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   Background 

 Over the last decade, the interest in microRNAs (miRNAs) and their function 
as post-transcriptional regulators has grown signi fi cantly. It is now known 
that tumour growth in diverse cancer types and the development of metastasis 
can be mediated, if not caused, by dysfunctional regulation by miRNAs. 
There is subsequently an ever growing number of publications that link miR-
NAs to cancer (Fig.  1 ), focussing on the involvement in tumorigenesis and 
metastagenesis, including discussions about their role as biomarkers and 
potential role as therapeutic targets.  

 MiRNAs play diverse roles in the cell and are involved in many cell func-
tions, like the cell cycle or proliferation, but they also regulate processes, like 
development and angiogenesis. Therefore, dysregulation of miRNA expression 
or alterations in the miRNA biogenesis can lead to pathogenesis, including mul-
tiple types of cancer. Important to note is that there exist more than 1,000 differ-
ent miRNAs in human, each of them capable of regulating the expression of 
multiple genes. Thus, this abundant class of non-coding RNAs has a remarkable 
impact on gene regulation on a post-transcriptional level. With respect to cancer, 
some miRNAs are classi fi ed as tumour suppressors because they negatively 
regulate oncogenes. Others are  oncomirs  because they negatively regulate 
tumour suppressors. Recently, some miRNAs have also been associated with the 
development of metastasis and are typically referred to as  metastamir .  

   The Systems Perspective on microRNAs in Cancer 

 Since the  fi rst miRNAs have been discovered, bioinformatics and systems 
biology approaches have paved the path for advancements in the  fi eld. 
Computational tools have been developed and are used for the identi fi cation 
of new miRNA genes, the prediction of potential mRNA targets, the functional 
categorization of target sets and for building mathematical models aiming for 
the interpretation of miRNA regulation in complex cellular networks, e.g. those 
associated with cancer. 

 It becomes therefore more and more evident that the study of single miRNA 
target interactions (one-on-one miRNA target regulation) is not appropriate. 
Instead, the joint repression of targets by multiple miRNAs and the multiplicity 
of targets affected by single miRNAs need to be investigated. One comes to 

    Preface      
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  Fig. 1    Number    of PubMed entries for ‘microRNA + cancer’ in total ( light blue ) and per 
year ( dark blue )       

the conclusion that understanding the role of miRNAs in cellular function and 
cancer is only possible when considering them as parts of complex regulatory 
networks. 

 Systems biology provides an appropriate approach to investigate the regu-
lation of those complex miRNA-regulated networks composed of dozens to 
hundreds of proteins, genes and miRNAs. Moreover, a dynamical systems 
perspective becomes indispensable when dealing with networks enriched 
by non-linear motifs, including feedback and feedforward loops, which 
induce non-intuitive regulatory patterns like ultrasensitivity, bistability, or 
oscillations.  

   Scope of This Book and Target Audience 

 This edited volume re fl ects the current state of knowledge about the role of 
miRNAs in the formation and progression of solid tumours. The main focus 
lies on computational methods and applications, together with cutting edge 
experimental techniques that are used to approach all aspects of miRNA 
regulation in cancer. We are sure that the emergence of high-throughput 
quantitative techniques will make this integrative approach absolutely 
necessary in the near future. 

 This book will be a resource for researchers starting out with cancer 
miRNA research, but is also intended for the experienced researcher who 
wants to incorporate concepts and tools from systems biology and bioinfor-
matics into his work. Bioinformaticians and modellers are provided with a 
general perspective on miRNA biology in cancer, and the state-of-the-art in 
computational miRNA biology.  
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   Structure 

  Chapters 1–4.  The  fi rst four chapters of this book provide an overview about 
miRNA genomics, biogenesis and mechanisms of target regulation and 
discuss state-of-the-art methods for the study of miRNAs in cancer, from 
transcriptomic pro fi ling to applications in clinical practice. Computational 
tools, developed speci fi cally for miRNA research, are introduced, including 
algorithms for target prediction, bioinformatics and model-based systems 
biology approaches to investigate miRNA-regulated networks. 

  Chapters 5–8.  This part of the book presents case studies that discuss the role 
of miRNAs in various cancer types and their interaction with tumour suppres-
sors and oncogenes. Cancer speci fi c expression signatures and miRNA regu-
lated systems, relevant for tumorigenesis, metastisation and resistance to 
treatment, are discussed. These chapters nicely illustrate the interdisciplinary 
approach that combines computational approaches with wet lab experiments, 
which nowadays forms an integral part of miRNA research. 

  Chapters 9–11.  These three chapters deal with advanced computational 
approaches to investigate regulatory networks, composed of miRNAs, 
transcription factors and target genes with a focus on regulatory motifs, like 
feedback and feed-forwards loops. Moreover, approaches for model genera-
tion and simulation studying dynamical aspects of miRNA-target regulation 
are introduced. 

  Chapters 12–13.  Chapter   12     provides an overview and classi fi cation of 
microRNA web resources dealing with miRNAs, their expression pro fi les, 
target genes, function and diseases associations. Chapter   13     introduces a web-
based platform that integrates CLIP-Seq and Degradome-Seq data, for the 
detection of miRNA-target pairs and the identi fi cation of regulatory modules. 

  Chapters 15–16.  These two chapters deal with methods for the analysis and 
integration of miRNA and mRNA expression pro fi les for the data driven pre-
diction of miRNA-target relationships and the inference of phenotypic asso-
ciations. Furthermore, methods for the analysis of combinatorial regulation 
of targets and pathways by miRNAs are discussed.  

   How to Read This Book 

   Biologists and Clinicians 

 Readers with prior knowledge of miRNA cancer biology can skip  Chap.     1      
and can directly proceed to the second, third and fourth chapter ( Chaps.     2      ,     3      
 and     4     ) in order to get a comprehensive overview about computational tools. 

 Depending on the reader’s interest, one can proceed with one or more of 
the specialized chapters that discuss the interplay between miRNAs and p53 

http://dx.doi.org/10.1007/978-94-007-5590-1_12
http://dx.doi.org/10.1007/978-94-007-5590-1_13
http://dx.doi.org/10.1007/978-94-007-5590-1_1
http://dx.doi.org/10.1007/978-94-007-5590-1_2
http://dx.doi.org/10.1007/978-94-007-5590-1_3
http://dx.doi.org/10.1007/978-94-007-5590-1_4


viii Preface

respectively E2F1 ( Chaps.     5      and    8     ) and the role of miRNAs in melanoma and 
in the lung ( Chaps.     6       and     7     ). 

 What follows are chapters that require the reader to have a basic under-
standing of principles in computational biology. Nevertheless, by reading 
these chapters one can get an idea of the value that bioinformatics and systems 
biology approaches have in unraveling underlying mechanisms of miRNA 
regulation in cancer. 

 Finally, web resources and tools that can be used to enrich the knowledge 
about all aspects of miRNA regulation are introduced in  Chap.     12     .  Chapter     13      
deals with a particularly interesting resource for the identi fi cation of miRNA-
target interactions.  

   Computational Scientists and Modellers 

  F or computer scientists and modellers it is in any case wise to read the  fi rst 
two chapters to get a comprehensive introduction into the  fi eld of miRNAs in 
human cancers and an overview about established applications of computa-
tional algorithms in miRNA biology ( Chaps.     1       and     2     ). Those, who are already 
familiar with miRNA-target prediction and validation methods might want to 
skip the third chapter. In any case we recommend reading the fourth chapter, 
introducing systems biology approaches that have only recently entered the 
scene of computational miRNA biology ( Chap.     4     ). Further, state-of-the-art 
developments are covered after the chapters that describe some case scenarios 
of miRNA biology and cancer. Thus, we would recommend readers with 
more interest in computational approaches to proceed with  Chaps.     9      ,     10      ,     11     , 
   14      ,     15       and     16     .     

http://dx.doi.org/10.1007/978-94-007-5590-1_5
http://dx.doi.org/10.1007/978-94-007-5590-1_8
http://dx.doi.org/10.1007/978-94-007-5590-1_6
http://dx.doi.org/10.1007/978-94-007-5590-1_7
http://dx.doi.org/10.1007/978-94-007-5590-1_12
http://dx.doi.org/10.1007/978-94-007-5590-1_13
http://dx.doi.org/10.1007/978-94-007-5590-1_1
http://dx.doi.org/10.1007/978-94-007-5590-1_2
http://dx.doi.org/10.1007/978-94-007-5590-1_4
http://dx.doi.org/10.1007/978-94-007-5590-1_9
http://dx.doi.org/10.1007/978-94-007-5590-1_10
http://dx.doi.org/10.1007/978-94-007-5590-1_11
http://dx.doi.org/10.1007/978-94-007-5590-1_14
http://dx.doi.org/10.1007/978-94-007-5590-1_15
http://dx.doi.org/10.1007/978-94-007-5590-1_16
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       1.1   miRNA    Overview 

 miRNAs were originally shown to be important 
in timing of larval development in  C. elegans , 
leading to the identi fi cation of the miRNAs  lin-4  
and  let-7   [  1,   2  ] . Our initial understanding of 
miRNA-mRNA target recognition came from 
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  Abstract 

 Mature microRNAs (miRNAs) are single-stranded RNA molecules of 
20–23-nucleotide (nt) length that control gene expression in many cellular 
processes. These molecules typically reduce the translation and stability 
of mRNAs, including those of genes that mediate processes in tumorigen-
esis, such as in fl ammation, cell cycle regulation, stress response, differen-
tiation, apoptosis, and invasion. miRNA targeting is initiated through 
speci fi c base-pairing interactions between the 5 ¢  end (“seed” region) of the 
miRNA and sites within coding and untranslated regions (UTRs) of 
mRNAs; target sites in the 3 ¢  UTR lead to more effective mRNA destabi-
lization. Since miRNAs frequently target hundreds of mRNAs, miRNA 
regulatory pathways are complex. To provide a critical overview of miRNA 
dysregulation in cancer, we  fi rst discuss the methods currently available 
for studying the role of miRNAs in cancer and then review miRNA 
genomic organization, biogenesis, and mechanism of target recognition, 
examining how these processes are altered in tumorigenesis. Given the 
critical role miRNAs play in tumorigenesis processes and their disease 
speci fi c expression, they hold potential as therapeutic targets and novel 
biomarkers.  

  Keywords 

 microRNA  •  Cancer  •  mRNA destabilization  •  3 ¢  UTR  •  Genomics  •  Deep 
sequencing  •  Post-transcriptional gene regulation  
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observations of sequence complementarity of the 
 lin-4  RNA to multiple conserved sites within the 
 lin-14  3 ¢  UTR  [  1,   3  ] ; molecular genetic analysis 
had shown that this complementarity was required 
for the repression of  lin-14  by  lin-4   [  4  ] . 
Homologues of  let-7  or  lin-4/mir-125  were there-
after shown to have temporal expression patterns 
in other organisms, including mammals, and to 
regulate mammalian development  [  5–  8  ] . Given 
their integral role in development, it was no sur-
prise that miRNAs were soon found to be impor-
tant in tumorigenesis, and since their discovery 
close to 5,000 publications associate miRNAs to 
cancer, including over 1,000 reviews (recent 
examples include  [  9–  11  ] ). miRNAs were initially 
linked to tumorigenesis due to their apparent 
proximity to chromosomal breakpoints  [  12  ]  and 
their dysregulated expression levels in many 
malignancies  [  13,   14  ] . 

 Given the wealth of rapidly accumulating 
information implicating miRNAs in cancer, to 
allow the reader to critically assess the reports 
exploring the function of miRNAs in malignan-
cies, we  fi rst review the methods used to study 
the expression and role of miRNAs in tumors, 
and then review the evidence that relates miRNA 
genomic organization, biogenesis, target recogni-
tion and function to tumorigenesis. An overview 
of miRNA cistronic expression and sequence 
similarity allows a better understanding of the 
regulation of miRNA expression and the factors 
contributing to technical limitations in accuracy 
of miRNA detection. Understanding the regula-
tory potential of miRNAs based on sequence 
similarity families and miRNA abundance allows 
evaluation of which miRNAs are important regu-
lators of tumorigenesis pathways.  

    1.2   Methods for Studying miRNA 
Genetics and Expression 

    1.2.1   miRNA Pro fi ling 

 The main methods currently used for miRNA 
pro fi ling are sequencing, microarray and real-time 
RT-PCR based approaches (reviewed in  [  15–  17  ] ). 
The input material initially used for these studies 

comprised high quality preserved fresh frozen 
samples, but recently it has been possible to obtain 
reproducible and comparable pro fi les using 
formalin- fi xed paraf fi n-embedded tissues (FFPE), 
making these archived tumor collections accessible 
for study  [  18–  20  ] . Microarrays generally provide 
fold-changes in miRNA expression between sam-
ples, with members of miRNA sequence families 
prone to cross-hybridization  [  21–  24  ] . More 
recently, calibration cocktails of synthetic miRNAs 
were used in array experiments to derive absolute 
abundance of miRNAs  [  25  ] . RT-PCR methods are 
lower throughput and require normalization (i.e. 
candidate reference genes including other small 
noncoding RNAs  [  26,   27  ] ). Mean expression nor-
malization has been suggested as an alternative 
RT-PCR normalization method for reduction of 
technical variation to allow appreciation of biologi-
cal changes  [  28  ] . If external miRNA standards are 
used for quanti fi cation (i.e.  [  29,   30  ] ), the most 
abundant miRNA, which may vary in length due to 
3 ¢  end heterogeneity, should be used as a calibra-
tion standard. Sequencing methods, besides their 
obvious potential to identify new miRNAs, editing 
and mutation events, estimate miRNA abundance 
based on frequency of sequence reads (e.g.  [  5,   7,   8, 
  31–  34  ] ). Given the dramatic increase in sequenc-
ing power, bar-coding samples can allow multiple 
specimens to be processed at the same time, reduc-
ing the cost and effort of pro fi ling, and paving the 
way for large specimen studies  [  34–  36  ] . Ligation 
biases between miRNAs and 5 ¢  and 3 ¢  adapters for 
RT-PCR ampli fi cation exist in sequencing meth-
ods, and miRNA read frequencies may not always 
re fl ect the absolute expression levels, but these 
variations are irrelevant when monitoring fold-
changes between samples. A study with a synthetic 
pool of 770 miRNA sequences showed that overall, 
these biases do not prevent identi fi cation of 
miRNAs, and allowed estimation of these biases 
 [  36  ] . For example, certain miRNAs could be over-
represented due to higher ligation ef fi ciency (such 
as miR-21, which was ~2-fold over-represented), 
while other miRNAs could be under-represented 
(such as miR-31, which was >5-fold under-
represented). However, given the increasing depth 
of sequencing, most under-represented miRNAs 
are identi fi ed with suf fi cient sequence reads to 
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allow for a statistically signi fi cant comparison 
across parallel processed samples. 

 Recent studies have compared the results 
obtained using multiple platforms  [  37  ] . A study 
of miRNA expression in liposarcoma revealed 
excellent agreement between bar-coded next gen-
eration sequencing and microarray pro fi les  [  38  ] , 
while another study of miRNA expression in 
breast cancer showed good agreement between 
bar-coded sequencing and another hybridization-
based method, Northern blotting  [  39  ] . 

 Finally, choosing the appropriate statistical 
analysis to evaluate the data depends on the meth-
odology used to obtain the pro fi les, ranging from 
established SAM analysis for microarray data 
 [  40  ] , to newly developed techniques for sequenc-
ing data  [  34,   41,   42  ] . Recent in situ hybridiza-
tion (ISH) advances allowed sensitive detection 
of miRNAs in heterogeneous tissues, de fi ning 
miRNA cellular localization  [  43–  45  ] . The poten-
tial of miRNA localization to suggest function for 
a subpopulation of cells was demonstrated early 
on, as in the case of  lsy-6  expressed in less than 
ten neurons in  C. elegans  controlling left/right 
asymmetry  [  46  ] .  

    1.2.2   miRNA Databases 
and Validation 

 It is critical to know which miRNAs are vali-
dated and have the potential to regulate cellular 
functions, especially given the frequent revi-
sions of the miRNA database, miRBase (  www.
mirbase.org    )  [  47  ] , and the dramatic increase in 
the number of novel and re-annotated miRNAs 
through the use of deep-sequencing technolo-
gies. It is extremely challenging to establish the 
validity of novel miRNAs, particularly when 
their de fi nition is based on a handful of sequence 
reads. The latest release of miRBase (version 17) 
includes 1,424 human miRNA precursors. 
Compared to version 16, version 17 includes 385 
novel human miRNA precursors, 45 name 
changes, 1 sequence revision, and the removal 
of 2 precursors. Given the recent explosion in 
acquisition of next generation sequencing 
pro fi les, miRBase has now added features to 

allow evaluation of microRNA annotation  [  48  ] . 
The database mapped reads from short RNA 
deep-sequencing experiments to miRNAs and 
developed web interfaces to view these map-
pings. This is an important step in characterizing 
the newly identi fi ed miRNAs as prototypical 
miRNAs (consisting of a hairpin structure and 
processing sites consistent with RNase III cleav-
age steps). 

 The challenge of constantly revising and 
curating existing databases based on newly 
acquired sequencing data is illustrated in two 
recent studies re-evaluating mouse and human 
miRNAs. A recent study of 60 million small 
RNA sequence reads generated from a variety of 
adult and embryonic mouse tissues con fi rmed 
398 annotated miRNA genes and identi fi ed 108 
novel miRNA genes but was unable to  fi nd 
sequencing evidence for 150 previously anno-
tated mouse miRNAs. Ectopic expression of the 
con fi rmed and newly identi fi ed miRNA hairpin 
sequences yielded small RNAs with the classical 
miRNA features but failed to support other pre-
viously annotated sequences (of the 17 tested 
miRNAs with no read evidence, only one yielded 
a single sequence read, while of 28 tested miR-
NAs with insuf fi cient number of reads, only 4 
were veri fi ed)  [  49  ] . A more recent study has re-
annotated human miRNAs based on read evi-
dence from over 1,000 human samples  [  39  ] . 
miRNAs were curated both on the basis of read 
counts, as well as patterns compatible with tradi-
tional miRNA processing, re-de fi ning prototypi-
cal miRNAs (557 precursors, corresponding to 
1,112 mature and star sequences (miRNA*, 
described in the following section), miR-451 and 
miR-618 being the only miRNAs without a star 
sequence). 269 not yet reported star sequences 
were added (compared to miRBase 16), putative 
miRNAs from miRBase, for which read evidence 
was not obtained, were ignored, and speci fi c 
miRNAs were renamed according to the read 
ratio between mature and star sequences. The 
importance of curated miRNA databases is espe-
cially evident in assessing the statistical 
signi fi cance of differentially expressed miRNAs 
to identify potential biomarkers based on 
microarray studies. Including miRNAs without 

http://www.mirbase.org
http://www.mirbase.org
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strong read evidence in such comparisons could 
skew the results.   

    1.3   Mechanisms of Alteration of 
miRNA Levels in Malignancy 

 We review miRNA biogenesis (Fig.  1.1 ) and 
illustrate which steps of the biogenesis pathway 
are linked to malignancy, starting from miRNA 
genomic localization, transcriptional regula-
tion, processing steps and post-transcriptional 
modi fi cation. There is evidence supporting the 
association of the  fi rst three processes and/or the 
factors that control them with tumorigenesis, 
whereas evidence relating post-transcriptional 
miRNA modi fi cations to cancer is not clear-cut.  

    1.3.1   General Principles of miRNA 
Genomic Organization 

 miRNAs are frequently expressed as polycis-
tronic transcripts. To date, 1,424 human miRNA 
precursor sequences have been deposited in 
miRBase  [  47  ] . Approximately one-third (497) 
of these miRNAs are located in 156 clusters, 
each measuring  £ 51 kb in the human genome 
(51 kb being the longest distance between miR-
NAs belonging to the same cluster, Fig.  1.2 ). 
These miRNA clusters are co-expressed based 
on evidence from miRNA pro fi ling data from a 
variety of tissues and cell lines  [  22,   33,   34,   49  ] . 
The genomic organization of representative 
oncogenic (miR-17 and miR-21) and tumor 
suppressor (let-7 and miR-141) sequence fami-
lies (described in following section) is illus-
trated in Fig.  1.2 . Presentation of miRNA 
pro fi les in the form of expression clusters pro-
vides a readily interpretable summary of expres-
sion data and stresses the importance of cistronic 
expression regulation; dysregulation of one 
member of the cluster should be accompanied 
by similar dysregulation of other cluster mem-
bers  [  39  ] . Since miRNA genes are frequently 
multi-copy, determining the relative contribu-
tion of each genomic location to mature miRNA 
expression is challenging.   

    1.3.2   Alterations in Genomic miRNA 
Copy Numbers and Location 

 Changes in miRNA expression between normal 
and tumor specimens are often attributed to the 
location of miRNAs in regions of chromosomal 
instability (ampli fi cation, translocation or dele-
tion), or nearby chromosomal breakpoints, ini-
tially locating 52.5% of miRNA genes in 
cancer-associated regions or fragile sites  [  12  ] . 
The miRNA cluster  mir-15a/16-1  is located in a 
frequently deleted genomic locus containing a 
putative tumor suppressor containing region in 
chronic B-cell lymphocytic leukemia (B-CLL) 
 [  50  ] . Other examples include deletion of  let-7g/
mir-135-1  in a variety of human malignancies 
 [  12  ] , ampli fi cation of  mir-17-92  cluster in lym-
phoma  [  51  ] , translocation of  mir-17-92  in T-cell 
acute lymphoblastic leukemia (T-ALL)  [  52  ]  and 
ampli fi cation of  mir-26a  in glioblastoma  [  53  ] .  

    1.3.3   Alterations in miRNA 
Transcriptional Regulation 

 Some autonomously expressed miRNA genes 
have promoter regions that allow miRNAs to be 
highly expressed in a cell-type-speci fi c manner, 
and can even drive high levels of oncogenes in 
cases of chromosomal translocation. The  mir-142  
gene, strongly expressed in hematopoietic cells, 
is located on chromosome 17 and was found at 
the breakpoint junction of a t(8;17) translocation 
to  MYC , which causes an aggressive B-cell leu-
kemia  [  54  ] . The translocated  MYC  gene, which 
was also truncated at the  fi rst exon, was located 
only four nucleotides from the 3 ¢  end of the  mir-
142  precursor, placing it under the control of the 
upstream  mir-142  promoter. In an animal model 
for Hepatocellular Carcinoma (HCC), a similar 
event placed  C-MYC  downstream of the  mir-122a  
promoter, which is active only in hepatocytes  [  55  ] . 

 Many transcription factors regulate miRNA 
expression in a tissue-speci fi c and disease state-
speci fi c fashion, and some miRNAs are regulated 
by well-established tumor suppressor or oncogene 
pathways such as TP53, MYC, and RAS (reviewed 
in  [  56  ] ). The miRNA and its transcriptional 
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  Fig. 1.1    miRNA biogenesis pathway. miRNAs are tran-
scribed by RNAPII to produce pri-miRNAs. Canonical 
miRNAs are processed by the endoribonuclease Drosha in 
partnership with its RBP partner DGCR8; mirtrons are 
instead processed by the spliceosome. The processed pre-
miRNA is transported to the cytoplasm through an export 
complex consisting of exportin 5. The pre-miRNA is sub-
sequently processed in the cytoplasm by another endori-
bonuclease Dicer in partnership with its RBP partner 
TRBP to form the  fi nal 21–23 nucleotide miRNA product. 
miR-451 is not processed by Dicer, but is rather cleaved 

by AGO2. Mature miRNAs (indicated in  red ) are then 
incorporated into AGO 1 through 4, forming miRNPs, 
also known as miRISC. miRNPs also incorporate other 
proteins, such as GW182. miRNPs are thought to direct 
miRNA mediated destabilization (i.e. through interaction 
with CCR4) or miRNA mediated translational repression 
(i.e. through interaction with ribosomes) of miRNAs 
without perfectly complementary mRNA targets. miRISC 
is thought to direct AGO2 catalyzed target mRNA cleav-
age of miRNA fully or nearly fully complementary mRNA 
targets       
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miR-25 family

miR-99a   AACCCGTAGATCCGATCTTGTG
miR-100   AACCCGTAGATCCGAACTTGTG
miR-99b   CACCCGTAGAACCGACCTTGCG
           ********* **** **** *

let-7 family

chr9

let-7f-1 let-7dlet-7a-1

2.4 kb

chr21

mir-99a let-7c mir-125b-2

50.3kb
C21ORF34
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HUWE1

chr19

mir-99b mir-125alet-7e
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WDR82

chr12

46.7 kb

let-7f-2 mir-98

let-7i

5.6 kb

mir-100 let-7a-2 mir-125b-1

miR-99 family

miR-125 family

miR-125a  TCCCTGAGACCCTTTAACCTGTGA
miR-125b  TCCCTGAGACCCT--AACTTGTGA

          *************  *** *****

1 kb

mir-200c mir-141

chr1

chr12

mir-200b mir-200a mir-429

chr17

mir-21

chr13
mir-92a-1mir-20a

mir-19b-1mir-19a

mir-18a

mir-17

chrX

mir-92a-2

mir-363

mir-20b

mir-19b-2mir-18b

mir-106a

chr7

mir-93 mir-25mir-106b

miR-17 family

miR-93    CAAAGTGCTGTTCGTGCAGGTAG
miR-106b  TAAAGTGCTGACAGTGCAGAT--
miR-17    CAAAGTGCTTACAGTGCAGGTAG
miR-20a   TAAAGTGCTTATAGTGCAGGTAG
miR-18a   TAAGGTGCATCTAGTGCAGATAG
miR-106a  AAAAGTGCTTACAGTGCAGGTAG
miR-20b   CAAAGTGCTCATAGTGCAGGTAG
miR-18b   TAAGGTGCATCTAGTGCAGTT--
           ** ****     ****** *

miR-19 family

miR-19b   TGTGCAAATCCATGCAAAACTGA
miR-19a   TGTGCAAATCTATGCAAAACTGA
          ********** ************

miR-21 0.7 kb
TMEM49 miR-21 TAGCTTATCAGACTGATGTTGA

C13orf25

MCM7

a

b

c

d

let-7a   TGAGGTAGTAGGTTGTATAGTT
let-7f   TGAGGTAGTAGATTGTATAGTT
let-7b   TGAGGTAGTAGGTTGTGTGGTT
let-7i   TGAGGTAGTAGTTTGTGCTGTT
let-7g   TGAGGTAGTAGTTTGTACAGTT
let-7c   TGAGGTAGTAGGTTGTATGGTT
let-7d   AGAGGTAGTAGGTTGCATAGTT
let-7e   TGAGGTAGGAGGTTGTATAGTT
miR-98   TGAGGTAGTAAGTTGTATTGTT
          ******* *  ***    ***

miR-141 family

miR-141    TAACACTGTCTGGTAAAGATGG-
miR-200c   TAATACTGCCGGGTAATGATGGA
miR-200b   TAATACTGCCTGGTAATGATGA-
miR-200a   TAACACTGTCTGGTAACGATGT-
miR-429    TAATACTGTCTGGTAAAACCGT-

*** **** * *****    *  

miR-92a  TATTGCACTTGTCCCGGCCTGT-
miR-25   CATTGCACTTGTCTCGGTCTGA-
miR-363  AATTGCACG-GTATCCATCTGTA
          *******  **  *   ***
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regulators can participate in complex feedback 
regulation loops. Examples include the TP53 
regulated  mir-34a   [  57,   58  ] , the RAS regulated 
 mir-21   [  33,   59,   60  ]  and the MYC regulated  mir-
17-92  gene cluster  [  61,   62  ] . 

 miRNA dysregulation has also been linked to 
changes in epigenetic regulation, such as the 
methylation status of miRNA genes, which 
results in alterations in their expression levels 
 [  63,   64  ] . Examples of methylated miRNA genes 
include  mir-127  in bladder cancer cells  [  65  ]  and 
 mir-9-1  in breast cancer  [  66  ] .  

    1.3.4   miRNA Biogenesis Pathway 
in Tumorigenesis 

 miRNA biogenesis has been reviewed extensively 
 [  56,   67–  73  ]  (Fig.  1.1 ). miRNA pathway compo-
nents could either be mis-expressed in tumors or 
mutated (reviewed in  [  74,   75  ] ). Post-transcriptional 
regulation of miRNAs themselves through RNA 
editing or terminal modi fi cations was shown to alter 
miRNA targeting, processing and stability, but con-
nection of these modi fi cations to tumorigenesis has 
not yet been de fi nitive (reviewed in  [  56,   75,   76  ] ). 

    1.3.4.1   miRNA Biogenesis 
 Brie fl y, the mature 20–23-nt miRNA molecules 
are excised in a multi-step process from primary 
transcripts (pri-miRNAs) that contain one or more 
70-nt hairpin miRNA precursors (pre-miRNA) 
and have their own promoters or share promoters 
with coding genes. These hairpin structures are 
recognized in the nucleus by DGCR8, a double-
stranded RNA-binding protein (dsRBP), and 
RNASEN, also known as RNase III Drosha, and 
excised to yield pre-miRNAs. These molecules 

are subsequently transported by XPO5 (exportin 
5) to the cytoplasm where they are further pro-
cessed by DICER1 (Dicer) in complex with the 
dsRBPs TARBP2 (TRBP) and/or PRKRA to yield 
an RNA duplex processing intermediate com-
posed of mature miRNA and miRNA* sequences. 
Some miRNAs bypass the general miRNA pro-
cessing and their maturation can be independent 
of DGCR8 and RNASEN, such as miR-320 or 
miR-484  [  77  ] , or are DICER1 independent, such 
as erythropoiesis-related miR-451  [  78,   79  ] . 
DGCR8 and RNASEN independent miRNAs 
include mirtrons and tailed mirtrons, which 
release their pre-miRNA by splicing and exonu-
clase trimming  [  80,   81  ] . A recent review describes 
alternative processing pathways and enumerates 
settings in which alternative miRNA pathways 
contribute to distinct phenotypes among miRNA 
biogenesis mutants  [  82  ] . 

 While the mature miRNA is loaded into the 
Argonaute/EIF2C (AGO) proteins that are at the 
core of the miRNA-containing ribonucleoprotein 
complex (miRNP), sometimes also referred to as 
RNA-induced silencing complex (miRISC), the 
miRNA* is released and degraded. miR-451 is 
generated from an unusual hairpin structure that 
is processed by AGO2 instead of DICER1  [  78, 
  79  ] . The miRNPs contain a member of the AGO 
family (1–4), which binds the miRNA and medi-
ates target mRNA recognition. Several other 
RBPs have been implicated in miRNA biogene-
sis, including DHX9, DDX6, MOV10, DDX5, 
DDX17, LIN28A, HNRNPA1 and KSRP  [  56, 
  83  ] . Following transcription, miRNAs can be 
modi fi ed by several enzymes, including deami-
nases, resulting in miRNA editing, and terminal 
uridylyl transferases (TUTases), leading to pre-
miRNA uridylylation, potentially affecting the 

  Fig. 1.2    miRNA genomic and functional organization. 
The genomic and functional organization of four 
miRNA clusters is clari fi ed: ( a )  let-7/mir-98  cluster, ( b ) 
 mir-141/mir-200a  cluster, ( c )  mir-21  cluster and ( d ) 
 mir-17-92  cluster. The genomic locations for each of 
the miRNA members are de fi ned.  Grey  lines denote 
intronic regions. miRNA mature sequences are color 
coded according to the sequence family they belong to 

(i.e. in the  let-7/mir-98  cluster  red  signi fi es the let-7 
sequence family). The star sequence is de fi ned with a 
 grey  bar. The sequence families are depicted as sequence 
alignments compared to the most highly expressed 
miRNA family member shown on  top , based on pro fi les 
of over 1,000 human specimens  [  39  ] .  Shaded residues  
denote differences from the most highly expressed 
miRNA family member       
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amount and ratio of miRNA and miRNA* (e.g. 
 [  84  ] ), or their sequences (e.g.  [  85  ] ).  

    1.3.4.2   Alterations in RNASEN/DGCR8 
and DICER1/TARBP2 

 Inhibition of the miRNA biogenesis pathway 
leads to severe developmental defects and is 
lethal in many organisms (reviewed earlier in 
 [  86  ] , recent examples include  [  77,   78  ] ), and per-
turbations of this pathway predispose to tumori-
genesis  [  87  ] . Initial miRNA expression pro fi ling 
experiments suggested that miRNAs are less 
abundant in tumors compared to their normal tis-
sue counterparts  [  14  ] , leading to the proposal that 
miRNAs are predominantly tumor suppressors 
rather than oncogenes. Quanti fi cation of abso-
lute miRNA levels, not only relative abundance, 
in miRNA pro fi ling methods is necessary to clar-
ify these observations. 27% of various tumors are 
found to have a hemizygous deletion of the gene 
that encodes DICER1  [  88  ] . Global knockdown 
of mature miRNAs by targeting DICER1, 
RNASEN and its cofactor DGCR8 increases the 
oncogenic potential of already transformed 
cancer cell lines and accelerates tumor forma-
tion  [  87  ] . Reductions in the amount of DICER1 
resulting in impaired miRNA processing have 
also been shown to increase the rate of tumor 
formation in two different cancer mouse models, 
a K-RAS-driven lung cancer  [  88  ]  and an 
Rb-driven retinoblastoma  [  89  ] . DICER1 is there-
fore considered a haploinsuf fi cient tumor sup-
pressor, requiring partial deletion for its 
associated tumorigenesis phenotype  [  89  ] . The 
phosphorylation of the DICER1 cofactor 
TARBP2 by the mitogen-activated protein kinase 
Erk enhances pre-miRNA processing of onco-
genic miRNAs, such as miR-21, and decreases 
production of tumor suppressor let-7a  [  90  ] . 
Moreover, TARBP2 is mutated in some colon 
and gastric cancers with microsatellite instabil-
ity, and TARBP2 frameshift mutations correlate 
with DICER1 destabilization; in cell lines and 
xenografts with TARBP2 mutations, reintroduc-
tion of wild type TARBP2/DICER1 slowed 
tumor growth  [  91,   92  ] . Finally, DICER1 was 
also recently implicated as a metastasis suppres-
sor (reviewed in  [  93  ] ).  

    1.3.4.3   Alterations in Other Pathway-
Related RBPs 

 Firstly, expression of LIN28A blocks processing of 
tumor suppressor pri- and pre-let-7  [  94–  98  ] , thus 
maintaining expression of genes that drive self-
renewal and proliferation (reviewed in  [  99  ] ); tumors 
that express LIN28A were indeed shown to be 
poorly differentiated and more aggressive than 
LIN28A-negative tumors. Secondly, the helicases 
DDX5 and DDX17 are thought to stimulate pro-
cessing of one third of all murine miRNAs by acting 
as a scaffold and recruiting factors to the RNASEN 
complex and thereby promoting pri-miRNA pro-
cessing  [  100  ] . Association of DDX17 and DDX5 
RNA helicases through interactions mediated by 
the tumor suppressor TP53 with the RNASEN/
DGCR8 complex facilitates the conversion of pri- 
to pre-miRNAs  [  101  ] . Speci fi cally, the DDX5-
mediated interaction of the RNASEN complex with 
the tumor suppressor TP53 was shown to have a 
stimulatory effect on the tumor suppressor pri-
miR-16-1, pri-miR-143 and pri-miR-145 process-
ing in response to DNA damage in cancer cells 
 [  101  ] . Thus, TP53 mutations, often observed in 
malignancies, led to a decrease in pre-miRNA pro-
duction. Thirdly, oncogenic SMADs, downstream 
effectors of the TGF- b  superfamily pathways, have 
been shown to control RNASEN-mediated miRNA 
maturation through interaction with DDX5, pro-
moting expression of oncogenic miR-21  [  102  ] . 
KSRP promotes the biogenesis of a subset of miR-
NAs, including let-7a, by serving as a component of 
both DICER1 and RNASEN complexes affecting 
proliferation, apoptosis and differentiation  [  103  ] . In 
a  fi nal example, inactivating mutations of XPO5 in 
tumors with microsatellite instability result in the 
nuclear retention of miRNAs  [  104  ] . Restoration of 
XPO5 function reverses the impaired export of pre-
miRNAs and has tumor suppressor features.    

    1.4   Dysregulation of miRNA-mRNA 
Target Recognition 

    1.4.1   miRNA Function/Mechanism 

 As described above, miRNAs function through 
the AGO proteins, containing both RNA-binding 
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domains and RNase H domains (reviewed in 
 [  105  ] ). The four human  Ago  genes are co-
expressed and bind to miRNAs irrespective of 
their sequence. AGO2, in contrast to the other 
members, retains an active RNase H domain and  
thus is able to directly cleave target RNAs with 
extensive complementarity to the bound miR-
NAs. The assembly of the miRNP complex 
involves multiple AGO conformational transi-
tions captured in a series of crystal structures 
(reviewed in  [  106  ] ). The mRNA target is recog-
nized by pairing of the miRNA seed region (posi-
tion 2–8) to complementary sequences located 
mainly in the target 3 ¢  UTR, but also in the cod-
ing regions. Target mRNA recognition and regu-
lation involves members of the GW182/TNRC6 
family. TNRC6 proteins act at the effector step of 
silencing, downstream of AGO proteins, and play 
a crucial role in miRNA silencing in animals 
(reviewed in  [  107  ] ). Proteomic approaches 
identi fi ed additional AGO-interacting proteins, 
some of which likely represent mRNA-interact-
ing partners that co-puri fi ed with miRNA-tar-
geted mRNPs; their function in RNA silencing 
processes and potentially tumorigenesis remains 
to be established. 

 In mammalian cells under steady state condi-
tions, miRNAs have been shown to destabilize 
targeted transcripts  [  108–  111  ]  through a variety 
of mechanisms, including de-capping and de-
adenylation; target mRNA and protein abun-
dance changes track closely  [  108,   109,   112, 
  113  ] . These studies also showed that miRNAs 
destabilize mRNAs preferably through binding 
sites located in their 3 ¢  UTRs  [  114–  118  ] . 
Ribosome pro fi ling studies demonstrated that 
the ribosome density of miRNA targets was 
unaltered, while changes in miRNA levels were 
inversely correlated to mRNA and protein abun-
dance, emphasizing the role of miRNAs in regu-
lation of mRNA stability but not translation 
 [  119  ] . Translational regulation by miRNA tar-
geting is considered to predominantly act at the 
level of translation initiation. Identi fi cation of 
miRNA/mRNA ribonucleoprotein components 
in processing bodies (P-bodies) also implies 
their role in mRNA storage and RNA turnover. 
An excellent recent review describes the differ-

ent mechanisms implicated in miRNA function, 
highlighting the different experiments support-
ing translational repression versus mRNA decay 
and the evolution in our current thinking  [  107  ] .  

    1.4.2   Organization of miRNAs 
into Sequence Families 

 Certain miRNAs share sequence similarity in 
regions that are critical for mRNA target recogni-
tion, speci fi cally the seed region, and are best 
viewed as a family when considering mRNA target 
regulation and functional consequences of altered 
miRNA expression. miRNAs can be grouped in 
sequence families, based not only on their seed 
sequence similarity but also overall sequence simi-
larity given that the miRNA 3 ¢  end also contributes 
to miRNA targeting, although to a lesser extent 
(reviewed in  [  68  ] ) (Fig.  1.2 ). Changes in the overall 
abundance of miRNA sequence families relate 
directly to target regulation. In a MYC-driven 
B-cell lymphoma mouse model, a conditional 
knockout of the oncogenic  miR-17-92  gene cluster 
induces apoptosis, which can be reduced by 
 reintroduction of only one of the four sequence 
families produced from the cluster  [  120  ] .  

    1.4.3   miRNA-mRNA Stoichiometry 

 The majority of miRNA pro fi ling studies do not 
provide an estimate of miRNA abundance, which 
is critical in our understanding of the role of 
miRNA-mRNA mediated regulation in tumori-
genesis. Only the most abundantly expressed 
miRNAs occupy a substantial fraction of their 
available mRNA target sites and affect target 
mRNA stability  [  118  ] . Abundant miRNAs that 
behave as “switches”, turned on or off during the 
tumorigenesis process, as shown in developmen-
tal processes, have the most signi fi cant regulatory 
potential, given that miRNAs usually only lead to 
modest 1.5- to 4-fold regulation of their target 
expression  [  112,   113,   115  ] . However, given that 
speci fi c mRNAs are subject to regulation by 
 multiple miRNAs of unrelated families, cumu-
lative effects of lower expressed miRNAs may be 
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relevant  [  67,   121,   122  ] . Furthermore, in the rare 
circumstance that miRNAs share near perfect 
complementarity to mRNAs, they may act in a 
siRNA-like catalytic mode, cleaving mRNA  targets 
even at low miRNA abundance. To conclude, the 
interplay between miRNAs expressed in particu-
lar tissues, the levels of their respective expressed 
targets, as well as other post-transcriptional gene 
regulatory mechanisms (such as  regulation by 
RBPs or other competing interactions – see 
below) is likely responsible for balancing miRNA 
conferred regulation.  

    1.4.4   Changes in the miRNA Targets 

 The binding sites of miRNAs in mRNAs can be 
altered through a variety of mechanisms, such as 
point mutations, translocations, shortening of the 
3 ¢  UTR, competition with other RBPs or decoy 
molecules for mRNA binding. Point mutations in 
miRNA targets can both create or destroy a 
miRNA binding site  [  123–  125  ] . Chromosomal 
translocations can remove miRNA binding sites 
from their regulated oncogenes, such as in the 
case of let-7 targeting of the 3 ¢  UTR of the  Hmga2  
gene  [  126  ] . Shortening of the 3 ¢  UTR through 
alternative polyadenylation can relax miRNA 
mediated regulation of known oncogenes, such 
as  IGF2BP1 / IMP1 , and lead to oncogenic trans-
formation  [  127  ] , as does use of decoy pseudo-
genes, as in the case of  PTEN , by saturating 
miRNA binding sites  [  128  ] . Finally, cooperativ-
ity or competition of miRNAs for mRNA target 
site binding with other RBPs, such as ELAVL1 
(HuR), DND1 and PUM1, can also de-repress 
target expression  [  129–  132  ] . This topic is dis-
cussed in a recent review  [  83  ] .   

    1.5   Cancer Tissues Have Distinct 
miRNA Pro fi les 

 We will  fi rst discuss the state of current miRNA 
pro fi le databases, and then explore the issue of 
tissue heterogeneity in the tissue pro fi les before 
summarizing the role of miRNA dysregulation 
in malignancies. 

    1.5.1   miRNA Cancer Database 

 The development of miRNA microarrays, RT-PCR 
platforms and deep sequencing methodologies 
has resulted in an exponential acquisition of 
miRNA pro fi les. Some of the published miRNA 
pro fi les are available in the NCBI Gene Expression 
Omnibus, similarly to mRNA pro fi les (other 
resources include   www.microrna.org    ,   http://www.
mirz.unibas.ch    ). Larger cancer and blood-borne 
disease collections have recently been published 
using various platforms  [  133–  135  ] . However, 
there is no database or viewer that allows for 
cross-platform comparison of existing data.  

    1.5.2   Tissue Heterogeneity 

 Tissues are generally composed of multiple cell 
types, each with their distinct gene expression pro-
gram. Disease not only alters the expression pro-
grams of the affected cell type, but often also its cell 
type composition. To best separate these effects in 
the pro fi ling of heterogeneous tumor samples, it 
may be useful to pro fi le tumor cell lines and indi-
vidual cell types that may be present in a tumor 
sample, or de fi ne miRNA cellular localization 
by performing RNA ISH. Figure  1.3  compares 
miRNA abundance pro fi les of normal breast, an 
estrogen receptor positive invasive ductal breast car-
cinoma, the estrogen receptor positive ductal cell 
line MCF7, human fat and blood  [  38,   39  ] . Strikingly, 
we can model the pro fi le of a human cancer by 
simply combining tumor cell line and human fat 
pro fi les at equal ratio. This demonstrates that the 
MCF7 tumor cell line may be a good disease model 
for deciphering miRNA regulatory networks, as it 
expresses many of the miRNAs present in the pre-
dominant tumor derived cell type and highlights 
the need for individual cell type miRNA pro fi les.   

    1.5.3   miRNAs as Tumor Suppressors 
and Oncogenes 

 miRNA dysregulation could be used as a diag-
nostic tool even if the particular miRNAs do not 
serve any regulatory function. Alternatively, 

http://www.microrna.org
http://www.mirz.unibas.ch
http://www.mirz.unibas.ch
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miRNA dysregulation could drive tumorigenesis 
through the roles miRNAs can adopt as tumor 
suppressors or oncogenes. miRNAs that are up- 
or down-regulated in malignancies are respec-
tively referred to as oncogenic or tumor-suppressor 
miRNAs, sometimes even if there is no evidence 
for their causative role in tumorigenesis. Some of 
the most commonly dysregulated miRNAs are 
summarized in Table  1.1  (reviewed in  [  11  ] ).  

 Functional studies performed in cancer cell 
lines or mouse models of various malignancies 
through over-expression or knockdown of miRNAs 
have supported a role for some of these miRNAs 
in tumorigenesis. Over-expression of tumor sup-
pressor miRNAs, such as let-7g, reduced tumor 
burden in a K-RAS murine lung cancer model 
 [  172  ] . Over-expression of the oncogenic  mir-17-
92  gene cluster led to a lymphoproliferative 

  Fig. 1.3    miRNA breast 
tumor and cell line pro fi les. 
Comparison of abundance 
pro fi les of the  top  
expressed miRNA 
sequence families of 
normal breast, an estrogen 
receptor positive invasive 
ductal carcinoma breast 
tumor (ER+), the MCF7 
ductal derived cell line, 
human subcutaneous 
adipose tissue and red 
blood cells       
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disorder, and higher level expression of the cluster 
in MYC-driven B-cell lymphomas dramatically 
increased tumorigenicity  [  62,   173  ] . Over-
expression of another oncogene, miR-21, fre-
quently highly expressed in solid and hematologic 
malignancies, resulted in a pre-B malignant lym-
phoid like phenotype whereas subsequent miR-21 

inactivation in the same model led to apoptosis 
and tumor regression  [  174  ] . Transgenic mice 
models with loss and gain of function of miR-21 
combined with a model of lung cancer con fi rmed 
the role of miR-21 as an enhancer of tumorigen-
esis when over-expressed, or a partial protector 
when genetically deleted  [  59  ] . Ectopic expression 

   Table 1.1    Some of the most common cancer-associated miRNAs   

 miRNA 
 Tissue type 
speci fi city 

 Chromosomal 
location  Property  Malignancy 

  let-7/98  
cluster 

 Ubiquitous  Multiple members 
(chromosomes 3, 9, 
11, 19, 21, 22, X) 

 TS  CLL  [  136  ] , lymphoma  [  137  ] , gastric 
 [  138  ] , lung  [  139  ] , prostate  [  9  ] , breast 
 [  140  ] , ovarian  [  138  ] , colon  [  138  ] , 
leiomyoma  [  138  ] , melanoma  [  138  ]  

  mir-15a/16-1  
cluster 

 Ubiquitous  13q14.2  TS  CLL  [  141  ] , lymphoma  [  9  ] , multiple 
myeloma  [  9  ] , pituitary adenoma  [  142  ] , 
prostate  [  142  ] , pancreatic  [  142  ]  

  mir-17-92  
cluster 

 Ubiquitous  Multiple members 
(chromosomes 
7, 13, X) 

 OG  Lymphoma  [  143  ] , multiple myeloma  [  9  ] , 
lung  [  139  ] , colon  [  143  ] , medulloblastoma 
 [  144  ] , breast  [  140  ] , prostate  [  145  ]  

 miR-21  Ubiquitous  17q23.1  OG  Lymphoma, breast, lung, prostate, gastric, 
cervical, head and neck, colorectal, 
glioblastoma (for all:  [  146  ] ) 

 miR-26a  Ubiquitous  3p22.2 (−1)  TS  Lymphoma  [  147  ] , hepatocellular 
carcinoma  [  148  ] , thyroid carcinoma  [  149  ]   12q14.1 (−2) 

 OG  Glioblastoma  [  53,   150  ]  
 miR-34a/b/c  Ubiquitous  1p36.22 (a)  TS  CLL  [  136  ] , lymphoma  [  9  ] , pancreatic  [  9  ] , 

colon  [  9  ] , neuroblastoma  [  151  ] , glioblas-
toma  [  152  ]  

 11q23.1 (b) 
 11q23.1 (c) 

 miR-155  Hematopoietic 
system 

 21q21.3  OG  Lymphoma (i.e. Burkitt’s, Hodgkin’s, 
non-Hodgkin’s)  [  9  ] , CLL ( [  9  ] ,  [  18  ] ), 
breast  [  140  ] , lung  [  9  ] , colon  [  9  ] , 
pancreatic  [  9  ]  

  mir-141/200a  
cluster 

 Epithelial 
speci fi c 

 Multiple members 
(chromosomes 1, 12) 

 TS  Breast  [  140,   153  ] , renal clear cell 
carcinoma  [  154  ] , gastric  [  155  ] , 
bladder  [  156  ]  

 OG/TS  Ovarian  [  157–  159  ]  
 miR-205  Epithelial 

speci fi c 
 1q32.2  TS  Prostate  [  160,   161  ] , bladder  [  162  ] , breast 

 [  153,   163,   164  ] , esophageal  [  165  ]  
 OG  Ovarian  [  166  ]  

 miR-206  Skeletal muscle 
speci fi c 

 6p12.2  TS  Rhabdomyosarcoma  [  30  ] , breast  [  167  ]  

 miR-9  Nervous system 
speci fi c 

 1q22 (−1)  TS  Medulloblastoma  [  168  ] , ovarian  [  169  ]  
 5q14.3 (−2) 
 15q26.1 (−3) 

 OG/TS  Breast  [  66,   170,   171  ]  

  miRNAs that are up- or down-regulated in malignancies are respectively referred to as oncogenic ( OG ) or tumor-sup-
pressor ( TS ), but their role in malignancy is not always experimentally validated. Given the number of manuscripts 
providing evidence for the role of each miRNA based on patient, cell culture or animal model studies, reviews are often 
cited instead of original reports to limit the number of references, and only a few selected reports are presented if no 
review is presented  
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of miR-155 in bone marrow induced polyclonal 
pre-B cell proliferation progressing to B-cell leu-
kemia or myeloproliferation in mice  [  175,   176  ] . 

 Metastasis-related miRNAs have been 
identi fi ed in various malignancies mainly from 
cell line and xenograft experiments (reviewed in 
 [  177  ] ). Examples include breast cancer-related 
miR-10b, miR-9, miR-31 and miR-335 among 
others. The interesting regulatory roles of these 
miRNAs cannot easily be validated in large clin-
ical studies. Two clinical studies with long-term 
follow-up data instead identi fi ed miR-210 to be 
associated with tumor aggressiveness  [  178,   179  ] , 
pointing to dif fi culties reconciling cell line, 
xenograft model and patient materials, due to 
tissue heterogeneity discussed earlier, the het-
erogeneous nature of the malignancy and timing 
of clinical specimen acquisition. Tumor miRNA 
pro fi les cannot dissect contributions from sub-
populations of cells that may be important for 
tumor characteristics such as metastasis, while 
cell line miRNA pro fi les cannot capture the cel-
lular interactions from supporting cell types in 
the tumor microenvironment. Patient samples 
are often collected at time of diagnosis, by which 
time a tumor is already well established and can-
not unravel early changes that may be critical in 
tumor initiation or later changes important in 
metastasis.  

    1.5.4   miRNA-Regulated Pathways 

 The observed effects of miRNA mis-expression 
on tumor initiation, maintenance or metastasis 
can be explained by the mRNA targets and path-
ways they regulate, which include known tumor 
suppressors and oncogenes (reviewed in  [  11  ] ). 
miRNAs regulate a large number of genes, some 
estimates reporting miRNA regulation of up to 
60% of the human genome, making it challeng-
ing to attribute a phenotype after mis-expression 
of a particular miRNA through its action on only 
a subset of targets  [  111,   180  ] . If a few of these 
targets control rate-limiting steps in the studied 
tumorigenesis processes within the speci fi ed tis-
sues and cell types, such as metastasis, then 
miRNA regulation of a handful of targets could 

potentially explain the phenotype resulting from 
miRNA mis-expression  [  181  ] . 

 Examples of miRNA regulated cancer path-
ways include differentiation, apoptosis, prolifera-
tion and stem cell maintenance, a process 
important for disease relapse and/or metastasis. 
The skeletal muscle-speci fi c miR-206 blocks 
human rhabdomyosarcoma growth in mouse 
xenograft models by inducing myogenic differ-
entiation  [  30  ] , while the mir-141/200a cluster is 
critical in the epithelial to mesenchymal transi-
tion (EMT) in various malignancies (reviewed in 
 [  182  ] ). Sustained expression of endogenous  mir-
17-92  cluster is required to suppress apoptosis in 
Myc-driven B-cell lymphomas in a conditional 
knockout allele of  mir-17-92  cluster  [  120  ] . TP53-
regulated, ectopically expressed miR-34 induced 
cell cycle arrest in both primary and tumor 
derived cell lines, downregulating genes promot-
ing cell cycle progression (reviewed in  [  58  ] ). In a 
 fi nal example of miRNA regulated cancer path-
ways, isolation of a subset of highly tumorigenic 
breast cancer cells that were thought to have 
stemness properties showed that these cells do 
not express let-7 family members and that expres-
sion of let-7 or its known target RAS leads to loss 
of self renewal  [  183  ] .   

    1.6   Alterations of miRNA Sequence 

 miRNA dysregulation could be a result of muta-
tions in miRNA genes in well-conserved regions 
in their mature sequence affecting mRNA target-
ing, or the remainder of the miRNA precursor 
potentially affecting processing and stability of 
the mature miRNA (reviewed in  [  75  ] ). For exam-
ple, a mutation in the seed region of  mir-96  was 
shown to lead to hearing loss in a mouse model 
 [  184  ]  and was identi fi ed in families with non-
syndromic progressive sensorineural hearing loss 
 [  185  ] , while a point mutation in the viral  mir-K5  
precursor stem loop was shown to interfere with 
its processing and reduce mature miR-K5 accu-
mulation  [  186  ] . Germline deletion of the  mir-17-
92  gene cluster was another recent example 
causing skeletal growth defects in humans  [  187  ] . 
If miRNAs are drivers of oncogenic and tumor 
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suppressor pathways we would expect to  fi nd 
miRNA mutations that can also be causative of 
the disease. So far the only mutation identi fi ed in 
a miRNA that could lead to malignancy is miR-
16, where a germline mutation potentially affects 
miR-16 biogenesis and abundance in a kindred 
with familial CLL  [  188  ]  and New Zealand black 
mice that naturally develop CLL-like disease 
 [  189  ] . Single nucleotide polymorphisms (SNPs), 
located both in precursor and mature miRNA 
sequences, have been examined in the context of 
disease risk for various malignancies but have not 
been validated as causative (reviewed in  [  75  ] ).  

    1.7   miRNA Target Identi fi cation 

 The currently available target prediction data-
bases (reviewed in  [  68  ] ) do not easily allow pri-
oritizing the involvement of reported targets in 
certain phenotypes, thus necessitating the selec-
tion of a few targets from a list of hundreds for 
further study and validation, based on a priori 
knowledge of potentially involved biological 
pathways. Since the prediction algorithms do not 
always produce identical target lists, use of mul-
tiple algorithms and comparison or intersection 
of their results narrows the list to higher 
con fi dence targets. Targets are only relevant to a 
speci fi c phenotype if they are expressed in the 
studied tissue, an issue not addressed by most 
computational prediction algorithms. Recently, 
new algorithms are trying to prioritize compu-
tationally predicted targets using integrated 
miRNA and mRNA pro fi les  [  134  ] . Biochemical 
identi fi cation methods in cell lines and tissues 
are being established and further re fi ne our 
understanding of miRNA-mRNA target bind-
ing recognition. These methods involve two 
approaches: over-expression or down-regulation 
of studied miRNAs followed by assessment of 
transcriptome-wide mRNA levels by mRNA 
microarray analysis (e.g.  [  118  ] ) or deep sequenc-
ing technology after immunoprecipitation of 
miRNAs and mRNAs complexed with AGO, the 
main component of the miRNA effector com-
plex, to not only identify mRNA targets, but also 
localize their precise binding sites  [  190,   191  ] .  

    1.8   miRNAs as Diagnostics 

 miRNAs demonstrated their potential as diagnostic 
tumor markers early on when their pro fi les were 
shown to correlate with the tumor embryonic ori-
gin, thus de fi ning tumors of unknown origin 
indistinguishable by histology and assigned based 
on clinical information  [  14  ] . miRNA expression 
patterns have been linked to clinical outcomes 
given that miRNAs modulate tumor behavior 
such as tumor progression and metastasis. 
Expression of let-7 is downregulated in non-small 
cell lung cancer patients  [  192  ]  and is associated 
with poor prognosis  [  125,   193  ] , whereas a 
miRNA signature was identi fi ed to be associated 
with prognosis in CLL  [  188  ] . Advances in 
miRNA detection, such as ISH or RT-PCR, may 
allow miRNAs to be used as diagnostic and 
 prognostic markers in the clinic.  

    1.9   miRNAs as Therapeutics 

 Because miRNAs affect the expression of multiple 
genes and thereby tune multiple points in disease 
pathways, miRNAs and their regulated genes repre-
sent interesting drug targets. Antisense oligonucle-
otide targeting experiments in human cell lines, 
mice  [  117,   194–  197  ]  and non-human primates 
 [  198  ]  have demonstrated the feasibility of manipu-
lating miRNA levels. miR-143 was initially shown 
to promote adipocyte differentiation and could be a 
target for therapies in obesity and metabolic dis-
eases  [  194  ] . Alternatively, “miRNA sponges” have 
been exploited to reduce miRNA expression in 
mammalian cells and mouse models by using RNA 
transcripts expressed from strong promoters con-
taining miRNA-complementary binding sites 
(reviewed in  [  199  ] ). Systemic administration of 
antisense oligonucleotide therapeutics to miR-122, 
a liver-enriched miRNA, in mice and primates was 
shown to alter lipid metabolism and hepatitis C viral 
load, resulting in reduced liver damage  [  117,   195–
  197,   200,   201  ] . At the same time, systemic delivery 
of a miRNA mimic for miR-26a in a murine model 
of HCC reduced tumor size  [  148  ] . The new and 
exciting advances in delivery of miRNA inhibitors 
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and mimics hold the promise of quickly translating 
our knowledge of miRNAs into treating disease.      
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    2.1   Introduction 

 A non-coding RNA (ncRNA) is a functional RNA 
molecule that is not translated into a protein and has 
important biological functions. Research in the past 
decade has shown that several types of ncRNAs, 
including long ncRNAs, ultraconserved genes, and, 
in particular, microRNAs (miRNAs), are involved 
in cancer development and progression. 
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  Abstract 

 Non-coding RNAs are important actors in human biology. A massive 
amount of data has been created and manipulated, and important  fi ndings 
have been extracted thanks in part to bioinformatics approaches and con-
sequent experimental validation; many of these results are for a speci fi c 
class of non-coding RNAs, the microRNAs (miRNAs), that are important 
regulators of gene expression although their transcriptional regulation is 
not yet well understood. Their involvement in cancer development and 
progression makes the related research  fi eld an integrated one, composed 
of bioinformaticians, clinicians, statisticians and biologists, as well as 
informaticians and data miners that cure data manipulation and storage 
especially due to the output of the latest technologies, like the Next 
Generation Sequencers. 

 In this chapter we report the main miRNA  fi ndings of the last 10 years 
in terms of identi fi cation and prediction techniques, data generation and 
manipulation methods, as well as possible use in clinical practice.  

  Keywords 
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 As Mattick and Makunin wrote 7 years ago:

  RNA regulatory networks may determine most of 
our complex characteristics, play a signi fi cant 
role in disease…. We predict that mutations/
variations in many if not most ncRNA sequences, 
especially those that are involved in regulatory 
networks, will lead to a variety of milder pheno-
types than the usually severe consequences of 
mutations in proteins, and will have a major 
in fl uence on quantitative trait variation, develop-
mental differences and abnormalities, cancer and 
other complex diseases such as neurological dis-
orders  [  1  ] .   

 Indeed, alterations in protein-coding genes 
and ncRNAs play a fundamental role in cancer. 
However, although the full coding component of 
the human genome has been sequenced for vari-
ous cancers in recent years, such information 
related to ncRNAs is still fragmentary. Current 
methods for high-throughput sequencing, such as 
next-generation sequencing (NGS), offer the 
opportunity to investigate the entire ncRNA 
genome. However, no standardized method is 
currently available that allows a convenient anal-
ysis of these huge data sets, in part owing to the 
dif fi culty of managing short reads. 

 In this chapter, we will  fi rst discuss current tech-
nologies and then how they can be used in clinical 
practice, by focusing on advances in  miRNAs, the 
ncRNAs whose importance in disease development 
and progression is most evident.  

    2.2   Background 

    2.2.1   Types of ncRNAs 

 As previously mentioned, several types of 
ncRNAs are associated with cancer (Table  2.1 ): 
    1.    miRNAs are involved in cancer predisposi-

tion, development, and progression, and they 
can be used for diagnostic purposes and prog-
nostic evaluation  [  2  ]   

    2.    Long ncRNAs have been found to be associ-
ated with metastasis  [  3  ]   

    3.    Ultraconserved genes are deregulated in cancer 
 [  4  ] , and miRNAs may regulate the expression 
of ultraconserved regions in various cancers, 
including colorectal cancer and chronic lym-
phocytic leukemia  [  5  ].       

    2.2.2   miRNA Function 

 Structurally, miRNAs are short (19–25-nucleotide) 
RNAs processed from hairpin loop structures 
(pre-miRNAs; 60–110 nucleotides in length) that 
regulate the expression of protein-coding genes 
through imperfect complementarity with target 
messenger RNAs. Much of the current research 
on miRNAs is focused on the elucidation of 
miRNA function, typically using the gene expres-
sion pro fi ling approach. Each miRNA has been 

   Table 2.1    Types of non-coding RNAs (ncRNAs)   

 ncRNA  Description 
 Approximate size 
(nucleotides)  Functional characteristics 

 lncRNA  Long non-coding 
RNA 

 >200  Regulates gene expression at the level of chromatin remodeling, 
transcription, and post-transcriptional processing 

 miRNA  MicroRNA  19–25  Uses post-transcriptional repression/activation of gene 
expression 

 siRNA  Small interfering/
silencing RNA 

 20–25  Silences gene expression through the RNA interference 
pathway 

 piRNA  PIWI-interacting 
RNA 

 24–30  Guides PIWI proteins to direct chromatin modi fi cation and 
transposon silencing 

 snoRNA  Small nucleolar 
RNA 

 70–240  Performs site-speci fi c modi fi cation of RNAs 

 smRNA  Small modulatory 
RNA 

 ~20  Performs transcriptional activation of neuronal differentiation 
by converting the NRSF/REST transcription factor from a 
repressor to an activator of neuronal genes 
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studied for its singular contribution to differential 
expression between two classes of samples or for 
its ability to extract predictive signatures. 
However, the effects of miRNAs on cell pathol-
ogy and physiology are likely to be complex for 
two reasons: (1) each miRNA can control transla-
tion of tens or even hundreds of different coding 
messengers, and (2) translation of a single mes-
senger can be controlled by more than one 
miRNA. 

 A large amount of data has been analyzed 
worldwide during the past decade. In fact, the 
amount of published literature related to miR-
NAs, and ncRNAs in general, has been growing 
exponentially (Fig.  2.1 ) allowing the discovery of 
several miRNA properties. We will summarize 
the most important of them in this report: 

   miRNAs can act as oncogenes or tumor-sup-• 
pressor genes.  
  miRNAs can be either up-regulated or down-• 
regulated in tumor progression and metastasis.  
  miRNAs affect a number of pathways that • 
contribute to metastasis, including migration, 
invasion, cell proliferation, epithelial-to-
mesenchymal transition, angiogenesis, and 
apoptosis. One miRNA can affect multiple 
metastasis-contributing pathways, and its 
expression can be regulated by multiple 
proteins.  
  miRNAs can be used as prognostic markers for • 
survival or predictive markers for treatment 
ef fi cacy, which will be increasingly important 
in the era of personalized medicine.     

    2.2.3   miRNA Networks in Cancer 

 As the number of miRNAs discovered in the 
human genome has grown, it has become increas-
ingly clear that miRNA regulation of a speci fi c 
target gene or protein, in fl uence on cellular 
behavior, and ultimately contribution to the 
development of disease is highly complex. 
Although the reductionist approach of investigat-
ing single miRNA–single target gene relation-
ships is of value, tumor initiation and progression 
is likely dependent on multiple miRNAs and 

genes. Therefore, the integration of both miRNA 
and target gene patterns of expression to identify 
“network” deregulation, as Volinia and colleagues 
 [  6  ]  have recently done, is critical to our under-
standing of the role that miRNAs play both as 
biomarkers and as therapeutic targets. 

 Volinia and colleagues examined miRNA 
networks in cancer and leukemia in a collection 
of more than 4,000 samples, of which about 3,000 
were neoplastic. One aim was to identify bench-
marks: they found that the miR-17-92 family was 
ampli fi ed in cancer and the miR-143-145 cluster 
was deleted. In addition, they experimentally 
validated the miR-155 chronic lymphocytic leu-
kemia network in transgenic mice. Analysis of 
miRNA tissue speci fi city in 50 different normal 
tissues grouped by 17 systems, corresponding to 
1,107 human samples, revealed that a small set of 
miRNAs were tissue-speci fi c and many others 
were broadly expressed. Moreover, they studied 
51 oncologic or hemato-oncologic disorders and 
identi fi ed cancer-type-speci fi c miRNAs. They 
were able to infer genetic networks for miRNAs 
in normal tissues and in their pathologic counter-
parts. Overall, miRNA networks in cancer cells 
de fi ned independently regulated miRNAs, and 
target genes of uncoordinated miRNAs were 
involved in cancer-speci fi c pathways. 

 Volinia and colleagues found that the most 
common pathways identi fi ed by Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
analysis of deregulated miRNAs in cancers 
included the Wnt, phosphatidylinositol, focal 
adhesion, and vascular endothelial growth fac-
tor pathways. After directly comparing miRNA 
networks of normal tissues with those of solid 
cancers, they identi fi ed differences in the repre-
sentation of miRNA hubs. Applying their 
approach to speci fi c cancers (e.g., lung cancer 
and acute myeloid leukemia), they detected dif-
ferences not only in the distribution of miRNAs 
but also in the number of networks. For exam-
ple, normal lung tissue was characterized by 
one interconnected network of miRNAs, 
whereas adenocarcinoma of the lung was char-
acterized by eight separate networks in addition 
to the large network. 
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 As research on this topic continues, several 
applications are available to help scientists study 
the interactions between genomics data and the 
pathways in which they are involved. These 
applications include MetaCore (  http://www.
genego.com/metacore.php    ; see an example in 
Fig.  2.2 ), Ingenuity (  http://www.ingenuity.com/    ), 
and Cytoscape (  http://www.cytoscape.org/    ).   

    2.2.4   miRNA Identi fi cation 

 miRNAs can be identi fi ed using one of two meth-
ods: forward or reverse genetics. Phenotyping, or 
forward genetics, was the  fi rst technique used to 
identify miRNAs. This technique identi fi es muta-
tions that produce speci fi c phenotypes. Mutagens 
are used to generate a panel of mutants that are 

  Fig. 2.2    Sample Metacore map, obtained from data in E-TABM-1135 (  http://www.ebi.ac.uk/arrayexpress/browse.
html?keywords=E-TABM-1135&expandefo=on    ). Ferracin and colleagues used these arrays  [  7  ]        

 

http://www.genego.com/metacore.php
http://www.genego.com/metacore.php
http://www.ingenuity.com/
http://www.cytoscape.org/
http://www.ebi.ac.uk/arrayexpress/browse.html?keywords=E-TABM-1135&expandefo=on
http://www.ebi.ac.uk/arrayexpress/browse.html?keywords=E-TABM-1135&expandefo=on
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further screened for the speci fi c phenotype, and 
then molecular biology techniques identify the 
genes responsible for the phenotype. Because 
the phenotype of the mutant is known at the begin-
ning, information about the identi fi ed gene’s 
function is already available. Unfortunately, 
only genes responsible for easily observable 
phenotypes producing dramatic changes can be 
identi fi ed this way. 

 Cloning and sequencing, or reverse genetics, is 
the most commonly used method to identify 
 miRNAs; the vast majority of miRNAs known 
today were studied using this approach. The 
reverse genetics method starts from the gene 
sequence rather than from the phenotype to char-
acterize the gene’s function. Recent advances in 
sequencing technologies have made the task of 
identi fi cation much easier, as has the use of com-
putational miRNA gene prediction followed by 
microarray-based validation. Cloning and sequenc-
ing and microarray technology have also been 
used to determine the expression pro fi les of miR-
NAs (and other types of ncRNAs) among tissues. 
The largest database of miRNA expression pro fi les 
obtained through cloning can be accessed at   http://
www.mirz.unibas.ch/cloningpro fi les/    ,  [  8  ] .  

    2.2.5   Deep Sequencing 

 Deep sequencing or next-generation sequencing 
(NGS) platforms have recently emerged as pow-
erful technologies providing unprecedented 
insight into biological systems. Sequencing tech-
nology has come a long way since Sanger  fi rst 
introduced pyrosequencing and assembly as a 
means of pyrosequencing entire genomes (  www.
sanger.ac.uk    ). Initially, this technology was appli-
cable only to small genomic sequences, such as 
the genomes of the bacteriophages, viruses, and 
bacterial arti fi cial chromosomes, as sequencing 
was expensive and required a great deal of manual 
labor to assemble the reads into the underlying 
sequence. Today, sequencing and assembly meth-
odologies can be applied to entire mammalian 
genomes and most of the labor is automated. 

 NGS, or third generation sequencers, were 
 fi rst introduced in the early 2000s. Table     2.2  lists 

several currently available NGS platforms and 
their output characteristics. These platforms use 
various sequencing approaches; for more details, 
Morozova and colleagues provide a general over-
view  [  9  ] .  

    2.2.5.1   NGS Data Analysis 
 Thanks to the development of NGS technologies, 
the human genome has been mapped in many 
individuals, which brought the challenge and the 
opportunity of understanding these large amounts 
of data and ultimately determining how changes 
in the genome lead to disease. Many issues and 
strategies related to data integration are emerg-
ing; it is expected that integrating numerous NGS 
and genomics data sets will provide more bio-
logical insights than does using only genomics 
data set. Therefore, integrative analysis, along 
with cooperation among clinicians, computer sci-
entists, research scientists, and bench scientists, 
has become an essential part of experimental 
design in the era of NGS genomics. Much work 
remains in the scienti fi c community to create and 
agree on standard tools for NGS data visualiza-
tion, manipulation, and analysis. 

 Many bioinformatics tools are currently avail-
able for NGS data analysis and they can be sum-
marized as part of the following categories:

   Alignment of reads to a reference genome • 
(Cross_match, ELAND, Exonerate, MAQ, 
Mosaik, SHRiMP, SOAP, Zoom, and 
Novalign)  
  Assembly of the de novo sequence (ABySS, • 
ALLPATHS, Edena, Euler-SR, SHARCGS, 
SHRAP, SSAKE, and Velvet)  
  Quality control and base calling  • 
  Polymorphism detection  • 
  Genome browsing and annotation     • 

    2.2.5.2   NGS and ncRNAs 
 With NGS techniques, it has become possible to 
study ncRNAs in a high-throughput manner. Using 
specialized algorithms, ncRNA classes such as 
miRNAs can be detected in deep sequencing data. 
Unfortunately, none of the existing software pro-
vides a method to rigorously address the problem 
of reads mapped multiple times  [  10  ] , which usu-
ally happens with the short reads (shorter than 36 

http://www.mirz.unibas.ch/cloningprofiles/
http://www.mirz.unibas.ch/cloningprofiles/
http://www.sanger.ac.uk
http://www.sanger.ac.uk
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   Table 2.2    Common used next generation sequencing platforms and some of their features   

 Sequencing Platform  Sequencing chemistry 
 Template ampli fi cation 
method 

 Read length 
(base pairs) 

 Sequencing 
throughput 
(megabits per hour) 

 ABI3730xl Genome 
Analyzer 

 Automated sanger 
sequencing 

 In vivo ampli fi cation via 
cloning 

 700–900  0.03–0.07 

 Roche (454) FLX  Pyrosequencing on 
solid support 

 Emulsion polymerase 
chain reaction 

 200–300  13 

 Illumina Genome 
Analyzer 

 Sequencing-by-
synthesis with 
reversible terminators 

 Bridge polymerase chain 
reaction 

 32–40  25 

 ABI SOLiD  Sequencing by 
ligation 

 Emulsion polymerase 
chain reaction 

 35  21–28 

nucleotides) seen in small RNAs. Most current 
software packages for the analysis of small RNA 
sequencing data remove such reads from the anal-
ysis, thus sacri fi cing accuracy and any expression 
pro fi le generated for that short read. 

 Nonetheless, many NGS tools are available to 
study ncRNAs using various approaches. These 
tools include the following:

   miRNAkey, a software package designed to • 
be used as a base station for the analysis of 
miRNA sequencing data. It can be locally run 
on any Unix/Linux or Mac computer with 
64-bit architecture via the graphical user inter-
face or on a computer-cluster via the com-
mand line. The software is freely available for 
download at   http://ibis.tau.ac.il/miRNAkey    .  
  ALPS (alignment of pattern matrices score), • 
which is used to classify ncRNAs using posi-
tion and size information in deep sequencing 
data (  http://www.bio.i fi .lmu.de/ALPS    ). ALPS 
is a scoring system that uses only primary 
information from a deep sequencing experi-
ment (i.e., the relative positions and lengths of 
reads) to classify ncRNAs. ALPS makes no 
further assumptions about, for example, com-
mon structural properties in the ncRNA class, 
but it is nevertheless able to identify ncRNA 
classes with high accuracy. ALPS can recog-
nize multiple classes of ncRNAs, as well as 
novel ncRNA classes, provided these unknown 
ncRNAs have a characteristic pattern of deep 
sequencing read lengths and positions.  
  MIReNA, a genome-wide search algorithm • 
that looks for miRNA sequences by exploring 

a multidimensional space de fi ned by only  fi ve 
(physical and combinatorial) parameters char-
acterizing acceptable pre-miRNAs. MIReNA 
validates pre-miRNAs with high sensitivity 
and speci fi city and detects new miRNAs by 
homology from known miRNAs or from deep 
sequencing data.    
 Comparison of MIReNA with miRDeep using 

deep sequencing data to predict miRNAs high-
lights the highly speci fi c predictive power of 
MIReNA  [  11  ] . Other available tools, such as 
MiPred  [  12  ] , miRabela  [  13  ] , microPred  [  14  ] , and 
MiRDeep  [  15  ] , do not provide a differential 
expression analysis among the known miRNAs 
in the input samples and do not have a graphic 
interface. In addition, the UEA sRNA toolkit 
 [  16  ] , miRanalyzer,  [  17  ] , SeqBuster  [  18  ] , DSAP 
 [  19  ] , and mirTools  [  20  ]  are also available, but 
these require many processing steps and are 
mostly web-based; thus they are either limited in 
 fi le size or add a long upload stage to the analysis 
process.    

    2.3   miRNA Gene Prediction 

    2.3.1   Prediction Factors 

 The  fi rst miRNA strongly conserved in animals, 
let-7, was discovered 13 years ago  [  21  ] . Since 
then, many methods for genome-wide prediction 
of miRNA genes have been developed and used. 

 Although a standard miRNA prediction pro-
cedure is not yet available, researchers have 

http://ibis.tau.ac.il/miRNAkey
http://www.bio.ifi.lmu.de/ALPS
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discovered and incorporated into their methods 
several important factors for effective and accu-
rate prediction:

   Presence of stable hairpin precursors. Lee and • 
colleagues indicated that mature miRNAs are 
processed from stem-loop precursor structures 
 [  22  ] .  
  Relative symmetry of the internal loops of • 
stem-loop precursor structures. Although the 
presence of a miRNA in a sequence implies 
the existence of a hairpin, it would appear that 
the presence of a hairpin does not imply the 
existence of a miRNA. Secondary structures 
were considered by miRNA prediction pro-
grams starting in 2003  [  23  ] .  
  Position-dependent selection strength. The pat-• 
tern of evolutionary conservation along the 
miRNA precursor was one of the  fi rst factors to 
be incorporated into miRNA prediction methods 
 [  24  ] . The majority of miRNAs are likely 
 conserved; thus it would make sense to con-
sider sequence conservation in the prediction 
of  miRNAs. However, several independent 
researchers have identi fi ed species-speci fi c 
 miRNAs  [  25,   26  ] . Thus, most of the current 
miRNA prediction programs that rely on cross-
species sequence conservation as a major 
de fi ning characteristic risk missing non-con-
served miRNAs. Although most miRNAs may 
be conserved, it is estimated that 7% of human 
and 11% of mouse miRNAs are species-speci fi c 
 [  24  ] , indicating that, when a program requires 
cross-species conservation, it is worth consider-
ing which species are being compared. The more 
distant two species are in phylogeny, the less 
likely conservation-based de fi nitions are to facil-
itate the identi fi cation of new miRNAs  [  26  ] .  
  Free-energy estimations. These are widely used • 
by miRNA prediction programs as de fi ning cri-
teria  [  27  ] .  
  Complementarity of the conforming sequences. • 
Hofacker and colleagues used the Vienna library 
to predict likely paired sequences by creating 
base pairing probability matrices that were 
based on the likelihood of the existence of a par-
ticular base pair  [  28  ] .  
  Machine learning. Hidden Markov Models • 
(HMMs), an example of machine learning, have 

recently been used for the  fi rst time in predicting 
miRNA sequences  [  29  ] . An HMM attempts to 
build a statistical model of a system by using 
examples provided to it. It is possible to train an 
HMM to evaluate whether candidate sequences 
of RNA are miRNAs using sequences of known 
miRNAs. However, an HMM can also be over-
trained to the point where it is capable of recog-
nizing only its training data as valid miRNAs.    
 Many of the preconditions or assumptions 

used in miRNA prediction are based on the belief 
that currently known miRNAs are representative 
of all existing and not yet discovered miRNAs. 
Of course, we will not be able to evaluate the 
extent of this problem until after we have com-
plete knowledge of all miRNAs  [  30  ] .  

    2.3.2   Prediction Methods 

 Many methods have been used for miRNA gene 
prediction (see Table  2.3 ); these methods are each 
based on one or more of a relatively small num-
ber of parameters: 

   Information present in miRNA genes  • 
  Information about the miRNA-target interaction  • 
  Number of miRNAs in a given genome  • 
  Evolutionary selection of miRNA precursors  • 
  Features used to distinguish between miRNA • 
precursors and other types of stem loops (these 
features can be used either to  fi lter out unlikely 
miRNA precursors or to compute scores indic-
ative of the likelihood with which a stem-loop 
will be recognized and processed as a miRNA 
precursor)    
 By virtue of their structure and mechanism of 

action, computational methods have been devised 
to investigate the encoding of miRNA genes and 
the targets of miRNA action. A number of factors 
(e.g., as mentioned above, sequence conservation, 
secondary structure, folding energetics) were con-
sidered in the implementation of these computa-
tional solutions. Most of these programs rely on 
both sequence conservation and secondary struc-
ture estimation (Fig.  2.3 ). Two exceptions are 
PalGrade, which appears to consider only second-
ary structure, and ProMiR, which combines con-
servation with an HMM. The success of these 
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computational solutions has been evaluated based 
on the program’s ability to both elucidate new 
miRNAs and deduce the targets of miRNA action. 
The programs miRseeker, miRScan, PalGrade, 
ProMiR, and miRAlign have also been evaluated 
for their ease of implementation  [  33  ] . 

 Regardless of the prediction strategy used in 
the program, error checking must be installed to 
differentiate between true positives and false posi-
tives. The most robust method of error checking 
involves veri fi cation of miRNA identity using 
outside criteria. Currently, the most sensitive and 
discriminant method for detecting miRNA 
expression is quantitative real-time polymerase 
chain reaction. One advantage of this method is 
that it can verify miRNAs that are expressed at 
low levels. However, no standard veri fi cation 
method exists, and each miRNA prediction pro-
gram has sought to verify its computational con-
clusions differently, for example, MiRseeker and 
MiRScan use northern blotting (Fig.  2.3 ).    

    2.4   miRNA Target Prediction 

 The search for miRNA targets is actually the 
search for knowledge of miRNA function. miR-
NAs are believed to play an important role in 
regulating developmental gene expression, and 
the current number of experimentally veri fi ed tar-
gets is likely a small percentage of the true num-
ber. Furthermore, each miRNA can target more 
than one messenger RNA  [  36  ] , and more than 
one miRNA can regulate a single target site. 

miRNA targets are generally believed to be 
regions of messenger RNA to which the miRNA 
binds, repressing gene expression. It is also 
known that miRNAs bind with partial 
complementarity. 

 As Vatolin and colleagues pointed out, “there 
is no simple method to validate targets reproduc-
ibly, ef fi ciently and inexpensively”  [  37  ] .  In silico  
evaluations are often used in target prediction 
algorithms, likely because they are faster and less 
expensive than  in vivo  evaluations. Many soft-
ware tools for target prediction have been 
deployed (see Table  2.4 ); the most frequently 
used and reported in literature include 
TargetScanS, PicTar, DIANA-microT, miRanda, 
and RNAhybrid, all of which have been com-
pared by Doran and Strauss  [  33  ] . Although the 
most common evaluation method compares pre-
dictions against the list of current experimentally 
validated targets, some current programs are also 
able to predict targets that have not yet been 
veri fi ed. PicTar and TargetScanS have been 
described as the best performers, both with 
approximately 20–30% false-positive rates. 
Although they use different search criteria, 
80–90% of the human targets they predict are 
identical. The false-positive rate for miRanda is 
about 24%, but miRanda has lower sensitivity 
than either PicTar or TargetScanS  [  38  ] . As good 
as these programs are, Sood and colleagues 
believe that 50% of the miRNA targets are missed 
by programs such as PicTar and miRanda owing 
to misalignments between the mouse and human 
genomes  [  39  ] .  

  Fig. 2.3    Prediction techniques, validation techniques, 
and algorithms used in microRNA and microRNA target 
prediction programs.  Red  indicates the presence of the 
feature. HMM indicates hidden Markov model; qRT-PCR, 

quantitative real-time polymerase chain reaction. Figure 
obtained as modi fi ed and merged version of Tables 1,2, 
and 3 previously published in [ 33 ]       
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 Most of these programs require some degree of 
sequence complementarity (commonly in the 
form of a seed of 6–8 nucleotides) as well as 
favorable free energy in the miRNA-target duplex, 
although it has been shown that free energy calcu-
lations do not have much impact on the accuracy 
of the program’s predictions  [  41  ] . The program 
generally assumes that target site occupancy 
depends on the strength of the base pairing, 
although TargetScanS is a notable exception to 
this. Berezikov and colleagues state that 7% of 
human and 11% of novel mouse miRNAs are 
species–speci fi c  [  24  ] . The opposite is probably 
true as well: conservation does not necessarily 
indicate that the target site is functional, or that it 
has the same function as the parent gene  [  42  ] . 

 A current and well maintained list of miRNA-
target interactions with experimental support is 
essential for thoroughly elucidating miRNA func-
tion under different conditions and in different 
species. The miRTarBase database (  http://miR-
TarBase.mbc.nctu.edu.tw/    ) accumulates miRNA-
target interactions by manually surveying pertinent 
literature and using text mining to  fi lter research 
articles related to functional studies of miRNAs. 
MiRTarBase currently contains 3,969 experimen-
tally veri fi ed miRNA-target interactions between 
625 miRNAs and 2,433 target genes among 14 
species. miRTarBase provides the largest and most 
updated collection of miRNA-target interactions 
as it compares its content with that of similar, 
previously developed databases.  

    2.5   miRNAs in Clinical Practice 

 miRNAs are involved in cancer predisposition, 
development, and progression through gene 
deregulation and/or single-nucleotide polymor-
phism. MiRNAs in a cancer setting can be 
classi fi ed on the basis of their main functions:

   Oncomir: a miRNA that can function as a • 
tumor suppressor or as an oncogene depend-
ing on its target  
  Metastamir: a miRNA that can have either a • 
prometastatic or an antimetastatic effect  
  Apoptomir: a miRNA that is involved in • 
apoptosis  

  Hypoxamir: a miRNA that is up-regulated by • 
hypoxia  
  Angiomir: a miRNA that can regulate angio-• 
genesis; proangiomirs promote angiogenesis 
and antiangiomirs inhibit angiogenesis    
 miRNAs are unique candidates for targeted 

therapy because they have the ability to affect 
multiple molecules simultaneously along the 
same pathway. Thus, there is speculation that 
miRNAs may one day play a role in the develop-
ment of new therapeutic applications  [  43  ] . Given 
the role that miRNAs have in driving disease, the 
opportunity to modulate their regulation may 
represent a means of help patients live longer and 
maintain better quality of life. 

    2.5.1   Cancer Predisposition 
and Development 

 MiRNA involvement in cancer was  fi rst found 
for mir-15a and miR-16 in chronic lympho-
cytic leukemia  [  44  ] ; this has been con fi rmed by 
subsequent research  [  45,   46  ] . Since then, many 
other miRNA alterations have been observed in 
virtually every type of cancer (for a complete 
review, see  [  2  ] ); part of these alterations are 
summarized in Fig.  2.4 . For example, miR-
155, when overexpressed in chronic lympho-
cytic leukemia, is associated with a faster rate 
of carcinogenesis  [  47  ] , and miR-17-92 was 
found to lead to cancer growth when overex-
pressed in lung and breast cancers  [  48  ] . On the 
other hand, the presence of some miRNAs has 
been shown to decrease the incidence and 
growth rate of cancer. For example, miR-126 
was shown to decrease the growth of cancer 
cells when it was introduced into cancer cells 
in which its expression was decreased  [  49  ] . 
Sequence variations that cause miRNAs to be 
abnormally expressed may provide a new 
means of determining cancer predisposition 
 [  46  ] . For example, miR-16 has been shown to 
be involved in predisposition for chronic lym-
phocytic leukemia  [  4  ] . Venkatachalam and col-
leagues found that germline variations help 
pinpoint which genes are involved in familial 
predisposition to cancer  [  50  ] . 

http://miRTarBase.mbc.nctu.edu.tw/
http://miRTarBase.mbc.nctu.edu.tw/
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    2.5.1.1   Diagnosis, Prognosis 
and Metastasis 

 miRNAs have several properties that would 
make them effective diagnostic markers for can-
cer, for example, checking a patient’s expression 
levels of speci fi c miRNAs would help a clinician 
decide whether the patient is at risk for develop-
ing cancer or whether the patient’s tumor has 
metastasized. The deregulation of miRNA 
expression can be used as a diagnostic tool: 
Fig.  2.4  lists the miRNAs most often deregulated 
in cancer. The stability of miRNAs in formalin-
 fi xed, paraf fi n-embedded tissues and body  fl uids 
is advantageous for biomarker discovery and 
validation, plus miRNAs can be extracted from 
small biopsy specimens. In addition, miRNAs 
are potential therapeutic agents for personalized 
cancer management   .  

 Several miRNAs are also involved in disease 
progression and prognosis:

   miR-135a is associated with poor prognosis in • 
Hodgkin lymphoma  [  51  ]   
  miR-191 and miR-199a are associated with • 
poor prognosis in acute myeloid leukemia  [  52  ]   
  miR-10b is associated with progression high-• 
grade gliomas  [  53  ]   
  miR-21 expression levels increase with advanced • 
tumor stages in oral and colorectal cancer  [  54  ] , 
and miR-21 expression is associated with poor 
prognosis in chronic lymphocytic leukemia 
patients with 17p deletion  [  55  ]   
  miR-146a expression decreases as prostate • 
carcinomas become more advanced  [  56  ]   
  miR-182 expression increases with progres-• 
sion of melanoma  [  57  ]     
 The  fi rst evidence of miRNA involvement in 

metastasis was found for miR-10b as a promoter 
of breast cancer metastasis  [  58  ] , and later miR-
335 was shown to reduce the progression of met-
astatic breast cancer when it was introduced into 

  Fig. 2.4    MicroRNAs that are deregulated in various types of cancer. A  green square  represents down-regulation, a  red 
square  represents up-regulation and a  yellow square  indicates that both regulations have been highlighted       
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cancer cells in which its expression was decreased 
 [  49  ] . After these initial  fi ndings, many associa-
tions between miRNAs and metastasis have been 
found in several types of cancer, including miR-
21 up-regulation in breast, oral, and colorectal 
cancer  [  59,   60  ] ; miR-126 down-regulation in 
metastatic relapse of breast cancer  [  61  ] ; and miR-
122 down-regulation in intrahepatic metastases 
 [  62  ] . The involvement of miR-21 in several can-
cers suggests that it may have a general role in 
tumor progression and that there may be meta-
static pathways common to multiple cancers, 
(Fig.  2.4 ).    

    2.6   Conclusion 

 miRNAs, and ncRNAs in general, are involved in 
the development and progression of various can-
cers. New technology has elucidated the function 
of speci fi c miRNAs and their potential use in tar-
geted therapies for these cancers; however, stan-
dardized methods for predicting and sequencing 
miRNAs and miRNA targets remain to be devel-
oped. The biomedical and bioinformatics research 
community must work to  fi ll in the gaps in 
miRNA research in order to be able to translate 
the  fi ndings into clinical practice.      
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  Abstract 

 The accurate prediction and validation of microRNA targets is essential to 
understanding the function of microRNAs. Computational predictions 
indicate that all human genes may be regulated by microRNAs, with each 
microRNA possibly targeting thousands of genes. Here we discuss com-
putational and experimental methods for identifying mammalian 
microRNA targets. We describe microRNA target prediction resources 
and procedures that are suitable for experiments where more accurate pre-
diction of microRNA targets is more important than detecting all putative 
targets. We then discuss experimental methods for identifying and validat-
ing microRNA target genes, with an emphasis on the target reporter assay 
as the method of choice for speci fi cally testing functional microRNA 
target sites.  
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    3.1   Introduction 

 In 2002, Eric Lai  [  1  ]  compared the sequences of 11 
microRNAs to the K box and Brd Box motifs that 
were known to mediate post-transcriptional regula-
tion in  Drosophila . He demonstrated that the  fi rst 
eight nucleotides, now called the seed region, of 
microRNAs (miRNAs), were perfectly comple-
mentary to these motifs and concluded that this 
complementarity may be essential in post-tran-
scriptional regulation by microRNAs. This simple 
bioinformatics analysis established one of the 
strongest predictive features used in target predic-
tion to date. Since then, the microRNA repertoire 
has grown exponentially and numerous experimen-
tal methods have been developed to con fi rm 
microRNA targets. None of these advances has 
produced a unique feature of microRNA targeting 
that is more telling than the seed region. They have 
instead led to the conclusion that microRNA regu-
lation is very intricate and diverse. For this reason, 
the computational and experimental methods that 
have been developed generally focus on speci fi c 
aspects of microRNA regulation and are used to 
either investigate the physical interaction between 
microRNAs and their putative targets or the func-
tional outcome of microRNA targeting. Here we 
describe these computational and experimental 
methods and explain which speci fi c aspects of 
microRNA regulation they focus on.  

    3.2   Computational Methods to 
Identify microRNA Targets 

 Despite a plethora of different algorithms and 
methods to predict microRNA targets, most 
rely on similar sequence-based approaches for 
their starting point. These algorithms initially 
search for some degree of sequence comple-
mentarity between the miRNA of interest and 
the 3 ¢  untranslated region (3 ¢ UTR) of mRNAs 
with emphasis on the miRNA seed region (nt 
2–8). Because the miRNA:mRNA duplex can 
contain mismatches, gaps and G:U pairs, the 
number of possible targets based uniquely on 
this alignment is too large to be informative. 
Additional steps are therefore required to re fi ne 

target predictions and rank them according to 
statistical con fi dence. Here we describe the 
most commonly used methods for detecting 
miRNA targets, classi fi ed according to the cri-
teria used to re fi ne the initial sequence analysis 
(Fig.  3.1 ). For each approach we provide exam-
ples of commonly used algorithms and discuss 
their limitations.  

    3.2.1   Thermodynamic Stability of 
the microRNA:mRNA Duplex 

 miRanda  [  2  ] , the  fi rst freely-available prediction 
program measures the thermodynamic stability 
between a miRNA and its putative target to 
increase prediction accuracy. Different scores for 
the C:G, A:U, and G:U pairs are used to measure 
stability with a requirement for more stable 
energy scores at the 5 ¢  end of the miRNA. A user-
de fi ned threshold can then be set to eliminate 
unstable duplexes. Since miRanda became avail-
able, more complete models to calculate the 
stability of RNA duplexes have been published 
and successfully used to predict miRNA targets. 
The standalone algorithm RNAhybrid  [  3  ] , for 
example, calculates the most stable hybridization 
site between two sequences and can easily be 
incorporated into existing prediction algorithms. 
The PITA algorithm  [  4  ]  also uses thermodynamic 
stability of a miRNA:mRNA duplex but com-
pares it to the stability of local structures within 
the 3 ¢ UTR of the target mRNA. If the duplex is 
predicted to occur within a region of the 3 ¢ UTR 
that is already involved in a stable structure, the 
miRNA is less likely to bind to its target. This 
approach is limited by the accurate prediction 
of stable secondary structures, which becomes 
 unreliable when considering long distance inter-
actions and therefore larger RNA structures.  

    3.2.2   Sequence Conservation 
of the Target Site Between 
Multiple Species 

 Evaluating sequence conservation of predicted 
targets between distantly related species 
ef fi ciently reduces the number of false positive 
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predictions. Most algorithms will require that the 
predicted miRNA target site be located in homol-
ogous regions of the 3 ¢ UTR, and that the seed 
binding region be in a highly conserved region. 
TargetScan  [  5  ]  initially searches for conserved 
seed pairing regions in 3 ¢ UTR alignments 
between 28 vertebrate species. This set of putative 
targets is then re fi ned using a context score based 
on the target position in the 3 ¢ UTR and surround-
ing sequence composition and further re fi ned by 
considering 3 ¢  pairing of the miRNA within  [  6  ] . 
This approach is of little use in detecting 
species-speci fi c binding sites or binding sites of 
species-speci fi c miRNAs. TargetScan also pro-
vides non-conserved targets on their website.  

    3.2.3   Multiple Targets in the Same 
3 ¢ UTR 

 Recent analysis demonstrates that numerous 
mRNAs are targeted by the same miRNA at differ-
ent sites within their 3 ¢ UTR. This multi-targeting 
occurs at a signi fi cantly higher rate than expected. 
Focusing therefore on mRNAs that have more than 
one predicted site for the same miRNA in the 
3 ¢ UTR can increase the signal to noise ratio for 
different algorithms  [  7,   8  ] . Although this approach 
will eliminate numerous true target sites it has the 
advantage of producing a list of high con fi dence 
gene targets. This method requires the user to  fi rst 
select one or more target prediction programs and 

  Fig. 3.1    Computational methods to identify miRNA 
targets. After the initial search for sequence complemen-
tarity between the seed region of the miRNA (nt 2–8) and 
the putative mRNA target, most algorithms will use addi-
tional criteria to re fi ne predictions. The  functional cate-
gory of targets  can be used to search for targets that 
belong to the same biological pathway or process. 
 Combining microRNA and mRNA   expression data  
and searching for negative correlations between them can 

ef fi ciently predict miRNA targets regulated through 
mRNA destabilization. The  thermodynamic stability of 
the   microRNA:mRNA duplex  searches for stronger 
physical interaction between the miRNA and its targets. 
Investigating  sequence conservation of the   target site 
between multiple   species  or  multiple target sites in   the 
same 3  ¢  UTR  can be used to rank putative targets accord-
ing to their statistical likelihood       
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subsequently re fi ne their results for multi-targeting. 
This last step can be performed on the mimiRNA 
website  [  8  ]  (  http://mimirna.centenary.org.au    ). 
The PicTar  [  9  ]  algorithm uses a combinatorial 
approach that not only accounts for multiple bind-
ing sites of the same miRNA but also computes the 
likelihood that a sequence is bound by a combina-
tion of input miRNA sequences. Filtering predic-
tions based on multi-targeting drastically reduces 
the number of predicted targets and, because they 
increase the probability of discovering true target 
genes, they are useful for studies where experi-
mental validation of miRNA targets is necessary.  

    3.2.4   Functional Category of Targets 

 Because miRNAs can often affect genes in a bio-
chemical pathway or biological process  [  10  ] , con-
sidering the function of target genes may eliminate 
biologically irrelevant predictions. mirBridge  [  11  ]  
starts with a set of genes with a known function 
and searches for enrichment of putative targets 
based on sequence analysis amongst this gene set. 
This approach is useful for experiments where a 
speci fi c function or pathway is being dissected 
but may prove limiting in studies where a speci fi c 
miRNA or mRNA is being analysed with no prior 
knowledge of its function.  

    3.2.5   Combining microRNA and mRNA 
Expression Data 

 Numerous miRNAs inhibit gene expression by 
destabilizing mRNAs  [  12  ] . As a consequence, 
mRNA targets should be expressed at lower levels 
in tissues where the miRNA is expressed. 
Correlating mRNA and miRNA expression across 
multiple tissues and selecting those pairs that are 
negatively correlated can successfully detect tar-
get genes  [  13  ] . Because this method is indepen-
dent of any sequence analysis, it can be used to 
 fi lter predictions made by any of the aforemen-
tioned algorithms. Another advantage of this 
approach is that it is not restricted to targets 
located in the 3 ¢ UTR. Although there are fewer 
published examples of miRNA targets in other 

regions of mature mRNAs, there may be numer-
ous targets in the coding region that have been 
overlooked because the high level of sequence 
conservation in exons prohibits the use of sequence 
conservation-based techniques (see Sect.  3.3.3 ). 
The major drawback of this approach is that miR-
NAs that do not affect mRNA levels or that only 
“ fi ne-tune” gene expression will not be identi fi ed. 
The mimiRNA website  [  8  ]  provides correlation 
analysis in human samples and displays the pre-
dicted targets from TargetScan, miRanda, and 
PicTar.  

    3.2.6   Concluding Remarks Regarding 
Computational Methods 

 The goal of these different approaches is to reduce 
prohibitively large lists of predicted targets with-
out losing too many true targets. Tuning these 
algorithms to  fi nd an optimal tradeoff between 
accuracy and sensitivity is currently impossible 
because relatively few targets have been validated 
experimentally. As a result, the ef fi ciency of these 
algorithms is often tested by measuring the enrich-
ment for predicted targets amongst a set of mRNAs 
or proteins for which the expression is subject to 
perturbation of miRNA expression. A recent study 
based on protein expression following both 
miRNA overexpression and knockdown found 
that TargetScanS and Pictar gave the best results 
 [  14  ] . However, this type of benchmark does not 
account for off-target effects which may be preva-
lent considering that miRNAs often target tran-
scription enhancers and repressors  [  13  ] . One 
commonly used approach to enhance the quality 
of target predictions is to consider the overlap 
between multiple programs. We do not recom-
mend this as there is no proof that this will increase 
prediction quality and it will systematically reduce 
the number of candidates  [  7  ] .  

    3.2.7   Future Directions 

 The degree of sequence conservation of a target 
or its involvement in a pathway for which other 
targets are predicted (described in Sects.  3.2.2 , 

http://mimirna.centenary.org.au
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 3.2.3  and  3.2.4  above) does not imply the bio-
logical mechanism through which a speci fi c 
miRNA binds to its targets. Binding of 
miRNA:mRNA pairs is affected by spatial and 
temporal co-expression of the miRNA:mRNA 
pair, target site availability, and the formation of 
a stable duplex at the target site. Future algo-
rithms will be required to investigate these three 
criteria to discover the whole repertoire of miRNA 
targets. 

 Co-expression of miRNA:mRNA pairs is 
often evaluated by simultaneous sequencing of 
mRNA enriched libraries and small RNA librar-
ies from the same cells. As more of these experi-
ments are performed on different cell types and 
even subcellular localizations, prediction tools 
will be able to integrate co-expression data with 
increasing ef fi ciency. 

 Target site availability is currently evaluated 
by folding a small sequence of RNA around the 
putative target. As discussed above, this does not 
take into account long distance interactions 
between different regions of the same RNA mol-
ecule. Such interactions are currently impossible 
to predict because there is insuf fi cient biochemi-
cal data on the stability of large RNA structures 
and because the number of possible suboptimal 
structures that could be predicted is prohibitively 
large. Moreover, target site accessibility should 
take into account RNA binding proteins, the pre-
diction of which suffers the same limitations as 
miRNA targets. 

 The stability of the miRNA:mRNA duplex has 
been thoroughly investigated through machine 
learning models and  in vivo  mutagenesis assays 
 [  15  ] . The results of these studies show that there 
is no clear-cut rule on the amount of sequence 
complementarity required between the miRNA 
and its target or at what position complementarity 
should occur. These most likely depend on the 
region of the mature miRNA that is exposed in 
the active site of Argonaute proteins and are 
therefore available to interact with its target. 
Understanding the different conformations of the 
Argonaute proteins should therefore allow for 
more accurate target predictions.   

    3.3   Experimental Identi fi cation 
and Validation of microRNA 
Targets 

 The identi fi cation of microRNAs and their tar-
get genes was originally conducted through 
classic genetic studies in the worm  Caenor-
habditis elegans , whereby a miRNA mutant 
displayed an opposite phenotype to that shown 
by the corresponding target gene null mutant 
 [  16  ] . Although this method was appropriate for 
small organisms such as nematodes  [  17  ]  or the 
fruit  fl y  Drosophila melanogaster   [  18  ] , it 
remains limited for larger animals like mam-
mals. Therefore arti fi cial systems are needed to 
identify and validate miRNA target genes. 
Validation of a putative miRNA target site 
requires that a physical interaction between a 
miRNA and its target mRNA will lead to 
decreased production of the corresponding 
protein. Such physical interaction implies the 
spatiotemporal co-expression of the regulating 
miRNA and its target gene. On this basis, mod-
ulating miRNA expression levels should result 
in changes in the amount of a reporter protein 
such as luciferase or GFP, which are quanti fi ed 
in comparison to controls. Several methods 
have been designed to experimentally identify 
targeted mRNAs at various steps along the 
miRNA regulatory pathway (Fig.  3.2 ). Since 
the net result of miRNA-mediated gene regula-
tion is a decrease in the amount of target pro-
tein being produced, methods measuring 
changes in protein output resulting from varia-
tions of miRNA expression have become a 
standard approach to identifying and validating 
miRNA targets. In addition, a number of bio-
chemical methods have been developed in order 
to experimentally identify miRNA:mRNA pairs 
isolated from immunopuri fi ed ribonucleopro-
tein complexes or enriched miRNA:mRNA 
duplexes. Here we describe some of the meth-
ods used to experimentally identify and vali-
date miRNA target genes (see also refs  19–  21  
for review).  
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    3.3.1   Reporter Assays 

  In vitro  reporter assays have been designed to 
con fi rm the interaction between a given miRNA 
and a putative target mRNA. The rationale is that 
upon binding to its target site(s) a given miRNA 
will inhibit reporter protein production, thereby 
leading to reduced protein amount or activity 
which can be measured compared to relevant 

controls  [  22–  25  ] . Typically the putative miRNA 
target site is cloned downstream of the open read-
ing frame of a reporter gene,  e.g.  luciferase 
( Renilla  or  fi re fl y) or GFP, and the recombinant 
plasmid is transfected into mammalian cells. 
Depending on the size of the 3 ¢ UTR to be tested, 
the full-length UTR or a fragment containing the 
predicted binding site is used. However, a partial 
UTR sequence may give erroneous positive 

  Fig. 3.2    Experimental    methods designed to identify and 
validate targeted mRNA based on the relevant part of the 
miRNA regulatory pathway. Once loaded into the RNA-
induced silencing complex (miRISC), miRNA drives 
miRISC to the targeted mRNA. Depending on the level of 
complementarity between the miRNA and the mRNA tar-
get site, miRISC follows two different routes to inhibit 
protein production. Partial base pairing between miRNA 
and mRNA ( left ) leads to translation inhibition and mRNA 
decay. High complementarity between miRNA and tar-
geted transcript ( right ) results in mRNA cleavage by 
Argonaute slicing activity. ( a ) Biochemical methods have 

been designed in order to purify miRNA:mRNA com-
plexes by immunoprecipitation (IP) or pull-down of 
labeled miRNA from miRISC components (Sect.  3.3.3 ). 
( b–c ) Molecular approaches are used to identify target 
genes through miRNA-primed reverse transcription of tar-
geted mRNA template, or by analysis of cleavage prod-
ucts (Sect.  3.3.4 ). ( d ) Proteomics analysis identi fi es 
changes in protein output upon miRNA expression varia-
tions (Sect.  3.3.2 ). ( e ) Target genes are ultimately vali-
dated by reporter assay (Sect.  3.3.1 ).  DIG  digoxigenin, 
 ORF  open reading frame       
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results due to higher accessibility of the miRNA 
consequent to loss of secondary structures in the 
UTR. The recombinant reporter plasmid and a 
vector overexpressing the miRNA of interest, or a 
synthetic double-stranded oligonucleotide 
(miRNA mimic), are then transiently transfected 
into mammalian cells, usually HeLa or HEK293 
cells, and luciferase activity or  fl uorescence 
intensity is measured 24–48 h later. It is impor-
tant to assess endogenous miRNA expression 
levels in the cell system used for the assay, as the 
endogenous expression of miRNAs is not the 
same from one cell type to another, and some 
miRNAs display tissue-speci fi c expression ( e.g.  
hematopoietic-, brain-, embryonic stem cell-
restricted miRNAs). Alternatively, cells can be 
transfected with the reporter vector alone if they 
express suitable endogenous levels of the candi-
date miRNA. Reduction of miRNA expression 
can be achieved using miRNA inhibitors such as 
modi fi ed antisense oligonucleotides  [  26  ]  or 
sponge vectors  [  27  ] , which constitute an elegant 
option when cells have high endogenous miRNA 
levels. 

 Importantly, transfection controls must be cho-
sen carefully. These controls include reporter vec-
tors without the UTR sequence, or with a UTR 
cloned in the antisense orientation. Also, cells 
must be co-transfected with a control luciferase 
reporter vector to normalize for variations in 
transfection ef fi ciencies. Alternatively, dual 
luciferase reporter systems can be used, in which 
UTR sequences are cloned downstream to one 
luciferase gene ( Renilla ), while the other luciferase 
reporter ( fi re fl y) remains unaltered and is used for 
normalization. Speci fi city of miRNA regulation is 
assessed by co-transfection of an irrelevant 
miRNA or scrambled RNA duplexes. In these 
conditions, only transfection with the relevant 
miRNA should result in a decrease of reporter 
activity/expression. However, this result could be 
due to some off-target effect of the miRNA, which 
is provided in supra-physiological amounts to the 
cell when overexpressed, or indirect regulation by 
targeting genes that, in return, affect expression of 
the reporter. To con fi rm the speci fi c inhibition of a 
miRNA on a target gene, it is therefore essential 
that the predicted binding sites be disrupted and 

that modi fi ed UTR sequences be tested in the 
reporter assay as well. This strategy not only 
de fi nitively validates the miRNA:mRNA interac-
tion and regulation, but also identi fi es which 
site(s) is/are true functional binding site(s) in the 
case of multiple predicted miRNA target sites. 
Last, a modi fi ed miRNA mimic harboring the 
complementary sequence to the mutated UTR can 
be used to rescue target regulation of the mutated 
UTR reporter constructs. In summary, a valid 
reporter assay should be carried out by co-trans-
fecting (1) a reporter plasmid containing the full 
3 ¢ UTR sequence, and (2) the same reporter con-
struct with a disrupted target site, together with a 
miRNA overexpressing vector  vs.  scramble 
sequence. 

 The reporter assay described above indicates 
that, when a given miRNA and target gene are 
expressed simultaneously in the same cell, they 
are likely to interact and this interaction might 
result in miRNA-mediated reduced expression 
of the target gene. It remains, however, an 
arti fi cial system in which both the miRNA and 
the targeted UTR are overexpressed in a heter-
ologous system. It is thus recommended to 
con fi rm, when possible, that such regulation 
does occur on the endogenous gene. Changes in 
protein amounts upon miRNA overexpression/
inhibition can be measured by Western blot,  fl ow 
cytometry, or immunocytochemistry experi-
ments. If antibodies are not available, other vali-
dation methods can be used, for example, based 
on enzymatic activity, ligand binding, etc. 
Another indication of miRNA-induced gene reg-
ulation can be provided by target transcript 
quanti fi cation. Although miRNAs were origi-
nally shown to regulate gene expression by 
repressing mRNA translation without affecting 
transcript level, it is now widely accepted that 
miRNA-mediated regulation is frequently 
accompanied by mRNA destabilization, essen-
tially due to increased deadenylation  [  28,   29  ] . 
Transcripts displaying reduced levels upon 
miRNA ectopic expression are subsequently 
analysed for the presence of miRNA target sites 
in their 3 ¢ UTR using prediction algorithms (see 
Sect.  3.2 ) in order to identify putative miRNA 
target genes  [  12,   26,   30  ] .  
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    3.3.2   Proteomics Methods 

 Several proteomics studies have been designed to 
identify miRNA target genes. Vinther et al.  [  31  ]  
used stable isotope labeling by amino acids in cell 
culture (SILAC), in which proteins are metaboli-
cally labeled by cells growing in medium contain-
ing heavy isotopes of essential amino acids. 
Differences in protein synthesis are determined by 
mass spectrometry as the ratio of peptide peak 
intensities from light and heavy isotopes  [  32  ] . Of 
504 proteins investigated by SILAC, they identi fi ed 
a set of 12 proteins with reduced expression in 
HeLa cells overexpressing miR-1 and grown in 
medium containing heavy isotopes, as compared 
to control cells grown with light isotopes. Seed 
region complementary sites were found in the 
3 ¢ UTR of corresponding genes for 8 of these pro-
teins, which was a signi fi cant enrichment for 
miR-1 seed motif when compared with entire 
3 ¢ UTR sequence databases. These investigators 
used the luciferase reporter assay to con fi rm miR-1 
regulation for 6 out of 11 target genes tested  [  31  ] . 

 The SILAC method was subsequently used in 
two large-scale proteomics studies to identify tar-
get genes of several miRNAs  [  14,   33  ] . In both 
cases, HeLa cells were transfected with different 
miRNA duplexes, and protein output was mea-
sured 48 h post-transfection. Selbach et al. used a 
modi fi ed version of SILAC in which cells were 
pulse-labeled (pSILAC) so that heavy isotopes 
were primarily incorporated into newly synthe-
sized proteins  [  14  ] . In addition, SILAC was used 
to study the impact of miR-223 de fi ciency in 
mouse neutrophils  [  33  ]  and let-7b knockdown in 
HeLa cells  [  14  ] . The authors concluded that each 
miRNA regulates hundreds of target proteins, 
though to a relatively modest degree. Motif anal-
ysis revealed a signi fi cant enrichment for corre-
sponding miRNA seed complementary sites in 
the 3 ¢ UTR of repressed genes, as compared to an 
unmodi fi ed protein set. While Baek et al. found 
that most repressed targets displayed detectable 
mRNA destabilization  [  33  ] , Selbach et al. 
identi fi ed substantial direct regulation by transla-
tion inhibition  [  14  ] . Overall, these studies sug-
gested that miRNAs act primarily by  fi ne-tuning 
expression of a large number of target genes. 

 Zhu et al. used two-dimensional differentia-
tion in-gel electrophoresis (2D-DIGE) to identify 
miR-21 targets in a mouse breast cancer model 
 [  34  ] . Proteins were extracted from tumors derived 
from human MCF7 cells treated with anti-miR-21 
antisense or control oligonucleotide. After label-
ing with two different  fl uorescent dyes, both pro-
tein samples were separated by 2D-polyacrylamide 
gel electrophoresis (PAGE) in the same gel. 
Fluorescence intensity was measured by gel 
imaging, and differentially expressed proteins 
were puri fi ed from the gel prior to identi fi cation 
by mass spectrometry. This method identi fi ed 
seven proteins that were up-regulated in anti-
miR-21 treated tumors, including tropomyosin 
(TPM) 1, which was further validated by reporter 
assay and Western blot  [  34  ] . Of note, several pro-
teins were also found to be down-regulated upon 
anti-miR-21 treatment in this study, which sug-
gests an indirect effect of miR-21. 

 Another approach for target identi fi cation com-
bined miRNA and protein expression analysis 
with computational predictions. miRNA pro fi ling 
was performed to identify differentially expressed 
miRNAs between two samples, which were com-
pared to proteomics data generated by 2D-PAGE 
associated to mass spectrometry  [  35  ]  or reverse-
phase protein arrays  [  36  ] . Reciprocally expressed 
miRNAs and proteins were then compared to 
miRNA target predictions to identify relevant tar-
get genes. This analysis resulted in the identi fi cation 
of 52 and 17 miRNA:gene target pairs in rat kid-
ney  [  35  ]  and human cartilage  [  36  ] , respectively. 
More recently, a targeted proteomics approach 
was designed to identify let-7 miRNA target genes 
in  C. elegans   [  37  ] . The method combined isotope-
coded af fi nity tag (ICAT) protein labeling  [  38  ]  and 
detection by selected reaction monitoring mass 
spectrometry  [  39  ]  to quantify protein levels 
between wild type and  let-7  mutant whole worms. 
By de fi nition, the ICAT labeling is restricted to 
proteins harbouring mass spectrometry-detectable 
peptides that contain cysteine residues  [  38  ] . This 
limitation implied working on a prede fi ned set of 
proteins predicted as let-7 targets that met these 
requirements, leading to consequent reduced pro-
teome coverage. Of 161 proteins analysed, 29 were 
signi fi cantly altered in mutant worms, including ten 
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that were downregulated, suggesting an indirect 
effect of miRNA regulation  [  37  ] . Ten of the 
identi fi ed targets were further validated by genetic 
analysis and, for one of them, by reporter assay. 
The authors then used a modi fi ed method based on 
metabolic labeling of worms using heavy isotopes 
 [  40  ] , to facilitate full coverage of the  C. elegans  
peptide repertoire. Of 27 predicted miR-58 targets, 
four were identi fi ed as signi fi cantly upregulated in 
a  miR-58  mutant using this modi fi ed method  [  37  ] .  

    3.3.3   Biochemical Approaches 

 miRNA-mediated gene silencing in mammals 
requires a functional miRNA-loaded RNA-
induced silencing complex (miRISC) machinery 
(Fig.  3.2 ). Several studies identi fi ed miRNA tar-
get transcripts by virtue of their association with 
miRISC components by co-immunoprecipitation 
of human or  Drosophila  Argonaute (AGO) pro-
teins  [  35,   41–  46  ] , human TNRC6 proteins  [  45  ] , 
or nematode GW182 protein family AIN1-2 
 [  47  ] . This strategy was originally used by 
Mourelatos et al. to identify new miRNAs that 
were co-immunoprecipitated with AGO2/
EIF2C2-containing complex in HeLa cells  [  48  ] . 
Immunoprecipitated mRNAs were then identi fi ed 
by cloning, microarray analysis, or deep sequenc-
ing. A  fi rst strategy consists in the puri fi cation of 
all miRISC-associated mRNA species in a given 
cell type, in order to identify the global “targe-
tome” of that cell type, without preliminary 
knowledge of the presence of any speci fi c 
miRNA. Sequence motif analysis is then per-
formed to identify miRNA complementary sites 
enriched in miRISC-bound mRNAs compared to 
whole cell mRNAs, thus inferring which miR-
NAs are co-expressed. Easow et al. used this 
approach in  Drosophila  S2 cells stably express-
ing FLAG/HA-Ago1  [  42  ] . Microarray analysis 
revealed signi fi cant enrichment of transcripts 
containing complementary sites for miR-184, 
miR-7 and miR-314, in anti-HA pulled down 
mRNAs. Similarly, Beitzinger et al. pulled down 
AGO1- and AGO2-associated transcripts from 
HEK293 cells and identi fi ed immunoprecipi-
tated mRNAs by complementary DNA (cDNA) 

library preparation and sequencing  [  41  ] . Another 
approach consists in comparing miRISC-associ-
ated mRNAs of cells transfected with, or deprived 
of, a given miRNA to mock-transfected or 
unmodi fi ed control cells. Easow et al. found a 
signi fi cant overrepresentation of miR-1 comple-
mentary sequences in Ago1 co-puri fi ed tran-
scripts from miR-1 transfected S2 cells compared 
to untransfected cells  [  42  ] . Several studies using 
this method, also called RIP-Chip (ribonu
cleoprotein immunoprecipitation-gene chip), 
reported identi fi cation of miRNA targets in 293 
cells  [  43–  45  ] , Hodgkin lymphoma cell lines 
 [  49  ] , human H4 glioneuronal cells  [  46  ] , and  C. 
elegans   [  47  ] . In this latter study, high-throughput 
sequencing was used to identify co-immunopre-
cipitated miRNAs as well. Notably, this experi-
mental procedure allowed the identi fi cation of 
miRNA target genes with stable mRNA levels 
that are likely to be primarily regulated by trans-
lational repression  [  43  ] . 

 Recently, the HITS-CLIP method (high-
throughput sequencing by crosslinking and 
immunoprecipitation) was developed to identify 
direct protein/RNA interactions  [  50  ] . This 
approach uses UV irradiation to crosslink nucleic 
acids and proteins in close proximity, which are 
then immunopuri fi ed using an antibody to a 
miRISC component. Partial RNA digestion 
leaves miRISC-protected RNA fragments, which 
are then identi fi ed by high throughput sequenc-
ing. Chi et al. used HITS-CLIP to purify Ago2-
bound mRNA and miRNA species from mouse 
brain as well as miR-124 transfected HeLa cells 
 [  51  ] . As in other studies, bound mRNAs were 
enriched for complementary sites to miRNAs 
that were either highly endogenously expressed 
or over-expressed following transfection. This 
approach, also called CLIP-Seq, was used to iso-
late Argonaute protein ALG-1-bound mRNAs in 
 C. elegans   [  52  ]  and Ago2-puri fi ed transcripts in 
wild type versus  dicer   −/−   mouse ES cells  [  53  ] . An 
improvement of the method, named photoactivat-
able-ribonucleoside-enhanced (PAR)-CLIP, was 
recently described, in which crosslinking 
ef fi ciency was enhanced by incorporation of the 
photoactivatable nucleoside analog 4-thiouridine 
into transcripts of cultured cells  [  54  ] . Upon UV 
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crosslinking at 365 nm, thymidine located at the 
crosslinking sites are converted to cytidine, which 
allows for the precise identi fi cation of RNA-
protein binding site. PAR-CLIP method was used 
to identify miRNA target sites of mRNAs associ-
ated to AGO and TNRC6 family proteins in 293 
cells. Deep sequencing of bound RNAs revealed 
enrichment of complementary sites for the most 
highly expressed miRNAs  [  54  ] . 

 Interestingly, these high-throughput studies 
revealed that a high proportion (25–50 %) of the 
binding sites were located within the coding 
sequence (CDS) region of bound mRNAs  [  51, 
  52,   54  ] . This observation suggests that functional 
miRNA target sites may not only be located in 
3 ¢ UTRs as previously thought, in agreement with 
a number of recent reports identifying miRNA 
target sites in CDS  [  55–  58  ] . Furthermore, 
Schnall-Levin et al. recently demonstrated fre-
quent CDS targeting through repeated miRNA 
binding sites, of paralogous families of the C 
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zinc- fi nger genes, which typically contain many 
tandem repeats of the  fi nger motif  [  59  ] . Similarly, 
building on previously published microarray data 
in mammalian cells transfected with, or deprived 
of, speci fi c miRNA  [  14,   33  ] , Fang and Rajewsky 
showed that CDS target sites act synergistically 
with 3 ¢ UTR sites for miRNA-mediated regula-
tion of gene expression  [  60  ] . Of importance, most 
prediction algorithms could not identify this class 
of miRNA target sites because of the “3 ¢ UTR-
only” rule. However, the PITA algorithm  [  4  ] , 
which mainly identi fi es target site accessibility, 
and the rna22 program  [  57,   61  ] , which identi fi es 
over-represented sequence patterns, can be used 
to detect miRNA binding sites located outside the 
UTR. In addition, the mimiRNA algorithm  [  8  ] , 
which identi fi es miRNA:mRNA pairs that dis-
play conserved negative correlation of expression 
across several tissues, can be used to select candi-
date target genes prior to searching for putative 
binding sites. Of note, CDS target site validation 
requires a modi fi ed reporter assay, whereby the 
target-site-containing sequence is fused in frame 
with a reporter CDS  [  42,   59  ] . Alternatively, co-
transfection of wild type and mutated versions of 
the targeted CDS associated with two different 
epitope tags,  e.g.  Myc and FLAG, has been used 

to monitor by Western blot the level of protein 
down-regulation upon miRNA co-expression 
 [  58  ] . 

 An alternative strategy to the aforementioned 
protein pull-down methods was proposed by Orom 
and Lund, who developed an af fi nity-based target 
gene identi fi cation procedure  [  62  ] . In this case, 
transfection of a biotinylated synthetic miRNA 
allows the puri fi cation of miRNA:mRNP com-
plexes using streptavidin-agarose beads. This 
strategy is attractive since it allows target gene 
identi fi cation of a speci fi c miRNA, whereas other 
methods seek to isolate virtually all miRNA-regu-
lated transcripts. By purifying a biotin-tagged ban-
tam miRNA in  Drosophila  S2 cells, the endogenous 
target gene  Hid  was ef fi ciently identi fi ed  [  62  ] . The 
same group subsequently used this technique to 
isolate mRNAs bound to biotinylated miR-10a in 
mouse ES cells. Surprisingly, microarray analysis 
revealed that 55 of the 100 most enriched mRNAs 
corresponded to ribosomal protein genes, with no 
enrichment for known miR-10a targets or tran-
scripts with miR-10a complementary sites  [  63  ] . 
They further showed that miR-10a bound con-
served sites in the 5 ¢  UTR of these genes, leading 
to upregulation of ribosomal protein translation 
and ribosome formation, resulting in a ~30 % 
increase of global protein synthesis  [  63  ] . Combined 
to 4-thiouridine modi fi ed nucleotides and UV 
crosslinking, biotin-tagged miRNA ‘pullout’ was 
used to demonstrate direct interaction between 
miR-34a and MYC transcript in human  fi broblasts. 
Similarly the LAMP (labeled miRNA pull-down) 
assay was developed  [  64,   65  ] , in which synthetic 
miRNAs were labeled with digoxigenin (DIG), 
and binding RNAs were isolated using anti-DIG 
agarose beads. The LAMP method was used to 
isolate known targets of  C. elegans  let-7 and lin-4, 
and zebra fi sh let-7 and miR-1. Speci fi cally, 302 
transcripts enriched using DIG-tagged miR-1 pull 
down (compared to mutated miR-1 control) were 
identi fi ed, including the known miR-1 target 
Hand2  [  66  ] . An improvement of the method, called 
TAP-Tar (tandem af fi nity precipitation target 
identi fi cation) was recently described, which com-
bined HA-tagged AGO1-2 immunoprecipitation 
followed by biotinylated miRNA pull down using 
streptavidin beads in HeLa cells  [  67  ] . This two-
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step procedure was shown to recover the known 
miR-20a target E2F1 more ef fi ciently than each 
pull down method used separately.  

    3.3.4   Molecular Methods 

 Vatolin et al. reported the use of endogenous 
miRNAs as primers for cDNA synthesis by 
reverse transcriptase on the targeted mRNA tem-
plate  [  68  ] . Although pairing of the target mRNA 
to the miRNA 3 ¢  end is usually weaker than to the 
5 ¢  end (the seed region), the hypothesis underpin-
ning this work was that the miRNA 3 ¢  end could 
form a temporary stable duplex with the target 
mRNA to initiate cDNA synthesis (Fig.  3.2 ). 
Using cytoplasmic extracts, a  fi rst round of 
reverse transcription elongates the miRNA 
sequence to generate cDNA-miRNA molecules, 
which are puri fi ed and used as secondary primers 
to drive a second round of reverse transcription, 
thereby increasing the speci fi city of the reaction. 
After ligation of an adapter sequence at the 5 ¢  
end, cDNAs are PCR ampli fi ed using a primer 
from the adapter and a gene-speci fi c primer cor-
responding to a target RNA of interest. PCR 
products are then cloned and sequenced to iden-
tify the regulatory miRNA based on homology 
searches of the appropriate databases. Vatolin 
et al. recovered partial sequences of miRNAs 
associated to  b -actin, N-Ras and K-Ras mRNAs 
from human hTERT-RPE1 epithelial cells, and 
con fi rmed their functional regulation by Western 
blot and luciferase assay upon miRNA overex-
pression  [  68  ] . 

 Andachi modi fi ed the method by ligating an 
adapter sequence to the 3 ¢  end of the cDNA and 
by using a biotinylated, miRNA-speci fi c primer 
together with an adapter-speci fi c primer for 
PCR ampli fi cation  [  69  ] . The ampli fi cation prod-
uct was puri fi ed using avidin beads, and further 
PCR ampli fi ed with adapter-speci fi c and nested 
miRNA-speci fi c primers. When applied to  C. 
elegans , this method isolated the known lin-4 
target gene lin-14, and identi fi ed the K10C3.4 
gene as a new target for let-7, which was further 
validated through reporter assay and genetic 

complementation analysis  [  69  ] . The two meth-
ods described above allow identi fi cation of 
miRNA:mRNA pairs by either target gene- or 
miRNA-speci fi c analysis, and are not suitable 
for high-throughput identi fi cation of miRNA 
targets. 

 In the speci fi c context of miRNA-mediated 
cleavage of a target gene (Fig.  3.1 ), several studies 
identi fi ed mRNA cleavage products by RNA ligase 
mediated-5 ¢  rapid ampli fi cation of cDNA ends 
(RLM-RACE)  [  70–  77  ] . In the original method, an 
RNA adapter was ligated to the 5 ¢  phosphate of 
cleaved, uncapped poly-A +  RNAs. After reverse 
transcription with oligo-(dT), cDNAs were 
ampli fi ed using adapter- and gene-speci fi c prim-
ers, before cloning and sequencing. This approach 
was used to validate miR-171-mediated cleavage 
of several transcripts of the SCL family of tran-
scription factors in  Arabidopsis thaliana   [  70  ] , as 
well as Hoxb8 mRNA cleavage by miR-196 in 
mouse embryos  [  25  ] . In addition, the 5 ¢  end of the 
cloned mRNA was shown to map to the nucleotide 
pairing with the tenth nucleotide of the miRNA. 

 An improved method, named PARE (parallel 
analysis of RNA ends), was developed for 
genome-wide identi fi cation of miRNA-induced 
cleavage products  [  71,   72  ] . In this modi fi ed pro-
tocol, the 5 ¢  RNA adapter was engineered to con-
tain an MmeI restriction site, and after reverse 
transcription and second strand cDNA synthesis, 
double-stranded molecules were digested with 
MmeI, generating 20–21 nt tag sequences 
attached to the adapter. A DNA adapter was then 
ligated at the 3 ¢  end of the tag, which was PCR 
ampli fi ed using 5 ¢ adapter- and 3 ¢ adapter-speci fi c 
primers. Tags were analysed by high-throughput 
sequencing and matched to the  Arabidopsis  
genome to identify corresponding target genes 
and infer regulatory miRNAs. This ‘degradome’ 
tag analysis identi fi ed a large proportion of known 
 Arabidopsis  miRNA and  trans -acting siRNA 
(ta-siRNA) target genes, although most of the 
tags represented mRNA degradation products 
unrelated to these small RNAs  [  71,   72  ] . PARE 
was also used to identify miRNA and ta-siRNA 
target genes in rice  [  75  ] . A modi fi ed RLM-RACE 
methodology was also developed, in which 



50 W. Ritchie et al.

 Arabidopsis  cleaved transcripts were linearly 
ampli fi ed by  in vitro  transcription using a T7 pro-
moter, prior to microarray analysis  [  73,   78  ] . Of 
the 228 candidate targets identi fi ed, 14 corre-
sponded to previously known miRNA targets 
 [  73  ] . 

 Although this approach is most suited to 
plants, in which extensive base pairing between 
miRNA and mRNA leads to miRISC-mediated 
cleavage of targeted mRNA, several studies 
reported PARE analysis of the degradome in 
mammalian cells  [  74,   76,   77  ] . Karginov et al. 
compared degradome tags from wild type versus 
 Ago2   −/−   mouse ES cells, in order to identify 
miRNA-speci fi c cleavage products. Tag abun-
dance peaked at nucleotide position 10 of the 
miRNA in wild type cells, whereas no peak was 
identi fi ed in  Ago2   −/−   cells  [  74  ] . This study also 
identi fi ed a number of target genes subjected to 
direct Drosha-mediated endonucleolytic cleav-
age, as well as Ago2- and Drosha-independent 
cleavage sites that were conserved in human 293 
cells. In another study, Shin et al. de fi ned a class 
of metazoan target sites named ‘centered sites’, 
which lack perfect seed pairing and 3 ¢ -compensa-
tory pairing, but instead harbour 11–12 contigu-
ous nucleotides that pair with miRNA nt 4–15 
 [  76  ] . Using RLM-RACE degradome sequencing, 
they identi fi ed a set of genes targeted for miRNA-
mediated cleavage in HeLa cells and human 
brain, though of low abundance. Although most 
of the putative target genes were attributed to 
three highly expressed miRNAs (miR-196a, -28, 
-151-5p), a total of 18 additional miRNA target 
genes were identi fi ed  [  76  ] . Likewise, Bracken 
et al. performed degradome analysis on six adult 
mouse tissues and d16.5 whole mouse embryo, 
resulting in the identi fi cation of 23 putative 
miRNA-mediated cleavage sites, most of which 
displayed low read frequency  [  77  ] . Although 
these studies revealed the existence of miRNA-
guided cleavage of target mRNAs in mammals, 
such targeting remains restricted to a limited 
number of genes. In addition, degradome analy-
ses showed that a substantial proportion of 
transcripts were subjected to endonucleolytic 
cleavage, though most of them were not related 
to miRNA regulation  [  76,   77  ] .  

    3.3.5   Concluding Remarks 

 Here we have considered a diverse array of 
computational and experimental methods used 
for genome-wide identi fi cation of miRNA target 
genes, each of which exhibits its own strengths 
and weaknesses. Yet, high-throughput approaches 
require formal validation to discriminate direct 
from indirect targeting, and identify functional 
miRNA target sites among the plethora of predic-
tions. In this regard, reporter assays can provide 
such information, although they should be sup-
ported by other validation analysis, notably show-
ing miRNA and mRNA co-expression and 
targeted protein output variations upon miRNA 
expression modulation. 

 The experimental methods described above 
highlight the existence of a large number of 
miRNA binding sites outside the 3 ¢ UTR of inter-
acting mRNAs, particularly in the CDS. Although 
target sites in the CDS do not appear to be as 
effective in regulating protein output as those 
present in the 3 ¢ UTR  [  59  ] , their contribution to 
the  fi ne-tuning of gene expression has been 
essentially ignored so far. In addition, most of the 
widely used target prediction algorithms consider 
sites solely located within the 3 ¢ UTR, which ren-
ders CDS target site analysis even more dif fi cult. 
Implemented computational methods will 
undoubtedly be developed in the future in order 
to investigate CDS target sites, together with the 
recently identi fi ed centered sites  [  76  ] . 

 New models to explore miRNA function are 
regularly described, among which miRNA loss- 
and gain-of-function approaches will play an 
increasing role. Such models have proved useful 
for functional analyses of miRNA activity and 
target gene identi fi cation in nematode and 
 Drosophila , and to a lesser extent in mouse ( [  79–
  83  ] , see ref  [  84  ]  for review). The mirKO resource 
 [  85  ]  that was recently made available for the 
scienti fi c community should aid in deciphering 
new miRNA functions and targets in the mouse. 
Likewise, the generation of miRNA/mRNA tar-
geting networks through computational analysis 
of putative target gene function  [  86  ]  should pro-
vide additional hints towards functional miRNA 
target gene identi fi cation.       
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    4.1   Introduction    

 MiRNAs, a large class of small ncRNAs (typi-
cally 20–23nt in length) play an important role in 
the regulation of gene expression. In the last decade 
it has been established that miRNA-mediated 
 translational repression is crucial in the regulation 
of core processes with remarkable time-, cell-, and 
tissue-speci fi city, such as proliferation, differentia-
tion, apoptosis, response to environmental 
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 stresses and organ development  [  1,   2  ] . 
Dysregulation of these precise processes, alone 
or in combination, plays an important role in the 
emergence and progression of cancer, and there-
fore it is not surprising that mounting  in vitro, 
in vivo  and clinical evidences assign a non-trivial 
role to miRNAs in oncogenesis  [  3  ] . 

 What makes miRNAs extremely intriguing 
biomolecules is that typically one miRNA is 
capable of regulating the expression of multiple 
genes. Computational methods commonly assign 
dozens to hundreds of target gene candidates to 
individual miRNAs, while experimentation often 
con fi rms dozens of them. On the other hand, 
many genes are targeted for repression by a high 
number of miRNAs, which seem to regulate 
those genes individually or cooperatively  [  4  ] . To 
make the understanding of miRNA-mediated 
regulation more cumbersome, some transcrip-
tion factors (TF) promote the parallel expression 
of many miRNAs, some of which target the same 
genes or several genes involved in the same sig-
nalling pathways  [  5  ] . Thus, pathways involving 
miRNAs are often complex regulatory networks, 
enriched in motifs like feedback loops and feed-
forward loops, whose regulation is dif fi cult to 
understand and make the direct interpretation of 
experimental data elaborate. Thus, one could say 
that the investigation of miRNA regulation is the 
perfect storm for conventional molecular biol-
ogy, far from the idyllic image of “one pathway, 
few components, simple interactions” that used 
to work. 

 In this book chapter we claim that systems biol-
ogy is the appropriate approach to investigate the 
regulation of those complex miRNA-regulated net-
works. Systems biology is an interdisciplinary 
approach, focussing on the investigation of spatio-
temporal processes in biochemical networks, by 
which biomedical questions are addressed by inte-
grating experiments in iterative cycles with math-
ematical modelling and simulation. Mathematical 
modelling is a tool to formulate hypotheses, 
develop more directed and better designed experi-
ments, and which will allow to make predictions 
 [  6  ] . It is actually  the approach  when dealing with 
high-throughput data of highly interconnected 
biochemical networks, composed of dozens to 

hundreds of proteins, genes and miRNAs. But also 
when dealing with networks enriched in non-linear 
motifs like feedback and feedforward loops, which 
induce non-intuitive regulatory patterns like ultra-
sensitivity, bistability, or oscillations. 

 In this book chapter we  fi rst introduce the 
foundations of the systems biology approach. 
Secondly, we show that miRNAs are embedded 
in complex network motifs, some of them com-
mon to other biomolecules like feedback loops, 
others speci fi c to miRNAs, like miRNA clusters 
or target hubs. Our opinion is that the involve-
ment of miRNAs in those complex motifs 
makes the use of systems biology necessary to 
understand miRNA regulation. Thirdly, we 
present and discuss some basic computational 
and theoretical tools used to perform model-
based predictions in miRNA-regulated net-
works, whose understanding is required to 
interpret the results shown in systems biology-
based papers and some of the chapters in this 
book. Finally, we make an extensive review of 
the scienti fi c papers published to date in which 
systems biology has been used to investigate 
miRNA regulation.  

    4.2   Systems Biology in a Nutshell 

 To investigate a biological system following the 
systems biology approach, an iterative process is 
conducted that includes the following four key 
steps: (a) the construction of a regulatory map 
including the interactions among the molecular 
entities already experimentally proved and/or those 
under investigation; (b) the construction of a 
mathematical model of ordinary differential 
equations or other modelling formalisms, based 
on the regulatory map; (c) the calibration and vali-
dation of the model (process in which the model is 
characterized and validated using experimental 
data); and (d) the analysis of the properties of the 
biological network using the mathematical model 
and computational tools. A  fi nal step always 
includes the validation of the new insights gener-
ated with the mathematical model by means of 
new biological experiments. In the following, 
those steps are discussed in further detail. 
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    4.2.1   Network Construction 

 The  fi rst step towards the construction of a math-
ematical model is to retrieve the existing knowl-
edge about the biochemical system under 
investigation. Relevant information about the 
molecules (genes, proteins, miRNAs, transcrip-
tion factors. etc., Fig.  4.1 ) and biochemical pro-
cesses of interest is retrieved from biomedical 
publications and databases, and further pro-
cessed, annotated and organised into a so-called 
regulatory map. The regulatory map is a visual-
ization of the state-of-the-art of the biomedical 
knowledge about the biochemical network. It 
contains as well some  a priori  hypotheses on the 
role of some of the molecules involved in the net-
work that can drive the design of the mathemati-
cal model and experiments.  

 There are many resources available for this 
purpose. For example, protein-protein interac-
tions can be extracted from databases like 
the Human Protein Reference Database HPRD 
and STRING  [  7,   8  ] . Information about 
miRNA:target regulations can be extracted 
from databases of experimentally validated 
interactions like miRecords  [  9  ]  and Tarbase 
 [  10  ] . In addition, a number of online resources 
contain collections of predicted miRNA:target 
interactions (e.g., miRWalk  [  11  ]  and miRGen 
2.0  [  12  ] ). Information about TFs controlling 
the expression of the miRNA under investiga-
tion can be obtained either from databases of 
experimentally proved TFs of miRNAs (see 

TransmiR  [  13  ] ) or from online resources of 
predicted putative TFs like PuTmiR  [  14  ] . 
MiRNA web resources are discussed in detail 
in the Chap.   12    . 

 In many cases these regulatory maps are hand 
drawn and customized for the investigated path-
way. However, they can also be implemented 
using a well established protocol, the Systems 
Biology Graphical Notation (SBGN;  [  15  ] ), which 
contains a standardised set of symbols to repre-
sent biochemical processes and molecules. The 
advantage is that standardised regulatory maps, 
generated and curated with speci fi c software 
tools, can be shared on public repositories and 
can be further annotated with additional informa-
tion. For example, they can be used to display 
information concerning critical ontology terms 
associated with each entity in the network. These 
standard regulatory maps also facilitate the dis-
semination of the results of simulation or wet lab 
experiments. 

 A well constructed regulatory map is  per se  an 
excellent tool to investigate some features of 
complex regulatory networks involving TFs, sig-
nalling proteins and miRNAs. For example, they 
can be used to detect putative regulatory motifs, 
including feedback and feedforward-loops or 
miRNA target hubs (for further details on those 
motifs, see the coming section in this chapter and 
Chaps.   9     and   10    ). The detection of these putative 
regulatory motifs can be a good starting point for 
the design of experiments to analyse their fea-
tures and regulation.  

  Fig. 4.1     Construction of a 
regulatory map . Relevant 
information about to the 
molecules (genes, proteins, 
miRNAs,…) and biochemical 
processes of interest is 
retrieved from relevant 
biomedical publications and 
databases, and organised into 
a graphical scheme called 
regulatory map       

 

http://dx.doi.org/10.1007/978-94-007-5590-1_12
http://dx.doi.org/10.1007/978-94-007-5590-1_9
http://dx.doi.org/10.1007/978-94-007-5590-1_10
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    4.2.2   Mathematical Model 
Construction 

 Regulatory maps can be transformed into mathe-
matical models of ordinary differential equations 
(ODEs). These models re fl ect rates of changes of 
molecular quantities over time and also their acti-
vation status, compartmentalization and interac-
tion with other partners. The equations have the 
following general structure:

    ( ), ,i
i

d
P F S k P

dt
= ∑    

 In this kind of mathematical equations, the left-
hand side of the equation accounts for the varia-
tion in time of  P , which represents a set of 
time-dependent variables that account for the 
interacting proteins, miRNAs and other molecules. 
 F  

 i 
  are the rate equations of the biochemical pro-

cesses considered in the network which in fl uence 
the values of  P  (transcription, miRNA-mediated 
regulation, protein-protein interactions…).  S  is a 
set of model variables accounting for the input sig-
nals of the network, biological signals that are 
external and not regulated by the biochemical sys-
tem analysed, but affecting it.  k  are the kinetic 
rates,  fi xed numbers associated with given bio-
chemical properties, that characterize numerically 
the rate equations. In the following, we illustrate 
the basic features of ODE models with a small 
example that describes a sub-module of the net-
work accounting for the miRNA-mediated regula-
tion of p21  [  16  ] . The cell cycle regulator and 
tumour suppressor p21 (a.k.a. CDKN1A or Cip1/
Waf1) is a well-known case of a signalling protein 
repressed via miRNA regulation. p21 is a cell 
cycle regulator vital in both the G 

1
 /S and G 

2
 /M cell 

cycle arrest after DNA damage  [  17  ] . The expres-
sion of p21 is widely dependent on environmental 
conditions and it can be transcriptionally regulated 
through p53-dependent and -independent mecha-
nisms  [  18  ] . p21 is an important cancer-related pro-
tein, with well-proved tumour suppressor activity, 
and also tumour-promoting activity  [  19  ] . Recently, 
it has been shown that p21 expression undergoes 
regulation by numerous miRNAs, and it is inte-
grated in a complex regulatory network involving 
multiple TF/miRNA regulatory motifs  [  16,   20  ] , 

which makes it an excellent candidate to test the 
abilities of mathematical modelling to dissect 
miRNA regulation. 

 Our model accounts for the sub-network inte-
grating the tumour suppressor p53, its transcrip-
tional regulated protein p21 and miR-93, one of 
the many miRNAs proved to repress p21. The 
model describes the evolution in time of the 
expression levels for three chemical species: p21 
messenger RNA (mRNA) (in the equations rep-
resented by the variable  mp21 ); p21 protein con-
centration ( p21 ); and the free cytosolic fraction 
of the targeting miRNA-93 ( miR93 ; see Fig.  4.2  
for complete explanation).  

 The extent of the miRNA induced post-
transcriptional repression and other basal and 
dynamic features of the regulatory network are 
tightly controlled by the ef fi ciency of the molecu-
lar events here described (e.g. p53-mediated tran-
scription, mRNA and miRNA basal turnover, 
ef fi ciency in the association of miRNA and 
mRNA…), which are characterized in the model 
by the numerical values of the rate constants. 
Hence, the values of those constants are critical 
to de fi ne the properties of the biochemical net-
work and their determination is a critical process 
in the construction of a mathematical model 
which is described in detail in the following sub-
section. 

 We note that there is a multiplicity of mathe-
matical modelling frameworks that can be used 
to analyse biochemical models, from which ODE 
models are the most commonly used but not the 
unique possible choice. The right choice of the 
modelling framework is a trade-off between sev-
eral issues, including the precision in the current 
knowledge about the biochemical network inves-
tigated, the quality and amount of the experimen-
tal data available and the nature of the network 
properties that one tries to analyse by means of 
modelling. Alternative modelling frameworks 
include many variations of ODE models like 
mass-action kinetics, models containing 
Michaelis-Menten and Hill equations and power-
law models, and also Boolean models, cellular 
automata and partial differential equations. For 
further details, we refer the reader to papers, 
which are devoted to this topic  [  23,   24  ] .  
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    4.2.3   Model Calibration 

 In the process of model calibration, quantitative 
data are integrated with the mathematical model to 
assign values to the model parameters, in a manner 
such that the model, once characterized, mimics 
the behaviour of the system represented by the 
experimental data available. The process use to 
follow a sequence of iterative cycles of data-driven 
parameter estimation, model quality assessment, 
model structure modi fi cation (when required) and 
re-estimation of model parameters. The critical 
element of the process is the design of a set of suit-
able perturbation experiments that help to charac-
terise the dynamics of the investigated network. 
Those experiments must be performed in a quan-
titative fashion, such that quantitative data, describ-
ing the reduction of mRNA and protein levels 
induced by the miRNAs and signalling events, are 
produced and subsequently processed and analy-
sed (see  [  25  ]  for a detailed list of quantitative 
experimental techniques). 

 The process of parameter estimation, the step 
in which reliable approximations are assigned to 
the model parameters, can be performed follow-
ing different strategies. In some rare cases, a 

bibliographic search is enough, and information 
in publications where a similar biological model 
and similar experimental conditions are consid-
ered suf fi ces to assign values to the parameters. 
Another option is to manually train the model, by 
manually tuning the parameter values until the 
model simulation matches with the available 
data. The most reliable option is to perform a 
quantitative data  fi tting, in which the values of 
the model parameters are iteratively modi fi ed 
until the differences between the experimental 
data and the model simulations for identical bio-
logical conditions are minimised (Fig.  4.3 ). There 
is a plethora of computational methods, based on 
the mathematical principle of the “maximum 
likelihood”, that can be used for this purpose, 
while a similar number of software tools is avail-
able (e.g. PottersWheel  [  26  ]  or COPASI  [  27  ] ).  

 Parameter estimation is not always necessary to 
make a model useful for the analysis of a regula-
tory network. In some cases, computational meth-
ods scanning the whole range of feasible values 
for the model parameters allow investigating the 
structural and dynamical features of the system 
and detect the so-called design principles. Design 
principles are general patterns in the performance 

  Fig. 4.2     Mathematical model construction . The model 
describes the evolution in time of the expression levels for 
three chemical species: p21 mRNA ( mp21 ), p21 protein 
concentration ( p21 ), and the free cytosolic fraction of the 
targeting miRNA-93 ( miR93 ).  Left : Scheme of the model, 
with all the biochemical processes considered.  Right : 
Mathematical model in ODEs, in which each biochemical 
process considered has been modelled using conventional 
mass action rates or power-law terms  [  21,   22  ] . The follow-
ing processes are modelled: For p21 mRNA ( mp21 ): (i) 
p53-mediated synthesis (whose ef fi ci ency is represented 

by the kinetic constant  k  
 s,mp21 

 ); (ii) basal degradation ( k  
 d,mp21 

 ); 
and (iii) miRNA-93 repression of mp21 translation ( k  

 rp,mp21 
 ). 

For miRNA-93 ( miR93 ): (i) basal synthesis ( k  
 s,miR93 

 ), medi-
ated by its TF ( TF  

 miR93 
 ); (ii) basal degradation ( k  

 d,miR93 
 ); 

and (iii) association with the mRNA into the repression 
complex [ mp21│miR93 ] (k 

rp,mp21
 ). For the p21 protein lev-

els ( p21 ): (i) mRNA mediated synthesis of protein ( k  
 s,p21 

 ); 
and (ii) basal degradation ( k  

 d,p21 
 ); (iii) further protein-pro-

tein interactions between p21 and signalling proteins  X  
 j 
  

(  s   
 j 
  is the stochiometric coef fi cient and  k  

 pp1,p21 
  the rate 

constant)       
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of the biochemical network that are associated 
with well de fi ned dynamical regimes and parame-
ter value intervals in the network  [  28  ] .  

    4.2.4   Model Analysis 

 In some cases, to establish the structure of the 
mathematical model in a reliable manner using 
this iterative cycle of mathematical modelling 
and experimentation is already a valuable achieve-

ment: a data-based mathematical model is a valid 
tool for the formulation and validation of hypoth-
eses concerning structure and dynamics of sig-
nalling and transcriptional networks. And it is 
also a good strategy to help designing appropriate 
experiments to validate these hypotheses. 

 But we can also confer a predictive character to 
a well-characterised mathematical model. In this 
case, a number of computational and analytical 
tools can be used to analyse the model and there-
fore predict not yet detected features of the net-
work under investigation. Those are especially 
useful for the detection and analysis of regulatory 
motifs, which are associated with an inherent com-
plexity and an unforeseeable non-linear behaviour. 
The combination of simple regulatory motifs like 
positive or negative feedback loops and coherent 
or incoherent feedforward loops can induce a com-
plex non-intuitive dynamical behaviour. To com-
prehend the behaviour of those complex networks 
it is necessary to use mathematical models in com-
bination with computational methods and analyti-
cal tools. Interestingly, miRNAs are deeply involved 
in networks enriched in that kind of regulatory 
motifs  [  29  ] . In the following sections we  fi rst  
introduce the de fi nition and main properties of 
those regulatory motifs and secondly, discuss the 
tools that allow the analysis of them.   

    4.3   MicroRNAs as Components 
of Complex Network Motifs 

 The biological networks in which miRNAs are 
embedded are enriched in regulatory motifs dis-
playing complex steady-state and transient pat-
terns. Among them, we  fi nd positive and negative 
feedback loops, coherent and incoherent feedfor-
ward loops, miRNA target hubs and miRNA 
clusters. In the following sections, we give a 
detailed de fi nition of these motifs and their main 
structural and dynamical properties. 

    4.3.1   Feedback Loops 

 We can distinguish two types of feedback loops 
involving miRNAs, positive and negative  feedback 
loops. In positive feedback loops the  activation of 

     Fig. 4.3     Parameter estimation . Computational techniques 
are used to estimate the optimal parameter values that can 
minimise the distance ( red arrow ) between the model pre-
dictions, p21  sim  (t), and the available experimental data, 
p21  exp  (t), for the considered experimental conditions. The 
distance is calculated by the following cost function: 
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In which,  n  
 exp 

  is the number of experiments,  n  
 var 

  is the 
number of measured quantities (observables, e.g. mRNA, 
protein or miRNA expression levels), and  n  

 tp 
  is the num-

ber of time points where each observable was measured. 
 X  

 k,j 
  (t  

 i 
  )  is the value of the  j   th   observable at the  i   th   time point 

obtained after numerical simulation of the model for the 
 k   th   experiment and  X  

 k,j 
   exp   (t  

 i 
  )  is the corresponding value of 

the  j   th   observable at the  i   th   time point measured in the 
 k   th   experiment. When the model parameters are properly 
estimated, there is good agreement between the model 
simulations ( solid black line ) and the experimental data 
( brown crosses ). With non-optimal parameter values, 
model simulations are not able to reproduce the dynamics 
of the data ( dashed grey line )       
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a biochemical event positively regulates a 
 biochemical process upstream the system. In the 
simplest setup of a miRNA-mediated positive 
feedback loop, the expression of the miRNA is 
inhibited by one of its target proteins (Fig.  4.4 ). 
This is for example the case for the transcription 
factor E2F1 and some of its promoted miRNAs 
 [  30  ] . However, the structure can be more complex 
and involve one or more signal mediators. One 
such example is the network integrated by p53, 
its negative regulator NAD-dependent deacetylase 
sirtuin-1 (Sirt1) and the p53-promoted miR-34a, 
which represses Sirt1 (Sirt1⊣p53→miR-
34a⊣Sirt1; see  [  31  ] ). Positive feedback loops can 
induce the emergence of bistable expression of 
both the miRNA and the TF involved. There, 

 perturbations driven by external regulatory  signals 
can induce an irreversible transition from a situa-
tion of miRNA-induced TF repression to a new 
state, in which miRNA is silenced and TF over-
comes permanent high expression. In this manner, 
positive feedback loops can induce the conversion 
of a transient signal into a longer lasting cellular 
response  [  32  ] , but also induce signal ampli fi cation 
and in some cases instability  [  33  ] .  

 A negative feedback loop appears when a 
molecule positively regulates the expression or 
activation of its own inhibitor. In the simplest 
con fi guration of a miRNA-mediated negative 
feedback loop, the TF which is targeted by the 
miRNA (miR) acts as an activator of miRNA 
expression (Fig.  4.5 ). Negative feedback loops 

  Fig. 4.4     miRNA-mediated positive feedback loop . 
This positive feedback loop is composed of a double 
negative loop ( TF ⊣miR and miR⊣ TF ).  Left : The expres-
sion of a miRNA is inhibited by the one of its target pro-
teins ( TF ). In positive feedback loops, transient external 
signals ( S ) can trigger a permanent transition from a sce-
nario of miRNA-induced  TF  repression to that of a per-
manent  TF -mediated miRNA repression and high  TF  
expression.  Right : A simple mathematical model account-

ing for this positive feedback loop composed of a miRNA 
( miR ), and its target and negative transcriptional regula-
tor ( TF ). The following processes are modelled: For the 
miRNA ( miR ), TF-repressed synthesis ( k  

 s,miR 
 ) and basal 

degradation ( k  
 d,miR93 

 ) are modelled. For the  TF  expression 
levels ( TF ), S-mediated and miR-repressed protein syn-
thesis ( k  

 s,TF 
 ) and basal degradation ( k  

 d,TF 
 ) are modelled. 

For the negative regulation, we used a modi fi ed power-
law term  [  21,   34  ]        
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  Fig. 4.5     miRNA-mediated negative feedback loop . 
 Left : The expression of a miRNA is promoted by one of its 
target proteins ( TF ). In negative feedback loops, the sys-
tem maintains homeostasis and an increase of the external 
signal ( S ), which promotes the expression of  TF  is com-
pensated by the increased expression of the miRNA such 
that levels of  TF  remain stable for a wide range of values 
for  S .  Right : A simple mathematical model  accounting for 

this negative feedback loop composed of a miRNA ( miR ), 
and its target and positive transcriptional regulator ( TF ). 
The following processes are modelled: For the miRNA 
( miR ), TF-mediated synthesis ( k  

 s,miR 
 ) and basal degradation 

( k  
 d,miR93 

 ) are modelled. For the TF expression levels ( TF ), 
S-mediated and miR-repressed protein synthesis ( k  

 s,TF 
 ) and 

basal degradation ( k  
 d,TF 

 ). For the negative regulation, we 
used a modi fi ed power-law term  [  21,   34  ]        
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can induce signal termination, and in some 
cases oscillatory expression of the loop compo-
nents. Moreover, negative feedback loops are a 
simple class of homeostatic systems, that are 
able to  fi ne-tune gene expression and maintain 
steady-state levels of both components of the 
system against noise and uncontrolled 
 fl uctuations  [  35  ] . Such a negative feedback loop 
can maintain homeostasis and prevent uncon-
trolled growth and proliferation, phenomena 
typically observable in cancer development. 
Other more complex miRNA feedback loop 
systems are possible, in which the regulation is 
mediated by protein mediators. For further 
details and discussion on this kind of systems 
we refer to the Chap.   9    .   

    4.3.2   Feedforward Loops 

 MiRNA-mediated feedforward loops are com-
posed of three molecular components: a TF, a 
miRNA and a target gene. In this regulatory motif, 
the TF regulates both the target gene and the 
miRNA, and the miRNA represses the target gene. 
Thus, the target gene is a downstream component 
whose expression is simultaneously regulated by 
the TF and the TF-regulated miRNA (Fig.  4.6 ). In 
some cases, the target gene can also regulate the TF 
and/or the miRNA, and in that case the three com-
ponents system could result in both feedforward 

and feedback loops. We distinguish two kinds of 
feedforward loops: coherent and incoherent.  

 In coherent feedforward loops, the target gene 
is consistently regulated by direct and indirect 
TF-related interactions. Depending on the nature 
of these regulations, we can distinguish between 
coherent feedforward loops in which the TF 
directly activates the target gene, but also indirectly 
activates it through repressing the miRNA (double 
positive regulation), and those in which the TF 
directly represses the target gene, and indirectly 
represses it through activating the miRNA (dou-
ble negative regulation). Coherent miRNA-medi-
ated feedforward loops are supposed to serve as 
sign-sensitive delay elements, delaying the 
response of the target gene to the double regula-
tion exerted by the TF. In Fig.  4.6  we see that 
modules with the architecture of double negative 
regulation can delay and extent the duration of 
the target repression by a TF-mediated transient 
stimulation of the system. In addition, double 
negative feedforward loops have been suggested 
to prevent the leaking of the target gene, in a way 
the TF represses the activation of the target gene 
itself and the miRNA further destabilizes its 
mRNA at the posttranscriptional level to achieve 
the complete function blocking of the targeted 
gene  [  35  ] . 

 In incoherent feedforward loops, the target 
gene gets oppositely regulated by the TF and 
the TF-modulated miRNA. We can distinguish 

  Fig. 4.6     miRNA-mediated coherent feedforward 
loop .  Left : The expression of a target is negatively regu-
lated by a  TF  in two ways: directly, by repressing the 
transcription of the target gene, and indirectly, by pro-
moting the expression of a miRNA which represses the 
target gene.  Right : A simple mathematical model account-
ing for this coherent feedforward loop. The following 
processes are modelled: For  miR , the  TF -mediated syn-
thesis ( k  

 s,miR 
 ) and basal degradation ( k  

 d,miR 
 ) are modelled. 

For the target ( Tgt ), the  TF - and  miR -repressed protein 
synthesis ( k  

 s,Tgt 
 ) and basal degradation ( k  

 d,tgt 
 ) are mod-

elled. For the negative regulation, we used a modi fi ed 
power-law term. This particular feedforward loop, in 
which two inhibitors independently repress the target, is 
associated with a delay or extension in the target repres-
sion termination for transient stimuli ( centre ,  red line ) 
compared to the situation without feedforward loop ( cen-
tre ,  dashed line )       
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between those feedforward loops in which the tar-
get gene is directly activated by TF and indirectly 
repressed via miRNA regulation (incoherent type 
A) and those in which the target gene is directly 
repressed by TF and indirectly activated via 
TF-mediated activation of the miRNA (incoher-
ent type B). Incoherent miRNA-mediated feed-
forward loops can display accelerated response to 
the stimulus signal. The accelerated response 
occurs when the stimulus signal is turned on in the 
incoherent feedforward loop type A, while in the 
incoherent feedforward loop type B it occurs 
when the stimulus signal is turned off. Other 
dynamical properties are associated with these 
modules; for example, in incoherent feedforward 
loops type A a pulse-like response of the target 
protein levels can be triggered in response to a 
step-like TF activation in case of Fig.  4.7 . These 
systems have been proved as noise buffers, which 
is in favour of a  fi ne-tuning function of the miRNA 
regulation  [  36  ] .  

 Recent publications, in which bioinformatics 
methodologies were used, have revealed that 
miRNA-mediated feedforward loops are preva-
lent mechanisms of gene expression at the 
genome-scale level. For a detailed discussion of 
other types of coherent and incoherent feedfor-
ward loops not discussed here, the interested 
readers are referred to the publication of Mangan 
and Alon  [  37  ] . In addition, many biological 
examples of feedforward loops can be found in 
the paper published by Re  [  38  ] .  

    4.3.3   MicroRNA Target Hubs 

 In the context of miRNA regulation, target hubs 
are genes that are regulated by a large number 
of different miRNAs (many miRNAs targeting 
a unique gene, Fig.  4.8 ). In a computational 
 analysis, Shalgi and collaborators found 470 
genes in the human genome, each potentially 
regulated by at least 15 different miRNAs  [  29  ] . It 
is well established that in most of the cases single 
miRNAs induce a rather mild regulation of the 
target. However, it is claimed that concerted 
expression of several of those miRNAs can 
induce a much stronger repression of a target hub 
 [  39,   40  ] . Moreover, they found that these genes 
use to be further connected to many other pro-
teins through protein-protein interactions and/or 
transcriptional regulations, integrating regulatory 
networks enriched with miRNA-mediated feed-
forward and feedback loops. In this manner, the 
multiplicity of miRNAs regulating target hubs 
may lead to non-linear features like cross-talk 
and cooperativity and generation of tissue-
speci fi c regulatory patterns  [  16  ] .  

 The  fi rst instance of an experimentally proved 
miRNA target hub is the Cyclin-dependent kinase 
inhibitor 1A (CDKN1A), also known as p21, which 
is widely involved in cell cycle regulation and 
described as tumour suppressor  [  41  ] . In a recent 
publication, Wu and collaborators  [  20  ]  subjected 
266 miRNAs which were predicted as putative post-
transcriptional regulators of p21 to  experimental 

  Fig. 4.7     miRNA-mediated incoherent feedforward 
loop .  Left : The expression of a target is regulated by a  TF  in 
two ways: positively, by direct activation of the target gene 
expression, and negatively, by promoting the expression of 
a miRNA which represses the target gene.  Right : A simple 
mathematical model accounting for this coherent feedforward 

loop. Processes modelled and variables are identical to 
those in Fig.  4.6 , excepting the  TF -activation and miR-
repression of target synthesis ( k  

 s,Tgt 
 ). For the case of a step-

like  TF  activation, the system can generate a pulse response 
in the protein levels ( centre ,  red line ) compared to the situ-
ation without feedforward loop ( centre ,  dashed line )       
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validation. For a subset of 28 miRNAs the ability to 
repress p21 could be proved. What links their 
 fi nding to cancer is that fact that eight out of the 28 
p21-regulating miRNAs originate from the chro-
mosome 19 miRNA cluster, which is supposed to 
promote cell-cycle progression and proliferation in 
cancer-related cell lines  [  42  ] .  

    4.3.4   MicroRNA Clusters 

 A miRNA cluster is a set of two or more miRNAs 
that are transcribed from physically adjacent 
miRNA genes and ful fi l three additional criteria: 

they are transcribed in the same orientation, not 
separated by a transcription unit and not sepa-
rated by any miRNA gene in the opposite orienta-
tion. Under these conditions, miRNAs in the 
same cluster can be transcriptionally activated by 
the same factors or signals (Fig.  4.9 ). Although 
the usual size for miRNA clusters is 2–3 miR-
NAs, larger clusters exist. Using bioinformatics 
methods, Weber  [  43  ]  identi fi ed 37 putative human 
miRNA clusters which are conserved in the 
mouse genome and 19 of them are located in 
characterized transcription units.  

 The miR-17-92 cluster, found on human 
chromosome 13 and composed of six miRNAs 

  Fig. 4.9     miRNA clusters .  Left : A miRNA cluster is a set 
of two or more miRNAs that are transcribed from physi-
cally adjacent miRNA genes. miRNAs in the same cluster 
can be transcriptionally activated by the same factors or 
signals.  Right : A simple mathematical model accounting 
for a miRNA cluster integrating n-different miRNAs 
( miR  

 i 
 ), regulated by the same TF ( TF ). The miRNAs can 

repress alone or in cooperation a number of target genes 
( Tgt  

 i 
 ). The following processes are modelled: For the 

miRNAs ( miR  
 i 
 ),  TF -mediated synthesis ( k  

 s,miRi 
 ) and basal 

degradation ( k  
 d,miRi 

 ) are modelled. For the targets, expres-
sion levels ( Tgt  

 i 
 ),  miR -repression of protein synthesis 

( k  
 s,Tgti 

 ) and basal degradation ( k  
 d,Tgti 

 ) are modelled       
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  Fig. 4.8     miRNA target hubs .  Left : miRNA target hubs 
are genes that are negatively regulated by at least 15 dif-
ferent miRNAs. In the scheme, we depict a system that 
integrates the mRNA and protein of a target hub (respec-
tively  mRNA  and  Tgt ), n different miRNAs ( miR  

 i 
 ), and the 

 TF  promoting the expression of the target hub.  Right : A 
simple mathematical model accounting for the regulation 
of the target hub. The following processes are modelled: 
For the mRNA ( mRNA ), TF-mediated synthesis ( k  

 s 
 ), basal 

degradation ( k  
 d 
 ) and the sum of the n-independent miRNA-

mediated target repression processes. For the protein 
expression levels ( Tgt ), mRNA-mediated synthesis ( k  

 s,tgt 
 ) 

and basal degradation ( k  
 d,tgt 

 ). It is well established that in 
most of the cases single miRNAs induce a rather mild 
regulation of the target. However, it is claimed that con-
certed expression of several of those miRNAs can induce 
a much stronger repression of a target hub ( centre )       

( )= ⋅ − ⋅ − ⋅ ⋅

= ⋅ − ⋅

∑

, ,

s d i i
i

s Tgt d Tgt

d
mRNA k F TF k mRNA k miR mRNA

dt

d
Tgt k mRNA k Tgt

dt

 

 



654 MicroRNA-Regulated Networks: The  Perfect Storm  for Classical Molecular Biology…

(miR-17, miR-18a, miR-19a, miR-20a, miR-
19b-1 and miR-92-1) is one of the most studied 
miRNA clusters. It is involved in tumour forma-
tion and development. Interestingly, this cluster 
can be activated by the TF c-Myc. Subsequently 
the protein E2F1, which is also c-Myc activated, 
is downregulated by two of the clustered miR-
NAs, miR-17-5p and miR-20a. This is a good 
example of a network that integrates a miRNA 
cluster and an incoherent feedforward loop ( [  44  ]  
and Chap.   9    ).   

    4.4   Tools to Perform Model-Based 
Predictions for MicroRNA-
Regulated Networks 

    4.4.1   Predictive Simulations 

 A well calibrated mathematical model is a power-
ful tool to dissect the features of networks involv-
ing miRNAs. The underlying idea is that after 
calibration a model becomes predictive and then 
simulations can be used to extrapolate the behav-
iour of the network under experimental conditions 
not yet tested. It is the same approach as used in 
modern weather forecasting, in which sophisti-
cated simulations of mathematical models are 
used to actually foresee the coming weather. 

 A “predictive” mathematical model can be 
useful in many ways. Firstly, it can be used for a 
faster and more accurate design of new experi-
ments aiming for the validation of hypotheses 
(e.g. about the regulation and structure of the 
network) which have been encoded in the model. 
In this case the model is a tool to cut short the 
process of network elucidation and saves experi-
mental effort. 

 Secondly, a mathematical model becomes 
necessary when the system investigated is a large 
and highly interconnected biochemical network, 
or we intend to integrate diverse information 
sources like databases, high-throughput data, and 
patient data (Fig.  4.10 ). In this case, a well con-
structed and calibrated mathematical model 
becomes a computational extension of the scien-
tist’s intuition, which allows expanding the ratio-
nal thinking far beyond the maximum six linked 

factors/associations that an average brain can 
simultaneously handle. Numerous evidences 
show that miRNA-related regulatory networks 
involved in cancer are massive systems composed 
of hundreds of interacting proteins, miRNAs and 
TFs. Consequently, it is quite likely that models 
will become an inevitable strategy towards the 
understanding of miRNAs in cancer.  

 Finally, data-based mathematical models can be 
used to test and prototype strategies for the thera-
peutic manipulation of biochemical networks, 
including those based on miRNAs and siRNAs, 
which can boost the design of novel therapies. 

  Fig. 4.10     Predictive simulations for large and highly 
interconnected biochemical networks . For networks 
involving dozens to hundreds of interacting proteins, 
drugs, miRNAs and genes ( top ), scientist’s intuition does 
not suf fi ce to interpret the outcome of complex experi-
ments. In this case, a mathematical model allows expand-
ing the scientist’s rational thinking to integrate and analyse 
large amounts of data and making predictions about the 
network response under complex biological scenarios. 
These models can be used to simulate complex experi-
mental scenarios involving the overlapping effect of many 
input signals (cytokines, miRNAs, drugs…) and compute 
the expected values for a number of critical read-outs of 
the network ( bottom )       

 

http://dx.doi.org/10.1007/978-94-007-5590-1_9
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Mathematical modelling is not completely new in 
drug discovery and for decades pharmaceutical 
companies have used the so-called pharmacokinet-
ics and pharmacodynamics to computationally 
assess the uptake, distribution and metabolization 
of therapeutic molecules and their primary physio-
logical effects  [  45  ] . What systems biology provides 
is a system-level understanding of the effect of a 
therapeutic drug rather than merely the simple 
molecular interaction between the drug and target.  

    4.4.2   Sensitivity Analysis 

 One interesting option when analyzing a mathe-
matical model of a miRNA-regulated network is 
to  fi nd biochemical processes within the network 
whose modulation is likely to affect the response 
of the network most signi fi cantly. Sensitivity 
analysis is a computational tool suitable for this. 
It numerically establishes how the variation in 
the critical network outcomes (e.g. expression of 

critical targeted genes) can be categorized and 
assigned to different sources of variation in the 
system in an either qualitative or quantitative 
manner  [  46  ] . These sources of variation include 
the distinctive regulation of processes integrated 
in the network like the intensity of input signals, 
the abundance of TFs, the availability of miRNAs 
and proteins regulating gene targets in a tran-
scriptional or post-transcriptional manner and 
more. In the context of a mathematical model, 
we typically associate this with changes in the 
values of the associated model parameters; by 
the use of sensitivity analysis, one can look for 
those parameters for which a numerical variation 
signi fi cantly affects critical responses of the sys-
tem (Fig   .  4.11 ).  

 We can categorize sensitivity analysis into two 
types  [  46  ] : (i) local sensitivity analysis, in which 
small variations around the nominal values of the 
parameters are applied (one-by-one) to determine 
which parameters (and their associated processes) 
have a signi fi cant in fl uence on the critical 

     Fig. 4.11    Sensitivity analysis. This computational tool 
provides information about model parameters (and asso-
ciated regulatory processes) for which a variation in their 
value signi fi cantly affects the input–output behaviour of 
the system. In the common methods for estimating local 
sensitivities, the value of a given parameter is slightly 
modi fi ed (1–5% up or down) and the model is used to 
calculate the resultant change in the critical response of 
interest, e.g. the expression levels of any protein, mRNA 
or miRNA of interest. The absolute sensitivity index is 
calculated with the equation: 
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where  p21  represents the analysed response variable;  k  
the parameter whose value is modi fi ed, and  D  k  accounts 
for perturbation of the parameter. In our  fi gure, we analy-
sed the sensitivity of p21 expression with respect to the 
parameter values of the p21 regulating processes. 
Sensitivities can be positive (an increase in the model 
parameter values induces an increase in p21 expression 
level) or negative values (an increase in the model param-
eter values induces a decrease in p21 expression level). 
The absolute value of the sensitivity accounts for the 
strength that a model parameter value change has on p21 
expression levels: values nearly zero indicate that the 
representative process has no in fl uence on p21 expression 
levels       
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  Fig. 4.12     Ultrasensitivity  makes a biochemical network 
able to transform graded input signals into discrete all-or-
none outputs, creating real thresholds for the input signal 
that determine the activation of the system.  Sustained oscil-
lations.  In network motifs that include negative feedback 
loops, under some biological conditions the concentration of 
one or more of the compounds of the network oscillates over 

time, even with constant external stimulation.  Bistability 
(or multistability ). In networks with positive feedback 
loops, small perturbations for a given experimental scenario 
can shift the system between totally different fates, for 
example, inducing a transition between a scenario in which 
transient stimulation induces quick signal termination to 
another in which it provokes persistent activation       

responses of a network; and (ii) global sensitivity 
analysis, in which one considers large ranges of 
feasible values for the parameters when perform-
ing the computational analysis and investigates 
the simultaneous variations of many model 
parameters (instead of a one-by-one analysis). 

 Biochemical processes in the network are later 
ranked according to the impact of their modula-
tion on the input–output behaviour of the system. 
This information, combined with predictive sim-
ulations, can be used to suggest key biochemical 
processes that might be deregulated in pathologi-
cal conditions and thus these processes become 
potential therapeutic targets.  

    4.4.3   Stability and Bifurcation 
Analysis 

 As we mentioned in the previous section, the bio-
chemical networks in which miRNAs participate are 
enriched in complex regulatory motifs like  positive 

and negative feedback loops. It has been theoreti-
cally and experimentally proved that this kind of 
network motifs can result in highly non-linear behav-
iour, which challenges the common sense of even 
well-trained biologists. Behaviour like self-sustained 
oscillations, ultrasensitivity or bistability can emerge 
from these network motifs (Fig.  4.12 ). Biochemical 
networks containing one or several of these motifs 
can be analysed by means of more sophisticated 
mathematical tools, which can detect the emergence 
of those non-linearities and their consequences in 
the regulation of the system.  

 In many cases, the emergence of this non-lin-
ear behaviour can be linked to changes of the val-
ues of some model parameters in a critical 
interval. Computational stability and bifurcation 
analysis are sophisticated mathematical method-
ologies that allow assessing the emergence of 
these patterns and identifying which processes in 
the network are linked to them. 

 In bifurcation analysis, theoretical and com-
putational tools are used to study qualitative 
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changes in the behaviour of nonlinear dynami-
cal systems under variations of system’s param-
eters. By qualitative changes we understand the 
appearance or extinction of solutions to the 
model equations (transition from single solu-
tions to multistability or  vice versa ), or a change 
in the stability of the current state (transitions 
from steady-state behaviour to oscillations or 
 vice versa ). Those transitions between qualita-
tively different regulatory patterns in the net-
work happen in the so-called bifurcation points, 
critical values for some model parameters in 
which a continuous change in the parameter 
value induces a discontinuous and possibly 
irreversible response of the network. Chap.   9     
offers a nice introduction to the basics of these 
tools.   

    4.5   Real Life Examples of Systems 
Biology Used to Investigate 
MicroRNA Regulation 

 Mathematical modelling can actually be used to 
investigate basic properties of miRNA regula-
tion and detect so-called design principles, 
global properties generally associated with large 
sets of pathways with similar but not identical 
structure. Moreover, it is a suitable tool to inves-
tigate the dysregulation of signalling and tran-
scriptional  networks involving miRNA 
regulation which are found in many cancer 
types. In the following section, we discuss a 
selection of works published in the last years 
that have used systems biology and mathemati-
cal modelling to this end. 

    4.5.1   Pathway Structure and 
Properties of MicroRNA-
Mediated Gene Silencing 

 Recently, mathematical modelling was introduced 
to understand the mechanism by which the gene 
silencing is accomplished. Levine et al.  [  47  ]  devel-
oped a quantitative model to show how local and 
global properties of the miRNA-mediated silenc-
ing mechanism could affect target mRNA and 

protein levels. Their analyses suggest that the target 
speci fi c properties (e.g. the number of binding 
sites on target mRNAs) can result in different 
effects on target mRNA levels; likewise, different 
cellular conditions can cause different behaviour 
of the same miRNA-target pair. 

 MiRNAs are reported to repress protein trans-
lation by a variety of mechanisms, including: (1) 
initiation block: repressing cap recognition or 
60S subunit joining; (2) post-initiation block: 
inhibiting elongation, triggering ribosome drop-
off, or facilitating proteolysis of nascent polypep-
tides; (3) affecting the mRNA: deadenylation of 
mRNA to induce quick mRNA decay, or translo-
cation of mRNA to P-bodies  [  48  ] . 

 Due to the complication of the translation ini-
tiation process, it is possible that, when different 
steps are affected by miRNA or RISC compo-
nents, the regulation of protein production might 
be divergent. To investigate this problem, Nissan 
and Parker  [  49  ]  developed computational models 
of translation initiation considering miRNA 
repression. The models were used to predict the 
effect of miRNA repression on different target 
mRNAs whose translation might be cap-depen-
dent (the mRNA contains a functional m 7 G cap 
or a non-functional ApppN cap structure) or 
-independent (the mRNA contains a viral internal 
ribosomal entry site). Through their analysis, 
they found different rate-limiting steps in the ini-
tiation process for different mRNAs, which could 
explain the divergent experimental results in the 
literature. 

 In parallel, Whichard and co-authors  [  50  ]  
derived a model and used it to investigate which 
biochemical events in the miRNA-mediated post-
transcriptional regulation are most important. 
Using computational simulations and sensitivity 
analysis, they found that the miRNA synthesis 
rate is the dominant controller of protein produc-
tion. In addition, their model shows that miRNAs 
might exert potent target repression in certain 
conditions. MiRNA-mediated mechanisms for 
the repression of protein translation were also 
investigated in a recent paper by Zinovyev et al. 
 [  51  ]  and are subject of a complete chapter in this 
book by the same authors (see Chap.   11     for fur-
ther details).  

http://dx.doi.org/10.1007/978-94-007-5590-1_9
http://dx.doi.org/10.1007/978-94-007-5590-1_11
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    4.5.2   Modeling of MicroRNA 
Regulation at Single Cell Level 

 To investigate the effects of miRNAs on target 
gene expression in single cells, Mukherji et al. 
 [  52  ]  adopted a two-colour  fl uorescent reporter 
system which allows them to measure the change 
of gene expression when miRNA binding sites 
are present or absent within reporters. Through 
their single-cell analysis, two intriguing features 
were found: (1) although the average level of 
protein repression by miRNAs is modest, in 
agreement with previous population-based mea-
surements, the repression among individual cells 
varies dramatically; (2) regulation by miRNAs 
establishes a threshold level of target mRNA 
which determines the degree of the repression of 
protein production. Below the threshold the pro-
tein production is highly repressed, however, near 
this threshold protein expression responds sensi-
tively to target mRNA input. This result is also 
consistent with the mathematical model which 
described the effect of molecular titration on 
the sensitive response of transcription above 
the threshold. The model showed that with the 
increasing abundance of the mRNA targets, the 
availability of miRNA for repression is diluted; 
the strength of the interaction between miRNA 
and its target and their relative abundance decides 
the sharpness of the switch from full repression 
to escape from miRNA repression.  

    4.5.3   Identi fi cation and Modelling 
of MicroRNA-Mediated Network 
Motifs 

 miRNAs are important components embedded in 
gene regulatory networks and are found to estab-
lish different kinds of network motifs with their 
TFs and targets. The most common miRNA-medi-
ated network motifs found in gene regulatory net-
works are feedback and feedforward loops. Such 
loops can be further differentiated into several sub-
types: feedback loops can be either positive or 
negative if a miRNA and its TF are positively or 
negatively co-regulated by each other; the feedfor-
ward loops can be either coherent or incoherent, if 

a miRNA and its TF consistently or oppositely 
regulate their common target. 

 Bioinformatics algorithms are a powerful tool 
for detecting miRNA-mediated motifs in gene 
regulatory networks. By using a bioinformatics 
approach, Tsang et al.  [  35  ]  found that the 
miRNA-mediated motifs, which are frequently 
observed in regulatory networks of bacteria and 
yeast, are also prevalent in mouse and human. 
Particularly, for miRNAs upregulated in neu-
ronal cells, the coherent feedforward and nega-
tive feedback loops involving these miRNAs are 
identi fi ed to be more prevalent in mature neu-
rons than other types of motifs. The recurrences 
of these miRNA-mediated motifs suggest that 
miRNAs have important biological functions 
and enhance the robustness of gene regulation in 
mammals. Re et al.  [  38  ]  computationally 
identi fi ed a total of 638 putative miRNA-
mediated feedforward loops in human gene reg-
ulatory networks. The authors  fi ltered the results 
for motifs with cancer relevant features and dem-
onstrated for some of them experimentally that 
miRNA-mediated feedforward loops are involved 
in various aspects of organism development and 
differentiation, suggesting a crucial role of 
miRNA-mediated feedforward loops in gene 
regulatory networks. 

 Other groups focus on searching for gene-
speci fi c network motifs containing miRNA regu-
lation. For example, p53-speci fi c feedback and 
feedforward loops containing miRNA regulation 
were identi fi ed and studied by Sinha et al.  [  53  ] . 
The authors used a bioinformatics based integra-
tive approach to reveal the miRNA-mediated net-
work motifs underlying the p53 regulatory 
network, which suggests the important contribu-
tion of miRNAs for p53 to control signalling 
pathways involved in tumour suppression. 
Moreover, Martinez and Walhout  [  54  ]  summa-
rized a bunch of experimentally veri fi ed feedback 
and feedforward loops, which are composed of 
miRNA and TF regulations. In this review paper, 
the authors demonstrated that the existence of 
these network motifs reveals not only the recipro-
cal regulation between miRNAs and TFs but also 
their coordination in regulating shared target 
genes at genome-scale level. 



70 J. Vera et al.

  Fig. 4.13     Computational analysis of target hub p21 
repression regulated by multiple and cooperative 
miRNAs . ( a)  Illustrative representation of the p21 regu-
latory map. The system is composed of TFs, miRNAs 
involved in the regulation of p21 as well as p21 interact-
ing proteins. The repression of p21 by miRNAs is con-
ducted through either translation repression or mRNA 
degradation. Network motifs, such as feedback and 
feedforward loops could be detected in this network.  (b)  
Putative miRNA target sites in the p21 3 ¢  UTR. We used 
the results of two established target prediction algo-
rithms, miRanda and RNA22  [  58,   59  ] . ( c)  Cooperative 
miRNA regulation of p21 expression in different cellu-
lar functions. Our model indicates that, for different cel-

lular functions, the distinctive combination of miRNA 
states (on/off;  left ) leads to different p21 steady state 
levels. We also illustrated the effect of cooperativity 
among miRNAs against non-cooperativity ( right ).  (d)  
The response of p21 to DNA damage (DD) with and 
without feedforward loop. In the simulation here 
depicted, we assumed a step-like activation of DNA 
damage response ( top ). The bottom plot describes the 
response of p21 to DNA damage under two conditions: 
feedforward loop and no feedforward loop. The simula-
tion suggests that the suppression of the feedforward 
loop mediated by a miRNA can favour cancer progres-
sion by delaying the initiation of p21-triggered cell 
cycle arrest in response to DNA damage       

 Apart from bioinformatics approaches, the 
employment of mathematical modelling becomes 
a popular strategy to help scientists unravel inter-
esting dynamic properties of miRNA-mediated 
network motifs, which are thought to be essential 
for maintaining the operation of gene regulatory 
networks. Some mathematical models show that 
the existence of miRNA-mediated network motifs 
leads to more effective noise buffering in gene 
expression. In support of this, Xu et al.  [  55  ]  set 
up both deterministic and stochastic models to 
study and analyze four kinds of miRNA-mediated 
motifs, which were categorized by four types of 
external input signals: (1) the same signal acts on 
two miRNAs and their common target gene; (2) 
different signals act on one miRNA and its target 
gene; (3) the signal acts on the target gene only; 
(4) the signal acts on the miRNA only. Their 
numerical simulations indicated that all the four 
miRNA-mediated motifs exhibit strong robust-
ness to external random perturbations in the tar-
get gene expression. Similarly, Osella et al.  [  36  ]  
used the same two modelling methods to investi-
gate the role of miRNA-mediated feedforward 
loops in buffering noise in target gene expression. 
They demonstrated that compared to the simple 
gene activation by a TF, the system containing 
miRNA-mediated repression shows greater abil-
ity to dampen  fl uctuations in the target gene 
expression. In addition, the oscillatory behaviour 
of genes was mathematically proved to be affected 
by miRNA regulation. Xie et al.  [  56  ]  incorpo-
rated miRNA regulation into a gene network 
 containing delayed negative feedback loops to 

elucidate the possible effect of miRNAs on oscil-
latory gene expression. They showed that the 
effect of miRNAs on mRNA stability can decide 
whether the gene expression oscillates or not. 

 In our own work, we proposed to combine both 
bioinformatics and mathematical modelling for 
studying miRNA network motifs. Our approach 
relies on the construction of computational mod-
els of miRNA regulatory networks by integrating 
published knowledge and the analysis of these 
networks via computer simulation of biomedi-
cally relevant scenarios and bifurcation analysis 
 [  57  ] . We followed this line in a recent paper, in 
which we propose an integrative systems biology 
approach that combines bioinformatics tools, used 
to set up the structure of a miRNA-regulated net-
work, and mathematical modelling, which is 
employed to investigate its regulatory features. 

 We applied this method to investigate the regu-
lation of miRNA target hubs, using p21 as exam-
ple  [  16  ] . A recent study by Wu et al.  [  20  ]  identi fi ed 
more than 20 miRNAs that can regulate the 
expression of p21 post-transcriptionally, which 
made p21 the  fi rst experimentally con fi rmed case 
of a miRNA target hub. Furthermore, there are 
evidences suggesting that pairs of miRNAs can 
cooperate if their binding sites reside in close 
proximity  [  29,   39  ] . We adopted a systems biology 
approach to investigate mechanisms of collective 
miRNA repression of the cell cycle regulator p21. 
In our study, we  fi rst integrated miRNA target site 
and TF predictions with data from the literature 
and from web resources to generate a regulatory 
map for the target hub p21 (Fig.  4.13a, b ). Our 
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analysis showed that this network is enriched in 
feedforward loops. Then, we translated the net-
work into a data-driven model, which was then 
used for a kinetic analysis and for testing the bio-
logical hypotheses concerning the network. Our 
analysis indicated that distinctive expression pat-
terns for miRNAs, some of which interact coop-
eratively,  fi ne-tune the features of transient and 
long-term regulation of p21 (Fig.  4.13c ). By using 
GO term associations of the TFs involved in this 
network our mathematical model was able to suc-
cessfully predict p21 protein levels for nine differ-
ent cellular functions  [  16  ] .   

    4.5.4   Modeling MicroRNA Regulation 
in Cancer 

 Many miRNAs seem to be implicated in tumour 
progression via regulation of target genes which 
play a role in cancer  [  60,   61  ] . Interestingly, 
these miRNAs can act as tumour suppressors, 
silencing oncogenes  [  32,   62,   63  ] , or as onco-
genes by inhibiting tumour suppressor expres-
sion  [  64,   65  ] . An excellent review about the role 
of miRNAs in cancer is included in Chap.   1     
of this book. Thus, it is not surprising that in 
the last years several research teams have 
started using mathematical models based on 
the clinical and experimental data to investigate 
the role of certain miRNAs in cancer emergence 
and progression. For example, Khanin and 
Vinciotti  [  66  ]  established a model by using a 
set of microarray data, which re fl ect the tempo-
ral gene expression pro fi le from a miR-124a 
transfection experiment. miR-124a acts as 
tumour suppressor which is epigenetically 
silenced in hepatocellular carcinoma and acute 
lymphoblastic leukemia  [  67,   68  ]  and downregu-
lated in glioblastoma  [  69  ] . By using their data-
driven model, the authors explained that 
upregulation of miR-124a targets at later time-
points is primarily due to the decay of free miR-
NAs, which they  substantiated by a predicted 
and experimental veri fi able half-life for miR-
124a. Similarly, by using the same set of experi-
mental data but different assumptions in the 
mathematical model, Vohradsky and colleagues 

revealed a novel mechanism of mRNA accumu-
lation by miR-124a, by which miR-124a can 
organize its target mRNA response in a switch-
like manner, i.e. the miRNA has big in fl uence on 
the mRNA decay and the in fl uence drops to zero 
transiently [  70  ] . 

 In another study, Aguda and colleagues  [  30  ]  
derived a mathematical model for a speci fi c can-
cer network, which includes a feedback loop 
formed by Myc and E2F, and the miRNA cluster 
miR-17-92. By analyzing the consequence of 
the coupling between the miRNA-mediated 
negative feedback loop and the E2F/Myc posi-
tive feedback loop, they showed that miR-17-92 
plays a critical role in shaping bistable behav-
iour in E2F/Myc protein levels, and the onco-
genic and tumour suppressor properties of 
miR-17-92 were also demonstrated. A detailed 
discussion of cancer-related feedback loop 
motifs involving miRNA regulation is the mat-
ter of a complete chapter by Aguda in this book 
(see Chap.   9    ). 

 In our own work, we set up a mathematical 
model based on the p53/Sirt1 signalling pathway 
to investigate the regulatory effect of miR-34a 
on p53 through affecting Sirt1 [  31  ] . miR-34a 
expression is promoted by transcriptionally 
active p53, while miR-34a represses the transla-
tion of Sirt1, a protein known to inhibit the 
acetylation and activation of p53. The overall 
system works as a positive feedback loop system 
(Fig.  4.14a ). The picture of the system is com-
pleted by including DBC1 (deleted in breast can-
cer 1), another negative regulator of Sirt1, which 
directly interacts with and inhibits Sirt1 activity 
 in vitro  and  in vivo . By using a mathematical 
model calibrated with quantitative data we anal-
ysed and compared the strength of p53 activation 
mediated by DBC1 and miR-34a. We found that 
DBC1, which indirectly enhances the activation 
of p53 (DBC1─|Sirt1─|p53 * ), shows a stronger 
regulatory effect than miR-34a, which enhances 
the activation of p53 through the positive feed-
back loop (p53 *  → miR-34a─|Sirt1─|p53 * ). 
Moreover, we show that the loss of p53 activity 
via Sirt1 upregulation, that can be found in some 
cancer types, could be partially compensated by 
upregulating miR-34a expression (Fig.  4.14b ).    

http://dx.doi.org/10.1007/978-94-007-5590-1_1
http://dx.doi.org/10.1007/978-94-007-5590-1_9
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  Fig. 4.14     Modelling miR-34a regulation in the p53/
Sirt1 signaling pathway . ( a) . Scheme of the p53/Sirt1 
signalling pathway. In this pathway, we included the new-
found miR-34 mediated feedback loop in which miR-34a 
is transcriptionally promoted by p53 and represses the 
production of Sirt1. Other than miR-34a, DBC1 (deleted 
in breast cancer 1), another negative regulator of Sirt1, 
directly interacts with Sirt1 and inhibits Sirt1 activity 
 in vitro  and  in vivo , and therefore it can activate p53 acety-
lation and subsequently upregulate p53-mediated path-
ways. ( b) . We perturbed the parameters accounting for the 
concentrations of DBC1 and miR-34a in the interval [10 −1  
10 1 ] and computed the steady-state levels of active p53 

( p53   *  ;  left ). The simulations suggest that although the 
concentration of DBC1 and miR-34a are perturbed in the 
same normalised interval, changes in the concentration of 
DBC1 induce bigger variations in the steady-state levels 
of  p53   *   than the modulation of miR-34a. Moreover, we 
ran the simulations concerning the loss of  p53   *   due to the 
upregulation of Sirt1, which is commonly found in can-
cerous cells ( right ). The results show that in case of the 
intermediate upregulation (~10 0.5 ) of Sirt1 the loss of  p53   *   
can be compensated by upregulating miR-34a expression 
(Recoverable Zone). This counterbalance, however, 
does not work for strongly upregulated Sirt1 (10 1 ) 
(Unrecoverable Zone)       

 



74 J. Vera et al.

    4.6   Summary 

 In this chapter we promoted the idea that the 
inherent complexity associated with miRNA reg-
ulation will make the use of mathematical mod-
elling necessary to get a deeper understanding of 
miRNA biology in cancer. This notion is sup-
ported by the fact that miRNAs can rarely be 
considered in isolation or to affect small, well-
delimited pathways. Rather than that, they are part 
of complex multi-level biochemical networks, 
which involve transcriptional, post-transcriptional 
and signalling regulation. Moreover, miRNAs are 
often integrated in networks enriched in non-lin-
ear motifs like feedback and feedforward loops, 
whose precise regulation evades the common 
rational thinking. Thus, miRNA cancer regulation 
is a complex phenomenon from the perspective of 
both the scale and the structural complexity of the 
networks in which it is involved. In addition, the 
development of more sophisticated, accurate and 
high-throughput experimental techniques will 
make mathematical modelling a necessary tool to 
integrate massive, multiple-type quantitative data 
on miRNA cancer regulation. 

 In our vision, rather than an exercise of iso-
lated mathematical abstraction, modelling is to 
be integrated in a complex, concerted scienti fi c 
work fl ow involving bioinformatics and systems 
theory together with quantitative biological data 
generation. We recently proved that, when inves-
tigating miRNA regulation of cancer-related 
genes, this approach is possible, desirable and 
probably necessary  [  16  ] . This complex work fl ow 
is what we consider genuine in systems biology.      
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       5.1   Introduction    to p53 Biology 

 The p53 transcription factor is encoded by a tumor 
suppressor gene, which is presumably the most 
commonly mutated gene in human cancer     [  1  ] . In 
addition, many of the cancers without  p53  muta-
tion may harbor alterations up- or down-stream of 
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p53, which also impede the ability of p53 to 
suppress tumor cell growth. p53 and its loss may 
represent attractive targets for tumor therapy  [  2  ] . 
Most  p53  mutations target the DNA binding 
domains of p53, suggesting that the regulation of 
speci fi c target genes is central for the tumor sup-
pression mediated by p53. However, alternative 

functions of p53 in the cytoplasm and in mito-
chondria have also been described  [  3  ] . p53’s 
transcriptional activity is induced by various 
forms of cellular stress that cause diverse post-
translational modi fi cations of p53, which are 
thought to allow a  fi ne-tuning of the cellular 
response to the type and extent of stress 
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  Fig. 5.1     p53 as a central   mediator of stress responses . 
In this model the types of stress and cellular events 
( dark blue ) leading to activation of p53 and the protein 
encoding genes activated by p53 are depicted. p53 is 
shown as a symbolic tetramer occupying a p53 binding 
motif (in  red ) containing two palindromic DNA 

sequences ( white letters  with R = purines (A or 
G), Y = pyrimidines (C or T), W = A or T and N = bases 
representing spacers between the two palindromic half-
sites). Processes ( green ) regulated by p53 and the 
respective p53 target genes ( light blue ) implicated are 
indicated       
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experienced by the respective cell ( [  4  ]  summa-
rized in Fig.  5.1 ). For example repairable DNA 
damage may cause a transient cell cycle arrest, 
whereas extensive damage may induce apoptosis 
via generating different levels of p53 activity. 
DNA damage in the form of double-strand DNA 
breaks was one of the  fi rst inducers of p53 to be 
discovered. Subsequently, ribosomal, replication, 
metabolic, oxidative and transcriptional stress, as 
well as hypoxia were found to cause an increase 
in p53’s transcriptional activity. These alterations 
stimulate distinct signaling cascades, which activate 
enzymes that modify p53 or regulate co-factors 
binding to p53. For example DNA double strand 
breaks lead to activation of the ATM kinase, which 
phosphorylates p53 at multiple N-terminal resi-
dues  [  5  ]  and thereby increases its transactivation 
activity. Furthermore, p53 may be activated by 
inhibition of the MDM2 protein, which represents 
an E3-ubiquitin ligase that marks p53 for protea-
somal degradation. p53 forms tetramers, that bind 
to palindromic recognition sites often organized 
in tandem repeats with spacers of varying length 
between them (Fig.  5.1 ). Promoters display 
 gradual responsiveness to p53 either due to diffe-
rent numbers of p53 binding motifs or due to the 
presence of high af fi nity versus low af fi nity sites 
 [  6  ] . For example, the  p21  gene has a high af fi nity 
p53-binding site and mediates cell cycle arrest, 
whereas genes that mediate cell death harbor low 
af fi nity p53 binding sites. Therefore, apoptosis is 
presumably only induced when p53 is strongly 
activated. p53 directly activates a large set of 
genes, which mediate numerous cellular functions 
that contribute to tumor suppression. Many, but 
not all of these protein coding target genes are 
depicted in Fig.  5.1 . The activation of p53 target 
genes is either caused by an increase in p53 
 abundance after p53 stabilization, anti-repression 
of speci fi c genes after removal of repressive 
MDM2/MDMX from p53 by acetylation and/
or  phosphorylation, as well as by formation of 
promoter-speci fi c transcriptional complexes  [  4  ] . 
Furthermore, p53 may mediate the speci fi c repres-
sion of genes. However, the mechanisms of gene 
repression by p53 are less well understood and 
may be indirect to some extent  [  6  ] . In the recent 
years, miRNAs were shown to represent impor-
tant mediators of gene repression caused by p53.   

    5.2   p53 and the miRNA World: 
Current State of the Art 

 miRNAs have presumably evolved to allow 
organisms to effectively deal with stress  [  7,   8  ] . 
In line with this notion the p53 stress-response 
pathway is heavily interconnected with miRNAs 
not only by regulating their expression and 
processing, but also since p53 itself represents a 
down-stream target of miRNAs (see Figs.  5.2 , 
 5.3  and  5.4 ). The protein-coding genes regulated 
by p53 elicit several cellular phenotypes/
processes, which contribute to tumor suppression, 
as for example induction of cell cycle arrest, 
senescence and apoptosis, as well as inhibition 
of metastasis, angiogenesis and glycolysis 
 [  9–  15  ] . Interestingly, these processes are also 
regulated and in some cases induced by p53-
regulated miRNAs  [  10,   12  ] . In the last 5 years 
the characterization of a number of miRNAs 
directly regulated by p53 and the cellular 
effects of these connections have been reported. 
For an overview see Fig.  5.3 .    

    5.2.1   The  miR-34  Genes 

 In 2007 the miR-34 genes,  miR-34a  and  miR-
34b/c , were reported to be directly regulated by 
p53 by a number of laboratories using diverse 
approaches  [  16–  21  ] . For example, we determined 
the abundance of miRNAs in libraries representing 
small RNAs generated after p53 activation using 
a next generation sequencing approach  [  16  ] : we 
found that  miR-34a  showed the most pronounced 
increase among all detected miRNAs after p53 
activation, which is mediated by p53 binding 
sites in the promoter region of its host gene. 
When ectopically expressed,  miR-34a  and 
  miR-34b/c  displayed tumor suppressive activi-
ties, i.e. they caused induction of apoptosis and 
senescence, inhibition of cell cycle progression, 
and a decrease of angiogenesis (reviewed in  [  10, 
  12,   22  ] ). These effects were mediated by direct 
down-regulation of the expression of numerous 
key regulators and effectors of these processes as 
BCL-2, Cyclin E, CDK4 and CDK6. Meanwhile, 
a large number of additional miR-34 targets have 
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been identi fi ed using a variety of approaches 
(reviewed in  [  12  ] ; see also  [  23,   24  ]  and  references 
therein). Among the miR-34 targets SIRT1, 
c-MET, Axl, c-/N-MYC, LDH-A and SNAIL 
seem to be especially relevant for the suppression 
of cancer. In fact their common up-regulation in 
tumors could be due to the frequent inactivation 
of the p53/miR-34 axis during tumor develop-
ment ( [  25,   26  ] ; see also next sub-chapter). These 
targets contribute to the suppression of migration 
and invasion (SNAIL, c-MET, Axl) and metabo-
lism (LDH-A). In the case of c-MET it was 
recently shown that p53 down-regulates c- MET  
expression via SP1-mediated occupancy and 
repression of the c- MET  promoter and by induc-
ing miR-34a/b/c, which directly target the 3 ¢ -
UTR of the c- MET  mRNA  [  27  ] . p53 may suppress 
metastasis by antagonizing epithelial-mesenchy-
mal transitions, which have been implicated in 
the early, invasive stages of metastasis. Instead, 
p53 activation promotes mesenchymal-epithelial 
transition (MET) and favors the epithelial state of 

cells  [  28  ] . We recently found that p53-induced 
MET is mediated by induction of  miR-34a  and 
 miR-34b/c  in colorectal cancer cell lines  [  29  ] . 
miR-34a and miR-34b/c achieve this effect by 
negatively regulating a master-regulator of EMT, 
the SNAIL transcription factor  [  29,   30  ] . In addi-
tion, we found that the  miR-34a  and the  miR-
34b/c  genes are directly repressed by SNAIL 
 [  29  ] . Therefore, miR-34a/b/c and SNAIL form a 
double-negative feed-back loop (summarized in 
 [  31  ] ). Stemness represents another important 
oncogenic trait of cancer cells which is sup-
pressed by miR-34. It was shown that miR-34 
directly suppresses CD44, which blocks the 
expansion of cancer-initiating tumor stem cells in 
a mouse model of prostate cancer  [  32  ] . When 
 miR-34a  is ectopically expressed, stemness mark-
ers as CD133, CD44 and BMI-1 are down-regu-
lated in colorectal cancer cells  [  29  ] . Furthermore, 
it was recently reported that, similar to p53, the 
miR-34 miRNAs provide a barrier for somatic 
cell reprogramming and the generation of IPS 
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  Fig. 5.2     Effects of p53 on   the miRNA processing pathway . The synthesis of miRNAs in mammalian cells and the 
known modes of regulation by p53 are depicted       
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(induced pluripotent stem) cells from mouse 
embryo  fi broblast  [  33  ] . miR-34 mediated this 
effect by direct down-regulation of NANOG, 
SOX2 and N-MYC. Therefore, cancer cells with 

loss of miR-34 expression may also be more 
prone to become tumor initiation cells, which 
exhibit features of stem cells. Furthermore, miR-
34 inhibits components of the wnt/ b -catenin/TCF 
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  Fig. 5.3     Regulation of miRNA expression   by p53.  
Model summarizing direct transcriptional activation of 
miRNA-encoding genes, the affected miRNA targets and 
the reported cellular effects, which collectively contribute 
to tumor suppression by p53. The  arrows  or inhibition 

symbols pointing to the cellular processes represent the 
summation of the regulations resulting from the activity of 
the indicated p53-induced miRNAs. For details see the 
main text       
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pathway, as  b -catenin, LEF1 and WNT1  [  34,   35  ] . 
Thereby, miR-34 may contribute to the suppression 
of stemness- and EMT-related features of cancer 
cells. 

 The miR-34 family also includes miR-449. 
Although the seed sequences of miR-34a/b/c and 
miR-449a/b/c are highly conserved, the regula-
tion of the genes encoding these miRNAs is 
divergent as miR-449 expression is induced by 
E2F1, but not by p53 and/or DNA damage  [  36  ] . 
Therefore, the regulation of similar targets by 
miR-34 and miR-449 miRNAs may occur under 
rather distinct circumstances. Furthermore, miR-
449 presumably has a restricted expression pat-
tern, since it was found to be highly expressed in 
differentiating lung epithelia and at compara-
tively low levels in other tissues  [  36  ] .  

    5.2.2   The miR-200 Family 

 More recently the two genes encoding the miR-
200 family, which give rise to the miR-200c/141 
and the 200a/200b/429 miRNAs, were identi fi ed 
as direct p53 target genes that enforce mesenchy-
mal-epithelial transitions (MET)  [  37,   38  ]  by 
targeting the EMT-regulators ZEB1 and ZEB2 
 [  39  ] . In addition, miR-200c down-regulates 
KLF4 and the polycomb repressor BMI-1, both 
stemness factors, and thereby contributes to the 
loss of metastatic capacity of tumor initiating 
cancer stem cells  [  37  ] . Therefore, induction of 
the miR-200 family represents a new mecha-
nism by which p53 suppresses metastasis 
(reviewed in  [  28,   40  ] ).  

    5.2.3   The miR-192 Family 

 The three members of the miR-192 family were 
found to be encoded by p53 target genes using a 
microarray analysis to monitor miRNA expres-
sion after treatment with the MDM2 inhibitor 
Nutlin-3a  [  41  ] . These authors also found that 
ectopic miR-192 expression induces p21 in a 
p53-dependent manner. Later it was shown that 
the miR-192 family targets the IGF pathway and 
also MDMD2, which results in the activation of 

p53  [  61  ] . Furthermore, this tumor suppressive 
loop is impaired in multiple myeloma, which 
shows down-regulation of the miR-192 family. In 
addition, ectopic miR-192 leads to a G 

1
  and G 

2
 /M 

cell cycle arrest by targeting CDC7, MAD2L1 
and CUL5  [  42  ] .  

    5.2.4   Additional p53-Regulated 
miRNAs 

 miR-107 is encoded by an intron of the p53-
induced  PANK1  gene  [  43  ] . Ectopic expression of 
miR-107 decreases HIF1 b  expression, which 
diminishes the response to hypoxia and blocks 
tumor angiogenesis and growth. In addition, 
miR-107 targets the cell cycle regulators CDK6 
and p130/pRBL2  [  44  ] . 

 miR-145 represents a p53-inducible miRNA, 
which was shown to contribute to repression of 
c- MYC  by p53 via directly targeting the c- MYC  
3 ¢ -UTR  [  45  ] . Interestingly, miR-145 also nega-
tively regulates OCT4, SOX2 and KLF4, and 
thereby represses pluripotency in human embry-
onic stem cells  [  46  ] . Therefore, miR-145 may at 
least in part explain why deletion of p53 strongly 
enhances the generation of IPS cells and poten-
tially promotes the expansion of cancer stem cells 
 [  47  ] . 

 miR-15a and miR-16-1 are encoded by an 
intron of the  DLEU2  mRNA. Initially, miR-
15a/16-1 were shown to be processed at an 
increased rate after p53 activation  [  16,   48  ] . Later, 
the  DLEU2  gene was shown to be a transcrip-
tional target of p53  [  49  ] . Since miR-15/16 target 
BCL2 and Cyclin E, they affect both, apoptosis 
and the cell cycle.  

    5.2.5   Direct Regulation of p53 
Expression by miRNAs 

 Seversal recent publications demonstrated that 
miRNAs contribute to the tight control under 
which p53 is placed in the cell by directly inter-
acting with the 3 ¢ -UTR of  p53  mRNA (summa-
rized in Fig.  5.4 ). By computational analysis of 
putative miRNA binding sites using TargetScan 
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and mirBase prediction software a binding site 
of miR-125b was identi fi ed in the 3 ¢ -UTR of  p53  
 [  50  ] . MiR-125b is expressed at high levels in the 
brain and conserved between human, zebra fi sh 
and other vertebrates. Ectopic expression of 
miR-125b decreased p53 protein levels and 
apoptosis in human cells, whereas inhibition of 
miR-125b had the opposite effect in lung 
 fi broblasts and zebra fi sh brain. When zebra fi sh 
were treated with DNA damaging agents miR-
125b expression was down-regulated, presum-
ably allowing the observed increase in p53 
protein. Analysis of 89 colorectal cancer samples 
revealed that elevated expression of miR-125b is 
associated with increased tumor size and inva-
sion, and also correlates with poor prognosis and 
decreased survival  [  51  ] . These results are in 
accordance with a negative regulation of p53 by 
miR-125b. 

 By an  in silico  search two miR-504 seed-
matching sequences were identi fi ed in the 3 ¢ -UTR 
of p53  [  52  ] . Accordingly, ectopic expression of 
miR-504 down-regulated p53 protein levels, 
reduced p53-dependent apoptosis and cell cycle 
arrest, and resulted in increased tumor formation 
 in vivo . 

 miR-33 also targets p53 by binding to two 
seed-matching motifs in the 3 ¢ -UTR of p53  [  53  ] . 
Interestingly, miR-33 is down-regulated in 
hematopoietic stem cells (HSC) and up-regu-
lated in more differentiated progenitor cells in 
super-p53 mice, which are endowed with an 
extra copy of p53. Ectopic expression of miR-
33 in HSC results in increased stemness and 
decreased recipient survival. In mouse embry-
onic  fi broblasts miR-33 promotes neoplastic 
transformation presumably via down-regulation 
of p53. 

 miR-380-5p was found to down-regulate p53 
in neuroblastomas, which commonly express 
wild-type p53  [  54  ] . Neuroblastomas with ele-
vated expression of miR-380-5p showed a 
decreased patient survival. Furthermore, miR-
380-5p was highly expressed in mouse embry-
onic stem cells and its ectopic expression 
cooperated with HRAS in transformation, abro-
gation of oncogene-induced senescence and pro-
moted tumor formation in mice. Finally,  in vivo  

delivery of a miR-380-5p antagonist decreased 
tumor size in an orthotopic mouse model of 
neuroblastoma. 

 In a systematic, bioinformatics screen 107 
potential p53-targeting miRNAs were identi fi ed 
using TargetScan  [  55  ] . When these candidates 
were experimentally tested in a dual-reporter 
assay, miR-1285 turned out to be the most effec-
tive repressor of p53’s 3 ¢ -UTR reporter activity. 
In line with these results, miR-1285 decreased 
p53 mRNA- and protein-levels by directly bind-
ing to the 3 ¢ -UTR of p53 via two seed-matching 
sequences. 

 In a similar bioinformatics screen using less 
stringent criteria and four different miRNA target 
prediction methods (Miranda, TargetScan, PicTar 
and RNA22) 67 candidate miRNAs with the 
potential to directly inhibit p53 expression were 
identi fi ed  [  56  ] . In a subsequent, experimental 
screen only eight of these had an inhibitory effect 
on p53-mediated transactivation. Of these only 
three were effective in a dual reporter assay 
employing the  p53  3 ¢ -UTR: miR-200a, -30d and 
-25. By mutation of the respective corresponding 
seed-matching sequences in reporter constructs 
only miR-30d and miR-25 were validated as 
direct regulators of the  p53  3 ¢ -UTR. In contrast, 
miR-200a presumably affects the  p53  3 ¢ -UTR by 
indirect regulation, e.g. via modulation of tran-
scription factors that regulate miRNAs, which 
directly target p53. In a cellular assay ectopic 
miR-30d and miR-25 decreased p53 levels, p53 
target expression and downstream effects of p53 
as apoptosis, cell cycle arrest and senescence. 
The opposite was observed, when both miRNAs 
were inhibited by antagomirs. In line with these 
observations, miR-25 and miR-30d were found 
to be up-regulated in multiple myeloma cells, 
which showed a concomitant down-regulation of 
p53 mRNA expression. Furthermore, inhibition 
of miR-25 and miR-30d induced p53 and apopto-
sis in a multiple myeloma cell line. Therefore, 
miR-25 and miR-30d presumably represent onco-
genic miRNAs. These examples show that the 
bioinformatics identi fi cation of miRNA/target 
mRNA interactions has to be validated experi-
mentally as it currently generates mainly false 
predictions.  
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    5.2.6   Indirect Regulation of p53 
by miRNAs 

 Several examples of p53 being subject to indirect 
regulation by miRNAs via down-regulation of up-
stream regulators of p53 have been documented. 
One of the  fi rst cases was the regulation of SIRT1 
by miR-34a  [  57  ] . An  in silico  search for miR-34a 
targets, which might affect p53 resulted in the 
analysis and experimental con fi rmation of SIRT1 
as a miR-34a target. As a consequence of SIRT1 
down-regulation by miR-34a an increase in p53 
activity and enhanced expression of its targets p21 
and PUMA, as well as increased apoptosis was 
observed. Since miR-34a itself is induced by p53 
the regulations connecting miR-34a, SIRT1 and 
p53 constitute a positive feed-back loop. In tumors 
this self activating loop may be disrupted by the 
silencing of  miR-34  genes by CpG methylation 
 [  12,   25,   26  ]  and mutation/inactivation of p53. 

 As mentioned above, miR-449 is similar to 
miR-34, but regulated by other factors, as for 
example E2F1. Interestingly, when miR-449 was 
expressed ectopically it also indirectly activated 
p53 via directly suppressing the expression of 
SIRT1  [  58  ] . This may allow additional pathways 
to increase p53 activity. 

 Also miR-122 leads to an up-regulation of p53 
 [  59  ] . However, this is accomplished even more indi-
rectly, since the miR-122-mediated down-regulation 
of Cyclin G1 presumably inhibits recruitment of 
PP2A phosphatase to MDM2 resulting in decreased 
MDM2 activity and increased p53 levels/activity. In 
line with this scenario ectopic miR-122 expression 
increased the sensitivity of hepatocellular carci-
noma derived cell-lines to doxorubicin. 

 More recently, miR-885-5p was shown to acti-
vate p53 and the expression of p53 target genes 
 [  60  ] . However, although miR-885-5p was shown 
to target CDK2 and MCM5, the mechanism of 
the miR-885-5p effect on p53 remained unclear. 

 miR-192/194/215 are transcriptionally induced 
by p53 and negatively modulate MDM2 activity 
 [  61  ] . Interestingly, their ectopic expression 
enhanced the therapeutic effectiveness of MDM2 
inhibitors against multiple myeloma (MM), an 
incurable B cell neoplasm, in experimental set-
tings. A similar feedback loop was recently 

described for miR-605, which is also induced by 
p53 and negatively regulates MDM2 expression 
 [  62  ] .  

    5.2.7   Direct Involvement of p53 
in miRNA Processing 
and Maturation 

 Since the levels of certain processed miRNAs 
were increased after p53 activation even in the 
absence of an induction of the corresponding 
 primary miRNAs (pri-miRNA), the possibility 
that p53 may directly affect the processing of 
miRNAs was analyzed  [  48  ] . Indeed, these authors 
found that p53 interacts with the miRNA pro-
cessing complex DROSHA through association 
with the DEAD-box RNA helicase p68 (indicated 
in Fig.  5.2 ). Thereby, p53 enhances processing of 
speci fi c pri-miRNAs with growth suppressive 
function (e.g. miR-16-1, miR-143, miR-145) to 
precursor miRNAs (pre-miRNAs) resulting in a 
signi fi cant increase in the corresponding miR-
NAs. Therefore, direct transcriptional regulation 
of any miRNA-encoding gene by p53 should not 
be deduced from the detection of an increase in 
mature miRNA levels by techniques like miR-
Seq. Such analysis should be complemented by 
quanti fi cations of the pri-miRNA levels and 
detection of p53 occupancy at the promoter of the 
respective pri-miRNA encoding gene. 

 Another link between p53 and miRNA-pro-
cessing has been observed in conditional DICER 
knock-out mice  [  63  ] . DICER de fi ciency and 
therefore incomplete miRNA maturation induces 
p53 and p19/ARF, which leads to reduced prolif-
eration and premature senescence. Interestingly, 
deletion of  Ink4/Arf  or  p53  prevents premature 
senescence induced by deletion of DICER. 
Therefore, a p53-dependent checkpoint seems to 
monitor proper miRNA processing.  

    5.2.8   The p53-Relatives p63 and p73 
in the Regulation of miRNAs 

 The p53 family members p63 and p73 have also 
been implicated in the regulation of miRNA 
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expression and processing. TAp63 was shown to 
coordinately regulate DICER and miR-130b to 
suppress metastasis  [  64  ] . In contrast to  p53,  the 
 p63  and  p73  genes are not affected by mutations 
in tumors. p73 promotes genome stability and 
mediates chemosensitivity, whereas p63 largely 
lacks these p53-like functions and instead pro-
motes proliferation and cell survival. p63 and p73 
were shown to be connected via miRNA regula-
tions: p63 represses the expression of miR-
193-5p, which targets p73, thereby causing an 
increase in p73 expression, whereas p73 induces 
miR-193-5p  [  65  ] . Interestingly, therapeutic inhi-
bition of miR-193-5p effectively blocked tumor 
progression when combined with an otherwise 
ineffective chemotherapy in an orthotopic tumor 
model.   

    5.3   Alterations of the p53/miRNA 
Network in Human Cancer 

 Similar to protein coding genes miRNA-encoding 
genes may harbor oncogenic or tumor suppressive 
functions. As discussed above, p53-induced miR-
NAs promote tumor suppressive processes, as cell 
cycle arrest, senescence, inhibition of EMT and 
metastasis. During cancer initiation or progres-
sion cells with inactivation of miRNA-encoding 
genes may have a selective advantage, since they 
presumably display a weakened or missing induc-
tion of these tumor suppressive mechanisms. In 
tumors miRNA-encoding genes may be inacti-
vated by a number of different mechanisms. The 
p53-inducible miRNAs discussed above are likely 
to be down-regulated in at least half of all tumors 
due to the mutational inactivation of p53. However, 
in tumors retaining wild-type p53 the p53-regu-
lated miRNA-encoding genes represent good can-
didates for being subject to inactivating events. 
These include loss by deletion or other structural 
changes as translocations. In addition, down-reg-
ulation of miRNA expression by epigenetic 
silencing via CpG methylation and/or deacetyla-
tion of promoter regions has been described. 
Furthermore, indirect down-regulation due to 
mutations of other up-stream regulatory transcrip-
tion factors and alterations in the miRNA processing 

machinery has been observed. Another mode of 
inactivation may be due to the aberrant expression 
of a seed-match containing RNA, a so-called 
competing endogenous RNA (ceRNA), which 
sequesters the respective miRNA  [  66  ] . This mech-
anism was originally observed in plant cells  [  67  ] . 
The existence of cancer-relevant ceRNAs in 
human cells was documented by the identi fi cation 
of RNAs, which regulate expression of the PTEN 
tumor suppressor via this route  [  68  ] . A further 
possibility of miRNA inactivation was suggested 
to occur by mutation of seed sequences or altered 
processing of miRNAs. However, such alterations 
were only rarely observed until now  [  69,   70  ] . 
Furthermore, an escape from miRNA action by 
deletion or mutation of seed matching sequences 
in the respective target mRNA is conceivable. 
Indeed, such alterations have been observed in 
mRNAs encoding oncogenic factors  [  71,   72  ] . For 
an overview of reported alterations in the p53/
miRNA network detected in cancer see Table  5.1 .  

    5.3.1   Cancer-Speci fi c Alteration of the 
miR-15/16 Encoding  dLEU2  Gene 

 The  fi rst report of a genetic inactivation of a 
miRNA was the observation that the  dLEU2  gene, 
which is located on chromosome 13q14 and 
encodes the miR-15a and miR-16-1 miRNAs, is 
commonly deleted in chronic lymphocytic leuke-
mia (CLL) [  75  ] . More recently, it was shown that 
experimental deletion of  miR-15a/16-1  or of the 
entire  dLEU2  gene predisposes mice to CLL 
 [  123  ] . Therefore,  dLEU2  is presumably the tumor 
suppressor gene located in the 13q14 region. 
Importantly, this study provided the  fi rst proof 
for a  bona  fi de  tumor suppressor gene function of 
an miRNA.  

    5.3.2   Cancer-Speci fi c Alterations 
of the  miR-34  Family 

 The  miR-34a  and  miR-34b/c  genes are frequently 
silenced by CpG methylation in a variety of tumor 
types  [  12,   25,   26,   94  ] . MiR-34a methylation was 
initially shown to occur in numerous cell lines 
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   Table 5.1    Alterations of p53-regulated miRNAs in human tumors   

 miRNA-gene  Tumor type  Mechanism  Frequency [%]  n =  References 

   miR-15a/16-1    Prostate cancer  Deletion  80  20 + 15   [  73  ]  
 Chronic Lymphocytic 
Leukemia/CLL 

 Germline Mutation in 
the primary precursor 

 15  75 cancer 
(+ control: 
160 normal) 

  [  74  ]  

 Chronic Lymphocytic 
Leukemia/CLL 

 Deletion  68, 51  60, 322   [  75,   76  ]  

 Mantle Cell 
Lymphoma/MCL 

 Deletion  55  53   [  77  ]  

 Mantle Cell 
Lymphoma/MCL 

 Downregulation  71  30   [  76  ]  

 Non Small Cell Lung 
Cancer/NSCLC 

 Deletion or down-
regulated 

 74  23   [  78,   79  ]  

 Pituitary tumors 
[Cushing’s Disease /
CD] 

 n.d.  –  14 
(+7controls) 

  [  80  ]  

 Ovarian  Downregulation  38   [  81  ]  
 Non-Hodgkin’s 
Lymphoma/NHL 

 Deletion  43  43   [  82  ]  

 Hodgkin‘s disease/HD  Deletion  29  7   [  82  ]  
 Multiple Myeloma/
MM 

 Downregulation  54  37   [  83  ]  

 Pituitary adenoma  Deletion  n.d.  20   [  84  ]  
 Pancreatic cancer  Downregulation  70  10   [  85  ]  
 Prostate cancer  Downregulation  100  23   [  86  ]  
 Prostate cancer cell 
lines 

 Downregulation  –  50   [  87  ]  

  miR-16-2   Progression of 
prostate 
carcinogenesis 

 Downregulation  –  63   [  88  ]  

  miR-34a   Non Small Cell Lung 
Cancer/NSCLC 

 Downregulation  91  23   [  79  ]  

 Acute Myeloid 
Leukemia/AML 

 Hypermethylation  0  20   [  89  ]  

 Non-Hodgkin’s 
Lymphoma/NHL 

 Hypermethylation  18.8  32   [  89  ]  

 Acute Lymphoblastic 
Leukemia/ALL 

 Hypermethylation  0  20   [  89  ]  

 Chronic Lymphocytic 
Leukemia/CLL 

 Hypermethylation  4  50   [  89  ]  

 Chronic Myeloid 
Leukemia/CML 

 Hypermethylation  0  11   [  89  ]  

 Multiple Myeloma/
MM 

 Hypermethylation  5, 5  55   [  89  ]  

 Colorectal cancer cell 
lines 

 Hypermethylation, 
p53 mutation 

 23  13   [  25  ]  

 Prostate cancer  Hypermethylation  79  24   [  25  ]  
 Breast cancer cell 
lines 

 Hypermethylation  25  24   [  25  ]  

 Kidney cancer cell 
lines 

 Hypermethylation  21  14   [  25  ]  

(continued)
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 miRNA-gene  Tumor type  Mechanism  Frequency [%]  n =  References 

 Bladder cancer cell 
lines 

 Hypermethylation  33  6   [  25  ]  

 Lung cancer cell lines  Hypermethylation  29  24   [  25  ]  
 Melanoma  Hypermethylation  63  32   [  25  ]  

  miR-34b/c   Gastric cancer  Hypermethylation  70  118   [  90  ]  
 Non Small Cell Lung 
Cancer/NSCLC 

 Hypermethylation  161   [  91  ]  

 Primary melanoma 
cell lines 

 Downregulation  2   [  92  ]  

 Head and Neck 
Cancer/H&N 

 Downregulation  n.d.  10   [  93  ]  

 Colon cancer  Hypermethylation  90  111   [  94  ]  
 MYC translocation-
negative Burkitt 
Lymphoma 

 Downregulation  100  5   [  95  ]  

  miR-34a/b/c   Malignant Pleural 
Mesothelioma/MPM 

 Hypermethylation  28(a)/85(b/c)  47   [  96  ]  

 Ovarian cancer  p53 Mutation, 
Hypermethylation 

 100(a)/72(b/c), 
62(a)/69(b/c) 

 89, 13   [  26,   97  ]  

 Colorectal Cancer  Hypermethylation  74(a)/99(b/c)  114   [  26  ]  
 Pancreatic cancer  Hypermethylation  64(a)/100(b/c)  11   [  26  ]  
 Mammary cancer  Hypermethylation  60(a)/90(b/c)  10   [  26  ]  
 Urothelial Cancer/UC  Hypermethylation  71(a)/57(b/c)  7   [  26  ]  
 Renal cell cancer  Hypermethylation  58(a)/100(b/c)  12   [  26  ]  
 Soft tissue Sarcomas  Hypermethylation  64(a)/45(b/c)  11   [  26  ]  
 Esophageal Squamous 
Cell Carcinoma/ESCC 

 Hypermethylation  67(a)/41(b/c)  54   [  98  ]  

  miR-107   Head and Neck/Oral 
cancer/HNOC 

 Downregulation  4   [  99  ]  

 Acute Promyelocytic 
Leukemia/APL 

 Downregulation  26   [  50  ]  

 Pancreatic carcinoma 
cell lines 

 Hypermethylation  2   [  100  ]  

 Tongue squamous cell 
carcinoma/TSCC 

 Downregulation  n.d.  4   [  99  ]  

 Chronic Lymphocytic 
Leukemia/CLL 

 Hypermethylation  n.d.  50   [  101  ]  

 Pancreatic cancer  Upregulation  44 (+12 
Controls) 

  [  102  ]  

  miR-141   Colorectal cancer  Downregulation  10   [  103  ]  
 Mesenchymal breast 
cancer cell lines 

 Hypermethylation  100  4   [  104  ]  

 Epithelial breast 
cancer cell lines 

 Hypermethylation  0  4   [  104  ]  

 Lung cancer  Downregulation  10   [  103  ]  
 Bladder cancer  Hypermethylation  10 (+5 

Controls) 
  [  105  ]  

  miR-145   Prostate cancer  Hypermethylation, 
p53 Mutation 

 81  27   [  106  ]  

(continued)

Table 5.1 (continued)
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 miRNA-gene  Tumor type  Mechanism  Frequency [%]  n =  References 

 Prostate cancer  Downregulation  63   [  88  ]  
  miR-192   Colorectal cancer  p53 Mutation  34   [  107  ]  

 Colorectal cancer 
(MSI) 

 Downregulation  54 (+20 
Controls) 

  [  108  ]  

 Multiple Myeloma/
MM 

 Hypermethylation  47 (+5 
Controls) 

  [  61  ]  

  miR-194   Colorectal Cancer 
with liver metastasis 

 p53 Mutation, SNP  30   [  109  ]  

 Multiple Myeloma/
MM 

 Hypermethylation  47 (+5 
Controls) 

  [  61  ]  

  miR-200a   Ovarian cancer  Downregulation  55   [  110  ]  
  miR-200b   Colorectal cancer  Loss  30   [  109  ]  

 Ovarian cancer  Downregulation  55   [  110  ]  
 Lung cancer  Hypermethylation  25  24 (+ 

Controls) 
  [  111  ]  

 Bladder cancer  Hypermethylation  10 (+5 
Controls) 

  [  105  ]  

  miR-200c   Lung cancer  Hypermethylation  29  24 (+ 
Controls) 

  [  111  ]  

 Colorectal cancer  Hypermethylation, 
p53 mutation 

  [  112  ]  

 Mesenchymal breast 
cancer cell lines 

 Hypermethylation  100  4   [  104  ]  

 Epithelial breast 
cancer cell lines 

 Hypermethylation  0  4   [  104  ]  

 Lung cancer  Hypermethylation  25, -  24, 69   [  111,   113  ]  
 Bladder cancer  Hypermethylation  10 (+5 

Controls) 
  [  105  ]  

  miR-215   Colorectal cancer  Downregulation  34   [  107  ]  
  miR-429   Colorectal cancer cell 

lines 
 Hypermethylation  50  2   [  114  ]  

 Breast cancer cell 
lines 

 Hypermethylation  50  2   [  114  ]  

 Lung cancer cell lines  Hypermethylation  33  3   [  114  ]  
 Ovarian cancer  Downregulation  55   [  110  ]  

  Exportin 5   Breast cancer  Mutation  441 (+479 
Controls) 

  [  115  ]  

 Hereditary nonpolypo-
sis colon cancer 

 Downregulation  26  38   [  116  ]  

 Sporadic colon cancer 
(MSI+) 

 Downregulation  22  211   [  116  ]  

 Sporadic gastric 
cancer (MSI+) 

 Downregulation  28  58   [  116  ]  

 Sporadic endometrial 
tumors (MSI+) 

 Downregulation  13  30   [  116  ]  

  Dicer/Drosha   Ovarian cancer  Downregulation  60/51  111   [  117  ]  
  Dicer   Cystic nephroma, 

Wilm’s tumor 
 Germline mutation  0  50   [  118  ]  

 Pulmonary pediatric 
cancer 

 Mutation  91  11 (+360 
Controls) 

  [  119  ]  

Table 5.1 (continued)

(continued)



895 The p53/microRNA Network in Cancer: Experimental and Bioinformatics Approaches

 miRNA-gene  Tumor type  Mechanism  Frequency [%]  n =  References 

Dicer  Lung cancer  Downregulation  67   [  120  ]  
 Colorectal cancer  Upregulation  237   [  121  ]  
 Acute Myeloid 
Leukemia/AML 

 Upregulation  86  71   [  122  ]  

  Summary of the reported alterations in p53-regulated miRNAs in cancer.  Frequency  relates to the alteration indicated 
in the third column,  n  number of tumor samples/patients analyzed,  MSI  micro-satellite instable.
n.d. = not determind.  

Table 5.1 (continued)

derived from different tumor types, as well as in 
primary prostate cancer and melanoma  [  25  ] . Also 
the expression of the miR-34 family members 
miR-34b and miR-34c, which are encoded by a 
common transcript, is down-regulated in many 
types of cancer  [  26  ] . A high frequency of silencing 
of the  miR-34b/c  promoter by CpG methylation 
has been found in colorectal cancer cell lines and 
colorectal tumor samples  [  94  ] . We also found CpG 
methylation of  miR-34b/c  in all 114 cases of pri-
mary colorectal cancers analyzed  [  26  ] . Interestingly, 
 miR-34b/c  methylation correlated with metastasis 
and poor survival for several types of cancer  [  124  ] . 
The reintroduction of  miR-34b/c  into cancer cell 
lines exhibiting  miR-34b/c  silencing inhibited 
their motility, reduced tumor growth, suppressed 
metastasis formation in a xenograft model and was 
associated with down-regulation of the respective 
target genes (e.g. c-MYC, E2F3, CDK6). 

 The  miR-34a  gene is located on chromosome 
1p36, a region which is commonly deleted in 
human cancers, as for example in neuroblastoma 
 [  125  ] , which often display loss of  miR-34a  
expression  [  126  ] .  

    5.3.3   Cancer-Speci fi c Alterations 
of the  miR-200  Family 

 The miR-200 family encodes a highly conserved 
group of miRNAs, which control EMT by down-
regulating the EMT-inducing transcription fac-
tors ZEB1 and ZEB2  [  39  ] . The miR-200 family 
can be sub-divided into two clusters: miR-200c 
and miR-141 (located at chromosome 12p13), 
and miR-200a, miR-200b and miR-429 (located 

at chromosome 1p36). Expression of the miR-
200c/141 cluster is frequently silenced by CpG 
methylation in breast cancer  [  104  ] . Interestingly, 
a correlation between methylation of the miR-
200c promoter and invasiveness was determined 
in breast cancer cell lines. Down-regulation of 
the miR-200c/141 cluster was also described for 
breast cancer initiating cells  [  127  ]  and EBV-
associated gastric carcinomas  [  128  ] . As men-
tioned above, loss of 1p36 is a recurrent aberration 
especially in neuroblastoma, indicating that there 
may be two distinct mechanisms that down-regu-
late the expression of the miR-200 family.  

    5.3.4   Cancer-Speci fi c Alterations 
of the  miR-192  Family 

 The p53-regulated miR-192 family is comprised 
of miR-192, miR-194-2, and miR-215, which 
induce p21 expression and cell cycle arrest in a 
p53-dependent manner  [  41  ] . The miR-192 family 
is down-regulated by an unknown mechanism in 
multiple myeloma (MM), which rarely shows 
mutation or deletion of p53  [  61  ] . Reactivation of 
p53 in MM resulted in re-expression of miR-192, 
miR-194-2, and miR-215 and down-regulation of 
MDM2, which represents a target of these miR-
NAs  [  61  ] . Moreover, ectopic expression of miR-
192 family members inhibited cell growth, 
migration and invasion of MM. Furthermore, the 
miR-192 family members are down-regulated in 
colon cancer, and induce apoptosis and senes-
cence, although to a lesser extent than miR-34a 
 [  41  ] . The mechanism by which down-regulation 
of the miR-192 family occurs remained unclear in 
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this study, but p53 inactivation  [  129  ]  and a single 
nucleotide polymorphism (SNP) located within 
the miR-194-2 precursor  [  130  ]  may contribute to 
this phenomenon.  

    5.3.5   Other p53-Induced miRNAs 
Inactivated in Cancer 

 Recently, the p53-inducible miR-145 was shown 
to be down-regulated by CpG methylation and 
p53 mutation in prostate cancer samples and cell 
lines  [  106  ] .  

    5.3.6   Alterated Regulation of the 
miRNA Processing Machinery 
in Cancer 

 miR-107 was shown to directly target DICER1 
mRNA, which encodes a central component of 
the miRNA processing machinery  [  131  ] . Ectopic 
expression of miR-107 enhances migration 
 in vitro  and allows metastatic dissemination of 
otherwise non-aggressive cells  in vivo , whereas 
the loss of miR-107 opposes migration and 
metastasis of malignant cells. Moreover, it was 
shown that high levels of miR-107 are associated 
with metastasis and poor outcome in breast 
 cancer. However, these observations are not com-
patible with mediation of p53-induced tumor 
suppression by miR-107. Nonetheless, these 
 fi ndings suggest that the deregulation of the 
miRNA processing machinery in cancer leads to 
metastasis and poor outcome, and predicts an 
anti-cancer activity of the majority of the miR-
NAs. In support of this conclusion, DICER1 was 
characterized as an haplo-insuf fi cient tumor sup-
pressor gene in a tumor mouse model  [  132  ] . 
Furthermore, decreased expression of DICER1 
correlates with poor prognosis in human lung 
cancer  [  120  ] . Interestingly, the p53 family mem-
ber p63 transcriptionally controls DICER1 
expression. Mutant p53 presumably interferes 
with this regulation, which leads to a reduction in 
DICER1 levels and reduces the levels of certain 
cancer-relevant miRNAs  [  64  ] . Mutant p53 may 
also interfere with the post-translational regula-

tion of DROSHA by wild-type p53 and thereby 
affect the processing of selected, tumor suppres-
sive miRNAs  [  48  ] .  

    5.3.7   Mutations in the miRNA 
Processing Machinery in Cancer 

 Another possibility how the abundance of p53-
regulated miRNAs could be altered in cancer is to 
constitutively change the processing of pri-miR-
NAs to miRNAs by genetic alterations in compo-
nents of this pathway. For example, mutations of 
the nuclear export protein Exportin-5 resulted in 
the trapping of pre-miRNAs in the nucleus and 
reduced miRNA-processing  [  116  ] . As a result, 
numerous miRNAs were not fully processed and 
a diminished inhibition of the respective miRNA 
targets was detected. Notably, restoration of 
Exportin-5 function reversed the impaired export 
of pre-miRNA and had tumor-suppressive effects. 
Recently, several studies supported the notion 
that variations in the expression and mutations 
of miRNA processing components as Exportin-5 
and DICER1 affect the outcome of breast 
 [  115  ] , ovarian  [  117  ] , cystic nephroma  [  118  ]  and 
 pediatric pulmonary cancer  [  119  ] .   

    5.4   Approaches to Study p53-
Regulated miRNAs 
and Their Targets 

 Although, numerous connections between p53 
and miRNAs have been identi fi ed, the examples 
described above also illustrate that we have only 
begun to understand the role of miRNAs in tumor 
suppression mediated by p53. Therefore, addi-
tional efforts are necessary to obtain more details 
of the p53/miRNA network. A feasible strategy 
for a comprehensive, genome-wide identi fi cation 
of p53-regulated miRNAs and their associated 
target genes is the combination of the approaches 
depicted in Fig.  5.5 . This strategy may in principle 
also apply to other transcription factors of interest 
besides p53. These analyses generate a large 
amount of bioinformatics data, which can be pro-
cessed with the help of the algorithms indicated 
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  Fig. 5.5     Analysis of p53-regulated miRNAs   and their targets . Summary of experimental approaches for the compre-
hensive identi fi cation and characterization of p53-regulated miRNAs. The approaches are described in detail in the text       
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  Fig. 5.6     Bioinformatics characterization of p53-regu-
lated   miRNAs and their targets . Summary of bioinfor-
matics approaches for the comprehensive characterization 
of p53-regulated miRNAs. As indicated, the programs 
and websites Bioconductor  [  133  ] , Cisgenome  [  134  ] , 

ChIP-Munk  [  135  ] , FindPeaks  [  136  ] , MaxQuant  [  137  ] , 
Meme  [  138  ] , MirDeep2  [  139  ] , miRanalyzer  [  140  ] , miRo 
 [  141  ] , PARalyzer  [  142  ]  and TM4 microarray suite  [  143  ]  
facilitate the analyses of data obtained by the experimen-
tal analyses described in the main text and in Fig.  5.5        
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in Fig.  5.6 . The experimental strategy can be sub-
divided into two main parts: (1) the identi fi cation 
of p53-regulated miRNAs and (2) the identi fi cation 
of target mRNAs of the p53-regulated miRNAs. 
So far the studies in this area have rather focused 
on the identi fi cation and characterization of single 
miRNAs regulated by p53 or they have carried out 
one type of genome-wide approach, with subse-
quent con fi rmation of a limited number of candi-
dates. In the following section we will describe 
which approaches have been applied to identify 
and characterize p53-regulated miRNAs and their 
associated targets in the past and which lessons 
have been learned from these analyses.   

    5.4.1   Identi fi cation of p53-Regulated 
miRNAs 

 In order to experimentally identify p53-regulated 
miRNAs cellular systems in which p53 activity can 
be turned on using conditional systems or pharma-
cological p53 activators should be employed. 
Endogenous p53 can either be activated by addition 
of DNA damaging substances or by p53-activators 
as the MDM2 inhibitor Nutlin-3a. Isogenic cells 
with and without wild-type p53 should be analyzed 
in parallel in order to identify p53-dependent regu-
lations. For example, the colon cancer cell lines 
HCT-116 with either wild-type p53 expression or 
p53-knockout are useful for this purpose  [  144  ] . 
Alternatively, the miRNA expression in tissues of 
p53 knock-out mice or derived cells, e.g. mouse 
embryonic  fi broblasts (MEFs), represent useful 
systems in order to identify p53-mediated miRNA 
regulations, as documented previously  [  18  ] . 

 A highly speci fi c activation of p53 can be achieved 
using ectopic expression of p53. However, certain 
post-translational modi fi cations of p53 induced by 
treatment with DNA-damaging agents may not occur 
hereby. Therefore, differences in the pattern of miR-
NAs regulated by p53 may occur when compared to 
activation of p53 by stressors as oncogene activation 
and DNA damaging agents. In the past, we have used 
an episomal, doxycyclin-inducible expression sys-
tem to re-express p53 in p53-de fi cient H1299 lung 
cancer cells  [  16  ] . 

 Differential expression of miRNAs upon p53 
activation can be monitored using speci fi cally 

designed miRNA microarrays. A number of com-
mercially available microarray platforms can be 
used for this purpose: for example the Human 
miRNA Microarray 1.0 (Agilent), the miRCURY 
LNA miRNA Array v9.2 (Exiqon), the Array 
Matrix 96-well MiRNA Expression Pro fi ling 
Assay v1 (Illumina Sentrix), the mirVana miRNA 
Bioarrays v2 (Ambion), the miRNA 4X2K 
Microarray (Combimatrix) and the NCode Multi-
Species miRNA Microarray v2 (Invitrogen). 

 Several previous studies have used microarrays 
to identify  miR-34  and  miR-215/miR-192  as direct 
p53 targets. A custom-made array was used to iden-
tify  miR-34 a as a p53 target gene  [  20  ] , a 4X2K 
Microarray (CombiMatrix) that contained probes 
against mouse miRNAs identi fi ed  miR-34b/c  as a 
p53 target gene  [  21  ]  and customized miRNA arrays 
were used to detect  miR-34a   [  17  ]  and  miR-192/
miR-215   [  41  ]  as p53 target genes. More recently, 
two studies employed miRNA microarrays to iden-
tify members of the  miR-200  family as p53 targets 
 [  37,   38  ] . 

 In addition, induction of mature miRNAs after 
p53 activation can be measured by stem-loop 
RT-qPCR assays. Hannon and colleagues used a 
panel of 145 TaqMan assays to monitor changes in 
mature miRNA levels after p53-activation  [  18  ] . 
This approach may also be used to verify the 
microarray expression data at the level of individ-
ual, processed miRNAs. In order to determine, 
whether p53 regulates miRNA expression at the 
transcriptional level, induction of the pri-miRNA 
transcript can be measured using total mRNA 
preparations after reverse transcription into cDNAs 
and standard real-time quantitative PCR (qPCR). 

 A subset of miRNAs lie within intronic 
sequences of host genes, and therefore differential 
expression of the host mRNAs can in principle be 
monitored by standard gene expression arrays 
used for mRNAs. However, induction of the pri-
mary host transcript does not necessarily lead to a 
signi fi cant induction of the mature miRNA. 
Therefore, the induction of the mature miRNA 
should be validated by stem-loop RT-qPCR assays. 
The above mentioned methods have in common 
that they only detect previously known miRNAs. 

 For the unbiased detection of all miRNA 
expressed in a certain state several Next Generation 
Sequencing (NGS) based approaches are currently 
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being used. Small RNAs are isolated, ligated to 
adapters, reverse transcribed and ampli fi ed to gen-
erate libraries, which may be analysed using dif-
ferent NGS platforms, e.g. Solexa-sequencing 
(Illumina), 454-sequencing (Roche) or the SOLID 
system (Applied Biosystems). The adapters often 
contain distinct bar-codes, which allow multiplex-
ing of several samples in one sequencing run gen-
erating up to several hundred million reads. The 
coverage which can be achieved by these analyses 
is presumably close to complete. In 2007 we 
reported a 454-sequencing approach to identify 
 miR-34a  as direct p53 target  [  16  ] . Although only    
~200,000 sequencing reads per run were reached 
at that time, these were suf fi cient to identify many 
of the miRNAs displaying the most pronounced 
regulation by p53. 

 Since p53 may enhance the synthesis of 
 miRNAs via directly in fl uencing pre-miRNA 
processing the detection of differential expres-
sion of the mature miRNA is not suf fi cient to 
deduce a direct transcriptional regulation of the 
corresponding pri-miRNA by p53  [  48  ] . Therefore, 
it is advantageous to obtain both miRNA and 
 pri-miRNA pro fi les simultaneously in order to 
distinguish transcriptional from other modes of 
miRNA abundance regulation by p53.  

    5.4.2   Con fi rmation of Direct 
Regulation by p53 Using ChIP 
Approaches 

 The detection of p53 occupancy at the respective 
promoters of the genes encoding p53-regulated 
pri-miRNAs or other pre-cursor mRNAs can be 
achieved by chromatin-immunoprecipitation 
(ChIP) based techniques. These can either be per-
formed on a gene-by-gene basis using qPCR-
ChIP or on a genome-wide level by coupling 
ChIP with techniques as NGS, SAGE or hybrid-
ization to a promoter array. The disadvantage of 
the latter method is the limitation to previously 
characterized promoters. 

 The consensus sequence necessary for p53 
binding consists of two copies of the 
RRRCWWGYYY motif separated by a small 
spacer of 0–21 nucleotides (R = pyrimidine; 
Y = purine; W = A/T; see also Fig.  5.1 ). However, 

among the validated p53 response elements 
identi fi ed in p53 target gene promoters, the 
majority displays slight deviations from the con-
sensus sequence, indicating a certain  fl exibility in 
p53’s binding requirements. Based on the con-
sensus motif, potential p53 binding sites can be 
predicted using a variety of search algorithms. 
For example, the p53MH algorithm  [  145  ]  and the 
MatInspector software (Genomatix) have been 
applied to identify p53-binding sites in the pro-
moters of miRNA-encoding genes. The P53MH 
algorithm was used to identify a p53-binding site 
in the  miR-34b/c  promoter  [  21  ]  and in the  miR-
194-1/miR-215  cluster  [  41  ] , whereas the two 
p53-binding sites in the  miR-145  promoter were 
identi fi ed using the MatInspector software  [  45  ] . 

 Initially, binding of p53 to the predicted bind-
ing site was experimentally tested  in vitro  by gel 
shift assays. Furthermore, in order to test the 
requirement of the p53 response element, the pro-
moter region encompassing the p53 binding site 
or its mutant version can be placed upstream of a 
 luciferase  ORF or an equivalent reporter gene. 
The responsiveness of these constructs to p53 can 
then be interrogated by co-transfection with p53-
encoding plasmids into mammalian cells and a 
subsequent reporter assay. In order to test whether 
p53 binds to the predicted binding site in a native 
chromatin environment  in vivo , chromatin immu-
noprecipitation (ChIP) assays have to be per-
formed. This can either be done on a single gene 
basis by ChIP followed by semi-quantitative PCR 
or qPCR. Alternatively, p53 binding sites can also 
be identi fi ed on a genome-wide scale. In the ini-
tial genome-wide binding studies, immunopre-
cipitated DNA from the ChIP experiment was 
hybridized to high-density oligonucleotide tiling 
arrays (ChIP-on-Chip). For example, a ChIP-on-
Chip approach was used to map p53 binding sites 
on human chromosomes 21 and 22 and identi fi ed 
48 high con fi dence sites  [  146  ] . These results sug-
gested the existence of ~1,600 putative p53 sites 
in the human genome. Indeed, when the same 
approach was applied to the complete genome 
1,546 p53-binding sites were identi fi ed in actino-
mycin D treated U2OS cells  [  147  ] . 

 The ChIP-PET method is an extension of the 
ChIP-on-Chip approach and is related to SAGE 
 [  148  ] . Short tags derived from  immunoprecipitated 
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DNA fragments are converted into a DNA 
library. After further ligations the paired end 
ditags form concatemeres, which are subjected 
to capillary sequencing. The obtained tag-
sequences are subsequently mapped to the 
genome and quanti fi ed. The ChIP-PET method 
was used to monitor p53 binding across the 
whole genome and identi fi ed more than 500 
high-con fi dence p53 binding sites  [  149  ] . This 
resource was used by other laboratories to iden-
tify p53 binding sites in the  miR-34a  and  miR-
34b/c  promoters  [  19,   20  ] . 

 The methods mentioned above are currently 
replaced by a combination of ChIP and NGS (ChIP-
Seq). Since the new sequencing devices achieve sev-
eral hundred millions reads in one run it is possible 
to multiplex several time-points and experimental 
replicas in one single sequencing run. The 
identi fi cation of occupied p53-binding sites in the 
genome may be combined with detection of histone 
modi fi cations indicating active transcription units 
and enhancers. This allows the assignment of orphan 
miRNAs derived from pri-miRNA transcribed from 
active promoters present in the vicinity, which have 
not been characterized before. Furthermore, the 
results obtained using the expression studies 
described above have to be compared to the DNA 
binding patterns of p53 in a genome-wide manner 
using bioinformatics approaches (see also Fig.  5.6 ).  

    5.4.3   Identi fi cation of miRNA Targets 

 After obtaining a set of p53-regulated miRNAs, 
the next step is to identify the physiologically rel-
evant target mRNAs of these miRNAs. We suggest 
the systematic identi fi cation of miRNA-regulated 
target genes following p53 induction by an inte-
grated approach that involves
    (A)     Identi fi cation and mapping of miRNA bind-

ing sites using biochemical techniques 
involving RISC isolation.  

    (B)     Testing the functionality of these binding 
sites in the regulation of their respective tar-
get mRNAs using either microarrays or 
NGS as well as dual reporter assays.  

    (C)     Proteomic approaches to measure changes 
in target abundance on the protein level 

indicating translational regulation in cases 
without decrease in the corresponding 
mRNA.     

 Similarly to the identi fi cation of p53-induced 
miRNAs described above, these approaches ide-
ally should be performed in parallel as they com-
plement each other. The identi fi cation and 
mapping of miRNA binding sites on mRNAs 
provides information as to whether a miRNA 
directly binds to its cognate target mRNA, but 
does not provide information about the regulation 
of the bound mRNA. Conversely, microarray and 
proteomic approaches provide information on the 
regulation of a given mRNA or protein, but do 
not  per se  distinguish between direct and indirect 
targets. Therefore, a combined approach that 
maps binding sites of p53-regulated miRNAs on 
mRNAs and validates the functionality of these 
binding sites regarding target regulation may 
comprehensively uncover the network of protein 
expression that is regulated by p53-induced 
miRNAs. 

 MiRNAs typically regulate their targets via 
association of a ~7 nucleotide stretch, the so-
called seed-sequence, located in their 5 ¢ -portion 
with a complementary sequence in the 3 ¢ -UTR 
of the target mRNA. Additional base pairing 
may occur via nucleotides in the middle and 
3 ¢ -portion of the miRNA. Since miRNAs only 
pair imperfectly with their respective target 
mRNAs, the number of theoretically possible 
targets is typically large and presumably most 
of the predicted targets are not signi fi cantly reg-
ulated by the respective miRNA. Several bioin-
formatics algorithms have been developed to 
predict miRNA targets with the intention to 
reduce the rate of false positive predictions by 
incorporating features as conservation between 
species. However, even these algorithms often 
predict hundreds of target mRNAs for a particu-
lar miRNA, most of which are presumably false 
positive hits. 

 Due to differences in the parameters used to 
weigh individual features involved in miRNA/
mRNA interaction, different target prediction 
algorithms often result in only partially overlap-
ping sets of predicted target genes. The algorithms 
TargetScan and Pictar  [  150,   151  ]  place more 



955 The p53/microRNA Network in Cancer: Experimental and Bioinformatics Approaches

weight on perfect, evolutionarily conserved seed 
matches, whereas PITA and RNA22  [  152,   153  ]  
prioritize the  D G of the miRNA/mRNA duplex 
and the accessibility of the site within the mRNA. 
Although algorithms like TargetScan and Pictar 
have been shown to have high predictive power 
when tested on experimentally obtained pro-
teomic data  [  154–  156  ] , they may be less useful in 
the prediction of miRNA target sites that lack a 
perfect seed-sequence, are not evolutionarily con-
served, or lie outside the 3 ¢ -UTR of the target 
gene. Therefore, the combined use of several dif-
ferent algorithms may be helpful to identify target 
mRNAs of a given miRNA. 

 The sets of predicted target mRNAs generated 
by different algorithms are typically being used 
to  fi lter sets of differentially regulated genes that 
were identi fi ed by experimental perturbation of 
miRNA function, followed by unbiased genome- 
or proteome-wide measurements of changes in 
mRNA or protein abundance. As outlined in 
Fig.  5.5 , miRNA binding sites can be mapped by 
isolation of miRNA target mRNAs via the asso-
ciation of RISC/miRNA/mRNA-complexes. This 
is typically accomplished by immunoprecipita-
tion of RISC components such as Ago2, which 
can either be done via endogenous proteins or 
ectopically expressed epitope-tagged versions of 
the respective proteins  [  157–  159  ] . The RISC/
mRNA/miRNA complexes are precipitated and 
the associated mRNAs are identi fi ed either by 
hybridization to microarrays or by NGS technol-
ogies. However, this method does not directly 
lead to the identi fi cation of the actual miRNA 
binding site, since all RISC-bound mRNAs con-
taining different miRNAs and their targets are 
immunoprecipitated and sequenced. 

 An improved version of these initial approaches 
is  hi gh- t hroughput  s equencing of RNAs isolated 
by  c ross l inking and  i mmuno p recipitation (   HITS-
CLIP)  [  160  ] : miRNA-bound RNAs are cross-
linked to RISC by UV irradiation. The RISC/
miRNA/mRNA complex is then immunoprecipi-
tated with antibodies against RISC components 
such as Ago2. A RNAse-digest eliminates all 
mRNA fragments not protected by the RISC/
miRNA complex. All miRNA seed-matching 
regions occupied by miRNA/RISC complexes 

are determined by NGS. Thereby, information is 
obtained not only regarding the bound mRNA 
target but also concerning the miRNA matching 
sequence, which allows to deduce the putative 
identity of the miRNAs. In the case of p53-
induced miRNAs these miRNAs should be among 
those which are detected at increased levels after 
p53 activation. 

 In another version of an AGO2-IP based 
approach, named  p hoto a ctivatable- r ibonucleoside-
enhanced  c ross l inking and  i mmuno p recipitation 
(PAR-CLIP), cells are cultured with photo-reactive 
4-thiouridine before UV-cross-linking  [  161  ] . 
4-thiouridine is incorporated into the cellular RNA 
during transcription and leads to improved protein/
mRNA cross-linking ef fi ciencies. Since 4-thiouri-
dine results in C-to-T transitions in the regions 
previously protected by AGO2/RISC complexes 
during reverse transcription, it allows to map the 
position of miRNA/RISC binding on the mRNA. 

 However, none of these approaches have been 
speci fi cally applied to identify mRNA targets of 
p53-induced miRNAs yet. Furthermore, as all 
these approaches essentially rely on the isolation 
of the RISC complex, all miRNAs and their 
bound mRNA targets associated with RISC will 
be identi fi ed. Therefore, identi fi cation of mRNA 
targets of a particular miRNA from the obtained 
NGS data largely depends on the subsequent 
extraction of sequence features associated with 
that particular miRNA, i.e. either the presence of 
a hexameric seed sequence or the presence of 
other sequence features predicted to be targeted 
by miRNAs by algorithms, such as PITA or 
RNA22. A more direct, alternative approach 
involves the use of biotinylated miRNAs, which 
can be puri fi ed together with RISC in a tandem 
af fi nity puri fi cation approach  [  162,   163  ] . 
However, this approach may have limitations as 
the high concentrations of biotinylated miRNAs 
reached after transfection may result in false pos-
itive results. 

 As explained above, information on the 
miRNA binding site does not automatically mean 
that this particular binding site is physiologically 
relevant for target regulation. Therefore, miRNA-
induced changes in either mRNA or protein abun-
dance have to be con fi rmed by perturbation of 
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miRNA expression. Experimental studies to 
identify target mRNAs of p53-regulated miRNAs 
should involve ectopic expression of miRNAs 
either by transfection of synthetic pre-miRNA 
molecules or inducible expression of pri-miRNA 
transcripts  [  16,   19,   23  ] . Furthermore, synthetic 
miRNA inhibitors (antagomirs) can be used to 
block miRNA function. Alternatively, and more 
elegantly, knock-out cell lines for individual 
miRNAs can be used to address this question. In 
addition, HCT116 DICER ex5 , a human colorectal 
cancer cell line harboring a hypomorphic  DICER  
allele  [  164  ] , has been used to validate the 
 regulation of targets of p53-regulated miRNAs 
 [  18,   42  ] . 

 A number of studies applied microarrays to 
identify targets of p53-induced miRNAs. For 
example, in the case of miR-34  [  17–  19,   165  ]  
and miR-215/miR-192  [  42  ]  mRNA expression 
pro fi les were generated after ectopic expression 
of the respective miRNA. However, mRNA-
pro fi ling based approaches are limited as they 
cannot detect miRNA targets that are solely reg-
ulated at the level of translational repression. On 
the other hand, assuming that miRNAs in most 
cases only cause modest decreases in protein 
translation, the miRNA-mediated regulation of 
proteins with long half-lives may not be detected 
by measuring steady-state protein levels using 
standard proteomic quanti fi cation as SILAC 
( s table  i sotope  l abeling by  a mino acids in  c ell 
culture)  [  166  ] . This problem was solved by the 
introduction of pSILAC ( p ulsed SILAC), which 
facilitated the quanti fi cation of differences in 
protein translation rates caused by miRNAs 
 [  156  ] . With this approach, induction of miRNA 
expression is followed by a pulse of isotope-
labeled amino acids which are incorporated into 
newly synthesized proteins. Subsequent mass 
spectrometric analysis of the proteome therefore 
allows to detect changes in protein translation 
rates caused by miRNA expression. In a recent 
study we applied this approach to identify target 
genes of the miR-34a miRNA  [  23  ] . Notably, 
numerous of the identi fi ed miR-34a targets were 
con fi rmed in an miRNA capture approach using 
biotinylated miR-34a as a bait  [  24  ] . Other quan-
titative proteomic methods like isotope-coded 

af fi nity tag (ICAT)-labeling following transfec-
tion with miR-34a have been used to identify 
miRNA targets  [  167  ] . One major drawback of 
all proteomic methods is their still limited abil-
ity to cover the entire proteome of the cell, as 
well as their strong bias for highly expressed 
proteins. 

 All transcriptome- or proteome-wide appro-
aches to identify miRNA targets require subse-
quent validations such as qPCR or Western blot 
analyses to verify that a given mRNA or protein is 
indeed regulated following miRNA induction. 

 Direct regulation by a miRNA is often deter-
mined in dual-reporter assays. For this the 3 ¢ -
UTR of the putative target mRNA is placed 
downstream of a   fi re fl y  luciferase reporter gene. 
This reporter-construct is co-transfected either 
with miRNA mimics or miRNA inhibitors, and a 
 Renilla  luciferase vector for standardization. In 
case of speci fi c, direct regulation the 3 ¢ -UTR 
reporter is repressed by ~20–80 %. In order to 
map and validate the seed-matching sequences 
these should be mutated in the context of the 3 ¢ -
UTR sequence. The resulting constructs should 
ideally show resistance towards the respective 
miRNAs.  

    5.4.4   Follow-Up Analysis 

 Once p53-mediated regulation of miRNAs and 
their targets have been con fi rmed numerous 
additional analyses are possible to interrogate 
the physiological and pathophysiological 
 relevance of the identi fi ed regulations. 
Co-expression of the p53-induced miRNA and 
a miRNA-resistant target mRNA can be used in 
rescue-experiments to determine the relevance 
of the respective down-regulation for cell bio-
logical phenotypes, as cell cycle arrest and/or 
apoptosis. Furthermore, the relevance of the 
respective miRNAs for p53-mediated effects 
can be tested using antagomirs speci fi c for the 
respective miRNA. Finally, the importance of 
miRNA/target regulations for p53-mediated 
tumor suppression can be tested in miRNA 
knock-out mice in combination with tumor 
mouse models. However, these studies may 
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take years. A recently published collection of 
ES cell lines with deletion of 392 miRNAs was 
generated to facilitate the rapid generation of 
knock-out mice and may therefore accelerate 
this type of analysis  [  168  ] . Furthermore, the 
inactivation of the respective miRNA encoding 
genes by CpG methylation or mutations in dif-
ferent tumor types may be analyzed. The 
miRNA inactivation can be correlated with the 
putative up-regulation of miRNA targets in the 
affected tumor samples and pathological fea-
tures of the affected tumors. Detection of CpG-
methylation and miRNA/target expression may 
also have prognostic and diagnostic value for 
cancer patients in the future.  

    5.4.5   Outlook 

 In the future technological developments may 
result in an increased sensitivity of  mass-spectral 
analyses which could facilitate similar coverage 
rates of proteomic quanti fi cations as are 
now reached by DNA-sequencing/hybridization 
based approaches. Furthermore, the integration 
of different bioinformatics platforms into a com-
mon program for mRNA/miRNA/DNA binding 
and protein quanti fi cation would make inte-
grated analyses less complicated and laborious. 
Another useful tool would be a comprehensive 
ontology-like database for miRNA functions 
and targets. The miRo website is an example of 
such a tool  [  141  ] . In the future, more publicly 
available datasets of miRNA expression in can-
cer patient cohorts which allow to determine 
correlations with mutations, epigenetic changes 
and clinical data will become available. Taken 
together, these possibilities will hopefully lead 
to the rapid translation of knowledge derived 
from analysis of the p53/miRNA network into 
diagnostic and therapeutic applications.       
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  Abstract 

 Malignant melanoma is a highly aggressive tumour with increasing 
 incidence and poor prognosis in the metastatic stage. In recent years, a 
substantial number of reports on individual miRNAs or miRNA patterns 
have been published providing strong evidence that miRNAs might play an 
important role in malignant melanoma and might help to better understand 
the molecular mechanisms of melanoma development and progression. A 
major preliminary  fi nding was that melanoma-associated miRNAs are 
often located in genomic regions with frequent gains and losses in tumours. 
Detailed studies of different groups thereafter identi fi ed miRNAs with dif-
ferential expression in benign melanocytes compared with melanoma cell 
lines or in benign melanocytic lesions compared with melanomas. Among 
these were  let-7a  and  b , miR-23a and b, miR-148, miR-155, miR-182, 
miR-200c, miR-211, miR214, and miR-221 and 222. Some of these miR-
NAs target well-known melanoma-associated genes like the  NRAS  onco-
gene, microphthalmia-associated transcription factor ( MITF ), receptor 
tyrosine kinase c-KIT or AP-2 transcription factors ( TFAP2 ). Although we 
are still far from a complete understanding of the role of miRNA-target 
gene interactions in malignant melanoma, these  fi ndings further underscore 
the notion of a direct involvement of miRNAs in melanoma biology. Very 
recently, a prognostic signature of six miRNAs has been identi fi ed consist-
ing of miRNAs miR-150, miR-342-3p, miR-455-3p, miR-145, miR-155, 
and miR-497. High expression of these miRNAs was shown to be associ-
ated with improved long-term survival of metastatic patients.  

  Keywords 

 Melanoma  •  Tumour development  •  Non-coding RNAs  •  Oncogenes  
•  Protein degradation      
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    6.1   Introduction 

 MicroRNAs are small non-coding 21–23 nt RNAs 
that, when bound to the 3 ¢  untranslated region 
(3 ¢ UTR) of mRNA, induce mRNA degradation or 
inhibition of protein translation  [  1  ] . This kind of 
interfering RNAs was  fi rst described in the early 
90s of the last century in experiments with 
 Caenorhabditis elegans   [  2  ] . This organism pro-
duced small non-translated RNAs with high com-
plementarity to protein-coding mRNAs. Further 
investigations showed that inactivating mutations 
in genes encoding for miRNAs  lin-4  and  let-7  led 
to developmental defects at different stages of lar-
val development, arguing for a signi fi cant func-
tional role of these non-coding RNAs. It was further 
shown that miRNAs exerted their effects via a 
direct interference with coding RNAs. At present, 
the term miRNA is commonly used for small non-
coding RNA molecules which negatively regulate 
gene expression on transcriptional and translational 
level in a variety of different organisms. 

 miRNAs    are either leading to degradation of 
target mRNA or to inhibition of mRNA transla-
tion into protein, in many cases depending on the 
level of complementarity between miRNAs and 
mRNAs  [  3  ] . MiRNA-mediated gene regulation is 
also in fl uenced by the cooperation between mul-
tiple miRNA-recognition sites in target genes, 
the spacing between these, their position within 
the 3 ¢ UTR and the mRNA secondary structure 
 [  4  ] . At present, more than 700 miRNAs have 
been described in humans. Computer algorithms 
have provided genome-wide predictions of target 
sequences for miRNAs, and since the so-called 
 seed  sequence, which stands for the speci fi cally 
binding minimal miRNA sequence, consists of 
only seven bases, the number of  in silico  pre-
dicted targets may run up to 1,000 targets per 
miRNA  [  3  ] . Thus, detailed functional analyses 
are necessary to validate each individual miRNA 
target. Evidence has also been provided that the 
number of miRNA binding sites in the 3 ¢ UTRs of 
target genes may correlate with the biological rel-
evance of an individual gene and its role in con-
trolling cellular protein networks  [  5,   6  ] ). However, 
these  fi ndings await further investigations. 

 Because of the wide distribution of miRNAs in 
different organisms and their functional potential, 
miRNA expression patterns and the role of 
 individual miRNAs for tumour development and 
progression have been investigated in recent years. 
The analysis of miRNA expression in malignant 
melanoma has been part of these investigations 
from the beginning and  fi nally resulted in a series 
of comprehensive reports more recently.  

    6.2   Key Findings of miRNAs 
in Malignant Tumours 

 In one major large-scale study on miRNA expres-
sion patterns in different cancers including breast, 
colon, and lung cancer, different forms of leukae-
mia and malignant melanoma, tumour tissues 
showed a preponderance of down-regulated miR-
NAs as compared with benign tissues, suggestive 
for a role of many miRNAs as tumour suppres-
sors  [  7  ] . Interestingly, in this study, miRNA pat-
terns allowed a better discrimination between 
individual tumour entities than mRNA expres-
sion patterns. In the following, an increasing 
body of reports showed deregulated miRNA 
expression in a large series of different tumours 
 [  8–  10  ] . In a key functional study, development of 
lung human carcinomas was associated with 
down-regulation of miRNA  let-7 . In  in vitro  
experiments,  let-7  targeted expression and func-
tion of the  RAS  oncogene, which is known to play 
an important role in lung carcinomas  [  11  ] .  Let-7a  
also showed signi fi cantly reduced expression in 
colon carcinomas, paralleled by enhanced RAS 
expression  [  12  ] . Interestingly,  let-7a  levels in 
lung cancer patients correlated with postopera-
tive survival. Many miRNAs have classical onco-
genes or other tumour-promoting genes as 
predicted targets, such as  RAS ,  c-Myc ,  BCL2 , and 
cell cycle dependent kinases ( CDKs ). Down-
regulation of individual miRNAs might be one 
factor that contributes to over-expression and 
enhanced activity of some of these oncogenes 
with subsequent deregulated cellular growth and 
tumour development. MiRNA down-regulation 
in tumour development is not completely under-
stood, but involves genetic as well as epigenetic 
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mechanisms  [  13  ] . Evidence is accumulating that 
inactivation of some proteins of the miRNA 
machinery, e.g., proteins encoded by  DICER1 , 
 AGO2  and  XPO5  may contribute to down-regula-
tion of miRNAs in malignant tumours  [  14  ] . 

 However, miRNAs may also act as oncogenes 
and over-expression may be related to tumour 
development and progression. B-cell lymphomas 
often show up-regulation of miRNAs of the  miR-
17~92  locus, which encodes a cluster of miRNAs 
that may cooperate with the MYC oncogene  [  15, 
  16  ] . In a mouse B-cell lymphoma model, enforced 
expression of the  miR-17~92  cluster acted with 
c-Myc expression to promote tumour develop-
ment  [  15  ] . Moreover, over-expression of  miR-
17~92  suppressed apoptosis in Myc-driven B-cell 
lymphomas in mice  [  17  ] . In these experiments, 
miR-19a and miR-19b within the  miR-17~92  
cluster re fl ected the oncogenic properties of the 
entire cluster. A further outstanding example for 
oncogenic miRNAs is miR-155, which seems to 
play a role in some B-cell lymphomas  [  18,   19  ] . 
The oncogenic properties of miR-155 were 
shown in miR-155 transgenic mice which develop 
acute lymphoblastic leukemia, a high grade lym-
phoma, after a block at the pre-B stage of B-cell 
differentiation at an early age  [  20  ] . 

 As exempli fi ed by the  miR-17~92  cluster and 
miR-155, miRNAs may act as tumour promoters. 
A further candidate as tumour promoter is miR-
21. MiR-21 is over-expressed in breast carcino-
mas and glioblastomas and is able to inhibit 
tumour cell apoptosis by targeting pro-apoptotic 
genes like  PTEN  and  TPM1   [  21  ] . 

 The term ‘oncogene addiction’, which has 
been coined in recent years, indicates that despite 
the fact that tumour development is a complex 
process, cancers often depend on the activity of a 
single oncogene  [  22,   23  ] . Targeting of this onco-
gene, e.g., by small molecule inhibitors, can lead 
to signi fi cant treatment responses and sometimes 
cure of the patients. In a recent report, oncomiR 
addiction to miR-21 has been demonstrated  [  24  ] . 
In this study, transgenic mice were generated con-
ditionally expressing miR-21. Over-expression of 
miR-21 led to a pre-B malignant lymphoid-like 
phenotype, demonstrating that mir-21 may act as 
an oncogene. Interestingly, when miR-21 was 

inactivated, tumours regressed completely within 
a few days. These results demonstrated that 
tumours may become addicted to individual miR-
NAs which may act as oncomiRs, a  fi nding that 
may have signi fi cant implications for future thera-
peutic approaches targeting miRNAs. 

 Although there is a considerable body of evi-
dence that miRNAs play a role in development of 
different cancers, it has not been until recently 
that their role in tumour metastasis has been 
addressed  [  25,   26  ] . In one report, miR-10b was 
shown to make non-metastatic human breast car-
cinoma cells invasive and metastatic  [  25  ] . A 
comparison of miRNA expression patterns of 
non-metastatic and metastatic human breast can-
cer lines revealed differential expression of 20 
miRNAs  [  27  ] . In a clinical study in this report, 
low levels of miR-335 and miR-126 were associ-
ated with dramatically reduced metastasis-free 
survival in breast cancer patients, indicating that 
these miRNAs might serve as predictive 
markers. 

 Taken together, miRNAs play an important role 
in tumour development and progression (metasta-
sis). The knowledge of their role in melanoma 
biology signi fi cantly increased in recent years due 
to a series of large-scale clinical and functional 
studies. In order to better understand the biological 
and clinical context of these miRNAs, current 
knowledge of melanoma pathogenesis and treat-
ment modalities are brie fl y reviewed.  

    6.3   Malignant Melanoma 
Pathogenesis 

 Malignant melanoma is a tumour of rapidly 
increasing incidence and high metastatic poten-
tial  [  28  ] . Current incidence is 10–15 patients per 
100,000 individuals per year  [  29  ] . Although the 
aetiology and pathogenesis are not yet completely 
understood, much progress has been made in 
recent years in the understanding of the underly-
ing molecular mechanisms. Activating mutations 
in  BRAF  and  NRAS  oncogenes have been 
identi fi ed in the majority of melanomas, with 
both being mutually exclusive  [  30,   31  ] . The pres-
ence of one or the other seems to be in fl uenced by 
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the localization of the lesion, with non-chronic 
sun-exposed tumours displaying higher rates of 
 BRAF  mutations and chronic sun-exposed lesions 
displaying higher rates of  NRAS  mutations  [  31  ] . 
These genetic alterations not only seem to con-
tribute to melanoma biology but have also opened 
new therapeutic avenues, as activated BRAF may 
be targeted by small molecule inhibitors  [  32  ] . 
However, activating mutations of  BRAF  are only 
found in half of all cases, and in more than 30% 
of all melanomas no genetic alterations with pre-
sumed pathogenic relevance have been found up 
to now  [  31,   33  ] . Activating mutations of the 
receptor tyrosine kinase and growth factor recep-
tor  c-KIT , which are found in 80% of gastrointes-
tinal stroma tumours, are present in 11% of acral, 
and 21% of mucosal, but only 2–4% of skin 
melanomas  [  33,   34  ] . The functional relevance of 
c-KIT for malignant melanoma remains to be 
determined as the loss of c-KIT expression cor-
relates with melanoma progression. 

  BRAF  and  NRAS  oncogenes are mediating 
their activity via the mitogen-activated protein 
kinase (MAPK) pathways which regulate cellular 
proliferation, differentiation, cell cycle progres-
sion and apoptosis. These pathways involve cell 
cycle molecules such as cyclin D1, cyclin E, and 
tumour suppressor molecules such as p21 WAF1/KIP1  
and p 27CIP1   [  35  ] . Since a tightly controlled cell 
cycle is a major prerequisite for the suppression of 
tumour development, molecules involved in these 
processes have been in the focus of interest in the 
past years. Cell cycle molecules such as p53, 
p16 INK4a , p21 WAF1/CIP1 , and cyclin-dependent kinases 
such as CDK4 have been demonstrated to be inac-
tivated by mutation in different cancers including 
malignant melanoma  [  36,   37  ] . Compromised cell 
cycle regulation due to inactivation of tumour 
suppressor p16 INK4a  and p14 ARF  may play a role in 
a subset of malignant melanomas  [  38  ] . These 
pathways control the G1 phase of the cell cycle 
and are inhibited via genetic alteration of the 
respective gene locus on chromosome 9p21, 
which encodes both p16 INK4a  and p14 ARF  via alter-
native splicing of the same gene  [  39  ] . Activation 
of p16 INK4a  leads to inhibition of CDK4 and CDK6, 
with the consequence of a blockage of inactivat-
ing phosphorylation of tumour suppressor pRb. 

This results in an activated pRb with E2F tran-
scription factors bound to it, which inhibits their 
activity. E2F transcription factors induce gene 
expression of genes involved in S phase progres-
sion such as cyclin A. Germline mutations of 
 CDKN2A  (which encodes for p16 INK4a ) were 
identi fi ed in half of familial melanoma patients. 
Further evidence for a signi fi cant role of p16 inac-
tivation in malignant melanoma comes from a 
well-known melanoma mouse model. Transgenic 
mice with an activating  Ras  mutation in combina-
tion with mutated  p16  develop primary melano-
mas, and in a signi fi cant percentage, distant 
metastases  [  40  ] . Inactivating mutations in the 
 TP53  gene, as identi fi ed in many epithelial 
tumours, seem to be of no relevance in malignant 
melanoma, but evidence has been provided that a 
correlation between  TP53  mutations and poor 
prognosis might exist. p53 is involved in p14 ARF  
and MDM2 (murine double minute 2) regulation. 
At present, the role of p53 in malignant melanoma 
is still unclear and awaits further investigations. 

 Phosphatase and tensin homolog ( PTEN ) is a 
lipid phosphatase that inhibits activation of Akt 
kinase pathway by negative interference with 
phosphoinositide 3-kinase (PI3K). Loss of 
heterozygosity and inactivating mutations of the 
 PTEN  locus have been described in up to 30% of 
malignant melanomas  [  38  ] . Interestingly, more 
recent data showed that BRAF and PTEN may 
interact for melanoma development  [  41  ] . In this 
latter report, a mouse model is described for 
human melanoma using mice with conditional 
melanocyte-speci fi c BRaf(V600E) expression. 
Upon induction, these mice develop benign mel-
anocytic hyperplasias, but no melanomas. 
Expression of BRaf(V600E) in combination with 
 Pten  tumour suppressor gene silencing leads to 
melanoma development and metastasis in lymph 
nodes and lungs. Moreover, melanomas are 
 prevented by inhibitors of mTorc1 or MEK1/2, 
downstream targets of PI3K and BRAF, respec-
tively. Akt kinase, which is also involved in PI3K 
signalling, is constitutively activated in more than 
60% of all melanomas, but this seems to be 
dependent on the ampli fi cation of AKT3, rather 
than inactivation of  PTEN . Taken together, cur-
rently available data support the role of  BRAF  and 
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 NRAS  oncogenes (and c-KIT) in melanoma patho-
genesis with a signi fi cant role for inactivated 
tumour suppressors like p16 INK4a  and PTEN. 

 Downstream transcription factors involved in 
melanoma pathogenesis include MITF, TFAP-2 
family and FOXO3. MITF, the most acknowl-
edged protein, is a bHLH-Zip transcription factor 
of the Myc family involved in the regulation of 
melanocyte-speci fi c genes such as tyrosinase and 
tyrosinase-related proteins  [  42  ] . Its role in mela-
noma pathogenesis is somewhat controversial, 
since increased levels of MITF reduce melanoma 
cell proliferation and tumourigenicity, while low 
levels induce cell cycle arrest and apoptosis  [  43  ] . 
Intermediate levels appear to promote melanoma 
cell survival. However, the role of MITF for mel-
anoma pathogenesis was underlined by a study 
showing that signi fi cant number of human mela-
nomas shows a genetic ampli fi cation of the  MITF  
locus  [  44  ] .  

    6.4   Current Treatment 
of Malignant Melanoma 

 Classical treatment of cutaneous lesions of malig-
nant melanoma at early stages of the disease includ-
ing regional lymph node metastasis is surgical 
excision  [  45  ] . However, surgery of distant metasta-
ses, in particular of metastases of internal organs 
such as lung, liver and spleen, does not signi fi cantly 
impact on the overall survival of patients and is not 
commonly recommended, although individual 
cases may pro fi t from metastasis surgery  [  46  ] . 
After distant metastasis, median overall survival of 
patients is extremely poor (6–8 months)  [  47  ] . 
Clinical response rates of classical chemotherapeu-
tic agents, either as single agents or as combina-
tions, have been in the range of 10–15%  [  45,   48  ] . 
Response rates to newly developed protein kinase 
inhibitors such as the multi-kinase inhibitor 
sorafenib or MEK1/2 kinase inhibitors have been 
limited so far, not going beyond that of classical 
chemotherapies  [  48  ] . Thus, treatment in the meta-
static stage has remained unsatisfying until very 
recently  [  32,   49  ] . 

 Currently, the B-RAF oncogene seems to be 
the most promising target at least in cases with 

activating  BRAF (V600E) mutations. These 
patients are treated with the recently developed 
speci fi c BRAF inhibitor vemurafenib, which has 
recently been approved for treatment of meta-
static melanoma in the U.S. and is expected to be 
approved in Europe in the near future  [  32,   49  ] . 
However, many of the patients treated with this 
agents experience recurrences, which seems to be 
due to molecular escape mechanisms of tumour 
cells switching from B-RAF to N-RAS or plate-
let-derived growth factor (PDGF) signalling. In 
an experimental set-up of melanoma cell cultures, 
it was shown that acquired resistance to vemu-
rafenib develops due to mutually exclusive 
 PDGFR b   upregulation or  NRAS  mutations, but 
not through secondary mutations in  BRAF   [  50  ] . 
In these analyses, the mentioned BRAF-speci fi c 
inhibitor was used to derive BRAF-inhibitor 
resistant sub-lines from B-RAF(V600E)-positive 
melanoma cell lines. Findings from these cells 
were veri fi ed in BRAF-inhibitor resistant tumours 
and tumour-matched, short-term cultures from 
clinical trial patients. 

 Interestingly,  PDGFR b  -up-regulated tumour 
cells have low levels of activated RAS and, when 
treated with BRAF inhibitor, do not reactivate the 
MAPK pathway. In another cell subset, high lev-
els of activated N-RAS resulting from mutations 
led to signi fi cant MAPK pathway activation upon 
BRAF inhibitor treatment. Based on these  fi ndings 
and a series of experiments with transfected cells, 
melanomas escape B-RAF(V600E) targeting not 
through secondary B-RAF(V600E) mutations but 
via receptor tyrosine kinase (RTK)-mediated acti-
vation (e.g., PDGFR) or activated RAS-mediated 
reactivation of the MAPK pathway. Interestingly, 
patients with wild-type BRAF did not respond to 
BRAF inhibitor treatment in the mentioned stud-
ies  [  32,   49  ] . Subsequent studies showed that wild-
type  BRAF  cells activate CRAF signalling after 
BRAF inhibitor treatment  [  51  ] . 

 Based on the fact that malignant melanoma is a 
highly immunogenic tumour, the immunological 
surveillance by T cells has been used for treatment 
of metastatic disease. This has been achieved by 
using speci fi c antibodies directed against the com-
mon T lymphocyte antigen 4 (anti-CTLA4 anti-
bodies)  [  52  ] . The CTLA4 antigen attenuates T-cell 



108 M. Kunz

responses but after of blockage may lead to a dra-
matically enhanced T-cell response against mela-
noma cells. First clinical studies were indeed 
promising and the anti-CTLA4 antibody ipili-
mumab has recently been approved for melanoma 
treatment in the U.S. and Germany. Treatment with 
this compound improves mean overall survival of 
patients by 4 months  [  52  ] . Further clinical trials, 
especially combination therapies are ongoing and 
may further improve overall survival of melanoma 
patients. The combination of ipilimumab and dac-
arbacin, a common chemotherapeutic agent for 
malignant melanoma, has so far not improved over-
all survival of metastatic patients  [  53  ] . 

 Very recently, a new avenue of tumour treat-
ment has been opened by use of short interfering 
(si)RNAs, which were administered systemically 
to a melanoma patient via nanomolecules  [  54  ] . 
Local deposition of nanomolecules in tumour tis-
sues of melanoma metastases could be veri fi ed 
and administration of these compounds was well 
tolerated. Studies on treatment ef fi cacy remain to 
be performed. Overall, RNA interference might 

by an interesting therapeutic perspective for 
malignant melanoma in the near future as this 
technology is rapidly improving.  

    6.5   miRNAs in Malignant 
Melanoma 

    6.5.1   Introduction 

 A substantial number of reports addressing the 
role of miRNAs in melanoma pathogenesis have 
been published in past years, some of which have 
been summarized in recent reviews  [  55–  57  ] . 
Table  6.1  and Fig.  6.1 , respectively, show an over-
view of key miRNAs and intracellular pathways 
targeted by these in malignant melanoma. However, 
because of the complexity of molecular mecha-
nisms in fl uenced by miRNA activity and the het-
erogeneous experimental approaches, a complete 
picture of the role of miRNAs in malignant mela-
noma is still missing. Initial studies provided evi-
dence for a possible role of miRNAs in malignant 

   Table 6.1    Differentially expressed miRNAs in malignant melanoma   

 No.  miRNAs  Targets a   References 

 1.   Let-7a,b,d,e,g   H-RAS, LIN28, HMGA2, ITGB3, CCND1, INK4A, PBX3, 
MYCN, COL1A2, c-MYC 

  [ 55,    58,   61  ]  

 2.  miR-137  JARID1B, CtBP1, Mib1, Ezh2, MITF, CDK6   [  71,   72  ]  
 3.  miR-148  MITF, DNMT3b, CAMK2A, BCL2L11   [  71  ]  
 4.  miR-155  MITF, CDKN1B, MEF2A, SATB1, SKI   [  73,   88  ]  
 5.  miR-182  MITF, FOXO3, RGS17, CDKN1A, FOXO1   [  58,   72, 

  77  ]  
 6.  miR-200c  BMI1, MARCKS, ZEB1, JAG2, ZEB2   [  73,   75  ]  
 7.  miR-211  IGF2R, TGFBR2, NFAT5, KCNMA1, RAB22A   [  76,   80  ]  
 8.  miR-214  NRAS, TFAP2C, EZH2, PLXNB1, PTEN   [  86  ]  
 9.  miR-221, miR-222  CDKN1B, DDIT4, CDKN1C, PTEN, c-KIT   [  73,   84  ]  

 MiRNA patterns  Targets a      References 

 10.  mir-150  MYB, EGR2, NOTCH3   [  88  ]  
 mir-342-3p  DNMT1, AGPAT4*, ID4* 
 mir-455-3p  NFIB*, ZNF238*, FZD10* 
 mir-145  c-MYC, FSCN1, STAT1 
 mir-155  MITF, CDKN1B, MEF2A 
 mir-497  BCL2, CCND2, CCNE1* 

 11.  miR-155  MITF, CDKN1B, SKI   [  73  ]  

 miR-200c  BMI1, MARCKS, ZEB1 

 miR-23a,b  FANCG, RUNX2, POX, PLAU, c-MET 

   a Targets without asterisks indicate validated targets. Targets with asterisks indicate predicted targets by Targetscan 
(  http://www.targetscan.org/    ), which are not yet validated  

http://www.targetscan.org/
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melanoma by identifying ampli fi cations and dele-
tions in genomic areas which encode for miRNAs 
in melanoma cell lines  [  58  ] . In a subsequent report, 
miRNA patterns of ten melanoma cell lines of the 
U.S. National Cancer Institute (NCI) 60 cell line 
panel were compared with those of cell lines of 
other tumour entities  [  59  ] . In this study, miRNAs 
showed tissue-speci fi c patterns, which allowed a 
clear differentiation between cell lines. In this lat-
ter study, a series of different benign tissues were 
used as controls, however, benign melanocytic 
nevi (or melanocytes) as precursors for melanoma 
development were not included in this study. In the 
following, a series of detailed investigations on 

individual miRNAs or miRNA patterns in malig-
nant melanoma will be reviewed.    

    6.5.2   Expression and Function of 
miRNAs in Malignant Melanoma 

    6.5.2.1    Let-7  Family 
 miRNAs of the  let-7  family seem to play an impor-
tant role in different cancers such as lung and colon 
carcinoma  [  12,   60  ] . In an analysis of miRNA 
expression patterns in benign melanocytic nevi 
and primary melanomas using laser-microdis-
sected tissue material, we found strong evidence 

  Fig. 6.1     Melanoma pathways and targeting   miRNAs . 
Pathways active in malignant melanoma are shown 
together with miRNAs targeting individual components in 

these pathways. miRNAs are derived from studies men-
tioned in Table  6.1        
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that  let-7b  may be involved in the  transition from 
nevi to primary melanomas  [  61  ] . In accordance 
with the report by Lu and co-workers, most of the 
differentially expressed microRNAs in our study 
were down-regulated in melanoma tissues as com-
pared with nevi  [  7  ] . Among these were  let-7  fam-
ily members and a series of other miRNAs, some 
of which had already been shown to play a role in 
other tumours, such as miR-15a, miR-17, miR-28, 
miR-106a, and miR-144.  Let-7a ,  let-7b ,  let-7d ,  let-
7e , and  let-7g  were all down-regulated in primary 
melanomas. Interestingly,  let-7a  was shown by 
another group to be an important regulator of inte-
grin beta3 expression in melanoma cells, and 
down-regulation of  let-7a  by antagomirs induced a 
pro-invasive behaviour in benign melanocytes 
 [  62  ] . Reduced expression of  let-7a  and  let-7b  
genes was also reported by the study of Zhang and 
co-workers about genetic aberrations of miRNA 
loci in an analysis of 40 different melanoma cell 
lines  [  58  ] . 

 Predicted targets of  let-7  family miRNAs 
include N-RAS, RAF, c-Myc, cyclins D1 and D3, 
and Cdk4, all of which had been shown to play a 
role in melanoma biology  [  28,   38,   63  ] . Indeed, 
 let-7b  down-regulated cyclins D1, D3 and A, and 
Cdk4 in melanoma cells  [  61  ] . Down-regulation of 
these molecules was likely due to interference 
with protein translation rather than mRNA stabil-
ity. mRNA stability had not been tested in our 
study, since  let-7b -transfected HepG2 liver cancer 
cells did not show differences in mRNA expres-
sion of these molecules, indicating that mRNA 
stability is not directly affected by  let-7b   [  60  ] . 

 In support of these  fi ndings, cyclins D1 and 
D3 have been shown to be up-regulated in pri-
mary melanomas as compared with benign mel-
anocytic nevi in a series of immunohistochemical 
studies  [  64–  66  ] . Moreover, enhanced gene 
expression and copy number changes in the cyclin 
D1 region were found by comparative genomic 
hybridization of melanoma tissues, suggesting 
that over-expression of cyclins may be a central 
pathogenic mechanism in malignant melanoma 
 [  67  ] . The possible contribution of Cdk4 to mela-
noma pathogenesis was underlined by the fact 
that mice with an activating  cdk4  gene mutation 
develop primary melanomas and lymph-node 

metastases when treated with carcinogenic 
 substances that only induce epithelial tumours in 
wild-type mice  [  68  ] . Moreover, a mutation in the 
 CDK4  gene leading to amino-acid substitution at 
residue 24 (R24C) negatively interferes with its 
binding to the tumour suppressor p16 INK4A   [  63  ] . 

 As mentioned, cyclin A was down-regulated by 
 let-7b  transfection of melanoma cells  [  61  ] . These 
 fi ndings are most likely due to indirect mecha-
nisms which involve  HMGA2 , a well-known 
known target of  let-7b  and activator of cyclin A 
expression, since a direct interaction of  let-7b  with 
the cyclin 3 ¢ UTR could not be found  [  61,   69,   70  ] . 
The role of cyclin A for malignant melanoma is 
supported by the fact that its expression correlates 
with disease-free survival of melanoma patients 
with a special melanoma subtype  [  65  ] . 

 Further functional experiments on cell cycle 
progression  in vitro  showed that over-expression 
of  let-7b  led to a signi fi cant reduction of prolifer-
ating cells  [  61  ] . It is well-understood that cyclin 
D1 and D3 expression play a central role in pro-
gression through G1 phase of cell cycle  [  37  ] . 
 Let-7b  also led to reduced colony forming capac-
ity in soft agar assays. Taken together, down-reg-
ulation of  let-7b  and other  let-7  family members 
seems to impact on melanoma development and 
growth by interaction with different molecular 
mechanisms including cell cycle regulation.  

    6.5.2.2   MiR-148 
 Based on current knowledge, which attributes to 
MITF an important role in melanoma biology, a 
recent study tested a series of different miRNAs 
with conserved binding sites in the 3 ¢ UTR of the 
mouse  Mitf  gene  [  71  ] . Analyses were performed 
using a MITF 3 ¢ UTR reporter construct. miRNAs 
with highly conserved binding sites such as miR-
27a, miR-25/32/92/363/367, miR-101/144, miR-
124/506, miR-137, miR-148/152 ,  and miR-124/506 
(the latter with a less conserved binding site in the 
 Mitf  3 ¢ UTR compared to all others) were included 
in this study. It was shown that miR-137 and miR-
148 negatively affected  Mitf  expression in mela-
noma cells. In line with this, Bemis and co-workers 
showed that miR-137 may down-regulate MITF 
expression in melanoma cells  [  72  ] . None of the 
other miRNAs tested, although having highly 



1116 MicroRNAs in Melanoma Biology

 conserved binding sites in the  Mitf  3 ¢ UTR, affected 
reporter gene expression in HEK293 and 501mel 
melanoma cells, respectively. Thus, miR-137 and 
miR-148 seem to be regulators of  Mitf  expression 
at least in mice, which may be of relevance for the 
human situation, because of the high level of con-
servation of the  MITF  3 ¢ UTR in different species.  

    6.5.2.3   MiR-155, miR-200c, miR-23a,b 
 Overall, there has been little overlap between 
candidate miRNAs and miRNA patterns in dif-
ferent melanoma studies. This might at least in 
part be due to the heterogeneity of the samples 
analysed in different studies and the limited num-
ber of samples in some of these studies, but might 
also due to different platforms used for miRNA 
expression analysis. In a recent report, authors 
tried to overcome these problems in a more com-
prehensive study by analysing expressing pat-
terns in benign melanocytes, a series of melanoma 
cell lines and in tissue specimens of different 
stages of melanoma progression  [  73  ] . A normal 
human epidermal melanocyte culture (NHEM), 
nine melanoma cell lines and three pools of 
benign nevi and 17 primary and subcutaneous 
metastasis samples were analysed. First, genome-
wide miRNA expression pro fi ling was performed 
for NHEM cells and two melanoma cell lines, 
IGR39 and IGR37. IGR39 is a melanoma cell 
line derived from a primary melanoma and IGR37 
is derived from a metastatic lesion of the same 
patient. Data from microarray analyses of cell 
lines were validated in the set of melanoma cell 
lines and NHEM by PCR technology. Tissue 
samples were analysed for the expression of 88 
cancer-related miRNAs again using PCR array 
technology. 

 Several miRNAs were identi fi ed as potential 
candidates to distinguish between benign mel-
anocytes and melanoma cell lines. MiR-155 and 
miR-146a showed decreased expression in all 
melanoma lines compared with NHEM. In con-
trast, miR-25 and miR-23a and miR-23b were 
consistently up-regulated. In the tissue sample 
analyses, miR-200c, miR-205 and miR23b were 
strongly down-regulated in melanoma samples as 
compared with benign nevi, in particular in meta-
static lesions. In contrast, miR-363, miR-146a 

and miR-155 were up-regulated in all melanoma 
samples. The differences regarding miRNA 
expression in cell lines and tissues were inter-
preted as a cell culture phenomenon. 

 In an extension of these analyses, cDNA 
microarray analyses were performed for the men-
tioned two melanoma cell lines (IGR39 and 
IGR37) and melanocytes to identify putative tar-
get genes for transcriptional regulation of the 
newly identi fi ed miRNAs. An inverse correlation 
between miRNAs and target gene expression was 
detected for receptor tyrosine kinase c-KIT which 
was up-regulated in metastasis-derived IGR37 
cells as compared with melanocytes and its tar-
geting miRNA miR-221 which was down-regu-
lated. Differentially expressed genes from cDNA 
array analyses belonged to 33 pathways. Out of 
these, authors chose “skin development and func-
tion” and found that MITF plays a central role in 
this gene network. Expression levels of MITF 
and targeting miRNAs like miR-23a and miR-
23b as well as 4 MITF target genes (including 
miRNAs MiR-363 and MiR-146) were analysed 
in melanocytes and both cell lines IGR39 and 
IGR37. With the exception of miR-363, all target 
genes of MITF, namely  let-7i , miR-146 and 
c-KIT correlated with its up-regulation in expres-
sion. These  fi ndings were suggestive that MITF 
and corresponding miRNAs might be key regula-
tory mechanism in malignant melanoma. 

 There was signi fi cant heterogeneity in miRNA 
expression pro fi les between cell lines and tissues. 
Thus, further experimental validation has to be 
performed. However some of the  fi ndings were in 
line with earlier reports supporting their biologi-
cal relevance. MiR-200c was shown to be down-
regulated in primary melanomas and metastatic 
melanomas as compared with nevi. Down-
regulation of miR-200 family members during 
tumour progression has also been reported in 
other cancers  [  74  ] . Authors speculated that loss 
of miR-200c may contribute to epithelial-mesen-
chymal transition in malignant melanoma via 
release of repression of ZEB1, a transcription 
factor which represses E-cadherin transcription, 
a major prerequisite for epithelial-mesenchymal 
transition  [  75  ] . Interestingly, miR-211 was the 
most strongly up-regulated miRNA in the 
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 metastatic cell line IGR37 compared with the 
non-metastatic cell line IGR39 in array analyses. 
This again argues against a direct comparison of 
 in vitro  and  in vivo   fi ndings, because miR-211 
was shown to be down-regulated during metasta-
sis in other experiments  [  76  ]  (see below).  

    6.5.2.4   MiR-182 
 An important role of miR-182 for melanoma pro-
gression could be demonstrated in two recent stud-
ies  [  77,   78  ] . In search for melanoma-associated 
miRNAs, miRNA genes were analysed which are 
located in genomic regions with frequent gains and 
losses in melanoma tissues  [  58,   77  ] . Out of a series 
of differentially expressed miRNAs, miR-182 was 
signi fi cantly higher expressed in melanoma cell 
lines compared with benign melanocytes, and its 
expression correlated with tumour progression in 
tissue microarrays of benign melanocytic nevi, pri-
mary, and metastatic melanomas  [  77  ] . Functional 
experiments showed that miR-182 silencing sup-
pressed the invasive capacity of different melanoma 
cell lines  in vitro  and induced apoptosis in mela-
noma cells. In contrast, miRNA-182 over-express-
ing melanoma cells showed increased 
anchorage-independent growth. Moreover, miR-
182-transduced B16F10 melanoma cells showed 
increased lung metastasis, underscoring the rele-
vance of miR-182 for distant metastasis. 

  FOXO3 (FKHRL1)  ,   FOXO1 (FKHR)  ,   MITF, 
CDKN2C (p18INK4C)  ,   CASP3, CASP2 , and  FAS  
are putative targets miR-182. Of these, only 
MITF had been shown before to be targeted by 
miR-182. By use of reporter gene assays with 
3 ¢ UTRs of the respective gene, both  FOXO3  and 
 MITF  were shown to be direct targets of miR-182 
 [  77  ] . It was suggested that FOXO3 and MITF 
might signi fi cantly contribute to the effects of up-
regulated miR-182 in melanoma metastasis. 
Indeed, down-regulation of both genes by RNA 
interference technology enhanced the migratory 
and invasive potential of melanoma cell lines, 
similar to that of over-expressed miR-182. 
Moreover, the effects of over-expressed miR-182 
on the migratory capacity could be reversed by 
over-expression of FOXO3 and MITF. Together, 
these experiments showed that miR-182 pro-
motes cell viability of melanoma cells and 

induces enhanced invasive capacity. Down-
regulation of both FOXO1 and MITF may con-
tribute to these processes. However, since an 
enhanced oncogenic potential after miR-182 
over-expression was also induced in melanoma 
cells with already low MITF expression, other 
mechanisms may also contribute to this process. 

 Using a mouse model of liver metastasis, 
immunocompromized mice received intra-splenic 
injections of A375 melanoma cells and subse-
quently intraperitoneal injections of chemically 
modi fi ed anti-miR-182 or negative control anti-
miRNA  [  78  ] . Treatment of mice with anti-
miR-182 resulted in signi fi cantly less liver 
metastasis compared with controls. Similar 
 fi ndings were observed when mice were pre-
treated with three doses of ant-miR-182 oligonu-
cleotides and followed by 3 weeks of miRNA-182 
administration. Suppression of miR-182 in liver 
tissues was veri fi ed by  real-time  PCR and was 
accompanied by up-regulation of miR-182 tar-
gets ADCY6 and FOXO3. Moreover, mRNA 
expression pro fi les of anti-miR-182 treated 
tumours differed from those of controls, support-
ing the transcriptional impact of anti-miR-182 on 
gene expression pro fi les. Differentially expressed 
genes included genes involved in cell adhesion, 
migration and apoptosis. Up-regulated genes 
after anti-miR-182 treatment included  NFASC  ,  
 CASP2  ,   NCAM1  and  CLDN17 . CASP2, which 
had already been found to be a target of miR-182 
in the above mentioned study of the same group, 
is a member of the caspase family of pro-apop-
totic genes. Overall, the treatment of mice was 
well tolerated with no gross abnormalities besides 
slightly increased bilirubin and increased hepatic 
enzymes. Authors concluded that targeting of 
miR-182 might be a promising therapeutic strat-
egy for metastatic melanoma in the future.  

    6.5.2.5   MiR-211 
 Melastatin, a member of the transient receptor 
potential (TRPM) cation channel family, has 
been shown to be down-regulated during mela-
noma progression and its expression inversely 
correlated with the prognosis and melanoma 
patients  [  79  ] . Intron 6 of the  TRPM1  gene har-
bours the miR-211 gene  [  59  ] . The inverse 
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 correlation of melastatin expression and mela-
noma progression was suggestive for a tumour 
suppressive role of melastatin. However, it 
remained to be determined whether melastatin 
or miR-211 exert the tumour-suppressive effects. 
A recent study showed that alterations in miR-
211 levels, but not in melastatin levels, have a 
dramatic impact on the invasive potential of 
melanoma cells  [  76  ] . This study started with a 
miRNA library screen of the highly invasive 
melanoma cell line A375M by testing the impact 
of miRNAs on its migratory capacity. MiR-211 
showed the strongest inhibition of melanoma 
cell migration of all tested miRNAs, followed 
by its paralog miR-204  [  76  ] . In further experi-
ments using melanoma short term cultures, two 
populations of melanomas were identi fi ed, one 
with greatly reduced miR-211 expression and 
high invasive potential, and another with only 
mildly reduced miR-211 expression and low 
invasive activity. Greatly reduced miR-211 lev-
els were associated with more than 20-fold 
higher invasive activity. Interestingly, in mela-
noma cells with slightly or not reduced melasta-
tin and miR-211 expression, inhibition of 
miR-211 but not that of melastatin increased 
melanoma invasiveness. Vice versa, in mela-
noma cells with a signi fi cant reduction of both 
genes, increasing miR-211 levels signi fi cantly 
reduced their invasive potential. Modulation of 
melastatin levels was without effect. Together, 
these  fi ndings provided strong evidence for a 
particular role of miR-211 in melanoma inva-
siveness and progression. 

 In search for gene targets that might explain 
these  fi ndings, a melanoma-speci fi c metastasis 
gene network was analysed for overlapping pat-
terns between the metastatic genes and miR-211 
target genes. Six genes overlapped between miR-
211 targets and the melanoma metastasis network 
( IGF2R ,  NFAT5 ,  TGFBR2 ,  FBXW7 ,  ANGPT1 , 
and  VHL ). Further functional experiments showed 
that knockdown of so-called central node genes 
of these targets had the same effect on melanoma 
cell invasiveness as up-regulated miR-211. Of 
these,  TGFB  has been shown to be related to mel-
anoma progression via tissue and blood vessel 
invasion in earlier reports. 

 The role of miR-211 for malignant melanoma 
pathogenesis was further analysed in a study per-
forming a miRNA expression pro fi ling of the 
melanoma cell line WM1552C and the benign 
melanocytic cell line HEM-l  [  80  ] . MiRNA-211 
was the most signi fi cant downregulated miRNA 
and showed the most consistent changes in 
expression levels between seven additional mela-
noma cell lines and melanocytes tested. MiR-211 
expression levels in clinical melanoma samples 
(including primary, regional, lymph node and 
distal metastatic lesions), were reduced in 21 of 
30 of these samples as compared with benign 
melanocytes. However, expression levels varied 
widely and high expression of miR-211 was also 
found in a number of primary and metastatic 
lesions. Predicted miRNA targets were then com-
pared with differentially expressed genes in the 
WM1552C cell line and melanocyte line HEM-1. 
Overall, 26 putative target transcripts were 
identi fi ed whose expression levels were elevated 
relative to those in HEM-l. Over-expression of 
miR-211 in melanoma cell lines found 18 puta-
tive target transcripts for miR-211, which were 
down-regulated by expression of miR-211. Nine 
of these putative target transcripts overlapped 
between both analyses. These were:  ATP2B1 , 
 CDH2 ,  GLIS3 ,  KCNMA1 ,  MEIS2 ,  NCAM-1 ,  NF-
AT5 ,  PRPF38B , and  TCF12 . Some of these genes 
had been implicated in cancer biology.  CDH2, 
KCNMA1, NCAM-1 and   NF-AT5  have been 
described to be involved in migration of meta-
static cells or tissue invasion  [  81  ] . 

 KCNMA1 was chosen for further analyses, 
because the 3 ¢ UTR of the KCNMA1 transcript 
contains strongly predicted target sites of miR-
211. KCNMA1 is part of a K+ exporting ion 
channel, which is modulated by Ca++. KCNMA1 
protein expression was signi fi cantly lower in nor-
mal melanocytes compared with all tested mela-
noma cell lines. The transcription factor MITF 
regulates the expression of the  TRPM1  gene and 
miR-211. In knockdown experiments, it was 
shown that the extent of reduction in MITF tran-
script levels correlated with the reduction of 
TRPM1 and miR-211 expression levels. Thus, the 
well-known tumour suppressive effect of MITF at 
high levels might at least in part be mediated via 
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up-regulation of miR-211 and consecutive down-
regulation of KCNMA1. MiR-211 over-express-
ing WM1552C cells showed reduced cell numbers 
compared with control cells and also a lower 
migratory capacity. Interestingly, over-expression 
of KCNMA1 partly restored the migratory capac-
ity of miR-211 over-expressing melanoma cells. 
Taken together, the study of Mazar and  co-workers 
linked miR-211 as a downstream target of MITF 
to tumour suppression via inhibition of potassium 
channel activity  [  80  ] .  

    6.5.2.6   MiR-221 and -222 
 As mentioned above, c-KIT is often down-regu-
lated during melanoma progression  [  82  ] . Since 
c-KIT is a target of miR-221 and miR-222  [  83  ] , a 
recent study addressed the question whether over-
expression of both miRNAs might play a role dur-
ing melanoma progression  [  84  ] . Endogenous 
levels of miR-221 and miR-222 were evaluated in 
normal human melanocytes and a panel of mela-
noma cell lines. MiR-221 and miR-222 expres-
sion was low in normal human melanocytes but 
increased according to the level of malignant 
transformation and aggressiveness of melanoma 
cells.  In vivo  validation showed that both microR-
NAs were expressed in primary melanomas and 
melanoma metastases, with metastases showing 
higher expression than primary tumours. Benign 
melanocytic nevi were negative. 

 Based on earlier  fi ndings on the role of tumour 
suppressor gene promyelocytic leukemia zinc 
 fi nger ( PLZF ), authors hypothesized that PLZF, 
the expression of which is often lost during mela-
noma development, might be involved in miR-221 
and miR-222 up-regulation during tumour pro-
gression  [  85  ] . Indeed, after PLZF over-expression 
in melanoma cell lines, both microRNAs were 
down-regulated. Further analysis of the regulatory 
regions of both miRNA genes identi fi ed two puta-
tive binding sites for the PLZF transcription factor 
in the 5 ¢  region and in the intergenic region between 
both miRNAs. Electrophorectic mobility shift 
assays and chromatin immunoprecipitation showed 
that at least binding sites in the 5 ¢  region were used 
by PLZF. Over-expression of miR-221 and miR-
222 in the Me1402/R melanoma cell line which 
has low endogenous expression of both miRNAs 

increased proliferation rate and invasive capacity. 
Moreover, miRNA-transduced melanoma cells 
produced signi fi cantly greater tumours in mouse 
experiments than control cells. Tumour cell prolif-
eration, invasive capacity and  in vivo  tumour 
formation could signi fi cantly be compromised by 
use of antagomirs directed against miR-221 and 
miR-222. 

 A subsequent analysis of the target gene c-KIT 
in different melanoma cell lines showed an 
inverse correlation between miR-221 and miR-
222 and c-KIT expression depending on the level 
of aggressiveness of the cell with lines. Moreover, 
c-KIT expression was reduced by transfection of 
Me1402/R melanoma cells with miR-221 and 
miR-222. miR-221 and miR-222 expression also 
down-regulated MITF expression. Finally, the 
miR-221 and miR-222 target gene encoding for 
p27 was analysed in a miR-221 or 222 and PLZF 
transduced melanoma cell line. p27 was increased 
by PLZF expression but reduced by miRNA 
transduction. Functional experiments showed 
that the negative effects of miRNA antagomir 
treatment on cellular proliferation with consecu-
tive up-regulation of p27 could be reversed by 
p27 silencing. Taken together, this study showed 
that transcription factor PLZF plays a signi fi cant 
role in miR-221 and miR-222 expression in mel-
anoma cells. The induction of the malignant phe-
notype in melanoma cells in these experiments 
appeared to be mediated by miR-221- and miR-
222-induced loss of c-KIT and p27 expression.  

    6.5.2.7 MiR-214  
 The particular role of miRNAs for melanoma 
metastasis was addressed in a more recent report 
 [  86  ] . By use of the poorly metastatic A375 parental 
cell line (A375P) and four highly metastatic vari-
ants, MA-1, MA-2, MC-1 and MC-2, authors pro-
posed new mechanisms that may account for the 
metastatic capacity of melanoma cells involving 
the transcriptional repressor TFAP2C and enhanced 
cell migration and extravasation. A miRNA 
 expression pro fi ling was performed for the men-
tioned cell lines and miR-214 was found to be over-
expressed in the metastatic cell lines. Interestingly, 
miR-214 showed strong enhancement of expres-
sion in tissue samples of mice directly derived from 



1156 MicroRNAs in Melanoma Biology

lung  metastases, suggestive for a signi fi cant impact 
of the local microenvironment on miR-214 expres-
sion.  In vitro  assays showed that miR-214 over-
expression in metastatic MA-2 cells further 
enhanced cell motility, migration and invasion as 
shown in wound healing or transwell migration 
assays. Moreover, a signi fi cantly higher number of 
macroscopic lung metastases was observed in 
immunocompromized mice for miR-214-overex-
pressing MA-2 cells compared with control cells. 
MiR-214 over-expression in A375P and MA-2 
cells resulted in a 2–3-fold increase in transend-
othelial migration and increased extravasation in a 
lung metastasis model. 

 Based on a data bank search and functional 
testing of miR-214 targets combined with a pro-
teomic approach focusing on cell surface proteins, 
70 protein-coding genes were identi fi ed modu-
lated by miR-214. These included  MMP2 ,  CDH1 , 
 ITGA3 ,  MET ,  PAK2 ,  TFAP2A  and  TFAP2C . 
Further experiments showed that TFAP2C silenc-
ing in MA-2 cells showed similar effects as miR-
214 over-expression, while its forced expression 
in miR-214-transfected cells reversed enhanced 
migration and extravasation  in vivo . Authors con-
cluded that TFAP2C might be one of the main 
targets mediating miRNA-induced malignancy in 
melanoma. In line with this, earlier reports showed 
that melanoma progression was paralleled by loss 
of expression of TFAP2 proteins  [  87  ] . Among 
TFAP2-regulated genes were  CDH1 ,  CTSD , 
 EREG ,  TGFBI ,  CDH11 ,  ICAM2 ,  ITGAV ,  MMP2 , 
 TIMP1  and  TIMP2 , all of which are connected 
with cell movement and tumour biology, and were 
differentially expressed after miR-214 transfec-
tion  [  86  ] . Together, miR-214 seems to play an 
important role in melanoma metastasis via induc-
tion of enhanced migration and tissue invasion, 
which seems to involve TFAP2C and molecules 
regulated by this transcription factor.   

    6.5.3   Prognostic miRNA Patterns 
in Melanoma 

 A more recent report addressed the question, 
whether miRNAs or miRNA patterns in mela-
noma tissues might be predictive regarding 

 long-time survival of melanoma patients  [  88  ] . In 
this study, 59 specimens of formalin- fi xed 
paraf fi n-embedded metastatic melanoma lesions 
from different anatomic locations were analysed 
by miRNA expression pro fi ling using 911 probes. 
A miRNA signature was identi fi ed in metastatic 
melanoma tissues which allowed the prediction 
of post-recurrence survival. High expression lev-
els of a set of 18 miRNAs de fi ned a longer sur-
vival group using a survival cut-off of 18 months 
for differentiation between both groups. The 
18-miRNA signature of up-regulated miRNAs 
consisted of miR-150, miR-455-3p, miR-145, 
miR-342-3p, miR-497, miR-155, miR-342-5p, 
miR-143, miR-193a-3p, miR-146b-5p, miR-
28-3p, miR-10b, miR-193b, miR-28-5p, miR-
142-5p, miR-143*, miR-126, and miR-214. 
Further re fi nement led to a minimal number of a 
6 miRNAs which allowed discrimination between 
both groups, consisting of miR-150, miR-342-3p, 
miR-455-3p, miR-145, miR-155, and miR-497. 
All of these miRNAs showed higher expression 
in metastatic lesions of the longer survival 
group. 

 In support of the biological relevance of these 
 fi ndings, it was further demonstrated that the 6 
miRNA signature was even able to stratify stage 
III (lymph node metastasis) patients into a better 
and worse prognosis groups. This strati fi cation 
was even better than the existing one based on the 
standard classi fi cation of stages IIIB and IIIC of 
the American Joint Committee on Cancer refer-
ring to patients with 2–3 lymph nodes affected 
(stage IIIB) and 4 or more lymph nodes or in 
transit metastases (stage IIIC). Interestingly, 
some of the miRNAs of the 6 miRNA signature 
were even predictive for primary tumours. 

 None of the signature miRNAs has been 
related to melanoma prognosis before, but some 
have been shown to be of relevance in other 
malignancies. MiR-155 has been shown to play 
an oncogenic role in hematopoietic malignancies 
and solid cancers  [  18,   20  ] . A recent study, how-
ever, showed that miR-155 has an anti-prolifera-
tive and pro-apoptotic effect in melanoma cell 
lines, suggestive for negative impact on  melanoma 
cell aggressiveness  [  89  ] . Thus, miRNAs might 
exert different functions in different  cancers. 
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MiR-145 was one of the most signi fi cantly down-
regulated regulated miRNAs in breast cancer ver-
sus normal control tissue. 

 In search for prognostic miRNAs or miRNA 
patterns, another report put a focus on lymph 
node metastases  [  90  ] . MiRNA expression 
pro fi ling was performed in melanocyte cultures, 
melanoma cell lines and melanoma lymph node 
metastases. By applying the Prediction Analysis 
of Microarray (PAM) software, an expression 
signature of 10 miRNAs was identi fi ed that dis-
tinguished between melanocytes and lymph-node 
metastases. This signature consisted of under-
expressed miR-192,  let-7i , miR-194, miR-211, 
miR-602, miR-582, miR-454-3p, and miR-132, 
and over-expressed miR-126 and miR-801 in 
lymph node metastases. Nine miRNAs distin-
guished lymph node metastases and melanoma 
cell lines from melanocytes. Seven out of these 

(miR-192, miR-194, miR-132, miR-602, miR-
211, let-7i, and miR-509) were under-expressed 
in lymph nodes and melanoma cell lines. In line 
with this, we were able to clearly distinguish 
between miRNA patterns in primary melanomas, 
lymph node and distant cutaneous metastases 
(unpublished; Fig.  6.2 ).  

 Interestingly, 6 miRNAs were identi fi ed that 
could predict disease outcome. Melanomas from 
patients of a short survival group showed under-
expression of miR-191, whereas miR-193b, miR-
365, miR-338, let-7i, and miR-193a were 
over-expressed. Kaplan-Meier survival curves 
regarding short survival were signi fi cant for low 
expression of miR-191 and high expression of 
miR-193b, miR-365 and  let-7i . However, after 
validation by qRT-PCR, values of miR-365 and 
 let-7i  were not signi fi cant in Kaplan-Meier 
curves. The prognostic value of miR-191 and 

  Fig. 6.2     MiRNA expression levels show   high correla-
tion in metastatic   lesions . MiRNA expression patterns of 
primary melanomas, lymph node metastases and cutane-
ous metastases were generated by real-time PCR. Samples 
were compared based on normalized Ct values of miRNA 
signals in PCR reactions. Correlation coef fi cients of pairs 
of samples are shown (values are between 0 = no correla-

tion and 1 = identical). Samples are hierarchically clus-
tered depending on their correlation coef fi cient. Note that 
samples of primary melanomas (PM) do not correlate 
well, likely due to their biologic heterogeneity. Samples 
of lymph node (LN) and distant cutaneous metastases 
(MM) show higher levels of correlation and were clearly 
separated from primary tumours       
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miR-193b regarding survival could be veri fi ed in 
an independent cohort of 16 lymph node metasta-
ses. Differential expression of miRNAs was also 
related to  BRAF  and  NRAS  mutation status. Low 
levels of miR-193a and a combination of both 
miR-193 and miR-338 were signi fi cantly associ-
ated with  BRAF  mutations. Taken together, the 
prognostic miRNAs found in this study may in 
future serve as a prognostic tool for patients with 
lymph node metastases.       
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    7.1   Introduction 

 Among the ten most important causes of death 
worldwide, four involve the common patho-
physiological aspect of in fl ammation in the 

    A.   Sittka   •     B.   Schmeck   (*)
     Department of Molecular Pulmonology, German Center 
for Lung Research ,  Universities of Giessen & Marburg 
Lung Center, Philipps-University Marburg ,
  Hans-Meerwein-Str. 2 ,  35043   Marburg ,  Germany    
e-mail:  bernd.schmeck@uni-marburg.de; 
alexandra.sittka@uni-marburg.de   

  7

  Abstract 

 The lung constitutes one of the most delicate tissue structures in mam-
malian organisms to accomplish the vital function of gas exchange. On 
the other hand, its immense surface area, necessary in this context, 
exhibits the  fi rst line of defense against a variety of pro-in fl ammatory 
stimuli. 

 MicroRNAs (miRNAs) are a class of post-transcriptional regulators 
that revolutionized our view of gene expression regulation. By now, it is 
well established that miRNAs impair all known cellular and developmen-
tal processes. Extensive research over the last years revealed not only a 
fundamental role for miRNAs in lung development and homeostasis, but 
also in the process of lung in fl ammation. Lung in fl ammation occurs in 
response to stimuli very different in nature (e.g., physical, radioactive, 
infective, pro-allergenic, or toxic), and in some cases becomes manifest in 
chronic diseases (e.g., chronic bronchitis/chronic obstructive pulmonary 
disease (COPD), asthma and allergic airway diseases) or even lung 
cancer. 

 This review chapter will brie fl y describe the current knowledge con-
cerning miRNA expression and their exerted target regulation in the course 
of lung in fl ammation and lung cancer.  
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lung: pneumonia, chronic bronchitis/chronic 
obstructive pulmonary disease (COPD), lung 
cancer, and tuberculosis. Although thought to be 
a straightforward series of reactions, in fl am-
mation is a delicate matter of homeostasis and is 
controlled very tightly. Insuf fi cient in fl ammation 
might result in overwhelming replication of 
infectious pathogens or defective/malignant host 
cells. Excessive in fl ammation can lead, acutely, 
to organ dysfunction (e.g., impaired gas exchange 
in the lung due to leukocyte in fl ux) or multi-organ 
failure in sepsis or, chronically, to tissue remod-
elling or destruction (e.g., lung emphysema, 
requiring lung transplantation) or even the occur-
rence of malignancies. 

 This tight regulation of pulmonary in fl am-
mation is not trivial as the respiratory tracts, 
including the alveoli whose surface area is 
roughly equal to a tennis court, constitute a deli-
cate tissue structure. This immense surface struc-
ture is required for every second of the vital 
function of gas exchange, but, on the other hand, 
also provides the primary line of defense against 
the environment, since it is constantly exposed to 
an air fl ow containing pro-in fl ammatory stimuli 
of complex nature, e.g., physical (low/high tem-
perature and humidity), radioactive (radon as 
natural gas, e.g. in cellars), infective (bacteria, 
viruses, fungi, or their components, e.g., lipopoly-
saccharide in straw), pro-allergenic (pollen, 
house dust mite excrements), or toxic (cigarette 
smoke, air pollution, biomass combustion). From 
a (patho-) physiological point of view, gene 
expression in the lung should be expected to con-
stitute a highly  fi ne-tuned network including 
complex feedback mechanisms. 

 In general, gene expression is subjected to a 
vast variety of regulatory mechanisms. While 
regulation on the transcriptional level has been a 
focus of research for a long time, recently, the 
discovery of gene regulation by small non-coding 
RNAs has revolutionized the picture of gene 
expression. Ever since the  fi rst discovery of 
so-called microRNAs (miRNAs) and their role in 
post-transcriptional gene regulation in eukaryotes 
in the early 90ies ( lin-4  in  Caenorhabditis 
elegans ,  [  1,   2  ] ), the number of regulatory RNAs 
has continuously expanded. The research of the 

last two decades has resolved many aspects of the 
biogenesis of non-coding RNAs. Moreover, their 
mode of function to exert target regulation has 
been the issue of extensive studies. However, 
target identi fi cation for speci fi c miRNAs is still a 
challenging venture. It has been shown that gene 
regulation by miRNAs is an interweaved net-
work: not only single miRNAs have been shown 
to target different mRNAs based on complemen-
tarities to shared binding motives in their 3 ¢  
untranslated region (3 ¢ UTR)  [  3  ] , but also the 
regulation of one mRNA by multiple miRNAs is 
well documented. By now it is well established 
that miRNAs play key roles in almost every 
developmental and cellular process.  

    7.2   MicroRNAs in Lung 
Homeostasis 

 For the longest time no information has been 
available on the impact of miRNAs on lung devel-
opment or under physiological conditions. One 
role of miRNAs in lung development appeared 
likely when  in situ  hybridization experiments 
revealed a signi fi cant expression of  Dicer1  and 
 Ago  family members in branching regions of the 
developing mouse lung  [  4  ] . The assumption was 
consolidated by  fi ndings of Harris and colleagues, 
who observed defective lung development in mice 
carrying a conditional  Dicer  knock-out in the lung 
epithelium  [  5  ] . Here, a signi fi cant disruption in 
epithelial morphogenesis and a strong increase in 
epithelial cell death were observed in knock-out 
mice. A comprehensive miRNA expression anal-
ysis, comparing neonatal and adult lung tissues of 
mice, revealed very distinct miRNA expression 
patterns in the lung  [  6  ] . Some miRNAs showing 
high expression in the adult mice lung were also 
highly expressed in human adult lung tissue, sug-
gesting an evolutionarily conserved role in lung 
homeostasis (e.g., miR-26, -29a/b, -142-3p, and 
-187 are highly expressed in adult lung tissue in 
mice and humans, respectively  [  6  ] ). In addition, 
neonatal mice lungs showed partial overlap in 
their miRNA expression pro fi le when compared 
to human fetal lung tissues (e.g., miR-134, -296, 
-337, to name only a few). Therefore, a developmental 
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role of microRNAs in the vertebrate lung seems 
undeniable. In a follow-up study, the group of 
Marc Lindsay analyzed the miRNA expression 
pro fi le of aging mouse lungs (6 month vs. 
18 month of age  [  7  ] ). In the analysis, miR-26a 
appeared as the most highly expressed miRNA in 
lung tissue independent of age. Also, in their pre-
vious study, miR-26a was identi fi ed as the most 
highly expressed miRNA in adult mouse lung tis-
sue as well as in human lung tissue  [  6  ] , strength-
ening the assumption of miR-26a playing a central 
role in lung homeostasis. Nevertheless, no 
signi fi cant changes were observed in the miRNA 
expression pro fi les in mouse lungs during aging. 
Albeit highly expressed, for most of the miRNAs 
identi fi ed by Williams and co-workers no func-
tional role in lung development or homeostasis 
could be assigned. 

 A miRNA cluster (miR-17~92) seems to play 
a central role in the development of the mouse 
lung. While the cluster is highly expressed in the 
developing lung at embryonic day 11.5 (E11.5), 
it declines gradually up to E17.5, and is barely 
expressed in the adult mouse lung  [  8  ] . Over-
expression of the entire cluster in the lung epi-
thelium of transgenic mouse embryos leads to 
the absence of terminal air sacs and increased 
cell numbers with respect to epithelial cells, as 
determined at E18.5. The data obtained suggest 
enhanced proliferation of distal progenitor cells 
as well as delayed differentiation of proximal 
cells  [  8  ] . Ventura and co-workers analyzed in 
detail the effect of miR-17~92 deletion on devel-
oping mice. They reported a strong phenotype of 
hypoplastic lung and a ventricular septal defect, 
leading to postnatal lethality  [  9  ] . A study from 
2009 investigating the role of miR-17 and its 
homologues, miR-20a and miR-106a, in embry-
onic lung explants from mice revealed a strong 
epithelial structure phenotype and, therefore, a 
role of miR-17 family members during branch-
ing morphogenesis  [  10  ] . Another screen for 
miRNAs involved in lung development (from 
gestational day E16 up to 2 months old adults), 
performed in rats, resulted in four groups of 
miRNAs (each containing 4–8 miRNAs) either 
up- (group 1), down-regulated (group 2 and 3) or 
peaking at some point in development (group 4) 

during the course of lung development  [  11  ] . 
Here, the miR-17~92 cluster of miRNAs has 
also been part of the identi fi ed miRNAs (miR-
17-5p, miR-18, and miR-20a were comprised in 
group 3). Further investigation on the role of 
miR-127 established a role in normal branching 
and terminal bud formation. 

 Aside from speci fi c effects on lung develop-
ment, several miRNAs have been identi fi ed as 
reducing proliferation of the lung cancer cell line 
A549. Over-expression of a variety of let-7 fam-
ily members led to a signi fi cant decrease in the 
 in vitro  proliferation of A549 cells, comparable 
to the effect observed in c-Myc knockdown cells 
 [  12  ] . Ectopic expression of miR-29 family mem-
bers had a similar effect on the A549 cells 
 in vitro . Furthermore, transfection of members 
of the miR-29 family inhibited the growth of 
A549 engrafted tumors in mice  [  13  ] . Altogether, 
these results suggest that certain miRNAs act as 
tumor suppressors in lung cells. Furthermore, 
prevention of uncontrolled lung in fl ammation 
seems to be dependent, rather strictly, on proper 
miRNA expression. Mice de fi cient for miR-223 
showed massive neutrophilia with highly 
increased in fl ammatory in fi ltration in the inter-
stitium  [  14  ] . Another study revealed a role for 
miR-155 in lung homeostasis. Bic/miR-155 
knockout mice showed increased lung remodel-
ling, based on substantial collagen deposition 
and increased cell mass of myo fi broblasts in 
bronchioles  [  15  ] . Further investigation revealed 
a defect in B- and T-cell responses as well as 
increased leukocyte numbers in  fl uids of bron-
choalveolar lavages (BAL). 

 Taken together, there is a vast variety of 
microRNAs involved in the proper development 
and homeostasis of the lung and many more await 
identi fi cation.  

    7.3   MicroRNAs in Lung 
In fl ammation 

 For more than a decade, the involvement of 
miRNAs in hematopoiesis has been a focus of 
research. The group led by David Bartel was 
the  fi rst to publish on the role of miRNAs in 
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the differentiation of hematopoietic progenitor 
cells  [  16  ] . Ever since, the role, not only of 
miRNAs in cell differentiation in the hematopoi-
etic system, but also in immune cell function, 
has been the subject of intensive research 
(reviewed in  [  17–  19  ] ). 

 The innate immune response provides the  fi rst 
line of defense against pathogens. The extremely 
large surface structure of the lung bears an enor-
mous risk because of its contact with environ-
mental particles and allergens as well as the 
invasion of pathogens. Pathogen-associated 
molecular patterns (PAMPs), like conserved 
microbial cell wall components or bacterial or 
viral nucleic acids, are recognized via binding to 
pattern recognition receptors (PRRs) which are 
located on the surface (e.g., Toll-like receptors, 
TLRs) as well as in the cytosol (e.g., NOD-like 
receptors, NLRs or RIG-like receptors, RLRs) of 
cells. Following binding of PAMPs to PRRs in 
concert with accessory proteins, an intracellular 
signalling cascade is initiated, leading to the 
activation of speci fi c transcription factors, which 
in turn result in transcriptional activation of 
in fl ammation-related cyto- and chemokines to 
provide intercellular communication. The mount-
ing of an immune response needs to be regulated 
very tightly since, aside from a preventive func-
tion with respect to diseases, an overwhelming 
immune response represents a serious risk and 
might cause severe tissue damage. 

 David Baltimore’s group was the  fi rst to 
exploit the expression changes of various miR-
NAs in response to PAMPs in order to investi-
gate the potential role of miRNAs in innate 
immunity. In an initial microarray analysis, 
they observed an increased expression of 
microRNA-146, -155, and -132, in response 
to stimulation of THP-1 cells (a human acute 
monocytic leukemia cell line) using LPS from 
 Escherichia coli   [  20  ] . Time-course experiments 
revealed miR-146a as an immediate early-
response gene in the in fl ammatory response. 
Further examination of the regulation of miR-146 
displayed an induction upon stimulation with 
various microbial components and pro-in fl ammatory 
mediators (e.g., LPS,  fl agellin, and IL-1ß). 
Transcriptional activation of the miR-146a gene 

was shown to be strictly dependent on identi fi ed 
NF k B binding sites in the promoter region. 
MiR-146a seems to play a pivotal role in contain-
ing the mounting immune response, since IL-1 
receptor-associated kinase 1 (IRAK1) as well as 
TNF receptor-associated factor 6 (TRAF6), both 
of which are involved in TLR-activated signal-
ling cascades to activate NF k B, were identi fi ed 
as mRNA targets that are down-regulated upon 
binding of miR-146a  [  20  ] . A follow-up study 
performed by the same group analyzed the 
miRNA pro fi le by means of microarray analysis 
of macrophages derived of murine bone marrow 
and stimulated with the synthetic analogue of 
viral dsRNA (poly(I:C)) or IFN- b , a cytokine 
highly expressed by the host upon viral infection. 
Both treatments revealed a signi fi cant increase in 
miR-155 expression upon 6 h of stimulation  [  21  ] . 
Aside from IFN-  b , IFN- g  also induced miR-155 
expression, even though both cytokines showed a 
delayed induction as compared to poly(I:C). 
Further studies revealed the requirement of 
TNF- a  autocrine/paracrine signalling for IFN-
mediated miR-155 induction, while poly(I:C) 
acted independently through signalling via the 
JNK pathway  [  21  ] . Upon LPS stimulation, an up-
regulation of miR-155 as well as a slight down-
regulation of miR-125b could also be observed in 
the RAW 264.7 macrophage cell line. 
Intraperitoneal inoculation of mice using LPS 
from  Salmonella enteritidis , with subsequent 
miRNA analysis of isolated splenocytes con fi rmed 
these results  in vivo   [  22  ] . 

 In 2007 Mark Lindsay and colleagues were 
the  fi rst to verify the  in vitro  results in an  in vivo  
situation using a mouse model of lung 
in fl ammation. Mice treated with aerosolized LPS, 
when compared to aerosolized saline-treated 
control animals, showed a signi fi cant increase of 
104 miRNAs over the time course of 1, 3, and 
6 h, respectively, with an average peak of expres-
sion at 3 h following treatment in RNA samples 
puri fi ed from whole mouse lungs. Cytokine and 
chemokine levels measured in BAL  fl uids peaked 
at 1 h before going back to baseline levels  [  23  ] . 
Altogether, they observed a LPS-induced expres-
sion of 46 different miRNAs at 3 h. Of these, 11 
miRNAs were signi fi cantly increased at two time 
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points (miR-21, -25, -27b, -100, -140, -142-3p, 
-181c, -187, -194, -214, and miR-224) while 
miRNA 223 showed a signi fi cant increase of 
expression at all three time points analyzed.  In situ  
hybridization of miR-223 at 3 h following LPS-
exposure showed a distinct increase of miR-223 
expression in alveolar and bronchial epithelial 
cells, as well as in cells migrating into the bron-
chioles. A differential analysis of cell types in 
BAL  fl uids revealed that a substantial proportion 
of these cells represent neutrophils. 

 The observed chronological order of an 
increase in cytokine expression measured in BAL 
 fl uids followed by an increase in miRNA expres-
sion leads to the conclusion that miRNAs might 
be involved in the regulation rather than in the 
induction of an innate immune response  [  23  ] . 
Further  in vitro  studies veri fi ed miR-146 to be 
involved in a negative feedback loop regulation 
of IL-1ß-induced in fl ammatory response in the 
human lung epithelial cell line, A549. MiR-146a 
and -146b are both induced upon IL-1ß stimula-
tion in A549 cells (even though induction of 
miR-146b occurs to a lesser extent)  [  24  ] . These 
changes are most likely to be attributed to the 
activating role of the transcription factor NF k B, 
since IL-1ß induced up-regulation of both miR-
NAs was abolished in the presence of dexametha-
sone, a corticosteroid known to attenuate the 
function of NF k B. Since other transcription fac-
tors were affected by the dexamethasone treat-
ment, the attenuation of miRNA up-regulation 
might well be based on the synergy of multiple 
transcription factors. While induction of miR-
146a was observed in different cell types, miR-
146b induction could only be observed in A549 
cells. Ectopic over-expression of miR-146a led to 
a signi fi cant decrease in IL-1ß induced IL-8 and 
RANTES secretion in A549 cells and, recipro-
cally, an increase of IL-8 secretion could be 
observed upon transfection of miRNA inhibitors, 
even though this was observed exclusively at high 
IL-1ß concentrations. This suggests regulation 
by miRNAs during the course of severe 
in fl ammation  [  24  ] . Differences in expression 
between the two isoforms of miR-146 upon IL-1ß 
stimulation could be attributed, in part, to differ-
ent signalling pathways. While miR-146a seems 

to be regulated via NF k B as well as the c-jun 
N-terminal kinase (JNK)-1/2, miR-146b expres-
sion was observed to be up-regulated via MEK-
1/2 and JNK-1/2  [  25  ] . 

 Besides these general considerations, 
in fl ammatory disease states differ in causative 
agents (bacteria, viruses, allergens, irritants, toxic 
substances, and unknown factors), pathomecha-
nisms (hyperproliferation, tissue destruction etc.) 
and natural history (acute, chronic). Therefore, 
involvement of miRNAs can be expected to be 
diverse. Figure  7.1  provides an overview of the 
pathophysiological principles of different airway 
diseases and different miRNAs involved herein.  

    7.3.1   COPD 

 Chronic obstructive pulmonary disease (COPD) 
is a common cause of disability and mortality 
worldwide, and the number of patients is still 
increasing. Main causes are long term exposure 
to primary or secondary tobacco smoke, or bio-
mass combustion (e.g., by cooking in developing 
countries). Recently, it has been discussed that 
COPD is not a solitary disease but rather a syn-
drome comprising (a) chronic, cortisone-insensi-
tive, airway in fl ammation which causes mucus 
hypersecretion, and  fi xed bronchus constriction 
and remodelling, as well as (b) irreversible tissue 
destruction in terms of bronchiectasis and emphy-
sema  [  26  ] . Both aspects progressively pave the 
way for respiratory and ventilatory failure, sup-
ported by a vicious cycle of impaired innate 
immune mechanisms and recurrent infectious 
disease exacerbations  [  27  ] . Treatment of COPD 
by long-acting airway dilatators is mainly symp-
tomatic and life-long. In highly industrialized 
countries, increasing numbers of end-stage 
COPD patients receive long-term oxygen ther-
apy, non-invasive mechanical ventilation, or even 
lung transplantation, resulting in a signi fi cant 
socio-economic burden. 

 Initial studies in rats revealed a statistically 
signi fi cant down-regulation of 24 miRNAs (miR-
30c, -124a, -125a, -191, and members of the let-7 
family, to name only a few) following exposure 
to environmental cigarette smoke (ECS) in the 
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whole lung tissue while only one miRNA (miR-294) 
was increased following treatment  [  28  ] . Target 
analysis based on data available in the literature 
and the use of different target prediction pro-
grams showed that targets of the aforementioned 
24 miRNAs that appeared down-regulated fol-
lowing ECS exposure were found to be involved 
in functions like stress response and cell prolif-
eration, including oncogenes as well as tumor 
suppressor genes. A follow-up study by Izotti 
and colleagues conducted in mice also revealed 
predominant down-regulation of miRNAs in 
mice exposed to ECS  [  29  ] . Several miRNAs 
down-regulated in mice and rats (miR-30, miR-
99, and miR-125) as well as two families of miR-
NAs that were down-regulated in rats only 
(miR-146 and miR-223) were also found to be 
down-regulated in humans in a study comparing 
miRNA pro fi les of human bronchial epithelial 
cells between current smokers and persons who 
had never smoked (Fig.  7.1 ). In line with the 
rodent studies, a large number of miRNAs 
appeared down-regulated in the population of 

current smokers (with miR-218, -15a, -199b, 
-125a/b being strongly down-regulated)  [  30  ] . 
Davidson and co-workers con fi rmed the 
down-regulation of miRNA-218 in association 
with smoking in a study investigating miRNA 
expression in human lung squamous cell carci-
noma  [  31  ] . 

 The role of miR-146a in COPD was investi-
gated in more detail by Sato and colleagues. 
While, in general, down-regulation of miR-146a 
could be related to exposure to ECS in rats as well 
as to a smoking history in humans  [  28,   30  ] , this 
effect is even more pronounced in a study com-
paring  fi broblasts from a control population with 
 fi broblasts from COPD patients. Both groups 
were closely matched for age and smoking status 
 [  32  ] . The inability of COPD patients to repair tis-
sue could be partially attributed to an increase in 
prostaglandine (PG) E 

2
 , an in fl ammatory media-

tor known to be highly expressed in COPD 
 fi broblasts in culture  [  33  ] . Following treatment of 
control as well as COPD  fi broblasts with pro-
in fl ammatory cytokines (IL-1ß and TNF- a ), a 

  Fig. 7.1    miRNAs in conjunction with pathophysiological principles of in fl ammatory airway diseases       
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statistically signi fi cant increase in PGE 
2
  could be 

observed in both  fi broblast populations, while an 
increase in PGE 

2
  expression was more pronounced 

in  fi broblasts of COPD patients. This could be 
attributed to an increased expression of the prosta-
glandin-endoperoxide synthase 2 (a.k.a. cycloox-
ygenase-2, COX-2). Further analysis revealed 
 COX-2  as a direct target of miR-146a, which is 
induced to a lesser extent by pro-in fl ammatory 
cytokines in  fi broblasts of COPD patients when 
compared to  fi broblasts of the control group  [  32  ] . 
A study analyzing miRNA expression in the spu-
tum of currently smoking COPD patients to con-
trol groups of current smokers and persons who 
had never smoked observed down-regulation of 
27 miRNAs in the group of current smokers when 
compared to persons who had never smoked. 
Nevertheless, the comparison of COPD patients 
to current smokers found no statistically signi fi cant 
differences in miRNA pro fi les  [  34  ] . Taking into 
account the observations concerning miR-146a 
induction in COPD patients made by Sato and 
colleagues  [  32  ] , it seems likely that even though 
reduced expression of miRNAs can be observed 
predominantly in smokers even without air fl ow 
obstruction, development of COPD might amplify 
downstream effects on miRNAs, leading to 
reduced miRNA induction  [  33  ] .  

    7.3.2   Asthma and Allergic Airway 
Diseases 

 Asthma and allergic airway diseases, although 
not primarily mortal, constitute a huge loss in 
quality of life, and a socio-economic burden. 
Asthma is characterized by chronic airway 
in fl ammation, but paroxysmal and reversible 
airway obstruction. It can be provoked by 
drugs, exercise, or “intrinsic reasons”, but mainly 
depends on inhalative allergen exposure. Sensiti-
sation or predisposition can be facilitated by 
environmental factors even before birth, possibly 
involving epigenetic mechanisms, or repressed 
by early life endotoxin exposure. Therapy is 
based on allergen avoidance, symptomatic phar-
macological bronchus dilatation, and suppression 
of in fl ammation by corticosteroids. 

 In 2009 Mattes and co-workers presented, in 
an initial study, the involvement of miRNAs in 
the development of allergic airway disease. In a 
well characterized mouse model of house dust 
mite (HDM)-induced allergic asthma they inves-
tigated the miRNA expression in the airway wall 
of HDM-challenged mice and reported a 
signi fi cant increase in miRNA-16, -21, and -126 
expression as early as 24 h post-treatment when 
compared to vehicle control  [  35  ] . These miRNAs 
could be further increased following re-challenge 
of the sensitized mice using HDM. Follow-up 
experiments revealed signaling through TLR4/
Myd88 as the leading pathway to increase expres-
sion of the aforementioned miRNAs. Several 
speci fi c features of allergic airway in fl ammation, 
like airway hyper-responsiveness (AHR) to 
methacholine observed in wild type mice, could 
be observed in neither  Tlr4  − / − , nor in  Myd88  − / −  
mice. Additionally, a signi fi cantly reduced 
recruitment of eosinophils to the airways, as well 
as reduction of mucus-producing cells and IL-5 
and IL-4 levels, was observed. Treatment of wild 
type mice using anti-miR-126 led to comparable 
results, showing strong suppression of effector 
cytokines IL-4, -5, and -13, normally secreted 
from T 

H
 2 cells during the course of allergic air-

way in fl ammation. Target analysis revealed sev-
eral genes encoding for immunoglobulin chains, 
as well as down-regulation of Oct binding factor 
1 (OBF.1, a.k.a. B-cell Oct binding protein 1, 
BOB.1) through miR-126, which also functions 
as a regulator for transcription factor PU.1, 
involved in down-regulation of TLR4 and T 

H
 2 

responses by suppression of GATA3  [  35  ] . A 
recent report con fi rmed up-regulation of miR-21 
in the airway walls of HDM-challenged mice in 
conjunction with up-regulation of let-7b and 
miR-145  [  36  ] . However, exclusively inhibition 
of miR-145, but not miR-21 or let-7b, sup-
pressed mucus-hypersecretion and eosinophilic 
in fl ammation. Treatment of HDM-challenged 
mice using anti-miR-145 also dramatically 
reduced the secretion of IL-5 as well as IL-13 
from T 

H
 2 cells, while antagomirs of miR-21 or 

let-7b showed no effect. Up-regulation of miR-21 
was also observed in miRNA-expression pro fi ling 
performed by Lu and colleagues after IL-13 
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induction in  Il-13  lung transgenic mice  [  37  ] . Of 
21 total miRNAs identi fi ed as being differentially 
expressed, miR-21 showed the strongest up-regu-
lation while miR-1 appeared as the microRNA 
showing the strongest down-regulation fol-
lowing doxycycline-induced IL-13 expression. 
Up-regulation of miR-21 as well as down-regula-
tion of miR-1 could be further veri fi ed, by the 
same group, in two additional independent 
asthma models in mice.  In situ  hybridization 
showed that miR-21 up-regulation occurs mostly 
in monocytic cells. Target analysis revealed 
 Il-12p35  as the most prominent target being 
down-regulated via binding of miR-21  [  37  ] . 
Surprisingly, a study by Mark Lindsay’s lab com-
paring the miRNA expression pro fi les in airway 
biopsy samples from human patients with mild 
asthma versus healthy volunteers revealed no 
signi fi cant changes in microRNA expression. In 
addition, comparison of the miRNA expression 
pro fi les of patients with asthma did not 
signi fi cantly change after corticosteroid treat-
ment, which signi fi cantly improved the mild 
asthmatic phenotype  [  38  ] . 

 A genome-wide comprehensive study in mice 
based on next generation sequencing (NGS), 
compared short transcripts in naïve to allergen-
challenged mice lungs and revealed a massive 
increase in mature miRNA transcripts in allergen-
challenged lungs, with miRNAs of the let-7 fam-
ily being most prominent in lung tissue, 
independent of the allergic state  [  39  ] . Aside from 
changes in miRNA expression patterns, substan-
tial post-transcriptional modi fi cation of miRNAs 
could be observed in naïve as well as in allergen-
challenged mice. Target prediction proposed  Il-13  
as a target of the let-7 family miRNAs. Even 
though IL-13 levels are highly increased in aller-
gen-exposed mouse lung, let-7 miRNA levels did 
not change.  In vitro  analysis of T 

H
 2 cells isolated 

from mouse lung indeed revealed high levels of 
 Il-13  and accordingly low levels of let-7a (investi-
gated as a representative for the let-7 family miR-
NAs). Further analysis using reporter constructs 
veri fi ed the direct interaction of mmu-let-7a with 
the 3 ¢ UTR of  Il-13 . The interaction could also be 
con fi rmed in the reporter system using the human 
 IL-13  3 ¢ UTR in combination with hsa-let-7a. 

Nevertheless, application of anti-let-7-LNA to 
allergen-challenged mice markedly repressed the 
allergic phenotype, suggesting a proin fl ammatory 
role for members of the let-7 miRNA family in 
allergic lung disease in mice  in vitro   [  39  ] . Kumar 
and colleagues con fi rmed regulation of IL-13 by 
let-7 family miRNAs in a later study  [  40  ] . Here, 
intranasal delivery of a let-7 mimic led to reduced 
IL-13 levels in mice with allergic airway 
in fl ammation and alleviated asthma features, sug-
gesting that let-7 family members have an anti-
in fl ammatory effect in allergic airway disease. 
However, how these results translate into humans 
needs further examination. Finally, we would like 
to mention a comprehensive study by Garbacki 
and co-workers analyzing miRNA- as well as 
mRNA regulation in a model of acute and chronic 
asthma. Here, different time-points (short-, inter-
mediate-, and long-term exposure to the allergen) 
were taken into account, drawing a broad picture 
of miRNA-regulation during the process from 
early in fl ammation to chronically remodelled air-
ways  [  41  ] . Throughout the entire study miR-146b 
appeared as the only miRNA being up-regulated 
at all time-points analyzed. MiRNAs being regu-
lated at two time-points in the mouse model of 
asthma included miR-223, -690, -29c, -483, -574-
5p, and -672. Analysis of predicted miRNA-
mRNA pairs revealed different biological 
processes being regulated during the course of 
disease. These involved genes of transcriptional 
regulation, regulation of the cell cycle, protein 
metabolism, apoptosis, immunity, in fl ammation, 
and cell signalling. The work provided valuable 
comprehensive information on the molecular 
mechanisms in the development of asthma.  

    7.3.3   Cystic Fibrosis 

 Cystic  fi brosis (CF) is the most prevalent genetic 
disease in Caucasian populations. Originally 
causing early death, medical progress enables 
more and more patients to grow up to adulthood. 
CF is inherited in an autosomal-recessive way. 
Causative mutations (e.g.,  D F508 as the most 
common mutation) alter the gene of the cystic 
 fi brosis transmembrane conductance regulator 
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(CFTR), a chloride-channel expressed in the apical 
membrane glandular epithelium. This results in 
high viscosity of mucus in bronchi (“mucoid 
impactions”) and pancreas ducts, enabling recur-
rent infections and causing chronic in fl ammation, 
tissue destruction, as well as impaired organ 
function. 

 In a comprehensive analysis of miRNA expres-
sion pro fi les of bronchial brushings from cystic 
 fi brosis patients in comparison to non-CF brush-
ings, Oglesby and co-workers identi fi ed 93 miR-
NAs as being signi fi cantly deregulated in 3 out of 
5 CF-patients (56 miRNAs were down-regulated 
while 36 miRNAs were up-regulated)  [  42  ] . Further 
analysis was carried out on expression of miR-126 
which appeared signi fi cantly decreased in four out 
of  fi ve CF-patients. Down-regulation of miR-126 
could be con fi rmed in a CF tracheal airway epithe-
lial cell line (CFTE) as well as in the CF bronchial 
epithelial (CFBE) cell line when compared to their 
non-CF counterpart (HTE and HBE). In addition, 
substantial expression of miR-126 was only 
detected in the HBE cell line when compared to 
six other human non-lung cell lines. Down-
regulation of miR-126 could be induced in the nor-
mal bronchial epithelial cell line through induction 
of endoplasmic reticulum (ER) stress.  In silico  tar-
get predictions using different bioinformatic tools 
revealed TOM1 as a target of mir-126. Expression 
of TOM1 was shown to highly correlate with miR-
126 expression  in vitro  as well as  in vivo  samples. 
Regulation of TOM1 by miR-126 was additionally 
con fi rmed using a reporter construct carrying the 
entire  TOM1  3 ¢  untranslated region (3 ¢ UTR)  [  42  ] . 
This is of particular interest since TOM1 has been 
shown in a two-hybrid-screen to interact with the 
adaptor protein Tollip  [  43  ] . Tollip in turn had been 
reported earlier to play a role in IL-1-dependent 
signalling  [  44  ] . A report from 2004 revealed that 
overexpression of TOM1 suppressed IL-1ß- as 
well as TNF a -induced activation of NF k B sug-
gesting TOM1 acting as a common repressor  [  45  ] . 
However, this appears contradictory to the strong 
in fl ammatory response observed in Cystic Fibrosis. 
Therefore, additional studies need to be conducted 
to elucidate how down-regulation of miR-126, and 
therefore up-regulation of TOM1, may contribute 
to the pathology of Cystic Fibrosis. 

 It is well established, that the severe 
proin fl ammatory phenotype in CF is character-
ized by high levels of several proin fl ammatory 
cytokines (IL-8, IL-6 and TNF a ) in CF airways 
 [  46–  48  ] . In a recent study, Bhattacharyya and co-
workers performed a miRNA pro fi ling using the 
IB3-1 CF lung epithelial cell line in comparison 
to their wild type CFTR-repaired daughter cell 
line, IB3-1/S9  [  49  ] . Out of 365 miRNAs ana-
lyzed, 22 showed signi fi cant differential expres-
sion (18 showing elevated levels, while four were 
reduced) in CF epithelial cells. The miRNAs 
miR-155 and let-7c showed the strongest (over 
fourfold) up-regulation in CF cells. Up-regulation 
of miR-155 could also be con fi rmed  ex vivo  in CF 
bronchial brushings (compared to normal bron-
chial epithelial cells) as well as in CF neutrophils 
compared to normal neutrophils (10.8-fold and 
2.4-fold elevated, respectively). Further analysis 
revealed a direct effect of miR-155 on phosphati-
dylinositol-3,4,5-triphosphate 5-phosphatase 1 
(SHIP 1), which in turn interferes with PI3K sig-
nalling to Akt. Therefore, up-regulation of miR-
155 leads to down-regulation of  SHIP 1  mRNA. 
Reduction of SHIP 1 in turn leads to enhanced 
PI3K signaling to Akt, resulting in mRNA stabi-
lization of  IL-8  mRNA and thereby to increased 
IL-8 protein levels  [  49  ] . 

 Finally, one should mention that the  CFTR  
gene itself is subjected to post-transcriptional 
regulation by microRNAs. Recently, two groups 
investigated the role of microRNAs in regulation 
of the  CFTR  gene  [  50,   51  ] . Both groups per-
formed  in silico  analysis to identify miRNA 
responsive elements (MREs) in the  CFTR  3 ¢ UTR. 
Even though the results are controversial with 
respect to regulation of  CFTR  3 ¢ UTR by miR-101, 
both groups validated the predicted miR-494 as a 
negative regulator of CFTR. Despite showing 
partially inconsistent results for  CFTR  3 ¢ UTR 
regulation using a reporter plasmid system in 
varying cell lines, Gillen and co-workers conclu-
sively showed that three of their predicted 
miRNAs are highly expressed in primary human 
airway epithelial cells (miR-145, miR-331-3p, 
and miR-494)  [  50  ] , including miR-494, which 
had also been identi fi ed in the screen by Megiorni 
and colleagues  [  51  ] .   
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    7.4   MicroRNA in Lung Cancer 

 Lung cancer is the predominant cause of neopla-
sia-related death in men, and is affecting more 
and more women. Due to a lack of ef fi cient strat-
egies for screening or early diagnosis, the prog-
nosis is generally poor and cure rates are low. 
Cancer cellularity is diverse, comprising so-
called small cell lung cancer (SCLC, of neuroen-
docrine origin), and non-small cell lung cancer 
(NSCLC, e.g., squamous cell cancer, adenocar-
cinoma). The causative agent is, for the most 
part, primary or secondary tobacco smoke; other 
causes include biomass combustion (e.g., cooking 
in developing countries), naturally occurring 
radon etc. 

 Changes in miRNA expression in lung cancer 
(Fig.  7.1 ) may be an epiphenomena of malignan-
cies, or part of the causative chain of carcinogen-
esis. In that way, microRNA encoding 
DNA-regions may be spots of tumorigenic muta-
tions themselves. MiRNAs involved in lung can-
cer could have diverse pathophysiological 
functions, e.g., in (1) down-regulating the expres-
sion of a tumor suppressor gene, (2) failing to 
suppress oncogenes, (3) promoting metastasis 
development, or (4) mediating resistance to an 
anti-cancer treatment. 

 MiRNA involvement in lung cancer patho-
genesis was suggested since reduced Dicer 
expression correlates with poor survival in 
NSCLC  [  52  ] . In this line, Bishop et al. reported 
that NSCLC can be correctly classi fi ed by miR-
205 in lung squamous cell carcinomas or lung 
adenocarcinomas, which is of relevance for ther-
apy  [  53  ] . One example of cancer-correlated 
miRNA is miR-365, which down-regulates thy-
roid transcription factor 1 (TTF-1, associated 
with lung cancer) and high-mobility group 
AT-hook 2 (HMGA2, which promotes epithelial 
mesenchymal transition). Its DNA copy number 
is down-regulated in lung cancer samples  [  54  ] . 
Another mechanism of down-regulation of 
tumor-suppressive miRNAs lies in chromatin 
modi fi cations. As an example, down-regulation 
of miR-212, which sensitizes lung cancer cells 
for apoptosis, seems to be mediated not by DNA 

hypermethylation but by histone modi fi cations 
(H3K27me3 and H3K9me2) associated with 
transcriptionally inactive chromatin  [  55  ] . 

 A great challenge of anti-tumor therapy is the 
chemo-resistance of some lung cancers. MiR-100 
and miR-200b have been found to be down-regu-
lated in cancer cells insensitive to the classical 
cancer drug docetaxel  [  56,   57  ] . Ectopic over-
expression of miR-200b reversed the chemo-resis-
tance  in vitro  and in a mouse model, similar to 
siRNA-mediated down-regulation of the miR-200b 
target E2F3. Accordingly, decreased miR-200b 
levels are associated with the poor prognosis 
of patients with pulmonary adenocarcinoma. 
So-called “targeted therapies” of lung cancer, 
addressing distinct molecular targets (e.g., inhibi-
tors of receptor tyrosine kinases (TKI) like the 
epidermal growth factor receptor (EGFR)), have 
provoked great hope. Unfortunately, some lung 
cancers also display primary or acquired resis-
tance to these approaches. Garofalo et al. could 
demonstrate an involvement of miRNAs in this 
process  [  58  ] : EGFR silencing down-regulates 
miR-30c, miR-221, and miR-222. In sensitive 
tumor cells, the synthetic EGFR-TKI ge fi tinib 
down-regulates these miRNAs, leading to 
increased proapoptotic factors BCL-2-like pro-
tein 11 (BIM) and apoptotic peptidase activating 
factor 1 (APAF1). Ge fi tinib-resistant tumor cells 
do not down-regulate miR-30c, miR-221 and 
miR-222 after treatment, and arti fi cial over-
expression of these miRNAs renders cells insen-
sitive to treatment. 

 Another hallmark of cancer progression is 
metastasis. In a murine system, there seems to be 
an antagonistic interdependence of the miR-200 
family and the transcription factor  GATA3   [  59  ] . 
GATA factors inhibit miR-200 expression and 
promote epithelial-to-mesenchymal transition 
(EMT) as well as metastasis. On the other hand, 
miR-200 targets  Gata3 , thereby blocking EMT 
and metastasis. Metastatic endothelial recruit-
ment and neovascularization can be suppressed 
by miR-126, which in turn is down-regulated in 
many human cancers  [  60  ] . First results suggest 
that miR-378 might be a marker for brain metas-
tasis in NSCLC, a common and severe complica-
tion in lung cancer  [  61  ] . 
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 Recently, a potential therapeutic application 
of miRNA in lung cancer has been demonstrated 
by Babar and colleagues: the miR-155 level is 
elevated in (hypoxic) lung cancer cells and ren-
ders these cells insensitive to irradiation, a com-
mon therapeutic procedure in this disease  [  62  ] . 
Ectopic over-expression of miR-155 in turn 
radio-sensitizes lung cancer cells. 

 Besides potential therapeutic use of miRNAs 
in lung cancer, e.g., in connection with drugs 
acting on epigenetic phenomena, the usage of 
miRNAs as biomarkers seems to be quite immi-
nent. Analysis of miRNAs might facilitate the 
diagnosis of cancer as well as the determination 
of the organ origin, especially in adenocarci-
noma (lung, stomach, gut, thyroid gland etc.), 
the underlying mutations, the grade of malignity, 
the probability and location of metastasis, and 
the sensitivity to different treatment regimes. 
However, it is necessary to distinguish potential 
lung cancer related miRNA changes from altera-
tions which are provoked by cigarette smoke 
alone, other smoking-associated diseases like 
COPD, aging, or mere chronic in fl ammation, 
e.g., in atherosclerosis  [  63  ] . Different types of 
biological samples may be of use for biomarker 
characterization:

   Patient serum has been used in several studies  –
now, e.g., by microarray analysis  [  64  ] . By 
deep-sequencing technology, 8 miRNAs have 
been detected as diagnostic markers  [  65  ] .  
  In exosomes, miRNA is detectable and seems  –
to have a high stability  [  66  ] .  
  Even in whole blood samples, miRNAs have  –
been measured, although this means an inte-
gration of RNA from serum, leukocytes, a 
huge majority of erythrocytes, and other cir-
culating cells (stem cells, tumor cells etc.). 
Using a next generation sequencing approach, 
Keller et al. could detect 76 previously 
unknown miRNAs in peripheral blood of 
which 7 were altered in patients with lung 
cancer  [  67  ] .    

 Taken together, miRNAs are quite likely to 
have a clinical usage as biomarkers in lung 
cancer patients in the near future. However, 
the details of the most advantageous patient 
material, the most ef fi cient technology, and 

the right portfolio of miRNAs, have to be 
clari fi ed in further studies. 
 Based on (1) the current knowledge of 

miRNA involvement in many lung diseases, 
and (2) the tremendous complexity and chal-
lenges on the way to their usage in diagnosis 
and treatment, we strongly urge special efforts 
in the line of Medical Systems Biology/
Systems Medicine in this  fi eld. Interestingly, 
the German Federal Government has just 
established such a platform within the German 
Centre for Lung Research (Deutsches Zentrum 
für Lungenforschung).      
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    8.1   The E2F History 

 The E2F family of transcription factors plays a 
critical role in the control of cell cycle progres-
sion by regulating the timely expression of 
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  Abstract 
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in the context of a conserved cellular anti-tumorigenic safeguard mecha-
nism. However in highly aggressive chemoresistant tumors like malignant 
melanoma and prostate/bladder cancer it switches off this role and acts as 
promoter of cancer progression. Possible reasons for E2F1 mediated 
aggressiveness are defects in cell death pathways caused by epigenetic 
inactivation of important tumor suppressor genes, which often occur in 
late stage cancer and contribute to chemoresistance. Nevertheless exact 
mechanisms underlying E2Fs role in invasiveness and metastasis are 
largely unknown. Different reports hint towards the existence of feedback 
loops between E2F1 and microRNAs (miRNAs or miRs). MiRs are acti-
vated by E2F1 and either the transcription factor itself or cellular genes 
necessary for the growth regulating function of E2F1 are inhibited by 
different miRNAs. This mutual regulation possibly in fl uences the balance 
between E2F1s proapoptotic versus prosurvival function. In the following 
we will summarize some miRNA-E2F1-interactions contributing to a 
complex regulatory network.  
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genes required for DNA synthesis at the G1/S 
phase boundary  [  1  ] . E2F activity itself is con-
trolled through association with hypophospho-
rylated retinoblastoma protein RB and the 
pocket proteins p107 and p130. During cell 
cycle progression, D-type cyclin associated 
kinases initiate phosphorylation of RB family 
proteins, which results in the release of E2F 
and the transactivation of E2F regulated genes 
 [  2  ] . The E2F family consists of nine members 
including both “activator E2Fs” ( E2F1-3a ) that 
are potent transcriptional activators driving G0 
cells to cycle, and “repressor E2Fs” ( E2F3b-8 ) 
with weak activation potential that appear to be 
involved primarily in gene silencing of quies-
cent or differentiated cells. These family mem-
bers perform distinct, perhaps overlapping, 
functions in the control of cell cycle progres-
sion and have unique roles during development, 
tissue homeostasis, and apoptosis  [  3  ] . During 
the course of tumor development cells sustain 
mutations that disrupt their normal growth con-
trol mechanisms. Notably, the p16INK4/RB/
E2F pathway is defective in the vast majority of 
human tumors. This results in deregulated and 
hyperactive E2F in transformed cells. However, 
the role of E2F proteins in determining cell fate 
is not restricted to their effects on cell cycle 
progression. Compelling evidence indicates 
that particularly E2F1 can also ef fi ciently 
induce apoptosis, and depending on other onco-
genic mutations that are present, either pro-
motes or inhibits tumorigenesis  [  3,   4  ] . 

 In agreement with its oncogenic activity 
increased expression of E2F1 causes neoplastic 
transformation of rodent cells and tumor devel-
opment in tissues from transgenic mice  [  5,   6  ] . 
Moreover, deregulation of E2F1 through over-
expression or RB inactivation has been demon-
strated to provoke DNA damage and thus could 
contribute to cancer by inducing mutations  [  7  ] . 
In contrast, a large body of evidence for its 
function as a fail-safe mechanism that engages 
cell death pathways to protect organisms from 
oncogenic transformation and tumor develop-
ment comes from knockout mice. The apoptotic 
response to deregulated E2F is best shown by 
the observation that RB de fi cient mouse 

embryos have increased apoptosis, which is 
suppressed by the loss of E2F1  [  8  ] . Notably, 
loss of E2F1 impairs the development of pitu-
itary and thyroid tumors in RB-heterozygous 
mice but promotes tumor incidence in other tis-
sues, implicating that the role of E2F1 in tum-
origenesis might be context dependent and 
tissue speci fi c  [  9  ] . Apoptosis related to E2F1 is 
mediated in a p53-dependent manner and inde-
pendent of p53. In most cases, induction of cell 
death by E2F1 occurs via direct transcriptional 
activation of genes encoding proapoptotic pro-
teins such as p14ARF, a positive regulator of 
p53, p73, Apaf-1, BH3-only proteins, and cas-
pases or through inhibition of survival and anti-
apoptotic signaling mediated by NF- k B, Bcl-2, 
and GRP78  [  10–  18  ] . According to its tumor 
suppressor function, E2F1, in analogy to p53, 
determines the cellular response to genotoxic 
stress. Treatment of cells with DNA damaging 
agents can induce endogenous E2F1 through 
posttranslational stabilization of the protein, 
and aberrant expression of this transcription 
factor has been shown to increase the sensitiv-
ity of certain neoplastic cell types to apoptosis 
when treated combined with genotoxic drugs 
 [  19,   20  ] . Thus, the  fi nal decision of whether 
deregulated E2F1 activity leads to cell survival 
or death most likely depends on the genetic sta-
tus or molecular background of a cell. In addi-
tion, integration of external signals plays an 
important role in determining the sensitivity to 
E2F1 induced apoptosis. Supported by earlier 
studies, both the PI3K/AKT pathway and the 
EGFR/Ras/Raf pathway can inhibit E2F1-
induced apoptosis  [  21,   22  ] . Referring to this, 
our recent  fi ndings indicating that knockdown 
of E2F1 in highly metastatic melanoma cells 
inhibits cell migration, invasion and pulmonary 
metastasis are intriguing  [  23  ] . E2F1 induced 
malignant progression of tumor cells occurs 
independent from its proliferative activity and 
involves direct transcriptional activation of the 
epidermal growth factor receptor EGFR. 
Together, these data encourage the hypothesis 
that E2F1 strictly functions as a promoter of 
survival when pathways that mediate E2F1s 
apoptotic activity are disabled.  
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    8.2   MiRs in Human Cancer 

 MicroRNAs are ~20–24 nucleotide (nt) RNAs 
that negatively regulate eukaryotic gene expres-
sion at the post-transcriptional level. They were 
 fi rst discovered in  C. elegans  and were shown to 
regulate expression of partially complementary 
mRNAs  [  24  ] . MiRs use base-pairing to guide 
RNA-induced silencing complexes (RISCs) to 
speci fi c messages with fully or partly comple-
mentary sequences. The repression of targeted 
messages is a common outcome of RISC recruit-
ment and occurs through translational inhibi-
tion, accelerated exonucleolytic mRNA decay 
or site-speci fi c endonucleolytic cleavage in 
miR–mRNA pairs  [  25  ] . For miRNA biogenesis, 
primary (pri)-miRNA transcripts with stem-loop 
regions are usually produced by RNA poly-
merase II, and occasionally by RNA polymerase 
III  [  26,   27  ] . The stem-loop precursor (pre)-
miRNA is released by a cleavage event, which is 
catalyzed by the nuclear microprocessor com-
plex containing the RNase III Drosha and in 
mammals the cofactor DGCR8. Pre-miRs are 
bound by the nuclear export factor exportin5, 
which mediates their transport to the cytoplasm. 
A distinct RNase III, Dicer, subsequently produces 
a ~22 base-pair duplex RNA that is composed 
of the eventual mature miRNA, base-paired to 
the so-called miRNA* strand  [  28  ] . In miRNA 
duplexes, the strand with the weakest 5 ¢ -end 
base pairing is selected as the mature miRNA 
and loaded onto an Argonaute (Ago) protein 
 [  29  ] . Agos are guided by the incorporated 
miRNA to the target mRNA, where the miRISC 
mediates the repressive effect. Watson-Crick 
base-pairing to the 5 ¢ -end of miRs, especially to 
the so-called ‘seed’ that comprises nucleotides 
2–7, is crucial for targeting. Imperfect miR–
mRNA hybrids with central bulges (nucleotides 
9–12) enable translational inhibition or exonu-
cleolytic mRNA decay, although the factors that 
govern the prevalence of one speci fi c mecha-
nism remain unknown  [  30  ] . Owing to their 
relaxed base-pairing requirements each miR 
might have hundreds of target transcripts 
involved in numerous biological categories. 

 It has become clear that besides their role as 
regulators in a variety of developmental and 
physiological processes, miRs are implicated in 
the development of cancer  [  31  ] . About 50% of 
the annotated human miRs map within fragile 
regions of chromosomes, which are areas of the 
genome that are associated with various human 
cancers  [  32  ] . Recent evidence indicates that com-
ponents of the miRNA machinery and miRs 
themselves are involved in many cellular pro-
cesses that are altered in cancer such as differen-
tiation, proliferation and apoptosis  [  33  ] . Some 
miRs exhibit differential expression levels in 
tumors and have shown capability to affect cel-
lular transformation, tumorigenesis, and metasta-
sis acting either as oncogenes or tumor suppressors 
depending on their target genes. For example, 
 miR-15a  and  miR-16-1  have been associated with 
chronic lymphocytic leukemia  [  34  ] .  MiR-21  and 
 miR-17-5p  are upregulated, while  miR-143  and 
 miR-145  are downregulated in colorectal cancer 
 [  35–  37  ] .  MiR-21  has been reported for its anti-
apoptotic effect in glioma and breast cancer, and 
the let-7 family of miRs is described as a prog-
nostic factor in lung cancer  [  38–  40  ] . The discov-
ery of these so called oncomirs is currently one of 
the major goals in cancer research.  

    8.3   The miR-E2F Interactome: 
MicroRNAs Regulating E2F1 

 MicroRNAs target hundreds of mRNAs leading 
to a complex network, which regulates various 
cellular processes. Among diverse miR regulated 
transcription factors, E2F1 represents a particu-
larly interesting target as multiple links between 
miR activity and cancer development have been 
described, and E2F1 has dual function related to 
cancer  [  41,   42  ] . On one hand, E2F1 is a mediator 
of apoptosis, as shown in clinical trials where its 
high expression leads to increased survival of 
patients with adjuvant chemoradiation therapy 
 [  43  ] . Contrariwise, in highly aggressive chemo-
resistant tumors like malignant melanoma, pros-
tate, and bladder cancer it exhibits oncogenic 
properties  [  23,   44,   45  ] . Possible reasons for this 
are defects in cell death pathways caused by 
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epigenetic inactivation of important tumor 
suppressor genes  [  46,   47  ] . Nevertheless, exact 
mechanisms concerning E2F1 induced malignant 
progression are largely unknown. MiR-E2F1-
interactions might contribute either to the tumor 
suppressive or to the oncogenic function of E2F1 
 [  48  ] . In the following section we will summarize 
some miRs regulating E2F1, which are divided 
into oncogenic ones that inhibit apoptosis through 
E2F1 in early stages of cancer progression and 
tumor suppressive miRs shown to block the onco-
genic outcome of E2F1 in late stage tumors.  

    8.4   Oncogenic miRs Inhibiting 
E2F1-Induced Apoptosis 

    8.4.1   MicroRNA-17-Family Cluster 

 One of the  fi rst studies which revealed that E2F1 is 
targeted by miRs was by O’Donnell et al.  [  49  ] . It 
was shown that E2F1 is negatively regulated by 
two miRs of the  miR-17~92  cluster,  miR-17-5p  and 
 miR-20a , that arise from the polycistronic tran-
script  c13orf25  placed in 13q31.3. This chromo-
somal region is often ampli fi ed in B-cell lymphomas 
and other malignancies, leading to the upregulation 
of miRs from this cluster  [  50,   51  ] . Consistent with 
the idea that the  miR-17~92  cluster plays an impor-
tant role in proliferation and survival, its forced 
expression promotes the high proliferation and 
undifferentiated phenotype of normal lung cells 
 [  52  ] . In RB inactivated small-cell lung cancer 
(SCLC),  miR-17~92  counterbalances DNA dam-
age, thereby favouring genomic instability and the 
acquisition of further oncogenic features  [  53  ] . In 
agreement, knockdown of  miR-17-5p  and  miR-20a  
resulted in a signi fi cant induction of apoptosis  [  54  ] . 
With respect to the interaction between  miR-17~92  
and E2F1, ectopic expression of  miR-17-5p  and 
 miR-20a  in tumor cells resulted in a strong decrease 
of E2F1 protein levels without affecting E2F1 
mRNA abundance  [  49  ] . Accordingly, the levels of 
 miR-17-5p  were found to inversely correlate with 
the E2F1 levels in tumor samples from colon can-
cer patients, suggesting that these miRs promote 
malignancy in many tissues by rendering cells 
insensitive to the apoptotic abilities of E2F1  [  55  ] . 

 Translation of E2F1 in malignant HepG2 and 
HeLa cells is also limited through  miR-106b  and 
 miR-93  mapping to the  miR-106b~25  cluster  [  56  ] . 
Previous studies indicated that a knockdown of the 
complete  miR-106b~25  cluster results in reduced 
proliferation and suppressed anchorage-independent 
growth in liver cancer, while proapototic pheno-
types were induced by antisense-mediated inhibi-
tion of these miRs in gastric cancers  [  56,   57  ] . 
Therefore, it can be concluded that  miR-106b~25  
like  miR-17~92  prevents excessively high E2F1 
expression that may otherwise cause tumor cell 
apoptosis. In addition, miRNAs from the  miR-
106b~25  and the  miR-17~92  cluster are emerging 
as key modulators of TGF b  tumor suppressor 
signaling in gastrointestinal and other tumors, 
interfering with cell cycle arrest and apoptosis 
when overexpressed  [  57,   58  ] .   

    8.5   Tumor Suppressive miRs 
Blocking the Oncogenic 
Outcome of E2F1 

    8.5.1   MicroRNA-106a 

 In contrast to the above mentioned miRNAs with 
a generally growth promoting effect mediated by 
downregulation of E2F1 in its proapoptotic func-
tion,  miR-106a  acts as a tumor suppressor by 
negatively regulating E2F1 expression in glioma 
cells. Here, E2F1 seems to provide its tumori-
genic function in the context of  mir-106a  regula-
tion as low expression of  mir-106a  signi fi cantly 
correlated with high levels of E2F1 protein in 
high-grade gliomas and vice versa. In this type of 
cancer  mir-106a  negatively regulates E2F1 levels 
via translational suppression, thereby inhibiting 
proliferation and inducing apoptosis  [  59  ] .  

    8.5.2   MircoRNA-330-3p 

  MiR-330-3p  acts as a tumor suppressor through 
negative regulation of E2F1 expression in pros-
tate cancer cells  [  60  ] .  MiR-330  belongs to a 
poorly conserved miRNA family that maps to 
chromosome 19q13, a locus strongly linked to 
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the aggressiveness of prostate cancer. E2F1 is 
signi fi cantly overexpressed in metastatic prostate 
cancers and tumors with high levels of E2F1 were 
shown to have low  miR-330-3p  levels. In this 
case,  miR-330-3p  exhibits its tumor suppressive 
activity through E2F1 mediated repression of Akt 
activation, which has been shown to communi-
cate the major effect of E2F1 in conferring sur-
vival advantages  [  61  ] . By inhibiting E2F1 the 
miRNA decreases phosphorylation of Akt 
kinases, thereby blocking Akt mediated survival 
signaling and activating apoptosis.  

    8.5.3   MicroRNA-34 Family 

 The miR-34 family is composed of three evolu-
tionary conserved members  miR-34a ,  miR-34b , 
and  miR-34c . A  fi rst link to the tumor suppressor 
activity of these miRNAs arose from the observa-
tion that their reintroduction in neuroblastoma 
cell lines inhibits cell proliferation through the 
induction of caspase-dependent apoptosis.  MiR-
34a  was subsequently shown to be directly 
induced by p53 and to contribute to p53 mediated 
cell death on promoting apoptosis  [  62–  66  ] . At 
the same time, global gene expression microarray 
analyses have implicated that  miR-34a  functions 
as a potent suppressor of cell proliferation by 
modulation of E2F signaling  [  66  ] . In colon can-
cer cells, tumor suppressive  miR-34a  caused 
senescence-like growth arrest by downregulating 
E2F1, which is associated with the accumulation 
of p53 and its downstream target p21. A signi fi cant 
increase of  miR-34a  was also found upon irradia-
tion of hematopoietic lymphoid tissues, paral-
leled by a decrease in the expression of its 
prosurvival target genes  NOTCH1 ,  MYC ,  CCND1 , 
and  E2F3   [  67  ] . The nongenotoxic activator of 
p53 pathway, Nutlin-3, signi fi cantly reduced 
transcription of both B-Myb and E2F1 in p53wt 
leukemic cells, thus leading to suppression of cell 
proliferation by p53  [  68  ] . This effect is mediated 
by  miR-34a  that is upregulated upon Nutilin-3 
treatment. Beside  miR-34a  both other family 
members  miR-34b/c  that are epigenetically 
silenced by DNA methylation in cancer cell lines 
of lymph node metastases originated from 

melanoma, colon, and head and neck were shown 
to abolish cell motility and tumor growth, and to 
inhibit metastasis formation in xenograft models 
after reintroduction  [  69  ] . The observed effect was 
associated with the downregulation of their onco-
genic target genes  MYC ,  CDK6 , and  E2F3 . These 
studies commonly suggest a tumor suppression 
mechanism by this miRNA family, which is 
encompassed by modulation of E2F activity. 
Current  fi ndings indicate that E2F1 and p53 share 
the property of being activated in response to 
DNA damage followed by the induction of an 
overlapping set of proapoptotic target genes  [  70  ] . 
Although E2F1 further enhances p53 activity 
through p14ARF and p73, E2F activity is attenu-
ated by p53 induced expression of the cyclin-
dependent kinase inhibitor p21  [  71  ] . Hence, p53 
synergizes only with the proapoptotic activity of 
E2F1, while antagonizing cell cycle progression 
through this transcription factor. As such, inhibi-
tion of E2F1s prosurvival function is recapitu-
lated by the activity of  miR-34  microRNA, thus 
constituting a dual safety mechanism to counter 
E2F1 hyperproliferative signaling by supporting 
p53 apoptotic activity. Since  miR-34a  functions 
in p53 knockout cells and cell lines with mutant 
p53 as well, this mechanism may be an essential 
barrier to cancer progression also in cells that 
have lost p53 function  [  66  ] .  

    8.5.4   MicroRNA-223 

  MiR-223  is another interesting tumor suppressive 
miRNA with a pivotal role in granulopoiesis. 
Pulikkan and colleagues reported  fi rst that this miR 
acts as key effector of the tumor suppressor CCAAT 
enhancer binding protein  a  (C/EBP a ) in acute 
myeloid leukemia (AML)  [  72  ] . Here, C/EBP a  
induces  miR-223 , which in turn inhibits tumori-
genic E2F1, thereby blocking myeloid cell cycle 
progression. However, on the other hand C/EBP a  
has been shown to be deregulated by different 
oncoproteins or mutated in approximately 10% of 
AML patients  [  73–  75  ] , leading to weak  miR-223  
expression and high E2F1 protein levels. This kind 
of deregulation may result in the shift from differ-
entiation to proliferation and  fi nally AML.  
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    8.5.5   MicroRNA-15 Family 

  MiRNA-195  belongs to the  miR-15  family, which 
members are downregulated in various cancers 
including hepatocellular carcinoma (HCC). This 
family harbours the potent tumor suppressors  miR-
15  and  miR-16 , both promoting apoptosis by down-
regulating antiapoptotic B cell lymphoma 2 (Bcl-2) 
protein and through repression of cell proliferation 
by targeting cell cycle genes like  CCND1 ,  CCND3 , 
 CCNE , and  CDK6   [  76,   77  ] . Moreover, the sibling 
 miR-195  has been shown to dramatically suppress 
the ability of HCC and colorectal carcinoma cells 
in colony formation and tumor development in 
nude mice by blocking G1 to S transition  [  78  ] . 
Their investigation characterized multiple G1/S 
transition-related molecules, including  CCND1 , 
 CDK6 , and  E2F3  as direct targets of  miR-195 . In 
addition, this miR represses RB phosphorylation 
and the transactivation of downstream E2F target 
genes, suggesting that  miR-195 , in concordance 
with its anti-proliferative effect, mediates tumor 
suppression via inhibition of RB/E2F-signaling.  

    8.5.6   MicroRNA-205 

  MiR-205  represents an additional tumor suppres-
sor candidate. Overexpression of  miR-205  reduced 
E2F1 protein levels in malignant melanoma, 
thereby blocking their proliferative capacity medi-
ated by E2F regulated Akt phosphorylation. 
Furthermore, enhanced expression of  miR-205  
induced apoptosis, repressed melanoma cell pro-
liferation, colony formation and tumor cell growth, 
and triggered senescence  [  79  ] . Since  miR-205  is 
located on 1q32, a locus that is often lost in skin 
cancer, its signi fi cant downregulation in metastatic 
melanoma compared to primary tumors or nevi is 
obvious. This may be responsible for E2F1 activa-
tion frequently observed in metastatic melanoma.   

    8.6   The Loops: E2F1 Regulates 
microRNAs 

 Since miRs themselves are transcribed by RNA 
polymerase II, they can be regulated by transcrip-
tion factors. This fact predicts that interesting 

regulatory loops can be established between 
genes coding for classic transcription factors and 
genes coding for miRNAs. According to this, a 
new level of regulation has been identi fi ed, indi-
cating that some miRs are not only important 
modulators of E2F1 mRNA translation but also 
themselves are regulated by the E2F1 transcrip-
tion factor in an autoregulatory feedback loop. 

    8.6.1   The E2F1–miR-17 ~ 92/miR-
106b ~ 25–Myc Circuit 

 E2F1 directly binds to the promoter of the  miR-
17~92  cluster activating its transcription, while 
as described above, miRs encoded by this poly-
cistronic cluster in turn negatively modulate 
translation of E2F1 mRNA via binding sites in its 
3 ¢ -untranslated region  [  80,   81  ] . This suggests that 
E2F1, which stimulates its own transcription in a 
positive autoregulatory loop, prevents its abnor-
mal accumulation in a negative feedback loop by 
activation of  miR-17~92 . In general, such a fail-
safe mechanism against high E2F activity might 
be important, since deregulated E2F1 can lead to 
cell death or malignant transformation depending 
on the cellular context. A similar interaction has 
been proposed for E2F1 and the  miR-17~92  para-
log clusters  miR-106b~25  and  miR-106a~363  
 [  58,   82  ] . The reciprocal regulation between E2F1 
and the miRNA polycistrons results in largely 
context-dependent net expression levels of the 
feedback loop components in cancers. Typically 
miRs can confer a balancing effect on signaling 
systems that is regulating the relative levels of 
pathway players to achieve optimal activity. 
Furthermore miRs may impart a buffering effect, 
where they protect molecular communication 
from  fl uctuations. Since the process of aberrant 
degenerateness requires several distinct and heri-
table gene regulatory alterations with phenotypic 
impact on signaling pathways to yield cancer 
cells, the combinatorial outcome of these changes 
is likely to overcome the balancing and buffering 
effect of the E2F/ miR-17  loop and to produce 
abnormal expression levels in response to differ-
ent cellular scenarios. 

 In this negative feedback loop another layer of 
complexity was added due to the fact that c-Myc 
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activates expression of members from all three 
paralogous microRNA clusters  miR-17~92 ,  miR-
106a~363 , and  miR-106b~25   [  49,   83  ] . Thus, the 
positive regulatory feedback loop of Myc and 
E2F1 is additionally regulated by Myc induced 
miRNA clusters  [  84  ]  (Fig.  8.1 ). The primary 
function of oncogenic  miR-17~92  lies in the reg-
ulation of cell cycle activities  [  85  ] . During mito-
sis precise timing of E2F1 expression dictates 
entry into S-phase and accurate timing of E2F1 
accumulation requires converging signals from 
the RB/E2F pathway and the c-Myc regulated 
 miR-17  and  miR-20a  miRNAs to circumvent a 
G1 checkpoint arising from the untimely accu-
mulation of E2F1  [  86,   87  ] . In addition,  miR-
17~92  can increase Myc enhanced proliferation 
by targeting  CDKN1A  and consequently activat-
ing the cyclin D1/CDK4 complex to release RBs 
inhibition on E2F  [  88  ] . Consistent with the idea 
that there are multiple levels of regulation during 
cell cycle transitions, microRNAs in the  miR-
106b  family promote G1 exit and cell cycle pro-
gression by direct downregulation of  CDKN1A  
 [  89  ] . Genomic ampli fi cation and elevated expres-
sion of  miR-17~92  occurs in several human B-cell 
lymphomas and its enforced expression in mice 
cooperates with c-Myc to promote formation of 
B-cell lymphomas  [  90,   91  ] . Speci fi cally,  miR-19  
was identi fi ed as important oncogenic component 
of this cluster, both necessary and suf fi cient for 

promoting c-Myc induced lymphomagenesis by 
repressing apoptosis  [  90,   92  ] . Since E2F1 is 
known to activate transcription of the  MYC  proto-
oncogene, and vice versa, transcriptional activa-
tion of the  miR-17~92  and  miR-106b~25  clusters 
by both transcription factors may represent a way 
to maintain the level of miRNAs proportional to 
E2F1 activity  [  93–  95  ] . The consequences of the 
coupling between the E2F1/Myc positive feed-
back loops and the E2F1/Myc/ miR-17~92  nega-
tive feedback loop have been analyzed using a 
mathematical model  [  96  ] . This model predicts 
that  miR-17~92  is critical in regulating the posi-
tion of the off-on switch in E2F1/Myc protein 
levels and in determining the on levels of these 
proteins. Due to the negative feedback loop in the 
network, large-amplitude protein oscillations 
were shown to coexist with the off steady state 
levels, allowing the system to respond through 
apoptosis to dangerously large perturbations.   

    8.6.2   p53 Acts as Regulator of E2F1 
Controlled miRNAs 

 Several lines of evidence suggest that the  c13orf25  
locus is not only controlled by potentially onco-
genic transcription factors. In this context, it was 
reported that the tumor suppressor protein p53 
binds to the  miR-17~92  promoter to repress its 

  Fig. 8.1    Schematic diagram of the E2F1–miR-17 ~ 92/miR-
106b ~ 25–Myc loop. This regulatory feedback loop repre-
sents the complex interaction of E2F1 with the oncogenic 
miRNA clusters  miR-17~92  and  miR-106b~25 . OncomiRs 
of these clusters are induced by E2F1 and c-Myc, and vice 

versa inhibit E2F1s proapoptotic function. In addition, miR-
17~92 can increase Myc enhanced proliferation by targeting 
 CDKN1A /p21, resulting in the activation of cyclin D1/
CDK4-dependent RB phosphorylation and subsequent 
release of E2F1.  Green , activation;  red , inhibition       
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transcription during hypoxia induced apoptosis 
 [  97  ] . Enhanced expression of  miR-17~92  reduced 
apoptosis in cells containing wild-type p53, 
whereas suppression of its family members  miR-
17-5p  and  miR-20a  sensitized p53-negative cells 
to hypoxia induced death. In addition to the cor-
relation between pri- miR-17~92  expression and 
the p53 status in colorectal carcinomas shown 
here, Diaz and co-workers found that  miR-17-5p  
overexpression is associated with a loss of 
heterozygosity in the  TP53  region of colon can-
cer patients  [  55  ] . The control of  miR-17~92  by 
p53 further understates the role of this cluster as 
crucial regulator of cell cycle progression and its 
function during malignancy. As p53 and E2F1 
are both involved in the induction of apoptosis, 
mutually regulate each other, and both modulate 
expression of the  miR-17~92  cluster in an oppo-
site manner, this establishes another fascinating 
network of interactions. Speci fi cally, the Rotter 
group has shown that p53 repressed miRNAs are 
involved with E2F in a feed-forward loop pro-
moting proliferation  [  82  ] . They demonstrated 
that the  miR-106b/93/25  polycistron and its para-
logs are coordinately activated by E2F1, and 
importantly, established E2F1 as the mediator of 
the p53-dependent repression of  miR-106b/93/25 , 
suggesting that this mechanism underlies the 
repression of the two additional paralogous poly-
cistrons. Indicative of the signi fi cance of this 
 fi nding, expression of these miRNAs was down-
regulated in senescent cells and in breast cancers 
harboring wild-type p53. Together, this regula-
tory network results in a feed-forward loop simi-
lar to that observed with c-Myc, with the 
difference that p53 represses the miRNA clusters 
instead of activating them as in case of c-Myc. 
Thus, it appears conceivable that transcriptional 
repression of the proliferative  miR-106b/93/25  
cluster and their paralogs mediates part of the 
antiproliferative effects of p53, while Myc exerts 
its oncogenic function through E2F1 mediated 
transcriptional activation of these miRs. The 
involvement of p53 and c-Myc and their oppos-
ing modes of target control perfectly re fl ect their 
roles in cell proliferation and tumorigenesis with 
p53 being the classical tumor suppressor and 
c-Myc the strong oncogene.  

    8.6.3   E2F1 and miRNA-449 Cluster 

 Both E2F1 and p53 are strong inducers of apop-
tosis, at least in part by transactivating an over-
lapping but not identical set of proapoptotic genes 
 [  70  ] . Most notably, p53 was found to induce 
expression of the  miR-34  family that contributes 
to apoptosis on induction by p53  [  62–  66,   98  ] . 
These  fi ndings raised the question whether E2F1 
may also activate miRNAs that contribute to 
apoptosis. In this respect, the miRNAs  miR-
449a/b  were discovered as direct transcriptional 
targets of E2F1  [  99,   100  ] . The  miR-449  cluster 
encoding the highly conserved  miR-449a/b  and 
the much later described  miR-449c , structurally 
resembles the p53 inducible  miR-34  family, thus 
being classi fi ed as one family of microRNAs 
 [  101  ] . In agreement with a putative tumor sup-
pressive function,  miR-449a  and its isomer 
reduced proliferation and promoted apoptosis by 
at least partially p53-independent mechanisms 
 [  99  ] . Similar to  miR-34a , the  miR-449a  was 
shown capable of negatively regulating the Sirt1 
deacetylase, thus augmenting the highly active 
acetylated p53 and RB levels  [  99,   102  ] . In addi-
tion,  miR-449a/b  inhibits E2F activity through 
feedback loops by targeting  CDK2  and  CDC25A , 
two oncoproteins that positively regulate phos-
phorylation of the RB pocket protein, which 
binds to and inactivates E2F in its hypophospho-
rylated form  [  103  ] . 

 Since  miR-34  and  miR-449  activate p53 while 
attenuating the activity of E2F1, this strongly 
argues that they fortify both the proapoptotic 
activities of E2F1 and p53, but also the mutual 
regulation of these transcription factors  [  100  ] . 
This asymmetric regulation is already character-
ized by the fact that E2F1 stabilizes p53 and 
accessorily enhances the transactivation of p53-
responsive genes, whereas p53 leads to E2F1 
inactivation through increased transcription of the 
CDK inhibitor p21. This effect is enforced by 
 miR-449 . In detail, E2F1 transactivates in response 
to DNA damage  miR-449,  which activates the p53 
pathway, thereby inducing the expression of 
 miR-34 . In turn  miR-449  and  miR-34  inhibit the 
E2F pathway in a negative feedback loop and 
promote growth arrest  [  101  ] .  
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    8.6.4   E2F1 and miR-15 Family 

 Recently, O fi r et al. demonstrated that expression 
of  miR-15  and  miR-16  is regulated by E2F1  [  77  ] . 
Speci fi cally, E2F1 overexpression and induction 
of endogenous E2Fs resulted in elevated levels of 
 miR-15a ,  miR-16-1  and  miR-15b ,  miR-16-2 . ChIP 
analyses revealed a direct binding of E2F1 to their 
host gene promoters  SMC4  (structural mainte-
nance of chromosomes 4) and  DLEU2 , regulating 
the expression of these miRNAs. As aforemen-
tioned  miR-15  and  miR-16  are known to inhibit 
cyclin E, a pivotal E2F target gene that plays a 
critical role in G1/S transition  [  104  ] . These data 
support the existence of a regulatory loop where 
E2F1 transcriptionally regulates expression of 
cyclin E,  miRNAs-15 , and  miRNAs-16 , and these 
miRNAs then repress cyclin E expression. As 
E2F1 activates both cyclin E and repressors of 

cyclin E, this regulatory loop is similar to the one 
described above, where E2F1 regulates the levels 
of  miR-449a/b  which restrict E2F activity.  

    8.6.5   C/EBP a –miRNA-223–E2F1-Loop 

 As already mentioned E2F1 is negatively regu-
lated by  miR-223  in granulopoiesis and deregula-
tion of  miR-223  results in AML. Once this 
deregulation occurs, E2F1 additionally represses 
 miR-223  in a negative feedback loop by direct 
binding to the  miR-223  promoter leading to 
myeloid cell-cycle progression and transforma-
tion  [  72  ] . Hence,  miR-223  overexpression might 
be used as a therapeutic tool to inhibit E2F1 pro-
tein levels in AML. The complex interactions 
between E2F1 and tumor suppressive miRs are 
summarized in Fig.  8.2 .    

  Fig. 8.2    Regulatory network of tumor suppressive miRs 
and E2F1. MiRs that inhibit the oncogenic function of 
E2F1 either by directly targeting the transcription factor 

or indirectly via reactivation of proapoptotic molecules 
such as p53.  Green , activation;  red , inhibition       

 



144 S. Knoll et al.

    8.7   Conclusions 

 E2F1 represents an important transcription 
factor, which is well known to exert its proapop-
totic functions in different cellular systems, 
thereby enhancing the ef fi ciency of chemothera-
peutic treatment  [  43  ] . However, once it switches 
off this role it acts as an oncogene. The regula-
tory mechanisms underlying this discrepancy 
are widely unknown. Obviously, defects in 
apoptotic signaling pathways contribute to the 
malignant behavior of E2F1  [  23,   44,   45  ] , but for 
a detailed molecular background further investi-
gation is needed. MiRs are a new class of regu-
latory molecules, which are involved in a variety 
of cellular processes. As negative regulators of 
numerous molecules, miRs contribute to cell 
cycle regulation, development, and cancer  [  31  ] . 
This article outlined relevant interactions 
between miRs and E2F1, possibly in fl uencing 
its complex cell context-dependent function. 
E2F1 regulating miRNAs are divided into onco-
genic and tumor suppressive ones, inhibiting 
either E2F1s proapoptotic or tumorigenic activ-
ity. Since tumor suppressive miRs are often 
downregulated in late stage tumors, they indi-
rectly contribute to the oncogenic function of 
E2F1. Interestingly, this regulation is often 
mutual. Different miRs and E2F1 build upregu-
latory feedback loops leading to the  fi ne-tuning 
of E2F1 activities. For example E2F1 induces 
the miR-17~92 cluster, which in turn inhibits 
translation of the transcription factor, thus pre-
venting its abnormal accumulation in the cell 
 [  49,   80,   81  ] . In addition to direct miRNA-E2F1 
interactions, indirect interactions between dif-
ferent miRs and E2F1 regulating proteins also 
contribute to its cell context-dependent behav-
ior. Important regulators of E2F1 are p53 as a 
typical tumor suppressor and c-Myc as a strong 
oncogene  [  71,   84  ] . These proteins are either 
regulated by or regulate themselves E2F1-
dependent and -independent miRNAs, thus 
being involved in the complex network of 
miRNA-E2F1-mediated signaling  [  49,   82,   83  ] . 
In sum, miRNAs represent a novel level of E2F1 
regulation, which is already described by 
different existing regulatory feedback loops. 

Consequently miRs give new insights into E2F1 
regulation and the molecular background for its 
 fi nal functional outcome, therefore representing 
interesting tools for new therapeutic strategies. 
Enforced expression of tumor suppressive miR-
NAs like, for example miR-205, silenced in 
apoptosis resistant metastatic tumors could 
increase chemosensitivity by inhibition of onco-
genic E2F1 pathways.      
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  Abstract 

 An increasing number of transcription factors (TFs) and microRNAs 
(miRNAs) is known to form feedback loops (FBLs) of interactions where a 
TF positively or negatively regulates the expression of a miRNA, and the 
miRNA suppresses the translation of the TF messenger RNA. FBLs are 
potential sources of instability in a gene regulatory network. Positive FBLs 
can give rise to switching behaviors while negative FBLs can generate 
periodic oscillations. This chapter presents documented examples of FBLs 
and their relevance to stem cell renewal and differentiation in gliomas. 
Feed-forward loops (FFLs) are only discussed brie fl y because they do not 
affect network stability unless they are members of cycles. A primer on 
qualitative network stability analysis is given and then used to demonstrate 
the network destabilizing role of FBLs. Steps in model formulation and 
computer simulations are illustrated using the miR-17-92/Myc/E2F network 
as an example. This example possesses both negative and positive FBLs.   

  Keywords 

 Mathematical modeling  •  Feedback loops  •  Feedforward loops  •  miR-17-92  
•  E2F  •  Myc  •  p53  •  Cancer zone  •  Qualitative network  

  Abbreviations  

  CZ    cancer zone   
  dTF    differentiation transcription factor module   
  FFL    feed-forward loop   
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  qNET    qualitative network   
  sTF    stem cell transcription factor module   
  TF    transcription factor         

    9.1   Introduction 

 Decoding    genes and their expression into pro-
teins (that mostly carry out the business of living) 
is run by a molecular machinery in which RNA 
polymerases and ribosome organelles are core 
components. This machinery is regulated and 
intricately orchestrated by a web of molecular 
interactions and processes, including epigenetic 
modi fi cations ( e.g. , DNA methylation, histone 
acetylation and phosphorylation), binding of 
transcription factors with DNA, and processing 
of various RNA transcripts. A lot of attention has 
been focused recently on non-coding microRNAs 
(miRNAs) for several reasons: they are endoge-
nous, many are conserved across animal species, 
they target about a third of the genes in the human 
genome, and many have been implicated in vari-
ous human cancers  [  1–  3  ] . It is generally observed 
that miRNAs only have minor in fl uence on the 
protein levels of their targets; however, miRNAs 
can have profound in fl uence on cell-fate determi-
nation  [  4  ] . Perhaps this is because miRNAs exert 
their in fl uence where it matters most – that is, 
miRNAs may be members of gene regulatory 
network modules that control switches between 
cellular states. As illustrated in this chapter, these 
switches can arise from network instabilities. A 
primer on network stability analysis will be given 
and then applied to network modules involving 
transcription factors (TFs) and miRNAs. The 
modules are small (mostly involving direct inter-
actions) and can form feed-forward loops (FFLs) 
or feedback loops (FBLs). FFLs will be discussed 
brie fl y, but the focus of this chapter is on FBLs 
because they can generate instabilities. Examples 
of FBLs associated with gliomas are discussed. 

 This chapter illustrates how one can create a 
phenomenological kinetic model from a qualita-
tive network that lacks information on mecha-
nisms and model parameter values. A detailed 
mathematical modeling of the miR-17-92/E2F/
Myc network is provided to illustrate the various 
steps in model building and analysis. This network 

is essential in the control of the G1-S transition of 
the mammalian cell cycle and is often compro-
mised in human cancers, including gliomas.  

    9.2   Loops in miRNA-TF 
Interactions 

 Interactions among miRNAs, Transcription 
Factors (TFs) and Targets can organize into feed-
forward loops (FFLs) or feedback loops (FBLs). 
‘Targets’ refer to proteins whose expressions are 
positively or negatively regulated by the TFs. As 
will be explained in Sect.  9.4 , FFLs are not 
expected to affect the stability of networks so 
only a brief discussion will be given of their sub-
tle effects on the maintenance (homeostasis), 
 fi ne-tuning, reinforcement or precision of the 
steady states of Target proteins. The instabilities 
and switching behaviors associated with FBLs 
will be discussed in more detail in the remaining 
sections of this chapter. 

  FFLs.  All the possible FFLs involving miRNA, 
TF and Target, are shown in Fig.  9.1 . Tsang et al. 
 [  5  ]  presented evidence that these FFLs are  net-
work motifs  in the sense that they occur more 
frequently in gene regulatory networks than 
would be expected by chance alone. Figure  9.1a  
shows the case of a miRNA and the Target 
mRNA being co-regulated by a common TF. 
This co-regulation would increase the chances of 
co-occurrence of a miRNA and its Target mRNA, 
which is an obvious requirement for the miRNA 
to  fi nd its Target. Edge 1 represents the transcrip-
tion of the miRNA positively or negatively regu-
lated by a TF, edge 2 represents the inhibition of 
the translation of Target by the miRNA, and edge 
3 represents the composite of transcription giv-
ing the Target mRNA and its translation to the 
Target protein. The solid circles at the end of 
edges 1 and 3 signify either an activation or inhi-
bition (these possibilities are enumerated in 
Fig.  9.1c, d ).  

 Figure  9.1b  shows the case where the miRNA 
regulates both the TF and its Target mRNA. Edge 
1 in Fig.  9.1b  depicts the inhibition of the transla-
tion of the mRNA that is translated as TF protein. 
Edges 2 and 3 are de fi ned as in Fig.  9.1a . 
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 The two FFLs in Fig.  9.1c  are referred to 
as  coherent  FFLs because the pathway to Target via 
the miRNA has the same net effect as the direct 
TF-to-Target pathway. The  miRNA-mediated 
pathway in coherent FFLs serves to reinforce the 
TF-mediated regulation of the Target expression, 
as could be intuitively gleaned from the structure 
of the FFL. For example, the bottom coherent FFL 
in Fig.  9.1c  can be used to suppress ‘leaks’ in tran-
scription of Target (see  [  5  ] ). 

 The two FFLs in Fig.  9.1d  are referred to as 
 incoherent  FFLs because the miRNA-mediated 
pathway to Target has an effect opposite to that of 
the TF-to-Target pathway. These FFLs may act as 
‘noise buffers’ to maintain or  fi ne-tune Target 
steady states and keep uniformity of expression 
within a cell population  [  5–  7  ] . 

 Examples of coherent and incoherent FFLs are 
shown in Fig.  9.2 , with the oncogene c-Myc as the 
TF. These examples are taken from experimen-
tally veri fi ed regulatory interactions assembled in 
the database of El Baroudi et al.  [  8  ] . Myc and its 

targets shown in this  fi gure are genes associated 
with gliomas. VEGF (Fig.  9.2a ) is a pro-angio-
genic factor that has increased  expression in malig-
nant human glioma  consistent with this highly 
vascularized tumor  [  9  ] . The  retinoblastoma pro-
tein (product of the RB1 gene; Fig.  9.2b ) is a tumor 
suppressor involved in arresting the cell cycle – 
one mechanism of which is binding and subse-
quent inhibition of the E2F1 (Fig.  9.2c ) transcription 
factor. The Rb/E2F pathway is deregulated in 
many human cancers, including gliomas  [  10  ] . 
PTEN (Fig.  9.2d ) is another tumor suppressor 
commonly deleted or mutated in human cancers, 
including glioblastomas (reviewed in  [  11  ] ). Note 
that all the FFLs in Fig.  9.2  support the oncogenic 
property of Myc: (a) promotes angiogenesis, (b) 
and (d) are inhibitions of tumor suppressors, and 
(c) promotes the expression of the proliferation 
transcription factor E2F1.  

 The case of Fig.  9.1b  with edge 3 being an 
arrow ( i.e ., TF inducing expression of Target) 
has been invoked to explain the phenomenon of 

TF Target

miRNA

TargetmiRNA

TF

TF Target

miRNA

TF Target

miRNA

TF Target

miRNA

TF Target

miRNA

a b

c coherent FFLs d incoherent FFLs

1
2

3

3
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2

  Fig. 9.1    Possible ways that a miRNA interacts with a 
TF (transcription factor) to Target pathway. A miRNA 
always suppresses the translation of the Target, as shown 
by the hammerhead. ( a ) The feed-forward loop (FFL) 
con fi guration. The  dots  on edges 1 and 3 could either be 

 arrows  (activate) or  hammerheads  (inhibit). ( b ) Case 
with the miRNA is the origin of the FFL. The miRNA 
suppresses the translation of both TF and its Target. 
( c ) The two coherent FFLs. ( d ) The two incoherent 
FFLs       
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‘miRNA-target spatiotemporal avoidance’  [  4  ] . 
This phenomenon has been observed in 
Drosophila where certain miRNAs are essential 
in de fi ning tissue boundaries in space and time 
 [  4  ] . Also, the top coherent FFL in Fig.  9.1c  may 
provide a mechanism for ‘spatial avoidance’. 
An example of a mechanism for ‘temporal avoid-
ance’ is the top incoherent FFL in Fig.  9.1d  when 
there is a delay in the transcription of the miRNA 
by the TF – a delay compared to the expression 
of the Target, and there is a temporal shut-down 
of the Target once the miRNA goes up  [  4  ] . 

  FBLs.  The two possible feedback loops (FBLs) 
are shown in Fig.  9.3 . FBLs will be discussed in 
more detail in the next section.  

 Recently, various databases of validated and 
predicted FFLs and FBLs involving miRNAs and 
TFs have been created and made available on the 
internet  [  8,   12,   13  ] . FFLs and FBLs associated 
with glioblastoma have been reviewed by Gong, 

Sun and Zhao  [  14  ] , Dong et al.  [  15  ]  and Gonzalez-
Gomez et al.  [  16  ] . Glioma-associated FBLs are 
discussed next.  

    9.3   FBLs Associated with Gliomas 

 Glioblastoma multiforme is an aggressive  primary 
brain tumor with mean survival time of just over 
a year after diagnosis. Recent gene expression 
pro fi ling studies are strongly suggesting that 
miRNAs play a signi fi cant role in gliomagenesis, 
particularly in the regulation of neural stem cell-
related pathways  [  16,   17  ] . In this section, glioma-
relevant examples are given of feedback loops 
(FBLs) between a miRNA and its target. 

    9.3.1   Negative FBLs 

  miR-17-92 and E2F1.  The negative FBL between 
the transcription factor E2F1 and the miR-17-92 
cluster is shown in Fig.  9.4a . In this FBL, E2F1 
induces the expression of miR-17-92 and, in 
return, some members of the miR-17-92 cluster 
target and inhibit the translation of E2F1 mRNA. 
The miR-17-92 cluster is signi fi cantly overex-
pressed in human glioblastomas  [  18–  20  ] . Gliomas 
have also been described as ‘addicted’ to E2F1 
because of their increasing dependence on this TF 

a b
TargetmiRNA TargetmiRNA

  Fig. 9.3    Two types of feedback loops (FBLs) between a 
miRNA and its Target. The hammerhead means suppres-
sion of the translation of the Target mRNA. The  arrow  
means transcription of the miRNA is induced by the 
Target protein acting as a TF. ( a ) A negative FBL. ( b ) A 
positive FBL       
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  Fig. 9.2    Examples of FFLs involving Myc as the TF. ( a ) 
Coherent FFLs (one for each miRNA shown) with VEGF 
as Target. ( b ) Coherent FFLs of the other type (one FFL 
for each miRNA shown) with RB1 as Target. ( c ) Incoherent 

FFLs (one for each miRNA shown) with E2F1 as Target. 
( d ) Incoherent FFLs of the other type (one FFL for each 
miRNA shown) with PTEN as Target (Figures ( a ), ( b ), and 
( d ) are adapted from El Baroudi et al.  [  8  ] )       
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for growth and survival  [  10  ] . Modeling the dynam-
ics of this FBL has been carried out  [  21  ] . The 
potential of this negative FBL to generate sus-
tained periodic oscillations and switching behavior 
(in conjunction with a positive FBL involving 
E2F1) will be discussed in detail in Sect.  9.5 .  

  miR-17-92 and STAT3 . A negative FBL between 
miR-17-92 and STAT3 is shown in Fig.  9.4b . 
STAT3 is a transcription factor and a known 
embryonic stem cell regulator that can function 
either as a tumor suppressor or as an oncogene in 
gliomas, depending on the tumor’s genetic pro fi le 
 [  22–  24  ] . The expression of miR-17-92 is posi-
tively induced by STAT3  [  25  ] . On the other hand, 
STAT3 mRNA translation is inhibited by miR-
17-5p, a member of the miR-17-92 cluster  [  26  ] . 

  miR-145, p53 and Myc.  A negative FBL involving 
miR-145, Myc, and the tumor suppressor gene 
p53 is shown in Fig.  9.4c . The expression of miR-
145 is induced by p53, and miR-145 inhibits Myc 
expression  [  27  ] . Myc upregulates the activity of 
p53 in various ways. In return, p53 inhibits Myc 
via several pathways, including miR-145  [  28  ] . 
These negative FBLs between Myc and p53 may 
be essential in coordinating cell differentiation 
and proliferation in neural stem cells  [  28  ] . This 
topic will be discussed further in Sect.  9.3.3 . 

  miR-25/32, p53 and Myc.  A negative FBL exists 
between Myc and miR-25/32 as recently shown 
by Suh et al.  [  29  ] . These authors reported that 
Myc (as well as E2F1) transcriptionally activates 
miR-25 and miR-32, and in return these miRs 

effectively induce p53 accumulation by down-
regulating Mdm2 (see Fig.  9.4d ). Note that 
Fig.  9.4d  can also be interpreted as a negative 
FBL between p53 and miR-25/32. Suh et al.  [  29  ]  
further demonstrated that overexpression of miR-
25/32 in glioblastoma cells inhibited growth of 
these cells in mouse brain  in vivo .  

    9.3.2   Positive FBLs 

 Examples of glioma-associated positive FBLs 
between miRNAs and their targets are shown in 
Fig.  9.5 . Most of these examples are of the mutual 
inhibition type, except the example in Fig.  9.5f  of 
the mutual activation type (the arrow from miR-
34a to p53 is an indirect pathway). Not all the 
miRNA targets shown are transcription factors.  

  miR-124 and REST . The mutual inhibition between 
miR-124 and REST (Fig.  9.5a ) may be essential 
in the control of neural differentiation. The most 
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p53
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b

miR-17-92 STAT3

d

miR-25/32 Myc
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  Fig. 9.4    Examples    of 
negative FBLs associated 
with glioma. Gray boxes 
are miRNAs, black boxes 
are oncogenes, and white 
boxes are tumor suppressor 
genes       
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  Fig. 9.5    Examples of positive FBLs associated with 
glioma. Gray boxes are miRNAs, black boxes are onco-
genes, and white boxes are tumor suppressor genes       
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abundant miRNA in the human brain is miR-124, 
accounting for about a quarter of total brain miR-
NAs. This miRNA is fully conserved at the nucle-
otide level from worms to humans  [  30  ] . The 
expression of miR-124 is signi fi cantly decreased in 
glioblastomas compared to normal brain tissue  [  31  ] . 
Targets of miR-124 include the anti-neural factor, 
SCP1, a component of REST (reviewed by 
Godlewski et al.  [  17  ] ). REST is a transcriptional 
repressor of neural differentiation, inhibiting expres-
sion of many neuronal genes, including miR-124. 
Proteosomal degradation of REST has been pro-
posed as a mechanism for speci fi cally targeting 
glioblastoma stem-like cells  [  32  ] . 

  miR-9 and REST . The mutual inhibition between 
miR-9 and REST (Fig.  9.5b ) may also be impor-
tant in the control of neural differentiation. A 
mediator of neural differentiation, miR-9 directly 
targets REST, and the latter may repress miR-9; 
this miRNA is overexpressed in glioblastoma 
(reviewed by Godlewski et al.  [  17  ] ). 

  miR-9 and TLX . Also called NR2E1, TLX is a 
nuclear receptor that binds DNA as a monomer at 
hormone response elements. TLX and miR-9 mutu-
ally antagonize each other (reviewed by Qu and Shi 
 [  33  ] , Park et al.  [  34  ] ). As has been mentioned, 
miR-9 induces neural differentiation. On the other 
hand, TLX promotes self-renewal of stem cells and 
has been reported to play a role in glioma initiation 
and progression (reviewed by Park et al.  [  34  ] ). Thus, 
the mutual inhibition between miR-9 and TLX 
(Fig.  9.5c ) as well as between miR-9 and REST 
(Fig.  9.5b ) may prove to be critical in a stem cell 
decision whether to differentiate or self-renew. 

  miR-128 and EGFR . The epidermal growth fac-
tor receptor (EGFR) gene ampli fi cation and over-
expression is a striking feature of glioblastomas, 
occurring in about 40 % of cases (reviewed 
recently in  [  35  ] ). Signi fi cant decrease in expres-
sion of miR-128 has been observed in aggressive 
human gliomas, and it has recently been reported 
that miR-128 represses gliomagenesis  [  36  ] . The 
mutual inhibitory relationship between miR-128 
and EGFR (Fig.  9.5d ) was identi fi ed by 
Papagiannakopoulos et al.  [  36  ] . 

  miR-21 and NFIB . First reported in glioblastoma, 
signi fi cant increases in miR-21 have been 
observed in many types of cancer (reviewed by 
Godlewski et al.  [  17  ] , Moore and Zhang  [  37  ] ). 
The mutual inhibitory relationship between miR-
21 and the transcription factor NFIB (Fig.  9.5e ) 
has been con fi rmed by Fujita et al.  [  38  ] . NFIB is 
linked to malignant gliomas and the regulation 
of the markers, GFAP and B-FABP, which are 
 co-expressed in these tumors  [  39  ] . 

  miR-34a and p53 . The interaction between miR-
34a and p53 is of the mutual activation type. 
miR-34a is a con fi rmed transcriptional target of 
p53  [  40,   41  ] . This miRNA inhibits the translation 
of SIRT1 mRNA, and SIRT1 protein downregu-
lates p53 activity (this sequence of two negative 
interactions is the reason why the pathway from 
miR-34a to p53 is depicted as an arrow in 
Fig.  9.5f ). A positive feedback loop thus exists 
between miR-34a and p53  [  42  ] . The tumor sup-
pressor p53 is the most commonly mutated gene 
in human cancers, and is also intimately involved 
in gliomagenesis  [  43  ]  (also reviewed by Aguda 
et al.  [  28  ] ). It has been shown that miR-34a inhib-
its glioblastoma growth  [  41,   44  ] . 

  miR-34a and Myc . A mutual inhibition exists 
between Myc and miR-34a (Fig.  9.5g ). Myc 
represses the expression of miR-34a  [  45,   46  ] , 
and miR-34a inhibits Myc expression (reviewed 
by Sotillo et al.  [  46  ] ). Myc is intimately involved 
in maintaining the stem-like properties of 
glioma-propagating cells  [  47  ]  (reviewed by 
Aguda et al.  [  28  ] ). 

  miR-145 and SOX2 . Fang et al.  [  48  ]  recently pre-
sented evidence of a positive (double negative) 
FBL between SOX2 and miR-145, as shown in 
Fig.  9.5h . This FBL potentially generates a 
bistable switch in gliomas. SOX2 is one of the 
core pluripotent stem cell transcription factors 
(the others are OCT4 and NANOG) maintaining 
the stemness of embryonic and adult stem cells 
(reviewed recently by Heng et al.  [  49  ] ). 
Overexpression or gene ampli fi cation of SOX2 
have been observed in glioma tumors and cell 
lines  [  50  ] .  
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    9.3.3   miRNAs in the Context of the 
Myc-p53 Control System of Cell 
Proliferation and Differentiation 

 A network model of the interactions between the 
transcription factors Myc and p53 has been 
 proposed as a central control mechanism for coor-
dinating cell proliferation and differentiation in 
mammalian cells  [  28  ] . The modular qualitative 
network (qNET) is shown in Fig.  9.6a . The mod-
ules include a proliferation module (composed of 
cell cycle factors, P 

C
 , and apoptosis factors, P 

A
 ) 

and a differentiation module (composed of sub-
modules of stem cell transcription factors, sTF, 
and differentiation transcription factors, dTF). 
Three of the glioma-associated miRNAs dis-
cussed in the previous sections are shown in 
Fig.  9.6b , regulating Myc, p53 and SOX2 
(a member of the sub-module sTF). A pro-differ-
entiation function (equivalently, anti-stemness 
function) of p53 is depicted by the inhibition 
(hammerhead) of sTF by p53 in Fig.  9.6a . 
Examples of this inhibition would be the path via 
miR-145  [  48  ]  and p53’s suppression of another 

pluripotency factor, NANOG  [  51–  54  ] . Because of 
the proposed key role of the Myc-p53 negative 
FBL in controlling cell proliferation and differen-
tiation  [  28  ] , the in fl uence of miR-145, miR-34a 
and miR-17/20a may prove critical in regulating 
cell-fate decisions, especially when the cellular 
conditions or parameters are such that the qNET 
is in the vicinity of switching points between cel-
lular states or phenotypes. An explicit example of 
this will be illustrated in Sect.  9.5  using the FBL 
between Myc and miR-17/20a.    

    9.4   Primer on Qualitative Network 
Analysis 

 A network composed of nodes with directed 
interactions depicted as arrows or hammer-
heads is referred to as a  qualitative network  
(qNET). Besides visually aiding one’s intuition 
on the behavior of the network, the qNET 
structure can be analyzed to predict potential 
instabilities. This analysis requires a precise 
de fi nition of what arrows and hammerheads 
are in order to employ the standard mathemati-
cal method of linear stability analysis summarized 
here. 

 A network is  unstable  if a perturbation of a 
steady state of the network gets ampli fi ed in time. 
Let  x  be a vector of the  n  state variables  x  

1
 ,  x  

2
 , …, 

 x  
n
  ( e.g ., concentrations of  n  molecules) that inter-

act with each other. Assuming deterministic con-
ditions, the dynamics of the interaction network 
is usually modeled as a system of nonlinear ordi-
nary differential equations:

     ( )
d

dt
=

x
f x    (9.1)  

where  f ( x ) is a vector with components  f  
1
 ( x ),  f  

2
 ( x ), 

…,  f  
n
 ( x ) which are generally nonlinear functions. 

Let  x  
 s 
  be a steady state de fi ned as the state where 

all these functions vanish,  i.e .,  f ( x  
 s 
 ) =  0 . Let   x   =  x  

–  x  
 s 
  be the deviation (perturbation) from the steady 

state. The local dynamics near  x  
 s 
  is described by 

the following set of linear equations:

     
d

dt

x x= M    (9.2)  
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  Fig. 9.6    The Myc-p53 control system of cell prolifera-
tion and differentiation, and some miRNAs affecting it. 
( a ) Representation of the control system using a modular 
qualitative network. sTF = module of stem cell transcrip-
tion factors; dTF = module of differentiation transcription 
factors; P 

C
  = cell cycle factors; P 

A
  = apoptosis factors. ( b ) 

miRNAs interacting with Myc and p53, and with the 
pluripotent stem cell transcription factor Sox2       
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where the element  M  
ij
  of the Jacobian matrix  M  

is equal to ∂  f  
i  
  / ∂x  

j
  evaluated at the steady state 

 x  
 s 
 . The stability of the steady state  x  

 s 
  depends 

on the eigenvalues,   l  , of  M . If at least one 
eigenvalue has a positive real part, then  x  

 s 
  is 

 unstable  ( i.e ., the perturbation   x   grows); 
 otherwise, if all eigenvalues have negative real 
parts then  x  

 s 
  is asymptotically  stable  ( i.e ., the 

perturbation   x   decreases with time and the sys-
tem returns to the steady state). The eigenvalues 
  l   are the roots of the characteristic polynomial    
 P (  l  ):

     1 2
1 2

( ) det( )

0n n n
n

P
- -

= -

= + + + + =

I M


l l

l a l a l a    (9.3)   

 To see how the eigenvalues are related to the 
structure of the qNET, note that the coef fi cients 
of the   a   

i
 ’s in  P (  l  ) can be written as follows:

     1 1
1

[ ( )]
n

i

C i
=

= -åa    (9.4)  

     2 1 1 2[ ( )][ ( )] [ ( , )]
i j i j

C i C j C i ja
¹ ¹

= - - + -å å    (9.5)  
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C i C j k

C i j k

a
¹ ¹ ¹

¹ ¹ ¹

¹ ¹ ¹
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å

å    (9.6)  

where

     1 2

3

( ) , ( , ) ,

( , , ) ,

= =

= ¼
ii ij ji

ij jk ki

C i M C i j M M

C i j k M M M
   (9.7)   

 In graphical terms,  C  
1
 ( i ) is referred to as the 

 strength of the 1-cycle  involving species  i  (spe-
cies  i  affects itself);  C  

2
 ( i,j ) is the strength of the 

2-cycle between species  i  and  j ;  C  
3
 ( i,j,k ) is the 

strength of the 3-cycle among species  i ,  j  and  k ; 
and so on (see Fig.  9.7 ).  

 Note that a positive (negative)  M  
 ij 
  means that the 

 rate of change of   species x  
i
  ( i.e .,  dx  

i
 / dt ) increases 

(decreases) with increasing  x  
j
 . A positive  M  

ij
  is 

depicted as an arrow from species X 
j
  to X 

i
  in a 

qNET diagram to show the activation of X 
i
  by X 

j
 . 

A negative  M  
ij
  means that X 

j
  inhibits X 

i
 , and is 

depicted as a hammerhead from X 
j
  to X 

i
 . Also, the 

magnitude of  M  
 ij 
  is referred to as the  strength of the 

interaction , and  C  
 i 
 (⋅) as the  strength of the i-cycle . 

 The stability of a qNET can now be expressed 
in terms of the strengths of its component cycles. 
It is seen from Eq.  9.3  that the eigenvalues are 
functions of the   a   

i
 ’s which are themselves func-

tions of the strengths of the cycles in the qNET. 
Clearly,  the cycles determine the   stability of the 
steady   state of a qNET . Interactions in qNETs 
that are not members of cycles do not affect the 
stability of the network. This is the reason why 
FFLs are not sources of instabilities in qNETs. 

 Next, the eigenvalues can now be expressed in 
terms of the cycles. A  destabilizing cycle  is one 
that makes the real part of an eigenvalue more 
positive if the cycle strength is increased. Cycles 
that keep all the real part of the eigenvalues nega-
tive (or some of them more negative) are  stabiliz-
ing cycles . 

 A convenient theorem to use for determining 
the stability of a qNET is the  Routh-Hurwitz 
Theorem   [  55,   56  ] . It states that the number of 
eigenvalues with positive real part is equal to the 
total of the number of sign changes in two 
sequences, {1, D 

1
 , D 

3
 , …} and {1, D 

2
 , D 

4
 , …}, 

where the D 
i
 ’s are the Hurwitz determinants. The 

 i th Hurwitz determinant is the determinant of the 
 i th principal minor of the following square matrix 
 H  associated with the characteristic polynomial 
 P ( l ) in Eq.  9.3 .

Xi

Xi Xj

Xi Xj

Xk

C1(i) = Mii

C2(i,j) = MijMji

C3(i,j,k) = MijMjkMki

  Fig. 9.7    Examples of cycles in a qualitative network, 
their graphical representations and their strength  C  

i
 ’s. The 

 small circles  at ends of edges represent either activation or 
inhibition       
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H    (9.8)   

 For example, for  n  = 3, the Hurwitz determi-
nants are:

     1 1 2 1 2 3 3 3 2, ,a a a a a= = - =D D D D    (9.9)   

 To illustrate the use of the Routh-Hurwitz 
Theorem, consider the following simple example 
involving the pluripotent stem cell transcription 
factor SOX2 and miR-145, as shown in Fig.  9.8 . 
Note that negative 1-cycles are included to 
account for the degradation of these molecules 
(these cycles can also be referred to as self-regu-
latory loops). It will be shown that an instability 
arises when a certain relationship between the 
strengths of the 1-cycles and the 2-cycle between 
SOX2 and miR-145 occurs.  

 Let X 
1
  = SOX2 and  X  

2
  = miR-145. The 

strengths of the 1-cycles are  C  
1
 (1) =  M  

11
  and 

 C  
1
 (2) =  M  

22
 . The strength of the 2-cycle is 

 C  
2
 (1,2) =  M  

12
  M  

21
 . The Hurwitz determinants are 

 D  
1
  =  a  

1
  = − C  

1
 (1)− C  

1
 (2) and  D  

2
  =  a  

1
  a  

2
  where 

 a  
2
  =  C  

1
 (1) C  

1
 (2)− C  

2
 (1,2). Since  C  

1
 (1) < 0 and 

 C  
1
 (2) < 0,  D  

1
  cannot become negative, and there-

fore the sequence {1,  D  
1
 } cannot change sign. 

The sequence {1,  D  
2
 } can change sign once (giv-

ing one eigenvalue with positive real part) if  D  
2
  

becomes negative which happens when

     2 1 1(1,2) (1) (2)C C C>    (9.10)   

 Thus, when the strength of the positive 
2-cycle is greater than the product of the two 
negative 1-cycles, an instability is predicted to 
arise. This statement is also true for all the 
 positive FBLs in Fig.  9.5 , for both mutual 
 antagonisms and mutual activations. Modeling 
the mutual antagonism between SOX2 and 

miR-145 has been performed recently by Fang 
et al.  [  48  ] ; these authors demonstrated that such 
a positive FBL exhibits switching behavior 
between two locally stable states. 

 Another example, shown in Fig.  9.9 , illus-
trates the important fact that a qNET, despite 
lacking in mechanistic details or parameter val-
ues, may already predict the potential for insta-
bility. The next section will show details of the 
instability predicted by the qNET in Fig.  9.9 . 
Note that there is an autocatalytic (positive) loop 
involving E2F1 with strength M 

11+
 ,  representing 

the fact that the E2F1 protein can induce the 
expression of its own gene. The  fi rst-order 
decay of the levels of miR-17-92 and E2F1 are 
also shown, with strengths M 

22
  and M 

11−
 , 

respectively.  
 Let X 

1
  = E2F1 and  X  

2
  = miR-17-92. The 

strengths of the 1-cycles are  C  
1
 (1) =  M  

11
  =  M  

11+
  + 

 M  
11−

  (with  M  
11+

  > 0 and  M  
11−

  < 0) and 
 C  

1
 (2) =  M  

22
  < 0. The strength of the 2-cycle is 

 C  
2
 (1,2) =  M  

12
  M  

21
  < 0. The Hurwitz determinants 

are  D  
1
  =  a  

1
  = − C  

1
 (1)− C  

1
 (2) and  D  

2
  =  a  

1
  a  

2
 , where 

 a  
2
  =  C  

1
 (1) C  

1
 (2)− C  

2
 (1,2). The determinant  D  

1
  is 

negative if the sum of the strengths of the nega-
tive 1-cycles is less than that of the positive 
1-cycle,  i.e ., (− M  

22
 ) + (− M  

11−
 ) <  M  

11+
 . The second 

determinant  D  
2
  can become negative in two 

ways: (1) if  D  
1
  =  a  

1
  > 0 and  a  

2
  < 0; (2) if  a  

2
  > 0 

and  D  
1
  =  a  

1
  < 0. Thus, sign changes for the 

miR-145SOX2. .
M11 M21

M12

M22

  Fig. 9.8    A positive FBL between miR-145 and SOX2, 
including their self-regulatory 1-cycles. See text for more 
details       

miR-17-92 E2F1
.

M11–

M11+

M22 M21

M12

  Fig. 9.9    A negative FBL between miR-17-92 and E2F1, 
including their self-regulatory 1-cycles. See text for more 
details       
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sequences {1,  D  
1
 } and {1,  D  

2
 } can occur in 

two cases: 

  Case I.   D  
2
  < 0 (with  a  

2
  < 0) and  D  

1
  > 0. This case 

gives one eigenvalue with positive real part. 
 Case II.   D  

1
  < 0 and  D  

2
  < 0 (with  a  

2
  > 0). This case 

gives two eigenvalues with positive real part. 

 In other words, an instability arises when 
{ a  

1
  > 0,  a  

2
  < 0} or when { a  

1
  < 0 and  a  

2
  > 0}. As 

will be shown in the next section, Case I is asso-
ciated with an unstable steady state (called a  sad-
dle point ) and Case II is associated with an 
unstable steady state that spirals out to periodic 
oscillatory states.  

    9.5   Modeling the miR-17-92/E2F/
Myc Network 

 This section illustrates how to formulate a dynam-
ical model of a negative FBL between miR-17-92 
and the transcription factors E2Fs and Myc. 
Despite the lack of details on the mechanism and 
kinetic parameters of the network, a set of phe-
nomenological equations can be written that are 
consistent with the available qualitative informa-
tion. Mathematical techniques such as non-
dimensionalization of the differential equations, 
use of time-delay equations, steady state stability 
and bifurcation analysis are discussed. The 
signi fi cance of studying the Myc/E2F/miR-17-92 
network is highlighted by its role in regulating 
the G1-S transition of the mammalian cell cycle, 
particularly as a potential switching mechanism 
for a G1 checkpoint (also called the  Restriction 
Point ) that is often compromised in cancers  [  21, 
  57,   58  ] . The discussion below is mostly based on 
the paper of Aguda et al.  [  21  ] . 

    9.5.1   Network Model Formulation 

 Upon growth-factor stimulation, cascades of 
intracellular signal transduction pathways are 
activated in quiescent cells, resulting in the 
expression of early-response genes such as  c-myc . 
The corresponding protein, Myc, is a TF that 
induces the expression of other TF genes promoting 

the G1-S transition in the cell cycle, including 
E2F1, E2F2 and E2F3. Interestingly, each of 
these E2Fs induces its own expression, as well as 
the other two E2F family members ( e.g. , the 
E2F1 protein is a TF that binds the  e2f1  gene pro-
moter inducing expression of the gene). 
Furthermore, E2F1 induces the expression of 
Myc. Thus, the set {Myc, E2F1, E2F2, E2F3} 
forms an autocatalytic system of TFs (the set is 
shown in the gray box of Fig.  9.10 ). This auto-
catalytic system of TFs has been proposed to be 
necessary for a cell’s commitment to S-phase 
 [  57  ] . In addition, there are positive feedback 
loops in the so-called Rb/E2F pathway that may 
contribute to the sharpness of the switching 
behavior in CDK (cyclin-dependent kinase) 
activities (particularly, CDK4, CDK6, and CDK2) 
associated with the  Restriction Point  in the mam-
malian cell cycle  [  57,   59,   60  ] .  

 As shown in Fig.  9.10 , Myc, E2F1, E2F2 and 
E2F3 promote the transcription of the miR-17-
92 cluster (single transcript shown at the bottom 
of Fig.  9.10 ) that is subsequently processed to 
give seven mature miRNAs, namely, miR-17-5p, 
miR-17-3p, miR-18a, miR-19a, miR-20a, miR-
19b, and miR-92-1. Two of these mature miR-
NAs, miR-17-5p and miR-20a, have been shown 
to suppress the translation of E2F1, E2F2, E2F3 
as shown by the hammerheads in Fig.  9.10 . 
Thus, negative FBLs are formed between the 

17-5p 17-3p 18a 19a 20a 19b 92-1

Myc E2F1 E2F3

E2F2

  Fig. 9.10    The transcription factors Myc, E2F1, E2F2, 
and E2F3 induce the expression of miR-17-92 (shown 
as a cluster of seven miRNAs). Translation of E2F1, 
E2F2, and E2F3 is suppressed by miR-17-5p and miR-
20a as depicted by the hammerheads (Figure from 
Fig.  9.2  in  [  21  ] )       
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 autocatalytic TFs and miR-17-5p/miR-20a. 
Simplifying the mathematical model, but keep-
ing the essential structure of the qNET, an 
abstraction of the miRNA-TF network in 
Fig.  9.10  can be carried out to give the two-vari-
able model shown in Fig.  9.11   [  21  ] .   

    9.5.2   Dimensionless Equations 
and Time-Delays 

 The two variables in Fig.  9.11  correspond to an 
autocatalytic protein module,  p  (corresponding 
to the autocatalytic Myc/E2Fs), and to a miRNA, 
 m  (corresponding to miR-17-92). Step 1 repre-
sents the protein acting as a TF for its own gene’s 
expression. It is to be noted that the rate of the 
protein’s expression cannot be a function of the 
instantaneous concentration of the protein 
because of a time delay associated with transcrip-
tion and translation of the gene; in other words, 
when these intermediate processes are ‘hidden’ 
in the phenomenological rate equations, the rate 
of change in the concentration of  p  must be a 
function of the concentration of  p  at some previ-
ous time ( t - D ) where  t  is the current time and  D  is 
the  time delay . In the simple model suggested 
earlier  [  21  ] , the rate of step 1 is a phenomeno-
logical function that combines the autocatalytic 
property of  p  and the inhibition of the expression 
of  p  by  m ; hence, for the rate function for step 1, 
the concentration of  m  to be considered is also 
that at ( t − D ). 

 Not explicitly showing time delays in the rate 
equations for now, a set of phenomenological 

dynamical equations for the model is the 
following:

     

2
1
2

1 2

2

k pdp
p

dt p m

dm
k p m

dt

a d

b g

æ ö
= + -ç ÷

+ +è ø

= + -

G G

   (9.11)  

where  p  is the concentration of the protein,  m  is 
the concentration of the miRNA,   a   is a constant 
constitutive rate of expression of the protein,   b   is 
a constant constitutive rate of input of the miRNA, 
  d   is a coef fi cient of the rate of degradation of the 
protein,   g   is a coef fi cient of the rate of degradation 
of the miRNA. The second term on the right-hand 
side of d m /dt corresponds to the rate of synthesis 
of  m  due to  p , which is simply modeled as the 
linear term  k  

2
  p . The second term on the right-hand 

side of d p /dt represents two important features of 
the network: (a) the autocatalytic character of  p  
according to a Hill-type function with exponent of 
2, and (b) the inhibition of the expression of  p  by 
 m  represented by putting  m  in the denominator 
( i.e ., if  m  increases, the rate dp/dt decreases). 

 Although this model seems to be quite simple, 
it already has eight parameters. One way to 
reduce this number is by non-dimensionalizing 
the variables and parameters. Indeed, the ratios or 
other combinations of parameters are what essen-
tially determine the qualitative behavior of the 
system. A dimensionless version of Eq.  9.11  is 
given in Eq.  9.12  below:
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where the dimensionless variables and parameters 
are
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p

m

1
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  Fig. 9.11    A two-variable model of the network in 
Fig.  9.10 . The autocatalytic protein module (shown in 
gray box in Fig.  9.10 ) is represented by p. The miR-17-92 
cluster is symbolized by m (Figure from Fig.  9.2  in  [  21  ] )       
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 Note that there are now only  fi ve  dimensionless 
parameters. Furthermore, there are only four 
parameters that determine the steady states (com-
pared to the eight parameters in Eq.  9.11 ). 

 If time delays are now considered, the   f   and 
  m   on the right-hand side of d  f  /d  t   in Eq.  9.12  
must be values at ( t − D ) where  D  is the time 
delay discussed above. Also, note that the   f   
and   m   on the right-hand side of d  m  /d  t   are not 
subject to this time delay because it is assumed 
that the expression of  p  (including its inhibi-
tion by  m ) occurs on a much slower time scale. 
Explicitly, the d  f  /d  t   in Eq.  9.12  is written as 
follows:

     
2

2
1 2

[ ( )]
( )

[ ( )] ( )

d

d

k f ke a f t
t ¢ f t ¢ m t

D
G D G D

-¢= + -
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where  D  scales as   t  .  

    9.5.3   Steady State Bifurcation 
Diagrams and Role of miR-17-92 
in Switching Behavior 

 In the analysis of a dynamical model, a  fi rst step 
is to determine the steady states of the system. A 
steady state that is stable (in the sense that all per-
turbations from it eventually die out) represents a 
long-term behavior of the system. The steady 
states of Eq.  9.12  are de fi ned as the values of   f   
and   m   that make both d  f  /d  t   and d  m  /d  t   vanish. 
From the second expression in Eq.  9.12 , the 
steady state   m   

 s 
  is given by

     1s sm f= +    (9.15)   

 Substituting Eq.  9.15  into the  fi rst expression 
of Eq.  9.12  gives the following cubic polynomial 
whose non-negative roots are the steady states   f   

 s 
 :

     3 2
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 Equation  9.15  states that there is a direct pro-
portionality (positive correlation) between the 
steady state of the miRNA and that of its target 
protein. So one must  not  always expect that the 
levels of a miRNA and its target protein are nega-
tively correlated. As was demonstrated in com-
puter simulations of this model  [  21  ] ,   f (t)  and   m (t)  
can also be either positively or negatively corre-
lated in non-steady state conditions. 

 The cubic polynomial in   f   
 s 
  suggests the pos-

sibility of having three coexisting positive steady 
states. The necessary (but not suf fi cient) condi-
tions for having three positive roots are  c  

2
  < 0, 

 c  
1
  > 0, and  c  

0
  < 0. These conditions on the  c  

i
 ’s can 

be summarized as follows

     1
2

2

( ) 1k a
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¢

æ öG
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 Thus, it is possible that there is a range of   a  ¢   
where multiple steady states coexist for the same 
set of parameter values. 

 Interpreting   a   ¢  as a parameter associated with 
growth-factor signaling, it is chosen as the bifur-
cation parameter in further analysis below. This 
parameter can be conveniently controlled in labo-
ratory experiments (see for example,  [  60  ] ). The 
steady states as functions of   a   ¢ , and for various 
 G  

2
  ¢ , are shown in Fig.  9.12 . The parameter  G  

2
  ¢  is 

linked with the inhibition of the translation of the 
target protein by the miRNA, and is referred to as 
the  coef fi cient of inhibition  by the miRNA.  

 The cases of  G  
2
  ¢  = 1.8 and 2.0 in Fig.  9.12  give 

S-shaped steady-state curves having two ‘knees’; 
in between these knees are ranges of   a   ¢  where 
there are three steady states of   f   (and   m  ). Linear 
stability analysis (discussed in the previous sec-
tion) shows that the middle branches of these 
S-shaped curves are composed of unstable steady 
states, whereas the upper and lower branches are 
stable (when time delay is zero); in other words, 
the system is  bistable  between the ‘knees’. (The 
unstable steady states are of the  saddle point  type, 
 Case I , discussed in the last example of Section 4). 
As shown in Fig.  9.12 , as  G  

2
  ¢  is decreased, the 

S-shaped curve shifts to the left leading to the 
disappearance of the left ‘knee’ ( e.g ., for  G  

2
  ¢  = 1.5, 



1619 Modeling    microRNA-Transcription Factor Networks in Cancer

1, and 0). Also note that as  G  
2
  ¢  increases, the 

bistable range for   a   ¢  narrows until both ‘knees’ 
vanish and bistability is lost ( e.g ., when 
 G  

2
  ¢  = 2.5). 
 The role of miR-17-92 in regulating the 

switching behavior of the system is further illus-
trated in Fig.  9.12 . The value of   a   ¢  corresponding 
to the right ‘knee’ of an S-shaped curve is viewed 
as a ‘switching threshold’ for growth factor-
induced protein expression beyond which the 
system jumps to the upper branch of steady states. 
(In the paper of Yao et al.  [  60  ]  where the authors 
propose a bistable model due to positive feedback 
loops involving E2F1, this switch is associated 
with the G1-S transition in the cell cycle). Let 
this threshold be called   a   

ON
  ¢ . As shown in 

Fig.  9.12 ,   a   
ON

  ¢  decreases as  G  
2
  ¢  decreases. (In 

cancer parlance, decreasing  G  
2
  ¢  leads to decreased 

growth-factor requirement for cell proliferation.) 

Let the steady state value on the upper branch 
corresponding to   a   

ON
  ¢  be called   f    

s
  ON  . As  G  

2
  ¢  

decreases,   f    
s
  ON   increases. When  G  

2
  ¢  is set to zero 

(corresponding, for example, to a knockout of the 
miRNA),   a   

ON
  ¢  approaches zero. Very small 

threshold values of   a   
ON

  ¢  may mean that the switch 
to the upper branch of steady states could be 
driven by random noise which is highly undesir-
able. Furthermore, the value of   f    

s
  ON   increases as 

 G  
2
  ¢  decreases which is also a bad situation when 

normal downstream events depend on controlled 
values of   f    

s
  ON  . Thus, this model is a good illustra-

tion of the important role of the miRNA in  fi ne-
tuning both   a   

ON
  ¢  and   f    

s
  ON  . 

 As demonstrated above, the effect of miR-17-
92 on the predicted bistable switching behavior 
of the system can be manipulated by varying the 
coef fi cient of inhibition   G   

 2 
   ¢  . Experimentally,   G   

 2 
  

can be varied by mutating the sequence of the 

  Fig. 9.12    Graphs of the steady state   f   
s
  versus   a   ¢  deter-

mined from Eq. 9.12 by setting the  right-hand sides  of the 
equations to zero. Each curve is for a different value of the 

parameter   G   
2
  ¢  as shown. Other parameter values:   k   = 5, 

  G   
1
  ¢  = 1. (Figure from Fig.  9.4  in  [  21  ] )       
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miRNA that affects its binding to its target 
mRNA. In addition, from the expression of the 
dimensionless parameter   G   

 2 
   ¢   (see Eq.  9.13 ), 

changing the values of  k  
 2 
 ,   b   and   g   also offers 

ways of regulating the switching threshold. 
 The next important question is how to 

 interpret the meaning of the changes in the mag-
nitudes of   f    

s
  ON   as   G   

 2 
   ¢   is varied. More speci fi cally, 

what are the cell physiological consequences of 
 increasing activities of Myc or the E2Fs when 
the inhibition coef fi cients of mature members of 
the miR-17-92 cluster (against Myc and the 
E2Fs) are decreased? Next, a discussion of the 
 cancer zone  postulate is given to answer this 
question  [  21  ] .  

    9.5.4   The  Cancer Zone  Postulate 

 Myc and E2F1 promote cell cycle progression 
and, if overexpressed, apoptosis – hence, these 
TFs have been referred to as oncogenes and as 
tumor suppressor genes (see  [  58  ]  and references 
therein). According to many reported observa-
tions, as Myc/E2F1 activities increase, a cell can 
be made to transit from quiescence, to cell 
cycling, and eventually to apoptosis (Fig.  9.13 ). 
It has been proposed  [  21  ]  that between cell 
cycling and apoptosis is a  range  of Myc and/or 
E2F activities associated with signi fi cant proba-
bilities of initiating carcinogenesis; this range is 
referred to as the  cancer zone  (CZ).  

 Interestingly, miR-17-92 has also been 
observed to act as an oncogene or as a tumor sup-
pressor in different contexts (reviewed in  [  21  ] ). 
These seemingly con fl icting functions can be 
reconciled by the CZ postulate and the under-
standing of what two factors of miRNA inhibi-
tion are being varied when miR-17-92 is being 
demonstrated as an oncogene or as a tumor sup-
pressor. Figure  9.13  illustrates how these two fac-
tors are involved in the control of entry into or 
exit from the CZ (delineated by the dashed 
region). 

 In Fig.  9.13 , miR-17-92 is viewed as an onco-
gene if it induces entry into the CZ or prevents 
exit from the CZ (arrow and hammerhead above 
the CZ). On the other hand, miR-17-92 is a tumor 
suppressor if it does exactly the opposite (ham-
merhead and arrow below the CZ). The mecha-
nisms for entering or exiting the CZ are explained 
in Fig.  9.14 . In this  fi gure, the gray horizontal 
band (between   f   

s
  ~2.8 and ~3.75) is arbitrarily 

assigned the range of   f   corresponding to the CZ. 
Note that the different cell states are drawn on the 
right side of this  fi gure (these ranges are arbitrary 
and are for illustration purposes only).  

  miR-17-92 as oncogene:  First, the arrow showing 
that this miRNA induces entry into CZ (top of 
Fig.  9.13 ) corresponds to the increase in the 
miRNA and protein steady states as   a   ¢  is increased 
(see Eq.  9.15  which states that the graph of   m   

s
  vs 

  a   ¢  is similar to that of Fig.  9.14 ). In other words, 

miR-17-92
oncogene

miR-17-92
tumor suppressor

quiescence cell cycle apoptosis
increasing
E2F or Myc

  Fig. 9.13    Cellular states from quiescence (non-dividing) 
to cell cycling to apoptosis as the activities of E2F or Myc 
increase. A postulated  cancer zone  (delineated by the 
 dashed box  around the transition from cell cycling to 
apoptosis) is de fi ned as a range of E2F/Myc activities 

associated with high probabilities of initiating carcino-
genesis. The miR-17-92 cluster can act as an oncogene or 
as a tumor suppressor depending how it affects entry and 
exit from the cancer zone. See text for details (Figure 
adapted from Fig.  9.3  in  [  21  ] )       
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starting with   f   
s
  below CZ, as   a   ¢  increases, the 

  f    
s
  ON   increases and could enter the CZ from below 

(given the right values of   G   
 2 
   ¢  ). Second, if the system 

is near the upper boundary of the CZ, its exit from 
the CZ (into apoptosis) is prevented by an increase 
in   G   

 2 
   ¢  . For example, looking at the upper branch of 

the curve for   G   
 2 
   ¢   = 1.0 in Fig.  9.14 , the system will 

exit from the CZ if   a   ¢  is increasing; this exit is pre-
vented if   G   

 2 
   ¢   is increased (say, to   G   

 2 
   ¢   = 1.5 as shown 

in the  fi gure). In summary, the oncogenic property 
of this miRNA is manifested when there is an 
increase in miRNA level (when below the CZ lower 
boundary) as   a   ¢  is increased, or an increase in the 
miRNA inhibition coef fi cient (when below the CZ 
upper boundary) as   a   ¢  is increased. 

  miR-17-92 as tumor suppressor   gene:  The dis-
cussion here is similar to the above, although 
everything is reversed. The tumor suppressor 
function of this miRNA is manifested when there 

is an increase in the miRNA inhibition coef fi cient 
(when below the CZ lower boundary) as   a   ¢  is 
increased, or an increase in the miRNA level 
(when near the CZ upper boundary) as   a   ¢  is 
increased.  

    9.5.5   Periodic Oscillations 

 As predicted in the stability analysis of the last 
example in Sect.  9.4 , the two-variable model 
can exhibit sustained periodic oscillations for 
some parameter values. The conditions for the 
existence of the instability that gives rise to 
these oscillations are those of Case II (two 
eigenvalues with positive real part). These oscil-
lations are shown in the lower right panel of 
Fig.  9.15  when there is time delay and for 
decreasing   a   ¢  (in fact, the same oscillations can 
be obtained for increasing   a  ¢   for some initial 

  Fig. 9.14    This  fi gure is the same as Fig.  9.12  (with iden-
tical parameter values used) except the vertical labels on 
the  right-hand side  showing ranges of cellular states (as in 
Fig.  9.13 ). The cancer zone is labeled  cancer  with arbi-

trarily chosen range indicated by the gray horizontal bar. 
See text for details (Figure adapted from Fig.  9.6  in  [  21  ] )       
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conditions other than those used in the upper 
right panel). The maximum and minimum of the 
oscillations for a given   a   ¢  are shown (for 
 example,  fi xing the value   a   ¢  = 0.05 will give 
oscillations of   f   between ~0.2 and ~2.9).   

    9.5.6   Role of miR-17-92 in the G1 
Checkpoint 

 The S-shaped curves in Fig.  9.12 , exhibiting 
bistability, are primarily generated by the posi-
tive FBL in Fig.  9.11 . As mentioned earlier, there 
are several positive FBLs that may contribute to 

driving the G1-S transition in the mammalian cell 
cycle – including FBLs that involve the E2Fs, the 
tumor suppressor Rb (Retinoblastoma protein), 
and various cyclin-dependent kinases (CDK4, 
CDK6, CDK2). Modeling studies of the Rb/E2F/
CDK network have been carried out previously 
 [  57,   59  ]  predicting and demonstrating its sharp 
switching behavior. Indeed, the bistable behavior 
of the network has been validated experimentally 
by Yao et al.  [  60  ] . 

 One can claim that the single positive feed-
back loop in the two-variable model in Fig.  9.11  
may be a qualitative representation of the several 
positive loops in the Rb/E2F/CDK network. 

  Fig. 9.15    Equations  9.12  and  9.14  are integrated numeri-
cally for slowly changing values of   a   ¢  in the increasing ( a  
and  c ) and decreasing ( b  and  d ) directions, without time 
delay ( D  = 0,  left column ) and with time delay ( D  = 0.2, 

 right column ). Sustained periodic oscillations are obtained 
in ( d ). Other parameter values:   e   = 0.02,   k   = 5,   G   

1
  ¢  = 1, 

  G   
2
  ¢  = 1.8 (Figure from Fig.  9.7  in  [  21  ] )       
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Thus, the results of the analysis of the simple 
two-variable model presented above may carry 
over to a more complex model that includes 
details of the Rb/E2F/CDK network.   

    9.6   Summary 

 This chapter has given an overview of miRNA-
TF interactions that contain loops. Feed-forward 
loops (FFLs) are discussed only brie fl y because 
they are shown not to affect network stability (if 
they are not members of cycles in the qNET); 
however, FFLs may play important roles in buff-
ering transcriptional noise or  fi ne-tuning target 
protein levels. FFLs involve the co-regulation 
by a common TF of the expression of a miRNA 
and its target mRNA. Examples of coherent and 
incoherent FFLs are given. The focus of this 
chapter is on feedback loops (FBLs) between a 
miRNA and its Target – the Target mRNA being 
translated to a TF protein which positively or 
negatively regulates the transcription of the 
miRNA. FBLs are shown to affect network sta-
bility. Examples of positive and negative FBLs 
associated with gliomas are discussed. 

 The method of qualitative network (qNET) 
analysis is summarized. This method’s most 
important lesson is that, although the interactions 
are qualitative and no mechanisms or rate param-
eters are speci fi ed, one can still say something 
about the stability or instability of a qNET based 
on its structure. It was shown that only cycles in 
a qNET diagram are the ones that determine the 
stability of the network. This is the main reason 
for focusing on FBLs in miRNA-TF interactions. 
Positive FBLs have the potential to be toggle or 
bistable switches, while negative FBLs can gen-
erate sustained periodic oscillations. 

 A detailed analysis of a mathematical model 
of the miR-17-92/E2F/Myc network is given. 
This network is associated with the G1-S transi-
tion in the mammalian cell cycle, and is part of 
the Rb/E2F pathway that is often compromised in 
cancer. The steps in creating a simple network 
model of only two variables and its phenomeno-
logical dynamical equations are illustrated. 
Computer simulations of the kinetics of this 

model exhibited bistability and switching 
 behavior, as well as oscillations when time delays 
are included in the negative FBL. With the intro-
duction of the  cancer zone  postulate, this model 
is able to explain why miR-17-92 can act as an 
oncogene or as a tumor suppressor depending on 
the conditions.      
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  Abstract 

 MicroRNAs (miRNAs) and transcription factors (TFs) are two major 
classes of  trans -regulators in gene regulatory networks. Coordination 
between miRNAs and TFs has been demonstrated by individual studies on 
developmental processes and the pathogenesis of various cancers. 
Systematic computational approaches have an advantage in elucidating 
global network features of the miRNA-TF coordinated regulation. miR-
NAs and TFs have distinct molecular and evolutionary properties. In par-
ticular, miRNA genes have a rapid turnover of birth-and-death processes 
during evolution, and their effects are widespread but modest. Therefore, 
miRNAs and TFs are considered to have different contributions to their 
coordination. The miRNA-TF coordinated feedforward circuits are con-
sidered to cause signi fi cant increases in redundancy but drastically reduce 
the target gene repertoire, which poses the question, to what extent is 
miRNA-TF coordination bene fi cial? Evolutionary analyses provide wide 
perspectives on the features of miRNA-TF coordinated regulatory net-
works at a systems level.  

  Keywords 

 MicroRNA • Transcription factor • Coordinated regulation, regulatory 
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  RISC    RNA-induced silencing complex   
  UTR    untranslated region   
  HITS-CLIP     high-throughput sequencing of 

RNAs isolated by crosslinking 
immunoprecipitation   

  PAR-CLIP     photoactivatable-ribonucleoside-
enhanced crosslinking and immuno-
precipitation   

  TE    transposable element   
  MITE     miniature inverted-repeat trans-

posable element   
  Myr    million years   
  GO    Gene Ontology   
  FFL    feedforward loop   
  FFC    feedforward circuit   
  Y1H    yeast one-hybrid         

    10.1   Introduction 

 This chapter focuses on coordinated gene regula-
tory networks comprising microRNAs (miRNAs) 
and transcription factors (TFs) with special refer-
ence to evolutionary viewpoints. To facilitate 
understanding of these evolutionary viewpoints, 
an overview of the origin and turnover of miR-
NAs, and nonconserved miRNA targeting is pro-
vided. The species under study are limited to 
animals (Kingdom  Animalia ), unless speci fi ed 
elsewhere. Readers interested in evolutionary 
viewpoints, should go to Sects.  10.3 ,  10.4 , and 
 10.6 . Some might hold a  fi xed notion that miR-
NAs are conserved among various species and 
bearing critical functions in cells. This is almost 
certainly correct, but only represents a tip of the 
miRNA iceberg, thus revealing further facets as 
we explore more about miRNAs.  

    10.2   Two Major Layers of Gene 
Regulation 

    10.2.1   Two Classes of  Trans -Regulators 

 miRNAs and TFs are now considered as the 
two major classes of the  trans -regulators. Since 
the discovery of miRNAs as  trans -regulators in 
 Caenorhabditis elegans  in 1993  [  1,   2  ] , there has 

been a rapid accumulation of knowledge con-
cerning miRNAs. The number of human miR-
NAs registered in miRBase (  http://www.mirbase.
org    )  [  3–  5  ]  is 1,424 (Release 17, as of August 
2011). This number is comparable to the number 
of curated TF genes (1,391), and the upper bound 
of the number of TFs is estimated to be 1,700–
1,900 in humans  [  6  ] . Furthermore, more than 
30% of human protein coding genes have been 
estimated to be under miRNAs’ regulatory 
in fl uence  [  7  ] . From these, we realize that miRNAs 
and TFs constitute two major layers of gene regu-
latory networks; therefore, this chapter regards 
the  trans -regulators,  i.e.  miRNAs and TFs, as the 
mainstays of gene regulation.  

    10.2.2   Molecular Mechanisms of TFs 
vs. miRNAs in Brief 

 TFs are proteins that regulate gene transcription 
by binding to genomic  cis -regulatory DNA 
sequences that usually reside in the upstream 
region of genes. These sequences are called TF 
binding sites (TFBSs), and are short DNA 
stretches of between ~5 and 15 bps. The bind-
ings of TFs to TFBSs are sequence-speci fi c; 
however, a considerable degree of degeneracy is 
allowed, leading to correspondingly varied 
af fi nities. TFBSs and their degeneracy patterns 
are often represented by position-speci fi c scor-
ing matrices (PSSM) or position-weight matri-
ces (PWM), which are available from various 
databases, for example, JASPAR  [  8,   9  ]  (  http://
jaspar.genereg.net/.    ) or TRANSFAC  [  10,   11  ]  
(  http://www.gene-regulation.com/pub/data-
bases.html    ). A TF can function either as an acti-
vator, a repressor, or both, depending on the 
type of the TF or the context of its binding to its 
target gene. On the other hand, a miRNA acts as 
a repressor agent. For animals, miRNAs (in the 
mature form,  i.e.  mature miRNAs) are single-
stranded RNAs of about 22–25 nucleotides 
long that are typically transcribed by RNA 
polymerase II  [  12  ]  as a longer primary tran-
script, primary miRNA (pri-miRNA). In the 
nucleus, the catalytic RNase III domain of an 
enzyme, Drosha, cleaves the pri-miRNA to yield 

http://www.mirbase.org
http://www.mirbase.org
http://jaspar.cgb.ki.se/
http://jaspar.cgb.ki.se/
http://www.gene-regulation.com/pub/databases.html
http://www.gene-regulation.com/pub/databases.html
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hairpin-like precursor miRNAs (pre-miRNAs) 
which are about 70-nt long  [  13  ] . Subsequently, 
the pre-miRNAs are transported to the cyto-
plasm, where an enzyme, Dicer, excises away 
the loop to produce 22–25 nt RNA duplex (stem) 
stretches  [  14  ] . In many cases, one strand of the 
duplex RNA functions as a mature miRNA by 
being incorporated into the RNA-induced silenc-
ing complex (RISC)  [  15  ] . Deep sequencing 
technologies have revealed a considerable 
number of cases in which both strands of the 
duplexes are functional  [  3,   16  ] . The important 
features of mature miRNAs are: (I) miRNAs 
posttranscriptionally repress target transcripts 
or repress the transcripts’ translation; (II) this 
repression is caused by (nearly) exact base-
pairing between the seed sequences of mature 
miRNAs and the target regions in the 3 ¢  UTR 
(untranslated region) of transcripts; and (III) the 
seed sequence is 6–8 nt long located in the 5 ¢ -
end region of the mature miRNA  [  17,   18  ] .  

    10.2.3   Identifying  Trans -Regulators: 
TFs vs. miRNAs 

 For identifying TFs (as  trans -regulators), we can 
utilize comprehensive information on protein 
domains, such as those in the InterPro database 
 [  19,   20  ]  (  http://www.ebi.ac.uk/interpro/    ). The 
use of protein domain information and protein 
three-dimensional structures provide us with a 
rich source of information for predicting TFs. In 
addition, the relatively high degree of similarity 
at the amino acid sequence level among members 
of a TF family that share the same DNA-biding 
domain often make the identi fi cation of other TFs 
by similarity-based searches relatively easy  [  21, 
  22  ] , although manual curation is necessary to 
accurately annotate true TFs. On the other hand, 
miRNAs, as  trans -regulators, are hard to identify 
automatically because: (I) primary miRNAs have 
simple structure; (II) are short in length; and (III) 
a vast number of genomic DNA stretches can 
yield similar hairpin-loop transcripts  [  16,   23  ] . High 
throughput sequencing methods are expected to 
provide suf fi cient power to determine the miRNA 
repertoire for each species. In fact, they are now 

major sources that provide signi fi cant amounts of 
novel miRNA candidates; however, they are often 
hindered by the elusiveness of low copy number 
miRNA candidates and/or by their expression in 
narrowly limited tissues or developmental stages 
 [  3  ] . We also take ‘mirtrons’ into consideration as 
an alternative source of miRNAs. Mirtrons are 
spliced directly from introns through the function 
of a lariat-debranching enzyme. Accordingly, 
they bypass Drosha cleavage and enter the canon-
ical miRNA pathway after being transported to 
the cytoplasm  [  24,   25  ] .  

    10.2.4   Identifying miRNA Target Sites 
and TFBSs 

 Computationally predicting miRNA target sites 
and TFBSs,  i.e. cis -elements to miRNAs and TFs, 
respectively, presents a challenge. The main rea-
sons are (I) the short  cis -element length, ~5–15 nt 
long for TFBSs and ~6–8 nt long for miRNA target 
sites (mainly seed sequence complementary sites 
 [  23,   26  ] ), (II) TFBSs allow degenerate sequence 
motifs and miRNA target sites allow a mismatched 
base (mostly one mismatch). These circumstances 
cause computational prediction to yield a huge 
amount of false positive results if only one genome 
sequence is subjected to prediction (i.e . de novo  
prediction). Another complication is the accessibil-
ity of  trans -regulators to  cis -elements. For TFs, it is 
widely recognized that histone modi fi cations alter 
chromatin structure and changes the accessibility 
of TFs to the genomic DNAs (known as the ‘his-
tone code’)  [  27,   28  ] . Therefore, the mere existence 
of TFBSs is a weak signal for functioning  cis -ele-
ments. For miRNAs, the accessibility of mature 
miRNAs to the 3 ¢  UTRs of transcripts is also an 
important factor  [  29  ] . The location of the miRNA 
target site within the 3 ¢  UTR and the other sequence 
contextual features are also important predictors 
for miRNA target site prediction  [  30  ] . Simple 
counting of seed sequence matches to 3 ¢  UTR 
sequences obviously yields a huge number of hits 
 [  31  ]  that include possible less-functional sites, 
although matching of the seed sequence to a region 
in the 3 ¢  UTR of a transcript is a strong and main 
predictor of the miRNA target site  [  23,   26  ] .   

http://www.ebi.ac.uk/interpro/
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    10.3   Evolutionary Features 
of miRNA 

    10.3.1   Evolutionary Information 
Is Useful for Prediction 

 Evolutionary aspects are important, as 
exempli fi ed by their utility in overcoming the 
dif fi culties in  de novo  prediction of the miRNA 
repertoire, miRNA target sites, and TFBSs (see 
Sects.  10.2.3  and  10.2.4 ). If a region of the 
genome is conserved among various species, the 
region is generally considered to bear certain 
function(s) that are important for the species. 
This is because mutations that occurred in func-
tional regions are harmful in most cases, there-
fore such mutations are considered to be rejected 
or selected out by purifying selection over an 
evolutionary time span. Thus, searching such 
evolutionarily conserved genomic sequences 
for functional elements signi fi cantly increases 
the sensitivity and speci fi city. This type of search 
strategy is termed phylogenetic shadowing or 
phylogenetic footprinting. Many prediction 
applications make use of information on evolu-
tionary conservation in various schemes, which 
apparently boosts their detection power  [  23  ] . 
However, factors other than the conserved seed 
matches to 3 ¢  UTRs may need to be taken into 
consideration. Some lines of experimental evi-
dence have identi fi ed cases in which miRNAs 
target to regions located outside of the 3 ¢  UTR, 
 [  32,   33  ]  and a 3 ¢ -part of the mature miRNA 
sequence, in addition to the seed sequence, 
may participate in targeting transcripts  [  34  ] . 
Furthermore, the genome annotation of the 3 ¢  
UTR, on which many prediction applications 
depend, is incomplete in accuracy and in com-
prehensiveness. In this respect, newly devised 
high-throughput methods to identify the 3 ¢  ends 
of transcripts, such as polyA capture followed by 
sequencing  [  35  ]  and poly(A)-position pro fi ling 
by sequencing (3P-seq)  [  36  ] , which were used 
for  C. elegans , would remarkably improve the 3 ¢  
UTR annotations of genomes.  

    10.3.2   Evolutionary Conservation 
Sacri fi ces Species-Speci fi c 
Information 

 Integrating evolutionary conservation information 
greatly increases predictive power; however, it 
sacri fi ces the functional properties that occur in 
one species only or in a limited group of species. 
In fact, ten times as many such species-speci fi c (or 
nonconserved) miRNA target sites are estimated 
to exist compared to conserved miRNA target sites 
for mouse  [  37  ] . Thus, if we only analyze the pre-
dicted evolutionarily conserved miRNA target 
sites, we will miss the entire picture of the miRNA 
regulation. High-throughput sequencing-based 
approaches, such as argonaute HITS-CLIP 
( hi gh- t hroughput  s equencing of RNAs isolated by 
 c ross l inking  i mmuno p recipitation)  [  38  ]  or PAR-
CLIP ( p hoto a ctivatable- r ibonucleoside-enhanced 
 c ross l inking and  i mmuno p recipitation)  [  39  ]  can 
now be used to comprehensively identify species-
speci fi c miRNA target sites. They are expected to 
complement the drawbacks identi fi ed in  de novo  
computational predictions (see Sects.  10.2.3  and 
 10.2.4 ). Although the high throughput sequencing 
methods are valuable in providing empirical 
evidence-based information on miRNA target 
sites, including species-speci fi c ones, they have 
their own drawbacks. They are not comprehensive 
in terms of different cell types, developmental 
stages, or cellular conditions, because each data 
set only captures one slice of the various cellular 
states corresponding to a snapshot of the vast space 
of gene expression statuses. Accumulation of 
these slices will reveal the whole picture of gene 
expression.  

    10.3.3   Evolutionary Origins of miRNA 

 For animals, some sources of new miRNA genes 
have been proposed. A mechanism involving 
gene duplications at miRNA loci is one source of 
new miRNAs  [  40  ] . For example, in primates, a 
cluster of miRNAs on the X chromosome has 
undergone tandem duplications followed by 
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possible adaptive evolution  [  41,   42  ] . (Note that, 
for plants, new miRNA genes often originate by 
a mechanism of inverted duplication of a protein-
coding gene. Such pairs of inverted portions pro-
vide the hair pin-like structure, and some of them 
evolve to form miRNA genes and their corre-
sponding targets  [  43,   44  ] .) Some studies pro-
posed that transposable elements (TEs) are the 
sources of new miRNAs  [  45–  47  ] . In primates, 
hsa-mir-548 is proposed to be derived from a 
type of TE, a short miniature inverted-repeat 
transposable element (MITE)  [  47  ] . A possible 
large source of new miRNA genes is thought to 
reside in the non-coding genomic DNAs that can 
yield random hairpin structures of transcripts, 
which in turn shape into authentic miRNAs. In 
the genomes of higher organisms, 100s of 1,000s 
of regions are estimated to potentially encode 
random hairpin structures of RNAs  [  16,   23  ] . 
A large proportion of the non-coding genomic 
regions are known to be transcribed  [  48,   49  ] ; 
therefore, it is feasible that signi fi cant numbers of 
those random hairpins give rise to nascent 
miRNAs.  

    10.3.4   Rapid Turnover of miRNA Genes 

 A particular characteristic of miRNAs as  trans -
regulators is their fast turnover of the birth-
and-death processes during evolution. The term 
‘turnover’ here stands for the processes over an 
evolutionary time span and not for cellular 
molecular processes of miRNAs. Lu et al. 
reported a high turnover rate of newly emerged, 
species-speci fi c miRNAs based on gross small 
RNA sequencing of three  Drosophila  species 
 [  50  ] . Although it was subsequently suggested 
that this result included a possible overestima-
tion of the birth and death rates  [  51,   52  ]  (Lu 
et al.’s reply to  [  51  ] ), the notion of the evolu-
tionarily transient nature of miRNAs is partic-
ularly important. Precise estimates of turnover 
rates per Myr (million years) may  fl uctuate; 
however, the species-speci fi c transient nature 
derived from abundant random hairpins could 
make a clear distinction from TF genes. (It 
should be noted that the term ‘birth-and-death 

evolution’ originally explained a form of 
multigene family evolution where gene duplica-
tion events create new genes, some of which are 
maintained for a long time, while the others are 
deleted or inactivated by mutations (see review 
 [  53  ] ). Thus, the creation of new miRNA genes 
from random hairpins might be a conceptual 
extension of the original notion.) Furthermore, 
not only miRNA genes themselves, but also 
miRNA targets sites, are likely to be subject to 
a notably high turnover rate  [  54  ] , because of 
the short length of the miRNA target sites and 
relatively low degree of conservation of the 
3 ¢  UTR sequences. Accordingly, we should 
note the transient nature of miRNAs in consider-
ing the in fl uence of miRNAs on regulatory 
networks.  

    10.3.5   Weak Expression of Nascent 
miRNAs Fosters Their Survival 

 As newly emerged miRNAs join a regulatory 
network, it is likely that the network is perturbed. 
This interfering in fl uence is considered to be 
alleviated by the lower level of expression of the 
nascent miRNAs  [  50,   55  ] . An estimated time 
span of a miRNA to become highly expressed is 
about 50 Myr, based on a dataset from  Drosophila  
miRNA sequencing  [  52  ] . (This should be com-
pared with the time span of about 100 Myr of the 
human lineage divergence from the common 
ancestor of human and mouse.) Many nascent 
miRNAs thus have the opportunity to survive for 
some time because their weak expressions 
elicit relatively small con fl icts with the existing 
networks. In this course, most of those young 
miRNAs are drifting neutrally (their survivals or 
losses are by-chance phenomena in a population 
of the organism), or others may be evolving in 
an adaptive direction. A small fraction of them 
may then acquire certain functions, leading to 
their maintenance for a long time under the 
in fl uence of natural selection. Others, lacking 
functions, will disappear from the population by 
chance or become extinct because of deleterious 
mutations. The longer surviving, functional miR-
NAs become expressed more strongly and their 



174 H. Iwama

expressions may be further tuned in accordance 
with appropriate spatiotemporal functional 
contexts. For young miRNAs, some reports sug-
gest that adaptive evolution (where nucleotide 
changes that are bene fi cial for the organism’s 
survival are  fi xed in the population more rapidly 
and preferentially than by chance) play impor-
tant roles  [  52,   56  ] .  

    10.3.6   Nonconserved miRNA 
Target Sites 

 To date, functional investigations have mostly 
concentrated on conserved miRNAs and con-
served miRNA target sites; therefore, miRNAs 
are prone to be presupposed as conserved among 
species. However, nonconserved or species-
speci fi c miRNAs constitute the larger part of 
miRNA families. In addition, a huge number of 
nonconserved miRNA target sites are also pres-
ent. A mere 6- or 7-nt stretch of seed sequence 
complementarity is suf fi cient to interfere with 
transcripts, regardless of whether it is conserved 
or not  [  37  ] ; thus, the nonconserved miRNA tar-
get sites amount to ~10 times the number of 
conserved ones  [  23,   37,   57  ] . It is obvious that a 
living cell does not refer to other species’ 
genomes for conservation. Accordingly, a huge 
number of nonconserved miRNA target sites are 
under the in fl uence of miRNAs. During a long 
evolutionary time course, those nonconserved 
target sites have been selectively avoided when 
the nonconserved sites reside in the 3 ¢  UTRs of 
genes that are co-expressed with the correspond-
ing miRNAs spatiotemporally. This phenome-
non is called ‘selective avoidance’  [  37  ] . The 
cases in which ubiquitously expressed house-
keeping genes tend to have signi fi cantly shorter 
3 ¢  UTRs (thus less space for miRNA target 
sites) show an apparent extreme manifestation 
of selective avoidance  [  58  ] . The widely dissemi-
nating regulatory effects of nonconserved miR-
NAs have in fl uenced the evolution of 3 ¢  UTR 
sequences. It is important to recognize that the 
existence and turnover of nonconserved miRNA 
target sites is one of the driving forces of 
evolution.   

    10.4   Basic Concepts of miRNA-TF 
Coordination 

    10.4.1   miRNA Networks Have 
a Widespread, but Modest, 
Effect 

 miRNAs exhibit a paradoxical nature as regula-
tors. High conservation across species for many 
miRNAs seems to indicate their functional impor-
tance. Furthermore, many studies have shown 
critical roles of miRNAs. On the other hand, miR-
NAs have also been shown to be relatively dis-
pensable. In  C. elegans , Miska et al. reported that 
the majority of miRNAs into which deletion muta-
tions were introduced did not result in grossly 
abnormal phenotypes  [  59  ] . They attributed this 
resilience to redundancy of miRNA regulatory 
connections and/or redundancy of the pathways 
regulated by miRNAs. Concerning the output 
quantity of proteins, Nakahara et al. demonstrated 
that in  Drosophila , oocytes lacking the dicer-1 
gene (essential for miRNA biogenesis) had rela-
tively small changes in protein outputs  [  60  ] . 
Studies involving direct systematic protein output 
measurements showed that a single miRNA can 
in fl uence hundreds of proteins, which are almost 
all products of genes targeted by the miRNA; 
however, the extent of the effects in the protein 
output reduction were small  [  61,   62  ] . 

 Thus, it could be said that the in fl uences of 
miRNAs are widespread, but modest. This is why 
miRNAs are considered to function mainly as 
rheostats, to  fi ne-tune or buffer gene expression 
rather than acting as decisive switches. This led 
to the hypothesis that miRNA regulatory net-
works are subsidiary, rather than stand alone, in 
many cases. Herein lies the reason we should 
study the coordination of miRNAs with the TF 
regulatory networks.  

    10.4.2   Coordinated Networks: 
By Chance or by Rule(s)? 

 From the point of view of evolution, there seems 
to be an abyss for researchers investigating these 
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regulatory systems. One viewpoint is that even a 
highly complex regulatory system is only a phase 
of by-chance processes in which mutations occur, 
drift, and  fi x neutrally along with recombination 
in a population  [  63,   64  ] ; thus, complex regulatory 
systems are ‘byproducts’ of  fl oating phases  [  65  ] . 
The other view is that there should be some 
rule(s) or principle(s) according to which com-
plex regulatory systems are built  [  66  ] , and thus 
ordered systems could be reduced to adaptive 
components. Bearing these two opposing premises 
in mind, the following sections analyze pioneering 
studies on miRNA-TF coordinated regulation. 

 In these studies, there is a common pivotal 
concept: the concept of network motifs, or certain 
topologies of small regulatory circuits. A network 
motif is a frequently recurring circuit motif in net-
works. It is de fi ned as a speci fi c circuit (or a sub-
graph) that appears in a network signi fi cantly 
more frequently than it is expected to appear in 
random networks. Such motifs have been pro-
posed as simple building blocks that constitute 
complex networks  [  66–  71  ] . Therefore, this train 
of thought belongs to the latter of the two con-
cepts outlined above, and stands on the grounds 
that there should be some design principle(s) or 
rule(s) for complex regulatory networks, whether 
the grounds are explicit or implicit.   

    10.5   Pioneering Studies on 
miRNA-TF Coordinated 
Regulation 

 This section focuses on three important, pioneer-
ing studies on miRNA-TF coordinated regula-
tory networks. Not only main  fi ndings, but also 
technically important points are explained. 

    10.5.1   miRNA-TF Coordination 
from Microarray Data 

 Using gene expression microarray data of human 
and mouse, John Tsang et al.  [  72  ]  showed wide-
spread miRNA-TF coordinated regulation in 
human and mouse tissues or in speci fi c cells. This 
was a pioneering systematic analysis conducted 

in the search of miRNA-TF coordinated regula-
tions based on large-scale experimental data. 
This study adopted three key cautious features in 
conducting their research. Firstly, they focused 
on intronic miRNAs. miRNAs are divided accord-
ing to their genomic context into two main cate-
gories. One category includes the miRNAs that 
reside in introns (intronic miRNAs), and the other 
consists of miRNAs that locate between genes 
(intergenic miRNAs). Tsang et al. used expres-
sion data of the protein-coding genes in which 
miRNAs were embedded as a proxy to plumb the 
level of the miRNA expression for intronic 
miRNAs to overcome the paucity of miRNA 
expression data at that time. With few exceptions 
( e.g.  miR-7 during  Drosophila  embryogenesis 
 [  73  ] ), the expression of intronic miRNAs is well 
correlated with that of the host gene  [  73–  76  ] . 
Secondly, they extended their investigation using 
individual homogeneous cells to avoid the mix-
ture of heterogeneous cell types that is often 
used tissue-level resolution analyses. Thirdly, 
they circumvented inaccurate, noisy computa-
tional predictions of miRNA target sites for their 
main investigations. However, information on the 
number of seed matches to the target genes and 
the proportion of conserved matches, was used 
for the scoring scheme, termed conservation 
enrichment (CE). 

 They concluded that the expression of a 
miRNA tended to correlate with that of its target 
gene, although the direction of the correlation 
could be either positive or negative. They catego-
rized the miRNA-TF regulatory circuits into type 
I and II (Fig.  10.1 ). In type I circuits (Fig.  10.1a–
c ), the transcription rates of the miRNA and the 
TF are modulated in the same way (either positive 
or negative) by the upstream regulator. In contrast, 
in type II circuits, the miRNA and the TF are 
modulated in opposite directions in terms of the 
transcription rate. Based on the gene expression 
datasets of human and mouse, they revealed that 
both type I and II circuits showed expressions 
signi fi cantly biased to be correlated between 
miRNAs and target genes either positively or neg-
atively. Interestingly, they found that a signi fi cant 
preferential enrichment of type I circuits was 
revealed only in brain tissues, particularly in adult 
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mature neurons (the dataset from  [  77  ] ). They 
found that this type-I circuit preference disap-
peared in an expression dataset of developing 
neurons (the dataset from  [  78  ] ). Based on this dif-
ference, they inferred that type-I circuits may play 
roles in homeostasis of mature neurons by main-
taining protein steady state and regulating local 
translation. According to this scheme, they argued 
that type I circuits could have noise-buffering 
functions, while the type II circuits could act as a 
toggle switch that  fi xes the circuit state after a 
transient signal. They suggested that the “miRNA-
containing” type I and II circuits are recurrent 
motifs. The use of expression data is certainly 
meaningful in avoiding the false positives of 
computational target predictions; however, the 
expression level of each gene usually re fl ects the 
summation of in fl uences of multiple circuits that 

affect the particular target gene rather than a single 
circuit. Nonetheless, this work was a pioneering 
systematic presentation of miRNA-TF coordina-
tion, and was particularly valuable because it was 
based on experimental data.   

    10.5.2   Intensive Computations Depict 
miRNA-TF Coordination 

 At almost the same time as Tsang et al. (see 
Sect.  10.5.1 ), Shalgi et al.  [  79  ]  made the full use 
of computational approaches to investigate the 
characteristics of miRNA networks and miRNA-
TF networks. One of the basic ideas underlying 
this study was the concept that miRNAs’ regula-
tory effects play pivotal roles in ‘canalization of 
noise’ that ensures a reduction in phenotypic 
variations during development  [  80  ] . They focused 
on conserved miRNAs and the conserved miRNA 
target sites, using TargetScan (  http://www.
targetscan.org/    )  [  23  ] , see also  [  30,   81  ]  and PicTar 
(  http://pictar.mdc-berlin.de/    )  [  57  ] , see also  [  82  ]  
datasets. 

 Concerning the global structure of miRNA 
networks, they proposed a set of miRNA ‘target 
hub’ genes that are targeted signi fi cantly more 
frequently by miRNAs. Signi fi cantly, these ‘tar-
get hub’ genes tend to encode transcription fac-
tors and transcription regulatory proteins, and are 
often involved in developmental processes. This 
miRNA network property parallels the feature of 
TF networks in which genes with longer con-
served promoter regions ( i.e.  likely to have more 
TFBSs) showed a strong tendency to encode TF 
genes, particularly those related to developmen-
tal processes  [  83  ] . Lewis et al.  [  84  ]  showed that a 
signi fi cantly higher proportion of miRNA target 
genes are involved in ‘transcription’ and ‘regula-
tion of transcription’ by Gene Ontology (GO) 
analysis; thus, the concept of the miRNA target 
hub suggested by Shalgi et al. seems to be consis-
tent with the  fi nding of Lewis et al. In dealing 
with the number of miRNA target sites in the 3 ¢  
UTR, a problem lies in the wide variation in 3 ¢  
UTR length. They used a null model by adopting 
degree-preserving randomization for the statisti-
cal test, and successfully showed that the miRNA 

  Fig. 10.1    Two types of miRNA-TF regulatory networks 
indicated by Tsang et al.  [  72  ] . An upstream regulator (or 
input) regulates the transcription rate of a miRNA and a 
TF. In type I circuits (panels  a  –  c ), the transcription rates 
of the miRNA and the TF are modulated in the same 
direction (either positive or negative) by the upstream 
regulator. In contrast, in type II circuits (panels  d  –  f ), the 
miRNA and the TF are modulated in opposite directions 
in terms of the transcription rate. An  arrow  stands for a 
positive regulation, a  line  terminated with a  bar  stands 
for a negative regulation, and a  line  terminated with a 
 closed circle  represents either positive or negative 
regulation       

a Upstream
Regulator

miRNA TF

b Upstream
Regulator

miRNA TF

miRNA TF

Upstream
Regulator

c

d Upstream
Regulator

miRNA TF

e Upstream
Regulator

miRNA TF

miRNA TF

Upstream
Regulator

f

 

http://www.targetscan.org/
http://www.targetscan.org/
http://pictar.mdc-berlin.de/


17710 Coordinated Networks of microRNAs and Transcription Factors…

target hub is de fi ned also by its high miRNA target 
density. 

 In this study, for example, the degree-preserving 
randomization was applied to the real network 
matrix that consisted of a set of connections 
‘miRNA → target genes’. In this case, the degree-
preserving randomization means that for each 
gene, the number of genes targeted by a miRNA 
is kept the same as the real matrix, and also for 
each miRNA, the number of genes that the 
miRNA targets is kept the same as the real 
matrix. This randomization method preserves 
the indegree and outdegree of each miRNA and 
of each target gene as in the original matrix 
 [  66–  71  ]  and see review  [  69  ] . Therefore, this 
method can control for the possibility that any 
resultant signi fi cance is merely attributable to 
the skew in the degree distribution of the origi-
nal network. They also suggested that the degree 
distribution in the miRNA coregulation network 
is subject to a power law, which indicates that 
the miRNA coregulation network is scale free. 
This suggestion, together with the notion of the 
miRNA target hub gene, does not seem to agree 
with the indication by Martinez et al. (see 
Sect.  10.5.3 ). 

 Concerning miRNA-TF coordinated regula-
tions, Shalgi et al. found several important net-
work motifs (see the last paragraph of Sect.  10.4.2 ) 
of gene regulatory circuits that comprise miR-
NAs and TFs. They searched for a series of vari-
ous types of feedforward circuits comprising a 
miRNA and a TF (or two TFs), as shown in 
Fig.  10.2 . They  fi rst identi fi ed signi fi cant miRNA-
TF pairs. Each of these pairs was de fi ned so that 
the miRNA target site and the TFBS should co-
occur signi fi cantly more often in the target gene 
compared to the background probabilities of a 
gene having a miRNA target site and having a 
TFBS. They then successfully identi fi ed 
signi fi cant network motifs, as shown in panels a 
though d in Fig.  10.2 . Interestingly, reciprocal 
regulation between a TF and a miRNA consti-
tutes a feedforward circuit (Fig.  10.2c ), which 
they denoted as “FFL (feedforward loop, FFL is 
a synonymous to feedforward circuit (FFC) in 
this chapter) miR↔TF”, signi fi cantly more often 
than the random expectation.  

 They also examined correlations in the expres-
sion levels between miRNAs and TFs, using 
microarray data for miRNAs  [  85  ]  and TFs  [  86  ] . 
They found both positive and negative strong 
correlations between miRNA and TF expressions 
for signi fi cant TF-miRNA pairs and also for 
TF-miRNA pairs that constitute FFCs. These 
 fi ndings are consistent with the correlation pat-
tern found by Tsang et al.  [  72  ]  (see Sect.  10.5.1 ). 

 Predicting TFBSs that regulate miRNAs is a 
challenging task, because the locations and spans 
of regulatory regions of miRNA loci are, to date, 
elusive. Another problem is that clustered miRNA 
loci are transcribed together as a polycistron and 
possibly have a similar expression pattern among 
them. In this case, assigning a regulatory region 
to each of the clustered miRNAs makes little 
sense. Accordingly, Shalgi et al. made a histogram 

a miRNA

TF Target

b TF

miRNA Target

c TF

miRNA Target

d
TF

miRNA Target

TF

  Fig. 10.2    Networks of miRNA-TF coordinated regula-
tion indicated by Shalgi et al.  [  79  ] . Circuit graphs showing 
the overrepresented miRNA-TF coordinated regulatory 
networks based on the predicted conserved miRNA target 
sites and predicted conserved TFBSs. A  line  terminated 
with a  bar  stands for a negative regulation, and a  line  ter-
minated with a  closed circle  represents either positive or 
negative regulation       
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of the genomic nucleotide distance between 
neighboring miRNA loci and uncovered a 
bimodal distribution of neighboring distance 
between miRNA loci. Based on this distribution 
pattern, they determined a cutoff of 10-kb as the 
distance within which two neighboring miRNA 
loci are expected to belong to one cluster. They 
showed that this cutoff distance yielded a rela-
tively good correlation of expression pattern 
among the clustered miRNAs. They then used 
10-kb and 5-kb upstream stretches as the regula-
tory regions for a miRNA locus. They obtained 
conserved TFBS location information from tfbs-
ConsSites and tfbsCons Factors (  http://genome.
ucsc.edu/    ) (see the updated guide,  [  87  ] ), in which 
the TFBS prediction was conducted using all 
kinds of PSSMs for human, mouse, and rat regis-
tered in a version of TRANSFAC  [  88  ] , see also 
 [  89  ] . Their intensive computational approaches 
successfully revealed the speci fi c features of 
miRNA-TF coordinated regulations.  

    10.5.3   Genome-Scale Map of TFs 
Targeting to miRNAs 

 With a genome-scale experimental data set of 
TFBSs that regulate miRNAs of  C. elegans , 
Martinez et al. elucidated important properties of 
TF-miRNA coordinated regulatory networks 
 [  90  ] . They performed genome-scale yeast one-
hybrid (Y1H) assays and identi fi ed, with high-
con fi dence, 347 transcriptional connections of 
116 TFs targeting 63 miRNA promoter regions 
that span 300 bp to 2 kb upstream sequences (the 
dataset is available from   http://edgedb.umassmed.
edu      [  91  ] ). This dataset of miRNAs’ proximal 
TFBSs were used to draw connections of TFs to 
miRNAs (TF → miRNA). It revealed that the dis-
tribution of both the number of TFs that target a 
miRNA ( i.e.  the indegree) and the number of 
target genes that a miRNA regulates ( i.e.  the 
outdegree) are similar to those of  C. elegans  pro-
tein-coding gene networks  [  92,   93  ] . From this 
similarity, they proposed that the structure of 
miRNA regulatory networks is similar to the 
structure of networks comprising protein-coding 
genes. 

 Martinez et al. merged computationally pre-
dicted conserved miRNA target sites residing in the 
3 ¢  UTRs. They adopted a stringent strategy in 
which they used only the predicted target sites sup-
ported by at least two computational prediction 
methods. These prediction methods included 
TargetScan  [  23,   30,   81  ] , miRanda (  http://www.
microrna.org/    )  [  94–  97  ] , RNAhybrid (  http://
bibiserv.techfak.uni-bielefeld.de/rnahybrid/    )  [  98, 
  99  ] , and PicTar [see  [  57  ]  for vertebrates,  [  100  ]  
for  Drosophila  species,  [  101  ]  for nematodes 
species, and  [  82  ]  for human coexpression]. By 
this approach, they obtained 252 miRNA → TF 
connections. They suggested that TF genes do not 
constitute hubs that are targeted by miRNAs (this 
notion does not seem to agree with that proposed 
by Shalgi et al. (see Sect.  10.5.2 )); however, among 
the genes (including TF genes) targeted by miRNAs, 
included a small number of miRNA target hubs 
that were enriched in TFs. The latter notion was 
consistent with the notion of Shalgi et al.  [  79  ] . 

 Martinez et al. posed a question as to why 
feedback circuits, which are basic mechanisms 
for organisms, were less abundant in the pure 
transcriptional regulatory networks investigated 
 [  96,   102  ] . With regard to one possible answer, 
they identi fi ed 23 mutual feedback circuits 
comprising a TF and a miRNA (miRNA ↔ TF). 
They showed that the degree of overrepresenta-
tion of miRNA-TF mutual feedback circuits 
(miRNA ↔ TF) was statistically signi fi cant. 
From this, they suggested that miRNAs are a 
post-transcriptional missing links that form the 
feedback motifs. They con fi rmed that the 
miRNA ↔ TF circuit is a signi fi cant network 
motif in real  C. elegans  regulatory networks, 
even by the most stringent method of “edge 
switching” (the same method of randomization 
as the degree-preserving randomization (see the 
third paragraph of Sect.  10.5.2. )). Martinez et al. 
performed the randomization separately for the 
miRNA network and the TF network, in which 
they regarded the two networks as a bipartite 
graph, thus miRNA → miRNA and TF → TF 
connections were excluded. Afterwards, Yu et al. 
suggested that mutual feedback, TF ↔ TF, in 
which both of the TFs are targeted by a miRNA 
had the highest degree of overrepresentation 

http://genome.ucsc.edu/
http://genome.ucsc.edu/
http://edgedb.umassmed.edu
http://edgedb.umassmed.edu
http://www.microrna.org/
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among all the possible three-node topologies in 
which at least one miRNA and one TF are 
included  [  103  ] . In Yu et al.’s results, it is inter-
esting that the transcriptional feedback is over-
represented with the coordination of a miRNA. 
Concerning the simplest form of transcriptional 
feedback,  i.e.  autoregulation, its presence or 
absence was shown to be a critical factor in the 
degree of representation of FFCs comprising 
TFs for human-mouse conserved networks 
 [  104  ] . Although these two studies are based on 
computational predictions, in higher multicellu-
lar organisms, the notion that transcriptional 
feedback is sparse may need further analysis. 
However, as Martinez et al. suggested, it is par-
ticularly important that miRNAs play key roles 
in feedback mechanisms in gene regulatory 
networks. 

 Another interesting  fi nding was that the 
miRNAs and TFs that constitute the miRNA ↔ TF 
mutual feedback circuit have a higher indegree 
and outdegree than those not participating in the 
miRNA ↔ TF circuit. From this, they introduced 
a new network property of “ fl ux capacity”, which 
they de fi ned as the product of the indegree and the 
outdegree of a node ( i.e.  a miRNA or a TF) and 
denoted it as  Fc . They suggested that the concept 
‘ fl ux capacity’ is a good indicator for the partici-
pation of the miRNA-TF mutual feedback circuit 
in the miRNA-integrated higher order networks. 

 They veri fi ed the mutual regulation of mir-43 
↔ LIN-26, by showing that LIN-26 transcrip-
tionally activated mir-43, and that mir-43 post-
transcriptionally represses LIN-26, with rigorous 
experiments. They also con fi rmed the coexpres-
sion of both mir-43 and LIN-26, which supports, 
they suggested, a possible function for stable 
expression of the mutual feedback circuit with an 
activator TF incorporated. Importantly, they 
reported that a mir-43-deleted mutant showed no 
detectable phenotypic changes, and they sug-
gested that this was because of redundancy con-
tributed by other genes (and potentially miRNAs). 
Although this possible redundancy in miRNA 
regulatory networks was not the main focus of 
their research, it seems to be important in consid-
ering why and how miRNA regulatory networks 
are so intricate or complex. Martinez et al. further 

referred to Miska et al.  [  59  ]  “Most single miRNA 
mutants do not confer a detectable phenotype.” 
For TFs as well, they cautiously suggested, as the 
possible downside of Y1H assays, that members 
of a TF family function redundantly  in vivo   [  105  ] . 
They also demonstrated that FLH-1 and FLH-2, 
members of the same TF family, redundantly 
regulate several miRNAs in the  C. elegans  
embryo  [  106  ] . 

 Martinez and Walhout argued  [  107  ]  that the 
redundant and relatively dispensable nature of 
miRNAs in particular, together with the lack of 
miRNA hubs, “agree with the hypothesis that 
miRNAs do not function as master regulators, but 
rather predominantly function to  fi ne-tune gene 
expression instead of establishing crucial devel-
opmental gene expression programs  [  80,   108  ] .” 
Importantly, Martinez et al. experimentally 
identi fi ed TFBSs in miRNAs’ promoters and elu-
cidated signi fi cant, mutual feedback regulatory 
circuits between miRNAs and TFs. In the follow-
ing section, the redundancy of regulatory circuits 
which Martinez et al. referred to will be consid-
ered in more detail, with perspectives from 
evolution.   

    10.6   miRNA Networks Alter 
Signi fi cantly in Coordination 
with TF Networks 

 This section focuses on the differences in the con-
tributions between miRNAs and TFs to their coor-
dinated regulation. To examine these differences, 
the redundancy and the gene repertoire targeted 
by the miRNA-TF coordinated networks are 
important properties. From an evolutionary view-
point, how adaptive or bene fi cial the miRNAs’ 
coordination with TFs could be is discussed. 

    10.6.1   miRNAs and TFs Have Different 
Contributions to the 
Coordinated Networks 

 miRNAs seem to present paradoxical features 
(see Sect.  10.3.1  in detail). Experiments have 
shown that miRNAs function in many crucial 
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biological processes. Strong sequence conservation 
over diverse species indicates their functional 
importance. However, knockout experiments of 
miRNA genes cause only modest phenotypic 
alterations and have small effects on protein syn-
theses. Considered together with these points, the 
high turnover rate of miRNAs (see Sect.  10.2.4 ) 
prompts us to ask what are the differences 
between the contributions of miRNAs and TFs to 
regulatory networks as a whole. 

 In this respect, we (Iwama et al.  [  109  ] ) investi-
gated the differences in in fl uence of selection on 
miRNA and TF networks, by focusing on FFCs 
comprising a TF, a miRNA, and a target gene (see 
Fig.  10.3 ). We exhaustively predicted 386,241 
TFBSs and 35,850 miRNA target sites conserved 
between human and mouse, by phylogenetic 
footprinting (see Sect.   12.2.1    ) (Fig.  10.4 ) using 
ReAlignerV  [  110  ]  and TRANSFAC PSSM for 
TFBSs, and ReAlignerVR  [  109  ]  and PITA  [  29  ]  for 

miRNA

TF Target

  Fig. 10.3    Network graph of miRNA-TF coordinated 
regulations examined by Iwama et al.  [  109  ] . A  line  termi-
nated with a  bar  stands for a negative regulation, and a 
 line  terminated with a  closed circle  represents either posi-
tive or negative regulation       
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  Fig. 10.4    Schema illustrating phylogenetic footprint-
ing for miRNA target sites and TFBSs. Two horizontal 
 black lines  represent genome DNA sequences in the 
direction of 5 ¢  ( left ) to 3 ¢  ( right ) for human and mouse, 
which were used in the research in  [  109  ]  (see Sect.  10.4 ). 
 Blue-shadowed parallelograms  stand for evolutionarily 
conserved regions in which conserved miRNA target 

sites and TFBSs were searched for. In this case, the 
upstream regions are de fi ned as the regions immedi-
ately upstream of the  fi rst exon. Therefore the upstream 
region includes the 5 ¢  UTR sequence. There are alter-
native cases in which the sequence upstream of the 
transcription start site is deemed as the upstream 
region       

  Fig. 10.5    Schemes of connection matrices  M  and   m   used 
in  [  109  ] . ( a ) Matrix  M  stands for conserved transcriptional 
connections of the 83 TFs to the 5,169 genes. ( b ) Matrix 
  m   stands for conserved posttranscriptional connections of 
the 564 miRNAs to the 5,169 genes. Presence or absence 
of a targeting connection is represented as 0 or 1, respec-
tively, for each element of the matrices       
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miRNA target sites. From these, we detected 
non-redundant connections: 124,736 for conserved 
TF → target connections and 34,298 miRNA → tar-
get (including TFs) connections. We then compiled 
the TF → target connections and miRNA → target 
connections into two distinct matrices,  M  and   m   
(Fig.  10.5 ), in which the presence or absence of 
each connection is represented as 1 or 0, respec-
tively. These two matrices stand for the real human 
regulatory networks, although they are predicted 
ones. To differentially assess the in fl uence of selec-
tion, we devised a partial randomization approach 
in which only one matrix,  M  or   m  , was randomized, 
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whereas the other was kept unchanged (and  vice 
versa ). In this way, when we compared the real 
networks with the matrices in which only miRNA 
connections (  m  ) are randomized, allowing us to 
assess the in fl uence caused by miRNA network 
alterations separately from TF network alterations 
(and  vice versa ). Randomizations were performed 
in a degree-preserving manner (see the third para-
graph of Sect.  5.2 ) to generate 1,000 random 
matrices. When both matrices ( M  and   m  ) were ran-
domized, the total in fl uence caused by the whole 
regulatory networks under study was assessed. In 
particular, we focused on two network properties, 
(I) changes in the degree of redundancy that the 
FFCs caused, and (II) changes in the number of 
genes targeted by the FFCs. It should be noted that, 
because we examined evolutionarily conserved net-
works, the changes in the network properties that we 
could capture were brought about by selected-out 
connections,  i.e.  connections not maintained after 
the divergence of human and mouse from their com-
mon ancestor. This is often the case where studies 

are done based on computational predictions, 
because most of the prediction methods use evolu-
tionary conservation information (see Sect.  2.1 ), 
whether it is mentioned explicitly or not.     

    10.6.2   Target Repertoire Shrinks 
and Redundancy Increases 
by TF-miRNA Coordination 

 The miRNA connection randomization demon-
strated a signi fi cant reduction in the number of 
target genes in the real human networks, as shown 
in Fig.  10.6a, b . The number of target genes here 
represents the non-redundant count. It means that 
even if multiple FFCs target one gene, the number 
of target genes is ‘one’, thus, it is not the number 
of FFCs that target the gene. The  Z  scores repre-
sent how far the values observed in the real net-
works deviated from the random expectation, with 
the scale of the standard deviation over the 1,000 
suf fi ciently randomized matrices. Randomizations 
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  Fig. 10.6    Three schemes of randomizations and the 
degree of deviation of the real networks from the random 
expectation. ( a ) Schematic representations of three 
methods of connection matrix randomizations. ( b ) The 
degree of deviation of the real network from the random 
expectation is shown as  Z  and  P  values for each network 
properties. The  Z  and  P  values were computed based 
on each series of 1,000 randomized matrices generated 

in a degree-preserving manner. The  P  values were esti-
mated assuming normal distribution over each series of 
1,000 randomized matrices. The Z values are color-
coded according to the  colored bar  beneath the table 
(This  fi gure was modi fi ed from Fig. 2 in Iwama H. et al. 
 [  109  ]  by permission of Oxford University Press/on 
behalf of The Society for Molecular Biology and 
Evolution)       
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of both miRNA and TF matrices  i.e.  whole 
network randomizations, showed a similar degree 
of deviation to that of the miRNA randomization. 
These results suggest that miRNA networks 
mainly contribute to the reduction in the number 
of genes targeted by the miRNA-TF coordinated 
regulation. In contrast, TF networks were shown 
to be indifferent to the alteration of miRNA net-
works, suggesting little contribution of TF network 
alteration to the reduction in target gene number. 
In the same way, we observed that the redundancy 
caused by miRNA-TF coordinated FFCs was 
signi fi cantly raised, primarily by miRNA network 
alterations, rather than those of TFs.   

    10.6.3   Increased Redundancy 
Is Derived from miRNAs 

 To further con fi rm that the redundancy was mainly 
increased by miRNAs, we enumerated the miRNA-
derived redundant connections separately from 
TF-derived redundant connections. As shown in 
Fig.  10.7 , redundant FFC paths can be classi fi ed 
into three representative cases. In panel b, three 
unitary FFCs (each represented in panel a) inde-
pendently have effects on one target. For this case, 
redundancy of three is made by three miRNAs and 
three TFs. However, in the case of panel c, redun-
dancy of three is made by three miRNAs and one 
TF. In panel d, the same degree of redundancy of 
three is caused by three TFs and one miRNA. 
Using these differences, miRNA-derived FFC 
redundancy is calculable as (the number of FFCs)/
(the number of TF → target connections). In the 
same way, the TF-derived FFC redundancy is 
given by (the number of FFCs)/(the number of 
miRNA → target connections). Based on these 
values, Fig.  10.8  shows that miRNA-TF FFC 
redundancy is mostly derived from miRNAs. 
Therefore, one of the major roles of miRNA con-
nections is considered to be the addition of redun-
dancy to the stable TF networks through the 
coordination of miRNA-TFs.   

 The redundancy provided by miRNAs is often 
explained in adaptive ways. By ‘adaptive’, we mean 
bene fi cial for an organism’s survival or  fi tness. For 
example, miRNA redundant regulatory pathways 

would enable the  fi ne-tuning of gene expression 
 [  17,   111–  113  ] , to shut off leaky expression by 
transcription factor regulation  [  17,   114–  116  ] , or 
to have roles in buffering the variation elicited by 
genetic and environmental perturbations  [  35,   80  ] .  

    10.6.4   Coordination and Redundancy 
Are Not Necessarily Bene fi cial 
Consequences 

 Signi fi cant reductions in the number of target 
genes were shown for TF-miRNA coordinated 
FFCs (Fig.  10.6b ). This poses a question. If the 
marked increase in miRNA-derived redundancy 
in FFCs is adaptive for the organism, why is the 
number of those circuits’ target genes so drasti-
cally decreased? In this research, the decrease in 
target genes means that many of them have been 
selected-out during evolution. Thus, we may 
need to consider that most of the miRNA connec-
tions are substantially detrimental or at least not 

  Fig. 10.7    Network graphs showing a unitary miRNA-TF 
coordinated FFC and three different types of FFC redun-
dancy. ( a ) A unitary FFC under analysis. ( b ) Three unitary 
FFCs independently make a redundancy of three. ( c ) 
Redundancy of three is made through three miRNAs with 
one TF, whereas in ( d ), the same degree of redundancy is 
made through TFs. A  blue arrow  stands for a miRNA-derived 
targeting path and a  red arrow  for a TF-derived targeting 
path (This  fi gure was modi fi ed from Fig. 3 in Iwama H. et al. 
 [  109  ]  by permission of Oxford University Press/on behalf 
of The Society for Molecular Biology and Evolution)       
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bene fi cial. A possible key factor could lie in the 
rapid turnover of miRNA connections. In the 
research dealing with the conserved networks 
between human and mouse, miRNA connections 
that emerged after human–mouse divergence 
were out of range of the analyses. Therefore, the 
results could indicate that the miRNA connec-
tions that were tolerated at the time of human–
mouse divergence have been further selected out 
after divergence, because the majority of them 
would be detrimental or at least not bene fi cial. 
However, if we consider the cases where those 
miRNA connections are part of redundant paths, 
such that they parallel bene fi cial connections, then 
the redundant paths become, at least, not detri-
mental. Therefore, for miRNAs, being part of 
redundant paths in FFCs can be considered as a 
way of escaping from being selected out. This may 
indicate that the redundancy-adding role of miR-
NAs provides a niche for many miRNAs’ survival, 
avoiding con fl icts with the stable TF networks. 
This scenario does not require adaptive roles of 
miRNA redundancy, but rather it is by chance 
that the redundancy has appeared. This indicates 
that redundancy and coordinated networks do not 
always accompany bene fi cial functions.   

    10.7   Concluding Remarks 

 Studies on miRNA-TF coordinated networks 
could include various scienti fi c  fi elds and tenets, 
which would provide us with wider perspectives 
on miRNAs. This theme might challenge the 
scienti fi c ground upon which each of us stands; 
are there principles under which complex systems, 
including life, appear, or can we only understand 
the principles on the chance processes through 
which life has appeared?      
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  Abstract 

 MicroRNAs can affect the protein translation using nine mechanistically 
different mechanisms, including repression of initiation and degradation 
of the transcript. There is a hot debate in the current literature about which 
mechanism and in which situations has a dominant role in living cells. 
The worst, same experimental systems dealing with the same pairs of 
mRNA and miRNA can provide ambiguous evidences about which is the 
actual mechanism of translation repression observed in the experiment. 
We start with reviewing the current knowledge of various mechanisms of 
miRNA action and suggest that mathematical modeling can help resolving 
some of the controversial interpretations. We describe three simple 
mathematical models of miRNA translation that can be used as tools in 
interpreting the experimental data on the dynamics of protein synthesis. 
The most complex model developed by us includes all known mechanisms 
of miRNA action. It allowed us to study possible dynamical patterns 
corresponding to different miRNA-mediated mechanisms of translation 
repression and to suggest concrete recipes on determining the dominant 
mechanism of miRNA action in the form of kinetic signatures. Using 
computational experiments and systematizing existing evidences from 
the literature, we justify a hypothesis about co-existence of distinct 
miRNA-mediated mechanisms of translation repression. The actually 
observed mechanism will be that acting on or changing the sensitive 
parameters of the translation process. The limiting place can vary from 
one experimental setting to another. This model explains the majority of 
existing controversies reported.  

      Mathematical Modeling 
of microRNA-Mediated Mechanisms 
of Translation Repression       

     Andrei   Zinovyev      ,    Nadya   Morozova   , 
   Alexander N.   Gorban   , and    Annick   Harel-Belan      
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  Fig. 11.1    Interaction of microRNA with protein transla-
tion process. Several (from nine documented) mechanisms 
of translation repression are shown: (M1) on the initiation 
process, preventing assembling of the initiation complex 
or recruiting the 40S ribosomal subunit; (M2) on the ribo-
some assembly; (M3) on the elongation process; (M7, 
M8) on the degradation of mRNA. There exist other 
mechanisms of microRNA action on protein translation 
(transcriptional, transport to P-bodies, ribosome drop-off, 
co-translational protein degradation and others) that are 
not visualized here. Here 40S and 60S are light and heavy 
components of the ribosome, 80S is the assembled ribosome 

bound to mRNA, eIF4F is an translation initiation factor, 
PABC1 is the Poly-A binding protein, “cap” is the mRNA 
cap structure needed for mRNA circularization (which 
can be the normal m7G-cap or arti fi cial modi fi ed A-cap). 
The initiation of mRNA can proceed in a cap-independent 
manner, through recruiting 40S to IRES (Internal Ribosome 
Entry Site) located in 5 ¢ UTR region. The actual work of 
RNA silencing is performed by RISC (RNA-induced 
silencing complex) in which the main catalytic subunit 
is one of the Argonaute proteins (AGO), and miRNA 
serves as a template for recognizing speci fi c mRNA 
sequences       

    11.1   Introduction 

 MicroRNAs (miRNAs) are short (21–23 nt long) 
non coding RNAs that are currently considered 
as key regulators of a wide variety of biological 
pathways, including development, differentia-
tion and tumorigenesis. Recently, remarkable 
progress has been made in understanding miRNA 
biogenesis, function and mode of action. Mature 
miRNAs are incorporated into the RISC com-
plex, whose key component is an Argonaute pro-
tein, and consequently regulate gene expression 
by guiding the RISC complex toward speci fi c 

target mRNAs (see Fig.  11.1 ). However, the exact 
mechanism of this regulation is still a matter of 
debate. In the past few years, several possible 
mechanisms have been documented  [  1–  11  ] . The 
most documented mechanisms are negative post-
transcriptional regulation of mRNA by mRNA 
translation inhibition and/or mRNA decay, how-
ever, some observations show that miRNAs may 
also act at the transcriptional level.  

 There is a big controversy in the current litera-
ture about which mechanism and in which situa-
tions has a dominant role in living cells. The 
worst, same experimental systems dealing with 
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the same pairs of mRNA and miRNA can provide 
controversial evidences about which is the actual 
mechanism of translation repression observed in 
the experiment. In this chapter we claim that using 
mathematical modeling can shed light on resolv-
ing contradicting experiment interpretations. 

 The structure of the chapter is the following: 
 First, we review the whole corpus of available 

experimental evidences suggesting existence of 
various mechanisms of miRNA action. Second, we 
give a detailed description of three mathematical 
models all describing the process of protein transla-
tion in the presence of miRNA. We start with the 
simplest linear model, suggested before by Nissan 
and Parker  [  12  ] . By analytical analysis of this sim-
ple model we demonstrate the importance of 
exploiting not only the stationary properties but also 
the dynamical properties in interpreting the experi-
ments on miRNA-mediated silencing of translation. 
The second model of protein translation, also sug-
gested  fi rst by Nissan and Parker and analyzed in 
 [  13  ]  shows how recycling of initiation factors and 
ribosomal subuntis can be taken explicitly into 
account and to what limitation effects this can lead. 
We  fi nalize the chapter by describing a mathemati-
cal model in which all nine known mechanisms of 
miRNA action are taken into account, developed by 
the authors of this chapter  [  14,   15  ] . Based on this 
model, we formulate practical recipes of distin-
guishing mechanisms of miRNA action by observ-
ing stationary and dynamical properties of three 
quantities: total amount of mRNA, amount of pro-
tein synthesized and the average number of ribo-
somes located on one transcript. 

 We analyze all three models following a 
common recipe. The purpose of the analysis is to 
obtain understanding of how the stationary states 
and the relaxation times of the model variables 
depend on model parameters. Though analysis of 
the stationary state is a well-known approach, 
analysis of relaxation time is a relatively poorly 
explored method in systems biology. By de fi nition, 
the relaxation time is  the characteristic time 
needed   for a dynamic variable   to change from 
the   initial condition to some   close vicinity of the  
 stationary state . The relaxation time is a relatively 
easily observable quantity, and in some experi-
mental methods it is an essential measurement 

(relaxometry, for example, see  [  16  ] ). Most natu-
rally the relaxation time is introduced in the case 
of a linear relaxation dynamics. For example, if a 
variable follows simple dynamics in the form 
    ( )( ) 1 −= − tx t A e λ   , where  A  is the steady-state

value of  x , then the relaxation time is     =
1

t
l

   

and it is the time needed for  x  to increase from the 
zero initial value to approximately 1/ e   »  63% of 
the  A  value. Measuring the approximate relaxation 
time in practical applications consists in  fi tting the 
linear dynamics to the experimental time curves 
and estimating  l  (for example, see  [  17  ] ). 

 The most complete model allows us to sim-
ulate the scenario when several concurrent 
miRNA mechanisms act at the same time. We 
show that in this situation interpretation of a 
biological experiment might be ambiguous 
and dependent on the context of the experi-
mental settings. This allows us to suggest a 
hypothesis that most of the controversies pub-
lished in the literature can be attributed to the 
fact of co-occurrence of several miRNA mecha-
nisms of action, when the observable mecha-
nism acts on the limiting place of protein 
translation which can change from one experi-
ment to another.  

    11.2   Review of Published 
Experimental Data Supporting 
Each of Proposed Mechanisms 
of microRNA Action 

 Protein translation is a multistep process which 
can be represented as sequence of stages (initia-
tion, ribosome assembly, elongation, termination) 
involving circularization of mRNA, recruiting the 
mRNA cap structure and several protein initiation 
factors and ribosomal components. The process 
of normal translation can be regulated by small 
non-coding microRNAs through multiple mecha-
nisms (Fig.  11.1 ). 

 Here we are reviewing available experimental 
data on all reported mechanisms of microRNA 
action, grouping them in a way which elucidates 
the main details supporting each of these pro-
posed mechanisms. 
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    11.2.1   M1: Cap-40S Initiation Inhibition 

 Inhibition of cap recruitment as a mechanism of 
mRNA repression was initially proposed by Pillai 
et al.  [  18  ] , and since that time this mechanism 
was one of the most frequently identi fi ed  [  5,   6, 
  19–  22  ] . 

 The main evidence in favor of the cap-
recognition and 40S assembly inhibition model 
was that IRES-driven or A-capped mRNA (see 
Fig.  11.1  for de fi nitions of these terms) are refrac-
tory to microRNA inhibition, together with a shift 
toward the light fraction in the polysomal gradi-
ent. According to this, an initiation mechanism 
upstream of eIF4G recruitment by eIF4E was 
postulated and it was hypothesised that it sup-
presses the recognition of the cap by eIF4E. The 
very recent studies  [  22,   23  ]  detailed GW182 
involvement in the initiation suppression via cap-
40S association, thus providing additional evi-
dence for this mechanism.  

    11.2.2   M2: 60S Ribosomal Unit Joining 
Inhibition 

 It has also been proposed that microRNA could act 
in a later step of initiation, i.e., block the 60S sub-
unit joining. This hypothesis, initially suggested 
by Chendrimada et al.  [  24  ] , was next supported by 
in-vitro experiments showing a lower amount of 
60S relative to 40S on inhibited mRNAs, while 
toe-printing experiments show that 40S is posi-
tioned at the  AUG  codon  [  25  ] . It is important to 
point out that, strictly speaking, there is no proof 
that miRNA affects the scanning for the  AUG  
codon in this work, although some works interpret 
this data as an inhibition of scanning  [  12  ] .  

    11.2.3   M3: Elongation Inhibition 

 Historically, the inhibition of translation elonga-
tion mechanism was the  fi rst proposed mechanism 
for microRNA action  [  26  ] . The major observation 
supporting this hypothesis was that the inhibited 
mRNA remained associated with the polysomal 
fraction, which was reproduced in different 
systems  [  27–  30  ] . The idea of a post-initiation 

mechanism was further supported by the observation 
that some mRNAs can be repressed by microRNA 
even when their translation is cap-independent 
(see Fig.  11.1 , mRNAs with an IRES or A-capped) 
 [  29–  33  ] . 

 Actually, in the work by Olsen and Ambros 
 [  26  ]  there is no data supporting elongation inhibi-
tion rather than other post-initiation mechanisms 
(e.g. nascent polypeptide degradation), because 
the main conclusion is derived only by studying 
the polysomal pro fi les. But some evidences can 
be found in the work by Gu et al.  [  27  ] , describing 
that on the same mRNA, when the ORF is prolon-
gated downstream the binding site of miRNA 
(mutation in the stop codon), the inhibition by  
miRNA is lost. If a rare (slow) codon is introduced 
upstream the binding site, the inhibition is relieved, 
which shows that the presence of actively translat-
ing ribosomes on the binding site impairs the inhi-
bition by miRNA. The presence of a normal 
polysomal distribution of the inhibited mRNA 
and sensitivity to EDTA (ethylenediaminetetraa-
cetic acid) and puromycin indicating functional, 
translating polysomes, allowed the authors to sug-
gest the “elongation” model. Also some data of 
Maroney et al.  [  29  ] , could also imply that elonga-
tion is slowed down by microRNA (as the ribo-
some stays longer on the inhibited mRNA), but 
the authors discussed this point critically and were 
not able to reproduce it in vitro.  

    11.2.4   M4: Ribosome Drop-Off 
(Premature Termination) 

 First (and seems to be the only one till today) 
evidence of this mechanism was done by Petersen 
et al.  [  30  ] , who observed no difference in poly-
somal pro fi le in the presence of miRNA. Addition 
of puromycin, which necessitate peptidyl trans-
ferase activity to act, didn’t change the poly-
somal pro fi le in the presence or in the absence of 
the miRNA. The authors have concluded that 
polysomes are actively translating even in pres-
ence of miRNA. They were not be able to detect 
any peptide by radiolabelling and therefore pos-
tulated the ribosome drop-off mechanism. 

 However, Wang et al.  [  34  ]  presented data 
also supporting premature termination: the 
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read-through codon-stop and more rapid loss of 
polyribosome upon initiation block.  

    11.2.5   M5: Co-translational Nascent 
Protein Degradation 

 Initially, the idea of nascent protein degradation 
was proposed by Nottrott et al.  [  35  ] , according to 
the presence of inhibited mRNA and AGO protein 
in polysomes, which suggests the action of 
miRNA on actively translated mRNA. However, 
no nascent peptide has ever been experimentally 
demonstrated  [  11,   30,   34,   35  ] ; thus the nascent 
polypeptide degradation, if it exists, should occur 
extremely rapidly after the synthesis. Anyhow, 
being able to immunoprecipitate the nascent poly-
peptide together with the mRNA and the poly-
some in the case of normal translation, the authors 
failed to do so in the case of miRNA inhibition 
 [  35  ] . Pillai et al. in  [  11  ]  showed that this degrada-
tion, if exists, should be proteasome-independent, 
and no speci fi c protease or complex involved in 
this polypeptide degradation has ever been 
identi fi ed. Data supporting nascent polypeptide 
degradation are the following: (a) sedimentation 
of mRNA together with miRNA-RISC complexes 
in actively translating (puromycin-sensitive) poly-
somes; (b) blocking the initiation (in a cap-depen-
dent manner), resulted in a shift in polysomal 
pro fi le, suggesting that the repressed mRNA is 
actively transcribed. In Wang et al.  [  34  ]  the authors 
also support nascent protein degradation showing 
polysomal distribution with puromycin sensitiv-
ity, but in the same paper they also present data 
supporting premature termination. Maroney et al. 
 [  29  ]  and Gu et al.  [  27  ]  presented experimental 
data which are very coherent with this line though 
not concluding that this mechanism is the domi-
nating one: presence of miRNA/mRNA complex 
in polysomes, sensitivity to different conditions is 
an indication of translating ribosomes.  

    11.2.6   M6: Sequestration in P-Bodies 

 An effect of sequestration of mRNA targeted by 
AGO-microRNA complex in cytoplasmic struc-
tures called P-bodies was initially shown in  [  18, 

  36  ] . Next this result was con fi rmed in many 
 studies characterising P-bodies as structures 
where the translational machinery is absent and 
the degradation machinery is functional  [  18,   36–
  42  ] . The main propositions about P-bodies’ func-
tion was that they sequestrate targeted mRNA 
apart from translational machinery, or that 
P-bodies give a kinetics advantage for mRNA 
decay (local concentration of all needed enzymes). 
Two additional important points were elucidated 
in  [  43  ] , showing that mRNA localised in the 
P-bodies, can be still associated with polysomes, 
and also that miRNA silencing is still possible 
when P-bodies are disrupted. This led to the con-
clusion that P-bodies are not required for but 
rather a consequence of microRNA-driven RNA 
degradation or translational inhibition. This con-
clusion is also supported by other studies  [  44  ]  and 
is mostly accepted today. Moreover, only a small 
portion of miRNA, mRNA and RISC complex is 
localised inside macroscopic P-bodies  [  18,   44  ] .  

    11.2.7   M7: mRNA Decay 
(Destabilisation) 

 Recently, starting from the  fi rst description by 
Lim et al.  [  45  ] , a lot of data has revealed 
miRNA-mediated mRNA decay (destabiliza-
tion) of targeted mRNA without direct cleavage 
at the binding site  [  45–  53  ] . Also, most of the 
authors note that only a slight protein decrease 
can be obtained by translational inhibition only. 
When the protein level decreases by more than 
33%, mRNA destabilization is the major com-
ponent of microRNA-driven silencing  [  46  ] . 
Anyhow, all these data, concordant in the main 
point (mRNA decay mechanism), are different 
in details of its concrete mechanism (decay by 
mRNA deadenylation, decapping, or 5 ¢ –3 ¢  deg-
radation of the mRNA). In the review of 
Valencia-Sanchez et al.  [  54  ] , it is concluded 
that the decapping followed by 5 ¢  > 3 ¢  degrada-
tion is the most plausible mechanism for the 
miRNA inhibition, while deadenylation could 
lead only to a decrease in the initiation ef fi ciency 
by disrupting the loop between polyA and cap. 
Behn-Ansmant et al.  [  48  ] , showed that GW182, 
an AGO partner in the microRNA pathway, 



194 A. Zinovyev et al.

triggers deadenilation and decapping of bound 
mRNA, which leads to mRNA decay. Filipowicz 
et al.  [  6  ]  supports the idea of the degradation 
running mostly in 5 ¢  > 3 ¢  direction after deade-
nylation and decapping, in contradiction to 
 [  53  ] , where it is claimed that deadenylation is 
the principal cause of the mRNA decay but deg-
radation goes  fi rst in the 3 ¢ - > 5 ¢  way. The latter 
work also indicated that the degradation mech-
anism is supposed to be only an addition to the 
translational inhibition and that translational 
inhibition has the same ef fi ciency with or with-
out degradation. Coller and Parker in 2004 pro-
posed that as the poly(A) tail can enhance 
translation rates and inhibit mRNA decay, then 
the increase of deadenylation rates by miRNA/
RISC could be counted as additional mecha-
nism by which translation repression and 
mRNA decay could be stimulated  [  55  ] . Finally, 
Eulalio et al. showed that there could be two 
different cases in mRNA degradation by 
microRNA: in one the ongoing translation is 
required for the decay, and in the second the 
decay occurs in the absence of active transla-
tion, and assume that this depends on mRNAs 
undergoing the decay  [  49  ] .  

    11.2.8   M8: mRNA Cleavage 

 mRNA cleavage (similar to what is observed with 
siRNA) can be observed when the sequence of 
microRNA is completely or almost completely 
complementary to its target binding site. The  fi rst 
proposition for this mechanism was made for 
plants  [  56,   57  ] , and since that time, the miRNA-
mediated mRNA cleavage was proved to be very 
common for plants, and much more rare in ani-
mals  [  58,   59  ] . 

 Though the most of known mammalian 
microRNAs are only partially complementary to 
their targets, there is some data on miRNA-medi-
ated mRNA cleavage, for example, for miR-196 
 [  59  ] . A few other works (e.g., in mammals  [  54, 
  60  ]  or in  C. elegans   [  47  ] ) also mentioned cleav-
age as a possible mechanism of microRNA 
repression in animals.  

    11.2.9   M9: Transcriptional Inhibition 
Through microRNA-Mediated 
Chromatin Reorganization 
Following by Gene Silencing 

 Although the  fi rst publication for siRNA-medi-
ated transcriptional repression  [  61  ]  was made in 
2004, the  fi rst publication proving miRNA-medi-
ated transcriptional repression in mammalian 
cells appeared only recently  [  62  ] . Around this 
time also appeared the  fi rst publication for 
miRNA-mediated transcriptional activation, 
showing that microRNA-373 induces expression 
of genes with complementary promoter sequences 
 [  63  ] . Since then very few evidences of miRNA-
directed transcriptional gene silencing (TGS) in 
mammalian cells were obtained  [  62,   64  ] .  

    11.2.10   Controversies Between 
the miRNA-Mediated 
Mechanisms of Translation 
Repression 

 It is important to note that it is extremely dif fi cult to 
discriminate experimentally between different 
potential post-initiation mechanisms, such as elon-
gation inhibition, premature ribosome dissociation 
(“ribosome drop-off”) or normal elongation with 
nascent polypeptide degradation. Both elongation 
slowing down and nascent polypeptide degradation 
are supported by the fact that the mRNA-polysomal 
association is puromycin-sensitive, indicating poly-
somes’ activity  [  29,   35  ]  and by the observed 
requirement for microRNA binding in the unstrans-
lated region  [  27  ] . Premature ribosome dissociation 
is supported by decreased read-through of inhib-
ited mRNA  [  30  ] . Both ribosome drop-off and ribo-
somal “slowing down” are supported by the slight 
decrease in the number of associated ribosomes 
 [  29,   35  ] . But, eventually with premature drop-off, 
the polysomal pro fi le will not be the same as in the 
case of nascent protein degradation, as one should 
have less ribosomes per mRNA. 

 Summarizing overview on the proposed mech-
anisms, we brie fl y emphasize the main contro-
versial data.
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    1.    First of all, even the question at which level 
(transcriptional, translational, etc.) the 
microRNA action takes place is still strongly 
debated. The most frequently reported, but 
also very contradictory in details, is the mech-
anism of gene repression by microRNAs 
occurring at the level of mRNA translation 
(this includes mechanisms of arrest at initia-
tion and elongation steps, ribosome drop-off 
and nascent polypeptide degradation), but 
repression at the level of mRNA (before trans-
lation) have been also proposed as the princi-
pal one in many studies (this includes 
mechanisms of microRNA-mediated mRNA 
decay, sequestration of target mRNAs in 
P-bodies and rare in animals but frequent in 
plants mechanism of target mRNA cleavage). 
Moreover, it was proposed that some microR-
NAs mediate chromatin reorganization fol-
lowed by transcriptional repression, which 
involves mechanisms strikingly different from 
the previous modes of repression. Finally, the 
transcriptional activation by microRNA  [  62, 
  63  ]  and translational activation by microRNA 
have been also proposed  [  65,   66  ] .  

    2.    Currently, the action of microRNAs at the 
level of initiation of translation seems to be 
the most favourite one accordingly to many 
recent publications. Anyhow, the experimen-
tal data, supporting this mechanism, are also 
controversial in the result interpretations of 
different groups suggesting this mechanism. 
For example, it has been proposed that AGO2 
protein could interact with the cap via the 
eIF4E-like domain and therefore compete 
with eIF4E for binding the cap  [  20  ] . However, 
this has been weakened by the recent  fi nding 
that this domain could be involved in the 
 binding with GW182, an important protein for 
miRNA action, and by crystallographic analy-
sis showing that the folding will not allow 
such a interaction with the cap  [  23,   67  ] . 

 The main observation supporting the initia-
tion mechanism is that mRNA with IRES or 
A-cap can’t be inhibited by microRNA, but in 
the considerable number of works it was 
shown that some mRNAs can be repressed by 

a microRNA even when their translation is 
cap-independent  [  30–  33  ] .  

    3.    For blocking the 60S subunit joining mecha-
nism, it was shown that eIF6, an inhibitor of 
60S joining, is required for microRNA action 
 [  24  ] , but this was contradicted by other studies 
 [  23  ] .  

    4.    An interesting observation was reported in  [  68  ]  
about that the same mRNA targeted by the same 
microRNA can be regulated either at the initia-
tion or the elongation step depending on the 
mRNA promoter. But next, using the same pro-
moter described in  [  68  ] , as leading to the initia-
tion mechanism, the authors suggests the 
“elongation” model, according to the polysomal 
distribution on the inhibited mRNA  [  27  ] .  

    5.    Different results about mechanisms of 
microRNA action were obtained depending 
on the transfection method of the inhibited 
mRNA  [  33  ] .  

    6.    Karaa et al. describes the VEGF gene, which 
is endogenously regulated by a miRNA, 
miR16, acting on an IRES (see Fig.  11.1  leg-
end)  [  32  ] . VEGF is translated from one of two 
IRES, and only one of these IRES allows inhi-
bition by miR16. Therefore, inhibition by 
microRNA is possible even in IRES-driven 
translation, but not for all IRES-driven cases, 
even if those two IRES have been described as 
similar.  

    7.    Kozak et al., reviewing different papers about 
miRNA-mediated inhibition, claimed a lot of 
experiments to be faulty  [  69  ]  and reported that 
only few studies are based on reliable experi-
ments could be considered, namely  [  19,   20, 
  24,   25,   52,   70  ] . The statement of the author 
that “other suggested mechanisms are not 
mentioned here because the speculations 
greatly exceed the facts” seems to concern 
 [  18,   30,   33,   35  ] . Together with this, the author 
is very critical about interpretations of the 
IRES experiments.  

    8.    Olsen et al. has described inhibition of elonga-
tion step, based on the presence of polysomal 
distribution  [  26  ] . But, actually, there is no 
additional data supporting elongation inhibition 
rather than nascent polypeptide degradation, 
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because in both works the main (and  different!) 
conclusion is driven only by studying the 
polysomal pro fi les.  

    9.    In several studies it was shown that degrada-
tion and translational arrest can be coupled in 
many systems  [  18,   23,   49,   53,   71  ] , but here the 
situation is also not completely understood: 
some mRNAs are repressed mostly at the 
translational level, others mostly at the stabil-
ity level (with or without a requirement for 
concurrent translation inhibition), and some at 
both levels  [  60  ] . In some works it is suggested 
that microRNA-mediated mRNA decay is a 
consequence of translational repression, the 
other group of studies suggests that neither the 
destabilisation is a consequence of transla-
tional arrest, nor the translational repression is 
a consequence of degradation, but that the two 
mechanisms are concurrently occurring  [  5, 
  22,   23  ] . It has been concluded that the relative 
contributions of translational repression and 
decay differ depending on the presence or 
absence of the poly(A) tail  [  23  ] . However, in 
deciding whether the deadenylation is the 
cause or consequence of silencing, the authors 
again present controversial data interpreta-
tions  [  72  ] .     
  Thus, the experimental data   and summarizing 

conclusions about   the mechanism by which  
 microRNA repress mRNA expression   are highly 
controversial, and   though arise a question   about 
interrelations between the   different mechanisms 
and their   possible concomitant action, do   not 
consider it in   the frame of one   unique mechanism 
of microRNA   action.  

  Using a series of   mathematical models with 
increasing   complexity, we show how   mathemati-
cal modelling can help   in interpreting the experi-
mental   results and even suggest   some explanations 
of the   ambiguous observations.    

    11.3   Modeling Notations 
and Assumptions 

 In this chapter we consider three mathematical 
models of miRNA action of increasing 
complexity:

    1.     The simplest linear model   of protein 
 translation . This model was  fi rst suggested in 
 [  12  ] . It allows distinguishing two types of 
miRNA-mediated mechanisms: those acting 
at the very early stage of translation initiation 
and those acting at a later stage.  

    2.     Non-linear model of protein   translation taking 
into account   recycling of ribosomes and   initi-
ation factors . This model was  fi rst suggested 
in  [  12  ] . It allows distinguishing four types of 
miRNA-mediated mechanisms: acting at the 
very early stage of initiation, later stage of ini-
tiation, ribosome assembly step, elongation 
and termination (considered together as one 
step of translation).  

    3.     General model describing all   known mecha-
nisms of miRNA   action . This model was devel-
oped by the authors of this chapter  [  14,   15  ]  
and includes nine mechanisms of miRNA 
action. Using this model, we classify the exist-
ing mechanisms by their dynamical properties 
and suggest a tool to distinguish most of them 
based on experimental data.     
 Of course, any mathematical model is a 

signi fi cant simpli fi cation of biological reality. The 
 fi rst two models, for example, consider only a lim-
ited subset of all possible mechanisms of 
microRNA action on the translation process. All 
processes of synthesis and degradation of mRNA 
and microRNA are deliberately neglected in these 
models. Interaction of microRNA and mRNA is 
simpli fi ed: it is supposed that the concentration 
of microRNA is abundant with respect to 
mRNA. Interaction of only one type of microRNA 
and one type of mRNA is considered (not a mix of 
several microRNAs). The process of initiation is 
greatly simpli fi ed: all initiation factors are repre-
sented by only one molecule which is marked as 
eIF4F. 

 Finally, the classical chemical kinetics approach 
is applied, based on solutions of ordinary differen-
tial equations, which assumes suf fi cient and well-
stirred amount of both microRNAs and mRNAs. 
Another assumption in the modeling is the mass 
action law assumed for the reaction kinetic rates. 

 It is important to underline the interpretation of 
certain chemical species considered in the  system. 
The ribosomal subunits and the initiation factors in 
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the model exist in free and bound forms. Moreover, 
the ribosomal subunits can be bound to several 
regions of mRNA (the initiation site, the start codon, 
the coding part). Importantly, several copies of fully 
assembled ribosomes can be bound to one mRNA. 
To model this situation, we have to introduce the fol-
lowing quanti fi cation rule for chemical species: 
amount of “ribosome bound to mRNA” means the 
total number of ribosomes translating proteins, 
which is not equal to the number of mRNAs with 
ribosome sitting on them, since one mRNA can hold 
several translating ribosomes (polyribosome). In this 
view, mRNAs act as  places  or  catalyzers , where 
translation takes place, whereas mRNA itself for-
mally is not consumed in the process of translation, 
but, of course, can be degraded or synthesized. 

 Let us introduce notations that will be used 
throughout the chapter for designation of chemi-
cal species:
    1.     40S , free small ribosomal subunit.  
    2.     60S , free large ribosomal subunit.  
    3.     eIF4F , free initiation factor.  
    4.     M,  free mRNA (models 1 and 2) and mRNA 

with free initiation site (model 3).  
    5.     P,  translated protein.  
    6.     B , mRNA located in P-bodies.  
    7.     F , state of mRNA when the small ribosomal 

subunit bound to the initiation site.  
    8.     A , state of mRNA when the small ribosomal 

subunit bound to the start codon.  
    9.     R , translating ribosome, located on mRNA.     

 Square brackets will denote the amounts of 
the corresponding species. For example, [ M ] 
will denote the amount of free mRNA in the 
system. 

 Note that the notations for the kinetic rate 
constants are not equivalent in three models. For 
example, while  k  

1
  noti fi es the kinetic rate of the 

cap initiation in the models 1 and 2, it has differ-
ent measure units in linear and non-linear mod-
els. Moreover, in the model 3,  k  

1
  noti fi es the rate 

constant for translation initiation (recruiting 40S 
subunit) of mRNA already in translation pro-
cess. Hence, the meaning of  k  

 i 
  constants should 

be considered differently per each model type.  

    11.4   Simplest Linear Model 
of Protein Translation 

 The simplest representation of the translation 
process has the form of a circular cascade of reac-
tions  [  12  ]  (see Fig.  11.2 ). The model contains 
four chemical species  40S ,  F ,  A  and  P  and three 
chemical reactions.  

 The catalytic cycle in which the protein is pro-
duced is formed by the following reactions:
    1.    40S →  F , Initiation complex assembly (rate  k1 ).  
    2.     F  →  A , Some late and cap-independent initia-

tion steps, such as scanning the 5’UTR for the 
start  A  codon recognition (rate  k2 ) and 60S 
ribosomal unit joining.  

  Fig. 11.2    The simplest mathematical model of protein 
translation which is capable to explain the effect of a 
miRNA on the very early (rate  k1 ) and late (rate  k2 ) steps 
of mRNA initiation; ( a ) graphical presentation of the 

model in the SBGN standard; ( b ) schematic model pre-
sentation. Action of miRNA is modeled by reducing the 
rate constant of the corresponding translation step       
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    3.     A  → 40S, combined processes of protein elon-
gation and termination, which leads to pro-
duction of the protein (rate  k3 ), and fall off of 
the ribosome from mRNA.     
 The model is described by the following 

 system of equations  [  12  ] :

     

[40 ]( )
1[40 ] 3[ ]

[ ]( )
1[40 ] 2[ ]

[ ]( )
2[ ] 3[ ]
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d S t
k S k A

dt
d F t

k S k F
dt

d A t
k F k A

dt
Psynth t k A t    (11.1)  

where  Psynth ( t ) is the rate of protein synthesis. 
 Following  [  12  ] , let us assume that  k3  >>  k1 , 

 k2 . This choice was justi fi ed by the following 
statement: “…The subunit joining and protein 
production rate ( k3 ) is faster than  k1  and  k2  
since mRNA-40 S  complexes bound to the  A  
without the 60S subunit are generally not 
observed in translation initiation unless this step 
is stalled by experimental methods, and elonga-
tion is generally thought to not be rate limiting 
in protein synthesis…”  [  12  ] . 

 Under this condition, the Eq.  11.1  have the 
following approximate solution (which becomes 
the more exact the smaller the ( k1  +  k2 )/ k3  ratio), 
suggested earlier in  [  13  ] :

     3 ( 1 2)0

40 ( ) 1 / 1 1 0
40 1 1

( ) 1 / 2 1 1 ,
1 1 3 2

( ) 1 / 3 0 11 2

− − +

⎛ ⎞−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟+⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

k t k k t

S t k
S

F t k e e
k k

A t k
k k

   (11.2)  

     − +⎛ ⎞= −⎜ ⎟⎝ ⎠+

( 1 2)040 3
(t) 1

1 1 2
1 2

k k tS k
Psynth e

k
k k

   (11.3)  

for the initial condition
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 From the solution ( 11.2 – 11.3 ) it follows that 
the dynamics of the system evolves on two time 
scales: (1) fast elongation dynamics on the time 
scale   »  1/ k3 ; and (2) relatively slow translation 
initiation dynamics with the relaxation time  t  

 rel 
   »  

    +
1

1 2k k
  . The protein synthesis rate formula

(2–3) does not include the  k3  rate, since it is 
neglected with respect to  k1 ,  k2  values. From 
(2–3) we can extract the formula for the protein 
synthesis steady-state rate  Psynth ( t ) (multiplier 
before the parentheses) and the relaxation time  t  

 rel 
  

for it (inverse of the exponent power):

     = =
++

040 1
, .

1 1 1 2
1 2

rel

S
Psynth t

k k
k k

   (11.4)   

 Now let us consider two experimental situa-
tions: (1) the rate constants for the two transla-
tion initiation steps are comparable  k1   »   k2 , and 
(2) the cap-dependent rate  k1  is limiting:  k1  << 
 k2 . Accordingly to  [  12  ] , the second situation can 
correspond to modi fi ed mRNA with an alterna-
tive cap-structure (A-cap), which is much less 
ef fi cient for the assembly of the initiation factors, 
40S ribosomal subunit and polyA-binding 
proteins. 

 For these two experimental systems (let us 
call them “wild-type” and “modi fi ed” corre-
spondingly), let us study the effect of microRNA 
action. We will model the microRNA action by 
diminishing the value of a kinetic rate constant 
for the reaction representing the step on which 
the microRNA is acting. Let us assume that there 
are two alternative mechanisms: (1) microRNA 
acts in a cap-dependent manner (thus, reducing 
the  k1  constant) and (2) microRNA acts in a 
 cap-independent manner, for example, through 
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 interfering with 60S subunit joining (thus, reducing 
the  k2  constant). The dependence of the 

steady rate of protein synthesis  Psynth  ~     
+

1
1 1
1 2k k

  and the relaxation time  t  
 rel 

   »      
+
1

1 2k k
  on the

ef fi ciency of the microRNA action (i.e., how 
much it is capable to diminish a rate coef fi cient) 
is shown in Fig.  11.3 .  

 Interestingly, experiments with cap structure 
replacement were made and the effect of 
microRNA action on the translation was mea-
sured  [  21,   70  ] . No change in the protein rate syn-
thesis after applying microRNA was observed. 
From this it was concluded that microRNA in this 
system should act through a cap-dependent 
mechanism (i.e., the normal “wild-type” cap is 
required for microRNA recruitment). It was 
argued that this could be a misinterpretation  [  12  ]  
since in the “modi fi ed” system, cap-dependent 
translation initiation is a rate limiting process 
( k1  <<  k2 ). Hence, even if microRNA acts in the 
cap-independent manner (inhibiting  k2 ), it will 
have no effect on the  fi nal steady state protein 
synthesis rate. This was con fi rmed by the graph 
similar to the Fig.  11.3a . 

 From the analytical solution (2–3) we can fur-
ther develop this idea and claim that it is possible 
to detect the action of microRNA in the “modi fi ed” 
system if one measures the protein synthesis 
relaxation time: if it signi fi cantly increases then 
microRNA probably acts in the cap-independent 
manner despite the fact that the steady state rate 
of the protein synthesis does not change. This is a 
simple consequence of the fact that the relaxation 
time in a cycle of biochemical reactions is limited 
by the second slowest reaction, see  [  13,   73  ] . If 
the relaxation time does not change in the pres-
ence of microRNA then we can conclude that 
none of the two alternative mechanisms of 
microRNA-based translation repression is acti-
vated in the system, hence, microRNA action is 
dependent on the structure of the “wild-type” 
transcript cap. 

 The observations from the Fig.  11.3  are reca-
pitulated in the Table  11.1 . This analysis (of course, 
over-simpli fi ed in many aspects) provides us with 
an important lesson: observed dynamical features 
of the translation process with and without pres-
ence of microRNA can give clues on the mecha-
nisms of microRNA action and help to distinguish 
them in a particular experimental situation. 
Theoretical analysis of the translation dynamics 
highlights the important characteristics of the 

  Fig. 11.3    Dependence of the relative change of the pro-
tein synthesis steady rate and the relaxation time (time 
needed to achieve the steady rate) on the ef fi ciency with 
which microRNA can act at an early cap-dependent ( k1 ) 

or late cap-independent ( k2 ) rate of translation. Two sce-
narios are considered: a wild-type one when  k1  value is 
similar to  k2  and the case of a modi fi ed A-cap structure 
when  k1 <<  k2  even in the absence of miRNA       
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dynamics which should be measured in order to 
infer the possible microRNA mechanism.  

 This conclusion suggests the notion of a  kinetic 
signature of microRNA   action mechanism  which 
we de fi ne as  a set of measurable   characteristics of 
the translational   machinery dynamics (features of  
 time series for protein,   mRNA, ribosomal subunits 
concentrations)   and the predicted tendencies   of 
their changes as   a response to microRNA   action 
through a particular   biochemical mechanism .  

    11.5   Non-linear Nissan and Parker’s 
Model of Protein Translation 

 To explain the effect of microRNA interference 
with translation initiation factors, a non-linear 
version of the translation model was proposed in 
 [  12  ]  which explicitly takes into account recycling 
of initiation factors (eIF4F) and ribosomal sub-
units (40S and 60S). 

    11.5.1   Model Equations and the Steady 
State Solutions 

 The model contains the following list of chemical 
species (Fig.  11.4 ):  40S ,  60S ,  eIF4F ,  F ,  A , and  R  
and four reactions, all considered to be 
irreversible: 
    1.     40S  +  eIF4F  →  F , assembly of the initiation 

complex (rate  k1 ).  
    2.     F  →  A , some late and cap-independent initia-

tion steps, such as scanning the 5’UTR for the 
start codon  A  (rate  k2 ).  

    3.     A  →  R , assembly of ribosomes and protein 
translation (rate  k3 ).  

    4.    80S → 60S + 40S, recycling of ribosomal 
 subunits (rate  k4 ).     
 The model is described by the following 

 system of equations  [  12  ] :
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 The model ( 11.5 ) contains three independent 
conservations laws:
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0
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(11.6)

  

where [40 S ] 
0
 , [60 S ] 

0
  and [ eIF4F ] 

0
  are total 

amounts of available small, big ribosomal sub-
units and the initiation factor respectively. 

 The following assumptions on the model 
parameters were suggested  [  12  ] :

   Table 11.1    Modeling two mechanisms of microRNA action on several translation steps in the simplest linear model   

 Observable value  Initiation 
 Step after initiation, 
cap-independent  Elongation 

 Wild-type cap 
  Steady-state rate of protein   synthesis   Decreases  Decreases  No change 
  Relaxation time of protein   synthesis   Increases slightly  Increases slightly  No change 
 A-cap 
  Steady-state rate of protein   synthesis   Decreases  No change  No change 
  Relaxation time of protein   synthesis   no change  Increases drastically  No change 
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with the following justi fi cation: “…The amount 
40S ribosomal subunit was set arbitrarily high … 
as it is thought to generally not be a limiting factor 
for translation initiation. In contrast, the level of 
eIF4F, as the canonical limiting factor, was set 
signi fi cantly lower so translation would be depen-
dent on its concentration as observed experimen-
tally… Finally, the amount of subunit joining 
factors for the 60S large ribosomal subunit were 
estimated to be more abundant than eIF4F but still 
substoichiometric when compared to 40S levels, 
consistent with in vivo levels… The  k4  rate is 
relatively slower than the other rates in the model; 
nevertheless, the simulation’s overall protein 

 production was not altered by changes of several 
orders of magnitude around its value…”  [  12  ] . 

 The last statement about the value of  k4  is needed 
to be made more precise: in the model by Nissan 
and Parker,  k4  is a sensitive control parameter. It 
does not affect the steady state protein synthesis rate 
only in one of the possible scenarios ( inef fi cient ini-
tiation , de fi cit of the initiation factors, see below). 

 The  fi nal steady state of the system can be cal-
culated from the conservation laws and the bal-
ance equations among all the reaction  fl uxes:

   
  

[ ] [ ] [ ]
[ ] [ ] [ ]

2 3 60

4 1 40 4

s ss

s ss

k F k A S

k R k S eIF F

=

= =    (11.8)  

where “ s ” index stands for the steady state value. 
Let us designate a fraction of the free [60 S ] 

ribosomal subunit in the steady state as      =
0

[60 ]

[60 ]
sS

x
S

  .

Then we have

  Fig. 11.4    The mathematical model of protein translation which explicitly takes into account recycling of ribosomes 
and initiation factors; ( a ) graphical presentation of the model in the SBGN standard; ( b ) schematic model presentation       
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and the equation to determine  x , in which we 
have neglected the terms of smaller order of 

 magnitude, based on conditions  11.7 :
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 From the inequalities on the parameters of 
the model, we have  d  > 1,  g   << 1 and, if  k1 >>  k4 /
[ eIF4F ] 

 0 
  then  a  <<  b . From these remarks it fol-

lows that the constant term  g (1– b ) of the 

Eq.  11.10  should be much smaller than the other 
polynomial coef fi cients, and the Eq.  11.10  
should have one solution close to zero and two 
others:
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provided that  a  <<|1– d | or  a  <<|1– b |. In the 
expression for  x1  we cannot neglect the term pro-
portional to  a , to avoid zero values in  11.10 . 

 The solution  x  
 2 
  is always negative, which 

means that one can have one positive solution

x 
 0 
  <<1, if     

0

0

2[ 4 ]
1

4[60 ]
≥

k eIF F

k S   , and two positive

solutions  x  
 0 
  and  x  

1
 , if     0

0

2[ 4 ]
1

4[60 ]
≤

k eIF F

k S
  . However, 

it is easy to check that if  x  
1
  > 0 then  x  

 0 
  does not 

correspond to a positive value of [ eIF4F ] 
 s 
 . This 

means that for a given combination of parameters 
satisfying ( 11.7 ) we can have only one steady 
state (either  x  

 0 
  or  x  

1
 ). 

 The two values  x  =  x  
 0 
  and  x  =  x  

1
  correspond to 

 two different modes of   translation . When, for 
example, the amount of the initiation factors 
[ eIF4F ] 

 0 
  is  not enough to provide   ef fi cient 

 initiation  (    <0
0

2
[ 4 ]

4[60 ]

k
eIF F

k S
  ,  x  =  x  

1
 ) then

most of the 40S and 60S subunits remain in the 
free form, the initiation factor eIF4F being always 
the limiting factor. If the  initiation is ef fi cient  

enough (    >0
0

2
[ 4 ]

4[60 ]

k
eIF F

k S
  ), then we have

  x  =  x  
 0 
  <<1 when almost all 60S ribosomal sub-

units are engaged in the protein elongation, and 
[ eIF4F ] being a limiting factor at the early stage. 

However, it is liberated after and ribosomal sub-
units recycling becomes limiting in the initiation 
(see the next section for the analysis of the 
dynamics). 

 Let us notice that the steady state protein syn-
thesis rate under these assumptions is
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4[60 ] (1 )

2[ 4 ]
4[60 ] , 1

4[60 ] .

2[ 4 ] ,

= −

⎧ >⎪= ⎨
⎪⎩

Psynth k S x

k eIF F
k S if

k S

k eIF F else    (11.12)   

 This explains the numerical results obtained 
in  [  12  ] : with low concentrations of [ eIF4F ] 

 0 
  

microRNA action would be ef fi cient only if it 
affects  k2  or if it competes with eIF4F for bind-
ing to the mRNA cap structure (thus, effectively 
further reducing the level [ eIF4F ] 

 0 
 ). With higher 

concentrations of [ eIF4F ] 
 0 
 , other limiting fac-

tors become dominant: [60S] 
 0 
  (availability of 

the heavy ribosomal subunit) and  k4  (speed of 
ribosomal subunits recycling which is the slow-
est reaction rate in the system). Interestingly, in 
any situation the protein translation rate does 
not depend on the value of  k1  directly (of course, 
unless it does not become “globally” rate limit-
ing), but only through competing with eIF4F 
(which makes the difference with the simplest 
linear protein translation model). 

 Equation  11.12  explains also some experi-
mental results reported in  [  70  ] : increasing the 
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concentration of [eIF4F] translation initiation 
factor enhances protein synthesis but its effect is 
abruptly saturated above a certain level.  

    11.5.2   Analysis of the Model Dynamics 

 It was proposed to use the following model 
parameters:  k1  =  k2  = 2,  k3  = 5,  k4  = 1, [40S] 

 0 
  = 100, 

[60S] 
 0 
  = 25, [eIF4F] 

 0 
  = 6  [  12  ] . As we have shown 

in the previous section, there are two scenarios of 
translation possible in the Nissan and Parker’s 
model which we called “ef fi cient” and 
“inef fi cient” initiation. The choice between these 
two scenarios is determined by the combination

of parameters     = 0

0

2[ 4 ]

4[60 ]

k eIF F

k S
b   . For the original

parameters from  [  12  ] ,  b  = 0.48 < 1 and this corre-
sponds to the simple one-stage “inef fi cient” ini-
tiation scenario. To illustrate the alternative 
situation, we changed the value of  k4  parameter, 
putting it to 0.1, which makes  b  = 4.8 > 1. The lat-
ter case corresponds to the “ef fi cient” initiation 
scenario, the dynamics is more complex and goes 
in three stages (see below). 

 Simulations of the protein translation model 
with these parameters and the initial conditions

     0

0

0

[40 ][40 ]

[ 4 ][ 4 ]

0[ ]

0[ ]

0[ ]

[60 ][60 ]

SS

eIF FeIF F

F

A

R

SS

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

= ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

   

are shown in Fig.  11.5 . The system shows non-
trivial relaxation process which takes place in 
several epochs. Qualitatively we can distinguish 
the following stages: 
    1.    Stage 1: Relatively fast relaxation with condi-

tions [40 S ] >> [ eIF4F ], [60 S ] >> [ A ]. During 
this stage, the two non-linear reactions 
40 S  +  eIF4F  →  F  and  A  + 60 S  →  R  can be con-
sidered as pseudo-monomolecular ones: 
 eIF4F  →  F  and  A  →  R  with rate constants 

dependent on [40 S ] and [60 S ] respectively. 
This stage is characterized by rapidly estab-
lishing quasiequilibrium of three  fi rst reac-
tions (R1, R2 and R3 with  k1 ,  k2  and  k3  
constants). Biologically, this stage corre-
sponds to the assembling of the translation 
initiation machinery, scanning for the start 
codon and assembly of the  fi rst full ribosome 
at the start codon position.  

    2.    Transition between Stage 1 and Stage 2.  
    3.    Stage 2: Relaxation with the conditions [40 S ] 

>> [eIF4F], [60 S ] << [ A ]. During this stage, 
the reactions 40 S  +  eIF4F  →  F  and  A  + 60 S  →  R  
can be considered as pseudo-monomolecular 
 eIF4F  →  F  and 60 S  → 80 S . This stage is char-
acterized by two local quasi-steady states 
established in the two network reaction cycles 
(formed from R1–R2 and R3–R4 reactions). 
Biologically, this stage corresponds to the  fi rst 
round of elongation, when  fi rst ribosomes 
move along the coding region of mRNA. The 
small ribosomal subunit 40 S  is still in excess 
which keeps the initiation stage (reaction 
R1–R2  fl uxes) relatively fast.  

    4.    Transition between Stage 2 and Stage 3.  
    5.    Stage 3: Relaxation with the conditions 

[40 S ] << [eIF4F], [60 S ] << [ A ]. During this 
stage, the reactions 40 S  +  eIF4F  →  F  and 
 A  + 60 S  →  R  can be considered as pseudo-
monomolecular 40 S  →  F  and 60 S  →  R . During 
this stage all reaction  fl uxes are balanced. 
Biologically, this stage corresponds to the sta-
ble production of the protein with constant 
recycling of the ribosomal subunits. Most of 
ribosomal subunits 40 S  are involved in protein 
elongation, so the initiation process should 
wait the end of elongation for that they would 
be recycled.     
 Our analysis of the non-linear Nissan and 

Parker’s model showed that the protein transla-
tion machinery can function in two qualitatively 
different modes, determined by the ratio 

    = 0

0

2[ 4 ]

4[60 ]

k eIF F

k S
b     [  13  ] . We call these two modes 

“ef fi cient initiation” ( b  > 1) and “inef fi cient initi-
ation” ( b  < 1) scenarios. Very roughly, this ratio 
determines the balance between the overall 
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speeds of initiation and elongation processes. 
In the case of “ef fi cient initiation” the rate of pro-
tein synthesis is limited by the speed of recycling 
of the ribosomal components (60S). In the case 
of “inef fi cient initiation” the rate of protein syn-
thesis is limited by the speed of recycling of the 
initiation factors (eIF4F). Switching between two 
modes of translation can be achieved by chang-
ing the availability of the corresponding mole-
cules ([60 S ] 

 0 
  or [eIF4F] 

 0 
 ) or by changing the 

sensitive kinetic parameters ( k2  or  k4 ). 
 As a result of the dynamical analysis, we 

assembled an approximate solution of the non-
linear system under assumptions ( 11.7 ) about 
the parameters. The detailed description of 
this solution is given in  [  13  ] . The advantage 
of such a semi-analytical solution is that one 

can predict the effect of changing the system 
parameters. 

 One of the obvious predictions is that the 
dynamics of the system is not sensitive to varia-
tions of  k3 , so if microRNA acts on the transla-
tion stage controlled by  k3  then no microRNA 
effect could be observed looking at the system 
dynamics (being the fastest one,  k3  is not a sensi-
tive parameter in any scenario). 

 If microRNA acts on the translation stage con-
trolled by  k4  (for example, by ribosome stalling 
mechanism) then we should consider two cases 
of ef fi cient ( b  > 1) and inef fi cient ( b  < 1) initia-
tion. In the  fi rst case the steady state protein syn-
thesis rate is controlled by  k4  (as the slowest, 
limiting step) and any effect on  k4  would lead to 
the proportional change in the steady state of 

  Fig. 11.5    Numerical simulations of the species concen-
trations and  fl uxes of the non-linear translation model. ( a ) 
and ( c ) log-log scale; ( b ) and ( d ) log-scale in values, and 

linear scale for the time axis (the time units are arbitrary, 
since the dimensionality of the parameters in  [  12  ]  was not 
speci fi ed)       
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 protein production. By contrast, in the case of 
inef fi cient initiation, the steady state protein 
 synthesis is not affected by  k4 . Instead, the

  relaxation time is affected, being     
1

~
4k

  . However,

diminishing  k4  increases the  b  parameter: hence, 
this changes “inef fi cient initiation” scenario for 
the opposite, making  k4  sensitive for the steady 
state protein synthesis anyway, when  k4  becomes

smaller than     0

0

2[ 4 ]

[60 ]

k eIF F

S
  . For example, for the

default parameters of the model, decreasing  k4  
value  fi rstly leads to no change in the steady state 
rate of protein synthesis, whereas the relaxation 
time increases and, secondly, after the threshold

value     0

0

2[ 4 ]

[60 ]

k eIF F

S
  starts to affect the steady state

 protein synthesis rate directly. This is in contra-
diction to the message from  [  12  ]  that the change 
in  k4  by several orders of magnitude does not 
change the steady state rate of protein synthesis. 

 Analogously, decreasing the value of  k2  can 
convert the “ef fi cient” initiation scenario into the 

opposite after the threshold value     0

0

4[60 ]

[ 4 ]

k S

eIF F
  . We

can recapitulate the effect of decreasing  k2  in the 
following way: (1) in the case of the “ef fi cient” 
initiation  k2  does not affect the steady state 
protein synthesis rate up to the threshold value 
after which it affects it in a linear manner. The 
relaxation time drastically increases, because 
decreasing  k2  leads to elongation of all dynamical 
stages duration (for example, we have estimated 
the time of the end of the dynamical Stage 2 as

    =′′′ 0

0

[40 ]

2[ 4 ]

S
t

k eIF F
  . However, after the threshold

value the relaxation time decreases together with 
 k2 , quickly dropping to its unperturbed value; (2) 
in the case of “inef fi cient” initiation the steady 
state protein synthesis rate depends proportion-
ally on the value of  k2  (12), while the relaxation 
time is not affected. 

 MicroRNA action on  k1  directly does not pro-
duce any strong effect neither on the relaxation 

time nor on the steady state protein synthesis rate. 
This is why in the original work  [  12  ]  cap-depen-
dent mechanism of microRNA action was taken 
into account through effective change of the 
[eIF4F] 

0
  value (total concentration of the transla-

tion initiation factors), which is a sensitive param-
eter of the model (5). 

 The effect of microRNA through various 
mechanisms and in various experimental settings 
(excess or de fi cit of eIF4F, normal cap or A-cap) 
is recapitulated in Table  11.2 . The conclusion 
that can be made from this table is that all four 
mechanisms show clearly different patterns of 
behavior in various experimental settings. From 
the simulations one can make a conclusion that it 
is still not possible to distinguish between the 
situation when microRNA does not have any 
effect on protein translation and the situation 
when it acts on the step which is neither rate lim-
iting nor “second rate limiting” in any experi-
mental setting ( k3  in our case). Nevertheless, if 
any change in the steady-state protein synthesis 
or the relaxation time is observed, theoretically, it 
is possible to specify the mechanism responsible 
for it.    

    11.6   General Model of miRNA-
Mediated Translation 
Regulation 

 Nine distinct mechanisms of microRNA action 
have been described in the literature: the main 
experimental data supporting each proposed 
mechanism are summarized in the review section 
of this chapter. The complete model containing 
all known microRNA action mechanisms is 
shown in Fig.  11.6a  using an SBGN standard 
diagram.  

 The principal differences between the Nissan 
and Parker’s model and the model described in 
this section are (1) the complete model describes 
all nine known mechanisms of miRNA action; 
(2) mRNA amount is a dynamical variable, i.e. it 
is modelled explicitly, taking into account its 
synthesis and degradation; (3) we explicitly 
model binding of miRNA at various stages of 
translation, i.e. in our model both mRNA in free 
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and miRNA-bound forms are present; (4) we 
assume concentration of eIF4F and ribosomal 
subunits present in excess, as in the simplest 
model. 

 For modelling, we assumed that the initiation 
factors and ribosomal subunits are always available 
in excess. This allowed us to simplify the model to 
12 chemical species and 20 reactions, as described 
below and schematically shown in Fig.  11.6b :
   [M0] – new synthesized and not yet initiated 
mRNA  
  [F0] – new initiated mRNA, with initiation com-
plex, including 40S ribosomal subunit  

  [M] – initiated mRNA with free translation initia-
tion site  
  [F] – initiated mRNA with translation initiation 
site occupied by 40S ribosomal subunit  
  [R] – number of ribosomes fully assembled on 
miRNA-free mRNA  
  [M0’] – new synthesized not initiated mRNA 
with one or more miRNAs bound  
  [F0’] – new mRNA with initiation complex, 
including 40S ribosomal subunit, with miRNA(s) 
bound to mRNA  
  [M’] – initiated miRNA-bound mRNA with free 
translation initiation site  

  Fig. 11.6    Mathematical model taking into account all 
nine mechanisms of miRNA action; ( a ) graphical presen-
tation of the model in the SBGN standard; ( b ) schematic 

model presentation in the assumption that ribosomal sub-
units and initiation factors are present in excess       
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  [F’] – initiated miRNA-bound mRNA with trans-
lation initiation site occupied by 40S ribosomal 
subunit  
  [R’] – ribosomes fully assembled on miRNA-
bound mRNA  
  [P] – protein, completely translated from the 
given mRNA  
  [B] – mRNA sequestered in P bodies.    

 Let us make a notice on interpretation of some 
of the model variables. Explicit description of 
mRNA:ribosome complexes would require sepa-
rate dynamical variables for the amounts of 
mRNA with one ribosome, mRNA with two 
ribosomes, mRNA with three ribosomes, and so 
on (potentially, large number of variables). To 
avoid this complexity, we apply lumping of the 
detailed model, described in  [  14  ] . In the lumped 
reaction network, new produced mRNA (state 
M0) is  fi rst initiated and prepared for the  fi rst 
round of translation (state F0). After that, the 
 initiated mRNA alternates between states M 
(state ready for the next round of translation) and 
F (mRNA prepared for the next ribosome assem-
bly). During each such a round, a new assembled 
ribosomal  complex (R) appears in the system. 
Thus, we explicitly separate the process of 
mRNA initiation (which can include capping, 
adenylylation, circularization, mRNA transport 
to speci fi c cellular regions) and the process of 
recruiting 40S ribosomal subunit at already initi-
ated mRNA for the next round of translation. 
In our model, these two processes proceed with 
different speeds. 

 In our interpretation, we consider mRNAs as 
places for a catalytic reaction (protein transla-
tion). These places (amount of catalyzer) in our 
model can be synthesized or destroyed and pres-
ent in four states (non-initiated, initiated, in 
‘translating’ state ready for assembling new ribo-
some and in ‘translating’ state with a new assem-
bling ribosome). To take into account miRNA, 
we say that there are two types of catalyzer: 
miRNA-free and miRNA-bounded, with differ-
ent rate constants of degradation. miRNA-free 
catalyzer can be irreversibly transformed into 
miRNA-bounded type of catalyzer. 

 Importantly, [R] in our interpretation is not the 
amount of mRNA translating proteins but the 

amount of ribosomes bound to mRNA and trans-
lating proteins, i.e. the number of sites where the 
catalysis takes place. Dividing the number of 
these sites on the amount of the catalyzer in the 
initiated state [M] + [F] gives the average number 
of ribosomes per translating mRNA, which we 
denote as [RB]. 

 The de fi nition of the kinetic rate constants 
used further in the paper is the following:
    1.    null → M 

0
 , the free mRNA is transcribed in 

the system with the rate constant  k  
 t 
 .  

    2.    M 
0
  → F 

0
 , assembly of initiation complex and 

40S ribosomal subunit with mRNA occurs 
with the rate constant  k  

 01 
   

    3.    F 
0
  → M + R, assembly of the  fi rst ribosome 

on the initiation site with the rate constant  k  
 2 
   

    4.    M → F, initiation of the translation (recruit-
ment of 40S subunit) on already translated 
mRNA, with the rate constant  k  

 1 
   

    5.    F → M + R, assembly of full ribosome (S80) 
on mRNA occurs with the rate constant  k  

 2 
   

    6.    R → P, translation of the protein with conse-
quent release of ribosomes occurs with the 
rate constant  k  

 3 
   

    7.    R → null, degradation of mRNA leads to 
release of ribosomes with the rate constant 
 k  

 d 
 , same reaction describes premature ribo-

some drop-off from mRNA with the rate 
constant  k  

 rd 
  

 We will assume that the process of micro-
RNA binding to mRNA can occur at various 
stages of translation and that its rate  k  

 b 
  will 

be the same in each of the following reactions:  
    8.    M 

0
  → M 

0
 '  

    9.    F 
0
  → F 

0
 '  

    10.    M → M'  
    11.    F → F'  
    12.    R → R' 

 In the same way we will assume that the 
rate of degradation of mRNA not driven by 
microRNA action ( k  

 d 
 ) can be considered as 

the same one at all stages of translation:  
    13.    M 

0
  → null  

    14.    F 
0
  → null  

    15.    M → null  
    16.    F → null 

 The degradation rate of mRNA bound to 
microRNA could occur with or without direct 
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action of microRNA on its degradation. For 
the beginning we will assume that this rate 
constant ( k  

 d 
 ’) is different from the free mRNA 

degradation and it is the same one for all 
stages of translation:  

    17.    M' 
0
  → null  

    18.    F' 
0
  → null  

    19.    M' → null  
    20.    F' → null  
    21.    R' → null 

 Next we assume that the reaction corre-
sponding to the assembly of the initiation 
complex and 40S ribosomal subunit with 
mRNA in the presence of miRNA 
(M' 

0
  → F' 

0
 ) will occur with the rate con-

stant  k  
 01 

 '.  
    22.    M' 

0
  → F' 

0
  

 Recruitment of 40S subunit on already trans-
lating miRNA-bound mRNA occurs with the 
rate constant  k  

 1 
 ':  

    23.    M' → F' 
 Reactions of assembly of the full ribosome 
(S80) on mRNA in the presence of microRNA 
occur with the rate constant  k  

 2 
 ':  

    24.    F' 
0
  → M '  + R  

    25.    F' → M '  + R 
 The rate of protein production in the case of 
microRNA action is described by the follow-
ing reaction:  

    26.    R ¢  → P, with the rate constant  k  
 3 
 '  

    27.    R ¢  → null, describes possible mechanism of 
ribosomal drop-off (without protein produc-
tion), with the rate constant  k  

 rd 
 ', and mRNA 

degradation with ribosome release, with the 
rate constant  k  

 d 
 '. 

 Reactions 26 and 27 describe the reverse pro-
cess of mRNA sequestration in P-bodies, 
with rates  k  

+ s 
  and  k  

- s 
  correspondingly:  

    28.    M 
0
  ¢  → B,  

    29.    B → M 
0
  ¢  

 The mRNA in P-bodies is degraded with 
speci fi c rate  k  

 bd 
 '  

    30.    B → null  
    31.    P + R ¢  → null, the rate of protein degradation 

by microRNA-independent mechanisms is 
 k  

 p 
 , while it can be increased in the presence 

of miRNA by  k  
 r 
  × R ¢ .     

 The system of equations d x /dt =  K  
0
  +  K  x  

(where  x  is the vector of 12 dynamic variables,  K  
is the kinetic matrix, and  K  

0
  is the vector of 

 production with only one non-zero component 
corresponding to the transcriptional synthesis of 
mRNA) has the following form: 

 Thus, for this simpli fi ed linear model we need 
to de fi ne the proper values for 18 coef fi cients 
corresponding to the rates of reactions. 

 For simulations, we needed the numerical val-
ues of 18 kinetic coef fi cients, which were esti-
mated from published reports and are provided in 
Table  11.3 . Although it is obvious that all rates 
diverge considerably for different mRNAs, 
experimental data mining allowed us to make a 
plausible assumption for almost all of the kinetic 
rates used in the model. For example, mRNA 
half-lives vary from a few minutes to more than 
24 h, with a mean at 10 h  [  74  ] , which we selected 
as the corresponding rate. It is nevertheless pos-
sible that highly regulated mRNAs, such as most 
miRNA targets, have shorter half-lives. The same 
reasoning also applies to protein half-lives. 
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   Table 11.3    Reference set of parameters for the model and their changes according to the action of various miRNA-
mediated mechanisms of translation repression   

 Kinetic rate constant  Reference value or interval  Comment 

 Parameters of transcription and translation without miRNA action 
  k  

 t 
   10 −3    Transcription kinetic rate . If  Transcriptional Inhibition  

mechanism is active then this constant is proportionally 
reduced from  k  

 t 
  (0% ef fi ciency of the mechanism) to 

zero (100% ef fi ciency of the mechanism). 
  k  

 01 
   2⋅10 −4    mRNA early initiation rate   in the absence of   miRNA . 

  k  
 1 
   1   Rate of 40S recruitement   at already translated mRNA,  

 considered to be fast   and not rate-limiting  
  k  

 2 
   6⋅10 −2    60S unit joining and   assembly of the full   ribosome on 

mRNA rate   in the absence of   miRNA . 
  k  

 3 
   10 −2    Rate including elongation and   termination of translation 

in   the absence of miRNA . In all simulations of translation 
without miRNA, we assume that  k  

 3 
  =  k  

 3 
 /6, which gives 

six ribosomes sitting on one translated mRNA in 
average. 

  k  
 d 
   10 −5    mRNA degradation rate in   the absence of miRNA . In all 

simulations of translation without miRNA, we assume 
that  k  

 d 
   << k  

 1 
 ,  k  

 2 
 ,  k  

 3 
 . Otherwise mRNA will be degraded 

much faster than it will be initiated and translated. 
  k  

 rd 
   0   Rate of ribosome drop-off.  We neglect the ribosome 

drop-off in the absence of miRNA 
  k  

 p 
   5⋅10 −6    Rate of protein degradation   in the absence of   miRNA . 

 Parameters of various mechanisms of miRNA action 
  k  

 b 
   10 −3  (strong)   Rate of miRNA binding   to mRNA . This rate depends on 

many factors including the complementarity of miRNA 
sequence to the sequence of the binding site. We assume 
that depending on these factors, the rate can vary in the 
range of several orders of magnitude. When  k  

 b 
   <<  

min( k  
 1 
  , k  

 2 
  , k  

 3 
 ), we consider the binding as weak, because 

it does not considerably in fl uence the rate of translation. 

 10 −4  (medium) 
 10 −5  (weak) 

  k  
 01 

    ¢     [0;  k  
 01 

 ]   mRNA initiation rate with   miRNA . If  Cap Inhibition  
mechanism is active then this constant can be propor-
tionally reduced from  k  

 1 
  to zero. 

  k  
 1 
    ¢      k  

 01 
    40S recruitement at already   translated miRNA-bound 

mRNA, we   do not consider the   corresponding hypotheti-
cal mechanism in   the model  

  k  
 2 
    ¢     [0;  k  

 2 
 ]   60S unit joining and   assembly of the full   ribosome on 

mRNA rate   with miRNA . If  60S Unit Joining Inhibition  
mechanism is active then this constant can be propor-
tionally reduced from  k  

 2 
  to zero. 

  k  
 3 
    ¢     [0;  k  

 3 
 ]   Rate including elongation and   termination of translation 

with   miRNA . If  Elongation Inhibition  mechanism is 
active then this constant can be proportionally reduced 
from  k  

 3 
  to zero. 

  k  
 d 
    ¢     [ k  

 d 
 ; 10 2 ⋅ k  

 d 
 ]   Rate of mRNA degradation   with miRNA . If  Decay  

mechanism is active then this constant can increase 
ten-fold at 100% mechanism ef fi ciency. If  Cleavage  
mechanism is active then this constant can increase by 
100-fold. 

(continued)
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 Similarly, we estimated the elongation time 
for mRNA translation as 1–2 min  [  75–  77  ] , even 
though it depends on the mRNA length: at 10 aa/s 
 [  78  ] , 1–2 min corresponds to a mean length 
of 1.8–3.6 kb  [  79  ] . Likewise, the numbers of 
ribosomes per mRNA molecule are highly 
 variable, from 4–5 to more than 10  [  29,   75  ] . We 
considered six ribosomes per mRNA as being a 
reasonable assumption. We therefore postulated 
that six initiation events occur during a cycle of 
elongation, which leads to an estimate of 6 initia-
tions/min, and is of the same order of magnitude 
as what has been proposed previously  [  75  ] . All 
information concerning the kinetic coef fi cients 
we used for our modelling is summarized in 
Table  11.3 .  

    11.7   Distinct Dynamical Types 
of miRNA Action and Kinetic 
Signatures of miRNA 
Mechanisms 

    11.7.1   Analytical Solution of Model 
Equations for the Case of Normal 
Translation (No miRNA) 

 The dynamical variables that can be observed 
and measured in the experiment are

     
0 0

0 0

Total amount of mRNA : M F M

F M F

M F B

Total amount of protein : P

Average number of ribosomes,

translating one mRNA : ( )

( )

R R /

 M M F F

= + +
+ + +
+ + +

=

= +
+ + +

MT

PR

RB

’ ’

’ ’

’

’ ’

    

 The solution    of model equations and expres-
sion for [MT], [PR], [RB] for the trivial case 
without miRNA in the system were obtained. 
This can be modelled by putting to zero the bind-
ing constant  k  

 b 
  = 0. 

 For this case the steady state values for the 
measurable quantities are

     

2

3

3 01 2

01 3

,

,

( )( )

=

+
=

+ +

=
+ +

SS t

d

SS d

d rd

SS t

p d d d

k
MT

k

k k
RB

k k k

k k k k
PT

k k k k k k
   (11.14)  

and the relaxation times are

     

01 2 3

1
,

1
,

min( , , )

1
min( , )

=

=
+ + + +

=

RT

d

RT

d d d rd

RT

d p

MT
k

RB
k k k k k k k

PT
k k    (11.15)  

Table 11.3 (continued)

 Kinetic rate constant  Reference value or interval  Comment 

  k  
 ±s 

   [0; 5⋅10 −2 ]   Rate of reversible capturing   of mRNA to P-bodies . If 
 P-bodies Sequestration  mechanism is active, this 
constant can be proportionally increased from zero to 
 k  

 +s 
 . The reverse rate constant  k  

 −s 
  is assumed to be 

 k  
 −s 

  = 5⋅ k  
 +s 

 . We assume that mRNA can be degraded in 
P-bodies with the rate  k  

 d 
    ¢   . 

  k    ¢    
 rd 
   [0; 5⋅ k  

 3 
    ¢   ]   Rate of ribosome drop-off.  If  Ribosome Drop-Off  

mechanism is active then this constant is proportionally 
increased from 0 to 5⋅ k  

 3 
    ¢   . 

  k  
 r 
   [0; 5⋅10 −5 ]   Rate of co-translational protein   degradation catalysis.  If 

 Co-Translational Protein Degradation  mechanism is 
active then this constant is proportionally increased from 
zero to 5⋅10 −5 , and the protein degradation rate is 
increased as  k  

 p 
   miRNA    = k  

 p 
   + k  

 r 
 ⋅ R ¢  . 
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where we have assumed that  k  
 1 
  >>  k  

01
 ,  k  

2
 ,  k  

3
 . 

 These formulas allow qualitative understand-
ing of the effect of miRNA on various steps of 
translation and the corresponding kinetic signa-
tures. They can also help to decipher experimen-
tally observed kinetic signatures when multiple 
mechanisms are present simultaneously and the 
translation parameters are not known. Exact rec-
ipe on doing this will be a subject of our future 
work.  

    11.7.2   Dominant Paths of the Model 
and Their Relations 
to the miRNA Mechanisms 

 According to the methodology of asymptotology 
 [  73 ,  81  ] , let us consider the case of well separated 
constants, i.e. when any two kinetic constants in 
the graph in the Fig.  11.6b  have different orders 
of magnitude at each fork (i.e., a node with sev-
eral outgoing reactions). Each such a (partial) 
ordering of kinetic constants will generate a path 
on the graph (possibly, cyclic), starting at  M  

 0 
  

node. We will call it  the dominant path . Each 
path corresponds to one (if it does not contain 
cycles) or several (if it contains a cycle) dominant 
systems and to a distinguishable biochemical 
scenario. For example, the partial ordering ( k  

 b 
  

>>  k  
1
 ,  k  

 d 
 ;  k  

01
  >>  k  

- s 
 ,  k  ¢  

 d 
 ;  k  ¢  

2
  <<  k ’ 

 d 
 ) corresponds to 

the dominant path describing the process of trans-
lation inhibition via 60S subunit joining repres-
sion (see Table  11.4 , path M 

0
 M ¢  

0
  F ¢  

0
 ).  

 A dominant path is connected to a dominant 
system (whose solution of the corresponding 
dynamics equations provides an asymptotic 
approximation of the whole system dynamics) in 
the following way. If the path does not contain 
cycles, then it represents the dominant system. If 
the path contains cycles then the cycles should be 
glued and represented by single nodes (which 
will represent quasistationary distribution of 
chemical species concentrations inside the cycle). 
Then one should  fi nd the dominant path for the 
new graph with glued cycles and continue until 
an acyclic dominant path will be found. Depending 
on the ordering of kinetic rates inside each cycle, 
one cyclic dominant path can lead to several 

 different dominant systems. The dominant sys-
tem in general represents a hierarchy of glued 
cycles. The details of constructing dominant sys-
tems are provided in  [  73 ,  74 ,  81  ] . 

 It is convenient to designate each dominant 
path by nodes through which it passes. There are 
many possible reaction graph traversals leading 
to multiple possible dominant paths, if one con-
siders all partial orderings of the constants in the 
reaction forks. However, some of them are bio-
logically non-relevant. For example, the ordering 
 k  

 d 
  >>  k  

01
  (dominant path M 

0
 ) will not lead to any 

translation (the mRNA will be degraded before it 
will be initiated). In the same way,  k  

 d 
  >>  k  

 2 
  (domi-

nant path M 
0
 F 

0
 ) will terminate the normal trans-

lation prematurely. Thus, we postulate  k  
 d 
  <<  k  

01
 , 

 k  
2
 ,  k  

3.
  Also for simplicity we assume that binding 

of miRNA to mRNA is more rapid than normal 
initiation, i.e.,  k  

 b 
  >>  k  

01
 ,  k  

2
 ,  k  

3
  if there is miRNA in 

the system, and  k  
 b 
  = 0, if not. Also we assume that 

 k  
01

  <<  k  
1
 , because  k  

1
  corresponds to recruiting 

40S subunit on already initiated and translated 
mRNA (which we assume never be rate-limiting), 
while  k  

01
  includes both mRNA initiation and 40S 

subunit recruiting. This leads to six biologically 
relevant dominant paths, all of which are listed in 
Table  11.4 . 

 Table  11.4  shows that the types of dynamical 
behavior (dominant paths) can be mapped onto 
the biologically characterized mechanisms of 
miRNA action, but this mapping is not one-to-
one: several biological mechanisms can corre-
spond to one dynamical type (for example, M 

0
 M ¢  

0
  

dominant path corresponds to M1, M7 and M8 
biological mechanisms and, conversely, biologi-
cal mechanism M1 can correspond to M 

0
 M ¢  

0
  or 

M 
0
 M ¢  

0
  F ¢  

0
  M ¢ F ¢ R’P dominant paths).  

    11.7.3   Kinetic Signatures of miRNA-
Mediated Mechanisms of Protein 
Translation Inhibition 

 In order to provide a practical recipe to distin-
guish between nine different mechanisms of 
miRNA action, we studied the dynamical behaviour 
of the model for the reference set of parameters 
for weak, medium and strong miRNA binding 



21311 Mathematical Modeling of microRNA–Mediated Mechanisms of Translation Repression

   Table 11.4    Dominant paths of the uni fi ed model of microRNA action mechanisms   

 Dominant path 
 Biological 
interpretation 

 Corresponding 
miRNA- mediated 
translation repression 
mechanism(s) 

  

M F R P
k2

F0M0

k01

M’ F’ R’
k’d k’d +k’rd

kd +krd

k’2k’1

k’2k’01

k’dk’dk’d

k’3

kpk3

kbkbkb

k2
kb

kbd

kd kd kd kd
k1

kb

kT

F’0M’0B
k+

s

k-
s

    

  M  
 0 
  F  

 0 
  MFRP  normal 

translation with 
negligible effect of 
miRNA 

 None 

  

F R P
k3

M’ F’ R’B

kb

k’d +k’rd

kd +krd

kp

kbd

kd

kT

k’3
kb kb kb

kb

k+
s

k-
s

kd kd kd
k1 k2

k’d
k’2k’1

k’dk’dk’d

k’2k’01

k01F0 k2
MM0

F’0M’0

    

  M  
 0 
  M  ¢  

 0 
  the dominant 

effect is degradation of 
mRNA by miRNA 

 M1: Cap inhibition 
 M7: Decay 
 M8: Cleavage 

  

M F R P
k2

F0M0

k01

M’ F’ R’
k’d k’d +k’rd

kd +krd

k’2k’1

k’2k’01

k’dk’dk’d

k’3

kpk3

kbkbkb

k2
kb

kbd

kd kd kd kd
k1

kb

kT

F’0M’0B
k+

s

k-
s

    

  M  
 0 
  M  ¢  

 0 
  B  mRNA is 

captured in P-bodies 
 M6: Sequestration of 
mRNA in P-Bodies 

  

M F R P
k2

F0M0

k01

M’ F’ R’
k’d k’d +k’rd

kd +krd

k’2k’1

k’2k’01

k’dk’dk’d

k’3

kpk3

kbkbkb

k2
kb

kbd

kd kd kd kd
k1

kb

kT

F’0M’0B
k+

s

k-
s

    

  M  
 0 
  M  ¢  

 0 
   F  ¢  

 0 
  mRNA 

translation is stuck after 
initiation, before the 
assembly of the 
ribosome 

 M2: 60S subunit 
joining inhibition 

  

M F R P
k2

F0M0

k01

M’ F’ R’
k’d k’d +k’rd

kd +krd

k’2k’1

k’2k’01

k’dk’dk’d

k’3

kpk3

kbkbkb

k2
kb

kbd

kd kd kd kd
k1

kb

kT

F’0M’0B
k+

s

k-
s

    

  M  
 0 
  M  ¢  

 0 
   F  ¢  

 0 
   M  ¢  F  ¢  R  ¢  

mRNA is stuck with 
ribosomes on it and 
destroyed, or mRNA 
translation is prema-
turely aborted 

 M3: Elongation 
inhibition 
 M4: Ribosome 
drop-off 

  

M F R P
k2

F0M0

k01

M’ F’ R’
k’d k’d +k’rd

kd +krd

k’2k’1

k’2k’01

k’dk’dk’d

k’3

kpk3

kbkbkb

k2
kb

kbd

kd kd kd kd
k1

kb

kT

F’0M’0B
k+

s

k-
s

    

  M  
 0 
  M  ¢  

 0 
   F  ¢  

 0 
   M  ¢  F  ¢  R  ¢  P  

protein synthesis in the 
presence of miRNA 
with low mRNA 
degradation 

 M1: Cap inhibition 
 M2: 60S subunit 
joining inhibition 
 M3: Elongation 
inhibition 
 M5: Co-translational 
protein degradation 
mechanisms 
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strengths. The simulation was performed in the 
following way:
    (1)    First, the system was simulated from zero 

initial conditions without presence of miRNA 
( k   

b   
= 0) in the time interval [0; 20/ k   

d
  ]. The 

steady state and relaxation time values for 
MT, RB and PR values were estimated from 
the simulation.  

    (2)    The miRNA binding constant was changed 
to the corresponding value and the simulation 
was continued from the steady state obtained 

before in the time interval [20/ k   d  ; 40/ k   d  ]. 
New steady state and relaxation time values 
were estimated from the simulation.     

 The model includes a vector of parameters 
 P  = { k  

 t 
 ,  k  

 01 ,
   k  

 1 
 ,  k  

 2 
 ,  k  

 3 
 ,  k  

 d 
 ,  k  

 p 
 } and of mechanism 

strength spectrum  S  = { s  
 1 
 ,  s  

 2 
 , …,  s  

 9 
 } (see the next 

section), which can vary. Each computational 
experiment is de fi ned by the corresponding vec-
tors  P  and  S , binding constant for miRNA ( k  

 b 
 ) the 

rest of the model parameters is computed using 
the following formulas:

     ( ) ( )
( ) ( )
( ) ( )
( )
( )

01 1 01

2 2 2

3 3 3

4 3

5

M1 Cap Inhibition : : 1 ,

M2 60S Unit Joining Inhibition : : 1 ,

M3 Elongation Inhibition : : 1 ,

M4 Ribosome Drop Off : : 5 ,

M5 Co translational protein degradation : :

,

,

,

,

= − ×

= − ×

= − ×

− = × ×

− =
rd

r

kn s k

kn s k

kn s k

k s kn

k s

( )
( )
( )
( ) ( )

( )

( ) ( )
6 6

7

8 8

9

.

M6 Sequestration in P bodies : : 5 , ,

M7 Decay of  mRNA : : (1 9 ) ,

M8 Cleavage of  mRNA : : (1 99 ) , : (1 99 )

M9 Transcriptional Inhibition : : 1

,

+ −

,

×

− = × × = ×

= + × ×

= + × × = + × ×

= − ×

ref
r

ref ref
s s s s

d d

d d b b

t

k

k s k k s k

kn s k

kn s k k s k

k s ,tk

   

 The result of the simulation is a kinetic signa-
ture for a mixed mechanism of miRNA action, 
characterized by six numbers: relative changes 

of the steady states     =
ss

SS miRNA
ss

no miRNA

MT
MT

MT
  ,

    =
ss

SS miRNA
ss
no miRNA

RB
RB

RB
  ,     =

ss
SS miRNA

ss
no miRNA

PR
PR

PR
  and  relative

changes of relaxation times     =
RT

RT miRNA
RT

no miRNA

MT
MT

MT
  ,

    =
RT

RT miRNA
RT
no miRNA

RB
RB

RB
  ,     =

RT
RT miRNA

RT
no miRNA

PR
PR

PR
  . For the

further analysis, using Principal Component 
Analysis (PCA) we use the logarithms of these 
ratios. 

 First, we considered only “pure” mechanisms 
acting at the maximum 100% ef fi ciency (which 
leads, for example, for a complete block of 
mRNA elongation in the presence of miRNA, for 
 Elongation Inhibition  mechanism). The result-
ing signatures are shown in Fig.  11.7 . Several 
conclusions can be made from it.  

 Firstly, the signatures of nine mechanisms are 
 qualitatively different , i.e. they can be reliably 
distinguished in principle, if the six required 
numbers would be estimated experimentally. 

 Secondly, not all mechanisms can be distin-
guished only based on the steady-state value 
analysis, in accordance with the results of model-
ling described in the previous sections. Some of the 
relaxation time relative changes should be measured 
as well in order to distinguish, for example, Ribosome 
Drop-Off from 60S Unit Joining Inhibition. 
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 Thirdly, one can observe that some of the sig-
nature components strongly depend in the quanti-
tative fashion on the order of the miRNA binding 
constant, and some are completely insensitive. 
This suggest an experiment in which several 
sequences of miRNA would be utilised having 
different (weak, medium, tight) af fi nities to the 
target mRNA binding site. Observing how the 
dynamics of observable quantities are changing 
with the binding af fi nity, one can distinguish the 
mechanisms more reliably. For example, in the 
case of Ribosome Drop-Off the ribosomal pro fi le 
should be more sensitive to changing miRNA 
af fi nity compared to 60S Unit Joining.   

    11.8   Coexistence of Multiple 
Mechanisms of miRNA Action 

 One of the most debated questions on the action 
of miRNA on translation is the possibility of co-
existence of several mechanisms of miRNA 
action. Let us study formally to what  consequences 
it can lead from the point of view of translation 
dynamics and kinetic signatures. 

 We formalize co-existence of several miRNA 
action mechanisms in the following way. We char-
acterized a situation when a miRNA can interfere 
with several steps of translation (and transcription) 
by a  strength spectrum  of nine “pure” mechanisms. 

  Fig. 11.7    Kinetic signatures of the mechanisms of 
miRNA action. There are nine signatures corresponding 
to nine mechanisms. Each plot shows dynamics of three 
quantities: amount of mRNA ( mRNA ), average number of 
ribosomes per translated mRNA ( RB ), total amount of 
protein ( Protein ) in the time units measured in 1/ k  

 d 
 . The 

dynamics on the left from the dashed line shows transla-
tion without miRNA which is added at the time point 20. 
Three scenarios are simulated for each signature: strong, 
medium and weak binding strength of miRNA to mRNA. 
The numbers on the graphs shows relative change in the 

steady state ( ss  
 miRNA 

  /ss ) and change in the relaxation time 
( rt , measured in 1/ k  

 d 
 ). If three numbers are shown sepa-

rated by comma, they correspond to weak, medium and 
strong miRNA binding. If only one number is shown, it 
means that the binding strength does not affect this quan-
tity signi fi cantly. The diagrams on the right from the 
dynamics plot visualize values of six numbers (relative 
changes of steady state (SS) and relaxation time (RT) for 
three measurable quantities) for the case of medium bind-
ing strength       
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The spectrum is a nine-dimensional vector 
 S  = { s  

 1 
 , s  

 2 
 ,…, s  

 9 
 } with components corresponding to 

the strengths (contributions) of “pure” mechanisms 
M1, M2,…, M9. Each strength  s  

 i 
  of this vector can 

vary from 0.0 (absence of the mechanism) to 1.0 
(or 100%, maximum strength of the mechanism). 
We call this situation a “combined” mechanism of 
miRNA action. In this sense, the “pure”  mechanisms 
acting at maximum strength (1.0) are basis vectors 
in the space of “combined” mechanisms. For 
example, the spectrum  S  = {0,1.0,0,0,0,0,0,0,0} 
corresponds to the blockage of 60S unit joining by 
miRNA without affecting any other step of transla-
tion, while  S  = {0.8,0,0,0.5,0,0,0,0,0} corresponds 
to co-existence of Cap Inhibition (at 80% of its 
maximal strength) and Ribosome drop-off (at 50% 
of its maximal strength). Also there are seven nor-
mal translation parameters (without miRNA)  k  

 t 
 ,  k  

 01 ,
  

 k  
 1 
 ,  k  

 2 
 ,  k  

 3 
 ,  k  

 d 
 ,  k  

 p 
 , which allow to consider a vector of 

parameters  P  = { k  
 t 
 ,  k  

 01 
 ,  k  

 1 
 ,  k  

 2 
 ,  k  

 3 
 ,  k  

 d 
 ,  k  

 p 
 } in seven–

dimensional space of parameters. 
 In this section we make two computational 

experiments in which we exhaustively study the 
effect of (1) varying  S  given  P   fi xed at reference 
parameters; and (2) varying  P  given  S , for four 
mostly referenced mechanisms: Cap Inhibition, 
60S Unit Joining Inhibition, Elongation 
Inhibition, Decay. In other words, in the  fi rst case 
we study the effect of co-existence of various 
mechanisms for a given experimental system, 
characterized by a given set of normal translation 
parameters. In the second case, we study the 
effect of variable experimental (or cellular) con-
ditions on the conclusions one can make for the 
same mixed mechanism of miRNA action. Thus, 
the results of this section generalize the results of 
the previous sections to the case of co-existence 
of several mechanisms at the same time. 

    11.8.1   Fixed Set of Translation 
Parameters and Variable Mixed 
Mechanisms of miRNA Action 

 In Fig.  11.8  we present the results of the 
 following computational experiment. For a 
 reference set of parameters (Table  11.3 ) we 
computed 625 kinetic signatures corres ponding 

to all possible combinations of four  mechanism 
strengths ( s  

 1 
 ,  s  

 2 
 ,  s  

 3 ,
   s  

 7 
 ) at the level of 0, 25, 50, 

75 and 100%. The signatures can be represented 
as a cloud of 625 points in the six-dimensional 
space of kinetic signatures, which was projected 
on a 2D plane using the standard principal 
components analysis (PCA). From the Fig.  11.8  
one can conclude that the  fi rst principal com-
ponent PC1 is mainly associated with the 
change of ribosomal pro fi le, while the second 
is mainly associated with degradation of 
mRNA. Therefore, position of “pure” mecha-
nisms 60S Unit Joining Inhibition and 
Elongation Inhibition is placed at the maxi-
mum distance on the plot, while Cap Inhibition 
and Decay is located quite closely, because 
both do not change the ribosomal pro fi le. 
However, one can show that Cap Inhibition and 
Decay pure mechanisms are separated along 
the third principle direction PC3, invisible on 
the plot.  

 One of the important conclusions that can be 
made from the plot in the Fig.  11.8  is that the 
presence of Decay mechanism in the spectrum 
( s  

 7 
  > 0) can mask the effect of other mechanisms 

leading to the very early blockage of translation 
(M 

0
 M 

0
  ¢  dominant path). Indeed, it might not 

matter that a translation in the presence of 
miRNA is completely blocked at a later stage, if 
the increased degradation will destroy mRNA 
even before it can arrive at this blocked later 
stage. In some cases (such as the mixed mecha-
nism  F  on the plot, co-existence of complete 
Cap Inhibition and Decay), the kinetic signature 
of the mixed mechanism is indistinguishable 
from Decay. 

 The kinetic signature  K  (mix of 60S Unit 
Joining Inhibition and Elongation Inhibition) is 
indistinguishable from the pure signature of 
Elongation Inhibition. The kinetic signature  H  
(mix of three  fi rst mechanisms without Decay) 
reminds pure 60S Unit Joining Inhibition mecha-
nism. Cases  F ,  K  and  H  are three examples of 
 kinetic signature masking  (or domination) of one 
mechanism by another. 

 In other cases the resulting kinetic signature 
of a mixed mechanism does not remind any 
 signature of the four pure mechanisms: by 
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  Fig. 11.8    PCA plot for simulations for a  fi xed set of 
translation parameters and a variable mixed mechanisms. 
The mix includes (1) Cap Inhibition, (2) 60S unit joining 
inhibition, (3) Elongation inhibition and (4) Decay for the 
reference set of translation parameters and  k  

 b 
  = 10 −3 . The 

plot represents a projection from a six-dimensional space 
of measurable quantities: relative changes in steady-state 
( SS ) and relaxation time ( RT ) for three quantities: amount 
of mRNA ( mRNA ), number of ribosomes per mRNA ( RB ) 
and amount of protein ( Protein ). Each point represents a 
simulation made for a selected spectrum of strengths of 
four mechanisms, the colors distinguish the resulting 

dominant paths and the shapes distinguish spectrums 
when one of the mechanisms is dominating or when the 
mRNA decay is not affected by miRNA (circles). For 
example, red rectangle corresponds to the scenario when 
60S unit joining is completely blocked if miRNA is bound, 
and M 

0
 M 

0
  ¢  dominant path is realized. Few points are 

annotated with signature diagrams visualizing the numeri-
cal values for the six variables. Four numbers on the left of 
each diagram show the strengths of four miRNA action 
mechanisms (cap inhibition, 60S unit joining inhibition, 
elongation inhibition and decay correspondingly). First 
two principal components explain 86% of data variation       

 contrast, certain superimposition of the kinetic 
signatures happens. Thus, the mixed mechanisms 
 A  (co-existence of complete 60S Unit Joining 
Inhibition and Decay) and  E  (co-existence of 
complete 60S Unit Joining Inhibition and 
Elongation inhibition) give the signature which 

looks like a superimposition of the kinetic 
signatures of the initial mechanisms. However, 
further addition of miRNA action mechanisms 
does not change the signature qualitatively. 
Thus, mix of all four mechanisms together 
(cases  B ,  C ) still looks like a mix of 60S Unit 
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Joining Inhibition and Decay. Hence, one can 
say that in this case a superimposition of two 
kinetic signatures masks signatures of other 
mechanisms. 

 Interestingly, the kinetic signature in the mixed 
mechanism  J  (mix of Cap Inhibition, Elongation 
Inhibition and Decay) can be still interpreted as a 
mix of three signatures of the initial pure 
 mechanisms. This is an example, when three mech-
anisms are superimposed and leave their “traces” in 
the  fi nal mix.  

    11.8.2   Fixed Mixed Mechanism 
of miRNA Action and Variable 
Experimental or Cellular Context 
of Translation 

 In the second computational experiment we  fi xed 
the strengths of the four mechanisms at 50%, i.e. 
we consider the mixed miRNA action mechanism 
characterized by the spectrum S = {0.5, 0.5, 0.5, 0, 
0, 0, 0.5, 0, 0}. For the reference set of parameters 
and variable miRNA-mRNA binding constant 
(see Fig.  11.9 , top left), this mixed mechanism of 
miRNA action is manifested by a kinetic signa-
ture which can be attributed to the Decay mecha-
nism of miRNA action (M7). However, for other 
parameter combinations the kinetic signature of 
this mechanism can look differently and expose 
features of other mechanisms (see below). The 
main message of the example shown in Fig.  11.9  
is that variation of the parameters of translation 
mechanism can signi fi cantly change the interpre-
tation of the kinetic signature when several mech-
anisms of miRNA action co-exist.  

 We study the kinetic signatures of the mixed 
mechanism S = {0.5, 0.5, 0.5, 0, 0, 0, 0.5, 0, 0} 
when the kinetic parameters of the normal trans-
lation are varied in very large intervals ( fi ve 
orders of magnitude). We varied four kinetic rates 
 k  

 d 
 ,  k  

 b 
 ,  k  

 01 
 ,  k  

 2 
 , leaving  k  

 t 
  and  k  

 p 
   fi xed at the refer-

ence values and putting  k  
 3 
  =  k  

 2 
 /6 to provide con-

stant average number of six ribosomes sitting on 
one mRNA. The parameters took the following 
range of values:  k  

 d 
 Î{10 −3 ,10 −4 ,10 −5 ,10 −6 ,10 −7 },  k  

 b 
 , 

k  
 01 

 , k  
 2 
 Î{10 −1 ,10 −2 ,10 −3 ,10 −4 ,10 −5 } in all possible 

combinations. From these combinations those 

were excluded that violated the condition of 
ef fi cient translation (not dominated by degra-
dation)  k  

 d 
  <<  k  

 01 
 ,  k  

 2 
 ,  k  

 3 
 . As a result, we have 

tried 440 different simulations for which we 
created kinetic signatures, characterized by six 
numbers, as previously. These signatures can be 
represented as a cloud of 440 points in the six-
dimensional space, which was projected on a 2D 
plane using the standard principal components 
analysis (PCA), see Fig.  11.9 . This  fi gure repre-
sents a “portrait” of a mixed mechanism of 
miRNA action for all relevant parameter values, 
including the reference parameter values (points 
 RW ,  RM ,  RS ). 

 The two-dimensional distribution of kinetic 
signatures shown in Fig.  11.9  shows two tenden-
cies. Moving from top right to bottom left corner 
(from point  A  to point  E ) corresponds to increas-
ing relative value of the miRNA binging constant, 
leading to more complete inhibition of protein 
synthesis. Moving from top left to bottom right 
corner (from point  F  to point  J ) corresponds to 
changing mainly the relaxation time of the ribo-
somal pro fi le. There is a third degree of freedom 
not shown in the  fi gure and associated with the 
third principal component which is almost com-
pletely corresponds to the change in the protein 
synthesis relaxation time. Thus, some points 
located closely on the plot (such as points  C  and 
 D ) are in fact separated along the third principal 
component and have very different protein syn-
thesis relaxation time values. 

 Several important conclusions can be made 
from this computational experiment, and the  fi rst 
one concerns the role of miRNA binding strength. 
Evidently, if  k  

 b 
  is much smaller than the normal 

translation parameters  k  
 d 
 ,  k  

 01 
 ,  k  

 2 
  then miRNA bind-

ing does not affect the dynamics signi fi cantly and 
the “normal” M 

0
 F 

0
 MFRP dominant path is imple-

mented (case  A ). In the case when the binding is 
signi fi cant but not very strong and comparable to 
 k  

 d 
 ,  k  

 01 
 ,  k  

 2 
  parameters (competitive binding), the sig-

nature is masked by Decay-like pattern (case  RW ). 
The Decay mechanism masks all other mecha-
nisms also in those combinations of parameters 
where  k  

 2 
  is faster than  k  

 d 
  by several (three) orders of 

magnitude (cases  RM  and  RS ). In this case, the 
ribosomal pro fi le is not perturbed by miRNA. 
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 The relaxation time of a protein changes in 
the signatures when the mRNA degradation rate 
becomes less than the degradation rate of the 
protein:  k  

 d 
  <<  k  

 p 
  = 5⋅10 −6  (see formula 11.15). 

Notice that for the reference set of parameters 
the protein is assumed to be more stable than a 
transcript, and the only “pure” signature where 
the relaxation time of the protein is affected by 
miRNA is Cotranslational Protein Degradation. 
If the protein is less stable than a transcript then 
this might create confusion in interpreting the 
signatures and suggesting activation of this 
mechanism while it is not functional in reality. 

 The signatures  B ,  C ,  D  and  E  can be inter-
preted as a superimposition of 60S Unit Joining 
Inhibition with Decay, with possible role of Cap 
Inhibition. Elongation Inhibition mechanism 
leading to the increase of both RB steady state 
and relaxation time might be suspected in the sig-
natures  I  and  J  even though the RB steady state 
does not change signi fi cantly (this can be attrib-
uted to a compensatory effect from mixing 
Elongation Inhibition with 60S Unit Joining). 
Signatures  F ,  G  and  H  suggest the role of 60S 
Unit Joining Inhibition (decreasing the ribo-
some pro fi le relaxation time) which would be 

  Fig. 11.9    PCA plot (on the  right ) for simulations for one 
selected mixed mechanism (Cap Initiation Inhibition at 
50%, 60S Unit Joining Inhibition at 50%, Elongation 
Inhibition at 50% and Decay at 50%) and a variable set of 
internal translation parameters. The plot represents a pro-
jection from six-dimensional space of measurable quanti-
ties: relative changes in steady-state ( SS ) and relaxation 
time ( RT ) for three quantities: amount of mRNA ( mRNA ), 
number of ribosomes per mRNA ( RB ) and amount of pro-

tein ( Protein ). Each point represents a simulation made 
for a combination of  k  

 d 
 ,  k  

 b 
 ,  k  

 01 
  and  k  

 2 
  parameter values, the 

color and shape distinguish the resulting dominant paths. 
Several points are annotated with signature diagrams 
visualizing the numerical values for the six variables (on 
the  left ). Cases  RW ,  RM  and  RS  ( top left ) show close to the 
reference set values for three different miRNA binding 
rates ( k  

 b 
  = 10 −3 , 10 −4 ,10 −5 ). First two principal components 

explain 79% of data variation       
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completely missed if one looks at the relative 
changes of the steady states only. 

 Finally, let us notice the special role of the 
M 

0
 M 

0
  ¢  dominant path which can produce kinetic 

signatures very similar to other dominant paths 
(this is true both for Figs.  11.8  and  11.9 ). 
Compare, for example, pairs of cases  F  and  G ,  D  
and  E . The dominant path M 

0
 M 

0
  ¢  requires rela-

tively strong binding  k  
 b 
 > >  k  

01
  and relatively fast 

degradation or slow initiation, which can 
be expressed as condition on parameters

    
−′

= <<
+′

01 1 01

4

(1 )
1

(1 9 )d d

k s k

k s k
  , where  s  

1
  and  s  

7
  are the 

strengths of the Cap Initiation Inhibition and 
Decay mechanisms respectively in the mixed 
mechanism. In the case when  s  

1
  =  s  

7
  = 0.5, this gives 

a condition  k  
01

  <<9 k  
 d 
 , i.e. that the normal cap ini-

tiation rate should not exceed the normal degrada-
tion rate by more than two orders of magnitude 
(100-fold). This condition is satis fi ed for the points 
 B ,  E ,  G  and the reference set of parameters on the 
plot in the Fig.  11.9 . On the other hand, it can be 
shown that  k  

01
  is the least sensitive parameter 

affecting the relative changes of the steady states 
and relaxation times for the MT, RB and PR values 
(decreasing  k  

01
  can affect only the steady state of 

the protein and not other values, see (14)). Hence, 
for many kinetic signatures, given relatively strong 
miRNA binding constant, there is a possibility to 
implement the M 

0
 M 

0
  ¢  dominant path by slowing 

down  k  
01

  without a qualitative signature change. 
This non-intuitive conclusion can be veri fi ed 
experimentally.   

    11.9   Concluding Remarks 

 MicroRNA mode of action is a highly controver-
sial topic. Here, we used mathematical model-
ling and found that each of the suggested 
mechanisms has a speci fi c signature (the pre-
dicted dynamics of 3 measurable variables of the 
translational process, namely, the time course of 
accumulation of protein and mRNA, and of ribo-
sosmal loading on the mRNA). These signatures 
provide a new tool for discriminating between 
distinct mechanisms. We thus propose the 

  concept of a characteristic   kinetic signature 
for miRNA   modes of action . 

 In addition, an essential conclusion of our 
analysis is that miRNA action will impact the 
 fi nal kinetic output only if it targets a  sensitive 
parameter of the   system . 

 The hypothesis that microRNA action can have 
a visible impact on protein output only if it affects 
the rate-limiting step has already been suggested 
in  [  12  ]  for inhibition of translational initiation. 
However, the notion of rate-limiting step becomes 
non-trivial when we consider complex networks 
(more complex than a linear chain or a cycle of 
monomolecular reactions). The mathematical 
model that we present here con fi rms the conclu-
sions from  [  12  ] , and extends them to all steps of 
microRNA action. The mathematical approach 
we have developed for analysis of this complex 
system uses the notion of dominant dynamical 
system, itself a generalization of the rate-limiting 
step concept to complex networks  [  13,   73,   80  ] . 

 In accordance with the general theory of 
dynamical limitation  [  73  ] , we can take into 
account not only the steady-state rates of protein 
synthesis but also its relaxation time. For exam-
ple, for a linear chain of reactions, the steady-
state rate depends on the slowest kinetic rate 
parameter (rate-limiting step), whereas the relax-
ation time of the system depends on the second 
slowest kinetic rate parameter. 

 The analysis of our results allowed us to sug-
gest a unifying theory for miRNA modes of 
action: all proposed modes of action operate 
simultaneously, and the  apparent  mechanism 
that will be detected depends on a set of sensitive 
intrinsic parameters of the individual target 
mRNA under study. This hypothesis would 
explain the following set of observations: (1) 
that the same microRNA apparently uses distinct 
mechanisms on different targets (e.g. for let7: 
 [  18,   24,   29,   52,   70  ] ; for CXCR4:  [  19,   25,   30,   34  ] ; 
for miR16:  [  32,   82  ] ; for miR122:  [  83  ] ); (2) that 
microRNA’s mode of action depends on the pro-
moter under which the target mRNA is tran-
scribed  [  68  ] ; and (3) that the status of the cell 
affects the  fi nal observable mode of miRNAs 
action  [  37,   39,   54  ] . Moreover, the possibility of 
coexistence of two or several mechanisms has 
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already been discussed and proven in the litera-
ture  [  5,   6,   18,   22,   39,   49,   53,   54  ] . 

 As already stated, our modelling results lead 
us to propose that, in individual biological sys-
tems, the relative abundance and/or activity of 
some set of intrinsic factors determines the appar-
ent inhibition mechanism that will be detected. 
These factors are  not related to the   miRNA path-
ways , but intrinsically determine the  sensitive 
parameters of the   system . Indeed, RNA-binding 
proteins not related to the miRNA pathway have 
been shown to have a strong in fl uence on the  fi nal 
outcome of miRNA regulation  [  74,   84–  86  ] . 

 A body of studies underscore the importance of 
intrinsic parameters of mRNAs. Revisiting theses 
studies in the framework of our model provides an 
explanation for most of the discrepancies in the 
literature. Thus, in most of the studies showing ini-
tiation inhibition,  in vitro  transcribed mRNAs 
(transfected into cells or studied directly  in vitro ) 
were used. In contrast, almost all data supporting 
elongation inhibition were obtaining in living 
cells, and thus with physiologically modi fi ed tar-
get mRNAs  [  18–  21,   25,   70  ] , with only one and 
very speci fi c exception  [  33  ] . Similarly, most of the 
studies showing IRES-driven mRNAs as being 
refractory to microRNAs were carried out either 
 in vitro   [  70  ]  or using  in vitro  transcribed mRNAs 
transfected into cells  [  18–  20  ] , whereas the studies 
showing IRES-driven mRNAs to be repressed by 
miRNAs were carried out with mRNAs transcribed 
 in situ , inside cells  [  30,   32  ] . In all these cases, the 
difference might come from the status of the target 
mRNA, rather than from any putative or actual dif-
ferences in the microRNA machinery. 

 Another example is the in fl uence of splicing 
marks attached to mRNAs  in vivo . The process of 
mRNA splicing leaves protein marks on mRNAs, 
which promotes the  fi rst round of translation at 
the initiation step  [  87,   88  ] . These marks are dis-
sociated during the  fi rst round of translation. 
Splicing marks, by increasing the initial initia-
tions, would lead to higher initiation rates on 
intron-containing mRNAs  [  89  ] . Elongation 
would thus become a limiting step. In contrast, 
 in vitro  transcribed mRNAs lack splicing marks, 
resulting in a decreased initiation rate, which 
becomes limiting. Moreover, under  in vitro  

 conditions, initiation is highly dependent on the 
concentration of initiation factors, providing 
another possible explanation for discrepancies 
between  in vitro  studies. 

 Another example is the dependence of miRNA 
effects on codon usage. MicroRNA action has 
been reported to act on initiation steps when 
codon usage is optimized for human translation 
 [  11,   20  ] , whereas, with non-optimized codons, 
microRNA was found to act on elongation  [  27, 
  30,   33,   35  ] . This again might have something to 
do with different rates of elongation, elongation 
rates being, or not, among the set of limiting 
(sensitive) parameters for a given mRNA. 

 Yet another example is the dependence of 
microRNA mode of action on the experimental 
procedure for transfection of the mRNA  [  33  ] . 
The transfection procedure is likely to in fl uence 
the association of the target mRNA with mRNA-
binding proteins, which, in turn, changes the sen-
sitive parameters of the system, and hence the 
 fi nal outcome of microRNA action. 

 All these and some other data clearly support 
the idea that the observed mode of action of a 
microRNA depends upon interplay between the 
intrinsic rates of the different steps of mRNA 
translation. 

 In summary, our results provide a mathemati-
cal tool to discriminate between different miRNA 
modes of action. Moreover, we propose a unify-
ing model in which the observed mode of action 
of a particular miRNA is dictated by the relation-
ships among the intrinsic parameters of its target 
mRNA. We anticipate that the tool we have devel-
oped will promote better analysis of experimen-
tal data, and that our model will permit a better 
understanding of microRNA action. Most impor-
tantly, our hypothesis would explain most of the 
discrepancies in the corresponding literature.      
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  Abstract 

 Over the last decade thousands of microRNAs (miRNAs) have been 
discovered in all kinds of taxa. The ever growing number of identi fi ed 
miRNA genes required ordered cataloging and annotation. This has led 
to the development of miRNA web resources. 

 MiRNA web resources can be referred to either as web accessible data-
bases (repositories) or web applications that provide a de fi ned computa-
tional task upon user request. Today, more than three dozen web accessible 
resources exist that gather, organize and annotate all kinds of miRNA related 
data. According to the type of data or data processing method, these miRNA 
web resources can be classi fi ed as miRNA sequence and annotation data-
bases, resources and tools for predicted as well as experimentally validated 
targets, databases of miRNA regulation and expression, functional annota-
tion and mapping databases and a number of other tools and resources that 
are species-speci fi c or focus on particular phenotypes. 

 This chapter provides an overview of the different types of miRNA web 
resources and their purpose and gives some examples for each category. 
Furthermore, some valuable miRNA web applications will be introduced. 
Finally, strategies for miRNA data retrieval and associated risks and 
pitfalls will be discussed.  
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    12.1   Introduction 

 The  fi rst microRNA (miRNA) molecule  lin-4  
was discovered in  C. elegans  in 1993  [  1  ] . It was 
shown that  lin-4  can post-transcriptionally regu-
late  lin-14  expression, which is involved in lar-
val development of the round worm. This small 
molecule turned out to be just one entity of a 
new class of non-coding RNAs (ncRNAs) that 
are present in many, if not all, animals and 
plants. The second example,  let-7,  was found in 
the same organism seven years later  [  2,   3  ] . Later 
on, homologs of these miRNAs were found in 
human and  fl y genomes. Shortly after, in year 
2001, by conducting cloning experiments of 
small ncRNAs, more miRNAs have been 
identi fi ed in human, drosophila and  C. elegans  
 [  4–  6  ] . The ever increasing number of identi fi ed 
miRNAs demanded formal registration and 
naming conventions. Consequently, the miRNA 
Registry was set up with the aim of a controlled 
registration, naming and annotation of newly 
discovered miRNA stem loop- and mature 
sequences  [  7  ] . This platform was the  fi rst 
miRNA-centered web resource and with the 
advancement of knowledge about the role and 
function of miRNAs and their occurrence in 
numerous animals, many more miRNA web 
resources have sprung up. The Nucleic Acids 
Research (NAR) journal implemented in its 
annual special issue on biological databases a 
section for ncRNA databases. In the year 2012 it 
listed a total of 84 resources in the category of 
RNA sequence databases. 

 MiRNA web resources are designed to sat-
isfy multiple purposes: They can be classi fi ed 
according to the kind of data or data processing 
that they provide, namely as (i) miRNA sequence 
and annotation databases, (ii) resources and 
tools for predicted targets of miRNAs as well as 
experimentally validated targets, (iii) databases 
of miRNA regulation and expression, and (iv) 
functional annotation and mapping databases. A 
coarser way to classify miRNA web resources 
would be based on the origin of the data. 

Towards this end, the classes of primary, sec-
ondary and tertiary web resources can be de fi ned 
(Fig.  12.1 ). Primary miRNA web resources are 
those that store or process  fi rst-hand data, which 
are for example miRNA sequences or miRNA 
expression pro fi les. Secondary web resources 
are those that perform computational inferences 
or predictions based on the primary data, such 
as the tools and databases for miRNA target pre-
dictions. Other databases merge data from vari-
ous primary and/or secondary resources, e.g. 
several target prediction repositories. This kind 
of web resource is referred to as tertiary web 
resource.  

 Another categorization of miRNA web 
resources was used in Jacobsen et al.  [  8  ] . The 
authors differentiated between resources of (i) 
genomic contexts and evolutionary conservation 
of miRNAs (e.g., miROrtho  [  9  ] , miRGen  [  10  ] , 
miRfunc  [  11  ] , microTranspoGene  [  12  ] ); (ii) 
prediction and validation of targets (e.g., 
TargetScan  [  13  ] , miRNAMap  [  14  ] , microRNA.
org  [  15  ] , miRDB  [  16  ] , miRecords  [  17  ] , TarBase 
 [  18  ] ); and (iii) biological functions and pheno-
types of individual miRNAs (e.g., miR2Disease 
 [  19  ] , DIANA-mirPath  [  20  ] , MMIA  [  21  ] ). 

 In addition to databases and repositories, 
miRNA devoted tools and services were made 
available via the web, which enable users to 
predict and visualize binding sites of miRNAs 
in putative target genes (e.g., microRNA.org 
 [  15  ] ), the structure of miRNA precursors and 
miRNA:mRNA hybrids (e.g., RNA22  [  22  ] ) or 
to perform functional analyses based on miRNA 
expression data and target predictions (e.g., 
miRGator  [  23  ] ). 

 In this chapter we provide an overview of 
 different classes of web resources for animal 
miRNAs, with a focus on human miRNAs. 
Furthermore, we introduce the concept behind 
each class and discuss how the data is generated 
(experiments, literature search,  in silico  methods 
etc.). In addition, we provide some examples for 
each category. Finally, we discuss things to con-
sider when making use of miRNA web resources 
and potential pitfalls.  
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    12.2   MicroRNA Sequence Databases 

 The  fi rst developed miRNA web resource was 
called miRNA Registry  [  7  ] , today better known 
as the  miRBase database  (  http://mirbase.org    ). 
This database was a logical consequence of the 
ever growing number of newly discovered miR-
NAs. Its purpose was to register and categorize 
pre-miRNA and mature miRNA sequences, to 
assign names to miRNA sequences following a 
de fi ned system  [  24  ]  and to provide further anno-
tations like experimental evidences, references to 
publications, etc. The  fi rst release of the miRNA 
Registry contained records of 218 miRNA pre-
cursors from human, mouse, fruit  fl y,  C. elegans  
and  A  rabidopsis thaliana . As of today (release 18) 

the miRBase database provides sequence and 
structure information for more than 18,000 
miRNA precursors and their maturated forms in 
168 species including animals, plants, algae and 
viruses. 

 Sequences in miRBase are typically derived 
from cloning, sequencing or northern blotting 
experiments. In addition to that, every miRNA gene 
is put in a genomic context by indicating rela-
tionships to neighboring transcripts (intergenic, 
intragenic) and other putative miRNA members 
of a co-regulated stretch of DNA commonly 
referred to as miRNA cluster  [  25  ] . Sequences 
with homologs in other organisms are assigned 
to a family and information about other family 
members is cross-linked. The miRBase  database 

  Fig. 12.1    Classi fi cation of miRNA web resources       
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also provides the predicted secondary structure 
for miRNA precursors (hairpin loops). These 
predictions are generated using the RNAfold 
software, which belongs to the Vienna RNA 
Package  [  26  ] . 

    12.2.1   MiRNA Sequence Names 
and Identi fi ers 

 After the  fi rst two miRNAs ( let-7  and  lin-4 ) and 
their homologues have been discovered, it became 
clear that there might be many more of the same 
kind of non-coding RNAs. It was then time for a 
common nomenclature for the annotation of 
miRNA sequences  [  24  ] . To all miRNA stem-
loop precursor and mature sequences deposited 
in the miRNA Registry (now miRBase) names 
and identi fi ers were assigned following a well-
de fi ned nomenclature with the following rules:
    1.    MiRNA stem-loop and mature sequences 

have a three letter pre fi x representing the 
species (e.g.  mmu  for mouse or  hsa  for human 
miRNAs).  

    2.    The class of the molecule is denoted by either 
 mir  or  miR  for pre-miRNAs or mature miRNAs, 
respectively.

     (a)    The only exceptions to this rule are the 
members of the  let-7  and  lin-4  family. 

Their names are being conserved for his-
torical reasons (for newly found homologs 
the same names will be assigned).      

    3.    What follows is a numeric identi fi er that is 
assigned in an incremental order for each 
newly discovered miRNA.

     (a)    Exceptions are homologs to known miR-
NAs. When possible the same numeric 
identi fi er as for the original sequence will 
be assigned (e.g., for  hsa-mir-121  existing 
in human a newly discovered homolog in 
Xenopus would be named as  xla-mir-121 ).  

     (b)    For homologous stem-loop sequences 
within the same genome an additional 
numeric suf fi x is assigned (e.g.,  hsa-let-
7a-1  and  hsa-let-7a-2 ).  

     (c)    For hairpins expressing similar mature 
miRNAs an alphabetic character is 
appended (e.g.  mmu-mir-181a  and  mmu-
mir-181b ).      

    4.    For mature sequences an additional suf fi x is 
applied ( -3p  or  -5p ) denoting the location in the 
precursor sequence that they originate from.     
 The rules described above are applied for 

naming miRNA precursor and mature sequences 
in animals (see also Fig.  12.2 ). These names are 
used as common names. Additionally, an unam-
biguous identi fi er of the form ‘MI0000xxx’ and 
‘MIMAT000xxx’ (xxx denotes an incremental 

  Fig. 12.2     Naming conventions for (a)   miRNA stem-
loop and (b)   mature sequences.  A species pre fi x (e.g., 
 hsa  for homo sapiens) precedes the classi fi er that indi-
cates the designated sequence as being a stem-loop or 
mature miRNA sequence by  mir  or  miR , respectively. The 
numeric identi fi ers are assigned in incremental order. The 

family suf fi x indicates an association to a group of similar 
sequences. This is an optional element of the sequence 
name. Stem-loop sequence names can contain a homol-
ogy suf fi x in numerical form if homologs exist in the same 
genome. The optional strand suf fi x (- 3p  or - 5p ) indicates 
the origin of the miRNA in the stem-loop precursor       
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numeric identi fi er) is assigned to each precursor 
and mature miRNA sequence. Homologs across 
species are associated with miRNA families that 
also have common names and unique identi fi ers 
(e.g., common name:  mir-21  family; ID: 
‘MIPF0000060’).  

 Sequences of miRNA genes and their primary 
transcripts can also be found in other databases 
which are not exclusively dedicated to miRNAs. 
The Ensembl database (  www.ensembl.org    ), for 
example, provides miRNA gene- and transcript 
sequences along with information about splice 
variants, phylogenetic information, orthologs and 
paralogs  [  27  ] . NCBIs GenBank stores miRNA 
gene-, transcript- and mature sequences along with 
some annotation and links to other specialized 
resources  [  28  ] . 

 miRNA sequence data can be accessed in all 
the databases mentioned above via a web inter-
face in HTML representation. Additionally, 
the download of the sequence data in FASTA 
formatted  fi les is facilitated. GenBank provides 
sequence representations in its own well anno-
tated format, whereas ensembl presents miRNA 
genes in the genomic context inside its genome 
browser and provides the export to several  fi le 
formats (including  fl at  fi le representation).   

    12.3   Resources for Predicted and 
Validated miRNA Targets 

 MiRNAs regulate the expression of a large num-
ber of genes at the post-transcriptional level  [  29, 
  30  ] . Different mechanisms, how this regulation is 
conducted, are discussed in the literature and in 
detail in the Chap.   11     ‘Mathematical modeling of 
microRNA-mediated mechanisms of translation 
repression’ in this book. MiRNA regulation of its 
targets can basically lead to two different effects: 
(i) translation repression (the translation initia-
tion or elongation is blocked or early translation 
termination is enforced) and (ii) target mRNA 
destabilization by decapping or deadenylation. 
Based on the observed patterns in early discov-
ered miRNA:target interactions  [  2,   31,   32  ] , the 
 fi rst computational miRNA target prediction 
algorithms were developed that predict putative 

binding sites in gene transcripts that mature miR-
NAs might be able to hybridize to and thus induce 
target repression  [  33–  38  ] . To this day, many more 
approaches have been published and every new 
detail that has been uncovered in the process of 
target regulation led to re fi nements and adjust-
ments in the prediction approaches. Figure  12.3  
shows a timeline of the emergence of target pre-
diction tools. In general, many of the available 
tools construct their algorithms on the basis of 
the following features: (a) the sequence comple-
mentarity between a miRNA and its target site, 
especially at the seed region (nucleotides 2–8 of 
the miRNA), (b) hybridization energy of the 
miRNA/mRNA duplex, (c) evolutionary conser-
vation of target sites, and (d) other diverse com-
positional and sequence features of the target site. 
The predictions of many tools and algorithms for 
 homo sapiens  and also for other animals, plants, 
fungi, etc. have been deposited in publically 
accessible web resources. In the following para-
graphs we will introduce some of these resources 
and group them according to the approaches that 
are used in the different target prediction 
algorithms.  

    12.3.1   Sequence Complementarity, 
Conservation and 
Thermodynamic Stability 

 The early miRNA target prediction algorithms 
identi fi ed subsequences within the 3 ¢  UTR of 
gene transcripts that exhibit a certain degree of 
complementarity to a given miRNA and are 
conserved in related genomes. For these algo-
rithms, the seed region (nucleotides 2–8 of the 
miRNA) is of special importance  [  34,   38,   39  ] . 
Additionally, the predicted thermodynamic sta-
bility of putative miRNA target duplexes is 
another criterion used since the early algorithms 
 [  37,   40  ] . 

  miRanda –     www.microrna.org       [  15  ] : On this 
website, target sites predicted by the miRanda 
algorithm (including mirSVR scores)  [  41  ]  are 
shown and directly mapped to the 3 ¢  UTR of the 
designated target mRNA. The users can retrieve 

http://www.ensembl.org
http://dx.doi.org/10.1007/978-94-007-5590-1_11
http://www.microrna.org
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predictions for  fi ve species. Two separate inter-
faces facilitate the search for either targets of a 
speci fi c miRNA or miRNAs that putatively regulate 
a speci fi c target gene. On top of that, pre compiled 
predictions, expression pro fi les and a stand-alone 
target prediction tool can be downloaded. 

  TargetScan –     www.targetscan.org       [  13  ] : This 
website provides a search interface to TargetScan 
predictions for ten animal species. The user can 
search for targets of miRNAs, miRNAs targeting 
a gene of interest and for common targets of con-
served miRNA families. Predictions can be 
 fi ltered for different degrees of conservation. 

  DIANA-microT –     http://diana.cslab.ece.ntua.gr/
microT       [  42  ] : The DIANA LAB website hosts 
several projects including the database of validated 
miRNA targets  TarBase ; a tool for the associa-
tion of miRNAs with KEGG pathways DIANA-
 mirPath ; a tool for the analysis of expression data 
for miRNA function  DIANA-mirExTra  and the 
target prediction algorithm  DIANA-microT . The 
latter can be queried by miRNA identi fi ers to search 
for the corresponding targets, by gene names to 
search for its miRNA regulators or both to look for 
speci fi c miRNA:target pairs. Additionally, miRNA 
sequences can be submitted to search for putative 
target genes in human and mouse. Results are 
annotated and interlinked and can be  fi ltered by 
de fi ning a threshold for the so called miTG score 
or for KEGG pathways.   

    12.3.2   Target Site and Flanking 
Features (Site Accessibility) 

 Results of the  fi rst generation of miRNA target 
prediction algorithms were subjected to experi-
mental validation, and soon it has been realized 
that the performance of the early algorithms was 
not satisfactory as they produce a high fraction of 
false positive predictions. Further re fi nements 
were necessary and as the body of validated 
miRNA:target interactions grew, new patterns 
have emerged that led to the development of new 
algorithms. For example, the  fl anking regions of 
predicted binding sites have come into focus as 
they are supposed to determine the site accessi-
bility. Features, like the  fl anking AU content and 
the site position and proximity to co-operating 
target sites, have emerged as relevant factors  [  13, 
  43  ] . Two algorithms that considered these new 
patterns in their approach are: 

  PITA –    http://genie.weizmann.ac.il/pubs/mir07     
 [  44  ] : Target predictions for human, mouse,  fl y and 
worm can be downloaded or queried. The results 
of such queries can be  fi ltered by minimum seed 
size, allowance of G:U pairs, allowance of single 
mismatch, minimum seed conservation and inclu-
sion of site  fl anks into the prediction. UTR 
sequences provided by the user can be scanned 
for binding sites of known miRNAs or user-pro-
vided miRNA sequences. Alter natively, a stand-
alone executable program can be downloaded. 

  Fig. 12.3    Timeline of miRNA target prediction algorithms released in the last decade       

 

http://www.targetscan.org
http://diana.cslab.ece.ntua.gr/microT
http://diana.cslab.ece.ntua.gr/microT
http://genie.weizmann.ac.il/pubs/mir07
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  PicTar –    http://pictar.mdc-berlin.de      [  45  ] : This 
database provides an interface to PicTar predictions 
for different taxa. The users can search for either 
targets of a speci fi ed miRNA or miRNAs putatively 
regulating the expression of a speci fi ed gene. 
Results are annotated and link out to supplemen-
tary/continuative information on external web sites. 
Loci of the predicted target sites are highlighted 
in the target 3 ¢  UTR which is shown in a multiple 
sequence alignment with related species and the 
structure of the predicted duplex is shown.  

    12.3.3   Machine Learning Approaches 

 Increasing availability of experimental evidences 
that prove microRNA:target interactions and 
translation repression ef fi cacy have provided a 
good source of data to train classi fi ers, based on 
machine learning algorithms, that can be used to 
predict new miRNA:target interactions. It is now 
possible to statistically exploit the features 
described above (binding energy, sequence and 
conformational features), and thus rank them by 
their importance and subsequently predict target 
sites with higher accuracy. Machine learning 
enables us to  fi nd rules for the classi fi cation of 
miRNA targets and non-targets based on obser-
vations from the training data. This idea has been 
implemented in tools like TargetBoost (genetic 
programming with boosting)  [  46  ] , miTarget (sup-
port vector machine – SVM)  [  47  ] , mRTP (ensem-
ble algorithm)  [  48  ] , and MiRTif (SVM)  [  49  ] . It is 
however important to carefully choose strong 
discriminative features which should be extracted 
from a good and representative pool of positive 
and negative samples. Machine learning based 
target prediction algorithms employ a great num-
ber of different features for (i) seed conformation 
(ii) outer-seed conformation (iii) structural and 
(iv) position speci fi c features. The most recent 
algorithms using a machine learning approach are 
TargetSpy (Multiboost)  [  50  ] , SVMicrO (support 
vector machine)  [  51  ] , mirSVR (support vector 
regression)  [  41  ]  and RepTar (hidden markov 
model – HMM)  [  52  ] . 

  TargetSpy –    www.targetspy.org      [  50  ] : On this 
website, a simple search interface can be used to 

query TargetSpy predictions for human, mouse, 
rat, chicken and  fl y miRNA targets. The user can 
select between two prede fi ned cut-offs score, 
‘sensitive’ and ‘speci fi c’, and  fi lter target sites 
with seed complementarity. All predictions as 
well as the TargetSpy stand-alone version can be 
downloaded. 

  miRDB –    http://mirdb.org      [  16  ] : Results of expres-
sion based target predictions from MirTarget2 
 [  53  ]  are deposited in the miRDB database. 
MirTarget2 is a SVM classi fi er that was trained 
with microarray data from miRNA transfection 
experiments that were extracted from the NCBI 
GEO database  [  54  ]  (accession numbers GSE6838 
and GSE6207). Downregulated genes were 
mapped to predictions from TargetScan  [  13  ] , 
PicTar  [  45  ] , miRanda  [  36  ]  and MirTarget  [  55  ] , 
and features of putative binding sites were 
extracted and used for training. The miRDB data-
base stores target predictions for  fi ve different 
species (human, mouse, rat and chicken) which 
can be downloaded as tab delimited text  fi les for 
the current and previous releases of miRDB.  

    12.3.4   Composite Resources of Target 
Predictions 

 With the growing number of prediction tools, 
different sets of putative targets for a miRNA have 
been proposed. However, it has been shown that 
these sets are only partially overlapping and that 
each target prediction tool may produce a signi fi cant 
amount of false positive and false negative pre-
dictions. Therefore users put more con fi dence in 
miRNA:target interactions that are predicted by 
several algorithms. Some web resources collect 
predictions from several algorithms and make these 
available. Two examples are: 

  miRecords –    http://mirecords.biolead.org      [  17  ] : 
This web resource contains two databases, one for 
experimentally validated targets of miRNA regu-
lation and the other for miRNA target predictions. 
The latter integrates predictions from 11 miRNA 
target prediction algorithms (DIANA-microT, 
MicroInspector, miRanda, MirTarget2, miTarget, 
NBmiRTar, PicTar, PITA, RNA22, RNAhybrid, 

http://pictar.mdc-berlin.de
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and TargetScan/TargertScanS) and nine different 
species. The results can be  fi ltered for those with 
a minimum support by  n  algorithms and can be 
downloaded as Excel  fi les. 

  miRWalk –    http://mirwalk.uni-hd.de      [  56  ] : This 
database also provides data about predicted and 
validated miRNA:target interactions for human, 
mouse and rat (including the regulation of mito-
chondrial transcripts). Predictions include that of 
eight established algorithms (DIANA-microT, 
miRanda, MirTarget2, RNAhybrid, PicTar, PITA, 
RNA22 and TargetScan) plus a newly developed 
algorithm called miRWalk. Furthermore, pre-
dicted targets are mapped to pathways and dis-
eases, and validated targets are additionally 
mapped to corresponding organs and cell lines. 
All results can be downloaded as Excel  fi les.  

    12.3.5   Resources of Validated miRNA: 
Target Interactions 

 A widely used approach to support computation-
ally predicted targets of miRNAs is to perform 
expression experiments (e.g. microarrays) for 
both miRNAs and mRNAs. From these experi-
ments inverse correlations in the expression 
pro fi les of miRNAs and mRNAs indicate putative 
regulatory interdependencies, e.g. a miRNA-
induced repression of a potential mRNA target 
 [  29,   57  ] . This approach has already been consid-
ered in some data-driven prediction algorithms 
(e.g. MirTarget2  [  53  ] , GenMir3  [  58  ] , T-REX 
 [  59  ] ). Recently, however, a new approach has 
been developed for the detection of binding sites 
of RNA-binding proteins (RBP) and miRNA-con-
taining ribonucleoprotein complexes (miRNPs, 
e.g. Argonaute or TNRC6). The approach is based 
on cross-linking and immoprecipitation followed 
by high-throughput sequencing of the cross-linked 
RNA sequences and is referred to as HITS-CLIP 
 [  60,   61  ] . Databases of miRNA:target interactions 
with experimental support are: 

  starBase –    http://starbase.sysu.edu.cn      [  62  ] : The 
starBase database (sRNA target Base) maps reads 
from CLIP-Seq (HITS-CLIP, PAR-CLIP) and 
degradome sequencing (Degradome-Seq, PARE) 

experiments to miRNA binding sites in mRNA 
targets predicted by six different algorithms in six 
different species (including  homo sapiens ). In this 
way, the database provides information about 
 semi-validated  miRNA target interactions. starBase 
can be queried with a miRNA or gene symbol and 
the results can be exported as comma separated 
value  fi le (csv). Beyond that starBase provides 
tools for functional enrichment analysis of miRNA 
targets in GO terms and KEGG pathways. 

  TarBase –    www.microrna.gr/tarbase      [  63  ] , 
 miRecords –    http://mirecords.umn.edu/mire-
cords      [  17  ]  and  miRTarBase –    http://mirtarbase.
mbc.nctu.edu.tw      [  64  ] : Apart from the integrated 
approaches of high-throughput experiments 
with miRNA target predictions, a number of 
experimental techniques are being used to 
unravel new or con fi rm predicted miRNA:target 
pairs. These range from mRNA-based (microar-
rays, quantitative real-time PCR assays, reporter 
assays  [  29,   65  ] ) and immunoprecipitation-based 
target analyses  [  66  ]  to protein-based target anal-
yses  [  30,   67,   68  ] . There exist several databases 
that collect information about experimentally 
validated miRNA target interactions for a growing 
number of organisms, usually by manual litera-
ture curation. The data collections of the three 
databases, TarBase  [  63  ] , miRecords  [  17  ]  and 
miRTarBase  [  64  ] , can be explored through a 
web interface, while miRecords and miRTar-
Base provide their data for download as well. 
The data records contain annotations for the 
miRNAs as well as the mRNA targets, informa-
tion about the experimental evidence, and links 
to the original publication and other external 
resources. On top of that TarBase allows a  fi ne 
grained  fi ltering of the search results (for spe-
cies, method, regulation type, year etc.) and 
miRecords shows the algorithms that correctly 
predict a validated interaction.   

    12.4   Functional Annotation 
and Mapping Databases 

 MicroRNAs are post-transcriptional regulators of 
gene expression and their biogenesis pathway and 
regulatory mechanisms have been well studied 
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(see Filipowicz et al.  [  69  ]  and Krol et al.  [  70  ]  
for reference). MiRNAs can suppress protein 
synthesis of a large number of targets  [  30  ]  by 
either repressing their translation or by causing 
mRNA decay, e.g. through target deadenylation. 
They have been shown to play a role in almost 
every cellular process. Additionally, many 
miRNA:disease relationships have been described. 
In some cases deregulated miRNAs even have a 
causal relationship to pathogenesis or the progres-
sion of diseases  [  71  ] . The role of miRNAs in cancer 
for example has been studied in great detail. It has 
been found that miRNAs can become oncogenic 
by inhibiting tumor suppressors or can themselves 
act as tumor suppressors by targeting oncogenes 
 [  72,   73  ] . Both, deregulated tumor suppressor 
miRNAs and oncogenic miRNAs ( oncomir ), 
can induce or mediate tumorigenesis when 
being silenced and overexpressed, respectively. 
Moreover, some miRNAs that are referred to as 
 metastamir  have been associated with tumor pro-
gression and metastasis development  [  74–  77  ] . 

 But, what is the designated function of a par-
ticular miRNA? This question cannot be easily 
answered, and often miRNAs do not have a dis-
tinct function but may drive, catalyze or suppress 
different cellular processes in dependence of the 
physiological and/or environmental conditions 
 [  78  ] . Furthermore, some miRNAs exhibit a patho-
genic potential when being overexpressed or 
silenced, mutated or post-transcriptionally edited 
 [  70,   79–  82  ] . It can be concluded that studies of 
miRNA function have to consider a larger con-
text, as their function is only exhibited in an inter-
relation with other molecules. Still, many miRNAs 
have been linked to speci fi c cell functions as a 
mediator  [  83  ]  or even as the driving force  [  84  ] . It 
has been shown that information about miRNA 
expression pro fi les in different pathologies could 
be used to de fi ne novel diagnostic markers  [  85  ] . 
On the other hand, knowledge about the role of 
miRNAs in diseases is of vital importance and 
may give rise of new therapeutic targets. The 
miR2Disease database, for example, is a valuable 
resource for miRNA:disease associations. 

  miR2Disease –    www.mir2disease.org      [  19  ] : 
Data in miR2Disease is literature curated and con-
sists of binary relationships (causal/non-causal) 

between deregulated miRNAs and human diseases. 
This information is complemented with the speci fi c 
miRNA expression pattern in the disease state and 
literature references. The miR2Disease database 
contains more than 3,000 entries (beginning of 
2012) that link miRNAs with 163 human dis-
eases (including many cancer types). Information 
from the miR2Disease database can be down-
loaded as a tab delimited text  fi le where each 
record is associated to a disease and being com-
posed of the miRNA, its mRNA target, the date of 
publication and a literature reference. 

 Examples like this show that there is a high 
demand for the functional characterization of 
miRNAs. Different approaches have been devel-
oped to narrow down functions of miRNAs  in 
silico . One such approach uses already known, as 
well as predicted target genes. Many genes have 
been functionally characterized and therefore 
functional enrichment analyses, performed by 
determining statistical prevalence for associa-
tions with GO terms, pathways or diseases in sets 
of miRNA targets, is used to infer the biological 
function of miRNAs. One miRNA web resource 
that is dedicated to the functional characteriza-
tion of miRNAs by using this approach is the 
miRGator database. 

  miRGator 2.0 –    http://mirgator.kobic.re.kr     
 [  23  ] : The second release of the miRGator data-
base is a composite collection of miRNA 
related data that pursues the aim of a functional 
characterization of miRNAs through the com-
bined miRNA and target mRNA expression 
analysis. This web resource hosts miRNA 
expression pro fi les for various experimental 
conditions (data extracted from PhenomiR, 
GEO and ArrayExpress) and gene expression 
data of miRNA transfection or knockdown 
experiments (data extracted from GEO and 
ArrayExpress). These data sets are comple-
mented by information about known and pre-
dicted mRNA targets (algorithms used are 
miBridge, TargetScan, miRanda and PITA) as 
well as miRNA-disease relationships (extracted 
from PhenomiR). miRGator provides three 
interfaces that allow the user to browse miRNA 
and gene expression experiments, perform 

http://www.mir2disease.org
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association analyses (e.g. miRNA-disease; 
miRNA-phenotype) and conduct custo mized 
 gene set analyses  (GSA) and  miRNA set analy-
ses  (miRSA). 

 In line with the functional enrichment approach 
is the analysis of target involvement in signaling, 
metabolic and disease related pathways to re fi ne 
the functional characterization of miRNAs  [  86  ] . 
On the other hand there are experimental strate-
gies to determine miRNA function, e.g. expres-
sion pro fi ling and functional assays. One database 
that links miRNA expression to human diseases 
is the PhenomiR database. 

  PhenomiR 2.0 –    http://mips.helmholtz-muenchen.
de/phenomir      [  87  ] : This database primarily maps 
miRNA expression to human pathology. 
Furthermore, it links biological processes to 
miRNA activity pro fi les. Experimental data were 
extracted from the literature and manually 
curated. Each entry contains general information 
about the bioprocess or disease (such as PubMed 
ID, Taxon ID, GO ID and disease), details about 
the study that uncovered this relationship (such 
as study design, patients, control, samples infor-
mation and tissue/cell line), information about the 
miRNAs (such as name, method used to deter-
mine expression and pattern/fold change), infor-
mation about genes associated with the speci fi c 
miRNA and additional relevant information. 
PhenomiR, at the beginning of 2012, contained 
675 entries derived from 365 publications, 145 
diseases and 98 bioprocesses. The entire database 
can be downloaded as a tab delimited ‘.tbl’  fi le. 

  miRó database –    http://ferrolab.dmi.unict.it/miro     
 [  88  ] : miRó is another database that links miRNAs 
with diseases, biological processes and functions. 
Here, in contrast to miR2Disease and PhenomiR, 
human miRNA-phenotype associations are not 
extracted from the literature but predicted based 
on putative as well as validated miRNA:target 
interactions. Target predictions come from three 
established algorithms (TargetScan, PicTar and 
miRanda). This database primarily integrates data 
from several web resources of miRNAs, targets, 
diseases and ontologies. Furthermore, miRó 

provides detailed information about the miRNAs 
and their target genes. 

 Other non-miRNA centralized mapping data-
bases that contain information for the functional 
characterization of genes including miRNAs are 
the Online Mendelian Inheritance in Man® 
(OMIM®;   http://omim.org    ) and WikiGenes 
which is a community driven project for collab-
orative publishing  [  89  ] .  

    12.5   Resources of microRNA 
Expression and Gene 
Regulation 

 Deregulation of miRNA expression can cause 
phenotypic changes in the cell and thus may, in 
the worst case, be a cause for human diseases. 
MiRNA expression pro fi les have been demon-
strated to be useful biomarkers  [  90,   91  ] . 
Furthermore, target gene expression is typically 
negatively correlated to that of the regulatory 
miRNA. Consequently, such observations may 
give rise to new regulatory relationships between 
miRNAs and putative target genes. This shows 
that transcriptomic as well as proteomic (high-
throughput) data is of great interest for miRNA 
research. During the last decade a tremendous 
amount of such data has been generated for dif-
ferent cell types, disease states, tissues and organ-
isms. As a consequence, some databases that 
collect and organize such data and make it publi-
cally accessible have been developed. Apart from 
the popular expression databases like NCBIs 
Gene Expression Omnibus (GEO)  [  54  ] , EBIs 
ArrayExpress  [  92  ]  and the cancer focused 
Oncomine  [  93  ] , several specialized miRNA web 
resources collect miRNA and target expression 
data; some of those also facilitating some func-
tional analyses. 

  mirZ –    www.mirz.unibas.ch      [  94  ] : Developers of 
the mirZ database gathered miRNA expression 
data from sequencing experiments carried out in 
human, mouse, rat, zebra fi sh, worm and fruit fl y 
(most of the data originates from a large scale 
miRNA expression pro fi ling study conducted by 
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Landgraf and co-authors  [  95  ] ). The data were 
integrated into a web resource, together with 
target prediction and data mining tools. Target 
predictions are based on the ElMMo algorithm 
 [  96  ] , which uses a Bayesian approach for target 
site detection. 

  microRNA.org –    http://microRNA.org      [  15  ] : We 
have introduced this database above, in the section 
about target prediction resources, for its miRanda 
predictions. Additionally, this database collects 
tissue-based miRNA expression pro fi les from 
mouse, rat and human, and shares them with the 
community. MiRNA expression data can be visu-
alized as heatmap or bar graph and can be directly 
compared across different tissue types. 

  dbDEMC –    http://159.226.118.44/dbDEMC/
index.html      [  97  ]  :  This is the only database so far 
that is fully dedicated to miRNAs in cancer, namely 
a  d ata b ase of  D ifferentially  E xpressed  M iRNAs 
in human  C ancers (dbDEMC). The data of miRNA 
pro fi les in cancer was extracted from the literature 
(48 microarray experiments in 14 cancer types). 
Then Signi fi cance Analysis of Microarrays (SAM) 
was applied to identify signi fi cantly differentially 
expressed miRNAs in cancer as compared to nor-
mal tissue. The database can be queried by miRNA 
(name or accession number) or by a speci fi c can-
cer type. For the former a list of cancer types will 
be returned were this miRNA is up- or down regu-
lated, plus a heatmap representation and more 
details on the tissue or cell line used. For the latter 
a list of all miRNAs up- or downregulated in this 
cancer type is returned. Finally, information about 
differentially expressed miRNAs can be down-
loaded as a tab delimited text  fi le. 

 There is no doubt that knowledge about 
miRNA expression can improve our understand-
ing of miRNA function and their involvement in 
human pathologies. Today, miRNAs are being 
accepted as important regulators of gene expres-
sion. But the question how the miRNA expres-
sion itself is regulated still remains to be clari fi ed. 
To do so, a number of studies have been under-
taken to identify promoter regions and transcrip-
tion start sites of miRNA genes,  cis -regulatory 
and  trans -acting elements respectively transcrip-

tion factors (TF) that can promote or inhibit 
miRNA expression  [  98–  101  ] . 

  miRStart –    http://mirstart.mbc.nctu.edu.tw     
 [  102  ] : This web resource indicates putative tran-
scription start sites (TSS) for miRNA genes 
based on experimental evidence. This evidence 
includes cap analysis of gene expression (CAGE) 
tags, derived from the FANTOM4 web resource 
 [  103  ] , TSS Seq tags derived from the DataBase 
of Transcriptional Start Sites (DBTSS)  [  104  ]  and 
H3K4me3 chromatin signatures (enriched 
around putative TSSs) derived from Barski et al. 
 [  100  ] . Expressed sequence tags (EST) data 
derived from the UCSC browser was used to 
underpin experimental evidences of miRNA 
TSSs. Here, authors looked for conserved ESTs 
upstream of the pre-miRNA sequence. Finally, a 
SVM classi fi er was trained to predict high-
con fi dence TSSs from the available data. The 
miRStart database provides details on TSSs for 
human miRNAs. For each miRNA the distribu-
tion of experimental evidences (CAGE tags, TSS 
tags and H3K4me3) along the 50 kb upstream 
region of the miRNA precursor sequence is 
displayed together with sequence conservation 
patterns and ESTs. Below a ranked list of puta-
tive TSSs is given along with the genomics loca-
tion, offset to the precursor and a score. 

  TransmiR –    http://cmbi.bjmu.edu.cn/transmir     
 [  105  ] : The TF-miRNA regulatory database 
(TransmiR) collects information on experimentally 
validated TF-miRNA interactions. Therefore the 
authors conducted a literature survey to identify 
TF–miRNA regulatory relationships. The data-
base can be queried for miRNAs or TFs. The 
results include information about miRNA func-
tion, disease associations, the type of regulation 
(activation/repression) and a link to the original 
publication. The whole TransmiR dataset can 
be downloaded as tab delimited text  fi le or 
Excel table. 

  PuTmiR –    www.isical.ac.in/~bioinfo_miu/
TF-miRNA/TF-miRNA.html      [  106  ] : This web 
resource in contrast to TransmiR collects pre-
dicted TF-miRNA interactions. PuTmiR lists 
TFs that putatively bind to sites within the 10kb 
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upstream and downstream regions of human 
miRNA precursor sequences. These data have 
been extracted from the track of conserved tran-
scription factor binding sites of the UCSC genome 
browser. The results are presented in tabular form 
including information about the genomic loca-
tion and a prediction score. The data can be 
downloaded in a tabular text format. 

 From the previous paragraphs it becomes 
apparent that miRNAs are involved in complex 
regulatory structures that are composed of TFs, 
miRNAs and target genes. Closer inspection 
often reveals regulatory motifs like feedback 
and feed forward loops that can exhibit non-lin-
ear dynamics and thus play critical roles in var-
ious biological processes. The accumulation of 
TF-miRNA and miRNA-target regulations in 
small regulatory modules sometimes scales up 
to a complex regulatory network  [  107  ] . There 
are two web resources that were developed 
based on this idea. 

  CircuitsDB –    http://biocluster.di.unito.it/cir-
cuits      [  108  ] : This database focuses on feed-for-
ward loops (FFLs) composed of a TF that 
regulates the expression of a miRNA and com-
mon targets of both. Authors performed an  ab-
initio  bioinformatics analysis of regulatory 
regions (promoter, 3 ¢  UTRs) of protein coding 
genes and miRNA precursor sequences to 
search for conserved putative transcription fac-
tor binding sites (TFBS) in promoter regions 
and conserved seed complementary sites in the 
3 ¢  UTRs of protein coding genes  [  101  ] . The 
obtained results were complemented with 
miRNA-target predictions from TargetScan 
and TargetMiner  [  13,   109  ] . The database can 
be queried for TFs, precursor and mature miR-
NAs as well as joint target genes. A table where 
each row represents a mixed FFL, containing 
its well annotated components, will be returned. 
Furthermore, the database has two sections ded-
icated to MYC and ER FFLs. Additionally; 
users can search for binary transcriptional rela-
tionships (TF->gene, TF->miRNA) and binary 
post-transcriptional relationships (miRNA-
gene). All data in CircuitsDB can be down-
loaded as tab delimited text  fi les. 

  MIR@NT@N –    http://mironton.uni.lu      [  110  ] : 
This web resource predicts regulatory networks 
involving TFs, miRNAs and target genes at 
genome level by integrating data from several 
primary resources: TF regulation data from 
PAZAR, JASPAR and oPOSSUM  [  111–  113  ] ; 
target predictions from MicroCosm (former 
miRBase Targets database) and microRNA.org 
 [  15,   114  ] ; protein-protein interaction data from 
UniHI  [  115  ] ; and gene-annotations from Ensembl 
 [  116  ] . MIR@NT@N (MIRna @Nd Transcription 
factor @nalysis Network) can be queried with 
lists of TFs, miRNAs and target genes, and it 
returns predictions of TF-miRNA, miRNA-TF 
and miRNA-gene regulations. Additionally, a 
regulatory network including all these interaction 
types will be constructed which can then be used 
for the automated detection of FBLs and FFLs. 
For single entities (TF, miR or gene) some anno-
tations can be retrieved including information 
about regulators and/or targets. Regulatory 
network analyses with MIR@NT@N can be 
integrated into work fl ows of the data mining 
framework M@IA  [  117  ] .  

    12.6   Web Tools 

 In Chap.   3     of this book algorithms for miRNA 
target prediction were introduced. Results of 
most target prediction algorithms can be accessed 
from dedicated web databases. Some of these 
databases allow  fi ltering predictions by adjusting 
prediction parameters and to tune the sensitivity 
by de fi ning more or less stringent cutoffs for the 
prediction score. Others facilitate the direct 
search for target genes of a submitted (mock or 
newly discovered) miRNA sequence. 

 Beyond that there exists a range of other 
miRNA-devoted web tools and collections of 
predictive computations. One example for such a 
predictive computation is the text-mining based 
identi fi cation of miRNA-target interactions. 
Others tools provide access to functional annota-
tions of miRNAs or information about targeted 
pathways. Still others deal with miRNA expres-
sion pro fi les and realize an expression based 
inference of miRNA function. In contrast some 
tools study the effect of miRNA regulation in 
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gene expression data. In a similar way DNA 
microarray or high-throughput sequencing data 
are used to identify the potential in fl uence of 
miRNAs on biological processes or phenotypic 
changes. Some of these tools visualize regulatory 
networks that have been constructed computa-
tionally by mining target predictions and miRNA/
mRNA expression pro fi les. Very popular for 
the functional characterization of miRNAs are 
enrichment analyses that search for enriched 
associations of miRNAs or their predicted/vali-
dated targets in the GO terms, and pathway and 
disease databases. 

 In the following paragraphs a few of these 
tools will be introduced. It has to be noted that 
this is only a small selection of available tools 
and upon publication of this book, more web-
based miRNA analysis tools will have emerged. 

  MiRror –    www.proto.cs.huji.ac.il/mirror      [  118  ] : 
Given a set of miRNAs miRror computes a ranked 
list of targets based on 11 prediction algorithms 
that complement each other in search criteria. 
Top ranked targets are those that are regulated by 
multiple miRNAs of the input set. The principal 
underlying the miRror approach is that targets are 
regulated in coordination by multiple miRNAs 
 [  45,   119  ] . Additionally, the reverse scenario has 
also been implemented that allows querying the 
miRNA regulation of a set of genes. 

  MMIA –    http://cancer.informatics.indiana.edu
/mmia      [  21  ] : This web service is devoted to the 
functional characterization of miRNAs. MMIA 
( m icroRNA and  m RNA  i ntegrated  a nalysis) inte-
grates miRNA and mRNA expression data with 
miRNA target predictions for analyzing miRNA-
associated phenotypes and biological functions 
by gene set analysis (GSA). Therefore, the users 
go through an analysis pipeline starting with the 
upload of miRNA expression data, followed by 
the selection of one target prediction algorithm or 
the intersection of two algorithms (TargetScan, 
PITA and/or PicTar), and the upload of mRNA 
expression data. Next, the users can select gene 
sets for the GSA (KEGG  [  120  ] , MSigDB  [  121  ]  
and G2D  [  122  ] ). MMIA offers some optional 
analyses, e.g. the identi fi cation of a prevalence of 
transcription factor binding sites (TFBS) in 

miRNA promoter regions, enrichment in disease 
associations, and gene set enrichment analysis 
with the GSEA-P software tool  [  121  ] . The 
output informs the users about differentially 
expressed miRNAs (including a heatmap repre-
sentation), gene sets enriched in regulated 
miRNAs and TFBS enriched in the promoter 
regions of the regulated miRNAs. Finally, pre-
dicted mRNA targets of the regulated miRNAs 
are shown. 

  SylArray –    www.ebi.ac.uk/enright-srv/sylarray     
 [  123  ] : This EMBL-EBI hosted web-service 
identi fi es enriched miRNA signatures in targets 
from high-throughput miRNA perturbation exper-
iments. By using the Sylamer algorithm  [  124  ]  
SylArray scans the 3 ¢  UTR sequences of an 
ordered gene list (e.g. by fold-change), submitted 
by the user, for potential miRNA binding sites. 
It then calculates the signi fi cance of enriched bind-
ing sites based on hypergeometric  p -values. The 
graphical output shows a landscape plot of the 
enrichment  p -values for miRNA seed complemen-
tary sites in 3 ¢  UTRs, which is calculated in incre-
mental parts of the submitted ranked gene list. 

  MiRonTop –    www.microarray.fr:8080/miRon
Top/index      [  125  ] : This is another web service 
that makes inferences on miRNA regulation 
based on high-throughput transcriptomic data .  
It uses several target prediction algorithms to pre-
dict genes that are under the regulatory control of 
miRNAs. Based on that, miRNAs with strongest 
regulatory impact on the given state data are 
determined. Furthermore, a functional enrich-
ment analysis for up and downregulated genes is 
performed for the three Gene Ontologies (molec-
ular function, biological process and cellular 
component). 

  TAM –    http://cmbi.bjmu.edu.cn/tam      [  126  ] : This 
web service named as TAM (Tool for Annotations 
of human MiRNAs) is also devoted to the func-
tional characterization of a given list of miRNAs. 
The idea is to provide meaning to results of 
miRNA medium and high-throughput experi-
ments like microarray, HT-qPCR or deep 
sequencing. These results are usually lists of up- 
or down regulated miRNAs (e.g. in disease state 
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or under treatment). TAM can be used to identify 
over- or underrepresentation of miRNA families 
and clusters, of functional or disease/tissue asso-
ciations against a user de fi ned background or 
one that is provided by the database. Prede fi ned 
sets of miRNAs as well as the source code can be 
downloaded. 

  MAGIA –    http://gencomp.bio.unipd.it/magia     
 [  127  ] : In this web resource the integration of 
miRNA target prediction with mRNA and 
miRNA expression data analysis is provided as 
an interactive web service. MAGIA ( M iRNA 
 A nd  G enes  I ntegrated  A nalysis) has a target 
prediction interface that can be used to query 
the database for the union or intersection of 
miRanda, Pita and/or TargetScan predictions to 
 fi nd either target genes for a group of miRNAs 
or regulatory miRNAs for a group of genes. On 
the other hand, MAGIA provides a web service 
for the analysis of mRNA and miRNA expres-
sion data for the detection of inverse correlated 
miRNA:mRNA pairs. Therefore, after upload-
ing miRNA as well as mRNA expression data 
the user can choose an appropriate measure 
(Spearman correlation, Pearson correlation, 
mutual information, Genmir and meta-analysis) 
and select target prediction algorithm(s) to be 
used for the integrated analysis. 

  miRó –    http://ferrolab.dmi.unict.it/miro      [  88  ]  :  
This web resource is in the  fi rst place a collec-
tion of data that integrates information from 
various resources about miRNAs, their predicted 
targets, and associated gene ontology terms and 
diseases. Thus, it can be considered as a com-
posite or tertiary miRNA web resource. All data 
are interlinked and thus by e.g. selecting a 
miRNA, a list of diseases and biological pro-
cesses will be returned based on predicted tar-
gets of the miRNA. Additionally, expression 
pro fi les for miRNAs in a number of tissues are 
given. Furthermore, miRó can be used to predict 
new functional associations by analyzing com-
mon targets of miRNAs involved in different 
processes. The data mining module of miRó can 
be used to cluster miRNAs that are associated 
with common biological processes or diseases. 

 It becomes apparent that the aim of most 
miRNA web tools is the functional characteriza-
tion of single miRNAs, miRNA clusters and co-
regulated miRNAs. What scientists bother about 
are the regulatory interactions by which miRNAs 
are involved in the regulation of almost all bio-
logical processes and how they are involved in 
the emergence of a large number of diseases. One 
way to the functional categorization of miRNAs 
leads through their mRNA targets. That’s why 
most miRNA web tools incorporate predictions 
of miRNA targets and information about vali-
dated targets into their analyses. In many cases 
functional enrichment analyses are conducted to 
identify overrepresentations of miRNAs or their 
targets in gene regulatory networks, signaling and 
metabolic pathways or gene ontology terms. 

 In the next section we focus on the design 
principles of miRNA databases. We will describe 
the underlying technologies and the interfaces 
through which the users can access or download 
the information provided.  

    12.7   MicroRNA Data Retrieval 

 Most of the miRNA web resources are designed 
in a way that the users can browse the informa-
tion and can extract data via a web interface. This 
is typically realized by CGI or JavaScript appli-
cations that query a backend database upon users’ 
requests and represent results in HTML format. 
This is suf fi cient in many scenarios and is a user-
friendly way to explore data, structure and search 
information about a particular miRNA or a set of 
miRNAs. However, sometimes this is not enough 
when for example users want to get hold of the 
entire database, query the database in batch mode, 
extract a speci fi c subset of information or apply 
customized  fi lters. Therefore, more and more 
web resources provide other means to extract 
data from their repositories. 

    12.7.1   Data Download 

 Many web resources make their collections of 
experimental data, literature derived knowledge 

http://gencomp.bio.unipd.it/magia
http://ferrolab.dmi.unict.it/miro
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or computationally generated data accessible via 
download. For example, sequence and structure 
information of miRNAs, lists of predicted or vali-
dated targets, or functional associations are being 
provided in custom  fi le formats (e.g. fasta, gff 
and bed), as spreadsheets (like in miRecords) or 
simply as comma or tab delimited  fi les. Files of 
smaller size are usually uncompressed, while 
larger  fi les (e.g. more than 100 MB) are typically 
compressed in zip, tar or gz archives (e.g. in 
miRDB). 

 Some other resources provide XML formatted 
 fi les for download which are basically text  fi les 
that provide hierarchically structured data and 
can be used for exchange over the internet and 
between (web-) services (e.g. in miRMaid).  

    12.7.2   Programmatic Access 

 So far, only few resources facilitate a program-
matic access to their data. One example is the 
miRMaid web service that provides, via a pro-
gramming interface, HTML, XML and FASTA 
representations of data that were previously 
extracted from the miRBase database  [  8  ] . 
Actually, the miRMaid framework and database 
can be used as local installation and can be 
accessed by Ruby or Perl programs, while the 
RESTful 1  web API (application interface) of 
miRMaid can be accessed via any internet browser 
or programmatically via a uniform URL for every 
record in miRMaid that is uniquely addressable.  

 Another example is the fRNAdb (functional 
RNA database;  [  128  ] ) that hosts information 
about known and predicted non-coding RNA 
(ncRNA) sequences (including miRNAs) 
assembled from a number of other databases. 
The fRNAdb API can be used to query and 
retrieve data via SOAP (previously known as 
Simple Object Access Protocol) or REST 
(Representational state transfer) interface. Using 
the REST interface one can post queries from 
simple to complex via a URL used in a standard 

web browser or the HTTP GET method in a 
computer script. Results are returned XML 
formatted, for sequences other formats can be 
requested (gff, bed or fasta). The SOAP interface 
of the fRNAdb supports several programming 
languages (Perl, Python, Ruby and Java). In this 
way very speci fi c or complex requests are faci-
litated and can be processed in an automated 
manner. Responses to SOAP requests are always 
XML formatted. 

 Despite these two exceptions it has to be noted 
that this  fi eld lacks services for programmatic data 
retrieval and automatic access to miRNA web 
resources. The BioCatalogue, a popular registry 
for web services in the biosciences, lists more than 
2,000 services (as of 2012) but it still lacks miRNA-
related tools and resources  [  129  ] . The only hits 
when searching the database for miRNA related 
services are (i) ‘miRMaid’, (ii) ASRP – a web ser-
vice for the retrieval of small RNAs from the 
 Arabidopsis small RNA Project  database  [  130  ] , 
and (iii) RNAhybrid – a tool for  fi nding minimum 
free energy hybridizations between long and short 
RNAs (used for miRNA target prediction;  [  40  ] ). 
This situation has to be improved in future in order 
to facilitate quick, automated access to RNA 
speci fi c information for reference or more interest-
ing for data mining investigations. Furthermore, 
web accessible tools for the computational predic-
tion of regulatory interactions involving miRNAs 
or predictions of functional, phenotype and pathol-
ogy associations of miRNAs should be equipped 
with a programmatic interface.   

    12.8   Things to Consider When Using 
miRNA Web Resources 

 Nowadays, the use of diverse information and 
services that are provided in miRNA web 
resources seem indispensable in any kind of 
miRNA related analysis or experimental effort 
conducted  [  131  ] . For example, expression pro fi les 
of miRNAs, designated targets, sequence infor-
mation of miRNA precursors or maturated miR-
NAs are frequently being requested. The scenarios 
in which miRNA-associated information is 
demanded are countless. However, one has to be 

   1   RESTful characterizes a web service that meets con-
strains de fi ned in the Representational State Transfer 
(REST) architectural style principles.  
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aware of some pitfalls and risks that coincide 
with the use of these resources and tools. 

  miRNA/target expression data . Expression 
pro fi les of miRNAs can be retrieved from 
databases like microRNA.org  [  15  ]  and MirZ 
 [  94  ] . Although it has been shown that a cross-
platform comparison of high-throughput miRNA 
expression experiments reveals high correlation 
 [  132  ] , one has to keep in mind that these data 
were often generated under different experimental 
conditions with different experimental set-ups. 
Consequently, a quantitative comparison of 
miRNA expression data carries the risk of being 
unreliable. This is in line with mRNA expression 
data from miRNA perturbation experiments that 
are often used for the validation of predicted 
miRNA:mRNA interactions. Here again, quanti-
tative conclusions about miRNA:target regula-
tion tend to be very imprecise. Additionally, 
does this approach for target validation lack a 
signi fi cant point, namely that many targets are 
regulated by translation repression (e.g. by inhi-
bition of translation initiation, prolongation or 
early translation termination), which means that 
their mRNA concentration stays constant while 
only their protein concentration drops upon 
miRNA induction. It has to be kept in mind that 
targets’ transcriptomics analysis captures only 
the regulatory mechanism of target degrada-
tion (e.g. caused by mRNA deadenylation). 
Unfortunately, resources for protein based target 
expression analysis do not exist, except for the 
results of the recently introduced pSILAC method 
(stable isotope labeling with amino acids in cell 
culture,  [  30  ] ) that have been made accessible in 
the web (  http://psilac.mdc-berlin.de/    ). 

  Sequence data . In terms of sequence informa-
tion for miRNA genes, precursors and mature 
sequences it has to be differentiated between pre-
dicted (e.g. via homology analysis) and validated 
sequences (e.g. via cloning or sequencing). 
Additionally, one has to be aware that some 
miRNA resources contain entries with obsolete 
names/identi fi ers which might have changed 
(through an adaptation of the naming convention) 
or been deleted from the primary miRNA 

sequence registry (miRBase). One example is the 
previously used way to indicate that a mature 
miRNA sequence originates from the passenger 
strand (less active) of the hairpin precursor by 
appending an asterisk ‘*’ to the name. This notion 
has been discarded and now the strands, that mat-
urated miRNAs originate from, are indicated by 
the strand-suf fi x (- 3p  or  -5p ) in the miRNA name 
(see also ‘miRNA sequence databases’ section). 

  Target prediction data . Most of the existing 
miRNA target prediction algorithms provide their 
prediction results in web resources. These include 
but are not limited to DIANA-microT, TargetScan, 
miRanda and PicTar. Beyond that, there exist some 
web resources that collect and integrate target 
prediction data from various target prediction 
algorithms and in some cases add some analyti-
cal facilities to it (e.g. miRWalk  [  56  ] , miRGen 
 [  10  ]  and miRecords  [  17  ] ). It is important to keep 
in mind that even the most recent target predic-
tion algorithms contain many false positive pre-
dictions and that there might be a bias towards 
patterns found in previously iden ti fi ed miRNA-
target interactions that have been used as template 
for these algorithms. A common strategy to extract 
high con fi dence targets is to retrieve results of 
several algorithms and consider only commonly 
predicted targets for further investigation  [  50  ] . 
However, it has been shown by Ritchie et al. 
 [  133  ]  that this strategy does not always hold its 
promises. The authors have shown that the over-
lapping pre dictions by one group of algorithms 
did not constitute a majority in the overlapping 
predictions of another group of algorithms. 

  Target validation data . The experimental 
identi fi cation of miRNA target genes can be 
achieved in different ways. However, there are 
several resources that provide data on experimen-
tally validated targets, like Tarbase, miRecords 
and miRTarBase  [  17,   63,   64  ] . It has to be noted 
that some experimental procedures are more reli-
able in the detection or validation of miRNA 
targets as compared to others. Here we list the 
most commonly used methods in the order of 
their reliability: reporter assays, CLIP (crosslink-
ing and immunoprecipitation combined with 

http://psilac.mdc-berlin.de/
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target predictions), western blots, qRT-PCR and 
microarrays. One exception to the common 
resources for validated miRNA targets is the star-
Base database which maps data from HITS-CLIP, 
PAR-CLIP and degradome sequencing experi-
ments  [  60,   62  ]  with predictions from four estab-
lished target prediction algorithms. The result is a 
collection of  high-con fi dence  miRNA:target 
interactions inferred from experimental indica-
tions that match computational predictions. 

  Phenotype associations . There are several 
databases that provide information about 
miRNA disease or phenotype associations (e.g. 
miR2disease; PhenomiR 2.0 and miRó). This 
information is often derived by a manual litera-
ture curation process  [  19  ]  or through computa-
tional predictions  [  88  ] . In any case these data 
can contain errors or unspeci fi c information. 
For example, it has to be clari fi ed which organ-
ism a miRNA:phenotype association refers to 
and how the experimental prove has been con-
ducted (type of experiment,  in vivo / in vitro , 
treatment, etc.). 

  Names, identi fi ers and accession   numbers . A 
widely spread problem in miRNA resources is 
the incompleteness in terms of miRNAs and the 
use of obsolete identi fi ers. Often only those miR-
NAs that have been known at the time of the data-
base release were considered and never updated. 
Additionally, many miRNA names have changed 
in newer versions of the miRBase database. This 
can lead to confusion, if other databases do not 
update their resources accordingly – miRNAs do 
not seem to exist in other databases and newly 
discovered miRNAs are missing. This problem 
can often be observed in databases of miRNA tar-
get predictions. In some cases predictions are not 
repeated for newly discovered miRNAs. This is 
also problematic for the automated data retrieval 
and integration. 

 Another issue that database designers should take 
care of is the use of a controlled and common 
vocabulary with respect to functional annota-
tions. This can be realized by the use of ontology 
(e.g. GO) or MeSH (Medical Subject Headings®) 

terms that ensure a consistent way to retrieve and 
exchange information. 

  Interconnectedness . It can be observed that 
newer miRNA web resources make use of and 
incorporate information from already existing 
miRNA databases (e.g.  [  65  ] ). Here, it is impor-
tant that data from third party resources have to 
be updated according to their origins. Others pre-
fer the supposedly saver way by linking to com-
plementary information hosted in other resources. 
However, it has to be ensured that URLs are valid 
and that interlinked information does not become 
obsolete. 

  In summary . When making use of data from a 
miRNA web resource one should get aware of the 
release date or the time of the latest update and 
what has been changed compared to the previous 
release. Predicted sequences change upon experi-
mental veri fi cation, likewise predicted miRNA 
targets can be proven to be false, new regulatory 
relationships are being discovered, improved 
computational algorithms lead to better predic-
tions in terms of sensitivity and/or accuracy, and 
new phenotypic association are being revealed. 
No one likes to build up an analysis on outdated 
information, but rather wants to make sure to be 
on top of the latest developments. It can for 
example be very frustrating when, say a regula-
tory relationship (e.g. miRNA-mRNA or 
TF-miRNA) could not be found in a certain web 
resource only because in this resource it was reg-
istered with an obsolete identi fi er. Sometimes 
this leads to false assumptions and to misguided 
subsequent investigations. 

 Further, it is important to differentiate between 
literature derived and curated or experimentally 
supported information and computational predic-
tions. The con fi dence of the latter can often be 
inferred from the applied scoring system. In this 
case it is important to be aware of the range and 
distribution of scores. Additional aid for the esti-
mation of the con fi dence in computational pre-
dictions can be provided by (independent) 
benchmarks as can sometimes be found in review 
articles. Sethupathy and coauthors  [  134  ]  for 
example compared the performance of several 
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miRNA target prediction algorithms. Although 
not always a guarantee for more reliable predic-
tions but at least an increase in con fi dence can be 
gained by comparing the results from different 
algorithms (ideally based on complementary 
approaches) and considering only the intersec-
tion for further analyses. For example, different 
resources that predict transcriptional regulators 
of miRNA genes exist (e.g., PutmiR and MIR@
NT@N). Their predictions often differ a lot. So 
far no independent benchmark exists that could 
prove the superiority of one approach over the 
other. Therefore, in case an experimental vali-
dation of predicted TF-miRNA regulation is 
planned it is only wise to consider commonly 
predicted regulatory relationships in order to 
save time and resources. On the other hand, this 
approach is certainly at the cost of sensitivity. If 
highest sensitivity is the goal it makes sense to 
consider the union of computational predictions, 
rather than the intersection, for further investiga-
tion. Likewise the experimental approach used to 
determine or validate an interaction can result in 
more or less con fi dent assumptions (see paragraph 
about Target validation data). In a recent publica-
tion we have collected predicted and validated 
interactions and have combined them in a regu-
latory map for the miRNA target hub p21  [  107  ] . 
In our analysis, for the  fi rst time, a system was 
established that computes and assigns con fi dence 
scores to binary relationships of TF-miRNA and 
miRNA-mRNA pairs in regulatory networks. 

 Another criterion, that should not be underes-
timated when selecting web resources for data 
retrieval, is the quantity and quality of annota-
tions that each data set is equipped with. It can be 
very convenient when all the information required 
can be obtained from one hand rather than through 
a time consuming and error prone journey through 
a number of web resources. This bears the risk of 
non-conformity (e.g. due to different identi fi ers) 
and an extra effort to bring the different formats 
used to present data into a common data format. 

Therefore, resources that make use of standard-
ized data exchange formats and provide a pro-
grammatic access are to be preferred.  

    12.9   Conclusion 

 Since the launch of the  fi rst miRNA web resource 
~10 years ago, several dozens of new resources 
have been released. Lots of experimental, 
categorical and computationally generated data 
that give a deeper insight into all aspects of 
miRNA biology and function can be accessed 
through these databases and web tools. It is not easy 
to keep track of all available resources, their quality 
(reliability) and how up-to-date they are. Though 
in a natural selection process; only good resources 
will be used and cited by the community. 

 In this chapter we have introduced concepts 
of miRNA web resources and gave a number of 
examples for each category. However, it has to 
be mentioned that we did not discuss every type 
of miRNA web resources and introduced a few 
but by far not all web resources. One category of 
tools that we did not discuss is that of applica-
tions for miRNA gene or hairpin precursor pre-
diction. For the interested reader we would like 
to refer to the review article by Mendes et al. 
 [  135  ] . In this chapter we focused on resources 
for human miRNAs and we here assume that 
most of the existing human miRNAs have already 
been detected by deep sequencing analyses. 

 In Table  12.1  we list miRNA web databases 
and services which are most crucial for current 
miRNA studies.       
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(continued)

   Table 12.1    Overview of current miRNA web resources and services   

 Resource  Description  URL  PMID 

  Primary microRNA web resources  
 mimiRNA  Web resource of miRNA expression 

data and tool for the discovery of functional 
relations between miRNAs and mRNAs 

   http://mimirna.centenary.org.au      19933167 

 miRBase  The miRNA sequence and annotation database    www.mirbase.org      17991681 
 miRecords  Database of validated animal miRNA-

target interactions (also predicted targets 
from 11 algorithms) 

   http://mirecords.biolead.org      18996891 

 miRex  Database of miRNA gene expression    http://miracle.igib.res.in/mirex/      14681370 
 miRStart  A database of human miRNA transcription 

start sites (TSSs) 
   http://mirstart.mbc.nctu.edu.tw      21821656 

 miRTarBase  Databases of experimentally validated miRNA-
target interactions 

   http://mirtarbase.mbc.nctu.edu.tw/      21071411 

 miRvar  Database for genomic variations in miRNAs    http://genome.igib.res.in/mirlovd      21618345 
 smirnaDB/mirZ  Databases of cloning-based miRNA expression 

pro fi les and of predicted miRNA target sites 
   www.mirz.unibas.ch/
cloningpro fi les/     

 19468042 

 TransmiR  Manually curated database of TF-miRNA 
regulations 

   http://202.38.126.151/hmdd/
mirna/tf/     

 19786497 

  Secondary microRNA web resources  
 CID-miRNA  Web service for the prediction of 

miRNA precursors 
   http://mirna.jnu.ac.in/cidmirna/      18522801 

 CircuitsDB  A database of miRNA-TF regulatory circuits 
in human and mouse 

   http://biocluster.di.unito.it/circuits      20731828 

 dbDEMC  Database of differentially expressed miRNAs 
in human cancers 

   http://159.226.118.44/dbDEMC/
index.html     

 21143814 

 DIANA-microT  Predicted targets of miRNA regulation based 
on the DIANA-microT algorithm 

   www.microrna.gr/microT      19765283 

 FAME  Database that provides functional associations 
of human miRNAs derived with the FAME 
algorithm 

   http://acgt.cs.tau.ac.il/fame/      20576699 

 HMDD  Manually curated database of human 
miRNA-disease associations 

   http://202.38.126.151/hmdd/
mirna/md     

 18923704 

 Magia  Interactive web service that integrates miRNA 
target predictions with mRNA and miRNA 
expression data analysis 

   http://gencomp.bio.unipd.it/
magia/start     

 20484379 

 MapMi  Web service for mapping miRNA sequences 
to genomic loci across many species 

   www.ebi.ac.uk/enright-srv/
MapMi     

 20233390 

 MicroCosm  Web resource of computationally predicted targets 
for miRNAs based on the miRanda algorithm 
(former miRBase Targets database) 

   www.ebi.ac.uk/enright-srv/
microcosm     

 17991681 

 MicroInspector  Web application for searching miRNA binding 
sites in a target gene sequences 

   http://bioinfo.uni-plovdiv.bg/
microinspector/     

 15980566 

 microRNA.org  A resource for predicted miRNA targets 
(miRanda) and miRNA expression 
pro fi les 

   www.microrna.org      18158296 

 microTranspo
Gene 

 Database of miRNAs derived from 
transposable elements (TE) 

   http://microtranspogene.tau.ac.il      17986453 

 miR2Disease  Literature curated database of human 
miRNA-diseases relationships 

   www.mir2disease.org      18927107 

 miRDB  Database for miRNA target predictions 
(SVM classi fi er MirTarget2) and 
functional annotations 

   http://mirdb.org/miRDB      18426918 

http://mimirna.centenary.org.au
http://www.mirbase.org
http://mirecords.biolead.org
http://miracle.igib.res.in/mirex/
http://mirstart.mbc.nctu.edu.tw
http://mirtarbase.mbc.nctu.edu.tw/
http://genome.igib.res.in/mirlovd
http://www.mirz.unibas.ch/cloningprofiles/
http://www.mirz.unibas.ch/cloningprofiles/
http://202.38.126.151/hmdd/mirna/tf/
http://202.38.126.151/hmdd/mirna/tf/
http://mirna.jnu.ac.in/cidmirna/
http://biocluster.di.unito.it/circuits
http://159.226.118.44/dbDEMC/index.html
http://159.226.118.44/dbDEMC/index.html
http://www.microrna.gr/microT
http://acgt.cs.tau.ac.il/fame/
http://202.38.126.151/hmdd/mirna/md
http://202.38.126.151/hmdd/mirna/md
http://gencomp.bio.unipd.it/magia/start
http://gencomp.bio.unipd.it/magia/start
http://www.ebi.ac.uk/enright-srv/MapMi
http://www.ebi.ac.uk/enright-srv/MapMi
http://www.ebi.ac.uk/enright-srv/microcosm
http://www.ebi.ac.uk/enright-srv/microcosm
http://bioinfo.uni-plovdiv.bg/microinspector/
http://bioinfo.uni-plovdiv.bg/microinspector/
http://www.microrna.org
http://microtranspogene.tau.ac.il
http://www.mir2disease.org
http://mirdb.org/miRDB


244 U. Schmitz and O. Wolkenhauer

 Resource  Description  URL  PMID 

 miRdSNP  Database of disease associated SNPs 
and their distance from miRNA target 
sites on the 3 ¢  UTRs of human genes 

   http://mirdsnp.ccr.buffalo.edu/      22276777 

 mirEval  Web service for the prediction of 
miRNA precursors 

   http://tagc.univ-mrs.fr/mireval      18453555 

 miRNAminer  Web service that searches for homologous 
miRNA genes using BLAST 

   http://pag.csail.mit.edu/
mirnaminer     

 18215311 

 miRNEST  Collection of animal, plant and virus microRNA 
data with predicted miRNAs based on EST data 

   http://mirnest.amu.edu.pl      22135287 

 MiRonTop  Web service that makes inferences on miRNA 
regulation based on high-throughput 
transcriptomic data 

   www.microarray.fr:8080/
miRonTop/index     

 20959382 

 miROrtho  Database of miRNA gene candidates 
and homologs of known miRNAs 

   http://cegg.unige.ch/mirortho      18927110 

 MiRror  Web tool for the analysis of cooperative 
regulation by ensembles of miRNAs 
on gene sets and pathways 

   http://www.proto.cs.huji.ac.il/
mirror/     

 20529892 

 MMIA  Web tool for associating miRNA 
and mRNA expression with phenotypes 
and biological functions 

   http://cancer.informatics.indiana.
edu/mmia     

 19420067 

 PhenomiR  Database of literature curated 
miRNA phenotype relationships based 
on miRNA expression pro fi les in diseases 
and biological processes 

   http://mips.helmholtz-muenchen.
de/phenomir/     

 20089154 

 PuTmiR  Resource for putative miRNA 
transcription factors 

   http://www.isical.ac.in/~bioinfo_
miu/TF-miRNA/TF-miRNA.html     

 20398296 

 RNA22  Web service for the prediction of miRNA 
target sites based on the RNA22 algorithm 

   http://cbcsrv.watson.ibm.com/
rna22.html     

 16990141 

 SSCpro fi ler  Web service for the HMM based prediction 
of miRNA precursors 

   www.imbb.forth.gr/SSCpro fi ler.
html     

 19324892 

 starBase  Database that maps reads from CLIP-Seq 
and degradome sequencing experiments 
to predicted miRNA binding sites in 
mRNA targets 

   http://starbase.sysu.edu.cn/      21037263 

 SylArray  Web-server for the prediction of miRNA 
effects on mRNA expression data 

   www.ebi.ac.uk/enright-srv/
sylarray/     

 20871108 

 TAM  Web service for the functional 
characterization of miRNA sets 

   http://cmbi.bjmu.edu.cn/tam      20696049 

 TargetRank  Target prediction database with an 
integrated ranking of conserved 
and nonconserved miRNA targets 

   http://genes.mit.edu/targetrank/      17872505 

 TargetScan  Predicted targets of miRNA regulation 
based on the TargetScan algorithm 

   www.targetscan.org      15652477 

  Tertiary microRNA web resources  
 CoGemiR  Collection of information on miRNA 

genomic location, conservation 
and expression data 

   http://cogemir.tigem.it/      18837977 

 mirDIP  Collection of miRNA-target predictions 
from several prediction databases 

   http://ophid.utoronto.ca/mirDIP      21364759 

Table 12.1 (continued)

(continued)
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http://mips.helmholtz-muenchen.de/phenomir/
http://www.isical.ac.in/~bioinfo_miu/TF-miRNA/TF-miRNA.html
http://www.isical.ac.in/~bioinfo_miu/TF-miRNA/TF-miRNA.html
http://cbcsrv.watson.ibm.com/rna22.html
http://cbcsrv.watson.ibm.com/rna22.html
http://www.imbb.forth.gr/SSCprofiler.html
http://www.imbb.forth.gr/SSCprofiler.html
http://starbase.sysu.edu.cn/
http://www.ebi.ac.uk/enright-srv/sylarray/
http://www.ebi.ac.uk/enright-srv/sylarray/
http://cmbi.bjmu.edu.cn/tam
http://genes.mit.edu/targetrank/
http://www.targetscan.org
http://cogemir.tigem.it/
http://ophid.utoronto.ca/mirDIP
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  Abstract 

 MicroRNAs (miRNAs) are endogenous non-coding RNAs (ncRNAs) of 
approximately 22 nt that regulate the expression of a large fraction of 
genes by targeting messenger RNAs (mRNAs). However, determining the 
biologically signi fi cant targets of miRNAs is an ongoing challenge. In this 
chapter, we describe how to identify miRNA-target interactions and 
miRNA regulatory networks from high-throughput deep sequencing, 
CLIP-Seq (HITS-CLIP, PAR-CLIP) and degradome sequencing data using 
starBase platforms. In starBase, several web-based and stand-alone com-
putational tools were developed to discover Argonaute (Ago) binding and 
cleavage sites, miRNA-target interactions, perform enrichment analysis of 
miRNA target genes in Gene Ontology (GO) categories and biological 
pathways, and identify combinatorial effects between Ago and other RNA-
binding proteins (RBPs). Investigating target pathways of miRNAs in 
human CLIP-Seq data, we found that many cancer-associated miRNAs 
modulate cancer pathways. Performing an enrichment analysis of genes 
targeted by highly expressed miRNAs in the mouse brain showed that 
many miRNAs are involved in cancer-associated MAPK signaling and 
glioma pathways, as well as neuron-associated neurotrophin signaling and 
axon guidance pathways. Moreover, thousands of combinatorial binding 
sites between Ago and RBPs were identi fi ed from CLIP-Seq data suggest-
ing RBPs and miRNAs coordinately regulate mRNA transcripts. As a 
means of comprehensively integrating CLIP-Seq and Degradome-Seq 
data, the starBase platform is expected to identify clinically relevant 
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    13.1   Introduction 

 MicroRNAs (miRNAs) represent a class of small 
non-coding RNAs (ncRNAs) that play an impor-
tant role in various biological processes by tar-
geting mRNAs  [  1,   2  ] . Emerging evidence is 
revealing that miRNAs serve as nodes of signal-
ing networks that regulate cancer, apoptosis, pro-
liferation, differentiation and stem cell biology 
 [  2,   3  ] . 

 After the identi fi cation of hundreds of miR-
NAs, the best way to understand their biological 
function and regulatory mechanism is to identify 
the genes they regulate  [  1,   4  ] . To date, various 
miRNA target prediction programs have been 
developed  [  5  ] . However, the different target pre-
diction programs produce rather different lists of 
predicted targets and all have a high false-positive 
rate  [  1,   2,   5,   6  ] . Therefore, we must spend sub-
stantial time and effort choosing targets from 
these predicted lists for experimental validation. 
High-throughput sequencing of Ago-immuno-
precipitated RNAs after crosslinking (CLIP-Seq, 
HITS-CLIP, PAR-CLIP) and mRNA degradome 
(Degradome-Seq) now provide powerful ways to 
identify biologically relevant miRNA-target 
interactions  [  7–  11  ] . The application of the 
CLIP-Seq and Degradome-Seq methods has 
signi fi cantly reduced the rate of false-positive 
predictions of miRNA binding sites  [  7–  11  ] . 

 Numerous candidate miRNA targets have 
been generated by the above-mentioned compu-
tational algorithms and high-throughput experi-
mental methods, but choosing the biologically 
signi fi cant targets from these candidate miRNA 
targets is daunting  [  1,   4  ] . Many studies have 
shown that miRNAs act as critical regulators of 

genes that function at different steps in complex 
biological pathways  [  1,   4,   5  ] . Therefore, enrich-
ment analyses of candidate target genes in Gene 
Ontology (GO) categories and biological path-
ways can be useful methods to identify targets 
that have important biological functions. 

 To identify biological miRNA-target interac-
tions and miRNA regulatory networks, our star-
Base platform  [  12  ]  integrated all published 
CLIP-Seq (PAR-CLIP, HITS-CLIP) data from 
various tissues or cell lines to identify miRNA 
targets. Multiple web-based computational tools 
were developed to explore these data and perform 
enrichment analyses of target genes in GO and 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG) data. In addition, we explore combina-
torial effects between Ago protein and other 
RBPs that might affect the ef fi ciency of 
microRNA-mediated regulation. starBase pro-
vides a variety of interfaces and graphical visual-
izations to facilitate analysis of the massive and 
heterogeneous CLIP-Seq, Degradome-Seq data, 
miRNA targets and regulatory networks in nor-
mal and cancer cells (Fig.  13.1 ).   

    13.2   Materials 

    13.2.1   Data Sources 

 All known miRNAs were downloaded from miR-
Base  [  13  ] . Known non-coding RNA and protein-
coding genes were downloaded from Ensembl 
 [  14  ]  or UCSC  [  15  ] . miRNA targets predicted by 
 fi ve programs (TargetScan  [  16,   17  ] , PicTar  [  18  ] , 
miRanda  [  19  ] , PITA  [  20  ]  and RNA22  [  21  ] ) were 
downloaded from their corresponding websites. 

miRNA-target regulatory relationships, and reveal multi-dimensional 
post-transcriptional regulatory networks involving miRNAs and RBPs. 
starBase is available at   http://starbase.sysu.edu.cn/    .  

  Keywords 
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Experimentally validated miRNA target sites 
were downloaded from the miRecords database 
 [  22  ] . CLIP-Seq data and Degradome-Seq data 
were downloaded from NCBI GEO database  [  23  ]  
or obtained from the supplementary material of 
the original articles  [  7–  11,   24–  26  ] .  

    13.2.2   Gene Ontology and Pathways 

 GO ontology data  [  27  ]  for the NCBI RefSeq genes 
were downloaded from the NCBI ftp site (  ftp://ftp.
ncbi.nih.gov/gene/DATA/    ), the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways  [  28  ]  
were downloaded from the KEGG database (  http://
www.genome.jp/kegg/    ), and the BioCarta pathways 

were downloaded from the CGAP ftp site (  ftp://
ftp1.nci.nih.gov/pub/CGAP    ). For the network or 
pathway analysis, we imported the above informa-
tion into our starBase database. Enrichment analy-
sis for the GO, KEGG and BioCarta pathways 
in the dataset was determined using a hypergeo-
metric test and Bonferroni correction  [  29  ] . A cutoff 
of 0.1 on the Bonferroni-corrected P value was 
applied.   

    13.3   Methods and Applications 

 The methods presented in this chapter describe 
how to discover Ago binding and cleavage 
sites, miRNA-target regulatory relationships, 

RISC Proteins
Ago, TNRC6...

Argonaute Binding Sites

MiRNAs, protein genes,
Gene Ontologies, KEGG 
and Biocarta pathways

CLIP-Seq data(HITS-CLIP,
PAR-CLIP,iCLIP) from

different tissues/cell lines

miRNA regulatory networks
protein-RNA interactionsData Analysis

Programs

Degradome-Seq data from
diffeent tissues/cell lines

RBP Binding Sites

  Fig. 13.1    Basic framework for identifying Ago bind-
ing sites and miRNA functional networks from CLIP-
Seq and Degradome-Seq data. All results generated 
by this framework are displayed in the visual browser 
and web page. Web-based and stand-alone tools for 

data analysis are provided in the starBase platform. 
RISC is an abbreviation of RNA-Induced Silencing 
Complex. RBP is an abbreviation RNA-Binding 
Protein. RBSs is an abbreviation of RBP binding 
sites       
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miRNA functional networks and combinatorial 
effects between Ago and other RBPs from 
CLIP-Seq and Degradome-Seq data using the 
starBase web interfaces and tools. Further, we 
also describe how to run a comparative analy-
sis of these data using the deepView genome 
browser  [  30  ] . 

    13.3.1   Discovering Argonaute 
Binding Sites from 
CLIP-Seq Data 

 The high-throughput CLIP-Seq method pro-
vides a powerful way to identify the sites of 
Argonaute interaction. In this section, we 
summarize the features and work fl ow used to 
identify Argonaute binding sites from CLIP-
Seq data and describe how to identify/ fi lter 
PAR-CLIP clusters using our pro fi leMutations 
tools. 

    13.3.1.1   Work fl ow for Identifying 
Argonaute Binding Sites from 
CLIP-Seq and PAR-CLIP Data 

 The general computational work fl ow summary 
from a series of recent publications  [  7–  9,   31  ]  is as 
follows (Fig.  13.2a ): 
    1.    Use next-generation sequencing and data pro-

cessing. Remove 3 ¢  adapters or barcodes from 
raw sequencing data. Identical reads are col-
lapsed into unique reads. Users can remove 
adapters using our ClipRead program (  http://
deepbase.sysu.edu.cn/clipReadSearch.php    ), 
as described in our deepBase paper  [  30  ] .  

    2.    Map processed reads to the reference genome. 
According to different CLIP-Seq experimen-
tal methods, the user may select various ultra-
fast aligners. Previous studies often select 
aligners that only allow mismatches. However, 
recent studies found that the reverse tran-
scriptase used in CLIP frequently skips the 
cross-linked amino-acid-RNA adduct, resulting 

High-throughput CLIP-Seq,
PAR-CLIP, HITS-CLIP data

Remove 3′ adapters or
barcodes from raw
sequencing data

HITS-CLIP data

Mapping processing read
  to reference genome with

ultra-fasta aligners

Filter the mapped reads.
reads with multiple

matching positions in the
genome were discarded

PAR-CLIP data
Identify mutations (T->C)
in the resulting cDNA and

filter with number of
mutations and BC

Identify binding sites using 
normalization algorithm, 

Poisson model, CIMS and 
 filter with number of BC

Candidate CLIP-Seq
(PAR-CLIP, HITS-CLIP)

peak clusters 

>chr1_proFor186 chr1:36379560-36379600[+] 

Read number: 65 

Total T2C number: 49.000 

T2C number in summit: 17.000 

#Mapped Reads 

0000000*0080000270000000100100*0000000000
TCAAACTTGGTGGCATTAACAACATCCTAGTCCCACACCAG #name    #reads  #libraries  #length  #loci  #strand 
TCAAACTTGGTGGCATCAAC..................... Ago1sm260583 3 1 20 1 + 

TCAAACTTGGCGGCATTAACAACATCCT............. Ago1sm530123 1 1 28 1 + 

TCAAACTTGGCGGCATTAACAACATCCTAGTC......... Ago1sm120694 5 1 32 1 + 

TCAAACTCGGTGGCATTAACAACATCCTAGTC......... Ago1sm94069 11 1 32 1 + 

TCAAACTTGGTGGCATTAACAACATCCTAGTC......... Ago1sm27611 1 1 32 1 + 

TCAAACTTGGTGGCATCAACAACATCCT............. Ago1sm646350 2 1 28 1 + 

TCAAACTCGGTGGCATTAACAACATCCT............. Ago1sm340497 2 1 28 1 + 

TCAAACTTGGTGGCACTAACAACATCCTAGTC......... Ago1sm665777 2 1 32 1 + 

TCAAACTTGGTGGCATTAACAACATCCTTGTC......... Ago1sm505301 1 1 32 1 + 

TCAAACTTGGTGGCATCAACAACATCCTAGTC......... Ago1sm854141 2 1 32 1 + 

TCAAACTTGGTGGCATTAACAACATCCT............. Ago1sm208031 2 1 28 1 + 

.....CTTGGCGGCATTAACAACATCCTAG........... Ago1sm367465 2 1 25 1 + 

............GCATTAACAACATCCTAG........... Ago1sm17082 2 1 18 1 + 

.............CATTAACAACACCCTAGTCCCACACCAG Ago1sm934004 1 1 28 1 + 

.............CATTAACAACATCCTAGCCCCACACCA. Ago1sm660730 5 1 27 1 + 

.............CATTAACAACATCCTAGCCCCACACCAG Ago1sm191081 7 1 28 1 + 

.............CATTAACAACATCCTAG........... Ago1sm118775 7 1 17 1 + 

.............CATTAACAACATCCCAGTCCCACACC.. Ago1sm583226 1 1 26 1 + 

.............CATTAACAACATCCTAGCCCCACACC.. Ago1sm719654 4 1 26 1 + 

.............CAATAACAACATCCTAGTCCCACACC.. Ago1sm779500 2 1 26 1 + 

.............CATTAACAACATCCTAGTCCCAC..... Ago1sm14419 1 1 23 1 + 

..............ATTAACAACATCCTAGCCCCACACCA. Ago1sm758872 1 1 26 1 + 

#########

a b

  Fig. 13.2    Identi fi cation of peak clusters from CLIP-Seq 
(HITS-CLIP, PAR-CLIP) data. ( a ) Work fl ow for identify-
ing Ago binding sites from CLIP-Seq and PAR-CLIP 
data. The work fl ow is divided into several main stages, 
including data processing, data mapping, data  fi ltering, 
and identi fi cation of mutations from PAR-CLIP data and 

binding sites from CLIP-Seq or HITS-CLIP data. ( b ) 
Candidate PAR-CLIP clusters predicted by the 
pro fi leMutations program. The page showing genomic 
position of cluster, read number, T → C number, mapped 
reads within the cluster and T → C number in each posi-
tion of the cluster       
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in a nucleotide deletion  [  31  ] . Thus, it is better 
to select an aligner that allows mismatches 
and indels, such as novoalign or BWA  [  32  ] .  

    3.    Filter the mapped reads. To avoid repeat asso-
ciated sequences, reads with multiple match-
ing positions in the genome are often discarded. 
To remove potential duplicates resulting from 
PCR ampli fi cations, all reads with identical 
sequences are treated as a single read  [  7  ] .  

    4.    Group overlapping reads into clusters to facil-
itate the analysis of large numbers of CLIP-
Seq reads.  

    5.    Filter candidate sites using mutation features 
and biological complexities (a measure of 
reproducibility between biologic replicates) 
 [  7  ] . (i) For PAR-CLIP, the actual crosslink sites 
often include transitions from thymidine to 
cytidine (T → C) in the resulting cDNA, the 
clusters therefore must include one or more 
(T → C) mutations  [  9  ] . (ii) For CLIP-Seq 
(HITS-CLIP), various methods have been used 
to identify binding sites of RBPs. Yeo et al. 
identi fi ed binding sites using a Poisson distri-
bution model and  fi ltered the candidates using 
biological complexity  [  8  ] . The Darnell lab 
identi fi ed binding sites by combining biologi-
cal complexity and a normalization algorithm 
called in silico random CLIP  [  7  ] . Recently, they 
found that cross-linking induced mutation sites 
(CIMS) can be used to identify high-con fi dence 
binding sites from HITS-CLIP data  [  31  ] .      

    13.3.1.2   Identify and Filter CLIP-Seq 
Clusters Using pro fi le
Mutations Tool 

 The methods mentioned above have been suggested 
for identifying Ago binding sites. However, there is 
no tool to analyze these CLIP-Seq data and identify 
clusters. Our pro fi leMutations tool was developed 
to  fi lter and identify PAR-CLIP clusters based on 
the number of PAR-CLIP reads and T → C muta-
tions. In this section, we describe how to  fi lter PAR-
CLIP clusters using our pro fi leMutations program, 
a new tool provided in the starBase platform  [  12  ] .
    1.    Genome preparation. The genome can be 

downloaded from public genome centers, such 
as the UCSC Bioinformatics web site.  

    2.    Mapping CLIP-Seq reads (the format of read 
is described in Readme  fi le of program) from 
one or multiple experiments to the genome 
using an aligner, such as Bowtie  [  33  ]  and 
BWA  [  32  ] . Alignment reads must be saved in 
Bowtie  [  33  ]  or SAM  [  34  ]  format.  

    3.    Search. Start pro fi leMutations with the fol-
lowing options: pro fi leMutations -m 3 -n 5 
genome.fasta alignments.bwt. The user can set 
the option to output different results. For exam-
ple, the option -m 3 -n 5 tells pro fi leMutations 
to output only the clusters with mutations 
(T → C)  ³ 3 and a number of reads  ³ 5. You can 
use option -h to view more options for 
pro fi leMutations. After a short time, the pro-
gram will return the results (Fig.  13.2b ).       

    13.3.2   Exploring miRNA-Target 
Regulatory Relationships 
from CLIP-Seq Data 

 To examine the relationship between Ago bind-
ing clusters and potential sites of miRNA action, 
animal miRNA target sites predicted by  fi ve 
prediction programs (TargetScan  [  16  ] , PicTar 
 [  18  ] , miRanda  [  19  ] , PITA  [  20  ]  and RNA22  [  21  ] ) 
were intersected with all CLIP-Seq clusters. 

    13.3.2.1   Evaluating Predicted miRNA 
Target Sites 

 The following steps describe how to use the star-
Base website to evaluate predicted miRNA target 
sites overlapping with CLIP-Seq data.
    1.    Click “miRNA-target->miRNA-target rela-

tionship” to open the miRNA-target interac-
tion page.  

    2.    Select the clade, genome, and database of 
interest. For example, choose “mammal-
>human->hg19”. If you want to search miRNA 
target genes of interest, you can enter the gene 
name in the text box.  

    3.    Because some miRNAs may not be expressed 
in the tissue/cell lines used for CLIP-Seq, you 
should select the miRNA read number to 
ensure they are expressed in the tissue/cell 
lines. For example, select read number >=100. 
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If you want to search all genes targeted by a 
miRNA of interest, you can select one miRNA 
in dropdown menu.  

    4.    Some CLIP-Seq clusters with small read num-
bers may simply represent experimental or 
biological noise. Therefore, we provide an 
option to allow users to  fi lter these target sites 
further by limiting the number of biological 
complexities, T → C changes or read numbers 
of CLIP-CLIP data.  

    5.    Finally, you can click “Search” to see a list of 
all miRNA-target interactions in the human 
genome. The miRNA name, the of fi cial gene 
name, the number of deep-sequencing reads, 
number of target sites and CLIP-Seq reads are 
indicated in a table. The user can click on the 
title of the table to sort miRNA-target interac-
tions according to various features, such as the 
number of reads, miRNA names, gene names 
and target sites.  

    6.    (a) Click on any non-zero number within the 
table to launch a detailed page providing fur-
ther information on that miRNA-target inter-
action. The detailed information for an 
interaction includes a description of the target 
gene, the CLIP-Seq cluster overlapping with 
target site, and the number of CLIP-Seq reads 
or the alignment between a miRNA and the 
target gene. (b) Click the target coordinates to 
view the genomic context of the target site in 
our deepView genome browser. (c) By click-
ing the CLIP-Seq cluster, the user can view 
the cluster location, number of library and 
T → C mutations, gene ontology categories 
and pathways of the target gene, and reads of 
clusters. The user can further  fi lter the candi-
date target sites using this information. See 
Fig.  13.3a  for a sample screenshot. (d) The 
“references” section enables the retrieval of 
the primary articles yielding the CLIP-Seq 
sequencing data or predicted miRNA targets. 
Click the article title link to visit the NCBI 
PUBMED website.      
 One target site predicted by multiple different 

programs could be viewed as high con fi dence 
candidate site. Thus, the user can search the inter-
sections of different programs by selecting 
“miRNA-target->target site intersection”. The 

above-mentioned work fl ow is also applicable for 
the “target site intersection” website. 

 Studies have revealed that miRNAs are often 
deregulated in cancer  [  2,   3  ] . We used the “miRNA-
target relationship” website to examine the known 
target genes of oncomiRs from human CLIP-Seq 
data. Our starBase platform identi fi ed 12 of 20 
known oncomiR target genes  [  35  ] , such as BCL2 
(miR-21,miR15/16)  [  36  ] , HMGA2 (let-7)  [  37  ]  and 
E2F1 (miR-17/20)  [  38  ]  (Fig.  13.3b ). The results 
demonstrate that even though the CLIP-Seq data 
used in this study are from a speci fi c cell type 
(HEK293 cell), the starBase platform can be used 
to identify most known targets of oncomiRs. Thus, 
as CLIP-Seq technology is applied to a broader set 
of cell lines, tissues and conditions, our starBase 
will continuously be updated to facilitate the com-
prehensive exploration of clinically relevant 
miRNA-target regulatory relationships.  

    13.3.2.2   Predicting miRNA Target Sites 
from CLIP-Seq Data 

 To identify target sites of novel small RNAs from 
CLIP-Seq data, the ClipSearch program  [  12  ]  was 
developed to search for 6-8-mers (8-mer, 7-mer-
m8 and 7-mer-A1) in CLIP-Seq data. This tool 
starts by scanning peak clusters overlapping the 
3 ¢ -UTR for potential miRNA targets (6mer-8mer) 
and then outputs the detailed information. In this 
section, we introduce how to use the ClipSearch 
program to predict target sites of small RNAs 
from CLIP-Seq data. 

 Click “targetTools->Animal Target” to open 
the ClipSearch page. The user is required to 
select an intended organism and then enter 
nucleotides 2–8 of a mature miRNA sequence. 
To reduce false positives in the predicted targets 
from the ClipSearch program, the user can  fi lter 
the candidate targets by selecting site types, 
which are classi fi ed into 8-mer, 7-mer-m8 and 
7-mer-A1; minimum number of CLIP-Seq 
reads; and biological complexity. Click “Search 
ClipSeq” to submit a task; a typical run may 
take several minutes to  fi nish. The output of the 
ClipSearch program includes site type, informa-
tion about the target gene and visual sequence 
alignments matched to a speci fi c CLIP-Seq 
cluster.   
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    13.3.3   Discovering Argonaute 
Cleavage Sites and miRNA-
Target Interactions from 
Degradome-Seq Data 

 In this section, we summarize the features and 
work fl ow used to identify Argonaute cleavage 
sites and miRNA-target interactions from 
Degradome-Seq data. 

    13.3.3.1   Work fl ow for Identifying 
Argonaute Cleavage Sites 
from Degradome-Seq Data 

 The general computational work fl ow summary 
from a series of recent publications  [  10–  12,   39  ]  is 
as follows:
    (a)    Deep sequencing data processing. As described 

in Sect.  13.3.1.1 , remove 3 ¢  adapters or barcodes 

from raw deep sequencing data. Identical reads 
are collapsed into unique reads.  

    (b)    Mapping processed reads to the reference 
genome and cDNA sequences. The user can 
select among various ultra-fast aligners, such 
as Bowtie  [  33  ]  and segemehl  [  40  ] . To avoid 
repeat-associated sequences, reads with >50 
hits in the genome were discarded.  

    (c)    Identifying cleavage sites from mapping 
reads in genomic or cDNA sequences. Reads 
with the same 5 ¢  start position were merged 
as one candidate cleavage site and their num-
ber were calculated as the abundance of each 
cleavage signature. If candidate cleavage site 
located within in the central region (10–11 nt 
region from 5 ¢ -end of miRNA) of an miRNA 
complementary site, it were taken as cleav-
age site of corresponding miRNA.      

peakCluster Information

Name chr11_fcluster5352

Locus chr11:69467991-69468108[+](deepView Browser)

library Number 5

Clip readNum 168

T2CNumber 176

Target gene Information

refSeq Name NM_053056

gene Name CCND1

gene Description cyclin D1

GO Description

biological_process cell division

cellular_component nucleus

biological_process cell cycle

BioCarta Pathway from NCI

h_RacCycDPathway Influence of Ras and Rho proteins on G1 to S Transition

h_btg2Pathway BTG family proteins and cell cycle regulation

h_carm-erPathway CARM1 and Regulation of the Estrogen Receptor

h_cellcyclePathway Cyclins and Cell Cycle Regulation

h_g1Pathway Cell Cycle: G1/S Check Point

h_gsk3Pathway Inactivation of Gsk3 by AKT causes accumulation of b-catenin in Alveolar Macrophages

h_p53Pathway p53 Signaling Pathway

h_wntPathway WNT Signaling Pathway

KEGG Pathway Description

hsa05223 Non-small cell lung cancer

Note! target site with blue background and white foreground

#CLIP-Seq Read Map

5'CAGCUCCAUUUUCUUAUUGCGCUGCUACCGUUGACUUCCAGGCACGGUUUGGAAAUAUUCACAUCGCUUCUGUGUAUCUCUUUCACAUUGUUUGCUGCUAUUGGAGGAUCAGUUUUUU3'
5'...........................................................................AUCUCUUUCACAUUGUCUGCUGCUAUU................3'
5'...........................................................................AUCUCUUUCACAUUGCUUGCUGCCA..................3'
5'...CUCCAUUUUCUUAUCGCGCUGCUACC.........................................................................................3'
5'..........................................................................UAUCUCUUUCACAUUGCUUGCUGCUAUU................3'
5'..........................................................................UAUCUCUUUCACAUUGUCUGCUGCUAUU................3'
5'..........................................................................UAUCUCUUUCACAUUGCUUGCUGCUAUUG...............3'
5'..........................................................................UAUCUCUUUCACAUUGUUUGCUGCUAUUG...............3'
5'..........................................................................UAUCUCUUUCACAUUGUUUGCUGCUAUU................3'
5'...........................................................................AUCUCUUUCACAUUGCUUGCUGCUAUU................3'
5'..........................................................................UAUCUCUUUCACAUUGUCUGCUGCUAUUG...............3'
5'...............................................................................CUUUCACAUCGUUCGCUGCUAU.................3'
5'...........................................................................AUCUCUUUCACAUUGUCUGCUGCA...................3'

Lung cancer

Breast cancer
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carcinoma
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myelocytic
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lymphocytic

leukemia
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multiple
myeloma
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  Fig. 13.3    miRNA target gene overlap with CLIP-Seq 
data. ( a ) Information for the candidate miRNA target 
gene. The page for a candidate miRNA target gene gener-
ated by starBase platform, showing peak cluster informa-
tion, target gene information that includes gene description, 
GO description, KEGG and Biocarta pathways, and CLIP-

Seq reads mapped to the potential peak cluster. ( b ) 
Regulatory relationships among some known oncomiRs, 
target genes and cancers in our starBase. The regulatory 
relationships were drawn using the Cytoscape program 
 [  53  ] .  Rectangles  represent miRNAs,  ellipses  represent tar-
get genes and hexagons represent cancers       
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    13.3.3.2   Evaluating Predicted miRNA 
Target Sites 

 The following steps describe how to use the 
starBase website to explore miRNA target sites 
overlapping with Degradome-Seq data.
    1.    Click “miRNA-target->Degradome-Seq” to 

open the page for predicted miRNA targets 
supported by Degradome data.  

    2.    As described in Sect.  13.3.2.1 , select the 
organism of interest. For example, choose the 
“plant->Arabidopsis->TAIR9”. The user can 
also limit the penalty score to reduce the 
number of false-positive predictions. Penalty 
scores were calculated according to the previ-
ously described methods  [  39,   41,   42  ] . In brief, 
mismatched pairs or indels (insert or delete) 
were scored as 1 and G:U pairs were scored as 
0.5  [  39,   41,   42  ] . Mismatched, indel and G:U 
pair scores were doubled if they were located 
within a region (positions 2–13 of miRNA-
target alignment) that is a core region with 
relatively few mismatches relative to other 
positions  [  39,   41,   42  ] .  

    3.    You may search all genes targeted by one 
miRNA of interest by selecting one miRNA in 
dropdown menu.  

    4.    Finally, you can click “Search” to see a list of 
all miRNA-target interactions in the Arabidopsis 
genome. The miRNA name, the of fi cial gene 
name, the penalty score (cleaveLand score) 
 [  39  ] , the abundance of each cleavage signature 
and genome coordinates are all indicated in a 
table. The user can click on the title of the table 
to sort miRNA-target interactions according to 
various features, such as cleaveLand score, 
miRNA names, gene names and the abundance 
of each cleavage signature.  

    5.    Click on the “Target gene” within the table to 
launch a detailed page providing further infor-
mation on that miRNA-target interaction. The 
detailed information for an interaction includes 
a description of the target gene, miRNA-
mRNA alignments and Degradome-Seq infor-
mation. See Fig.  13.4a  for a sample screenshot. 
The user can further  fi lter the candidate targets 
by the number of reads mapped to the cleav-
age site and the number of Degradome-Seq 
experiments including the cleavage site.       

    13.3.3.3   Predicting miRNA Target Sites 
from Degradome-Seq 

 To provide enhanced resolution and novel 
 fi ndings for miRNA target sites from Degradome-
Seq data, the DegradomeSearch web server  [  12  ]  
was developed to search miRNA-target interac-
tions in the large number of Degradome-Seq 
data of diverse tissues and cell lines. The 
DegradomeSearch web server aligns miRNAs to 
extended clusters using segemehl (version 0.093) 
 [  40  ] . The penalty score for interactions between a 
miRNA and the target were calculated as 
described in Sect.  13.3.1.1   [  39,   41,   42  ] . The user 
can follow these steps to make use of the 
Degradome-Seq web server:
    1.    Click “targetTools->Plant Target” to open the 

DegradomeSearch page. The user is required 
to select an intended plant organism and then 
enter a small RNA sequence.  

    2.    To reduce false positives in the predicted 
targets from the DegradomeSearch program, 
the user can  fi lter the candidate targets by 
selecting a cutoff penalty score (e.g. default 
is less than 4.5) and minimum number of 
cleavage tags.  

    3.    Click “Search DegradomeSeq” to submit the 
task; a typical run may take several minutes to 
 fi nish. The output of the Degradome program 
includes the penalty score, miRNA-mRNA 
alignments, the genome locus, a link to the 
deepView genome browser, sample informa-
tion and number of cleavage tags. See 
Fig.  13.4b  for a sample screenshot.       

    13.3.4   Predicting miRNA Functional 
Networks 

 CLIP-Seq and Degradome-Seq technologies have 
provided an elegant way to study biologically rel-
evant miRNA–target interactions at the transcrip-
tome-wide level. Thus, these miRNA targets 
overlapping with CLIP-Seq and Degradome-Seq 
data are expected to precisely de fi ne functional 
networks by combining the analysis of Gene 
Ontology (GO) and biological pathway. In the 
starBase platform, two novel computational tools, 
miRGO and miRPathway, were developed to 



25913 Discovery of microRNA Regulatory Networks by Integrating Multidimensional…

investigate the biological function of miRNAs 
that are expressed in tissues or cell lines for 
CLIP-Seq experiments. These two tools provide 
a comprehensive enrichment analysis of miRNA 
targets in >10,000 categories and biological path-
ways, including Gene Ontology terms and KEGG 
and Biocarta pathways, by using all genes that 
have at least one GO term as a background set. In 
addition, these two tools can also perform an 
enrichment analysis of genes targeted by multiple 
miRNAs and thus can be used for elucidating 
functional targets that are affected by multiple 
co-expressed miRNAs. 

 We used miRPathway to examine the path-
ways that contain the target genes of oncomiRs, 
such as miR-21, miR-17/20, miR-15/16. The set 
of genes regulated by these oncomiRs was 
enriched for proteins that have key roles in can-
cer biology. For example, miR-21, is involved in 
colorectal cancer, chronic myeloid leukemia 
and small cell lung cancer pathways; miR-15/16 
is involved in cell cycle, the p53 signaling path-
way, and pancreatic cancer; miR-17/20 is 
involved in pancreatic cancer and chronic myeloid 
leukemia. The above information shows that 

miR-15/16 and miR-17/20 may combinatorially 
regulate pancreatic cancer (Fig.  13.5 ). Moreover, 
we also applied the miRPathway tool to miRNA 
targets overlapping with HITS-CLIP data from 
the mouse brain. We found these targets to be 
most signi fi cantly enriched in the MAPK sig-
naling pathway, the neurotrophin signaling 
pathway and the axon guidance pathway 
(Fig.  13.6a ). Many miRNAs in these datasets 
also target genes that have key roles in the 
glioma pathway and other cancer-associated 
pathways (Fig.  13.6a ). Our results suggest that 
applying bioinformatics approaches to high-
throughput experimental datasets may help to 
precisely de fi ne miRNA function and pinpoint 
important target genes.   

 The following steps describe how to use the 
miRPathway website (this work fl ow is also appli-
cable for the miRGO tool) to predict miRNA 
functional networks.
    1.    Click “miRFunction->miRPathway” to open 

the “KEGG Analysis for miRNA target 
genes” page.  

    2.    As described in Sect.  13.3.2.1 , select the clade, 
genome, and database of interest.  

Target Gene Information

Name AT1G77850.1:ath-miR160a

Locus chr1:29274189-29274209[+]

mirName ath-miR160a

targetGene AT1G77850.1

targetGeneDescription AT1G77850.1 | Symbols: ARF17 | ARF17 (AUXIN RESPONSE FACTOR 17);
transcription factor | chr1:29272313-29275419 FORWARD

mRNA-miRNA Interaction Information

cleaveLand score 0.5

cleavage site
mRNA-miRNA interaction

*
5'-UGGCAUGCAGGGAGCCAGGCA-3'

||||||o||||||||||||||
3'-ACCGUAUGUCCCUCGGUCCGU-5'

Degradome-Seq Information

Sample sample Source rawRead category p-value

GSM278333 inflorescence whole 0 0 0

GSM278334 inflorescence whole 16 0 0.0000

GSM278335 inflorescence whole 445 0 0.0000

GSM278370 inflorescence whole 115 0 0.0000

TWF inflorescence whole 790 0 0.0000

Tx4F inflorescence whole 594 0 0.0000
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Candidate 1 Target-miRNA interaction

Penalty Score 0.5

interaction Map
*

target:5'-TGGCATGCAGGGAGCCAGGCA-3'
||||||.||||||||||||||

miRNA: 3'-ACCGTATGTCCCTCGGTCCGT-5'

genomeLocus chr1:29274189-29274209

deepView View region at deepView

Total Cleavage tag number: 1960

sampleName sampleSourceName Cleavage tags

GSM278333 inflorescence whole 0

GSM278334 inflorescence whole 16

GSM278335 inflorescence whole 445

GSM278370 inflorescence whole 115

TWF inflorescence whole 790

Tx4F inflorescence whole 594

Candidate 2 Target-miRNA interaction

Penalty Score 2

interaction Map
*

target:5'-AGGAATACAGGGAGCCAGGCA-3'
|| |||||||||||||||||

miRNA: 3'-ACCGTATGTCCCTCGGTCCGT-5'

genomeLocus chr2:12115741-12115761

deepView View region at deepView

Total Cleavage tag number: 882

a b

  Fig. 13.4    miRNA-target regulatory relationships over-
lapping with Degradome-Seq. ( a ) miRNA-target interac-
tion information in starBase. The page for an ath-miR160a 
target gene generated by starBase platform, showing 
target gene description, interaction between ath-miR160a 
and AT1G77850.1, and Degradome-Seq information. 

( b ) The output of the DegradomeSearch program. The 
information for each candidate includes the penalty score, 
duplex between miRNA and target gene, genomic locus of 
target gene, total cleavage tag number and sample 
information       
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    3.    You must select one or multiple miRNAs of inter-
est to perform an enrichment analyses for miRNA 
target genes. You should select the minimum read 
number that the miRNAs should have in the CLIP-
Seq experiment to be considered in your analysis.  

    4.    Some CLIP-Seq clusters with small read num-
bers may simply represent experimental or 
biological noises. Thus, target sites may be 
further limited by the read number in the 

CLIP-Seq experiment (e.g., T → C number or 
read number  ³ 3).  

    5.    You can select a P-value to set the signi fi cance 
threshold for the results. To balance sensitivity 
versus speci fi city, we considered several 
signi fi cance levels, including 0.1, 0.05, 0.01, 
0.005, and 0.001.  

    6.    Finally, you can click “Search” to see a list of 
all pathways for miRNA targets (Fig.  13.6b ). 
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  Fig. 13.5    Pancreatic cancer pathway targeted by miR-
15/16 and miR-17/20.  Yellow circles  represent miR-15/16 
targets and  blue circles  represent miR-17/20 targets. The 

Pancreatic cancer pathway shown is based on the KEGG 
pathway       
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  Fig. 13.6    Enrichment analysis of miRNA functional net-
works. ( a ) A heat map derived from KEGG-enrichment 
analysis of genes targeted by miRNAs with >=5,000 
reads. The tree shows the hierarchical clustering of miR-
NAs based on their involvement in KEGG pathways. All 
target genes are overlapping with HITS-CLIP (mouse 
brain) clusters with BC >=2 and >=5 reads. Bonferroni-
corrected P-value <0.05 was used to denote the signi fi cance 
of the enrichment in a pathway. We performed a 2-way 

hierarchical clustering with -log2(P-value) using the heat-
map.2 function with the Pearson correlation coef fi cient 
and average linkage clustering in the R package  [  54  ] . The 
 color key  in the heatmap represent the -log2(p-value). For 
miRNAs from the same family, only one was selected for 
the hierarchical clustering. ( b ) miRPathway output page. 
The page for enrichment analysis of mmu-miR-9, show-
ing KEGG IDs, KEGG terms, the Bonferroni-corrected 
P-values and target genes         
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In the output page, all pathways are sorted 
according to the P-value involved in each KEGG 
Pathway. The KEGG ID, KEGG term, P-value, 
corrected P-value, number of genes with the 
pathway term and gene names with the pathway 
term are indicated in a table. The targeted path-
ways of each miRNA are tagged with a P-value; 
the lower this value is, the higher the chance that 
the respective pathway is actually targeted by 
the respective miRNA. The user can click on the 
KEGG ID to link to the KEGG database to 
obtain more comprehensive information.      

    13.3.5   Exploring Combinatorial Effects 
Between Ago and Other RBPs 

 RNA-binding proteins (RBPs) and microRNAs 
(miRNAs) often stimulate and inhibit gene 
expression by binding to the 3 ¢ -UTR regions of 
target mRNAs  [  43,   44  ] . Their combinatorial 
effects are often linked to differentiation or onco-
genesis  [  43–  45  ] . Recent studies have shown that 
many RBPs can affect the ef fi ciency of miRNA 
regulation by controlling miRNA accessibility 
 [  45,   46  ] . In particular, recent studies have shown 

that the Pumilio protein is required for the regula-
tion of cel-let-7  [  46  ]  and hsa-miR-221/222. 
 To explore the possible relationships among bind-
ing sites of Ago and other RBPs, we intersected 
39,514 stringent Ago binding clusters (>=3 
T → C mutations and BC>=2) with other RBP 
clusters obtained from original papers 
(Table  13.1 ). We identi fi ed thousands of binding 
sites that bind both Ago and other RBPs, including 

   Table 13.1    The number of Ago binding clusters over-
lapped with other RBP binding clusters   

 RNA-binding protein 
 Overlapping 
number  References 

 PUM2  1313   [  9  ]  
 IGF2BP1  12802   [  9  ]  
 IGF2BP2  12709   [  9  ]  
 IGF2BP3  16212   [  9  ]  
 QKI  367   [  9  ]  
 HuR  3360   [  47  ]  
 PTB  550   [  48  ]  
 TDP-43  751   [  49  ]  
 FOX2  734   [  50  ]  

  Ago binding clusters were  fi ltered with the following 
parameters: at least 3 T → C mutations and conservation 
in >=2 biological complexities. References for RBP bind-
ing clusters are listed in the table  

KEGG
ID

KEGG
Term

Hypergeometric
P-value

Corrected
P-

value(BF)

Gene
Number

for
Term

Hit
Gene

Number
for

Term

Hit Gene Symbols

mmu04510
Focal
adhesion

3.613024e-07
5.925360e-

05
196 22

Shc2,Pdgfrb,Col4a2,Ccnd2,Itga6,Bcl2,Pten,Pak6,Ppp1cb,Pik3r3,Sos1,Itga1,
Tln1,Pik3r1,Col4a1,Itgb1,Gsk3b,Rap1b,Diap1,Vcl,Tnc,Pak2

mmu04722
Neurotrophin
signaling
pathway

1.539884e-05
2.525410e-

03 128 15 Shc2,Bcl2,Map3k3,Sort1,Psen1,Ptpn11,Pik3r3,Sos1,Pik3r1,Map3k1,Pdk1,
Gsk3b,Arhgdia,Rap1b,Ywhab

mmu04810
Regulation of
actin
cytoskeleton

1.611026e-05
2.642082e-

03
211 20

Arpc1a,Pdgfrb,Itga6,Pak6,Ppp1cb,Pik3r3,Sos1,Itga1,Pik3r1,Slc9a1,Itgb1,
Wasf2,Myh9,Iqgap1,Diap1,Arhgef12,Gng12,Fgf10,Vcl,Pak2

mmu05222 Small cell lung
cancer

3.858123e-04
6.327321e-

02
85 10 Col4a2,Itga6,Bcl2,Pten,Pik3r3,Pik3r1,Col4a1,Itgb1,Traf3,Ccne2

mmu05414
Dilated
cardiomyopathy

5.107815e-04
8.376817e-

02
88 10 Dag1,Itga1,Cacna2d1,Adcy5,Slc8a1,Itgb1,Lmna,Dmd,Itga6,Cacnb4

mmu05412

Arrhythmogenic
right ventricular
cardiomyopathy
(ARVC)

5.285682e-04
8.668518e-

02
73 9 Itga6,Dag1,Cacnb4,Itga1,Cacna2d1,Itgb1,Slc8a1,Dmd,Lmna

mmu05215 Prostate cancer 5.592315e-04
9.171397e-

02
89 10 Pdgfrb,Bcl2,Pten,Creb3l2,Pik3r3,Sos1,Pik3r1,Gsk3b,Ccne2,Foxo1

mmu-miR-9 target 638 genes that cover 164 KEGG terms.
mmu-miR-9 targets picked 638(3.207%) of all 19891 genes that having GO terms.

KEGG Analysis for miRNA target genes

b

Fig. 13.6 (continued)
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PUM2  [  9  ] , IGF2BP1  [  9  ] , IGF2BP2  [  9  ] , IGF2BP3 
 [  9  ] , QKI  [  9  ] , HuR  [  47  ] , PTB  [  48  ] , TDP-43  [  49  ] , 
FOX2  [  50  ]  (Table  13.1 ). Approximately 30% of 
Ago/TNRC6 binding clusters overlap with bind-
ing sites of the IGF2BP family. The majority of 
RBPs have >500 clusters that overlap with AGO 
clusters. These data show that miRNA binding 
sites can themselves be the target of multiple 
RBPs. Importantly, the above-mentioned Pumilio 
binding sites can also be found in our data 
(Fig.  13.7 ). Interestingly, we found that 
IGF2BP1-3 proteins also bind to target sites of 
miR-221/222, suggesting that combinatorial 
effects of Ago, Pum and IGF2BP proteins may 
control miR-221/222 accessibility (Fig.  13.7 ).   

 In starBase, we also provide protein-RNA 
interaction maps and a website to explore rela-
tionships between Ago and other RBPs. One can 

click “protein-RNA->AgoRBPs” to open the web 
page for the interplays between Ago and other 
RBPs. As described in the above-mentioned tuto-
rials, you can very easily access these data and 
select the Ago-RBP binding sites of interest.  

    13.3.6   Comparative Analysis of 
microRNA Targets Using the 
deepView Genome Browser 

 The large amount of candidate miRNA targets 
and high-throughput CLIP-Seq and Degradome-
Seq data has increased the demand for visual 
tools that allow rapid visual correlation of differ-
ent types of information. To enable the user to 
browse seamlessly along the genome and to zoom 
effortlessly in a very large set of CLIP-Seq and 

  Fig. 13.7    Combinatorial effects among Ago, Pum2 and 
IGF2BP. Pum2 binding cluster overlaps with the known 
miR-221/222 target site and IGFBP1-3 binding clusters. 
The binding maps of various RNA Binding Proteins 

(RBPs) and their combinatorial effects can be simultane-
ously and visually inspected in our deepView genome 
browser by selecting the RBP binding track of interest       
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Degradome-Seq data, the improved deepView 
genome browser was developed to provide an 
integrated view of mapped reads, predicted and 
known miRNA targets, ncRNAs, protein-coding 
genes, target clusters, target-peaks, target-plots 
and RBP binding clusters. See Fig.  13.8  for a 
sample screenshot for the output of the deepView 
browser. The user can zoom into a region of inter-
est and proceed to a detailed view of the track 
item within the browser by clicking on it. 
Moreover, the “zoom out” or “zoom in” button 
can be used to extend or shrink the width of the 
displayed coordinate range.  

 To determine miRNA target sites, the user 
can type the symbol or name of the target gene 

in the position text-box, and then click the 
“Go” button to change the deepView genome 
browser display image completely. In the 
image, the user can view the peak patterns gen-
erated from different CLIP-Seq and Degradome-
Seq experiments to determine the bona  fi de 
binding site or distinguish true miRNA cleav-
age sites from background noise. Moreover, 
the user can further  fi lter the candidate target 
site by considering only those site that were 
predicted by other programs as well. In addi-
tion, the user can click a check box to display 
the RBP binding track of interest and then 
determine whether this site can be regulated by 
other RBPs.   

  Fig. 13.8    The deepView browser page displaying the 
chr12:77417204–77417266 region in the human genome 
(UCSC hg19). The navigation buttons are visible at the 
 top  of the image. The deepView browser provides an inte-
grated view of mapped reads, predicted and known 

miRNA targets, ncRNAs, protein-coding genes, target 
clusters, target-peaks, target-plots and RBP binding clus-
ters. This page also displays combinatorial effects of Ago, 
Pum, HuR and IGF2BP proteins that may combinatorially 
control miRNA accessibility       
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    13.4   Conclusions 

 In this chapter, we have comprehensively explored 
how to analyze CLIP-Seq and Degradome-Seq data, 
miRNA regulatory networks, and interplay between 
Ago and other RBPs using our starBase platform. 
Unlike other databases or tools that predict miRNA 
regulatory networks using computationally predicted 
miRNA targets  [  51  ] , starBase provides enhanced 
resolution to determine miRNA functional networks 
based on miRNA-target interactions overlapping 
with high-throughput CLIP-Seq and Degradome-
Seq data. Moreover, the numerous combinatorial 
binding sites between Ago and other RBPs identi fi ed 
in this study have shown a complex post-transcrip-
tional operon system, in which RBPs and miRNAs 
coordinately regulate mRNA transcripts  [  52  ] . 

 The dataset and tools can be freely down-
loaded from starBase platform. The dataset can 
also be viewed, along with additional annotation 
information, with our deepView genome browser. 
These tools and diverse resources should serve as 
important materials for future studies to elucidate 
the miRNA regulatory networks and for investi-
gations into the biological functions of genes and 
ncRNAs whose expression is controlled by miR-
NAs and RBPs.      
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  Abstract 

 microRNAs (miRNAs) are small non-coding RNAs that cause mRNA 
degradation and translation inhibition. They are pivotal regulators of 
development and cellular homeostasis through their control of diverse 
processes. Recently, great efforts have been made to elucidate many tar-
gets that are affected by miRNAs, but the functions of most miRNAs and 
their precise regulatory mechanisms remain elusive. With more and more 
matched expression pro fi les of miRNAs and mRNAs having been made 
available, it is of great interest to utilize both expression pro fi les and 
sequence information to discover the functional regulatory networks of 
miRNAs and their target mRNAs for potential biological processes that 
they may participate in. In this chapter, we  fi rst brie fl y review the compu-
tational methods for discovering miRNA targets and miRNA-mRNA reg-
ulatory modules, and then focus on a method of identifying functional 
miRNA-mRNA regulatory modules by integrating multiple data sets from 
different sources.  

  Keywords

miRNAs  •  Functional miRNA-mRNA regulatory modules (FMRMs)  
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    14.1   Introduction 

 The genetic material of an organism, or genome 
 [  1  ] , plays a central role in encoding both the cel-
lular fabric and the regulatory machinery that 
controls cell homeostasis and internal functions, 
such as DNA replication and response to envi-
ronmental signals. While the genome is encoded 
by DNA, the complex biological processes 
derived from the genome involve a myriad of 
interacting and co-functioning RNA molecules 
and diverse proteins. These co-functioning 
groups of molecules, described as gene regula-
tory modules, are essential components in bio-
logical systems. In order to understand the 
composition of these modules and their roles in 
an organism, detailed investigation of gene struc-
tures, functions, and activities must be deter-
mined within individual cells and in various 
tissues throughout development. However, since 
gene structures and functions are relatively con-
stant from one cell to another or from one spe-
cies to another, it is the patterns of gene 
expression and its regulation or dysregulation 
that have the greatest consequence in normal 
biology and diseases. 

 While gene expression can be in fl uenced by 
many factors, post-transcriptional gene regula-
tion involving a type of small non-coding RNAs 
known as microRNAs (miRNAs) is particularly 
fascinating because of the breadth of their inter-
actions and synergistic/combinatorial relation-
ships to target genes. Increasing evidence 
suggests that miRNAs are pivotal regulators of 
development and cellular homeostasis through 
their control of diverse biological processes. 
miRNAs regulate target mRNAs causing mRNA 
degradation and translational inhibition to a 
large extend through the logic of complementary 
base pairing  [  2  ] , thereby making  fi ne-scale 
adjustments to protein outputs. Consequently, 
dysregulation of miRNAs may lead to human 
diseases. 

 Recent studies have reported differentially 
regulated miRNAs in diverse cancer types, such 
as breast cancer  [  3  ] , lung cancer  [  4  ] , prostate 
cancer  [  5  ] , colon cancer  [  6  ] , ovarian cancer 

 [  7  ]  and head and neck cancer  [  8  ] . Thus, identi-
fying miRNAs, their target mRNAs, and building 
their regulatory networks are critical for under-
standing normal biological processes and their 
roles in the development of diseases. Here, we 
de fi ne the functional miRNA-mRNA regula-
tory modules (FMRMs) as groups of interac-
tional miRNAs and mRNAs which are believed 
to participate in speci fi c biological processes. 
The identi fi cation of FMRMs will potentially 
make signi fi cant contribution to the development 
of gene-based therapeutic treatments and miRNA 
based drugs  [  9  ] . 

 In recent years, a large number of studies 
have been conducted to analyze miRNA-mRNA 
interactions in cell culture and animal models 
using both low throughput and high throughput 
techniques. These endeavours have led to an 
increase in the amount of miRNA and mRNA 
data at both expression and sequence levels. 
While some validated miRNAs and their target 
genes have been collected in databases, such as 
TarBase  [  10  ]  and miRecords  [  11  ] , these contain 
only a fraction of the diversity and abundance of 
potential miRNA regulatory in fl uences. Indeed, 
it is impractical to explore empirically all 
the possibilities in this combinatorial matrix. 
As such, a complete understanding of miRNA 
functions and their precise regulatory mechanisms 
remains elusive. 

 High-throughput technologies, such as 
microarray, mass spectrometry, and especially 
the newly developed next generation sequenc-
ing, have provided tremendous potential for 
pro fi ling RNAs and proteins at several levels 
with unprecedented resolution, depth, and speed. 
These features of the new technologies present 
major bioinformatics challenges, particularly 
for discovering and modelling the regulatory 
mechanisms of molecules involved in speci fi c 
biological functions by integrating heteroge-
neous data. 

 In this chapter, we  fi rst brie fl y review the 
computational methods for discovering miRNA 
targets and miRNA-mRNA regulatory modules, 
and then focus on a method of identifying 
FMRMs by integrating multiple data sets from 
different sources.  
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    14.2   Computational Methods 
for miRNA Discovery 

 Computational approaches provide ef fi cient ways 
to identify putative miRNA targets as well as their 
regulatory mechanisms. They facilitate experimen-
tal validation by producing statistically signi fi cant 
hypotheses from biological measurements. We 
propose the following categories of computational 
approaches for miRNA research: (i) miRNA target 
prediction  [  12–  15  ] , that is, to identify the targeted 
mRNAs of miRNAs based on intrinsic sequence 
homology and conservation; (ii) discovering miRNA 
regulatory modules (MRMs), that is, to identify a 
group of co-expressed miRNAs and mRNAs, 
either at sequence level  [  16  ] , or by integrating 
sequence and expression pro fi les of miRNAs and 
mRNAs  [  17–  20  ] ; and (iii) prediction of functional 
miRNA regulatory modules (FMRMs), which are 
regulatory networks of miRNAs and their target 
miRNAs for speci fi c biological processes  [  21–  23  ] . 

    14.2.1   Predicting miRNA Targets 

 Like most other non-protein-coding RNAs, 
miRNAs target mRNAs through complementary 
base pairing, in either complete or incomplete 
fashion. The preliminary task of understanding 
the regulatory mechanisms of miRNAs is to iden-
tify miRNAs and their target mRNAs in different 
species. Therefore, previous work largely focuses 
on the genome-wide discovery of miRNAs  [  12  ]  
and the prediction of putative target mRNAs  [  24  ]  
at the sequence level. 

 It has been generally believed that miRNAs 
bind to the 3 ′  untranslated regions (3 ′ UTRs) of 
the target transcripts in at least one of two classes 
of binding patterns  [  25  ] . One class of target 
sites have perfect Watson-Crick complementar-
ity to bases 2–7 at the 5 ′  end of miRNAs, referred 
to as the ‘seed region’. The ‘seed region’ has 
been shown to be suf fi cient for miRNAs to sup-
press their targets without requiring signi fi cant 
further base pairings at the 3 ′  end of the miRNA. 
The second class of target sites has imperfect 
complementary base pairing at the 5 ′  end of the 

miRNA, but it is compensated via additional base 
pairings in the 3 ′  end of the miRNA. However, 
the 3 ′ UTR boundaries of many mRNAs are not 
clearly de fi ned in many species and it is still a 
undergoing project to characterize the location, 
extent, or splice variation of 3 ′ UTRs in a variety 
of species  [  26  ] . In addition, it has been demon-
strated that a transcript can contain multiple 
target sites for a single miRNA and a transcript 
can have target sites for several different miRNAs. 
The multiple-to-multiple relations between miR-
NAs and mRNAs lead to further complexity in 
miRNA regulatory mechanisms. 

 Recognition of miRNA binding sites on the 
basis of sequence alone is unreliable, because 
many potential sites are non-functional, perhaps 
due to incorporation into RNA secondary struc-
ture or occlusion by RNA binding proteins. 
Various web-based algorithms, such as miRanda 
 [  27  ] , Pictar  [  28  ] , RNA22  [  29  ] , and TargetScan 
 [  30  ] , have been developed to predict miRNA 
targets, using various “rules” of base pairing, 
target accessibility, and evolutionary conserva-
tion of target site. However, they produce widely 
different lists of predictions and all suffer from 
high false positive and false negative rates  [  31  ] . 
Most algorithms apply a cross-species conservation 
requirement to reduce the number of false positives 
although this does increase the number of false 
negatives because not all miRNA targets are 
conserved  [  32  ] . Furthermore, in a study that used 
mass spectrometry to measure the global impact 
of deletion of a single microRNA, hundreds of 
proteins were found to respond, but the best 
performing target prediction algorithms, Target-
Scan  [  30  ]  and PicTar  [  28  ] , which restrict their 
predictions primarily to conserved sites in 3 ′ UTRs, 
were reported to nevertheless have false positive 
rates of about 67%  [  33  ] . 

 Another assessment was conducted by Alexiou 
et al.  [  34  ]  who compared the performance for 
eight widely used target prediction programs, 
including EIMMo  [  35  ] , miRanda  [  27  ] , miRBase 
 [  15  ] , PicTar  [  28  ] , PITA  [  36  ] , RNA22  [  29  ] , and 
TargetScan 5.0  [  30  ] , for the human and mouse 
genome, using experimentally validated targets 
in Selbach et al.  [  37  ] . They found those programs 
have a precision of ~50% with a sensitivity that 
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ranges from 6 to 12%. Overall, the complex 
features of miRNA pose great challenges on the 
computational approaches for miRNA target 
prediction.  

    14.2.2   Discovering miRNA Regulatory 
Modules 

 Despite the signi fi cant increase in the number of 
both experimentally validated and computation-
ally predicated miRNA targets, the majority of 
the miRNA targets and their responses to the 
miRNAs remain largely unknown. Thus, great 
interests have been moved to discover functions 
of miRNAs by identifying miRNA-mRNA regu-
latory modules (MRMs). 

 At the sequence level, Yoon and De Micheli 
 [  16  ]  proposed a prediction method for MRMs. 
In their method, miRNA-mRNA regulatory rela-
tionships are  fi rst modelled as a weighted bipartite 
graph based on sequence binding information. 
With the bipartite graph, nodes represent miRNAs 
and mRNAs, edges stand for weights corre-
sponding to the miRNA-mRNA binding strength. 
Candidate MRMs are de fi ned as bicliques in which 
all the edges have similar weights. Therefore, a 
graph mining method is proposed to discover 
such bicliques in the given bipartite graphs. This 
is the  fi rst method that explicitly searches for the 
multiple to multiple relationships among miRNAs 
and their target genes. However, predictions based 
on sequence only may not be suf fi cient to deter-
mine the complex interactions of miRNA-mRNA 
pairs. The modules identi fi ed at sequence level 
do not necessarily function at biological levels. 

 In order to minimize false positive and to 
effectively detect MRMs, recently developed meth-
ods have integrated the analysis of expression 
pro fi les of miRNAs and mRNAs in conjunction 
with the predicted miRNA targets. Most of the 
integrative methods of MRM discovery are based 
on the assumption that miRNA negatively regulate 
their target mRNAs to the effect that an inverse 
relationship should exist between the expression 
a speci fi c miRNA and its targets. 

 Huang et al.  [  17,   38  ]  applied Bayesian network 
parameter learning to infer miRNA-mRNA 

interactions using both miRNA-mRNA sequence 
binding information and expression pro fi les of 
miRNAs and mRNAs. An initial network repre-
senting the putative target relationships between 
miRNAs and mRNAs are  fi rst constructed accord-
ing to the target information predicted from 
sequence binding. Then inverse patterns of expres-
sion values between miRNAs and mRNAs are 
encoded in this network where the changes of 
mRNA expression follow a Gaussian distribution, 
and they are a summation of negatively weighted 
changes of the expression of their regulator miR-
NAs. The Gaussian Bayesian network parameter 
learning is used to infer the probabilities of 
miRNAs relating to their target mRNAs at the 
expression level. This method explicitly encodes 
the inverse expression patterns between miRNAs 
and their target mRNAs in the network. It re fl ects 
the  fi ndings of miRNA regulatory mechanisms in 
the early stage of miRNA research. Furthermore, 
this model searches co-expressed miRNAs and 
mRNAs which are presumed to function together. 
Thus, this model detects not only miRNA targets 
but also co-functional miRNAs and mRNAs in 
certain biological processes. 

 Joung et al.  [  18  ]  improved Yoon’s method in 
 [  16  ]  by integrating sequence and expression 
pro fi les of miRNAs and mRNAs to discover 
MRMs. They proposed a population-based prob-
abilistic learning model to identify synergistic 
miRNAs involved in the regulation of their targets. 
More speci fi cally, this method employs a genetic 
algorithm to search for a subset of miRNAs and 
mRNAs with a best  fi tness score. The  fi tness 
score is a balanced aggregation of the binding 
strengths of miRNAs and their targets at the 
sequence level, the expression coherence score of 
miRNA in the miRNA subsets, and the expres-
sion coherence score of mRNA in the selected 
mRNA subsets. 

 Tran et al.  [  19  ]  proposed a rule based method 
for identifying MRMs. This method is based on 
an assumption that genes regulated by the same 
miRNAs show similar expression pro fi les. This 
method  fi rst utilizes the putative targets of 
miRNAs predicated by PicTar to construct the 
miRNA-mRNA relationships at the sequence 
level. Then, the method calculates the Pearson’s 
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Correlations of miRNAs using their pair-wise 
expression values. The correlation calculation 
is also applied to mRNAs. A correlation table 
denoting similar or dissimilar miRNAs and their 
targets is constructed for each miRNA constrained 
by the miRNA and mRNA target relationships 
predicted at the sequence level. Finally, the 
CN2-SD rule induction method  [  39  ]  is applied to 
search for groups of miRNAs and mRNAs that 
have similar expression patterns. 

 Peng et al.  [  20  ]  used simultaneously pro fi led 
expression of cellular miRNAs and mRNAs to 
construct a miRNA-mRNA regulatory network. 
This network comprises of two disjoint sets of 
miRNAs and mRNAs. A connection is made 
between a pair of miRNA and predicted target 
mRNA if there is a signi fi cant inverse correlation 
between their expression pro fi les. A network 
structure, named biclique where every miRNA 
is connected to every mRNA in the given set 
of miRNAs and mRNAs, is considered to be a 
candidate regulatory module. The statistical 
signi fi cance of all bicliques is systematically 
assessed through a permutation test in the given 
network, and the statistically signi fi cant bicliques 
are the  fi nal MRMs. 

 Recently, Bonnet et al.  [  40  ]  proposed to com-
bine several techniques to discover MRMs using 
expression pro fi les of miRNAs and mRNAs only. 
Their method involves two steps. In the  fi rst step, 
multiple clusters of co-expressed genes are 
identi fi ed. A Gibbs sampling approach is used 
for a two-way clustering of both genes and condi-
tions in order to avoid the local optima. In the 
second step, a set of regulator genes are identi fi ed 
for each cluster using a fuzzy decision tree model. 
In the decision trees, each node de fi nes a split 
between two sets of conditions. The major regu-
lators are assigned to those genes with the most 
signi fi cant counts in the multiple clusters esti-
mated by a probabilistic model. This method, 
however, considers the expression pro fi les of 
miRNAs and mRNAs as a single data matrix, 
thus ignores the nature of their differences. 

 The above methods aim at exploring general 
miRNA-mRNA regulatory modules by integrating 
expression information of miRNAs and mRNAs 
with or without considering sequence information. 

They have archived variant successes on different 
trail data sets. However, they identify groups of 
co-expressed miRNAs and mRNAs without con-
sidering the biological conditions of the samples. 
Therefore, no information regarding the functions 
of MRMs can be identi fi ed by the afore-described 
methods directly. Thus, the functions of MRMs 
usually are unclear until a functional enrichment 
analysis is conducted by querying the identi fi ed 
target genes against the Gene Ontology (GO) or 
other similar annotation databases  [  16,   19  ] . Those 
biological conditions are very important in bio-
logical experimental design, and hence, some 
conditionally related MRMs may be missed out 
if we do not take into account the conditions. This 
question, however, is of great interests in under-
standing the biological pathways of MRMs.  

    14.2.3   Inferring Functional miRNA 
Regulatory Modules 

 In order to resolve some of the limitations of 
MRM outlined above, we proposed the concept 
of functional miRNA-mRNA regulatory modules 
(FMRMs)  [  21  ] . FMRMs explicitly indicate how 
groups of miRNAs regulate their target mRNAs 
and how they co-act together to form pathways in 
complex regulatory networks with signi fi cance 
for speci fi c conditions. 

 In this work, we proposed a putative miRNA 
regulatory network model based on a bipartite 
graph, where an unbiased connection is made 
between a speci fi c miRNA and its predicated tar-
get mRNAs independent of the inverse expres-
sion relationship assumption  [  21  ] . The FMRMs 
are de fi ned as a subset of the bipartite graph in 
which the expression pro fi les of both miRNAs 
and mRNAs are associated with speci fi c biologi-
cal conditions. In order to discover the FMRMs, 
 fi rstly, this method searches for a set of maximal 
bicliques in the given bipartite graphs de fi ned by 
the predicated target information. Then association 
rule mining is applied to the maximal bicliques 
but using the expression data to discover the 
association between speci fi c biological condi-
tions and the inverse expression pattern of miR-
NAs and mRNAs. The association relationships 
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among miRNAs, mRNAs, and conditions are 
merged to form the  fi nal FMRMs. This work is 
the  fi rst published work to explicitly discover 
FMRMs. 

 Joung and Fei  [  22  ]  proposed a probabilistic 
graphical model to identify FMRMs. It is a genera-
tive model directly adopted from the Author-Topic 
model  [  41  ]  used in information retrieval. It models 
the miRNA-mRNA regulatory mechanism as 
hierarchical steps in which the FMRMs are 
de fi ned as functional clusters of miRNAs with 
their target mRNAs involved in the same biologi-
cal processes. In this model, each mRNA has 
events of its expression in a speci fi c condition that 
is likely to be associated with the expression 
events of miRNAs. A hierarchical generative pro-
cess hypothesizes that a miRNAs is sampled from 
a multinomial distribution over FMRMs, and then 
the sampled miRNA is used to sample a mRNA 
which has a multinomial distribution over condi-
tions. An approximate method, Gibbs sampling, 
is used to infer the FMRMs because the exact 
inference of the model is intractable. This method 
integrates datasets from diverse sources including 
miRNA target information and expression 
pro fi les of mRNAs. The drawback of this method 
is that it does not use the expression pro fi les of 
miRNAs. Thus, the regulatory relationships of 
miRNAs and mRNAs largely rely on the miRNA 
target information predicated at the sequence 
level, instead of at the expression level. 

 We also targeted this problem and proposed a 
Bayesian network (BN) based method to discover 
FMRMs with complex miRNA-mRNA interac-
tions  [  23  ] . It is designed to explore all possible 
miRNA-mRNA interactions by integrating miRNA 
target information, expression pro fi les of miR-
NAs and mRNAs, and sample categories. In order 
to capture all possible interactions, it splits 
expression pro fi les of miRNAs and mRNAs 
according to sample categories, and then builds 
BNs on separate data sets. Interaction networks 
identi fi ed using individual data sets are then 
integrated by BN averaging procedure. To avoid 
statistically insigni fi cant results due to small data 
sets, it employs bootstrapping to achieve reliable 
inference and integration. 

 In order to capture the correspondence between 
miRNAs and mRNAs, we proposed another prob-
abilistic graphical model based on Correspondence 
Latent Dirichlet Allocation (Corr-LDA)  [  42  ]  to dis-
cover FMRMs  [  43  ] . This approach enables the 
integration of heterogeneous data sets, including 
expression pro fi les of miRNAs and mRNAs, with 
or without the prior target binding information. In 
this method, FMRMs are dependent groups of miR-
NAs and mRNAs linked by the assumption that 
they participate in the same latent functions. The 
following sections will focus on the details of this 
method and its application for inferring FMRMs.   

    14.3   Data and Problem De fi nition 

 A large amount of data for miRNAs and mRNAs 
at both sequence and expression levels has been 
accumulated and pending for analysis. On one 
hand, miRNA target prediction programs usually 
produce hundreds to thousands of putative targets 
for each miRNA according to the base pairing at 
the sequence level. Among them, some have 
been validated by biological experiments, but 
the majority of targets remain uncertain. The pre-
dicted miRNA target information usually is 
organized as a table where each row indicates a 
target pair of a miRNA and mRNA. Various other 
information may also be available in the row such 
as the binding strength between the miRNA and 
its target mRNA. It provides a potential relation-
ship between miRNAs and mRNAs. On the other 
hand, microarray experiments have been able to 
pro fi le not only mRNAs but also miRNAs at the 
expression level. The expression pro fi les of miR-
NAs and mRNAs are usually organized as two 
dimensional tables as well where columns stand 
for samples and rows denote miRNAs/mRNAs. 
Each cell of the expression table is the expression 
value of the speci fi c miRNA/mRNA in a sample. 
Each sample may belong to different categories, 
such as cancers or normal tissues. It is of great 
interest to integrate the miRNA putative target 
information, paired expression pro fi les of miRNAs 
and mRNAs, and the sample information to 
investigate the miRNA regulatory mechanisms, 
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that is, to understand how miRNAs regulate their 
target mRNAs and identify groups of miRNAs 
and their target mRNAs that contribute to speci fi c 
biological processes. 

 The following section will introduce the tech-
niques of integrating these heterogeneous data 
to discover FMRMs with Corr-LDA, and also 
demonstrate how to interpret the results in terms 
of biological perspective.  

    14.4   Inferring FMRMs with Corr-LDA 

 Given the expression pro fi les of miRNAs and 
mRNAs for matched samples and putative target 
information linking miRNA and mRNA, we assume 
that there are functional modules (FMRMs) govern-
ing miRNA and mRNA expression under the pre-
vailing biological conditions. We model FMRMs 
with latent random variables which act as a bridge 
between miRNAs and mRNAs. By inferring the 
latent variables, we can identify FMRMs. 

    14.4.1   Modelling FMRMs 

 Speci fi cally, we model FMRMs with a probabilistic 
generative process. Given the  K  latent functions 
presented in the samples, our method considers 
miRNAs and mRNAs as observations generated 
from a probabilistic process over these  K  functions. 

Thus, each sample is a random mixture of miRNAs 
and mRNAs associated with  K  functional 
modules. By inferring the probability distribu-
tions of the latent variables, we are able to obtain 
the probabilities of how samples, miRNAs, and 
mRNAs are related to functional modules. 

 We depict the model in Fig.  14.1  with a plate 
notation. In this notation, nodes stand for random 
variables (observed variables are shaded and 
latent ones are unshaded); edges denote condi-
tional dependency between random variables; 
and plates denote replications of a substructure 
with the number of repetitions given in the bottom 
corner (either right or left side).  

 In Fig.  14.1 , the  D  samples were pro fi led 
with a set of miRNAs  V  and a set of mRNAs 
 T . Random variable     ,d nr   and     ,d mg   denote the 
indexes of a miRNA and mRNA expressed in 
the  d -th sample, respectively,where 
    { } { } { }1, , , 1, , , 1, ,d dd D n N m MÎ ¼ Î ¼ Î ¼   .     dN    
and     

dM    are the total numbers of times the miR-
NAs and mRNAs which are expressed in the  d -th 
sample. Random variable     ,d nz    stands for the 
latent functional module associating with the  n -th 
miRNA in the  d -th sample. We assume that     ,d nz   , 
    ,d nr   , and     ,d mg    all have multinomial distributions 
with parameters     dθ   ,     kϕ   , and     kω   , respectively. 
Each parameter has a Dirichlet prior with hyper-
parameters   a  ,   b  , and   g  , correspondingly. 

 Without considering the putative target con-
straints, the generative procedure for each sample 

  Fig. 14.1    Generative model of FMRM discovery. This model 
is illustrated with a plate notation (details in context). 
Given expression data of miRNAs and mRNAs of  D  samples, 

each sample  d  is a mixture of random miRNAs and mRNAs. 
Each miRNA     ,d nr   and mRNA     ,d mg   are generated from 
one of the  K  latent functional modules, indexed by     ,d nz          
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 d  can be illustrated by the following hierarchical 
sampling process: to generate the  d -th sample, (i) 
a latent module     ,d nz    is drawn from its multino-
mial distribution     dθ   ; (ii) then, a miRNA     ,d nr   is 
drawn from its multinomial distribution     kϕ   , given 
the selected module     ,d nz   ; (iii) for each mRNA 
    ,d mg   , one of the miRNAs, indexed by     

,d my   , is 
selected from     { },d d nR r=    and a corresponding 
mRNA     ,d mg   is drawn from its multinomial distri-
bution     kω   , conditional upon the same module 
that generates the selected miRNA     ,d nr   . 

 When the constraint of the putative target 
relationship between miRNAs and mRNAs is 
preferred, for each mRNA, one of the miRNAs 
from the set of hosting miRNAs of that mRNAs 
is selected, and a corresponding mRNA is drawn 
from the multinomial distribution of mRNAs, 
conditional upon the same module that generates 
the selected miRNA. 

 The generative procedure without putative tar-
get constraint for each sample  d  is illustrated by 
the following sampling process:
    1.    Choose     | ~ ( )d Dirθ α α     
    2.    Choose     | ~ ( )k Dirϕ β β     
    3.    Choose     | ~ ( )k Dirω γ γ     
    4.    For each     ,d nr    , n      {1, , }dNÎ ¼   :

   (a)    Choose module     , | ~ ( )d n d dz Multθ θ     
   (b)    Choose a     { }

,, , 1:| , ~ ( )
d nd n d n K zr z Multϕ ϕ         

    5.    For each     , , {1, , }d m dg m MÎ    :
   (a)    Choose miRNA index y

d,m 
| N ~ Unif 

    {1, , } dN     
   (b)    Choose     { }

,
, , 1:| , , ~ ( )

yd m
d m d m K zg y z Multω ω            

 From the above generative process, we see that 
the parameter     { }θ= d   associates samples with 
modules,     { }ϕ= k   assigns the probability of miR-
NAs expressed in module     ,{ }d nZ z=   , and     { }ω= k

  indicates the probability of mRNAs expressed in 
    Z   corresponding to the miRNAs. Therefore, by 
estimating     Q   ,     F   , and     p   , we can identify 
FMRMs (details in Sects   . 3.3, 3.4 and 3.5). 

 Under this model, miRNAs can associate with 
any modules, but mRNAs may only associate 
with the modules that produce the miRNAs. 
In effect, this model captures the hierarchical 
notion that miRNAs are generated under speci fi c 
FMRMs, and mRNAs are regulated by the 
miRNAs.  

    14.4.2   Data Conversion 

 In order to apply the above model to the expression 
pro fi les of miRNAs and mRNAs, we convert the 
expression values to the counts of the expression events 
of miRNAs and mRNAs present in the samples. 

 Given a microarray experiment pro fi led     D¢
  samples, similar to Joung and Fei  [  22  ] , we con-
sidered that miRNAs and mRNAs have events of 
their expression in every sample that are likely to 
be associated with functional modules. Therefore, 
each miRNA or mRNA can be represented as a 
vector of variables,     1 2 1{ , , , , }D Ds s s s+ - + -

-   . It corre-
sponds to the expression events of a miRNA or 
mRNA in all samples, where duplex     { }2 1 2,d ds s+ -

-

  indicates an over- and under- expressed miRNA 
or mRNA of sample     d   ,      , 1, ¢Î d D   , thus, 
    2 ¢=D D   . To get the integer counts     ( )2 1, , 2 ,,d i d iσ σ-

  for the duplex expression status, we convert the 
expression value of a miRNA or mRNA of sam-
ple  d  with,

        (14.1)  

where,     ,d ie   is the expression value of a miRNA or 
mRNA in the  d -th sample,     ε   is a scaling constant, 
and     dmed   denotes the expression median of all 
miRNAs or mRNAs in the  d -th sample. 

 Then, the counts of miRNAs and mRNAs are 
replaced by the indexes from the set of miRNAs, 
 V  and the set of mRNAs,  T . The indexes, there-
fore, are the random variables     ,d nr   and     ,d mg   used 
in the model (Fig.  14.1 ).  

    14.4.3   Estimating Model Parameters 

 The exact inference for the parameters of this 
model is intractable, we used the collapsed Gibbs 
sampling method  [  44  ]  to estimate the parameters. 

 This method iteratively generates samples that 
converge to draws from a target distribution of 
random variables     Z   through integrating out the 
parameters     Θ   ,     Φ   , and     W   for each sampling. For 
the  d -th sample and the  n -th miRNA, the sam-
pling is expressed as a conditional probability:

, ,
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0, · ,
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σ σ
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-
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where     ,d nz   is the current module assignment of 
the  n -th miRNA of the  d -th sample.     ( , )d nZ-   is the 
current module assignment of all miRNAs in all 
samples excluding that of the  n -th miRNA of  d -th 
sample.     ( )

, ( , )
k

d d nn -   is the number of times that the  k -
th FMRM has been observed with miRNAs 
across samples excluding that of the  n -th miRNA 
of the  d -th sample.     ( )

, ( , )
v

k d nn -   is the number of times 
that miRNA     v   is assigned to the  k -th FMRM 
excluding that of the  n -th miRNA of  d -th sample. 
    ( )

, ( , )
t

k d nm -   is the number of times that mRNA  t  is 
assigned to the  k -th FMRM excluding the current 
assignment. 

 After suf fi cient sampling, the distribution of 
    ,d nz   converges to the target distribution of     Z  , then 
we estimate the parameters     Q   ,     F   , and     W   based 
on the values of the module assignments pro-
duced from the sampling:

        (14.3)  
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, ( )P
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   (14.4)  

        
(14.5)

    

    14.4.4   Algorithm of Estimating Model 
Parameters 

 Unlike the preceding sampling procedure, here 
    ( )k

dn   ,     ( )v
kn   , and     ( )t

km   are calculated from the assign-
ment results for all data without excluding the 
current module. Using Eqs. ( 14.2 ), ( 14.3 ), ( 14.4 ), 

and ( 14.5 ), the Gibbs sampling procedure can be 
designed. The algorithm includes three stages: 
initialization, sampling, and reading out of para-
meters. 

  Algorithm: Gibbs Sampling for FMRM Discovery    

   *Initialization 
 Assign zeros to all count variables,     ( )k

dn   ,     dn   ,     
( )v
kn

  ,     kn   ,     
( )t
km   ,     km    

 foreach     { }1, ,d DÎ ¼   do 
  foreach miRNA     ,d nr   ,     { }1, , dn NÎ ¼   do 
   sample FMRM index     , ~ (1 / )d nz k Mult K=    
    increment sample-FMRM count:     ( ) 1k

dn +    
    increment sample-FMRM sum:     1dn +    
    increment FMRM-miRNA count:     ( ) 1v

kn +    
    increment FMRM-miRNA sum:     1kn +    
  end for 
  foreach mRNA     ,d mg

      [1, ]dm MÎ   do 
    sample index for FMRM index y

d,m
= x~  

    { }1, , dUniform N    
    assign the FMRM     ,, d md yk z=

  to mRNA     ,d mg
   

    increment FMRM-mRNA count:     
( ) 1t
km +    

    increment FMRM-mRNA sum:     1km +    
  end for 
  *Gibbs sampling over burn-in period and 
sampling period  
 while not converge or not reach iteration limit do 
   foreach     { }1, ,d DÎ    do 
    for each miRNA     ,d nr   ,     { }1, , dn NÎ    do 
       * for the current assignment  k  to a 

miRNA term  v  indexed by miRNA     ,d nr   : 
decrement counts and sums:     ( ) 1k

dn -   , 
    1dn -   ,     ( ) 1v

kn -   ,     1kn -    
       * sample index y

d,m
= x~Uniform {1, …M

d
} 

for mRNA     
,, d nd xg    ,  which correspond-

ing to miRNA     ,d nr    
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       * for the current assignment of  k  to a 
term  t  for mRNA     

,, d nd xg   : decrement 
counts and sums:     ( ) 1t

km -    ,      1km -    
       * multinomial sampling according to 

Eq. ( 14.2 ), sample topic index     ˆ ~k p

( ), ( , )| , , ,d n d n d d dz Z Y R G-    
       * use the new assignment of     ,

ˆ
d nz k=   to 

the miRNA term  v  for miRNA     ,d nr   and 
increment counts and sum:     

ˆ( ) 1k
dn +   , 

    1dn +   ,     ( )
ˆ 1v

k
n +   ,     ˆ 1

k
n +    

       * use the new assignment of     ,
ˆ

d nz k=   to 
the term  t  for mRNA     

,, d nd xg   and incre-
ment counts and sum:     ( )

ˆ 1t

k
m +   ,     ˆ 1

k
m +    

    end for 
   end for 
  *Check convergence and read   out parameters  
    If converged and     L   sampling iterations since 

last read out then 
     read out parameter set     Q   ,     F   , and     W

  according to Eqs. ( 14.3 ), ( 14.4 ), and ( 14.5 ) 
   end if 
  end while   

    14.4.5   Assigning Biological Conditions 
to Modules 

 The parameters inferred from this model provide 
insights into the data sets at several levels.     Q
  clusters samples into modules that should relate 
to the biological conditions of the experiments. 

 We conceive a statistical model to identify the 
connection between biological conditions and 
modules. Let     C   be the number of biological con-
ditions of the     D   samples in the data set, and     ic
  be the number of samples belonging to condition 
    i   , where     1

C
i ic D=S =   . For each module, assume 

there are     x   samples among the     n   highest probabil-
ity samples that belong to the same condition     i   . 
The random variable     x    follows a hypergeomet-
ric distribution with parameters     D  ,     ic   , and     n  , 
denoted as 

        (14.6)   

 We assign biological condition     i   to module     k    
when     x   is at a statistically signi fi cant level, for 
example,  p -value     0.05<   .  

    14.4.6   Identifying miRNAs and mRNAs 
for Modules 

 The parameters     F   and     W   indicate the probabilities 
of each miRNA and mRNA participating in a 
FMRM. For a  K -FMRMs involving  P  miRNAs, 
    F   is a     K P´   probability matrix where the  element 
    ,k vϕ   indicates the likelihood that miRNA  v  
belongs to the  k -th FMRM. Similarly,     W   is a 
    K Q´   probability matrix where the element     ,k tω
  indicates the belief of mRNA  t  participating in 
the  k -th FMRM, and  Q  is the number of mRNAs 
under investigation. 

 For each FMRM, we consider the top ranked 
miRNAs and mRNAs with the highest probabili-
ties to be the participants of the FMRM.   

    14.5   Reconstructing miRNA-mRNA 
Target Relationships 

 We query a miRNA target database to reconstruct 
the target relationship of the miRNAs and mRNAs 
in each module. Hypothesis tests are conducted 
on the identi fi ed miRNAs and mRNAs to evalu-
ate whether they are likely to have been identi fi ed 
by chance or not. 

    14.5.1   Functional and Pathway 
Analysis of FMRMs 

 Function and pathway analysis of the identi fi ed 
FMRMs is conducted by reviewing literature and 
querying the Ingenuity Pathway Analysis (IPA, 
  www.ingenuity.com    ) database of functional bio-
logical pathways to identify the signi fi cantly 
enriched functions and pathways.   

    14.6   Experimental Validation 

 To validate this method, we apply it to a mouse 
mammary data set for breast cancer research. 
In this section, we  fi rst brie fl y introduce the original 
data set and how we prepare it for our experiment, 
and then we focus on presenting the analysis and 
results of applying our model to the data. 

( )( ) ~ ; , ,ip x hypergeometric x D c n

http://www.ingenuity.com
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    14.6.1   Materials and Experiments 
Data Sets 

 The data set were pro fi led with 46 samples 
derived from 9 classes of mouse models, repre-
senting one normal type and two breast cancer 
subtypes: basal and luminal. The expression data 
were screened with 1,336 probes of miRNAs 
(corresponding to 334 unique miRNAs) and 
22,626 probes of mRNAs. For each type of the 
conditions, 3–7 samples were pro fi led with miR-
NAs and mRNAs. The sample name and their 
corresponding mouse model class and tumor sub-
types are listed in Table  14.1 .  

 The mRNA expression data were pro fi led with 
mouse genome 430A 2.0 GeneChip (Affymetrix) 
and scanned on Affymetrix GeneChip scanner 
3,000. The microRNA microarray chip (LMT_
miRNA_v2 microarray) was designed using the 
Sanger miR9.0 database (  http://microrna.sanger.
ac.uk    ) and manufactured by Agilent Technologies 
as custom-synthesized 8 × 15 k microarrays. The 
array contains 1,667 unique mature miRNA 
sequences across all species, among them, 334 
unique miRNAs were for mouse. Each mature 
miRNA is represented by + and – (reverse com-
plement) strand sequences, and each with four 
replicate probes.  

    14.6.2   miRNA Expression Data 
Normalization 

 The gProcessSignal values of probes designed for 
mouse miRNAs were feature extracted using the 
GE2 protocol (  www.agilent.com    ) with exclusion of 
internal control probes, non-mouse probes, and all 
negative strand probes. A global median normaliza-
tion procedure was applied to the gProcessSignal 
values of the selected probes across all arrays.  

    14.6.3   mRNA Expression Data 
Normalization 

 mRNA array data were normalized using 
GC-RMA of Partek Genomic Suite (  www.partek.
com    ). The normalized data were further  fi ltered 

using MAS5 detection calls for probes designated 
as “P” (present) or “M” (Marginal) in less than 
3 samples of all data population. 

 In order to compare with the target prediction, 
the expression data sets of miRNAs and mRNAs 
were further  fi ltered with MicroCosm Targets 
V5.0  [  15  ] , and only those in MicroCosm were 
maintained for analysis. Consequently, 1,112 
probes of miRNAs and 19,223 probes of mRNAs 
were used in our experiment.  

    14.6.4   Implementation 

 Given the above expression data of miRNAs and 
mRNAs, the input data for our model include a 
1,112 × 46 matrix of miRNA expression values and 
a 19,223 × 46 matrix of mRNA expression values.
In the following discussion, we do not consider 
the putative target information to avoid the bias 
probably incurred by the prior prediction  [  45  ] . 

 In the experiment, the constant   e   for converting 
the expression values was 30. After the data con-
version, the number of samples  D  is 92. We set the 
number of FMRMs,  K , to 20. This value is deter-
mined by the number of sample types. Our data 
sets were pro fi led with nine classes of mouse 
models. miRNAs and mRNAs could be over- or 
under- expressed in the samples so the number of 
sample types is 18. In addition, two extra types 
were added to allow the redundancy as our model 
could discover subtypes of classes. We set the 
hyperparameters   a  ,   b  , and   g    to ten. The number of 
iterations of Gibbs sampling is 2,500. These value 
settings are based on empirical experiments.  

    14.6.5   Associating FMRMs with 
Biological Conditions 

 The parameter     Q   obtained with our method is a 
92 × 20 probability matrix. Referring to Sect. 3.3, 
the element     ,d kθ   of     Q   is the belief of sample  d  
belonging to module  k . We extracted the top 5% 
(5) ranked samples with highest probabilities in 
each module, and assigned the biological condi-
tions to each module as discussed in Sect. 3.5. 
Figure  14.2  illustrates the probability map for the 

http://microrna.sanger.ac.uk
http://microrna.sanger.ac.uk
http://www.agilent.com
http://www.partek.com
http://www.partek.com


278 B. Liu et al.

   Table 14.1    Sample information   

 Sample name  Mouse model  Model class  Tumor subtype 

  X503_BT   Brca1−/− p53 503 BT  BRCA-p53  Basal 
  X4176_BT   Brca1−/− p53 4176 BT  BRCA-p53  Basal 
  X627_BT   Brca1−/− p53 T627 BT  BRCA-p53  Basal 
  X572_BT   Brca1−/− p53 572 BT  BRCA-p53  Basal 
  X53447_BT   Brca1−/−p53447BT  BRCA-p53  Basal 
  C3Tag_2   C3TAg 2  C3TAg  Basal 
  C3Tag_4   C3TAg 4  C3TAg  Basal 
  C3Tag_5   C3TAg 5  C3TAg  Basal 
  C3Tag_7   C3TAg 7  C3TAg  Basal 
  C3Tag_8   C3TAg 8  C3TAg  Basal 
  P53_1570   p53−/− 1570R_PN1b  p53  Basal 
  P53_2979   p53−/− 2979R_PN1b  p53  Basal 
  P53_5354   p53−/− 5354L_PN10  p53  Basal 
  P53_5809   p53−/− 5809R_PN2(254c)  p53  Basal 
  P53_5817   p53−/− 5817_PN2(254c)  p53  Basal 
  P53_5851   p53−/− 5851L_PN2(254c)  p53  Basal 
  P53_8546   p53−/− 8546R_PN1b  p53  Basal 
  Cmyc_043508   C-Myc Tumor 043508  C-Myc  Luminal 
  Cmyc_04004022   C-Myc Tumor 04004022  C-Myc  Luminal 
  Cmyc_04005648   C-Myc Tumor 04005648  C-Myc  Luminal 
  Cmyc_04004021   C-Myc Tumor 04004021  C-Myc  Luminal 
  H2N_Founder_A   MMTV-H2N Founder A  H2N  Luminal 
  H2N_53   MMTV-H2N 53  H2N  Luminal 
  H2N_1   MMTV-H2N 1  H2N  Luminal 
  H2N_61   MMTV-H2N 61  H2N  Luminal 
  H2N_64   MMTV-H2N 64  H2N  Luminal 
  Hras_1.4   MMTV-Haras An #1-4  Hras  Luminal 
  Hras_3.4   MMTV-Haras An #3-4  Hras  Luminal 
  Hras_5.4   MMTV-Haras An #5-4  Hras  Luminal 
  Hras_4.4   MMTV-Haras An #4-4  Hras  Luminal 
  Hras_2.4   MMTV-Haras An #2-4  Hras  Luminal 
  PyMT_436   PyMT 436  MMTV-PyMT  Luminal 
  PyMT_437   PyMT 437  MMTV-PyMT  Luminal 
  MMTV.11567   MMTV-PymT #11567  MMTV-PyMT  Luminal 
  MMTV.11568   MMTV-PymT #11568  MMTV-PyMT  Luminal 
  MMTV.11570   MMTV-PymT #11570  MMTV-PyMT  Luminal 
  MMTV.5.1   MMTV-PymT #5-1  MMTV-PyMT  Luminal 
  Wnt_4675   MMTV-Wnt 4675  MMTV-Wnt  Luminal 
  Wnt_4676   MMTV-Wnt 4676  MMTV-Wnt  Luminal 
  Wnt_4635   MMTV-Wnt 4635  MMTV-Wnt  Luminal 
  Wnt_4677   MMTV-Wnt 4677  MMTV-Wnt  Luminal 
  FVB_M1_2   FVB pregnant M2-1  NormalMammary  Normal 
  FVB_M1_4   FVB pregnant M4-1  NormalMammary  Normal 
  FVB_M1_1   FVB pregnant M1-1  NormalMammary  Normal 
  FVB_M1_3   FVB pregnant M3-1  NormalMammary  Normal 
  FVB_M1_5   FVB pregnant M5-1  NormalMammary  Normal 



27914 Discovering    Functional microRNA-mRNA Regulatory Modules in Heterogeneous Data

  Fig. 14.2    Assigning biological conditions to FMRMs. 
The y-axis on the  right side  of the  fi gure denotes names, 
mouse model types, and breast cancer subtypes in three 
columns. Using the parameter  Q , the likelihood that a 
particular sample is associated with a speci fi c module, 
the top 5% of samples associated with each module is 
displayed using  grey  scale to represent the probability 

that sample is associated with each module. Some 
 samples are signi fi cantly associated with more than one 
module. Some modules, such as module-11, have only 
rather low probability of association with samples, and so 
have nearly  white shading  even for their top  fi ve samples. 
Clustering of certain sample types with modules is 
 highlighted        
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5 highest probability samples (the top 5% of the 
92 total samples) within each module. It shows 
that samples of similar nature tend to cluster 
together into common modules.  

 In order to assign biological conditions to 
modules at the statistically signi fi cant level, we 
conceived a statistical model to map modules to 
biological conditions by using the mouse model 
classes instead of tumor types directly 
(Table  14.2 ). From Tables  14.2  and  14.7  modules 
have been mapped to speci fi c mouse model 
classes at a signi fi cant level (p-value <0.05). 
These mouse models can be further mapped to 
two human breast tumor subtypes  [  46–  48  ] , sug-
gesting that the identi fi ed modules are associated 
with those biological conditions. Other modules 
are clustered by samples with mixed biological 
conditions, suggesting that they may participate 
in several cellular processes.  

 Furthermore, the top 5% (56) ranked probes of 
miRNA and the top 0.1% (192) ranked probes of 
mRNA with the highest probabilities in each 
module were also extracted from the inferred 
parameters     F   and     W   . They are assigned to the 
same biological conditions according to the 
modules they belong to, respectively.  

    14.6.6   Target Reconstruction 

 To reconstruct target relationships between miR-
NAs and mRNAs, we used MicroCosm Targets 
(  http://www.ebi.ac.uk/enright-srv/microcosm/
htdocs/targets/v5/    ) to link miRNAs and mRNAs 
identi fi ed in each FMRM. The numbers of linked 
miRNAs and mRNAs are given in Table  14.3 .  

 To investigate whether the miRNAs and 
mRNAs in each module were identi fi ed by 

   Table 14.2    Assigning biological conditions to FMRMs   

 FMRM#      ic         x     Mouse model class  Tumor subtype      p  -Value 

 3  10  3  C3TAg  Basal  0.0081 
 4   8  3  MMTV_Wnt  Luminal  0.004 
 5  10  3  Hras  Luminal  0.0081 
 6  14  3  p53  Basal  0.0222 
 11  10  3  C3TAg  Basal  0.0081 
 13  14  3  p53  Basal  0.0222 
 19  10  3  BRCA_p53  Basal  0.0081 

  According to Eq. ( 14.6 ), biological conditions are assigned to FMRMs based on a hypergeometric distribution 
 The signi fi cant results are given in this table. The size of the population is 92, the number of each draw is 5% of the 
population, i.e. 5.     ic   is the number of samples belonging to each condition, which include both over- and under expressed 
status.     x   is the observed number of samples with the assigned biological condition in each draw. FMRM# is the module 
number corresponding to the number in Fig.  14.2   

   Table 14.3    Numbers of miRNA-mRNA pairs identi fi ed in FMRMs   

 FMRM#  Model class  Subtype  miRNAs#  mRNAs#  Target pairs#  p -Value 

 3  C3Tag  Basal  33  190  273  1.70E-07 
 4  MMTV_Wnt  Luminal  18  190  147  3.23E-08 
 5  Hras  Luminal  16  191  144  2.98E-07 
 6  p53  Basal  16  189  146  1.48E-06 
 11  C3TAg  Basal  17  190  122  1.13E-11 
 13  p53  Basal  18  186  136  1.29E-10 
 19  BRCA_p53  Basal  18  188  133  2.71E-12 

  The miRNAs and mRNAs identi fi ed in each module are linked by MicroCosm 
 Compared with the number of pairs linked by MicroCosm given the same number of randomly chosen miRNAs and 
mRNAs, the miRNAs and mRNAs identi fi ed in each module are not identi fi ed by chance  

http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/
http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/
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chance, we randomly selected a group of miRNAs 
and a group of mRNAs from MicroCosm with 
the same numbers as those in the identi fi ed 
modules, and queried how many pairs that can 
be linked by MicroCosm. The distribution of 
the number of matched pairs was estimated by a 
simulation which was executed 10,000 times. 
Illustrated in Fig.  14.3 , the estimated distribu-
tion shows that the numbers of target rela-
tionships of the randomly chosen miRNAs and 
mRNAs are signi fi cantly different from those 
of the identi fi ed miRNAs and mRNAs in each 
module (      p-value <0.05). It indicates that the 
miRNAs and mRNAs in each module are not 
identi fi ed by chance.   

    14.6.7   Functional Validation of miRNAs 

 To further validate that the identi fi ed miRNAs are 
relevant to cancers, we investigated the implica-
tions of miRNAs for cancers through literature 
review. We built a benchmark based on the cur-
rent knowledge and compared it with the miR-
NAs identi fi ed in the modules. 

 From the literature  [  49  ] , 42 miRNAs have 
been validated to have implications for cancers. 
We identi fi ed a signi fi cant number of miRNAs 
covered by the benchmark shown in Table  14.4 . 
The comparison shows that the miRNAs identi fi ed 
by our method are largely consistent with the 
 current knowledge of miRNAs for cancers.  

  Fig. 14.3    Comparison of the numbers of miRNA-mRNA 
pairs in the identi fi ed modules with the ones from the ran-
dom matching. The distribution of the number of matched 
target pairs is estimated by simulation which was executed 
for 10,000 times. It indicates that the miRNAs and mRNAs 

identi fi ed in each module are not identi fi ed by chance. 
(The numbers here are for probes, not like those in 
Table  14.3  have been mapped to the unique names of 
miRNAs and mRNAs)       

 



282 B. Liu et al.

 It is worth noting that several miRNAs, such 
as the let-7 family and miR-21, are identi fi ed in 
multiple modules, suggesting they could be 
involved in multiple biological processes. The 
frequent occurrence of these particular miRNAs 
is consistent with their known strong association 
with multiple cancer types, including breast can-
cers. The identi fi cation of multiple modules con-
taining different but overlapping sets of miRNAs 
is likely to be the consequence of activation of 
distinct subsets of common gene interaction net-
works in speci fi c cancer subtypes. For example, 
Blenkiron et al.  [  46  ]  identi fi ed 31 miRNAs dif-
ferentially expressed between basal and luminal 
tumors. Among them, let-7a, b, and f are under-
expressed in basal tumors but over-expressed in 
luminal tumors. These miRNAs were identi fi ed 
in module 3, 4, 5, and 6 using our method and 
show patterns that are consistent with their 
reported involvement in these tumors.  

    14.6.8   Functional Validation of miRNA 
Target Genes 

 It is expected that the miRNA target genes are 
also relevant to the speci fi c biological processes. 

To verify that the identi fi ed mRNAs are relevant 
to basal and luminal tumors,  fi rstly we compared 
the identi fi ed mRNAs with a work conducted by 
Adelaide et al.  [  50  ] . Their results suggest the 
existence of potential oncogenes and tumor sup-
pressor genes differentially associated with the 
basal and luminal subtype. As their results are 
largely consistent with many previous reports 
 [  51–  53  ] , we validate our analysis based on their 
results. 

 In our results, 18 genes have been identi fi ed 
by Adelaide et al.  [  50  ]  as in Table  14.5 . Among 
these genes, Ccdc77 identi fi ed in FMRM-3 also 
is targeted by miR-29a and miR-221, Hspa14 
identi fi ed in FMRM-4 is targeted by miR-21, and 
Cox4i1 identi fi ed in FMRM-19 is targeted by let-
7c and let-7e. It further con fi rms that let-7e, miR-
21, miR-29a, and miR-221 may have important 
regulatory functions towards basal and luminal 
tumors. In addition, Rbm4b identi fi ed in FMRM-3 
is targeted by miR-697 and miR-700, Rbx1 
identi fi ed in FMRM-5 is targeted by miR-709, 
Gspt1 identi fi ed in FMRM-11 is targeted by miR-
669c and miR-710, and Cox4i1 identi fi ed in 
FMRM-19 is targeted by miR-709. It suggests 
that miR-669c, miR-697, miR-709, and miR-710 
may also play important roles in regulating basal 

   Table 14.4    Validation of identi fi ed miRNAs in the FMRMs   

 FMRM#  Supported miRNAs 
 Supported 
miRNA # 

 Identi fi ed 
miRNA # 

 Coverage 
(%)   p -Value 

 3   let-7a, let-7b, let-7c, let-7d,   let-7e, let-7f, 
miR-221,miR-29a  

 8  33  24.24  0.0264 

 4   let-7a, let-7b, let-7c, let-7d,   let-7e, let-7f, 
let-7g, let-7i,   miR-21, miR-221  

 10  18  55.56  6.68E−06 

 5   let-7b, let-7c, let-7d, let-7i,   miR-200b, 
miR-200c, miR-29a, miR-29b,   miR-30c  

 9  17  52.94  3.56E−05 

 6   let-7a, let-7b, let-7c, let-7d,   let-7i, miR-103, 
miR-21, miR-221  

 8  16  50.00  1.76E−04 

 15   let-7a, let-7c, let-7d, let-7f,   let-7g, miR-141, 
miR-19b, miR-21,   miR-200a, miR-200b  

 9  17  52.94  3.56E−05 

 19   let-7a, let-7b, let-7c, let-7d,   let-7e, let-7f, 
miR-143, miR-145,   miR-21, miR-29a, miR-29b  

 11  18  61.11  5.45E−07 

  The comparison shows that signi fi cant numbers of miRNAs identi fi ed in the FMRMs are relevant to cancers 
 From the literature, 42 miRNAs have been validated as either oncogenes or tumor suppressors. Among the 334 miRNAs 
under investigation, a signi fi cant number of miRNAs in identi fi ed modules are supported by the current knowledge. The 
coverage is the percentage of the number of miRNAs in each module supported by literature. p-value is calculated by a 
hypergeometric probability density function at each of the numbers of miRNAs supported by the literature, using the 
corresponding size of the total miRNAs under investigation (334), numbers of miRNAs in each module, and numbers 
of miRNAs identi fi ed from the literature (42)  [  49  ] . The modules with signi fi cant supports are given in this table  
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and luminal tumors. It is worth noting that many 
previously reported results were not recovered in 
the current study because the investigated data 
were pro fi led with mouse model while the results 
of Adelaide et al.  [  50  ]  were produced on breast 
cancer samples of humans.  

 Furthermore, we queried the mRNAs identi fi ed 
in each module against the Ingenuity Pathway 
Analysis (IPA) Database. We speci fi cally focused 
on human species as we are interested in the 
networks of human cancers. The networks par-
ticipated by the mRNAs identi fi ed in FMRMs 
are highly associated with cancers. Many genes 
are directly related to cancers and genetic dis-
orders. They are co-targeted by a group of miR-
NAs identi fi ed from our method, suggesting 
the identi fi ed miRNAs and their target mRNAs 
have implications for cancers. For example, a 
network involving the miRNAs and mRNAs 
identi fi ed by our method is associated with can-
cer, cellular compromise, DNA replication, and 
repair (Fig.  14.4 ). The networks that are explicitly 

associated with cancers and within the top  fi ve 
networks of each module are given in Table  14.6 . 
The detailed networks are also given in Figs.  14.5 , 
 14.6 ,  14.7  and  14.8 . The identi fi ed genes of 
FMRMs, which are relevant to cancers, are given 
in Table  14.7 . The results indicate that our meth-
ods effectively identi fi ed many cancer related 
genes. Those genes are targeted by a group of 
miRNAs, suggesting those miRNAs also partici-
pate in the networks of cancers.          

    14.7   Discussion and Conclusion 

 miRNAs have been regarded as one of the most 
important gene regulators. Identifying their func-
tions and regulatory mechanisms is critical in 
understanding biological processes of organisms. 
Great efforts, in both biological experiments 
and computational methods, have been made to 
illustrate their functions. However, the precise 
regulatory functions of most miRNAs remain elusive 
due to the complexity of the regulatory mechanisms. 

 In this chapter, we  fi rst reviewed the computa-
tional methods for miRNA function discovery 
brie fl y. We proposed three categories for miRNA 
research: miRNA target prediction, discovering 
miRNA regulatory modules (MRMs), and pre-
diction of functional miRNA regulatory modules 
(FMRMs). Second, we demonstrated a method of 
discovering FMRMs. This method is inspired 
by the Corr-LDA, which has been used to extract 
the correspondence patterns from heterogeneous 
data. We modi fi ed Corr-LDA and derived the 
solution for FMRM discovery. 

 This method models FMRMs with a generative 
process. It makes use of the expression pro fi les 
of miRNAs and mRNAs, with or without using 
the target relationships between miRNAs and 
mRNAs based on the sequence binding informa-
tion. It simultaneously identi fi es groups of interac-
tive miRNAs and mRNAs, which are believed to 
participate in speci fi c biological functions. 

 We have applied this method to a mouse model 
data set for human breast cancer research. The 
method has effectively identi fi ed several modules 
related to breast cancer subtypes: basal and luminal. 
Since the data sets used were pro fi led from mouse 

   Table 14.5    Validation of identi fi ed mRNAs in the 
FMRMs   

 Gene  Expression  Associated type  Module 

 Cct3  Over  Basal  1 
 Upf2  Over  Basal  1 
 Eif4a1  Under  Luminal  2,18,20 
 Ccdc77  Over  Basal  3 
 Rbm4b  Over  Luminal  3 
 Hspa14  Over  Basal  4 
 Rbx1  Under  Luminal  5,18 
 Ppap2a  Under  Basal  7 
 Tpd52  Over  Luminal  8 
 Tulp3  Over  Basal  9 
 Gpm6a  Under  Basal  10 
 Gdap1  Over  Luminal  10 
 Gspt1  Over  Luminal  11 
 Rbx1  Over  Luminal  12 
 Npy1r  Under  Basal  16 
 Rpl13  Under  Luminal  18 
 Cox4i1  Under  Luminal  19 
 Arfgef1  Over  Luminal  20 

  Adelaide et al.  [  50  ]  suggest the existence of potential 
oncogenes and tumor suppressor genes differentially 
associated with the basal and luminal subtype 
 In our results, 18 genes identi fi ed in FMRMs are consis-
tent with their results  
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  Fig. 14.4    A network associated with cancer, cellular 
compromise, DNA replication, and repair. It is partici-
pated by a group of miRNAs and their target mRNAs 

identi fi ed by our method, suggesting these miRNAs and 
their target mRNAs have the function of cancers       

   Table 14.6    Associated network functions of FMRMs   

 FMRM#  Associated network function  Ref  fi gure  Score 

 3  Cancer, cellular compromise, DNA replication, and repair  Fig.  14.4   12 
 3  Gene expression, cancer, immunological disease  Fig.  14.5   12 
 4  Cellular growth and proliferation, cancer, dermatological diseases and conditions  Fig.  14.6   14 
 4  Cellular assembly and organization, cancer, cellular development  –  2 
 13  Cancer, cell cycle, DNA replication, recombination, and repair  Fig.  14.7   18 
 13  Cancer, cell morphology, cellular development  –  12 
 19  Cancer, cell-to-cell signalling and interaction, cellular function and maintenance  Fig.  14.8   2 
 19  Amino acid metabolism, cancer, cell morphology  –  2 

  The networks participated by the genes identi fi ed in FMRMs are highly related to cancers. 
 The networks associated with cancers that are explicitly within the top  fi ve networks of each module are listed. It is 
worth noting that many mouse genes have been  fi ltered out as we speci fi cally target human breast cancers  
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tissues, many genes have been  fi ltered out because 
we focus on human genes. Thus, previously 
reported results were not fully recovered in this 
work. However, a large proportion of miRNAs 
and mRNAs identi fi ed in the modules have been 
reported to have associations with basal and 
luminal subtypes. Many others have direct indi-
cations on cancers and genetic disorders. 
Furthermore, many novel associations among 
miRNAs, mRNAs, and biological processes have 
been predicted by our model. Several miRNAs 

and mRNAs are highly related to cancers as 
reported by previous works, suggesting those 
modules may have roles in the development 
 processes of cancers. 

 This model allows discovery of FMRMs 
with or without using the target relationship 
between miRNAs and mRNAs. Some research-
ers have suggested that algorithms that do not 
consider known targets may avoid biases  [  30,   45, 
  54  ] . Bonnet et al.  [  40  ]  also showed that expres-
sion pro fi les alone can be used to infer miRNA 

  Fig. 14.5    A network associated with gene expression, 
cancer, immunological disease. It is participated by a 
group of miRNAs and their target mRNAs identi fi ed in 

FMRM-3, suggesting these miRNAs and their target 
mRNAs have the function of cancers       
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regulatory networks. This method provides the 
 fl exibility of inferring FMRMs with or without 
target relationships of miRNAs and mRNAs. We 
have demonstrated this model without using the 
prior target prediction. The results suggest that 
expression pro fi les of miRNAs and mRNAs are 

crucial for both target identi fi cation and regula-
tory module discovery. 

 With more and more data available at differ-
ent levels, it is possible to integrate multiple data 
sets to explore functions of miRNAs. Current 
methods have been limited in identifying miRNA 

  Fig. 14.6    A network associated with of cellular growth 
and proliferation, cancer, dermatological diseases and 
conditions. It is participated by a group of miRNAs and 

their target mRNAs identi fi ed in FMRM-4, suggesting 
these miRNAs and their target mRNAs have the function 
of cancers       
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targets, MRMs, or FMRMs at miRNA-mRNA 
levels. Biological discovery has suggested that 
miRNA regulation can degrade mRNAs as well 
as inhibit protein translation. Although one third 
of mRNAs repressed in the translation process 
display detectable destabilization, more are 
repressed without detectable changes in mRNA 
levels  [  33  ] . The current computational methods 
have only analysed at the miRNA-mRNA level. 
The global impact on protein output remains to be 

examined. In the future, when matched data sets 
of miRNA, mRNA, and protein are available, we 
can involve protein in the above model by adding 
another layer of latent variable. By involving pro-
teins, it can potentially discover the miRNA regu-
latory pathway of miRNAs → mRNAs → proteins 
→ conditions.      

  Acknowledgement   We thank Dr Jeffrey E. Green and 
Dr. Min Zhu for providing the data sets.  

  Fig. 14.7    A network associated with cancer, cell cycle, 
DNA replication, recombination, and repair. It is partici-
pated by a group of miRNAs and their target mRNAs 

identi fi ed in FMRM-13, suggesting these miRNAs and 
their target mRNAs have the function of cancer       
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  Fig. 14.8    A network associated with cancer, cell-to-cell 
signaling and interaction, cellular function and mainte-
nance. It is participated by a group of miRNAs and their 

target mRNAs identi fi ed FMRM-19, suggesting these 
miRNAs and their target mRNAs have the function of 
cancers       

   Table 14.7    Cancer associated genes in the FMRMs   

 FMRM#  mRNAs  # mRNAs  p -Value (adj.) 

 3  CALR, COL18A1, VIM, SDCBP, MCTS1, AK2, RBP4, AP2S1, 
ARNT, NDUFV2, PRPF8, RPS15 

 12  4.89E−03 to 2.54E−02 

 4  DNMT1, NF2, RRM2  3  2.13E−03 to 3.05E−02 
 5  CEBPB, DDX39, HSP90AB1, MT2A, NUP62, SQLE, TCP1, TRIO  8  2.01E−03 to 4.84E−02 
 11  DICER1, ENO1, HSP90B1, RXRB, SPRY2  5  5.26E−03 to 4.84E−02 
 13  IGF2R, LSM14B, NCOR2, SP110, STX5, TOR2A, ACHE, 

HDAC3, PARP1, POSTN, SMAD4, UBE2I, RNF6, BAK1 
 14  6.88E−03 to 4.56E−02 

  Many genes identi fi ed in FMRMs are relevant to cancers 
 Genes identi fi ed in FMRMs are directly assigned to diseases and disorders. The cancer related genes of FMRMs within 
their top  fi ve bio-functions are listed  
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  Abstract 

 microRNAs (miRNAs) have been shown to play a crucial role in the most 
important biological processes and their dysregulation has been connected 
to a variety of diseases, including cancer. The number of computational 
tools for the analysis of miRNA related data is continuously increasing. 
They range from simple look-up resources to more sophisticated tools for 
functional analysis of miRNAs. These systems may help to investigate the 
role of miRNAs in key biological processes and their involvement in dis-
eases. The ultimate goal is to allow the development of regulatory models 
describing complex processes and the effects of their dysregulation. 

 Here we review the most important and recent methods for the analysis 
of miRNA expression pro fi les and the tools available on the web for target 
prediction and functional analysis of miRNAs. 

 Particular emphasis is given to the integration of heterogeneous data, 
including target predictions and expression pro fi les, which can be used to 
infer miRNA/phenotype associations and for the generation of network 
models of miRNA function.  

      Elucidating the Role of microRNAs 
in Cancer Through Data Mining 
Techniques       

        Luciano   Cascione      ,    Alfredo   Ferro      ,    Rosalba   Giugno      , 
   Alessandro   Laganà      ,    Giuseppe   Pigola      ,    Alfredo 
  Pulvirenti      , and    Dario   Veneziano         

     A.   Laganà  
     Department of Molecular Virology, Immunology and 
Medical Genetics, Comprehensive Cancer Center , 
 The Ohio State University ,   Columbus ,  OH ,  USA    
e-mail:  alessandro.lagana@osumc.edu  

     G.   Pigola  
        Research and Development, IGA Technology Services , 
  Udine ,  Italy  
 e-mail:  gpigola@igatechnology.com    



292 L. Cascione et al.

  Keywords 

 microRNA  •  Database  •  Expression pro fi les  •  Functional analysis  
•  Network models      

    15.1   Introduction 

 In the past decade, many efforts have been spent 
to demonstrate the crucial role of miRNAs in the 
most important biological processes, including 
apoptosis, development and immune response 
 [  1–  3  ] . Moreover, the dysregulation of miRNAs 
has been connected to a variety of diseases, can-
cer being probably the most extensively studied 
one  [  4–  6  ] . 

 The partial complementarity that most miR-
NAs exhibit to their targets, especially in animals, 
is the key to their  fl exibility. Indeed, a single 
miRNA is usually able to bind to many targets, 
often in several sites, and a single gene can be 
targeted by different miRNAs acting coopera-
tively. This is a clear indication that the simple 
miRNA/target interactions are actually part of a 
more complex regulatory system and should be 
analyzed in the wider context of expression 
networks. 

 The initial focus of bioinformatics miRNA 
research was primarily on the development of 
tools for the identi fi cation of miRNAs and their 
targets. The prediction of miRNA binding sites 
on targets still remains a challenge. Indeed, 
although several studies have uncovered the basic 
rules of miRNA/target interactions  [  7  ] , the target 
prediction tools currently available still produce a 
signi fi cant number of false positives and are not 
able to identify some experimentally validated 
miRNA/target pairs  [  8,   9  ] . 

 Nevertheless, target prediction tools constitute 
the essential basis of functional miRNA analysis, 
allowing to link miRNAs to processes, diseases 
and pathways, through their targets. Recently, 
many bioinformatics tools for functional analysis 
of miRNAs have been developed. Their ultimate 
goal is the identi fi cation of non trivial relation-
ships between miRNAs and other molecular 
actors, such as genes and transcription factors, 

and the development of regulatory models 
describing complex processes and the effects of 
their dysregulation. These purposes can be 
ful fi lled thanks to the huge amount of data that 
are produced daily and made publicly available 
on the internet, among which miRNA/target 
matches and miRNA expression pro fi les are 
mostly predominant. 

 In this chapter we review the most important 
and recent methods for the analysis of miRNA 
expression pro fi les and the tools available on the 
web for functional analysis of miRNAs. In par-
ticular, in Sect.  15.2  the most used miRNA 
pro fi ling technologies are described, together 
with the computational and statistical methods 
for the analysis of the related data. Emphasis is 
particularly given to some aspects such as data 
normalization, the identi fi cation of differentially 
expressed microRNAs, clustering and the role of 
miRNAs as biomarkers. Section  15.3  is focused 
on miRNA target prediction. An overview of the 
general features is given, together with a brief 
description of the most popular target prediction 
tools available on the web. Finally, in Sect.  15.4  
we present a series of tools for functional analy-
sis of miRNAs. Particular emphasis is given to 
the integration of heterogeneous data, including 
target predictions and expression pro fi les, which 
can be used to infer miRNA/phenotype associa-
tions and for the generation of network models of 
miRNA function.  

    15.2   miRNA Pro fi ling: Technologies 
and Data Analysis 

 Several methodological approaches for mRNA 
expression pro fi ling have been applied to pro fi le 
miRNA expression. Current methods widely 
used in the study of miRNA expression include 
northern blotting with radiolabelled probes, 
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 oligonucleotide microarrays, qPCR-based 
detection of mature miRNAs, single molecule 
detection in liquid phase, in situ hybridization 
(ISH) and massively parallel sequencing. 

 In this section we will review the main tech-
nologies used for miRNA pro fi ling as well as 
the computational and statistical methods used 
for the normalization and the analysis of the 
produced data. 

    15.2.1   Pro fi ling Technologies 

 In general, all existing pro fi ling methods can be 
separated into two categories: one that utilizes 
direct oligo hybridization without sample RNA 
ampli fi cation and the other requiring sample 
ampli fi cation. A caveat to keep in mind is that 
there are inherent advantages and disadvantages 
to both approaches. 

 Nonetheless, three principal methods are cur-
rently used more than others to measure the 
expression levels of miRNAs and genes in gen-
eral: microarray hybridization  [  10  ] , real-time 
reverse transcription- PCR (qPCR)  [  11,   12  ]  and 
massively parallel/next-generation sequencing 
(NGS)  [  13  ] , all of which face unique challenges 
compared to their use in mRNA pro fi ling. For 
example, the existence of miRNA families, the 
largest encompassing nine variants (hsa-let-7a–i), 
whose members differ by as little as one nucle-
otide but nevertheless exhibit differential expres-
sion patterns, represents a real challenge in 
miRNA recognition, regardless of the technology 
used. Microarray technology is actually based on 
the Watson–Crick base pairing nature of nucleic 
acids and thus involves nucleic acid hybridiza-
tion between target molecules and their corre-
sponding complementary probes. Synthesized 
antisense probes are spotted and immobilized 
onto a nylon support platform using a hand held 
spotting device. This method is relatively low 
cost and readily available to labs without special-
ized robotics and equipments dedicated to array 
fabrication. A disadvantage to this method is its 
scale. Oligo spots from a hand held device are 
macroscopic in nature, so the resulting array will 
be relatively large. About 30 mg of total RNA is 

commonly used to hybridize an array of this size 
 [  14  ] . To address this issue, automated robots have 
been employed to spot microscopic oligo dots 
onto a glass slide  [  15,   16  ] . 

 Probes designed to differentiate between 
mature miRNAs and pre-miRNAs and probes 
that detect hypothetical miRNAs can all be spot-
ted onto the same array. The isolated microRNAs 
are labeled with  fl uorescent dye and then hybrid-
ized with the microRNA microarray, resulting in 
speci fi c binding of the labeled microRNAs to the 
corresponding probes. The  fl uorescence emission 
from labeled microRNAs bound at different posi-
tions on the slides can be detected. Consequently, 
the kinds of microRNAs and their relative quanti-
ties in the studied sample can be evaluated by 
analyzing the  fl uorescence signal data. The design 
of the microRNA probes, the preparation of 
microRNA samples and the labeling of microR-
NAs are considered the most important proce-
dures in the microRNA microarray platform. 

 Direct hybridization of miRNA samples onto 
an oligo array may require a large amount of total 
RNA; however, some research protocols might 
have access to a small and limited amount of 
RNA—such as needle biopsies. A PCR based 
approach was developed to address this issue. 
The principle of qPCR is based on the detection, 
in real-time, of a  fl uorescent reporter molecule 
whose signal intensity correlates with amount of 
DNA present in each cycle of ampli fi cation. 

 In this method, total RNA is isolated as 
usual. The  fi rst step in qPCR of miRNAs is the 
accurate and complete conversion of RNA into 
complementary DNA (cDNA) by reverse tran-
scription (RT). The RT reaction  fi rst consists of 
small RNA fractionation, followed by polyade-
nylation. Then a standard RT protocol is 
applied where poly(T)s are added to prime the 
synthesized poly(A) tail so reverse transcriptase 
can produce cDNAs from the small RNA. 
Finally, miRNA speci fi c primers will probe for 
a speci fi c miRNA through PCR ampli fi cation 
 [  17,   18  ] . The speci fi city and sensitivity of 
qPCR assays are dependent upon primer 
design. In fact, due to speci fi city issues and 
inability to differentiate between mature and 
pre-miRNA, changes have been made to the 
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RT step. Instead of a general poly(A) reaction 
in combination with universal priming through 
poly(T) adapter molecules, a miRNA speci fi c 
stem-loop reverse primer is used. This spe-
cially designed primer contains a sequence that 
is antisense to a portion of the 30nt long 
sequence of the miRNA that is to be ampli fi ed. 
To increase the speci fi city of the PCR 
ampli fi cation step, the forward primer contains 
an antisense sequence derived from the mature 
miRNA, and the reverse primer consists of 
sequences taken from the stem-loop of the 
reverse primer. Sensitivity and speci fi city was 
found to be dramatically improved. In addition, 
the nature of speci fi c priming allows this pro-
tocol to differentiate between the longer pre-
miRNA and the shorter mature active form of 
the miRNA. Finally, it is claimed that this pro-
tocol can discriminate between isoforms of 
related miRNAs that differ by only one or two 
base pairs  [  18,   19  ] . 

 The major advantages of qPCR over microar-
rays are (1) the speed and the sensitivity of the 
qPCR assays, (2) considerably larger dynamic 
range compared to microarray analysis and (3) 
a convenient requirement for low amounts of 
starting material (in the range of nanograms of 
total RNA). 

 However, both the RNA ligation  [  20  ]  and the 
PCR ampli fi cation steps bear inherent biases, the 
method is laborious and costly, and associated 
tools for computational analysis are in their 
infancy. The reliability of miRNA expression 
pro fi ling depends also on the quality of the total 
RNA used as input material. Robust, reproduc-
ible methods for RNA isolation and estimation of 
RNA quality should be employed prior to initiat-
ing the characterization of miRNA expression 
levels. The successful outcome of qPCR analysis 
depends upon a number of interconnected steps 
that require individual optimization. To perform 
qPCR that provides meaningful and reproducible 
results, several parameters such as RNA extrac-
tion, RNA integrity control, cDNA synthesis, 
primer design, amplicon detection, and data nor-
malization must be taken into account. 

 qPCR is often considered a “gold standard” in 
the detection and quantitation of gene expression. 

However, the rapid increase in number of miRNAs 
renders qPCR inef fi cient on a genomic scale, and 
it is probably better used as a validation rather than 
a discovery tool. 

 As with genomic DNA and RNA analysis, 
microarrays are still the best choice for a stan-
dardized genome-wide assay that is amenable to 
high-throughput applications. Whole-genome 
screening generates a qualitative and quantitative 
evaluation of how experimental conditions affect 
miRNA pro fi les. 

 High-throughput sequencing of miRNAs, 
though, is coming into wider use and is unmatched 
for the discovery and experimental validation of 
novel or predicted miRNAs. The high demand 
for low-cost sequencing has driven the develop-
ment of high-throughput sequencing technolo-
gies that parallelize the sequencing process, 
producing thousands or millions of sequences at 
once  [  21,   22  ] . These technologies are intended to 
lower the cost of DNA sequencing beyond what 
is possible with standard dye-terminator meth-
ods. In particular, next generation sequencing 
(NGS) technologies provide a digital expression 
pro fi ling readout that is fundamentally different 
than analog measurement systems like microar-
rays. A variety of different approaches are being 
used. They generally involve the ampli fi cation of 
DNA templates by PCR and the physical binding 
of template DNA to a solid surface or to tiny 
beads called microbeads. These techniques are 
often referred to as massively parallel DNA 
sequencing, because thousands or millions of 
sequencing reactions are run at once to greatly 
speed up the process. All next generation sequenc-
ing systems use clonal cluster sequencing. The 
process, which begins with a single target mole-
cule, involves creation of a clonal target during 
an intermediate ampli fi cation step. Multiple iden-
tical copies are required to produce a high signal-
to-noise-ratio. 

 Finally, the Nanostring technology can be 
used to detect any type of nucleic acid in solution 
and could be modi fi ed with appropriate recogni-
tion probes to detect other biological molecules 
as well. 

 Nanostring utilizes a digital technology that is 
based on direct multiplexed measurement of gene 
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expression that is capable of high level precision 
and sensitivity at less than one transcript copy per 
cell  [  23  ] . The technology uses molecular “bar-
codes” and single-molecule imaging to detect 
and count hundreds of unique transcripts in a 
single reaction  [  24  ] . Each color-coded barcode is 
attached to a single target-speci fi c probe corre-
sponding to a gene of interest. Mixed together 
with controls, they form a multiplexed assay. The 
degree of multiplexing is in the hundreds, which 
is less than that of microarrays. However, the 
Nanostring technology has higher throughput, 
accuracy and sensitivity than microarrays, which 
makes it preferable for low-multiplex applica-
tions, such as biomarker validation or molecular 
diagnostics  [  25  ] . 

 Cancer research and biomarker validation are 
two of the areas where Nanostring has been 
most rapidly adopted. Advantages over existing 
platforms include direct measurement of mRNA 
expression levels without enzymatic reactions 
or bias, sensitivity coupled with high multiplex 
capability, and digital readout. Comparison of 
the Nanostring gene expression system with 
microarrays and TaqMan PCR demonstrated 
that the Nanostring system is more sensitive 
than microarrays and similar in sensitivity to 
real-time PCR  [  24  ] . 

 Although each of these methods has their own 
unique advantages, they have not been perfected 
yet. However, at present, the method chosen for 
miRNA detection should best  fi t experience, the 
experimental conditions in the laboratory, and the 
goal of research.  

    15.2.2   miRNA Pro fi ling-Normalization 

 The signal intensities of miRNA microarray 
experiments may be biased by differences in 
sample RNA preparation, dye labelling, hybrid-
ization and washing ef fi ciency, peculiarities of 
print tip, spatial or hybridization speci fi c effects 
or pre-ampli fi cation of extracted RNA. For these 
reasons normalization is an essential aspect of 
data processing. 

 It can minimize systematic, technical or 
experimental variation and thus has signi fi cant 

impact on the detection of differentially expressed 
miRNAs between two or more conditions. 

 Several studies pointed out that the selection 
of the data pre-processing method can have great 
impact on the resulting data outcome  [  26–  30  ] . 

 Inappropriate normalization of the data can lead 
to incorrect conclusions. Rigorous normalization 
of miRNA data may even be more critical than that 
of other RNA functional classes since relatively 
small changes in miRNA expression may be bio-
logically and clinically signi fi cant  [  31,   32  ] . 

 At present, there is no consensus normaliza-
tion method for the three miRNA pro fi ling 
approaches cited above. Several normalization 
techniques are similar to mRNA pro fi ling nor-
malization methods while others are speci fi cally 
modi fi ed or developed for miRNA data. Indeed, 
miRNAs have some unique signatures such as 
their small total number and short length. 

 Prior to normalization, data pre-processing of 
miRNA pro fi ling experiments includes platform 
and vendor speci fi c steps, such as baseline adjust-
ment and threshold setting for RT-qPCR analy-
ses, background correction for microarray 
technology, or  fi ltering for small RNA-sequence 
data. Following these very  fi rst steps of raw data 
pre-processing, one needs to choose the optimal 
normalization strategy to correct for systematic 
and technical variation enabling a better estima-
tion of the biological variation. 

    15.2.2.1   Normalization Approaches 
for microRNA RT-PCR 

 RT-PCR is generally accepted as gold standard 
for miRNA expression measurement and normal-
ized microRNA RT-PCR pro fi ling data is used 
for the evaluation of the goodness of miRNA 
microarray normalization methods  [  27,   33  ] . 

 Normalization of RT-qPCR miRNA pro fi ling 
data is needed because signal intensities may 
depend on reverse transcription and PCR reaction 
ef fi ciencies. 

 There are two types of sources of variation in 
RT-qPCR experiments. The  fi rst one is technical: 
there may be differences in sample procurement, 
stabilization, RNA extraction, reverse transcrip-
tion and PCR reaction ef fi ciencies. The second 
one is biological, there may be sample-to-sample 
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inconsistencies in cellular subpopulations or even 
differences in bulk transcriptional activity. For 
these reasons normalization of RT-qPCR miRNA 
pro fi ling data is needed. 

 The common normalization methods for 
microRNA RT-PCR pro fi ling are based on 
prede fi ned invariant endogenous controls, refer-
ence miRNAs  [  31  ]  or other small non-coding 
RNAs such as small nuclear and small nucleolar 
RNA  [  28,   34,   35  ] . 

 However, in  [  36  ]  the authors argued that it is 
best to normalize genes with reference genes 
belonging to the same RNA class because the use 
of small non-coding RNAs other than miRNAs 
does not mirror the physicochemical properties 
of miRNA molecules. 

 Using non-miRNA reference genes for qPCR 
normalization is not advisable when the overall 
abundance of miRNA varies, e.g., in experiments 
affecting the miRNA processing machinery, or in 
comparisons involving multiple tissues or combi-
nations of tissues and cell lines  [  37  ] . 

 Selection of invariant miRNAs identi fi ed by 
algorithms speci fi cally developed for reference 
gene evaluation and selection was superior over 
small non-coding RNA based normalization  [  31, 
  35  ] . These algorithms are based on reference 
gene ranking and stepwise elimination of the 
least stable gene  [  36  ] , repeated pairwise correla-
tion and regression analysis  [  38  ]  or statistical lin-
ear mixed-effects modelling  [  39  ]  of the respective 
experimental data. 

 Moreover invariant miRNAs can be selected 
based on a distinguishable low standard deviation 
and high-mean population as suggested by 
Pradervand et al.  [  28  ]  for miRNA microarray 
preprocessing and this approach is applicable for 
RT-qPCR pro fi ling experiments as well. Basically, 
the use of more than one reference gene increases 
the accuracy of quanti fi cation compared to the 
use of a single reference gene  [  36,   39  ] . 

 Commonly used methods for miRNA raw 
data processing use median or mean value of the 
raw readings as normalization factor. However, 
many miRNAs may not be expressed in a bio-
logical sample, and thus median or mean value 
may be skewed towards the assay readings for 
lowly expressed miRNAs, which tend to be more 

variable compared with the readings for more 
abundantly expressed miRNAs. A scaling 
method suggested by Wang et al.  [  40  ] , uses the 
average expression values of eight selected 
miRNAs with relatively high expression from a 
descending sorted list. 

 For large scale microRNA expression pro fi ling 
studies the mean expression value normalization 
outperformed the current normalization strategy 
that makes use of stable small RNA controls, such 
as snoRNAs proposed by manufacturers, in terms 
of better reduction of technical variation  [  35  ] . 

 However, the selection of a limited number of 
miRNAs or small RNA controls that resemble the 
mean expression value can be successfully used 
for normalization in follow-up studies where only 
a limited number of miRNA molecules are 
pro fi led to allow a more accurate assessment of 
relevant biological variation from a miRNA 
RT-qPCR pro fi ling experiment  [  32,   35  ] .  

    15.2.2.2   Normalization Methods for 
miRNA Microarray Experiments 

 Different normalization methods have been used 
on miRNA microarray expression pro fi ling data 
sets, but there is currently no clear consensus 
about their relative performances  [  28  ] . 

 Some have even chosen to omit normalization 
 [  41–  43  ]  but comparative studies on the relative 
performance of different normalization methods 
within a miRNA microarray platform have 
emphasized the need for evaluating and identify-
ing appropriate normalization methods  [  27,   28, 
  44  ] . miRNA microarrays can be single-color or 
dual-color systems calling for different normal-
ization approaches. Single-color miRNA microar-
rays have been predominately used, while 
dual-color hybridization systems are less fre-
quently prevalent  [  44  ] . 

 Both can be observed with respect to intra-
array normalization for the correction of dye 
effects and inter-array approaches for the bal-
ance of the distribution differences among 
experiments  [  45  ] . 

 The  fi rst normalization methods to be used 
with miRNA array data employed centring to 
median values  [  46–  48  ]  or scaling based on total 
array intensities  [  49,   50  ] . 
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 Certain methodologies currently used for 
large-scale genome arrays have been adapted to 
and modi fi ed for miRNA arrays such as Quantile 
 [  51  ]  and LOESS (Locally Weighted Regression 
and Smoothing Scatterplots)  [  52  ] . Various 
assumptions are often taken by several normal-
ization methods. Scaling, LOESS and Quantile 
 [  26,   27  ]  are based on two assumptions, (i) only a 
small portion of spots is differentially expressed, 
and (ii) differentially expressed spots are homo-
geneously distributed with respect to both, over- 
and under-expressed miRNAs  [  29  ] . 

 However, these assumptions could fail for 
miRNA platforms as they are printed with a rela-
tively small number of selected sequences  [  27, 
  29  ] . Moreover, the number of expressed miRNAs 
in a miRNA microarray pro fi ling is small (typi-
cally in the order of hundreds) compared with a 
few thousands of genes  [  30  ] . Hence, among the 
expressed microRNAs the proportion of those that 
are differentially expressed is much larger than 
that observed in mRNA expression pro fi ling  [  30  ] . 
Experiments with most miRNAs differentially 
expressed predominantly in one direction, that is 
only up- or down-regulated, are not unusual. 

 Thus, it must be veri fi ed whether these 
assumptions hold true for the respective datasets 
and one should choose a normalization method 
that makes only minimal assumption about the 
presence of a set of constant miRNAs, like invari-
ant-based normalization  [  28  ] . Alternatively, a 
normalization method free of assumption, the 
majority of algorithms for variance stabilization 
normalization  [  53  ]  or even an assumption free 
approach  [  54  ]  can be utilized instead. 

 Quantile normalization is a transformation 
method originally proposed by Bolstad et al. 
 [  51  ]  for oligonucleotide arrays. It is now widely 
used for one-color miRNA microarrays as well 
and was con fi rmed as one of the most robust 
methods  [  27,   28,   44,   55  ] . It is an inter-array 
approach and equalizes the distributions of 
expression intensities across arrays. Thus, 
quantile normalization assumes that the overall 
distribution of signal intensity does not change. 
While this assumption likely holds true for the 
comparison of p53 overexpressing versus control 
cells  [  28  ]  or even for brain–heart comparisons 

according to Rao et al.  [  44  ]  where only 5% of 
miRNAs were differentially expressed, it may 
not hold true in case large numbers of miRNAs 
are differentially expressed in only one 
direction. 

 Such cases may be, for example, the knockout 
of proteins essential for miRNA biogenesis, 
which lead to a dramatic reduction in steady state 
miRNA levels by blocking production of mature 
miRNAs  [  44  ] . 

 Rao et al.  [  44  ]  compare the performance of 
several normalization methods on miRNA single 
channel microarray pro fi ling, showing the better 
performance of quantile normalization. 

 Quantile normalization can be applied to dual-
labeled array data if red and green channels are 
treated as two independent single-labeled array 
data. On the contrary two single-labeled array data 
can be considered as a dual-labeled data and LOESS 
normalization may be used in this case  [  56  ] . 

 For the two colors microarray data, normal-
ization is usually applied to the log-ratios of 
green channel signal (Cy3) and red channel (Cy5) 
signal, which will be written as M and A . 

 The LOESS normalization and its variants 
 [  27,   29,   44  ]  are the most used transformation 
based methods. They use local regression via 
locally weighted scatter plot smoothing. M is 
de fi ned as the log transformation of Cy3/Cy5 and 
A as the log transformation of the squared root of 
Cy3*Cy5 (as used in the MA-plot). It is advis-
able to introduce weights that penalize outliers 
because outlier values can strongly in fl uence the 
local regression curve (LOWESS). However, 
Lowess and Loess are treated as synonyms. Local 
regression via LOESS uses a quadratic polyno-
mial weighted regression function with Tukey’s 
biweight function  [  52  ]  of the log ratios of the 
Cy3 and Cy5 signals on overall spot intensity of 
the two signals (Cy3*Cy5). 

 In addition to intensity-dependent variation in 
log ratios, spatial bias could also be a signi fi cant 
source of systematic error (print-tip effect). It is 
possible to correct for both print-tip and inten-
sity-dependent bias by performing a within-print-
tip-group normalization using LOESS. 

 Print-tip LOESS normalizes each M value by 
subtracting from it the corresponding value on 
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the tip-group LOESS curve  [  27  ] . Finally, the 
normalized log-ratios (N) are: 

 N = M − loess 
i
 (A) 

 where loess 
i
 (A) is the loess curve as a function of 

A for the  ith  tip group. 
 However, Sarkar et al.  [  30  ]  did not  fi nd 

signi fi cant differences between print-tip LOESS 
and other normalizations. 

 Hua et al.  [  27  ]  compared 15 normalization 
methods using microarray data and RT-PCR data. 
It was found that microRNA normalized data by 
print-tip LOESS method were most consistent 
with the RT-PCR results. 

 A variant of LOESS normalization called 
LOESSM was proposed by Risso et al.  [  29  ] . This 
non-parametric normalization scales the expres-
sion data on the global median expression rather 
than on zero. This modi fi cation relaxes the assump-
tion of symmetry among up- and down-regulated 
genes and it was shown that LOESSM, in case of 
absence of channel-effect, has better performance. 
In addition, LOESS combined with Generalized 
Procrustes Analysis (GPA), an assumption free 
inter-array normalization  [  54  ] , improved its results 
and outperformed the other normalizations in 
terms of sensitivity and speci fi city  [  29  ] . 

 LOESS normalizations and its variants 
emerged as being robust in the reduction of non-
biological bias. 

 Variance stabilization normalization (VSN), 
an inter-array transformation method, is widely 
used for microRNA microarray data  [  28,   30  ] . It 
was developed for mRNA arrays and is based on 
a parameterized arcsinh transformation instead 
of a logarithmic transformation that calibrates 
sample-to-sample variations and renders vari-
ance approximately independent of the mean 
intensity  [  53  ] . 

 Spike-in VSN normalization restricts the 
model  fi t to spike-in spots. These spots recognize 
speci fi c RNA transcripts that can be added as 
internal controls in the experiments. Normalization 
intensities for all miRNAs are then obtained by 
applying the resulting transformation to all spots 
of interest on the array  [  30  ] . 

 One limitation of this approach is that reliable 
results can only be obtained for intensities within 

the range covered by the spike-in used and that 
excludes targets that are not expressed. 

 Pradervand et al.  [  30  ]  proposed a linear 
regression method to select a set of miRNAs 
with constant expression (invariants) and used 
these invariants to calculate VSN parameter 
(VSN-INV). The invariant probes are those that 
have medium-high mean intensity and low vari-
ance across samples. VSN used with default 
parameter settings assumes that most genes are 
not differentially expressed whereas the invari-
ant-based regression only assumes that a sub-
population of expressed genes does not change. 
So, VSN-INV is appropriate only if a signi fi cant 
fraction of miRNAs is expected to be differen-
tially expressed. 

 Based on theirs comparisons, Pradervand et al. 
found that VSN-INV and quantile normalization 
were the most robust normalization methods 
compared to VSN with default parameter or scal-
ing. In general, one should note that VSN strongly 
affects the distribution of the large fraction of 
miRNAs whose expression is near or at back-
ground, resulting in the large increase of variabil-
ity for those microRNAs.  

    15.2.2.3   Scaling Normalization 
 The  fi rst normalization methods for mRNA 
microarray were based on the selections of 
prede fi ned and stably expressed housekeeping 
genes, as described by Garzon et al. and Perkins at 
al.  [  57,   58  ]  that uses all probes. These methods 
have been applied to one- or two-channel miRNA 
microarray pro fi ling. Most commercially available 
miRNA microarrays do not have controls for 
endogenous RNAs that have been shown to be 
robustly invariant between various different tissue 
samples or conditions  [  44  ] . To date, there is no 
consensus on the existence and reliability of refer-
ence gene miRNAs. The selection of reference 
genes to normalize miRNA levels depends on the 
bioinformatics analysis of the respective data (as 
shown for mRNA in  [  36,   39  ] ) and is otherwise still 
rather empirical due to the lack of robust reference 
miRNAs  [  34  ] , although a universal reference 
miRNA reagent set has been proposed  [  30  ] . 

 Bargaje et al.  [  55  ]  identi fi ed constitutively 
expressed miRNAs across tissues. A mean of expres-
sion levels of a set of 16 microRNAs showing 
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minimum variability, was reasonably successful 
as a normalization factor for comparing datasets 
generated by the same platforms. However, nor-
malization using constitutive microRNAs was 
ineffective when comparing bead-based and 
microarray-based datasets. In these cases quan-
tile and Z-score normalization were both suc-
cessful in transforming the data sets generating 
comparable means and scale. 

 The scaling methods like Z-score, mean, 
median, or 75th percentile assume that different 
sets of intensities differ by a constant global fac-
tor and all raw intensity values are multiplied 
with one common (i.e., global) scaling factor  [  26, 
  27,   55  ] . The Z-score provides a mean-centered 
rank for the expression level in units of standard 
deviation. Z-scores thus provide an index of the 
expression level of the miRNA with respect to 
the cellular pool of miRNA. Unlike other normal-
ization methods, Z-scores are not in fl uenced by 
the addition of new datasets allowing  fl exible 
cross-platform validation of miRNA microarray 
pro fi ling experiments  [  55  ] . 

 Recently, Wang et al.  [  40  ]  suggested the pre-
evaluation of the overall miRNA expression pat-
tern by a panel of miRNAs using RT-qPCR assays 
to build a logistic regression model based on 
these results. The personalized logistic regression 
model based on 29 miRNAs ef fi ciently calibrated 
the variance across arrays and improved miRNA 
microarray discovery accuracy compared with 
different scaling methods, LOESS or quantile 
normalization  [  40  ] .   

    15.2.3   Identi fi cation of Differentially 
Expressed Genes and miRNA 

 Several methods have been applied to the 
identi fi cation of differentially expressed genes 
and microRNA in microarray data. 

 The simplest method is to evaluate the log 
ratio between two conditions (or the average of 
ratios when there are replicates) and consider all 
the genes that differ by more than an arbitrary 
cut-off value to be differentially expressed. This 
is not a statistical test, and there is no associated 
value that can indicate the level of con fi dence in 

the designation of genes as differentially or not 
differentially expressed. 

 It is considered to be unreliable  [  59  ]  because 
statistical variability is not taken into account and 
is susceptible to outliers. 

 More sophisticated statistical methods have 
been proposed. The classi fi cation success is 
affected by the choice of the method, the number 
of genes in the genelist, the number of cases 
(samples) and the noise in the dataset. 

 Different methods produce dissimilar gene 
lists, which can produce dramatically different 
discrimination performance when trained as gene 
classi fi ers. 

 The gene lists produced by the feature selec-
tion methods can be grouped broadly according 
to the manner in which they treat gene variance. 

    15.2.3.1   t-Statistic 
 The simplest statistical method for detecting dif-
ferential expression is  t  test. It can be used to 
compare two conditions when there is replication 
of samples. With more than two conditions, anal-
ysis of variance (ANOVA) can be used. 

 The t-test calculates the observed t-statistic for 
each gene. The idea is to compare between-group 
difference and within-group difference and then 
to calculate the probability value (p-value) of 
t-statistic for each gene from t-distribution. 

 The output of the analysis is a p-value for each 
gene. It represents the chance of getting the t-sta-
tistic as large as, or larger than the observed one, 
under the hypothesis of no differential expression 
(null hypothesis). A small p-value indicates that 
the hypothesis of no differential expression is not 
true and the gene is differentially expressed. 

      15.2.3.2   SAM 
 Several modi fi ed t-statistics have been proposed 
to address this problem. SAM  [  60  ]  is one of the 
most popular. It performs moderately well except 
when applied to data with low sample size and to 
the noisy datasets. 

 SAM uses a moderated t-statistic, whereby a 
constant is added to the denominator of the t-sta-
tistic. The addition of this constant reduces the 
chance of detecting genes which have a low standard 
deviation by chance. The constant is estimated 
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from the sum of the global standard error of the 
genes  [  61–  63  ] .  

    15.2.3.3   Empirical Bayes Method (Limma) 
 The empirical bayes method provides a more 
complex model of the gene variance. The gene 
standard error is estimated as a representative 
value of the variance of the genes at the same 
level of expression as the gene of interest  [  64  ] . In 
training sets with a large number of cases, the 
empirical bayes method performed comparably 
with ANOVA. Importantly, unlike most other 
methods, the empirical bayes t-statistic proved 
equally robust with low numbers of cases. The 
Bayesian statistic also provides p-values and has 
the advantage that it can be expanded to deal with 
datasets that have more then two classes. 

 Limma provides advanced statistical methods 
for linear modelling of microarray data and for 
identifying differentially expressed genes. It  fi ts a 
linear model to the data and uses an empirical 
Bayes method for assessing differential expres-
sion  [  65  ] . One or two experiment de fi nition 
matrices need to be speci fi ed during the analysis: 
a  design matrix  de fi ning the RNA samples and a 
 contrast matrix  (optional for simple experiments) 
de fi ning the comparisons to be performed. 

 When there are more than two conditions in an 
experiment, a more general concept of relative 
expression is needed. One approach that can be 
applied to cDNA microarray data from any exper-
imental design is to use an analysis of variance 
model (ANOVA) to obtain estimates of the rela-
tive expression ( VG ) for each gene in each sample 
 [  66,   67  ] . In the ANOVA model, the expression 
level of a gene in a given sample is computed rela-
tive to the weighted average expression of that 
gene over all samples in the experiment. 

 The microarray ANOVA model is not based 
on ratios but it is applied directly to intensity 
data; the difference between two relative 
expression values can be interpreted as the 
mean log ratio for comparing two samples (as 
log A −  log B  = log( A / B ), where log  A  and log  B  
are two relative expression values). 
Alternatively, if each sample is compared with 
a common reference sample, one can use nor-
malized ratios directly. This is an intuitive but 

less ef fi cient approach to obtain relative 
expression values than using the ANOVA esti-
mates. Direct estimates of relative expression 
can also be obtained from single-color expres-
sion assays  [  68  ] . 

 The set of estimated relative expression values, 
one for each gene in each RNA sample, is a 
derived data set that can be subjected to a sec-
ond level of analysis. There should be one rela-
tive expression value for each gene in each 
independent sample. The distinction between 
technical replication and biological replication 
should be kept in mind when interpreting results 
from the analysis of a derived data. If inference 
is being made on the basis of biological repli-
cates and there is also technical replication in 
the experiment, the technical replicates should 
be averaged to yield a single value for each 
independent biological unit. The derived data 
can be analyzed on a gene-by-gene basis using 
standard ANOVA methods to test for differences 
among conditions.  

    15.2.3.4   ROC 
 Classi fi ers built using gene lists from the ROC 
method outperform all other methods when 
applied to large datasets. High RCI scores are 
observed even when only a few of the most 
highly ranked genes are examined. These high 
RCI scores are maintained when the number 
of genes examined is increased. It is possible 
to obtain p-values using this method  [  69  ] . 
ROC, like the t-statistic methods, loses power 
when the number of samples is reduced. It 
ranks a gene based on its power to discrimi-
nate between the groups given a threshold 
false positive rate. This means that it ignores 
the level of expression of the gene in the two 
groups. Therefore as the training size 
decreases, the likelihood of a gene with low 
variance and no biological meaning being a 
good discriminator by chance increases. ROC 
is an unsuitable method when the sample size 
is below 30 (class size of 15).  

    15.2.3.5   Rank Product 
 The Rank Product  [  70  ]  package contains functions 
for the identi fi cation of differentially expressed 
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genes using the rank product non-parametric 
method described in  [  63  ] . It generates a list of up- 
or down-regulated genes based on the estimated 
percentage of false positive predictions (pfp), 
which is also known as false discovery rate (FDR). 
The attractiveness of this method is its ability to 
analyse data sets from different origins (e.g. labo-
ratories) or variable environments. 

 Rank product assumes constant variance 
across all samples. It compares the product of the 
ranks of genes in a class with the product of the 
ranks of genes in the second class. For each gene 
in the dataset, rank products sorts the genes 
according to the likelihood of observing their 
ranked positions on the lists of differentially 
expressed genes just by chance.   

    15.2.4   Clustering 

 Clustering algorithms are widely used in the 
analysis of microRNA pro fi ling data. In clinical 
studies, they are not only used to cluster 
microRNA into groups of co-regulated miRNA, 
but also for clustering patients, and thereby defy-
ing novel disease entities based on miRNA 
expression pro fi les. 

 A reliable and precise classi fi cation of tumors 
is essential for successful diagnosis and treatment 
of cancer. 

 Current methods for classifying human malig-
nancies rely on a variety of morphological, clini-
cal, and molecular variables. In spite of recent 
progress, there are still uncertainties in diagnosis. 
Also, it is likely that the existing classes are het-
erogeneous and comprise diseases which are 
molecularly distinct and follow different clinical 
courses. microRNA microarray datasets have 
been used to characterize the molecular varia-
tions among tumors by monitoring microRNA 
expression pro fi les on a genomic scale. This led 
to more reliable classi fi cation of tumors and to 
the identi fi cation of marker miRNA that distin-
guish among these classes. Eventual clinical 
implications include an improved ability to 
understand and predict cancer survival. However, 
there are three main types of statistical problems 
associated with tumor classi fi cation:

   The identi fi cation of new tumor classes using  –
microRNA expression pro fi les – unsupervised 
learning;  
  The classi fi cation of malignancies into known  –
classes – supervised learning  
  The identi fi cation of marker microRNA that  –
characterize the different tumor classes – fea-
ture selection.    
 Clustering can answer these problems. It is 

possible to cluster rows, columns or both. Rows 
(miRNA) clustering can identify groups of co-
regulated miRNA, spatial or temporal expression 
patterns, reduce redundancy (cf. feature selec-
tion) in prediction, and detect experimental arte-
facts. On the other hand columns clustering 
allows to identify new classes of biological sam-
ples, new tumor classes or new cell types. 
Moreover, it allows to detect experimental 
artefacts. 

 In order to perform clustering, a way to mea-
sure how similar or dissimilar two objects are is 
needed. The feature data are often transformed to 
an n × n distance or similarity matrix, D = (dij), 
for the n objects to be clustered. Features corre-
spond to expression levels of different microR-
NAs and possible classes include tumor types or 
clinical outcomes (survival, non-survival). Other 
information such as age and sex may also be 
important and can be included in the analysis. 
The most popular distances are Euclidean dis-
tance and Manhattan distance. Hamming distance 
is used for ordinal, binary or categorical data. 

 Clustering procedures can be divided into three 
categories: Hierarchical, Partitioning (K-means 
K-medoids/partitioning around medoids) and 
Model based approaches. The  fi rst one is either 
divisive or agglomerative and provides a hierarchy 
of clusters, from the smallest, where all objects are 
in one cluster, through to the largest set, where 
each observation is in its own cluster. One must 
often also de fi ne a distance measure between clus-
ters or groups of miRNA and the linkage methods 
used are single, complete, average, distance 
between centroids and Ward Linkage. Hierarchical 
clustering methods produce a tree or dendrogram. 
The partitions are obtained from cutting the tree at 
different levels. The tree can be built in two dis-
tinct ways bottom-up (agglomerative clustering) 
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or top-down (divisive clustering). Examples of 
Hierarchical clustering methods are Self-
Organizing Tree Algorithm – SOTA  [  71  ]  and 
DIvisive ANAlysis – DIANA  [  72  ] . 

 Partitioning methods require the speci fi cation 
of the number of clusters. A mechanism for 
apportioning objects to clusters must be deter-
mined, then data is portioned into a prespeci fi ed 
number K of mutually exclusive and exhaustive 
groups and iteratively reallocated to clusters until 
some criterion is met, e.g., minimize within-clus-
ter sums-of-squares. Examples of partitioning 
methods are k -means and its extension to fuzzy 
k -means, Partitioning Around Medoids – PAM 
 [  72  ] , – Self-Organizing Maps – SOM  [  73  ]  and 
model-based clustering, e.g., Gaussian mixtures 
in  [  74–  76  ]  and McLachlan et al.  [  77,   78  ] . 

 An important feature of partitioning methods 
consists in satisfying an optimality criterion 
(approximately), however they need an initial K 
and long computation time. Hierarchical meth-
ods are computationally fast (for agglomerative 
clustering) but rigid, since they cannot later cor-
rect for earlier erroneous decisions. 

 Most methods used in practice are agglomera-
tive hierarchical methods. In large part, this is 
due to the availability of ef fi cient exact algo-
rithms that implement them. 

 Model based approaches assume that data are 
‘generated’ from a mixture of K distribution. 
They try to  fi t a model to the data and try to get 
the best  fi t. A classic example is a mixture of 
Gaussians (mixture of normals). They take advan-
tage of probability theory and well-de fi ned distri-
butions in statistics. 

 In microarray experiments is also useful to 
detect the presence of outliers. Outlier detection 
is an important step since they can greatly affect 
the between-cluster distances. Simple tests for 
outliers should be identifying observations that 
are responsible for a disproportionate amount of 
the within-cluster sum-of-squares. 

 Most features in high dimensional datasets 
will be uninformative, examples are unexpressed 
genes, housekeeping genes, ‘passenger altera-
tions’. Clustering (and classi fi cation) has a much 
higher chance of success if uninformative fea-
tures are removed. Simple approaches to feature 

selection are: selecting intrinsically variable 
genes or requiring a minimum level of expression 
in a proportion of samples. 

 Clustering can be also employed for quality 
control purposes. The clusters that are obtain 
from clustering samples/microRNA should be 
compared with different experimental conditions 
such as batch or production order of the arrays, 
batch of reagents, microRNA ampli fi cation pro-
cedure, technician, plate origin of clones, and so 
on. Any relationships observed should be consid-
ered as a potentially serious source of bias.  

    15.2.5   miRNA as Biomarkers 

 miRNAs have a very important role in cancer. 
Their expression is often dysregulated in malig-
nant cells. Some miRNAs that are temporarily 
over-expressed in early development and shut off 
in the normal differentiated state may re-express 
in cancer, causing a persistent stem cell–like ded-
ifferentiated state. Many miRNAs may act like 
oncogenes by promoting proliferation and/or 
repressing apoptosis. Other miRNAs play the 
role of tumor-suppressors. They have a regula-
tory function in normal tissues but when they are 
down-regulated in cancer, they abrogate their 
tumor-suppressor activity. 

 Over-expression or lack of expression of 
speci fi c miRNAs appears to correlate with 
clinically aggressive or metastatic phenotypes 
 [  79,   80  ] . 

 miRNA expression has tissue speci fi city and 
has been used for identifying the tissue in which 
cancers of unknown primary origin arose  [  81  ] . 
Rosenfeld and colleagues constructed a miRNA-
based tissue classi fi er by measuring miRNA 
expression levels using a microarray platform 
in 336 primary and metastatic tumors repre-
senting 22 different cancer types. They built 
and tested a classi fi er for 48 miRNAs that accu-
rately predicted tissue type in 86% of the test 
set, including 77% of the metastatic samples. 
Moreover, the classi fi er predicted tissue type 
with 100% accuracy for six of the ten tumor 
types in the metastatic test set. The authors pro-
posed that their classi fi cation system could be 
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applied to cancer of unknown primary origin, 
de fi ned as histologically con fi rmed metastatic 
cancer for which no primary site of disease can 
be identi fi ed. 

 Cancer classi fi cations previously determined 
by mRNA expression pro fi ling are now being 
investigated with miRNAs. One study has directly 
compared mRNA and miRNA microarray expres-
sion data and shown that known molecular sub-
types of breast cancer can also be identi fi ed using 
miRNAs, and that expression of processing 
enzymes and proteins involved in miRNA bio-
genesis are down-regulated in the more aggres-
sive subtypes  [  82  ] . Clinical trials are underway 
that test different therapies in different breast 
cancer molecular subtypes as de fi ned by mRNA 
expression. 

 Mitchel et al.  [  83  ]  discovered microRNAs in 
healthy human plasma that can be traced back to 
speci fi c tissue (miRNA-15b, miRNA-16, and 
miRNA-24). In addition, they found that serum is 
more readily available than plasma and the stabil-
ity of miRNA compared to the plasma is strongly 
positively correlated. 

 They found the baseline levels of miRNA 
expression in healthy individuals and detected 
the levels of prostate cancer-expressed miRNAs 
(miRNA-100, miRNA-125b, miRNA-141, 
miRNA-143, miRNA-205, and miRNA-296) in 
serum. miRNA-141 level is speci fi cally elevated 
in prostate cancer in serum and several experi-
ments illustrated that miRNA-141 is expressed 
by several common human cancers. They estab-
lished that tumor-derived miRNAs can be 
detected in plasma or serum and serve as an effec-
tive circulating biomarker of common human 
cancer types. 

 A lot of bene fi ts will come from using miRNA 
to diagnose cancer. miRNA is 97.6% accurate for 
sensitivity as a biomarker for cancer and 96.3% 
accurate as a biomarker for the classi fi cation of 
cancer  [  84  ] . It means less false positive or false 
negative cases. It will decrease the delay in diag-
nosis of cancer because a blood test with miRNA 
assay or electrophoresis is much cheaper and 
suf fi cient for diagnosis. 

 It will avoid invasive, expensive and/or unnec-
essary tests to  fi nd out if a patient has cancer and 

what type of cancer. All this will get patients less 
stressed. 

 Signi fi cant progress has been made on the 
relationship between miRNAs and cancers and 
the important function of miRNAs in a variety of 
cancers has been reviewed by several research 
groups. 

 In fact as shown by Lu et al., the miRNA 
expression pro fi le based on the expression of 
only 200 miRNA genes successfully classi fi ed 
poorly differentiated tumors con fi rming in the 
majority of cases the clinical diagnosis whereas 
mRNA pro fi ling, based on the expression of 
about 16,000 protein coding genes, failed to do 
so  [  85  ] . 

 Visone et al. found out that miR-181b is a 
unique biomarker for CLL since its expression 
can be monitored throughout the disease course 
of a patient and this change in the leukemic cells 
correlate with the overexpression of four genes 
with great signi fi cance in CLL and other cancers 
(i.e. MCL1, TCL1, BCL2 and AID). Collectively, 
this information together with the analysis of 
stable prognostic markers (e.g. ZAP-70 and 
IGHV mutation status) specify disease progres-
sion in chronic lymphocytic leukemia and is 
associated with clinical outcome  [  86  ] . 

 Finally, a signi fi cant justi fi cation for using 
miRNAs as biomarkers is that miRNAs have an 
unusually high stability in formalin- fi xed tissues, 
which means that the miRNA can be stored and 
extracted with minute degradation. Short miR-
NAs from older tumors preserved as formalin-
 fi xed paraf fi n-embedded tissue are less susceptible 
to chemical modi fi cation and degradation over 
time and have proven satisfactory for miRNA 
analysis.   

    15.3   miRNA Target Prediction 

 In order to determine miRNA functions it is fun-
damental to  fi nd their targets. While miRNA tar-
get prediction in plants is rather simple, due to 
the perfect complementarity that plant miRNAs 
usually exhibit to their targets, the prediction of 
miRNA binding sites in animals is much more 
challenging. In fact, perfect complementarity in 
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animals is usually limited to the 5 ¢  end of the 
miRNA, which is usually referred to as the seed 
(~6–8 nt long)  [  87  ] . The target sites are usually 
located in the 3 ¢  UTR sequences of mRNAs. In 
order to signi fi cantly reduce the number of false 
positives, other determinants are needed due to 
the fact that the short length of the miRNA seeds 
raises the probability of  fi nding random matches 
that don’t correspond to functional sites  [  7  ] . Such 
determinants or rules should be primarily inferred 
from experimentally veri fi ed targets, thus show-
ing how important it is to have good sources of 
data as the basic step in the development of pre-
diction tools. A signi fi cant amount of miRNA/
target interactions data, usually coming from the 
literature, is publicly available on web databases, 
such as Tarbase  [  88  ]  and miRecords  [  89  ] . 
Information on the binding sites of miRNAs in 
their veri fi ed targets is usually provided by this 
data. Moreover, high-throughput sequencing of 
RNAs isolated by crosslinking immunoprecipita-
tion (HITS-CLIP) has recently identi fi ed func-
tional RISC interaction sites on mRNAs, allowing 
the creation of libraries of reliable miRNA bind-
ing sites  [  90  ] . Data Mining analysis of these 
sequences could help identifying important dis-
criminant features for the prediction of new bind-
ing sites. 

 In predicting functional targets, miRNA/target 
interaction rules are generally not suf fi cient due 
to the high number of false positives that derive 
from random matches of the short seed region of 
miRNAs to false targets. Consequently, other 
kinds of data are needed to improve prediction 
algorithms. For instance, target conservation is 
widely used as a valid additional criterion. High 
sequence conservation is indeed revealed by the 
alignment of miRNAs in different species, espe-
cially in the seed regions, which often corre-
sponds to high conservation of their targets. 
Therefore, an help in detecting functional sites 
could come from the identi fi cation of conserved 
regions in the 3 ¢  UTR of a gene, even though this 
approach is not useful in the case of non-con-
served miRNAs  [  91  ] . Several prediction methods 
exploit thermodynamics properties. Free energy 
( D G) can be used to evaluate the stability of the 
predicted duplexes. Low values of free energy, 

usually below −20 kcal/mol, characterize indeed 
all validated miRNA/target pairs  [  92  ] . A low 
energy value, however, is a necessary but not 
suf fi cient condition. Not all energetically favour-
able miRNA/target duplexes, in fact, are func-
tional. Structural accessibility of the target 
molecule is another thermodynamic feature used 
by computational methods. miRNA binding sites 
shouldn’t be involved in any intra-molecular base 
pairing, and any existing secondary structure 
should be disrupted in order to make the site 
accessible to the miRNA  [  93  ] . This very complex 
problem mostly relies on secondary structure 
prediction computation, which is still one of the 
challenges of computational biology  [  94  ] . 

 Nucleotide composition surrounding the bind-
ing sites and the position of the sites in the UTR, 
as well as the presence of multiple sites on the 
same UTR, are additional features used by pre-
diction tools. In fact, it is proven that a single 
miRNA can have more binding sites on the same 
target and that a target can have multiple sites for 
different miRNAs  [  95  ] . 

    15.3.1   Tools for the Prediction 
of miRNA Targets 

 Several computational tools for the prediction of 
miRNA targets are currently available on the 
web  [  96  ] . 

 In this subsection we will review the basic 
concepts behind the most popular ones: 
TargetScan, miRanda, Pictar, Diana-microT, 
RNA22, RNAHybrid, StarMir and PITA. 

 TargetScan is one of the most popular tools for 
miRNA targets prediction. It’s a sophisticated 
algorithm based on both conservation and base 
pairing rules  [  91,   95  ]  that searches for miRNA 
seed matches on UTRs, considering different 
kinds of seeds and making use also of secondary 
structure prediction in order to calculate the free 
energy of the predicted duplexes. In addition, it 
considers the presence of multiple sites for the 
same miRNA on a target as positive contribution 
to the score of the prediction. Through sequence 
alignment, TargetScan also takes into account the 
conservation on different species for the 
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identi fi cation of the most probable targets. All 
the predictions, computed for different species 
like human, mouse and rat, are available on the 
TargetScan website. 

 miRanda is another web tool that performs pre-
dictions and it’s based on an alignment algorithm 
which uses a weighted matrix aimed at promoting 
the binding of the seed of the miRNA rather than 
its 3 ¢  end. It also uses the free energy of predicted 
duplexes and the conservation criteria to select the 
most probable targets. Its website allows predic-
tions on human, mouse and rat  [  97,   98  ] . 

 Another popular tool for the prediction of 
miRNA targets on vertebrates, nematodes and 
 fl ies is PicTar  [  99  ] . Its algorithm is trained to 
identify binding sites for a single miRNA and 
multiple sites regulated by different miRNAs act-
ing cooperatively. It makes use of a pairwise 
alignment algorithm in order to  fi nd sites con-
served in many species (7 Drosophila species and 
8 vertebrate species), considering also the clus-
tering and co-expression of miRNAs together 
with ontological information, such as the time 
and tissue speci fi city of miRNAs and their poten-
tial targets, to enhance its predictions. 

 Diana-MicroT implements an algorithm that 
is trained to identify targets with a single binding 
site for a miRNA  [  100  ] . Its sequence alignment 
algorithm focuses on the search for miRNA/tar-
get duplexes characterized by central bulges and 
paired 5 ¢  and 3 ¢  ends. 

 A different approach is instead adopted by the 
web tool RNA22. It performs the analysis of 
miRNA sequences to  fi nd intra- and inter-species 
patterns of conserved sequence features  [  101  ] . 
The algorithm generates the reverse complement 
of the most signi fi cant patterns and searches for 
their instances in the UTRs in order to identify 
the target islands supported by a minimum num-
ber of pattern hits. A target island is de fi ned as 
any hot spot where the reverse complement of 
mature miRNA patterns aggregate. It then com-
putes the pairing of each target island with each 
candidate miRNA and evaluates the thermody-
namic stability of the duplex obtained. 

 The miRNA target prediction tool RNAHybrid 
is conceived as an extension of the RNA second-
ary structure prediction algorithm by Zuker and 

Stiegler to two sequences  [  92  ] . Hybridization of 
the miRNA to the target is considered through an 
energetically optimal criterion, i.e. yielding the 
Minimum Free Energy (MFE), but absolutely 
avoiding intra-molecular base pairing and multi-
loops. The algorithm used adopts dynamic pro-
gramming, forcing the perfect match of the seed. 
Bulges and internal loops are restricted to a con-
stant maximum length in either sequence. 

 The computation of the structural accessibility 
of the targets is instead the main feature of the 
tools StarMir and PITA. StarMir is based on the 
target’s secondary structure as predicted by the 
tool Sfold  [  102  ] . The miRNA/target interaction is 
modelled as a two-step hybridization reaction: 
the nucleation at an accessible site and the hybrid 
elongation to disrupt the local secondary struc-
ture of the target and form the complete duplex. 
PITA is based on a slightly different model which 
computes the difference between the free energy 
gained from the formation of the miRNA/target 
duplex and the energetic cost of unpairing the tar-
get to make it accessible to the miRNA  [  103  ] . 

 In spite of the rather successful predictions of 
effective miRNA targets performed by the tools 
mentioned above, the problem still remains a big 
challenge. The high number of false positives and 
the use of conservation criteria clearly show our 
partial knowledge in the targeting mechanisms. 
Combining Data Mining, Pattern Discovery and 
Machine Learning techniques together with ther-
modynamics and the availability of more reliable 
experimental data, will allow the improvement of 
predictions and enhance our knowledge and 
understanding of RNAi.   

    15.4   Functional Annotation 
of miRNAs 

 As discussed in the previous section, our knowl-
edge about the molecular rules that underlie 
miRNA targeting is still incomplete, hence the 
huge number of false positives that target predic-
tion tools can produce. Functional analysis of 
miRNAs may help to identify the most probable 
targets and to uncover non trivial relationships 
between miRNAs and other molecular actors, 
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such as genes and transcription factors, allowing 
the development of regulatory models describing 
complex processes and the effects of their dys-
regulation. There are several tools available 
online which collect and integrate miRNA-related 
data retrieved from different sources in order to 
infer miRNA functions. 

 In this section we are going to describe the 
most popular tools for functional analysis of 
miRNAs, that we divided in three categories: 
tools for miRNA/phenotype associations, tools 
integrating target prediction with expression data 
and tools for the generation and the analysis of 
network models of miRNA function. 

    15.4.1   miRNA/Phenotype Associations 

 Several tools provide users with manually curated 
information about the involvement of miRNAs in 
diseases and biological processes. Some of them 
also make use of computational predictions, sta-
tistics and data mining features in order to  fi lter 
the data and infer new knowledge. 

 miR2Disease and the Human microRNA 
Disease Database are manually curated databases 
based on experimental data. They aim at provid-
ing a comprehensive resource of miRNA deregu-
lation in various human diseases  [  104,   105  ] . 
These web based tools offer user friendly inter-
faces to query the information on miRNA/disease 
relationships. miR2Disease also allows research-
ers to contribute to the data contents through a 
submission page. 

 The authors of the Human microRNA Disease 
Database performed some analysis on their dataset 
and found that there is a negative correlation 
between the tissue-speci fi city of a microRNA and 
the number of diseases associated to it. They also 
found that miRNAs that are close in the genome, 
like members of the same clusters, are often associ-
ated with the same diseases. This suggests that 
neighboring miRNAs might be regulated by com-
mon regulators, and that they might regulate differ-
ent genes involved in the same pathways. Finally, 
the analysis revealed that miRNAs which are con-
served in other species, tend to be signi fi cantly 
associated with diseases with a higher probability. 

 miReg is also a manually curated miRNA 
Regulation Resource that provides users with 
regulatory relationships among validated 
upstream regulators like transcription factors or 
drugs, downstream targets, associated biological 
processes, experimental conditions or disease 
states and dysregulation of the miRNA in those 
conditions  [  106  ] . All the collected data is 
described in the literature and the corresponding 
references are provided together with other use-
ful links about the studied miRNAs. The website 
has a user-friendly interface browseable through 
different options. 

 A further step in the integration of heteroge-
neous information about miRNA is miRo’, a web 
environment that provides users with miRNA–
phenotype associations in humans  [  107  ] . It inte-
grates data from various online sources, such as 
databases of miRNAs and targets, Gene Ontology 
terms and diseases into a uni fi ed database 
equipped with a  fl exible query interface and data 
mining facilities. miRo’ allows both simple and 
advanced queries and introduces a new layer of 
associations between genes and phenotypes 
inferred based on miRNAs annotations. 

 miRNAs are connected to diseases, GO pro-
cesses and functions through their validated and 
predicted targets (miRecords, miRanda, PicTar, 
TargetScan)  [  89,   91,   97,   99,   108  ] . 

 The simple search allows the selection of a 
single miRNA, process, function, disease or tissue 
and quickly displays the corresponding informa-
tion. By selecting a miRNA, for example, the user 
can obtain the list of diseases, processes and func-
tions in which the miRNA is potentially involved 
through its targets. Moreover, a list of tissues 
expressing the miRNA and the corresponding 
expression values is given. These are obtained 
from the Mammalian microRNA Atlas  [  109  ] . 

 Similarly, by selecting a process, a disease, a 
function or a tissue, the user obtains a list of miR-
NAs related to the selected item. In all cases, 
detailed information about the miRNAs, the tar-
gets and the source of predictions are given, 
together with links to the original data sources. 

 The advanced search allows users to perform 
more complex queries through the introduction 
of speci fi c constraints that data must satisfy. For 
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example, it is possible to search for all the 
miRNAs which are involved in a group of dis-
eases and processes or for all the diseases related 
to a group of miRNAs, genes, processes and 
functions. The results are given in a table with 
details about the miRNA/target predictions. 
Furthermore, this advanced query tool allows to 
identify new potential associations between dis-
eases, processes and functions inferred based on 
miRNA annotations. For example, a disease d 
and a process p which are not linked through any 
common gene might be associated through a 
miRNA which regulates a gene gd, involved in d, 
and a gene gp, involved in p. 

 miRo’ is also equipped with a special Data 
Mining module which allows clustering of miR-
NAs that are associated to the same set of terms. 
Chosen a set of up to  fi ve miRNAs and an asso-
ciation criteria (i.e. process or disease), the sys-
tem will  fi nd all the subsets of the selected 
miRNAs which are closely associated to groups 
of processes or diseases. This feature may help 
to identify a set of miRNAs acting cooperatively 
to carry out certain biological functions. 
Moreover, a speci fi city score allows to evaluate 
the relationships between the miRNAs and their 
annotation terms. 

 In a similar way, the tool FAME uses compu-
tational target predictions in order to automati-
cally infer the processes affected by human 
miRNAs  [  110  ] . The website provides a simple 
menu for retrieving of fl ine computed data. By 
choosing a miRNA from the list, the user obtains 
two tables reporting the most signi fi cantly asso-
ciated Gene Ontology processes and KEGG 
Pathways, respectively. 

 For each miRNA-process/miRNA-pathway 
association, a score, a p-value, a q-value and an 
enrichment factor are given, together with the list 
of target genes involved in the process/pathway. 

 In the paper, the authors used their method to 
identify 68 miRNA families and 27 genomic 
clusters regulating 21 gene co-expression clusters 
in diverse human stem cell lines. They found out 
that clusters enriched with the targets of a speci fi c 
miRNA tend to be anti-correlated with the 
miRNA expression, whereas clusters depleted of 
miRNA targets are co-expressed with it.  

    15.4.2   miRNA Target Prediction 
Consensus and Gene Expression 
Data Integration 

 Most of the available tools for miRNA functional 
analysis make use of heterogeneous information, 
and their classi fi cation into categories, based on 
their purposes and the kind of data that they use, 
is not an easy task. However, there is a well dis-
tinct class of tools which make use of miRNA 
and gene expression data, either retrieved from 
public sources or provided by users. As discussed 
in Sects.  15.2  and  15.3 , miRNA and gene expres-
sion pro fi ling is an important source of informa-
tion in the study of miRNA functions. In this 
section we introduce miRonTop, MAGIA and 
Diana-miRExTra, three tools that combine target 
prediction with expression data. 

 miRonTop is an online application allowing 
the detection of miRNAs that signi fi cantly affect 
gene expression at a large scale  [  111  ] . It is a 
java web tool that integrates DNA microarrays 
or high-throughput sequencing data with target 
predictions in order to identify the potential 
implication of miRNAs on a speci fi c biological 
system. 

 Users have to provide a table summarizing a 
large-scale gene expression study in a tab-delim-
ited  fi le, and select the prediction software to be 
used, among miRbase, miRanda, TargetScan, 
PicTar or the exact seed (7-mer/8-mer) match. 

 The program then performs an enrichment 
analysis of the predicted targets, for each miRNA 
considered in the expression table, according to 
the selected prediction tool across the DOWN 
and the UP gene sets. The signi fi cance is evalu-
ated using the hypergeometric distribution. 

 MAGIA is a web-based tool which allows to 
retrieve and browse miRNA target predictions for 
human miRNAs, based on a number of different 
algorithms (PITA, miRanda and TargetScan), set-
ting cuttoffs on prediction scores, with the possi-
bility of combining them with Boolean operators 
 [  112  ] . The query output is a table including the 
list of predicted target genes or transcripts with 
different prediction scores according to the meth-
ods chosen by the user. For each prediction sev-
eral external links are provided. 
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 The tool also includes an analysis framework. 
Given as input miRNA and gene expression 
pro fi les (MATCHED or UNMATCHED expres-
sion data) it provides different statistical mea-
sures of pro fi les relatedness and algorithms for 
expression pro fi les combination. 

 For unmatched expression data, MAGIA 
employs a meta-analysis approach based on a 
p-value combination, while one of four different 
measures of relatedness (Spearman and Pearson 
correlation, mutual information, and a variational 
Bayesian model) can be adopted for the analysis 
of matched pro fi les. 

 The results are reported in a web page con-
taining different sections. For the top 250 most 
probable functional miRNA–mRNA interactions 
according to the association measure selected by 
the user, the interactive bipartite regulatory net-
work obtained through the analysis is reported 
along with the corresponding browsable table of 
relationships. 

 Finally, Diana-miRExTra is a web-based tool 
that allows the detection of overrepresented 
motifs (hexamers) on the 3 ¢  UTRs of deregulated 
genes, in order to identify miRNAs responsible 
for such deregulation  [  113  ] . 

 The input consists of two lists: a list of changed 
genes and a list of unchanged genes (background). 
Moreover, the web server offers the option to use 
evolutionary information in order to re fi ne 
results. 

 Instead of a gene list the user may provide a 
list of genes with associated fold change values 
(or any other metric used in high-throughput 
experiments). Optionally, the user may provide a 
list of miRNAs of interest to calculate results 
only for hexamers corresponding to these 
miRNAs. 

 The tool compares the distributions of all 
possible hexamers on the 3 ¢ UTR sequences 
between changed and unchanged genes. A one-
sided Wilcoxon Rank Sum test is used in order 
to identify hexamers that are present signi fi cantly 
more often in the set of changed genes com-
pared to the background of unchanged genes. A 
p-value for each motif is calculated signifying 
the probability that the changed and unchanged 
sets are produced by the same distribution and 

the differences between them are due to chance 
alone. DIANA-mirExTra provides a combinato-
rial hexamer score that takes into account the 
whole active region of the 8  fi rst nucleotides of 
the miRNA.  

    15.4.3   miRNA, Gene Expression 
and Networks 

 The third class of miRNA functional analysis 
tools that we consider provides users with net-
work oriented data. Networks constitute an effec-
tive tool for modelling complex biological 
systems and since miRNAs play a central role in 
many processes and pathways, it is important to 
have tools able to integrate miRNA related data 
into networks. In this subsection we brie fl y intro-
duce four different tools which combine miRNA 
related data with other information such as tran-
scription factors or gene expression in order to 
create interaction networks which model and 
describe the molecular systems involving miRNA 
regulation. Most of these tools also offer compu-
tational facilities for the visualization and the 
analysis of such networks. 

 The  fi rst tool that we describe is strictly con-
nected to Diana-miRExTra, introduced in the 
previous section, and is called Diana-miRPath. It 
is a web-based computational tool developed to 
identify molecular pathways potentially altered 
by the expression of single or multiple microR-
NAs  [  114  ] . The user can select either a single 
miRNA or multiple miRNAs and specify the 
tools used for the prediction of targets, among 
Diana-MicroT, PicTar and TargetScan  [  115  ] . 
The software then performs an enrichment anal-
ysis of the predicted miRNA targets comparing 
them to all known KEGG pathways. The output 
consists of a list of pathways in which the miRNA 
is potentially involved through its target genes. 
For each association an enrichment p-value is 
given. When working on multiple miRNAs, the 
algorithm also performs an enrichment analysis 
of the Union and Intersection target sets. The 
graphical output of the program provides an 
overview of the parts of the pathway modulated 
by microRNAs, facilitating the interpretation and 
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presentation of the analysis results. A direct link 
to the Diana-miRPath analysis is also provided 
in Diana-miRExTra for the targets of each 
miRNA belonging to the set of ‘changed’ genes. 

 MIR@NT@N is a tool which predicts regula-
tory networks and sub-networks including con-
served motifs, feedback loops (FBL) and 
feed-forward loops (FFL)  [  116  ] . It integrates 
Transcription Factors, miRNAs and genes into a 
uni fi ed model and allows the identi fi cation and 
the analysis of molecular interaction networks 
within a given biological context. 

 The MIR@NT@N database integrates infor-
mation from multiple available databases: 
PAZAR, JASPAR and oPOSSUM for TF regula-
tions, miRBase, MicroCosm and microRNA.org 
for miRNA target predictions, UniHI for protein-
protein interactions and Ensembl for gene anno-
tations  [  117–  124  ] . The tool is based on a 
meta-regulation network model that illustrates 
interactions between the considered three bio-
logical entities, transcription factors, microRNAs 
and protein-coding genes. 

 The tool allows to perform two types of query. 
The  fi rst type allows to search for novel key actors 
in a biological context. This query includes three 
sections. The  fi rst one is called Transcription 
Factor regulation which statistically predicts 
potential TFs regulating a list of miRNAs, or con-
versely miRNAs regulated by a list of TFs. 

 The second section is called miRNA regula-
tion and allows the prediction of signi fi cant tar-
gets of a list of miRNAs or the miRNAs targeting 
a list of genes. The third section is called 
Regulation Network. It allows to reconstitute 
meta-regulation networks together with the detec-
tion of regulatory motifs such as FBL or FFL, by 
combining both TF and miRNA regulation 
predictions. 

 Users can also provide a list of miRNA-gene 
interactions experimentally inferred from 
microarray data combining genes and miRNA 
expression, or a list of published TF-miRNA 
interactions. 

 The second type of query provides an over-
view on any TF, gene or miRNA, including their 
interactions. It has two types of search called 
Quick Search and Quick Network. 

 The  fi rst one rapidly retrieves information on 
any actor, its regulators and/or targets, while 
Quick Network generates regulation networks 
from a list of actors presumed to be involved in a 
particular biological context, and also allows the 
extraction of sub-networks including regulatory 
motifs. The output is an exportable interaction 
graph recapitulating all predicted interactions 
and which is linked to external resources. 

 Based on these predictions, the user can gener-
ate networks and further analyze them to identify 
sub-networks, including motifs such as FBL and 
FFL. In addition, networks can be built from lists 
of molecular actors in a given biological process 
to predict novel and unanticipated interactions. 

 miRConnX is a web tool for the identi fi cation 
of gene network motifs involving transcription 
factors and miRNAs  [  125  ] . Users have to provide 
a document with a gene expression pro fi le. 
Optionally, a document with a miRNA expres-
sion pro fi le can be provided. 

 The output consists of the graphic visualiza-
tion of networks involving miRNAs, transcrip-
tion factors and miRNA-regulated genes. 

 Details about the miRNA/gene and the tran-
scription factor/miRNA interactions are provided 
in tables, reporting the effect (activation/repres-
sion), the identi fi ed FFL motifs, if any, the 
strength of the interaction and several links to 
other resources about the corresponding miRNA 
and genes, like Gene Ontology, miRo’ and 
miR2Disease. 

 The tool uses a pre-compiled network, which 
is derived from transcription factors binding pre-
dictions, miRNA target predictions and literature 
evidences. All the connections in this network 
correspond to direct, predicted or veri fi ed inter-
actions. Another network based on the input 
expression data is then created by using a statisti-
cal association measure. This network connects 
transcription factors and miRNAs and doesn’t 
discriminate between direct and indirect interac-
tions. The two networks are superimposed via an 
integration function. The result is a directed net-
work, which is a smaller version of the pre-com-
piled network, re fi ned by the user provided 
expression data. Since the expression pro fi les can 
be related to a certain disease or phenotype, the 
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resulting network is representative of the condition 
of interest. 

 Finally, we describe miRScape, a Cytoscape 
plugin for annotating networks with miRNAs. 
Cytoscape is a software environment for the visu-
alization and analysis of biological networks 
 [  126–  129  ] . It has a basic set of features for data 
integration and visualization, while additional 
features are available as plug-ins. miRScape is 
the  fi rst Cytoscape plug-in allowing the mining 
of biological networks annotated with miRNAs. 
The data is retrieved from miRò, thus miRScape 
represents a bridge connecting miRò and 
Cytoscape. Given a network, previously loaded 
into Cytoscape, miRScape allows to identify 
relationships among genes, processes, functions 
and diseases at the miRNA level and annotating 
them as attributes of each network node. These 
annotated networks may be further analyzed by 
using mining features available as plug-ins on 
Cytoscape allowing to  fi nd for examples hubs, 
interesting motifs and so on. 

 mirScape is equipped with two modules, avail-
able on two different panels. The  fi rst panel 
allows users to perform a “Search by Gene” 
query. Once a set of nodes in the network have 
been selected, users can choose the kind of data 
to be retrieved from miRò, which can be pro-
cesses, functions, and diseases in which the 
selected genes are involved and the miRNAs reg-
ulating them. The result is the annotation of the 
network with the obtained information. The 
“Search by miRNA” panel allows the selection of 
a set of miRNAs and the source of miRNA target 
information, which can be TargetScan, PicTar, 
miRanda and miRecords (validated interactions). 
Moreover, it is possible to choose to annotate the 
nodes with information about the related dis-
eases, processes and functions. 

 Once the information has been retrieved 
from miRò, the new miRNA nodes are added to 
the network and connected to target gene nodes, 
if they are present in the network. The annota-
tion function allows to store such acquired data 
as network attributes. However, the annotation 
function can be used as a stand-alone tool, storing 
in the network all the information retrievable 
from miRò.   

    15.5   Conclusions 

 MiRNA and, more in general, ncRNA research is 
in its golden age. It is clear that miRNAs are 
involved in a variety of fundamental processes 
and that their dysregulation can be related to can-
cer and many other diseases. Evidence shows that 
they don’t act as single actors but cooperate 
among themselves and together with other mole-
cules, like transcription factors, to regulate gene 
expression and, indirectly, carry out speci fi c 
functions. 

 The number of computational tools for the 
analysis of miRNA related data is continuously 
increasing. They range from simple look-up 
resources to more sophisticated analysis tools. 
Some of them are based on manually curated 
information but the vast majority makes also use 
of computationally predicted data. Although 
miRNA pro fi ling is a valuable diagnostic and 
prognostic tool itself, allowing the classi fi cation 
of samples and the identi fi cation of biomarkers, 
the central data in the analysis pipeline is the tar-
get gene, through which the miRNA is connected 
to all the other data. Indeed, miRNAs exert their 
functions by directly regulating the expression of 
their target genes and most genes are well anno-
tated with the processes, diseases and pathways 
in which they are involved. Thus, miRNAs inherit 
these annotations, but this only represents a  fi rst 
step in their functional analysis. Much effort is 
needed to uncover the real role of miRNAs in the 
great number of processes and diseases in which 
they are potentially involved and this is the ulti-
mate goal of most of the computational tools 
reviewed in this chapter. 

 Some of them are focused on speci fi c kinds of 
data, while others try to provide a complete view 
of the environment in which miRNAs operate 
and offer modules for the analysis of the complex 
relationships in that they intertwine with the other 
molecular actors. 

 The increase of precision in the data produced 
by the use of new technologies for the measure-
ment of gene expression and high-throughput 
sequencing, involves the need for more sophisti-
cated software tools for the analysis of this data. 
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As in a bottom-up schema, the collected raw data 
constitutes a  fi rst layer. The upper layers consist 
of tools for the annotation of this data, often 
focused on speci fi c aspects. This annotated data 
constitutes the input for the top layer tools, whose 
aim is the integration of heterogeneous informa-
tion in order to produce general models of miRNA 
functions in the context of complex processes. 
These tools must be equipped with powerful anal-
ysis facilities, helping researchers to formulate 
concrete functional hypotheses and guiding them 
to design the correct experiments to perform 
hypotheses validation. Then, the data produced 
with these experiments represents a feedback for 
the re fi nement of the analysis pipeline. 

 The  fi nal key point is the integration of public 
data with user data, and this is already partly 
ful fi lled by some of the reviewed tools. In fact, 
many users typically get original data from their 
experiments, thus it is important to have tools 
able to combine this data with the other informa-
tion stored in databases, in order to produce more 
reliable models speci fi c to user needs.      
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  Abstract 

 MicroRNAs (miRNAs) negatively regulate gene expression level of mRNA 
post-transcriptionally. Deep sequencing and large-scale screening methods 
have yielded about 1,500 miRNA sequences in human. Each miRNA 
contains a seed sequence that is required, but not suf fi cient, for the correct 
matching with its targets. Recent technological advances make it possible 
to capture the miRNAs with their cognate mRNAs at the RISC complex. 
These experiments have revealed thousands of validated mRNA-miRNA 
pairing events. In the context of human stem cells, 90% of the identi fi ed 
transcripts appear to be paired with at least two different miRNAs. 

 In this chapter, we present a comprehensive outline for a combinatorial 
regulation mode by miRNAs. Initially, we summarize the computational 
and experimental evidence that support a combined effect of multiple 
miRNAs. Then, we describe miRror2.0, a platform speci fi cally convened 
to consider the likelihood of miRNAs cooperativity in view of the targets, 
tissues and cell lines. We show that results from miRror2.0 can be further 
re fi ned by an iterative procedure, calls Psi-miRror that gauges the robust-
ness of the regulation. We illustrate the combinatorial regulation projected 
onto graphs of human pathways and show that these pathways are ame-
nable to disruption by a small set of miRNAs. Finally, we propose that 
miRNA combinatorial regulation is an attractive regulatory strategy not 
only at the level of single target, but also at the level of pathways and 
cellular homeostasis. The joint operation of miRNAs is a powerful means 
to overcome the low speci fi city inherent in each individual miRNA.  

      Working    Together: Combinatorial 
Regulation by microRNAs       

     Yitzhak   Friedman   ,    Ohad   Balaga   , and    Michal   Linial         
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  Abbreviations  

  AGO    Argonaute   
  DB    database   
  DIS    disconnecting score   
  GO    gene ontology   
  HITS-CLIP    high-throughput sequencing of 

RNAs isolated by cross-linking 
immunoprecipitation   

  PAR-CLIP    photoactivatable-ribonucleo-
side-enhanced crosslinking and 
immunoprecipitation   

  miRNA (miR)    microRNA   
  ML    machine learning   
  MS    mass spectrometry   
  ncRNA    non-coding RNA 
RISC RNA-induced silencing complex   
  SILAC    stable isotope labeling by 

amino acids in cell culture   
  UTR    untranslated region.         

    16.1   General Overview 

 MicroRNAs (miRNAs) are short non-coding 
RNAs (ncRNAs) that negatively regulate gene 
expression post-transcriptionally  [  1  ] . Recent 
miRNA detection techniques con fi rmed the pres-
ence of hundreds of miRNAs in healthy and dis-
eased tissues  [  2,   3  ] . An estimate across animal 
genomes suggests that almost 1% of the genes in 
human and  C. elegans  consists of miRNAs. These 
estimates are derived from a combination of 
computational and experimental methods  [  4,   5  ] . 

 In human and other metazoa, miRNA plays a 
role as an additional layer of post-transcriptional 
regulation  [  6  ] . Mechanistically, miRNAs exert 
their function via base-pair complementarity at 
the RNA-induced silencing complex (RISC)  [  7  ] . 
The binding of miRNA to mRNA leads to gene 
silencing. Silencing of a gene by miRNA leads to 
a change in the mRNA stability, enhanced degra-
dation and to some degree also translational arrest 

 [  1,   8,   9  ] . It was originally proposed that the 
impact of miRNAs in animals is primarily at the 
translational level  [  10–  12  ] . However, the current 
view argues that most of the miRNA effects are 
attributable to the post-transcriptional enhance-
ment of mRNA degradation (through blocking of 
cap binding proteins, deadenylation and more). 

 A coherent picture of miRNA regulation is still 
highly fragmented, mainly due to gaps in the 
understanding of miRNA modes of action  in-vivo  
 [  13  ] . Nevertheless, ample evidence indicates that 
deregulation of miRNAs leads to pathogenesis ( i.e. , 
obesity, cancer, neurodegenerative diseases). In 
fact, for viral infection and cancer, a coordinated 
change in the relative expression levels of miRNA-
sets were shown to be a strong indicator of the 
pathological state  [  7,   14,   15  ] . Less is known on the 
role of miRNAs under normal physiology condi-
tions, chronic metabolic stress and ageing  [  16,   17  ] . 

 miRNAs are best known for the regulation of 
stem cell differentiation  [  18  ] , immunological cell 
function  [  19  ] , organogenesis  [  20  ] , cell identity 
 [  21  ] , apoptosis  [  22  ]  and more. The study of 
miRNAs in the context of cancer biology shows 
that a disruption in miRNA biogenesis leads to 
tumorigenesis  [  23  ]  and to a drastic change in the 
relative expression of a large number of mRNAs 
 [  24  ] . Furthermore, several miRNAs directly regu-
late cell cycle genes and thus induce oncogenic 
activity  [  3,   25,   26  ] . In other instances, the activity 
of miRNA resembles tumor suppression  [  27  ] . 
Interestingly, many of the miRNAs in human are 
located at fragile sites  [  28  ]  in agreement with the 
prevalence of miRNAs in cancer progression. 

    16.1.1   Outline 

 This chapter focuses on the notion of combinato-
rial miRNA action. We consider this hypothesis 
by appealing to experimental data as well as 
computational evidence. We provide evidence 
that the concept of ‘miRNAs working together’ is 

  Keywords 

 microRNA  •  Database  •  Prediction tools • 3 ¢ -UTR  •  Genomics  •  Deep 
sequencing  •  Regulatory pathway  •  Bioinformatics  
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valid for the different levels of cell regulation 
from an individual target to a set of targets and 
ultimately, at biological pathways. We present 
miRror2.0 as a computational, statistical platform 
that incorporates the concept of cooperativity 
when analyzing experimental results. We present 
the notion that within cells, the disruption of a 
network is best achieved by a coordinated action 
of a series of miRNAs. We conclude by suggest-
ing some general trends and architectural design 
principles for cellular regulation by miRNAs. 

    16.1.1.1   Classi fi cation and 
Nomenclatures 

 In this section, we focus on the complete set of 
human miRNAs. There are over 1,500 miRNAs 
in humans and about 750 in mouse  [  29  ] . We 
introduce some classi fi cations and accepted 
notations for the inventory of miRNAs:
     (i)     Chromosomal organization:  Each miRNA is 

annotated as ‘isolate’ or ‘cluster.’ Speci fi cally, 
a miRNA that is located in the vicinity of 
another one (within 10 kb) belongs to a 
cluster. miRNA that belong to a cluster are 
encoded in a polycistronic transcript. Over 
40% of human miRNAs are organized in 
such genomic clusters. The remaining miR-
NAs are considered ‘isolates’.  

     (ii)     Degree of seed sequence   overlap:  Two miR-
NAs that overlap in their seed sequences 
(6–8 nucleotides at the 5 ¢  region of the 
mature miRNA) belong to the same family. 
The term ‘single’ refers to the appearance of 
the seed only once. The de fi nition of a fam-
ily (according to miRBase  [  29  ] ) is across 
species. For our discussion, we follow a spe-
cies centric view of a family. Illustratively, 
consider a seed sequence of a miRNA that 
appears once in human, once in mouse but 
not in the  fl y. This sequence is viewed as 
‘single’ for human or mouse, but as a ‘fam-
ily’ from a cross-taxa perspective.  

    (iii)     Degree of pre-miR overlap:  The hairpin 
sequence of the pre-miR (ranges from 70 to 
120 nucleotides) includes the mature miRNA 
sequence. miRNAs that share sequence 
identity beyond the seed region may be 
identical in the entire miRNA sequence 
(22–24 nucleotides), or even at the entire 

primary transcript (called pri-miR). Such 
classi fi cation is not limited to sequence 
identity and also considers secondary struc-
ture resemblance  [  29  ] .  

    (iv)     IsomiR classes:  Along the miRNA biogenesis 
and maturation process  [  30  ] , two strands of 
the stem-loop structure are produced  [  31  ] . 
The accumulated short reads from deep 
sequencing experiments indicated the presence 
of IsomiRs. The IsomiRs refer to miRNAs 
variants that derive from the chromosomal 
location but are modi fi ed, mainly at the 3 ¢  and 
5 ¢  tails to produce rich variants of mature 
miRNAs  [  32  ] . In such experiments, often the 
two complementary strands are identi fi ed, 
albeit at drastically different expression 
levels. The strands are called ‘guide/mature’ 
and ‘passenger/star’ strands. Traditionally, 
the non-preferred strand sequences were 
indicated as miR* (star, antisense)  [  33  ]    .  

    (v)     Genomic identity:  Most miRNAs are located 
in intergenic regions, similar to any coding 
gene. Some miRNAs overlap genes and their 
sequence is at the same position as other cod-
ing or non-coding gene. A substantial number 
of miRNAs are located in introns of host genes 
(mirtrons,  [  34  ] ). The different genomic loca-
tion is indicative of variation in the maturation 
and regulation process  [  35,   36  ] .  

    (vi)     Evolutionary evidence:  miRNAs can be 
classi fi ed according to their degree of evolu-
tionary conservation. While many miRNAs 
are human speci fi c, some orthologs are found 
only in chimpanzees  [  37  ] . Other miRNAs 
span the entire animal tree (from human to 
hydra)  [  38  ] . The presence of miRNAs that 
are evolutionary conserved is in accord with 
their  role in basic physiology and cell fate 
functions.      

 Figure  16.1  illustrates two forms of miRNA 
classi fi cations (a chromosomal location and a 
family assignment) and their relation.  

 The nomenclature of miRNAs is still evolv-
ing. The growth in the number of identi fi ed miR-
NAs is attributed to several deep sequencing 
datasets  [  33  ] . Results from this technology have 
led to the expansion in the number of known 
miRNAs, mainly by identifying the complemen-
tary strand (denoted -5p and -3p to identify the 
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directionality of the sequence as the 5 ¢ -arm and 
the 3 ¢ -arm of the stem, respectively) (Table  16.1 ). 
Table  16.1  illustrates the guidelines for navigat-
ing among the different miRNA names. 
Unfortunately, different names may be used for 
the same sequence by different database. For 
example, microRNA.org  [  39  ] , PicTar  [  40  ]  and 
miRDB  [  41  ]  refer to the same sequence as hsa-
miR-19b-2-5p, hsa-miR-19b and hsa-miR-
19b-2*, respectively   . Agreement on canonical 
names is necessary for the task of comparing the 
performance of individual miRNA-target predic-
tors. Inconsistency in miRNA naming is an unfor-
tunate reality. A reduced consistency between 
different miRNA-target predictors is partially a 
result of the inconsistent use of miRNA naming 
by different miRNA-target DBs.     

    16.2   Pairing Between a miRNA 
and Its Target 

 The most studied recognition signal for miRNA-
target pairing is restricted to 6–8 nucleotides (the 
seed and the immediate vicinity). With 1,500 
miRNAs in human and about 10,000 candidate 
target genes (excluding their alternative splicing 
variants), the network of interactions is quite 
complex. Critically, the determinants of binding 
speci fi city are poorly understood. Contrary to the 
known activity of transcription factors, individual 
miRNAs often attenuate the expression of their 
direct targets very modestly ( e.g.,  25% decrease in 
expression level)  [  42  ] . Consequently, a de fi nitive 
identi fi cation of miRNA mappings to their genuine 

  Fig. 16.1    Classi fi cations of the human miRNAs. The 
human miRNAs are classi fi ed according to chromosomal 
organization and family assignments. Focusing on the 1,527 
human miRNAs (miRBase Ver. 18, November 2011) indi-
cates 132 chromosomal clusters (covering 417 miRNAs). 

The rest are isolated miRNAs (separated by >10 kb). Genes 
that share the same seed in human are included in the same 
family. There are 139 families, covering 540 miRNAs. 310 
of the miRNAs belong to families that intersect with clus-
ters. The rest (230 miRNAs) are found among the ‘isolates’       

   Table 16.1    Nomenclature of miRNAs   

 Family name 
 # ID stem-loop 
Cross-taxa 

 # ID stem-loop  miR/mir  a  
 Comment on nomenclature  Human  Example 

 mir-515  144  42  hsa-miR-527  Unique mature sequence 
 mir-101  48  2  hsa-mir-101-1  Same mature sequence as hsa-mir-101-2, 

different genomic location 
 mir-30  122  6  hsa-mir-30a  High sequence similarity to hsa-mir-30b 

( i.e. , same seed) 
 mir-19  82  3  hsa-miR-19b-3p  Related seed, indicating the arm of the stem 

  Examples of the naming of miRNAs and the information these names suggest 
  a miR is used to indicates the mature miRNA sequence. ‘mir’ indicates the stem-loop precursor  
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targets is unlikely to succeed comprehensively 
with current technology  [  43  ] . The fraction of false 
positives across all prediction methods is high, 
and the number of false negatives is unknown 
 [  44,   45  ] . As a rough estimate, each miRNA is 
assumed to attenuate tens to hundreds of targets. 
More importantly, distinguishing between a direct 
and an indirect miRNA–target interaction remains 
a crucial challenge in the  fi eld. 

    16.2.1   Computational miRNA-Target 
Predictions 

 Currently, miRBase (version 18) is the most 
exhaustive collection of miRNAs with over 
18,000 mature miRNA sequences in over 100 
organisms  [  33  ] . The 1,500 miRNAs from human 
and 750 from mouse are estimated to target about 
half of the genes in human and rodents  [  46  ] . 

 There are many databases, algorithms and 
resources that provide predictions of miRNAs and 
their direct targets. We will not explicitly discuss 
the differences among these major resources. We 
introduce the main resources that were applied 
while developing the concept of ‘combinatorial 
regulation’ and the associated software platform. 
However, it is important to note that several of 
these tools are meta-servers that combine results 
from a variety of individual resources  [  47  ] . 

 Currently, there are over a dozen miRNA-tar-
get resources  [  48,   49  ] . While all resources use the 
knowledge of seed sequence complementarity, 
some algorithms add a weight to account for 
imperfect hybridization, context dependent 
features ( e.g. , accessibility of binding sites), spe-
cies conservation, thermodynamic stability of the 
miRNA-mRNA duplex and any combination of 
the above. The stable miRNA-target prediction 
databases include: (i)  TargetScan  database  [  50  ] ; 
(ii)  microCosm  which is based on the miRanda 
algorithm  [  51  ] ; (iii)  PicTar  (with two settings, 
according to the degree of evolutionary conversa-
tion)  [  40  ] ; (iv)  DIANA–MicroT   [  52  ] ; (v)  PITA  
(with dual settings for stringency and coverage) 
 [  53  ] ; (vi)  MirZ   [  54  ] ; (vii)  microRNA.org  that 
allows analysis of multiple miRNAs acting on the 
same gene-target using the miRanda algorithm 

 [  39  ] ; (viii)  miRDB  resource  [  41  ] ; (ix)  TargetRank  
(either conserved or all miRNAs)  [  55  ] ; (x) miR-
NAMap2  [  56  ] ; (xi) RNA22  (cbcsrv.watson.ibm.
com/rna22.html) , and (xii) the meta-predictor 
MAMI (  http://mami.med.harvard.edu/    ). A total 
of 15 sets of predictions are available for human 
miRNAs. While this is far from an exhaustive 
list, the most stable and up-to-date DBs for 
miRNA-target prediction are listed. 

 Additional descriptive features associated with 
miRNAs include the distribution of miRNA bind-
ing sites, positioning of the binding sites on the 
mRNA sequences, transcript length, and energy of 
the secondary structures of the transcript  [  57  ] . 
These features are often excluded in the prediction 
algorithms, due to their sparse characterization in 
existing  in-vivo  studies and the dif fi culty to gener-
alize these features across animals. Nevertheless, 
recent miRNA-prediction tools are based on the 
use of the more thoroughly characterized features 
of miRNAs in conjunction with algorithms that 
use statistical models such as a Bayesian models 
or machine learning (ML). In such schemes, 
hundreds of examples (negative and positive) are 
used to suggest the best separation between the 
true and false predictions. The consistency with 
validated results is highest among predictors that 
applied ML technologies  [  58  ] . Several of the 
resources ( MirZ ,  microRNA.org)  and miRBase 
 [  33  ]  provide miRNA expression pro fi les for a large 
number of tissues and cell lines. 

 Rigorous assessment studies showed that the 
consistency among major miRNA-target predic-
tion tools is rather poor, re fl ecting a huge fraction 
of false positives associated with each of them 
 [  59  ] . The ability of the most established pre-
dictors (PITA, DIANA-microT4.0, Miranda, 
Microcosm, TargetScan5.0, TargetScanS, Pictar 
and MirZ-ElMMo and RNA22) to explain the 
pro fi le of the down-regulated genes in cells fol-
lowing overexpressing of individual miRNA has 
been reported. For example, the precision in 
recovering the results from hsa-miR-1 overex-
pression in HeLa cells  [  42  ]  was 23–50% with a 
sensitivity level of 6–20%. The union or intersec-
tion of any  fi ve of these predictors had negligible 
effect on the overall success and, in fact, a slight 
reduction in the performance was noted.  

http://mami.med.harvard.edu/
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    16.2.2   Experimental Data for miRNAs 
in Cellular Systems 

 In recent years, experimental protocols and 
tailored chemical probes were developed for the 
study of miRNA regulation within a cellular con-
text. Their development was necessary since the 
biochemical approaches initially used to identify 
miRNAs were biased towards the most abundant 
miRNAs. Other recently developed methods 
( e.g. , those which provide detailed analysis of the 
factors determining the level for the regulation of 
a speci fi c miRNA towards a speci fi c target using, 
 e.g. , 3 ¢ -UTR segment-luciferase reporter systems 
will not be discussed but are reviewed in  [  60  ] ). 

 The identi fi cation of miRNAs in a broad spec-
trum of metazoan calls for applying comparative 
genomics technologies. The evolutionary signal 
from sequence conservation and structural con-
sideration was brought into consideration. Hence, 
the collection of reported miRNAs has expanded 
and was doubled between 2009 and 2011. We 
will only mention methods that provide a global 
view on the cellular regulation by miRNAs  [  61  ] . 

 Functional con fi rmation of the miRNAs and 
their target genes is mostly based on  in-vitro  stud-
ies in which a speci fi c miRNA is introduced to 
cells. In a mirror view, a candidate miRNA gene is 
knocked down ( e.g.,  using anti-miR). A few hours 
after the cell manipulation (usually 12–72 h), 
global gene expression pro fi ling is performed 
using transcriptomic DNA microarray. The differ-
ential expression levels of genes relative to mock-
transfected cells are then recorded. The signal that 
is sought is a negative correlation between the 
overexpression of the miRNA of interest and the 
targeted genes. The results of such experiments 
are collected in the major gene expression archives 
including GEO  [  62  ]  and ArrayExpress  [  63  ] . Over 
30 large-scale experiments of this type were car-
ried out (some with few controls and a minimal 
reproducibility in the experimental design). Major 
concern in such experiments is that a shift in the 
balance between the authentic binding sites and 
off-targets cannot be avoided  [  64  ] . 

 In a more physiological paradigm, cells are 
exposed to some predetermined condition 
(hypoxia, glucose starvation, heat shock, drug) 
and a change in the expression pro fi le of the 

miRNAs is monitored. The result from these 
cases is a list of a few hundred candidate miRNAs. 
Applying the commercially available miRNA 
DNA-array platforms, large-scale analyses are 
presented. In recent years, an experimental design 
has emerged which uses size fractionated RNA 
from treated cells as input for deep sequencing, 
thereby collecting a complete set of ‘small ncR-
NAs’, among them the miRNAs  [  65  ] . Several 
large-scale studies of human tissues in health and 
disease were reported using this approach. For 
example, a catalogue of the miRNAs was com-
piled by RNA-Seq from cancerous and normal 
cervical tissues  [  66  ] , melanoma  [  67  ] , human stem 
cells  [  68  ]  and more. These experiments detected 
coordinated change in the expression of groups of 
miRNAs  [  5  ] . We expect to see more experiments 
that follow such experimental setting. 

 In human embryonic stem cells (hESC), the 
regulation of miRNAs was monitored by immu-
noprecipitation (IP) of the Argonaute (AGO) 
proteins  [  69  ] . Variations of this approach were 
reported using tagged AGO proteins. In such 
settings, the short miRNAs were eluted from the 
complexes and characterized by sequencing 
 [  70  ] . A similar approach was followed with 
other RISC proteins  [  71  ] . 

 The methods described above focus on a 
miRNA paired with its cognate mRNA target. The 
potential effect of miRNAs at the proteome level 
is typically studied using Mass spectrometry (MS) 
based methods  [  11,   72  ] . Brie fl y, cells are meta-
bolically labeled ( e.g. , stable isotope labeling by 
amino acids, SILAC) to allow a direct comparison 
of protein expression. While the results from such 
methodologies are non-conclusive, the expression 
level of hundreds of proteins appears to be affected 
 [  72  ] . It is likely that miRNAs do modify, whether 
directly or as a secondary effect, the expression 
levels of many proteins. This is probably achieved 
through attenuation of ribosomal initiation, elon-
gation or translational rate.  

    16.2.3   Validation of miRNAs-Targets 

 Computational predictions and the experimental 
results are both compiled in the TarBase database 
 [  73  ] . TarBase is a manually compiled repository 
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for achieving the validated miRNA-target pairs. 
It relies mainly on  in-vitro  miRNA overexpression 
experiments. Additionally, literature-based records 
for miRNA-targets are collected in miRecords  [  74  ] . 
An assessment using the TarBase benchmark  [  73  ]  
with ~50 manually validated instances and the 
results of a quantitative Mass Spectrometry (MS) 
experiment con fi rmed the limited agreement 
between the target prediction algorithms  [  58  ] . 
A gain in prediction success was achieved by 
combining several prediction resources (using 
TarBase as a benchmark). However, the consis-
tency in prediction of the different algorithms is 
rather poor  [  75,   76  ] . 

 Many experimentalists tend to use their 
favorite miRNA-target predicting algorithm and 
resources (often with insuf fi cient justi fi cation). 
The difference in the prediction results and hence, 
in the biological interpretation is a result of a sub-
stantial fraction of false positives present by all 
existing methods. To provide a functional rele-
vance to miRNA regulation, several tools analyze 
the match of miRNA-targets in view of the cell 
processes, GO (gene ontology), diseases  [  77  ]  and 
pathways  [  78,   79  ] .   

    16.3   Missing Pieces in 
Understanding miRNA 
Regulation 

 Some aspects of miRNA regulation in cells remain 
open. For example, we lack an understanding of 
the kinetics and rate limiting steps throughout 
the maturation of the pri-miRNA into their active 
miRNA form  [  80,   81  ] . The mechanistic details of 
miRNA-target recognition remain elusive. For 
example, the functional relevance of the comple-
mentary strand in the pre-miRNA duplex, coined 
passenger miRNA, is a matter of debate. Initially, 
it was thought that this strand is simply destined 
for degradation. However, in some cases, the 
expression of the passenger miRNAs is associated 
with tissue speci fi city and developmental stages. 
RNA editing of miRNAs provides an additional 
level of diversity. IsomiRs are miRNAs sequences 
that are slightly different from those encoded by 
the DNA. It is postulate that isomiRs are active 
components of miRNA-based regulation  [  31  ] . An 

even broader questions concerns miRNAs in the 
context of the mRNAs and related miRNAs. The 
following aspects in miRNA biology remain for 
further investigations:
     (i)    The dynamic aspects of the regulation. Kinetic 

parameters are missing for degradation, turn-
over and extrusion of miRNAs  [  82  ] .  

    (ii)    The AGO occupancy in the cells. The link 
between induction of mRNA degradation 
and the AGO occupancy remains to be deter-
mined  [  83  ] . Speci fi cally, the overlap between 
the miRNAs that are associated with a 
speci fi c AGO ( e.g.,  AGO-1 and AGO-2) is 
minimal  [  84  ] .  

    (iii)    The quantitative nature of miRNA regula-
tion. Speci fi cally, the balance of miRNAs 
and mRNAs can be considered from the per-
spectives of titration  [  85  ] , accessibility of 
binding sites and competition  [  86  ] . miRNAs 
in cells are probably sequestered by a 
“sponge” effect  [  87  ] . In such scenarios, a 
competition on binding sites may dominate 
the balance of miRNAs, AGO binding sites 
and eventually the cellular response  [  88  ] .  

    (iv)    The localization of miRNA regulation. Most 
of the proteins necessary for miRNA gene 
silencing are localized to P-bodies. However, 
the knowledge regarding sub-cellular parti-
tion of RISC, mRNA and miRNA within the 
cells is very limited  [  89  ] .      

    16.4   Working Together 

 Several of these open questions can be approached 
by a quantitative consideration of mRNAs and 
miRNAs guided by the concept of competing 
endogenous RNA (ceRNA)  [  90  ] . Accordingly, 
miRNA-binding sites are assumed to regulate the 
availability of miRNAs. A prediction from the 
ceRNA hypothesis claims that the induction of 
genes having speci fi c miRNA binding sites will 
indirectly lead to a reduction in the potency of 
such miRNAs. This hypothesis is supported by 
experimental data  [  86  ] . Based on the ceRNA 
concept, viruses, pseudogenes and even dupli-
cated genes should be considered as elements 
that may titrate out the miRNAs, leading to a 
relief of basal repression. 
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 We will henceforth focus our discussion to the 
notion of combinatorial activity of miRNAs and 
the view of miRNAs ‘working together’ as part 
of a broader cellular design principle. 

    16.4.1   Evidence for miRNAs Working 
Together 

 The concept of combinatorial regulation by miR-
NAs was validated experimentally. Manipulating 
a target gene by adding multiple distinct miRNA 
binding sites on the same transcript augmented 
the regulation levels  [  8,   91,   92  ] . In a cellular con-
text, a parallel overexpression of 2–3 miRNAs 
resulted in a synergistic effect on the transcrip-
tional level of some candidate genes  [  93  ] . For 
example, in pancreatic cells, for the known target 
of miR-375, a combined addition of miR-124 and 
let-7b led to synergy in target inhibition  [  40  ] . 
Similarly, the expression of miR-16, miR-34a and 
miR-106b altered the cell cycle while no effect on 
the cell cycle is monitored by each of these miR-
NAs, separately  [  85  ] . The regulation of the tumor 
suppressor Fus1 in cancer cells depends on the 
presence of at least three miRNAs (miR-93, miR-
98, miR-197) working together  [  94  ] . Importantly, 
introducing several miRNAs not only affected 
speci fi c candidate targets but also had a measur-
able effect on speci fi c pathways. For example, a 
complete block in cell cycle was achieved by a 
combination of three miRNAs, while the impact 
of each of these miRNAs alone was less pro-
nounced  [  95  ] . A synergetic effect on cell death 
and the oncogenic properties of multiple miRNAs 
acting on the same target was recently established 
 [  96  ] . Despite the growing number of instances 
reported, the generality of the combinatorial phe-
nomenon is yet to be fully established  [  97  ] . 

 Some genes are known to have many (pre-
dicted) miRNA binding sites. Many of these 
genes are cell cycle regulators. Recently, several 
systematic analyses were performed in order to 
validate the cooperative action of miRNAs on 
candidate genes  [  61  ] . Cells were manipulated to 
express a luciferase reporter gene for the 3 ¢ -UTR 
of p21 which is a cyclin-dependent kinase inhibitor 
1 (also called p21/WAF1). From over 250 different 

miRNAs that were tested, about 30 miRNAs 
showed a direct attenuation of the reporter gene 
 [  98  ] . Similar experiments for the CCND1 gene 
(G1/S-speci fi c cyclin-D1) revealed similar results 
with seven miRNAs cooperatively attenuating 
the expression of CCND1, as established by using 
a 3 ¢ -UTR luciferase reporter construct  [  99  ] .  

    16.4.2   Tools for the Detection 
of Combinatorial Regulation 
by miRNAs 

 The goal of most described miRNA-target pre-
dicting tools (Sect.  16.2.1 ) is to predict one-to-
one relations, namely to determine a miRNA that 
matches a transcript (at a single or multiple sites). 
However, as discussed in Sect.  16.4.1 , miRNAs 
most likely act as an ensemble that directly and 
speci fi cally alters the expression of multiple 
gene-targets. Conversely, a collection of genes 
that are targeted coordinately in some experimen-
tal settings can be used as input to uncover the set 
of miRNAs that is most likely responsible for 
their measured level of gene expression. Along 
this principle, the MiRonTop  [  100  ] , Diana-
mirExTra  [  101  ]  and GeneSet2miRNA  [  102  ]  were 
developed. 

 We expanded this notion in the miRror Suite 
platform. miRror Suite transforms noisy miRNA 
predictions into a rational uni fi ed analysis. The 
miRror Suite is centered on the miRror2.0 algo-
rithm  [  103  ] . The implementation is based on 
projecting most existing prediction tools into a 
uni fi ed statistical platform. Thus miRror2.0 can 
predict a coherent list of miRNAs that best 
explain the observed, complex signature of hun-
dreds of down-regulated genes from experimen-
tal data. While our discussion on miRror2.0 
focuses on miRNAs from human, the system sup-
ports the analysis of other animals (mouse, rat, 
 fl y, worm and zebra fi sh). There are a number of 
optional parameters that allow the miRror2.0 tool 
to restrict the analysis to more speci fi c requests. 
For example, the prediction can operate on prese-
lected tissues or cell-lines (from about 100 
options). We demonstrate the generality of the 
miRror application and its inherent  fl exibility. 
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 In practice, the miRror platform is used to 
connect a gene list to the minimal set of preferred 
miRNAs or a miRNA collection to a set of genes 
(Fig.  16.2a ). We refer to these analyses as 
Gene2miR and miR2Gene, respectively. The core 
of the statistical basis underlying miRror is the 
miRtegrate algorithm (Fig.  16.2a ). In a nutshell, 
for the Gene2miR mode, miRtegrate calculates 
the probability of matches between the experi-
mental gene set and all miRNAs. This is done by 
comparing the gene set to the complete gene list 
that is reported by each of the miRNA-target pre-
diction DBs. The probability of the miRNA’s 
interaction with the input gene set as opposed to 
the rest of the genes in each DB is calculated. 

Calculating a P-value for the set of input (miRNA 
or Genes) is performed according to the hyper-
geometric distribution  [  103  ] . The reported result 
is any set with ranked probabilities and scores 
that meet the statistical threshold ( e.g. , P-value 
= 0.01, corrected for multiple tests).  

 Figure  16.2a  illustrates the key principles of 
the miRror2.0 platform. In reality, the number of 
genes or miRNAs that result from any large-scale 
transcriptomic experiments is in the 10s–100s for 
miRNAs and the 100s–1,000s for genes. The 
platform is based on a large number of parame-
ters allowing control over the statistical threshold 
of miRtegrate (which effectively translates to 
operation stringency). For example, in a case 

  Fig. 16.2    The work fl ow of the miRror2.0 platform. ( a ) 
miRror2.0 in the miR2Gene mode. There are two main 
modes of operations: the miR2Gene and the Gene2miR. 
The input for these modes is a set of miRNAs or genes of 
any size. Following a selection of an organism (human, 
mouse, rat, worm,  fl y and zebra fi sh) and the operational 
mode (miR2Gene, Gene2miR), some optional choices are 
available: (i) the tissue of interest or the preferred cell-
lines. The information is processed from the atlas of gene 
expressions  [  63  ] . (ii) Selection of all genes or only highly 
expressed subset (above a predetermined value, typically 
it reduces the list of genes by ~30%); (iii) the top scoring 
miRNA binding sites according to each DB. For each DB 
scoring method, a fraction that accounts for the top ( i.e.,  

10, 25, 50% and all predictions) can be selected for the 
analysis. (iv) Select any combination of the DBs (15 in the 
case of human). (v) To initiate the miRror2.0 search, sev-
eral free parameters that determine the stringency of the 
procedure are selected. These parameters include the 
choice of P-value threshold, the minimal number of sup-
porting DBs and the minimal number of input ‘hits’. By 
changing these parameters, a relaxed or a strict search 
protocol is activated. ( b ) PSI-miRror in a Gene2Gene 
operational mode with two iterations (from Set-1 to Set-
3). The  Venn diagram  shows the overlap of the input gene 
list (Set-1) and the output gene list (Set-3). The Venn 
allows focusing on genes that were removed from the 
input set or those that were added to the output set       
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where the set of miRNAs or genes is derived from 
a speci fi c tissues or cell line, the algorithm recal-
culates the likelihood of the input set in view of 
the candidate genes known to be represented in 
the selected tissues as obtained from Bio-GPS 
(  http://biogps.gnf.org    ). In addition, the analysis 
can be restricted to any combinations of miRNA-
target prediction DBs (for human, any combina-
tion of the 15 supported DBs). The platform may 
activate the miRror2.0 algorithm by applying 
only the top scoring predictions from each of the 
DBs used ( e.g.,  the top 25% of predictions). The 
 fl exibility in the number of DBs and the choice of 
P-value threshold for the miRtegrate algorithm 
allows full control over the speci fi city and extent 
of the resulting analysis. 

 The combinatorial view implemented in miR-
ror2.0 is further re fi ned by the PSI-miRror opera-
tion. Schematically, PSI-miRror is an iterative 
protocol that aims to re fi ne the input sets (Genes 
or miRNAs) by increasing the coherence of the 
input miRNA set to the set of genes and itera-
tively re fi ning the list of the genes by re-applying 
the miRror2.0 cycle. 

 Figure  16.2b  illustrates the operation of PSI-
miRror in Gene2Gene mode. PSI-miRror can be 
activated in four modes: Gene2Gene and 
miR2miR but also miR2Gene and Gene2miR. 
Figure  16.2b  shows that an input Gene Set 
(Set-1) results in a list of miRNAs that is then fed 
to an additional iteration that results in an inter-
mediate gene set (Set-2). By analogy to PSI-
BLAST  [  104  ] , the procedure halts when no 
additional re fi nement is achieved. In most 
instances, genes are added or removed from the 
original list. The application of PSI-miRror is 
attractive for testing hypotheses. Genes that were 
added along the iterations of PSI-miRror and are 
reported in the  fi nal set (Set-3, Fig.  16.2b ) are can-
didates for further investigation and experimental 
validation. The intuition is that genes or miRNAs 
that are not coherent with the experimental results 
( e.g. , due to the indirect effect of miRNAs) will be 
removed by the PSI-miRror operation, while 
coherent genes or miRNAs that were missed, will 
be added. Often, the intersection of the initial set 
and the  fi nal set is the most coherent set that can be 
further analyzed (Fig.  16.2b , Venn diagram).  

    16.4.3   Testing the Predictive Power 
of miRror2.0 

 As opposed to the other predicting tools, miR-
ror2.0 and its advanced application of PSI-miRror 
consider the ensemble rather than individual 
entities (miRNAs or genes) in the regulatory 
scheme. A crucial component is the associated 
scoring system. The performance and the predic-
tions from miRror2.0 are ranked according to the 
miRror Internal Score (henceforth miRIS). miRIS 
aims to maximize the different constraints that 
are implemented by miRror2.0. Speci fi cally, in 
the Gene2miR mode, we seek a maximal agree-
ment among the selected DBs and high sensitivity 
in respect to the input. miRIS is composed of a 
balanced contribution of these two components. 
Sensitivity is de fi ned as the number of hits from 
the entire input list. For example, consider an 
overexpression experiment of a speci fi c miRNA 
in cells and assume that 400 genes were down-
regulated (as measured by a DNA microarray). 
miRror application at the Gene2miR mode is 
applied after setting the desired level of strin-
gency (determined by a P-value threshold) and 
selecting the number of predictors for the analysis. 
For this illustration, we assume that 12 predicting 
DBs are selected. miRIS is associated with any of 
the predicted miRNAs. For example, for a miRNA 
on the list, only 6 DBs support the prediction and 
only 200 out of the 400 genes in the input set are 
marked as relevant genes (which we refer to as 
‘hits’), the calculated miRIS for this miRNA is 
therefore 0.5. A miRIS of 0.75 is calculated once 
all the 400 genes are reported ( i.e. , maximal sen-
sitivity) or if only 200 hits are reported, but with 
a full agreement of all 12 DBs. As shown by this 
example, miRIS combines DB consistency and 
sensitivity into a single score. 

 The validity of the concept of miRNAs ‘work-
ing together’ by miRror platform was tested. To 
this end, we took advantage of the growing num-
ber of experiments in which (i) miRNAs were 
introduced into cell cultures; (ii) the entire tran-
scriptome is compared to control (often cells 
introduced with a scrambled sequence or a mock 
transfection). We analyzed data from such experi-
ments from a variety of cell lines. The analyses 

http://biogps.gnf.org
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combined data from DNA microarray platforms 
(Affymetrix, Agilent) and quantitative mass spec-
trometry experiments. Speci fi cally, we focused on 
experiments that report on miRNAs that were 
overexpressed in cells. Under such controlled 
conditions, we tested whether miRror can suc-
cessfully identify the actual overexpressed miRNA 
using solely the gene expression pro fi les. 

 A growing number of such experiments are 
reported for which the whole transcriptome is 
compared to that of controlled cells. We assess 
the ability to recover the evidence of the trans-
fected miRNA from the global transcriptomic 
pro fi les of the down-regulated genes (at a thresh-
old >1.2-fold). Importantly, for some experiments 
hundreds of genes were used as input without 
reduction in the performance. For example, while 
only 270 genes were down regulated in an experi-
ment of hsa-miR-145 transfection (DLD-1 cells, 

GSE18625), for hsa-miR-335 (LM2-Lung cells, 
GSE9586) this number was almost 10,000. 
Success was determined according to miRIS. 
Namely, reporting the position of the correct (the 
overexpressed) miRNA in the ranked list of all 
miRNA predictions. 

 Figure  16.3  shows the results from miRror for 
overexpression experiments of hsa-miR-124 
(GSE6207), hsa-miR-155 and hsa-miR-1 
(GSE2002). Ten percent of the down-regulated 
genes in these experiments (1,700–3,300 genes) 
were used as input for miRror2.0. Zooming on the 
top ten predictions (Fig.  16.3 , bottom) shows that 
the actual miRNA is recovered as the top predic-
tion (from 200 best predicted miRNAs). Moreover, 
the ten top miRNA predictions show a sharp drop 
in score. In some cases an additional miRNA 
reaches very signi fi cant miRIS ( e.g. , has-miR-1). 
Interestingly, the extent of down-regulated genes 

  Fig. 16.3    Ranked analysis on miRror2.0. Data were col-
lected from the GEO  [  62  ]  and extracted from the SOFT 
 fi les. The Affymetrix platform datasets include: GSE6207 
(HepG2 cells, hsa-miR-124-24hr) and GSE22002 (HeLa 
cells, hsa-miR-1, hsa-miR-155). The results are shown in 

view of the miRror2.0 results, ranked according to miRIS 
for the top 200 predictions ( top ) and the top 10 predictions 
( bottom ). The correct miRNA from the over-expression 
experiments are marked  blue        
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( i.e. , fold change) is not a signi fi cant indicator 
for a successful recovery of the relevant miRNA 
by miRror2.0. We consider a success when the 
miRror prediction reports the correct (experi-
mentally over-expressed) miRNA among the top 
 fi ve results, ranked according to miRIS.  

 We applied miRror to about 30 large-scale 
miRNA over-expression experiments. miRror 
successfully identi fi ed the relevant miRNA in 
70% of the experiments. The success of the indi-
vidual DBs ranges from 20 to 60%. Remarkably, 
miRror was fairly stable regarding the number 
of genes that were loaded, from 1 to 50% of the 
down-regulated genes (at a moderate fold change 
of   ≥  1.2). 

 In order to assess the high success in recover-
ing the hidden miRNA from a noisy signal of 
hundreds of un fi ltered genes (at a subtle repression 
level of >1.2), we repeated the tests with random 
sets of genes (genes must be reported in at least 
one DB) or the up-regulated genes (at the same 
expression ratio of  ³ 1.2). We show that selecting 
the objective miRNA failed by repeating the 
miRror protocol on randomized sets (multiple 
randomization of identical group size). 

 We attribute the source of stability in miRNA 
identi fi cation to (i) the predetermined statistical 
threshold that is applied for a dozen of miRNA-
target predictors; (ii) the obligatory demand for a 
minimal consistency  ³ 2 DBs and (iii) a require-
ment of a minimal agreement on number of hits 
from the input gene list for each proposed 
miRNA.  

    16.4.4   Measurements of Direct Binding 
by miRNAs 

 The method of HITS-CLIP  [  45  ]  was developed 
as a way to directly monitor protein–RNA inter-
actions in living cells  [  105  ] . Brie fl y, the method 
is based on trapping by cross-linking RNA–
protein complexes of interacting molecules that 
are within a minimal molecular distance. The 
protocol allows the collection of trapped mole-
cules which are then subjected to trimming of the 
RNA hanging tails. The result of this protocol is 
a collection of minimally sized fragments that are 

suitable for deep sequencing. The use of the 
HITS-CLIP on AGO-based complexes provides 
genome wide miRNA–mRNA interaction maps. 
The  fi rst HITS-CLIP experiment was done on 
mouse brain under stringent conditions  [  45  ] . 

 The AGO based HITS-CLIP results address 
some of the questions on the  modus operandi  of 
miRNAs in living cells. Speci fi cally, the experi-
ment (ideally) separates between a direct and an 
indirect effect of miRNAs. More importantly, the 
analysis only allows detection of RNA segments 
(mRNA or miRNA) that are within a short molec-
ular distance and a narrow range of 50–60 nucle-
otides of the mRNA molecule. Considering the 
relatively high speci fi city of the AGO-mRNA 
(relying on the correlation among independent 
biological samples), the number of miRNAs 
that were trapped and identi fi ed per transcript 
is an approximation of  in-vivo  regulation and 
AGO-occupancy. 

 At present, the results from the CLIP-Seq 
 [  106  ]  and PAR-CLIP  [  76  ]  methodologies are 
limited to only few cellular settings. Nevertheless, 
some trends for the combinatorial activity of the 
miRNAs can already be demonstrated. Actually 
using HITS-CLIP  [  107  ] , only 10% of the genes 
were regulated by a single miRNA. Results from 
the recent CLIP based methods (HITS-CLIP, 
PAR-CLIP and CLIP-Seq)  [  58  ]  show that each of 
the genes that were identi fi ed to be subjected to 
miRNA regulation is in fact targeted by multiple 
miRNAs. These experiments allow, for the  fi rst 
time, the construction of a miRNA-mRNA 
interaction map, which supports the notion of 
combinatorial, cooperative action by miRNAs on 
targeted transcripts  [  45  ] . 

 A collection of large-scale CLIP experiments 
is compiled in the StarBase database  [  108  ] . 
StarBase includes thousands of experimentally 
con fi rmed miRNA-target interactions and com-
plementary data from other AGO proteins. In 
addition, it provides a genome browser for the 
reads that were collected during the deep 
sequencing phase. Figure  16.4  illustrates the 
complexity in CLIP-experimental interpretation. 
The deep sequencing reads are illustrated as ‘piles’ 
(Fig.  16.4a ). Using a consensus of prediction 
algorithms and in some cases, direct sequencing 
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of miRNAs, the match of the miRNA and the 
gene is reported. In Fig.  16.4a  three different 
miRNAs regulate the presented gene (indicated 
as miR-a, miR-b and miR-c). However, the 
miRNA-target prediction algorithms (Fig.  16.4b , 
marked as Predictors A-D), predict nine miRNA 
binding sites (1–9). Recall that many of the bind-
ing sites were not validated experimentally 
(miR-e and miR-f). Additional information that 
became evident from the CLIP-based experi-
ments concerns the intensity of the reads for each 
miRNA (indicated schematically by the + sign, 
Fig.  16.4b ). The simplistic illustration (Fig.  16.4a ) 
emphasizes the challenge in formulating a miRNA 
combinatorial view: (i) Some binding sites are 
more potent than others. (ii) The consistency 
between the different predictors is limited. (iii) 
Multiple binding sites for the same miRNA differ 
in the intensity of the reads (miR-a, purple). 

(iv) The miRNA-target prediction algorithms 
often support overlapping binding sites. In real-
ity, the overlap with other binding sites may be 
excluded due to accessibility argumentation. (v) 
There is no direct evidence for cooperative bind-
ing on one molecule, instead, the scheme 
(Fig.  16.4a ) is most likely a re fl ection of miRNAs 
bound to the population of mRNAs.   

    16.4.5   Looking Through the miRror 
– Predictions Versus 
Experimental Reality 

 The coherence between the miRNA-targets that 
are based on gene expression (Fig.  16.3 ) and 
those obtained from the CLIP-based experiments 
is surprisingly low  [  106  ] . The gene expression 
data and the CLIP data are collected from live 

  Fig. 16.4    Interpretation of CLIP-based experiments. Data 
analyzed from StarBase  [  108  ] . ( a ) The deep sequencing 
reads are illustrated and the ‘piles’ along the 3 ¢ -UTR of 
the gene. ( b ) Each of the binding sites (1–9) is associated 
with predicting DB (marked  A – D ). Note that some bind-
ing sites are more potent than other ( marked by + symbol ). 

The consistency between the predicting DBs is only partial 
(see binding site 3,4). There are multiple binding sites 
(at different extent) for the same miRNA (miR-a,  purple ). 
The predicting DBs indicate miRNAs that overlap on the 
sequence of their binding sites (overlap, OL). The OL sites 
are often excluded due to accessibility argumentation       
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cells. Still, over-expression of speci fi c miRNA 
may be prone to non-physiologically high miRNA 
concentrations. On the other hand, a bias in the 
CLIP data may re fl ect the inability to capture 
transient interactions of AGO and mRNAs. 
Moreover, the identity of the apparently trapped 
miRNAs in the CLIP assays is largely based on 
the set of computational predicting tools that suf-
fer from high false positive rates. It is suggested 
that the readouts of mRNA suppression (mea-
sured by gene expression pro fi les) and the initial 
pairing (measured by CLIP technologies) are 
complementary but non-overlapping assessments 
of the regulation by miRNAs. An analysis of the 
features that govern miRNA–target match is criti-
cal to improving the prediction power of the 
methods (both computational and experimental). 

 Figure  16.5  shows the statistical analysis of 
the data collected from StarBase  [  108  ] . The 
cumulative representation (combining several 
experiments) with a gene centric view on all the 
data shows that 50% of the 6,200 targeted genes 
are associated with up to eight miRNAs 
(Fig.  16.5a ) and 90% of the genes are targeted by 
up to 35 miRNAs. A few genes are even targeted 
by more than 100 miRNAs. Interestingly, when 
all the potential sites that are predicted by all 12 

human miRNA-target DBs (the union of all), the 
analysis shows that the experimental CLIP data 
captures only a relative small fraction of the pre-
dicted set (Fig.  16.5b ).  

 Figure  16.6  summarizes the potential of miR-
ror2.0 to be used as an assessment tool for combi-
natorial regulation. Several tests are carried out to 
examine the coherence of the experimental data 
and miRror results. The results of the scheme illus-
trated in Fig.  16.6a  are discussed (Fig.  16.3 ). The 
scheme in Fig.  16.6b  is applied to the CLIP data 
from StarBase  [  108  ] . Speci fi cally, the ensemble of 
miRNAs that is associated with each targeted gene 
was collected for each gene from the thousands of 
genes that are targeted by at least two miRNAs 
(Fig.  16.6b ). For 98% of the genes miRror suc-
cessfully identi fi ed the relevant gene. For 81%, the 
correct prediction was among the top 10% of pre-
dictions (typically from a ranked list of >1,000 
predictions). This  fi nding supports the predictive 
power of miRror2.0 for genes that are targeted by 
a high number of miRNAs. Furthermore, when 
considering genes that were targeted by >20 miR-
NAs, the performance of miRror reached 98% and 
a complementary view was noted for genes that 
were targeted by <10 miRNAs (the performance 
dropped slightly to 90% success).  

  Fig. 16.5    Statistical analysis from CLIP-based experi-
ments. ( a ) A cumulative view of the number of miRNAs 
regulating each gene, from CLIP data. The steep climb 
demonstrates how prevalent regulation by multiple miR-
NAs appears to be. ( b ) A comparison of CLIP data and 
predicted miRNA-targets. The combination of all 15 
human predicting DBs is shown. The miRNA-targets that 

are covered by the CLIP data are shown separately in  light 
blue . The distributions from the CLIP data and the union 
of the DB predictions are very different. It emphasizes the 
gap between the computational view on the targeting 
potential of genes by miRNAs and the observed gene tar-
geting from the most up-to-date CLIP experiments       
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 The tools and methodologies developed for 
the validation of miRror2.0 and the large CLIP 
dataset allowed us to test the minimal mode of 
combinatorial regulation – namely the concept of 
‘miRNA pairs’. Figure  16.6c  shows the protocol 
applied in formulating the concept of miRNA-
pairs. Pairs are the simplest form of multiple 
miRNA co-regulation and thus are a natural start-
ing point for a computational assessment. We 
wish to see how well each of the major prediction 
DBs matches the biological experimental data. 
The number of genes that are reported from the 
multiple CLIP data (compiled by StarBase  [  108  ] ) 
is >6,200. A vast majority of them are regulated 
by multiple miRNAs (Fig.  16.5 ). There are two 
general modes that comply with regulation by 
pairs (Fig.  16.6c ): (i) A pair of miRNAs that 

expands the set of targets, thus allowing a better 
coverage of the relevant genes. (ii) Each miRNA 
in the pair tightly overlaps the targets of the other 
miRNA. In this case, the pair of miRNAs acts in 
‘backup’ mode, with a high degree of redun-
dancy. The two extreme scenarios are formulated 
using the Jaccard Index (JI). Intuitively, JI is a 
simple measure for comparing the similarity 
(intersection) and diversity (union) of the sample 
sets. A low JI value is indicative of the expansion 
mode while high JI indicates the backup mode. 

 From this naïve view on all pairs of miRNAs 
that were reported in CLIP data, several observa-
tions are worth noting: (i) The data from the CLIP 
experiments are dominated by a very low JI. 
Although only less than 20% of the pairs have no 
shared targets, the JI is extremely low. When 

  Fig. 16.6    Assessment of the combinatorial nature of 
miRNAs. ( a ) Using Gene2miR mode to assess the recov-
ery of over-expression of miRNAs from the repressed 
genes from large-scale transcriptomic pro fi ling platforms. 
( b ) Using miR2Gene mode to assess the recovery of a 
gene from the collection of the available CLIP-based 
experimental data. ( c ) Assessment using the Jaccard Index 

(JI) of pairs of miRNAs. Data were from CLIP-based 
experiments and from the prediction according to selected 
predicting DBs. ( d ) Using miRror2.0 at a Gene2miR 
mode for KEGG human pathway graphs and testing the 
ability of small sets of miRNA to disrupt the connectivity 
of the pathway. For details see text       
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compared the same data for a sample of miRNA-
target predicting DBs, each DB centers at a dif-
ferent JI (the arrows indicates the average JI 
value, Fig.  16.6c ). 

 The analyses that are schematized in Fig.  16.6  
further emphasize that a naive approach consid-
ering a single miRNA DB in order to extrapolate 
pairwise relations is insuf fi cient. Using the miR-
ror platform is a step toward such an extrapola-
tion. Speci fi cally, we observed that the targets 
covered by many miRNAs from the CLIP data 
provided us with higher prediction rates and 
scores relative to targets that were characterized 
by being targets of a relatively small number of 
miRNAs.   

    16.5   Working Together at the 
Pathway Level 

 The interpretation of gene sets that resulted from 
coordinated miRNAs (Fig.  16.6  miR2Gene), or 
from any other miRNA-target prediction protocol 
should be analyzed within a cellular context. A 
number of tools were developed that cover aspects 
of protein and functional interaction (STRING 
 [  109  ] ), regulatory pathways (Reactome  [  110  ] ) 
and functional annotations (PANDORA  [  111  ]  
and DAVID  [  112  ] ). 

 The pathway representation best describes the 
biological processes in cells. The human regula-
tory pathways are compiled by the KEGG 
resource  [  113  ] . KEGG pathways are a collection 
of manually drawn pathway maps. These maps 
represent knowledge on the molecular interaction 
and reaction networks for domains including 
human diseases, organismal systems, cellular 
processes, and environmental information pro-
cessing. The collection covers ~100 pathway 
maps for human. 

 The notion of ‘miRNAs working together’ is 
tested in view of metabolic and regulatory path-
ways. Speci fi cally, regulation of miRNAs was 
suggested at the level of pathway or biological 
process  [  114  ] . We assess the possibility that 
cooperative action by a small, selected group of 
miRNAs can alter the expression of genes that 
belong to the same pathway, without sacri fi cing 

speci fi city. An extension of the ‘working together’ 
concept argues that a disruption of the pathway’s 
topology by miRNAs has the potential to alter the 
outcome of the targeted pathway. It is known that 
various diseases and developmental stages are 
characterized by a coordinated alteration of a 
number of miRNAs. 

 With this idea, one can prioritize each path-
way according to its susceptibility to regulation 
by a small group of miRNAs (for example pairs 
or triplets). Reliable resources for human path-
ways are the PID (NCI human pathways)  [  115  ]  
and KEGG  [  116  ] . The de fi nition of pathways is 
somewhat vague as some resources describe 
modules rather than full pathways. For example, 
the Reactome database covers 1,100 pathways 
(cellular modules)  [  117  ]  and the Human Pathway 
Database (HPD), that uni fi es the major resources, 
includes over 1,000 pathways  [  118  ] . Many of the 
pathways were previously analyzed in view of 
their modular nature, redundancy and robustness 
against perturbations  [  119,   120  ] . While recent 
studies have acknowledged the usefulness of 
miRNAs on regulation pathways  [  121,   122  ] , add-
ing the connectivity of genes in the pathway is a 
key determinant that was largely ignored. The 
intuition for the pathway disruption approach is 
that a quantitative change in a set of miRNAs is 
expected to alter the pathway outcome  [  90,   123  ] . 

 A test case (Fig.  16.6d ) using the 100 regula-
tory, disease oriented and metabolic pathways 
from KEGG that cover about 4,500 human genes 
revealed an intriguing principle of miRNA regu-
lation. Analysis of the pathway via the concept of 
individual miRNA prediction databases results in 
hundreds of potential miRNAs. Therefore, match-
ing a small number of miRNAs to a pathway is 
virtually impossible with the current prediction 
DBs. However, the potential of a small group of 
coordinated miRNAs to alter the integrity of 
human pathway can be challenged using the miR-
ror2.0 combinatorial tool. The motivation of our 
approach is in assessing the potential of a set of 
miRNAs to disrupt a graph that represents a cel-
lular pathway. 

 For the scheme in Fig.  16.6d , we start from a 
pathway and end up with a selected list of miRNA 
sets ( i.e. , pairs and triplets that work together) 
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which preferentially disrupt the integrity of the 
pathway. The following steps are taken: (i) All 
high quality human pathways are converted to 
undirected graphs in which the nodes are the 
genes (or complexes) and the edges are the regu-
latory interactions. (ii) Each pathway is converted 
to a gene set that is subjected to miRror2.0 to 
determine the ranked list of possible miRNAs. 
Re fi nement by PSI-miRror further limits the list 
of possible miRNAs to the most relevant set. (iii) 
Designing a disconnecting score (DIS) that cap-
tures the degree of network disruption (for exam-
ple, the partition into connected components, 
edge elimination and the like). (iv) Applying an 
exhaustive search for all pairs and triplets from 
all candidate miRNAs combinations. Finally, 
providing the sets that maximally impact graph 
connectivity (resulting in a high DIS score). As 
the miRNA combinatorial space is vast, for a 
pathway that reported by miRror2.0 to have 40 
miRNAs, about 10,000 possible miR-Triplets 
need to be ranked (by DIS score) in order to iden-
tify the best sets. For a pathway with 50 potential 
miRNA candidates, the search space for miRNA 
triplets is 19,600. Of course, the topology of the 
pathway graph is a key determinant in this 
scheme. Note that the number of genes in the 
human KEGG pathways ranges from 10 to 250 
and the number of initial candidates for miRNA 
disruption (according to miRror output) range 
from 2 to 60. 

 Several conclusions are derived from this 
approach. Most notably, 85% of all KEGG based 
pathways are amenable to disruption by a small 
miRNA set of pairs or triplets (the same results 
apply to PID pathways  [  115  ] ). Analyzing all 
pathways revealed that typically, only 4–5 miR-
NAs are associated with the most potent set of 
miRNA pairs and triplets for each pathway. 
Several biological interpretations from the 
miRNA cooperative pathway disruption scheme 
can be drawn. Genes such as MAPK1, EGFR, 
AKT3, SRC that are prevalent in tens of regula-
tory pathways, are almost always included in the 
set of disrupted genes. Most likely, these proteins 
serve as connectors in the pathway graphs. Thus, 
targeting these signaling genes will lead to a sub-
stantial disruption of many pathways. Most 

surprisingly, the selected miRNA sets (pairs and 
triplets) with a maximal capacity to disrupt path-
ways show a minimal overlap. Therefore, it seems 
that a critical factor in selecting the most 
in fl uential miRNA combinations is the graph 
topology rather than the identity of the individual 
nodes in the pathway graph.  

    16.6   Concluding Remarks 

 The concept of miRNAs working together is not 
new. In this chapter, we present experimental evi-
dence while emphasizing tradeoffs in adopting a 
combinatorial mode of regulation for living cells 
under changing conditions. 

 We present a tool that incorporates the concept 
of ‘working together’ and describe some tests in 
view of the current experimental knowledge. The 
miRror Suite is a platform that empowers experi-
mental biologists in gaining insights from a broad 
range of experimental protocols. It is based on a 
many-to-one and many-to-many approach. 
Namely, a group of miRNAs as an input leads to 
a minimized set of genes that best explain the 
observed gene expression pro fi le. Similarly, this 
applies for a set of genes as input. The many-to-
many optimization is performed by the PSI-miRror 
approach that provides a re fi ned set of molecules 
by iterative application of the PSI-miRror algo-
rithm. The miRror Suite provides an integrative, 
statistically based platform and exposes miRIS: a 
combined scoring system for a successful 
 prediction of miRNA combinatorial regulations. 
miRror performance is discussed in [ 124 ].  

 Multiple layers of regulations in the cell are 
coordinated in governing cellular phenotypes. 
Most notable are: epigenetic chromatin marks, the 
transcription machinery of gene expression, the 
translation process, the degradation of transcripts 
and proteins, the metabolic balance and more. 
miRNAs constitute an additional layer of regula-
tion that was carefully studied in stem cells, viral 
infection, cancer progression and other patholo-
gies. It is likely that regulation of miRNAs is a 
key strategy of the cell as it strives to maintain 
robust homeostasis. Under this assumption, a 
modest modulation executed in a combinatorial 
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mode can be manifested by a substantial change 
in cell physiology and phenotype. We illustrate 
the combinatorial regulation concept at the level 
of the individual target (Sect.  16.4.4 ), at the level 
of a set of genes whose expression were moder-
ately changed (Sect.  16.4.3 ), and  fi nally at the 
level of human pathway integrity (Sect.  16.5 ). 
While many questions remain to be solved, we 
expect the ensemble-oriented tools will prove 
essential to the biological interpretation of 
miRNA data.      
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