective of
this treatment is to construct a computationally manageable expression for a
temperature-dependent effective energy for a system maintained at fixed tem-
perature. Such an energy would then be used instead of the zero-temperature
effective energy (e.g., Eq. [10]) in a Monte Carlo formulation of the QC
method.

In a Metropolis–Monte Carlo approach, the probability of finding the
system in a specific configuration fuig is given by

PðfuigÞ / e�bHðfuig;TÞ ½19�

where T is the temperature, b ¼ 1=kBT, kB is Boltzmann’s constant, and H is
the system energy. In the QCMC method, the idea is to construct an effective
energy that would depend only on the positions of the representative atoms,
while the contribution of all the remaining atoms (called slave atoms in this
treatment) is averaged over. To do so, the authors started from the assumption
that the partition function of the system is unchanged when averaging out the
slave atoms:

Z ¼
ð
duR duSe�bHðfuRi g;ðfuSi gÞÞ ¼

ð
duRe�bHeffðfuRi g;TÞ ½20�

where the index R indicates quantities related to representative atoms, and
S those related to slave atoms. Equation [20] leads to the definition of an
effective energy as

e�bHeffðfuRi g;TÞ ¼
ð
duSe�bHðfuRi g;ðfuSi gÞÞ ½21�
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which is, by construction, only dependent on the representative atoms (all the
slave degrees of freedom have been integrated out). In this model, the displa-
cements of the slave atoms are assumed to be

uSi ¼
X
j

uRj NjðXS
i Þ þ gi ½22�

which means that they are not completely determined in terms of the displace-
ments of the representative atoms by finite-element interpolation [uSi ¼

P
j u

R
j

NjðXS
i Þ], as they were in the zero-temperature QC Eq. [5], but they also

depend on a fluctuational variable, gi, which accounts for temperature-driven
random fluctuations in the finite-element shape functions. Using Eq. [22],
expanding H in terms of the random fluctuations, terminating the expansion
to the second order, and going through a rather involved derivation (for details
we refer to Ref. 153), an approximate form of the effective energy function is
obtained:

HQCðfuRi g;TÞ ¼ HQCðfuRi g; 0Þ þ 3kBT
X
e

nse ln
�h½detDðFeÞ�1=6

kBT

( )
½23�

where the first term accounts for the internal energy of the deformed crystal,
while the second term contains the entropic contribution due to the slave
degrees of freedom that were integrated out. In Eq. [23] DðFeÞ, is the local
dynamical matrix of an atom in a crystal undergoing an homogeneous defor-
mation gradient F, and nse is the number of slave atoms in element e. In obtain-
ing Eq. [23], several approximations were made, the most important one being
the use of the local harmonic approximation (LHA; see discussion above), i.e.,
slave atoms are assumed to have harmonic displacements around their equili-
brium positions. This means that all of the slave atoms in one element have the
same vibrational frequencies, i.e., the correlation between the vibrations of
different atoms is neglected. However, while the introduction of the local har-
monic approximation in deriving Eq. [23] has notably expedited the calcula-
tion of the effective energy function, the energy determination still requires a
larger computational effort than performing QC calculations at zero tempera-
ture. The most important limitation of this approach comes from the use of the
local harmonic approximation as well: Because of it, the method is reliable
only at low temperatures and has a tendency to underestimate the temperature
dependence of defect free energies.

QC k-space Quasi-harmonic Model
An alternative approach to the calculation of the Helmholtz free energy

is the k-space quasi-harmonic model (QC-QHMK)110,154,155 introduced in
2001 by Aluru et al. This method, still a generalization of the quasi-continuum
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methodology, is more accurate than the previous two because it does not make
use of the local harmonic approximation, i.e., it preserves the coupling of the
vibrations of different atoms. The key idea is to keep the amount of computa-
tion manageable by calculating the Helmholtz free energy in the reciprocal
space while using Bloch’s theorem156 with the Born–von Karman boundary
conditions.157 The authors applied it to the investigation of the effect of tem-
perature and strain on phonon and elastic properties in silicon.

Because of the reciprocal representation (details on the calculation can be
found in Refs. 110,154, and 155), the dynamical matrix D for a representative
atom a is reduced to a 6� 6 matrix of the form

DðkÞ ¼ 1

M

�N
b¼1�

11
j;kða; bÞeik�R

0
ba �N

b¼1�
12
j;kða; bÞeik�ðR

0
ba�F�1xÞ

�N
b¼1�

21
j;kða; bÞeik�ðR

0
baþF�1xÞ �N

b¼1�
22
j;kða; bÞeik�R

0
ba

2
4

3
5

a ¼ 1 j; k ¼ 1; 2; 3

½24�

where k is the wave vector, �
pq
j;kða; bÞ is the force constant matrix, a is the

representative atom (center atom), and b loops over all the atoms in the crystal.
For more detail on this derivation, we refer to the original study.110,154,155

The free energy of a representative atom a can therefore be written as

Fa ¼ U0
a þ

1

2VB

1

2

ð
k

X6
s¼1

�hosðkÞ dkþ kBT

ð
k

X6
s¼1

lnð1� e�hosðkÞ=kBTÞ dk
 !

½25�

whereU0
a is the total potential energy of atom a evaluated using the equilibrium

position of the system, VB is the volume of the first Brillouin zone of the recipro-
cal lattice, and the factor 2 is due to the fact that the silicon lattice is made by
two interpenetrating Bravais lattices. More importantly, osðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
lsðkÞ

p
,

where lsðkÞ are the eigenvalues of the 6� 6 dynamical matrix D and s is the
index of the polarization for the crystal. In deriving Eq. [25], the authors also
used the fact that k can be assumed continuous for a bulk material. Lastly, in
the QC-QHMKmodel, the vibrational component of the Helmholtz free energy
(second term on the right-hand side in Eq. [25]) is evaluated for all the atoms
corresponding to the continuum nodes by considering a bulk, nonlocal silicon
crystal subjected to a homogeneous deformation given by the local deformation
gradient (Cauchy–Born rule158,159).

Dynamical Methods

In this section, we discuss hybrid methodologies that explore the dyna-
mical evolution of systems composed of a continuum region (usually described
using finite-element methods) coupled to a discrete one [modeled using mole-
cular dynamics (MD) algorithms and semiempirical classical potentials].
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Dynamical hybrid methods face even greater challenges than equilibrium
ones. In addition to dealing with the same difficulties in achieving a smooth
matching in the hand-shake region, as discussed earlier, dynamical methods
must also take into consideration the pathological wave reflection that occurs
at the boundary between the discrete and the continuum regions. Such a reflec-
tion occurs because the distribution of wavelengths emitted by the MD region
includes waves significantly shorter than those that can be captured by the
continuum FE region. Because an energy-conserving formulation is usually
used, the wave must go somewhere and, therefore, gets reflected back into
the MD region, leading to fictitious heat generation in the atomistic region.
The ability to minimize (or, even better, eliminate) such a reflection is there-
fore a key point in developing a successful dynamical hybrid methodology.

Lastly, to be effective, dynamical simulations should cover as long a time
as possible. Therefore, the size of the time step is a significant issue in the effec-
tiveness of the methodology. In most hybrid implementations, the size of the
finite-element mesh is graded down to the atomic lattice size at the boundary
between continuum and MD domains to reduce wave reflection (see discus-
sions on domain decomposition and quasi-continuum coarse-grain alternative
below). Because the time step in an FE simulation is governed by the smallest
element in the mesh, this procedure requires the use of the same size time step
in both the discrete and continuum domains, even though the large-scale phy-
sical quantities evolve much more slowly than the short-scale ones. However,
a few methods, such as the bridging scale technique of Wagner and Liu dis-
cussed in the section on adaptive model refinement techniques, have particu-
larly addressed this issue and allow for the possibility of using multiple time
scales in hybrid simulations.

Domain Decomposition Methods
Domain decomposition methods are hybrid methodologies where the var-

ious computational methods are spatially separated, i.e., a higher level of theory
(e.g., atomistic models) is used in the area of interest (near a vacancy, defect,
crack tip, and so on), and a lower level of theory (e.g., continuum models) is
used everywhere else. This is the most intuitive approach to the coupling pro-
blem, and often the easiest to implement computationally. Among these meth-
odologies are some of the most widely used coupling schemes in the solid state
(like the CLS method). However, the existence of spatial boundaries between
computational methods may lead to hand-shake problems larger than those cre-
ated by other approaches. In the following, a few examples of such an approach
will be given.

Coupling of Length Scales Method: Atomistic/Continuum Part The FE/MD/
TB coupling of length scales (CLS) method,66,67,160–164 also known as MAAD
(macroscopic, atomistic, ab initio dynamics), is one of the few methodologies
to provide a dynamical coupling of three different regimes: the macroscopic
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one, described using continuum mechanics, the mesoscopic one, modeled with
classical atoms interacting through empirical potentials, and, lastly, the
microscopic one, where a quantum mechanics description is necessary to
correctly reproduce bond breaking. A good representation of quantum
mechanical effects such as bond breaking was very important to the CLS
developers because the method was aimed at the investigation of phenomena
such as fracture and crack propagation. In this section, we will delineate
the basic principles of the methodology, and we will provide a description of
the FE/MD coupling, while details on the MD/TB coupling will be discussed
below.

The CLS methodology uses an FE description to model the continuum,
classical MD to simulate the evolution of the mesoscopic regime, and a TB
molecular dynamics approach to include quantum effects in the overall treat-
ment. The FE description is at the linear elastic level because its use is limited
to regions where the atoms are only slightly perturbed from equilibrium. The
classical molecular dynamics makes use of semiempirical potentials such as the
Stillinger–Weber (SW) potential8 for Si. Lastly, the tight-binding method was
chosen instead of other, more accurate, quantum descriptions because of its
computational speed.

The key idea in the CLS approach is to define a unified Hamiltonian Htot

across all three regions. This guarantees energy conservation, which is crucial
for a realistic description of dynamics at finite temperature. Also, a single
Hamiltonian requires a sharp interface between the regions. The Hamiltonian
degrees of freedom are the atomic positions, r, and velocities, _r, for the MD
and TB regions, and the nodal displacements, u, and their time rates of change,
_u, for the FE region. Such a Hamiltonian has the form

Htot ¼ HFEðfu; _ug 2 FEÞ þHFE=MDðfu; _u; r; _rg 2 FE=MDÞ
þHMDðfr; _rg 2 MDÞ þHMD=TBðfr; _rg 2 MD=TBÞ
þHTBðfr; _rg 2 TBÞ ½26�

where HFE=MD and HMD=TB are the Hamiltonians that dictate the dynamics in
the two hand-shake regions. The equations of motion are then obtained by
taking the derivative of Eq. [26] with respect to all of the appropriate
variables.

The matching of the FE and the MDmodeling across the FE/MD interface
is accomplished by fine-graining the FE grid down to the atomic size, so that a
one-to-one correspondence between the MD atoms and FE nodes is achieved
(Figure 7). Away from the interface and into the FE region, the mesh expands.
In the FE domain, the one-to-one mapping is not necessary at distances larger
than twice the cutoff of the classical potential, and, on the MD side, beyond
the first line of elements. This asymmetry is due to the different locality of the
two methods. Also, an assumption of no diffusion across the interface is made,
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so that atoms remain near the corresponding mesh point on either side of the
interface at all times. The way the hand-shake Hamiltonian is constructed is
based on the idea that the interactions at the interface can be approximated to
first order by an average of the two descriptions. This means that bonds comple-
tely contained in theMD region, or elements in the FE one, contribute with a full
weight to the Hamiltonian, while bonds or elements only partially contained in
their natural region contribute with a reducedweight to the overall Hamiltonian.
More specifically, when considering as semiempirical potential the SW one, the
hand-shake Hamiltonian becomes

HFE=MD ¼ 1

2

XN
i

miv
2
i þ

1

2

XNat

i;j

wijV
ð2Þ
ij ðrijÞ

þ 1

6

XNat

i;j;k

wijkV
ð3Þ
ijk ðrij; rikÞ

þ 1

2

XNe

l

XNne

i;j

wlu
l
ik

l
iju

l
j ½27�

where N, Nat, Ne, Nne, are the total number of particles, atoms, elements, and
nodes per element, respectively (N < Nat þNnodes because of the atom/node

CutoffV2*

B1B2

FE Region
FE/MD Interface

FE/MD Interface
MD Region

Figure 7 Schematic illustration of the hand-shake treatment near the FE/MD interface
in the CLS method. A one-to-one atom-to-node mapping is considered in the FE zone up
to a distance equal to twice the classical potential cutoff. After that, the mesh expands.
Elements that are partially contained in the MD zone are displayed as shaded and
contribute less than their entire energy to the Hamiltonian. Similarly, on the MD side,
bonds crossing the interface (dashed lines) contribute less than their full weight, while
bonds completely enclosed in the MD area (solid lines) have weight equal to one. B1 and
B2 are the boundaries of the hand-shake region.
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overlap). Also,mi and vi indicate both the atomic and the nodalmasses and velo-
cities, respectively, while V

ð2Þ
ij and V

ð3Þ
ijk are the two- and three-body terms of the

SW potential. Lastly, ul and k
l are the FE displacement vector and stiffness

matrix, respectively, for element l. The weights wl, wij, and wijk are determined
by matching the elastic constants of the hand-shake region to those of the
‘‘bulk’’ MD and FE systems and are given by (see Figure 7 for the definition of
B1 and B2)

wi ¼

1 if i or j is to the right of B1
3
4 if i and j are between B1 and the FE=MD interface
1
2 if ior j crosses the FE=MD interface
1
4 if i and j are between B2 and the FE=MD interface

0 if i or j is to the left of B2

8>>>>><
>>>>>:

½28�

wi ¼
1 if l is to the left of B2
1
2 if l crosses the FE=MD interface
0 if l is to the right of the FE=MD interface

8<
: ½29�

The three-body weights, wijk, are defined similarly to the two-body ones, wij.
As discussed previously, an important issue that all dynamic multiscale

methodologies must deal with is the phonon spectrum mismatch between the
atomistic and coarse-grained regions. In the CLS method, this effect is handled
by weakly coupling the FE degrees of freedom to a Brownian motion heat bath
that is set to the desired temperature. As a last remark, we need to mention
that this hybrid scheme is computationally very efficient and reasonably simple
to implement, so that several groups other than the original authors have
adopted it.

Applications The developers of the CLS method applied it to the investigation
of fracture and crack propagation in silicon,164–167 while Lidorikis et al. used it
to model the strain relaxation and induced-stress distribution in Si/Si3N4

nanopixels.168,169

Overlapping Domain Decomposition and Edge-to-Edge Decomposition
Methods In 2003, Belytschko and Xiao introduced the overlapping domain
decomposition (ODD) method and the edge-to-edge decomposition (EED)
method170 to effectively couple atomistic simulations to continuum ones,
particularly targeting the modeling of large deformations in nanosystems. The
ODD method was later extended to include dynamical effects as well.171

In the ODD method, the atomistic and continuum regions are coupled
through a standard hand-shake region, and a single energy functional is
considered for the complete domain. As in most methods, the continuum is
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discretized using a finite-element approach, but, in contrast to other methodol-
ogies (e.g., CLS), a uniform mesh is used for the entire continuum domain, as
well as for the hand-shake region. Thus, the continuum mesh does not coin-
cide with the atomic positions in the hand-shake part of the system. This meth-
odology is well suited for the modeling of crystalline or amorphous solids
subject to deformations small enough that voids or dislocations do not develop
in the continuum subdomain, i.e., no diffusion of atoms into the continuum
region can be considered. The method also provides a natural way to simulate
heat flow through the system.

To correctly compute the energy of the hand-shake region, a scaling
parameter for this region is defined as a ¼ lðXÞ=l0, where lðXÞ is the orthogo-
nal projection of the position X onto the edge of the continuum domain, and l0
is the length of this orthogonal projection to the edge of the atomistic domain
(see Figure 8), so that

a ¼
1 in the continuum� only region; ð�C

0 � �hand shake
0 Þ

½0; 1� in the hand� shake region; �hand shake
0

0 in the atomistic � only region; ð�A
0 � �hand shake

0 Þ

8><
>: ½30�

Using such a parameter, the Hamiltonian for the whole system is constructed
as a linear combination of the atomistic and continuum Hamiltonians:

H ¼ ð1� aÞHA þ aHC

¼
X
I

�
1� aðXIÞ

� pAI pAI
2mI

þ ð1� aÞWA þ
X
N

a
�
XN

� pCNpCN
2MN

þ aWC ½31�
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Figure 8 Coupling between the atomistic and the continuum domains in the ODD
method.
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where pA is the atomic momentum, mI is the atomic mass, WA is the atomistic
external potential, pC and MI are the nodal momentum and mass for the con-
tinuum model once it is discretized by a finite-element method and WC is the
total potential of the continuummodel. The index I varies over all of the atoms,
while the indexN spans all of the nodes covering the continuum region. Explicit
expressions forWA andWC are given in Ref. 171; for the scope of this review it
is sufficient to specify that WA should only be due to a constant external force,
such as electrostatic forces, and a pairwise interatomic potential, while the
constitutive equation for the finite-element method is constructed via the
Cauchy–Born rule as in the quasi-continuum approach, or via the exponential
Cauchy–Born rule158 if monolayer crystalline membranes such as nanotubes are
simulated. Lastly, the coupling of the two regimes (atomistic and continuum) is
completed by requiring that the atomic displacements should conform to the
continuum displacements at the discrete positions of the atoms.

The constraints are first applied to all components of the displacements
by the Lagrange multiplier method; then the modifications needed for the aug-
mented Lagrangian method are added. Lastly, the equations of motion for the
Lagrange multiplier method are obtained. A detailed derivation of such equa-
tions of motion can be found in Ref. 171, together with the explicit recipe for
the Verlet algorithm used to integrate such equations.

One of the issues in dynamical multiscale coupling is the tailoring of the
time step to the different subdomains. If the same time step is used in both the
atomistic and the continuum regions, computations will be wasted in the con-
tinuum model. However, if in the hand-shake region the size of the FEM
elements is reduced to coincide with the individual atoms, it is difficult to
tailor the time step. Therefore, the authors of the ODD method chose to use
a uniform mesh for the continuum domain, so that a much larger time step
could be used in the continuum model than in the atomistic one. A description
of such a multiple-time-step algorithm is provided in the paper.169

With regard to the problem of phonon reflections from the interface, the
authors provide test results that show that the ODD method dramatically
reduces spurious wave reflections at the atomistic/continuum interface without
any additional filtering procedure. If the overlapping subdomain is large
enough, they find that the high-frequency wave reflection is almost completely
eliminated.

Lastly, we will briefly describe the EED method introduced in Ref. 170.
While this method is found to be almost as effective as the ODD for static
applications, it is not suited for dynamical ones because it causes significant
reflection of the high-frequency part of the wave at the atomic/continuum
interface. In the EED method, no hand-shake region is defined and the cou-
pling of the two regions occurs through an interface (Figure 9). Three types
of ‘‘particles’’ are defined: nodes in the continuum region, atoms in the atomis-
tic domain, and, virtual atoms that are introduced in the continuum domain to
model the bond angle bending for bonds between the continuum and the
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molecular domains. The virtual atoms are connected to the real ones through
virtual bonds. The internal potential energy for the entire system is the sum of
the continuum (WC) and atomistic (WA) potential energies. The bond angle-
bending potential resulting from the bond angle change between the virtual
bonds is included in the atomistic potential energy. The motion of a virtual
atom is completely determined by the displacements u of the nodes A, B,
and C of its element (for a given choice of the shape functions N):

uf ðX; tÞ ¼
X
I

NIðXÞuIðtÞ I ¼ A;B;C ½32�

The coupling between the two regions is then completed by imposing the same
constraints as in the ODD method and, as before, the equations of motion
can be obtained using the Lagrange multiplier method and the augmented
Lagrangian method.

Applications The ODD and EEDmethods were tested and compared studying
the semistatic bending of a graphite sheet and two nested carbon nanotubes.170

The authors applied the dynamicODDmethod to the study ofwave propagation
and dynamic crack propagation in a graphene sheet,171 and, also, to the
investigation of defects in carbon nanotubes.172 A very detailed study of the
coupling terms used in the ODD method is presented in Ref. 173. A further
extension of the method is presented in Ref. 174.

Adaptive Model Refinement Techniques
The adaptive model refinement techniques, also called bridging scale/

multigrid methods, are based on the idea of covering the entire computational
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Figure 9 Coupling between the atomistic and continuum domains in the EED method:
In contrast to the ODD case, no hand-shake region is considered, and the coupling of the
two regions occurs through an interface.
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domain with a macrogrid on which a macroscale model is applied. Such a
macroscale model is then locally refined in the area, or areas, of interest.
This kind of approach avoids having to deal with spatial transitions in
the computational technique and, therefore, minimizes the hand-shake
problems.

Heterogeneous Multiscale Method The heterogeneous multiscale method
(HMM)175,176 provides a general framework for dealing with multiscale
phenomena and can be easily applied to the coupling of continuum and
atomistic (molecular dynamics) simulations at finite temperature.

The basic goal of this methodology is to enable simulations of macro-
scopic processes in cases where explicit macroscale models are invalid in at
least part of the macroscopic system. In those regions, microscale models
are used to supply the missing data. In the HMM, the computational saving
comes from reducing both the spatial and the temporal domains. The spatial
reduction is, as in all hybrid methodologies, due to the possibility of applying
the higher level of theory only to a limited part of the whole system, while the
reduction in temporal domain originates from the fact that this method natu-
rally decouples the atomistic time scale from the continuum one, therefore
allowing the use of a much larger time step in the macroscopic calculation.
The HMM can also be used to model isolated defects, such as dislocations
or cracks, that require the use of a higher level of theory only in the vicinity
of the defect itself. The different possible applications of the HMM are sche-
matically displayed in Figure 10 and include macroscopic processes with
unknown constitutive relations (a), and isolated defects [(b) and (c)]. How
to treat the problem of an isolated defect depends upon the relationship
between the time scale for the defect dynamics, TD, and the time scale for
the relaxation of the defect structure, Tr. For TD � Tr, the simulation time,
�t, for the microscopic model can be less than the macroscopic-scale time
step, (TS) [case (b)]. Conversely, if TD is comparable to Tr [case (c)], the whole
time history of the defect should be computed atomistically.

In the following, we discuss in detail the application of the HMM to the
study of macroscopic processes with unknown constitutive relations because
the isolated-defect case can be obtained with easy modifications. Because the
aim of the HMM is to accurately simulate a macroscopic process with state
variable U, the main components of the methodology are: (1) a macroscopic
scheme to solve the continuum equations for U and (2) a way to estimate the
missing macroscopic data from a microscopic model. Therefore, the key steps
in applying the heterogeneous multiscale procedure to the atomistic/conti-
nuum coupling are as follows. To begin with, because the macroscopic model
is based on the conservation laws of mass, momentum, and energy, the MD
must be expressed in the form of conservation laws as well, i.e., as a set of
partial differential equations (PDEs). Then, the PDEs are solved numerically.
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At each macroscopic time step, MD calculations, constrained by the local
macrostate of the system, are used to compute the missing data needed in
the numerical solution of the PDEs. These data are obtained as time averages
of microscopic variables after the MD simulation has equilibrated. The
physical requirement to minimize/eliminate wave reflection at the boundary
between the atomistic and the continuum treatment is achieved via well-
chosen boundary conditions for the MD simulational cell.177,178

Choosing to work in Lagrangian coordinates, the conservation laws at
the basis of the continuum model are

qtA�rx0 � v ¼ 0 time evolution of the deformation

qtq�rx0 � s ¼ 0 conservation of momentum

r0 qte�rx0 � j ¼ 0 conservation of energy

½33�

where A, v, q, e are the deformation gradient, velocity, momentum, and total
energy per atom, respectively, r0 is the initial density, s is the first Piola–
Kirchhoff stress tensor, j is the energy flux, and x0 is the reference coordinate
of the solid. The position after deformation is then x ¼ x0 þ uðx0; tÞ. To

Figure 10 Schematic representation of HMM applications. In (a) simulation of a
macroscopic process for which the constitutive relations have to be obtained from
modeling at the microscale. The macroscopic system is solved using a grid (xk), and only
a small region around each macroscopic-solver grid point is used for the atomistic
calculation (the shaded area represents the atomic cell at grid point xk). The time step
(TS) used for the macroscopic calculations is much larger than the microscopic one (ts),
and times,�t � TS are necessary to equilibrate the atomistic calculations. In (b) and (c)
isolated defect calculations, i.e., problems where the coupling with the microscale model
is needed only in a limited part of the system (near the defect itself). If the time scale for
the defect dynamics is much larger than the time scale for the relaxation of the defect
structure (case b), then only a short time�t � TS is simulated using the atomistic model
for each macroscopic time step, otherwise (case c) the whole time history of the defect
should be computed atomistically.
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express MD (Newton’s law) in the form of Eqs. [33], the authors first define
the distributions179

~rðx0; tÞ ¼
X
i

mi dðx0 � x0i Þ

~vðx0; tÞ ¼
X
i

viðtÞdðx0 � x0i Þ

~eðx0; tÞ ¼ 1

2

X
i

miv
2
i þ

X
j 6¼i

f½xiðtÞ � xjðtÞ�
( )

dðx0 � x0i Þ

½34�

and the fluxes

~sa;bðx0; tÞ ¼ � 1

2

X
i 6¼j

faðxi � xjÞðx0ib � x0jbÞ

�
ð1
0

dfx0 � ½x0j þ lðx0i � x0j Þ�gdl

~jðx0; tÞ ¼ � 1

4

X
i 6¼j

ðvi þ vjÞ � fðxj � xiÞðx0i � x0j Þ

�
ð1
0

dfx0 � ½x0j þ lðx0i � x0j Þ�gdl

½35�

where f is the interaction potential and fðxj � xiÞ is the force between the ith
and the jth particles. We then have

qt~q�rx0 � ~s ¼ 0

r0qt~eþrx0 �~j ¼ 0
½36�

Equations [36] are numerically solved using any appropriatemacroscopic solver.
In Ref. 176 the authors used the Nessyahu and Tadmor algorithm, which is
formulated over a staggered grid.180 With this specific macrosolver, the fluxes
~s and ~j are required as input data at each macroscopic time step and for each
grid point xk. These fluxes are obtained by performing local MD simulations
that are constrained by the local macroscopic variables A, v, and e. After the
MD system equilibrates, the fluxes are evaluated by time/ensemble averaging.
It is important to notice that the microscopic model does not have to be solved
everywhere, but rather only over a small region near where the data estima-
tion is carried out. The first step in setting up the local MD simulations is find-
ing an atomic configuration that is consistent with the local macroscopic
variables. This is accomplished using the Cauchy–Born rule (see discussion
of the QC method above), i.e., generating the basis vectors for the deformed
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cell, ~E, by applying the deformation gradient A to the basis vectors of the
undeformed cell, E:

~E ¼ AE ½37�

Several other requirements have to be taken into account to keep the MD
simulations consistent with the macroscopic fields, and they are discussed in
Ref. 176. The final step is to average the microscopic fluxes to obtain the fluxes
needed by the macroscopic scheme.

Two final remarks need to be made. First, even when the MD simulation
time is short compared to the macroscopic time scale, it can still be very long
when compared with the microscopic time step if a substantial energy barrier
must be overcome during the microscopic relaxation. Second, the choice of the
MD cell size is a delicate balance between accuracy and computational effi-
ciency; as the cell size increases, the error decreases (as L�1:5, for a cell of
volume V ¼ L3), but the computational time significantly increases.

Applications The HMM has been applied to the study of friction between
two-dimensional atomically flat crystal surfaces, dislocation dynamics in the
Frenkel–Kontorova model (i.e., considering a one-dimensional chain of
atoms in a periodic potential, coupled by linear springs181), and crack
propagation in an inhomogeneous medium.175,176

Bridging Scale The bridging scale technique by Wagner and Liu73,182–184 is a
multiple-scale method explicitly developed to eliminate the elastic wave
reflection at the continuum-discrete interface. At the same time, because this
methodology couples finite elements, or other continuous interpolation
functions, to MD simulations without grading the continuum nodal spacing
down to the atomic lattice size, it permits the use of a larger time step in
the FE simulation than in the MD one.

The key idea of this technique is to decompose the total displacement
field u into a coarse and a fine scale:

u ¼ uþ u0 ½38�

where u is the coarse-scale component and u0 is the fine-scale one. The coarse
scale is that part of the solution that can be represented by a set of basis func-
tions (finite element or mesh-free shape functions):

uðXaÞ ¼
X
I

Na
I dI ðor u ¼ Nd in matrix representationÞ ½39�

where Na
I ¼ NIðXa) is the shape function associated with node I evaluated at

the initial atomic position Xa, and dI is the FE nodal displacement associated

Atomistic/Continuum Coupling 327



with node I. The sum is over all of the coarse-scale nodes. The fine-scale u0 is
defined as that part of the solution whose projection onto the coarse scale is
zero; in other words, it is the part of the total solution that the coarse scale
cannot represent. Because the coarse and fine scales are orthogonal to each
other, it is possible to obtain a set of multiscale equations of motion for the
MD and FE systems that are coupled only through the interatomic forces
f (the negative derivative of the interatomic potential energy U):

MA€q ¼ f ½40�
M€d ¼ NTf ½41�

where q is the MD displacement, MA is a diagonal matrix with the atomic
masses on the diagonal, d is the coarse scale displacement, and M is the
coarse-scale mass matrix defined as

M ¼ NTMAN ½42�

Equations [40] and [41] were obtained considering that the coarse and
the fine scales coexist everywhere in the system. However, the goal is to expli-
citly simulate the fine scale only in a small region of the domain, while solving
the FE equation of motion everywhere in the system, and including the effects
of the fine scale that lies outside the MD region, at least in an average way.
This reduction of the fine-scale degrees of freedom can be achieved in the
bridging-scale technique by applying a generalized Langevin equation
(GLE)185–188 boundary condition. A detailed derivation of the final equations
of motion is beyond the scope of this review and can be found in Refs. 73 and
182; here, it will suffice to say that the process of eliminating the unnecessary
fine-scale degrees of freedom results in a modified MD equation of motion that
includes an external force, named the impedance force, fimp, which contains
the time history kernel yðt � tÞ and acts to dissipate fine-scale energy from
the MD simulation into the surrounding continuum. The numerical result is
a highly desiderable nonreflective boundary between the MD and FE regions.
The final form for the coupled equations of motion for the two regions is

MA€q ¼ f þ f
imp þ R ½43�

M€d ¼ NTf ½44�

Clearly, Eq. [43] is the modified MD equation of motion; the first term is the
standard nonlinear interatomic force, the second term is the impedance force
discussed above, and the third term is a stochastic force representing the
exchange of thermal energy between the MD region and the surrounding
eliminated fine-scale degrees of freedom. In other words, this last term acts
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as a heat bath on the MD region. For simplicity, in the earlier applications
of the bridging-scale method this term was set to zero, indicating a zero-
temperature simulation. Recently, though, a finite-temperature form for this
term was derived by Karpov et al.189 It is worth mentioning that the impe-
dance force also depends on the coarse-scale solution, u. This indicates truly
two-way information passing between the two regions; not only does the MD
region affect the FE evolution, but also coarse-scale information originating in
the continuum can be passed onto the MD region. A substantial difference
between this method and many others is that here the FE equation of motion
is solved everywhere in the system, i.e., also where MD is applied. This elim-
inates the need to mesh the size of the elements down to the atomic scale, and
therefore allows the use of a staggered time integration scheme.182 Lastly, it
must be noted that no ad hoc treatment is used to couple the MD and FE
regions, instead the MD lattice behaves as if part of a larger lattice due to
the GLE (the GLE is a mathematically exact representation of the MD degrees
of freedom that are not explicitely solved for), even though ghost atoms are
introduced in the MD simulation to ensure that the reduced atomistic system
does not relax due to spurious free-surface effects. These atoms’ displacements
are determined by interpolating the FE displacements of the elements in which
they lie, not by integrating the MD equation of motion. Recent extentions of
the bridging-scale method include the coupling of the continuum region to a
quantum mechanical one (tight binding), instead of a classical atomistic one,
for quasi-static applications.190

Applications The bridging method has been successfully used to model both
quasi-static and dynamical phenomena. In its quasi-static formulation it has
been used to model nanoindentation (on a crystalline gold substrate)191 and
carbon nanostructures: single graphene sheets and multilayered graphite,192

and buckling of a multiwalled carbon nanotube.184,193 Dynamically, the
bridging method has been applied to the investigation of crack propagation183

in fcc materials (3D), and dynamic shear banding194 (1D and 2D). More
recently the model has been further expanded to describe solids with moving
dislocations in one dimension.195

Other Adaptive Model Refinement Methodologies The use of the adaptive
refinement idea is absolutely not limited to the two methods presented in
the previous sections. Several other groups have developed methodologies
based upon this principle. Among many, we would like to mention the
coupling scheme proposed by Klein and Zimmerman196 and the one
suggested by To and co-workers,197,198 where the bridging-scale method is
combined with the perfectly matched layer method,199 to eliminate the
spurious wave reflection at the computational boundaries during the fine-
scale part of the simulation. This methodology is then widened to allow the
simulation of nonequilibrium multiscale phenomena.200 Lastly, a whole
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class of adaptive modeling algorithms is presented in the work of Oden and
co-workers.201,202

Coarse-Grain Molecular Dynamics
The course-grain molecular dynamics (CGMD) methodology could be

classified as a modification of the ‘‘adaptive model refinement’’ approach: In
this methodology a coarse-grained (CG) prescription is used that is statistical
in nature.66,67,203,204 It must be noted that this is a very unique, and interest-
ing, approach to designing a hybrid method. The CGMD was developed by
Rudd and Broughton66,67,203,204 especially to model thermally activated phe-
nomena that require several length scales with an atomistic model at the finest
resolution, i.e., phenomena that intrinsically need a hybrid approach, finite-
temperature conditions, and a dynamical treatment (MD) to be simulated.

In common with many other hybrid techniques, the CGMD methodology
uses a coarse-grainmesh that divides a solid into cells of different sizes; in impor-
tant regions, a mesh node is assigned to each equilibrium atomic position, while
elsewhere a single cell contains several atoms. The main difference between this
approach and many others is that here the energy functional is defined as a con-
strained ensemble average of the atomistic energy under fixed thermodynamic
conditions. The equations of motion for the mean displacement field are
Hamilton’s equations of motion for this conserved energy functional, and are
solved using a standard MD procedure. Because the CGMD equations of
motion agree with the atomistic ones when the mesh nodes and the atomic sites
coincide, the coupling between the atomistic regions and the generalized FE ones
is very good. It is not, however, completely seamless because, as the mesh
increases, some short-wavelength degrees of freedom are not supported by the
coarse mesh. However, these degrees of freedom are not completely lost because
their thermodynamic average effect has been retained. As the authors observe,
this approximation is expected to be good for systems initially in thermal equili-
brium and such that only adiabatic changes in the missing degrees of freedom
are considered. More specifically, for this approximation to be valid, the relaxa-
tion time of those missing degrees of freedom should be fast compared to the
driving forces in the CG regions. No other types of ghost forces are present
in the model, i.e., the atoms at the interface do not experience a net force
when in their equilibrium positions or if the displacement corresponds to uni-
form strain and the uniformly strained system is in equilibrium.

The CGMD prescription for constructing the mean displacement field at
the nodes of the coarse-grain grid is as follows:

uj ¼ displacement of the mesh node j ¼
X
m

fmjum ½45�

where um ¼ xm � xm0 is the displacement of atom m (xm0 is its equilibrium
position) and fmj is a weighting function analogous to the FEM interpolation
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functions. A similar relation applies to the momenta, pmj. The CG energy is
then defined as the average energy of the canonical ensemble on this
constrained (Eq. [45]) phase space:

Eðuk; _ukÞ ¼ hHMDiuk; _uk
¼
ð
dxm dpm HMD e�bHMD�=Z ½46�

Zðuk; _ukÞ ¼
ð
dxm dpm e

�bHMD� ½47�

� ¼
Y
j

dðuj �
X
m

umfjmÞd _uj �
X
m

pmfjm

mm

 !
½48�

where b ¼ 1=ðkTÞ (T ¼ temperature), Z is the partition function, and dðuÞ is a
three-dimensional delta function. The delta functions enforce the mean-field
constraint (Eq. [45]). The explicit form of the full CG energy (Eq. [46]) for
a monoatomic harmonic or anharmonic solid is derived in Ref. 204.

Applications Test applications of the method include calculation of the
phonon spectra for solid argon and tantalum in three dimensions.

Quasi-continuum Coarse-Grain Alternative to Molecular Dynamics
In order to extend the quasi-continuum method (discussed above) to

include not only finite-temperature effects but also a dynamical description of
the system, Dupoy et al. introduced the ‘‘molecular dynamics without all the
atoms’’ method in 2005.205 This procedure, which essentially is a coarse-grain
(CG) alternative to molecular dynamics, is based on the potential of mean force
(PMF) concept, which was first introduced by Kirkwood in 1935.206 Here, a
variety of equilibrium and nonequilibrium properties of large systems are calcu-
lated using only a limited number of degrees of freedom. However, the tricky
part in applying the PMF method is making it computationally efficient. Dupoy
et al. proposed to expedite the calculation of the PMF by coupling it to the
QC method, i.e., making use of finite-element interpolation to determine the
position of the constrained atoms and introducing the local harmonic approxi-
mation147–149 (see above) and the Cauchy–Born rule88,100,101 (see above) when
determining the state of the system under strain.

The basic structure of this methodology is the following. Following the
QC procedure, the atoms of anN-atom system are separated into representative
and constrained ones. The representative atoms are the only atoms actively con-
sidered in the simulations. Their positions are indicated as fqrg, their number as
Nr, and they can be either nonlocal, if only interacting with other representative
atoms, or local, if interacting with constrained atoms as well. The constrained
atoms are atoms whose position fqcg is not directly determined in the

Atomistic/Continuum Coupling 331



simulations but is obtained by interpolating the positions of the closest represen-
tative atoms using an FE scheme (Figure 11). More precisely, it is their thermally
averaged position that is obtained through interpolation.

The Hamiltonian that is considered for the CG system is

HCGðfqrg; fprg; bÞ ¼
XNr

i¼1

ðpri Þ2
2mr

i

þ VCGðfqrg; bÞ ½49�

where VCGðfqrg; bÞ is the CG potential energy, b ¼ 1=kBT; pri ¼ mr
i _q

r
i are the

momenta of the representative atoms, and mr
i their effective masses. By impos-

ing the conditions that the total mass of the CG system should be equal to that
of the full-atom system, and that both systems should have the same momen-
tum free energy, the effective masses are determined to be mr

i ¼ ani�1m, where
ni is the number of atoms represented by representative atom i, and a is found
solving the equation

Xnr
i¼1

ani�1 ¼ N ½50�

Similar to the quasi-continuum Monte Carlo approach (see above), the CG
potential energy is the PMF for the constrained degrees of freedom153,206

VCGðfqrg; bÞ ¼ � 1

b
ln

ð
e�bVðfqrg;fqcgÞdfqcg ½51�

where V is the interatomic potential. This choice for the CG potential energy
guarantees that the ensemble average of any observable A that depends only
on the positions of the representative atoms is equal to the ensemble average

Figure 11 Schematic representation of the system considered. Black dots indicate
nonlocal representative atoms (they only interact with other representative atoms), gray
dots indicate local representative atoms (they interact with both representative and
constrained atoms), and, finally, small white dots represent constrained atoms. The large
circles represent the range of the atomic potential (centered on a local or on a nonlocal
representative atom).
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that would be found for the same observable in a fully atomistic and canonical
system at equilibrium:

hAðfqrgÞiCG ¼ hAðfqrgÞiNr;V;T ¼ hAðfqrgÞiN;V;T ½52�

Using this methodology, the dynamical behavior of the representative
atoms is obtained by deriving the equation of motion from the coarse-grained
Hamiltonian. Moreover, because the interest is on simulating the system under
constant-temperature conditions, the coupling to a thermal reservoir is simu-
lated using a Nosé–Poincaré thermostat.207,208 More specifically, such a ther-
mostat is applied only to the set of representative atoms, not to all the atoms in
the system. By following such a procedure, the validity of Eq. [52] is preserved.

Lastly, computational efficiency needs to be discussed. However complete
the formulation of the coarse-grained alternative to MD methodology is up to
here, additional approximations are required to make it computationally effi-
cient. To begin with, it is assumed that the thermally averaged positions of
the constrained atoms can be expressed as a finite-element interpolation of the
positions of the representative atoms, i.e., using finite-element shape functions.
This is analogous to the procedure followed in the standard QC method to
determine the instantaneous positions of the nonrepresentative atoms.
Moreover, the computation of VCG is noticibly expedited when both the local
harmonic approximation and the Cauchy–Born rule are taken into account.
Under such circumstances, VCG becomes

VCGðfqrg; bÞ ¼
X
i2NL

EiðfqrgÞ

þ
X
e

neECBðFeÞ þ nce
2b

ln
DetðDCBðFeÞÞ

ð2p=bÞ3
" # ½53�

where NL indicates the nonlocal representative atoms, ne and nce are the total
number of atoms and the number of constrained atoms, in element e, respec-
tively, and EiðfqrgÞ is the energy of the ith nonlocal representative atom,
calculated exactly as it would be in a standard MD simulation. However,
unlike standard MD simulations, ECBðFeÞ and DetðDCBðFeÞÞ are the potential
energy and the determinant of the dynamical matrix of an atom embedded in
an infinite perfect crystal subject to a uniform deformation gradient, Fe. The
CG potential given in Eq. [53] is reasonably fast to compute, and is an accu-
rate approximation for temperatures up to about half the melting temperature.

Applications Dupoy et al. applied this methodology to the study of the
temperature dependence of the threshold for dislocation nucleation during
nanoindentation.205
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Boundary Conditions Methods
As already emphasized, a major problem in all of the dynamical formula-

tions of hybridmethodologies is the occurrence of spurious reflectionswhen pho-
nons cross the domain boundary. One possible approach to minimize/eliminate
such an unphysical phenomenon is to fine-tune the boundary conditions (BC)
used in the molecular dynamics simulation. A great number of boundary condi-
tion schemes of this kind have been developed, as inRefs. 177,178,185–188, and
209–221, just to mention some. It is beyond the scope of this review to discuss
them in detail, but, borrowing from Yang and Li,221 we will briefly present the
general idea behind some of the most commonly used schemes.

The most commonly used BC methods can be classified into three main
categories: the exact nonreflective BC, the approximated nonreflective BC
(also called the variational BC or VBC), and the damping region BC. In prin-
ciple, exact nonreflective BCs can be obtained via numerical computation for
crystalline systems under certain assumptions.185–188,214–216 One possible for-
mulation of this type of BC is discussed below. However, exact BCs are not
local in both space and time, meaning that information about all of the bound-
ary atoms at all times is, in principle, necessary to compute them. Because the
decay of the history dependence is rather slow, implementing such a BC
scheme can be computationally very expensive. To reduce such a computa-
tional cost, E and co-workers introduced the VBC scheme.177,178,217,218

Here, the BCs are of a local nature and assume the general form

ukðtÞ ¼
X
j2J

ðt0
0

ajðtÞujðt � tÞ dt ½54�

and are obtained by determining the time history kernel, a, that minimizes the
energy flux due to the phonon reflection. In Eq. [54], k indicates any boundary
atom, u(t) is the atomic displacement at time t, and the set J contains adjacent lat-
tice points inside the system. Together, the set J and the time interval (0, t0) are
called a stencil, and one of the main advantages of this kind of BC is the possibility
of fine tuning the stencil to achieve a desired accuracy. For an extensive derivation
of the VBC, we refer to Refs. 177,178,217, and 218. Lastly, the third commonly
used type of BC is the damping region BC. Here [Figure 12(a)], an additional bor-
der region is added to the original system, and it acts as an absorbing layer for the
outgoing phonons. Standard MD is utilized in the primary region, while an extra
friction term is added to the equation of motion of atoms in the damping region

m€xj ¼ � qV
xj

� Z _xj ½55�

where Z is the friction coefficient, and it can assume different functional forms
depending on the type of damping used (e.g., Holian et al. used a homoge-
neous viscous damping via the irreversible Berendsen thermostat222).
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In general, damping methods are very convenient to use because they do not
require precalculations and are very easily implemented, but their effectiveness
is completely dependent on the size of the damping region and, often, a signif-
icant number of atoms must be added to the system for this method to work
properly. Moreover, there is no a priori way to estimate the size of the damp-
ing region. In summary, all three methods can be very effective in suppressing
phonon reflection, and only the specific problem under examination dictates
which one is the most convenient to use.

We conclude this section with an example of exact nonreflective BCs, the
method developed by Cai et al.214 This method is designed to minimize the
wave reflection between a region of interest P, and a defect-free medium Q
around it [Figure 12(b)]. The region P may contain inhomogeneities and
must be large enough that, for moderate temperatures, the interactions
between P and Q (P–Q), and within P (P–P), can be considered as harmonic.
The idea behind this approach is to represent the effects of Q on P in terms of a
set of response functions that are estimated numerically during test simulations
prior to the real calculations. These response functions provide a numerical set
of boundary conditions for P that preserves the correct dynamic because it con-
tains the information related to the degrees of freedom in region Q. More
in detail, the generalized Langevin equation (GLE) (the equation of motion
for the degrees of freedom xi ¼ 1; . . . ;N in P when the explicit degrees of free-
dom associated with medium Q have been replaced by an implicit formulation)
takes the form185–188,223

m€xi ¼ � qV
qxi

þ
ðt
0

dt
XN
j¼1

bijðtÞxjðt � tÞ

þ
XN
j¼1

bijðtÞxjð0Þ þ RiðtÞ
½56�

"Real" System

Damping Region

(a) (b)

P

Q

Figure 12 Schematic representation of: (a) damping region BC (the region of interest is
surrounded by a border region where damping of the outgoing waves takes place), and
(b) coupled system for exact nonreflective BC (P is the region of interest and may contain
inhomogeneities, while Q is the defect-free medium that surrounds it).
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where V ¼ VðxiÞ is the potential energy of the entire system with the atoms in
Q fixed at their equilibrium positions, bijðtÞ indicates the N2 elements of the
time-dependent memory kernel matrix bðtÞ, and RiðtÞ is a linear function of
the initial displacements and velocities in region Q. Physically, the functions
bijðtÞ represent the response of medium Q to perturbations in P, while RiðtÞ
describes changes in P due to initial disturbances in Q. Such changes are usual-
ly treated as random forces.185–188 The idea is to compute bðtÞ from test MD
simulations. To do that, an initial equilibrium situation is considered, with
atoms in both P and Q at rest; then, in each simulation, a different single
atom xk in P is given a displacement E at time t ¼ 0, after which all of the
atoms in P are kept fixed while the atoms in Q are allowed to relax. This
means that the atomic positions in P are given by

xjðtÞ ¼ xjð0Þ ¼ Edjk ½57�

while the time-dependent forces acting on the atoms in P are (Eq. [56])

FiðtÞ ¼ � qV
qxi

þ EbikðtÞ ½58�

The convolution term has disappeared because region Q was initially in equili-
brium. Therefore, recording the forces FiðtÞ as a function of time during theMD
run, directly gives the N response functions bikðtÞ i ¼ 1; . . . ;N, once the static
force components �qV=qxi have been subtracted. The introduction of a time
cutoff and a space cutoff does not seem to affect the validity of the method
(for a more detailed discussion of this point we direct the reader to the original
paper214). Lastly, the authors compared their approach to the coarse-grained
molecular dynamics one (CGMD, see above) in the simple case of simulating
the dynamics of a small section of a linear chain of identical harmonic oscillators
with nearest-neighbor interactions. They found much more accurate results in
most of the Brillouin zone.

Miscellanea
Due to the sheer number, it is not possible to include in this review all of

the proposed hybrid methodologies that deal with the coupling of continuum
and atomistic regions in dynamical simulations. However, before leaving this
section, we want to mention a few more types of methodologies. First, the
multigrid methods,76,224–228 of which the recent work of Waisman and
Fish229 is a good example. Also, the MPM/MD method, where the material
point method (MPM) is used instead of the finite-element method (FEM) to
couple continuum mechanics to conventional molecular dynamics.230–233

Lastly, the statistical approach suggested by Saether et al. for concurrent cou-
pling of molecular dynamics and finite element methods.234 For even more
methods, see, for instance, Refs. 235–240.
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CLASSICAL/QUANTUM COUPLING

Coupled methodologies that connect classically described domains to
quantum mechanically described regions encounter the same difficulties that
continuum-to-classical methods do (possible ghost forces at the artificial
boundary and phonon reflection when dynamics is taken into account). More-
over, the fact that using ab initio methods makes it impossible to localize the
energy onto specific atoms or bonds makes dealing with the hand-shake region
even more complicated. Furthermore, methods coupling atomistic to quantum
calculations also have to face problems related to dealing with the electronic
degrees of freedom in the quantum mechanical domain. In principle, the
presence of such degrees of freedom requires the imposition of boundary con-
ditions on the electronic wave function at the interface between the two
domains. Such a complication is particularly serious when dealing with metals
because of the nearly complete delocalization of the bonds. In the following,
we will explore how several methodologies have dealt with such issues in both
static and dynamical phenomena.

Static and Semistatic Methods

Orbital-Free DFT–Classical Mechanics
One approach to couple classically treated regions to regions described

by quantum mechanics is to use the methodology introduced by Choly et al.241

in 2005. In this formalism, the quantum mechanical zone is modeled using
orbital-free density functional theory (OFDFT), which is an approximate
form of DFT where the kinetic energy of the noninteracting electrons is
approximated by a functional of the density.242–246 This allows the energy
of the system to be expressed as the sum of terms that are all explicit func-
tionals of the charge density, therefore avoiding the necessity of solving the
single-particle Schrödinger equations for the fictitious particles and using the
Kohn–Sham orbitals. Such a simplification allows the method to scale linearly
with the system size, and, therefore, makes it capable of handling significantly
more atoms than standard DFT. The memory requirements are also signifi-
cantly reduced. However, the approximations introduced in describing the
kinetic energy make the method less transferable than standard DFT. Lastly,
OFDFT is particularly well suited for hybrid calculations because having the
energy as a function of only the electronic density makes it easer to evaluate
the coupling term between the quantum and the classical regions than it is
when using standard DFT. Other hybrid methodologies that take advantage
of OFDFT when coupling classical and quantum regions are, for instance,
those of Wesolowski and Warshel247 and of Klüner et al.248 In the method
of Choly and co-workers, the system is divided into two parts: a small OFDFT
region, where the electronic behavior is important, and a much larger region
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(the rest of the system) that is simulated using classical potentials (Figure 13).
Because OFDFT is particularly well suited for metallic systems, embedded
atom method (EAM) potentials9,10 are the preferred choice for the atomistic
potentials.

This methodology adopts the single energy functional strategy, i.e., the
energy of the whole system is written as the sum of the energies of the two
regions (E1 and E2), plus a term that describes the interaction energy of these
two regions (the hand-shake term):

E½Iþ II� ¼ E1½I� þ E2½II� þ Ehand shake½I; II�; ½59�

where label I indicates quantities evaluated in the smaller, higher resolution
region (where OFDFT is used), and II indicates quantities evaluated in the
larger, lower resolution region (where EAM is used). The energies, E1 and
E2, are calculated using DFT (or OFDFT) and a classical potential, respec-
tively. The coupling energy, Ehand shake [I, II], can be computed either way,
which gives rise to two possible coupling schemes.

In the first scheme, Ehand shake [I, II] is calculated classically. Specifically,
it is obtained as

Ehand shake½I; II� ¼ Ecl½Iþ II� � Ecl½I� � Ecl½II� ½60�

I

II

Figure 13 Smaller domain (region I) represents the part of the system where the detailed
physics is relevant and that is, therefore, described using OFDFT. The larger domain
(region II) is the region described by the atomistic classical potential (usually EAM).
Region I is embedded into region II and is always nonperiodic, while periodic boundary
conditions can be applied to region II.
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because, as the authors note, the classical energy can be viewed as an approx-
imation of the DFT energy functional that has been minimized with respect to
the charge density. This means that this approach contains more approxima-
tions than the one where OFDFT is used to evaluate the hand-shake energy,
but, also, that it is much lighter computationally. The final expression for the
total energy is obtained by substituting Eq. [60] into Eq. [59]:

E½Iþ II� ¼ Ecl½Iþ II� � Ecl½I� þ EDFT½I�; ½61�

where, according to the Hohenberg–Kohn theorem, EDFT½I� is found, within
the Born–Oppenheimer approximation, by minimizing a functional of the
charge density

EDFT½I� ¼ minIrEDFT½rI;RI� ½62�

where RI are the ion coordinates in region I. For a detailed discussion of how
such a scheme affects the calculation of the forces, we refer to the original
paper.241

The second coupling schemes computes Ehand shake½I; II� using OFDFT.
The use of an orbital-free approach, instead of a standard DFT, is particularly
effective in this step because the only information available on region II is its
approximate charge density rII and the positions of the atoms in RII, and, as
discussed above, that is all OFDFT needs to determine the energy. In this
scheme, the interaction energy is given by

Ehand shake½I; II� ¼ EOF½Iþ II� � EOF½I� � EOF½II� ½63�

where the computational advantage of using this approach versus simulating
the whole system with OFDFT comes from the cancellation hidden in
EOF½Iþ II� � EOF½I�, when Eq. [63] is inserted in Eq. [59], and from the fact
that EOF½Iþ II� is found by minimizing the OFDFT energy functional with
respect to rI only (rI being the charge density in region I). For details on
how the method can be implemented, we refer to the original paper.241

DFT/OFDFT and Quasi-continuum (OFDFT-QC, QCDFT)
In the previous section, we discussed a hybrid methodology that couples

orbital-free DFT (OFDFT) to classical potentials. A basic description of the
OFDFT was also given. Another possibility is to couple OFDFT to quasicon-
tinuum methods. Such an approach has been suggested by Fago et al. in
2004249–251 and followed by Gavini et al.252 in 2007. OFDFT lends itself
very easily to coupling with QC methods because it is significantly faster
than traditional Kohn–Sham DFT, and speed is crucial when millions of
DFT calculations are needed during a typical hybrid simulation.
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Fago et al.’s249–251 implementation of OFDFT inside a QC method is
straightforward. They utilize a local approach in the QC part (LQC, see above
for details) and use OFDFT to compute the energy at each quadrature point.
Therefore, the pros and cons of this method are the same as those for the stan-
dard LQC, with the difference that the energy evaluation is now more accurate
than if a classical potential was used. However, even if local electronic effects
are accounted for, no coupling between neighbor unit cells is included in the
calculations because, in LQC, the energy of each quadrature point is calcu-
lated using the Cauchy–Born rule. Such a rule states that the energy of a quad-
rature point can be found by computing the energy of a perfect, infinite crystal
undergoing the same uniform deformation that is applied to the quadrature
point in question. Also, as pointed out earlier, the Cauchy–Born rule holds
well for slowly varying elastic deformation, but breaks down in the vicinity
of defects, impurities, and the like. This methodology has been applied to
the study of dislocation nucleation during indentation of Al.

To bypass the limitations of the Cauchy–Born rule, in 2006, Lu et al.253

proposed a more involved scheme to couple standard DFT to quasi-continuum
calculations. In their method, the part of the system far away from the zone of
interest is described using a classical (nonquantum) quasi-continuum approach
(see discussion above on QC for details), i.e., considering both local (conti-
nuum) and nonlocal (atomistic) terms. Classical potentials (EAM9,10 in the
applications presented) are used to evaluate the energy within the QC calcula-
tions. A third region is considered as well, covering the part of the system that
needs a more detailed description. It is in this region that density functional
theory is used.

In this methodology, the coupling between the continuum and the
atomistic regions is handled in the same way as it is in the standard formula-
tion of the mixed quasi-continuum. However, the coupling scheme used to
connect the quantum region to the atomistic one is that proposed by Choly
et al.,241 which we described earlier. In particular, Choly’s approach offers
two ways of evaluating the hand-shake energy term, and Lu et al.253 adopted
the one where the interaction energy is computed using only classical evalua-
tions (Eq. [60]). For details on the evaluation of the forces and the relaxation
scheme, we refer to the original paper.252 The method has been applied to the
investigation of the core structure of an edge dislocation in aluminum, with
and without H impurities.

An even more involved scheme, which does not assume the Cauchy–Born
rule and which allows seamless incorporation of defects, was proposed in
2007 by Gavini et al.252 Here, OFDFT is used for the quantum evaluation
of the energies, and three levels of coarsening are considered in the QC mesh-
ing of the system. Following the naming convention suggested by the authors
(see Figure 14), they are: Th1, the coarse grid, Th3, the intermediate grid, and
Th2, the finer one. The Th1 mesh is the atomic mesh, i.e., the standard meshing
used in QC methods: Selected atoms are chosen as representative, and, in this
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application, they coincide with the grid nodes. Also, the meshing becomes
coarser as the distance from the defect (indicated by a star in the figure)
increases. The Th2 mesh is the fine mesh, and it is a subatomic mesh present
everywhere that captures the subatomic oscillations in the electronic density
and potential. It is uniform in space, i.e., it does not coarsen going away
from the defect. Lastly, Th3 (electronic mesh) is a subatomic mesh that is
very fine close to the defect and increasingly coarse away from it.

Using OFDFT, the energy is an explicit functional of the electron density
and atomic positions (see preceding section). Therefore, the ground-state
electron density and equilibrium positions of the nuclei are found by minimizing
the energy:

Eðu;RÞ ¼ sup
f2H1ð<3Þ

Lðu;R;fÞ ½64�

where u ¼ ffiffiffi
r

p
is the square root of the electronic density, R are the atomic

positions, and f is the electrostatic field. We refer to the original paper253

for the explicit form of the local Lagrangian, L; for this review, it is enough
to point out that L depends upon u, R, and f.

In Gavini’s method, u and R are determined using a predictor–corrector
approach

uh ¼ uh0 þ uhc

fh ¼ fh
0 þ fh

c

½65�

where uh0 and fh
0 are the predictors, and uhc ;f

h
c are the nonlocal corrections to be

solved for. The predictor parts of the fields are computed on the fine mesh, Th2,
using periodic calculations performed in every element of Th1 and integration
rules to reduce the computations from the complexity of Th2 to the complexity

Figure 14 Three levels of mesh coarsening considered in Gavini’s methodology. The star
indicates the defect, vacancy, or so on that is of particular interest. The solid circles are
the nodes of the atomic mesh (they coincide with atomic positions), and the open circles
indicate the remaining atomic positions.

Classical/Quantum Coupling 341



of Th3. The corrections are then computed on the electronic mesh, Th3. The
variational problem is then solved using conjugate gradients. More details on
the method can be found in the original paper.253 The OFDFT-QC method
was demonstrated by studying one and two vacancies in large Al crystals.

First-Principles Green’s Function Boundary Condition Method
The first-principles Green’s function boundary condition (FP-GFBC)

method introduced by Woodward et al. in 2001254–256 is a generalization of
the flexible boundary condition method (GFBC), discussed earlier. As before,
the methodology is directed to the study of dislocation properties, with parti-
cular attention to core structures. As in the earlier GFBC work, the dislocation
core is embedded into a medium where the lattice Green’s function is used to
compute a stress field consistent with the response function of the bulk mate-
rial. We refer to the earlier description of the general principles of the Green’s
function boundary condition approach. The main difference between the two
methodologies is that in the first-principles version, the core structure (region 1
in Figure 6) is modeled using an ab initio (DFT) approach instead of a classical
one. Pseudopotential plane-wave methods are a particularly good choice for
such a modeling because they allow for an easy calculation of the
Hellmann–Feynman forces that are used to relax the core domain. It is impor-
tant to remark that the possibility of using DFT, instead of an empirical poten-
tial, comes from the ability of the method to use minimal computational cell
sizes without incurring significant incompatibility forces.

From a computational point of view, the use of the DFT method
employed by the authors257–261 required the use of 3D periodic boundary con-
ditions. However, the problem under examination, the determination of the
equilibrium core structure of an isolated dislocation, only allows periodicity
along the direction of the dislocation line. Therefore, the authors proposed
two possible simulation cells to circumvent such an impasse: One where the
standard cell used in GFBC is embedded within a vacuum region that isolates
it from its periodic images (Figure 15(a)], and one where a much larger region
3 is considered, instead of the vacuum [Figure 15(b)].

The authors found that the two geometries lead to quantitatively identi-
cal results, as long as the thickness of region 3 is large enough to screen out
the charge dipole that forms at the outer cell boundary. However, the geome-
try of Figure 15(b) is significantly more efficient from a computational point of
view.

Applications The FP-GFBC has been used to model dislocation core
structure in Mo and Ta.254–256

Quantum Atomistic Static Interface Method
The quantum atomistic static interface (QuASI) methodology of Tavazza

et al.262–264 is inspired by the flexible boundary condition idea (e.g., the
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FP-GFBC method), but it uses a classical potential to relax the environment
around the region of interest, instead of a Green’s function solution. As
with the FP-GFBC, the QuASI region of interest is modeled using DFT. This
method was especially developed to investigate critical regions in the neighbor-
hood of dislocations, but not necessarily at the dislocation cores. This genera-
lity is achieved by allowing complete freedom in the placement of the quantum
cluster(s) inside the classical environment [Figure 16(a)]. Such a freedom
allows the detailed modeling of phenomena that are affected by the presence
of nearby dislocation(s) but are spatially located outside the dislocation cores.
As an example, the methodology has been used to investigate the formation of
vacancies as a function of their distance from an edge dislocation. As with the
GFBC and FP-GFBC methods, this methodology also makes use of an iterative
approach.

Figure 15 Two possible simulation cells for FP-GFBC: (a) vacuum region isolates the
dislocation from its periodic images, while (b) region 3 is expanded up to the boundaries
of the simulational cell. In the direction of the dislocation line, the cell is one periodic
length thick.

Figure 16 (a) Example of simulation cell: The gray parallelepiped constitutes the
classical cell inside which is the critical region (spherical region marked DFT). (b)
Schematic 2D representation of the shell structure. Shells 1, 2, and 3 correspond to the
critical region, i.e., are considered in the DFT calculation. During the classical relaxation
all shells are considered, but only atoms in shells 2, 3, and 4 are allowed to move.
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The coupling between the ab initio and the classical simulations is made
through shared atomic shells where the two atomistic approaches are used in
an iterative, self-consistent manner. The small, critical region is relaxed using
DFT and the much larger cell in which this is embedded is relaxed using a clas-
sical relaxation algorithm (Monte Carlo15–17 or minimization algorithms14).
The initial positions of all the atoms in the cell are determined by the elastic
displacement field. Then, the simulations start with the DFT relaxation,
followed by the classical one. Both relaxations are then repeated until conver-
gence is achieved. The DFT sphere is composed of three concentric shells,
labeled 1, 2, and 3 in Figure 16(b). During the quantum calculation, all of
the atoms contained in shells 1 and 2 are relaxed, while those in shell 3 are
kept fixed in positions determined by the previous classical run. During each
classical simulation, atoms in shell 1 are kept fixed in positions determined by
the previous DFT relaxation, while atoms in shells 2, 3, and 4 are allowed to
relax. Atoms in shell 5 are kept fixed at all times in their initial positions
because they constitute the most external shell of the classical cluster. With
the exception of shell 5, the thickness of each shell depends on the problem
under examination and needs to be determined accordingly. The thickness
of shell 5 is determined solely by the cutoff used in the classical potential of
choice.

Special attention is paid to the termination of the quantum cluster
because the methodology is aimed at the study of metallic materials, and there-
fore no localized dangling bonds are available. It is beyond the scope of this
review to explore the different termination strategies, and we refer the
interested reader to the original papers.261,263,264

Applications The authors applied the QuASI methodology to the study of
vacancy formation energy at different distances and directions from an edge
dislocation in aluminum.262–264

Dynamics Methodologies

Coupling of Length Scales Method: Atomistic/Quantum Part
The general idea behind the coupling of length scales (CLS) methodology

has already been discussed above, together with the basics of the FE/MD cou-
pling. In the following, details are given on the hand-shaking procedure imple-
mented between the atomistic and quantum regions. It is important to point
out that such a procedure is specifically designed for the modeling of insulators
or semiconductors because it actively takes advantage of the locality of the
bonds and of the existence of well-defined dangling bonds. In particular, the
authors applied their methodology to the investigation of silicon;66,67,160–164

they employed the Stillinger–Weber (SW) potential8 to describe classical inter-
actions and a tight-binding (TB) methodology to model quantum interactions.
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The coupling scheme is schematically represented in Figure 17. Because
of the nature of the quantum interactions, the total energy in the TB region
cannot be localized on specific bonds, which makes defining the forces in
the hand-shake region a nontrivial matter. In particular, it is not possible to
average the MD and TB bond contributions across the interface in a compu-
tationally efficient way, as was done for the FE/MD interface. This is because
the Hellman–Feynman theorem, which is at the basis of the TB force calcula-
tions, would not be applicable, and numerical derivatives of the electronic
coefficients with respect to the atomic coordinates would therefore be needed.
The coupling strategy is therefore different from the one employed in the FE/
MD case. Now, the interface between the regions is defined as the ensemble of
atoms that constitute the outer shell of the TB cluster, instead of simply being a
line in between atomic planes. These atoms are called silogens, to indicate that
their properties have been modified to make them suitable terminations for the
TB cluster. More specifically, they are hydrogenlike atoms described by TB
parameters that were fitted to reproduce the correct Si–Si bond length and
binding energy, and to generate forces within the cluster that remain physical
as the cluster itself is deformed. Also, the silogen atoms are constrained to sit
where MD silicon used to be and, if more than one dangling bond needs ter-
mination, multiple silogens are placed at the same site. More details on the
fitting procedure and placement criteria for the silogens can be found in the
original papers.66,67,158–162

When computing the TB part of the Hamiltonian (HTB in Eq. [26]), all of
the Si–Si and Si–silogen interactions within the cluster are taken into account,

Figure 17 The TB/MD handshake (HS) region. The interface between the TB domain
and the MD one runs across a line of atoms, whose properties are modified to ensure
stability of the TB region. More specifically, these atoms are silogens (gray circles) and
act as terminations for the TB cluster (solid circles). Si atoms in the MD region are
represented by open circles.
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but no silogen-silogen interactions (because of the possible multiple placement
on a single site). Conversely, the hand-shake term HMD=TB only contains
classically computed terms (SW interactions), and it includes all of the SW
pair interactions between a silogen and either a Si in the MD region or another
silogen, and all SW three-body interactions between at least one MD silicon
and a silogen–silicon pair. When computing the forces, all of the classical
and TB forces acting on the same atom are added together.

Lastly, it is worthwhile noticing that the Hamiltonian given in Eq. [26] is
conservative if the TB region is fixed, i.e., no dynamical allocation of the
region is employed. However, a dynamical allocation of such a region may
be extremely useful, for instance, in crack-propagation studies. A description
of how this could be achieved is beyond the scope of this review, and we refer
the interested reader to the original papers.

Learn on the Fly
The ‘‘learn-on-the-fly’’ (LOTF) method, suggested by Csányi et al. in

2004,75,265–267 tackles the question of how to seamlessly couple different
levels of theory in a way that is very different from everything we have exam-
ined up to this point. The method is constructed to join classical and quantum
mechanical descriptions inside a dynamical simulation. The significant novelty
of this approach is the fact that the focus is directly on the evaluation of the
forces acting on each atom in the system, instead of on the matching of differ-
ent Hamiltonians or on the constructing of a unique Hamiltonian containing
the different levels of theory. In addition, the method calls for a local refitting
of the classical parameters ‘‘on the fly,’’ i.e., during the course of each simula-
tion, to locally reproduce the quantum forces. This method could be seen as an
evolution of the ‘‘serial’’ approach discussed at the beginning of the chapter
(a higher level theory is used to determine parameters for a lower level theory
calculation), in which the concurrent application of different levels of theory,
the signature of hybrid approaches, enters through the evaluation of ab initio
data, which occurs while the simulation is running, is repeated every so many
time steps, and is local to each atom.

More specifically, this methodology employs molecular dynamics (MD)
(i.e., classical simulations) to investigate the dynamical evolution of the
system. However, instead of computing the forces acting on each atom from
a predefined classical potential, as in standard MD, the parametrization of
the potential is refitted every few time steps. This is accomplished using a
predictor–corrector scheme. At the beginning of the simulation, a well-behaved
potential is chosen, such that the equilibrium configuration of the system is
well reproduced. Then, during the predictor part of the scheme, the classical
forces acting on the atoms are computed using the parametrization given at
that time (a0), and the system is evolved along the classical trajectories for a
few time steps, moving from R0 to R0 in phase space. At this point, the classical
and the quantum forces acting on the atoms at point R0 are computed
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(reference forces), and a new set of parameters, a1, is found by minimizing the
functional

F ¼
X

jFuniversal � Ffclassical;quantumgj ½66�

where Funiversal indicates the set of forces obtained using the new, instanta-
neously determined potential, and Ffclassical;quantumg are the reference forces.
Because in most applications the quantum forces are computed only for a
few atoms (those in critical regions), some atoms exist that do not have a
quantum force calculated on them. For those atoms, the current classical force
is used as a target in the minimization, hence the subscript {classical,quantum}
in Eq. [66]. During the corrector part of the algorithm, the system is brought
back to the R0 point in phase space, and then reevolved, this time using the
forces obtained by interpolating the parameters between a0 and a1. The new
end point, R1, and the corresponding parametrization, a1, are used as initial
values in the next predictor step.

The evaluation of the quantum forces can be performed using an ‘‘inde-
pendent clusters’’ scheme. Here, for each atom in the critical region, a small
cluster of atoms centered on the atom in question is considered. Such a small
cluster may also be chemically terminated for improved accuracy. Using such a
cluster, the quantum forces are computed, but only the ones acting on the cen-
tral atom are retained. Since the clusters are independent from each other, such
a scheme is well suited for parallelization. More details on this and other
computational approaches for computing the exact forces are discussed in
the original papers.75,265–267

Lastly, it must be mentioned that energy is not conserved in this
methodology because the Hamiltonian is time dependent. However, it is a
great candidate for constant-temperature simulations, where a thermostat is
used to absorb any temperature variation.

Application The authors applied this methodology to the investigation of Si.
In particular, they studied brittle fracture mechanisms (crack propagation,
determination of the stress–strain curve, and so on),75 vacancy diffusion,
and gliding of a pair of partial dislocations at finite temperature.265 In all of
these applications, the authors used a tight-binding (TB) scheme to perform
the quantum calculations, and the Stillinger–Weber potential (SW)8 for the
classical ones.

Coupling Method by Ogata et al.
Over the course of several years, Ogata et al. developed a full-spectrum

(i.e., FE/CM/QM) hybrid methodology for chemical and physical applica-
tions.268–270 As is the case for the LOTF method discussed in the preceding
section, the current formulation of Ogata’s methodology is well suited for
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investigating insulators and semiconductors but not metals because of the
‘‘cluster’’ approach used in the quantum mechanical part of the calculations.
This formulation and the quantum classical coupling are discussed below.
However, because their continuum–classical coupling is strongly related to
the CLS approach (discussed above), it is not individually presented in this
review, and we refer the interested reader to the original papers.268–270

In this methodology, a single energy functional is defined for the whole
system (FE/CP/QM), and the part of the Hamiltonian related to the quantum
mechanics (QM) and classical potential (CP) domains is given by

H ¼
XN
i¼1

mi

2
v2i þ Epotðri 2 CP=QM systemÞ ½67�

where N is the number of atoms in the CP/QM system, mi is their mass, and vi
is their velocity. Epot is the CPþQM potential energy, and in this approach it
is written as

Epot ¼ Ecluster
QM ðri 2 cluster þ handshakeÞ

þ ~ECPðri 2 classical domainþ handshakeÞ
½68�

because the quantum domain consists of an atomic cluster around the area of
interest, and the classical domain surrounds it. Hand-shake atoms comprise
the interface between this cluster and its classical surroundings, and Eq. [68]
indicates that both the cluster and the classical-domain energies depend upon
such atoms. Instead of evaluating ~ECP directly, the authors expressed this term
as

~ECP ¼ E
CP=QM system
CP ðri 2 CP=QM systemÞ ½69�

� Ecluster
CP ðri 2 cluster þ handshakeÞ ½70�

as suggested by Svensson et al.271 and Eichler et al.272 Therefore, this treat-
ment does not require the explicit partitioning of Epot into a quantum and a
classical term, as is done, for instance, in the CLS method discussed above.
However, it does require the classical and quantum mechanical evaluation
of the cluster energy, as well as the classical evaluation of the energy of the
whole QM/CM system.

In both the classical and the quantum mechanical computations of the
cluster energy, it is necessary to terminate the cluster’s dangling bonds, to
obtain a stable structure (see Figure 18). The use of H atoms is appropriate
when considering semiconductors or insulators.273–276 The termination atoms
are placed instead of the hand-shake atoms, and their position is determined
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by minimizing the mean square forces that are acting on the cluster. A more
detailed description of how these positions are determined can be found in
Refs. 268 and 269. Lastly, both Ecluster

QM and Ecluster
CP are defined as the respective

energies for the terminated cluster.
Once the classical and quantum energies are determined, the correspond-

ing atomic forces are calculated and used within a molecular dynamics scheme.
A velocity Verlet algorithm277 is used for the time integration. For more details
on how the method is implemented within a parallel scheme, using the message
passing interface (MPI), we refer to the original paper.268–270

Applications This methodology has been used to investigate oxidation
processes of Si(100) surfaces.268,269 It was also used to model graphene
behavior,278 and environmental effects of H2O on fracture initiation in
Si.279 Lastly, in 2004, the methodology was expanded to allow for the
simulation of alumina systems.280 In particular, it was used to study stress
corrosion cracking of a�Al2O3.

Transparent Interface Method by Cheng et al.
As a last example of coupling mechanisms between quantum mechani-

cally described regions and classically modeled ones, we want to mention
the transparent interface method developped by Cheng et al.281–283 This meth-
od was developed to model silicon dioxide, but it can easily be generalized to
describe different systems. In this methodology, a Born–Oppenheimer DFT
molecular dynamics (BO-DFT-MD) approach is considered, i.e., quantum
forces are used to drive molecular dynamics.284 Also, such a methodology is
designed to cover the whole span from continuum to quantum. However, in
this review we are only going to present their quantum-to-classical coupling
approach, while we refer the reader interested in their description of the
continuum-to-classical treatment to the more specific studies listed above.

Quantum Cluster

Classical Domain

Cluster Atom

Hand-Shake Atom

Atom Position in the
Classical Domain
Termination Atom (H)

Figure 18 Schematic representation of the cluster termination procedure. When
computing the cluster energy, atoms in the classical domain (dashed circles) are not
included in the calculations: Some cluster bonds are therefore left unsaturated (dashed
lines). For each hand-shake atom (dashed white circles) that is not included, a
termination atom (gray circles) is added, with position determined by minimizing the
mean-square forces acting on the cluster.

Classical/Quantum Coupling 349



The philosophy behind the transparent interface method is to optimize the
description of the interatomic forces across the interface, instead of focusing on
the accurate reproduction of the total energy of the system. The method utilizes
a single energy functional to describe the whole system and pseudoatoms
to connect the quantum and classical regions. More in detail, a pseudoatom
is placed in between each quantum-described oxygen and classically described
silicon to correctly terminate the quantumwave functions, and the Hamiltonian
for the whole system is given by

H ¼
X
IQ

jPIQj2
2mIQ

þ
X

IQ>JQ

ZIQZJQ

jRIQ � RJQj þ EelecðfRIQ;R
	
mg; r½r; r	�Þ

þ
X
IC

jPICj2
2mIC

þUðfRICgÞ þUðfRIQ;RICgÞ
½71�

where IQ and IC describe particles in the quantum and classical regions,
respectively, R	

m and r	 are the nuclear and electronic coordinates for the pseu-
doatoms, and m is the index of the pseudoatom. Eelec ¼ Te þ EeI þ Eee is the
total ground-state electronic energy, i.e., the sum of the electron kinetic
energy, the electron–ion interaction and the electron–electron interaction.
The first three terms in Eq. [71] describe the quantum region in the presence
of pseudoatoms, while the fourth and fifth terms define the kinetic and poten-
tial energy of the classical part of the system. The last term contains the sum of
all the interactions between quantum and classical ions.

The pseudoatoms are introduced to terminate the wave functions of the
quantum cluster in such a way that the structure and forces on the quantum
cluster are as close as possible to those of the same subsystem within an all-
quantum system. The pseudoatoms are therefore placed along a straight line
between the quantum oxygen and the classical silicon, at a fixed distance from
the oxygen [d ¼ 1:82 a0 (Bohr)]. Also, they do not carry any kinetic energy, so
as not to exert any direct influence on the dynamics of the system. Lastly, to
obtain an interface as smooth as possible, the same classical potential is used
for modeling both the interactions between classical and quantum ions and the
interactions between classical and classical ions.

In the transparent interface method, the forces on each atom are derived
from the gradient of the total potential energy in Eq. [71]. However, the con-
straint forces acting on quantum atoms at the boundary, due to the constaints
imposed on the pseudoatoms, are neglected in this approach, leading to an
approximation of the Hamiltonian equations that provides correct forces
and dynamics (within the limit of a classical force field) but violates energy
conservation.

More details on the explicit calculation of the forces and the implemen-
tation of the BO-DFT-MD method within a generalized gradient approxima-
tion (GGA)285 can be found in the original papers.281–283
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Application The transparent interface method has been tested on the
Si2O7H6 system and then applied to the study of SiO and SiO2 molecules
and their interaction with water.

CONCLUSIONS: THE OUTLOOK

The development and use of hybrid, multiscale methods for modeling
solid-state processes is expanding rapidly and has been driven largely by the
burgeoning activity in nanoscience and nanotechnology. Throughout this
chapter, we have concentrated on the various modeling techniques that are
available today, along with their strengths and weaknesses. Looking toward
the future, however, it is equally important to address the question: What
more is needed? In other words, are there important questions in computa-
tional solid-state physics that existing methodologies are incapable of answer-
ing? Perhaps not surprisingly, we find that the most sophisticated
computational techniques available today can adequately address only a tiny
fraction of the important problems that require solutions. For example, nearly
all of the applications described in this chapter deal with geometrically simple,
single-component systems composed of just a single element (often Si). While
solving such problems greatly improves our fundamental understanding of
important nanoscale processes, it is also true that the behavior of real-world
materials and devices often critically depends upon impurities and complex
interactions in multicomponent systems. Existing computational methods
are woefully inadequate for modeling such systems.

Many of the important unanswered questions that we cannot adequately
address can be separated into four main modeling categories: (1) multicompo-
nent and multielement models, (2) quantitative models, (3) coupled-mechanism
models, and (4) multiple time-scale models. The primary difficulty in handling
multicomponent and multielement models is that atomistic simulations using
classical potentials generally fare poorly when chemistry effects are important
or when bonds are significantly distorted away from the configurations used
to develop the potential. Multiscale models that incorporate quantum
mechanics methodologies can help, but only when the important physics is con-
centrated within a very small volume. The LOTF method shows great promise
in handling problems in this class since the classical potentials are modified on
the fly using small-scale quantum calculations. It is important to emphasize,
however, that multiscale models that include a QM component generally
require the imposition of boundary conditions on the electronic wave function
at the QM boundary. This problem is particularly severe for metals, which have
highly delocalized bonding, so most CP/QM models (including LOTF) are
currently restricted to modeling insulators and semiconductors.

Quantitative modeling has two primary aspects. First, a quantitative
model must make predictions that are ‘‘qualitatively’’ correct, meaning that
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the general mechanisms observed in the simulation would also be observed in
a corresponding experiment. In general, there is no easy way to assure this cor-
respondence except through careful comparison between experiments and
model predictions. Second, a quantitative model must provide some indication
of how accurate a given prediction is. Is the answer correct to within 10% or
1000%? Again, such uncertainty estimates can only come from careful com-
parison with experimental results in carefully chosen situations. For most aca-
demic applications, the large amount of effort required for quantitative
modeling is not worth the trouble. For many industrial applications, however,
quantitative modeling is an absolute requirement.

Coupled mechanism models are becoming increasing important as the
size scales under investigation decrease. A good example is a complementary
symmetry metal–oxide–semiconductor (CMOS) device. At relatively large
length scales (100s of nanometers), the gate, oxide, substrate, source, and
drain can mostly be considered individually for modeling purposes. As the fea-
ture sizes decrease into the 10s of nanometers range, however, effects such as
local diffusion processes, elastic strain, and conductivity become closely
coupled, making modeling much more difficult. Modeling methodologies
that can handle such coupled processes are very limited and improvements
are badly needed. For further discussion of these and related issues, we refer
the reader to two workshop reports.286,287

Finally, although coupled time-scale models are not within the scope of
this review chapter, this topic is just as important as multiple length scales
when dynamical processes are being considered. As mentioned previously,
models that include atoms must generally use time steps small enough to cap-
ture the vibrational modes of the system. Since the corresponding experiments
almost always occur over time scales many orders of magnitude longer than
what can be simulated, the relevance of the models to real-world behavior is
often in doubt. Although good progress has been made in developing multiple
time-scale methodologies, this problem remains a major stumbling block for
people trying to simulate real-world processes.

In summary, tremendous progress has been made over the past couple
of decades in the field of multiscale modeling of solid-state processes.
Nevertheless, existing techniques can only handle a small fraction of the
important problems that require solutions. There is plenty of opportunity at
the bottom.

APPENDIX: A LIST OF ACRONYMS

1D One dimensional
2D Two dimensional
3D Three dimensional
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AFEM Atomic size finite element
BC Boundary conditions
CADD Coupled atomistic and discrete dislocation
CG Coarse grain
CGMD Coarse-grain molecular dynamics
CLS Coupling of length scales
CP Classical potential
DFT Density functional theory
EAM Embedded atom method
EED Edge-to-edge decomposition
FE Finite element
FEM Finite-element method
FEAt Finite-element atomistic
FNL-QC Fully nonlocal quasi-continuum
FP-GFBC First-principle Green’s function boundary condition
GFBC Green’s function boundary condition
GLE Generalized Langevin equation
HMM Heterogeneous multiscale method
HS Hand shake
LHA Local harmonic approximation
LOTF Learn on the fly
LQC Local quasi-continuum
MAAD Macroscopic, atomistic, ab initio dynamics
MD Molecular dynamics
MM Molecular mechanical
MPM Material point method
ODD Overlapping domain decomposition
OFDFT Orbital-free density functional theory
OFDFT-QC Orbital-free density functional theory,

quasi-continuum
PDE Partial differential equation
PMF Potential of mean force
QC Quasi-continuum
QCDFT Quasi-continuum, density functional theory
QC-GFC Quasi-continuum, ghost forces corrected
QCMC Quasi-continuum Monte Carlo
QC-QHMK Quasi-continuum k-space quasi-harmonic model
QM Quantum mechanics
QuASI Quantum atomistic static interface
SCF-HACG Self-consistent field, hybrid atomistic-coarse-grained
SW Stillinger–Weber
TB Tight binding
VBC Variational boundary condition
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Klüner et al. Reply.

249. M. Fago, R. L. Hayes, E. A. Carter, and M. Ortiz, Phys. Rev. B, 70, 100102(R) (2004). Density-
Functional-Theory-BasedLocalQuasicontinuumMethod: PredictionofDislocationNucleation.

250. R. L. Hayes, M. Fago, M. Ortiz, and E. A. Carter, Multiscale Model. Simul., 4, 359 (2005).
Prediction of Dislocation Nucleation During Nanoindentation by the Orbital-Free Density
Functional Theory Local Quasi-Continuum Method.

251. R. L. Hayes, G. Ho, M. Ortiz, and E. A. Carter, Philos. Mag., 86, 2343 (2006). Prediction of
Dislocation Nucleation During Nanoindentation of Al3Mg by the Orbital-Free Density
Functional Theory Local Quasicontinuum Method.

252. V. Gavini, K. Bhattacharya, and M. Ortiz, J. Mech. Phys. Solids, 55, 697 (2007). Quasi-
Continuum Orbital-Free Density-Functional Theory: A Route to Multi-Million Atom Non-
Periodic DFT Calculation.

364 Hybrid Methods for Atomic-Level Simulations



253. G. Lu, E. B. Tadmor, and E. Kaxiras, Phys. Rev. B, 73, 024108 (2006). From Electrons to
Finite Elements: A Concurrent Multiscale Approach for Metals.

254. C.Woodward and S. I. Rao, Philos. Mag. A, 81, 1305 (2001). Ab-Initio Simulation of Isolated
Screw Dislocations in bcc Mo and Ta.

255. C. Woodward and S. I. Rao, Phys. Rev. Lett. 88, 216402 (2002). Flexible Ab Initio Boundary
Conditions: Simulating Isolated Dislocations in bcc Mo and Ta.

256. C. Woodward, Mater. Sci. Eng. A, 400–401, 59 (2005). First-Principles Simulations of
Dislocation Cores.

257. G. Kresse and J. Furthmüller, Comput. Mater. Sci., 6, 15 (1996). Efficiency of Ab-Initio Total
Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set.

258. G. Kresse and J. Furthmüller, Phys. Rev. B, 54, 11169 (1996). Efficient Iterative Schemes for
Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set.

259. G. Kresse and J. Hafner, Phys. Rev. B, 47, 558 (1993). Ab Initio Molecular Dynamics for
Liquid Metals.

260. G. Kresse and J. Hafner, Phys. Rev. B, 49, 14251 (1994). Ab Initio Molecular-Dynamics
Simulation of the Liquid-Metal Amorphous Semiconductor Transition in Germanium.

261. G. Kresse and J. Hafner, J. Phys.: Condens. Matt., 6, 8245 (1994). Norm-Conserving and
Ultrasoft Pseudopotentials for First-Row and Transition Elements.

262. F. Tavazza, A. M. Chaka, and L. E. Levine, Computational Modeling and Simulation of
Materials, III, Part A, Cimtec-Techna Group, Faenza, Italy p. 657, 2004. Atomistic Insight
into Dislocation Dynamics in Metal Forming.

263. F. Tavazza, L. E. Levine, and A. M. Chaka, Int. J. Mod. Phys. C (in press). A Hybrid,
Quantum-Classical Approach for the Computation of Dislocation Properties in Real
Materials: Method, Limitations and Applications.

264. F. Tavazza, R. Wagner, A. M. Chaka, and L. E. Levine, Mater. Sci. Eng. A, 400–401, 72
(2005). Vacancy Formation Energy near an Edge Dislocation: A Hybrid Quantum-Classical
Study.
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INTRODUCTION

The Verlet Method

The current practice of molecular dynamics simulation dates back to the
pioneering work on smooth potential models for monatomic fluids of Rahman1

and Verlet2 in the 1960s. In the 1970s, interest developed in applying molecular
dynamics methods to more complicated molecular fluids such as water,3 mole-
cular fluids with internal degrees of freedom,4 and large flexible molecules.5

Given a potential energy function V (about which we have much more to say
below) that models the interatomic forces in a molecular system with N atoms,
the Newtonian equations of motion can then be expressed as

M€r ¼ FðrÞ ¼ �rrVðrÞ ½1�

where M is a diagonal mass matrix with diagonal

½m1 m1 m1 m2 m2 m2 . . . mN mN mN�

Reviews in Computational Chemistry, Volume 26
edited by Kenny B. Lipkowitz and Thomas R. Cundari

Copyright # 2009 John Wiley & Sons, Inc.

367



and mi the mass of the ith particle. The gradient rrV is the column vector of
all partial derivatives with respect to particle positions. It is easily verified that
the total energy

E ¼ _rT M_r

2
þ VðrÞ ½2�

is constant along solutions of Eq. [1]: dE=dt ¼ 0. The system is simulated from
initial positions and velocities rðt0Þ ¼ r0, _rðt0Þ ¼ _r0, often chosen randomly in
accordance with some appropriate statistical ensemble.

Computer simulation of the system modeled by Eq. [1] requires some
sort of time discretization scheme. The method proposed by Verlet propagates
positions by

rnþ1
i ¼ �rn�1

i þ 2rni þ h2M�1Fni ½3�

and velocities using

vni ¼ ðrnþ1
i � rn�1

i Þ=2h ½4�

Here the superscripts denote the indices of time steps, each of which is of size
h, so

rni � riðt0 þ nhÞ ½5�

and Fni ¼ �rriVðrnÞ is a Cartesian vector that gives the sum of forces
acting on particle i due to interaction with other particles, evaluated at the
point rn.

Verlet2 noted in his ground-breaking work the remarkable energy preser-
vation properties of the integrator, reporting ‘‘small irregularities in the total
energy . . . but the error is of no consequence.’’ The discretization method in
Eqs. [2]–[4], commonly referred to as the Verlet integrator, is accurate to sec-
ond order in time, requires only one force evaluation per step, and is time
reversible, which is part of the reason for its excellent stability in terms of
near conservation of energy. In fact, it is now known that a more general sym-
metry preservation—the symplectic property6—of the Verlet method, viewed
as an appropriate mapping of positions and momenta, confers its excellent
long-term energy stability.7,8 For a thorough review of symplectic numerical
methods, see the monograph of Sanz-Serna and Calvo.9 The Verlet method
is now regarded as the gold standard for time-stepping schemes in molecular
dynamics. In conformity with modern practice, and to anticipate the algorith-
mic development of multiple time-step methods in the forthcoming sections of
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this tutorial, we rewrite the Verlet method in the equivalent ‘‘velocity Verlet’’
form. The inside of the integration loop is given by

v
nþ1=2
i ¼ vni þ

h

2
M�1Fni ½6a�

rnþ1
i ¼ rni þ hv

nþ1=2
i ½6b�

vnþ1
i ¼ v

nþ1=2
i þ h

2
M�1Fnþ1

i ½6c�

In contrast to the constant energy regime described above, it is sometimes
desirable to perform simulations at a fixed temperature. This can be accom-
plished by the Langevin dynamics model:10

M€r ¼ Fðr; v; tÞ :¼ �rrVðrÞ � gvþ RðtÞ ½7�
where g > 0 is a friction coefficient and RðtÞ is a vector of normally distributed
random variables with zero mean and covariance hRðtÞRðt0ÞTi ¼ 2gkBTMd
ðt � t0Þ, where kB is Boltzmann’s constant, T is the simulation temperature,
and d is the Dirac delta function. A natural extension of discretization [6] gives
the following time discretization scheme:11

v
nþ1=2
i ¼ vni þ

h

2
M�1Fiðrn; vnþ1=2; tnÞ ½8a�

rnþ1
i ¼ rni þ hv

nþ1=2
i ½8b�

vnþ1
i ¼ v

nþ1=2
i þ h

2
M�1Fiðrnþ1; vnþ1=2; tnþ1Þ ½8c�

Molecular Dynamics Potential

The interactions of polyatomic molecules are frequently modeled by pair
potentials, both Lennard-Jones and electrostatic, between all constituent
atoms. The model potential used must also account for intramolecular geome-
tries by including the ‘‘bonded’’ terms: bond lengths, bond angles, and dihe-
dral angles. The result is the molecular modeling potential function that
generally is of the form

VðrÞ ¼ Vb þ Va þ Vd þ Vi þ VLJ þ VC ½9�
where Vb, Va, Vd, and Vi are sums over various pairs, triples, and quadruples
of spatially localized bonded groups of atoms representing bonds, angles, dihe-
dral angles, and improper dihedral angles, respectively:

Vb ¼
X
bonds

Vb
ij Va ¼

X
angles

Va
ijk Vb ¼

X
dihed

Vd
ijkl; . . . ½10�
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Similarly VLJ is the sum of Lennard-Jones contributions for all pairs of atoms,
and VC is the sum of the Coulombic potential over all charge–charge interac-
tion pairs, although other mathematical functions are frequently used to
account for steric and electrostatic interactions:

VLJ ¼
X

allpairs

VLJ
ij VC ¼

X
allpairs

VC
ij

The functional forms of these terms vary widely. Representative examples can
be found in work by a number of authors and have been reviewed previously
in this book series.12–20 A simple, detailed model is presented in the MD Test
Set project.21

The molecular dynamics (MD) potential energy surface of even small
organic molecules is highly nonlinear, with many local minima. Minimization
of the potential energy is a common task, but the nonpolynomial prolifera-
tion of local minima usually frustrates attempts to determine the lowest
energy states for modeled systems.22,23 Also, the finite-time dynamics of a
nonlinear multiple-minima system can become trapped in one potential
energy well, which in turn impedes complete conformational sampling. The
terms in the potential must account for a wide range of spatial scales (from
bonds of length 1Å ¼ 10�10 m, to Coulombic lengths that extend throughout
the modeled system) as well as time scales (the fastest bonds have a period of
10 fs ¼ 10�14 s, while large-scale conformational interconversions may occur
on the scale of seconds). Time-stepping algorithms like the Verlet method [4]
require a sufficiently short time step (0.5–1.0 fs) to resolve the fastest bonded
motion, meaning that a computed trajectory that spans a time interval of one
nanosecond ð10�9 sÞ requires one million dynamics steps. The great majority
of the computational work in MD simulations is expended in computing the
forces of interaction—for N particles, the computational effort is OðN2Þ.
For simulations in which the long-range force comes only from the rapidly
decaying Lennard-Jones potential, this N2 bottleneck can be remedied by
imposing distance cutoffs where the potential is assumed to be zero for all
atomic separations greater than a predefined cutoff distance rc.

The electrostatic 1=r2 forces, in contrast, are non-negligible at moderate
separations, thus making Coulomb distance cutoffs unphysical and undesir-
able on small- to medium-sized scales. Thus, a molecule’s potential energy sur-
face has several characteristics that can impact significantly on the
performance of numerical methods: multiple minima, wide range of time
and space scales, and long-range interactions between many particles. For tra-
ditional molecular dynamics methods that use Eq [6], the most important lim-
itation involves the numerical stability of the integrator. While the
computational resources required for a given numerical simulation could
be lessened by increasing the length of each time step, stability of the time-
stepping algorithm is typically limited by the high-frequency vibrational
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modes, i.e., bond stretching. The fastest period relevant to organic and biomo-
lecules is around 10 fs (associated, e.g., with C–H, O–H, and N–H stretching).
Resolving these fast motions adequately dictates that time steps of length 1 fs
or less should be used. Because of this the slower and more computationally
expensive force components are updated at each step, resulting in CPU limita-
tions of simulation length and system size. Solving the problems of efficient
time stepping and fast evaluation of nonbonded forces without distance cut-
offs is an ongoing activity.

Multiple Time Steps

In multiple time-step (MTS) time discretization methods the short-range
forces, which can change rapidly in time, are updated frequently with small
time steps. The long-range forces can be treated with larger steps in time
(appropriate to the time scale on which they vary). We will discuss later the
fundamental impact that the high-frequency force components have on MTS
methods as well. In this chapter we trace the development of MTS methods
and present a tutorial that illustrates an elementary application of these tech-
niques.

Reaction Paths

A very different set of methodologies involves trying to compute trajec-
tories between two states of a molecular system. These ‘‘double-ended’’ algo-
rithms, usually called reaction path approaches, differ from integrators of the
Newton equations of motion, Eq. [6], in that only the initial positions and
velocities of the particles in the system are needed. The two boundary points,
i.e., the states of the system, can represent a reactant and product configura-
tion or a transition (or intermediate) state and reactant (product) configura-
tion. The calculated path provides a qualitative description of the structural
changes as function of a parameter(s) [reaction coordinate(s)] that charac-
terizes the reaction path. The path then represents a series of replicas of the
molecular system fXðsÞg ¼ fXðs1Þ;Xðs2Þ; . . . ;XðsNÞg parameterized accord-
ing to a parameter s. In this notation, X represents the coordinates of the mole-
cule in a given slice of the path.

Most of the reaction path approaches make use of a spatial step and
accordingly are not affected by the time-scale limitation of other MD methods.
For complex systems, however, the ruggedness of the potential energy surface
limits the applicability and accuracy of these paths because the number of con-
formations in the trajectory needs to increase. Another fundamental limitation
is that these methods are not applicable for the study of molecular events for
which very few details are known about the conformations of products or key
intermediates. It is for those processes where theoretical approaches are more
helpful.
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In MD trajectories it is easy to extract dynamical properties by comput-
ing an average over time. The extraction of these properties is more difficult to
do in reaction path approaches because trajectories are computed in configura-
tion space (with only coordinate information for each structure in the path).
Dynamical information can be computed, though, if an ensemble of many
reactive trajectories is obtained. But such an ensemble is not generally deter-
mined (this can be done with transition path sampling). Reaction path meth-
ods are very useful for determining of rates and free energy profiles for fast
but rare events that are inefficiently probed with other MD algorithms
because trajectories obtained with reaction path approaches filter out the wait-
ing periods the system spends in the reactant wells, in contrast to standard MD
trajectories.

The reaction path methods consist of a number of different theoretical
formulations and algorithms and therefore are difficult to describe by a com-
mon framework (the second part of this chapter reviews some of the path tech-
niques developed in the past 10 years). All of these techniques describe the
system with atomic detail and use a potential function of the form of Eq.
[9]. We will also describe, in more detail, one of these methods, which is based
on a discretized formulation of the action of classical mechanics. In this action
formalism (called stochastic difference in length, SDEL), reaction paths are
obtained by linking two conformations of the system. These paths, parameter-
ized according to arc length, can be obtained with a large length step. There-
fore, this algorithm tries to solve the time-scale limitation of normal MD
simulations by using a boundary value formulation of the classical equations
of motion. Although this method has been used to compute approximate paths
for processes that are impossible to study using normal MD simulations, it is
difficult to compute dynamical properties from these paths (e.g., the time of
the trajectory computed directly from the algorithm is underestimated by sev-
eral orders of magnitude!). Still, the method can be used to determine large
conformational changes that can be resolved by the trajectory. This chapter
provides a tutorial section about how to run a program associated with this
algorithm and reviews some recent applications and improvements in the
methodology.

MULTIPLE TIME-STEP METHODS

In an effort to lengthen the feasible simulation time scale of molecular
simulations, Streett and co-workers introduced the multiple time-step method
in 1978.24 These authors recognized that the components of the force that vary
most rapidly, and hence require small time steps for numerical resolution, are
typically associated with atom pair interactions at small separations. This spa-
tial localization is important because each of the N particles in the simulation
has such an interaction with only a few, say k � N, neighboring particles.
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Success of the multiple time-step methodology depends on computing these
kN � N2 interactions at each step, i.e., at intervals of h Eqs. [3]–[6] and
[8], while computing the remaining NðN � kÞ pair interactions (which corre-
spond to forces that vary more slowly) at longer time intervals th.

Street et al.24 originally presented the MTS method in the context of a
distance truncated Lennard-Jones potential, so that the total number of com-
puted interactions was somewhat less that N2. For biological MD applications
there is evidence that cutoffs can cause undesirable artifacts.25,26

Before discussing the implementation details, we need to state the general
issues of multiple time-step numerical methods. The central objectives are: (1)
to devise a splitting of the systematic forces into a hierarchy of two or more
force classes based on the time interval over which they vary significantly, and
(2) to incorporate these force classes into a numerical method in a way that
realizes enhanced computational efficiency and maintains stability and accu-
racy of the computed solution.

Splitting the Force

Streett and co-workers24 proposed a splitting of forces based on a dis-
tance parameter rsplit. In the potential energy formalism we write

VðrÞ ¼
X

jri�rjj<rsplit

Vij þ
X

jri�rjj�rsplit

Vij ½11�

¼ VfastðrÞ þ VslowðrÞ; ½12�

with

FfastðrÞ :¼ �rrV
fastðrÞ FslowðrÞ :¼ �rrV

slowðrÞ ½13�

As a practical matter, particles will move in and out of the rsplit sphere for a
given particle over the course of a simulation. To avoid discontinuities that
result from a particle suddenly changing classification from the slow force
component to the fast force component, the force can be decomposed into
fast and slow components using a switching function SðrÞ,

Fi ¼ Ffasti þ Fslowi ¼ �SðrÞrriV � ð1� SðrÞÞrriV ½14�

where

SðrÞ ¼
1 r < rsplit � l

1þ R2ð2R� 3Þ rsplit � l � r � rsplit
0 rsplit < r

8<
: ½15�
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with R ¼ ½r� ðrsplit � lÞ�=l. Here l is a ‘‘healing length’’ over which the
switching function S varies smoothly between one and zero. The form of the
switching function is somewhat arbitrary, although sufficient smoothness is
required.

The forces due to bonded interaction potentials Vb, Va, Vd, and Vi (see
Eq. [10]) are included in the fast component along with the nonbonded forces
that change the fastest. It is not uncommon for the two-scale splitting
described here to be generalized to a hierarchy of more than two classes.
We should mention that efficiency gains cannot typically be realized from
the simple splitting in which bonded forces comprise one class and nonbonded
forces the other. The reason is that atomic collisions cause the short-range
nonbonded forces to vary over roughly the same (short) time scale as the
bonded forces. The details of force splitting can be rather complicated and sys-
tem dependent. Later in this work, we will address this important issue influ-
encing efficient implementation of force splitting in MTS methods.

Numerical Integration with Force Splitting:
Extrapolation vs. Impulse

The general plan for a multiple time-step numerical method is that Ffasti

will be evaluated at every step of the integration at time increments h, while
Fslowi will be evaluated less frequently, typically at time increments th where
t > 1 is an integer. The key question is: How should Fslowi be incorporated
into the numerical dynamics? In the original work of Streett et al.,24 the
slow force on particle i was approximated by a truncated Taylor series at
each step j, 0 < j < t, between updates at steps tn and tn þ th:

Fslowi ðtn þ jhÞ ¼ Fslowi ðtnÞ þ jh _F
slow

i ðtnÞ þ 1
2 ð jhÞ2 €F

slow

i ðtnÞ þ � � � ½16�

A natural simplification is to truncate the Taylor series after the constant term,
resulting in a constant extrapolation of the slow force. The velocity Verlet
method [6] can be easily modified to implement this constant extrapolation
multiple time-step method:

v
nþ1=2
i ¼ vni þ

h

2
M�1ðFfasti þ Fslowi Þ ½17a�

rnþ1
i ¼ rni þ hv

nþ1=2
i ½17b�

update Ffasti

if ðnþ 1Þmod t ¼ 0 update Fslowi

vnþ1
i ¼ v

nþ1=2
i þ h

2
M�1ðFfasti þ Fslowi Þ ½17c�
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The important feature to note is that the fast forces are computed at each
step, while the slow forces are computed t times less frequently, with updates
given by

Ffasti ¼ Ffasti ðrnþ1
i Þ Fslowi ¼ Fslowi ðrnþ1

i Þ ½18�
However, the simplicity of this modification hides a potentially disastrous
flaw! The Verlet method is popularly employed in virtually every molecular
dynamics simulation done today because its geometric symmetry ensures
that the total energy along computed solutions does not drift but remains
essentially constant, respecting the underlying Newtonian physics of the model.
By modifying the force updates in the multiple time-step method given above,
we have disrupted the symmetry of the original method. The result is that the
energy will drift significantly and systematically. The situation is improved,
but not solved, by using a higher order Taylor approximation for the slow forces
and a higher order integration scheme. Street et al.24 used a third-order Taylor
approximation for the slow forces along with a high-order Gear predictor–
corrector integration method. In this way, the energy drift can be made small
relative to the time step, so that relatively long simulations can be computed
with less apparent problems from energy growth.

A new era in multiple time-step methods arrived in the early 1990s when
Grubmüller et al.27 and Tuckerman et al.28 independently published multiple
time-step methods that appeared to overcome the energy instability of extra-
polation methods. Their idea is to mimic the ‘‘kick-drift’’ nature of the velocity
Verlet method itself. In Eq. [6] the force supplies a ‘‘kick,’’ or impulse, in the
first line, and the system then ‘‘drifts’’ as the updated half-step velocity contri-
butes to the position at the new step. The velocity Verlet method can be mod-
ified so that the slow force is also applied as an impulse:

v1i ¼ vni þ
th
2
M�1Fslowi ðrni Þ

r1i ¼ rni

½19a�

For j ¼ 1 : t,

v
jþ1=2
i ¼ v

j
i þ

h

2
M�1Ffasti ðr jiÞ ½19b�

r
jþ1
i ¼ r

j
i þ hv

jþ1=2
i ½19c�

v
jþ1
i ¼ v

jþ1=2
i þ h

2
M�1Ffasti ðr jþ1

i Þ ½19d�
end

rnþ1
i ¼ rti

vnþ1
i ¼ vti þ

th
2
M�1Fslowi ðrnþ1

i Þ ½19e�
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This modification amounts to the replacement of the middle step of Eq. [6]
with an inner loop over the t steps between slow force updates.

It can be shown that impulse multiple time-step algorithms, such as the
one described here, can be formulated so as to preserve time reversibility. As a
result these methods can, for suitable choices of time-step sizes, avoid systema-
tic energy drift along computed trajectories. In the next section we discuss the
question of feasible time-step size. To consume less computing resources per
unit of simulation time, successful multiple time-step methods must combine
force-splitting approaches and time-stepping algorithms that allow signifi-
cantly lengthened time steps for the most computationally costly force compo-
nents. This issue has been the focus of intense work over the past decade.

Fundamental Limitation on Size of MTS Methods

Impulse MTS methods began to show considerable success in the mid-
1990s, with published results reporting computational speed-up by a factor
of 5 compared to traditional MD simulation.29,30 Two features with regard
to the practical time-step sizes for MTS methods emerged. The first, which
was consistent with results reported by Streett et al.24 20 years earlier,
involved the size of the small time step used to resolve the highest frequency
motion in the system. That time step needed to be somewhat smaller than
the typical MD time step in order to maintain energy stability. This is of little
practical concern in terms of overall computational efficiency because the
forces being evaluated at each small step are assumed to be very inexpensive in
CPU time. The second feature was more significant: Computed trajectories
demonstrated systematic energy instability whenever the larger steps used to
resolve slower force components exceeded 5 fs.31 This is important because
the possibility of achieving further efficiency gains with MTS methods require
that the slowest forces be updated much less frequently. The 5 fs barrier, which
for a time seemed to have put a ceiling on further developments, came to be
understood as a resonance artifact32–34 coinciding with the half-period of
bond vibrations such as O–H. The impulses introduced into the dynamics at
each large step excite the bonds and lead to catastrophic energy growth. This
energy growth is seen initially in the highest frequency (fastest) bonded energy.
As a practical matter, growth in these energy components can be used as an
early diagnosis of trouble in an MTS simulation.

One obvious remedy for this problem is to choose time-step lengths so as
to avoid small integer multiples of half-periods of any oscillatory motion.
However, it has been demonstrated35 that the molecular dynamics potential
gives rise to motion with a continuum of periods greater than or equal to
10 fs. Furthermore, the energy instability of impulse MTS methods becomes
exponentially worse at larger multiples of the half-periods. This rules out
the possibility that a fortuitously chosen assortment of impulse multiple
time steps longer than 5 fs could yield stable trajectories.
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A number of methods have been proposed to overcome the MTS barrier,
including averaging methods36 that ‘‘mollify’’ the impulse, allowing time steps
of up to 6 fs while maintaining the favorably small energy drift attained by
impulse MTS methods with 4 fs time steps. We will omit here the details of
these time-stepping algorithms but point to a reference37 that explicitly pro-
vides implementation details.

A point of interest is that extrapolation methods such as that given above
in Eq. [19] suffer from resonance artifacts to a lesser degree than impulse meth-
ods.38 In particular, it has been demonstrated39,40 by eigenvalue analysis of
extrapolation MTS methods that the severity of the instability does not grow
with the largest MTS steps. Similar eigenvalue analysis shows that impulse
methods suffer from increasingly severe energy instability with increasing
MTS steps. This suggests that if the relatively mild instability of extrapolation
methods could be somehow managed, the 5-fs time-step barrier could be over-
come. In the next section we discuss how extrapolation MTS methods, while
unsuitable for simulations in which energy must be conserved, can achieve the
goals of true long-time-step methods in the context of Langevin dynamics.

Langevin Stabilization

The Langevin dynamics model of Eq. [7] has been employed to meet a
variety of modeling objectives. First, as a fixed-temperature method, it pro-
vides a way to carry out numerical simulations that sample from the canonical
ensemble of statistical mechanics.41 Second, the stochastic forcing function
can be viewed as a model of intermolecular collisions, making the Langevin
model suitable as a surrogate for explicit solvent molecules.11 A third way
the versatile Langevin formalism has been utilized is to provide energy stabi-
lization for simulations using numerical methods that may have desirable
properties but suffer from energetic drift when applied to MD equations of
motion.42,43

Langevin stabilization as an approach to multiple time-step numerical
integration was introduced by Barth and Schlick39 in 1998. One particularly
simple method described in that work can be written as a modification of
Eq. [19] subject to Eq. [7]:

v
nþ1=2
i ¼ vni þ

h

2
M�1ðFfasti þ Fslowi Þ ½20a�

rnþ1
i ¼ rni þ hv

nþ1=2
i ½20b�

update Ffasti

if ðnþ 1Þmod t ¼ 0; update Fslowi

vnþ1
i ¼ v

nþ1=2
i þ h

2
M�1ðFfasti þ Fslowi Þ ½20c�
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where

Ffastðr; v; tÞ :¼ �rrV
fastðrðtÞÞ � gvðtÞ þ RðtÞ Fslowi ¼ Fslowi ðrnþ1; vnþ1=2; tnþ1Þ

This method can naturally be extended to include a splitting of more than two
force classes, and it is amenable to other modifications and improvements such
as moving the slow force update to be more symmetrically placed in the inte-
gration loop. It was shown39 for a three-class force splitting that for typical
molecular systems, the MTS (and hence the frequency of updating the slow
forces) can be extended to 48 fs or longer with resulting computational speed-
ups of at least a factor of 10. The success of Langevin stabilization with extra-
polation MTS methods has led to its use to achieve stable simulations at large
time steps using mollified impulse methods as well.44–46 A systematic compar-
ison47 of these methods shows that extrapolation methods hold some advan-
tage among Langevin-stabilized MTS integrators in terms of stability at long
time steps. On the other hand, the argument in favor of mollified impulse
methods is that no stabilization is required at small time steps.

Further Challenges and Recent Advances

The success of Langevin-stabilized methods has yielded, for the first
time, the opportunity to attain the full promise of MTS methods. As in
any field of inquiry, solving one problem often clears the way for the emer-
gence of several others, and MTS integration is no exception. As an example,
the extrapolation method39 was used successfully with 120-fs slow force
update frequency in simulations of a DNA/polymerase system.48 Remark-
ably, in this study computational gains were limited to a factor of 5, even
though the longest-range forces were updated less frequently than the fastest
forces by two orders of magnitude. The explanation for this limited gain in
efficiency is due to the extreme sensitivity of DNA systems to electrostatic
interactions, where medium-range forces must be treated with very short
time steps in the range 1–2 fs. This highlights a difficulty with the force-
splitting idea as applied to molecular dynamics of some classes of molecules
such as biological systems: The time and distance scales sometimes do not
naturally fall into well-separated categories. This, in turn, makes it difficult
to identify force classes. For example, the highest frequency motion in a slow
force class might be only marginally slower than the lowest frequency
motion in a fast force class. This feature, more prominent in some systems
than others, can limit the size of time step that can be used for any given force
class severely, hence mitigating the hoped-for computational advantage of
MTS methods.

During the development of long-time-step MTS methods, work pro-
ceeded along another path involving the fundamental problem of costly force
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evaluations in MD. That research was aimed at developing summation
schemes, such as fast multipole49–52 and Ewald summation53–55 methods for
faster evaluation of electrostatic energies and forces without invoking distance
cutoffs. The computational advantage of these summation schemes over direct
evaluation of long-range electrostatic forces is the reduction in the complexity
of the task from OðN2Þ to OðN ln NÞ. Fast summation methods have been
successfully integrated into the framework of force splitting in multiple
time-step integration methods29,56,57 for solvated systems. While it is often
the case that fast summation methods only enjoy computational speedups
compared to direct evaluation for sufficiently large systems, it is precisely these
large systems that would have exhibited the largest computational speedup for
long-time-step MTS methods.

The current situation is then that large time-step size allows the slowest
forces to be evaluated infrequently over the course of a multiple time-step MD
simulation. At the same time, these forces can be evaluated more cheaply than
was possible several decades ago. Note, however, that there exist some tech-
nical limitations to the conjoined use of MTS methods and fast summa-
tion.36,58 Because the long-range forces became both cheaper to evaluate
and also because this evaluation needs to be done less frequently during a
simulation, attention can now be shifted to the new ‘‘cost leader’’ in MD simu-
lation: the medium-range forces. These forces are not especially slow (as in the
DNA/polymerase simulation48), nor are they particularly amenable to efficient
approximation by fast summation methods. They can, and do, require careful
resolution with rather small time steps. Further efficiency gains will require
new approaches to the medium-range forces. This issue is open to new
research from a variety of fields: force-field modeling, force-splitting techni-
ques, and time-stepping algorithms.

An MTS Tutorial

In this section, we present a simple model problem to illustrate impulse
and extrapolation MTS methods for simulations in the constant-energy and
constant-temperature regimes. The models are implemented in MATLAB,
with codes given in the Appendix.

The model consists of a pair of water molecules with all atoms in a plane.
The forces of interaction come from Hookean spring models of oxygen–
hydrogen (O–H) bonds, as well as H–H springs to maintain the water model
geometry. The angle between the two O–H bonds would correspond to a more
complicated potential function in a more realistic model, but the three-spring
model suits our purposes here. The atoms of each molecule also interact, via
electrostatic forces, with atoms of the other molecule. To avoid the complexity
of treating the system in a way that takes the pressure of the system into
account, we fix in place the two oxygen atoms. This constraint is accomplished
by removing the forces acting on these two atoms.
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The system is represented graphically in Figure 1. In the figure we indi-
cate the central dipole vector for one molecule. When analyzing the simulation
results, we will monitor the change of the angle y indicated in the figure.
The model uses natural units: angstroms, kilocalories per mole, and atomic
mass units (AKMA). In this system of units, lengths and masses have obvi-
ous values (e.g., a hydrogen atom has approximately unit mass), but the
resulting time unit is nonstandard: 4:888821� 10�14 s. For this reason a
time conversion is required so that simulation can be presented in time units
of femtoseconds (fs).

To begin, we must state explicitly the potential energy function. In this
example we use the CHARMM potential model:13

Vbond
ij ¼ kij

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2 þ ðyi � yjÞ2

q
� Lij

� �2

½21�

and

Velec
ij ¼ qiqjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � xjÞ2 þ ðyi � yjÞ2 þ ðyi � yjÞ2
q ½22�

where the spring constants and equilibrium lengths for H–H and O–H bonds
are given by

kHH ¼ 450:0 kOH ¼ 450:0 LOH ¼ 0:9573 LHH ¼ 1:5139

and the electrostatic constants for hydrogen and oxygen are

qH ¼ 0:417 qO ¼ �0:834

H

H

θ

θ

H

H

O (fixed)

O (fixed)

Figure 1 Planar water dimer model system. The dipole angle (measured from the
horizontal) is labeled as y.
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The total potential energy for the system is obtained by summing the Vbond

terms for all six bonds, and Velec for the eight electrostatic pairs. Note that
because the oxygen atoms are not subjected to any force, we need not compute
interactions between them, resulting in 3� 3� 1 ¼ 8 nonbonded pairs. The
forces are then computed as the negative gradient of Velec. The form of the
total forces can be seen in the MATLAB code twowaters.m. We have imple-
mented the time-stepping algorithms [6]–[20]. Simulations using the various
algorithms are coordinated and dispatched by the file dyntwowat.m.

High- and Low-Frequency Motion: The Importance of
Electrostatic Forces
For typical configurations of the model system, in which the molecules

are separated by about 5 Å, it is seen that the forces due to the bonded interac-
tions have magnitude on the order of 101, while the electrostatic forces have
magnitude on the order of 10�3. It is natural to wonder about the overall
importance of the tiny electrostatic forces. We performed long MD simulations
using [6] in the presence and absence of electrostatic forces in the model. The
left view in Figure 2 shows O–H bond distance over a few dozen time steps—
enough to capture several periods of the fastest motions due to the bond forces.
It can be observed that the fastest oscillations have a period of approximately
9 fs. The right view in Figure 2 shows a much longer trajectory of the dipole
angle y for one of the molecules. The presence of the electrostatic forces can
be seen to result in very low frequency motions—several orders of magnitude
slower than the fast bond-induced motions. Without electrostatic interaction,
the dipole angle remains essentially constant, with small fluctuations due to

Figure 2 Model exhibits motion across a wide range of frequencies. The left view shows
a short trajectory of O–H bond distance in the model system showing the period of the
fastest motion to be approximately 8.8 fs. The right view shows the trajectory of one
dipole angle. Note that the electrostatic interactions result in a low-frequency motion
with period approximately 10 ps. This motion is absent when the electrostatic
component is removed from the potential energy model.
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molecular vibration. These low-frequency motions due to long-range forces are
typical of the important motions in more elaborate biomolecular models. It is
common to perform a power spectrum analysis of MD trajectories in order to
identify the constituent motions of a given system. Figure 3 shows the power
spectrum for the dipole angle. Notice, for example, that the highest frequency
peak at 0:114 fs�1 corresponds to a motion with period 8.8 fs. Also note that
in the left view the slowest motion appears as a frequency peak of 0:0001 fs�1,
which agrees with the trajectory in Figure 2 with apparent period of 10000 fs. A
MATLAB script for plotting power spectra is given in powerspectrum.m.

Behavior of Impulse MTS Method on the Model System
The model system above was designed to illustrate the simplest possible

force splitting. The bonded forces constitute the fast force. The two molecules
are constrained to be sufficiently distant from one another to avoid any close
approaches, so the nonbond forces can be taken as the slow force. With this
splitting, the impulse MTS method (Eq. [17]) was used with a step size of
h ¼ 0:5 fs and various values of ~t. Figure 4 shows the root mean square devia-
tion (RMSD) energy error for the method as a function of the interval between
slow force updates, which in this example correspond to integer values of t
between 1 and 20. It can be seen that the energy error from t ¼ 1 (equivalent
to the velocity Verlet algorithm) to t ¼ 8 (corresponding to slow force updates
on intervals just shorter than half the period of the fastest motion) is remarkably
constant. Unstable energy behavior begins for t ¼ 9 and is especially notable at
the period of the fastest motions of the system. A power spectrum analysis of the

0 0.05 0.1 0.15
Frequency (fs−1)Frequency (fs−1)

0 0.5 1

× 10
−3

Figure 3 Power spectrum for the dipole angle of one molecule. In the right view,
frequency peaks correspond to several fast motions, including the fastest of period
1=ð0:114=fsÞ ¼ 8:8 fs. The left view shows an enlarged region at the low-frequency end
of the scale. The slow motion due to long-range electrostatics has a period of
1=ð0:0001=fsÞ ¼ 10000 fs.
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trajectory shows that the low-frequency motion is correctly resolved by the
impulse MTS method for values of t in the stable regime.

Behavior of Langevin-Stabilized Extrapolation Method
on the Model System
Langevin dynamics requires the calculation of a random force vector at

every step. This is implemented for our water dimer in the MATLAB function
dynlang1.m. The best value to select for the collision parameter g is an open
question. In the original work of McCammon, Gelin and Karplus,39 the choice
was 5/ps. For the water dimer model, we present results using a smaller colli-
sion parameter 2/ps (corresponding to 0.1 in the units presented here). A
power spectrum analysis shows that Langevin dynamics simulations on the
water dimer exhibit essentially the same frequencies as constant-energy simu-
lations, but with broadening of the frequency peaks. This spreading of the
peaks depends upon the magnitude of g, with larger values resulting in broader
peaks. This effect can be seen by comparing Figure 3 and Figure 5. We note
that this broadening is especially sensitive for the low-frequency motion,
where the stochastic forces can excite rotations in the dipole about the fixed
atoms. This broadening can be viewed two ways, depending on the nature and
aims of the simulation. If detailed time-dependent dynamical information
about the very low frequency motion is needed, the stochastic forces in Lan-
gevin dynamics blur the picture somewhat. On the other hand this excitation
of low-frequency modes can result in enhanced sampling of the low-frequency
motion, allowing simulations to capture this important motion on a shorter
simulation time scale.
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Figure 4 Sensitivity of the impulse MTS method to slow force update intervals. The
energy error is essentially unchanged from that of velocity Verlet to an update interval
up to 4 fs. For larger update intervals, the energy error becomes erratic, with a notable
jump at the period of the fastest molecular motion.
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As pointed out earlier and shown in Figure 4, the energy of the bonded
terms is an especially sensitive detector of instability arising from MTS reso-
nance artifacts. Because the total energy is not constant in Langevin simula-
tions, bond energy can be used to monitor the stability of a Langevin
trajectory. Figure 6 shows that the energy behavior of the Langevin-stabilized

Figure 5 Power spectrum analysis of the Langevin dynamics simulation of the model
system. Frequency peaks are in qualitative agreement with constant-energy simulations
but somewhat broadened when compared with the data shown in Figure 2.
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Figure 6 Average bond energy as a function of slow force update interval for a
Langevin-stabilized extrapolation MTS method. These average energies, taken from
long simulations, do not exhibit the sensitivity to the slow force update interval seen
with impulse MTS methods in Figure 4.
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extrapolation method is largely independent of t, allowing for large MTS steps
while maintaining the underlying behavior of the single-step Langevin method.

EXTENDING THE TIME SCALE: PATH
METHODOLOGIES

Molecular dynamics (MD) is the most widely used computational meth-
od to study the kinetic and thermodynamic properties of atomic and molecular
systems.59–61 These properties are obtained by solving the microscopic equa-
tions of motion (Eq. [1]) for the system under consideration. The multiple
time-step algorithms discussed earlier have extended the time scale that can
be reached, but, the gain is still insufficient for the study of many processes;
for many systems, such as biomolecules, this simulation time is inadequate
to study large conformational changes or to study rare but important events
as examples.

A different approach for such systems can be considered, however, that
invokes a different set of methodologies that attempt to compute trajectories
connecting conformations from the reactant state to conformations of the pro-
duct state, i.e., the reaction path. Transition path sampling, MaxFlux, discrete
path sampling, string methods, and optimization of actions are examples of
methodologies that search for these transition paths. We now will review
briefly the first four methods and then present the theory and implementation
of the action formalism in more detail.

Transition Path Sampling

Transition path sampling (TPS) is a methodology that can be used to
study slow activated processes. This technique, first developed by the Chandler
group62,63 and further improved by Bolhuis et al.,64–67 is based on a polymer-
like representation of the complete trajectory (Figure 7). TPS is an iterative
method that starts by computing a dynamical pathway connecting conforma-
tions of the reactant and product state. That can be done using simpler meth-
ods that generate approximate trajectories connecting two boundary points.

Starting from this initial path, further trajectories are then generated using
an iterative strategy. Specifically, a configuration snapshot (i.e., nuclear posi-
tions and velocity vectors) is taken from the previous trajectory and modified
(Monte Carlo shooting method68) in a manner consistent with the correspond-
ing distribution ensemble. Usually, the incorporated change is a momentum var-
iation. Then, starting from this modified configuration, forward and backward
trajectories are generated using MD, and, if this pathway connects the reactant
and product state, it is used to generate another new pathway as above. An
accurate sampling of trajectory space can be generated by iterating this
process many times. From these trajectories, reactionmechanisms and transition
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states can be elucidated, and rate constants can be determined using the time
derivative of the time correlation function:64,69

kTPSAB ðtÞ ¼ dCðtÞ
dt

CðtÞ ¼ hhAðx0ÞhBðxtÞi
hhAðx0Þi kTPSAB ðtÞ ¼ h _hBðtÞiA;HBðTÞ

hhBðt0ÞiA;HBðTÞ
Cðt0Þ

½23�

in which hAðxÞ and hBðxÞ are indicator functions that state if the system is in
the phase space regions A or B:

hAðxÞ ¼ 1 if x 2 A else hAðxÞ ¼ 0

hBðxÞ ¼ 1 if x 2 B else hBðxÞ ¼ 0
½24�

Here x is a phase space vector, HBðTÞ ¼ max0<t<T hBðxtÞ, and h� � �iA;HBðTÞ is
an average over the ensembles of paths that start in A and go to B at least
once during a fixed length T. An order parameter is introduced to describe

Figure 7 (a) Schematic energy diagram as a function of two coordinates q and q0 with
reactant region A and product region B. The chain of beads represents a discretized path
in the TPS method. (b) Schematic free energy along reaction coordinate q. (Adapted
from Dellago et al.69)
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the transition, and, umbrella sampling can be used to compute the rate in
Eq. [23].

The molecular processes typically studied with TPS involve a transition
over a single, albeit significant barrier. TPS is more efficient than standard MD
because the reactive trajectories (computed by TPS) are much shorter through
phase space than the time it takes between successive transitions; more (reac-
tive) trajectories are therefore computed with TPS than with normal MD
methods.

The TPS methodology has been applied successfully to evaluate time-
dependent events, such as chemical reactions and conformational chan-
ges.65,68,70–74 Application of this algorithm to complex systems with rugged
energy surfaces, however, requires the identification of basin states separated
by several barriers with different heights. For these systems, the assumption of
time-scale separation between the transition time and the incubation time is
not easy to justify. For these complex systems, the reactive trajectories can
be long, and the sampling will be limited by the time step used in the simula-
tion. Defining the reaction coordinate or a physical descriptor that allows for
the identification of the different basin and transition states present during
transitions of complex molecules can be cumbersome.75

Maximization of the Diffusive Flux (MaxFlux)

MaxFlux is a time-independent algorithm that seeks a path that maximizes
the diffusive flux (or minimizes the mean first-passage time) between two config-
urations at a given temperature. The algorithm is based on the work of
Berkowitz and co-workers76 who derived the optimal transition connecting
reactant and product using a variational principle. If the transition is described
as a stochastic process, the flux of particles along the optimal path is given by

j / tan t

g
Ð
expðbVÞdl ½25�

where V is the potential of mean force of the system, g is an isotropic and spa-
tially independent friction coefficient, b ¼ 1=kBT, and dl is an infinitesimal
length element along the path. In MaxFlux, the line integral in the denomina-
tor of Eq. [25] is minimized using a self-penalty walk method.77

MaxFlux has been used to study conformational transitions in peptides
and aggregate formation by Straub et al.78,79 It can also be used to describe
slow processes controlled by diffusion.76 A difficulty with MaxFlux is
the necessity to specify the phenomenological friction constant. Themagnitude
of the friction constant strongly influences computed rates, and it affects the
transition pathways. Equation [25] is maximized with global optimization
algorithms that are both time-consuming and dependent on the initial guess
for the pathway.
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A temperature-dependent nudged-elastic-band (NEB) algorithm, also
based on maximizing the flux, was proposed recently.80–82 In this MaxFlux-
NEB algorithm, based on the differential form of Eq. [25], a discretized
path is constructed with the different neighboring structures maintained
equally spaced by the use of spring forces (Figure 8). The path is then mini-
mized using a modified Verlet algorithm. This methodology has limitations
similar to those of MaxFlux.

Discrete Path Sampling and String Method

Discrete path sampling (DPS)83–87 is a methodology that samples paths
along the potential energy surface (instead of the Gibbs free energy surface as
in TPS). Fast paths connecting local minima and transition-state conforma-
tions are computed by DPS. The initial path connecting minima and transition
states is computed using the NEB method,88,89 and the number of paths is
increased by replacing a minimum in the path with a new minimum close to
the original path. That new path is accepted and used to generate additional
paths only if it is faster than the original path (Figure 9). The rate constants are
computed using a harmonic approximation to the local density of states for

Figure 8 Minimum energy path obtained using the NEB method is shown with the
larger filled circles along the continuous line. The dashed line with smaller filled circles is
a linear interpolation between the initial and final state. The contour plot represents the
potential surface of a 3-atom model coupled to an additional degree of freedom.
(Adapted from Jónsson et al.80)
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each stationary point of the potential energy surface. Overall phenomenologi-
cal rate constants can be extracted using master equations, kinetic Monte
Carlo or graph transformations, and transition-state theory. The algorithm
has been applied to a small pentapeptide83 and to the GB1 hairpin.84 Reliance
on statistical rate theory is one of the drawbacks of this methodology. A satis-
factory sampling on stationary points of the potential energy for more com-
plex systems can be difficult as well.

In the string method,90–94 which is based on the transition path theory
(TPT),95,96 a ‘‘transition tube’’ in configuration space is constructed by sam-
pling the equilibrium distribution of the system in a collection of hyperplanes.
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Figure 9 Configuration for the four fastest paths of an isomerization process for a
two-dimensional Lennard-Jones system obtained using the discrete path sampling
method. (Adapted from Wales.87)
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These hyperplanes are parameterized by a string connecting two metastable
states (Figure 10).

The hyperplanes approximate the isocommittor surfaces (trajectories
initiated at configurations on this surface have the same probability of reach-
ing the product state before reaching the reactant state). The transition tube
represents a region in configuration space in which the transition occurs
with high probability. The string is a curve normal to each hyperplane passing
through the center of mass on each plane and defines the center of the transi-
tion tube. It is defined as

jðaÞ ¼ hxiPa
½26�

in which the average is restricted to equilibrium configurations on the hyper-
plane Pa (a is a parameter characterizing the hyperplanes).

The algorithm uses a variational principle that satisfies:92

n̂ðaÞ k j0ðaÞ ½27�

to compute the string where n̂ðaÞ is a unit vector normal to the hyperplane Pa

and j0ðaÞ is the tangent vector of the string at a.
The string method is more sophisticated than MaxFlux and DPS, but,

due to its inherent complexity, it has been used only for very simple systems
such as alanine dipeptide.92

Optimization of Action

Another set of algorithms have been developed by Elber et al. based on
the optimization of actions.97,98 In classical mechanics, the action is a physical
quantity associated with a particular system and from which the equations of

A B

Γz

Figure 10 Transition tube between two states A and B is shown with the dashed lines.
Several isocommitor surfaces �z are also shown and a string (solid line perpendicular to
the isocommitor surfaces. (Adapted from Ren et al.92)
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motion can be derived by computing a minimum (more exactly any extre-
mum). This method is called the least action principle. In the optimization
of an action procedure an initial guess for the trajectory is generated by con-
necting two boundary states, and the least action formalism is used to compute
a finite-temperature trajectory.

The first formulation of this methodology was based on a discretized ver-
sion of the classical action:

S½Xðt0Þ� ¼
ðt

0

Ldt0 ½28�

generating the Onsager–Machlup object function:99–103

SSDETðfXigN�1
i¼1 Þ 	

X
i

�t M
Xiþ1 þXi�1 � 2Xi

�t2
þ dV

dXi

� �2

¼
X
i

�te2
i

½29�

In these equations, X is the coordinate vector for the system, M is the diagonal
mass matrix, V is the potential energy, X0 and XN are the fixed boundary con-
formations in the trajectory, and ei is an error variable. This algorithm, called
stochastic difference equation in time (SDET), has been used to compute
approximate trajectories by using a large time step �t for long-time events.
These paths are obtained by sampling trajectory space using molecular
dynamics or Monte Carlo techniques according to a Gaussian distribution
of errors (the term between parentheses corresponds to a finite-difference ver-
sion of Newton’s equation of motion, i.e., Eq. [2]). Using similar time formal-
isms, Passerone and Parrinello,104 Passerone et al.,105 and Bai and Elber106

have computed exact trajectories for relatively short but rare processes.
A variant of the SDET algorithm will be described below in more detail.

In this more recent formulation called SDEL (for stochastic difference equa-
tion in length) the trajectory is parameterized as a function of its arc length
and a unique path is obtained connecting the two boundary conforma-
tions.97,98 In this sense, the SDEL algorithm is similar to DPS and string meth-
ods because trajectories are computed in configuration space instead of the
space parameterized by time as in normal MD, TPS, and SDET algorithms.

Boundary Value Formulation in Length

The SDEL algorithm allows the computation of atomically detailed tra-
jectories connecting two known conformations of the molecule over long time
scales. In contrast to normal and MTS molecular dynamics algorithms,
step sizes can be increased easily by two or three orders of magnitude without
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significant changes in many properties of the trajectory. The trade-off between
SDEL and normal and MTS MD is that trajectories obtained with such a large
step size are only approximate; molecular motions that occur on a scale short-
er than the step size are filtered out from the trajectories. Also, the initial and
final configurations of the system under study must be known because this is a
boundary value algorithm. This means that the algorithm cannot be used to
predict the final conformation of a molecular system such as a protein, and,
consequently, confines the applicability of the algorithm to situations in which
the initial and final configurations are known by experiment or modeling. This
is not an unbearable limitation because in many chemical events we are inter-
ested in determining how a system changes from a reactant state to a product
state. The algorithm can be used, for example, to describe folding mechan-
isms,107 i.e., how a protein folds to its native conformation starting from an
unfolded structure.

The Onsager–Machlup action methodology has a critical disadvantage:
the total time of the trajectory is needed in advance. Also, low-resolution tra-
jectories do not approach a physical limit when the step size increases, in con-
trast to SDEL as will be shown below.

Like the Onsager–Machlup action method, the SDEL algorithm is based
on the classical action. However, in this case the starting point is the action S
parameterized according to the length of the trajectory:108

S ¼
ðYf

Yu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE� VðYÞÞ

p
dl ½30�

where Yu and Yf (lower and upper limits of integration) are the mass-weighted
coordinates ðY ¼ ffiffiffiffiffi

M
p

XÞ of the initial and final conformation of the system,
respectively, E is the total energy, V is the potential energy of the system,
and dl is an infinitesimal mass-weighted arc length element for the path con-
necting Yu and Yf . Using the least-action principle of classical mechanics, one
obtains a classical trajectory connecting these two states of the system when a
stationary solution for the action is computed, i.e., dS=dY ¼ 0 (the action is
not necessarily a minimum108,109). These trajectories are calculated differently
from usual MD simulations. First, the trajectory is obtained using double
boundary conditions, where the initial and final coordinates of the system
are required as input. In contrast, the initial positions and velocities (usually
chosen randomly from a Boltzmann distribution) are needed in a standard MD
algorithm. Second, the trajectory in Eq. [30] is parameterized as a function of
length and not as a function of time. Finally, the total energy of the trajectory
is fixed in the SDEL formulation. This contrasts with an MD trajectory where
the total time is fixed once the step size and the number of steps are con-
strained in the calculation.
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Computing exact trajectories using Eq. [30] is more expensive than in
normal MD because the evaluation and optimization of the action entails
knowing the entire trajectory. However, if the aim is to obtain an approximate
trajectory with a large step size between successive structures, optimization of
Eq. [30] becomes a more feasible task and a more stable trajectory than in a
straightforward MD algorithm can be generated. An approximate trajectory is
computed from Eq. [30] numerically when a large step size is used, i.e., when
�l 
 dl. Specifically, after replacing dl ! �l a discrete version of the action in
Eq. [30] is obtained:

S ffi
X

i¼0;...;N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE� VðYiÞÞ

p
�li;iþ1 ½31�

where the action is now a function of the coordinates of the N intermediate
structures in the path, fYigNi¼1 (with the coordinates of the structures
Y0 	 Yu and YNþ1 	 Yf held fixed), and �li;iþ1 is the mass-weighted distance
separating consecutive structures in the trajectory ð�li;iþ1 ¼ jYi � Yiþ1jÞ. The
trajectory that makes S stationary is determined by optimization. The opti-
mized trajectory thus represents a sequence of structures connecting the initial
and final state of the system. Explicitly, after optimization the following
expression is obtained:108

qS
qYi

ffi �2Yi

�l2
� 1

2½E� VðYiÞ� ½rV � ðrV � êiÞ � êi� ¼ 0 ½32�

with

�2Yi

�l2
¼ 2Yi � Yiþ1 � Yi�1

�l2
and êi 	 Yiþ1 � Yi�1

jYiþ1 � Yi�1j ½33�

where êi is a unit vector tangential to the path at slice i, and the length step �l
can be made a constant in the calculation and therefore independent of the
index i. The first term of Eq. [32] (equivalent to the acceleration term in
Newton’s equation of motion, Eq. [1]) depends on the step size. At larger
step sizes, this ‘‘acceleration’’ contribution becomes smaller. In the limit
when this inertial term can be neglected, Eq. [32] becomes

dS
dYi

� � 1

2½E� VðYiÞ� ½rVðYiÞ � ðrVðYiÞ � êiÞêi� ¼ 0

! rVðYiÞ � ½rVðYiÞ � êi�êi ¼ 0 8i ½34�

Equation [34] generates a path in which the force is minimized in all directions
except the tangential direction of the path. This is one of the definitions of the
minimum energy path (MEP).110 Equation [34] suggests that SDEL provides a
physically meaningful trajectory even at low resolution (large step sizes).
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The following steps are used to obtain an approximate trajectory using
SDEL (Figure 11):

1. Generate an initial guess for the path connecting the initial and final
coordinates of the system using an MEP algorithm, such as self-penalty
walk (SPW)77 or nudged-elastic band.88,89

2. Estimate the total energy of the system E (needed to evaluate and optimize
the action) by averaging the total energy obtained by using several MD
simulations of the system at the temperature of interest. An alternative
method is to identify the highest and lowest values of the potential energy
for the MEP trajectory, and then compute the average thermal energy at the
top of the barrier [i.e., E ¼ Vhigh � Vlow þ ðð3L� 6Þ=2ÞkBT, where L is the
number of atoms in the system].

3. Obtain a stationary solution for the action S, for which qS=qYi ¼ 0,
by minimizing the square of the action gradient � ¼PðqS=qYiÞ2 with a
simulated annealing protocol (Figure 11). The evaluation of the potential
energy, forces, and hessians needed by the optimization algorithm can be
performed by using the Amber/OPLS force field parameters including the
molecular simulation package MOIL111 as an example.

4. Examine the optimized trajectory whose accuracy is estimated by the step
size �l. The step size should be small enough to provide a smooth
representation of the path. The cutoff value �lc depends on the
particularities of the system. If �l > �lc, the trajectory is not accepted,
and more intermediate structures are added to the path. Steps 3 and 4 are
then repeated.

Final
Trajectory

Initial
Guess

Figure 11 Simplified view of the optimization of a trajectory using SDEL. The circles
denote configuration snapshots taken along the initial guess for the trajectory (dashed
line). The first and last circles are the fixed boundaries of the path. The solid line is the
resulting trajectory after optimization of the target function �. Arrows indicate the
direction of the gradient of the target function for that particular coordinate slice.
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The function � ¼PðqS=qYiÞ2 depends on the distances �li;iþ1

(Eq. [32]), which are computed as norms in Cartesian space. Therefore, it is
important to remove overall translations and rotations from the structures
along the trajectory, which can be done by imposing linear constraints using
the Eckart conditions:112

X
j¼1;...;L

yij ¼ 0
X

j¼1;...;L

y0ij � ðyij � y0ijÞ ¼ 0 8i ½35�

where the vector ykl is the mass-weighted Cartesian coordinate of atom l in
structure k, and the vectors y0ij represent the coordinates of a reference struc-
ture. Equation [35] provides 6N linear constraints that are denoted by sim

with i ¼ 1; . . ., N and m ¼ 1; . . ., 6.
The gradients of the constraints rsim and unit vectors in their directions

g0im ¼ ðrsim=jrsimjÞ are coordinate independent. Therefore, they only need
be computed once at the beginning of the calculation. These unit vectors are
not necessarily orthogonal for a single structure ðg0il�g0ik 6¼ dlkÞ but can be
orthogonalized using a Gram–Schmidt procedure.113 We denote this set of
orthogonalized vectors by fgimgNi¼1.

Let fYigNi¼1 be the set of variable coordinates of the current trajectory
that satisfies the constraints. Let fdY0

i gNi¼1 be a proposed displacement of these
coordinates during the optimization process to generate a new trajectory
fYi þ dY0

i gNi¼1. The components of the displacement that satisfy the con-
straints are given by

dYi ¼ dY0
i �

X
m¼1;...;6

ðdY0
i � gimÞgim 8i ½36�

A new trajectory with coordinates fYi þ dYigNi¼1 then satisfies the Eckart con-
straints.

The SDEL algorithm has been efficiently parallelized using message pas-
sing interface (MPI) libraries. In the parallelization scheme each node of a clus-
ter of computers calculates the potential energy and derivatives for a particular
path segment.114 Internode communication is not heavy and the computing
scales favorably with cluster size.

Several advantages of SDEL exist when compared to other methods:

1. The trajectories can be computed at room temperature or any other
temperature of interest and no bias potential is needed. This differs from
methods that rely on high temperature to accelerate the dynamics115 or
those that modify the potential energy function to drive the trajectory to a
desired outcome.115–117

2. Both the boundary conditions and the length parameterization enable one
to study very slow processes. This is demonstrated later.
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3. The algorithm is easy to run in parallel with no costly communication
between processors. Ordinary PC clusters can be used.

4. All the trajectories are reactive as in any reaction path method. This is in
contrast to initial value normal and MTS MD methods, in which many
trajectories do not end at the desired state. This also enhances the efficient
use of computational resources.

5. The SDEL formulation is general. It is not limited to processes with large
energy barriers, single barriers, or those with exponential kinetics. This
makes SDEL more versatile than other reaction paths methods.

6. The algorithm produces an interpolation between the minimum energy
path (MEP) and a true classical trajectory. Hence, even trajectories with
low resolution can be useful in qualitative reaction path studies.

But the algorithm also has several disadvantages including:

1. The trajectories are approximate. High-frequency motions, which can be
important in certain dynamical events, are not resolved.

2. The computations are expensive. Trajectories for systems with �1000
atoms require a parallel resource of near 20 CPU-s at current processor
speeds. However, cluster of computers of this size are becoming common in
computational chemistry labs.

3. The length formulation makes it difficult to estimate the time scale of the
process. SDEL can provide information about the relative sequence of
events but not absolute times. This is a limitation shared by all reaction
path methods.

4. Thermodynamic properties are approximate and quantitative kinetic
properties are inaccessible. The removal of high-frequency modes due to
the large step size affects computed thermodynamic properties and
transition probabilities. Enthalpic properties of slow variables, however,
are affected only slightly.98

5. The final solution depends on the initial guess for the trajectory. No global
optimization protocol will generate the true minimum for the target
function � in an acceptable time for a large system. In the applications of
SDEL, the initial guess is an approximate MEP obtained with a self-penalty
walk algorithm and most of the solutions obtained correspond to
trajectories in local minima somewhere near the initial guess. The
implementation of less biased procedures, which sample trajectories
connecting structures in configuration space, is a subject of ongoing
research.118

6. The current SDEL algorithm uses an implicit solvent model. This is not a
fatal flaw of SDEL; computations of trajectories with an atomistic
description of the environment are possible. The assumption of time
separation between the relaxation to equilibrium of water molecules and
the solvated molecule (e.g., a protein) makes the calculations viable. The
configuration for the water molecules can then be determined using a
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thermal distribution for a fixed configuration of the solute molecule. A
short MD simulation can be used to accomplish this as was done to include
explicit water dynamics in the Onsager–Machlup action.101,114 However,
inclusion of explicit solvent using this adiabatic approximation slows the
computations for large systems. A simpler way to include the effect of
explicit water/molecule interactions is to extract configurations from SDEL
trajectories, immerse those structures in a box with explicit water
molecules and perform MD simulations until equilibration is reached.119

It is clear that the SDEL algorithm has appealing advantages when it is
applied to long time events. Meaningful trajectories can be obtained for pro-
cesses that are difficult or impractical to study by initial-value formulations
and other reaction path techniques. However, the lack of kinetic information
converts SDEL as a complement to other algorithms that can provide transi-
tion probabilities (albeit with limited time scale) like TPS, DPS, and string
methods.

Use of SDEL to Compute Reactive Trajectories: Input
Parameters, Initial Guess, and Parallelization Protocol

The SDEL algorithm is implemented in MOIL, a suite of molecular simu-
lation programs developed in the group of Ron Elber. Linux and Windows
versions of the software package can be downloaded, free of charge at
http://cbsu.tc.cornell.edu/software/moil/moil.html. The Windows version has
a graphics interface that is relatively easy to use. The Linux version can
only be run in a command mode after installation using a makefile command.
The SDEL program can be run on a standalone computer or on a parallel clus-
ter of PCs using MPI protocols. Because the optimization of the action is com-
putationally expensive, the use of a parallel computer is recommended for
most applications dealing with systems containing more than �100 atoms.
The required internode communication is low and the computation scales
well with the number of nodes.114

Two conformations at the boundaries are required to compute a trajec-
tory with SDEL For example, to assess protein folding, the initial unfolded
conformation in the trajectory can be derived from a high-temperature mole-
cular dynamics simulation. The final folded structure in the trajectory can be
taken from the protein data bank after that native configuration has been equi-
librated by MD.

The total energy of the molecular system is also required by SDEL. One
can estimate this energy by performing a MD simulation of the system, using
the same solvation model and force-field parameters as will be used during the
SDEL run.

An initial guess for the trajectory connecting the two boundary states is
required to evaluate the SDEL action, �. This guess is the most troublesome
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step of the method. The SDEL action depends on
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE� VðXÞÞp

, suggesting
that each conformation in the initial trajectory must have a potential energy
smaller than the total energy of the system. This, in turn, prevents the use of sim-
ple methods such as linear interpolation to compute the initial trajectory of the
two boundary structures; methods such as linear interpolation usually generate
intermediate structures with large potential energy due to steric repulsions.

In practice, this initial guess problem is solved by computing an approx-
imate MEP connecting the two boundary states. That path is then used as the
initial guess for SDEL. MOIL contains a program called chmin that computes
the MEP using a simple self-penalty walk algorithm.77 Chmin treats the path
as a polymer chain, where each monomer is a copy of the molecular system at
different times. The potential energy of the chain is the sum of the potential
energies of each monomer, with the addition of a harmonic attraction term
between nearest monomers, and an exponential repulsion term between
next nearest monomers.

The potential energy for the structures VðYiÞ in the MEP should be ana-
lyzed before using this trajectory as initial guess for SDEL. Not only must the
potential energy of every slice through the chain be lower than the total energy
of the system, but the potential energy should also vary smoothly along the
trajectory; steep peaks or decays of VðYiÞ can cause a numerical instability
during the optimization of the action.

The input file for SDEL, called path.inp in MOIL (Table 1), contains the
names for the file ðrcrdÞ with the initial guess trajectory (i.e., a binary file with
extension pth), and the molecule’s connectivity file used to extract the poten-
tial parameters for the force field. The connectivity file (with extension wcon)
is generated by the program conn in MOIL.

The SDEL target function for optimization in MOIL is

� ¼
X qS

qYi

� �2

þ
XN
i¼0

gð�li;iþ1 � h�liÞ2 ½37�

Table 1 Example of Input File (path.inp) for SDEL

file conn name¼(val.wcon) unit¼10 read
file rcrd name¼(valmin200.pth) bina unit¼14 read
file wcrd name¼(valpath.PTH) bina unit¼12 wovr
#ste¼5000 list¼500
gama¼2000.0 grid¼200 pdqe¼�42.2 gbsa
rmax¼9999. epsi¼1. v14f¼8. el14¼2. cpth
proc¼10
tmpr¼30000.0
dtop¼1.0d�4
anne
action
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with h�li being the average value of the distances �li;iþ1 between structures in
the path. The second term on the right side enforces equidistance of structures
along the path. The parameter g is a constant that can be adjusted in the input
file (gama in path.inp) to optimize calculation efficiency.

A simulated annealing protocol can be used to optimize the target func-
tion subjected to the overall translation and rotation constraints (Eq. [35]). We
can denote the variable components of the initial guess for the trajectory
fY0

i gNi¼1 and optimize the trajectory for K steps solving the second-order differ-
ential equation for the trajectory Z ¼ fYigNi¼1:

d2Z

dt2
¼ �rZ� ½38�

Using linear cooling with velocity scaling, jdZ=dtj2 ¼ mðy� tÞ. Here t is a
fictitious time during the annealing run, y is the total time (in practice,
y ¼ K�t), and m is a factor proportional to the initial temperature used at the
beginning of an annealing cycle. In the input file, the flag anne instructs the pro-
gram to use simulated annealing, tmpr gives the value of m, and dtop is the time
step �t.

The SDEL program can also use a conjugate-gradient Powell algo-
rithm120 to minimize the target function. This algorithm is more efficient at
searching for local minima than simulated annealing. As with other conjugate-
gradient methods, it should be used only if the initial guess for the trajectory is
presumed to be near the global minimum.

Other parameters that influence the performance of a SDEL run (Table 1)
are:

#ste ¼ the total number of optimization steps.

list ¼ the total number of steps in each cycle of optimization (the value
of K). The program also writes useful information every list steps.

grid ¼ the total number of structures in the trajectory, i.e., grid ¼ N þ 2.

pdqe ¼ the total energy for the molecular system in kcal/mol.

gbsa ¼ a generalized Born model for the solvent environment.

rmax, epsi, v14f, el14, which are the values for the cutoff distance for
nonbonded interactions, dielectric constant, and 1–4 scaling for van
der Waals and electrostatics interactions, respectively.

proc ¼ the number of computer nodes used.

cpth ¼ the trajectory coordinates (rcrd) are input in a binary path
format.

action ¼ instructs the program to continue execution.

The program generates log files with information about the status of the run
on each node during execution. The log file associated with the master node
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(called pth_out_0000.log) gives the gradient of � at every list step. A value of
this gradient of 10 (kcal/mol)2 or less typically produces a convergent trajec-
tory. Convergence can be analyzed by comparing intermediate results for the
paths, which are written after each cycle of optimization.

At the end of a run, the final trajectory is output (file wcrd) with path
format. MOIL contains several programs that can be used to analyze the tra-
jectory (computation of radius of gyration, native contacts, secondary struc-
ture content, etc). The Windows graphics interface of MOIL can be used to
visualize the trajectory. Also, the path format can be converted to a more con-
ventional format like dcd using the ccrd program of MOIL. Dcd files can be
open by many molecular visualization programs such as VMD.121

The most common error message during a SDEL run is ‘‘Our momentum
is < 0.’’ This occurs any time the potential energy is larger than the total
energy during the optimization process. Changes of the annealing parameters
or the value of g often fix this problem.

Applications of the Stochastic Difference
Equation in Length

The SDEL algorithm has been used to study the folding dynamics of sev-
eral peptides and protein systems. In those applications the solvent environ-
ment was treated implicitly using the generalized Born model.122,123 The
algorithm was first applied to study the folding of the B domain fragment of
the Staphylococcal protein A,97 a 60-residue three-helical protein that has
been studied by many groups using different computational strategies.107 An
experimental assessment of the transition state for this folding process high-
lights the difficulties of atomic simulations in capturing all the features
observed in the experiment.124 The results from SDEL were similar to those
of high-temperature MD simulations, showing early formation of the most
stable helix. The experiment indicates that the other two helices are more
involved in the early folding, hinting that some energetic frustration may exist
during the folding of this protein.125

SDEL was also used to study the coil-helix transition of an alanine-rich
peptide,98 the conformational transition of sugar puckering in deoxyadeno-
sine,126 polymerase P,127 and the B-Z DNA transition.128 The coil to helix
study98 exemplified several properties of SDEL trajectories, like the filtering
of high-frequency modes and the preservation of thermodynamics properties
for slow degrees of freedom when the trajectory resolution is decreased.

An interesting application of SDEL involved the folding mechanism of
cytochrome c.129 The folding kinetics of cytochrome c has been studied exten-
sively by a variety of experimental techniques.130–134 The SDEL folding trajec-
tories agree with several experimental observations including: (1) the collapse of
the protein without formation of secondary structures followed by formation
of the terminal helices before the middle helix (see upper side of Figure 12),
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(2) subsequent formation of a molten globule conformation, the structural fea-
tures of which (lower right side of Figure 12) are in agreement with fluorescence
energy transfer experiments,135 and (3) continued rearrangements prior to the
protein folding to its native conformation (lower left side Figure 12).

The SDEL algorithm has also been used to study the folding of more
complicated systems, such as the wild-type human Cu, Zn superoxide dismu-
tase (SOD) dimer. SOD is a 153-residue, homodimeric, antioxidant enzyme
that dismutates superoxide ion to hydrogen peroxide and oxygen.136 It is an
eight-strand, flattened, b-barrel protein with one copper and one zinc ion per
monomer.137 This protein is involved in the familial form of amyotrophic lat-
eral sclerosis (FALS).

A 1.8-Å resolution Apo-SOD crystal structure (PDB 1HL4138) was used to
generate SDEL trajectories of monomer folding and dimerization (Figure 13).118

Initial analysis of a pair of trajectories showed a small population of folded but
separated monomers. Interestingly, approximately 15–20% of each monomer’s
intrasubunit native contacts form when the subunit centers of mass are within a
few angstroms of their equilibrium position, with the remaining native contacts
forming when the monomers are farther away.

Recent Advances and Challenges

These applications, albeit focused on peptides and proteins, demonstrate
the potential of the SDEL algorithm to study conformational dynamics of

Figure 12 Ribbon view of cytochrome c at four different positions along one of the
folding trajectories.
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large molecular systems at long time scales. This is the only algorithm from the
methods discussed in this chapter that can be used to compute trajectories for
complex processes that take milliseconds or longer, such as the folding of cyto-
chrome c or the SOD dimer. Although the trajectories are approximate, they
can provide structural data to explain experimental observations; if a more
detailed and accurate description is required, snapshots taken from these
SDEL trajectories can be used to extract thermodynamic information using
MD, umbrella sampling, or replica exchange methodologies.

The major limitation of the SDEL algorithm is the inaccessibility of abso-
lute times and computation of rates. A promising algorithm called milestoning

Figure 13 Snapshots of SOD trajectory. The arrow indicates the direction of folding.
The top structure is the initial unfolded conformation. The second structure is an
intermediate structure in the trajectory with partial secondary structure formation. The
bottom structure is the folded dimer. The monomer size and separation are not shown to
scale to enhance clarity. The center-of-mass distances in the first two snapshots121 are
280 and 50 Å greater than the equilibrium dimer distance, respectively. The disulfide
bridge between Cys57 and Cys146 was conserved during the simulations.
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has been proposed recently to overcome this shortcoming.139 This method
computes a non-Markovian hopping between configuration space hyper-
planes, the so-called milestones. The assumption being made is that there
exists an equilibrium distribution on each milestone. The kinetics of a process
is obtained by starting an equilibrium configuration on a milestone and mea-
suring the time distribution needed to reach the forward or backward mile-
stones using short MD simulations. These time distributions are then used
to compute the global kinetics through a non-Markovian model. The algo-
rithm needs a reaction coordinate to define the hyperplanes. That reaction
coordinate can be an MEP or an SDEL trajectory. The equilibrium sampling
is performed in the neighborhood of the curvilinear path describing the reac-
tion coordinate. Milestoning can also be used to compute free energy profiles
along reaction coordinates.140,141 Milestoning makes the assumption that only
one reaction coordinate (slow variable) exists in the system. The validity of the
simulation results can be assessed by monitoring the rate as a function of the
separation between the milestones, which can be changed from run to run.

A similar algorithm is partial path transition interface sampling
(PPTIS).142 This method is based on transition interface sampling (TIS),64,68

which maps the phase space of the system with many interfaces (similar to
the milestones) characterized by a one-dimensional reaction coordinate. In
PPTIS rates are computed using a Markovian state model, i.e., by assuming
a loss of correlation during interface hopping. This algorithm is aimed at com-
puting the kinetics of two-state exponential process in equilibrium.

Use of milestoning or PPTIS may provide a way to recover the informa-
tion that is lost when the high-frequency motions of the molecular system are
filtered out by an SDEL trajectory. Hence, correct kinetic and thermodynamic
properties might be extracted from the simulations. For very long and diffusive
processes, like those associated with the folding of large proteins, computation
of these properties will still be challenging because the transitions between
hyperplanes or interfaces require longer MD simulations. At that point, a com-
bination of MTS with these path methods could be used to improve efficiency
and speed.

CONCLUSION

Computational methods used to extend the time scale of atomically
detailed simulations have improved in the last 15 years. Accurate MTS simula-
tions, with computational gains up to a factor of 10, have extended the applic-
ability of molecular dynamics simulations and refinements in the computation
of medium-range forces could provide stable results with increasing speedups. It
is apparent that stability limitations will prevent the extension of these algo-
rithms to the range of time scales that are needed to study many processes of
interest, however. On the other hand, reaction path approaches can be used
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to extend those time scales by using different simplifying assumptions and
approximations including, for example, two-state transitions, equilibrium dis-
tributions along the path, or, removal of high-frequency motions. Therefore,
path methodologies can extend the range of application of computer simulation,
but they do so with loss of accuracy and dynamical information when compared
with normal and MTS molecular dynamics simulations. Some path techniques
utilizeMD to compute rate constants and to recover part of the dynamical prop-
erties that have been filtered out. Use of MTS should improve the efficiency and
practicality of these calculations in the future.

APPENDIX: MATLAB SCRIPTS FOR THE MTS
TUTORIAL

function [t,x,v,eout]¼dyntwowaters(h,nstep,x0,v0,
tau,method)

%[t,x,v,eout]¼dyntwowaters(h,nstep,x0,v0,tau,
method)

% Dynamics front-end for model system introduced in
Cardenas & Barth 2007

%INPUT ARGUMENTS, with some values used in Cardenas
&Barth

% h timestep, h¼0.01
% nstep number of integration steps
% x0 init. postions, x0¼[0 0 0.95 0 0 0.95 5 �1.0 4.05 �1 5
�0.05]’

% v0 vector of initial atom velocities, v0¼zeros
(12,1)

% tau number of steps between slow force evaluations
% method string specifies integration method, ‘v’,
‘i’, ‘b’, ‘e’

%OUTPUT ARGUMENTS
% t vector of time values
% x trajectory of positions
% v trajectory of velocities
% eout energy along computed trajectory
%
%Eric Barth
%Kalamazoo College, 2007
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M1¼[15.994 1.008 1.008]’;
M2¼kron(M1,ones(2,1));
M¼[M2;M2];
gamma¼.1;
temp¼300;
rand(’state’,0)
if method(1)¼¼‘v’, %Velocity Verlet method

[t,x,v,eout]¼vv(‘twowaters’,h,nstep,x0,v0,M);
elseif method(1)¼¼‘i’, %Impulse MTS method

[t,x,v,eout]¼impulsemts(‘twowaters’,h,tau,
nstep,x0,v0,M);

elseif method(1)¼¼‘b’ %Langevin Dynamics
[t,x,v,eout]¼bbk1(‘twowaters’,h,nstep,x0,v0,M,

gamma,temp);
elseif method(1)¼¼‘e’ %Force Extrapolation MTS with
Langevin Dynamics

[t,x,v,eout]¼extrapmts(‘twowaters’,h,nstep,x0,
v0,M,tau,gamma,temp);

else
disp(‘unrecognized method specification’)

end
%%%%%%%%%%end of function %%%%%%%%%%%%%%%%%%%%%%

function [t,x,v,eout]¼vv(fun,h,nstep,x0,v0,M);

%[t,x,v,eout]¼vv(fun,h,nstep,x0,v0,M);
% velocity Verlet integrator
%
%INPUT ARGUMENTS
% fun string containing file name of energy and force
routine

% h timestep
% nstep number of steps
% x0 vector of initial atom positions
% v0 vector of initial atom velocities
% M vector of atomic masses

%OUTPUT ARGUMENTS
% t vector of time values
% x trajectory of positions
% v trajectory of velocities
% eout energy along computed trajectory
%
%Eric Barth
%Kalamazoo College, 2007
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n¼length(x0);
t¼0:h:h*nstep;
x¼zeros(n,nstepþ1);
v¼zeros(n,nstepþ1);
eout¼zeros(1,nstepþ1);
x(:,1)¼x0;
v(:,1)¼v0;
[e,f]¼feval(fun,x0);
eout(1)¼eþ.5*sum(M.*v0.*v0);
for i¼1:nstep

vhalf¼v(:,i)þ(h/2)*f./M;
x(:,iþ1)¼x(:,i)þh*vhalf;
[e,f]¼feval(fun,x(:,iþ1));
v(:,iþ1)¼vhalfþ(h/2)*f./M;
eout(iþ1)¼eþ.5*sum(M.*v(:,iþ1).*v(:,iþ1));

end
%%%%%%%%%%end of function %%%%%%%%%%%%%%%%%%%%%%

function [t,x,v,eout]¼impulsemts(fun,h,tau,nstep,
x0,v0,M);

%[t,x,v,eout]¼vv(fun,h,tau,nstep,x0,v0,M);
% impulse MTS integrator
%
%INPUT ARGUMENTS
% fun string containing file name of energy and force
routine

% h timestep
% tau number of steps between slow force evaluations
% nstep number of steps
% x0 vector of initial atom positions
% v0 vector of initial atom velocities
% M vector of atomic masses

%OUTPUT ARGUMENTS
% t vector of time values
% x trajectory of positions
% v trajectory of velocities
% eout energy along computed trajectory
%
%Eric Barth
%Kalamazoo College, 2007
n¼length(x0);
t¼0:tau*h:tau*h*nstep;
x¼zeros(n,nstepþ1);
v¼zeros(n,nstepþ1);
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eout¼zeros(1,nstepþ1);
x(:,1)¼x0;
v(:,1)¼v0;
[e,f,ffast,fslow]¼feval(fun,x0,0);
eout(1)¼eþ.5*sum(M.*v0.*v0);
for i¼1:nstep

xx¼x(:,i);
vv ¼ v(:,i)þ(tau*h/2)*fslow./M;
for j¼1:tau

vv ¼ vvþ(h/2)*ffast./M;
xx¼xxþh*vv;
[e,f,ffast,fslow]¼feval(fun,xx,1);
vv ¼ vvþ(h/2)*ffast./M;

end
x(:,iþ1)¼xx;
[e,f,ffast,fslow]¼feval(fun,xx,0);
v(:,iþ1)¼ vvþ(tau*h/2)*fslow./M;
eout(iþ1)¼eþ.5*sum(M.*v(:,iþ1).*v(:,iþ1));

end
%%%%%%%%%%end of function %%%%%%%%%%%%%%%%%%%%%%

function [t,x,v,eout]¼bbk1(fun,h,nstep,x0,v0,M,
gamma,temp);

%[t,x,v,eout]¼bbk1(fun,h,nstep,x0,v0,M,gamma,
temp);

% Langevin dynamics integrator
%
%INPUT ARGUMENTS
% fun string containing file name of energy and force
routine

% h timestep
% nstep number of steps
% x0 vector of initial atom positions
% v0 vector of initial atom velocities
% M vector of atomic masses
% gamma Langevin friction parameter
% temp target temperature for Langevin dynamics

%OUTPUT ARGUMENTS
% t vector of time values
% x trajectory of positions
% v trajectory of velocities
% eout energy along computed trajectory
%
%Eric Barth
%Kalamazoo College, 2007
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n¼length(x0);
t¼0:h:h*nstep;
x¼zeros(n,nstepþ1);
v¼zeros(n,nstepþ1);
eout¼zeros(1,nstepþ1);
x(:,1)¼x0;
v(:,1)¼v0;

[e,f]¼feval(fun,x0);

eout(1)¼eþ.5*sum(M.*v0.*v0);
for i¼1:nstep

rf¼dynlang1(n,gamma,temp,h,M);
f¼f-rf;
vhalf¼(v(:,i) þ(h/2)*f./M)/(1þh/2*gamma);
x(:,iþ1)¼x(:,i)þh*vhalf;
[e,f]¼feval(fun,x(:,iþ1));
f¼f-rf;
v(:,iþ1)¼vhalf*(1�h/2*gamma)þ(h/2)*f./M;
eout(iþ1)¼eþ.5*sum(M.*v(:,iþ1).*v(:,iþ1));

end
%%%%%%%%%%end of function %%%%%%%%%%%%%%%%%%%%%%

function [t,x,v,eout]¼extrapmts(fun,h,nstep,x0,v0,
M,tau,gamma,temp);

%[t,x,v,eout]¼extrapmts(fun,h,nstep,x0,v0,M,tau,
gamma,temp);

% Force Extrapolation Langevin dynamics MTS integrator
%
%INPUT ARGUMENTS
% fun string containing file name of energy and force
routine

% h timestep
% nstep number of steps
% x0 vector of initial atom positions
% v0 vector of initial atom velocities
% M vector of atomic masses
% tau number of steps between slow force updates
% gamma Langevin friction parameter
% temp target temperature for Langevin dynamics

%OUTPUT ARGUMENTS
% t vector of time values
% x trajectory of positions
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% v trajectory of velocities
% eout energy along computed trajectory
%
%Eric Barth
%Kalamazoo College, 2007

n¼length(x0);
t¼0:h:h*nstep;
x¼zeros(n,nstepþ1);
v¼zeros(n,nstepþ1);
eout¼zeros(1,nstepþ1);
x(:,1)¼x0;
v(:,1)¼v0;

[e,f,ffast,fslow]¼feval(fun,x0,0);
%eout(1)¼eþ.5*sum(M.*v0.*v0);
eout(1)¼e;
for i¼1:nstep

xx¼x(:,i);
vv¼v(:,i);
for j¼1:tau

rf¼dynlang1(n,gamma,temp,h,M);
fext¼ffastþfslow-rf;
vv¼(vv þ(h/2)*fext./M)/(1þh/2*gamma);
xx¼xxþh*vv;
if (j¼¼ceil(tau/2)),
[e,f,ffast,fslow]¼feval(fun,xx,0);

else
[e,f,ffast,fdum]¼feval(fun,xx,1);

end
fext¼ffastþfslow-rf;
vv¼vv*(1�(h/2)*gamma)þ(h/2)*fext./M;
end
x(:,iþ1)¼xx;
v(:,iþ1)¼vv;
eout(iþ1)¼e; %report only the bond energy
%[e,f,ffast,fslow]¼feval(fun,xx,0);

end

%%%%%%%%%%end of function %%%%%%%%%%%%%%%%%%%%%%

function [e,f,ffast,fslow]¼twowaters(x,splitflag);

%[e,f,ffast,fslow]¼twowaters(x,splitflag);
%Energy and Force routine used by integration methods
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%
%INPUT ARGUMENTS
% x vector of atom positions
% splitflag 0 ! all forces, 1 ! fast forces, 2 ! slow
forces

%OUTPUT ARGUMENTS
% e potential energy at for coordinate vector x
% f total force vector
% ffast vector of fast forces
%fslow vector of slow forces
%
%Eric Barth
%Kalamazoo College, 2007

if nargin<2
splitflag¼0;

end;
f¼zeros(12,1);
ffast¼zeros(12,1);
fslow¼zeros(12,1);
e¼0;

if (splitflag¼¼0 |splitflag¼¼1),
[e1,ffast(1:6)]¼water2D(x(1:6));
[e2,ffast(7:12)]¼water2D(x(7:12));
e¼eþe1þe2;
f¼fþffast;

end

if (splitflag¼¼0 | splitflag¼¼2),
%now the electrostatics;
qh¼0.417;
qo¼�0.834;

o1¼x(1:2);
h11¼x(3:4);
h12¼x(5:6);
o2¼x(7:8);
h21¼x(9:10);
h22¼x(11:12);

d¼h11-h21;
d2¼sum(d.*d);
e¼eþqh*qh/sqrt(d2);
fslow(3:4)¼fslow(3:4)þqh*qh/d2^(3/2)*d;
fslow(9:10)¼fslow(9:10)�qh*qh*d/d2^(3/2);
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d¼h11-h22;
d2¼sum(d.*d);
e¼eþqh*qh/sqrt(d2);
fslow(3:4)¼fslow(3:4)þqh*qh*d/d2^(3/2);
fslow(11:12)¼fslow(11:12)�qh*qh*d/d2^(3/2);

d¼h11-o2;
d2¼sum(d.*d);
e¼eþqh*qo/sqrt(d2);
fslow(3:4)¼fslow(3:4)þqh*qo*d/d2^(3/2);
%o2 is fixed so no corresponding term for fslow
(7:8)

d¼h12-h21;
d2¼sum(d.*d);
e¼eþqh*qh/sqrt(d2);
fslow(5:6)¼fslow(5:6)þqh*qh*d/d2^(3/2);
fslow(9:10)¼fslow(9:10)�qh*qh*d/d2^(3/2);

d¼h12-h22;
d2¼sum(d.*d);
e¼eþqh*qh/sqrt(d2);
fslow(5:6)¼fslow(5:6)þqh*qh*d/d2^(3/2);
fslow(11:12)¼fslow(11:12)�qh*qh*d/d2^(3/2);

d¼h12-o2;
d2¼sum(d.*d);
e¼eþqh*qo/sqrt(d2);
fslow(5:6)¼fslow(5:6)þqh*qo*d/d2^(3/2);
%o2 is fixed so no corresponding term for fslow
(7:8)

d¼h21-o1;
d2¼sum(d.*d);
e¼eþqh*qo/sqrt(d2);
fslow(9:10)¼fslow(9:10)þqh*qo*d/d2^(3/2);
%o1 is fixed so no corresponding term for fslow
(1:2)

d¼h22-o1;
d2¼sum(d.*d);
e¼eþqh*qo/sqrt(d2);
fslow(11:12)¼fslow(11:12)þqh*qo*d/d2^(3/2);
%o1 is fixed so no corresponding term for fslow
(1:2)
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d¼o1-o2;
d2¼sum(d.*d);
e¼eþqo*qo/sqrt(d2);
%o1 is fixed so no corresponding term for fslow
(1:2)
%o2 is fixed so no corresponding term for fslow
(7:8)

f¼fþfslow;
end
%%%%%%%%%%end of function%%%%%%%%%%%%%%%%%%%%%%

function r¼dynlang1(n,gamma,Temp,h,m);

% r¼dynlang1(n,gamma,Temp,h,m);
% Langevin dynamics random forces, modified for two

fixed atoms
%
%INPUT ARGUMENTS
% n number of degrees of freedom
% gamma Langevin friction parameter
% Temp target temperature for Langevin dynamics
% h timestep

%OUTPUT ARGUMENTS
% r random force vector
%
%Eric Barth
%Kalamazoo College, 2007

n¼n-4;
m¼m([3:6,9:12]);

kB¼1.987191e-03;
r¼randn(n,1);
r¼r*sqrt(2*gamma*kB*Temp/h);
r¼sqrt(m).*r;

r¼[0;0;r(1:4);0;0;r(5:8)];

%%%%%%%%%%end of function%%%%%%%%%%%%%%%%%%%%%%

%Matlab script to compute dipole angle ‘‘theta’’ from
%trajectory of positions ‘‘x’’
%
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%Eric Barth
%Kalamazoo College, 2007

xc¼x(9:10,:)þx(11:12,:);
xcn¼sum(xc.^2);
theta¼(acos(xc(1,:)./sqrt(xcn)));
%%%%%%%%%%end of script %%%%%%%%%%%%%%%%%%%%%%

function [freq,pp]¼powerspectrum(data,N,h);

%[freq,pp]¼powerspectrum(data,N,h);
% display data with
% 
plot(freq,pp)
%Compute power spectrum
%Input Arguments
% data time series data
% N number of steps in data
% h timestep of data
%
%Output Arguments
% freq vector of frequencies
% pp vector of power spectra
%
%Eric Barth
%Kalamazoo College, 2007
timfac¼48.88826; %specific to akma MD model
T¼timfac*h*N;
freq ¼ [0:N/2-1]/T;
p ¼ abs(fft(data))/(N/2);
pp ¼ p(1:N/2).^2;
%%%%%%%%%%end of function %%%%%%%%%%%%%%%%%%%%%%
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CHAPTER 8

Atomistic Simulation of Ionic Liquids

Edward J. Maginn

Department of Chemical and Biomolecular Engineering,
University of Notre Dame, Notre Dame, Indiana 46556

INTRODUCTION

What exactly is an ionic liquid? The most straightforward and general
definition is that an ionic liquid is a liquid composed completely of ions. By
this admittedly tautological definition, NaCl is an ionic liquid if it is above
800�C. A eutectic mixture of LiCl and KCl above 355�C would also be an
ionic liquid. However, these compounds are not what people mean when
they talk about ionic liquids these days. ‘‘Normal’’ high-melting salts are gen-
erally referred to as molten salts, while the term ionic liquid has come to refer
to salts with much lower melting points than NaCl or LiCl–KCl mixtures. A
rather arbitrary definition that has been generally agreed upon in the research
community is that an ionic liquid (IL) is a salt with a melting point below
100�C. Salts that melt below room temperature are referred to as room tem-
perature ionic liquids, or RTILs. Measuring a melting point of an ionic liquid
accurately is nontrivial, however, so the definition is used only as a guide.
Many ILs form glasses and do not show an abrupt melting transition and
can actually be induced to crystallize by heating the liquid. This cold crystal-
lization phenomenon is typical of materials having sluggish dynamics and
reflects the fact that supercooled liquids will crystallize if they are given
enough thermal energy to reach their thermodynamically favored crystalline
state from a supercooled metastable state.

Ionic liquids have gone from academic curiosity to a widely used
(if not quite yet common) class of material in the span of about 15 years. In
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John Wilkes’ insightful review1 of the history of ionic liquids up to 2002, he
showed that these ‘‘neoteric’’ compounds are not so new after all. In fact, their
history dates back to the nineteenth century, where probably the first docu-
mented case of an ionic liquid was recorded when a ‘‘red oil’’ was observed
to form during a Friedel–Crafts reaction. Work in the early twentieth century
demonstrated that simple ammonium salts could be liquids below room tem-
perature. For example, ethylammonium nitrate has a melting point of 12�C.
Even though ionic liquids have been known for many years, it took a long
time for them to become popular in the research community. As shown in
Figure 1, very little publication activity on ionic liquids existed prior to
2000. From 1980 to 1989, one finds from a Web of Science search that
only 35 articles appeared that used the term ‘‘ionic liquid.’’ Perhaps if we
expand the search a bit and include those studies that used the term ‘‘molten
salt’’ to mean ‘‘ionic liquid’’ as defined here, we may have retrieved a few more
examples. Still, at one time in the recent past it was possible for a person to
read every article published on the topic and still have time to eat, sleep, and
carry out his or her own research. Everybody working in the field knew one
another, and each of those researchers was familiar with the complete litera-
ture. What a difference a few years make!

The interest in ionic liquids has skyrocketed in the last 8–10 years, as
demonstrated by the publication trend shown in Figure 1. Over 1000 studies
a year are now published on ionic liquids, and it is no longer possible to read
them all. Many conferences and symposia have been dedicated to ionic liquids

Figure 1 This plot demonstrates the phenomenal growth in the literature on ionic
liquids. What is plotted is the number of studies that use the term ionic liquid as
determined by a Web of Science search in August 2007. Less than 25 studies were
published per year on the topic up until 1999. Since then, the number of studies has
increased dramatically, such that now well over 1000 a year are published on ionic
liquids. The patent literature on ionic liquids has experienced similar growth.
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over the past few years, with perhaps the highlight being the first international
Congress on Ionic Liquids (COIL), held in Salzburg, Austria, in 2005, in
which more than 400 participants came together to discuss ionic liquid
research topics. This was followed by COIL-2 in Yokohama, Japan, in
2007, in which over 600 people attended. A new congress will be held every
2 years, with the venues for 2009, 2011, and 2013 already set. As a research
topic, ionic liquids have arrived.

Why has the interest in ionic liquids been growing at such a fast pace?
Certainly, part of the growth is the result of the fact that ionic liquids are
just plain interesting substances, and, as such, scientists want to study them.
Figure 2 shows a photo of a sample of the ionic liquid 1-n-hexyl-3-methylimi-
dazolium bis(trifluoromethylsulfonyl)imide (or [C6mim][Tf2N], for short). It is
amazing to see a pure salt that looks just like water. Actually, this ionic liquid
is a bit more viscous than water, so it looks more like glycerol or a mineral oil
than water. Nevertheless, liquid salts that can be poured at room temperature
are curious substances and were bound to stimulate the imaginations of
researchers. Ionic liquids are much more than lab curiosities, however, which
is why commercial interest in them is so strong. Ionic liquids can possess a
number of unique properties that enable them to be used in many applications
where other materials are lacking.

Figure 2 Sample of the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluorome-
thylsulfonyl)imide made in the laboratory of Joan Brennecke at the University of Notre
Dame. This ionic liquid is clear and stays liquid well below room temperature.
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When discussing ionic liquid properties, it is important to realize that
there is no such thing as a single ionic liquid because an extremely wide range
of compounds can be categorized as ionic liquids. As such, one class may pos-
sess a particular property, while another class can have very different proper-
ties. Many people have been tripped up over the years by making broad
general statements about ionic liquids and their properties, only to have coun-
terexamples crop up. Given this caveat, however, we can list some general
properties that many ionic liquids possess. First, ionic liquids have an exceed-
ingly low volatility, to the point of being effectively nonvolatile. Of course, no
substance is truly nonvolatile, and a recent article2 has shown that some ionic
liquids have a detectable vapor pressure and can actually be distilled! How-
ever, even these have very low vapor pressures, such that for all practical
purposes they can be considered about as volatile as a solid. This is one of their
major beneficial properties. Ionic liquids have a very broad liquidus range, on
the order of several hundred degrees Celsius. Many tend to have thermal
decomposition temperatures of around 300–400� C, making them quite stable.
Second, ionic liquids can be made to dissolve a wide range of compounds,
from polar molecules such as water and alcohols, to aromatic substances
such as benzene, to polymeric substances such as cellulose, to gases such
as carbon dioxide and sulfur dioxide.3,4 This, combined with their low vola-
tility, stimulated a great deal of research directed at their use as ‘‘green’’
solvents. The idea was that, unlike traditional organic solvents, ionic liquid
solvents do not evaporate and thus cannot contribute to air pollution like con-
ventional volatile organic compounds. The jury is still out, however, as to how
truly green these substances are. Some have been shown to be highly toxic to
aquatic organisms, while others have very low toxicity.5 Third, ionic liquids
are conductive, which opens up the possibility of using them in fuel cells, bat-
teries, and other electrochemical devices. Ionic liquids can be made energetic,
which suggests they could be used as low-volatility propellants.6 Ionic liquids
have also been shown to have highly desirable lubrication properties,7 which
when coupled with their thermal stability and low volatilty suggests great
potential in high-performance applications. Ionic liquids have been used in
sensing and other analytical devices, as catalysts, magnetic fluids, heat transfer
fluids, and as heavy-metal extraction agents. The list could go on and on,
which is really why these compounds are under such scrutiny today.

The other important factor to realize when talking about ionic liquids is
that they have tremendous chemical diversity. An almost limitless number of
compounds exist that can be made into an ionic liquid. Figure 3 shows a very
small example of the types of cations and anions that can be combined to give
ionic liquids. Estimates suggest that more than 108 different compounds can
be made into an ionic liquid. This is due to the fact that different functional
groups can be added to base cation or anion structures, which can have a
profound effect on properties. For example, by pairing the same cation with
a different anion, the melting point can be changed by over 100� C.8 Similar
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dramatic changes in properties are observed when small changes are made to
the functional groups on cations. For example, the solubility of ionic liquids
with alcohols can be increased or decreased by varying the length of alkyl
groups attached to the cation;9 whether the solubility increases or decreases
with increasing alkyl chain length, however, depends on the alcohol under

Figure 3 Small sample of the (a) cations and (b) anions that can be combined to make an
ionic liquid. It has been estimated that there are well over 108 different compounds that
could be made into ionic liquids. (Structures provided courtesy of Robin Rogers.)
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investigation. Many other examples can be given where seemingly small
changes in structure result in qualitative changes in physical properties. This
is because there is a subtle balance between van der Waals and electrostatic
forces among the ions and any dissolved species, and this balance can be dis-
rupted in unpredictable ways by small chemical or structural modifications.
The ability to make such changes is exciting to synthetic chemists because it
represents an opportunity to exploit the chemical diversity of ionic liquids
to prepare materials having just the right properties for a particular appli-
cation. It also presents them with a problem, however, because the very diver-
sity that offers such opportunities also means that there is no way all possible
ionic liquid compounds can be made and tested in the lab; there are simply too
many choices, even if combinatorial methods are used.

Because reliable methods for predicting how properties depend on struc-
ture and composition are lacking, the search for new ionic liquids relies on
chemical intuition or extrapolation of knowledge from related compounds.
This limits progress severely and, indeed, only a relatively small number of
ionic liquids have been made, characterized, and tested. The National
Institutes of Standards and Technologies maintains a database of physical
properties for ionic liquids,10 and while the number of entries is growing every
week, the actual number of different ionic liquids listed in the database is
small. A few companies have begun selling ionic liquids, and the list of differ-
ent ionic liquids in their catalogs is also growing. Still, the development of new
ionic liquids has followed the same time-honored tradition of most of chemical
research: Make a compound, test it, and use your instincts to tell you what to
make next to get the properties you want. Granted this is an oversimplifica-
tion, but not by much.

This is where atomistic simulation of ionic liquids enters the picture. Com-
putational methods and force fields have advanced over the years, as has been
well documented in theReviews in Computational Chemistry series. This means
our ability to predict how the properties of a particular material depend on the
chemical constitution and structure of that material has increased substantially.
Because experimental studies of conventional organic substances have had
about a 100-year head start on computational studies, simulations have been
often used in a ‘‘postpredictive’’ method for organic compounds. Comparisons
are made between computed and known experimental properties, and some
insight is gained into why the properties are the way they are. Of course, not
all properties of all compounds are known experimentally at every state point,
and so simulations are important in this regard. However, because the field of
ionic liquids is so new, simulation methods are having a big impact on the
direction of the field. Computations on new compounds are being carried out
contemporaneously with experiments. Experimentalists are hungry for the
insights simulations can provide. Properties are being predicted before they
aremeasured, and indeed, simulations are helping drive the types of experiments
that are being carried out. This happy coincidence, that a brand new class of
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compounds has been discovered at the same time that computing power and
molecular simulation methods have reached a sophistication and maturity level
that permit them to be used to determine structure–property relationships quan-
titatively, is the focus of this chapter.

SHORT (PRE)HISTORY OF IONIC LIQUID
SIMULATIONS

As a regular reader of this series is probably aware, the history of the
computer and the history of molecular-level simulations are intimately con-
nected. One of the earliest applications of the digital computer was a Monte
Carlo simulation of a model fluid, carried out by Metropolis and co-workers11

at Los Alamos National Laboratory in 1953. Soon after, Alder and
Wainwright at Livermore,12,13 Rahman at Argonne,14 and Verlet at Yeshiva
University15 used a deterministic method called molecular dynamics to com-
pute the properties of simple liquids. Whereas the early simulations focused
on calculating properties of idealized ‘‘hard’’ fluids or slightly more realistic
but still simple liquids such as argon, ionic liquid systems are much more com-
plex and require more sophisticated treatment to get accurate results. Never-
theless, the tools these pioneering researchers used—Monte Carlo and
molecular dynamics—are still the workhorses of the field today.

The idea behind a molecular simulation is in principle simple. Given an
accurate description of the energetic interactions between a collection of atoms
and a set of initial atomic coordinates (and in some cases, velocities), the posi-
tions (and again, if desired, velocities) of these atoms are advanced subject to a
set of thermodynamic constraints. If the atoms are advanced stochastically, the
method is called Monte Carlo, or MC. The term Monte Carlo encompasses a
wide range of numerical analysis methods, but here we refer to Metropolis-
style MC in which atoms are moved about randomly in such a way so as to
satisfy a limiting probability distribution. There will be more on this later. (As
an aside, the name Monte Carlo comes from the fact that random numbers are
used, and, hence, there is a sense of the simulations being like a game of
chance. When this technique was developed, the place to gamble was Monte
Carlo, and hence the name stuck. Perhaps if the method had been developed
today it would be called ‘‘Las Vegas’’?)

Note that velocities are not required for MC because atomic positions are
changed randomly. If the positions and velocities of the atoms are advanced
deterministically, we call the method molecular dynamics, or MD. MD relies
upon numerical integration of the classical equations of motion and, hence,
requires that forces (gradients of the potential energy) be known. Since any
numerical procedure is approximate, the trajectories that result from an MD
simulation are technically only pseudodeterministic. This is a detail that we
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need not concern ourselves with; we will call MD a deterministic method, but
we know this is only approximately true. Other simulation methods exist that
are part stochastic and part deterministic, and these are becoming increasingly
useful to compute properties of complex systems.

The trajectories generated using MD or MC will be consistent with the
energetic model imposed on the system. If the methods have been implemen-
ted correctly, the trajectories will also be consistent with the limiting
probability distribution of the particular statistical mechanical ensemble
under which the simulations were run. Atomic positions are all that is needed
to, at least in principle, compute all the thermodynamic properties of the
model system. If the velocities are also available (i.e., if an MD simulation
was run), then time-dependent properties may also be computed. Assuming
the simulations have been carried out properly, the resulting trajectories pro-
vide an exact solution for the model system. Therefore, the degree to which
the simulation results agree with experimental data for the ‘‘real’’ system tells
us how good the model is at representing the real system. This is how simula-
tions are often used, and one can think of them as a ‘‘theoretical’’ result.
Alternatively, if we use simulation methods to model a theoretical system
for which an approximate analytical solution exists, the level of agreement
between the simulation and theory tells us how accurate the theoretical
approximation is. Used in this manner, simulations are like a computational
‘‘experiment’’ against which theory can be tested. Both approaches have been
used for ionic liquids, though the former method is far more common and will
be the focus of this review.

The above comments emphasize the fact that a great deal of attention
must be paid to the model used to represent the atomic species and their
energetic interactions if quantitative property predictions are desired.
Much of the early work on ionic liquid simulations has focused on this,
and so we will need to discuss this in some detail if we are to understand
how simulations are used for these systems. The place to start discussing
potential models for ionic liquids is with the early work on molten alkali
halides. Even though these materials do not fall under our definition of ionic
liquids, almost all the current simulation approaches to ionic liquids
have their roots in these early studies. In what follows, the shorthand term
force field will be used to represent a set of analytic equations that approx-
imate the energetic interactions among atoms in a system. We know that
these interactions take many forms, from strong forces characteristic of cova-
lent bonds to weaker forces representative of van der Waals interactions, and
long-range electrostatic interactions.

One of the earliest functional forms used to model alkali halides is due to
Huggins and Mayer.16 They modeled the electrostatic interactions between
ions by placing formal charges qi on each atom center. Short-range repulsive
interactions were modeled with an exponential function, and long-range
attractive interactions with two terms representing dipole–dipole and dipole–
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quadrupole interactions. The Huggins and Mayer force field thus has the
following form:

UijðrijÞ ¼ qiqj
rij

þ Bij expð�aijrijÞ � Cij

r6ij
�Dij

r8ij
½1�

where i and j can be either a cation or anion, and Uij is the potential energy
of species i due to species j, which are separated from each other by a distance
rij. The van der Waals terms were parameterized by Mayer.17 Tosi and Fumi18

developed parameters for the repulsive part of this function to reproduce the
solid-phase properties of alkali halides having the rock salt structure. Many
authors subsequently used this parameterization (or variations of it) to simulate
a wide range of alkali halides in both the solid and molten states. Sangster and
Dixon19 have reviewed much of the early work in this field, and their study is an
excellent starting point for those interested in these systems. The Tosi–Fumi
potential still enjoys wide use today.20,21 It is generally thought that static
properties are captured fairly well with this model, but its ability to model
dynamic properties accurately has been questioned recently due to its neglect
of ion-induced polarization. Work by Galamba and co- workers22–24 suggests
that shear viscosities and thermal conductivities of molten NaCl and KCl are
over predicted by 10–20% with this force field. There are also questions as to
how well this model reproduces static properties away from the state point at
which it was parameterized. For example, a comparison of the pressure depen-
dence of the melting point for NaCl computed with the Tosi–Fumi force field25

and experimental data26 is given in Figure 4. Although the Tosi–Fumi force field

Figure 4 Computed (circles)25 solid–liquid coexistence curve for NaCl versus
experimental data (triangles).26 Although agreement is good at atmospheric pressure,
the slope of the coexistence curve is off and thus the melting point is overestimated
severely at high pressure.
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reproduces the atmospheric pressure melting point quantitatively, it predicts a
significantly higher melting temperature as pressure (and hence density)
increases.

The results for alkali halides demonstrate that a simple force field like
that given in Eq. [1] can reproduce many of the experimental properties of a
molten salt. It appears to capture much of the physics of these systems
correctly, which is cause for optimism. Contrarily, it is difficult to obtain
both thermodynamic and transport properties correctly with the same model;
differences of 10–20% between computed and experimental transport proper-
ties are typical for alkali halide force fields that nominally get thermodynamic
properties correct. Therefore, we should expect similar or even larger differ-
ences between experimental properties of ionic liquids and those obtained
from simulations if this same general class of force field is used. Additionally,
even if a particular property is modeled accurately at a given state point, one
should not expect that property will be modeled accurately at another state
point. That is, transferability of the force field to other conditions can be
problematic and is a concern. Finally, note that the ionic liquids shown in
Figure 3 are much more complicated than simple alkali halides. The alkali
halide force fields were parameterized against known crystal data. Such data
are often lacking for ionic liquids, and there exist many more kinds of ionic
liquids than alkali halides. Moreover, people have been simulating alkali
halides for over 30 years, and they still cannot predict everything about
them with simulations. We should therefore expect it will be much harder
to develop force fields for ionic liquids, and our expectations of their accuracy
should be modest.

EARLIEST IONIC LIQUID SIMULATIONS

As should be apparent by now, simulating ionic liquids raises many new
challenges that are not present with molten alkali halides. First, the cations
and anions are no longer spheres but are instead multiatom molecular species.
This means that the functional form of Eq. [1] is inadequate for treating these
systems; additional intramolecular terms need to be developed to model
bonded interactions accurately. Second, the ions are large and contain many
intramolecular degrees of freedom; great care is needed to ensure proper sam-
pling is obtained, making it likely that the computational costs will be high.
Third, part of the inaccuracy of the alkali halide force fields is due to the pri-
mitive ‘‘fixed-charge’’ method for handling electrostatic interactions; a more
sophisticated polarizable force field may be necessary to model these systems.
Finally, unlike alkali halides, there is a dearth of experimental data with which
to parameterize the force field (especially when the earliest ionic liquid
simulation studies were conducted). As suggested in the introductory remarks,
however, that is one of the main reasons for wanting to model ionic liquids in
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the first place. If all the necessary experimental data were in hand, there would
be little practical need to carry out simulations. This means predictive methods
will be needed to estimate parameters, and fitting to experimental data is not
likely to be a viable strategy (at least for awhile).

Faced with these challenges, a handful of research groups forged ahead
anyway and began simulating ionic liquids. All used a classical force field with
the same basic features as the Huggins and Mayer force field of Eq. [1],
although intramolecular terms were treated in different manners. It is a bit dif-
ficult to say in a historical context what the first simulation of an ionic liquid
was, given the ambiguity with which an ionic liquid is defined. Hawlicka and
Dlugoborski27 conducted a molecular dynamics study of tetramethylammo-
nium chloride dissolved in water in 1997 with the intent of studying hydro-
phobic phenonema in aqueous solutions, certainly a relevant topic for ionic
liquids. In early 2000, Oberbrodhage28 conducted a molecular dynamics simu-
lation study of tetrabutylammonium iodide dissolved in formamide as well as
at the interface between formamide and hexane. Oberbrodhage was interested
in the use of tetrabutylammonium iodide as a phase-transfer catalyst. The
melting points of tetramethylammonium chloride and tetrabutylammonium
iodide are too high to fall under our definition of an ionic liquid, but the
quaternary ammonium cation, when paired with other anions, is used exten-
sively as an ionic liquid.29 These two groups were probably unaware of the
then growing interest in ionic liquids when they published their studies.

In 2001, Hanke, Price and Lynden-Bell30 were the first to conduct an
atomistic simulation of compounds that can be called ionic liquids under our
definition. They used molecular dynamics to model the crystalline state of
1,3-dimethylimidazolium chloride ([C1mim][Cl]), 1,3-dimethylimidazolium
hexafluorophosphate ([C1mim][PF6]), 1-ethyl-3-methylimidazolium chloride
([C2mim][Cl]), and 1-ethyl-3-methylimidazolium hexafluorophosphate ([C2

mim][PF6]). They also modeled the liquid state of [C1mim][Cl] and [C1mim]
[PF6], both of which are relatively high melting substances. Because of this
(and the need to speed dynamics and thus limit computation times), the liquid
simulations were carried out at temperatures between 400 and 500K. The form
of the potential function they used was

UijðrijÞ ¼ qiqj
rij

þ ðAiiAjjÞ1=2 exp �ðBii þ BjjÞrij
2

� �
� ðCiiCjjÞ1=2

r6ij
½2�

which has the same form as Eq. [1], except the dipole–quadrupole term is
omitted. This is also the functional form used by Williams and Cox to model
azohydrocarbons.31 Bond lengths were kept fixed, as were all bond angles
except those between the N–C–H atoms in the methyl groups. Partial charges
qi were located at each atomic center, with values determined from the atomic
multipole moments derived from a distributed multipole analysis32 of the
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second-order Møller–Plesset (MP2) correlated charge density of each ion, cal-
culated using a 6-31G** basis set. The repulsion–dispersion parameters (A, B,
and C) were taken from the work of Williams for C, H, and N,31 Cl,33 and F.34

Hanke, Price and Lynden-Bell30 used the widely available DL_POLY
simulation package35 to conduct the simulations. By current standards their
simulation times were short (100 ps) and their system sizes were small (192
ion pairs). Even so, they were able to compute a number of useful properties,
including molar volumes, average energies, liquid structure in the form of
radial distribution functions, and mean-square displacements as a function
of time. As we now know, the simulations were too short to obtain reliable
self-diffusivities, but the liquid structure they observed was important in help-
ing us begin to understand how these ions organize in a liquid. The computed
distribution of the chloride anion about the cation agreed well with subse-
quent experimental neutron diffraction studies.36 Hanke and co-workers30

were unable to compare any of the other computed properties against experi-
ment, in large part because of the paucity of experimental data for the ionic
liquids they studied.

A common approximation used in liquid-phase simulations involves
coarse graining where carbon atoms and the hydrogen atoms bonded to
them are lumped into a single ‘‘united-atom’’ interaction site. This greatly
reduces the number of pairwise interactions that must be computed but does
so by sacrificing some chemical reality. Hanke and co-workers30 investigated
the effect of this approximation by carrying out some simulations using a
united-atom representation of the methyl and methylene units, while in other
simulations they used explicit ‘‘all-atom’’ representations. The united-atom
models tended to yield denser systems than did the explicit atom versions,
and the dynamics of the ions appeared to be faster for the less dense all-
atom systems.

In early 2002, the journal Green Chemistry published a special issue
dedicated to ionic liquids in which two simulation studies appeared. Hanke,
Atamas and Lynden-Bell37 reported results of a study in which the solvation
behavior of water, methanol, dimethyl ether, and propane in [C1mim][Cl] was
computed. They used the same force field as given in Eq. [2], with a united-
atom treatment of the cation and solute methyl and methylene units.
DL_POLY MD simulations were run on 192 ion pairs for up to 200 ps, and
the local structure of the solutes about the two ions as well as the energetic
interactions were computed. They found that the solute hydroxyl groups asso-
ciated mainly with the chloride anion and that each water molecule associated
with two chloride ions via hydrogen-bonding interactions. The ether and
alkane did not associate as strongly with the anion; cation arrangement about
the solutes was diffuse. The authors speculated that solutes with dipole
moments would associate mainly with the imidazolium ring because of its
positive charge. This same group published another study38 in which the
same system was studied, but the excess chemical potential of each solute
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was computed using thermodynamic integration. By comparing the signs and
magnitudes of the excess chemical potentials, the relative solubility of the
solutes in this ionic liquid could be determined. This was the first example
of a free energy calculation within an ionic liquid system, and it confirmed
the importance of hydrogen bonding and charge–charge interactions for the
solvation behavior of ionic liquids.

In that same Green Chemistry issue, Shah, Brennecke, and Maginn39

reported the results of an isothermal-isobaric MC study on the ionic liquid
1-n-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]). This
was the first (and still one of the few) MC studies of an ionic liquid. Nearly
all computational researchers study ionic liquids with MD, perhaps because
of the widespread availability of MD codes and the relative scarcity of similar
MC codes. As discussed later, this situation is changing and there are good rea-
sons for choosing to use MC methods to study these materials. Maginn’s
group computed the molar volume, cohesive energy density (and thus enthalpy
of vaporization), isothermal compressibility, and volumetric expansion coeffi-
cient. They also computed the liquid structure of this system in the form of
radial distribution functions and found that the order was very long range—
much longer than what is observed in ordinary liquids, a phenomenon that
was explained as being due to the long-range nature of the Coulombic inter-
actions between the ions. Several new developments were introduced in that
work. First, [C4mim][PF6] was the most widely studied ionic liquid at the
time from an experimental standpoint, and a fair amount of experimental
property data was available against which to compare the results, thereby pro-
viding the first direct test of the ability of simulations to match experimental
properties. It was also the first simulation of a low-melting ‘‘room tempera-
ture’’ ionic liquid. Since then, we have learned that the PF6

� anion hydrolyzes
in the presence of water, giving off hydrofluoric acid, so this ionic liquid will
probably find limited practical use, although many experimental and
simulation studies are still being conducted on this compound. Second, this
study introduced a force field having the following functional form:

Utot ¼
X
i;j<i

4Eij
sij

rij

� �12

� sij

rij
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" #

þ qiqj
rij
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where the repulsion–dispersion interactions were modeled with a 12-6 Mie (or
Lennard-Jones) potential. Because the cation contains a flexible butyl side
chain, a dihedral potential of the following form was used:

UðfÞ ¼ n0 þ n1
2
½1þ cosðfÞ� þ n2

2
½1� cosð2fÞ� þ n3

2
½1þ cosð3fÞ� ½4�
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The partial charges used in Eq. [3] were derived from ab initio calculations of
a single gas-phase ion pair at the restricted Hartree–Fock (RHF)/6-31G* level
of theory followed by fitting to the electrostatic potential of the minimized
structure using the CHarges from ELectrostatic Potential Grid (CHELPG)
method.40 A united-atom model was adopted, with all hydrogens subsumed
into their neighboring carbon atoms, and the PF6

� anion was treated as a
sphere. The Lennard-Jones and dihedral parameters for the cation were taken
directly from the OPLS force field,41 using similar compounds as surrogates.
The anion Lennard-Jones potential was scaled using SF6 as a model. Most
researchers now use the OPLS or CHARMM42 force field functional form
in ionic liquid simulations.

The calculations done by Shah, Brennecke and Maginn39 demonstrated
that, by using a simple force field like that in Eq. [3] along with parameters
obtained from a mix of quantum calculations and literature sources, properties
such as liquid densities could be reproduced to within 3–5% over a very wide
temperature range, and that derivative properties such as expansivities and
compressibilities could also be obtained to reasonable accuracy. This study39

was also the first to estimate an enthalpy of vaporization for an ionic liquid.
Although many researchers had stated previously that ionic liquids were ‘‘non-
volatile’’ and had ‘‘no detectable vapor pressure,’’43 this work predicted that
the enthalpy of vaporization was large but not infinite, suggesting that ionic
liquids should indeed have a vapor pressure. It has now been shown conclu-
sively that ionic liquids do have a measurable vapor pressure, and it is most
encouraging that recent measurements of the enthalpy of vaporization44–46

agree very well with these early modeling predictions.
Later that same year, several other studies appeared in which force fields

having the basic functional form as that in Eq. [3] were developed for imida-
zolium-based ionic liquids. Margulis, Stern and Berne47 conducted MD
simulations of [C4mim][PF6] using an explicit atom model that included fully
flexible bond lengths and bond angles, in addition to a dihedral potential. Par-
tial charges were fit to the electrostatic potential obtained from Hartree–Fock
calculations, while all other cation parameters were taken from the all-atom
OPLS potential.41 The parameters for PF6

� were taken from previous work
of Kaminsky and Jorgensen.48 Margulis, Stern and Berne47 conducted a num-
ber of MD simulations in which they used 200 ps of equilibration time and
50 ps of production time. Computed liquid-phase densities were in very
good agreement with experimental values. They also examined the nature of
the dynamics of the system and were the first group to note anomalous and
complex dynamical behavior, indicative of a supercooled liquid. This anoma-
lous dynamical behavior turns out to have been an extremely important find-
ing as related to our ability to compute dynamical properties of ionic liquids,
as we shall see later. They also made the first estimate of the conductivity of an
ionic liquid from a simulation, using the apparent self-diffisivities and the
Nernst–Einstein model.
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Morrow and Maginn49 also carried out a molecular dynamics study of
[C4mim][PF6], using an explicit-atom and fully flexible model with a force
field having the following functional form:

U ¼
X
bonds
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X
angles
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This force field function contains not only dihedral, Lennard-Jones, and
Coulombic terms, but it also includes bond stretching, angle bending, and
improper ring bending contributions modeled with harmonic potentials.
This is the same form used by Margulis, Stern, and Berne, except they did
not consider improper bending terms. Morrow and Maginn49 used a some-
what more sophisticated quantum method than previous studies for obtaining
partial charges on each atom. They also utilized Lennard-Jones and dihedral
angle parameters for similar compounds that were available in the CHARMM
database.42 The force field yielded excellent liquid densities and derivative
properties. In fact, the explicit-atom model did significantly better at matching
the experimental density than did this group’s earlier united-atom model.39

Figure 5 compares the performance of these two models. The united-atom
model underpredicted the molar volume (overpredicted the density) by almost
5%,while the explicit-atommodel was accurate to within 1%. This is consistent

Figure 5 Comparison of the experimental density for [C4mim][PF6] as a function of
temperature50 and results obtained using a united-atom model39 and a more detailed
explicit-atom model.49
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with the results of Hanke, Prince and Lynden-Bell,30 who also observed that
their united-atom models tended to give denser systems than their explicit-
atom counterparts. These findings suggest that explicit-atom models are
more accurate than united-atom models possibly because of their greater rea-
lism, although one could tune the united-atom parameters to get as accurate a
result as wanted. Nearly all subsequent simulation studies of ionic liquids have
relied on explicit-atom models.

The simulation times in the Morrow and Maginn49 study were signifi-
cantly longer than that used in any simulation of an ionic liquid up to that
point. Equilibration times ranged from 700 to 1000 ps, and production runs
of 4 ns were carried out. As foreshadowed by the work of Margulis and co-
workers,47 long simulations are required if reasonable dynamical properties
are to be obtained with these fluids. This is because ionic liquids tend to exhi-
bit very sluggish dynamical behavior at room temperature, reminiscent of
supercooled liquids. While densities and other static properties appear to
converge within 50–100 ps, rotational time constants were calculated to be
much longer than even the 4-ns simulation run time. The picture that began
to emerge from this and the work of others47 is that reasonably short simula-
tions suffice for computing static properties (although proper equilibration is
required), but very long simulations might be required if dynamic properties
are being probed.

The group of de Andrade, Boes and Stassen published two studies dur-
ing 2002 in which MD was used to examine imidazolium-based ionic liquids.
The first51 was a study of 1-ethyl-3-methylimidaziolium tetrachloroalumi-
nate, and the second52 was a follow-up study in which a force field was
proposed for the 1-ethyl-3-methylimidaziolium and 1-butyl-3-methylimida-
ziolium cations paired with the tetrachloroaluminate and tetrafluoroborate
anions. Their force field was based on the AMBER functional form,53 which
is similar to that used in the previous works. Derivation of the force field fol-
lowed the same procedure outlined earlier, including gas-phase calculation of
the ions followed by partial charge assignment for each atom by fitting to
reproduce the quantum electrostatic potential. The RESP method within
the package GAMESS54 was used, but other methods give similar (though
not identical) results. Intramolecular terms as well as nonbond Lennard-Jones
parameters were taken from literature sources for similar compounds. Their
liquid densities were in near perfect agreement with experiment and com-
puted enthalpies of vaporization, once again, suggested that ionic liquids
should have some volatility (3 years later experimentalists made such mea-
surements). Finally, they estimated self-diffusion coefficients, but the short
(200-ps) simulation times lead one to believe that these systems are not yet
in the diffusive regime. One of the most interesting results from their study
is that they were able to compare their computed liquid structure with neu-
tron diffraction data that had just become available;55 remarkably good
agreement between the computed liquid structure and the neutron diffraction
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results indicate that the model captures well the underlying liquid structure.
This latter result echoes the point made earlier in this chapter: Our under-
standing of the physical chemistry of ionic liquids is being advanced by the
simultaneous and synergistic application of modeling and experiment. This
is possible because molecular modeling has ‘‘come of age’’ just in time to
play a key role in understanding these new materials.

At the conclusion of 2002, four groups had published studies in which
the properties of different imidazolium-based ionic liquids had been computed
using five different force fields. Several things became clear as a result of these
studies. First, relatively simple fixed charge force fields of the kind shown in
Eq. [5] do a remarkably good job of reproducing liquid densities and liquid
structure. This statement has to be tempered somewhat by the fact that only
in a few of the cases were comparisons with experiment made, and then only
for a limited number of properties. Moreover, different force fields gave simi-
lar liquid densities, although explicit-atom models performed better than uni-
ted-atom models. The fact that different parameter sets give similar densities
means that density is not a particularly stringent test of a force field. Second,
information on liquid structure was being obtained, and it appeared that ionic
liquids had longer range order than ordinary molecular liquids. Third, simula-
tions of mixtures demonstrated the importance of hydrogen bonding on solva-
tion and suggested that solute polarity is important in determining its
solubility. Fourth, the simulations indicated that ionic liquids should have
some detectable vapor pressure and enthalpy of vaporization, even though
that aspect of ionic liquids had not yet been confirmed experimentally. Fifth,
and perhaps most important, these studies demonstrated that carrying out
simulations of ionic liquids is only slightly more difficult than for ordinary
liquids. In essence, these early studies paved the way for the broader research
community to use simulations to compute properties for ionic liquids. People
took notice, and the number of modeling studies on ionic liquids grew very
rapidly.

MORE SYSTEMS AND REFINED MODELS

Once it became apparent that standard modeling tools such as MD and
MC could be used with conventional force fields to simulate ionic liquids, a
number of other groups began making significant contributions to the field.
In fact, dozens of studies have appeared in the last few years on the topic.
In this section, we review some of the significant works and discuss some of
the different properties that have been computed while emphasizing
their successes and shortcomings. Because there exist so many works on this
topic in the literature, it is not possible to discuss every one; those reviewed
here represent a cross section of the kinds of systems being examined by scien-
tists and properties that are being computed.
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Force Fields and Properties of Ionic Liquids Having
Dialkylimidazolium Cations

Given that almost all of the initial experimental work focused on ionic
liquids having a dialkylimidazolium cation, it is perhaps not surprising that
most simulation studies have likewise focused on this cation. After all, if
this was what experimental researchers thought to be the most useful system,
modelers certainly wanted to make sure that they studied the most relevant
systems. In hindsight, following that trajectory was unfortunate because there
are many other cations that are both useful from a technological perspective
and of interest to scientists from a fundamental perspective. Nonetheless, for
several years almost all of those other cations were ignored by modelers in
favor of ionic liquids containing the imidazolium cation. As discussed earlier,
already five different imidazolium force fields had been proposed and used to
model ionic liquids. Over the next few years, several more force fields, all hav-
ing the same basic functional form as Eq. [5], were proposed for the imidazo-
lium cation. Each new force field was derived in a more rigorous manner,
using higher accuracy quantum methods and relying more on first-principles
calculations than on literature parameters from similar organic compounds.

Urahata and Riberio56 proposed an imidazolium force field in which the
methyl and methylene units of the alkyl chain were treated as united-atom seg-
ments. They varied the length of the chain from methyl to octyl, and also
studied F�, Cl�, Br�, and PF6

� anions. Importantly, their calculations
matched experimental structure factors. Their work was interesting because
they were the first to show that the detailed structure of the liquid changes
depending on the length of the alkyl chain. Later studies would demonstrate
that long alkyl chains lead to the formation of nanoscale polar and nonpolar
domains in these systems, but the work by Urahata and Riberio gave the first
inkling of this concept.

Canongia Lopes, Deschamps and Padua57 introduced what they termed
a ‘‘systematic’’ explicit-atom force field for imidazolium-based ionic liquids.
Their force field is based on the OPLS-AA/AMBER functional form, and the
authors sought to make it as transferable as possible. That is, components of
a molecule already contained in the OPLS-AA database should be compatible
with this force field, and, in fact, many of the terms from the OPLS force field
were used for the ionic liquid. To perform the parameterization, they first
minimized the energy of a gas-phase ion at the HF/6-31G(d) level. Single-
point energy calculations were then conducted at the more accurate MP2/
cc-pVTZ(f) level. Bond and angle terms were reparameterized if the mini-
mized structure value deviated significantly from the OPLS value. Otherwise,
the OPLS value was used. Key dihedral angle energy profiles were computed
from quantum calculations, and customized dihedral potential parameters
were fit to this energy profile. This was the first time dihedral angle para-
meters were specifically fit to a quantum calculation of an ionic liquid. As
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with other force fields, partial charges were fit to the electrostatic potential
obtained from the quantum calculations. The level of quantum theory used
by these authors was superior to that used in previous calculations. The
authors were careful to summarize previously developed force fields and
highlight the differences between their new force field and the others. To
validate their force field, the authors ran 200-ps flexible isothermal-isobaric
MD simulations using the DL_POLY package on five crystal structures for
which lattice constants were known. They then compared their computed
lattice constants with those obtained experimentally. They also conducted
liquid-phase simulations (300 ps under isothermal-isobaric conditions) on
nine different compounds, combining the [C2mim], [C4mim], and [C6mim]
cations with the PF6

�, NO3
�, and Cl� anions. Of the nine liquids and five

solids, they were able to compare their results to six liquid densities and
five crystal densities. Densities deviated from experiment within the range
of 1–5% for all substances, which is about the level of accuracy obtained
in previous works. This was the first time, however, that comparison was
made to crystalline densities. In doing this, the ionic liquid modeling effort
came full circle, using the same criterion Tosi and Fumi18 used to develop
alkali halide potentials. The force field developed by Canongia Lopes and
co-workers57 is important because it has become one of the most widely
used force fields for this class of ionic liquids. This is mainly due to the rigor
with which it was developed, its wide applicability, and the generality and
popularity of the OPLS-type force field. The list of force field parameters
in the original study contained some typographical errors, some of which
were corrected in an corrigendum.58 The updated and correct set of para-
meters are now located on the authors’ website,59 and it is recommended
that parameters be obtained from that source. This group has extended its
force field to include many more cations and anions, and those parameters
can also be found on the website.59

Liu, Huang and Wang60 proposed a ‘‘refined’’ force field for imidazo-
lium-based ionic liquids, shortly after the work of Canongia Lopes and co-
workers57 appeared. Their force field consists of explicit atoms and is based
on the AMBER functional form. Unlike previous studies in which some
bond and angle force constants came from literature sources, these authors
determined all of these intramolecular terms from a quantum mechanical
frequency analysis of an energy-minimized structure. Vibrational wavenum-
bers for a large number of modes in the cation were computed and compared
to values given by their force field as well as from the standard AMBER force
field and from infrared (IR) data. The same protocol was used for PF6

� and
BF4

� anions. As was done by Canongia Lopes et al.,57 some of the dihedral
angle parameters were fit to the energy profiles obtained from quantum calcu-
lations. Finally, the Lennard-Jones parameter for the hydrogen bonded to the
C2 carbon in the imidazolium ring was adjusted to enable the force field to
match ab initio energies calculated for several conformations.
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This group then used their force field to carry out MD simulations with
the program MDynaMix.61 They simulated five different pure ionic liquids:
[C1mim][Cl] (the same system examined by the Lynden-Bell group),
[C1mim][PF6], [C2mim][BF4], [C4mim][BF4], and [C4mim][PF6]. For each
liquid, a total of 192 ion pairs were simulated for 100 ps. Liquid densities gen-
erally agreed with experiment and with previous simulations. Although this
force field appears to be the most advanced of all the imidazolium force fields,
the liquid densities computed with it are not significantly different from those
obtained with the earlier, more ad hoc force fields. This is a recurring theme
for many systems that have been studied to date. While liquid densities are an
attractive experimental property with which to compare simulation results, it
is a property that is remarkably insensitive to the force field and consequently
is not a particularly useful measure for discriminating between ‘‘good’’ and
‘‘bad’’ force fields. Liu, Huang, and Wang60 point this out, stating that liquid
densities are fairly insensitive to charge distributions. This force field did
achieve slightly better agreement with experimental densities than previous
studies, however, and the authors attribute this to the fitting they did on the
C2 hydrogen van der Waals parameters. They also computed enthalpies of
vaporization and the various components of the intermolecular energy show-
ing that, as the alkyl chain length increases, the van der Waals interactions
become more dominant and more negative in energy. This points to the fact
that the ‘‘nonpolar’’ regions of the ionic liquid are interacting in a favorable,
stabilizing manner, a finding similar to that of Urahata and Riberio.56

It was noted that the anions tend to localize near the C2 carbon on the
imidazlium ring in many of the previous simulation studies.37,39,49 The corre-
sponding ab initio calculations show this region of the ring to have the greatest
concentration of positive charge, and that the hydrogen attached to the C2
carbon has a high Bronsted acidity, validating the tendency for the negatively
charged anion to localize near this region. Liu, Huang and Wang60 showed
this in a graphical way, plotting the relative probability distribution of differ-
ent anions about the cations, an example of which is shown in Figure 6. The
different colors in the original publication correspond to different probabilities
of observing the center of a PF6

� anion about a [C4mim] cation. The anion
resides in several different places during the course of the simulation, but
the most populated regions are near C2. Interestingly, the region near the butyl
chain is devoid of anion density; apparently, the nonpolar alkyl group ‘‘sweeps
out’’ a region around the cation, such that the anion resides, on average, at
other locations that are more polar and less sterically congested.

We finish the discussion of force fields developed for imidazolium-based
systems by describing the work of Voth and co-workers who simulated
[C2mim][NO3] first with traditional fixed-charge models62 and then with a
model that included electronic polarizability.63 For the fixed-charge system,
Del Popolo and Voth62 used a force field having the AMBER function form,
with parameters for the cation and anion taken from existing sources. They
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performed MD simulations with the code DL_POLY, with 500-ps production
runs to obtain averages, and they found similar ordering of the cations and
anions as observed in previous studies.

Del Popolo and Voth62 computed dynamical properties at 400K and
observed very long overall rotational relaxation times, consistent with the
slow dynamics observed by Margulis, Stern, and Berne47 as well as by Morrow
and Maginn.49 They showed the clearest evidence up to that point that
the dynamic motion of ionic liquids bears a resemblance to that of super-
cooled or glassy systems, an issue that will be described more fully later in
this chapter.

This group later examined the same [C2mim][NO3] system but used a
force field that accounts for electronic polarizability instead of treating partial
charges as fixed entities.63 This was the first time a polarizable model was used
to study an ionic liquid, and the authors found that the dynamics became fas-
ter when polarizability was included compared to the results from a fixed-
charge model. The Newtonian shear viscosity at 400K was estimated to be
6.84 cP with the fixed-charge model but 4.72 cP with the polarizable model
as an example. Interestingly, static properties, e.g., liquid structure, are essen-
tially unchanged when the two models are compared. The authors attribute
the dynamical differences to the fact that charge neutrality among ion clusters

Figure 6 Three-dimensional probability distributions of PF6
� around C4mim cation.

The dark and light bounded contour surfaces are drawn at 20 and 6 times the average
density, respectively. (Image from the work of Liu and co-workers.60 Used with
permission.)
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can only be achieved via translational motion with fixed charges. Ion clusters
form ‘‘cages’’ that are long lived and slow the dynamics. When charge fluctua-
tions are allowed as with a polarizable model, however, an additional charge
screening mechanism is operative that allows the system’s dynamics to
increase somewhat.

Force Fields and Properties of Other Ionic Liquids

There exist several other cation types that can be made into ionic liquids,
although, as mentioned previously, most experimental and simulation studies
have been limited to the imidazolium cation. A small number of computa-
tional studies have been conducted on systems containing other cations,
including pyridinium, phosphonium, guanidinium, and triazolium, and, there
has also been work on developing force fields and computing properties for
ionic liquids containing anions beyond the standard set of halides, PF6

�,
BF4

�, and NO3
�. Here we review some of those studies.

Cadena and co-workers64 developed a force field for the alkyl-pyridinium
cation, and simulated 1-n-hexyl-3-methylpyridinium bis(trifluoromethylsulfo-
nyl)imide ([C6mpy][Tf2N]), 1-n-octyl-3-methylpyridinium bis(trifluoromethyl-
sulfonyl)imide ([C8mpy][Tf2N]), and 1-n-hexyl-3,5-dimethylpyridinium bis
(trifluoromethylsulfonyl)imide ([C6dmpy][Tf2N]). They used a mix of quantum
calculations and parameters available in the CHARMM database42 to parame-
terize the pyridinium force field, which has the functional form of Eq. [5]. For
the [Tf2N] anion the parameters developed by Canongia Lopes and Padua were
used.65

Molecular dynamics simulations were conducted at a series of tempera-
tures for 5 ns, each using NAMD.66 Liquid densities, compressibilities, and
expansivities were computed between 298 and 348K and compared to experi-
mental data. They observed that there exists a significant history dependence
of the liquid densities. That is, computed densities depended on the equilibra-
tion history, even though 5-ns production runs were carried out. As Del
Popolo and Voth62 observed for [C2mim][NO3] at 400K, significant non-
Gaussian dynamics are in effect, suggesting that, at least for these ionic liquids,
calculating even static properties such as densities can be problematic due to
the sluggish dynamics of the system and that great care must be taken to
ensure proper equilibration. The authors also conducted experimental nuclear
magnetic resonance (NMR) investigations to measure self-diffusion coefficients
of the cations and anions. They showed that the MD simulations had not yet
achieved diffusive behavior, even after 5 ns, so direct comparison of experimen-
tal and calculated self-diffusivities was not possible. Their computed rotational
relaxation times for the cations and anions showed that the cations with the
longest alkyl groups had rotational relaxation times greater than 10ns at
298K, and greater than 2ns even at 348K. The [Tf2N] anion had faster rota-
tional relaxation times, but they still ranged from 4ns at 298K to 0.8ns at
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348K. This was an important finding because many groups had begun to com-
pute dynamic properties of ionic liquids from relatively short simulations. As
shown in detail below, care should be taken when computing dynamical
properties in ionic liquids; due to their sluggish dynamics, much longer simula-
tion times may be required than are commonly used for ordinary liquids.

Canongia Lopes and Padua extended their previously developed imidazo-
lium force field to include N-alkylpyridinium and tetraalkylphosphonium
cations.67 They also developed parameters for the Cl�, Br�, and the dicyanamide
[N(CN)2

�] anions using the same basic procedure in their previous study.57

When reasonable, extant parameters were available in the OPLS database, these
were used, but missing parameters, or parameters in disagreement with ab initio
structures, were fit. Because their main concern was with what they term ‘‘mole-
cular simulation’’ rather than ‘‘molecular mechanics,’’ they did not attempt to
get each vibrational mode perfectly correct. Rather, they focused more on dihe-
dral angle parameters and partial charges, as these have the biggest effect on
bulk properties. To test the force field, isothermal-isobaric MD simulations
were run using DL_POLY, with 200-ps equilibration runs and production
runs of at least 400 ps. Densities of crystals and the liquid phase were computed
and, when possible, compared with experiment. Computed crystal densities
were all within 3.4% of experiment, while no computed liquid density differed
from experiment by more than 2.5%. No comparison was made between this
pyridinium force field and that proposed by Cadena and co-workers.64

Triazolium-based ionic liquids are being examined as possible energetic
materials, and determining the physical properties of such substances is diffi-
cult to do experimentally. Modeling studies are therefore of considerable prac-
tical interest. Cadena and Maginn68 developed parameters for a series of
triazolium-based ionic liquids, following the procedure this group had used
previously. The cations considered include 1,2,4-triazolium, 1,2,3-triazolium,
4-amino-1,2,4-triazolium, and 1-methyl-4-amino-1,2,4-triazolium. Each cation
was paired with a nitrate or perchlorate anion. They used MD to compute
liquid-phase heat capacities, cohesive energy densities/enthalpies of vaporiza-
tion, gravimetric densities/molar volumes (as a function of temperature and
pressure), self-diffusivities, rotational time constants, and various pair correla-
tion functions. They computed heat capacities and crystal lattice parameters in
the solid phase. Of all of these properties, only lattice parameters have been
measured experimentally (and only for four of the triazolium compounds).
The agreement with the experimental crystal structures was good, with overall
computed densities deviating from experiment by anywhere from 0.6 to 3.2%.
When properties were compared with that of the imidazolium-based ionic
liquid, the triazolium-based materials were found to have much smaller molar
volumes, higher cohesive energy densities, and larger specific heat capacities.
They also tended to be less compressible, have a higher gravimetric density
and faster rotational dynamics, but to have similar translational dynamics as
their imidazolium counterparts.
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Zhou and co-workers69 developed a force field for ionic liquids contain-
ing a tetrabutylphosphonium cation ([P(C4)4]) paired with the following
amino acid-derived anions: glycine ([Gly]-), alanine ([Ala]-), serine ([Ser]-),
lysine ([Lys]-), leucine ([Leu]-), isoleucine ([Ile]-), phenylalanine ([Phe]-), pro-
line ([Pro]-), methionine ([Met]-), aspartic acid ([Asp]-), glutamic acid ([Glu]-),
glutamine ([Gln]-), and taurine ([Tau]-). These ionic liquids had been synthe-
sized by their group and evaluated for potential use in CO2 capture applica-
tions. The force field parameters were developed using the same basic
techniques as used by other groups for different ionic liquids. Isothermal-
isobaric MD simulations were then conducted using the MDynaMix code.
Each pure liquid simulation was on 192 ion pairs with 1-ns production
runs. Liquid densities, heat capacities, and liquid microstructure were
computed and compared to experiment. Liquid densities were generally accu-
rate to within a few percent. Heat capacities were computed by difference
from simulations at adjacent temperatures using the following expression:

CpðT;PÞ � HðT þ�TÞ �HðtÞ
�T

� �
P

½6�

where H is the enthalpy and �T is some small temperature differential over
which the heat capacity is assumed constant. The computed heat capacities
agreed less well with experiment than did the densities, differing anywhere
from 1 to 43% with no identifiable trend. We suspect this may not necessarily
be an indication of a poor force field, but rather that Eq. [6] should not be used
to compute heat capacities. Each harmonic bonded term in the classical
potential (Eq. [5]) will add NkB to the heat capacity, which is generally a gross
overestimation. This is a widely known limitation of classical force fields hav-
ing the form of Eq. [5].

Our group has computed heat capacities from simulations using a differ-
ent approach.64 Instead of using Eq. [6], one can split the heat capacity into
ideal gas and excess terms:

Cp ¼ Cig
p ðT;PÞ þ Cex

p ¼ qhHigi
qT

� �
P

þ qhHexi
qT

� �
P

½7�

where Hig contains intramolecular contributions to the heat capacity and Hex

contains all intermolecular nonbonded terms. The angle brackets indicate an
ensemble average. The ideal gas contribution to the heat capacity can be com-
puted accurately from a quantum calculation of the ions in the gas phase. The
excess portion can be computed via finite difference (Eq. [6]) from classical
condensed-phase simulations, with Hex replacing the total enthalpy. We found
this method typically yields more consistent and more accurate heat capacities;
we suspect that if the heat capacities for the [P(C4)4] amino acid liquids were
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computed in this manner, they may have agreed better with experiment. It
would be interesting to investigate this issue further.

A hydrogen-bonding analysis was also performed by Zhou and co-
workers69 in which the number of hydrogen bonds between an oxygen and
a hydroxyl hydrogen on an anion were counted. Figure 7 shows a plot of
the experimental viscosity and conductivity versus the number of hydrogen
bonds calculated for that particular ionic liquid. The correlation is clear—
the greater the number of hydrogen bonds, the slower the dynamics (i.e., high-
er the viscosity and lower the thermal conductivity). The authors conclude that
the relatively high viscosity of this class of material is due to the ease with
which these materials form hydrogen bonds. If this trend can be shown to
hold for other ionic liquids, it might be an effective screening method in mole-
cular design for identifying ionic liquids with high and low viscosities.

Liu et al. developed force field parameters for N,N,N0,N0-tetramethyl-
guanidinium (TMG) ionic liquids paired with formate, lactate, perchlorate,
trifluoroacetate, and trifluoromethylsulfonate anions.70 The force field has
the typical AMBER form, and parameterization was done in much the same
way that other force fields have been developed, with harmonic bond and
angle terms fit to quantum-derived vibrational frequencies, and where dihedral
angle parameters were fit to ab initio energy profiles computed for gas-phase
ions. Liquid densities were computed from 100-ps MD runs at temperatures
ranging from 298 to 373K. The computed densities agree well with experi-
ment for all but the system containing the trifluoromethylsulfonate anion, in
which case the density was overpredicted by a fair amount. The authors attri-
bute this to possible problems with the charge distribution and Lennard-Jones

Figure 7 Experimental conductivities (open squares) and viscosities (filled circles)
plotted against the calculated number of hydrogen bonds among anions in [P(C4)4]
amino acid ionic liquids.69 The mobility of the liquid decreases as hydrogen bonding
among anions increases. (Used with permission.)
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parameters used for the anion. Enthalpies of vaporization were computed and
found to range from 50 to 185 kJ/mol, depending on the compound and tem-
perature. The lower value is small for ionic liquids and suggests significant
volatility; it would be interesting to see if experimental vapor pressure
measurements confirm this. Finally, by analyzing distribution functions, it
was found that the amino group on the cation formed hydrogen bonds with
all five anions studied.

The same group then proposed a force field for 11 different cyclic gua-
nidinium cations paired with the nitrate anion.71 Their approach to force field
development followed the same methods used before. Production runs were
carried out for 1 ns at temperatures between 320 and 450K. Because most
of the compounds studied have glass transition temperatures or melting points
above room temperature, only a small number of experimental densities exist
for comparison. In general, it was found that the simulations systematically
underpredict the liquid density by about 5%, which the authors speculate is
due to problems in the parameterization of the Lennard-Jones parameters in
the force field. Self-diffusion coefficients were computed from the Einstein
relation over the trajectories from 200 to 600 ps. As discussed below, the
authors were careful to test that their systems were in the diffusive regime.
It is surprising that true diffusive motion was observed, however, given that
a total mean-squared displacement of only about 0.06 nm2 was observed
over the time in which the self-diffusivity was computed. This length is
much shorter than the axis of either ion. Nevertheless, estimates of the self-
diffusivity were on the order of 1� 10�11 m2/s, and from this and the Stokes–
Einstein model, estimates of the viscosity and conductivity were made.

SOLUTES IN IONIC LIQUIDS

Although pure ionic liquid properties are important, many applications
envision the use of ionic liquids as solvents or separation agents, where proper-
ties of ionic liquids mixed with other species are paramount. Relatively few
simulations have been carried out to study the properties of ionic liquids
with dissolved solutes, but the number of studies on this topic has increased
recently. Here we review several of these studies.

As mentioned earlier, Hanke, Atamas and Lynden-Bell37 conducted the
first simulation study of solvation in ionic liquids by investigating the behavior
of water, methanol, dimethyl ether, and propane in [C1mim][Cl]. Using ther-
modynamic integration,38 they computed the difference in excess chemical
potential of those same solutes in [C1mim][Cl] and ranked the solubilities
on the basis of relative excess chemical potentials. In 2003, they examined72

benzene and a hypothetical uncharged ‘‘benzene’’ in [C1mim][Cl] and
[C1mim][PF6] by using the same thermodynamic integration technique
and showed that the charged ‘‘aromatic’’ benzene is much more favorably
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solvated by the ionic liquids than is the uncharged ‘‘aliphatic’’ benzene,
although they were unable to compute absolute free energies and hence actual
solubilities. They found significant differences in the organization of the ions
about the two different benzene molecules. As shown in Figures 8(a) and 8(b),
the cations of the ionic liquid organize very strongly above and below the
plane of the charged benzene, while the anions organize around the equator
of benzene. This is driven by the charge distribution in benzene itself; it is
more positive around its equator and more negative above and below its plane.
In contrast, the cation and anion distribution is much more uniform about the
uncharged aliphatic benzene.

Hanke and Lynden-Bell73 carried out another study of water dissolved in
hydrophilic [C1mim][Cl] and hydrophobic [C1mim][PF6] in which isochoric-
isothermal MD simulations were run at 127�C on mixtures containing water
mole fractions of 0.05, 25, 50, 75, and 99.5%. They computed excess
volumes, enthalpies, and internal energies of mixing and compared the results
between the two ionic liquids and found that the excess properties between the
two systems differed qualitatively, as might be expected. Unfortunately, no
experimental data was available for these systems against which to compare
their results. The authors pointed out, however, that the magnitude of com-
puted quantities such as excess molar volumes were consistent with those
for other ionic liquid systems for which data was available.

Cadena and co-workers74 published a joint experimental and molecular
modeling study directed at explaining the high solubility of CO2 in imiadzo-
lium-based ionic liquids. The simulations involved the liquid properties of
pure [C4mim][PF6] and 1-n-butyl-2,3-dimethylimidazolium hexafluoropho-
sphate ([C4mmim][PF6]). The latter material was studied to examine the
role played by the acidic proton at the C2 position of the cation; by blocking
this site with an additional methyl group, its effect on liquid structure and CO2

solubility could be assessed. MD runs were done at 25, 50, and 70�C for the
pure ionic liquids and for mixtures containing 10mol% CO2. Simulated den-
sities are roughly 2% lower than experimental values for [C4mim][PF6] and 4–
6% higher than the experimental values for [C4mmim][PF6]. The simulations
found that the partial molar volume for CO2 at the mixture concentration is
33 cm3/mol in [C4mim][PF6] and 28 cm3/mol in [C4mmim][PF6]. The experi-
mental value for [C4mim][PF6] is about 29 cm

3/mol but no experimental data
exist for [C4mmim][PF6]. The relatively small partial molar volumes reflect the
fact that the liquid volume expands very little upon dissolution of CO2 into an
ionic liquid, indicating that the underlying liquid network is not greatly per-
turbed by the presence of CO2 at these concentrations. The simulations show
that CO2 does not associate to any great extent with the C2 position of the
cation, regardless of whether there is a methyl group present or not. This is
due to the fact that the anion associates preferentially with this part of the
cation, thereby ‘‘blocking’’ most direct interactions with CO2. It was found
that CO2 associates preferentially with the [PF6] anion, and adopts a ‘‘tangent’’
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conformation in which it lays flat against the nearly spherical PF6 anion. The
simulations are consistent with the overall findings of the experiments presented
in the work in which the anion was found to have a much more profound effect
on CO2 solubility than does the cation.
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Deschamps, Costa Gomes and Padua75 computed the relative solubility
of argon, methane, oxygen, nitrogen, and carbon dioxide in [C4mim][PF6] and
[C4mim][BF4] at 1 bar and temperatures of 303, 323, and 343K using the free-
energy perturbation algorithm in DL_POLY. The simulations gave the correct
relative order of solubility in [C4mim][PF6], but the temperature dependence
of the solubility for the nonpolar gases was exactly opposite that observed
experimentally. It has been found experimentally that the partial molar enthal-
py of solution for many nonpolar gases such as nitrogen and oxygen is zero or
slightly positive. In contrast, the simulations predicted that they were slightly
negative, thus giving the wrong temperature dependence. For CO2, however,
the simulations predict correctly that solvation is exothermic. The radial
distributions for the CO2 / [C4mim][PF6] system showed that CO2 does not
localize near the C2 carbon of the cation, but rather prefers the C4 and C5
carbons. The authors also found that the CO2 molecules lay flat against the
PF6 anion. Both of these results are consistent with the findings of Cadena
and co-workers.74

Computing the solvation of gases in liquids involves two processes: crea-
tion of a cavity within the solvent capable of hosting the solute (often termed a
‘‘free volume’’ process), and activation of the solute–solvent interactions.
Deschamps, Costa Gomes and Padua75 computed the free volume in ionic
liquids by performing hard sphere insertions into the pure ionic liquid and
determining the probability of finding a cavity of a particular size. They found
the probability of cavity formation in an ionic liquid to be lower than what is
observed in either water or n-hexane at the same temperature, and thus the
work of cavity formation in an ionic liquid is greater than for conventional
solvents. They also saw little difference in the free volumes between the two
ionic liquids they studied. To evaluate the interactions between solute and sol-
vent, the authors computed the solubility of CO2 and N2 in both ionic liquids
in which electrostatic terms were used to model the quadrupole moment of the
gases. They then repeated the calculations with CO2 and N2 models having no

Figure 8 (a) Cross section of the three-dimensional probability distributions around
benzene in [C1mim][Cl]. The sixfold axis of the benzene molecule lies in the vertical
direction, and the twofold axis of the molecule lies in the horizontal direction,
perpendicular to the field of view. The difference in distributions of the cations and
anions is shown; regions in the lightest shades are more likely to contain anions, while
dark shades correspond to regions containing cations (see original publication for color
plots). The scale is in multiples of the average concentration of cations (or anions) in the
solution. (Taken from Ref. 72. Used with permission.) (b) Cross section of the three-
dimensional probability distributions around uncharged ‘‘benzene’’ in [C1mim][Cl].
The difference in distributions of the cations and anions is shown; regions in the lightest
shades are more likely to contain anions, while dark shades correspond to regions
containing cations (see original publication for color plots). Note that the differences are
much less than in the simulations of the ‘‘real’’ benzene (a). (Taken from Ref. 72. Used
with permission.)
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quadrupole moment and found that the solubility was significantly lower
for CO2 and slightly lower for N2 when compared to the results with a quad-
rupole moment. Finally, the authors computed the solubility of water in the
ionic liquid. Because water is a liquid under the conditions they studied, a ther-
modynamic integration process was used. They determined that the infinite
dilution activity coefficient of water in [C4mim][PF6] is 4:7� 3:6, which
agrees well with the experimental value of 5.36.76

Shah and Maginn77 carried out a Monte Carlo study of CO2 solubility in
[C4mim][PF6] to compute the Henry’s law constant of CO2 using the test
particle insertion free energy perturbation method. The Henry’s law constant
for solute 2 dissolved in solvent 1, H2;1, is defined as

H2;1 ¼ lim
x2!0

f2
x2

½8�

where f2 is the fugacity of the solute in the gas phase, and x2 is the mole frac-
tion of the solute in the liquid phase. The fugacity is related to the excess che-
mical potential according to the following expression:

H2;1 ¼ kBTr1 exp
mex2
kBT

� �
½9�

where kB is the Boltzmann constant and r1 is the liquid-phase density. The
excess chemical potential is obtained from the test particle insertion method
by inserting many noninteracting CO2 molecules into the liquid over the
course of a constant temperature and pressure simulation and computing
the ratio

mex2 ¼ �kBT ln
hV expð�Utest=kBTÞi

hVi ½10�

where Utest is the energy of the test molecule inserted into the system and the
angled brackets signify ensemble averages. Their simulations predicted that
CO2 solubility in this ionic liquid is 2–3 times higher than what is observed
experimentally; the computed partial molar enthalpy of absorption is about
7 kJ/mol more negative than experiment as well.

Part of the inaccuracy of these results can be attributed to the force field
used, which included a united-atom model for the cation and an explicit-atom
model for the anion. This model,77 unlike Shah and Maginn’s previous united-
atom model,39 underestimated the pure liquid density by about 5%, which
should lead to higher gas solubilities on the basis of free volume arguments.
The other source of error rests with the simulation method itself. Kofke and
Cummings78 have shown that single-stage free energy perturbation methods
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like that used by Shah and Maginn77 suffer from convergence problems, espe-
cially for systems that are dense and have specific interactions such as ionic
liquids. More sophisticated simulation methods are required to overcome
these limitations, and Shah and Maginn subsequently implemented an
expanded ensemble Monte Carlo method79 that improves the test particle
insertion approach significantly. This method involves a series of Monte Carlo
moves that change the strength with which the solute molecule couples with
the solvent, ranging from no coupling (an ideal gas) to full coupling (a dis-
solved solute molecule). By collecting the frequency with which the system
visits the ideal-gas state and fully coupled state, the excess chemical potential
of the solute (and hence, Henry’s law constant) can be computed. Additional
self-adapting bias factors were used to further improve sampling. The authors
used the method to compute the Henry’s law constants of water, carbon diox-
ide, ethane, ethene, methane, oxygen, and nitrogen in [C4mim][PF6]. Their
results were in good qualitative agreement with experiment, and in many
cases, quantitative agreement was achieved. For example, the computed
Henry’s law constant for water at 298K is 0:07� 0:02 bar, while the experi-
mental result is 0:17� 0:02 bar. For CO2 the computed value is 46� 16 bar,
while the experimental value is 53.4 bar. These results suggest that earlier
inaccuracies are due more to sampling problems than to inherent inaccuracies
in the force field used.

Complete isotherms for CO2, CO, and H2 in [C4mim][PF6] were com-
puted by Urukova, Vorholz, and Maurer80 using the isothermal-isobaric Gibbs
ensemble Monte Carlo method. In Gibbs ensemble Monte Carlo studies, sepa-
rate gas-phase and liquid-phase systems are coupled virtually so that
exchanges of molecules take place between the two phases to satisfy the phase
equilibrium condition. Temperatures ranging from 293 to 393K and pressures
up to 9MPa were simulated, using a rigid model for the ionic liquid and para-
meters taken from Shah and Maginn.39 They found that the simulations agree
remarkably well with available experimental data. The original study80

contained a small conversion factor error, however, which, when corrected,81

gives results that are not as close to experiment as indicated in the original
study.

Shi and Maginn82 proposed a new type of Monte Carlo method they call
continuous fractional component Monte Carlo, or CFC MC. This is a simula-
tion procedure that enables isotherms to be computed accurately for gases and
vapors in ionic liquids by inserting and deleting molecules gradually, instead of
performing the moves all in one step. They used CFC MC to compute iso-
therms of water and carbon dioxide in 1-n-hexyl-3-methylimidazolium bis(tri-
fluoromethylsulfonyl)imide ([C6mim][Tf2N]).83 Figure 9 shows an example of
the accuracy that can be obtained with the method; the computed isotherm is
in quantitative agreement with three independent sets of experimental data up
to about 70 bar.84–86 At the very highest pressure of 200 bar, it appears that
the simulations underpredict slightly the CO2 concentration, which may reflect

Solutes in Ionic Liquids 451



the fact that the repulsive part of the force field is inadequate or that three-
body interactions (neglected in this force field) are important at these high
densities. The authors also computed the solubility of water in this ionic
liquid, and the agreement with the lone experimental data point (at saturation)
was quantitative.

Chaumont and Wipff87 have carried out a number of computational
studies investigating the solvation of metal ions in ionic liquids. This is an
important topic because ionic liquids have the potential to be effective, envir-
onmentally benign, metal extractants for aqueous metallic ions. In 2003
Wipff’s group used MD simulations to study the solvation of La3þ, Eu3þ,
and Yb3þ in [C4mim][PF6] and in [C2mim][AlCl4].

87 They used force fields
previously developed to model the ionic liquid, while metal ion parameters
were fit to hydration free energy data. Pure ionic liquid phases were simulated
first using MD, and then one M3þ (M ¼ La, Eu, or Yb) and three NO3

� ions
were immersed into the system. After a relaxation schedule, 1.2-ns MD
simulations were run and the resulting trajectories analyzed. The authors
also computed the free energy differences for solvated cations by using ther-
modynamic integration to find that the M3þ ions become surrounded rapidly
by six PF6

� anions in the case of [C4mim][PF6] and eight AlCl4
� anions in the

case of [C2mim][AlCl4]. As the metal cation size was increased, the distance
between the metal ion center and the anion F� or Cl� atoms also increased,
as expected. They find that the PF6

� anions solvating the metal ions are
much more mobile than are the AlCl4

� anions. In each case, the neutralizing

Figure 9 Comparison of simulated and experimental isotherms for CO2 in [C6mim]

[Tf2N] at 333K. The experimental data come from Brennecke and co-workers,84

Maurer and co-workers,85 and Scurto.86
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NO3
� anions are surrounded by four to five imidazolium cations. Chaumont,

Engler and Wipff employed the same technique to examine the solvation of
uranyl and strontium nitrates as well as uranyl chlorides in the same ionic
liquids.88 As was observed in the previous study, the anions of the ionic liquids
solvate the strontium and uranyl ions preferentially. Detailed radial distribu-
tion functions and coordination numbers were computed. This group has
extended this work by making comparisons of computed solvation ordering
with data from experimental spectroscopic studies.89

A study investigating the interface of water–ionic liquid binary systems
was done by Sieffert and Wipff,90 who carried out MD simulations in which
simulation boxes of water and the ‘‘hydrophobic’’ ionic liquid [C4mim][Tf2N]
were joined. They also premixed water and the ionic liquid and studied the
demixing process. They varied the type of water model used as well as the
overall charge on the ionic liquid ions to see how these variables can affect
the results. Long simulations (20–40 ns) were run to enable the boxes to
‘‘mix’’ (for initial conditions in which water and the ionic liquid were sepa-
rated) and ‘‘demix’’ (for initial conditions in which water and the ionic liquid
were initially mixed at high temperature). Their calculations provide a detailed
dynamic picture of phase separation as shown in Figure 10 for one such

Figure 10 Time evolution of the demixing of [C4mim][Tf2N] (designated in the figure as
[BMI][Tf2N]) and TIP3P water, starting from completely mixed liquids. Snaphots are
shown at different times, with the liquid components shown side by side for clarity.
(Image from Ref. 90 and used with permission.)
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simulation, where a nearly planar water–ionic liquid interface forms after
about 40 ns. Sieffert and Wipfff computed the total amount of water that dis-
solves in the ionic liquid phase to find that the quantity varies depending on
whether the simulation starts from an initially homogeneous ‘‘mixed’’ state or
from a heterogeneous ‘‘unmixed’’ state. For example, on the order of 60 water
molecules are present in the ionic liquid phase when a homogeneous system
demixes, but only 25 water molecules infiltrate the ionic liquid phase from
an initially heterogeneous system. This is clear evidence that the simulations
have not reached thermodynamic equilibrium and are instead exhibiting ‘‘hys-
teresis.’’ The authors recognize this, stating that full convergence is not
obtained even with the long 20–40 ns simulations. This study demonstrates
nicely the problem with MD when it comes to computing phase equilibrium;
the time-scale limitations hinder significantly the ability of systems to come to
equilibrium, particularly when an interface is present, and this is why we
believe MC methods, like the CFC MC approach discussed above, are far
superior for computing phase equilibrium. Unfortunately, fewer choices exist
when it comes to general and easy-to-use MC codes than for MD codes, and
so, MC simulations have seen less use.

Molecular dynamics simulations focused on the solvation dynamics of
a hypothetical dimer probe molecule in [C2mim][PF6] and [C2mim][Cl]
have been done by Kim and co-workers.91 The solvation dynamics were
characterized by the time correlation function of the vertical energy differ-
ence of two solute states relevant to a charge shift. The vertical energy
difference between an initial state i and a final state f, �Ei!f , is assumed
to be comprised of only Coulombic terms. The time correlation function
is computed as

Ci!f ðtÞ ¼
hd�Ei!jðtÞd �Ei!jð0Þi

hðd�Ei!jÞ2i
½11�

where the angle brackets refer to ensemble averages and

�Ei!j ¼ �Ei!j � h�Ei!ji ½12�

These authors find that there is a very fast mode that causes the correlation
function to decay by about 70% in the first 0.2–0.3 ps at 400K. Rapid oscilla-
tions of the correlation function exist in this regime, with a frequency of
roughly 26 ps�1. This mode is attributed to the vibration of the anions in their
first solvation shell. A very slowly decaying multiexponential portion of the
correlation function also exists. The authors find that the short time dynamics
are dominated by the anion motion, which is mostly translational in nature.
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There is a huge disparity between the cation and anion dynamics, a feature
first observed for [C4mim][PF6] by Morrow and Maginn.49

To assess the polarity of the ionic liquids, Kim’s group91 computed
the average energy difference between a nonpolar probe solute and an
ion-pair solute in which formal charges of þ1 and �1 were placed on
the dimer atom centers. This energy difference is expected to give qualita-
tively similar results as those obtained using spectroscopic probes of
polarity. The calculations result in large blue shifts that are qualitatively
similar to experimental observations and are consistent with the known sol-
vation power of ionic liquids. The reorganization free energy for transi-
tions between a nonpolar and an ion-pair solute were computed to be
45–40 kcal/mol, indicating that considerable solvent reorganization is
required for these systems.

At about the same time as this work was published, Znamenskiy and
Kobrak92 simulated the absorption spectrum of betaine-30, a commonly
used solvatochromic probe molecule, in [C4mim][PF6]. They investigated the
interactions responsible for the solvatochromic shift. Because this shift is used
experimentally to assess solvent polarity, the calculations can thus provide a
direct window into the nature of polarity in ionic liquid systems. To conduct
the study, a single molecule of betaine-30 was immersed in a liquid containing
200 ion pairs. Twelve independent 1-ns runs were then carried out, and from
that the absorption spectrum was computed. They observe two distinct time
scales: one on subpicosecond time scales and one that is on the order of
100 ps. This result is consistent with previous simulation studies as well as
time-resolved fluorescence spectroscopy experiments.93 Although the actual
absorption spectra computed do not agree quantitatively with experimental
results, the qualitative features do.

IMPLICATIONS OF SLOW DYNAMICS WHEN
COMPUTING TRANSPORT PROPERTIES

As mentioned earlier when discussing some of the work by Margulis and
Berne,47 Del Popolo and Voth,62 and Morrow and Maginn,49 the dynamical
behavior of ionic liquid systems is complex and its behavior is characterized as
akin to that of a supercooled liquid.47 A large number of experimental and
simulation studies have been carried out recently that investigated the
dynamics of ionic liquid systems. It is not an exaggeration to say that an entire
review article could be written on this topic alone, so a comprehensive review
of that literature is not possible. Instead, we summarize briefly a few of those
results and point out some of the things to be aware of when computing
dynamic properties of ionic liquids, while referring the interested reader to
the original studies for more details.
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Recall that Del Popolo and Voth62 computed the dynamics of [C2mim]
[NO3] and saw evidence of what they termed dynamic heterogeneity. This can
be quantified using a so-called non-Gaussian parameter,94 aðtÞ, given by

aðtÞ ¼ 3

5

hj�rðtÞj4i
hj�rðtÞj2i2 � 1 ½13�

where �rðtÞ is the displacement of an ion center of mass over some time t, and
the angle brackets refer to an ensemble average. For a Gaussian distribution of
displacements, characteristic of normal liquid diffusive motion, aðtÞ ¼ 0. The
extent to which this parameter is nonzero is indicative of dynamic heterogene-
ity characteristic of subdiffusive motion. They also characterized the dynamics
by computing the van Hove correlation function, defined as

Gsðr; tÞ ¼ 1

N

XN
i¼1

d½rci ðtÞ � rci ð0Þ � r�
* +

½14�

This correlation function measures the probability that the center of mass of a
molecule is at position rc at time t given that it was at the origin, rcð0Þ, at time
0. Gsðr; tÞ exhibits Gaussian behavior at very short times due to free particle
behavior, and in the long time, hydrodynamic limit it will also be Gaussian.
Most liquids have Gaussian behavior at intermediate time scales, but super-
cooled liquids display non-Gaussian behavior at intermediate time scales
due to dynamic heterogeneity. Figure 11 shows the van Hove correlation
function and the non-Gaussian parameter for [C2mim][NO3]. At intermediate
times the non-Gaussian parameter (inset) for both the cation and anion are
nonzero, and the van Hove correlation function deviates significantly from
Gaussian behavior.

Hu and Margulis95,96 studied the dynamics of [C4mim][PF6] by carrying
out MD simulations on the neat liquid for 3 ns at 400 and 500K, and for 9 ns
at 300K. At 300K, the non-Gaussian parameter aðtÞ reached a maximum at
about 2.5 ns, while the maximum occurred at just over 100 ps at 400K, in
agreement with Del Popolo and Voth’s findings.62 From their computed van
Hove correlation function, they found that most ions diffuse more slowly
than what would be expected for Gaussian dynamics. However, a small group
of ions diffuse much faster than what is expected. Interestingly, a small num-
ber of highly mobile ions move further in 200 ps than the less mobile ions do
over 2000–3000 ps. Hu and Margulis also found that translational mobility is
totally decoupled from rotational mobility for the [PF6] anion, but the two are
coupled tightly for the [C4mim] cation. They then went on to simulate the
absorption and emission spectra of the organic probe molecule 2-amino-
7-nitrofluorene (ANF) by immersing a single ANF molecule, in both the
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ground state and excited-state, into a liquid consisting of 125 ion pairs. The
ground- and excited-state charge distributions, which were computed quan-
tum mechanically, had dipole moments of 7.73 and 18.73 debye (D), respec-
tively. All other force field terms were assumed to be the same for the ground
and excited states, thus, the method is similar to that used by Znamenskiy and
Kobrak.92 Hu and Margulis95,96 found that the emission of the probe molecule
depends strongly on the absorption wavelength, an observation that is not
found in ordinary liquids but often seen in gels. The genesis of this so-called
red-edge effect is that the solvent relaxation is much slower than the fluores-
cence time scale, and consequently relaxation takes place only in the local
environment of the solute (and not from the ‘‘average’’ solvent environment).
The solute molecules are ‘‘trapped’’ in long-lived solvent ‘‘cages’’ and so do
not relax on the time scale of excitation relaxation. When the same calcula-
tions were performed for ANF in methanol (a solvent with fast dynamics),
no absorption wavelength dependence on the emission was found. The simu-
lations confirmed the interpretations of experimental observations by Samanta
and co-workers97,98 and confirmed the presence of dynamic heterogeneities in
these systems, which have a profound influence on the system’s dynamics. Hu
and Margulis95,96 find that the dynamic heterogeneity giving rise to the red-
edge effect is nearly gone at 500K.

Figure 11 van Hove correlation function Gsðr; tÞ (line with circles) and Gaussian
approximation G0

s ðr; tÞ (solid line), for (a) [C2mim]þ and (b) [NO3]
�, evaluated at the

delay time t� in which the non-Gaussian parameter, aðtÞ, reaches its maximum. r�marks
the crossing point of Gsðr; t�Þ with G0

s ðr; t�Þ. Insets: non-Gaussian parameters aðtÞ, as a
function of time, for (a) [C2mim]þ and (b) NO3

�. (Figure taken from Ref. 62 and used
with permission.)

Implications of Slow Dynamics 457



What are the implications of these studies on the calculation of
macroscopic dynamical properties of ionic liquids? At the very least,
they suggest that one should be careful when applying standard computa-
tional techniques used for simple liquids to ionic liquids. Most of these
techniques assume ergodic behavior, but the work described above shows
this may not always be the case. Due to the sluggish dynamics of ionic
liquid systems, one should carry out very long simulations to ensure ade-
quate sampling.

Consider the simplest dynamic property one can compute, the self-
diffusivity, Ds. The standard approach for computing Ds is to conduct an
equilibrium MD simulation and accumulate the mean-square displacement
as a function of time. The self-diffusivity is then computed using the Einstein
equation:

Ds ¼ 1

6
lim
t!1

d

dt
hjrðtÞ � rð0Þj2i ½15�

where the term in angle brackets is the mean-square displacement (MSD). By
plotting the MSD as a function of time and taking the slope, one gets an esti-
mate of the self-diffusivity. The problem with Eq. [15] is that it is valid only in
the limit of ‘‘infinite’’ time, where ‘‘infinite’’ implies times much longer than
the longest relevant relaxation times. How long is this for an ionic liquid?
As the results above suggest, even at temperatures as high as 400K, these times
can be longer than 10 ns, which makes for an expensive and time-consuming
simulation. There are at least three tests one can apply to check if a system
exhibits diffusive behavior. First, one can compute the non-Gaussian para-
meter for the system using Eq. [13], making sure that the MSD is tracked
for times long enough for this parameter to reach zero. The other approaches
involve observing the MSD itself.

Figure 12 is a plot of MSD of the [C8mpy] cation at 298K, obtained
from a simulation of the neat ionic liquid [C8mpy][Tf2N].64 The dashed lines
are the individual x, y, and z components of the MSD, while the solid line is
the overall displacement. For a homogeneous system, the x, y, and z compo-
nents should all be equal, and they appear to be so for this system. A slope of
this plot can be calculated, and a self-diffusivity estimated using Eq. [15], but
the question is, does applying Eq. [15] to the data in Figure 12 give a reliable
self-diffusivity? This can be determined simply by testing whether the mean-
square displacement versus time has a slope of unity, as it must for a diffusive
system. In general the mean-square displacement will have a power law
dependence on time, according to

hjrðtÞ � rð0Þj2i / tb ½16�
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The parameter b can be computed as a function of time using the follow-
ing expression:

bðtÞ ¼ d logð�r2Þ
d logðtÞ ½17�

When b approaches unity, the system is in the diffusive regime and a reliable
self-diffusivity can be computed. When b is less than unity, the system is in
the subdiffusive regime. Figure 13 shows how b varies as a function of time
for the [C8mpy] cation. b has only reached a value of 0.6 after 3 ns, which
clearly indicates subdiffusive motion. The statistics become noisy after 4 ns,
and it appears that the system is starting to achieve diffusive behavior after
5 ns. Figure 14 shows how the ‘‘apparent’’ self-diffusivity varies depending
upon which time interval of the MSD Eq. [15] is used. At the shortest times,
the ‘‘self-diffusivity’’ appears to be about five times larger than it is when the
longest time period of the MSD is used; this is simply a reflection of the fact
that the cations exhibit ballistic motion at short times. Interestingly, if one
(erroneously) reported the self-diffusivity from a very short simulation of
this system, the resulting value would be in better agreement with experi-
ment64 than would the long-time result, again pointing out the danger of
blindly applying conventional techniques used with normal liquid systems to
ionic liquids. While no ‘‘normal’’ liquid system could be expected to show sub-
diffusive behavior over the course of a 5-ns simulation, one would expect
subdiffusive dynamics on this time scale for polymeric and glass-forming
liquids, so be forewarned to anticipate this behavior with ionic liquids. For
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this reason it may be more appropriate to adopt simulation techniques devel-
oped in the polymer community when simulating ionic liquids, rather than
applying methods commonly used for simple molecular liquids.

Finally, we note a third and rather simple test to apply to the MSD to
determine if diffusive behavior has been achieved. Diffusive behavior implies
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Figure 13 Plot of the diffusive parameter b for [C8mpy][Tf2N] at 298K, computed from
the mean-square displacement. For diffusive behavior to be observed, b ¼ 1. The system
is clearly in the subdiffusive regime. (Taken from Ref. 64 and used with permission.)
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that the molecules in question undergo a random walk. One empirical
criterion for determining if a random walk takes place is that a molecule
must move over some distance longer than a nominal length scale associated
with that particular molecule. One measure of this length scale is the maxi-
mum distance between two atoms in the molecule, given as

Rmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðri � rjÞ2

q
½18�

where ri and rj are the positions of atoms furthest apart in the molecule. For
most ionic liquids, this value is on the order of 5–10 Å. To observe diffusive
motion, a simulation should be run long enough for the MSD to reach at least
25–100 Å.2 Figure 12 shows that for [C8mpy[Tf2N] at 298K the MSD has not
reached 6 Å2 even after 5 ns. This means that, on average, most of the ions
have not even moved the length of two carbon–carbon bonds, making it highly
unlikely that diffusive motion is operative.

COMPUTING SELF-DIFFUSIVITIES, VISCOSITIES,
ELECTRICAL CONDUCTIVITIES, AND THERMAL
CONDUCTIVITIES FOR IONIC LIQUIDS

There have been several studies undertaken to compute macroscopic
transport properties of ionic liquids, despite the difficulties mentioned above.
These properties include the self-diffusivity, viscosity, electrical conductivity,
and thermal conductivity. In this section we review some of these
works, but first some background is given on how these transport properties
are computed.

The most common method for computing a transport property is to car-
ry out an equilibrium molecular dynamics simulation and compute the integral
of the appropriate time correlation function. The general formula is given as

g ¼
ð1
0

dth _xðtÞ _xð0Þi ½19�

where g is the transport coefficient and x is the perturbation in the Hamilto-
nian associated with the particular transport property under consideration and
_x signifies a time derivative. Integrals of the form given by Eq. [19] are known
as Green–Kubo integrals.99 Detailed discussions of the theory behind this
approach may be found in standard references.94,99

It is easy to show that an integrated form of Eq. [19] results in an
‘‘Einstein’’ formula similar to Eq. [15]. Thus an equivalent expression for g is

2tg ¼ hðxðtÞ � xð0ÞÞ2i ½20�
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For self-diffusivity, x is the Cartesian atom position, and the time correlation
function in Eq. [19] is of the molecular velocities. For the shear viscosity, the
integral in Eq. [19] is of the time correlation of the off-diagonal elements of
the stress tensor. For the thermal conductivity the integral is over the energy cur-
rent, and for the electrical conductivity the integral is over the electric current.99

An important implicit assumption in Eqs. [19] and [20] is that the time
over which these expressions are evaluated is much larger than the correlation
time of the variable x. This assumption is often satisfied easily for simple
liquids, where relaxation times are fast. For ionic liquids, however, we have
seen that correlation times can be very long—on the order of 10 ns or more.
Moreover, a very large separation of time scales exists for different motions of
the ions. Application of Eqs. [19] and [20] to systems with such long correla-
tion times can be problematic. Equation [19] is particularly suspect. If it is
assumed that xðtÞ obeys Gaussian statistics, the standard error in the time
correlation function is approximated as99

Error �
ffiffiffiffiffiffiffi
2t
trun

s
hx2i ½21�

where t is the characteristic correlation time and trun is the length of the simu-
lation. The problem with ionic liquids is that, even though the relevant
correlation functions decay rather quickly, it is not clear that all the relevant
dynamical processes contributing to a particular transport coefficient are being
probed on this time scale. An example of this was demonstrated clearly by
Urahata and Ribeiro100 who computed various single-particle time correlation
functions for [C1mim][Cl] (see Figure 15) and showed that a vast separation of
time scales exist in this system. The correlation functions associated with the
ring center of mass and the alkyl chain dihedral angles decorrelate quickly.
However, reorientational motion of the ring takes place on time scales that
are orders of magnitude slower. Not surprisingly, the mean-square displace-
ment over these time scales also shows distinct regions.

Computing a transport coefficient to within 1% accuracy requires a
simulation that is several orders of magnitude longer than the relaxation
time, assuming Eq. [21] is valid. With ionic liquids, this is challenging for
properties such as the viscosity because the high viscosity is the result of a
low modulus and a long relaxation time. Thus the stress correlation function
is low amplitude but long ranged in time and easily overwhelmed by the noise
associated with rapid intramolecular modes that have nothing to do with the
long-time relaxation processes.

The first attempt to compute the self-diffusivity of an ionic liquid was by
Hanke and co-workers,30 who determined the mean-square displacement of
[C1mim][Cl] over 15 ps and extracted a self-diffusivity using Eq. [15]. As we
now know, this time frame is almost certainly too short a simulation to
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observe diffusive motion (the mean-square displacement over this time interval
was about 0.5 Å2). Margulis and co-workers47 computed the self-diffusivity
for [C4mim][PF6] over a similar time scale of about 40 ps. What is interesting
is that these (and other calculations from that time period) give estimated self-
diffusivities that are of the same order of magnitude as what has been deter-
mined experimentally using NMR;101 such agreement can be taken as being
fortuitous. As mentioned in the last section, Cadena and co-workers64 showed
in a combined experimental and molecular modeling study that for alkylpyr-
idinium ionic liquids with the [Tf2N] anion, simulations longer than 5 ns are
required to obtain reliable self-diffusivites near room temperature conditions.
As a result, much of the recent work has focused on computing transport
properties at elevated temperatures where the simulations are much faster.

Earlier we mentioned that Voth and co-workers63 conducted equilibrium
MD simulations on [C2mim][NO3] at 400K and computed the self-diffusivity
and shear viscosity using both a fixed charge and polarizable force field. They
computed the viscosity not from integrating the stress–stress autocorrelation
function as is normally done, but rather from integrating the so-called transverse
current correlation function, details of which are found in a work by Hess.102

They used the standard Einstein formula (Eq. [15]) for the self-diffusivity
and were careful to ensure that diffusive behavior was achieved when comput-
ing the self-diffusivity. Their calculated values of ca. 1� 10�11 m2=s for the
polarizable model and ca. 5� 10�12 m2=s are reasonable. The finding that the
polarizable model yielded faster dynamics than with the nonpolarizable model
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was a critical and somewhat surprising result, leading the authors to suggest
that including polarizability in the model effectively results in more screening
taking place between ions, thereby enabling the ions to move past each other
with greater ease than when polarizability is absent. This is a reasonable con-
clusion but has not been investigated further by any other groups. It is an issue
that is certain to be investigated in the near future.

The transverse current correlation function was integrated by Voth and
co-workers63 to compute the shear viscosity. Viscosities of 4.74 cP were calcu-
lated for the polarizable model, while the fixed-charge model gave a value of
6.84 cP. Both results are consistent with the experimental value of 4.42 cP.
Again, the fixed-charge model results in slower dynamics than does the polar-
izable model, and the polarizable model agrees better with the experiments
than does the fixed-charge model. This study provides convincing evidence
that the inclusion of polarizability will yield faster dynamics in a particular
model, and many authors have since commented on this. The problem is
that polarizable models are much more demanding computationally than
are fixed-charge models. It is desirable to determine if polarizable force fields
are absolutely necessary for such simulations, especially given that the
transport properties for other liquids can be computed adequately without
resorting to polarizable models.

At this point, a comment is warranted on how Voth and co-workers63

computed the viscosity because it has relevance to the other studies described
below. As discussed earlier, there is an implicit assumption in the use of equi-
librium fluctuation formulas when computing transport coefficients. It is
assumed that the time scale over which the transport coefficient is evaluated
is longer than the correlation times of the quantity being evaluated. In the
case of the work by Voth and co-workers, this was verified for the self-
diffusivity, where the slope of the mean-square displacement was taken over
1 ns. For the shear viscosity, however, integrals of the transverse current
correlation function were taken over time scales ranging from 1 to 10 ps.
The reason such short times were used is that the correlation function decays
to zero very rapidly, and so long-time integration was numerically impossible.
This does not mean, however, that the time scale relevant for viscosity is only
1–10 ps. We know that the viscosity of a liquid depends on many orientational
and rotational relaxation processes, all of which occur on time scales orders of
magnitude longer than 10 ps, calling into question exactly what is being com-
puted from integrals over such a short time. Is it the ‘‘global’’ shear viscosity?
Or, might it instead reflect some type of ‘‘local’’ apparent shear viscosity for
molecules? This is not to criticize the work of Voth and co-workers; indeed, as
shown below, several other studies have computed the viscosity in the same
way. Rather, this issue is raised for the novice modeler because it needs further
exploration by the modeling community.

Bhargava and Balasubramanian103 used equilibrium MD to compute the
self-diffusivity, shear viscosity, and electrical conductivity for [C1mim][Cl] at
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425K. They used a large system (864 ion pairs) and carried out impressively
long runs, equilibrating their system for 5 ns and performing a 16-ns produc-
tion run. To compute the shear viscosity, they took the average of 10 separate
Green–Kubo integrations, each of which was over a 1-ns time period. Like-
wise, the electrical conductivity was evaluated from 11 independent 90-ps
Green–Kubo integrations. The self-diffusivity was not evaluated from a
Green–Kubo integral, but rather from the integrated Einstein formula
(Eq. [15]). Figure 16 depicts the short- and long-time behavior of the cation
and anion mean-square displacement, obtained from a single 6-ns trajectory.
Both ions appear (by the heuristics defined earlier) to be in the diffusive
regime; the computed self-diffusivities for the anion and cation are
1:33� 10�10 and 1:88� 10�10 m2=s, respectively. It is interesting to see that
the larger cation actually has a greater self-diffusivity than the smaller chloride
anion. This curious behavior has been observed repeatedly for imidazolium-
based ionic liquids in simulations49,60,104 as well as in experiments.105,106 It
is not a universal phenomenon for ionic liquids, however, as Cadena and
co-workers showed with simulation and NMR experiments of alkylpyridi-
nium [Tf2N] ionic liquids.64 Urahata and Ribeiro100 were the first to explain
why imidazolium cations have larger self-diffusivities than the anions to which
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Figure 16 (a) Mean-squared displacement data of [C1mim] and [Cl] at 425K. The inset
shows the same data at short times. Note the larger inertial motion of chloride ions, as
expected. (b) Mean-squared displacement data from a single long trajectory of 6 ns.
(Taken from Ref. 103 and used with permission.)
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they are paired. Using MD simulations, they explained this behavior as being
due to less hindered dynamics for the cation ring translational motion along
the direction of the carbon at the 3 position in the ring. This is the same direc-
tion that exhibits the lowest frequency contribution to vibrational density of
states obtained by Fourier transforming velocity–time correlation functions.

The top plot in Figure 17 contains the stress–stress autocorrelation func-
tion for [C1mim][Cl] at 425K calculated by Bhargava and Balasubrama-
nian.103 The rapid oscillations are due to high-frequency intramolecular
motions of the cation. The correlation function shows a rapid short-time decay
but a very slow long-time decay, as can be seen in the bottom graph in
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Figure 17 (a) Stress–stress correlation function for [C1mim][Cl] at 425K. (b) Estimated
viscosity from integrating the stress–stress correlation function. Notice the difference in
time scales. (From Ref. 103 and used with permission.)
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Figure 17 where the convergence of the Green–Kubo integral is plotted.
Despite the fact that the actual stress–stress correlation function has essentially
reached zero after about 3 ps, the integral itself is still increasing after 500 ps.
This behavior is entirely consistent with the results of Urahata and Ribeiro
(shown in Figure 15), and the other dynamical studies discussed earlier. There
is a large separation of time scales for different motions, so computing a trans-
port coefficient that depends on these different modes requires time scales
longer than the longest relevant relaxation time. A similar observation was
made by Rey-Castro and Vega for [C2mim][Cl],107 who computed the self-
diffusivity, shear viscosity, and electrical conductivity using equilibrium MD
over a temperature range of 380–486K. These authors improved their
estimates by fitting their time correlation function results to empirical analytic
expressions and then integrating those expressions.

Before leaving the topic of Green–Kubo integrals for transport proper-
ties, we mention briefly the characteristics of the electric current correlation
functions that are used to compute the electrical conductivity. Figure 18 shows
the electric current and velocity autocorrelation functions for [C2mim][Cl] at
486K and 1 bar. The current fluctuations decay rapidly and appear to vanish
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Figure 18 Normalized electric current autocorrelation function of [C2mim][Cl] at
486K and 1 bar (bold solid line); total velocity autocorrelation function (dashed line);
and difference between them (gray). The inset shows the running integral of the
electrical conductivity (gray line), together with the best-fit exponential decay function
(black line). (From Ref. 107 and used with permission.)
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within 1 ps. The resulting time integral of the correlation function is affected
by the large statistical noise (see inset of the figure), and, therefore, the accu-
racy in the estimated values of the electrical conductivity is poor; at the two
lowest temperatures the uncertainties are of the same order of magnitude
as the conductivity.107 Estimated conductivities for this system are about
0.1 S/cm, which is within an order of magnitude or so of the expected value.

The point we make here is that it is unclear whether a transport property
can be computed from a time integral over less than 100 ps in a liquid having
widely varying dynamical time scales, some of which are in the nanosecond
time scale. In general, it has been found that viscosities and conductivities
computed using Green–Kubo integrals tend to result in slower dynamics (higher
viscosities, lower conductivities) than what is observed experimentally, an
effect that is often attributed to the neglect of polarizability. Another
overlooked factor, however, could be with the methods themselves; because
short-time integrals are incapable of capturing the contribution that long-
time relaxation processes have on a transport property, it may be that these
methods are only probing a ‘‘local’’ transport characteristic of the system.
Such behavior is well known in the polymer melt literature, where relaxation
times are quite long.108 It is not that the methods themselves are ‘‘incorrect,’’
it is just that numerically evaluating the integrals accurately is difficult and
can lead to incorrect results.

An alternative to using Green–Kubo integrals is to use either the (for-
mally equivalent) integrated Einstein formula (Eq. [20]) or to implement a
nonequilibrium method. In both cases, the appropriate response function
can be averaged over an arbitrarily long time, thereby avoiding the numerical
problems associated with Green–Kubo integrals. Use of these methods will not
necessarily reduce computation time, but they may overcome the numerical
problems associated with ionic liquid systems.

Borodin and Smith109 used equilibriumMD to compute the self-diffusivity,
viscosity, and electrical conductivity of N-methyl-N-propylpyrrolidinium bis
(trifluoromethylsulfonyl)imide ([C3mpyro][Tf2N]) at temperatures between
303 and 393K. Importantly, in all cases they used an Einstein-type equation
to compute the transport coefficients. They were extremely careful in the way
they equilibrated the system; production runs varied from 8ns at the highest
temperature to 16 ns at the lowest temperature. They also developed and uti-
lized a many-body polarizable force field for this system. Figure 19 shows the
computed self-diffusivites compared against NMR values from Nicotera and
co-workers.110 The agreement is outstanding. Figure 20 shows that the electri-
cal conductivity also matches unpublished experimental data collected by
Henderson of the U.S. Naval Academy quite well. Borodin and Smith were
not able to make direct comparisons between their computed viscosities and
experimental results, however, due to a lack of experimental data at which
temperatures the simulations were run, though extrapolated values appeared
reasonable. The results of this study demonstrate that transport coefficients
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can be computed with quantitative accuracy. The distinguishing features of
this work are that long simulations were used, as was a polarizable model
and transport coefficients were computed with Einstein-type transport equa-
tions, in which averages were collected over long times. How important are
each of these factors in determining the value of the transport coefficient?
There has been no systematic study to answer this question to date, but it is
obviously an important question that needs to be addressed.
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Figure 19 Computed self-diffusivity of N-methyl-N-propylpyrrolidinium bis(trifluor-
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More recently, Bhargava and Balasubramanian111 proposed a refined
force field for [C4mim][PF6]. The main modification they made is to treat
the total charge on the cation and anion as an adjustable parameter. They
found that by scaling the total charge to þ0:8 e and �0:8 e, they were able
to achieve better agreement between computed liquid structure and that
obtained with ab initio MD simulations results (see below). They also
obtained better agreement between computed and experimental surface ten-
sions. Importantly, the self-diffusivities they computed from the Einstein
relation were roughly a factor of 10 higher than what was obtained with a
force field in which charges on the cations and anions were formally þ1 e
and �1 e. The agreement between calculated and experimental self-diffusiv-
ities is excellent. They attribute this to the fact that the reduced total charge
is a better model for the actual charge distribution in the condensed phase,
thereby approximating the screening that exists in the liquid. This suggests
(though does not yet prove) that a combination of long simulation times
over which the transport property is computed and some sort of polarizable
model (whether it be an actual polarizable model or one with effective
charges) will provide the best dynamical properties for ionic liquids.

Nonequilibrium Methods for Computing Transport
Properties

An alternative to using equilibrium MD for computing transport coeffi-
cients is to use nonequilibrium molecular dynamics (NEMD) in which a
modified Hamiltonian is used to drive the system away from equilibrium.
By monitoring the response of the system in the limit of a small perturbation,
the transport coefficient associated with the perturbation can be calculated.
There is a rich literature on the use of NEMD to calculate transport coeffi-
cients; the interested reader is referred to the excellent monograph by Evans
and Morriss112 and the review article by Cummings and Evans.113 The basic
idea behind the technique is that a system will respond in a linear fashion to a
small perturbation. The following linear response theory equation is
applicable in this limit:

J ¼ �LrX ½22�

where J is the response, X is the perturbation, and L is the transport
coefficient. For example, Eq. [22] takes the following form for the viscosity:

jyðpxÞ ¼ �Z
qvx
qy

½23�
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where jyðpxÞ is the momentum flux, qvx=qy is the velocity gradient or shear
rate, and Z is the shear viscosity. The most widely used NEMD approach
for viscosity calculations is the so-called SLLOD algorithm113 in which a shear
rate is imposed on the system and the resulting stress is computed. The shear
viscosity is found at a given shear rate from the following expression:

Z ¼ �Pxy

_g
½24�

where Pxy is the xy component of the stress tensor and _g is the shear rate.
There are several major advantages of using NEMD. Unlike equilibrium

MD methods that rely on small natural fluctuations in quantities such as the
stress, the ‘‘signal’’ in a NEMD simulation is often strong due to the external
perturbation: the stronger the perturbation, the stronger the signal. In addi-
tion, the computed quantity is determined by averaging the relevant response
variable for as long as required. This means that simulations much longer than
any correlation time can (in principle) be carried out. Finally, equilibrium MD
only gives a linear response value. For example, only the Newtonian (zero
shear rate) viscosity is obtained from equilibrium MD. In contrast, NEMD
enables one to compute the shear-dependent viscosity so that shear thinning/
non-Newtonian behavior can be studied. There are downsides to the NEMD
methods, however. Application of the SLLOD method for viscosity requires
special ‘‘sliding brick’’ boundary conditions and a modification to the Ewald
sum (if it is used to compute long-range Coulombic interactions), for example.
Aside from these minor technical difficulties, a bigger problem with the
SLLOD method is that it requires the calculation of the stress, a quantity
that is difficult to converge in a simulation. Finally, because applied shear rates
in simulations are typically much larger than experimental shear rates (due to
the need to obtain an adequate signal), some method of extrapolating results
to the zero shear rate limit is required if the linear response transport coeffi-
cients are to be calculated.

An alternative NEMD method has been developed that is much simpler
to implement than is the SLLOD method, particularly for charged systems
such as ionic liquids. The method is called reverse nonequilibrium molecular
dynamics (RNEMD) and was first developed as a means for computing ther-
mal conductivity114 but has also been applied to viscosity.115 It differs from
conventional equilibrium and nonequilibrium methods where the ‘‘cause’’ is
an imposed shear rate and the measured ‘‘effect’’ is a momentum flux/stress.
RNEMD does the opposite; it imposes the difficult to compute quantity
(the momentum flux or stress) and measures the easy to compute property
(the shear rate or velocity profile). The method is very simple to implement
because it only requires periodic swapping of momenta between atoms at dif-
ferent positions in the box. These swaps set up a velocity profile in the system
(i.e., a shear rate). By tracking the frequency and amount of momentum
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exchanged during the swap moves, the momentum flux is known. It is a simple
matter to combine this with the measured shear rate to compute the shear
viscosity via Eq. [23]. The method requires no modification to boundary
conditions or the Ewald sum.

We have confirmed that the RNEMD method gives identical results to
equilibrium MD and SLLOD calculations for the Lennard-Jones fluid, molten
NaCl, water, alcohols, and alkanes116 and have applied it to compute the visc-
osity of [C2mim][Tf2N] as a function of temperature and water content.117

Figure 21 shows the computed viscosity as a function of temperature. The
solid line is a Vogel–Fulcher–Tamman fit to a large number of experimental
data points. The agreement with experiment is excellent. Note that these
results were obtained with a fixed-charge model in which the cation and anion
were forced to have a formal charge of unity. The viscosity was also calculated
for mixtures of [C2mim][Tf2N] and water; it is known that water tends to low-
er the viscosity of ionic liquids dramatically, and the simulations captured this
trend well (although the drop in calculated viscosity was not as great as what is
observed experimentally). Most interesting is that the drop in viscosity
observed experimentally and in the simulations is less than what would be pre-
dicted from simple empirical correlations. The conventional wisdom that
small amounts of water dissolved in ionic liquids causes some inordinately
large drop in the viscosity is not true; water does not decrease the viscosity
as much as would be expected from ‘‘ideal’’ mixture viscosity models. The cal-
culations show that water forms hydrogen-bonded clusters in the ionic liquid.
As a result, the molar volume of the mixture remains somewhat lower than
what would occur if the water had been mixed ideally (uniformly) with the
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Figure 21 Computed viscosity as a function of temperature (symbols) compared to a
correlation of a large number of data points (solid line) for [C2mim][Tf2N]. (Results are
from Ref. 117.)

472 Atomistic Simulation of Ionic Liquids



ionic liquid. As a consequence, the viscosity, which is sensitive to the liquid’s
density, does not drop as much. The calculations predict that mixtures of ionic
liquids and nonpolar species, which would not cluster as easily as water, will
actually decrease the viscosity of the mixture more than does water.

The RNEMD method has also been used to compute the thermal con-
ductivity of 1-ethyl-3-methylimidazolium ethylsulfate ([C2mim] [EtSO4]) as
a function of water content118 using the simple point charge (SPC) model
for water.119 We are unaware of any experimental thermal conductivity
data for this system, and we have not seen any previous thermal conductivity
simulations for any other ionic liquids. Table 1 shows the computed values at
348K. Note that the experimental thermal conductivity of pure water at this
temperature is 0.66W/(m K). Thus the SPC model overpredicts the thermal
conductivity of pure water by nearly 30%.

Only a few experimental measurements of ionic liquid thermal conductiv-
ity exist. For example, [C2mim][BF4] has a value of 0:193� 0:006W/(m K) at
350K,120 while [C4mim][PF6] has a thermal conductivity of 0:147� 0:007W/
(m K) at 335K.121 The computed values for [C2mim] [EtSO4] thus appear to be
reasonable. Note that the thermal conductivity of the pure ionic liquid is much
lower than that of water, and, it remains low even at a water mole fraction
of 0.75.

To summarize, less work has been done on modeling transport proper-
ties of ionic liquids than on modeling properties such as liquid structure and
density, but this area of research is undergoing rapid developments. We have
emphasized here that one must be very careful when computing transport
coefficients about the underlying assumptions being made. First, simulations
must be run for times longer than the relevant dynamical relaxation processes
in the liquid; at lower temperatures, these times can exceed 10 ns. Second,
we argued against using the Green–Kubo integration methods because of
the numerical inaccuracy associated with conducting lengthy integrations
of time correlation functions that fluctuate near zero. Either integrated
Einstein-like formulas or NEMD techniques should be used. Third, polariz-
ability in a force field tends to increase the dynamics of the system, but it
has not been shown that inclusion of polarizability is necessary to obtain

Table 1 Computed Thermal Conductivities for [C2mim][EtSO4] as a
Function of Water Content at 348K

Mole Fraction Water Thermal Conductivity (W/mK)

0.00 0:167� 0:002
0.26 0:176� 0:003
0.50 0:187� 0:003
0.75 0:242� 0:005
1.00 0:85� 0:01

Source: From Ref. 118.
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accurate transport properties; more work needs to be done to test the accu-
racy obtained with fixed-charge versus polarizable models. Finally, when
care is taken, transport properties can be modeled accurately using atomistic
simulations. This is encouraging because it suggests that ionic liquids may not
be so ‘‘special’’ after all and that the simulation techniques developed and
applied to the study of conventional liquids can be used successfully to study
ionic liquids as well.

COARSE-GRAINED MODELS

Fully atomistic simulation of an ionic liquid is computationally demand-
ing. Using state-of-the-art computing clusters and advanced codes, a
reasonable MD simulation at a single liquid-state point may take several
days. Multiple-state points can of course be run in parallel if processors are
available. Moreover, highly parallelized MD codes such as NAMD,66

LAMMPS,122 and DL_POLY35 can speed up these calculations significantly.
MC calculations are embarrassingly parallel and can also be conducted using
a ‘‘job farm’’ approach.123 Running long enough simulations to derive reliable
thermodynamic and transport properties, especially at lower temperatures, is
still quite challenging, Although simulations of systems containing more than
10 million atoms have been carried out, ‘‘ordinary’’ calculations usually
involve no more than tens of thousands of atoms and length scales of a few
nanometers. If one is interested in computing properties that emerge only
over very long length scales (say micron scale) are greater, performing a
detailed atomistic simulation quickly becomes intractable. If having absolute
accuracy is less important than deriving a qualitative insight, then performing
detailed simulations may not be the best selection.

One approach that can be used to speed up calculations and enable lar-
ger systems to be examined is to develop a coarse-grained model of the ionic
liquid. A classical atomistic simulation can already be thought of as a coarse-
grained quantum calculation in which the detailed treatment of electronic
degrees of freedom are replaced by semiempirical analytic functions. The
type of coarse graining referred to in this section goes even further, by coarse
graining the classical atomistic model. In essence, coarse graining seeks to
eliminate nonessential degrees of freedom to arrive at a simplified representa-
tion of the system. Because there are fewer degrees of freedom when using a
coarse-grained model and, often, the interactions between degrees of freedom
are simple, calculations can be fast and very large systems can be studied for
long periods.

The literature on coarse graining is vast and cannot be treated in any
detail here. There are many examples of coarse-graining strategies for bio-
molecules124 and polymers,125 but there have not been as many studies for
ionic liquids. A tutorial on coarse graining has been published in this book
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series.126 The united-atom ionic liquid force fields30,39,56,127 are examples of
coarse-grained models. The basic idea behind this approach is to group
atoms together into single interaction sites. Usually, methyl and methylene
groups are each treated as a single site. The accuracy of a coarse-grained
model depends critically on how the model is developed. Typically, the
functional form of the model is preselected, and parameters are fit to match
some property of the fully atomistic model. If a poor choice is made for the
preselected analytical function form, then the model will fail to give accurate
results.

Wang, Izekov, Yan and Voth128 recently proposed multiscale coarse
graining (MSCG) for modeling of an ionic liquid. Their method is based on
the concept that the forces on coarse-grained sites should ‘‘match’’ as closely
as possible the forces in the atomistic sites that make up the coarse-grained
sites. To do this, an atomistic force field of the type described by Eq. [5] is
set up for an ionic liquid, and individual atoms are then ‘‘lumped’’ into
coarse-grained sites, as shown in Figure 22. An atomistic simulation is per-
formed and the forces on all the atoms associated with each coarse-grained
site are recorded. The parameters in an empirical potential function represent-
ing the coarse-grained model are then adjusted until the forces present in the
coarse-grained sites match, in a least-squares sense, the forces on the atoms
constituting the coarse-grained sites. The authors show that structural proper-
ties such as radial distribution functions agree well with the fully atomistic cal-
culations. Densities and compressibilities are also captured well, although the

Figure 22 Coarse-graining strategy used to reduce the number of interaction sites
required to model an ionic liquid. In (a) the cation is represented with four sites A, B, C,
and E, while the anion is represented with a single site D. In (b) the simplified coarse-
grained model is depicted with associated site charges. (From Ref. 128 and used with
permission.)

Coarse-Grained Models 475



dynamics of the system are overestimated significantly with the model, as is to
be expected.

Wang and Voth129 studied the local structure of the [C4mim][NO3]
system using this coarse-grained model and found that the tail groups formed
relatively stable domains at a suitable temperature and when enough attrac-
tive interactions exist between the nonpolar groups on the cationic side chain.
These domains are depicted in Figure 23. At the same time, Canongia Lopes
and Padua130 reported results using a fully atomistic model in which they also
observed ‘‘nanodomains’’ of order among polar and nonpolar parts of the
ionic liquid [Cnmim][PF6], where n is a variable length alkyl chain. They col-
or-coded different regions of the ionic liquid (shown in gray tones in Fig-
ure 24) and observed segregation among the ‘‘polar’’ and ‘‘nonpolar’’
groups. In particular, they found that as the alkyl chain length increased,
the nonpolar regions percolated the entire simulation box. This finding
caused a great deal of excitement in the experimental ionic liquids commu-
nity, and since then many experimental131 and theoretical132 studies have
been carried out to confirm and explain that ordering. Coarse-grained models
can thus provide qualitative insight into the behavior of ionic liquids and can
stimulate and guide new experimental investigations while informing us of
the details of liquid-phase organization in ways that are difficult to see experi-
mentally.

Figure 23 One snapshot of a coarse-grained representation of [C4mim][NO3] with 1000
ion pairs at T ¼ 700K with (a) all atoms, (b) tail groups only, (c) head groups only, and
(d) anions only. Notice the tail groups organize into domains. (From Ref. 129 and used
with permission.)
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AB INITIO MOLECULAR DYNAMICS

On the other end of the modeling spectrum are quantum-based methods
one can use to carry out simulations that treat the energetics of the system even

Figure 24 Snapshots of simulation boxes containing 700 ions of [Cnmim][PF6]. The
charged and nonpolar domains that form in ionic liquids are represented by dark and
light gray spheres, respectively, in boxes (b)–(f). Box (a) shows CPK coloring for the
same configuration shown in box (b) (see original publication for color). The ionic
liquids in each box are: (a) [C2mim][PF6]; (b) [C2mim][PF6]; (c) [C4mim][PF6]; (d)
[C6mim][PF6]; (e) [C8mim][PF6]; (f) [C12mim][PF6]. (From Ref. 130 and used with
permission.)
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more fully than is done with atomistic classical simulations. Whereas quantum
calculations are implemented regularly to develop the classical force fields used
in condensed-phase simulations, one can also conduct simulations in which a
quantum calculation is used to compute the energy and forces on each atom
present in the system. Such methods go by various names including ab initio
molecular dynamics or first-principles molecular dynamics and have become
popular since the release of easy-to-use software. Two of the more commonly
used programs are CPMD133 and SIESTA,134 both of which use density func-
tional theory with pseudopotentials. Because ab inito MD is significantly more
demanding of computational resources than is classical MD, only very small
system sizes can be examined and only for very short periods of time. This
limits its usefulness significantly when it comes to computing properties of
ionic liquids. Moreover, although ab initio methods are in principle ‘‘exact,’’
in practice various approximations go into the methods used in ab initio MD,
and the treatment of attractive dispersion interactions in density functional
theory is questionable. Nevertheless, the calculations can provide some insight
about local interactions present in these systems that could be useful in under-
standing solvation and reaction.

Del Popolo, Lynden-Bell and Kohanoff135 conducted the first ab initio
MD calculation of a condensed-phase ionic liquid in 2005. They modeled
[C1mim][Cl] using the SIESTA code. Although they state that this is a room
temperature ionic liquid, it is actually a solid at room temperature, but it
does melt below 100�C and so fits our definition of an ionic liquid. The
bulk of their calculations were on eight ion pairs, with six trajectories, each
run for up to 7 ps. It is impossible to equilibrate a system in only 7 ps due
to the slow dynamics of ionic liquids. Therefore, classical simulations were
first run to generate equilibrated systems, and then these configurations
were used as initial conformations for the SIESTA runs. The authors simulated
the crystalline phase and liquid phase and examined overall structure and
orientation of the phases. Later, Bhargava and Balasubramanian136 carried
out CPMD simulations on 32 ion pairs of [C1mim][Cl]. They computed the
liquid structure and found good agreement between quantum-derived radial
distribution functions and those obtained from classical MD. They also com-
puted the vibrational density of states from the Fourier transform of the velo-
city autocorrelation function and made frequency assignments for each of the
modes. As was the case with the work by Del Popolo, Lynden-Bell and Kohan-
off,135 however, deuterium was substituted for hydrogen to enable larger time
steps to be taken, and so the calculated frequencies are shifted.

Ab initio MD methods are certain to gain popularity as computational
power grows, but they are presently too expensive to use to obtain quantita-
tive estimates of properties. Quantum MD is most useful for computing
spectra, for helping validate and improve classical force fields, and for
studying reactivity in ionic liquids, something classical simulations cannot do.
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HOW TO CARRY OUT YOUR OWN IONIC LIQUID
SIMULATIONS

Can anybody perform an atomistic simulation of an ionic liquid? The
answer to this question is a qualified ‘‘yes,’’ but it calls to mind the old joke
that just because you can buy a knife, it does not mean you can be a surgeon.
Likewise, just because someone can install a MD or MC software program
does not mean that they will be able to obtain meaningful results by running
the code. Like any aspect of science, be it experimental or computational,
there is a learning curve that must be overcome before you get to the point
where you can obtain meaningful results. In the ‘‘old days’’ when this author
began molecular modeling research, there were only a few books available and
most of the ‘‘tricks of the trade’’ were passed on by word of mouth. The
Reviews in Computational Chemistry series had just begun in response to
this situation, and the Internet consisted of ARCHIE and Gopher searches.
Therefore, if you wanted to do molecular modeling you bought a book such
as Computer Simulation of Liquids by Allen and Tildesley99 and wrote your
own code on an expensive (and therefore, usually shared) Unix workstation. In
other words, the activation barrier for modeling was high, and those who paid
the energy penalty were usually pretty sophisticated programmers and mode-
lers by the time they had completed a simulation. Thanks to the prevalence of
commercial and open-source software, graphical user interfaces, and instant
downloads, a novice can set up and start running a simulation in an afternoon,
while 15 years ago it might have taken several months just to get started. This
development is a good thing, but it brings forth the warning that care must be
taken so that the results being generated are meaningful and interpreted cor-
rectly. In this section, some guidelines and tips are provided for those new to
modeling and who want to conduct classical simulations of ionic liquids.

The first question a new user needs to answer is: What do I want to get
out of a simulation? The answer to this question really dictates the type and
level of sophistication needed for the simulation. If you are interested in liquid
structure or basic volumetric properties, either MD or MC methods will do
just fine. If you need information on dynamics, then only MD will do. If
you are more interested in thermodynamic phase behavior, however, MC is
the best tool to use. These statements seem benign, but if you are new to mod-
eling you should also be aware that many modeling researchers are passionate
advocates of either MD or MC, but not both. They tend to use only one of
these methods and reject the other method, probably because they are so
heavily invested in the one method they use. The arguments about which
method is ‘‘best’’ brings to mind (to this author at least) the fervor with which
people argue over whether ‘‘Windows’’ or ‘‘Mac’’ is better. Our group is
agnostic about which simulation method is better, and so we choose the right
tool for the problem at hand. We think you should do the same.
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What Code?

As is apparent from the discussion of previous work, the most popular
simulation method in use right now to study ionic liquids is by far MD. Conse-
quently, very little phase behavior work has been done on ionic liquids but much
has been done on computing volumetric properties, liquid structure, and
dynamics. Part of the reason for this state of affairs is that there are a large num-
ber ofMD codes available for free or at very low cost. Some of the more popular
ones that have been used for ionic liquid simulations include DL_POLY,35

NAMD,66 CHARMM,137 LAMMPS,122 GROMACS,138 AMBER,139 and
MDynaMix.61 Each has a different input and output format, and loading the
correct force field parameters and other input commands can be tricky. Fortu-
nately, each program has reasonably good documentation and a large user base
that is good about answering questions. Each of the aforementioned programs
has strengths and weaknesses, so your choice of software will depend, to some
extent, on what properties you want to compute. We note in passing that com-
mercial vendors market software that can be used to run simulations of ionic
liquids. The advantage of using commercial software is that they come with
easy-to-use interfaces and more support; in our experience, however, these
codes tend to lag behind their open-source and academic rivals in terms of speed
and innovative features. Those companies all have sufficient promotional mate-
rials available so there is no need to discuss their products here, and we focus
only on noncommercial codes. For full disclosure, our group uses our own soft-
ware developed in-house over many years. For large-scale MD calculations, we
also use NAMD and LAMMPS.

NAMD is a very fast parallel MD code that scales to hundreds of pro-
cessors on the right architecture machine. On commodity clusters it scales
nicely to 32–128 processors. It is the recipient of the 2002 Gordon Bell award
and is well supported and documented by the Theoretical and Computational
Biophysics group at the University of Illinois. It may be downloaded from that
group’s website (http://www.ks.uiuc.edu/Research/namd/). NAMD has as its
focus biophysics, so is not necessarily designed with ionic liquids in mind. It
mainly uses the protein data bank molecular structure format for input and
output of coordinates, which can become a bit unwieldy for ionic liquids. It
is helpful to construct molecules with standard molecular drawing software
and generate the requisite pdb files this way. NAMD is free and the source
code (written in Cþþ) is distributed with the binaries, though we find modi-
fication of the source code to be a daunting task. It is compatible with the
popular molecular rendering package VMD140 developed by the same group
at Illinois. Our group has used NAMD for several years whenever we needed
to run long MD simulations, and we find it to be efficient and relatively easy
to use.

LAMMPS is also a well-parallelized and fast MD code. It was designed
more for materials modeling and so in many ways is better suited than NAMD
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for ionic liquids simulations. It is capable of modeling the liquid, solid, or gas-
eous state. It can model atomic, polymeric, biological, metallic, granular, and
coarse-grained systems using a variety of force fields and boundary conditions,
thus making it more flexible (in our view) than NAMD. LAMMPS is distrib-
uted as an open-source code under the terms of the GNU general public
license. Current versions (last major release, or upgraded with all subsequent
bug fixes and new features, or older FORTRAN90/FORTRAN77 versions)
can be downloaded directly from the LAMMPS website (http://lammps.
sandia.gov/). The last major release is also available on SourceForge. The pri-
mary developers of LAMMPS are Steve Plimpton, Paul Crozier, and Aidan
Thompson at the Computer Science Research Institute, Sandia National
Laboratory, although many others have contributed to the code. LAMMPS
is written in Cþþ and is relatively easy to add to or modify, at least compared
to NAMD. Becasue it is an open-source code, the authors encourage others to
add features to LAMMPS, and in fact there are dozens of people around the
world who have added features to LAMMPS and are listed now as ‘‘co-
authors’’ of the code. LAMMPS has many nice features, including methods
for computing the viscosity with nonequilibrium MD and the ability to use
parallel tempering and hybrid Monte Carlo.

DL_POLY is a parallel molecular dynamics simulation package devel-
oped at Daresbury Laboratory by William Smith, T. R. Forester, and Ilian
Todorov. Two versions of the code exist. DL_POLY2 uses replicated data par-
allelism and is best suited for systems containing up to 30,000 atoms and
machines with 100 processors or less. DL_POLY3 uses domain decomposition
(as does NAMD and LAMMPS) and so can handle larger systems of up to a
million atoms or more and 1000 processors. Academic institutions may obtain
a license to the code free of charge by visiting http://www.cse.scitech.ac.uk/
ccg/software/DL_POLY/. Commercial users must contact the authors regard-
ing use terms. DL_POLY is written in FORTRAN90 and can be modified by
its users. It is designed as a very general MD code, capable of simulating a
wide variety of molecule types and of using a range of different force field
functions. Right now it is probably the most widely used MD package for
ionic liquid simulations.

GROMACS (http://www.gromacs.org/) is another freely available MD
code designed primarily for biomolecules but capable of being used for ionic
liquid simulations. GROMACS was first developed in Herman Berendsen’s
group, in the Department of Biophysical Chemistry at Groningen University.
Like LAMMPS, there are now several developers from all over the world adding
to this code. The developers have started a wiki (http://wiki.gromacs.org/index.
php/Main_Page) to help both old and new users with step-by-step instructions
for setting up and running a simulation. GROMACS is written primarily in C,
with some pieces written in FORTRAN and assembly language.

CHARMM, which stands for Chemistry at HARvard Molecular
Mechanics, is one of the oldest and most widely used MD codes. It originated
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in Martin Karplus’ group at Harvard and is used mainly for simulating biomo-
lecules, but it is flexible enough to simulate any molecular system including
ionic liquids. It utilizes the CHARMM force field, which contains parameters
for a large number of molecules. To use CHARMM for ionic liquids, the force
field file must be edited to add parameters and atom types. CHARMM has an
extensive user base with online forums to help answer almost any question.
Academic users can acquire the software from the development team. Com-
mercial users may obtain the software from Accelrys. Additional information
on CHARMM is at http://www.charmm.org/.

AMBER (Assisted Model Building with Energy Refinement)139 consists
of a package of about 50 different programs and a set of public domain
force fields. AMBER was originally developed under the direction of the
late Peter Kollman and also has a large user base, mainly in the biological
simulation area. AMBER has MD capabilities, as well as other techniques
such as free energy calculation methods, replica exchange (parallel temper-
ing) methods, and normal mode calculation procedures. AMBER is
available to academicians for a nominal fee and to commercial users for a
somewhat more significant fee. Information on AMBER is available at
http://amber.scripps.edu/.

Finally, we mention the MD code MDynaMix, which has also been used
to model ionic liquids. This program is based on the MOLDYN program cre-
ated by Aatto Laaksonen, available from the CCP5 program library,
Daresbury Lab, UK. However, starting in 1993 Alexander Lyubartsev has
been making extensive changes to the code. This code is written in FOR-
TRAN77 and performs all the standard calculations. It uses standard
AMBER/CHARMM-type force fields and can be freely downloaded at
http://www.fos.su.se/�sasha/md_prog.html.

What if you want to carry out MC simulations? Here, your options are
much more limited. Some commercial modeling packages that have Monte
Carlo features in them exist, including software sold by Hyperchem, Accelrys,
and Schrodinger. In our opinion, none of these codes are adequate for
computing phase behavior in ionic liquids. As far as we are concerned, the
best open-source Monte Carlo code for ionic liquid simulations is Towhee,123

available on SourceForge. Towhee was originally designed for the prediction
of fluid-phase equilibria using atom-based force fields and the Gibbs ensemble,
with particular attention paid to algorithms addressing molecule conformation
sampling. The code has subsequently been extended to include several ensem-
bles and many different force fields. The program contains several built-in
ionic liquid force fields, and adding a new force field from published data is
a relatively straightforward task. Towhee is maintained by Marcus Martin,
who heads a small consulting company called Useful Bias. Although Towhee
is free, Useful Bias will provide fee-based consulting on its use and extension.
Towhee is currently undergoing extensive upgrades that will make it useful for
phase equilibrium simulations of ionic liquids.
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Some of the MD codes mentioned above (such as DL_POLY, AMBER,
and NAMD) can perform thermodynamic integration and various free energy
perturbation calculations. These techniques can be used to compute excess
chemical potentials of solutes in ionic liquids and thereby obtain information
on solvation. We believe MC methods are better suited for these types of
calculations, however.

Force Fields

We have already reviewed many of the force fields used to model ionic
liquids, and there are many more we could have listed. Almost all have the
basic AMBER/CHARMM/OPLS style, which makes them compatible with
all the MD and MC codes listed above. If accounting for polarizability is
desired, only certain programs will be capable of carrying out these simula-
tions (e.g., AMBER). From a user standpoint, a common question is: How
do you know which force field to choose and how do you implement it?
This is a difficult question to answer because, as demonstrated earlier, many
different force fields and their associated parameter sets give similar properties
such as liquid density. However, as was also shown, small variations in para-
meter sets can make a huge difference in both thermodynamic and transport
properties. There is no easy way to tell which of the many published force
fields is the right one to use; depending on the property of interest, the safest
approach is to carry out benchmark calculations on systems for which experi-
mental data is available and then extend the force field to other related
systems. The best advice for now is to choose a force field from one of the
studies reviewed in this chapter in which extensive validation has been per-
formed. Parameters can then be added for new ionic liquids by following
the recipes outlined in the studies. Fortunately, there are a number of current
research efforts directed at developing more robust and automated ways of
generating reliable force fields for ionic liquids, and beginning users will be
able to draw on this work in the near future.

Data Analysis

Analyzing the output of a simulation can be one of the most difficult
aspects of molecular modeling research. At the end of an MD simulation
you are left with a huge collection of energies, forces, atomic positions, and
velocities. How do you extract from this the information you want? One
way is to write utility programs to do the analysis. There are many examples
available to help with this, and standard textbooks provide good example
codes.99,141 If you do not want to do this, then some of the codes listed above
have analysis utility tools that can help. LAMMPS, for example, has a collec-
tion of python-based pre- and postprocessing tools associated with it called
Pizza.py. It can perform animations, extract thermodynamic data, read and
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write LAMMPS input/output, and convert to other formats, among other
things. Figure 25 shows a screenshot of several of these tools in action.
DL_POLY writes output to a series of files from which the user can extract
essential data fairly easily. It also has a Java-based graphical user interface
that helps with job submission and analysis. NAMD also writes out a sum-
mary of properties, and it has a seamless interface with VMD that enables
easy visualization and animation of trajectories. Calculation of other proper-
ties such as radial distribution functions, transport properties, or most
thermodynamic properties, however, generally requires that the user write
his or her own analysis software.

Operating Systems and Parallel Computing

Most large-scale atomistic simulations take place these days in a cluster
computing environment in which a large number of commodity processors
running Linux are hooked together to make a parallel computer. Of course,
there are also specialized high-performance supercomputers that are run at
scientific data centers. For the commodity clusters, parallelization is handled
with various implementations of the message passing interface (MPI). If you
work in a university or national lab environment, then there are most certainly
experts all around you who know all about this and can help with installing

Figure 25 Screenshot of some of the features available in the analysis code pizza.py.
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and running the software. If you prefer to ‘‘do it yourself,’’ most of the codes
provide detailed enough instructions to install the software on your own if you
have a little patience. If you obtain the source code, you can in principle com-
pile and run standalone versions of the software on a desktop machine. The
Mac OS X operating system runs native Unix, so installation on this architec-
ture is just like that on a Linux machine as long as you have installed the
appropriate compilers. For Windows machines, a compiler (or programming
environment like Visual Cþþ) will be required to carry out the installation if
the code does not come with precompiled binaries. Alternatively, the Linux
emulation package Cygwin (http://www.cygwin.com/) can be installed to trick
your Windows machine into thinking it is a Linux box, and then regular Linux
installation instructions can be followed. A tutorial on high-performance com-
puting in computational chemistry was published in Volume 6 of this book
series142 and provides much useful information for the beginner.

SUMMARY AND OUTLOOK

Seven years ago, there were no examples of classical simulations being
used to study ionic liquids. Currently, a new publication on this topic appears
about every week. The tremendous growth in ionic liquids simulation is due in
part to the current popularity of ionic liquids, but the main driver for such stu-
dies is the fact that these calculations are generating useful results that are
helping us understand the physical chemistry of ionic liquids. Simulations
have given us the first detailed pictures of ionic liquid structure; they have
shown how the ions organize in the liquid phase, how solutes interact with
the ions, and that nanoscale segregation among polar and nonpolar groups
occurs. All of these predictions have been subsequently confirmed experimen-
tally. Simulations first predicted the enthalpies of vaporization of ionic liquids,
and subsequent experimental work confirmed these predictions. Simulations
have been used to study solvation dynamics and the agreement with experi-
mental spectroscopic studies has been excellent. Simulations have been used
to predict a wide range of ionic liquid properties including densities, heat capa-
cities, self-diffusivities, viscosities, electrical and thermal conductivities, and
solubilities. Many of these latter calculations were postpredictive, meaning
that they were carried out on systems for which the experimental results
were known. In general, there has been good agreement with the experiment
results, thereby establishing confidence in the simulation methods. There have
also been property calculations of ionic liquids that have not yet been made;
these predictions are still awaiting experimental confirmation. Used in this
mode, simulations are helping drive the discovery process for new ionic liquids
having properties tuned for particular applications. It is imperative that ato-
mistic simulations and experimental studies become complementary tools in
the search for both fundamental understanding and practical application of
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ionic liquids. This tutorial is intended to encourage and facilitate the adoption
of simulation techniques and protocols by additional ionic liquid researchers
to further our understanding of these fascinating substances.
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Bond, S. D., 280, 363

Borchers, C., 81
Börnsen, K. O., 32

Borodin, O., 491

Bortz, A. B., 356
Bostick, D. L., 273

Botti, S., 154

Bouhy, M., 151

Bour, P., 153
Bowen, J. P., 414

Bowen, K., 83

Bowler, D. R., 278, 354

Bowron, D. T., 488
Boyd, D. B., 32, 83, 85, 86, 217, 275, 278,

279, 355, 414, 415, 493

Boyd, R. J., 82

Boys, S. F., 32, 85
Brana, M. F., 31

Branchadell, V., 30

Brand, J. D., 31
Brandbyge, M., 164, 274, 275

Brandt, A., 276, 277, 279, 416

Braun, R., 489

Braun-Sand, S., 274
Brause, R., 150

Bray, A. J., 216

Breiner, B., 155

Breneman, C. M., 488
Brennecke, J. F., 486, 487, 488, 490

Brenner, D. W., 354

Brenner, S. C., 277
Briggs, E. L., 275

Briggs, J. M., 279

Briggs, W. L., 277

Brigo, A., 283
Broclawik, E., 152

Broker, G. A., 486

Brooks, B. R., 38, 414, 493

Brooks, C. L., 414
Broughton, J. Q., 356, 360, 361, 362

Brown, S. T., 36

Browne, D. A., 159

Bruccoleri, R. E., 38, 414, 493
Brueckner, K. A., 155

Brunger, A., 414

Brunschwig, B. S., 148, 151
Brupbacher, T., 87

Buggeln, R. C., 355

Buisine, E., 31

Bukowski, R., 38, 84
Bulatov, V. V., 363

Bulla, R., 221

Author Index 497



Bünner, M., 160

Bunker, A., 356
Burger, T., 492

Burgin, T. P., 275

Burke, A. R., 149
Burke, K., 147, 151, 156, 157, 158, 159, 160,

161, 162, 164, 165, 275, 366

Burley, S. K., 30

Burnham, C. J., 90, 489
Burnus, T., 163

Burton, N. A., 36

Burykin, A., 273, 274

Busath, D. D., 284
Bush, M. L., 355

Butkus, E., 154

Byun, K. S., 366

Cabral, B. J. C., 152

Cacho, M., 31

Cadena, C., 489, 490
Cadene, M., 273

Cai, W., 363

Calais, J.-L., 85

Caldwell, J. W., 38, 414, 488
Calleja, M., 281

Calvo, M. P., 414

Cammi, R., 153

Campbell, E. B., 273
Campbell, T. J., 365

Campostrini, M., 218, 219

Canongia Lopes, J. N., 488, 489, 492
Cao, C., 366

Cao, J., 31

Cao, Y., 34

Car, R., 164, 165, 492
Cardenas, A. E., 280, 418, 419

Cardy, J., 216

Carini, J. P., 216

Carissan, Y., 355
Carles, S., 81

Carmer, C. S., 366

Carrington, T., 149

Casimir, H. B. G., 84
Castleman, A., 83

Carter, E. A., 34, 285, 364

Case, D. A., 38, 414, 419, 493
Casida, M. E., 150, 151, 157, 158, 161, 162

Castellano, R. K., 30, 81

Castner, Jr., E. W., 151

Castro, A., 150, 153, 156, 157, 163, 281
Catarello, D. P., 415

Causa, M., 148

Cave, R. J., 151, 160, 161

Ceccarelli, M., 273, 418
Celani, P., 34

Cencek, W., 38

Ceperley, D. M., 155, 219, 220
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Schütz, M., 34, 35, 37, 88

Schwab, C. M., 82
Schwartz, S. D., 417

Schwegler, E., 281

Scoles, G., 36

Scott, L. R., 277, 279
Scurto, A. M., 490

Scuseria, G. E., 32, 34, 88, 278

Seaton, M. J., 159

Sebastiani, D., 37
Sebek, J., 153

Seddon, K. R., 486, 488

Sedgewick, R. D., 284

Segall, D. E., 357
Seibel, G., 38

Seidl, E. T., 35, 36

Seijo, L., 282
Selloni, A., 149

Selzle, H. L., 31, 32, 87

Seminario, J. M., 157

Sen, K. D., 147
Senenko, A., 38

Sengers, J. V., 217

Senthil, T., 217

Seoane, C., 154
Sept, D., 283

Serrano-Andres, L., 160

Seth, M., 154
Sethna, J., 216

Sethumadhavan, R., 31

Seversen, C. E., 89

Sewer, A., 220
Shadwick, W. F., 159

Shah, J. K., 488, 490

Shahar, D., 216

Shakespeare, W., 165
Shalloway, D., 420

Sham, L. J., 147

Shan, D. B., 358

Shan, X., 89
Sharma, A., 282

Shastry, B. S., 219

Shavitt, I., 88
Shaw, C. L., 83

Shea, J. E., 418

Sheehy, B., 163

Shen, J., 152
Shen, L., 150, 151

Shenoy, V. B., 357, 358, 359, 360

Shephard, M. S., 363

Sherer, E. C., 36
Sherrill, C. D., 32, 33, 34, 35, 36, 38, 83, 85,

86, 87, 88

Shi, D. L., 357
Shi, W., 490, 492

Shiari, B., 359

Shilkrot, L. E., 359

Shim, Y., 490
Shimojo, F., 282, 365, 366

Shimokawa, T., 358

Shin, C. S., 359

Shukla, M. K., 149
Si, Q., 217

Siam, N., 152

Sicilia, E., 150

Sickafus, K. E., 356
Siebbeles, L. D. A., 149

Sieber, S., 365

Sieffert, N., 490
Siepmann, J. I., 492

Sierka, M., 36

Sijbesma, R. P., 82

Simak, S. J., 162
Simeon, T., 31

Simmerling, C., 419, 493

Simmons, J. H., 364

Simmons, J. P., 360
Simon, D., 150, 153

Sinclair, J. E., 355, 360

Singh, J., 30
Singh, U. C., 365

Sinnokrot, M. O., 32, 33, 38, 83, 87

Sirois, S., 88, 89

Siva, S., 418
Skalski, B., 153

Skeel, R. D., 415, 416, 419, 489

Sknepnek, R., 218

Skowronek, S., 164
Skylaris, C. K., 278, 281, 282

Slabach, T., 415

Slater, J. C., 86, 354

Sligh, J. M., 81
Smart, J. L., 283

Smit, B., 354, 493

Smith, B. D., 83
Smith, D. W., 85

Smith, G. D., 31, 491

Smith, G. S., 358

Smith, J., 414
Smith, J. C., 488

Smith, J. L., 217

Author Index 515



Smith, W., 487

Snijders, J. G., 161, 162
Snurr, R. Q., 489

Soler, J. M., 281, 492

Solling, T. J., 150
Sommerer, T. J., 355

Sondhi, S. L., 216

Song, Y. H., 280
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