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Preface 

On behalf of all of the people involved in the program selection, the program 
committee members as well as numerous other reviewers, we are both relieved and 
pleased to present you with the proceedings of the 2006 Asia-Pacific Computer 
Systems Architecture Conference (ACSAC 2006), which is being hosted in Shanghai 
on September 6–8, 2006. 

This is the 11th in a series of conferences, which started life in Australia, as the 
computer architecture component of the Australian Computer Science Week. In 1999 
it ventured away from its roots for the first time, and the fourth Australasian 
Computer Architecture Conference was held in the beautiful city of Sails (Auckland, 
New Zealand). Perhaps it was because of a lack of any other computer architecture 
conference in Asia or just the attraction of traveling to the Southern Hemisphere but 
the conference became increasingly international during the subsequent three years 
and also changed its name to include Computer Systems Architecture, reflecting more 
the scope of the conference, which embraces both architectural and systems issues. In 
2003, the conference again ventured offshore to reflect its constituency and since then 
has been held in Japan in the beautiful city of Aizu-Wakamatsu, followed by Beijing 
and Singapore. This year it again returns to China and next year will move to Korea 
for the first time, where it will be organized by the Korea University. 

To understand the scope and constituency of the conference, papers have been 
submitted from China, Taiwan, Korea, Japan, Australia, the UK, the Netherlands, 
Brazil, the USA, Norway, Sweden, Iran, Cyprus, India and Romania with the majority 
of papers coming from the Asia-Pacific region. The scope of the conference can be 
gleaned by looking at the diversity of submissions, which include papers on processor 
and network design, reconfigurable computing and operating systems, including both 
low-level design issues in hardware and systems as well as papers describing large 
and significant computer-based infrastructure projects. In keeping with the trends in 
this field, many of the papers that reflect the changing nature of computing systems 
and the constraints that the industry is working under. For example, there are many 
papers that reflect the move to concurrency on chip in multi-core devices, and many 
more are concerned with the significant problems industry will face with stricter 
budgets in power dissipation. 

In addition to the submitted papers we have three keynote presentations. These 
presentations reflect the changing aspects of our industry as described above.  
Guang R. Gao, who is the Distinguished Professor of Electrical and Computer 
Engineering at Delaware University, will give a presentation on his work in 
programming chip multiprocessors and other highly concurrent systems. Gao’s 
research is closely linked to IBM’s recently announced cell processor, and he is 
developing compilers that enable thousands of processors to work together smoothly 
and efficiently by dividing various tasks among them. This work is conducted through 
the Computer Architecture and Parallel Systems Laboratory (CAPSL). Our second 
keynote speaker is from Europe and represents a key company in the embedded 
computer systems area. Vladimir Vasekin is a Russian Computer Scientist who was 
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recruited by ARM Ltd. in 2003. He started his career working in the Kronos Research 
Group at Novosibirsk University, developing the first 32-bit Russian workstations. 
While at ARM he has been involved in extensions to the ARM V6 architecture as 
well as in optimizing power dissipation in systems on chip. Our final invited speaker 
is Alex Shafarenko, who is professor of Software Engineering at the University of 
Hertfordshire in the UK and coordinator of the Compiler Technology and Computer 
Architecture Research Group (CTCA). Shafarenko is undertaking pioneering work in 
strongly-typed languages for coordinating concurrency in an asynchronous distributed 
environment. 

Finally we would like to thank all of those who worked hard to make ACSAC 
2006 a success this year. This includes all of the authors for submitting their work and 
the program committee and reviewers, without whose significant effort in producing 
reviews by our deadlines, we would have been unable to put this conference program 
together. Finally we thank the other General Chairs, Minglu Li  of Shanghai Jiao 
Tong University  and Minyi Guo from the University of Aizu for their effort in 
managing the  conference arrangements and last and by no means least, Feilong Tang, 
also from Shanghai Jiao Tong University, who was in charge of local arrangements.  

June 2006                                                                                                  Chris Jesshope 
Colin Egan 
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The Era of Multi-core Chips -A Fresh 
Look on Software Challenges 

Guang R. Gao 

Endowed Distinguished Professor 
Dept. of Electrical and Computer Engineering 

University of Delaware 
ggao@capsl.udel.edu 

Abstract. In the past few months, the world has witnessed the impressive pace 
that the microprocessor chip vendors’ switching to multi-core chip technology.  
However, this is preventing steep software challenges – both in the migration of 
application software and in the adaptation of system software. 
    In this talk, we discuss the challenges as well as opportunities facing software 
technology in the era of the emerging multi-core chips.  We review the software 
effort failures and lessons  learned during the booming years on parallel com-
puting – in the 80s and early 90s, and analyze the issues and challenges today 
when we are once more trying to explore large-scale parallelism on multi-core 
chips and systems.  We then predict major technology innovations that should 
be made in order to assure a success this time. 
    This talk will begin with a discussion based on our own experience on work-
ing with fine-grain multithreading from execution/architecture models, system 
software technology, and relevant application software studies in the past dec-
ade. We then outline our recent experience in working on software issues for 
the next generation multi-core chip architectures.  We will present a case study 
on a mapping of OpenMP on two representative classes of future multi-core ar-
chitecture models.   We discuss several fundamental performance issues facing 
system software designers. 



Streaming Networks for Coordinating
Data-Parallel Programs (Position Statement)

Alex Shafarenko

Compiler Technology and Computer Architecture Group, University of Hertfordshire,
United Kingdom
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Abstract. A new coordination language for distributed data-parallel
programs is presented, call SNet. The intention of SNet is to introduce
advanced structuring techniques into a coordination language: stream
processing and various forms of subtyping. The talk will present the or-
ganisation of SNet, its major type inferencing algorithms and will briefly
discuss the current state of implementation and possible applications.

Process concurrency is difficult to deal with in the framework of a programming
language. If properly integrated into the language semantics, it complicates and
often completely destroys the properties that enable the kind of profound op-
timisations that make compilation of computational programs so efficient. One
solution to this problem, which is the solution that this talk will present, is the
use of so-called coordination languages. A coordination language uses a readily-
available computation language as a basis, and extends it with a certain com-
munication/synchronisation mechanism thus allowing a distributed program to
be written in a purely extensional manner. The first coordination language pro-
posed was Linda[Gel85, GC92], which extended C with a few primitives that
looked like function calls and could even be implemented directly as such. How-
ever an advanced implementation of Linda would involve program analysis and
transformation in order to optimise communication and synchronisation patterns
beyond the obvious semantics of the primitives. Further coordination languages
have been proposed, many on them extensional in the same way, some not; for
the state of the art, see a survey in [PA98] and the latest Coordination conference
[JP05].

The emphasis of coordination languages is usually on event management,
while the data aspect of distributed computations is not ordinarily focused on.
This has a disadvantage in that the structuring aspect, software reuse and com-
ponent technology are not primary goals of coordination. It is our contention
that structuring is key in making coordination-based distributed programming
practically useful. In this talk we describe several structuring solutions, which
have been laid in the foundation of the coordination language SNet. The lan-
guage was introduced as a concept in [Sha03]; the complete definition, including
semantics and the type system, is available as a technical report [Sha06].

The approach proposed in SNet is based on streaming networks. The appli-
cation as a whole is represented as a set of self-contained components, called

C. Jesshope and C. Egan (Eds.): ACSAC 2006, LNCS 4186, pp. 2–5, 2006.
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“boxes” (SNetis not extensional) written in a data-parallel language. SNet deals
with boxes by combining them into networks which can be encapsulated as fur-
ther boxes. The structuring instruments used are as follows:

– Streams. Instead of arbitrary communication, data is packaged into typed
variant records that flow in a sequence from their producer to a single con-
sumer.

– Single-Input, Single-Output(SISO) box and network configuration. Multiple
connections are, of course, possible and necessary. The unique feature of SNet
is that the multiplicity of connection is handled by SNet combinators so that
a box sees a single stream of records coming in. The records are properly
attributed to their sources by using types (which include algebraic types,
or tagged, disjoint unions). Similarly, the production of a single stream of
typed records by a box does not preclude the output separation into several
streams according to the type outside the box perimeter.

– Network construction using structural combinators. The network is pre-
sented as an expression in the algebra of four major combinators (and a
small variety of ancillary constructs): serial (pipelined) composition, parallel
composition, infinite serial replication (closure) and infinite parallel repli-
cation (called index splitter, as the input is split between the replicas ac-
cording to an “index” contained in data records). We will show that this
small nomenclature of tools is sufficient to construct an arbitrary streaming
network.

– Record subtyping. Data streams consist of flat records, whose fields are
drawn from a linear hierarchy of array subtypes[Sha02, SS04]. The records as
wholes are subtyped since the boxes accept records with extra fields and al-
low the producer to supply fewer variants than the consumer has the ability
to recognise.

– Flow inheritance. Due to subtyping, the boxes may receive more fields in a
record than they recognise. In such circumstances flow inheritance causes the
extra fields to be saved and then appended to all output records produced
in response to a given input one1. Flow inheritance enables very flexible
pipelining since, on the one hand, a component does not need to be aware of
the exact composition of data records that it receives as long as it receives
sufficient fields for the processing it is supposed to do; and on the other,
the extra data are not lost but passed further down the pipeline that the
components may be connected by.

– Record synchronizers. These are similar to I-structures known from dataflow
programming. SNet synchronisers are typed SISO boxes that expect two
records of certain types and produce a joint record. No other synchronisation
mechanism exists in SNet, and no synchronisation capability is required of
the user-defined boxes.

– The concept of network feedback in the form of a closure operator. This
connects replicas of a box in a (conceptually) infinite chain, with the input

1 This is a conceptual view; in practice the data fields are routed directly to their
consumers, thanks to the complete inferability of type in SNet.
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data flowing to the head of the chain and the output data being extracted
on the basis of fixed-point recognition. The main innovation here is the
proposal of a type-defined fixed point (using flow inheritance as a statically
recognisable mechanism), and the provision of an efficient type-inference
algorithm. As a result, SNet has no named channels (in fact, no explicit
channels at all) and the whole network can be defined as a single expression
in a certain combinator algebra.

The talk will address the following issues. We will first give an overview of
stream processing pointing out the history of early advances [Kah74, AW77,
HCRP91], the semantic theory [BS01] and the recent languages [Mic02]. Then
the concepts of SNet will be introduced, focusing in turn on: overall organisation
and combinators, type system and inference algorithms, concurrency and syn-
chronisation, and the binding for a box language. Finally a sketch of a complete
application in the area of plasma simulation using the particle-in-cell method
will be provided.

Work is currently underway to implement SNet as a coordination language for
a large EU-sponsored Integrated Project named “EATHER”[Pro], which is part
of the Framework VI Advanced Computing Architecture Initiative. University
of Hertfordshire is coordinating the software side of the project; if time permits,
the talk will touch upon the progress achieved to date.
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Abstract. This paper discusses low-error, high-speed evaluation of two
elementary functions: square-root (which is required in IEEE-754 stan-
dard on computer arithmetic) and exponential (which is common in
scientific calculations). The basis of the proposed implementations is
piecewise-linear interpolation but with the constants chosen in a way that
minimizes relative error. We show that by placing certain constraints on
the errors at three points within each interpolation interval, relative er-
rors are greatly reduced. The implementation-targets are large FPGAs
that have in-built multipliers, adders, and distributed memory.

1 Introduction

Many techniques exist for evaluating elementary functions: polynomial approx-
imations, CORDIC algorithms, rational approximations, table-driven methods,
and so forth [1], [2]. For hardware implementation, accuracy, performance and
cost are all important. The latter two mean that many of the better techniques
that have been developed in numerical analysis (and implemented in software)
are not suitable for hardware implementation. CORDIC is perhaps the most
studied technique for hardware implementation. Its primary merits are that the
same hardware can be used for several functions, but, because of its iterative na-
ture, its performance is rather poor. High-order polynomial approximations can
give low-error implementations, but are generally not suitable for hardware im-
plementation, because of the number of arithmetic operations (multiplications
and additions) that must be performed for each value; either much hardware
must be used, or performance be compromised. And a similar remark applies
to pure table-driven methods, unless the tables are quite small: large tables will
be both slow and costly. The practical implication of these constraints is that
many of the better techniques that have been developed in numerical analysis,
and which are easily implemented in software, are not suitable for hardware
implementation.

C. Jesshope and C. Egan (Eds.): ACSAC 2006, LNCS 4186, pp. 6–23, 2006.
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Given trends in technology, it is apparent that at present the best technique
for hardware function-evaluation is a combination of low-order polynomials and
small look-up tables. This is the case for both ASIC and FPGA technologies,
especially for the latter, in which current large devices (such as the Xilinx Virtex
[5], [6]) are equipped with substantial amounts of distributed memory as well
as many arithmetic units (notably mulipliers and adders).1 The combination of
low-order polynomials (primarily linear ones) is not new – the main challenges
has always been one of how to choose the best interpolation points and how to
ensure that look-up tables remain small.

For most elementary functions, interpolation with uniformly-sized intervals
(i.e. uniformly-spaced abscissae) is not ideal. Nevertheless, for hardware imple-
mentation, the need to quickly map arguments onto the appropriate intervals
dictates the use of such intervals. With this choice and linear interpolation, the
critical issue then becomes that of what function-value to associate with each
interval. The most common choice has been to arbitrarily select the value at the
midpoint of the interval — that is, if x ∈ [L, U ], then f(x) = f((L+U)/2) — or
to choose a value that minimizes absolute errors.2 Neither is particularly good:
as we shall show, even with a fixed number of intervals, the best function-value
for an interval is generally not the midpoint. And, depending on the “curvature”
of the function at hand, relative error may be more critical than absolute error.
For the functions we consider, the effect of a given value of absolute error is
not constant or linear, and therefore the relative error is more critical than the
absolute error.

The rest of the paper is organized as follows. Section 2 gives a brief overview
of the Xilinx Virtex-4 FPGA. Section 3 outlines the general approach that we
use in the function approximation, and the next two sections, the main parts of
the paper, corespond to each of the two functions. Section 5 is a discussion of
the results we obtained. And Section 6 is a concluding summary.

2 Xilinx Virtex-4 FPGA

As indicated above, our primary target is large FPGAs. The structure of such
devices makes them particularly well suited to low-order polynomial approxima-
tions: the devices have in-built (and reasonably wide) adders and multipliers, as
well as relatively large amounts of memory. Moreover, the arrangement of the
arithmetic units is eminently suited to the multiply-then-add sequence that is
required in polynomial approximations. In this section, we shall briefly give the
details of a current FPGA device, the Xilinx Virtex-4, that is typical of such
state-of-the-art FPGA devices. We also indicate how its structure is well-suited
to piecewise-linear interpolation.

1 This is validated by a recent study of FPGA implementations of various tech-
niques [3].

2 Following [4], we use absolute error to refer to the difference between the exact value
and its approximation; that is, it is not the absolute value of that difference.



8 M. Bajger and A.R. Omondi

C

Cin
Cout

Cout

Cin

MUL

MUL SUB
ADD/

Cin

17-bit R-shift

17-bit R-shift

Zero

36

SUB
ADD/

B

A

Cin

C

17-bit R-shift

17-bit R-shift

Zero

36

B

A

48

Cout

Cout

36

48

18

18

18

18

48
48

18

48
48

48

48

48

48

48

48

18

18

48

48

48

48

48

48

36

Fig. 1. DSP48 tile of Xilinx Virtex-4

The Virtex-4 is actually a family of devices with many common features but
with variations in speed, logic-capacity, and so forth. A Virtex-4 device consists
of an array of up to 192×116 tiles (in generic FPGA terms, two tiles form a CLB),
up to 1392 Kb of Distributed-RAM , up to 9936 Kb of Block-RAM (arranged in
18-Kb blocks), up to 2 PowerPC 405 processors, up to 512 Xtreme DSP slices for
arithmetic, several Input/Ouput blocks, and so forth [18, 19]. There are currently
17 devices in the family:

– eight LX devices, optimized for logic intensive applications;
– three SX devices, optimized for embedded applications; and
– six FX devices, optimized for digital-signal-processing applications.
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Table 1 gives the parameters for typical members (the largest) of each class.
Observe that many neural-network computations are DSP-like, and, therefore,
the FX class may be taken as the ideal target.

Table 1. Xilinx Virtex-4 devices

Logic Distr. XDSP Block Power
Device Slices RAM (Kb) Slices RAM (Kb) PC
XC4VLX200 89,088 1,392 96 6,048 0
XC4VSX55 24,576 384 512 5,760 0
XC4VFX140 63,168 987 192 9,936 2

A tile is made of two Xtreme DSP48 slices that together consist of eight
function-generators (configured as 4-bit lookup tables capable of realizing any
four-input boolean function), eight flip-flops, two fast carry-chains, 64 bits of
Distributed-RAM, and 64-bits of shift register. There are two types of slices:
SLICEM, which consists of logic, Distributed RAM, and shift registers, and
SLICEL, which consists of logic only. Figure 3 shows the basic elements of a tile.
(For ease of visual presentation, we have not shown the memory elements.) Since
the approximation scheme we use is based on linear interpolation, Distributed
RAM is not suitable for the storage of the required constants, unless there is
only a small number of such constants and they are of low precision. Block RAM
should therefore be used for such storage.

Blocks of the Block-RAM are true dual-ported and are recofigurable to various
widths and depths (from 16K× 1 to 512×36); this memory lies outside the slices
but operates at the same high speed. Distributed RAM is located inside the slices
and is nominally single-port but can be configured for dual-port operation. The
PowerPC processor core is of 32-bit Harvard architecture, implemented as a 5-
stage pipeline. The significance of this last unit is in relation to the serial parts
of even highly parallel applications — one cannot live by parallelism alone. The
maximum clock rate for all of the units above is 500 MHz.

Arithmetic functions in the Virtex-4 fall into one of two main categories:
arithmetic within a tile and arithmetic within a collection of slices; the latter
is necessary for high-precision computations. All the slices together make up
what is called the XtremeDSP . DSP48 slices are optimized for multipliy, add,
and mutiply-add operations. There are 512 DSP48 slices in the largest Virtex-4
device, organized in two-slice tiles (Figure 1). Each slice consists primarily of an
18-bit×18-bit multiplier (with sign-extension of the result to 48 bits), a 48-bit
adder/subtractor, multiplexers, registers, and so forth. Given the importance of
inner-product computations, it is the XtremeDSP that is here most crucial for
neural-network applications. With 512 DSP48 slices operating at a peak rate
of 500 MHz, a maximum performance of 256 Giga-MACs (multiply-accumlate
operations) per second is possible. (As an aside, observe that this is well beyond
anything that has so far been offered by way of a custom ASIC neurocomputer.)
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The scheme we describe below is based on piecewise linear interpolation; that
is, the basic approximation function is ̂f = c1+c2x, for some constants c1 and c2.
So the structure of Figure 1 is naturally suitable. Also, while it might appear that
for low-precision outputs, and given the relatively large amounts of memory in
the Virtex-4, a pure table-lookup approach might be better, that is not so: That
might be an important consideration in ASIC technology, because it eliminates
the need for a multiplier and an adder, but there is no advantage gained if
these arithmetic units are already available. We shall below return briefly to this
point.

3 Basic Approach

The general approach we take is as follows. Let I = [L, U ] be a real interval with
L < U and let f : I → R be a function to be approximated (where R denotes
the set of real numbers). Suppose that ̂f : I → R is a linear function — that
is, ̂f(x) = c1 + c2x, for some constants c1 and c2 — that approximates f . Our
objective is to investigate the relative-error function

ε(x) =
f(x) − ̂f(x)

f(x)
, x ∈ I, (1)

and to find c1 and c2 such that ε(x) is small. One way to obtain reasonably good
values for c1, c2 is to impose the condition

f(L) = ̂f(L), f(U) = ̂f(U) (C)

to calculate c1 and c2. As we shall show, a much better result can be obtained
using the “improved” condition

|ε(L)| = |ε(U)| = |ε(xstat)|, (IC)

where xstat (stationary point) is the value of x for which ε(x) has a local ex-
tremum.

An example of the use of this technique to approximate reciprocals can be
found in [2], the approximation of the reciprocal function. (The second and third
columns of Tables 1 and 2 show the differences between the direct reduction of the
relative error, i.e. our approach, and reduction of the relative error via reduction
in the absolute error.) We will study each of the three functions seperately and
in each case show that, compared with the results from using the condition (C),
the improved condition (IC) yields a massive 50% reduction in the magnitude
of the relative error. In each case we shall also give the analytical formulae for
the constants c1 and c2.

It is well-known that by using more than two data points one can get bet-
ter approximation; that is, by subdividing the main interval for interpolation
into several subintervals and keeping to a minimum the error on each of the
subintervals yields to a better accuracy of approximation for the given function.
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Since for computer-hardware implementations it is convenient that the num-
ber of data points be a power of two, we will assume that the interval I =
[L, U ] is divided into 2k intervals:

[

L, L + Δ/2k
)

,
[

L + Δ/2k, L + 2Δ/2k
]

, . . . ,
[

L + (2k − 1)Δ/2k, U
]

, where Δ denotes the difference U − L. Then, given an
argument, x, the interval into which it falls can be located readily by using, as
an address, the k most significant bits of the binary representation of x. The pro-
posed hardware implementation therefore has the high-level organization shown
in Fig. 2. The two look-up tables (ROMs, or RAMs in the case of FPGAs) hold
the constants c1 and c2 for each interval.

Multiplier

k bits k bits

f(x)

x

ROM

x

cc 1

1
c

c 2

2

Adder

ROM

Fig. 2. Hardware organization for function evaluation

For a high-speed implementation, the actual structure may differ in several
ways. Consider for example the Multiplier-Adder pair. Taken individually, the
adder must be a carry-propagate adder (CPA); and the multiplier, if it is of high
performance will consist of an array of carry-save adders (CSAs) with a final
CPA to assimilate the partial-sum/partial-carry (PC/PS) output of the CSAs.
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Now, the multiplier-CPA may be replaced with two CSAs, to yield much higher
performance. Therefore, in a high speed implementation the actual structure
would have the form shown in Fig. 3. It should be noted, though, that this new
oraganization may not be the best one for the sort of FPGAs that we envisage,
because the in-built structure of FPGAs impose certain constraints.

CSA

f(x)

PC PS

PSPC

Array
CSA

CPA

21c cx

Fig. 3. High-performance hardware organization for function evaluation

Throughout the paper we shall illustrate our results with detailed numerical
data obtained for a fixed number of intervals. All numerical computations, were
done with the computer algebra system MAPLE [8] for the interval I = [0.5, 1]
and k = 4; that is, I was divided into 16 intervals:

[

1
2
,
17
32

,
9
16

,
19
32

,
5
8
, . . . , 1

]

.

(Note that evaluation on any other interval can be transformed into evaluation
on the interval [0.5, 1].) We have also used MAPLE to perform many of complex
symbolic computations required throughout the paper.

Floating-point calculations in MAPLE are carried out in finite precision, with
intermediate results rounded to a precision that is specified by MAPLE constant
Digits. This constant controls the number of digits MAPLE uses for calculations.
Thus, generally, the higher the Digits value is, the higher accuracy of the obtain-
able results, with roundoff errors as small as possible. We set Digits value to 35
for numerical computations. Numerical results will be presented using standard
decimal scientific notation.
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4 The Square-Root Function

Let f : I → R, f(x) =
√

x, and ̂f : I → R, ̂f(x) = c1 + c2x, where c1, c2 are
constants. By condition (C) we get the system

{

c1 + c2L =
√

L,

c1 + c2U =
√

U,

which has the solution

c1 =
−U

√
L +

√
UL

−U + L
,

c2 =
−

√
U +

√
L

−U + L
.

Hence, ̂f may be written as

̂f(x) =
−U

√
L +

√
UL − x

(√
U −

√
L

)

−U + L
, x ∈ I.

Substituting the above into (1) and simplifying, we obtain the formula for the
relative error on the interval I = [L, U ]:

ε(x) = 1 +
U

√
L −

√
UL + x

(√
U −

√
L

)

(−U + L)
√

x
,

of which the first derivative with respect to x is

ε′(x) =
x
√

U − x
√

L − U
√

L +
√

UL

2x3/2(−U + L)
.

By solving the equation ε′(x) = 0, we get the unique stationary point

xstat =
√

UL.

If we now take the second derivative of the error function

ε′′(x) =
x
√

U − x
√

L − 3U
√

L + 3
√

UL

4x5/2(−U + L)
,

substitute xstat into this formula, and simplify, we obtain

ε′′(xstat) =
U

√
L −

√
UL

2(−U + L)LU
√√

UL
.

Since U > L, the second derivative is negative at xstat, which means that the
relative error has a maximum value at this point. Moreover, by condition (C), ε
vanishes at the end points of I, so it is in fact an absolute maximum. With this
extremum value for the error function, it makes sense to consider an (IC)-type
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of condition, in which we equalize errors at the end-point and the error at the
point of maximum-error amplitude.

For the 16-interval example, application of the condition (C) gives the results
shown in Fig. 4, of the approximation plots together with the corresponding
graph of the error function.

approximation

error x 5000–0.2

0

0.2

0.4

0.6

0.8

1

0.6 0.7 0.8 0.9 1

Fig. 4. Piecewise-linear approximation of the square-root function

Note, that the maximum value for error occurs on the first interval and is

εmax = 1.148435e − 04, (2)

which corresponds, approximately, to 0.57 on our (magnified) graph. We will
later compare this number with the corresponding value obtained using our
improved approximation.

We next derive an improved error-formula based on the condition (IC). The
first equation in condition (IC) gives

√
U − c1 − c2U√

U
=

√
L − c1 − c2L√

L
,

whence

c2 =
c1

(√
L −

√
U

)

−
√

LU +
√

UL
=

c1√
UL

. (3)

Consequently, by (1), we get

ε(x) = 1 − c1√
x

− c1
√

x√
UL

(4)
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and, taking the first and second derivative,

ε′(x) =
c1

(√
UL − x

)

2x3/2
√

UL
and ε′′(x) =

c1

(

x − 3
√

UL
)

4x5/2
√

UL
,

for x ∈ I. Solving ε′(x) = 0, gives xstat =
√

UL, and substituting xstat into the
second derivative formula yields

ε′′(xstat) =
−c1

2UL
√√

UL
.

Since c1 is positive (f(0) > 0 and f is increasing), from the last equation, we
may infer that the second derivative is negative at xstat, which means that the
error attains maximum at this point. It is a simple matter to check that it is in
fact an absolute maximum. By (1), we may now write

ε(xstat) = 1 − c1√
xstat

− c1
√

xstat√
UL

= 1 − 2c1√
xstat

, (5)

since xstat =
√

UL.
Observe that from condition (IC), we have

ε(L) = −ε(xstat).

That is, by (4) and (5),

1 − c1√
L

− c1√
U

= −1 +
2c1√
xstat

,

whence
c1 =

2xstat

2
√

xstat +
√

U +
√

L
,

and, by (3),

c2 =
2

2
√

xstat +
√

U +
√

L
.

Therefore
̂f(x) =

2(xstat + x)
2
√

xstat +
√

U +
√

L
, x ∈ I.

Finally, (1) gives the following improved formula for the relative error on
interval I

ε(x) = 1 −
√

xstat + x
(

2
√

xstat +
√

U +
√

L
)√

x
.

Figure 5 gives the graphs for the new approximation and the corresponding
relative error on the sixteen intervals.
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approximation

error x 5000–0.2

0

0.2

0.4

0.6

0.8

1

0.6 0.7 0.8 0.9 1

Fig. 5. Improved piecewise-linear approximation of the square-root function

The maximum value for relative error is now

εmax = 5.742506e − 05,

which corresponds approximately to 0.29 on the “magnified” graph. MAPLE
ensures us that this value is in fact the global maximum of the error-magnitude.
(We omit the tedious and rather long, but elementary, proof of this fact for the
general case). In fact, the maximum magnitude for the left-end is 5.74249902e−
05, and for the right-end it is 5.74245863e − 05.

To conclude the section, we compare the current maximum value to our pre-
vious error estimation given by (2). An easy computation shows that the mag-
nitude of the maximum relative-error decreased by 50.00279 percent. There is
one further additional point that should be noted regarding the new approxi-
mation: observe that in Fig. 4 all the errors are of the same sign, i.e. positive.
This means that in a sequence of square-root evaluations, the total error will be
cumulative. On the other hand, in Fig. 5 there are changes of sign, which means
that there will be some cancellation. Note that this is precisely the reason why in
the mandated rounding method in IEEE-754 (i.e. round-to-nearest), boundary
cases are alternately rounded up or down, according to the least significant bit
of the number being rounded.

5 The Exponential Function

In this section we consider f : I → R, where f(x) = ex and, as in the preceding
section, we will look for a linear function ̂f : I → R, where ̂f(x) = c1 +c2x, such
that ε(x), given by (1), is small.
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We begin by an analysis based on a natural assumption expressed by condi-
tion (C): the error should vanish at both end-points of the considered interval.
This is expressed by the following pair of equations, with c1, c2 as unknown
variables

{

c1 + c2L = eL,
c1 + c2U = eU .

A routine algebraic calculation gives

c1 =
−UeL + eUL

−U + L
and c2 =

−eU + eL

−U + L
.

Now, the function ̂f may be expressed as

̂f(x) =
−UeL + eUL − xeU + xeL

−U + L
, x ∈ I,

and the relative error on I is then

ε(x) =

(

−exU + exL + UeL − eUL + xeU − xeL
)

e−x

−U + L
.

Differentiating ε(x) twice, with respect to x, gives

ε′(x) =
e−x

(

eU − eL − UeL + eUL − xeU + xeL
)

−U + L
, x ∈ I,

and

ε′′(x) =
e−x

(

−UeL + eUL − xeU + xeL
)

−U + L
, x ∈ I.

Solving ε′(x) = 0, we find that the only stationary point is

xstat =
−eU + eL + UeL − eUL

−eU + eL
.

To check for local extremum, we investigate the sign of the second derivative at
this point. Performing elementary algebraic computations, we derive the formula

ε′′(xstat) =
eα

(

−eU + eL
)

−U + L
,

where, for simplicity of notation, we have used α to denote the value

−eU + eL + UeL − eUL

−eU + eL
. (6)

Since eα is positive and the exponential is an increasing function, we may infer
that ε′′(xstat) is positive, which means that the magnitude of the relative error
has a maximum at this point. It suggests, as in the case of square-root function,
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that a better error approximation can be obtained if we try to bound the error
at this point. Figure 6 shows the approximation and the corresponding relative-
error for the 16-interval case. The maximum amplitude of the error is

εmax = 1.220761e − 04 (7)

which translates approximately to 0.61 on our “magnified” graph.

approximation

error x 5000
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1
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0.6 0.7 0.8 0.9 1

Fig. 6. Piecewise-linear approximation of the exponential function

We next show that condition (IC) yields a much better error approximation.
The following equality, which follows immediately from (6), will be useful in the
sequel

1 − α =
−eLU + eUL

eL − eU
. (8)

Observe that the relative error is now

ε(x) =
ex − c1 − c2x

ex
, x ∈ I. (9)

Comparying ε(L) and ε(U) gives

eU − c1 − c2U

eU
=

eL − c1 − c2L

eL
.

Hence, using (6),

c2 =
c1

(

eL − eU
)

−eLU + eUL
=

c1

1 − α
. (10)



Implementations of Square-Root and Exponential Functions 19

Substituting for c2 into (9) we obtain

ε(x) =
ex − c1 − c1

1−αx

ex
, x ∈ I, (11)

and differentiation with respect to x yields

ε′(x) = c1e
−x

[

1 − 1
1 − α

(1 − x)
]

= c1e
−x

[

x − α

1 − α

]

, x ∈ I. (12)

Thus, ε′(x) = 0 iff x = α (since e−x > 0 and c1 > 0); that is, α is the only
stationary point for ε.

We now need to check the sign of the second derivative at this point in order
to ensure that it is a local extremum. Let us take the second derivative of the
error function and apply (8):

ε′′(x) =
c1

1 − α

[

−e−xx + e−x + αe−x
]

=
c1e

−x

1 − α
(−x + 1 + α) , x ∈ I.

Hence

ε′′(α) = c1
e−α

1 − α
.

This clearly shows that the second derivative is positive at this point, and,
therefore, that α is a local minimum for ε.

We now turn to (11), which gives

ε(α) =
eα − c1 − c1α

1−α

eα
,

ε(L) =
eL − c1 − c1

1−αL

eL
.

From condition (IC), we have, in particular, ε(L) = −ε(α); that is,

eα − c1 − c1α
1−α

eα
=

−eL + c1 + c1
1−αL

eL
.

Whence, by (8),

c1 =
2eα(1 − α)

(

−eU + eL
)

−eU + eL − eα(U − L)
,

and by (10),

c2 =
2eα

(

−eU + eL
)

−eU + eL − eα(U − L)
.

We are now in a position to produce the final error formula:

ε(α) =
ex − c1 − c2x

ex
= 1 −

[

2eα(1 − α)β
β − eα(U − L)

+
2eαβ

β − eα(U − L)
x

]

e−x

=
[

1 − 2eαβ(1 − α + x)
β − eα(U−L)

]

e−x = e−x − 2eαβ(1 − α + x)e−x

β − eα(U − L)
, x ∈ I,

where β = −eU + eL and α is given by (6).
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For the 16-interval case, Fig. 7 shows the graphs for the improved approxi-
mation and the relative-error function.
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Fig. 7. Improved piecewise-linear approximation of the exponentialfunction

The maximum amplitude of the error is

εmax = 6.103433e − 05

which translates approximately to 0.3 on our graph. A comparison of this result
with (7) finding that the reduction of the maximum error magnitude is 50.00968
percent. And similar remarks to those made at the end of the last section apply
equally here.

6 Comparison of Errors

In this section we will compare the average and maximum errors for the discussed
two approximation schemas: the one based on condition (C) and the other using
the improved condition (IC). Following [7], we define average error as follows. For
function f : I = [L, U ] → R approximated by ̂f : I → R the average absolute
error is the average value of

∣

∣

∣f(u) − ̂f(u)
∣

∣

∣ for u uniformly sampled on N points
in the interval I. That is,

Average Absolute Error =

∑N−1
i=0

∣

∣

∣f(ui) − ̂f(ui)
∣

∣

∣

N
,
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where ui = L + i ∗ Δ, and Δ = U−L
N . Similarly, we define the average relative

error over the interval I:

Average Relative Error =

∑N−1
i=0

|f(ui)−�f(ui)|
f(ui)

N
.

Let us also also remind ourselves the definition of the L-infinity norm on the
interval I:

Maximum Absolute Error = max
u∈I

∣

∣

∣f(u) − ̂f(u)
∣

∣

∣ .

Analogously, for the relative error, we will use

Maximum Relative Error = max
u∈I

∣

∣

∣f(u) − ̂f(u)
∣

∣

∣

f(u)
.

We will use the above definitions to compare the two approximation techniques.
As we have already seen in previous sections the improved schema yields

approximately 50 percent maximum error reduction for each of the considered
functions. In the sequel we present data showing that error reduction of similar
magnitude also happens for the average errors for each of those functions. We
also investigate the influence on relative and absolute error of rounding c1, c2
to k bits, where k is choosen based on most common applications of a given
function. Since for functions

√
x and exp(x), k = 16, k = 32 and k = 64 are

most important we treat these cases separately. All error values are obtained for
the interval I = [0.5, 1] with N = 210 uniformly sampled points. The precision
used in an an actual implementation will, naturally, depend on the particular
device employed. For example, given the size of the mutipliers and adders in the
Xilinx Virtex-4, 16-bit precision would be ideal.

Table 2 presents results based on condition (C), and Table 3 shows the cor-
responding values for the improved condition (IC) for

√
x and exp(x).

7 Conclusion

The paper shows the use of piecewise-linear interpolation to provide relative
error evaluation for certain important elementary functions. Applications to
high-performance hardware implementation is also discussed. The square-root
function, which is part of the IEEE standard for floating-point arithmetic on all
computers is investigated first. Then, the exponential function, which is com-
monly used in numerical computations, is treated.

In each case we demonstrate that it is possible to find a low-error linear
approximation, which can be relatively easily implemented in hardware, re-
sulting in a low-error, high-performance implementation of these mathematical
functions.
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Table 2. Absolute and relative errors for condition (C)

c1, c2
√

u exp(u)

exact 3.369593e-05 1.740368e-04
average 16 bits 3.281906e-05 1.751525e-04

32 bits 3.369593e-05 1.740368e-04
absolute 64 bits 3.369593e-05 1.740368e-04
error exact 8.245153e-05 3.266860e-04

maximum 16 bits 7.397733e-05 3.369909e-04
32 bits 8.245153e-05 3.266861e-04
64 bits 8.245153e-05 3.266860e-04

exact 4.066859e-05 8.136299e-05
average 16 bits 3.962489e-05 8.172013e-05

32 bits 4.066859e-05 8.136299e-05
relative 64 bits 4.066859e-05 8.136299e-05
error exact 1.148435e-04 1.220761e-04

maximum 16 bits 1.030403e-04 1.266475e-04
32 bits 1.148435e-04 1.220762e-04
64 bits 1.148435e-04 1.220761e-04

Table 3. Absolute and relative errors for condition (IC)

c1, c2
√

u exp(u)

exact 1.541342e-05 7.960265e-05
average 16 bits 1.534050e-05 7.934758e-05

32 bits 1.541342e-05 7.960264e-05
absolute 64 bits 1.541342e-05 7.960265e-05
error exact 4.185535e-05 1.659085e-04

maximum 16 bits 4.298745e-05 1.717649e-04
32 bits 4.185525e-05 1.659085e-04
64 bits 4.185535e-05 1.659085e-04

exact 1.860786e-05 3.722859e-05
average 16 bits 1.857589e-05 3.706073e-05

32 bits 1.860787e-05 3.722858e-05
relative 64 bits 1.860786e-05 3.722859e-05
error exact 5.742506e-05 6.103433e-05

maximum 16 bits 5.987699e-05 6.531079e-05
32 bits 5.742520e-05 6.103440e-05
64 bits 5.742506e-05 6.103433e-05
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Abstract. This paper describes a new on-demand wakeup prediction policy for 
instruction cache leakage control that achieves better leakage savings than prior 
policies, and avoids the performance overheads of prior policies. The proposed 
policy reduces leakage energy by more than 92% with only less than 0.3% 
performance overhead on average. The key to this new on-demand policy is to 
use branch prediction information for the wakeup prediction. In the proposed 
policy, inserting an extra stage for wakeup between branch prediction and fetch, 
allows the branch predictor to be also used as a wakeup predictor without any 
additional hardware. Thus, the extra stage hides the wakeup penalty, not 
affecting branch prediction accuracy. Though extra pipeline stages typically add 
to branch misprediction penalty, in this case, the extra wakeup stage on the 
normal fetch path can be overlapped with misprediction recovery. With such 
consistently accurate wakeup prediction, all cache lines except the next 
expected cache line are in the leakage saving mode, minimizing leakage energy.  

Keywords: Instruction Cache, Low Power, Leakage, Drowsy Cache, Branch 
Prediction. 

1   Introduction 

As process technology scales down, leakage energy accounts for a significant part of 
total energy. The International Technology Roadmap for Semiconductor [23] predicts 
that by the 70nm technology, leakage may constitute as much as 50% of total energy 
dissipation. In particular, the leakage energy for on-chip caches is crucial, since they 
comprise a large portion of chip area. For instance, 30% of the Alpha 21264 and 60% 
of the StrongARM are devoted to cache and memory structures [13]. However, cache 
size can not be decreased to reduce leakage power since cache size is directly related 
to the performance.  
    There have been four major circuit techniques to reduce leakage energy 
dynamically: ABB (Adaptive-reverse Body Biasing) MTCMOS [16], DRG (Data-
Retention Gated-ground) [1], Gated-Vdd [17], and DVS for Vdd (which is also called 
drowsy cache) [3]. In the ABB MTCMOS technique, threshold voltage is dynamically 
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changed but the wakeup penalty between the active mode and the leakage saving 
mode is long, which makes it difficult for use in L1 caches [4]. DRG retains the data 
while reducing leakage by gating ground and using remaining leakage to retain cell 
contents, but the wakeup penalty is long. Thus, this technique may be inappropriate 
for timing critical caches such as an L1 cache, even if it is effective for less timing 
critical caches such as L2 [10]. The gated-Vdd technique reduces the leakage power 
by breaking the connection from the supply voltage (Vdd) or ground (the difference 
compared to DRG is that a larger sleep transistor is used and cell contents are not 
preserved) when the cell is put to sleep. While this technique dramatically reduces the 
leakage, its main disadvantage is that it does not preserve the state of the data in the 
sleep mode [4]. When the line is needed after it has been put into the leakage saving 
mode, the line must be refetched from a lower-level memory, which leads not only to 
additional dynamic energy consumption but also to performance degradation. To 
prevent these costs, conservative prediction policies should be employed [5][20][21]. 
Gated-Vdd may, however, be suitable for some L1 data caches where re-fetch penalty 
is short [12]. Another leakage saving technique is to lower the supply voltage. In this 
technique, data is not lost when the cache line is in the leakage saving mode (called 
“drowsy” mode). In the drowsy mode, data is retained, although it can not be accessed 
for read or write operation. Fortunately, most cache lines are unused for long periods 
due to temporal locality. Thus, by putting infrequently used cache lines into drowsy 
mode and keeping frequently accessed cache lines in the active mode, much leakage 
power is reduced without significant performance degradation. Please note that there 
is a wakeup penalty to restore the voltage level of the Vdd from the drowsy mode into 
the active mode. However, the wakeup penalty is expected to be one cycle in 70nm 
process technology [3]. There has been concern that drowsy cache is more susceptible 
to soft errors than conventional caches [10]. Fortunately, instructions are read-only 
and must be protected by parity even in the absence of drowsy techniques. In the 
infrequent cases when an error is detected, the instruction only has to be refetched. 
    Among the above four techniques, drowsy technique is most suitable for L1 
instruction caches, since it retains data and has short wakeup penalty. In order to 
prevent (or hide) the wakeup penalty of the drowsy cache, many prediction policies 
have been proposed. The easiest policy is “no prediction”: to place all the cache lines 
into the drowsy mode periodically and restore the voltage level of Vdd of accessed 
cache lines, suffering the wakeup penalty. It performs well with data caches because 
they have high temporal locality, leading to little performance loss, and out-of-order 
processors can often tolerate extra latency from waking up lines [3]. For instruction 
caches, however, this “no prediction” technique does not perform well, because any 
wakeup penalty that stalls fetching directly impacts the performance. Many prediction 
policies have been proposed for instruction caches. (Details will be explained in the 
next section). None of them has simultaneously shown consistent leakage energy 
reduction with negligible performance degradation. In this paper, we propose a new 
on-demand wakeup prediction policy for an instruction cache. By on-demand, we 
mean that only currently necessary cache line(s) needs to be awake. This technique 
takes advantage of the fact that we can accurately predict the next cache line by using 
the branch predictor. Thus, the wakeup prediction accuracy capitalizes on branch 
predictors that have already proven to be very accurate [14]. A further advantage 
compared to previous policies is that the proposed policy does not require an 
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additional predictor. To utilize the branch predictor for wakeup prediction, we can 
allow a pipeline stage between branch prediction and instruction cache fetch. 
Allowing the branch predictor to be accessed one cycle earlier permits the branch 
prediction outcome to be used for wakeup, without harming branch prediction 
accuracy or requiring additional wakeup prediction hardware. Please note that this 
approach does not suffer the traditional branch-misprediction overhead of inserting 
extra stage in the pipeline. On a branch misprediction, the extra wakeup stage is 
overlapped with misprediction recovery. For further details, see Section 3. 
    This work focuses on use of drowsy cache (actually super-drowsy cache [9], 
explained in Section 2) for the leakage saving circuit technique. In this paper, we 
distinguish the wakeup prediction policy from the leakage saving circuit technique. 
The wakeup prediction policy predicts which cache line will be woken up, while the 
leakage saving circuit technique is the mechanism for putting lines to sleep and 
waking them up, independent of the prediction policy. 

2   Background 

Kim et.al proposed a refinement of the drowsy technique, called super-drowsy cache 
[9]. A single-Vdd cache line voltage controller with Schmitt trigger inverter replaces 
multiple supply voltage sources in order to alleviate interconnect routing space. In 
addition, the on-demand gated bitline precharge technique [19] is employed to reduce 
the bitline leakage. We apply our prediction policy to the super-drowsy cache because 
it is the most advanced circuit technique for instruction cache leakage control as far as 
we know. 
    The success of the drowsy-style cache depends on how accurately the next cache 
line can be predicted and woken up. Especially for an instruction cache, accuracy is 
crucial since the accuracy directly affects performance degradation. A simple policy is 
noaccess [3]: This uses per-line access history and puts all the unused lines into 
drowsy mode periodically. For more accurate wakeup prediction, two prediction 
policies were proposed for a drowsy instruction cache [8] – NSPB (Next Subcache 
Prediction Buffer) and NSPCT (Next Subcache Predictor in Cache Tags). Additional 
storage is required to predict the next subbank (not a cache line) using NSPB, whereas 
cache tags are extended to provide the subbank predictor in NSPCT. Therefore, 
NSPCT requires less hardware overhead but is comparable to NSPB in accuracy 
(performance loss is 0.79%). However, leakage reduction is weak [8] due to large sub-
bank turn-on energy. Zhang et.al. proposed the Loop policy [21] where all cache lines 
are put into the drowsy mode after each loop was executed. This bears some similarity 
to the DHS (Dynamic HotSpot Based Leakage Management) policy, which was 
proposed in [5]. DHS makes use of the branch target buffer (BTB), since branch 
behavior is an important factor in shaping the instruction access behavior. In the DHS 
policy, the global turn-off (drowsy) signal is issued when a new loop-based hotspot is 
detected. Thus this policy can lower the supply voltage of unused cache lines before 
the update window expires by detecting that execution will remain in a new loop-based 
hotspot. The DHS-PA (DHS-Per Access) policy employs a Just-In-Time-Activation 
(JITA) strategy on top of the DHS policy [5]. The JITA strategy is to wake up the next 
sequential line, exploiting the sequential nature of code. However, this is not successful 
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when a taken branch is encountered. The DHS-Bank-PA policy [5] issues the global 
turn-off signal at fixed periods, when the execution shifts to a new bank, or when a 
new loop hotspot is detected. It attempts to identify both spatial and temporal locality 
changes. It also employs hotspot detection to protect active cache lines and the JITA 
policy for predictive cache line wakeup. As shown in [5], although the DHS-Bank-PA 
reduced leakage energy significantly, performance degradation is severe.  
    The super-drowsy cache deploys the noaccess-JITA policy with as large as a 32K-
cycle update window size for next cache line prediction to achieve high accuracy [9]. 
The noaccess-JITA puts only lines that have not been accessed during a fixed time 
period into drowsy mode and activates the first sequential cache line. The super-
drowsy cache also deploys an additional NTSBP (Next Target Sub-Bank Predictor) 
that predicts next sub-bank to be bitline precharged in advance, since the on-demand 
gated precharge incurs extra penalty to enable an inactive sub-bank, and this can 
result in significant execution time increase. The noaccess-JITA/NTSBP with 32K 
cycle update window size is a leakage energy reduction policy with the most accurate 
wakeup prediction but with modest leakage energy reduction. However, the accuracy 
of the noaccess-JITA/NTSBP is so dependent on program behavior, especially 
locality, that the accuracy of no-access-JITA/NTSBP is poor in some applications.  

3   Novel Wakeup Prediction Policy: Utilizing Branch Prediction 
Information  

In previous wakeup prediction policies, additional predictors are required in order to 
wake up a cache line, and accessed cache lines remain active for a fixed time period. 
Accordingly, the accuracy of the previous policies is highly dependent on the locality. 
As shown in Figure 1(a), the additional predictors, such as JITA [5], NSPB [8], 
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NSPCT [8] and NTSBP [9], are accessed before looking up the branch predictor in 
order to hide the wakeup penalty. However, the accuracy of additional predictors was 
not satisfactory. For near-optimal leakage energy reduction and performance, we 
propose a new wakeup prediction policy which enables on-demand wakeup. In the 
proposed policy, as shown in Figure 1(b), the branch predictor, consisting of 
Prediction History Table (PHT) and Branch Target Buffer (BTB), is accessed one 
cycle earlier than in conventional policies.  
    There are two architectural options in branch resolution. When a branch turns out 
to be mispredicted in the execution stage, some time is usually required to clean up 
mis-speculated state and generate the next address (Figure 2(a)), but depending on 
exactly where during the branch-resolution cycle the misprediction is detected, it may 
be possible to complete this without any extra overhead (Figure 3(a)). Requiring at 
least one cycle for cleanup and fetch-address generation, as shown in Figure 2 (a), 
appears to be common [22].  

 
- Additional penalty for recovery after the execution stage 

    As shown in Figure 2 (b), after the execution/branch-resolution stage of the 
instructtion n, cleanup, effective address calculation, and wakeup occur simul-
taneously. Thus there is always only one active cache line.  
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Fig. 2. Pipeline structure (when there is one-cycle penalty for effective address calculation) 

-    No penalty for recovery after the execution stage 
In Figure 3 (b), it is impossible to wake up only one correct cache line after a 

misprediction without incurring a one-stage penalty, because cleanup and address 
generation occur in the same stage as misprediction detection.  Instead, the potential 
alternative path should be woken up speculatively in parallel with branch resolution.  
This means that during some cycles, two lines are awake. 
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Fig. 3. Pipeline structure (when there is no penalty for effective address calculation) 

    It is possible to determine the alternative path in parallel with branch resolution. 
For predicted-taken branches, the not-taken path must be woken up and the branch 
address itself (usually carried with the instruction) can be used.  For predicted not-
taken branches, the taken target is needed. This can either be carried with the 
instruction or reside in some dedicated storage. This capability must exist anyway in 
current microprocessors because every taken branch in flight must be able to check 
whether the target address obtained from the BTB is correct or not. Note that the 
taken target is available at branch-prediction time regardless of predicted direction, 
because the direction predictor and target predictor are usually consulted in parallel. 
    In both options of Figure 2 and Figure 3, there is no penalty when there is no 
branch misprediction. In case of branch target misprediction, the penalty is inevitable. 
However, there is only one case that we can not hide the penalty in case of branch 
direction misprediction. Since the stored cache line address woken up is not that of 
(mispredicted branch instruction address + 4), but the mispredicted branch instruction 
address itself, there is a penalty when the resolved branch instruction is at the end of 
the cache line and the correct next instruction is sequential. It is possible to make use 
of the instruction address +4, but it requires extra adder or storage for the instruction 
address + 4. Even though this cost may be minor, in this paper we do not use an extra 
adder or extra storage, since the probability that a mispredicted instruction is at the 
end of the cache line is rare. 
    In the proposed policy, only one cache line (or two cache lines in Figure 3) 
expected to be accessed exists in the active mode and all the other cache lines are in 
the drowsy mode. For a set-associative cache, only one way should woken up to save 
the energy. We adopt a way predictor [18] that employs MRU (Most Recently Used) 
bit and integrates a way predictor and a BTB for high accuracy, which is known as 
one of the most accurate way predictors. In the noaccess-JITA/NTSBP, the way 
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predictor is used for cache line wakeup prediction, while for NTSBP it is used for 
precharging and way prediction of cache line to be read. When the way predictor can 
have 2-read ports in order to predict the next cache line that will be actually read as 
well, the prediction accuracy for precharging is higher and the NTSBP is unnecessary 
(In this paper, we call this policy as Noaccess-JITA utilizing w.p. (Way Predictor)). 
Both options (noaccess-JITA/NTSBP and noaccess-JITA (utilizing w.p.) are 
evaluated in this paper. In DHS-Bank-PA, way prediction is not required in case of 
actual cache read, since the whole sub-bank is put in the sleep mode when execution 
jumps from one sub-bank to another, resulting in overlapping of wakeup penalty and 
precharging penalty. In the proposed policy, the PHT and the BTB are accessed one 
cycle earlier, which leads to one cycle earlier way prediction. There is no need for 
another way prediction to read the instruction cache, since only one woken up cache 
line can be read in the proposed on-demand policy. In case of Figure 3, however, a 
two-port way predictor is required to support concurrent two accesses: one is to wake 
up the next cache line in case of correct branch prediction (to wake up instruction 
n+3, when instruction n is predicted correctly in Figure 3 (b)) and the other is to wake 
up a probable cache line recovered from branch misprediction (to wake up instruction 
n+3, when instruction n is recovered from branch misprediction in Figure 3 (b)). 

4 Experimental Methodology  

We extended Simplescalar 3.0 [2] to evaluate energy and performance. The processor 
parameters model a high-performance microprocessor similar to Alpha 21264 [7],  
as shown in Table 1. The power/energy parameters are based on the 70nm/1.0V  
 

Table 1.  Architecture/circuit parameters 

Processor Parameters 

Branch Predictor Gshare/4K, 1024-entry 4-way BTB 

L1 I-Cache 
32 KB, 4 way, 32B blocks, 1 cycle latency, 4KB sub-

bank size 

L1 D-Cache 32 KB, 4 ways, 32B blocks, 1 cycle latency 

Power/Energy Parameters 

Process Technology 70 nm 

Threshold Voltage 0.2 V 

Supply Voltage 1.0 V (active mode), 0.25 V (drowsy mode) 

Leakage Power/Bit in Active Mode w

/o Gated Precharging (1 cycle) 
0.0778 μW

Leakage Power/Bit in Active Mode w

/ Gated Precharging (1 cycle) 
0.0647 μW

Leakage Power/Bit in Drowsy Mode 

w/o Gated Precharging (1 cycle) 
0.0167 μW

Leakage Power/Bit in Drowsy Mode 

w/ Gated Precharging (1 cycle) 
0.00387 μW

Turn-on (drowsy to active) Energy/Bit 115fJ 

Turn-on (drowsy to active) Latency 1 cycle 

Clock Cycle Time 12 * FO4 (395ps) 
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technology [9]. We use all integer and floating point applications from the SPEC2000 
benchmark suite [24]. Each benchmark is first fast-forwarded half a billion 
instructions and then simulated the next half a billion instructions.  

We selected three previous prediction policies (noaccess-JITA/NTSBP, noaccess-
JITA (utilizing w.p.), and DHS-Bank-PA, described in Section 2 and Section 3) for 
comparison. We use same details of the policies as proposed in [5][9]. The noaccess-
JITA/NTSBP has a 32 K cycle update window to periodically update mode of each 
cache line. Although execution moves from one sub-bank to another sub-bank,  
the precharge circuits of the previous sub-bank remain on for 16 cycles to prevent the 
misprediction of sub-bank. After 16 cycles, the bitline of the sub-bank is isolated. The 
DHS-Bank-PA has 2 K cycle update window and its hotness threshold is 16.  

5   Experimental Methodology  

This section presents our simulation results and compares the proposed policy to other 
policies. We analyze each policy’s energy reduction and execution time increases.  

5.1   Drowsy Fraction and Gated Bitline Precharging Fraction 

Figure 4 shows the drowsy fraction in the 4-way set-associative cache. Since the 
update window size of the noaccess-JITA/NTSBP is as large as 32K, the drowsy 
 

 

Fig. 4. Average drowsy fraction in instruction cache 

fraction is 66.9%, on average. In the DHS-Bank-PA, the drowsy fraction is 98.2%, on 
average. The reason is that the update window size is as small as 2K and additionally 
cache lines are put into the drowsy mode when a new hotspot is detected. In the 
proposed on-demand policy, only one (or two in the proposed policy of Figure 3) 
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cache line is in the active mode and the others are in the drowsy mode, resulting in 
99.9% (or 99.8% in the proposed policy of Figure 3) drowsy fraction, on average. 
There is little difference between the noaccess-JITA/NTSBP and the noaccess-JITA 
(utilizing w.p.), since the NTSBP and the 2-read port way predictor are not related to 
the drowsy fraction but related to the precharging fraction.  
    Figure 5 shows the fraction of isolated bitines in the 4-way set associative cache. In 
case of bitline precharging prediction, there is no energy penalty but there is one cycle 
timing penalty when mispredicted. In the noaccess-JITA/NTSBP, on average 75.7% 
of the sub-banks are bitline gated. The fraction is relatively small, because a sub-bank 
should be remained bitline precharged for 16 cycles to prevent bitline precharging 
mispredictions when execution moves to another sub-bank. However, the noaccess-
JITA (utilizing w.p.) always has 87.5% since way predictor is used for subbank 
prediction. In the other two techniques, only one sub-bank is bitline percharged. Thus, 
the portion of gated bitline precharging is always 87.5% (1 sub-bank/8 sub-banks).  

 

 

Fig. 5. Average isolated bitline fraction in instruction cache 

5.2   Total Leakage-Related Energy  

In the proposed policy, the next cache line is woken up on-demand. Thus, the leakage 
energy in the active mode is minimized, whereas turn-on energy by prediction is 
expected to be larger due to more frequent sleep/activation round-trips compared to 
the other previous policies. However, turn-on energy in the proposed policy still 
accounts for a small portion of total leakage-related energy. Figure 6 shows 
normalized leakage-related energy to the base model. The base model does not use 
any leakage-saving policy but it has the way predictor. Average leakage-related 
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energy reduction is 68.1%, 69.8%, 90.4%, 92.5%, 92.2%, and 92.6% in the noaccess-
JITA/NTSBP, noaccess-JITA (utilizing w.p.), DHS-Bank-PA, on-demand of Figure 
2, on-demand of Figure 3, and optimal policies, respectively.  

 

 

Fig. 6. Normalized leakage-related energy 
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5.3   Wakeup Prediction Accuracy 

On average, the branch prediction accuracy is 94.3% and the branch instruction ratio 
is 8.7% for SPEC applications. Recall that wakeup misprediction is mainly caused by 
branch misprediction by incorrect target address. As the number of branch 
instructions gets smaller, the branch prediction accuracy affects wakeup prediction 
accuracy less. For example, gcc and gzip shows similar branch prediction accuracy 
but the branch instruction ratio of gzip is much less than that of gcc, resulting in 
higher wakeup prediction accuracy of gzip in Figure 7.  
    As explained in Section 2.2, correct cache line prediction for drowsy cache does 
not always mean correct sub-bank prediction for bitline precharging in the noaccess-
JITA/ NTSBP, since the cache line is predicted by noaccess-JITA and the sub-bank is 
predicted by NTSBP (In other words, cache lines in the active mode are spread across 
sub-banks). The same is applied to the noaccess-JITA (utilizing w.p.) in the set-
associative cache. In the other policies, cache lines in the active mode are in one sub-
bank.  
    Figure 7 shows the wakeup prediction accuracy, including bitline precharging and 
way prediction accuracy in the 4-way set-associative cache. The accuracy of the 
optimal policy implies the way prediction accuracy. Please note that the results are 
not per instruction but per fetch. Average accuracy of the noaccess-JITA/NTSBP is 
71.9% since a set-associative cache make it more difficult to predict sub-bank 
precharging. However, the noaccess-JITA (utilizing w.p.) and the proposed on-
demand policy shows 87.3% and 87.6% accuracy, respectively which is close to the 
accuracy (way prediction accuracy) of the optimal policy. The accuracy of DHS-
Bank-PA is as low as 57.6%, on average, which might result in severe performance 
degradation. This is caused by flushing the previous sub-bank when execution jumps 

 

 

Fig. 7. Wakeup prediction accuracy per fetch, Including bitline precharging and way prediction 
accuracy 
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from one sub-bank to another, since the sub-bank hoppings are much more frequent in 
a set-associative cache.  

5.4   Execution Time 

Even one percent increase of execution time leads to substantial increase of the total 
processor energy, which might counterbalance the reduced L1 instruction cache 
leakage. Thus, it is crucial to maintain execution time close to the base model. We 
only show the proposed policy of Figure 2, since there is negligible difference from 
that of Figure 3. 
    When a wakeup misprediction (including precharging misprediction and way 
misprediction) and an instruction cache miss occur at the same time, the wakeup 
penalty is hidden by the cache miss penalty. Thus, the wakeup prediction accuracy is 
related to the execution time but this is not always exactly proportional. 
    Figure 8 shows the execution time normalized to the base model in the 4-way set-
associative cache. The increases of execution time are 2.09%, 0.15%, 5.36%, and 
0.27% for noaccess-JITA/NTSBP, noaccess-JITA (utilizing w.p.), DHS-Bank-PA, 
and the proposed on-demand policy. Though the noaccess-JITA/NTSBP increases the 
execution time by inaccurate next sub-bank prediction, the noaccess-JITA (utilizing 
w.p.) does not since it utilizes the 2-read port way predictor which is more accurate 
than the NTSBP. In equake, The DHS-Bank-PA degrades the performance as much as 
30.1%, which is too severe to be tolerated. 

 

Fig. 8. Normalized execution time 

5.5   Comparison of Hardware Overhead 

For a wakeup prediction policy, hardware overhead is inevitable in additional to the 
DVS control circuitry. We compare the hardware overhead of each policy. In the 
noaccess-JITA/NTSBP, one bit per cache line is required in order to detect whether 
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the cache line is accessed or not in the fixed time period. In addition, the NTSBP has 
1K entries (3 bits/entry). The noaccess-JITA (utilizing w.p.) requires one bit per cache 
line same as the noaccess-JITA. In addition, it needs the 2-read port way predictor for 
bitline precharging (sub-bank) prediction. In the DHS-Bank-PA, one bit per cache 
line is also required to store the access history. Additionally, ten bits (half for the 
target basic block counter and the other half for the fall-through basic block counter) 
are required to locate a hotspot [5]. Since the BTB has 1024 entries, the total storage 
overhead is 10K. For the proposed policy, only a small register (ex. 10 bit for our 
1024-entry cache) is needed to record the most recently accessed cache line.  

6   Conclusions  

In this paper, we propose an on-demand wakeup prediction policy using the branch 
prediction information. Our goal is not only less energy consumption but also 
consistent near-optimal performance. The noaccess-JITA/NTSBP and the noaccess-
JITA (w/ w.p.) show competitive performance consistently but their energy consump-
tion is more than four times of the proposed policy, on average. The DHS-Bank-PA 
reduces leakage-related energy significantly but it increases the execution time by 
more than 10% in many cases. In several cases, the increase is more than 20%. The 
proposed policy degrades the performance by only 0.27%, on average, and 2.1% for 
the worst case. At the same time, leakage energy is almost eliminated since only one 
(or two) cache line is active while all the other lines are in the drowsy mode. This is 
especially beneficial for controlling leakage in future instruction caches which might 
be much larger. The leakage energy reduction by the proposed policy is on average 
92.2~92.5%, almost identical to the reduction by the optimal policy (92.6%). 
Therefore, we conclude that the proposed on-demand wakeup prediction policy is 
near-optimal.  
    We believe that there is no reason to try to reduce remaining leakage by adopting 
non-state-preserving techniques, at the risk of severe performance degradation. The 
proposed policy can be adopted for other state-preserving leakage saving circuit 
techniques as long as the wakeup penalty is at most one cycle.  
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Abstract. The Imagine processor is designed to address the processor-memory 
gap through streaming technology. Good performance of most media appli-
cations has been demonstrated on Imagine. However the research whether 
scientific computing applications are suited for Imagine is open. In this paper, 
we studied some key issues of scientific computing applications mapping to 
Imagine, and present the experimental results of some representative scientific 
computing applications on the ISIM simulation of Imagine. By evaluating the 
experimental results, we isolate the set of scientific computing application 
characteristics well suited for Imagine architecture, analyze the performance 
potentiality of scientific computing applications on Imagine compared with 
common processor and explore the optimizations of scientific stream program. 

Keywords: scientific computing application, Imagine, stream, three level 
parallelism, multinest. 

1   Introduction 

Scientific computing applications widely used to solve large computation problems 
are pervasive and computationally demanding. These applications require very high 
arithmetic rates on the order of billions of operations per second. But the performance 
of these applications is restricted by both the latency and bandwidth of memory 
accessing [1][2]. Scientific computing applications often exhibit large degrees of data 
parallelism, and as such maybe present great potential opportunities for stream 
architectures [3][4], such as Imagine architecture [4]. Imagine is a programmable 
stream processor aiming at media applications [5], which contains 48 arithmetic units, 
and a unique three level memory hierarchy designed to keep the functional units 
saturated during stream processing [6][7]. With powerful supports of the architecture, 
Imagine can exploit the parallelism and the locality of a stream program, and achieve 
high computational density and efficiency [8]. In this paper, we describe and evaluate 
the implementation of mapping scientific computing applications to stream programs 
formed of data streams and kernels that consume and produce data streams on the 
Imagine stream architecture, and compare our results on a cycle-accurate simulation 
of Imagine. The purpose of our work is to exploit the salient features of these unique 
scientific computing applications, isolate the set of application characteristics best 
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suited for the stream architecture by evaluating the experimental results, and explore 
the optimizations of scientific stream program. 

2   The Imagine Stream Processing System  

2.1   Imagine Architecture 

The Imagine architecture developed at Stanford University is a single-chip stream 
processor that operates on sequences of data records called streams, supporting the 
stream programming system. It is designed for computationally intensive applications 
like media applications characterized by high data parallelism and producer-consumer 
locality with little global data reuse [6][7]. The Imagine processor consists of 48-
ALUs arranged as 8 SIMD clusters and three level memory hierarchy to ensure the 
data locality and keep hundreds of arithmetic units efficiently fed with data. Several 
local register files (LRFs), directly feed those arithmetic units inside the clusters with 
their operands. A 128 KB stream register file (SRF) reads data from off-chip DRAM 
through a memory system interface and sequentially feeds the clusters [8][9]. Fig. 1 
diagrams the Imagine stream architecture. One key aspect of Imagine is the concept 
of producer-consumer locality, where data is circulated between the SRF and 
arithmetic clusters, thereby avoiding expensive off-chip memory access overhead 
[10]. Based on the foregoing architecture supports, Imagine can efficiently exploit 
data parallelism along three levels: instruction-level parallelism (ILP), data-level 
parallelism (DLP), and task-level parallelism (TLP).  

 

Fig. 1. The Imagine stream architecture 

2.2   Imagine Programming Model 

The programming model of Imagine is described in two languages: the stream level 
and the kernel level [11][12][13][14]. A stream level program is written in StreamC 
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language, which is derived from C++ language. A kernel level program of the clusters 
is written in KernelC language, which is C-like expression syntax. The StreamC 
program executed for the host thread represents the data communication between the 
kernels that perform computations. However, programmers must consider the stream 
organization and communication using this explicit stream model, increasing the 
programming complexity [15]. So the optimization for stream programming is 
important to achieve significant performance improvements on the Imagine 
architecture. The fine stream program can explore ILP, DLP and TLP to maximize 
performance, as it processes individual elements from streams in parallel. 

3   Implementation of Scientific Computing Stream Applications 

Imagine system promises to solve many computationally intensive problems much 
faster than their traditional counterparts. Scientific computing applications contain a 
great lot of loops possessing a high degree of instruction, data and task level 
parallelism that can be exploited by decomposing the scientific computing task into 
smaller subtasks, which are mapped into different computational elements, distri-
buting the scientific stream to different processors. However, because a stream 
program is more complex than an equivalent sequential program, to realize this 
increase in speed some challenges must be overcome first [12]. 

3.1   Stream Level  

The key tasks of stream level are partitioning kernels and organizing input streams. 
Since parallelizable parts focus on loops, we present corresponding streaming method 
based on different loop transformations. Aiming at exploiting ILP within a cluster, 
DLP among clusters and TLP of a multi-Imagine system, programmers distribute 
parallelizable data among the clusters and put the data that dependence can’t be 
eliminated on the same cluster via loop analysis. Due to wire delay becoming 
increasingly important in microprocessor design, reducing inter-cluster communi-
cation must also be taken into account. It is necessary to modify the original algorithm 
when we write a stream program. We explicate our key methods in detail according to 
an example that is modified from a part of a scientific computing program named 
Capao introduced in the fourth section. Fig. 2 shows the example program including 
two main loops named loop1 and loop2 by us, and loop2 is a multinest with two inner 
loops labeled as loop3 and loop4 specially. 

3.1.1   Multinest  
In order to make the best use of the powerful computing ability of Imagine, kernel 
must process suitable granularity. Computationally intensive operations centre on 
multinest loops. It is a simple method to look upon each inner loop as a separate 
kernel. But this partition method brings memory access overhead due to replacing 
microcode frequently, and causes so much lower repeatable use ratio of SRF as to  
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1   alfa[0] = 0;            

2   alfa[1] = b/c; 

3   for (i=2;i<511;i++) 

4   alfa[i]=b/(c-a*alfa[i-1]); 

5   alfa[511]=0; 

6   beta[0]=0; 

7   for (j=1;j<511;j++) 

8   { 

9    for (i=1;i<511;i++) 

10   { 

11    f=t[i][j+1]-t[i][j];  

12    beta[i]= (f+beta[i-1])/alfa[i-1];

13   } 

14  w[511][j]=0; 

15  for (i=510;i>0;i--) 

16   w[i][j]=alfa[i]*w[i+1][j]+beta[i];

17  w[0][j]=0;  

18 } 

loop1

loop2

loop3

loop4

 

Fig. 2. Example program 

make memory access become bottleneck. So that multinest loop is mapped into a big 
kernel results in better execution time than several small kernels. Because having 
more operations in one kernel gives more opportunities to parallel the operations and 
generates more compact schedules with better resource utilization. There are two key 
steps to partition multinest loops into kernel codes on Imagine. 

 Loop combination 

Combine the inner loops without array dependence by instruction scheduling. This 
way can increase the computing scale within kernels, and reduce the number of single 
instructions outside the inner loops. 

 Loop splitting 

If inner loops can’t be combined, then consider splitting the multinest loop. In this 
way, the computing amount of outer loops can be involved in kernels, and 
accordingly parallelism of kernel level program can be improved. This method relates 
to array saving creating array copies. We can add one dimension based on original 
array to save the results of previous loops. It is a way that bartering space overhead 
for efficiency. For example, loop3 and loop4 in Fig. 2 exist array dependence. Hence 
we split the big multinest loop2 into two two-nest loops. The computing scale of 
kernels is increased from 510 to 510*510. For loop splitting, the dimension degree of 
array beta is increased to save the results of loop3, and prepare the input data for 
loop4. Fig. 3 shows loop2 is divided to two new multinest named loop3’ and loop4’ 
according to the dimension variety of array beta.  
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for (j=1;j<511;j++) 

     for (i=1;i<511;i++) 

   { 

  f=t[i][j+1]-t[i][j];  

  beta[i][j]=(f+beta[i-1][j])/alfa[i-1];

} 

for (j=1;j<511;j++) 

{ 

w[511][j]=0; 

for (i=510;i>0;i--) 

w[i][j]=alfa[i]*w[i+1][j]+beta[i][j];

w[0][j]=0;  

} 

loop3'

loop4'

 

Fig. 3. Loop splitting 

3.1.2   Coupled Dependent Loop  
It is difficult that single loop existing data coupled dependence is parallelized. So 
expanding one dimension based on the original array within multinest to exploit 
parallelism on the new dimension is an optional means. Then we can choose multi-
form methods of stream organization, aiming at exploiting parallelism among clusters 
and making full use of LRF according to the LRF capacity. For instance, in Fig. 2, the 
array beta in the twelfth row of the example code is expanded into two-dimension 
array. The new dimension direction j exists data coupled dependence, but there is 
independence between new columns. The coupled dependent code is as follows. 

beta[i][j] = (f + a * beta[i-1][j] ) / alfa[i-1]. 

For making full use of arithmetic units per cluster, we must avoid assigning the 
coupled dependent data to different clusters. Doing everything possible to place the 
coupled dependent data within a cluster can reduce the influence of wire delay, and 
improve parallelism on Imagine. There are two ways to solve this problem. 

 Combine the coupled dependent record into a big record according to the 
capacity of LRF. Then make the big records form a new input stream. The 
implementation of this method is complex in some sort, but comprehended 
easily. We emphasize that the infilling of new records may flush the LRF. So 
the dependent records are loaded into LRF as successively as possible. At the 
same time, we must claim attention to save the array boundary of big record. 
Because the record may be as large as the capacity of LRF. When next record 
coming, we must save the previous record as the input data of the next 
operation to avoid record losing. Fig. 4 presents the stream organization of 
this method on Imagine with 8 clusters. 

 Compared with the foregoing way, the second method is easy to implement, 
because the records of stream are not altered. We place the dependent record 
onto a cluster by a special index stream. Same as the foregoing method, every 
eight columns are treated as a group. The index stream is formed successively 
by row of independent records in a group. Each column of records is assigned 
onto a cluster. Fig. 5 presents the stream organization of this method. 
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Fig. 4. The first method of coupled dependent loop mapping on Imagine 
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Fig. 5. The second method of coupled dependent loop mapping on Imagine 

3.1.3   Single Instruction 
If there are a great deal of single instructions in original program, whether they are 
within loops or not, the partition of kernel is influenced, and the kernel granularity 
can’t be suitable. To solve the problem, we present two optimization methods. 

 Loop expending  

In order to increase the computing scale of kernels and avoid using index stream 
that causes DRAM reordered overhead, some single instructions need to be expanded 
into appropriate loops. Then we can either use successive basic stream as input data or 
provide uniform loop variable for multinest combination. For instance, the second 
instruction of the example code in Fig. 2 is expanded into loop1. 

 Instruction scheduling  

When above factors are satisfied, on the premise of accuracy being ensured, this 
method may reduce the number of write times to the same record, and prepare for 
combining single instruction operations. For example, the fourteenth and seventeenth 
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instructions of the example code in Fig. 2 are scheduled out of loop2 to lessen the 
computing amount of loop4 so that loop4’ in Fig. 3 can be mapped to stream program 
obviously. Fig. 6 illustrates the two methods of single instruction optimization. 

alfa[0] = 0;            

alfa[1] = b/c; 

for (i=2;i<511;i++)  

alfa[i]=b/(c-a*alfa[i-1]); 

... 

for (j=1;j<511;j++){ 

w[511][j]=0; 

for (i=510;i>0;i--) 

 w[i][j]=alfa[i]*w[i+1][j]+beta[i];

w[0][j]=0;       

} 

alfa[0] = 0;            

for (i=1;i<511;i++){ 

alfa[i]=b/(c-a*alfa[i-1]); 

w[511][i]=0; 

w[0][i]=0; 

} 

... 

for (j=1;j<511;j++) 

for (i=510;i>0;i--) 

 w[i][j]=alfa[i]*w[i+1][j]+beta[i]; 

 
 

Fig. 6. Single instruction optimizations 

3.2   Kernel Level  

An Imagine application is written as a sequence of smaller tasks, called kernels. A 
kernel operation performs a computation on a set of input streams to produce a set of 
output streams. Typically, kernels loop over an input stream, performing identical 
operations on each input element to produce their outputs. Each kernel runs on all 
eight clusters while processing its input streams and completes the processing of its 
input streams before the next kernel begins. In this way, producer-consumer locality 
is exploited by consuming the result of one kernel as soon as it is produced. As an 
example, Fig. 7 shows how the program in Fig. 2 is mapped to streams and kernels. In 
the event where inter-cluster communication is required, each cluster has a cluster id 
tag that can be used to identify the cluster and send/receive data to/from the right 
cluster. In order to expand the scale of kernel, a long stream is generally as input data. 
When computing data are not in native register, additional inter-cluster 
communications are required to transfer the data to the right cluster. And since all 
applications are not perfectly data parallel, many kernels require data reordering to 
place the data on the right clusters. 

alfa_in 

beta_out

alfa_out t_in

w_out

kernel 1

kernel 3

kernel 2

 

Fig. 7. Example program mapping to stream program model 
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4   Experimental Results and Analysis 

We implement some scientific computing applications on ISIM that is a cycle-
accurate simulator of Imagine [14], including 171.Swim in SPEC2000 and Capao. 

4.1   Application Analysis 

Swim is a weather prediction program for comparing the performance of current 
supercomputers. Fig. 8 shows data flow chart of Swim. Its main computing amount 
focuses on a loop of calculating fourteen arrays with 513*513 size. The data amount 
of Swim is large, but the computing operations are few correspondingly. The array 
access pattern presented in Fig. 9 is irregular. 
    Capao is an application on the field of optics. Its computing amount is very huge. 
According to its result of serial version, 65.49% of time overhead comes from 
subroutine dfft, and 13.36% comes from subroutine transp. So we just consider 
mapping the two subroutines to stream program so that improve performance of the 
whole application. The subroutine dfft possesses small computing amount and fine 
computation intensiveness. We implement two version of dfft. One that applies 
butterfly algorithm is called DFFTN in this section, and another formulized without 
any optimization is called DFFT. The computing amount is exponent distinction 
between DFFTN and DFFT. It is time-consuming on general scalar processors that 
DFFTN performs bit reverse operation. Imagine supports this operation on hardware 
level, so the performance of DFFTN may be increased. The experiment on DFFT 
purposes certifying powerful computing ability of Imagine. 

            

Access 
Pattern

 

Fig. 8. The data flow chart of Swim               Fig. 9. Accessing pattern of Swim 

4.2   Experimental Results 

For comparison purpose, actual measurements of performance were taken using a 
general scalar processor system. Table 1 illustrates the result of a rough comparison 
between the performance of Imagine and the general scalar processor. It is obvious 
that Imagine provides high speedup of computationally intensive applications such as 
DFFTN, DFFT and Transp compared with general processor system in terms of 
number of cycles, due to the simple control logic and parallel processing ability of 
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many arithmetic units. And compared with highly sensitive to memory latency of 
general processor, these applications can hide latency to achieve good performance. 
But for data intensive applications such as Swim, the speedup is low due to irregular 
access pattern so that memory access latency can’t be hided. 

Table 1. Comparison of different implementation for the scientific applications 
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Fig. 10 shows the three level bandwidth hierarchy of these applications. The LRF 
to memory bandwidth ratio are over 33:1, 70:1 and 592:1 across DFFTN, Transp and 
DFFT, due to the abundant memory access of these three applications focusing on 
LRF. So they can achieve good performance on Imagine with relatively low memory 
bandwidth for exposing a large register set with two levels of hierarchy to the 
compiler enables considerable locality to be captured that is not captured by a 
conventional cache. While the streams of Swim are very long, which can’t be 
partitioned due to dependence, causing low locality of SRF and LRF. Notice that the 
bandwidth of LRF is much lower than that of SRF, because a mass of index streams 
derived dynamically inhabit the SRF space. 
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Fig. 10. Bandwidth hierarchy of applications 

Table 2 presents the computation rate of these applications measured in the number 
of operations executed per second. Imagine achieves 16 GOPS ALU performance on 
media applications and sustains between 2% and 31% of the peak performance on 
these applications. On DFFT, Imagine averages 10 arithmetic operations per cycle 
across all the clusters for an aggregate rate of 5 GOPS. This high computation rate 
indicates that the stream programming system delivers high computational density on 
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the DFFT application. But for Swim, the computing time is 13%~38% of the whole 
run time. The great mass of work is to wait for result of memory accessing leading to 
inefficient performance. 

Table 2. Computation rate of applications 

 

Fig. 11 shows the size of the computation kernel, as well as the number of 
arithmetic operations per memory access. Imagine’s stream model requires large 
number of arithmetic operations per memory access to effectively use the underlying 
hardware. We can observe that Transp has enough bandwidth to sustain one operation 
per memory access, while DFFT and DFFTN that are computationally intensive 
applications require high computation per memory access to amortize off-chip 
memory bandwidth. Swim characterized by irregular data access results in low 
computation per memory access, and the SRF is not used effectively since there is bad 
producer-consumer locality in this example. In conclusion, Swim is not well suited 
for the Imagine architecture. The performance is limited by memory bandwidth due to 
the relatively low computation per memory access. 

 

Fig. 11. Computational intensity of applications 

4.3   Optimization 

Aiming at solving the inefficiency problem of Swim, we apply some optimizations on 
the application. There are two levels of stream program optimized method. 
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4.3.1   Kernel Level Optimization  
Computation is the bottleneck in the unoptimizable version of our stream programs 
not for saturation of the ALUs but for their poor utilization. The Imagine software 
environment allows for automatic code optimizations such as loop unrolling and 
software pipelining [12]. At the kernel level, the programmer can instruct the 
compiler to unroll/pipeline by simple compiler directives for program optimization. 
Then the loop in the cluster is unrolled and pipelined in order to achieve higher 
arithmetic intensity. The left part of Fig. 12 shows that the VLIW schedule of the 
unoptimizable code is quite sparse. The optimized schedule shown in the right part of 
Fig. 12 is dense. Fig. 13 presents that the computation time is reduced according to 
unrolling and piplining of diverse times on identical program. We can conclude that 
unrolling four times is a critical point. Unrolling too many times increase loading 
overhead of the microcode with enlarging code amount. 

 

Fig. 12. Schedule diagram of kernel level optimization for Swim 

 

Fig. 13. Performance obtained from unrolling and piplining optimizations 

4.3.2   Stream Level Optimization  
By exploiting kernel level optimization, the total execution time reduces. Based on 
the most perfect optimization in kernel, we adjust the input stream length to observe 
the performance variety. Fig. 14 shows that it gives more improvements with shorter 
input stream, and longer stream results in worse speedup. Specially, when the length 
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longer than 512*4, performance is reduced sharply due to appearance of double-
buffer. Optimization is invalid when the stream length greater than 512*32, because 
the optimization increases microcode loading overhead with enlarging code amount.  

Length of streams (word)

Sp
ee

du
p

 

Fig. 14. Speedup obtained from varying stream length 

Above analyses show that the organization of stream, especially the partition of 
long stream, influences on program performance deeply. To eliminate this bottleneck, 
it is necessary to reduce data transmission between memory and SRF so that the 
locality of SRF is enhanced. There are two optimizations of stream level accordingly, 
stripmining and Software pipelining. 

The input streams of most applications are too large to fit the SRF directly. To 
solve this problem, stripmining is brought forward to process a great deal of input 
stream into small portions that fit in the SRF. Then the small input portions are 
applied to produce small portions of the final output that fit in the SRF. This 
optimization is important to achieve good performance [16]. 

Software pipelining divides a loop into sections so that the execution of one section 
in an iteration can be overlapped with execution of another section of another 
iteration. This optimization is implemented for exploiting producer-consumer locality 
and effectively hiding memory access overhead. 

5   Conclusion and Future Work  

In this paper, we explain the method of scientific computing applications mapping to 
stream programs, and present the experimental results. Partial programs fit for stream 
application, such as DFFT and DFFTN. For analyzing whether scientific computing 
applications are suited for stream architecture, we come up for discussion. 

Three level parallelisms and two level data localities of Imagine architecture make 
the performance of scientific computing stream programs improve possibly. And the 
memory operations and computation overlapping can be propitious to cover the 
memory delay and implement optimizations, with the goal of keeping all the units 
busy at all times. Scientific computing applications often exhibit large degrees of data 
parallelism, and as such may be good candidates for SIMD stream applications. But 
comparing scientific computing applications with media applications, the former has 
irregular data organization, multiform data accessing pattern, new compiling 
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problems caused by large computing scale, much higher precision in calculation, and 
bandwidth in great demand. It is difficult to suit for the stream architecture 
completely. For the reason of making full use of the supports of stream architecture 
and exploiting the potentiality of scientific computing programs mapping to Imagine, 
we need to study the optimization algorithm of the existing stream programs. At 
present, the stream compiler is good at optimizing the stream code like loop unrolling, 
software pipelining, stripmining and so on, but the optimizations are restricted to 
algorithm of original stream programs. So we need to modify the original algorithm 
so that these optimizations can be performed effectively. For example, DFFTN 
achieves higher performance due to applying butterfly algorithm on DFFT. Stream 
organization and multi-level parallelism of the algorithm modified can exploit more 
potentiality of stream architecture, with higher computation per memory access and 
better data locality of LRF. 

Through optimization of algorithm and compiler, there will certainly be a large 
class of scientific computing applications where stream architectures are more 
effective. Since there exists a lot of data parallelism in such applications, and the 
overhead of loading and changing kernels is amortized by large stream sizes 
[16][17][18]. Also, the memory operations and computation can overlap in order to 
hide the time spent in memory accesses, with large kernel of scientific computing 
stream programs. Furthermore, the amount of arithmetic units are enough to exploit 
data parallelism effectively, and memory accessing focuses on LRF and SRF mostly 
after optimizations to take advantage of consumer-producer locality so that make 
more efficient use of the memory bandwidth hierarchy. Powerful computational 
ability of stream architecture is emerged to sustain a high computation rate. 

Future plans include exploiting common programming model to improve coding 
efficiency, due to existing program model exposing so many controls to programmers. 
Also, it is significant to construct a scientific computing kernel library that is valuable 
on algorithm design and shifting much of the complexity to the development of 
stream applications. This approach lowers the barrier to developer participation and 
can simplify collaborations among research teams by allowing each group to focus on 
their interests and expertise. 
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Abstract. While bypassing algorithms have been applied to the first-
level cache, we study for the first time their effectiveness for the last-
level caches for which miss penalties are significantly higher and where
algorithm complexity is not constrained by the speed of the pipeline.
Our algorithm monitors the reuse behavior of blocks that are touched
by delinquent loads and re-classify them on-the-fly. Blocks classified as
bypassed are only installed in the level-1 cache. We leverage the algorithm
to early send out a miss request for loads expected to request blocks
classified to be bypassed. Such requests are sent to memory directly
without tag checks at intermediary levels in the cache hierarchy. Overall,
we find that we can robustly reduce the miss rate by 23% and improve
IPC with 14% on average for memory bound SPEC2000 applications
without degrading performance of the other SPEC2000 applications.

1 Introduction

As the speedgap between processor and memory has increased, the cache memory
hierarchies have become deeper and the last-level caches (typically L2 or L3) have
become bigger. Unfortunately, continuing along this route yields diminishing
returns on investments because cache hit rate improves quite modestly with
cache size and adding more levels increases the penalty taken when a request
misses at all levels. Thus, it is important to study techniques that increase the
utilization of deep cache memory hierarchies and that reduce the miss penalty.

One source of poor resource utilization is blocks with streaming behavior.
Typically, there are multiple accesses to such blocks just after the miss. After
this initial burst of accesses, the reuse distance is typically very long. When
such blocks are installed in the cache, they may trigger replacement of blocks
with a shorter reuse distance, thereby increasing the miss rate. One approach
to reduce the detrimental effect of such blocks is to bypass them, rather than
installing them. Several techniques to predict blocks subject to bypassing have
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been studied in the past. They typically fall into two broad categories – static [4,
15] and dynamic [15, 7, 10, 6, 9, 13, 8, 16, 5]. In the static approach, either blocks
touched by specific memory instructions in the program are bypassed, or the
compiler partitions memory blocks that should be bypassed into special address
space regions that are bypassed. In the dynamic approach, bypassing is based
on the past behavior of an instruction or a block which guides future decisions
whether to bypass or not. Statistics are stored in special data structures which
guide bypassing decisions. Blocks predicted to have a reuse distance longer than
their lifetime in the cache will be bypassed. To exploit the spatial locality of
the initial burst of accesses, most approaches assume that they are installed
in a special buffer that is significantly smaller than the cache. A misprediction
can increase the miss rate: If the block is reused after it has been replaced
from the special buffer but before it would have been replaced in the cache,
the bypass operation results in a miss that would have been avoided without
bypassing. While published prediction techniques have achieved high prediction
coverage, they sometimes increase the miss rate due to low accuracy which leads
to inconsistent performance gains.

While previous attempts using bypassing were applied to first-level caches, we
study in this paper block bypassing algorithms for last-level caches. They have
a much higher potential than for the first-level cache for several reasons. First,
the first-level cache is heavily constrained by the speed of the pipeline. Hence,
cache management algorithms must be simple. Second, the latency of first-level
cache misses that hit in subsequent levels does not incur much penalty because it
can be often successfully hidden by the latency tolerance capability of multiple-
issue out-of-order cores of moderate issue rate. Third, bypassing has much higher
potential at the lower levels as the miss penalty is significantly higher. On the
contrary, mispredictions are also much more costly making algorithm robustness
a key issue. However, assuming a two-level cache hierarchy, which forms the base
for our experiments, our overall strategy is to bypass blocks at the second level
but always install them at the first level. As a result, as long as the reuse distance
for incorrectly predicted bypassed blocks is smaller than the size of the level-1
cache, there will be no penalty for mispredictions.

Previous studies [12,1] have shown that a few load instructions are responsible
for most of the cache misses, called delinquent loads. Our approach is to base the
prediction of which blocks to be bypassed by detecting such loads and record
them at run-time. However, we validate the correctness of the prediction and
change it by also monitoring whether we erroneously bypass a block with a reuse
distance shorter than the L2 cache but longer than the L1 cache by monitoring
the reuse at the L2 cache. While this basic approach uses some of the components
from the dynamic scheme proposed by Tyson et al. [15], we found that the
Tyson scheme increased the miss rate for many of the applications. We identified
several useful extensions that eventually offered more consistent performance
improvements. For example, by storing tags for bypasses we can identify when
bypasses are done incorrectly and stop bypassing for the involved instruction.
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Another disadvantage of using deeper memory hierarchies addressed in the
paper, is the increased miss penalty for the requests that miss at all levels. If
one could determine that a miss will not be satisfied at any level without doing
tag checks at all levels, the miss penalty can be reduced quite significantly. We
also present results for a simple early miss determination approach that leverages
our bypassing algorithm. If the instruction that causes the L1 miss is predicted
to bring a bypassed block into the cache, it is likely that it will not be found
at any level. We then send this request speculatively to the memory, potentially
reducing the miss penalty.

We evaluated our algorithm using 23 applications from SPEC2000 on a simu-
lation model based on SimpleScalar V3 modeling a 4-issue out-of-order core. On
average we improved the L2 miss rate by 23% as compared to the upper-bound
achieved by an oracle algorithm which is 34%. The infrastructure needed to mon-
itor access behavior is quite small – the storage area of the cache is increased
with less than 7%. We found that our early miss determination scheme could
correctly predict that the block is not available for 27% of the cases with only 1%
of the accesses incorrectly predicted as misses on average. Overall, the bypassing
algorithm together with the early miss determination scheme improved the IPC
by 14% for the memory bound applications. The algorithm is robust and for the
non-memory-bound applications the average IPC is slightly improved in contrast
to Tyson’s scheme [15] where most of the applications suffer.

Our baseline architecture and the Tyson algorithm are presented in the next
section. Sections 3 to 5 present the new schemes including our bypassing algo-
rithm, an oracle algorithm and our early miss determination algorithm. Experi-
mental methodology and our evaluation are found in Sections 6 and 7. We relate
our findings to prior work in Section 8 and conclude in Section 9.

2 The Tyson Scheme for Dynamic Bypassing

Two schemes for dynamic bypassing of memory accesses for the L1 cache were
described and evaluated by Tyson et al. in [15]. Only one of them, called improved
dynamic bypassing scheme, improved the performance and therefore we do not
consider the other scheme. We call this scheme the Tyson scheme. The principle
of this scheme is that a few instructions load data that pollute the cache. These
instructions shall not store data in cache – data is bypassed to the processor.
This increases the hit rate for the other instructions and for the total system.
Another advantage is that when bypassing data only a single word is read from
main memory and hence the memory bandwidth usage is reduced.

2.1 Structures

A table associates a counter with each instruction that is a candidate for by-
passing as shown in Fig. 1(a). Instructions are identified by their static memory
address (inst). The cache blocks are extended with the fetched by field which
refers to an entry in the instruction table, see Fig. 1(b).
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Instruction Counter
inst a 2
inst c 3
... ...

(a) The instruction table

5

Index Tag Cache line Fetched by inst
0 tag a .. inst a
1 tag c .. inst c

.... ... .. ..

(b) The extended cache structure

Fig. 1. The structures for Tyson Scheme

2.2 Algorithm

The Tyson scheme uses the following events:

1. Cache miss. The instruction (inst) that triggers a cache miss is inserted
into the instruction table with a zero counter if it is not already present.
For instructions that are already present, the counter is incremented. In Fig.
1(a), if instruction insta is requesting a non-existing cache block, insta’s
counter is increased from two to three.

2. Cache hit. The instruction (inst) that caused the cache hit is looked up in
the instruction table and its counter is decremented. The instruction referred
to by the fetched by field is also looked up in the instruction table, and if
present its counter is decremented. For example if instruction instx requests
the cache block with index 1, which was fetched by instc, the counter of
instc is decremented from value three to value two, see Fig. 1.

3. Bypassing. A bypass is performed when an instruction causes a cache miss
and the instruction is found in the instruction table with its counter equal
or greater than a preset threshold value. Instead of loading a cache line, only
a single word is fetched from main memory and it is not stored in L1 cache.

The threshold value for bypassing and the maximum value for the counter in
our evaluation of the Tyson scheme later in the paper is set to three.

2.3 Discussion

The processor is able to load a single word of eight bytes in the Tyson scheme,
and this is said to be four times more efficient than loading a cache line that
consists of four words. This is not true for today’s systems with wide data buses,
interleaved main memory banks, pipelined memory accesses and burst transfer
options. Incorrect or very aggressive bypassing of cache lines in the Tyson scheme
have a limited impact since the latency of bypassing a cache line, i.e., fetching a
single word, is less than loading a cache line (in their model). In [15] it was found
that the memory bandwidth requirements was reduced by more than 20% for
integer applications which is not surprising as most of the integer application do
not benefit from prefetching of longer cache lines. It was found that the cache hit
ratio was increased by up to 26% for some floating point benchmark applications,
and for some cache configuration the cache hit ratio was increased by 2-3% on
average. Unfortunately, the performance was found to be unstable across the
benchmarks and the median performance is a degradation of the cache hit rate.



56 H. Dybdahl and P. Stenström

Using Tyson’s scheme in an L2 setting increases the aggressiveness by which
blocks are bypassed. Instructions with three consecutive cache misses trigger by-
passing if the fetched cache lines are not re-accessed in L2 between the execution
of each of these instructions. Data is more likely to be re-accessed in the L1 cache
than in L2 cache since the L1 cache filters out some of the hits in the L2 cache.
This makes Tyson’s algorithm more aggressive in bypassing the L2 cache than
in its original setting in the L1 cache and creates a serious disadvantage.

In general, out-of-order execution processors tolerate memory latency to some
extent, which makes L1 misses that hit in L2 less serious. However, misses caused
by incorrect bypassing in the last level cache (L2 in our experiments) is expected
to stall the processor for a significantly longer time. Consequently, a more so-
phisticated heuristic is needed to control the bypassing of the L2 cache. The
accuracy of the bypassing heuristics then becomes crucial.

3 New Scheme for Bypassing

Our proposed scheme increases the precision of the bypassing using a feedback
loop in which the correctness of its decisions is used as inputs to the heuristics
controlling the algorithm. In addition to keeping the tag for the present cache
line, each cache block contains the tag for the other cache line that would have
been present if the previous fetch was bypassed/not bypassed. Detection of evic-
tion of cache blocks that are not accessed is used to determine if instructions
should be bypassed. All this information is used for the feedback loop to enable
or disable bypassing for each instruction which results in robust performance.

3.1 Structures

Like in the Tyson scheme, instructions that cause cache misses are inserted in
a table as shown in Fig. 1(a). Instructions are identified by their static memory
address (inst). The cache block is extended with new fields as shown in Fig. 2.
The fetched by field contains the instruction (inst) that fetched the cache line.

Index Tag Cache line Fetched by inst. Used Shadow inst. Shadow tag Shadow status
0 tag a .. inst a FALSE instb tag b bypassed
1 tag c .. inst c TRUE instd tag d replaced

.... ... .. .... ... .. .. ..

Fig. 2. The cache structure is extended to include data used for the heuristics

The used field is used to detect cache blocks that are replaced without being
accessed, an indication that the cache line should have been bypassed. It is reset
when the cache line is replaced, and set on a cache hit. The shadow instruction is
set to the instruction (inst) that caused the replacement or that was bypassed.
For a replaced cache line the shadow tag is updated with the tag of the replaced
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cache block, and for bypassed cache lines the shadow tag is updated with the
value of the tag of the block that is bypassed. shadow status indicates if the last
request was bypassed or caused a replacement.

3.2 Algorithm

The events that trigger actions in the new scheme are the following:

1. Cache miss. An instruction that triggers a cache miss is inserted into the
instruction table with a zero counter if it is not already present. The counter
is incremented for the instruction. For example, if instruction insta is re-
questing a non-existing cache block, its counter is increased (Fig. 1(a)). The
shadow tag is updated with the tag of the data that was in the cache block,
the shadow instruction with the instruction that caused the miss and the
shadow status is set to ”replace”.

2. Cache hit. The counter for an instruction that triggers a cache hit is de-
creased if present in the instruction table. If the instruction referred to by
the fetched by field in the cache block is in the instruction table, its counter
is also decreased. Finally, the field fetched by is cleared. This means that
fetching data for other instructions is only used once by the heuristic. For
example if instruction instx requests a cache block with index 1 which was
fetched by instc, its counter is decreased from value three to two, see Fig. 2.

3. Cache hit caused by bypassing. A cache hit is said to be caused by bypassing
when the cache block contains information about bypasses for that cache
block. The counter for the instruction referred to by the shadow instruction
is increased if the instruction is present in the instruction table. If not, it is
inserted. Finally the shadow information is cleared which means that this
event is only used once. For example if data with taga in index 0 is requested,
the instb will be inserted into the instruction table.

4. Cache miss caused by bypassing. A cache miss is said to be caused by by-
passing when the tag of the requested data is found in the shadow tag and
the shadow status indicates bypassing. The counter for the instruction that
caused the bypassing is decreased in the instruction table, if present. For
example if the data with tagb is requested in index 0, the counter for instb
is decreased if the instruction was in the instruction table.

5. Cache miss caused by not bypassing. A cache miss is said to be caused by not
bypassing when the requested tag matches the shadow tag and the status bit
indicates that the shadow data reflects a replacement. The counter for the
instruction that replaced the cache block is increased. If the instruction is
not present in the table, the instruction is inserted. For example if data with
tagd is requested with index 1, the counter for instc is increased.

6. Data replaced without being used. This happens when an instruction loads a
cache block that is not accessed before it is overwritten. The counter of the
instruction that fetched the data is increased, if present. For example if the
first cache block is replaced, the counter for insta is increased.

7. Bypassing. A bypass is triggered by a cache miss and requires that the
counter for the instructions that caused the cache miss is above a threshold
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limit. The cache block is loaded from main memory and into the L1 cache
without being stored in the L2 cache. The shadow tag is updated with the
tag of the data that is bypassed, the shadow instruction with the instruction
that caused the miss and the shadow status is set to ”bypass”.

Each event can increase or decrease the value of the counter with different
values, see Fig. 3, and different levels of threshold and maximum value of the
counter can be used.

Tyson New Scheme Shadow Replace Equal Tyson II
1 Cache miss 1 1 0 0 1 2
2 Cache hit -1 -2 0 0 -1 -3
3 Cache hit caused by bypassing 0 3 1 0 1 0
4 Cache miss caused by bypassing 0 1 1 0 1 0
5 Cache miss caused by not bypassing 0 -1 -1 0 -1 0
6 Data replaced without being used 0 1 0 1 1 0
7 Bypassing threshold/max counter value 3 9 3 3 3 6

Fig. 3. Different configurations for the heuristics for bypassing

3.3 Discussion

The shadow data is used to monitor the consequences of bypasses and replace-
ments. Different applications benefit from different parameter settings. However,
as we will see, the described algorithm with the new scheme (see Fig. 3) works
well across different benchmarks and for different cache sizes.

Structures for storing the data shown in Figures 1(a) and 2 are assumed to be
implemented in hardware. The instruction table is limited in size and all simu-
lations are done with a size of 32 elements. The resources needed are therefore
small in comparison to the ones needed for an L2 cache. The extension of the
cache block to include information for the heuristics will however require more
hardware. The number of bits needed to store a cache block for a conventional
architecture and the new scheme are shown in Fig. 4. The shadow tag is of the
same size as the tag for the cache block. Given a system with 8-GByte physical
memory (33 bits) and a 1-MByte 4-way set associative cache 6 bits are used to
address the byte within the cache line and 12 bits are used to index the cache
block which leaves 33 − 6 − 12 = 15 bits for the tag. There are two references
to two instructions in the instruction table, i.e. the fields fetched by instruction
and shadow instruction. These contain the address for the instruction in mem-
ory. The address of the instruction is used as a key and is 33 bits. By changing
the algorithm slightly so that instructions are only placed in the instruction ta-
ble on cache misses, these two fields only need to point to an instruction in the
instruction table and it is not necessary to store the whole address of the instruc-
tion. This modification does not incur any measurable performance degradation.
However, when these address fields only point to the instruction table, there is
no way of detecting when the instructions in the table are replaced. Therefore
the instruction address should be hashed and stored in the cache block to dis-
cover when instructions are replaced. This results in 5 bits for pointing into the
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Field Tag Cache Line Data LRU data Fetched by inst. Used Shadow inst. Shadow tag Shadow status Total
Conv. architecture 15 512 2 0 0 0 0 0 529
New Scheme 15 512 2 33 1 33 15 1 612
Instruction pointers 15 512 2 9 1 9 15 1 564

Fig. 4. The number of bits used for storing a cache block for a computer with 8 GBytes
memory (33 bits) and a 1 MByte 4-way set associative cache

instruction table, and let us assume 4 bits for hashing the instruction address.
The total increase in number of bits of storage is less than 7% for the cache
block with pointers as shown to the right in the table.

Bypassing breaks the inclusion; blocks in L1 cache are not guaranteed to
exist in the L2 cache. The L1 cache must be accessed to get the latest values
by memory coherence schemes. However, this is no different from conventional
caches with delayed write back schemes. Directory coherence protocols can be
used to know what data that are loaded in L1.

4 Oracle Bypassing Algorithm

In this section, we derive an algorithm to assess how optimally our scheme can
avoid misses by bypassing blocks in the cache. Optimal algorithms depend on
the problem space, e.g. deciding which cache block that should be replaced. In
this case the trace of memory accesses can be analyzed and blocks are installed
in the cache if the reuse distance is shorter than the reuse distance for the block
that is replaced [3, 14]. However, we are not considering the replacement policy
for the cache. We are interested in the optimal algorithm for deciding whether
to bypass cache blocks combined with the standard least recently used (LRU)
policy. This makes the optimal algorithm more complex, it can not just look at
the reuse distance to decide upon bypassing or not.

We have made a new algorithm that requires only a single run of the bench-
mark and is optimal for direct-mapped caches and set-associative caches with
random replacement policies. The algorithm is based on the idea to postpone
the decision regarding bypassing until it is known whether it reduces the cache
miss rate or not. For an instruction that causes a miss, the algorithm maintains
the cache state for the two possible outcomes: bypassing versus not bypassing.
That is, each cache block is extended dynamically to keep track of data for both
outcomes. On a hit to the cache block it is known which requests that should
have been bypassed and which should be replaced, and the simulation will only
consider one of the alternatives for the rest of the simulation. Consider the fol-
lowing example. Several requests that map to the same cache block appear in the
following order: a, b, c, and a. Without bypassing, b will replace a, c will replace
b and then a will replace c, i.e. only cache misses. With optimal bypassing b and
c are bypassed, and the last a will become a hit instead of a miss. Our oracle
algorithm will extend the cache structure dynamically to contain first a, then a
and b, and then a, b and c. In the end when a is requested again, it sees that by
bypassing b and c, a hit is generated for a, and the decision about bypassing is
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done. The extra data stored can be deleted at this point. An application with-
out any hits will build up a large data structure, but only linear to the number
of instructions. Set-associative caches with LRU algorithms are more complex.
Storing information about both decisions doubles the storage requirement for
each missed block. One way to reduce the storage requirements is to change the
replacement policy. For each bypass we change the LRU cache block to become
the recently used in the same way as a replacement of the cache blocks does,
i.e. bypass and replacement change the LRU stack in the same way. A decision
to bypass or not only regards one element in the cache and only one additional
element need to be stored for each miss. Again, the data structure needed is
linear in the number of instructions (in case of only misses).

The result is an oracle algorithm with a cache with an LRU replacement policy
that is not LRU when accesses are bypassed. This tends to underestimate the
performance gains of bypassing and hence reduces the upper bound. With this
caveat, the oracle algorithm is nevertheless used to assess if there is a potential
for using bypassing, and whether there is room for improvement.

5 Early Miss Determination

A problem with deep hierarchies is that the miss penalty is increased for each
level added. By predicting early on whether a request will miss at all levels, and
accessing main memory in parallel with tag checks at the intermediary level, the
miss penalty is expected to be reduced substantially [11].

If the data is found in the cache, the data from cache is used. However, we
assume that there is no way of removing the ongoing memory access to main
memory system. Miss-prediction will thus increase the memory bandwidth usage
and can stall other memory accesses. We look at using the heuristic for bypassing
data in the new scheme to early determine cache misses and launch a memory
access. Instructions that are in the instruction table and with maximum counter
value are considered to miss in the L2 cache. An oracle scheme for early miss
determination would manage to predict all cache misses.

6 Methodology

Simulation is used to study the efficiency of the two schemes for bypassing mem-
ory accesses for the L2 cache, the oracle algorithm, and early miss determination
scheme. The sim-cache model is used for studying cache miss rates and the exe-
cution model is single-issue in-order. No timing information is included in these
simulations. The sim-outorder model used for studying IPC improvements is
a clock-cycle level out-of-order execution model with non-blocking caches. The
models are part of SimpleScalar version 3 [2]. These models are extended to sim-
ulate memory congestion, the different bypass schemes, the oracle algorithm, and
the early miss determination scheme. A logical sketch of the simulated system
is shown in Fig. 5.
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Out-of-order
processor L1 inst.  cache

L1 data cache Main memory
(DRAM)

L2 Unified cache, w/
Bypass & early miss

detrm.

Fig. 5. The simulated single processor core with the memory hierarchy

Parameter Value 
RUU size 128 instructions 
LSQ size 64 instructions 
Fetch queue size 4 instructions 
Fetch, Decode, Issue and
Commit width

4 instructions/cycle

Functional Units 4 INT ALUs, 4 FP ALUs, 1 INT Multiply/Divide, 1 FP Multiply/Divide 
Branch Predictor Combined, Bimodal 4K table, 2-Level 1K table, 10-bit history table, 4K Chooser 
BTB 512-entry, 4 way 
Mispredict Penalty 7 cycles 
L1 Instruction/Data Cache 32K, 4-way (LRU), 64 B Blocks, 1 cycle latency 
L2 Cache Unified, 1 M, 4-way (LRU), 64 B Blocks, 24 cycles latency 
Main Memory 200 cycles first chunk, 10 cycles inter chunk. 4 independent subbanks 
I-TLB/D-TLB 128-entry, fully associative, 30 cycles miss penalty 

Fig. 6. Micro-architectural parameters

The baseline for the simulator is shown in Fig. 6. Data and instruction look-
aside buffers (DTLB and ITLB) are not simulated in the sim-cache model. We
assume that the hit and miss latency for the L2 cache are equal.

The size of the instruction table is 32 for all experiments. The original Tyson
scheme used a branch predictor like table for the L1 cache. This means that
our implementation of Tyson is slightly different, and the reason is that we are
bypassing the L2 cache.

SPEC2000 applications were used as benchmarks with the reference data sets.
Each simulation is forwarded one billion instructions and then simulated for two
billion instructions.

7 Evaluation

7.1 L2 Cache Misses Reduction

There are two groups of applications that are of interest: (a) memory bound
applications that should obtain increased speedup and reduced cache miss rate
for L2 cache and (b) non-memory-bound applications. The last group will not
receive much benefit, but should not be slowed down or suffer from an increased
cache miss rate. The reduction of the L2 cache miss rate is shown for the Tyson
scheme, the new scheme, and the Oracle algorithm for SPEC2000 applications in
Fig. 7. For the 1-MByte configurations and the memory bound applications (art,
mcf and ammp) all schemes reduce the average miss rate. However, for the rest
of the applications Tyson’s scheme increases the miss rate by average 43%. The
scheme is aggressive and therefore is only suitable for applications that benefit
from bypassing. The new scheme is more robust and only increases the miss rate
with average 2%. Compared to the Oracle scheme 68% of the possible misses are
removed for the memory bound application and the new scheme, which means
that the scheme is working well but there is still room for improvement.
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256k L2 1 MByte L2
Spec # of L2 Convent. Reductions of miss rate in % Convent. Reductions of miss rate in %
benchmark acesses Miss rate Tyson New Sch. Oracle Miss rate Tyson New Sch. Oracle
art 308461787 0.826 3 9 15 0.603 58 47 67

mcf 265670845 0.616 -44 -5 1 0.599 -13 -3 5

ammp 132534118 0.920 5 7 8 0.845 27 25 29

average 235555583 0.787 -12 4 8 0.682 24 23 34

swim 77712825 0.591 -17 -2 0 0.590 -20 -2 0

applu 63107223 0.667 0 0 1 0.666 0 0 2

gcc 59690438 0.153 13 16 40 0.037 -19 2 23

lucas 51951704 0.862 -7 3 15 0.843 -16 3 14

facerec 36104376 0.657 -34 5 15 0.360 -69 -7 1

apsi 34560805 0.435 -9 4 18 0.206 -60 0 0
mgrid 31808765 0.760 -14 2 15 0.478 -53 -1 0

parser 24836151 0.349 -76 -5 11 0.165 -111 -18 7

galgel 20719227 0.880 4 13 24 0.352 -61 50 75

bzi2p 17548828 0.384 -33 -6 9 0.175 -27 3 14

crafty 16956861 0.065 -24 -2 21 0.007 -2 0 15

gzip 15660311 0.072 -3 4 19 0.039 -13 -6 1
gap 9244337 0.505 -78 0 0 0.499 -78 0 0
wupwise 8914610 0.679 -33 0 6 0.628 -44 -7 2

fma 8064048 0.000 0 -36 0 0.000 2 -37 0

equake 2758253 0.028 -84 -1 0 0.028 -84 -1 0

eon 2293674 0.000 0 -13 0 0.000 0 -13 0

perlbmk 799811 0.285 -146 -2 16 0.239 -132 -5 5

average 26818458 0.410 -30 -1 12 0.295 -43 -2 9

Fig. 7. Reduction of cache miss rate for different bypass schemes for two sizes of L2

For the 256-KByte configuration Tyson scheme does not work even for the
memory bound application. The new scheme reduces the miss rate by 4% while
the Oracle scheme obtains an 8% reduction.

7.2 Early Miss Determination

The results for using the proposed scheme for early miss determination is shown
in Fig. 8. Each bar in the graph consists of four parts. The top part, which
is black, is the amount of the L2 cache accesses that are predicted as misses
incorrectly. These increase the memory bandwidth usage by a modest 1%. 27%
of the memory accesses with cache misses are correctly predicted as misses. The
advantage of the early miss determination depends on the latency of cache misses
in the L2 cache. This miss latency increases with the size of the cache.
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7.3 Memory Bandwidth Reduction

The reduction of the memory bandwidth usage is shown in Fig. 9. The total
number of accesses is decreased for both the new scheme and also when the new
scheme is combined with early miss determination. Tyson’s scheme reduces the
number of accesses well for the MCF application even though it increases the
miss rate for the same application. This is because Tyson’s scheme reduces the
number of write-backs by 48% for the L2 cache. By comparison the new scheme
only reduces the number of write-backs by 8%.
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Fig. 9. The number of DRAM accesses (sum of L2 misses and L2 write-backs) executed
for the different applications in the SPEC2000 benchmark

7.4 Instructions Per Clock Cycle (IPC)

We have studied the IPC for two different configurations, with and without main
memory congestion. Four memory banks are used for simulation with conges-
tions. These are interleaved so that one cache line fits into one bank. Each bank
can handle only one read or write access at any time, which means that the
entire system is capable of handling up to four read/write accesses simultane-
ously. There is no writeback buffer for the main memory, but L1 and L2 have
writeback buffers. The model without congestion uses unlimited size writeback
buffers to main memory and an unlimited number of parallel read operations
can be executed simultaneously. Simulation with congestion is shown in Fig. 10
and no congestion in Fig. 11. These figures represent the speedup compared
to the IPC of the conventional architecture which is shown in Fig. 12. We see
two important observations: The first is that the performance for the memory
bound applications is improved significantly. However, for the Tyson scheme
the performance is decreased for non-memory bound application. For galgel, the
simulation with congestion results in an IPC degradation of 22% and for the
non-congestion simulation the IPC is degraded by 10%. There are three appli-
cations that are memory-bound: ammp, art and mcf . With memory congestion
modeled, Tyson’s scheme is able to increase the IPC quite well. This is not true
when not using congestion because the bandwidth consumed by write-backs of
dirty cache blocks then does not have any impact. Tyson’s scheme bypasses
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Fig. 10. Speedup compared to conventional architecture, with simulation of congestion
in main memory
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Fig. 11. Speedup compared to conventional architecture, with no simulation of con-
gestion in main memory
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Fig. 12. IPC with and without simulation of congestion to main memory

write-backs from dirty L1 cache blocks well. Overall, the combination of bypass-
ing and early miss determination can improve IPC with up of up to 34%. For
applications with many incorrect early determinations (see Fig. 8) the IPC can
be degraded.
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7.5 The Heuristics

In the description of the algorithm used by the new scheme, the counter was
added/subtracted with different values for different events. Different configura-
tions for the heuristic is shown in Fig. 3. In the shadow configuration only the
shadow events are enabled. This is learning by considering what could have been
in the cache line if the bypass decision was inversed. In some sense this is learning
by history and mistakes. In the Replace configuration bypassing is done when
an instruction fetches a cache block which is replaced without having any cache
hits. The configuration is aggressive since there are no negative numbers in the
configuration. The Equal configuration increases/decreases the counter with the
value one for all events. The Tyson II is the Tyson algorithm tweaked a little bit
to become less aggressive. The different configurations from Fig. 3 are evaluated
in Fig. 13. Even though the new scheme has overall good performance, tuning
the heuristic differently for each application has a potential for improving the
performance further.

Tyson New Scheme Shadow Replace Equal Tyson II Conventional
ammp 1 3 10 7 8 0 37
apsi 82 0 0 22 42 18 0
art 0 26 46 4 7 33 140
bzi2p 54 0 23 226 26 7 3
crafty 17 1 29 562 13 3 0
facerec 75 7 9 74 70 36 0
galgel 231 24 0 203 22 7 147
gcc 24 1 0 2 11 4 3
gzip 17 7 1 0 14 10 1
lucas 11 3 0 6 17 9 5
mcf 14 3 12 34 9 8 0
mesa 13 1 0 0 2 3 0
mgrid 52 1 2 12 45 21 0
parser 124 18 20 100 67 35 0
swim 17 1 0 8 14 28 0

Fig. 13. The numbers show the increase in cache miss ratio compared to the best
configuration. The best configurations are grayed and have value zero

8 Related Work

Bypassing can reduce conflict misses by using a bypass buffer in parallel with a
direct mapped cache [7, 10, 6]. However, direct mapped caches are not used in
state-of-the-art high performance microprocessors and reduce the potential for
these techniques.

9 Conclusion

This work is the first to explore the gains of bypassing for last-level caches. The
potential for improvement is higher compared to bypassing L1 cache because the
latency of an L2 miss is much higher than an L1 miss seen from the processor.
A new scheme for bypassing is presented based on a feedback loop. This im-
proves the performance in terms of cache miss ratio and IPC to the same level
as simpler schemes for memory bound applications, but it does not degrade the
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performance for non-memory bound applications which is the case for earlier
schemes. We include early miss determination which further improves perfor-
mance by predicting misses in the cache simply by using the heuristics for the
bypassing scheme. This reduces the latency time for memory accesses at the cost
of a small increase in bandwidth usage. The final contribution is our establish-
ment of an upper-bound of miss-rate reduction in last-level caches by devising
an oracle algorithm. Even though this algorithm is not fully optimal, it shows
that there is room for improvements and more research is needed.
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Abstract. Instruction hints have become an important way to commu-
nicate compile-time information to the hardware. They can be gener-
ated by the compiler and the post-link optimizer to reduce cache misses,
improve branch prediction and minimize other performance bottlenecks.
This paper discusses different instruction hints available on modern
processor architectures and shows the potential performance impact on
many benchmark programs. Some hints can be effectively selected at
compile time with profile feedback. However, since the same program
executable can behave differently on various inputs and performance
bottlenecks may change on different micro-architectures, significant per-
formance opportunities can be exploited by selecting instruction hints
dynamically.

1 Introduction

Cache misses and branch mispredictions have become the major bottlenecks of
modern microprocessors. Attacking such performance issues has been a chal-
lenge for both hardware designers and software developers. Many modern ar-
chitectures, including RISC, VLIW and EPIC, have paid much attention to the
effective cooperation between the compiler and the hardware to achieve highly
efficient execution. For instance, new instructions such as data and instruction
cache prefetch have been introduced and they have been effectively used by the
compiler and post-link optimizers (including runtime optimizers) to reduce cache
miss penalties. Besides introducing new instructions, recent architectures also
use instruction hints as another way to facilitate the communication between
the compiler and the hardware. Unlike adding new instructions, using hints does
not compromise binary compatibility. Instruction hints use a small number of
available bits in the instruction encoding to allow programmers, compilers and
other software tools to convey suggestions to the hardware. Since they are de-
fined as hints, they do not pose correctness issues. Their presence can be simply
ignored if the underlying micro-architecture does not support the needed feature.
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Instruction hints are often used in architecture extensions and new architectures
to expose new hardware features to software via some reserved bits.

Judiciously selecting the instruction hints can have very significant perfor-
mance impact on applications. The selection of instruction hints relies on in-
formation such as working set, access patterns and effective memory latencies,
which are not generally available at the compile time. Although profile-guided
optimization (also known as profile-based or profile-directed optimization) can
assist the selection process by using profile information collected via training
runs, applications can behave differently on various inputs, and the profile col-
lected from the training input may not be representative for the actual run.
Furthermore, the runtime behavior of a program can change even within one
run (i.e. execution phase changes). Although we have seen encouraging results
from static hint selection, we believe there are significant performance potentials
to be exploited with dynamic hint selection.

Dynamic binary optimizers [6][7] can monitor the execution of a program and
perform the cost-effective optimization based on observed hot spots and respec-
tive performance bottlenecks. Dynamic hint selection requires relatively small
amount of code analysis and binary modification and can be a good candidate
for dynamic optimization. However, the extension of current dynamic binary
optimization frameworks and the enhancement of current microprocessors are
needed to support comprehensive dynamic hint selection.

The paper makes the following contributions,

– We show the performance impact of several architecture hints using the
SPEC2000 CPU programs.

– We show the potential of using correct architecture hints over what have
been done statically by the compiler.

– We discuss the limitations and difficulties associated with static hint selec-
tion.

– We discuss the current limitation on the hardware performance monitoring
capability for exploiting dynamic hint selection.

The rest of the paper is organized as follows. Section 2 will provide a survey of
instruction hints available on the mainstream architectures. Section 3 shows the
performance impact of several instruction hints. In section 4, we discuss the se-
lection of hints by some production compilers, the effectiveness of such selection,
and the limitations. In section 5, we discuss the upside potential of selecting such
hints at runtime, and the constraints and challenges for the dynamic optimizers.
Related work is highlighted in section 6. Section 7 contains the conclusion and
future work.

2 Instruction Hints

Most instruction hints are targeting at the two major performance bottlenecks,
cache misses and branch mis-predictions. They can be divided into three main
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categories, branch prediction hints to improve branch prediction, memory local-
ity hints to improve both data and instruction cache performance, strong/weak
prefetch hints to improve the effectiveness of the data prefetch instructions.

2.1 Branch Prediction Hints

Many architectures use one or two bits in the conditional branches as a hint for
static branch prediction. Itanium [14] uses one bit to indicate whether prediction
resources should be allocated for the branch and the other bit to indicate the
direction. Similarly Power4 [8] uses two previously reserved bits in conditional
branch instructions for software branch prediction. Hardware branch prediction
can be overridden by software branch prediction on Power4. One bit is used for
that purpose while the other bit indicates the direction. PA-RISC 2.0 [15][17]
does not have the luxury of one available bit but it defines the branch prediction
convention to achieve the same effect. If the register numbers of the two operands
in a conditional branch is in increasing order, the backward branch is predicted
taken and the forward branch is predicted not taken; otherwise the branch is
predicted the other direction. Compared with using a dedicated hint bit, this
approach adds complexity to the instruction decoding.

Many microprocessors uses a return address stack to predict the target of a
procedure return. When a procedure call is executed, the address of the next
instruction is pushed onto the stack. The stack will be popped during the ex-
ecution of a procedure return and the instruction fetching will start from the
popped address. But in architectures such as Alpha [1], PowerPC [12] and PA-
RISC [11][15], there are no dedicated instructions for procedure call and return.
In Alpha [1], hints are introduced to push and pop procedure return addresses.
PA-RISC 2.0 [15] and Power4 [8] adopted the same approach.

2.2 Memory Locality Hints

Memory locality hints are designed to achieve better cache performance by im-
proving the allocation and replacement policy or initiating hardware prefetching.
The temporal locality hints are used to indicate whether the data will be reused
to help the hardware decide whether to allocate the data in a higher cache level.
The temporal locality hints can be applied to all memory instructions including
load, store and data prefetching. HP PA-RISC 1.1 architecture [11] defines a
2-bit cache control field, cc, which provides a hint to the processor on how to
allocate data in the cache hierarchy. On PA-7200 [16], the processor will not
allocate the cache line on the off-chip cache if the cc is specified to indicate
poor temporal locality. The cache control field is also included in the prefetch
instruction introduced in PA-RISC 2.0 [15].

Five variants of prefetch are defined in Sparc V9 [18], read many, read once,
write many, write once and prefetch page1. The once and many hints are used

1 prefetch page has not been implemented in any existing Sparc v9 microprocessors.
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to indicate the temporal locality. UltraSparc III [20] implements a small pre-
fetch cache (2KB) which can be accessed in parallel with the L1 data cache for
floating-point loads. The once/many hint specifies whether the data should be
brought into P-cache. However, no temporal hints are available for other memory
instructions.

Itanium [14] provides locality control with finer granularity. Four completer
(t1, nt1, nt2 and nta) are used to specify whether the data has temporal locality
at a given cache level. These completers will affect how cache lines are allocated
in the cache hierarchy and whether the LRU bit should be updated. Using t1
will cause the data to be allocated at all cache levels while using nt1 suggests
the data not to be allocated at L1. The Itanium 2 processor does not have a non-
temporal buffer and L2 is used for that purpose. nt2 accesses are still allocated
in L2 but the LRU bit will not updated and thus the line has a high probability
to be replaced. nta completer further causes the line not to be allocated in L3.
Only lfetch instructions can use all four possible completers and the completers
for different memory instructions may have different meanings.

Instruction references exhibit good sequential locality. Many microproces-
sors implement hardware prefetcher to sequentially prefetch instruction cache
lines. Itanium [14] introduces the sequential prefetch hint to initiate instruc-
tion prefetching. The sequential prefetch hint on branches indicates how many
cache lines the processor should prefetch starting at the branch target. On Ita-
nium 2 [13], a branch with the many completer initiates the hardware streaming
prefetching and the prefetch engine will continuously issue prefetch requests for
subsequent instruction cache lines till a stop condition2 happens.

2.3 Weak/Strong Prefetch Hints

The effectiveness of prefetching can be affected by whether micro-architecture
implementations allow a prefetch to continue if it triggers a data TLB miss or
there is not enough resource to handle the prefetch request. The UltraSparc
IV+ processor [21] implements two more variants of prefetch instructions in ad-
dition to the five flavors defined in Sparc V9 [18]. Weak prefetches are dropped
if the target address translation misses the TLB, while strong prefetches will
generate software traps and be re-issued after the TLB entries are filled. The
prefetch requests are tracked by an eight-entry prefetch queue. A strong prefetch
will not be dropped even if the prefetch queue is full when it is issued and the
pipeline will stall until one of the outstanding prefetches completes. The PCM
(P-Cache Mode) in DCU (Data Cache Unit) control register provides further
control on the behavior of weak prefetches under a prefetch queue full event.
When the bit is on, a weak prefetch will also be recirculated if the prefetch
queue is full.

On Itanium [14], a TLB miss will not necessarily generate a fault since it im-
plements hardware page walker to reduce the latency of a TLB miss. If a lookup

2 A stop condition can be a branch misprediction, the execution of an taken branch
or the execution of a special instruction explicitly indicating the stop condition.
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fails in both levels of the DTLB, hardware page walker can be triggered to re-
solve the miss by searching the page table. Slightly different with strong prefetch
on UltraSparc IV+, fault completer is used to indicate whether a fault raised
by an lfetch instruction should be handled by the processor. If the hardware
page walker fails, only lfetch.fault will raise a software fault. Unlike UltraSparc
IV+ [21], there is no dedicated resource for tracking data prefetching requests
on Itanium. They share the same resource with the other memory requests. An
lfetch instruction will not be dropped if there is not enough resource to handle
it. Instead it will wait for the resource to be available.

3 Performance Impact of Instruction Hints

Though the instruction hints do not affect the correctness of a program’s exe-
cution, they can have great impact on program performance. This section uses
several instruction hints to show the compiler can improve program performance
by judiciously using the available hints.
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Fig. 1. Performance comparison of prefetch variants with different locality hints on
UltraSparc III Cu for SPEC CPU2000 [19]. All binaries are compiled with the base
option including PBO using Sun Studio 11 compiler and the data are collected on
Sun Blade 1000. The execution time is normalized using the binaries generated by the
compiler as the bases. The first bars are all 1 since the compiler only generates many
hints.

Figure 1 shows the comparison of using two different locality hints for data
prefetching on UltraSparc III Cu. By using the read many hint, the prefetched
data are brought into both P-cache and L2 cache while the data are only
brought to P-cache for read once. The compiler only generates read many hint
for prefetches intended for data reads. Although only using the read many hint
gives better performance in most cases, for 183.equake, only using read once
actually has a 27% speedup.

The comparison of using different locality hints for load on Itanium 2 is shown
in figure 2. For every possible completer allowed, we convert all loads into that
single flavor and compare the performance with the binaries generated by the
compiler. Two separate graphs are shown for SPEC CINT2000 and CFP2000
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(a) CINT2000

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1
8
8
.a

m
m

p

1
6
8
.w

u
p
w

is
e

1
7
2
.m

g
ri
d

1
7
7
.m

e
s
a

1
7
8
.g

a
lg

e
l

1
7
9
.a

rt

1
8
3
.e

q
u
a
k
e

1
8
7
.f
a
c
e
re

c

1
8
9
.l
u
c
a
s

1
9
1
.f
m

a
3
d

2
0
0
.s

ix
tr

a
c
k

3
0
1
a
p
s
i

N
o

rm
a
li
z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

all_t1 all_nt1 all_nta

(b) CFP2000

Fig. 2. Performance comparison of load variants with different locality hints on Itanium
2. All binaries are compiled with the base option including PBO using Intel C/C++
Compiler 9.0 and the data are collected on HP zx6000. The execution time is normalized
using the binaries generated by the compiler as the bases. The first bars are all 1 since
the compiler only generates t1 hints.

[19] since t1 and nt1 have different meanings for floating point loads 3. Intel
compiler only uses t1 for loads and using t1 is clearly a better choice than using
nt1 or nta as shown in figure 2. But there is one exception that mcf benefits
from only using ld.nta.

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

176.gcc 186.crafty 254.gap 178.galgel 191.fma3d 301.apsi

No
rm

ali
ze

d E
xe

cu
tio

n T
im

e

all_few

all_many

Fig. 3. Performance impact of streaming prefetch hint on Itanium 2. The same envi-
ronment as specified in figure 2 is used for data collection.

The performance impact of streaming prefetch hint on Itanium 2 is shown in
figure 3. The many completer is clearly preferable than the few completer. On
three occasions (gcc, crafty and apsi), triggering streaming prefetches on every
branch delivers better performance. Only using few completers can slow down a
program as much as 17% in the case of fma3d.

Figure 4 shows the comparison for weak and strong prefetches on UltraSparc
IV+. Again we show two extreme cases by converting all prefetches into weak or
strong versions. In general, the compiler chooses strong versions for the majority
3 For floating point loads, data are not allocated in L1 even t1 is used and LRU bit

is not updated for nt1.
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Fig. 4. Performance comparison of weak/strong prefetches on UltraSparc IV+. The
data are collected on a Sun Fire E4900 sever and all binaries are compiled with the
latest Sun Studio compiler [22] with the base option including PBO. The execution
time is normalized using the binaries generated by the compiler as the bases.

of the prefetches and it yields better performance for six programs compared with
only using the weak versions. Only using strong prefetches provides even slightly
better performance overall. For 168.wupwise, 3% speedup can be obtained by
only using strong prefetches.

4 Static Selection of Instruction Hints

As shown in section 3, prudently using instruction hints can significantly im-
prove program performance. In this section, we discuss the issues involved in
static selection of these hints, including the branch prediction hints, instruction
prefetching hints, data cache locality hints and weak/strong prefetch hints. We
also show limitations of static selection using case studies for several benchmark
programs.

4.1 Issues in Static Selection

Locality Hints for Data Prefetching. The cache hierarchies in modern
processors are increasingly more complex. The cache hierarchy in the Itanium 2
has three levels of on-chip caches. They are non-blocking and can handle cache
miss requests out-of-order. Therefore, it is difficult to estimate the precise cost
of an lfetch instruction. In general, lfetch instructions with t1 completers are
more expensive than those with nt completers while lfetch instructions with nt
completers (nt1, nt2, and nta) have similar costs.

On Itanium 2, every memory request that cannot be satisfied by L1D will be
sent to L2 and must be scheduled within a 32-entry queue called OzQ. If the
OzQ is full, the L1D pipeline must stall and it in turn causes the main pipeline
to stall. Bank conflicts and multiple misses to the same cache line can increase
the lifetime of the entries in the OzQ. An lfetch can be expensive if it cause
either case to happen. Placing one of the nt completers mitigates those effects
and reduces the cost of an lfetch. However, using the nt completer reduces the
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benefit of an lfetch since the prefetched data will only be brought up to the L2
cache. When deciding to use the t1 completer, the compiler needs to be confident
that the benefit outweighs the cost. The Intel compiler tends to use nt more often
than t1 for SPEC CINT2000 programs. But choosing between t1 and nt relies
largely on the application’s working set as discussed in 4.2 and neither of them
works best all the time.

Streaming Prefetch Hints. The Itanium 2 processor has a relative small
instruction cache (16K), from the perspective that it has a very strong issue
bandwidth (up to 6 instructions can be issued per cycle). Overly aggressive
streaming prefeching can cause instruction cache pollution and have negative
impact on the pipeline front-end. The benefit of streaming prefetching can be
determined by whether the lines brought into the L1I are used in the near future.
A good indicator will be the number of instructions between the branch target
to the first statically predicted taken branch. ISpike [4] defines this as span and
uses a size of 128 bytes as a threshold to trigger streaming prefetching.

Intel compiler is rather conservative in selecting many completers. On average
only one out of four branches uses the many completer for SPEC CPU2000
programs even we compile all programs with high optimization level (O3) and
profile based optimization. Three programs (gcc, crafty and apsi) benefit as
much as 4.5% from only using many completers as show in figure 3. All three
programs have large instruction footprints and streaming prefetch can reduce
the stalls when the pipeline front-end is unable to supply new instructions to
the back-end.

Weak/Strong Prefetch Hints. As shown in section 3, strong prefetch can
provide additional benefits over weak prefetchs on UltraSparc IV+, but a strong
prefetch could be more expensive than a weak one. Firstly, a strong prefetch
must wait when the prefetch queue is full while a weak prefetch can be simply
dropped in this case. Secondly, a TLB miss triggered by a strong prefetch must
be handled. The compiler must carefully use strong prefetches and make sure
the performance gain from the prefetches is higher than the additional cost.
The weak prefetches can be made ”stronger” on UltraSparc IV+ by setting the
PCM bit to 1 so that they will not get dropped when the prefetch queue is full.
With the PCM bit set on, the difference between weak and strong prefetches
becomes smaller, which makes it easier to select strong prefetch as the default.
However, we have observed that setting the PCM bit on does not always yield
better performance since programs may spend a significant portion of execution
on waiting for available entries in the prefetch queue. The stall can be avoidable
by providing flexible control over the PCM bit and relying on the compiler to
more intelligently select the more suitable prefetch variants.

4.2 Limitations of Static Selection

As shown in section 3, though overall the compilers do well in selecting in-
struction hints, there are cases the compilers still leave significant performance
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opportunities on the table. This is evident when we blindly convert all instruc-
tion hints into one flavor. Static selection of instruction hints is also limited by
lacking knowledge of a program’s runtime behavior.

while (node) {
...
temp = node;
node = node->child;

}

(p17) adds r46=40,r37
...

(p17) ld8 r36=[r46]
...

(p17) cmp.eq p0,p16=r36,r0
...

(p16) br.wtop.dptk.few

(a) C code (b) assembly code

Fig. 5. Code snippet from 181.mcf

Ambiguous Memory Access. The static analysis can be hindered by some
programming language features. Figure 5 shows a code snippet from function
refresh potential in SPEC CINT2000 benchmark 181.mcf. The loop is software
pipelined but no prefetch instructions are generated by the compiler. The ld8
instruction which tries to access node → child is delinquent and the program
stalls on the cmp instructions. Since the data loaded by ld8 are not reused,
changing its completer to nta can reduce its latency without increasing the
number of cache misses. The program can be sped up by 8.7% after this simple
change. However, it is unlikely that the compiler can determine whether the data
are reused with the presence of intensive dynamic memory objects and frequent
pointer references.

void daxpy(double *x, int ix, double *y, int iy, int a, int n)
{

int i;

for (i = 0; i < n; i++)
y[i * iy] += a * x[i * ix];

}

Fig. 6. DAXPY loop

Memory Access Pattern. The behavior of a program can change dramat-
ically with different memory access patterns. Figure 6 shows a typical DAXPY
loop with the strides for both arrays passed as the parameters. The Sun Studio
compiler generates one strong prefetch for each array on UltraSparc IV+. As
seen in the figure 7, the benefit of using weak prefetches is decreasing as the
stride gets larger. When the memory stride (1024 for the arrays) is equal to
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the page size (8KB), we can see a sharp increase on average cycles spent on
each iteration because of the TLB pressure. Using weak prefetches cannot pro-
vide better performance since most of the prefethes will cause TLB misses and
get dropped. Strong prefetches clearly outperform weak prefetches for the large
strides. But when the stride is no larger than 512 bytes (64 for ix and iy), using
strong prefetches is hardly better than using weak prefetches. If the PCM bit is
set to be off, weak prefetches may be more profitable for smaller strides because
of their lower costs.
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Working Set Size. The runtime behavior of a program can largely rely on its
working set. A static hint is unlikely to provide good performance across different
working sets. To show the effect of t1 completer, we change the DAXPY loop
in figure 6 to IAXPY (i.e., both x and y are changed to integer arrays and the
strides are fixed to be 1). The Intel C compiler generates a software-pipelined
loop for IAXPY and one prefetch is included to prefetch both array x and y
alternatively. Figure 8 shows the average cycles per iteration for the IAXPY on
an Itanium 2 machine for two cases when the temporal completer of the prefetch
is nt1 or t1. When the working set of the loop is bigger than the size of L1D (16K)
and but less than the size of L2 (256KB), using t1 gives better performance. But
if the size of array exceeds the size of L2, nt1 will provide better performance
and the performance gap is increasing as the work set increases.
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5 Dynamically Selecting Instruction Hints

Static selection of instruction hints is limited by the lack of knowledge of pro-
gram’s runtime behavior and a static hint cannot adapt to behavior changes at
runtime. Two ways can be used to select instruction hints dynamically. The first
approach uses the compiler to generate multiple copies of an instruction with all
possible hints, and have check instructions to select the desirable one based on
the runtime performance information. The second approach is to use a dynamic
binary optimizer, such ADORE [6], to adjust the hint bits at runtime.

5.1 Generating Multiple Copies

Compiler can generate multiple copies of an instruction with different hints and
the corresponding code to select the hints at runtime as discussed in [2][3].
The selection can be based on the calculation on various runtime parameters
(working set, stride and etc.). This scheme has two disadvantages which make it
impractical. Firstly, it is known to cause severe code expansion since the compiler
has to generate extra instructions to select the instruction with the wanted hint.
Secondly, the cost of the additional calculations can offset the performance gain
of using the right hints.

5.2 Adjusting Instruction Hints Using Dynamic Binary Optimizers

Using compiler to generate multiple copy of an instruction with different hints
causes code expansion and has high runtime overhead. This approach has another
limitation since the compiler can only generate the instruction hints with the
knowledge of the target architecture. A binary compiled for an older micro-
architecture cannot benefit from the additional instruction hints available on
the newer micro-architecture. Recompilation is one possible solution but the
source code for the legacy binaries may not be available.

A dynamic binary optimizer can monitor a program’s performance during the
execution of the program. It can identify program hot spots as well as pin down
the performance bottlenecks. Based on the observed performance bottleneck and
hot spots, the dynamic optimizer can perform the most needed optimizations,
and deploy the optimized code by patching the binary. It has been shown to
effectively address runtime performance bottlenecks such as data cache misses.
Compared with generating multiple copies at the compile time, using dynamic
binary optimizers to adjust instruction hints can have very low overhead and
adapt to different target micro-architectures and computing environments.

Compared with other optimizations currently implemented in dynamic bi-
nary optimizers, dynamically adjusting the instruction hints is less expensive.
Optimizations such as partial dead code elimination requires flow analysis of
the binary. Those optimizations also need to be carefully applied since they can
change the architecture state and cause imprecise exceptions. Most optimiza-
tions require some free registers and acquiring them from the binary at runtime
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is very challenging. For dynamically adjusting instruction hints, if sufficient in-
formation can be obtained from hardware, the optimization only needs to patch
one or two bits for some instructions. Trace formation and register acquisition,
two of the most difficult tasks in dynamic optimizers, can be avoided.

However, similar to other runtime optimizations, dynamic hint selection needs
proper support from software and hardware. The lack of appropriate performance
counter information related to the instruction hints may limit the effectiveness of
hint selection. Furthermore, the lack of comprehensive control flow information
may also limit the code region where hint selection can be applied.

Hardware Support. Dynamic binary optimizers rely on the runtime perfor-
mance monitoring features provided by recent architectures. Itanium 2 provides
more than 400 different counters and advanced monitoring features such as
Branch Trace Buffer (BTB) and Event Address Registers (EAR). Those fea-
tures are very useful in the design of a dynamic binary optimizer. However, they
are still insufficient for dynamically adjusting instruction hints. For example, to
select the memory locality hints, nta, no temporal locality at all cache levels,
requires cache reuse information. We need to know if the cache line referenced
by one memory operation is not going to be reused, or the line may be replaced
before it is used again. Current hardware performance counters do not provide
this type of details. Furthermore, it is important that the cache line reuse in-
formation should be associated with the PC address of the memory instruction.
One näıve hardware implementation is to tag the cache line with the full ad-
dress of the instruction which requests the line. This may be too expensive to be
practical. So using partial address (e.g. lower bits) may be a good compromise.
A few bits like the LRU bits can also be added to track whether the line has
been used recently.

Software Support. Data cache prefetching is the major optimization per-
formed in current dynamic binary optimizers such as ADORE/Itanium [6] and
ADORE/Sparc [7]. Therefore the trace selection and formation in these two
systems focus on loops which are the best candidates for data cache prefetch-
ing. Dynamically adjusting instruction hints requires different type of traces.
The effect of changing some instruction hints such as the temporal hints may
not be visible immediately. For example, adjusting the temporal hints for a
loop may not improve the performance of itself but the performance of another
loop next to it. In such cases, we need a larger scope such as a complex loop
nest in the trace selection in order to effectively apply hint selection. Secondly,
self monitoring and dynamically undoing and redoing the optimization become
critical. For example, the dynamic optimizer may initiate some hint selection
to a loop, and monitor what performance change it may have. If the perfor-
mance degrade in the monitored region, the optimizer should undo the selected
hints.
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6 Related Work

Even though there are quite a few instruction hints available on recent architec-
tures, very limited research has been done to evaluate their performance impacts
and no one has tried to select instruction hints using dynamic binary optimizers.

Memory Locality Hint: Wang et al. [10] propose to add an evict-me bit to
each cache line, which indicates a cache line is a good candidate for replacement.
Compilers set this bit for memory instructions based on locality analysis. Their
study shows that using the evict-me algorithm in both L1 and L2 caches can
improve the performance of a set of scientific programs over LRU policy by
increasing the cache hit rate. Yang [5] et al. has a detailed study on the compiler
algorithms to generate cache hints. Beyles and D’Hollander [2][3] proposes a
compiler framework using reuse distance profile to generate temporal hints for
memory instructions. Their study is based on the temporal completers available
on Itanium architecture [14] and they used a physical Itanium server for their
experiment. They also propose to use prediction or extending the format of the
memory instructions to support dynamic cache hint for an individual access.

Weak/Strong Prefetch: Song et al. [9] briefly describe the weak and strong
prefetch on UltraSparc VI+ [21]. They only use strong prefetches in the statically
generated helper thread by the compiler and they claim the benefit of helper
thread will be greatly reduced if prefetches are dropped on TLB misses. In
[7], Lu et al. evaluate the performance impact of using strong prefetches in
their dynamic helper threaded prefetching on UltraSparc IV+ [21]. Even though
they conclude using strong prefetches in the helper thread code is generally
a preferable strategy, they also find cases when weak prefetches yield better
performance.

Sequential Prefetch Hint: Luk et al. [4] study the performance potential of
streaming prefetching on Itanium [14] using a post-link optimizer (Ispike). They
find streaming prefetching helps a little for SPEC CPU2000 Int [19] programs
but they observe larger speedup on a commercial database application with a
much bigger code footprint.

7 Conclusions and Future Work

Modern processors have increasingly relied on using hints associated with in-
structions to pass performance related information from software to hardware.
We have shown the use of such hints could have significant performance impact
on recent Itanium and Sparc processors. The statically hint selection by the com-
piler cannot address the performance opportunities created by dynamic program
behavior changes and has room for improvement. With appropriate software and
hardware support, we believe a dynamic optimizer can make more effective use
of instruction hints for future systems.

Our future work will focus on the software and hardware support for dynamic
selecting instruction hints. We want to enhance the current dynamic binary
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optimizer to handle more complex trace types other than loops. We also plan
to improve the self-monitoring ability and add support for undoing and redoing
optimizations. Finally we would like to have more detailed study and evaluation
for possible hardware support to assist future dynamic selection of instruction
hints.
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Abstract. In this paper, we discuss the architecture of a modular
UNIX-compatible operating system, MINIX 3, that provides reliabil-
ity beyond that of most other systems. With nearly the entire operating
system running as a set of user-mode servers and drivers atop a minimal
kernel, the system is fully compartmentalized.

By moving most of the code to unprivileged user-mode processes and
restricting the powers of each one, we gain proper fault isolation and
limit the damage bugs can do. Moreover, the system has been designed
to survive and automatically recover from failures in critical modules,
such as device drivers, transparent to applications and without user in-
tervention.

We used this new design to develop a highly reliable, open-source,
POSIX-conformant member of the UNIX family. The resulting system
is freely available and has been downloaded over 75,000 times since its
release.

1 Introduction

Operating systems are expected to function flawlessly, but, unfortunately, most
of today’s operating systems fail all too often. As discussed in Sec. 2, many
problems stem from the monolithic design that underlies commodity systems.
All operating system functionality, for example, runs in kernel mode without
proper fault isolation, so that any bug can potentially trash the entire system.

Like other groups [1,2,3,4], we believe that reducing the operating system
kernel and running drivers and other core components in user mode helps to
minimize the damage that may be caused by bugs in such code. However, our
system explores an extreme position in the design space of UNIX-like systems,
with almost the entire operating system running as a collection of independent,
tightly restricted, user-mode processes. This structure, combined with several
explicit mechanisms for transparent recovery from crashes and other failures,
results in a highly reliable, multiserver operating system that still looks and
feels like UNIX.

To the best of our knowledge, we are the first to explore such an extreme
decomposition of the operating system that is designed for reliability, while pro-
viding reasonable performance. Quite a few ideas and technologies have been
around for a long time, but were often abandoned for performance reasons. We
believe that the time has come to reconsider the choices that were made in
common operating system design.

C. Jesshope and C. Egan (Eds.): ACSAC 2006, LNCS 4186, pp. 81–94, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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1.1 Contribution

The contribution of this work is the design and implementation of an operating
system that takes the multiserver concept to its logical conclusion in order to
provide a dependable computing platform. The concrete goal of this research is
to build a UNIX-like operating system that can transparently survive crashes of
critical components, such as device drivers.

As we mentioned earlier, the answer that we came up with is to break the
system into manageable units and rigidly control the power of each unit. The
ultimate goal is that a fatal bug in, say, a device driver should not crash the
operating system; instead, a local failure should be detected and the failing
component should be automatically and transparently replaced by a fresh copy
without affecting user processes.

To achieve this goal, our system provides: simple, yet efficient and reliable IPC;
disentangling of interrupt handling from user-mode device drivers; separation
of policies and mechanisms; flexible, run-time operating system configuration;
decoupling of servers and drivers through a publish-subscribe system; and error
detection and transparent recovery for common driver failures. We will discuss
these features in more detail in the rest of the paper.

While microkernels, user-mode device drivers, multiserver operating systems,
fault tolerance, etc. are not new, no one has put all pieces together. We believe
that we are the first to realize a fully modular, POSIX-conformant operating
system that is designed to be highly reliable. The system has been released
(with all the source code available under the Berkeley license) and over 75,000
people have downloaded it so far, as discussed later.

1.2 Paper Outline

We first survey related work and show how operating system structures have
evolved over time (Sec. 2). Then we proceed with an architectural discussion of
the kernel and the user-mode servers and drivers on top of it (Sec. 3). We review
the system’s main reliability features (Sec. 4) and briefly discuss its performance
(Sec. 5). Finally, we draw conclusions (Sec. 6) and mention how the system can
be obtained (Sec. 7).

2 Related Work

This section gives an overview of the design space that has monolithic systems
at one extreme and ours at the other. We briefly discuss starting with the short-
comings of monolithic systems and ways to retrofit reliability. Then we survey
increasingly modular designs that we believe will help to make future operating
systems more reliable.

It is sometimes said that virtual machines and exokernels provide sufficient
isolation and modularity for making a system safe. However, these technologies
provide an interface to an operating system, but do not represent a complete sys-
tem by themselves. The operating system on top of a virtual machine, exokernel,
or the bare hardware can have any of the structures discussed below.
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2.1 Retrofitting Reliability in Legacy Systems

Monolithic kernels provide rich and powerful abstractions. All operating system
services are provided by a single program that runs in kernel mode. A simplified
example, vanilla Linux, is given in Fig. 1(a). While the kernel may be partitioned
into domains, there are no protection barriers enforced between the components.

Monolithic designs have some inherent reliability problems. All operating sys-
tem code, for example, runs at the highest privilege level without proper fault
isolation, so that any bug can potentially trash the entire system. With millions
of lines of executable code (LOC) and reported error rates up to sixteen or 75
bugs per 1000 LOC [5,6], monolithic systems are prone to bugs. Running un-
trusted, third-party code in the kernel also diminishes the system’s reliability, as
evidenced by the fact that the error rate in device drivers is 3 to 7 times higher
than in other code [7] and 85% of all Windows crashes are caused by drivers [8].

An important project to improve the reliability of commodity systems such as
Linux is Nooks [8,9]. Nooks keeps device drivers in the kernel but transparently
encloses them in a kind of lightweight protective wrapper so that driver bugs
cannot propagate to other parts of the operating system. All traffic between the
driver and the rest of the kernel is inspected by the reliability layer.

Another project uses virtual machines to isolate device drivers from the rest
of the system [2]. When a driver is called, it is run on a different virtual machine
than the main system so that a crash or other fault does not pollute the main
system. In addition to isolation, this technique enables unmodified reuse of device
drivers when experimenting with new operating systems.

A recent project ran Linux device drivers in user mode with small changes to
the Linux kernel [3]. This work shows that drivers can be isolated in separate
user-mode processes without significant performance degradation.

While isolating device drivers helps to improve the reliability of legacy operat-
ing systems, we believe a proper, fully modular design from scratch gives better
results. This includes encapsulating all operating system components (e.g., file
system, memory manager) in independent, user-mode processes.
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Fig. 1. Three increasingly modular designs of the Linux operating system: (a) Vanilla
Linux (widely deployed); (b) L4Linux and specialized components (working prototype);
and (c) envisioned structure of SawMill Linux (abandoned project)
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2.2 Architecting New Modular Designs

In modular designs, the operating system is split into a set of cooperating servers.
Untrusted code such as third-party device drivers can be run in independent user-
mode modules to prevent faults from spreading. In principle, modular designs
have great potential to increase reliability as each module can be tightly confined
according to the principle of least authority [10].

One approach is running the operating system in a single user-mode server
on top of a microkernel, for example, L4Linux on top of L4 [11]. This structure
can be combined with specialized components as in DROPS [1] and Perseus [12],
which is illustrated in Fig. 1(b). While the specialized components run in isola-
tion, a single bug can still crash Linux and take down all legacy applications.

Some commercial systems like Symbian OS and QNX [13] are also based
on multiserver designs, but do not use such an extreme decomposition of the
operating system as we do. In Symbian OS, for example, only the file server and
the networking and telephony stacks are hosted in user-mode servers, while the
QNX kernel still contains process management and other functions which could
have been isolated in separate user-mode processes.

SawMill Linux [14] would have been a more sophisticated approach to split
the operating system into pieces and run each one in its own protection domain,
as illustrated in Fig. 1(c). Unfortunately, the project was abruptly terminated
in 2001 when many of the principals left IBM Research, and the only outcome
was a rudimentary, unfinished prototype.

The GNU Hurd is a collection of servers that serves as a replacement for the
UNIX kernel. The goal of this project is similar to ours, but the distribution
of functionality over various servers is different. The current status seems to be
that the multiserver system did not work as intended on top of either Mach or
L4, and the project is currently seeking another microkernel.

A recent multiserver system developed by Microsoft Research is Singular-
ity [4]. In contrast to other systems, Singularity uses language protection and
bypasses the hardware protection offered by the MMU. The system can be
characterized as a microkernel running a set of verifiably safe, software-isolated
servers. While language safety might be a viable approach to build reliable sys-
tems, Singularity means a paradigm shift for the programmer and is not back-
wards compatible with any existing applications.

2.3 What’s Next?

Although several multiserver systems exist, either in design or in prototype im-
plementation, none of them provides the highly reliable, UNIX-like environment
that we strive for. Our approach to operating system reliability is practical for
real-world adoption, as we reorganize only the internals of the operating system
and do not change the interface offered to applications. Users can still run their
favorite software, but now without rebooting their computer every now and then.

In the rest of this paper, we present a new, highly reliable, open-source,
POSIX-conformant multiserver operating system that is freely available for
download, and has been widely tested.
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3 Our Multiserver Architecture

In our design, called MINIX 3, the operating system runs as a set of user-mode
servers and drivers on top of a tiny kernel, as illustrated in Fig. 2. The kernel
is responsible for low-level and privileged operations such as programming the
CPU and MMU, interrupt handling, and IPC, and contains two tasks (SYS and
CLOCK) to support the user-mode parts of the operating system.

The simplest servers provide file system (FS), process management (PM),
and memory management (MM) functionality. The data store (DS) is a small
database server with publish-subscribe functionality. Finally, the reincarnation
server (RS) keeps track of all servers and drivers and can transparently repair
the system when certain failures occur.

Each component in our design is a small, well-defined entity with limited re-
sponsibility and power, as in the original UNIX philosophy. The kernel consists
of under 4000 lines of executable code (LoC) and the sizes of the servers ap-
proximately range from 1000 to 3000 LoC per server, which makes them easy to
understand and maintain. The small size also might make it practical to verify
the code either manually or using formal verification tools.
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Fig. 2. The core components of the full multiserver operating system, and some typical
IPC paths. Top-down IPC is blocking, whereas bottom-up IPC is nonblocking.

Before we continue with the discussion of the core components, we illustrate
how our multiserver operating system actually works. Although the POSIX API
is implemented by multiple servers, system calls are transparently targeted to
the right server by the system libraries. Four examples are given below:

(1) An application that wants to create a child process calls the fork() library
function, which sends a request message to the process manager (PM). PM

verifies that a process slot is available, asks the memory manager (MM) to
allocate memory, and instructs the kernel (SYS) to create a copy of the process.
Finally, PM sends the reply and the library function returns. All message passing
is hidden to the application.
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(2) A read() or write() call to do disk I/O is sent to FS. If the requested block
is in the buffer cache, FS asks the kernel (SYS) to copy it to the user. Otherwise
it sends a message to the disk driver asking it to retrieve the block from disk.
The driver sets an alarm, commands the disk controller through an I/O request
to the kernel (SYS), and awaits the hardware interrupt or timeout notification.

(3) Additional servers and drivers can be started on the fly by requesting
them from the reincarnation server (RS). RS then forks a new process, sets the
process’ privileges at the kernel (SYS), and, finally, executes the given path in
the child process (not shown in the figure). Information about the new system
process is published in the data store (DS), which allows parts of the operating
system to subscribe to updates in the system’s configuration.

(4) Although not a system call, it is interesting to see what happens if a user
or system process causes a fatal exception, for example, due to an invalid pointer.
In this event, the kernel’s exception handler notifies PM, which transforms the
exception into a signal or kills the process when no handler is registered. Recovery
from failures in servers and drivers is handled by RS and is discussed below.

3.1 The Kernel

The kernel can be characterized as a true microkernel and provides low-level
operations that cannot be done by unprivileged user-mode processes. First, the
kernel is responsible for low-level resource management and interaction with the
hardware. For example, this includes interrupt handling, programming the CPU
and MMU, device I/O, and process scheduling.

Second, the kernel provides a reliable set of interprocess communication (IPC)
primitives. Our IPC design eliminates the need for dynamic resource allocation,
both in the kernel and in user space. The standard request-reply sequence uses
a rendezvous. If the destination is not waiting, the IPC REQUEST blocks the
sender until the IPC REPLY has been sent. Similarly, a receiver is blocked on
IPC SELECT when no IPC is available. Messages are never buffered in the kernel,
but always directly copied from sender to receiver, speeding up IPC and eliminat-
ing the possibility of running out of buffers. For special events, the IPC NOTIFY
primitive can be used to send nonblocking notification messages. Notifications
are not susceptible to resource exhaustion either, since at most one bit per event
is saved in a bitmap that is statically declared as part of the process table.

Third, the kernel maintains several lists and bitmaps to restrict the powers of
all system processes. As discussed in Sec. 4, the restriction include IPC primitives
that can be used, possible IPC destinations, kernel calls available, I/O ports, IRQ
lines, and memory regions. The policies are set by a trusted user-space server
(RS), and enforced by the kernel at run time. Each process has its own policy,
allowing for fine-grained control of privileges in the system.

Fourth, two independently scheduled processes, SYS and CLOCK, are part
of the kernel to support the rest of the operating system. These processes are
called tasks to distinguish them from the user-mode servers. Although the tasks
are in kernel address space and run in kernel mode, they are treated in the same
manner as any other user processes.
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System Task (SYS). SYS is the interface to the kernel for all user-mode
servers and drivers that require low-level kernel-mode operations. All kernel calls
in the system library are transformed into a request message that is sent to SYS,
which handles the request if the caller is authorized and sends a reply. SYS never
takes initiative by itself, but is always blocked waiting for a new work.

The kernel calls handled by SYS can be grouped into several categories,
including process management, memory management, copying data between
processes, device I/O and interrupt management, access to kernel data struc-
tures, and clock services. Some typical examples of kernel calls were already
mentioned in the scenarios above: SYS DEVIO to do device I/O, SYS VIRCOPY
to copy data using virtual addressing, SYS SETALARM to schedule an alarm,
and SYS PRIVCTL to set a process’ privileges.

Clock Task (CLOCK). CLOCK is responsible for accounting for CPU us-
age, scheduling another process when a process’ quantum expires, managing
watchdog timers, and interacting with the hardware clock. When the system
starts up, CLOCK programs the hardware clock’s frequency and registers an
interrupt handler that is run on every clock tick. The interrupt handler only
increments a process’ CPU usage and decrements the scheduling quantum. If
a new process must be scheduled or an alarm is due, a notification is sent to
CLOCK to do the real work at the task level.

Although CLOCK has no direct interface from user space, its services can be
accessed through the kernel calls handled by SYS. The most important call is
SYS SETALARM that allows system processes to schedule a synchronous alarm
that causes a ‘timeout’ notification upon expiration. Since both tasks are in the
kernel, SYS can directly call CLOCK’s functions.

3.2 The User-Space Servers

On top of the kernel, we have implemented a POSIX-conformant multiserver op-
erating system. All servers and drivers run as independent user-mode processes
and are highly restricted in what they can do, just like ordinary user applica-
tions. The servers and drivers can cooperate using the kernel’s IPC primitives
to provide the functionality of an ordinary UNIX operating system. Below we
will discuss the core operating system servers shown in Fig. 2 in detail.

Process Manager (PM). Together with FS, PM implements the POSIX
interface that is available to application programs. PM is responsible for process
management such as creating and removing processes, assigning process IDs and
priorities, and controlling the flow of execution. Furthermore, PM maintains
relations between processes, such as process groups and parent-child blood lines.
The latter, for example, has consequences for signaling the parent of exiting
processes and accounting of CPU time.

PM is also responsible for POSIX signal handling. When a signal is to be
delivered, by default, PM either ignores it or kills the process. Ordinary user
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processes can register a signal handler to catch signals. In this case, PM inter-
rupts pending system calls, and puts a signal frame on the stack of the process
to run the handler. This approach is not suitable for system processes, however,
as it interferes with IPC. Therefore, we implemented an extension to the POSIX
sigaction() call so that system processes can request PM to transform signals
into notification messages. Since event notification messages have the highest
priority of all message types, signals are delivered promptly.

Although the kernel provides the low-level mechanisms, for example, to set
up the CPU registers, PM implements all process management policies. As far
as the kernel is concerned all processes are similar; all it does is schedule the
highest-priority ready process. The higher-level process management provided
by PM is responsible for the UNIX look and feel of our system.

Memory Manager (MM). To facilitate ports to different architectures, we
use a hardware-independent, segmented memory model. Each process has a text
segment, which can be shared with processes that execute the same program, and
a stack and data segment. System processes can be granted access to additional
memory segments, such as the video memory or the RAM disk memory. In
addition, they are allowed to request chunks of free memory.

The text segment of all processes has read-only protection and the stack and
data segments are not executable, which makes buffer overrun vulnerabilities
harder to exploit by viruses and worms, since injected code cannot be executed
directly. Other memory protection mechanisms are discussed in Sec. 4.

Although the kernel is responsible for hiding the hardware-dependent details
such as programming the MMU, MM does the actual memory management.
MM maintains a list of free memory regions, and can allocate or release memory
segments for other system services. Currently MM is integrated into PM, but
work is in progress to split it out and offer virtual memory capabilities.

File Server (FS). FS manages the file system. It is an ordinary file server that
handles standard POSIX calls such as open(), read(), and write(). More advanced
functionality supported includes symbolic links and the select() system call. For
performance reasons, file system blocks are buffered in FS’ buffer cache. To
maintain file system consistency, however, crucial file system data structures use
write-through semantics, and the cache is periodically written to disk.

Currently, our system offers only one file system—our own native file system—
but work is in progress to transform FS into a virtual file system server (VFS)
that supports multiple, different file system servers. Both VFS and each file
server will be run as an isolated, user-mode process. The file system underneath
each mount point will be served by a separate file server so that a file server
failure can affect only a subtree of the virtual file system.

Since device drivers can be dynamically loaded in our system, each file server
maintains a mapping of major numbers onto specific drivers. As discussed below,
changes in the configuration are broadcast through a publish-subscribe system.
This mechanism decouples the file servers and the drivers they depend on.
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Reincarnation Server (RS). RS is the central component responsible for
managing all operating system servers and drivers. While PM is responsible for
general process management, RS deals with only privileged processes: servers
and drivers. It acts as a guardian and ensures liveness of the operating system.
Administration of system processes also is done through RS. A utility program,
service, provides the user with a convenient interface to RS. It allows the ad-
ministrator to start and stop system services and (re)set the policy script that
is run on certain events, including driver crashes.

Fault detection and recovery works as follows. During system initialization
RS adopts all processes in the boot image as its children. System processes that
are started later, also become children of RS. This ensures immediate crash
detection, because PM raises a SIGCHLD signal that is delivered to RS when a
system process exits. In addition, RS can check the liveness of the system. If the
policy says so, RS does a periodic status check, and expects a reply in the next
period. Failure to respond will cause the process to be killed. The status requests
and the consequent replies are sent using a nonblocking event notification.

Whenever a problem is detected, RS can replace the malfunctioning compo-
nent with a fresh copy, but the precise actions taken can be different for each
server and each driver. The associated policy (shell) script could restart the
failed component, enter the failure in a system log, backup the core image of
the failed component for later inspection, send an e-mail to a remote system
administrator, or other things. If crashes reoccur, a binary exponential back-
off protocol could be used to prevent bogging down the system with repeated
recoveries. More details about the recovery process are given in Sec. 4.

Data Store (DS). DS is a small database server with publish-subscribe func-
tionality. It serves two purposes. First, system processes can use it to store some
data privately. This redundancy is useful in the light of fault tolerance. A restart-
ing system service, for example, can request state that it lost when it crashed.
Such data is not publicly accessible, but only to the process that stored it.

Second, the publish-subscribe mechanism is the glue between operating system
components. It provides a flexible interaction mechanism and elegantly reduces
dependencies by decoupling producers and consumers. A producer can publish
data with an associated identifier. A consumer can subscribe to selected events
by specifying the identifiers or regular expressions it is interested in. Whenever
a piece of data is updated DS automatically broadcasts notifications to all de-
pendent components.

Among other things, DS is used as a naming service. Because every process
has a unique IPC endpoint that is automatically generated by the kernel, sys-
tem processes cannot easily find each other. Therefore, we introduced stable
identifiers that consist of a natural language name plus an optional number.
The identifiers are globally known. Whenever a system process is (re)started RS

publishes its identifier and the associated IPC endpoint at DS for future lookup
by other system services.
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Device Drivers. All operating systems hide the raw hardware under a layer of
device drivers. To get started and prove that our principles work in practice, we
have implemented drivers for ATA, S-ATA, floppy, and RAM disks, keyboards,
displays, audio, printers, serial line, various Ethernet cards, etc.

Although device drivers can be very challenging, technically, they are not very
interesting in the operating system design space. What is important, though, is
that each of ours runs as an independent user-mode process to prevent faults
from spreading and make it easy to replace failing driver without a reboot.

We are aware that not all bugs can be cured by restarting a failed driver, but
since the bugs that make it past driver testing tend to be timing bugs or memory
leaks rather than algorithmic bugs, a restart often does the job. Moreover, our
system can take other measures as well, such as pinpointing the driver that is
responsible for the failure and notifying a remote administrator.

4 Reliability

One of the strengths of our system is that it moves device drivers and other
operating system functionality out of the kernel into unprivileged user-mode
processes and introduces protection barriers between all modules. This strong
compartmentalization improves the system’s reliability in various ways [15,16].
Faults are properly isolated and the system can often gracefully recover by
restarting the failed component rather than rebooting the entire computer.

4.1 Fault Isolation

The kernel and MMU hardware ensure that processes are fully isolated. Each
server and driver is encapsulated in a private address space that is protected by
the MMU hardware. Illegal access attempts are caught, just like for user applica-
tions. Processes can exchange data in a controlled way by using the kernel’s vir-
tual copy construct. Copying is possible only with a capability-like descriptor—
created by the other party—that grants access to a precisely specified memory
region. This prevents memory corruption, even in the light of malicious processes.

The user-mode operating system components do not run with superuser priv-
ileges. Instead, they are given an unprivileged user and group ID to restrict file
system access and POSIX calls. In addition, each user, server, and driver process
has a restriction policy, according to the principle of least authority [10]. The
policies are set by RS and the kernel enforces them at run time.

Driver access to I/O ports and IRQ lines are assigned when they are started.
In this way, if, say, the printer driver tries to write to the disk’s I/O ports, the
kernel will deny the access. Stopping rogue DMA is not possible with current
hardware, but as soon as an I/O MMU is added, we can prevent that, too. A
temporary solution that is possible in our system is to deny access to the DMA
controller and, instead, have a trusted server to mediate any DMA attempts.

Furthermore, we tightly restrict the IPC and kernel call capabilities of each
process. For each user, server, and driver process we specify which IPC primitives
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it may use, which IPC endpoints are allowed, and which kernel calls it can make,
depending on their needs. Ordinary applications, for example, cannot request
kernel services at all, but need to contact the POSIX servers instead.

4.2 Fault Resilience

While we do not claim that our system is free of bugs, in many cases we can
recover from crashes due to programming errors or attempts to exploit vulnera-
bilities, transparent to applications and without user intervention. As discussed
in Sec. 3, the RS server executes a policy script when it detects a failure and
can automatically replace a failed system process with a fresh copy.

Next to RS, DS is an integral part of our design for fault tolerance. Its publish-
subscribe mechanism makes it very suitable to inform other processes of changes
in the operating system. For example, FS subscribes to the identifier for the
disk drivers. When a driver crashes and RS registers a new one, DS notifies FS

about the event; FS then can take further action to recover from the failure.
Different recovery strategies are used depending on the kind of driver that

fails [15]. When a block device driver failure is detected, the file server can recover
transparently by retrying the I/O operation that failed. For character devices,
the file server pushes errors to user space, but transparent recovery sometimes
is also possible. A print job, for example, can be reissued by the print spooler
system. Finally, for Ethernet drivers, transparent recovery is possible when a
reliable transport protocol, such as TCP, is used. In this case, the network server
(not discussed here) can retransmit lost packets.

The underlying assumption of our approach is that failures are transient and
that restarting a component allows to fix the problem. The fault set that RS deals
with are internal errors, timing failures, aging bugs, and attack failures. Internal
errors mean that a system process encounters an exception and panics or gets
killed, for example, because it dereferences an invalid pointer. Timing failures
are caused by specific configuration or unexpected hardware timing issues. Aging
bugs are implementation problems that cause a component to fail over time, for
example, when it runs out of buffers due to memory leaks. Finally, attack failures
are caused by malicious code, such as variations on the ’ping-of-death.’

Byzantine failures and logical errors where a server or driver perfectly adheres
to the specified system behavior but fails to perform the actual request are
excluded. For example, consider a printer driver that accepts a print job and
confirms that the printout was successfully done, but, in fact, prints garbage.
Such bugs are virtually impossible to catch in any system.

In principle, RS guards both servers and drivers, but our system currently
is mainly designed to deal with device driver failures. If one of the core servers
discussed in the previous section crashes, recovery is not (yet) possible and the
system will be hampered. For example, a crash of PM or FS that together im-
plement the POSIX interface will directly affect application programs. However,
given that typically about 70% of the operating system consists of device drivers
and that they have error rates 3 to 7 times higher than ordinary code [7], we
have tackled an important class of problems with our design.
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5 Performance

Modular systems have been criticized for decades because of alleged performance
problems. Modern multiserver systems, however, have proven that competitive
performance can be realized [3,11]. We have done extensive measurements of our
system (on a 2.2 GHz Athlon), showing that the performance overhead compared
to the base system with in-kernel drivers is limited to 5–10% [17].

The simplest system call, getpid(), takes 1.011 microseconds, which includes
passing two messages and two context switches. Rebuilding the full system, which
is a heavily disk bound job, has an overhead of 7% compared to the base system
with in-kernel device drivers. Jobs with mixed computing and I/O, such as sort-
ing, sedding, grepping, prepping, and uuencoding a 64-MB file have overheads
of 4%, 6%, 1%, 9%, and 8%, respectively. The system can build the kernel and
all user-mode servers and drivers in the boot image within 6 sec. In that time it
performs 112 compilations and 11 links (about 50 msec per compilation). The
overhead on disk transfer times of user-mode disk drivers is shown in Fig 3(a).
Fast Ethernet easily runs at full speed, and initial tests show that we can also
drive gigabit Ethernet at full speed from a user-mode driver. Finally, the time
from exiting the multiboot monitor to the login prompt is under 5 sec.

We have also measured the performance overhead of our recovery mechanisms
by simulating repeated crashes of the Ethernet driver during a transfer of a 512-
MB file from the Internet with crash intervals ranging from 1 to 15 sec. The
results are shown in Fig. 3(b). The transfer successfully completed in all cases,
with a throughput degradation ranging from 25% to only 1%. The mean recovery
time was 0.36 sec. This recovery time is due to the TCP retransmission timeout;
restarting the failed driver takes only a few milliseconds.

It has to be noted that the overhead of the many new security checks is
not related to the multiserver design per se and will be visible in any system.
Furthermore, we did not yet do any performance optimizations. Careful analysis
and removal of bottlenecks may bring the performance.
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Fig. 3. Performance measurements: (a) Overhead of our user-mode disk driver com-
pared to the in-kernel driver of the base system. (b) Throughput while repeatedly
killing the Ethernet driver during a 512-MB transfer with various time intervals.
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6 Conclusions

Our main contribution in the research presented in this paper is that we have
actually built a highly reliable, UNIX-compatible multiserver operating system
with a performance loss of only 5% to 10%. We have discussed the design and
implementation of a useful and stable prototype that currently runs over 400
standard UNIX applications, including the X Window System, two C compilers,
many editors, a complete TCP/IP stack that supports BSD sockets, and all the
standard shell, file, text manipulation, and other UNIX utilities.

To achieve high reliability we have reorganized the monolithic design that is
common to many UNIX operating systems. Our design consists of a small kernel
running the entire operating system as a collection of independent, isolated,
user-mode processes. The kernel implements only the minimal mechanisms, such
as interrupt handling, IPC, policy enforcement, and contains two kernel tasks
(SYS and CLOCK) to support the user-mode operating system parts. The core
servers are the process manager (PM), memory manager (MM), file server (FS),
reincarnation server (RS), and data store (DS). The size of the kernel and the
core servers ranges from about 1000 to 4000 lines of code.

Our multiserver architecture realizes a highly reliable operating system. We
moved most operating system code to unprivileged user-mode processes that are
encapsulated in a private address space protected by the MMU hardware. Each
user, server, and driver process has a restriction policy to limit their powers
to an absolute minimum. By fully compartmentalizing the operating system’s
device drivers, we were able to reduce the size of the TCB by over two orders
of magnitude. We do not claim we have removed all the bugs, but the system is
fault tolerant, and can withstand and often recover from common failures.

Given the low costs for this increase in operating system reliability and the
fact that we were able to maintain the look and feel of an ordinary UNIX system,
we believe that our reorganization of UNIX is practical for real-life adoption.

7 Availability

The system is called MINIX 3 because we started with MINIX 2 as a base
and then modified it very heavily. It is free, open-source software, available
via the Internet. You can download MINIX 3 from the official homepage at:
http://www.minix3.org/, which also contains the source code, documentation,
news, contributed software packages, and more. Over 75,000 people have down-
loaded the CD-ROM image since the release (October 2005) resulting in a large
and growing user community that communicates using the USENET newgroup
comp.os.minix. MINIX 3 is actively being developed, and your help and feedback
are much appreciated.
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1. Härtig, H., Baumgartl, R., Borriss, M., Hamann, C.J., Hohmuth, M., Mehnert, F.,
Reuther, L., Schonberg, S., Wolter, J.: DROPS–OS Support for Distributed Multi-
media Applications. In: Proc. 8th ACM SIGOPS Eur. Workshop. (1998) 203–209

2. LeVasseur, J., Uhlig, V., Stoess, J., Gotz, S.: Unmodified Device Driver Reuse
and Improved System Dependability via Virtual Machines. In: Proc. 6th Symp.
on Operating Systems Design and Implementation. (2004) 17–30

3. Leslie, B., Chubb, P., Fitzroy-Dale, N., Gotz, S., Gray, C., Macpherson, L.,
Daniel Potts, Y.T.S., Elphinstone, K., Heiser, G.: User-Level Device Drivers:
Achieved Performance. Journal of Computer Science and Technology 20(5) (2005)

4. Hunt, G.C., Larus, J.R., Abadi, M., Aiken, M., Barham, P., Fahndrich, M., Haw-
blitzel, C., Hodson, O., Levi, S., Murphy, N., Steensgaard, B., Tarditi, D., Wobber,
T., Zill, B.: An Overview of the Singularity Project. Technical Report MSR-TR-
2005-135, Microsoft Research (2005)

5. Basili, V., Perricone, B.: Software Errors and Complexity: An Empirical Investi-
gation. Comm. of the ACM (1984) 42–52

6. T.J. Ostrand and E.J. Weyuker: The Distribution of Faults in a Large Industrial
Software System. In: Proc. of the 2002 ACM SIGSOFT Int’l Symp. on Software
Testing and Analysis, ACM (2002) 55–64

7. Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.: An Empirical Study of Oper-
ating System Errors. In: Proc. 18th ACM Symp. on Operating System Principles.
(2001) 73–88

8. Swift, M., Bershad, B., Levy, H.: Improving the Reliability of Commodity Oper-
ating Systems. ACM Trans. on Computer Systems 23(1) (2005) 77–110

9. Swift, M., Annamalai, M., Bershad, B., Levy, H.: Recovering Device Drivers. In:
Proc. 6th Symp. on Operating Systems Design and Implementation. (2004) 1–15

10. Saltzer, J., Schroeder, M.: The Protection of Information in Computer Systems.
Proceedings of the IEEE 63(9) (1975)
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Abstract. The problem of scheduling a weighted directed acyclic graph (DAG) 
to a set of heterogeneous processors to minimize the completion time has been 
recently studied.  The NP-completeness of the problem has instigated researchers 
to propose different heuristic algorithms.  In this paper, we present an efficient 
Critical-task Anticipation (CA) scheduling algorithm for heterogeneous 
computing systems.  The CA scheduling algorithm introduces a new task 
prioritizing scheme that based on urgency and importance of tasks to obtain 
better schedule length compared to the Heterogeneous Earliest Finish Time 
algorithm.  To evaluate the performance of the proposed algorithm, we have 
developed a simulator that contains a parametric graph generator for generating 
weighted directed acyclic graphs with various characteristics.  We have 
implemented the CA algorithm along with the HEFT scheduling algorithm on the 
simulator.  The CA algorithm is shown to be effective in terms of speedup and 
easy to implement. 

1   Introduction 

The demand for powerful computing to solve a large application has emerged in recent 
years.  Some parallel architecture, such as multiple computers, or multiple processor 
system, that employ numerous processors interconnected by high-speed network to 
achieve superior performance than use a single computer.  Because the diverse quality 
among that processors (computers) or some special requirement, like exclusive 
function, memory access speed, or the customize I/O devices, etc.; the tasks have 
distinct execution time on different processors (computers) and it named hetero- 
geneous computing system. 

The purpose of such system is to drive processors cooperate to get the application 
(an application consists of tasks) done quickly.  Therefore, one of the key factors is how 
to schedule individual task among processors to minimize execution time or maximize 
processor utilization and so on.  The primary scheduling methods can be classified into 
two categories: dynamic scheduling and static scheduling. In dynamic algorithm, it 
executes redistribution of tasks between processors during run-time, expect to balance 
computational load, and reduce processor’s idle time.  On the contrary, in static 
algorithm, it assigns tasks to processors at the compile time, attempt to minimize the 
entire completion time, and satisfy the precedence of tasks [6, 14].  When the 
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information of an application which predict tasks execution time, the message size of 
communication among tasks, and tasks dependences are known a priori at the 
compile-time, it called static model [6, 14], thus, schedule analysis must be done before 
run time. 

A Direct Acyclic Graph (DAG) [2] is used for modeling parallel applications which 
consists of several independent tasks.  The nodes of DAG correspond to tasks and the 
edges of which indicate the precedence constraints between tasks.  In addition, the 
weight of an edge represents communication cost among tasks.  Each node is given a 
computation cost and it is represented by a computation costs matrix.  Figure 1 depicts 
an example of DAG and the computation cost matrix.  Moreover, we consider that each 
task can be executed on a single processor only and tasks are non-preemptable.  A task 
nj is a successor (predecessor) of task ni if there exists an edge from ni to nj (from j to i) 
in the graph.  The task has precedence constraint, that is, only if the predecessor ni 

completes its execution and then its successor nj receives the messages from ni, the 

successor nj can start its execution. 
The scheduling problem has been widely researched in heterogeneous system where 

the computational ability of processors is different and the processors communicate 
over an underlying network.  Many researchers had proposed articles on the subject.  
The scheduling problem in general is proved to be NP-complete, so the desire of 
optimal scheduling can lead to higher scheduling overhead.  The negative result 
motivates the requirement for heuristic approaches to solve the scheduling problem.  A 
comprehensive survey about static scheduling algorithms is given in [14].  The authors 
of [14] have shown that the heuristic-based algorithms can be classified into a variety of 
categories, such as clustering algorithms, duplication-based algorithms, and 
list-scheduling algorithms. 

The keynote of clustering algorithms is a mapping of the tasks onto n clusters.  Each 
task in a cluster must execute in the same processor.  A nonlinear clustering is that at 
least one cluster contains two independent tasks, otherwise it called linear clustering.  It 
iterates clustering steps while no improvements in the scheduling length can be 
obtained.  The requirement of unbound processors was a disadvantage and it causes the 
algorithm to work badly in practice [3, 16].  With the auxiliary of some cluster merge 
steps, the problem was solved [7, 8], although the approach is expensive. 

The duplication-based algorithms [1, 9, 11] are another different skills.  Those 
algorithms utilize the duplicate technique which duplicates some critical tasks (i.e. the 
parent tasks) on the same or another processor so that reduce the communication cost.  
When duplication of the execution of tasks occurs in processors, it will result in an 
increase in the space complexity since data must be duplicated too. 

The list-scheduling algorithms [10, 13, 14, 15] divided the approach into two 
independent parts, list phase and processor-selection phase.  In the first part, list phase, 
they used heuristic method to give the task a priority and then according as the priority, 
make an arrangement for the task set.  In the second part, processor-selection phase, 
they used the result of the first part to select the most suitable processor for the task 
assignment.  Our Critical-task Anticipation (CA) algorithm belongs to this classi- 
fication.  This typical method is superior to the others because it is easier to practice, 
lower complexity, and good performance. 

In this paper, our proposed algorithm uses the following scheduling system model.  
There are P fully connected heterogeneous processors in the system.  The processors 
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communicate over an underlying communication network which is contention-free.  
The main intent of this problem is to minimize the schedule length (schedule length 
also called makespan).  Our proposed algorithm takes advantage of some graph 
attributes used by heterogeneous earliest-finish-time (HEFT) algorithm [14], and 
furthermore we came up with a novel idea to improve the performance.  In the HEFT 
algorithm, it detects the critical path length of a given node.  To do so, it uses critical 
score, i.e., as the name implies, an accumulative value that are computed recursively 
travels along the graph upward, starting from the exit node.  In the literature, the authors 
exhibited the brilliant performance as compared with the Dynamic Level Scheduling 
Algorithm [13], the Levelized-Min Time Algorithm [5], and the Mapping Heuristic 
Algorithm [12].  Our algorithm is similar to the HEFT algorithm, except that we use a 
critical-task anticipation skill.  We add a simple modification to make significant 
improvements in schedule length as well as speedup of the application. 

The rest of this paper is organized as follows: Section 2 introduces the scheduling 
system and problem formulation.  Section 3 presents the definitions used in our 
proposed algorithm.  In section 4, we discuss details of the CA scheduling algorithm 
and give a simple comparison to the HEFT algorithm.  Section 5 shows the simulation 
results.  Finally, in Section 6, some concluding remarks are made. 

2   Preliminaries 

2.1   Heterogeneous Scheduling System  

As mentioned in section 1, the heterogeneous computing architecture is a set of 
heterogeneous processors P = {pk: k = 1: p} connected in a fully connected topology, 
where p = |P|.  We also assume that: 

1) There is no network contention between any arbitrary processors. 
2) Computation and communication can be worked simultaneously because of the sep- 

arated I/O. 
3) Tasks are non-preemptable.  In other words, once a task is assigned to a processor, it 

starts execution and finishes to its completion. 
4) After accomplish the task’s execution, the task have to send operational result to all 

immediate successor of it instantly. 
W is an n × p matrix in which wi,j indicates estimated computation time to execute 

task ni on processor pj.  The mean value of task ni is calculated as follow: 

                                                   ∑ =
= p

j jii pww
1 , /                                                 (1) 

The communication cost depends on the size of message and communication latency 
of processors.  A p × p matrix T is structured to represent data transfer rate among 
processors.  Latency of processors is given in a p-dimensional vector V.  The 
communication cost of transferring data from task ni (execute on processor pm) to task 
nj (execute on processor pn) is denoted by ci,j and can be calculated by the following 
equation 
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Where: 
Vm is the latency of processor pm, 
Messagei,j is the size of message from task ni to task nj, 
Tm,n is data transfer rate from processor pm to processor pn. 
In static scheduling model, it is usually to use the mean value of communication cost 

to simplify the presentation in a given DAG (as shown in Fig. 1).  The mean value of 
communication cost between tasks ni and nj can be formulated by the following 
equation, 

 
T

Message
Vc ji

ji
,
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Where: 

V  is the average latency of processors. 

T  is the average transfer rate. 

 

Fig. 1. An example of Direct Acyclic Graph (DAG) and the computation cost matrix 

2.2   Problem Formulation 

The application can be represented by a Directed Acyclic Graph (DAG), G = (V, E, C), 
where V = {nj: j = 1: v} is the set of nodes and v = |V|, E = {ei,j = <ni, nj>} is the set of 
communication edges and e =|E|; C is the set of edge communication costs.  In the DAG 
model, each node indicates least indivisible unit, in other words, each node must be 
executed on a processor from beginning to end.  Each edge <ni, nj> is a direct arc on 
which ni is the immediate predecessor and nj is the immediate successor.  There is 
precedence relationship between tasks, namely task nj takes it’s turn to prepare for 
starting execution after the ni has finished it’s execution and nj receive the essential 
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message from ni.  The weight of edge <ni, nj > indicates the average communication 
cost between ni and nj. 

The node without any inward edge is called entry node nentry, and a node without any 
outward edge is called exit node nexit.  In general, it is supposed that the application has 
only one entry node and one exit node.  If the actual application claims more than one 
entry (exit) node, we can accede a zero-cost fake entry (exit) node with zero-cost edge. 

The goal of scheduling problem is minimizing the total execution time of the 
application.  If there are more than one exit tasks, we consider that the latest completion 
task is the ending of the application.  In other word, we want to shorten the schedule 
length as far as possible. 

3   Definitions 

The list scheduling algorithm is broadly distinguished into list phase and processor- 
selection phase.  In this section, we give some definitions that will be used in both CA 
and HEFT algorithms.  

3.1   Parameters for List Phase 

Definition 1: In the list phase, the Critical Score of the task nexit denoted by CS(nexit) is 
defined as exitexit wnCS =)( , where exitw  is the average computation cost of task nexit.   

Definition 2: ))(()( ,
)(

jji
nsucn

ii nCScMaxwnCS
ij

++=
∈

, where 
iw  is the average computation cost 

of task ni, jic ,
 is the average communication cost of edge <ni, nj>, and suc(ni) is the set 

of immediate successors of task ni. 

3.2   Parameters for Processor-Selection Phase 

In the processor-selection phase, the algorithm exploits a partial schedule to meet the 
minimum schedule length.  There is an intuitional idea to calculate the finish time (FT) 
of task nj that will be executed on processor pk, then we can select the minimum finish 
time from the calculated results and determine which processor is chosen to execute the 
task nj.  In such approach, each processor pk will maintain a list of tasks, task-list(pk), 
keeps the latest status of tasks correspond to the EFT(ni, pk), the earliest finish time of 
task ni that is assigned on processor pk. 
    Recall having been mentioned above that the application represented by DAG must 
satisfy the precedence relationship.  Taking into account the sequence of tasks which 
are assigned on the processors, a task nj can intend to execute on a processor pk only if 
its all immediate predecessors send the essential messages to nj and nj successful 
receives all these messages.  Thus, the latest message arrive time of node ni on 
processor pk, denoted by LMAT(nj, pk), is evaluated by the following equation, 

                                         ( ) ( ) ( )( )jii
npredn

kj cnEFTMaxpnLMAT
ji

,, +=
∈

                                (4) 

where pred(nj) is the set of immediate predecessors of task nj.  Note that if tasks ni and 
nj are assigned to the same processor, 

jic ,
 is assumed to be zero because it is negligible. 
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Definition 3: The nentry has no inward arc, therefore for the task nentry, 

( ) 0, =kentry pnLMAT , for all k = 1 to p.. 

Definition 4: The start time of task nj executed on processor pk is denoted as ST(nj, pk).  
The determination of start time aims to search available time slot on processor pk that is 
large enough to execute task nj (i.e., length of time slot > wj,k).  Note that the search of 
available time slot is started from ( )kj pnLMAT , . 

Definition 5: The finish time of task nj completes its execution on processor pk is 
denoted as ),( kj pnFT  and calculated by the following equation, 

kjkjkj wpnSTpnFT ,),(),( +=                                             (5) 

Definition 6: The earliest finish time of task nj completes its execution is denoted as 
)( jnEFT  and determined by the following equation, 

)},({)( kj
Pp

j pnFTMinnEFT
k∈

=                                                (6) 

Definition 7: According to definition 6, if the EFT of task nj is determined upon task nj 
executed on processor pt, then the target processor of task nj is denoted by TP(nj), and 
TP(nj) = pt. 

4   The Proposed Scheduling Algorithm 

In this section, we first present a new scheduling algorithm, the critical-task 
anticipation algorithm (outlined in Figure 2) which will be operated in the 
heterogeneous scheduling system.  The proposed scheduling algorithm will be verified 
beneficial for the readers while we delineate a sequence of the algorithm and show 
some example scenarios.  In the rest of this section, we will review the HEFT algorithm 
which is the best known list-scheduling algorithm and provide some different 
viewpoint between both algorithms. 

4.1   The Critical-Task Anticipation Scheduling Algorithm 

The CS(ni) is known as the maximal summation of scores including the average 
computation cost and communication cost from task ni to the exit task, that is, CS(ni) is 
the longest length of critical path.  Therefore, the magnitude of the task’s critical score 
is regarded as the decisive factor when we arrange the priority.  In the HEFT algorithm, 
it sorts the tasks in L by non-increasing order of critical scores.  This method seems 
good intuitively that it provides suitable priorities for the tasks.  In this study, we 
propose an improving scheduling heuristic, the critical-task anticipation scheduling 
algorithm (CA).  The origin of the CA algorithm is owing to the following three 
observations. 

Observation 1: The processors are heterogeneous, namely, there are variations in 
execution cost from processor to processor for each task.  Different processor 
assignments for tasks result in a different computational cost.  In that event, we always 
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wish to give the task ni which has large average computation cost higher priority.  This 
can aid the task ni to get chance to reduce the finish time. 

Observation 2: Except for the entry task, each task has to receive the essential messages 
from its immediate predecessors.  In other words, a task will be in waiting state when it 
does not collect complete message yet.  For this reason, we emphasize the importance 
of the last arrival message such that the succeeding task (node) can start its execution 
earlier.  Therefore, it is imperative to give the predecessor who sends the last arrival 
message higher priority.  This can aid the task to get chance to advance the start time.  

Observation 3: If a task ni is inserted into the front of the scheduling-list, it occupies 
advantage position. Namely, ni has higher probability to reduce its finish time.  
Consequently, the start time of suc(ni) can be advanced with higher probability. 

According to the above observations, we have a different viewpoint on the 
importance of a key task, the critical-task is defined as following. 

Definition 8: A task ni is a critical-task of task nj, denoted as CT(nj), iff ni is not inserted 
into scheduling list L yet and CS(ni) = ))((

)(
k

npredn
nCSMax

jk ∈
. 

Our viewpoint differs from the majority of literatures in terms of task prioritizing.  In 
most algorithms, their thought is to schedule high critical score task first (even the 
estimation of critical scores in these algorithms are different).  In our approach, the CA 
algorithm prioritizes the task ni according to the influence of task ni, which effects the 
successors of ni (Observation 2) and devotes to lead to an accelerated chain 
(Observation 1).  In short, our scheme is not only prioritizing tasks by the importance 
(i.e., critical score) but also prioritizing tasks by the urgent among tasks.  

Begin:
1. Input the information of DAG and matrix. 

/* List Phase */ 

2. Construct an empty scheduling-list L which is FIFO. 

3. Calculate CS(ni) for task ni, ∀ ni∈V. 

4. Prioritize the tasks into L by CA procedure. 

  //CA procedure is shown in figure 3. 

  /* In the HEFT algorithm, tasks in L are sorted by 

   non-increasing order according to critical 

   scores */ 

/* Processor Selection Phase*/ 

5. While L is not empty do 
6.    Remove task ni from L. 

7.    Compute LMAT(ni, pk), ST(ni, pk), FT(ni, pk) for all k = 1 to p.

8.    Determine EFT(ni), EST(ni). 

9.    Assign task ni to processor TP(ni)

10.   Modify the task-list (TP(ni)).

11.Endwhile 
End

 

Fig. 2. The Proposed Critical-Task Anticipation Algorithm 
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4.2   Details and Example 

The procedure of Critical-task Anticipation is outlined in Fig. 3.  It maintains the 
following data structures: a scheduling list L which is first-in first-out, an auxiliary 
stack S, a temporary container C and an array of Boolean called queue vector (QV).  
QV[ni] = true indicates that task ni has queued into L.  QV[ni] = false indicates that task 
ni has not yet queued into L. 
    We now perform a running trace of the CA algorithm.  Let’s consider again the 
example shown in figure 1, which has ten tasks.  These tasks will be executed on three 
fully-connected heterogeneous processors.  According to this DAG, the critical scores 
of tasks can be evaluated by definitions 1 and 2.  We proceed to the computation of 
critical scores from the nexit by bottom-up fashion.  For example, for the exit node n10, 
the CS(n10)=16, and for node n8, CS(n8)=10 + max(10 + CS(n10)) = 10 + max(26) = 36.  
We start to examine the procedure of critical-task anticipation algorithm which is 
illustrated in Fig. 3.  The step by step execution sequence is given below.  

Initially, QV = [F, F, F, F, F, F, F, F, F, F], S is empty, L is empty, where F is false 
and T is true.  The index is the serial number of the task, from 1 to 10. 

1) Push n10 on stack S.  S = [n10]. 
2) S is not empty, begin the while loop (Fig. 3, Line 5). 
3) Pop n10, predecessors of task n10 are n7, n8, n9.  Since the condition of QV at line 
7 isn’t satisfied, it then goes to the next stage, searching CT(n10) at line 11 and resulting 
C = {n7, n8, n9}.  Finally, S = [n9, n7, n8, n10].  Note that CT(n10) = n9, which is pushed on 
the top of S, and n9 has  the highest priority than the other tasks in stack S.  
4) Peek at n9 (top of stack), then S = [n4, n2, n5, n9, n7, n8, n10] (after lines 11-20 in 
CA procedure are processed). 
5) Peek at n4, then S = [n1, n4, n2, n5, n9, n7, n8, n10].  
6) Peek at n1, note that n1 is entry node, so it follows lines 7~10, S = [n4, n2, n5, n9, 
n7, n8, n10], L = [n1] and set QV[n1] = T. 
7) Peek at n4, because pred(n4) = {n1}, we then check QV[n1] and have QV[n1] = T.  
This implies that pred(n4) are inserted into L.  Therefore, S = [n2, n5, n9, n7, n8, n10], L= 
[n1, n4] and set QV[n4] = T (Lines 7-10). 
8) Peek at n2, S = [n5, n9, n7, n8, n10], L = [n1, n4, n2] and set QV[n2] = T. 
9) Peek at n5, S = [n9, n7, n8, n10], L = [n1, n4, n2, n5] and set QV[n5] = T. 
10) Peek at n9, pred(n9) = {n2, n4, n5}.  Since QV = [T, T, F, T, T, F, F, F, F, F], the 
condition “all QV[ni] are true, ni∈pred(nj)” at line 7 is satisfied.  We then have S = [n7, 
n8, n10], L = [n1, n4, n2, n5, n9] and set QV[n9] = T. 
11) Peek at n7, then S = [n3, n7, n8, n10]. 
12) Peek at n3, then S = [n7, n8, n10], L = [n1, n4, n2, n5, n9, n3] and set QV[n3] = T. 
13) We omit the rest process until only task n10 remains in stack S.  When task n10 is 
popped, S becomes empty and L = [n1, n4, n2, n5, n9, n3, n7, n6, n8, n10]; the values of QV 
are all true.  The list phase is done.   

    We continue the processor-selection phase by deploying tasks from list L in FIFO 
manner to suitable processor.  According to L = [n1, n4, n2, n5, n9, n3, n7, n6, n8, n10], at 
the beginning, task n1 is assigned to processor p3 because it produces the earliest finish 
time, i.e., EFT(n1) = 9 and TP(n1) = p3.  Then, n4 is the next task to be removed from L.  
The LMAT(n4, p1) = Max(EFT(n1) + 9) = 18, according to the partial schedule, the 
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ST(n4, p1) = 18 and FT(n4, p1) = ST(n4, p1) + w4,1 = 18 + 13 = 31.  We have FT(n4, p2) = 
18 + 8 = 26 and FT(n4, p3) = 9 + 18 = 27.  Therefore, the EFT(n4) = Min {31, 26, 27} = 
26 and TP(n4) is p2 since p2 is the best choice among the processors. 

      

1. Procedure Critical-task Anticipation: 

2.   Initially, construct an array of Boolean QV and a stack S. 

3.   QV[nj] = false, ∀ nj∈V.
4.   Push nexit on top of S. 

5.   While S is not empty do 
6.      Peek task nj on the top of S; 

7.        If( all QV[ni] are true, for all ni∈pred(nj) or task nj is nentry)

8.                Pop task nj from top of S and put nj into scheduling-list L; 

9.                QV[ nj] = true;

10.       EndIf.
11.       Else   /* search the CT(nj) */

12.              For each task ni, where ni∈pred(nj) do
13.                    If(QV[ni] = false)

14.                        Put CS(ni) into container C; 

15.                    Endif 
16.              EndFor 
17.              Push tasks pred(nj) from C into S by non-decreasing order 

according to their critical scores; 

18               Reset C to empty; 

19.              /* if there are 2+ tasks with same CS(ni), task ni is randomly 

pushed into S. */ 

20.       EndElse 
21. EndWhile  

Fig. 3. The Critical-Task Anticipation Procedure 

 

Fig. 4.  Scheduling results for the DAG in Fig. 1 using (a) CA algorithm (makespan = 81) (b) 
HEFT algorithm (makespan = 92) 
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The scheduling result obtained by the CA algorithm for the DAG given in Fig. 1 is 
depicted in Fig. 4(a).  On the other hand, the HEFT results L = [n1, n4, n3, n2, n5, n6, n9, n7, 
n8, n10] in the list phase and the scheduling result is given in Fig. 4(b) and it demonstrates 
that the CA algorithm outperforms the HEFT algorithm in terms of makespan. 

For algorithm complexity, the time complexity of the CA algorithm for calculating 

critical score is O(|P|+|E|), where O(|P|) is for iw  calculation.  The procedure of 

Critical-task Anticipation leads O(|E|+|V|) time complexity in the list phase and takes 
O(|E|× |P|) in the processor-selection phase.  Therefore, the time complexity of the CA 
algorithm is O(|E|× |P|). 

5   Simulation 

In this section, we first introduce the random graph generator, a simulator that 
generating weighted directed acyclic graphs with various characteristics.  We then 
explain metrics for performance comparison.  Finally, we show the simulation results.    

5.1   Random Graph Generator 

To evaluate the efficiency of our algorithm, we implemented a Random Graph 
Generator (RGG) to simulate applications with various characteristics.  RGG uses the 
following input parameters to produce diverse graphs. 

 Weight of graph (weight), which is a constant = {32, 128, 512, 1024}. 
 Number of tasks in the graph (n).  In our simulation, n = {20, 40, 60, 80, 100}. 
 Parallelism of graph (p) 

It influences the shape of the graph.  The p is assigned for 0.5, 1.0 and 2.0.  The 
level of graph is ⎣ ⎦pv / .  For example, if the value p = 2.0, it will generate higher 

parallelism graph and vice versa.  
 Out degree of a task (d).   

The d is assigned for 1, 2, 3, 4 and 5.  The out degree represents the dependence 
among tasks.  If the degree is large, the task relationship is high. 

 Heterogeneity of computation cost (h). 
This parameter is used to control the computation cost wi,k for a task ni on processor 
pk.  The wi,k is randomly chosen from the following formula. 
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RGG randomizes wi from the interval [1, weight].  Note that if the weight is 
assigned with larger value, it represents the estimation of great precision.  The h is 
assigned for 0.1, 0.25, 0.5, 0.75 and 1.0. 

 Communication to Computation Ratio (CCR). 
The CCR is assigned for 0.1, 0.5, 1.0, 2.0 and 10.0.  

5.2   Comparison Metrics 

As mentioned earlier, the objective of our scheduling algorithm is to shorten the 
completion time of an application.  Several comparative metrics are given below: 
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 Makespan 
The makespan (also known as schedule length) is defined as 

niallfornEFTmakespan i ~1),(max( ==                                     (8) 

 Speedup 
The speedup is defined as 

makespan

w
Speedup Vn jiPp

i
j

}{min ,∑ ∈∈
=                                           (9) 

The numerator is the minimal accumulated sum of computation cost of tasks which 
are assigned on one processor.  The meaning of Speedup is comparison between 
sequential execution time and parallel execution time.   

 Percentage of Quality of Schedules (PQS) 
The percentage of the CA algorithm produces better, equal and worse quality of 
schedules compared to the HEFT algorithm. 

5.3   Simulation Results 

In [14], HEFT demonstrated superior performance to other scheduling techniques, the 
Dynamic Level Scheduling Algorithm [13], the Levelized-Min Time Algorithm [5], 
and the Mapping Heuristic Algorithm [12].  Upon this reason, in this simulation, our 
emphasis is on the performance comparison with HEFT.  The first simulation aims to 
demonstrate the merit of the CA algorithm by showing the quality of schedules using 
the RGG.  Figures 5 and 6 show the simulations make use of the parameters which 
generate 1875 different DAGs.  The CA scheduling algorithm provides superior 
performance for 70% ~ 80% test samples.  Fig. 5 (a) shows the effect of setting 
different weight = {32, 128, 512, 1024}.  This result shows that PQS does not changed 
largely by varying the weight.  Therefore, it is interesting to discover the effect on 
different number of processors.  Fig. 5 (b) shows that the CA algorithm performs very 
well when the number of processor becomes large. 

 
       weight 32 128 512 1024 

CA Better: 

Equal: 

CA Worse: 

74.61%

0.21%

25.18%

73.22% 

0.05% 

26.73% 

72.42% 

0.05% 

27.53% 

73.13%

0.05%

26.82%

     

Processors
 

5 6 7 8 

Better: 

Equal: 

Worse: 

77.41%

0.10%

22.49%

80.45%

0.00%

19.55%

82.56% 

0.16% 

17.28% 

85.46% 

0.10% 

14.44% 
 

(a)                              (b) 

Fig. 5. PQS (a) CA compared with HEFT (3 processors) (b) CA compared with HEFT (weight = 
128) 

Figures 6 present the simulation results in terms of speedup by varying n, p, d, CCR 
and h, respectively.  The effect of number of task is shown in Fig. 6 (a).  For both 
algorithms, while the simulation has small number of processors, the speedup is placid.  
However, when we adapt processors to eight, it is apparent that speedup increased 
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Fig. 6. Performance comparison of the CA and the HEFT algorithms (a) speedup comparison 
with different number of tasks (n) (b) speedup comparison with different degree of parallelism 
(p) (c) speedup comparison with different out-degree of tasks (d) (d) speedup comparison with 
different CCR (e) speedup comparison with different heterogeneity of computation cost (h) 

significantly, especially in the situation of large number of task.  Compare with the 
HEFT algorithm, the improvement rate of the CA algorithm in terms of average 
speedup is about 7% at processor = 4 and 11% at processor = 8; the Improvement Rate 
(IRCA) is estimated by the following equation: 

∑
∑∑ −

=
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HEFTspeedup

HEFTspeedupCAspeedup
IR CA

                          (10) 
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Fig. 6 (b) helps in investigating the sensitivity of task parallelization.  It is noticed 
that, when p is large, the graphs are tending parallelism.  As shown in Fig. 6 (b), the CA 
algorithm favors linear graphs (p=0.5), also outperforms the HEFT algorithm in 
general graphs too (p=1.0), but is defeated in high parallelism graphs (p =2.0).  Fig. 6 
(c) gives the observation about the dependence relationship among tasks by fixing 
number of processors at 5.  Although the speedups of both algorithms are stable, the CA 
algorithm outperforms the HEFT in most cases.  In Fig. 6(d), the impact of 
communication on speedup is plotted for various value of CCR.  We vary CCR by 0.1, 
1.0 and 10.  It is noted that an increase in CCR decreases the speedup rapidly.  For 
example, speedup offered by the CCR=0.1 used CA at processor = 8 is 6.45 and CCR 
=10.0 used CA at processor =8 is only 2.2.  This is due to the fact that when the 
communication is higher than computation, the behavior of migration of tasks is not 
useful.  Beside, when the CCR is large, there is still poor performance even if the 
numbers of processors are added.  Namely, there is no benefit of increase of processors 
when communication is the bottleneck.  Fig. 6 (e) shows the effect of heterogeneity (h) 
by fixed number of processor =8.  From Fig. 6 (e), we observe that the speedup 
increases with increasing h in both algorithms.  As the result of simulation, we consider 
the CA algorithm achieves significant performance improvement in majority part. 

6   Conclusion  

In this paper, we proposed a new scheduling heuristic, the critical-task anticipation 
(CA) algorithm for heterogeneous computing systems.  The CA scheduling algorithm is 
a list scheduling heuristic and has a simple structure and low complexity.   

For performance evaluation, we compared CA with HEFT scheduling algorithm.  
The experimental results showed that CA is in most cases equal or superior to HEFT 
due to a more appropriate task prioritizing.  Graphs with medium and high CCR were 
always best scheduled by CA.  In the case of low CCR, the CA algorithm delivered 
comparable results to the HEFT algorithm.  Overall speaking, from the simulation, the 
performance of the CA algorithm has been observed to fit most DAG. 
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Abstract. The widening gap between today’s processor and memory perfor-
mance makes memory subsystem design an increasingly important part of 
computer design. Processor directed dynamic page policy is proposed by 
investigating the memory access patterns of applications. Processor directed 
dynamic page policy changes page mode adaptively in accordance with the 
directions of processor. It combines the advantages of close page policy and 
open page policy. The processor directed dynamic page policy is based on 
future memory access behavior. Compared with the direction information of 
existing dynamic page policies which is based on the history of memory access 
behavior, the direction information of processor directed dynamic page policy is 
more accurate. Furthermore, memory access requests of processor are 
scheduled based on the page policy to increase the page hit rate and reduce page 
conflict miss rate. The performance of SPEC CPU2000 benchmarks is 
improved significantly. The IPC is improved by 7.1%, 5.9% and 3.4% on 
average compared with close page policy, open page policy and conventional 
dynamic page policy, respectively. 

Keywords: Godson-2, Memory Control Policy, Dynamic Page Policy, Open 
Page, Close Page. 

1   Introduction 

With the processor-memory performance gap continuing to grow, the performance of 
memory access becomes the major bottleneck of the performance improvement for 
modern microprocessors [1]. It becomes a hot spot of research activities to propose new 
memory control policies in order that processor-memory gap will be decreased [2]. 

Several optimization techniques of memory control system to reduce DRAM 
access latency have been developed [3], [4]. These techniques are based on open page 
policy, which enables the accessed row active. In open page policy, if the next access 
to the same bank goes to the same page, that is page hit, only column access is 
necessary. One major bottleneck limiting open page policy comes from page conflict 
misses. Page conflict misses occur in the row buffer, when a sequence of requests on 
different pages goes to the same bank. Compared with a page hit, a page conflict miss 
may cause additional DRAM precharge latency. Frequent page conflict misses will 
significantly increase access latency and degrade overall performance. The latency of 
open page policy is even longer than that of close page policy, when page conflict 
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miss rate is high. Dynamic page policies effectively reduce DRAM access latency by 
changing page mode dynamically [5], [6]. The page mode is changed from open page 
mode to close page mode, when the memory access result is speculated to page 
conflict miss. 

Based on investigations of memory access behavior, through experimentations of 
SPEC CPU2000 benchmarks running on Godson-2 processor, a novel dynamic page 
policy that can improve performance of memory system significantly, called 
processor directed dynamic page policy is proposed and evaluated in this paper. The 
Godson project [7] is the first attempt to design high performance general-purpose 
microprocessors in China. Godson-2 processor [8] is a 4-issue superscalar, 9-stage 
superpipeline microprocessor, which implements the 64 bit instruction set. Processor 
directed dynamic page policy combines the advantages of close page policy and open 
page policy. The direction information of processor directed dynamic page policy is 
based on future memory access behavior. Compared with the direction information of 
existing dynamic page policies which is based on the history of memory access 
behavior, the direction information of processor directed dynamic page policy is more 
accurate. Memory access requests of processor are scheduled based on the page 
policy to increase the page hit rate and reduce page conflict miss rate. The hardware 
cost of the processor directed dynamic page policy is trivial. We evaluate the 
performance of various page policies for SPEC CPU2000 benchmarks [9] and 
STREAM benchmarks [10]. It is shown that processor directed dynamic page policy 
dramatically increases the page hit rate and reduces page conflict miss rate. The 
memory access latency is reduced by 18.52% and 19.64% compared with close page 
policy and open page policy respectively. The IPC is improved by 7.1%, 5.9% and 
3.4% on average compared with close page policy, open page policy and conventional 
dynamic page policy, respectively. The memory bandwidth is improved by 15% and 
21% on average compared with close page policy and open page policy respectively. 

The remainder of the paper is organized as follows. Section 2 describes related 
work on page policy. Section 3 analyzes the memory access patterns of applications. 
Section 4 proposes processor directed dynamic page policy. Section 5 evaluates the 
performance of processor directed dynamic page policy for SPEC CPU2000 bench-
marks and STREAM benchmarks, after introducing our experimental environment. 
Finally, conclusions and directions for future work are given in section 6. 

2   Related Work 

An access to DRAM consists of row access, column access and precharge. The lowest 
order bits in memory access address are column address, the next bits are bank 
address, and the highest order bits are row address. During row access, a row is 
activated, namely a row of data containing the desired data is loaded into the row 
buffer according to its row address. The data in the row buffer is also called a page of 
data. Concurrent accesses to multiple interleaved memory banks are supported in 
modern computer systems, where each bank has a row buffer holding a page of data. 
During column access, the data is read or written according to its column address. The 
page can be either open or closed after column access determined by memory page 
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mode control policy. Memory page mode control policy is simply called page policy. 
In open page policy, the DRAM precharge operation is not performed and the row 
maintains active state. If the next access is page hit, only column access is necessary. 
However, if the next access is page conflict miss, the DRAM precharge will not start 
until the next request arrives. The close page policy allows the precharge operation to 
begin immediately after the current column access completes. Both open page policy 
and close page policy have their advantages and limitations, mainly depends on the 
memory access patterns of applications. If the page hit rate is high, open page policy 
is more beneficial than close page policy, and vice versa. 

Figure 1 shows state transition and timing for DRAM read operation in close page 
policy. In Figure 1, CL (CAS* Latency) denotes the latency from column access start 
to the first data return. tRCD (RAS* to CAS*) denotes the latency from row access to 
column access. tRP (RAS* Precharge) denotes the latency from precharge to row 
access. The values of CL, tRCD and tRP depend on the clock frequency of system bus 
and the clock frequency of DRAM. The CL, tRCD and tRP are usually 2 cycles, 3 
cycles, and 2 cycles. In close page policy, because the DRAM is in an idle state (Idle), 
activate row (ACT, Activate Row), read (RD, Read), and precharge (PRE, Precharge) 
operations are performed when DRAM is accessed. The latency of read operation  
is from row access to desired data return. Hence, the latency of read operation 
includes the cycles of activate row and read, that is Latency = tRCD + CL = 3 + 2 = 5 
cycles. 
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Fig. 1. State transition and timing diagram for DRAM read operation in close page policy 

 

Figure 2 shows state transition and timing for DRAM read operation in open page 
policy. In open page policy, row buffers in each of the banks of the DRAM can work 
as a cache memory with large block size because the DRAM is in row active state 
(Row Active) after accessed. The latency of DRAM access is non-uniform according 
to page hits and page conflict misses. When the access result is a page hit, memory 
access latency is reduced because precharge and activate row operations are 
eliminated. As a result, the latency of read operation only includes the cycles of read, 
and the DRAM operating latency is Latency = CL = 2 cycles. When the access result 
is a page miss, the latency of read operation includes the cycles of precharge, activate 
row and read, that is Latency = tRP + tRCD + CL = 2 + 3 + 2 = 7 cycles. The latency 
of read operation is two cycles longer than the latency in close page policy because 
the extra precharge operation is needed. If the page miss rate is high, open page policy 
is negative than close page policy. 
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Fig. 2. State transition and timing diagram for DRAM read operation in open page policy 

Most DRAM systems nowadays have multiple banks so that multiple row buffers 
on different banks can maintain row active state simultaneously. However, DRAM 
row buffer conflicts occur when a sequence of requests on different rows goes to the 
same memory bank in open page policy, causing much higher memory access latency 
than requests to the same row or to different banks. Dynamic page policy is aims at 
combining the advantages of open page policy and close page policy. The basic idea 
of dynamic page policy is that page mode can be changed between open page mode 
and close page mode according to memory access patterns of applications. Figure 3 
shows state transition for DRAM read operation in dynamic page policy. In open page 
mode, when the access result is a page hit, the latency of read operation is 2 cycles. In 
open page mode, when the access result is a page conflict miss, the precharge, 
activate row and read operations are performed, the latency of read operation is 7 
cycles. In close page mode, the latency of read operation is 5 cycles. 
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Fig. 3. State transition diagram for DRAM read operation in dynamic page policy 
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Miura proposed a dynamic page policy, called dynamic SDRAM mode control 
scheme [5], which changes page mode between open page and close page based on 
the history of memory access behavior. If there are several successive misses in open 
page mode, the dynamic page policy changes the page mode from open page to close 
page after column access completes. The memory controller of Alpha 21174 [6] also 
implements dynamic page policy based on the history of memory access behavior. 

The essential direction information of page change in existing dynamic page 
policies is the future memory access patterns speculated by the history of memory 
access behavior. The perfect dynamic page policy is directed by real memory access 
behavior in the future. On the other hand, the memory access requests of processor are 
not scheduled based on the page policy in existing dynamic page policies. Thus access 
locality is not exploited effectively for reusing the data in the row buffer. Furthermore, 
the existing dynamic page policies do not take the page mode change occasion into 
account. Most memory controllers nowadays maintain multiple requests from 
processor in its queue, and send the requests to DRAM device in the order determined 
by the memory access scheduling scheme. Suppose there are multiple requests in the 
queue of memory controller and the existing dynamic page policies perform precharge 
operation for changing to close page mode according to the history of memory access, 
precharge operation will delay the process of successive memory requests. 

3   Analysis of Memory Access 

This section analyzes the memory access locality of SPEC CPU2000. Figure 4 shows 
the proportion of page hits and page misses in open page policy. The average page hit 
rate of SPEC CPU2000 is 49.7%, which is almost equal to average page miss rate. 
However, page hit rates are distinct in different programs. The page hit rates of gcc, 
mcf, parser, eon, perlbmk, wupwise, vortex, twolf, applu, mesa, art and ammp programs 
are higher than their page miss rates respectively. Especially, the page hit rates of 
wupwise and ammp programs are up to 90%. The page hit rates of gzip, vpr, crafy, gap, 
bzip2, swim, mgrid, equake, sixtrack and apsi programs are lower than their page miss 
rates respectively. Especially, the page hit rate of swim program is only 6.4%. Open 
page policy will take negative effect on these programs whose page hit rates are low. 

 

Fig. 4. Proportion of page hits and page misses 
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Figure 5 shows the times of memory access during each thousand instructions 
executed. The average times of memory access is 14. The times of memory access 
affects the efficiency of memory access optimization. In this paper, we implement 
processor directed dynamic page policy, and evaluate performance for mcf, parser, 
perlbmk, gap, vortex, swim, mgrid, applu, art, equake, ammp and apsi programs in 
SPEC CPU2000 benchmarks. These programs are memory access intensive. Memory 
access optimization plays major role to improve performance of processor. 

 

Fig. 5. Times of memory access during each thousand instructions executed 

Figure 6 shows proportion of read operations (memread_count) and write 
operations (memwrite_count) in all memory access operations. It indicates that the 
proportion of read operations is 76.7%. The times of read operations are more than 
the times of write operations clearly. The write operations have little effects on page 
hit rate. Hence, page policy only need to optimize read operations. The latency of 
memory access is usually the latency of read operation. 

 

Fig. 6. Proportion of read operations and write operations 

4   Processor Directed Dynamic Page Policy 

According to the memory access analysis results in section 3, average page hit rate is 
almost equal to average page conflict miss rate in open page policy. Dynamic page 
policy can change page mode from open page to close page and from close page to 
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open page dynamically based on the row buffer locality of the applications. 
Therefore, dynamic page policy is prior to fixed page policy. In this paper, we 
propose a novel dynamic page policy, called processor directed dynamic page policy, 
by analyzing the limitations of existing page policies. Processor directed dynamic 
page policy compares the future memory access row address with last access row 
address of the same bank. If the result is that no bank arise page hit, and a bank arises 
page conflict miss, then the bank arising page conflict miss is directed to adopt close 
page mode. The direction information that includes adopting close page mode and the 
corresponding conflict bank address is sent to memory controller from processor. 
Furthermore, processor schedules memory access requests and the request whose row 
address equals to last access address of the same bank has high priority to send 
memory access operation. When memory controller has no memory access request to 
send to DRAM device, it changes page mode according to the direction of processor. 
Memory controller sends precharge command and bank address to DRAM device for 
changing to close page mode. 

Processor directed dynamic page policy includes processor directed scheme, 
memory access scheduling scheme and page mode control scheme. We describe these 
schemes and the advantages of processor directed dynamic page policy in detail. 

4.1   Processor Directed Scheme 

Control logic of processor directed scheme is shown in Figure 7. The processor 
maintains a bank access history table, which saves bank address and last access row  
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Fig. 7. Control logic of processor directed scheme 
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address of each bank. The future memory access requests are in MSHR (miss state 
handle register) [11] of the processor. Processor directed scheme compares row 
address (row addr) and bank address (bank addr) in each MSHR entry with bank 
address (bank addr) and last access row address (last access row addr) in each bank 
access history table entry. If the result is that no bank arise page hit (page hit), and a 
bank arises page conflict miss (page conflict), then the bank arising page conflict miss 
is directed to adopt close page mode. The direction information that includes adopting 
close page mode (close page mode direction) and the corresponding conflict bank 
address (bank address of close page) is sent to memory controller from processor. 
Compared with the direction information based on the history of memory access in 
existing dynamic page policies, the direction information of processor directed 
dynamic page policy is more accurate. 

4.2   Memory Access Scheduling Scheme 

MSHR schedules memory access requests according to the criterion of page hit 
priority. The request whose row address equals to last access address of the same 
bank has high priority to send memory access operation. If memory controller has 
multiple requests in its queue, it also schedules multiple requests to send to DRAM 
device according to the criterion of page hit priority. Thus memory access requests of 
processor are scheduled based on the page policy to increase the page hit rate and 
reduce page conflict miss rate. 

4.3   Page Mode Control Scheme 

Page mode control scheme changes DRAM page mode from open page to close page 
and from close page to open page adaptively based on the direction of processor. 
Therefore, it reduces the latency of the DRAM access by combing the advantages of 
open page policy and close page policy. Memory controller sends the precharge 
command and bank address precharged for changing the corresponding bank of 
DRAM device to close page mode based on the direction, only when it has no 
memory access request to send to DRAM device. Thus page mode control scheme 
avoids the negative effect of precharge operation. 

Figure 8 shows page mode control scheme of processor directed dynamic page 
policy. The detailed process of page mode control scheme includes the following 
steps. 

Step 1: After read operation is finished, judge whether page mode control enable 
bit is 0. If the enable bit is 0, then the bank accessed adopts close page mode and is 
precharged, and go to Step 5. Else, do Step 2. 

Step 2: Judge whether memory controller has read requests to process. If it has 
requests to process, then do Step 3. Else, go to Step 4. 

Step 3: The bank accessed adopts open page mode. Continue to process successive 
requests. 

Step 4: The bank of processor directed adopts close page mode and is precharged. 
Step 5: Process ends. 
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Fig. 8. Page mode control scheme 

4.4   Advantages of Processor Directed Dynamic Page Policy 

Compared with existing page policies, processor directed dynamic page policy has the 
following advantages: (1) Processor directed dynamic page policy combines the 
advantages of open page policy and close page policy. It can change page mode 
dynamically according to row buffer locality characteristics of applications. (2) The 
direction information of processor directed dynamic page policy is based on future 
memory access behavior. Compared with the direction information which is based on 
the history of memory access behavior in existing dynamic memory page control 
policies, the direction information of processor directed dynamic page policy is more 
accurate. (3) Memory access requests are scheduled based on the page policy to 
increase the page hit rate and reduce page conflict miss rate. (4) Only when memory 
controller has no memory access request to send to DRAM device, it changes page 
mode according to the direction of processor. It avoids the negative effect of 
precharge operation to successive memory access. 

5   Performance Evaluation 

5.1   Experimental Environment 

Performance evaluation is based on simulations. We developed our own cycle-by-
cycle simulator based on Godson-2 processor to build the processor prototype and 
make performance analysis. Table 1 shows the architectural parameters of simulation. 
The memory system contains 4 memory banks. The row buffer size of each bank is 
8K Byte. Our experiments show that the simulator can match the real CPU chip quite 
well. The error range is within 5%. We use SPEC2000 benchmarks [9] and STREAM 
benchmarks [10] as workloads. 



118 D. Huan et al. 

Table 1.  Architectural parameters of simulation 

Parameter Value 
CPU clock rate 800 MHz 
L1 inst Cache 64KB, 4-way, 32B block 
L1 data Cache 64KB, 4-way, 32B block 
MSHR 8 entries 
System bus overhead 20 CPU clock 
System bus width 64 bits 
Memory clock rate 133 MHz 
Memory bank number 4 
Memory bus width 64 bits 
Row buffer size 8KB 
DRAM precharge latency 2 memory cycles 
DRAM row access latency 3 memory cycles 
DRAM column access latency 2 memory cycles 

5.2   Page Hit Rates and Page Conflict Miss Rates 

Figure 9 compares page hit rates in open page policy (page hit rate base) and that in 
processor directed dynamic page policy (page hit rate control) of SPEC CPU2000 
benchmark programs. The experimental results indicate that average page hit rate of 

 

 

Fig. 9. Comparison of page hit rates 

 

Fig. 10. Proportion of page conflict misses avoided 
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memory access intensive programs of SPEC CPU2000 is increased from 38.6% to 
55% by memory access scheduling scheme combined with page policy. 

Figure 10 presents the proportion of page conflict misses avoided by adopting 
processor directed dynamic page policy. The results show that on average 24.5% page 
conflict misses are avoided effectively due to changing page mode from open page to 
close page adaptively directed by processor. 

5.3   Comparison of Memory Access Latency 

We estimate the average read operation latency of DRAM in open page policy, close 
page policy and processor directed dynamic page policy. The average read operation 
latency of DRAM is defined as 

Latency = Popen_hit × Lopen_hit + Popen_miss × Lopen_miss + Pclose × Lclose (1) 

Popen_hit + Popen_miss + Pclose = 1 (2) 

Where Popen_hit is the page hit rate in open page mode. As shown in Figure 9, Popen_hit = 
55% in processor directed dynamic page policy. Popen_miss is the page miss rate in open 
page mode. As shown in Figure 9 and Figure 10, Popen_miss = 1 – 38.6% – 24.5% = 
36.9% in processor directed dynamic page policy. Pclose is the proportion of close page 
mode. By Definition 2, Pclose = 1 – Popen_hit – Popen_miss = 1 – 55% – 36.9% = 8.1% in 
processor directed dynamic page policy. Lopen_hit is the page hit latency in open page 
mode. As shown in Figure 2, Lopen_hit = CL = 2 memory cycles. Lopen_miss is the page 
miss latency in open page mode. As shown in Figure 2, Lopen_miss = tRP + tRCD + CL 
= 7 memory cycles. Lclose is the latency in close page mode. As shown in Figure 1, 
Lclose = tRCD + CL = 5 memory cycles. 

By Definition 1, Lpage_control = 55% × 2 + 36.9% × 7 + 8.1% × 5 = 4.074 memory 
cycles in processor directed dynamic page policy. By Definition 1, Lclose_page = 1 × 5 = 
5 memory cycles in close page policy. Compared with close page policy, processor 
directed dynamic page policy reduces memory access latency by (Lclose_page – 
Lpage_control) / Lclose_page = (5 – 4.074) / 5 = 18.52%. By Definition 1, Lopen_page = 38.6% 
× 2 + (1 – 38.6%) × 7 = 5.07 memory cycles in open page policy. Compared with 
open page policy, processor directed dynamic page policy reduces memory access 
latency by (Lopen_page – Lpage_control) / Lopen_page = (5.07 – 4.074) / 5.07 = 19.64%. The 
memory access latency analysis results indicate that the latency of open page policy is 
even longer than that of close page policy. However, processor directed dynamic page 
policy can reduce memory access latency significantly by changing page mode from 
open page to close page for avoiding most page conflict misses and changing page 
mode from close page to open page for page hits. 

5.4   Comparison of Memory Bandwidth 

Figure 11 compares memory bandwidth of STREAM benchmarks in open page policy 
(open_page), close page policy (close_page) and processor directed dynamic page 
policy (page_control). Experimental results indicate that the memory bandwidth of 
STREAM benchmarks is improved efficiently by adopting processor directed 
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Fig. 11. Comparison of memory bandwidth 

dynamic page policy. The bandwidth is improved by 15% and 21% on average 
compared with close page policy and open page policy respectively. 

5.5   Comparison of IPC 

Figure 12 compares the IPC (instruction per cycle) of SPEC CPU2000 benchmark 
programs in close page policy (close_page), open page policy (open_page), dynamic 
page policy proposed by Miura (dynamic_page), processor directed dynamic page 
policy proposed in this paper (page_control), and the page policy combining 
processor directed dynamic page policy with Miura’s page policy (dyn_con_page). 
Experimental results show that the IPC of processor directed dynamic page policy is 
improved by 7.1%, 5.9% and 3.4% on average compared with close page policy, open 
page policy and conventional dynamic page policy, respectively. Especially for ammp 
program and art program, the IPC is improved significantly. 

As shown in Figure 12, only for ammp program whose page hit rate is up to 
90.3%, the IPC of open page policy approximates to the IPC of processor directed 
dynamic page policy. Otherwise, the IPC of processor directed dynamic page policy 
is higher than open page policy. For swim program and mgrid program, the IPC of 
open page policy is dramatically lower than the IPC of close page policy due to their 
low page hit rates. However, the performance of processor directed dynamic page 
policy is improved due to its adaptive page change policy. The IPC of dynamic page 

 

Fig. 12. Comparison of IPC 
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policy proposed by Miura is also higher than the IPC of open page policy and close 
page policy. However, processor directed dynamic page policy is prior to Miura’s 
policy due to its more accurate direction information. 

When memory access requests are not intensive and there are no future requests in 
MSHR, processor directed dynamic page policy has no information to direct page 
mode. Thus open page mode is adopted by default. In this case, the dynamic page 
policy proposed by Miura has history information to direct page mode. We implement 
the page policy combining processor directed dynamic page policy with Miura’s page 
policy and evaluate its performance. A memory access history table is maintained in 
memory controller. If processor has no future request in MSHR to direct page mode, 
memory access history is used to direct page mode as Miura’s policy. The 
experimental results are shown in Figure 12. The results indicate that the IPC of the 
page policy combining processor directed dynamic page policy with Miura’s page 
policy is improved by 7.5% compared with close page policy. The speedup of 
processor directed dynamic page policy is approximately to the page policy 
combining processor directed dynamic page policy with Miura’s page policy. The 
locality of row buffer is low, when there is no future memory access in MSHR. 
Therefore, the direction information based on memory access history is not accurate 
in this case. Additional hardware overhead of the page policy combining processor 
directed dynamic page policy with Miura’s page policy does not bring performance 
improvement. In summary, processor directed dynamic page policy proposed in this 
paper can direct page mode change effectively and improves performance 
significantly. 

6   Conclusions 

In this paper, we propose processor directed dynamic page policy by investigating 
memory access address spatial locality characteristics of applications. Our 
experimental results show that average page hit rate is increased from 38.6% to 55%. 
The memory access latency is reduced by 18.52% and 19.64% compared with close 
page policy and open page policy respectively. In terms of overall performance, the 
IPC is improved by 7.1%, 5.9% and 3.4% on average compared with close page 
policy, open page policy and conventional dynamic page policy, respectively. The 
memory bandwidth is improved by 15% and 21% on average compared with close 
page policy and open page policy respectively. Our future work includes the study of 
dynamic page policy and memory access scheduling scheme which adapt to SMT and 
CMP processors. 
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Abstract. Compiler-directed dynamic voltage scaling (DVS) is one of the 
effective low-power techniques for real-time applications. Using the technique, 
compiler inserts voltage scaling points into a real-time application, and supply 
voltage and clock frequency are adjusted to the relationship between the 
remaining time and the remaining workload at each voltage scaling point. In 
this paper, based on the WCET (the worst case execution time) analysis tool 
HEPTANE and the performance/power simulator Sim-Panalyzer, we present a 
DVS-enabled simulation environment RTLPower (Real-Time Low Power), 
which integrates static WCET estimation, performance/power simulation, 
automatically inserting the DVS code into a real-time application, and profile-
guided energy optimization. By simulations of some benchmark applications, 
we prove that the DVS technique and the profile-guided optimization technique 
significantly reduce energy consumption. 

Keywords: Real-time, Low-power, WCET, Compiler. 

1   Introduction 

In the recent years, embedded systems for mobile computing, such as mobile phone 
and PDA, are developing rapidly, and a crucial parameter of mobile systems is the 
continued time of energy supply. Although the performance in the integrated circuits 
(ICs) has been increasing rapidly in recent years [1], battery techniques are developed 
very slowly [2] and it is of significant importance for battery-powered mobile systems 
to utilize more effective low-power techniques. 

Many novel low-power techniques in circuit, logic, architecture and software 
levels, in order of increasing abstraction, have been proposed to reduce energy 
consumption. Dynamic voltage scaling (DVS) [3], [4] is one of the low-power 
techniques in architecture level, and it is widely used in embedded systems for mobile 
computing and desktop systems. Real-time dynamic voltage scaling dynamically 
reduces supply voltage to the lowest possible extent that ensures a proper operation 
when the required performance is lower than the maximum performance. Since the 
dynamic energy consumption, the dominant energy consumption in ICs, is in direct 
                                                           
* Supported by the National High Technology Development 863 Program of China under Grant 
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proportion to the square of supply voltage V, it is possible for DVS to significantly 
reduce energy consumption. 

The voltage scheduling in a single task called an intra-task dynamic voltage scaling 
(IntraDVS) [7] is proposed. IntraDVS assisted by compiler automatically inserts 
voltage scaling points into a real-time task and divides the task into some execution 
sections, and then supply voltage is adjusted to the relationship between the remaining 
time and the remaining workload. 

It is crucial for IntraDVS to properly place voltage scaling points in a real-time 
application, and the configuration of voltage scaling points significantly affects 
energy consumption. A good configuration could save more energy; however, due to 
voltage scaling overhead, the improper one could waste much energy. For the past 
few years, much work has been published on compiler-directed real-time dynamic 
voltage scaling [5], [6], [7], [8], [9], [10], [11], [12], [13], and the algorithms have 
utilized two kinds of configurations of voltage scaling points. The first is to make use 
of fixed-length voltage scaling sections, the whole execution of a task is divided into 
some equal subintervals and the voltage adjustment is made at the beginning of each 
subinterval [6] [11]. The second is a heuristic method, the condition and loop 
structure in real-time applications often bring about the workload variation and energy 
consumption can be reduced enormously if voltage scaling points are put at the end of 
the structures [7] [13].  Yi, et al proved that the heuristic configuration is the optimal 
one when not considering the voltage scaling overhead [14]. At the same time they 
presented a profile-guided optimizing configuration methodology, and using some 
synthetic applications, they proved that the methodology significantly reduces energy 
consumption. But they have not explained how to realize the method, and no 
experimental results of real benchmark applications are given. Another problem of the 
past works is not integrating with the WCET analysis tightly, but for real-time 
applications, it is a key to give the time estimate method in detail. 

In this paper, based on the WCET (the worst case execution time) analysis tool 
HEPTANE and the performance/power simulator Sim-Panalyzer, we present a DVS-
enabled simulation environment RTLPower, which integrates static WCET estimation, 
performance/power simulation, automatically inserting the DVS code into a real 
application, and profile-guided energy optimization. By simulations of some real 
benchmark applications, we prove that the DVS technique and the profile-guided 
optimization technique significantly reduce energy consumption.  

The rest of this paper is organized as follows. In Section 2, we list the related terms 
of compiler-directed dynamic voltage scaling. In Section 3, we give the inserting 
method of DVS code. In Section 4, we present the profile-guided energy optimization 
method. In Section 5, we show by experiments that the DVS technique and the 
profile-guided optimization technique significantly reduce energy consumption. 
Finally, we give the conclusions. 

2   Related Terms 

A real-time task has strict timing constraint and must finish before its deadline (d), 
missing the deadline might lead to a catastrophic result. Real-time dynamic voltage 
scaling guarantees a correct operation of a real-time task and dynamically reduces 
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supply voltage and clock frequency to the lowest possible extent in the execution 
course. Therefore, for real-time applications, the worst-case execution time (wcet) or 
the worst-case execution cycle (wcec) must be estimated in advance [19] to ensure 
that the timing constraint is met, that is, the worst-case execution time must be less 
than or equal to the deadline. If the wcet is less than the deadline, we can 
proportionally reduce clock frequency beforehand. Consequently, the wcet is equal to 
the deadline d and the obtained initial frequency is fstatic, that is, d=wcec/fstatic. This is 
the starting point of dynamic voltage scaling in this paper. Current DVS-enabled 
systems only can change the clock frequency on some discrete levels [15], [16], [17], 
and therefore we assume that the clock frequency can change on some discrete levels 
between consecutive interval [fmin, fmax].  

IntraDVS divides the whole execution cycle of a task into n  sections, and the 
worst-case execution cycle and the actual execution cycle of each section are denoted 
by wci and aci for ni ,...,1= , respectively. It is obvious that ii wcac ≤≤0  for ni ,...,1= , 

and ∑ =
= n

l lwcwcec
1

. The reduced worst-case execution cycle of the ith point is 

denoted by irwec for 1,...,1 += ni , and we have ∑ =
= n

il li wcrwec  for ni ,...,1= , 

01 =+nrwec .  

At the beginning of each section, supply voltage (Vi for ni ,...,1= ) and clock 
frequency (fi for ni ,...,1= ) are adjusted to the relationship between the remaining time 
and the remaining workload, and the lowest supply voltage and clock frequency are 
utilized within timing constraint. The proportional voltage scaling sets the frequency 
of the ith section to 

)/(
1

1∑ −

=
−= i

l lii tdrwecf  

where tl denotes the actual execution time of the lth section. In the above formula, the 
new clock frequency at the beginning of the ith section is set to the quotient of the 
reduced worst-case execution cycle divided by the reduced time, which can guarantee 
that the task can finish before its deadline at any time. 

The formula ( ) VVVf T /2−∝  defines the relationship between clock frequency and 

supply voltage of CMOS, where VT denotes the threshold voltage of CMOS. 
The execution time ti of each section can be computed by 

iii fact /=   

Finally, dynamic voltage scaling have some energy overhead and time overhead, 
which are closely related to the initial voltage VDD1, the final voltage VDD2, and the 
switch capacitance C. Burd, et al [18] present the formula of energy overhead 

2
1

2
2)1( DDDD VVCE −⋅⋅−= η  

and the formula of time overhead 

12
max

2
DDDDTRAN VV

I

C
t −⋅⋅=  

In this paper, we let 9.0=η (the typical value) and pFC 5= . The time overhead is 
fixed as 200 cycles for 100Mhz frequency variation. 
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3   Inserting Method of DVS Code 

Based on the WCET analysis tool HEPTANE [20], we present an automatically 
inserting method of DVS code. For a real application program, it includes condition 
structures, loop structures, and function calls, besides the sequential codes. Our 
method can insert into any location of an application program. At each voltage scaling 
point, we need three parameters: the reduced worst case execution cycle (rweci), the 
deadline (d), and the current time (ct). The deadline is defined before hand, and the 
current time can be obtained dynamically from the simulation system. The modified 
simulation system Sim-Panalyzer can accumulate the actual execution time, and 
convey the time information to real-time applications by some predefined memory 
port. Therefore, if rweci is known, we can set the supply voltage and clock frequency 
of each voltage scaling point. Furthermore, in order to make it possible to optimize 
the insertion of voltage scaling points, we make each point executed by a prediction 
insert_or_not[i]. Therefore, at each point, the DVS pseudo-code is illustrated at  
Fig. 1. The function getcurrenttime obtains the current actual execution time from the 
simulation environment. The function setnewfrequency sets new system execution 
frequency, and based on the remaining time and the remaining workload, the function 
computes new frequency and sets the nearest discrete voltage/frequency level that 
guarantees the real-time execution. Both functions are realized by embedded assemble 
language, which is supported by GCC compiler. Based on the different cases, 
computecurrentRWEC can correctly give the reduced worst case execution cycle. 

 
1 if (insert_or_not[i]) { 
2       getcurrenttime(ct); 
3       computecurrentRWEC(rweci); 
4       nf = rweci / (d-ct-overhead); 
5       setnewfrequency(nf); 
6 } 

Fig. 1. The pseudo-code of DVS at each point 

The time estimation process of the WCET analysis tool HEPTANE is as follows: 

1. Based on the source code of an application, a syntax tree is produced, which 
corresponds to the source code structure. 

2. From the syntax tree, a context tree is formed, which corresponds to the 
execution process of the application. At the same time, some labels are inserted in the 
syntax tree, which are used to mark the basic block (no branch structure). The 
resultant syntax tree is used to output the modified source code. 

3. The modified source code is compiled using GCC compiler, and the assemble 
file and binary file are produced. Using the specific architecture information (such as 
cache size, pipeline stage), the worst case execution time of each basic block is 
estimated. 

4. Using the context tree and the time information of basic blocks, the worst-case 
execution time of the whole application is accumulated by depth-firstly traversing the 
context tree. 
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Based on the time estimation process of HEPTANE, we select inserting the DVS 
code in the syntax tree of the source code. By traversing the syntax tree, we mark the 
location for all the DVS points. When outputting the modified source code, the DVS 
code is inserted into the source code automatically. Therefore, the final time 
estimation includes the execution time of the DVS code (not DVS overhead), and the 
safe real-time DVS program is produced. 

Next, we present how to correctly get the value of rweci for the different cases. For 
the code without loops and function calls, it is simple to make use of HEPTANE to 
estimate the worst case execution cycle of each point. For the voltage scaling points 
inserted into loops, the rweci of each iteration is different. Similarly, for the voltage 
scaling point inserted into function calls, the different call sites of the function have 
the different rweci. Since it is possible for our inserting method to insert a point into 
any place, we must solve the problem due to loops and function calls. 

Loop1::for(i1...)
  Loop2::for(i2...) 

    LoopN::for(iN...) 
        Votage scaling point 
    LoopN end 

  Loop2 end 
Loop1 end 

__index1 __indexN = 0 
Loop1::for(i1...)
  Loop2::for(i2...) 

    LoopN::for(iN...) 
        Votage scaling point 
    __indexN++ 
    LoopN end 
    __indexN =0 
  Loop2 end 
  __index2 =0 
  __index1++ 
Loop1 end 
__index1 = 0 

 

Fig. 2. The pseudo-code of instrumented code for loops 

3.1   Compute the rweci of Voltage Scaling Points Inserted into Loops 

For the voltage scaling points inserted into loops, the rweci of each iteration has the 
different value, which is closely related to the specific iteration. We give the rweci by 
the parametric method: 

∑
=

⋅−−+=
n

j

j
loop

j
iterationcur

j
iterationbasei iiii

wceclooplooprwecrwec
0

_max_ )1(  

where 
ibaserwec is the reduced worst case execution cycle for last iterations of all loop 

levels including the voltage scaling point, j
loopi

wcec  is the worst case execution cycle 

of the jth loop level, j
iterationi

loopmax_  is the maximum iteration number of the jth loop 

level, j
iterationcur i

loop _  is the current iteration number of the jth loop level. Here, we 

specify the compute method of rweci when there are no function calls. 
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Using the HEPTANE tool, we can obtain j
iterationi

loopmax_  from the loop annotation, 

whereas j
iterationcur i

loop _  need add some instrumented code. Based on the syntax tree of 

the source code, we insert the instrumented code to get j
iterationcur i

loop _ , as is shown in 

Fig. 2. At the beginning of the loop, the indexes of the corresponding loop levels are 
initiated to zero. When getting into a more deep loop level, the corresponding index is 
incremented; on the contrary, when getting out of a loop level, the index is cleared to 
zero. The instrumented code is directly inserted into the syntax tree, and when 
outputting the modified source code, the result includes the instrumented code. 

main
seqence

(0)

Init
(1)

Call
f1(2)

f1
Seqence

(2_0)

Init
(2_1)

IF
(2_2)

Code
(2_5)

Test
(2_3)

Code
2_4

Code
(3)

FOR
(4)

Code
(15)

Call
f1(16)

Code
(17)

Test
(5)

Exit
(6)

Incr
(14)

……

Seqence
(7)

Code
(8)

FOR
(9)

Test
(10)

Exit
(11)

Incr
(13)

Code
(12)

int f1(int a)
{
   if(a>5)
     return a;
   return 0;
}
int main()
{
   int i,j,a;
   a = 0;
   f1(a);
   for(i=0; i<100; i++) [100]
     for(j=0; j<10; j++) [10]
        a++;
   f1(a);
   return 0;
}

V
oltage  scaling  point

 

Fig. 3. A source code and the corresponding context tree for time estimation 

We can estimate j
loopi

wcec  directly using HEPTANE tool, but cannot directly get 

ibaserwec  from HEPTANE. In order to compute 
ibaserwec , we modified the HEPTANE 

tool, and estimate time by pruning the context tree of HEPTANE. The source code 
and the corresponding context tree for time estimation are shown in Fig. 3. The source 
code is a typical program except including some annotations of the maximum number 
of loop iterations. The context tree is an expanded syntax tree, and it consists of all 
execution instances of the functions. Suppose For(9) is selected as an voltage scaling 
point, then only the nodes surrounded by the free curve have contribution to the 

ibaserwec , the nodes marked by the black dots only need to estimate the time of their 

partial sub-nodes. From the voltage scaling point, we search the parent node, prune 
the sibling node before current node, and maintain the current node and the sibling 
node after current node. For loop node, only a single iteration is considered. Finally, 
we estimate the worst case execution cycle of the reduced context tree from bottom to 
top, which is equal to 

ibaserwec . 



 Static WCET Analysis Based Compiler-Directed DVS Energy Optimization 129 

3.2   Compute the rweci of Voltage Scaling Points Inserted into Function Calls 

If the voltage scaling points are inserted into function calls, the rweci is different for 
each instance of a function call. We add the hint information of function calls to 
estimate the rweci: 

ii loopfunci rwecrwecrwec +=  

∑
=

⋅−−+=
n

j

j
loop

j
iterationcur

j
iterationbaseloop iiiii

wceclooplooprwecrwec
0

_max_ )1(  

where j
loopi

wcec , j
iterationi

loopmax_ , and j
iterationcur i

loop _ have the same meanings as before, 

ibaserwec is the reduced worst case execution cycle between current voltage scaling 

point and the end of the function, 
ifuncrwec is the reduced worst case execution cycle of 

the end of current instance of the function call. For the different instances of function 
call, 

ibaserwec could have the different value, and we simply use the maximum 

ibaserwec  for all instances. Using the 
ifuncrwec , we can differ one instance from the 

others.  

 
f1() 
{ 

voltage scaling point 
} 
f2() 
{ 

f1() 
f1() 

} 

f1(float rwec) 
{ 

voltage scaling point 
} 
f2(float rwec) 
{ 

rwec1 = rwec+rwec_a; 
f1(rwec1) 
rwec2 = rwec+rwec_b; 
f1(rwec2) 

} 

Fig. 4. The pseudo-code of instrumented code for function calls 

As before, we need insert the instrumented code, and an example is shown in  
Fig. 4.  The function f1 includes a voltage scaling point, we add a parameter for the 
function f1, which represent the 

ifuncrwec  for the function f1. When the function f1 is 

called, we can know the reduced worst case execution cycle at the end of the current 
instance of the function f1. Similarly, the function f2 includes the call instance of the 
function f1, and then it also needs an additional parameter to represent the reduced 
worst case execution cycle at the end of the instance of the function f2. At the same 
time, we make use of HEPTANE to estimate the worst case execution cycle rwec_a 
between the end of the first instance of the function f1 and the end of the function f2, 
and the worst case execution cycle rwec_b between the end of the second instance of 
the function f1 and the end of the function f2. As a result, we can compute the 

ifuncrwec  for two instances of the function f1, which are transferred to the voltage 
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scaling point by the function parameter. Besides the voltage scaling points, some 
other points such as rwec_a and rwec_b also need estimate the reduced worst case 
execution cycle, and we call them assistant voltage scaling points. 

For each voltage scaling point, we find out the function including the point in  
the syntax tree. Then, we search for the syntax tree and find out all the call sites of  
the function. The call sites are the assistant voltage scaling points. Combining all  
the voltage scaling points with the assistant voltage scaling points, we continue to find 
out more assistant voltage scaling points till the number of the voltage scaling points 
is not changed. For the different kinds of voltage scaling points, we insert the 
corresponding code and correctly compute the rweci. The pseudo-code algorithm of 
searching for voltage scaling points is shown in Fig. 5. 
 

Input:
    list_dvspoint represents a list of all initial voltage scaling    
    points (the end of the uncertain loop and the beginning of each  
    condition path ) 
1 while(the size of list_dvspoint is changed) 
2     while( list_dvspoint is not empty) 
3        get a dvs point 
4        search for the function f including the dvs point 
5        search for all the call sites of f, insert into a call site list  
         list_callpoint 
6     combine list_callpoint with list_dvspoint, get an updated  
      list_dvspoint 
7 for(each point in the list_dvspoint) 
8     if(dvs point) 
9        output the RWEC computing code  
         and the voltage scaling code 
10    else if(assistant dvs point) 
11      output the RWEC computing code, add the function  
        parameter and the parameter of function call  

Fig. 5. The pseudo-code algorithm of searching for voltage scaling points 

4   Profile-Guided Energy Optimization 

When not considering the voltage scaling overhead, the optimal configuration 
minimizing the energy consumption inserts voltage scaling points at the end of the 
uncertain loop (for example, “while” in C language) and the beginning of each 
condition path (for example, if-then-else and “switch” in C language). We realize the 
inserting method, search for the syntax tree, and insert voltage scaling points into the 
end of each uncertain loop and the beginning of each path of the condition structure. 

When considering the voltage scaling overhead, the inserting method are not the 
optimal. Yi, et al [14] have presented an analytical energy model, and based on the 
energy model, they give an optimizing method, which deleted overmany voltage  
 



 Static WCET Analysis Based Compiler-Directed DVS Energy Optimization 131 

scaling points from the initial set of voltage scaling points. The optimizing method 
considers each time voltage adjustment as a voltage scaling point, and attempts to 
maintain the optimal voltage adjustment. For a real application program, voltage 
scaling points can be inserted into any place, each voltage scaling points can 
correspond to multiple instances. For example, as shown in Fig. 2, a voltage scaling 
point is inserted into a loop, and any iteration of the loop has made voltage 
adjustment. For the voltage scaling point included in Fig. 4, each instance of the 
function f1 corresponds to one voltage adjustment. It is not simple problem to delete 
voltage adjustment of an application. 

Generally speaking, a voltage scaling point corresponds to an inserting location. 
For example, for the voltage scaling point included by f1 in Fig. 4, we consider it as a 
voltage scaling point. When we delete the voltage scaling point, we really delete two 
times voltage adjustment corresponding to two instance of the function f1. It is 
obvious that the voltage scaling point definition can lead to the ineffective 
optimization, and the main problem comes from the voltage scaling points inserted 
into loops. For example, for the voltage scaling point in Fig. 2, it is possible that it 
corresponds to a large number of voltage adjustment, and as a result, its deletion leads 
to ineffective voltage scaling placement. Therefore, we need give special meaning for 
the points inserted into loops. 

 
1 if (insert_or_not[i] && indexj mod stride == 0) { 
2       getcurrenttime(ct); 
3       computecurrentRWEC(rweci); 
4       nf = rweci / (d-ct-overhead); 
5       setnewfrequency(nf); 
6 } 

Fig. 6. The modified pseudo-code of DVS inserted into loops 

We consider the point inserted into loops as multiple voltage scaling points and 
need to be deleted in some sequence. Taking into account a modified DVS pseudo-
code as shown in Fig. 6, we add a prediction (indexj mod stride), where indexj is the 
index of the jth loop level, stride is the stride length, and mod represents the modulus 
operator. We can delete a voltage scaling point by clearing insert_or_not[i]  to zero. 
For the voltage scaling points inserted into loops, we also can delete some voltage 
adjustment by setting indexj and stride to the different value. Therefore, we divide the 
original optimizing methods [14] into two steps: optimizing the points inserted into 
loops and globally optimizing the points inserted into the application. At the first step, 
we delete the voltage adjustment by the order that firstly, stride is equal to 2n and n 
changes from small to large value, where n belongs to positive integer and 2n is less 
than the maximum iteration number of the jth loop level, then indexj changes from 
more deep loop level to more exterior loop level. Actually, the process of deleting 
voltage points is increasing the voltage scaling granularity, from more fine adjustment 
to more coarse, and balances the energy saving with voltage scaling overhead. At the  
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second step, we consider each inserting location as a voltage scaling point, and delete 
the voltage scaling point by setting insert_or_not[i] into zero. The detailed optimizing 
step is shown in Fig. 7. All the profile-guided time statistics are from HEPTANE  
tool. 

 
First Step: 
Input: the execution pattern of each loop in 
the most frequent execution case. 
Output: a configuration of voltage scaling 
points inserted into the loop. 
1 An initial optimal configuration without 

considering voltage scaling overhead. 
2 Compute the energy consumption by 

using the analytical model from [14]   
3 Compute the energy consumption with 

stride incremented or indexj being more 
exterior loop level. 

4 Compare the energy consumption for 
step 2 and step 3. 

5 If step 2 has smaller energy consumption, 
stop! 

6 Or else repeat the steps from 2 to 6. 
 

Second Step: 
Input: the output from the first step. 
Output: a configuration of voltage scaling 
points. 
1 Compute the energy consumption with 

n points by using the analytical model 
from [14] 

2 Compute the energy consumption with 
one point deleted (n-1). 

3 Compute the difference of the energy 
consumption between   step 2 and step 
1, and find out the minimum. 

4 If the minimum is larger than zero, 
stop! 

5 Or else use the configuration with the 
minimum as the new configuration, 
update n (-1). 

6 repeat the steps from 2 to 5. 

Fig. 7. The improved optimizing method 

5   The Experiment Environment and Results 

We realize an experiment environment named RTLPower (Real-Time Low Power), 
which integrates static time estimation, cycle-accurate performance/power simulation, 
dynamic voltage scaling, and energy optimization. The front end is the modified 
HEPTANE WCET analysis tool [20], and the back end is the modified Sim-Panalyzer 
performance/power simulator [21]. The whole environment is based on the 
StrongARM architecture, as shown in Fig. 8. The gray regions are the modified or 
added modules. The front end of RTLPower receives the configuration information 
and C source code file with the annotation [20], the configuration information and 
source code file build the syntax tree of the application, and the code modification 
module modifies the source code by manipulating the syntax tree. The modified 
syntax tree is translated into context tree that is used to time estimation in HEPTANE 
tool. Using HEPTANE we estimate the worst case execution cycle of the application, 
the worst case execution cycle of all the loops, and the reduced worst case execution 
cycle of all the inserting points. The estimated time information is returned to the 
code modification module, and is used to create the complete syntax tree and output 
the DVS-enabled source code file. Integrated with the profile-guided optimization, we 
get the modified source code file and the final executable binary file. 
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Fig. 8. RTLPower experimental envioment 

Table 1. The performance parameters of Sim-Panalyzer 

Fetch width 1 Decode width 1 
Issue width 1 Commit width 1 
RUU size 2 Lsq size 2 
Int ALU 1 Int MUL 1 
Flt ALU 1 Flt MUL 1 
Mem Port 1 In-order issue true 
L1 data cache 16 sets, 32 bytes block, 

32 ways, 1 cycle latency 
L1 inst cache 16 sets, 32 bytes block, 

32 ways, 1 cycle latency 
TLB 32 sets, 4096 bytes page size, 

32 ways, 30 cycles miss latency 

The back end of RTLPower cycle-accurately simulates the binary program and 
makes dynamic voltage scaling. It outputs time statistics, power statistics. 

We use three typical applications of SNU-RT benchmark [22] from Real-Time 
Research Group, Seoul National University to analyze the realization and 
optimization of DVS. One of the applications is Adaptive Differential Pulse Code 
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Modulation (adpcm), and the whole application includes three stages: data 
initialization, data encoding, and data decoding. It includes 800 lines source code, 
many loop structures, condition structures and function calls, and the data input length 
is 2000. The second application is the fast fourier transform (fft1k), and the input data 
length is 1024. The final program is matrix multiplication (matmul). Its initial data 
size is 5x5, and we expand the size into 20x20. The performance parameters of Sim-
Panalyzer are listed in Table 1. The voltage/frequency model comes from Intel Xscale 
[23], the frequency/voltage is listed in Table 2. 

Table 2. The frequency and voltage of Intel Xscale 

f(Mhz) 1000 800 600 400 150 
V(V) 1.80 1.60 1.30 1.00 0.75 
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Fig. 9. The statistics of experimental results 

We presents the experiment results in Fig. 9, where nodvs indicates the results of 
no voltage adjustment, dvs is the results with voltage adjustment, and optdvs is the 
results after profile-guided optimization. All the results are normalized to the 
maximum. The energy consumption without dvs and after voltage adjustment are 
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shown in Fig. 9(a), we can save 10%~60% energy consumption. After the profile-
guided optimization, we further save 3%~6% energy consumption. In Fig. 9(b), we 
show the actual execution cycle, which indicates the incremented computation 
quantity. Generally speaking, dynamic voltage scaling leads to less computation 
quantity increment. For the application adpcm, after profile-guided optimization, 
fewer cycles are used, and we analyze that the result attributes to cache effect. 
Dynamic voltage scaling reduces energy consumption by slowing the execution and 
decreasing supply voltage, and in Fig. 9(c) we show the effect. The actual execution 
times are prolonged by 50~150%, and after optimization, both the execution cycle and 
time are reduced. 

6   Conclusions 

Based on the WCET (the worst case execution time) analysis tool HEPTANE and the 
performance/power simulator Sim-Panalyzer, we present a DVS-enabled simulation 
environment RTLPower, which integrates static WCET estimation, performance/ 
power simulation, automatically inserting the DVS code into a real application, and 
profile-guided energy optimization. By simulations of some real applications, we 
prove that the DVS technique and the profile-guided optimization technique 
significantly reduce energy consumption. 
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Abstract. Stochastic discrete-event simulation studies of communica-
tion networks often require a mechanism to transform self-similar
processes with normal marginal distributions into self-similar processes
with arbitrary marginal distributions. The problem of generating a self-
similar process of a given marginal distribution and an autocorrelation
structure is difficult and has not been fully solved. Our results presented
in this paper provide clear experimental evidence that the autocorrela-
tion function of the input process is not preserved in the output process
generated by the inverse cumulative distribution function (ICDF) trans-
formation, where the output process has an infinite variance. On the
other hand, it preserves autocorrelation functions of the input process
where the output marginal distributions (exponential, gamma, Pareto
with α = 20.0, uniform and Weibull) have finite variances, and the ICDF
transformation is applied to long-range dependent self-similar processes
with normal marginal distributions.

Keywords: Self-similar process, Arbitrary marginal distribution, Auto-
correlation function, Inverse cumulative distribution function, Stochastic
simulation.

1 Introduction

Stochastic simulation studies of communication networks often require the gen-
eration of random variables, or stochastic processes, characterized by differ-
ent probability distributions. We have investigated generation of self-similar
sequences with a normal marginal distribution. We can obtain sequences of num-
bers from normal distributions with different mean values and variances by ap-
plying such standard transformations as shifting and rescaling/normalization. In
practical simulation studies, however, generation of self-similar processes of sev-
eral different non-normal marginal probability distributions might be required.
The most common method of transforming realizations of one random variable
into realizations of another random variable is based on the inverse cumulative
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distribution function (ICDF) [1]. This method and its application in transfor-
mations of self-similar processes are discussed in [2] and [3] in detail.

The theory of transformations of strictly second-order self-similar processes
has not been fully developed. In this paper, we investigate how well ACFs of
the input process are preserved when transforming self-similar processes with
normal distributions into processes with arbitrary marginal distributions. We
look at applications of the ICDF transformation1 to the generation of long-range
dependent (LRD) sequences governed by non-normal marginal distributions from
LRD sequences of normal marginal distributions.

For studying the properties of the ICDF transformation in the context of
self-similar processes we investigate its properties when it is applied to the ex-
act self-similar process, taking the self-similar fractional Gaussian noise (FGN)
process as the references [2], [8], [9], [10]. This FGN process was generated by
the Durbin-Levinson algorithm, described in [11] and [2]. We consider output
processes with different marginal probability distributions (exponential, gamma,
Pareto, uniform and Weibull), with finite and infinite variances, and compare
autocorrelation functions (ACFs) of output processes with those characterizing
input self-similar FGN processes. Our findings are summarized in Section 4.

2 Generation of LRD Self-similar Processes with
Arbitrary Marginal Distributions

Simulation studies of communication networks require a mechanism to transform
self-similar processes into processes with arbitrary marginal distributions [12],
[13], [10]. In this paper, we investigate preservation of ACFs in output processes
with different marginal distributions when transforming exact self-similar FGN
processes into self-similar processes with five different marginal distributions (ex-
ponential, gamma, Pareto, uniform and Weibull), with finite and infinite vari-
ances, using the ICDF transformation.

2.1 The Methods of the ICDF Transformation

The ICDF transformation is based on the observation that given any random
variable Xi with a cumulative distribution function (CDF) F (x), the random
variable u = F (x) is independent and uniformly distributed between 0 and 1.
Therefore, x can be obtained by generating uniform realizations and calculating
x = F−1(u) [1].

We assume that a process X is a Gaussian process with zero mean, variance of
one and a given autocorrelation function (ACF) {ρk}. Let FX(x) be its marginal
CDF and FY (y) be a marginal CDF of the process Y. The process Y with the
desired marginal CDF FY (y) can be generated by the ICDF transformation from

1 The TES (Transform-Expand-Sample) process [4], [5] and the ARTA (Auto-
regressive-to-Anything) process [6], [7] can be used the generation of correlated
sequences.
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the process X. Following the ICDF transformation, when transforming a random
variable Xi into a random variable Yi, we use the formula:

FX(x) = FY (y), (1)

Thus:
y = F−1

Y (FX(x)) (2)

hence the method is called the ICDF transformation.
Here we consider five marginal distributions of output processes that are fre-

quently used in simulation practice: exponential, gamma, Pareto, uniform and
Weibull distributions. While exponential, gamma, Pareto with α > 2, uniform
and Weibull distributions have a finite variance, Pareto distribution with α ≤ 2
has an infinite variance. For detailed discussions of five marginal distributions,
see [2], [3], [1].

2.2 Effects of Transformation

In simulation studies of such stochastic dynamic processes as those that occur in
communication networks one needs to decide both their marginal probability dis-
tributions and autocorrelation structures. The problem of generating a strictly
and/or second-order self-similar process of a given marginal distribution and an
autocorrelation structure is difficult and has not been fully solved. No existing pro-
cedure is entirely satisfactory in terms of mathematical rigor, computational effi-
ciency, accuracy of approximation, and precise and concise parameterization [14].

Applications of the transformation in Equation (2) to transformations of cor-
related processes have been studied by several researchers [15], [2], [9], [4]. In
general, as proved by Beran (see [16], pp. 67-73), a transformation y = G(x)
applied to a strictly and/or second-order LRD self-similar sequence of num-
bers {x1, x2, . . .} does not preserve LRD properties in the output sequence
{y1, y2, . . .}. However, as proved in [15], if in (2):

• FX(·) represents normal distribution,
• {x1, x2, . . .} is an LRD self-similar sequence,
• the transformation G2(x) is integrable, i.e.,

∫ +∞

−∞
G2(x)dFX (x) < ∞, and (3)

• E(XY ) �= 0,
then the output sequence {y1, y2, . . .} is asymptotically self-similar, with the
same coefficient H as the sequence {x1, x2, . . .}.

Related issues have been investigated. Wise et al. [17] and Liu and Mun-
son [18] showed that, following the transformation of marginal distribution, the
transformation of ordinary ACF can be characterized when the input process
is normal. They also indicated other processes for which this could be applied.
Huang et al. [15] demonstrated that, if the process X is self-similar and has a nor-
mal marginal distribution, under general conditions, the output process Y is an
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asymptotically self-similar process with the same Hurst parameter (1
2 < H < 1);

for proof of the invariance of the Hurst parameter H , see [15]. Geist and West-
all [19] demonstrated that arrival processes, obtained by the FFT (Fast Fourier
Transform) method proposed by Paxson [10], have ACFs that are consistent with
LRD. However, it has not been fully developed to generate self-similar processes
with arbitrary marginal distributions from self-similar processes with (normal)
marginal distributions and autocorrelation structures [14], [19].

3 Numerical Results

The numerical results of this section are used to investigate how well ACFs of the
original Gaussian processes are preserved when they are converted into processes
with non-normal marginal distributions. For each of H = 0.6, 0.7, 0.8 and 0.9,
100 exact self-similar sample sequences of 32,768 (215) numbers starting from
different random seeds are used.

The following five different marginal distributions are investigated: the expo-
nential distribution with λ = 0.9; the uniform distribution with a = 0 and b =
1; the gamma distribution with α = 2 and β = 1; the Pareto distributions with
α = 1.2, 1.4, 1.6, 1.8 (i.e., infinite variance) and 20.0 (i.e., finite variance); and
the Weibull distribution with α = 2 and β = 1.

3.1 Analysis of Autocorrelation Functions

Preservation of H in output processes with marginal probability distributions
and finite variances, which we showed in [3], are accompanied by preservation of
ACFs in all these cases as well; for H = 0.6, 0.7, 0.8 and 0.9, see Figures 1 – 4.
The output ACFs that significantly differ from the input ACFs of the exact FGN
process are associated with Pareto distributions with infinite variances (i.e., α
= 1.2, 1.4, 1.6, 1.8).

ACFs curves of LRD self-similar processes decay slowly and hyperbolically
rather than exponentially as H values increase. For example, Figure 4 (a) shows
ACFs for the exact self-similar FGN process, and five approximately self-similar
processes with exponential, gamma, Pareto (α = 1.2), uniform and Weibull
marginal distributions for a range of lags. The ACF curve obtained from the
Pareto marginal distribution with α = 1.2 and H = 0.6393 lies lower than other
ACF curves with H > 0.88. In contrast, the ACF curve of a Poisson process
assumes value one at lag equals 0, and zero otherwise. We considered here a
Poisson process with λ = 0.9.

Note that all ACFs of marginal probability distributions with finite variances
differ from the input ACFs by no more than 4% (Lower and upper dotted lines
in Figures 1 – 5 are ± 4% apart from the input ACFs.). In all cases of out-
put processes with Pareto distributions with infinite variances, the differences
between their ACFs and the ACF of input FGN process are substantial. Thus,
there is clear experimental evidence that ACF of the input process is not pre-
served in the output process generated by transformation (2), where the output
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(a) H = 0.6 and Pareto (α = 1.2)
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(b) H = 0.6 and Pareto (α = 1.4)
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(c) H = 0.6 and Pareto (α = 1.6)
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(d) H = 0.6 and Pareto (α = 1.8)

Fig. 1. Autocorrelation functions for the exact self-similar FGN process, five exponen-
tial, gamma, Pareto (α = 1.2, 1.4, 1.6 and 1.8), uniform and Weibull marginal distribu-
tions in autocorrelation lags between 1 and 50 for H = 0.6. The output processes preserve
LRD properties, except the Pareto marginal distribution with α = 1.2, 1.4, 1.6 and 1.8.
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(a) H = 0.7 and Pareto (α = 1.2)
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(b) H = 0.7 and Pareto (α = 1.4)
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(c) H = 0.7 and Pareto (α = 1.6)
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(d) H = 0.7 and Pareto (α = 1.8)

Fig. 2. Autocorrelation functions for the exact self-similar FGN process, five exponen-
tial, gamma, Pareto (α = 1.2, 1.4, 1.6 and 1.8), uniform and Weibull marginal distribu-
tions in autocorrelation lags between 1 and 50 for H = 0.7. The output processes preserve
LRD properties, except the Pareto marginal distribution with α = 1.2, 1.4, 1.6 and 1.8.
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(a) H = 0.8 and Pareto (α = 1.2)
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(b) H = 0.8 and Pareto (α = 1.4)
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(c) H = 0.8 and Pareto (α = 1.6)
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(d) H = 0.8 and Pareto (α = 1.8)

Fig. 3. Autocorrelation functions for the exact self-similar FGN process, five exponen-
tial, gamma, Pareto (α = 1.2, 1.4, 1.6 and 1.8), uniform and Weibull marginal distribu-
tions in autocorrelation lags between 1 and 50 for H = 0.8. The output processes preserve
LRD properties, except the Pareto marginal distribution with α = 1.2, 1.4, 1.6 and 1.8.
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(a) H = 0.9 and Pareto (α = 1.2)
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(b) H = 0.9 and Pareto (α = 1.4)
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(c) H = 0.9 and Pareto (α = 1.6)
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(d) H = 0.9 and Pareto (α = 1.8)

Fig. 4. Autocorrelation functions for the exact self-similar FGN process, five exponen-
tial, gamma, Pareto (α = 1.2, 1.4, 1.6 and 1.8), uniform and Weibull marginal distribu-
tions in autocorrelation lags between 1 and 50 for H = 0.9. The output processes preserve
LRD properties, except the Pareto marginal distribution with α = 1.2, 1.4, 1.6 and 1.8.
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(a) H = 0.6 and Pareto (α = 20.0)
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(b) H = 0.7 and Pareto (α = 20.0)
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(c) H = 0.8 and Pareto (α = 20.0)
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(d) H = 0.9 and Pareto (α = 20.0)

Fig. 5. Autocorrelation functions for the exact self-similar FGN process, five exponen-
tial, gamma, Pareto (α = 20.0), uniform and Weibull marginal distributions in auto-
correlation lags between 1 and 50 for H = 0.6, 0.7, 0.8 and 0.9. The output processes
preserve LRD properties.

process has an infinite variance. However, for α = 20.0 (i.e., in the case of a finite
variance) and H = 0.6, 0.7, 0.8 and 0.9, Figure 5 shows the effects of transform-
ing ACFs from the original exact FGN process using the ICDF transformation.
Our results in Figure 5 show that ACFs of the input process are preserved in
the output process.

Thus, for H = 0.6, 0.7, 0.8 and 0.9, and autocorrelation lags between 1 and
50, this is evidence of the preservation of the original ACF after the ICDF
transformation is applied, except where the Pareto marginal distribution with
α = 1.2, 1.4, 1.6 and 1.8.

3.2 Analysis of Variances for Estimated H

Tables 1 – 2 show variances for estimated H obtained using the wavelet-based
H estimator and Whittle’s MLE2 for the exact self-similar FGN process with
different marginal distributions for H = 0.6, 0.7, 0.8 and 0.9. Estimated variances
for the output processes with five different marginal distributions were slightly
higher than the original, but those with the Pareto marginal distribution with
α = 1.2, 1.4, 1.6 and 1.8 had the highest variances. All variances gradually
increased as the H value increased.
2 Our results have shown that the wavelet-based H estimator and Whittle’s MLE

are the least biased of the H estimation techniques. For more detailed discussions,
see [2].
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Table 1. Variances for estimated H obtained using the wavelet-based H estimator for
self-similar processes with different marginal distributions for H = 0.6, 0.7, 0.8 and 0.9

Distribution Variances of Estimated H
.6 .7 .8 .9

Exponential 1.662e-04 2.033e-04 2.878e-04 4.528e-04
Gamma 1.994e-04 2.025e-04 2.156e-04 2.641e-04
Uniform 1.993e-04 1.992e-04 1.962e-04 2.129e-04
Weibull 1.812e-04 1.910e-04 2.076e-04 2.366e-04
Pareto (α = 20.0) 1.689e-04 2.098e-04 3.088e-04 4.982e-04
Pareto (α = 1.2) 5.016e-03 1.002e-02 9.702e-03 9.155e-03
Pareto (α = 1.4) 3.515e-03 6.633e-03 7.135e-03 7.376e-03
Pareto (α = 1.6) 2.405e-03 4.490e-03 5.526e-03 5.790e-03
Pareto (α = 1.8) 1.622e-03 3.046e-03 4.263e-03 4.395e-03

Table 2. Variances for estimated H obtained using Whittle’s MLE for self-similar
processes with different marginal distributions for H = 0.6, 0.7, 0.8 and 0.9

Distribution Variances of Estimated H
.6 .7 .8 .9

Exponential 1.270e-05 1.544e-05 2.005e-05 3.084e-05
Gamma 1.158e-05 1.292e-05 1.450e-05 1.664e-05
Uniform 1.152e-05 1.286e-05 1.433e-05 1.797e-05
Weibull 1.158e-05 1.245e-05 1.339e-05 1.550e-05
Pareto (α = 20.0) 1.343e-05 1.763e-05 2.382e-05 4.041e-05
Pareto (α = 1.2) 1.019e-04 2.582e-04 1.037e-03 5.067e-03
Pareto (α = 1.4) 9.652e-05 3.678e-04 1.310e-03 4.985e-03
Pareto (α = 1.6) 1.010e-04 4.626e-04 1.505e-03 4.404e-03
Pareto (α = 1.8) 1.028e-04 5.084e-04 1.572e-03 3.665e-03

4 Conclusions

We investigated how well ACFs of the original processes were preserved when
the self-similar processes were converted into suitable self-similar processes with
five exponential, gamma, Pareto, uniform and Weibull marginal distributions.
For the stochastic simulation of communication networks with self-similar tele-
traffic we used the ICDF transformation to produce self-similar processes with
five different marginal distributions. Our results presented in this paper provide
clear experimental evidence that ACFs of the input process are not preserved
in the output process generated by transformation (2) where the output process
has an infinite variance. In other words, it preserves ACF of the input process
where the output marginal distribution has a finite variance, and transformation
(2) is applied to LRD self-similar processes with normal marginal distributions.
In addition, estimated variances for the output processes with five different mar-
ginal distributions including Pareto marginal distribution with α = 20.0 were
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slightly higher than the original, but those with the Pareto marginal distribution
with α = 1.2, 1.4, 1.6 and 1.8 had the highest variances.
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Abstract. µTC is a language that has been designed for programming chip 
multiprocessors. Indeed, to be more specific, it has been developed to program 
chip multiprocessors based on arrays of microthreaded microprocessors as these 
processors directly implement the concepts introduced in the language. 
However, it is more general than that and is being used in other projects as an 
interface defining dynamic concurrency. Ideally, a program written in µTC is a 
dynamic, concurrent control structure over small sequences of code, which in 
the limit could be a few instructions each. µTC is being used as an intermediate 
language to capture concurrency from data-parallel languages such as single-
assignment C, parallelising compilers for sequential languages such as C and 
concurrent composition languages, such as Snet. µTC’s advantage over other 
approaches is that it allows an abstract representation of maximal concurrency 
in a schedule-independent form. Both Snet and µTC are being used in a 
European project called AETHER, in order to support all aspects of self-
adaptive computation. 

Keywords: Self-adaptive computing, concurrent languages, data-driven com-
putation, programming chip multiprocessors. 

1   Introduction 

This paper describes language work originating in the MicroGrid project at the 
University of Amsterdam, which is designing chip multiprocessors based on the 
microthreaded model of concurrency [1]. It is also being adapted as a virtual system’s 
architecture (SVM) for highly concurrent, self-adaptive systems in the European 
AETHER project. In the former, it represents a transparent view over the underlying 
hardware support for concurrency and in the latter it presents a pragmatic attempt to 
define the functionality of a virtual machine for system-level interfaces between self-
adaptive network entities (SANEs). SANEs are the concurrent components that are 
dynamically manipulated to achieve the project’s goals of self-adaptive computing. 

The language defined in this paper provides the functional definition and 
concurrency of the virtual machine describing SANE components. Most of the 
scheduling and resource aspects of SVM are outside of the scope of this paper. 
However, as µTC directly captures the hardware implementation of microthreaded 
microprocessors it has an abstract view of resource issues in this context. More details 
including simulations chip-multiprocessors based on this model can be found in [2]. 
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µTC is a rather profound but simple extension to the C language, allowing it to 
capture thread-based concurrency. µTC is capable of expressing static, heterogeneous 
concurrency and dynamic, homogeneous concurrency. It is similar in some aspects to 
OpenMP [3], however there are significant differences. One of the most significant 
differences is that the language assumes a synchronizing memory. This captures 
dependencies between threads allowing sequence to be transformed into concurrency, 
where any dependencies are managed transparently in a data-driven manner. The 
other major difference is that C is extended with executable constructs rather than 
being annotated with pragmas as in OpenMP. For example, families of threads are 
created as named entities within the language and can be referenced, for example in a 
control component for a given SANE. This difference is fundamental and provides the 
mechanism for dynamically manipulating SANEs (as families of threads) as required 
in self-adaptive systems. For example, an identified family of threads can be 
terminated, either with prejudice or in a controlled and orderly manner that allows 
pending synchronizations to complete, so that a concurrent program can be moved to 
new resources or have its behaviour modified. 

µTC is based on the concept of microthreading [1], which includes synchronising 
memory and efficient, low-level scheduling. Our prior results [2] on microthreading 
show that very efficient implementations of these concepts are possible. In general, 
there is a range of scheduling options for µTC. On a microthreaded microprocessor, 
µTC programs are scheduled dynamically and the constructs introduced simply reflect 
instructions in the ISA. On conventional processors, some kind of static schedule will 
need to be generated by the µTC compiler or its run-time system, to remove the 
requirement for synchronising memory. For example, a sequential implementation of 
µTC exists, which executes threads in creation order with no interleaving. The 
philosophy adopted, captures maximal application concurrency and reflects the 
asynchrony and locality of communication that is found in chip multi-processors. The 
assumption is that the transformation from concurrent to sequential is trivial in 
principle, although difficult to define in the case of non-determinism in timing. 
However, the real goal is to execute µTC directly, which is indeed possible. Ideally, a 
program written in µTC is a dynamic concurrent structure over small sequences of 
code, which, in the limit, could be just a few instructions each.  

2   Motivation and Background 

Reference [4] provides a compelling argument for the elimination of non-determinacy 
in programming concurrent systems and claims that we are on the threshold of a 
potential disaster as multi-threaded code is migrated to chip multi-processors with 
non-deterministic scheduling. The same argument is made in [5], where similar issues 
are raised about programming state-of-the-art multiprocessor systems. These include 
the following real or perceived problems: 

− the user has to parallelise existing serial code; 
− explicitly threaded programs using a thread library are not portable; 
− writing efficient multi-threaded programs requires intimate knowledge of the 

machine’s architecture and micro-architecture. 
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Here the following solutions are adopted to these problems. Users do not normally 
parallelise applications but generate µTC from deterministic code, such as plain old C 
or Single-assignment C (SAC) [6] (a functional, data-parallel language). Moreover, 
concurrency in µTC is achieved in an abstract way that does not require reference to a 
thread-library, thus only the µTC compiler will need to have knowledge of the 
architecture or micro-architecture and any run-time support for a given target. 

The main tools in the AETHER project will be compilers for conventional 
languages and for the configuration language Snet [7] all of which will target µTC, as 
well as various implementations of µTC to specific targets. Our own interest is the 
compilation of µTC to microthreaded binaries and their implementation in 
reconfigurable processor arrays to provide dynamic management of resources, e.g. see 
[8]. For this, gcc will be modified to compile µTC to schedule-invariant, 
microthreaded binary code. As the tool chain above is being developed, µTC will be 
used as a user programming language. The first implementation of µTC is a 
translation to C, using a rather trivial schedule that executes all threads in index 
sequence. Subsequent work will focus on the automatic parallelisation of C programs 
targeted to µTC, which together with the µTC compiler, will allow the execution on 
microthreaded binaries from legacy, sequential C code on our Microgrid simulator.  

The remainder of this paper introduces the language and provides numerous 
examples to illustrate the semantics of the constructs and how they would be used in a 
number of different application scenarios. 

3   Additions to C 

Only a small number of constructs are added to C, along with the semantics of the 
synchronising memory, which is described in detail below. The constructs map onto 
low-level operations that provide the concurrency controls in a microthreaded ISA, 
see [1] and allow concurrent programs to be dynamically instanced and preempted, 
either gracefully or with a prejudice. Family identifiers provide the control over the 
concurrent sections. No other language to our knowledge provides such support for 
families of threads and this enables many of the dynamic aspects of SANEs.  

µTC adds the following keywords to standard C. They can be used anywhere in a 
C program, subject to restrictions described in each keyword’s description. They are: 

create Control construct used to create a family of microthreads; 
thread Type specifier to indicate the functions that define the microthreads; 
shared Type qualifier of variables shared between microthreads; 
index  Type qualifier of the index variable of a family of microthreads; 
sync  Construct that waits for the termination of a specified family; 
break  Construct that terminates a family from one of its of threads; 
kill  Construct that terminates a specified family externally; 
squeeze Construct that preempts the execution of a specified family so that it 

may be restarted without loss of state. 

Before these constructs are defined in detail, a brief definition of the memory model 
used in implementing them must be given. It is assumed that there are two kinds of 
memory (analogous to registers and main memory in the sequential machine model). 
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They are a synchronising memory and a non-synchronising memory. The latter is 
shared main memory with no assumptions about access time. All inter-thread 
communication is performed in synchronising memory, which is assumed to be fast, 
on-chip and close to the processor. There are also restrictions on inter-thread 
communication that reflect the asynchrony and locality of on-chip communications. 
Synchronising memory is allocated dynamically to a thread on its creation and is 
released when that thread completes (or is forced to complete). It implements 
dataflow synchronisation and threads block on reading it. Thus if a thread attempts to 
read an undefined location in synchronising memory, it will not proceed beyond the 
statement that attempted to read the undefined variable.  

Non-synchronising memory has relaxed consistency and is bulk synchronous with 
respect to a family of microthreads. This means that during the execution of a family 
of threads, threads may read from or write to a structure in synchronising memory but 
the state of the writes is not consistently defined until the whole family completes (or 
is forced to complete). This means that two concurrent threads in the same family 
cannot usefully share data via non-synchronising memory. 

3.1   create 

create(fid; start; limit; step; block) <named thread>|      
<compound statement>; 

The create construct defines a concurrent section as a family of microthreads over 
an index variable. Threads can be defined either by a compound statement or a named 
thread, which is similar to a function (see Section 3.2). create returns a unique 
family identifier, fid, to identify and control the family created and may be used 
anywhere within a C program, including from within another thread. create has the 
following components: 

− fid: a variable from the creating context that receives the family identifier, that 
uniquely identifies the created family and can then be used to synchronise or 
terminate the family. 

− start: an expression defining the start of the index sequence for the family of 
microthreads; it is evaluated when the create is executed (default: 0). 

− limit: an expression defining the limit of the index sequence for the family of 
microthreads; it is evaluated when the create is executed (default: unlimited). 

− step: an expression defining the step value between indices; it is evaluated when 
the create is executed (default: 1). 

− block: an expression defining the maximum number of index values allocated 
per processor in a single allocation round;  the expression is evaluated when the 
create is executed (default: maximum possible). 

The triple (start, limit, step) defines an index sequence over the threads created and a 
unique value from this sequence is available to each thread. Any of these expressions 
may be omitted and an appropriate default value will be assumed. A blank limit 
statement causes an infinite number of threads to be created and in this case, thread 
creation will have to be terminated by a break, squeeze or kill. A blank 
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block expression means that an implementation will allocate as many threads as there 
are resources available to do so.  

The create construct creates threads in block-index order and dynamically 
allocates synchronising memory to each thread it creates (the memory is released 
when the thread completes). Variables in synchronising memory are initialised empty 
(i.e. they block a thread that attempts to read them). The exception is the thread index, 
which is initialised to the index value for the thread as defined by the triple above. 

An arbitrary number of processors, p say, which can be defined at create time, may 
be used to execute the created threads and the implementation will distribute the 
threads over those processors in block-index order. Block-index order is where the 
first block index values are allocated to the first processor and so on, to each 
processor involved, so that p*block indices are created in a round of allocation over 
the p processors. This allows infinitely many threads to be defined and managed and 
is similar to k-bounded loops used in dataflow, i.e. it provides an artificial 
dependency limiting the use of resources and providing management over resource 
deadlock. 

Two examples that create exactly the same family of threads are given in Table 1, 
together with the equivalent sequential code for reference.  

Table 1.  Creating families of threads with compound statements and named threads 

Compound statement Named thread Sequential equivalent 
int a[10]; 
int fid, s=0; 
... 
create(fid; 0; 9)
  index int i; 
  shared int s; 
  s = s + a[i]; 
  } 
sync(fid); 
...s...   

thread sint(shared int sum
             int array[])
index int idx; 
sum = sum + array[idx]; 
} 
 
int a[10]; 
int fid, s = 0; 
... 
create(fid; 0; n-1) 
              sint(s, a[]
sync(fid); 
... s ... 

int a[10]; 
int fid, s=0; 
... 
for(i=0; i<10; i++)
  s = s + a[i]; 
  } 
...s...  

 
    Each thread in this homogeneous family contains its own copy of the shared 
variable s/sum, which defines a dependency chain through the family of threads, 
with each thread reading its neighbour’s shared variable. For more detail on this see 
also the definition of shared in section 3.7.  

A heterogeneous create makes use of a list of named threads. In the 
heterogeneous case, the compiler must know the index range statically. This form can 
be used to represent ILP in basic blocks or to manage MIMD concurrency at the 
application level. Again there can be shared variables that define dependency 
chains between the threads and these are declared in the argument list of the threads, 
must be common to all threads and bound to variables in the creating thread. An 
example is given in Table 2 below, along with the equivalent sequential code. 
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Table 2.  Creating a heterogeneous family of threads. 

Thread list Sequential equivalent 
thread mt1(shared real sr){ 
       sr=b*b-sr;} 
 
thread mt2(shared real sr){ 
       r1=(sr-b)/2*a; 

     r2=-(sr+b)/2*a; 
     } 

... 
real a, b, c, sr, r1, r2; int fid; 
create(fid;1;3) 

     mt1(sr),sqrt(sr),mt2(sr); 
sr=4*a*c 
sync(fid)  /*r1, r2 now valid*/ 

... 
real a, b, c, sr, r1, r2; 
sr=sqrt(b*b-4*a*c);      
r1=(sr-b)/2*a; 
r2=-(sr+b)/2*a; 
 

 
    In this example, a single shared variable, sr, defines a dependency chain between 
the threads. Note that the built-in thread sqrt gets its parameter and passes its result 
via this shared variable. When created, each user-defined thread can proceed with 
some computation. Thread mt1 can compute b2 and mt1 can compute 2a, while the 
main thread computes 4ac. Then the computation is constrained by the shared variable 
sr, which is passed from main to mt1, mt1 to sqrt and sqrt to mt2. The result is 
written in two global variables in non-synchronising memory, which are defined only 
when the threads have been synchronised. The code in Table 2 is an example of 
explicitly programmed ILP. 

3.2   thread 

thread <name> (<argument list>){...} 

The thread construct defines a C function as a thread in µTC. It can be used with 
create to generate instances of the function as dynamic threads and to match an 
argument list in the definition with a set of parameters from the creating environment.  
There are a number of differences between a function and a thread. Firstly, there is no 
return type (or it is assumed to be void), as threads do not return values other than by 
shared variables or writes to non-synchronising memory. A break, see Section 3.4, 
can also return a value to the creating thread that via the sync construct. 

Threads cannot contain calls to functions but can create further subordinate 
threads, which are concurrent function calls, where the thread is triggered by writing 
values to its arguments and the creating environment waits on results using  
sync. Results are either defined by the local variable used to initialise a shared-
variable dependency chain or can be written to non-synchronising memory, which is 
shared (both are used in the example in Table 2). There is no reason why C programs 
cannot be completely translated to threaded programs using threads instead of 
functions. 
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3.3   sync 

sync(fid; return); 

The sync construct is used to detect the termination of a concurrent section 
defined by a family of threads with identifier fid. It also returns a value to return in 
the definition above, which defaults to maxint if the family terminates normally. The 
construct blocks until the family specified by fid has completed and then completes its 
execution by setting the return value. sync returns a value that is set by a break 
construct, if one was executed, otherwise the return value defaults to maxint. A 
create and corresponding sync define a concurrent section, which includes both 
the creating thread as well as the family of created threads. Global memory written in 
a concurrent section cannot be reliably read by other threads in the same concurrent 
section, nor by another family, until the family writing global memory has been 
synchronised using the sync construct. Only one sync may be issued on a given 
family of threads and a sync in two concurrent threads on the same family may have 
unpredictable results. 

3.4   break 

break(result); 

The break construct terminates a family of threads from within one of its threads. It 
stops any remaining thread creation and releases all synchronising memory, losing 
any synchronising state that the family may have had. It also allows the breaking 
thread to return a value to the creating environment by its parameter result.  

An important issue in the implementation of break/sync is the guarantee that an 
outstanding synchronisation on a location in synchronising memory will not interfere 
with any subsequent use of that location, i.e. if it is subsequently allocated to another 
family of threads. For example, assume that a load from non-synchronising memory 
had been issued in a thread and a break released the target location in synchronising 
memory before the load was satisfied. The implementation of break/sync must 
ensure that any subsequent response from memory for that family will no longer 
update synchronising memory. 

3.5   squeeze 

squeeze(fid; return); 

The squeeze construct is similar in operation to sync but is executed concurrently 
with the creating environment and is used to bring a family of threads identified by fid 
to a well-defined termination state. It stops any remaining thread creation and waits 
for any outstanding synchronisations to complete before returning the index value of 
the first thread not created to its return parameter. Like sync it blocks until the 
family of threads has terminated. The return is the concurrent program’s equivalent of 
a program counter in a sequential program when pre-empting the program and 
enables the family to be restarted (perhaps on different resources) without loss of 
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data. Note that termination of a thread requires the termination of any synchronised, 
subordinate threads within it and these subordinate families are not automatically 
squeezed. If a deep squeeze is required, it must be programmed, as it requires the 
building of a data structure of index values for all subordinate squeezed families. In 
practice this construct could be executed in any thread that has access to a family’s fid 
and it is required to dynamically migrate SANE components.  

Only one squeeze may be issued on a given family of threads and squeezing in  
two concurrent threads on the same family may have unpredictable results. An 
example of the use of squeeze is given below: 

 

 int fid1, fid2, resume; 
 ... 
 create(fid1;1;1){  /*job wrapper*/ 
  shared int fid2; 
  create(fid2)job(); /*job to be squeezed*/ 
  } 
 sync(fid1) 
 ... 
 squeeze(fid2,resume) 
 
In this example the job wrapper, family fid1, creates an infinite family of threads 
defined by a thread named job and returns the family identifier, fid2, back to the main 
thread, leaving the family detached, as fid2 is never synchronised. This example 
shows how to obtain and use fid2 to asynchronously terminate the family. Note that 
fid2 becomes defined on the sync on family fid1. This code skeleton is an example  
of a SANE component having a control part and a functional part running side by 
side. 

3.6   kill 

Kill(fid);  

The kill construct is similar in operation to squeeze and is also executed from a 
concurrent control thread but it is used to bring a concurrent section defined by fid to 
a forced termination, by stopping any thread creation and forcibly terminating any 
executing threads, i.e. all pending synchronisations are lost! The other difference is 
that kill does operate recursively, i.e. it kills not only the family of threads that is 
identified but also any subordinate families that have been created. 

3.7   index/shared 

index int i; shared real s; 

The index and shared keywords are type modifiers used in µTC; index defines 
the thread sequence number and is set automatically by create and shared 
defines any variables in synchronising memory that are shared between threads in a 
family. 
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4   Memory Model 

4.1   Synchronising Memory 

The most important aspect of µTC code is the concept of synchronising memory. 
Each thread has a context of local, scalar variables dynamically allocated to it in 
synchronising memory, which are initialised to the empty state and which are garbage 
collected when the thread completes. These variables provide synchronisation with 
data from non-synchronising memory and also with other threads if the variables are 
declared as shared. Reading an empty variable in synchronising memory will block 
the thread reading it until the value has been set (it gets suspended and can no longer 
proceed until the data is available). Synchronising memory is dynamic and data 
created by threads must either be shared or written to non-synchronising memory 
before the thread terminates or it will be lost.  

To communicate between threads in the same family, synchronising memory must 
be used and must be declared as shared. Sharing is deliberately restricted to reflect 
the locality of communication found in silicon systems. Each thread has one 
neighbour that can read its shared local values, which is defined as the next thread in 
index sequence in the create for that family. To initialise this chain of neighbours, 
the first thread reads a variable of the same name from the creating environment (not 
declared as shared) or in the case of a named thread; a binding is made to a variable in 
the creating environment. Following the termination of the family, a read to the 
variable in the creating environment will yield the value written to the shared variable 
from the last thread created. Dependency chains through a family of threads are 
therefore initialised and closed using variables from the creating thread.  

The following example illustrates a potential problem with shared variables: 
 

 int *a, n, s = 0; 
 ... 
 create(fid; 0; n-1){ 
     index int i; shared int s; 
     s = s + 1; 
     s = s * 2; 
     a[i] = s; 
     } 
 

Here, the shared variable s is written twice in each thread. The value obtained by a 
read from a neighbour is therefore non-deterministic. Dataflow synchronisation 
ensures s can not read until it is written but when written it can be read before or after 
the second write. The solution used in the µTC compiler is to enforce single 
assignment semantics for shared variables, introducing further local variables as 
required. A family will then give exactly the same results as if each thread were 
executed sequentially. The compiler must ensure that the first read of s is from the 
prior thread and that only the last write will synchronise with the following thread. All 
other uses of s must be local. The µTC compiler would therefore generate the 
equivalent of the following code in this example: 
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int *a, n, s = 0; 
 ... 
 create(fid 0; n-1){ 
  index int i; shared int s; int t; 
      t = s + 1; 
  s = t * 2; 
  a[i] = s; 
  } 

 
An example using non-local shared variables is given below. It implements a 

recurrence relation with dependencies from the neighbour and neighbour’s neighbour. 
It computes Fibonacci numbers: 
 

 int i, fid, temp1, temp2, Fibonacci[10]; 
    temp1=fibonacci[0]=0; 
    temp2=fibonacci[1]=1; 
    create(fid; 2; 9){ 
  index int i; shared int temp1, temp2; 
        fibonacci[i] = temp1 + temp2; 
  temp1 = temp2; 
        temp2 = fibonacci[i]; 
     } 
    sync(fid); 
 

More generally, a shared variable may pass data to an arbitrary thread in a family 
using deterministic choice within the thread index (this is data-routing). 

4.2   Non-synchronising Memory 

Non-synchronising memory has relaxed consistency during the execution of a family 
of threads and writes to this memory are only well defined only after the family of 
threads has completed (defined by the sync construct). Using non-synchronising 
memory, a thread may write to any declared variable that is in scope (normal C rules) 
or has been passed to it as a parameter. It is a requirement for deterministic execution, 
that each thread in a homogeneous family must write to a unique element of a data 
structure, which is selected by its index value, e.g. x[i], where i is the family’s thread 
index. The range of i is defined by create. In heterogeneous families uniqueness 
must be guaranteed by the threads’ code and can be to non-indexed variables. In 
either case, a read after a write to variables updated in a thread family cannot be 
safely be performed until a sync has been executed on the family of threads that 
performed the write. 

When assigning to indexed variables, care must be taken with expressions other 
than the local index value, as reads and writes to the same element of an indexed 
structure can only be guaranteed to be consistent within the same thread or following 
the sync. An example is where different elements of an indexed data structure are 
required in a thread. Consider the following poorly defined µTC code fragment: 
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 int a[10], fid, n=10; 
 create(fid; 0; n-2){ 
  index int i; 
  a[i] = a[i] + a[i+1]; 
  } 
 
This program does not give deterministic results as a[i+1] could be read by a thread 
either before or after its neighbour had updated a. A deterministic program i.e. one 
that guarantees the result expected from a sequential schedule requires the following 
transformation: 
 
 int a[10], shift_a[10], fid, n=10; 
 create(fid; 0; n-2){ 
  index int i; 
  shift_a[i] = a[i+1]; 
  } 
 sync(fid); 
 create(fid;0; n-2){ 
  index int i; 
  a[i] = a[i] + shift_a[i]; 
  } 

In C, dependency chains may be defined through iterations spaces by indexed data 
structures, which if translated naively could also give non-determinism. For example: 

  
 int *sum, *a, fid, n = 10; 
 sum[0] = a[0]; 
 create(fid; 1; n-1){ 
  index int i; 
  sum[i] = a[i] + sum[i-1]; 
  } 
 

Here, sum is a global array in non-synchronising memory indexed in each thread (it is 
not a local shared variable). Although the µTC compiler could allocate shared 
variables to implement this dependency chain, it would require the compiler to check 
that the index expression defined neighbours in the family of threads. Although this is 
trivial in the example above, it may not always be the case and run-time checks may 
be unavoidable in some code. To avoid this, shared variables in µTC must always be 
declared explicitly and the above example should be written as: 
 

 int *sum, *a, fid, n = 10, s; 
 sum[0] = s = a[0]; 
 create(fid; 1; n-1){ 
  index int i; shared int s; 
  sum[i]= s = a[i] + s; 
  } 
 

A more complex example is given below, which uses both thread index and global 
index expressions. It performs matrix-vector multiplication and is defined as a thread. 
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 thread matvec(int *a, *x, *y, n){ 
  int fido; 
  create(fido; 0; n) 
   { 
   index int i; 
   int fidi, s = 0; 
   create(fidi; 0; n; 1; 4){ 
    index int j 
    shared int s; 
    s = s + a[i][j]*x[j] 
    } 
   sync(fidi); 
   y[i] = s; 
   } 
  sync(fido); 
  } 

This thread creates n2 threads, where the n outer threads are independent and the n 
inner threads contain a dependency chain on s. In the inner family, the code uses both 
thread-index selection, using j, as well as global index selection, using i. 

5   Resource Management 

The use of the create’s block parameter provides for management of resources on 
thread creation. There are two issues here, the placement of code on specific resources 
and the management of deadlock. The latter is illustrated in the example above. The 
block parameter in the outer create says that no more than 4 threads should be 
allocated to a processor at any time. This allows resources to be allocated to the inner 
threads. If the block parameter had not been used and n was such that the outer loop 
exceeded the resources available on one processor, then no inner family threads could 
have been created and no outer thread could have completed, hence deadlock! 

In general it is possible to create families of threads that exceed the resources 
available for their creation and the use of block allows those resources to be spread 
through a chain of creates to avoid or resource deadlock or to minimise inefficiency in 
virtualising resources in the hardware.  

The block parameter can also be used to create a thread in a particular processor. 
A modification of the code in Section 3.5 can be made that creates the detached job 
on a specific processor. For example on p processors the following code would load 
the detached job onto the jth processor. 

 int fid1, fid2, j; 
 ... 
 create(fid1;1;p;1;1){  /*loader - p processors*/ 
  index int i; shared int fid2; 
  if (i = j)create(fid2)job(); 
  } 
 sync(fid1) /*family fid2 loaded on processor j*/ 
 } 
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6   Cost Models  

µTC will require a different cost model for each target and that model must be 
embedded in the compiler for the target. However, no attempt should be made to 
schedule threads in the µTC language, as this is counter to its philosophy. If the cost 
model dictates, compilers for a given target will create schedules for execution, either 
statically, as in the case of translating µTC to C, or dynamically as in the case of a 
microthreaded pipeline. It is important therefore not to carry over a cost model from 
the world of conventional software threads when writing an application in µTC.  

For a microthreaded target no scheduling is necessary as the constructs in µTC 
map onto binary instructions and even a family of single-instruction threads can be 
created and scheduled with little or no overhead. In fact threaded code will often show 
super-linear speedup on a microthreaded processor [2] as thread index management is 
implemented in hardware and does not require the increment and test instructions to 
be generated as a part of the thread code, would be the case if the thread were 
executed as a loop.  

7   Conclusions 

A language µTC has been defined and is currently being implemented using gcc 
targeting microthreaded chip-multiprocessors. Prior work has used hand-compiled 
code kernels to produce the results published in [2]. The analysis involved in 
developing this language has allowed us to extend the microthreading model to 
capture recursive concurrency and our CMP simulator has been updated to reflect the 
semantics captured by this. With a µTC compiler and this updated simulator it will be 
possible to be simulate much more significant benchmarks, as well as supporting 
work within the AETHER project. 

The main difference between this and prior work is that µTC code is schedule 
invariant and based on the following assumptions: 

− There is a synchronising memory, which is limited in size and which holds local 
scalar variables. This memory is used to synchronise between executing threads 
and between a thread and the shared non-synchronising memory. 

− The latter is assumed to have arbitrary delay and to be bulk synchronous with 
respect to a given family of threads. 

− Local synchronising memory is shared to provide communication between 
threads. This sharing however, is restricted to linear chains, which reflect the 
locality of communication in silicon. 

N.b. the model could be generalised to provide planar local sharing, or indeed 
arbitrary communication between threads. However, the simplest model has been 
adopted until the necessity of generalising it further it can be shown. 

We already have an interpreter for µTC, which creates a static sequential schedule 
from it in C, which can be compiled to any target and we are currently working on 
two compilers, one from µTC to microthreaded binaries and the other a parallelising 
compiler from C to µTC. Collaborators from Hertfordshire University are working on 
compilers from Snet and SAC to µTC. 
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Abstract. Bypass delays are expected to grow beyond 1ns as technol-
ogy scales. These delays necessitate pipelining of bypass paths at proces-
sor frequencies above 1GHz and thus affect the performance of sequential
code sequences. We propose dealing with these delays through a dynamic
functional unit chaining approach. We study the performance benefits of
a superscalar, out-of-order processor augmented with a two-by-two ar-
ray of ALUs interconnected by a fast, partial bypass network. An online
profiler guides the automatic configuration of the network to accelerate
specific patterns of dependent instructions. A detailed study of bench-
mark simulations demonstrates these first steps towards mapping bina-
ries to a small coarse-grained array at runtime can improve instruction
throughput by over 18% and 25% when the microarchitecure includes
bypass delays of one cycle and two cycles, respectively.

1 Introduction

The datapath of a microprocessor includes bypass (also known as forwarding)
paths that route computed results among the register file, data cache and execu-
tion units. These bypass paths are typically routed in higher-level metal layers
[10] with resistance and capacitance delays that increase with the scaling of
feature size [2]. Thus, under continuous scaling of feature size and processor
frequency, the performance of future processors is increasingly limited by the
wire delays associated with bypassing for data-dependent sequences [9]. Several
approaches have been suggested over the past decade to cope with this problem.

The best known approach focuses on reducing bypass latency through bypass
hierarchy, as seen in clustered architectures [8,9] where each cluster contains a
small number of functional units interconnected via a fast local bypass network.
Data-dependent sequences are ideally steered into the same cluster to make use
of the faster intra-cluster bypass.

Self-forwarding arithmetic & logic units (ALUs) with closed loop bypass were
introduced in NetBurst [4] and Sassone’s work in [12] to efficiently execute linear
dependent chains. Sassone uses the self-forwarding ALUs to compute results for
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transient chains of sequences, where the intermediate results in the chain are
only ever consumed once by the immediate successor instruction. Intermediate
results are not forwarded after use but are simply discarded. The applicabil-
ity of this approach is limited to situations where the transient rule is known
to hold.

As an alternative approach, hardware/software partitioning speeds up exe-
cution by collapsing a sequence of operations into an atomic operation. This
approach shortens the critical path of sequential operations and absorbs result
bypasses into custom circuits. Typically, this is achieved by Application Spe-
cific Integrated Circuits (ASIC) co-processors in the embedded domain, whereas
fine-grained units in the form of Field Programmable Gate Arrays (FPGA) are
employed in reconfigurable microprocessors as configurable functional units in
the datapath or as coprocessors attached to the memory or system bus. Tradi-
tionally, sequences that can be collapsed are identified at compile time. Runtime
analysis has recently been introduced by Stitt et. al. [13] and Yehia et. al. [14] to
support a more dynamic system. Nevertheless, FPGAs come with high synthesis
and runtime reconfiguration costs.

In contrast to previous approaches, we propose the acceleration of program
binaries through the mapping of data-dependent sequences to a small array
of coarse-grained structures at runtime. We add to a superscalar, out-of-order
processor an execution unit called the chained integer ALU (CIALU) which
consists of a two-by-two array of closely-packed ALU cells (Fig. 1).

Fetch

Decode

Rename

Register File

Bypass

Data Cache

Wakeup & Select
Issue Window

Pattern Scheduler
Pattern Profiler

Pattern Matching

Execution Units...CIALU

Fig. 1. A MIPS-like architecture (adapted from [9]) enhanced with a CIALU and mod-
ules (shown as grey blocks) to support runtime analysis of dataflow patterns

By reorganizing the floorplan and reorienting the ALU cells, we show that
a fast, partial internal bypass network quickly routes results among the cells.
Runtime analysis is a natural choice to make efficient use of the CIALU. An
online profiler tracks the relative frequency of specific dataflow patterns over
time to guide the CIALU configuration. Significant shifts in the profile history
lead to reassessment of the configuration choice, providing a CIALU that adapts
to various dataflow patterns over successive periods of execution.
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Our results demonstrate that a partial internal bypass network is sufficient to
handle the small set of data-dependent patterns commonly seen at runtime. In
comparison to the full local bypass network in clustered architectures, the smaller
size of our partial network results in lower capacitive loads and faster operations.
Overheads associated with collapsing sequences and mapping them to FPGAs do
not apply in our design, but some overheads incurred by runtime analysis remain.
The runtime nature of our design achieves binary compatibility for pre-compiled
code and offers performance benefits without exposing application developers to
additional design complexity.

In Section 2, we provide an architectural overview of our design and a normal-
ized model of typical integer ALUs that forms the basis of our timing character-
ization of the CIALU. We describe in Sect. 3 our experimental framework based
on the SimpleScalar toolset [3]. Our results are presented in Sect. 4. We conclude
with an assessment of our results and our plans for future work in Sect. 5.

2 Proposed Architecture

2.1 Supported Dataflow Patterns

Our CIALU is a two-by-two array of integer ALU cells tightly interconnected
via an internal bypass network. Assuming a full internal bypass network, the
CIALU structure supports execution for a variety of dataflow patterns. Figure 2
depicts some of these patterns as nodes and edges. Each node in the pattern
may correspond to an instruction in the processor’s issue queue and each directed
edge represents dataflow between two nodes. A CIALU with a full internal bypass
network can support indefinitely long patterns, where up to three outgoing edges
for results forwarding are allowed for each node in the pattern. We use the term
branching pattern to refer to a pattern with more than one incoming or outgoing
edge for any of its nodes, such as patterns 2b, 2c and 3b. We note that pattern 1a
simply represents up to four parallel operations with no data dependencies. In our
experiments, we consider a small subset that covers all possible data-dependent
patterns of up to four nodes. Our analysis of the benefits of accelerating patterns
2a, 2b, 2c, 2d, 2e, 3a, 3b and 4a is reported in Sect. 4.

Fig. 2. An array of four integer ALUs with low-latency internal bypasses can support
a variety of data-dependent patterns
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2.2 Architecture Overview

The CIALU is an execution unit in the integer datapath of a superscalar, out-of-
order processor. Figure 1 illustrates our model based on the MIPS architecture.
We enhance the baseline model with a CIALU and three modules that support
runtime analysis of dataflow patterns: the pattern matching circuit, the pattern
profiler and the pattern scheduler.

Initially, the processor executes a binary just as normal. The pattern profiler
monitors the integer issue queue entries for instances of the supported dataflow
patterns. A pattern instance is detected when the pattern matching circuit is
able to map one or more ready-to-execute instructions to some of the nodes of a
particular pattern, and all other nodes of the pattern are semi-ready, i.e. waiting
only on the results that will be forwarded by the ready instructions. A dataflow
pattern is merely characterized by the relationship of data dependencies. Thus
the actual operation (e.g. addition, subtraction or logical operation) of each
pattern node may vary.

The profiler updates a count history to reflect the relative frequencies of each
dataflow pattern over a period of execution. Based on the count history, the
profiler selects a CIALU configuration that appears most beneficial for the next
period. A CIALU configuration involves setting multiplexer select signals to
internally route results among the ALU cells according to the interconnection
required by the selected pattern mapping.

When the next instance of the selected mapping is matched, the pattern
scheduler takes over the normal integer scheduler. Each instruction in the pattern
instance is scheduled to the CIALU in the order enforced by data dependencies.
If the CIALU is requested but not ready to accept new operations, scheduling
is handed back to the normal integer scheduler. Execution of ready instructions
then falls back onto the processor’s fixed ALUs.

In our architecture model, the CIALU is able to replace some of the proces-
sors’ fixed integer ALUs. Therefore, the number of register file ports need not
increase. Currently, we are studying the integration of the runtime analysis mod-
ules into the processor’s issue logic. The performance gains of our design may
be partially offset by the overheads of these modules. In this paper, we assume
negligible overheads for the runtime analysis modules and we measure the per-
formance benefits of the CIALU to save bypass cycles for dataflow patterns with
dependencies. A detailed characterization of the runtime overheads will be part
of our on-going work.

2.3 Normalized Model of Integer ALUs

It is difficult to compare performance of architecturally diverse processors such
as MIPS, Alpha, NetBurst and our proposal. We therefore propose an execu-
tion performance model in which delays of various architectures are normalized
against clock ticks. Execution times therefore need to be compared on the basis
of number of clock cycles and clock frequency.

Our normalized model of an integer ALU has the following characteristics:
computation latency, C; bypass latency, B; and issue latency (or initiation rate),
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R. In the case of the single-issue processor in Fig. 3(a), the bypass path feeds
the ALU output back to its own input as well as routing the ALU output to the
register file for result writeback. Normally, execution and forwarding (C + B) fits
into a single processor clock cycle. As processor frequency increases, the ALU
logic and/or the bypass path have to be pipelined to meet the requirement of the
clock frequency. We expect the pipelined ALU will continue to have an initiation
rate of one cycle, i.e. R = 1.
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Fig. 3. Layout of the integer datapath for (a) a single-issue processor and (b) a multiple-
issue processor. (c) shows the timeline of pattern 3a executed on a group of four nor-
malized ALUs with parameters C=1, B=1 and R=1.

Figure 3(b) shows a typical bit-sliced, linear layout of a multiple-issue proces-
sor datapath with four integer ALUs. For a multiple-issue processor, the bypass
paths span all ALUs. Similar to the single-issue case, (C + B) fits into a processor
clock cycle at relatively low clock frequencies. However, as processor frequency
increases, the ALU logic and/or the bypass path have to be pipelined.

While logic and local wires scale according to feature size, wires routed in
higher metal levels grow slowly in speed relative to logic [5]. Authors have differ-
ent opinions on whether the bypass paths for multi-issue ALUs are local wires
routed in low-level metal layers [5] or more global wires routed in higher-level
metal layers [10]. The assumption that bypass paths are local wires implies that
C = B regardless of the scaling of feature size. On the other hand, although the
bypass wires are unlikely to be routed in the topmost metal level as the global
clock signal does, we lean towards the assumption that the bypass paths are
routed in higher metal levels such that the values of B will grow relatively more
quickly with respect to C, i.e. C < B. Nevertheless, we derive ALU timing mod-
els with values of C and B as shown in Table 1 to cover both design views. We
also list in Table 1 the number of cycles needed for register access, execution



166 L.W. Koh and O. Diessel

and writeback/forwarding, for each of the dataflow patterns from Fig. 2, sched-
uled to a group of four ALUs. For example, Fig. 3(c) illustrates the execution
timeline of pattern 3a on a group of four normalized ALUs with C=1, B=1 and
R=1. The motivation behind our design is to eliminate the bypass delays found
between the dependent computations.

Table 1. Clock cycles needed by a group of four normalized ALUs to compute and
bypass results for the dataflow patterns of Fig. 2

Delay Data-dependent patterns
assumption 1a 2a 2b 2c 2d 2e 3a 3b 4a

C + B=1, R=1 2 3 3 3 3 3 4 4 5
C=1, B=1, R=1 3 5 5 5 5 5 7 7 9
C=1, B=2, R=1 5 8 8 8 8 8 11 11 14
C=2, B=2, R=1 6 10 10 10 10 10 14 14 18

As shown in Fig. 3(b), the operands from the register file are routed verti-
cally to the ALUs, like the bypass paths. Thus we expect the delays for routing
operands from the register file to the ALUs to scale linearly with the bypass
delays. Figure 3(c) shows that these delays are incurred only for the first com-
putation in a sequence, where subsequent routing of operands from the register
file can be hidden by results bypassing. This is accordingly reflected in the timing
calculations for Tables 1 and 2.

2.4 CIALU Model

Our CIALU model comprises a two-by-two array of cells, organized to optimize
the internal bypass paths. The CIALU has the following characteristics: compu-
tation latency of each cell, C; global bypass latency, B; internal bypass latency,
I and issue latency (or initiation rate), R. Each of the cells in the CIALU is a
fully-fledged ALU, with similar latency scaling trends to the normalized ALU
model described in Sect. 2.3. The global bypass paths of the CIALU are the usual
paths that feed the cell results back to the register file, the cache and other func-
tional units in the processor’s datapath. We use the term global bypass here to
differentiate from the internal bypass paths, which are shorter wires in lower
level metals that route results between the cells in the CIALU.

The CIALU structure accelerates computation sequences where global bypass
paths are normally in use. The tight internal bypass interconnect within the
CIALU quickly feeds the cells with pending operands. The number of execution
cycles for each dataflow pattern scheduled to a CIALU is listed in Table 2.
The bracketed values show the savings in global bypass cycles over a typical
multi-issue processor with four normalized ALUs of equivalent parameters, as
assessed in Table 1. We note that an aggressive, four-cell CIALU has the same
performance as a group of four normalized ALUs when executing instances of
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Table 2. Timing model for a CIALU with an initiation rate of one clock cycle

Delay Data-dependent patterns
assumption 2a 2b 2c 2d 2e 3a 3b 4a

C=1, B=1, I=0 4 (1) 4 (1) 4 (1) 4 (1) 4 (1) 5 (2) 5 (2) 6 (3)
C=1, B=2, I=0 6 (2) 6 (2) 6 (2) 6 (2) 6 (2) 7 (4) 7 (4) 8 (6)
C=1, B=2, I=1 7 (1) 7 (1) 7 (1) 7 (1) 7 (1) 9 (2) 9 (2) 10 (3)
C=2, B=2, I=0 8 (2) 8 (2) 8 (2) 8 (2) 8 (2) 10 (4) 10 (4) 12 (6)
C=2, B=2, I=1 9 (1) 9 (1) 9 (1) 9 (1) 9 (1) 12 (2) 12 (2) 15 (3)

pattern 1a because there is no need to wait for results to be forwarded via the
global bypass paths.

The internal and global bypass paths essentially form a bypass hierarchy,
where I < B. For processors with B > 1, we consider two models: an aggressive
CIALU model where the internal bypass delays are absorbed into the computa-
tion latency such that I=0; and a conservative model with I=1. Figures 4(a) and
4(b) illustrate the execution timelines of pattern 3a on each of these models.
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Fig. 4. Timeline for pattern 3a executed on (a) an aggressive CIALU model with C=1,
B=2, I=0, R=1 and (b) on a conservative model with C=1, B=2, I=1, R=1. (c) shows
the floorplan of the CIALU and (d) a high-level view of its internal bypass network.

Figure 4(c) shows the layout of our final CIALU design. The dataflow orienta-
tion of each ALU cell is chosen to minimize the internal bypass routing between
the cells for the most prevalent patterns (2a, 2b, 2e, 3a and 4a) as indicated
by our results in Sect. 4. For example, pattern 2e may be mapped as ALU0 →
ALU1 and ALU2 → ALU3, whereas pattern 3a may be mapped as ALU0 →
ALU1 and ALU1 → ALU2.
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Our design essentially restricts the full bypass network to a partial inter-
connection network as shown in Fig. 4(d). This partial interconnection network
allows the mapping of indefinitely long patterns, where up to two outgoing edges
are allowed for each of the pattern nodes. As a result, patterns 2c and 3b cannot
be efficiently executed on the CIALU. However, both are relatively infrequent
and are simply extensions to pattern 2b. They can thus be scheduled without
loss of performance as an instance of pattern 2b and an additional operation.

The set of supported dataflow patterns do not utilize all four of the CIALU
cells simultaneously. Thus some of the cells in the CIALU may be idle in a par-
ticular clock cycle. Each of these free cells functions just like an integer ALU,
and therefore may accept ready-to-execute integer operations. Furthermore, the
CIALU’s issue latency of one cycle allows the scheduling of a new pattern in-
stance, if available, on a per cycle basis. Scheduling constraints may occur when
there is a conflict of cell mappings for two pattern instances. For example, pat-
tern 2e cannot be scheduled to the CIALU on the third execution cycle of pat-
tern 3a due to a cell mapping conflict on ALU2. In this case, the scheduling of
pattern 2e is delayed by a further cycle.

A two-dimensional organization of the ALU cells implies that a completely
bit-sliced design is no longer possible. Horizontal wires must be added within
the register file to connect the two sets of global bypass paths to the ALU cells.
The internal bypass paths between the cells will also occupy physical space. In
spite of these considerations, we do not expect the total height of the modified
datapath to be any greater than that of the linear layout shown in Fig. 3(b).

While our normalized ALU model fits the 64-bit implementation of MIPS-like
processors, it does not quite model the fast ALUs in NetBurst [4]. These fast
ALUs and address generation units are also organized as a two-by-two array.
In a 32-bit implementation, each of the fast ALUs consists of two 16-bit slices
with closed-loop bypass. A staggered add mechanism allows a 16-bit addition to
complete in half a clock cycle, and a full 32-bit addition to complete in one clock
cycle. The pipelined nature of the fast ALU allows an initiation rate of half a
clock cycle. ALU results are sent to the register file and other execution units
via a multiple cycle global bypass network. We note that the aggressive design
of NetBurst allows a clock frequency that is at least three times that of a 1GHz
MIPS implementation. However, for a cycle-by-cycle comparison, a 64-bit version
of the fast ALU should be normalized to C=2 (assuming staggered add with two
32-bit slices), an optimistic value of B=2, I=0 and R=1. The normalized fast
ALUs are able to execute indefinitely long linear chains of dependent operations
such as patterns 2a, 2e, 3a and 4a in the same time as the CIALU model listed
in the fourth row of Table 2. However, the timing of the fourth row of Table 1
applies for the other branching patterns.

3 Experimental Setup

We use the cycle-accurate SimpleScalar [3] out-of-order simulator to evaluate the
impact of varying processor configurations on the performance of our design.
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Global bypass delays, B, are added as a parameter to the out-of-order sim-
ulator. The CIALU is also added as an integer functional unit, with a default
issue latency of one cycle (R=1), a parametrizable computation latency, C, and
a parametrizable internal bypass delay, I. We considered four-way and eight-way
baseline and enhanced processor configurations in which the total number of
ALUs corresponds to the issue width of the processor. Table 3 lists the non-
default parameter settings of interest.

The mechanism of the pattern matching circuit, pattern profiler and scheduler
are as described in Sect. 2.2. The modified simulator implements an architecture
where the runtime analysis modules do not incur any overheads and the size of
the profile window is set to one instruction. This setting allows us to measure
the performance gains contributed by the ability of our CIALU to save bypass
cycles for dependent patterns.

Table 3. Non-default processor configurations for sim-outorder

Parameters 4-way 4-way 8-way 8-way
Baseline Enhanced Baseline Enhanced

Register Update Unit size 16 16 32 32
Load/Store Queue size 8 8 16 16
Number of ALUs 4 0 8 4
Number of CIALUs 0 1 0 1
Computation latency of an ALU 1/2 1/2 1/2 1/2
Computation latency of a CIALU 1/2 1/2 1/2 1/2
Global bypass delay 0/1/2 1/2 0/1/2 1/2
Internal bypass delay of a CIALU n/a 0/1 n/a 0/1

We performed simulations for benchmarks selected from the SPEC2000 [1] and
MediaBench [7] suites. We included program binaries we were able to compile for
SimpleScalar’s Portable Instruction Set Architecture (PISA) model. The input
sets packaged with the MediaBench benchmarks were used to run the programs
to completion. The SPEC2000 benchmarks were run using the MinneSPEC [6]
inputs, favoured for their smaller sizes. All performance figures reported, unless
otherwise stated, are averages of the results obtained over the applications in
each benchmark set.

4 Results and Analysis

4.1 Prevalence of Dataflow Patterns at Runtime

In order to determine the prevalence of the dataflow patterns of interest, we
disabled the runtime profiler and fixed the CIALU configuration for a partic-
ular pattern for the entire execution of a program. Pattern instances matched
at runtime are scheduled to the CIALU. The processors’ fixed ALUs (if any)
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and idle CIALU cells were used for the execution of parallel integer operations.
For pattern 1a, our choice of parameters yields the same settings for both the
baseline and enhanced processors. Thus, no performance gains are expected from
pattern 1a.

From Table 4, we observe that linear chains of dependent sequences (pat-
terns 2a, 2e, 3a and 4a) are most prevalent at runtime. For four-way processors,
up to 45.92% of integer operations are scheduled as pattern 2a, achieving an
Instructions Per Cycle (IPC) gain of 13.05%. Patterns 2b and 3b which involve
results bypassing to two pending operations are less frequent, with a frequency
of up to 7.62% and an IPC gain of 2.23%. Patterns 2c and 2d account for approx-
imately 1% of integer instructions for four-way processors. Clearly, patterns 2c,
2d and even 3b do not contribute much to the overall performance benefits of the
CIALU. While similar trends are observed for eight-way processors, the larger
processor bandwidth allows more patterns to be mapped at runtime, achieving
a slightly better performance speedup.

Table 4. Percentage of integer operations scheduled to the CIALU (op2cialu) and
Instructions Per Cycle (IPC) gain (%) achieved by processors enhanced with a CIALU
(C=1, B=1, I=0 and R=1) fixed to accelerate the given pattern for the entire execution
of a program

Data- MediaBench SPEC2000
dependent 4-way 8-way 4-way 8-way
patterns op2cialu Gain op2cialu Gain op2cialu Gain op2cialu Gain

2a 45.92 13.05 55.18 14.11 35.64 8.71 41.24 9.21
2b 7.62 2.23 13.41 3.31 6.22 1.16 9.82 1.62
2c 0.92 0.23 2.37 0.23 1.09 0.24 4.54 0.59
2d 0.87 0.13 1.43 0.19 0.72 0.09 0.97 0.13
2e 14.67 3.07 32.56 6.80 12.86 3.78 21.88 5.16
3a 24.22 10.86 33.16 13.39 21.73 10.33 25.73 11.92
3b 3.69 1.62 9.15 3.90 2.68 0.74 5.25 2.01
4a 11.91 6.49 16.79 14.70 6.45 2.97 9.59 4.67

4.2 A Runtime Adaptive CIALU

Here we attempted to gain a sense of the benefit of a CIALU which is able to
adapt its internal bypass paths to match dataflow patterns at runtime. Due to
the profile window size of one instruction, more than one dataflow pattern may
be matched in a given clock cycle. Thus, a simple greedy priority scheme was
used. Priority was given to ready instances of patterns that offered the greatest
savings of bypass cycles and then to those that used the highest number of cells
in the CIALU. Thus, ready instances of pattern 4a were given precedence over
patterns 3a, 2e, 2d, 2b, and 2a, in that order. Our CIALU design in Fig. 4(c)
excludes patterns 2c and 3b due to the limitation of the partial internal bypass
network. The results from Sect. 4.1 show that the low frequencies of patterns 2c
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and 3b allow us to reschedule both patterns as pattern 2b without loss of per-
formance. The CIALU’s issue latency of one cycle allows the scheduling of a
new pattern instance on a per cycle basis, subject to the scheduling constraint
discussed in Sect. 2.4.

Table 5 lists for each benchmark the IPC gains for a four-way enhanced proces-
sor. Similar to the CIALU with fixed configurations in Sect.4.1, instances of pat-
tern 2a are most frequent in many of our benchmarks, followed by pattern 3a,
4a, 2e, 2b and 2d. However, slightly different trends are observed for the epic
and 301.apsi applications.

Table 5. IPC gains (%) and breakdown of pattern frequencies (%) for a four-way
processor enhanced with a runtime adaptive CIALU (C=1, B=1, I=0, R=1)

Benchmarks Gain Data-dependent patterns
2a 2b 2d 2e 3a 4a

MediaBench
adpcm.enc 21.45 16.57 0.31 1.56 12.21 12.42 15.56
adpcm.dec 16.73 14.54 0.47 0.00 12.12 22.00 5.27
epic.enc 2.74 20.65 0.15 0.02 2.50 4.62 0.25
epic.dec 5.68 13.35 1.81 0.02 7.74 8.59 0.67
g721.enc 18.80 24.27 2.84 0.14 9.87 10.65 7.62
g721.dec 16.53 22.55 3.29 0.28 10.13 9.58 7.59
jpeg.enc 24.00 14.42 1.07 0.76 9.67 19.56 7.52
jpeg.dec 29.04 11.69 0.52 0.02 4.39 19.51 18.31
mpeg2.enc 13.23 14.38 13.29 1.03 3.10 9.28 4.20
mpeg2.dec 15.23 14.98 0.87 0.01 1.64 14.84 13.74
pegwit.enc 27.01 10.47 3.58 1.11 5.02 17.87 16.43
pegwit.dec 26.32 11.64 3.11 0.37 4.83 18.46 15.22
average 18.06 15.79 2.61 0.44 6.93 13.95 9.36

SPEC2000
171.swim 10.98 14.83 1.61 0.00 3.70 8.53 5.00
173.applu 18.42 17.70 1.29 0.05 3.38 16.76 15.95
176.gcc 7.18 12.29 2.84 1.24 3.46 7.91 3.85
181.mcf 5.12 13.73 3.02 0.01 1.62 5.31 9.62
188.ammp 3.14 17.47 4.13 0.13 3.48 3.96 1.91
197.parser 10.73 16.57 9.97 0.55 2.61 3.18 1.15
301.apsi 42.49 2.57 0.18 0.01 0.32 65.92 1.15
average 14.01 13.59 3.29 0.28 2.65 15.94 5.52

The epic benchmark recorded an unusually low percentage (<1%) of pat-
tern 4a at runtime, in contrast to the average 11.92% for the other applications
in MediaBench. Pattern 4a is the longest chain in the set of patterns we ana-
lyzed and instances of this pattern can potentially save the largest number of
global bypass cycles. The low frequency of pattern 4a yields the low IPC gains of
2.74% and 5.68% for the epic encoder and decoder applications, respectively. As
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for 301.apsi, 65.92% of operations scheduled to the CIALU belong to instances
of pattern 3a, but less than 3% correspond to pattern 2a. The larger number
of global bypass cycles saved by pattern 3a contributes to a large IPC gain of
42.49% for 301.apsi.

4.3 Impact of Global Bypass Delays

Table 6 reports on the impact of global bypass delays on both baseline and
enhanced processors. As we expect, IPC decreases as both register access delays
and global bypass delays are increased from zero to two clock cycles. The decrease
in IPC can be partly compensated for by the higher processor frequency possible
with the pipelining of the ALUs and/or the global bypass paths. For ease of
comparison, we report our results in terms of IPC.

We also observe that the additional instruction issue bandwidth provided by
eight-way processors is insufficient to compensate for the loss of IPC caused
by the gradual increase in the global bypass delays, due to the prevalence of
dependent data patterns in the benchmark applications. For example, a baseline
eight-way processor with ALUs of parameters C=1 and B=1 achieved an IPC of
1.1487, which is a slowdown of 30.9% compared to a baseline four-way processor
with ALUs of parameters C=1 and B=0.

Table 6. IPC and IPC gains (%) for processors with different global bypass delays

Delay MediaBench SPEC2000
assumption 4-way 8-way 4-way 8-way

IPC Gain IPC Gain IPC Gain IPC Gain

Baseline
C=1, B=0 1.6634 n/a 2.1778 n/a 1.2720 n/a 1.5408 n/a
C=1, B=1 0.8715 n/a 1.1487 n/a 0.7175 n/a 0.8875 n/a
C=1, B=2 0.5810 n/a 0.7646 n/a 0.5002 n/a 0.6197 n/a
C=2, B=2 0.5125 n/a 0.6812 n/a 0.4526 n/a 0.5616 n/a

Enhanced
C=1, B=1, I=0 1.0083 18.06 1.3612 20.43 0.8206 14.01 1.0205 15.25
C=1, B=2, I=0 0.7160 25.77 0.9789 29.67 0.6006 20.59 0.7506 22.45
C=2, B=2, I=0 0.6211 23.18 0.8394 25.83 0.5339 18.49 0.6700 20.29

4.4 Impact of Internal Bypass Delays of the CIALU

The timing model of the CIALU (Table 2) shows that the aggressive model saves
twice as many global bypass cycles as the conservative model. This is reflected in
the performance reported in Table 7 which indicates that the IPC gains for the
aggressive model are roughly doubled that of the conservative model. The results
also indicate that our design benefits both four-way and eight-way processors,
achieving IPC gains of up to 25.77% and 29.67%, respectively.
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Table 7. IPC gains (%) for the aggressive and conservative CIALU models

Delay assumption MediaBench SPEC2000
4-way 8-way 4-way 8-way

C=1, B=2, I=0 (aggressive) 25.77 29.67 20.59 22.45
C=1, B=2, I=1 (conservative) 13.38 15.47 10.93 12.20
C=2, B=2, I=0 (aggressive) 23.18 25.83 18.49 20.29
C=2, B=2, I=1 (conservative) 12.12 13.91 10.03 11.05

5 Conclusion and Future Work

In this paper we studied the benefits of allowing the functional units of a mod-
ern microprocessor to reorganize themselves into connected structures to reduce
delays in forwarding results to dependent operations. These delays are expected
to increase to several clock cycles and substantially limit instruction throughput
of superscalar architectures as process technology and clock periods continue to
decrease. We proposed adding to a superscalar, dynamically scheduled processor
a functional assembly we refer to as a chained functional unit (CIALU), a two-
by-two array of fully-fledged integer ALUs with a fast, partial interconnection
network. The network is configured to simultaneously bypass results between
the ALUs with minimal delay. At high execution initiation rates, this structure
allows long chains of linearly dependent operations and more complex branching
dataflow patterns to be accelerated. The CIALU is dynamically configured for
the dataflow pattern identified through runtime profiling of the executing binary.
Over a defined number of subsequent cycles, instances of the configured pattern
are sought out in the issue queue and mapped to the configured CIALU. During
this period the dataflow patterns present in the queue are monitored to reassess
the configuration choice and adapt to changes in the pattern distribution.

The diverse collection of existing architectures with disparate clock frequen-
cies and computational output per cycle presented the problem of comparing the
performance results of our proposal with these architectures. To overcome this
problem, we proposed a normalized timing model that takes into account the
number of clock cycles needed for register accesses, execution, results bypassing
and writebacks. The model was then used to derive the relative execution per-
formance of architectures such as MIPS, NetBurst and our proposed CIALU.
We thereby laid the groundwork for a high fidelity SimpleScalar simulation of
these architectures executing a variety of common benchmarks.

Our analysis of the results indicates that non-branching, linear chains of op-
erations are by far the most prevalent dependent dataflow patterns found in
the issue queue of pending instructions. These contributed most to speedups.
We found that a four-way processor that has its four integer ALUs replaced by
a CIALU with an internal forwarding delay of zero cycle and a global bypass
delay of one cycle is capable of boosting the number of instructions executed
per cycle by approximately 18% for MediaBench, and approximately 14% for
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the MinneSPEC inputs for SPEC2000. The improvements on these benchmarks
rise towards 30% when an eight-way processor is enhanced and as bypass delays
increase to two cycles. Unfortunately, the contribution to performance improve-
ment due to branching dataflow patterns is relatively small. They accounted for
less than 10% of the dataflow patterns accelerated by our system.

Our on-going work will include profiling entire loop bodies, deriving the
dataflow graphs and mapping them at runtime to larger coarse-grained arrays.
We are also interested to investigate how our results will vary for in-order, soft-
core processors targetted to FPGAs for embedded applications.
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Abstract. This paper investigates the benefits of conducting leakage energy op-
timisations for data caches at link time for embedded applications. We introduce
an improved algorithm for identifying and constructing the traces in a binary pro-
gram and present a trace-based optimisation for reducing leakage energy in data
caches. Our experimental results using Mediabench benchmarks show that good
leakage energy savings can be achieved at the cost of some small performance
and code size penalties. Furthermore, by varying the granularity of optimisation
regions, which is a tunable parameter, embedded application programmers can
make the tradeoffs between energy savings and these associated costs.

1 Introduction

Leakage power dissipation is estimated to be around 10-15% of the total power dissi-
pation in high-speed processes [6] and this fraction is projected to be the dominant part
of the chip power budget beyond the 0.1 micron feature sizes [2]. Leakage energy con-
sumption in caches is particularly significant since they contain a significant fraction of
the on-chip transistors in a microprocessor. It is projected that leakage will represent
more than 70% of the energy consumed in caches if left unchecked for the 0.07 micron
process [10]. Therefore, reducing leakage energy for caches is of practical importance
in modern microprocessors.

In our earlier work [12], we introduced a trace-based, link-time compilation frame-
work for embedded systems and reported its benefits in reducing leakage energy on
functional units. In this work, we investigate the benefits of supporting leakage en-
ergy optimisations on data caches in such a framework. In particular, we present an
improved algorithm for constructing the traces in a binary program. Based the traces
thus generated, we introduce a trace-based optimisation for reducing leakage energy on
data caches. We present experimental evaluations of our optimisation using Mediabench
benchmarks.

Guided by some execution profiling information, the frequently executed paths in
a binary program are identified and duplicated as single-entry traces. Separating fre-
quently from infrequently executed paths (spanning both user and library functions)
at link time enables the compiler to focus energy optimisations on the hot traces (i.e.,
spots) across the whole program. The traces are further connected to form the so-called
optimisation regions, where their entries and exits are less frequently executed than
what are inside. To reduce the leakage energy on a cache in an optimisation region, the
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Fig. 1. A traced-based, link-time framework implemented in alto for the Alpha architecture

compiler invokes an appropriate architectural feature at the entries of the region to put
the cache in an energy-saving mode and then restores the cache to its normal mode at its
exits. Our experimental results using Mediabench programs show that significant leak-
age energy savings can be obtained at the cost of small execution time and code size
increases. In addition, varying the granularity of optimisation regions makes it possible
to make the tradeoffs between energy savings and these associated costs.

The rest of this paper is organised as follows. Section 2 introduces our trace-based
methodology. In particular, we discuss an improved algorithm for identifying and con-
structing the traces in a binary program. Section 3 presents a traced-based optimisation
for reducing leakage energy on caches. In Section 4, we evaluate this work with Medi-
abench benchmarks. Section 5 reviews the related work. Section 6 concludes the paper.

2 Trace-Based Methodology

Figure 1 depicts our trace-based framework for supporting energy-oriented optimisa-
tions on binaries. We have implemented it alto, a link-time optimiser for the Alpha
architecture [15]. The two components we have added to alto are highlighted by the
two boxes in gray. We refer to [12] for a description of the functionalities of all the
components in the framework. Our framework supports static binary optimisations. The
advantage is that no runtime system is needed. However, applications that use shared or
runtime libraries cannot be handled. In addition, static binary translators such as alto
[15] rely on the reallocation information from the linker to reconstruct a CFG from a
binary file. So all relocatable addresses in the file must be identifiable.
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1 #DEFINE BB THRESHOLD = 5%
2 #DEFINE BB MIN = the execution frequency of basic block bi such that i

is the largest satisfying: BB THRESHOLD � (i/N) × 100(%), where
b1, . . . , bN are the N basic blocks in the program sorted in the non-increasing
order of their execution frequencies

3 #DEFINE BB PROB = 50%

4 Boolean FUNCTION Hot(block)
5 return block.freq � BB MIN × BB PROB

6 PROCEDURE GenTrace()
7 Initialise headerlist with loop headers or

function entry blocks h such that
h.freq � BB MIN

8 while headerlist is not empty
9 header = block h removed from headerlist such that h.freq is the largest (by

favouring a tieing candidate that is a successor of a trace exit in order
to create well-connected traces)

10 Identify the trace starting from header h
11 Duplicate the trace in the program
12 UpdateHeaderList(headerlist)

13 PROCEDURE UpdateHeaderList(headerlist)
14 Remove every block b from headerlist

such that Hot(b) does not hold
15 for every successor block s of a trace exit
16 if s is not in a trace such that Hot(s) holds
17 Add s to headerlist

Fig. 2. A static trace generation algorithm

Let us present an improved algorithm of [12] for identifying and constructing the
traces in a binary program. A trace is a frequently executed path in a binary program.
Such a trace may cross function boundaries. The first (basic) block in a trace is called
a trace header. A block in a trace is called a trace exit if it has one successor block
that is not in a trace. Based on profiling information, the frequently executed paths
in the CFG of a program are identified and duplicated as single-entry traces. Thus, a
trace t1 can only branch into a trace t2, where t1 and t2 may be identical, via the trace
header of t2. Single-entry traces allow compiler optimisations to be easily applied. In
[12], we presented an algorithm for constructing the traces in binaries. We give a high-
level sketch of that algorithm in Figure 2 and describe three improvements we have
made.

Our algorithm identifies and builds the hot traces in a program by making use of three
profiling-related parameters, which are defined in lines 1 – 3. In fact, BB THRESHOLD
is introduced only to define BB MIN, which, together with BB PROB, are used explicitly
in our algorithm. These three parameters serve the following purposes. Initially, our
algorithm starts with loop headers or function entries b that are potential trace headers
only when b.freq � BB MIN, where b.freq is the (profiled) execution frequency of
block b (line 7). When a trace grows, the blocks that join the trace become progressively
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non-larger in terms of their execution frequencies. However, every block that appears
in a trace must be hot. A block b is hot if the predicate Hot(b) defined in lines 4 – 5
evaluates to true, i.e., if b.freq � BB MIN × BB PROB. In addition, a block b does
not belong to a trace if its execution frequency has dropped below BB PROB(%) of the
execution frequency of the header of that trace.

BB THRESHOLD is a tunable parameter introduced to define BB MIN and is set to
be 5% for Mediabench programs. Depending on the application domains under consid-
eration, appropriate threshold values need to be empirically determined. Unlike [12],
BB MIN can vary from program to program, allowing the traces to be identified and
constructed in a program-dependent manner. Once a trace header h is found (line 7),
the while loop in line 8 grows the trace from h by adding more and more blocks to the
trace. The trace always grows from its last block along its hottest outgoing edge (i.e.,
branch). Let s be the successor block along this edge. The trace is terminated if s is the
pseudo block, a trace header or the exit block of the CFG for the program. The trace is
also terminated if s is not hot (i.e., Hot(s) does not hold) or s.freq < b.freq×BB PROB
(i.e., the execution frequency of s has dropped below BB PROB (%) of that of the trace
header b). In line 11, a trace that is identified in line 10 will be duplicated with the
execution frequencies of all affected blocks and edges being updated appropriately.

In line 12, UpdateHeaderList is called to do two things. First, some blocks in head-
erlist that are no longer hot are removed (line 14). This can happen since part of its
execution frequency may have been allocated to its duplicate in a hot trace. Second, in
lines 15 – 17, the successor blocks s of every trace exit are examined. If s is not already
in a trace, we add s to headerlist if it is hot, i.e., when s.freq � BB MIN × BB PROB
(even if s.freq < BB MIN may hold). Unlike [12], this ensures that both branches of
an if statement are included in traces if both are parts of frequently executed paths.

We have also improved [12] by using a profile-guided devirtualisation technique
to reduce the number of unknown indirect jumps in virtual call sites. In the case of
a virtual call site, alto may represent all possible function invocations as unknown
indirect jumps. Based on profiling information, our profile-guided devirtualisation pass
devirtualises the hot functions invoked at each virtual call site by means of method test
[4]. This involves replacing the indirect jump to a hot function by a direct jump guided
by a test on the address of the function.

Our illustrating example is given in Figure 3(a). For a block identified by nf , n de-
notes its block number and f its execution frequency. The number drawn on an edge
(x, y) represents its execution frequency; the number is omitted if the edge is the only
outgoing edge of x. In Figure 3(a), the edge (7,12) introduced by alto serves to indi-
cate that block 12 will be executed after the call made in block 7. The edges of this kind
are ignored during trace generation. Running our algorithm over the example given in
Figure 3(a) produces the modified CFG shown in Figure 3(b). There are a total of three
traces generated. They are highlighted in gray boxes, where the trace D7-D8′-D9′-D11′-
D12 crosses the boundaries of the two functions in the example.

In Figure 3(a), (7, 8) is a call edge, which is part of the trace denoted by T3. In this
case, we rely on the procedure InlineCriticalPaths available in alto [15] to inline a
frequently executed subgraph rooted at the entry block of the callee. Afterwards, our al-
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Fig. 3. An example CFG

gorithm will continue to grow the trace on the inlined subgraph as usual. In Figure 3(b),
the blocks 7, 8, 9, 8′, 9′ and 11′ are dead, which will eventually be removed.

3 Trace-Based Leakage Optimisation

In Section 3.1, we give an algorithm for clustering the traces into optimisation regions,
the units of our energy-oriented optimisations. In Section 3.2, we describe the architec-
tural features required for supporting our leakage optimisation. Section 3.3 presents our
trace-based optimisation for reducing the data cache leakage energy.
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3.1 From Traces to Optimisation Regions

The hot traces constructed by GenTrace given in Figure 2 are clustered into the so-called
optimisation regions, which are the units of energy-oriented optimisations. Given a re-
gion, we will reduce the leakage energy of a data cache by turning off the cache at
the entries of the region and turning it back on again at its exits. Since what are in-
side a region are hot traces, its entries and exits are less frequently executed than the
blocks/edges inside. However, the switching on/off activities on these insertion points,
if performed too frequently, can still consume significant CPU cycles and dynamic en-
ergy. To allow the tradeoffs between performance and energy savings to be made, the
granularity of optimisation regions can be tuned.

The formation of optimisation regions relies on a so-called trace flow graph, which
is defined below and illustrated in Figure 3(c) using our running example. In addition,
the concept of trace flow graph is also used in our two optimisations.

Definition 1. A control flow edge (x, y) in the CFG of a program is called (1) a trace
entry edge if x is not in a trace and y is a trace header, (2) a trace exit edge if x is in
a trace but y is not, and (3) a trace link edge if both x and y are in traces (which may
be identical), and in addition, y is a trace header.

Definition 2. A trace flow graph is the graph consisting of (1) all the hot traces (in-
cluding the blocks in these traces and the edges connecting these blocks), and (2) all
trace entry, exit and link edges and their incident blocks.

The trace flow graph of Figure 3(b) is shown in Figure 3(c), where (1, D2), (5, D2)
and (5, D6) are trace entry edges, (D2, 4) and (D8′, Call) are trace exit edges, and
(D1, D2), (D5, D2), (D5, D6), (D6, D7) and (D12, D7) are trace link edges. Note that
(D5, D2) ((D12, D7)) is a trace link edge for the trace T1 (T3) itself.

After the traces have been constructed, the optimisation regions are formed by calling
FindRegions. This procedure expects two arguments to be passed in: TFG represents
the trace flow graph of a given program and Affinity is a value ranging in [0, 1]. Es-
sentially, an optimisation region consists of multiple traces that are connected by trace
link edges. However, some trace link edges may be infrequently executed. Such edges
are ignored depending on the value of Affinity so that we can tune the granularity of
optimisation regions formed. If Affinity = 0 (i.e., a small positive number close to 0,
in practice), then all regions are singleton traces. Such a setting is the most aggressive
in turning off unused or infrequently used hardware components (e.g., cache) in a re-
gion. If Affinity = 1, then every region is the largest possible with the largest number
of directly connected traces. Such a setting aims at reducing the execution cycles and
dynamic energy consumed by the power-aware instructions inserted. Varying the value
of Affinity allows tradeoffs to be made between energy savings and performance.

Figure 3(d) depicts the two regions formed for the program shown in Figure 3(c)
with Affinity = 1/1.2 under the assumption that BB MIN = 1000.

3.2 Architecture Support

The leakage power of a CMOS circuit is directly proportional to the product of the
power supply voltage (VDD) and the leakage current in a CMOS transistor. Circuit
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1 PROCEDURE FindRegions(TFG, Affinity)
2 Let L be the set of all trace link edges e in TFG such that e.freq< ( 1

Affinity − 1) ∗ BB MIN
3 TFG′ = TFG with all edges in L removed
4 return (set of all connected subgraphs in TFG′)

Fig. 4. An algorithm for forming regions

techniques such as power gating (SG), input vector control (IVC) and dynamic voltage
scaling (DVS) [2,6] can reduce the leakage power by reducing the supply voltage and/or
leakage current. To support our optimisations, we assume the availability of on and off
instructions in the underlying instruction set architecture (ISA).

Following [19], we use the same state-preserving leakage control mechanism as pro-
posed in [6], which can preserve the contents of a cache line when the line is put into a
low leakage mode. Thus, the cache behaviour of a program is not affected.

The execution of an on (off) instruction causes all the cache lines in the cache to be
placed in a normal (leakage-saving) state. Whenever a cache line is accessed, if it is in
the leakage-saving state, the normal state will be restored first for the cache line before
the access is executed. The execution of an on (off) instruction with respect to an cache
line that is in the normal (leakage-saving) state has no effect on the leakage status of the
cache line. The latencies and dynamic energy overheads of on/off instructions depend
on the exact implementation mechanism.

3.3 Leakage Optimisation for Data Caches

Given an optimisation region, all the cache lines in the cache are “turned off”, i.e.,
placed in the low-leakage mode at its entries and “turned on”, i.e., placed in the normal
mode at its exits. A cache line accessed in a region, once restated to the normal mode,
will remain so until the region has been executed.

Figure 5 gives our algorithm, CacheOpt, for reducing the data cache leakage energy.
In lines 3 and 4, we identify the traces and then form the optimisation regions. In line
5, we call InsertOnOffInsts to insert the required on/off instructions at the entries and
exits of every optimisation region straightforwardly. In lines 8 – 9, we insert one single
“off instruction” on every trace entry edge. In lines 10 – 11, we insert one single “on
instruction” on every trace exit edge. In lines 12 – 14, we find every trace link edge
(x, y) such that x and y are two distinct regions, in which case x.region �= y.region.
Every such an edge serves as a exit edge of the region x and an entry edge of the region
y. Therefore, an “off instruction” is inserted on the edge. Note that an “on instruction”
needs not be inserted redundantly before the off instruction on the same edge.

Our algorithm allows the granularity of optimisation regions to be adjusted by vary-
ing the tunable parameter AFFINITY. If the regions are large enough, the performance
and dynamic energy penalties due to switching on/off activities will be insignificant but
the opportunities for leakage reduction are also small. In general, the larger a region is,
the larger the number of cache lines there will be in the normal mode and the smaller
the leakage energy savings will be in the region. Therefore, the regions can be tuned to
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1 #DEFINE AFFINITY = a value in [0, 1]
2 PROCEDURE CacheOpt()
3 Build the TFG (Definition 2)
4 SetofRegs = FindRegions(TFG, AFFINITY)
5 InsertOnOffInsts

6 PROCEDURE InsertOnOffInsts()
7 Insert one “on inst” at entry to main
8 for every trace entry edge (x, y)
9 Insert one “off inst”

10 for every trace exit edge (x, y)
11 Insert one “on inst”
12 for every trace link edge (x, y)
13 if x.region �= y.region
14 Insert one “off inst”

Fig. 5. A leakage optimisation for data caches

make tradeoffs between the leakage energy savings and associated overheads (including
dynamic energy and execution time penalties).

Example. As in before, we assume that BB MIN=1000, BB PROB=50% and AFFINITY
= 1/1.2. Consider our running example given in Figure 3(a). In lines 3 – 4, the trace
flow graph and the optimisation regions found are given in Figures 3(c) and 3(d), re-
spectively. As a result, the on and off instructions are inserted as shown in Figure 6.

4 Experimental Results

In our experiments, we evaluate the effectiveness of our trace generation algorithm
in identifying the hot traces and the effectiveness of our optimisation in reducing the
leakage energy of data caches.

We use 15 benchmarks from the Media benchmark suite. All benchmarks are com-
piled using DEC C 5.6-075 at “O2” on an Alpha 21264-based system. Similar trends
in our results are observed at “O3” or under gccwith varying optimisation levels. There
are so-called “second data sets” for 12 out of the 15 benchmarks available in the Media-
bench web site. The exceptions are pgpencrypt, pgpdecrypt and mesa. For each
benchmark, the profiling information is collected using the so-called “second data set”
if it exists and the data set that comes with the benchmark otherwise. All benchmarks
are simulated using the data sets that come with these benchmarks.

We consider a superscalar out-of-order architecture consisting of two integer multi-
pliers, four integer ALUs for non-multiplication integer operations, one floating point
multiplier and four floating point adders. Such an architecture is chosen to match the
target architecture of alto, in which our trace-based framework is implemented. We
use sim-outorder, an out-of-order cycle-level simulator from SimpleScalar. The simu-
lations for all the benchmarks are run to completion.

In order to make our presentation precise, we use Palto to denote the binary from
alto and Popt to denote the binary generated after CacheOpt has been applied.
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Fig. 6. The result of applying CacheOpt to the running example given in Figure 3. All tunable
parameters used are defined in Section 3.3.

4.1 Trace Generation: GenTrace

The three metrics are used: (1) the trace accuracy measured as the cycles spent in the
traces, (2) the code size increase due to the duplication of the traces, and (3) the perfor-
mance degradation due to the introduction of the traces.

Table 1. Five settings for BB THRESHOLD and BB PROB

Configuration BB THRESHOLD BB PROB
CONFIG1 3% 50%
CONFIG2 5% 25%
DEFAULT 5% 50%
CONFIG3 5% 75%
CONFIG4 8% 50%

We evaluate GenTrace below using the five configurations listed in Table 1, where
DEFAULT is the default setting. The trace accuracies are over 80% for all benchmarks
under all five configurations. The only exception is djpeg for which an accuracy of
49.12% is obtained in CONFIG1. In this special case, a threshold of BB PROB = 3%
results in BB MIN=703, which is too large to capture all frequently executed paths in
the benchmark. The static instruction count increases range from 0.12% in nearly all
five configurations for both rawcaudio and rawdaudio to 6.87% in CONFIG4 for
cjpeg. The performance changes for all the benchmarks are very encouraging. Out
of the 15 benchmarks used, pgpdecrypt and g721encode have small positive or
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Table 2. Cache parameters taken from [19]

Parameter Value
Feature size 0.07 micron
Supply voltage 1.0 V
L1 I-cache 16 KB, direct-mapped
L1 I-cache latency 1 cycle
L1 D-cache 16 KB, 4-way
L1 D-cache latency 1 cycle
Unified L2 cache 512KB, 4-way
L2 cache latency 10 cycles
Memory latency 100 cycles
Clock speed 1 GHz
L1 cache line size 32 bytes
L2 cache line size 64 bytes
L1 cache line
leakage energy 0.33 pJ/cycle

L1 deactive mode cache
line leakage energy 0.01 pJ/cycle

L1 state-transition
(dynamic) energy 2.4 pJ/transition

L1 state-transition latency
from deactive mode 1 cycle

L1 dynamic energy
per access 0.11 nJ

L2 dynamic energy
per access 0.58 nJ

negative speedups configurations under all five configurations, toast and untoast
run between 0.04% to 1.58% slower under all five configurations, and the remaining 11
programs run faster under all five configurations. These performance variations appear
to be attributed to the profile-guided code layout pass invoked in the code generation
module of alto as shown in Figure 1. Our results show that GenTrace is capable of
identifying the most frequently executed paths in a program and the associated costs
for duplicating these paths as the hot traces in the program are small (relative to the
achieved energy savings to be discussed shortly).

4.2 Leakage Optimisation for Data Caches

We will use the DEFAULT configuration to evaluate our data cache leakage optimisa-
tion: BB THRESHOLD = 5%, BB PROB = 50% and AFFINITY takes four values:
1, 1/1.05, 1/1.5 and 0. We adopt the cache configuration and energy numbers listed in
Table 2, which is taken entirely from [19]. The cache state-preserving leakage control
mechanism used is from [6]. According to [19], the energy numbers were obtained by
circuit simulation for the 0.07 micron process.

Figure 7 depicts the data cache leakage energy savings achieved by CacheOpt. The
percentage leakage reduction in a program Popt is given by:

cache saving =
Ostatic − Cdynamic − Cstatic

Ostatic
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Fig. 9. Code expansion of Popt relative to Palto

where Ostatic denotes the amount of leakage energy consumed in Palto before the op-
timisation, Cstatic the amount of leakage energy consumed in the optimised Popt and
Cdynamic the dynamic energy overhead due to the switching on/off activities introduced
in Popt. As shown in Figure 7, the leakage energy savings are obtained in all benchmarks
at all four AFFINITY values. In addition, they are progressively non-worse as the gran-
ularity of optimisation regions (i.e., AFFINITY) decreases. When AFFINITY = 1, the
leakage reductions range from 18.59% for epic to 92.59% for g721encode. In the
other extreme when AFFINITY = 0, the leakage reductions are more impressive, rang-
ing from 83.87% for cjpeg to 95.74% for rawcaudio.

In the Mediabench benchmarks, a small set of data are typically active at a given
period of time. As a result, reducing the granularity of optimisation regions tends to
increase the total leakage energy saved. While smaller regions lead to higher on/off
switching activities, i.e., higher dynamic energy consumption, as illustrated in Figure 8,
these overheads are more than or equally outweighed by the leakage energy savings
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Fig. 10. Performance changes of Popt relative to Palto

achieved at all the four AFFINITY values used. This phenomenon is more pronounced in
pgpencrypt, epic, unepic, cjpeg, djpeg and mesa. In the other nine bench-
marks, the largest optimisation regions obtained when AFFINITY = 1 are small, result-
ing in already at least 83.87% leakage reduction in each case. So any further leakage
savings from using smaller regions are relatively insignificant.

The impact of CacheOpt on code size and performance is illustrated in Figures 9 and
10. In both cases, the cost increases are relatively small.

5 Related Work

Reducing energy consumption is important for embedded devices. Compiler optimisa-
tions can play an important role due to the need to meet conflicting constraints on time,
code size and energy consumption. In the absence of architectural support, compiler
techniques can improve the dynamic energy behaviour of a program in many phases
of the compilation process, such as instruction selection [13], register allocation [7]
and instruction scheduling [11]. Loop transformations such as loop tiling can reduce
the dynamic energy spent on cache by reducing the cache misses in the program [9].
By exploiting available architectural support in an embedded system, the compiler can
generate code to dynamically reconfigure the processor resources to make tradeoffs be-
tween performance and energy usage. For example, [16] explore DVS as a means of
improving the dynamic energy consumption of a program without increasing its execu-
tion time. [18] analyse and evaluate the opportunities and limits of compile-time DVS
scheduling.

The on-chip caches are one of the hardware components for leakage reduction since
they contain a significant fraction of the transistors in a microprocessor. Flautner et al
[6] present architectural techniques for reducing the leakage energy of a data cache by
periodically putting cache lines into a low-power mode. Motivated by this work, Zhang
et al [19] describes a loop-based, compiler-directed solution. Essentially, the innermost
loops are taken as optimisation regions. Given an innermost loop, all the cache lines are
placed in a low-leakage mode at the beginning of the loop and restored to their normal
mode at its exits. His experimental results over benchmarks show that this software
solution can be competitive with the hardware-based solution [6].

In this work, we present a trace-based approach to reducing data cache leakage en-
ergy at link time. Rather than innermost loops, our units of optimisations are the regions
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constructed from the hot traces. The advantages of using traces are stated earlier. The
traces are inherently inter-procedural, spanning both user and library functions (which
may contain assembly code). In addition, the frequently executed paths formed by re-
cursive calls are recognisable as traces but not as loops.

There are a number of static or dynamic binary translation systems around [1,3,17].
These systems aim at improving performance or otherwise achieving portability.
However, we are the first to investigate the effectiveness of a trace-based, static binary
translation framework in supporting energy-oriented optimisations for embedded appli-
cations. Working on binaries at link time (i.e., statically) dispenses with an expensive
run-time system that would otherwise be required.

Traces are not new. Trace scheduling [5] is a well-known technique for increasing
the amount of ILP by scheduling a sequence of basic blocks together, which typically
represents a frequently executed path in the program. Traces have a number of exten-
sions such as hyperblocks [14] and regions [8]. In Dynamo [1], the frequently executed
paths are identified at run time so as to improve the program performance transpar-
ently. These previous works show that a trace-based approach is effective in supporting
performance-oriented optimisations. This work demonstrates that the traces also repre-
sent a suitable framework to support energy-oriented optimisations.

Our trace generation algorithm identifies the hot traces across procedural boundaries
at link time based on an inter-procedural CFG constructed from a binary file. This CFG
is imprecise since the targets of some jumps may be unknown or even illegal since
a branching instruction in one function may jump to the middle of another function.
These problems do not exist when the traces are constructed at compile time [5,8,14] or
cause less trouble when the traces are constructed at run time [1].

6 Conclusion

This work investigates for the first time the effectiveness of conducting energy-oriented
optimisations for data caches in a traced-based compilation framework at link time.
We present a simple yet effective algorithm for identifying and constructing the hot
traces in a binary program at link time. We also introduce a trace-based optimisation
for reducing leakage energy for data caches. The optimisation is simple since traces
allow the optimisation regions and on/off insertion points to be identified easily and also
effective since significant leakage energy reductions can be obtained for benchmarks at
small performance degradations and code size expansions.
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13. M. Lorenz, L. Wehmeyer, and T. Dräger. Energy aware compilation for DSPs with SIMD
instructions. In ACM SIGPLAN’ 02 Conference on Languages, Compilers, and Tools for
Embedded Systems, pages 94–101. ACM Press, 2002.

14. S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann. Effective compiler
support for predicated execution using the hyperblock. In 25th ACM/IEEE International
Symposium on Microarchitecture, pages 45–54. IEEE Computer Society Press, 1992.

15. R. Muth. ALTO: A Platform for Object Code Modification. PhD thesis, The University of
Arizona, 1999.

16. H. Saputra, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, J. S. Hu, C.-H. Hsu, and U. Kremer.
Energy-conscious compilation based on voltage scaling. In ACM SIGPLAN ’02 Conference
on Languages, Compilers, and Tools for Embedded Systems, pages 2 – 11, Berlin, Germany,
2002. ACM Press.

17. D. Ung and C. Cifuentes. Machine-adaptable dynamic binary translation. In ACM SIGPLAN
Workshop on Dynamic and Adaptive Compilation and Optimization, pages 41–51. ACM
Press, 2000.

18. F. Xie, M. Martonosi, and S. Malik. Compile-time dynamic voltage scaling settings: oppor-
tunities and limits. In ACM SIGPLAN’ 03 Conference on Programming Language Design
and Implementation, pages 49–62. ACM Press, 2003.

19. W. Zhang. Compiler-directed data cache leakage reduction. In IEEE Computer Society An-
nual Symposium on VLSI Emerging Trends in VLSI Systems Design. IEEE Computer Society,
2004.



C. Jesshope and C. Egan (Eds.): ACSAC 2006, LNCS 4186, pp. 189 – 202, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Parallelizing User-Defined and Implicit Reductions 
Globally on Multiprocessors 

Shih-wei Liao 

Intel Corporation 
2200 Mission College Blvd, Santa Clara, CA 95054 

shih-wei.liao@intel.com 

Abstract. Multiprocessors are becoming prevalent in the PC world. Major CPU 
vendors such as Intel and Advanced Micro Devices have migrated to multicore 
processors. However, this also means that computers will run an application at 
full speed only if that application is parallelized. To take advantage of more than 
a fraction of compute resource on a die, we develop a compiler to parallelize a 
common and powerful programming paradigm, namely reduction. Our goal is to 
exploit the full potential of reductions for efficient execution of applications on 
multiprocessors, including multicores. Note that reduction operations are com-
mon in streaming applications, financial computing and HPC domain. In fact, 
9% of all MPI invocations in the NAS Parallel Benchmarks are reduction library 
calls. Recognizing implicit reductions in Fortran and C is important for paralleli-
zation on multiprocessors. Recent languages such as Brook Streaming language 
and Chapel language allow users to specify reduction functions. Our compiler 
provides a unified framework for processing both implicit and user-defined re-
ductions. Both types of reductions are propagated and analyzed interproce-
durally. Our global algorithm can enhance the scope of user-defined reductions 
and parallelize coarser-grained reductions. Thanking to the powerful algorithm 
and representation, we obtain an average speedup of 3 on 4 processors. The 
speedup is only 1.7 if only intraprocedural scalar reductions are parallelized. 

Keywords: Reduction, multiprocessor, multicore, reduction recognition, inter-
procedural analysis, data flow analysis, parallelization, implicit reductions, 
user-defined reductions. 

1   Introduction 

With the arrival of multicore CPUs in the PC market [7], the general public can read-
ily use multiprocessors for the first time. However, only a parallel application can 
utilize all the cores on a die. To effectively leverage multicores, we target the paral-
lelization of reduction operations. Reductions and scans are ubiquitous abstractions of 
compute operations. As a result, Blelloch has advocated them as the principal abstrac-
tions for parallel computation [6]. Our parallelization of reduction can enable efficient 
execution of this powerful paradigm on multicores. 

A reduction is the application of an associative operation (for instance, addition, 
multiplication, and finding minimums and maximums) to combine a data set. Because 
of the associativity of a reduction operation, the compiler may reorder the computation, 
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and in particular, may execute portions of the computation in parallel. Reduction  
operations are prevalent in streaming applications, financial computing and HPC  
domain [1][2][8][10][11][13]. For instance, MPI provides reduction library routines 
that account for about 9% of all MPI calls in the NAS Parallel Benchmarks (NPB)  
version 3.2 [5]. 

A reduction can be explicit or implicit. The former is specified in the language or 
in the library API; while the latter requires compiler or runtime analysis for detection. 
Explicit reduction operators date back to APL in the 60s [8]. Because of the impor-
tance of reductions, OpenMP supports reduction clauses, while MPI and HPF provide 
reduction libraries. Recent languages such as the Brook Streaming language and the 
Chapel language allow users to specify reduction functions. Identity, accumulating, 
and combining functions can be specified in Chapel which is part of the DARPA pro-
gram for High Productivity Computing Systems. 

Implicit reductions are prevalent in HPC domain. Recognizing implicit reductions 
in traditional languages and parallelizing them is essential for achieving high per-
formance on multiprocessors. Our compiler currently handles Brook, C and Fortran 
languages, which contain both explicit and implicit reductions. 

To unify the processing of both kinds of reductions, we build a compiler that de-
tects implicit reductions, checks explicit reductions, and represents both implicit and 
user-defined reductions uniformly in the intermediate representation (IR). Both im-
plicit and user-defined reductions are propagated and analyzed globally. Specifically, 
our compiler operates in three steps: 

 

1. Local checking and representation of user-defined reductions in annotations 
on IR. 

2. Local detection and annotation of implicit reductions. Section 3 describes 
our algorithm to detect reductions. 

3. Using the uniform representations in “1” and “2”, we perform interproce-
dural analysis and checking to obtain the best granularity in parallelization. 
The algorithm has been implemented in our fully functional parallelizers.  

This paper makes the following contributions: 

• Unified processing of implicit and user-defined reductions. We check 
user-defined reductions and represent them in the same fashion as represent-
ing implicit reductions. We present a general algorithm for processing both 
kinds of reductions. 

• A powerful and interprocedural reduction recognition algorithm. We 
present a powerful algorithm for finding reductions on both scalar and array 
variables. First, the algorithm extends beyond previous  approaches  in  its  
ability  to  locate  reductions  to  array  regions,  even  in  the presence of ar-
bitrarily complex data dependences. As an important example, the algorithm 
can locate reductions on indirect array references through index arrays. Sec-
ond, our algorithm locates interprocedural reductions, reduction operations 
that span multiple procedures. We show that these global reductions occur in 
some computationally-intensive loops. 
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• Extensive evaluation of importance in benchmarks. We measure the im-
pact of reduction recognition on parallelization of a collection of programs. 
These results demonstrate that parallelizing reductions makes a tremendous 
difference in the amount of the computation that can be parallelized. 

 

The rest of the paper is organized as follows. Section 2 discusses the scope of our 
reduction analysis. Section 3 describes the interprocedural reduction recognition algo-
rithm. Section 4 provides results indicating the frequency with which reductions occur 
in the benchmarks and quantifying their impact on the parallelization of these pro-
grams. The related work is presented in Section 5. Section 6 summarizes the paper. 

2   Scope of Our Reduction Analysis 

A reduction is the application of an associative operation to combine a data set. Re-
duction recognition and checking is an important component of enabling parallelism 
on multicores.  

2.1   User-Defined Reductions 

Our compiler first performs local checking on user-defined reductions. Our algorithm 
can parallelize the associative functions such as addition, multiplication, and finding 
minimums and maximums. For example, foo is a reduction, but compiling bar will 
produce an error message that identifies bar as a non-associative function. Note that 
reduce is a keyword in the Brook language. 

 

reduce void foo(type(x), reduce int result) 
{ 
    result = result + x;  
} 
 
reduce void bar(type(x), reduce int result1) 
{ 
    result1 = result1 / x; 
} 

 

In our intermediate representation, we represent user-defined reductions in annota-
tions. Reduction operators and variables are captured in the annotation. foo is anno-
tated with a reduction annotation. As Section 3 explains, each enclosing program  
region may have a reduction annotation attached for result. Those annotations are 
propagated and attached as part of our interprocedural reduction recognition  
algorithm in Section 3. 

For instance, in the following code, result is a reduction variable at the inner loop 
level, but not at the outer loop level. The reason is that our compiler recognizes that 
the read access to result in the statement S2 makes the variable no longer reducible at 
the outer loop level. Even if the programmer removes the statement S2, result is still 
not reducible at the outer loop level because the statement S1 is not reducible. Both S1 
and S2 need to be removed for result to become a reduction variable at the outer level. 
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for (I = 0; I < M; I++) {  // no reduction annotation 

    // Statement S1: no reduction annotation 
    bar(C, result); 

    // Statement S2 
    d = … result …; 

    // reduction annotation on the result variable 
    for (J = 0; J < N; J++) { 
        // reduction annotation on the result variable 
        foo(B, result);    
        … 
        // reduction annotation on the result variable 
        foo(A, result); 
    } 
} 

As shown above, reductions may span across multiple loops or functions. By 
propagating reduction summaries across program region boundaries, we are able to 
parallelize larger amounts of codes, with much lower parallelism overhead. Note that 
implicit reductions may also span across multiple program regions. One such example 
is the reductions on the FLN array in the spec77 program in the Perfect Club bench-
mark [19]. Parallelizing multiple reductions on the same FLN array interprocedurally 
in the spec77 benchmark is important for achieving scalability and speedups on  
multiprocessors. 

2.2   Implicit Reductions 

Our algorithm can analyze both scalar reductions and array reductions, as presented 
below. In addition, we want to recognize reductions which consist of multiple updates 
to the same variable. 

2.2.1   Scalar Reductions 
A summation of an array A[0:N-1] is typically coded as: 

for (I =  0; I < N; i++)  
    SUM = SUM + A[i]; 

The values of the elements of the array A are reduced to the scalar SUM. As shown 
in this example, reductions, when coded in sequential programming  languages, are not  
readily recognizable as commutative operations. However, most parallelizing compil-
ers will recognize scalar reductions such as this accumulation into the variable SUM. 
Such reductions can be transformed to a parallel form by creating a private copy of 
SUM for each processor, initialized to 0. Each processor updates its private copy with 
the computation for the iterations of the I loop assigned to it, and following execution 
of the parallel loop, atomically adds the value of its private copy to the global SUM. 

2.2.2    Regular Array Reductions 
To discover coarse granularity of parallelism, it is important to recognize reductions 
that write to not just simple scalar variables but also to array variables. Reductions on 
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array variables are also common and are a potential source of significant improve-
ments in parallelization results. 

There are several variations on how array variables can be used in reductions. For 
example, we can simply replace the SUM variable by an array element: 

for (I = 0; I < N; I++)  
    B[J] = B[J] + A[I]; 

Or, the reduction may write to the entire or a section of an array: 

for (I = 0; I < N; I++) { 
    // ... a lot of computation to calculate A(I,1:3) 
    for (J = 1; J <= 3; J++) 
        B[J] = B[J] + A[I,J] 
} 

Suppose, in this example, the calculations of A[I,1:3] for different values of I are 
independent. Standard data dependence analysis would find the I loop (the loop with 
index I) not parallelizable because all the iterations are reading and writing the same 
locations B[1:3]. It is possible to parallelize the outer loop by having each processor 
accumulate to its local copy of the array B and then sum all the local arrays together. 

2.2.3   Sparse Array Reductions 
Sparse computations pose what is usually considered a difficult construct for parallel-
izing compilers. When arrays are part of subscript expressions, a compiler cannot  
determine the location of the array being read or written. In some cases, loops con-
taining sparse computations can still be parallelized if the computation is recognized 
as a reduction. In the example below, we observe that the only accesses to the sparse 
vector HISTOGRAM are commutative and associative updates to the same location, 
so it is safe to transform this reduction to a parallelizable form. 

for (I = 0; I < N; i++)  
    HISTOGRAM[A[I]] = HISTOGRAM[A[I]] + 1; 

It is possible to parallelize the code by having each processor compute a part of the 
array HISTOGRAM and collect the information in a local histogram, and sum the his-
tograms together at the end. Our reduction analysis can parallelize this reduction even 
when the compiler cannot predict the locations that are written. 

3   Reduction Recognition 

Section 2.1 describes the checking and representation of user-defined reductions, 
which is the first phase of our reduction analysis. We present the phase 2 and 3 of the 
analysis in this section: locating reductions and performing interprocedural analysis as 
part of our array data-flow analysis. The algorithm has been implemented in our fully 
functional parallelizer in SUIF. 

As defined previously, a reduction occurs when a location is updated on each loop 
iteration, where a commutative and associative operation is applied to that location's 
previous contents and some data value. We have implemented a simple, yet powerful 
approach to recognizing reductions, in response to the common cases we have  
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encountered in experimenting with the compiler. The reduction recognition algorithm 
for both scalar and array variables is similar, as scalar reductions are just a degenerate 
version of array reductions. This section focuses on array reduction recognition, 
which is integrated with the array data-flow analysis in the SUIF Compiler. 

3.1   Problem Formulation for Reduction Analysis 

The formulation of our reduction recognition algorithm is different from that used in 
previous compilers, and is powerful enough to allow our compiler to parallelize all 
the examples in Section 2. We model a reduction operation as consisting of a series of 
commutative updates. An update operation consists of reading from a location, per-
forming some operation with it, and writing the result back to the same location. We 
say that a (dynamic) series of instructions contains a reduction operation to a data sec-
tion r if all the accesses to locations in r are updates that can commute with each other 
without changing the program's semantics. Under this definition, it is easy to see that 
the examples above contain a reduction to, respectively, the regions SUM, B[J], 
B[1:3] and HISTOGRAM[1:M] where M is the size of the array HISTOGRAM. 

Not only is this model powerful, the analysis technique can be easily integrated 
with interprocedural array data-flow analysis. We will show how the reduction analy-
sis is a simple extension of array data-flow analysis. The representation of array sec-
tions is common to both array data-flow analysis and array reduction analysis. The 
basic unit of data representation  is  a  system  of  integer  linear  inequalities, whose  
integer  solutions  determine  array indices of accessed elements. As described in our 
previous work [3], the denoted index tuples can also be viewed as a set of integral 
points within a polyhedron. The accessed region of an array is represented as a set of 
such polyhedra. 

3.2   Interprocedural Reduction Recognition  

The reduction recognizer is integrated with our array data-flow analysis. We will first 
describe the criteria for reductions and then the integration with the interprocedural 
dataflow analysis framework. The basic unit of data representation is a system of lin-
ear inequalities, whose integer solutions determine array indices of accessed elements. 
In addition, we add to the array section descriptor all the relationships among scalar 
variables that involve any of the variables used in the array index calculation. 

3.2.1   Locating Reductions 
The reduction recognition algorithm searches for computation that meets the follow-
ing criteria. 

1. The computation is a commutative update to a single memory location A of 
the form, A = A op ..., where op is one of the commutative operations recog-
nized by the compiler. Currently, the set of such operations includes +, *, 
MIN, and MAX. The MIN (and, similarly, MAX) reductions of the form "if  
(A[i]  <  tmin)  tmin  =  A[i]" are also supported. 

2. In the loop, the only other reads and writes to the location referenced by A 
are also commutative updates of the same type described by op. 
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3. There are no dependences on any operands of the computation that cannot be 
eliminated either by a privatization or reduction transformation.  

This approach allows any commutative update to an array location to be recog-
nized as a reduction, even without precise information about the values of the array 
indices. This point is illustrated by the sparse reductions in Section 2.2.3. The reduc-
tion recognition correctly determines that updates to HISTOGRAM are reductions, 
even though HISTOGRAM is indexed by another array A and so the array access func-
tions for HISTOGRAM are not affine expressions. 

In the following, we will first summarize our array data-flow analysis and then pre-
sent our interprocedural reduction analysis in the data-flow analysis framework. 

3.2.2   Array Data-Flow Analysis 
As described in our previous work [3], the bottom-up phase of our array data-flow 
analysis summarizes the data that has been read and data that has been written within 
each loop and procedure. The bottom-up algorithm analyzes the program starting 
from the leaf procedures in the call graph and analyzes a region only after analyzing 
all its subregions. Note that this part of reduction recognition algorithm applies best to 
Fortran programs. We can only apply this propagation and analysis to a subset of non-
Fortran programs where we can disambiguate function pointers and the memory ali-
ases on commutative updates. Simple recursions are handled via fixed point calcula-
tions. We do not deal with complicated cases. Fortunately the reductions in our non-
Fortran workload typically do not involve complex aliasing and pointers.  

We compute the union of the array sections to represent the data accessed in a se-
quence of statements, with or without conditional flow. At loop boundaries, we derive 
a loop summary by performing the closure operation, which projects away the loop 
index variables in the array regions. We summarize the sections of data accessed in a 
loop to eliminate the need to perform n2 dependence tests for a loop containing n  
array accesses. At procedure boundaries,  we  perform  parameter  mapping,  reshap-
ing  the  array  from  formal  to  actual parameter if necessary. At each loop level, we 
apply a data dependence test and privatization test to the read and written data sum-
maries [3][4]. 

3.2.3   Integration into Data-Flow Analysis Framework 
In terms of the data-flow analysis framework, reduction recognition requires only a 
flow insensitive examination of each loop and each procedure body. Array reduction 
recognition is integrated into the array data-flow analysis from the previous section. 
Whenever an array element is involved in a commutative update, the array analysis 
derives the union of the summaries for the read and written sub-arrays and marks the 
system of inequalities as a reduction of the type described by op, where op is either +, 
*, MIN, MAX, or user-specified reductions. When meeting two systems of inequali-
ties during the interval analysis, the resulting system of inequalities will only be 
marked as a reduction if both reduction types are identical. 

3.2.4   Interprocedural Algorithm 
Working in a bottom-up manner, the interprocedural algorithm starts by detecting 
statements that update a location via an addition, multiplication, minimum, maximum, 
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or user-specified operator. The algorithm keeps track of the operator and the reduction 
region, which is calculated in the same manner as above if an array element has been 
updated. To calculate the reductions carried by a sequence of statements, we find the 
union of the reduction regions for each array and each reduction operation type. The 
result of the union represents the reduction region for the sequence of statements if it 
does not overlap with other data regions accessed via non-commutative operations or 
other commutative operations. At loop boundaries, we derive a summary of the reduc-
tion region by projecting away the loop index variables in the array region. Again, the 
summary represents the reduction region for the entire loop if it does not overlap with 
other data regions accessed. 

The way we determine if a loop is parallelizable is as follows. We first apply the 
data dependence test and the privatization test on the read and write summaries and 
determine whether there is any dependence. If not, the loop is parallelizable and re-
ductions are not necessary. Otherwise, we check if all data dependences on an array 
result from its reduction regions. If so, we parallelize the loop by generating parallel 
reduction code for each such array. 

4   Experimental Results 

Our reduction algorithm automatically parallelizes the reduction operations in sequen-
tial applications without relying on user directives. Parallel programs generated by 
our compiler are executed on cache-coherent shared address-space multi-processors. 
We will first describe our experimental setup in Section 4.1, evaluate the frequency of 
reductions and the coverage and the granularity of parallelism in Section 4.2, and pre-
sent the performance results in Section 4.3. 

4.1   Experimental Setup  

The reduction recognition algorithm described above is implemented in the SUIF 
compiler. The following collection of results were obtained with the SUIF compiler, 
which takes input programs and generates parallel SPMD (Single Program Multiple 
Data) code with calls to our own runtime thread package.  

Our runtime thread package supports parallel execution on a variety of machines, 
including the bus-based SMP (Symmetric Multi-Processors) such as the Silicon 
Graphics Challenge series, and the CC-NUMA (Cache-Coherent Non-Uniform Mem-
ory Access) architectures such as the Stanford DASH, the Stanford FLASH, and the 
Silicon Graphics Origin series. 

4.2   Role of Reduction in Parallelization  

We present measurement on how often the commutative update operations must be 
converted to parallelized reductions in order to parallelize loops in the benchmark 
programs. To evaluate our reduction algorithm, we present two sets of results, one 
without using reduction analysis and the other with reduction analysis. The former is 
obtained by using the baseline system, which includes interprocedural data depend-
ence analysis, interprocedural scalar analysis, and interprocedural array privatization 
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analysis. The latter uses array reduction analysis, in addition to the analyses in the 
baseline system. 

To evaluate the applicability of our reduction recognition algorithm, we apply our 
algorithm on the LowPass benchmark [9] in Brook and the NAS parallel benchmark 
[5]. Table 1 provides the program description and the number of lines of code for 
each program. LowPass is a Brook program that uses explicit reduction. The NAS 
Parallel Benchmarks is a suite of eight programs used for benchmarking parallel 
computers. NASA provides sample sequential programs plus application information, 
with the intention that they can be rewritten to suit different machines. We use all the 
NASA sample programs except for embar. We substitute for embar a version from 
Applied Parallel Research (APR) that separates the first call to a function, which ini-
tializes static data, from the other calls. 

Table 1. Benchmarks and their descriptions 

Program No. of lines Description 
LowPass 109 9-tap low pass filter using stencil and convolution 
appbt 4457 block tridiagonal partial differential equation solver 
applu 3285 parabolic/elliptic partial differential equation solver 
appsp 3516 scalar penta-diagonal partial differential equation solver 
buk 305 integer bucket sort of a random sequence 
cgm 855 unstructured sparse solver using conjugate gradient 
embar 135 parallel random number generator 
fftpde 773 3-D partial differential equation of fast Fourier transform 
mgrid 676 3-D multigrid solver for computing potential field 

4.2.1   Static Measurements 
Table 2 presents a count of the number of loops containing reductions that must be 
parallelized in order to parallelize the loop. The interprocedural and intraprocedural 
categories divide the reductions into those that spam multiple procedures and those 
that do not. Note that some of the reductions classified as intraprocedural are in loops 
that contain procedure calls; a reduction is only classified as interprocedural if the 
commutative update operation and the loop in which it is a reduction are in different 
procedures. We also divide the loops into those containing only scalar reductions, 
only array reductions, or both types of reductions. The column labeled “number of 
parallel loops with reduction” gives the number of loops in all categories that require 
parallel reductions in order to be parallelized. Note that in Table 2 we only count the 
outermost parallel loop in a loop nest, even if the inner ones may also be parallel. 
    The second column from the right end shows the number of loops that are parallel-
ized without parallel reductions. The last column reports the total number of outer-
most parallel loops. Note that the number of parallel loops without reduction plus the 
number of loops requiring reduction does not necessary equal the number of parallel 
loops. This is because when an outer loop in a nest is parallelized, we only count  
the nest once, even if parallelizing its inner loops is also possible. Thus, sometimes 



198 S.-w. Liao 

parallelizing a reduction allows us to parallelize an outer loop in a nest; when the re-
duction is suppressed, parallelizing some inner loops may still be possible. 

From this table, we see that parallelizable reductions occur in almost all of the pro-
grams. Clearly, parallelized reductions are widely applicable. We note that most of 
the reductions are intraprocedural reductions on scalar variables. Array and interpro-
cedural reductions occur less often. However, as we will see in subsequent results, the 
array and interprocedural reductions can have a tremendous impact on performance. 

Table 2. Impact of reductions (static measurements) 

No. of parallel loops 
with interprocedural  
reduction 

No. of parallel loops 
with intraprocedural  
reduction 

Pro-
gram 

scalar array both scalar array both 

No. of
parallel 
loops 
w/ red. 

No. of 
parallel 
loops 
w/o red. 

Total 
no. of 
parallel 
loops 

Low-
Pass 

0 1 0 0 1 0 1 4 5 

appbt 0 3 0 3 3 0 9 161 169 
applu 0 3 0 3 4 0 10 126 136 
appsp 0 3 0 3 3 0 9 157 166 
buk 0 0 0 1 0 0 1 3 4 
cgm 0 0 0 4 2 0 6 13 19 
embar 0 0 1 2 1 0 4 2 5 
fftpde 0 0 0 4 0 0 4 21 25 
mgrid 0 0 0 5 0 0 5 33 38 
Total 0 10 1 25 14 0 49 520 567 

4.2.2   Coverage and Granularity 
The previous section presents static counts of the parallelizable loops found with and 
without reductions. Static loop counts, though, are not good indicators of whether 
parallelization is successful. Specifically, parallelizing just one outermost loop can 
have a profound impact on the performance of a program. Dynamic measurements 
provide much more insight into whether a program may benefit from parallel reduc-
tions. Thus, we present a series of results gathered from executing the program on 
parallel machines. Table 3 shows whether the reduction loops are ones in which the 
program spends its time. We use two dynamic measurements which we call parallel-
ism coverage and parallelism granularity. Parallelism coverage gives the percentage 
of the sequential execution time spent in parallelized regions of the code. Parallelism 
coverage gives us a first order approximation of how well the parallel program can be 
expected to perform; programs with low coverage do not perform well. By Amdahl’s 
law, a program with parallelism coverage of 80% can at most speed up by 2.5 on 4 
processors. High coverage is indicative that the parallelizer is locating significant 
amounts of parallelism in computation. 

Parallelism granularity is the average length of computation between synchroniza-
tions in the parallel regions. Due to overheads of synchronization and data communi-
cation, programs with low granularity do not perform well. Table 3 lists the programs 
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Table 3. Coverage and granularity information on the programs on which parallel reductions 
have an impact 

Parallelism coverage Parallelism granularity 

Program no reduc-
tion (%) 

use reduc-
tion (%) 

ratio of no 
reduce. vs. 
use reduc. 

no reduc-
tion 
(msec) 

use reduc-
tion 
(msec) 

ratio of no 
reduce. vs. 
use reduc. 

LowPass 92 98 94% 0.8 0.9 89% 

appbt 97.9 99.4 98% 12.8 13.1 98% 
cgm 4.2 96.4 4% 0.86 18.4 5% 

embar 0 100.0 0% 0.009 8133.6 0% 

 
for which reduction recognition is important to discover coarser granularity of  
parallelism.  

We obtain our coverage and granularity data on a uniprocessor Challenge. Table 3 
reports only those programs for which parallel reductions increase more than 2% of 
the coverage or more than 2% of the granularity. We observe from these results that 
reductions are critical in extracting parallelism from 4 out of the 9 programs. Cover-
age is above 80% for all 4 programs. Granularity is above 0.9 millisecond for all 4 
programs. In our experience, granularities on the order of 1 millisecond are high 
enough to yield speedup.  

Recall from the previous section that LowPass, appbt, and embar all contain inter-
procedural reductions. These interprocedural loops are the main reasons for the in-
creased coverage and granularity. Despite the fact that interprocedural reductions are 
not all that common, when they do occur, because interprocedural loops often contain 
a significant amount of work, they can greatly impact performance. All of the 4 pro-
grams in Table 3 contain array reductions. 

4.3   Performance Improvement 

While parallel speedups measure the overall effectiveness of a parallel system, they 
can be highly machine dependent. Since parallel reductions incur more overhead than 
simple parallelization, not only do speedups despend on the number of processors,  
they are sensitive to many aspects of the architecture, such as the cost of synchroniza-
tion, the interconnect bandwidth, and the memory subsystem. Thus, we evaluate the 
effectiveness of our reduction algorithm both the SMP (Challenge) and the CC-
NUMA machine (Silicon Graphics Origin). 

Table 4 compares the speedups of the 4 programs on a four-way SMP with and 
without parallelized reductions. We observe that LowPass, cgm, and embar benefit 
from parallelized reductions. The speedups for cgm and embar are quite significant, 
as compared with speedups of approximately 1 without reduction. Table 4 also ex-
plains the reasons for the increased speedups. The sparse reductions and the interpro-
cedural reductions are the key to improving the performance of these programs.  
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Table 4. Performance improvement due to reduction on a 4-way SMP 

Speedups Reasons for improvement 

Program 

Time of 
sequen-
tial  
version 
(sec) 

no reduc-
tion 

use re-
duction 

relative 
improve-
ment 

sparse 
reduction

inter-
proce-
dural re-
duction 

intra-
proce-
dural re-
duction 

LowPass 
(4k elts) 

3.7 1.2 1.3 10%  YES YES 

appbt  
(123 *52 

grid) 
10.1 2.9 2.9 0%    

cgm  
(1.4k 
elements) 

5.4 1.0 3.5 250% YES  YES 

embar  
(256 it-
erations) 

4.6 1.0 4.0 300% YES YES  

 
The difference in parallel coverage observed earlier for these programs translates 

into positive effects on parallelization. The coverage of LowPass and appbt increases 
only slightly, and hence the performance is almost the same. The parallelization of 
appbt relies on the array privatization technique, not on the array reduction technique. 

Table 5. Performance improvement due to reduction on a 4-way CC-NUMA 

Speedups Reasons for improvement 

Program 

Time of 
sequen-
tial  
version 
(seconds) 

no reduc-
tion 

use re-
duction 

relative 
improve-
ment 

sparse 
reduction

inter-
proce-
dural re-
duction 

intra-
proce-
dural re-
duction 

LowPass 
(32k elts) 

2.4 1.1 1.3 20%  YES YES 

appbt  
(343 *52 

grid) 
939.4 3.6 3.7 3%   YES 

cgm  
(14k elts)  

87.8 1.0 2.9 190% YES  YES 

embar  
(64k it-
erations) 

1009.7 1.0 4.0 300% YES YES  

Table 5 presents the performance data on a CC-NUMA machine. The speedups for 
cgm and embar are also significant. We are able to use the large data set to obtain 
good speedups. The running time is too small otherwise. As a result, we do not use 
the same input data set from Table 4. 
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5   Related Work 

User-defined reductions and scans date back to APL days. The recent languages, 
Chapel, Fortress and X10 all have reduction operators [2][12][14]. These languages 
are part of the DARPA program for High Productivity Computing Systems. Chapel 
allows its users to specify the identification, accumulation, and combining functions 
for reductions and scans [2]. Our compiler provides a unified framework for process-
ing both implicit and user-defined reductions. Both implicit and user-defined reduc-
tions are propagated and analyzed globally. Our global algorithm can enhance the 
scope of user-defined reduction globally and obtain coarser-grained reductions. 

Reduction recognition approaches have been proposed that rely on symbolic analy-
sis or abstract interpretation to locate many kinds of complex reductions [15][16][17]. 
However, it is unclear whether the significant additional expense of these approaches 
is justified by the types of reductions that appear in practice. 

Most previous array reduction algorithms need to constrain the array index func-
tion to be affine. Our algorithm can perform reductions even when the compiler can-
not predict the locations that are written. The formulation of our reduction recognition 
algorithm is different from that used in previous compilers and is powerful enough to 
allow our compiler to parallelize more cases. For example, although important, sparse 
array reductions are not being sufficiently exploited as a source of parallelism in  
today’s parallelizing compilers. We also found that coarser grain interprocedural com-
putations are particularly beneficial when parallelizing reductions because the over-
head of the reduction can be amortized over a larger parallel computation. In com-
parison, previous compilers [18] did not parallelize interprocedural sparse reductions 
with integrated explicit reductions as aggressively. 

6   Conclusion 

Reductions are powerful programming paradigms. Our region-based interprocedural 
compiler provides a unified framework for processing both implicit and user-defined 
reductions. Our work is distinguished by its ability to integrate explicit reductions and 
to parallelize interprocedural and sparse reductions.  

We have shown through extensive measurements that parallelizing reductions is an 
important component in leveraging multiprocessors. Finally, our experimental results 
show that many of the parallelizable loops do not require interprocedural reduction 
analysis. However, the coarse-grained loops parallelized with our reduction analysis 
often contain a significant portion of the overall computation of the program and, as 
shown in Section 4, can make a substantial difference in overall performance. Thus, 
parallelizing reductions is an essential component in obtaining excellent parallel 
codes for multiprocessors. 
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Abstract. Performance degradation under overload is a well known
problem in networked systems. While this problem has been explored
extensively in the context of TCP-based web servers, other applications
have unique requirements which need to be addressed.

In existing admission control systems, the cost of admission control
increases with the load to the system. This is acceptable for responsive
TCP-based loads, but it is not effective in preventing overload for unre-
sponsive workloads.

We present a solution where admission control cost is a function of
the traffic admitted to the system, allowing our approach to maintain
peak throughput under overload.

We have implemented our approach in a real system and evaluated its
effectiveness in preventing overload for a number of demanding network
workloads. We find that our solution is effective in eliminating perfor-
mance degradation under overload, while having the desirable property
of being simple to implement in commodity systems.

1 Introduction

All real systems have finite resources, and all systems are subject to physical
constraints such as processor speed, memory capacity, bandwidth, latency, power
consumption etc. It will therefore always be possible to demand more of a system
than it can physically provide. It is a simple matter of applying enough load to a
system that it no longer has enough resources to process all of the applied load.
We must, therefore, accept that it is always possible that a system may become
overloaded, and consider the behaviour of systems when that situation occurs.

It is desirable that a system maintain maximum throughput under sustained
high load, however, performance degradation under overload is a common char-
acteristic of many operating systems. The extreme case of such performance
degradation is livelock, where given a suitably high load, the throughput of the
system drops to zero.

The problem of overload becomes increasingly evident as the disparity be-
tween network speed and other processing resources increases. For this reason,
we are particularly interested in solving the problem of overload as experienced
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in commodity network appliances such as routers, firewalls and network attached
storage products. Such products typically have limited CPU resources and are
commonly available with high-speed network interfaces.

Most current work on overload focusses on admission control for web-servers.
These approaches have a number of shortcomings when applied to our target
application. Admission control in web-servers is typically performed on a per-
TCP-connection basis. Such an approach does not generalise to other network
applications well. Current approaches also have an admission control cost which
increases with applied load. This leads to degradation under overload and is
particularly unacceptable for systems with limited resources.

This paper describes a protocol-independent admission control implementa-
tion whose resource consumption is independent of the load applied to the sys-
tem. Unlike existing approaches, admission control is achieved by careful use of
the network interface’s DMA interface, allowing a commodity network interface
to perform rate-limiting on incoming packets (Section 2.1). We also implement
a new approach to determining the maximum throughput of a system, by using
network traffic analysis to measure and control the performance of the system
at runtime (Section 2.2).

We have implemented our approach in FreeBSD, and evaluated it by compar-
ing the performance of our solution to an unmodified system, and a hypothetical
ideal solution (Section 3). We show that our approach solves the problem of per-
formance degradation under overload, without requiring significant modification
to the operating system.

2 The Edge Limiting Approach

We will now examine mechanisms for eliminating performance degradation which
may be implemented within an operating system using commodity hardware. Our
goal is to enable data-paths consisting of both degradable and non-degradable
resources to have the overall characteristics of a non-degradable resource. That
is to say, regardless of the composition of the data-path, we want to prevent the
overall performance of the data-path from degrading under overload.

Our approach to solving this problem is to create a rate-limiting resource
by causing a non-degradable logical resource to become saturated early in the
data path, at the maximum capacity of the data-path. This prevents all other
resources on that data-path from exposure to data rates beyond their maximum
capacities, thereby preventing performance degradation under overload from
occurring.

This approach has two distinct requirements: a way to control the rate at
which data enters the system, and a way to determine the maximum capac-
ity of the system. This section will discuss how these two requirements can be
implemented in a real operating system, using a commodity Gigabit Ethernet
interface.
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2.1 Rate Control Mechanisms

Our approach requires the ability to rate-limit network traffic entering the sys-
tem. This requirement is orthogonal to the way in which feedback is propagated
within the system. We propose the placement of a controllable rate-limiting re-
source at the edge of the system, to limit the data rate seen by the rest of the
system. This rate-limiting resource is responsible for discarding packets when
the system’s capacity to process them has been exceeded.

It is important that the resource be placed as close to the edge of the system as
possible. This requirement precludes the use of software rate-control mechanisms,
since packets must be discarded before they consume precious resources, such as
peripheral and memory bus bandwidth. Since we require the use of commodity
hardware, we will examine rate-limiting mechanisms which can be implemented
in the driver, and which cause packets to be dropped by the network interface
before they can be copied to main memory using DMA.

The following rate-limiting mechanisms leverage the behaviour of the network
interface when all receive buffers in the DMA descriptor ring have been used,
which is to drop any subsequent incoming packets. This approach gives the be-
haviour of a non-degradable resource, because packets which are discarded do
not consume any additional system resources. Resource consumption of the dis-
carded packet is limited to processing on the network interface, which is capable
of handling the full load of the network link.
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Fig. 1. Model of rate-limiting mechanism

Figure 1 shows the relationship between the achieved packet rate, the number
of packets dequeued per interrupt and the interrupt frequency. Given this model,
we can choose to control the incoming packet rate by adjusting the number of
packets dequeued per interrupt, or by adjusting the interrupt frequency.

Controlled dequeue rate: This rate-limiting mechanism is implemented by
controlling the rate at which packets are dequeued from the DMA ring by the
driver.
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Traditional driver implementations aim to dequeue as many packets from the
DMA ring as possible before returning from the interrupt handler. We modify
this behaviour by dequeuing only the appropriate number of packets to maintain
the desired data rate. Excess packets are left in the DMA ring, while consumed
packets are freed in the DMA ring. If the incoming data rate exceeds the packet
dequeue rate, the DMA ring becomes full, and the network interface begins
dropping packets. If the network supports flow control, the rate-limit will be
propagated through the network, causing the sender to be blocked.

The main advantage of this approach is that it is extremely simple to imple-
ment, requiring only a few lines of code in the driver’s interrupt service routine.
The disadvantage of this approach is that it incurs additional per-packet latency,
as packets must sit in the DMA ring until the driver is ready to process them.
The average incurred latency can be calculated as the size of the DMA ring
divided by the data rate.

Controlled free rate: An alternative to the controlled-dequeue-rate approach
is to dequeue packets as soon as they are available, but delay notification of
packet consumption to the network interface. In this solution we free packets in
the DMA ring at the desired packet rate.

Because network interfaces typically consider a slot in the DMA ring to be
either full or empty, the driver must introduce a third state to keep track of
slots which are no longer in use, but which have not yet been returned to the
network interface for reception of additional packets. How cleanly this can be
implemented depends on the structure of the DMA ring, whose design is dictated
by the network interface.

The primary advantage of controlling the free rate is that it does not incur
any additional latency, since packets may be dequeued as soon as the interrupt
is raised, rather than waiting in the DMA ring, as is the case for the controlled-
dequeue-rate approach.

DMA ring length modulation: A variant of these approaches is to control the
number of DMA buffers which are available in the receive ring. At fixed intervals,
the entire DMA ring is dequeued and freed. This approach is suitable when
the receive-processing interval is predictable, as is the case for many Gigabit
Ethernet interfaces which support interrupt moderation.

Like the controlled-free-rate approach, the difficulty of implementing DMA
ring length modulation depends on the data structures defined by the network
interface.

2.2 Determining Maximum Throughput

There are many ways to determine the maximum throughput of the system. One
is to have every resource along the data-path detect when it is overloaded. When
a resource becomes overloaded, that information could be propagated to the
data source. This is the approach taken by the staged event-driven architecture
(SEDA) [14].



Overload Protection for Commodity Network Appliances 207

Although detection of overload within an individual resource is simpler than
detecting overload in the system as a whole, retrofitting such detection to an
existing system is a difficult task. Providing explicit flow control requires that
overload detection and feedback mechanisms be built into each component. We
therefore seek alternative methods of detecting overload which have less impact
on the overall system structure.

One method which has been proposed to solve this problem is to use resource
monitoring to detect when a system has become overloaded [13,10,11,12]. Unfor-
tunately, resource monitoring is often a poor indicator of overload, since many
optimisations take advantage of any spare resources which are available. Ad-
ditionally, resource consumption may not be a function of network load if the
resources are being consumed by some independent process.

An alternative approach is to use traffic monitoring to detect overload. Such a
monitor would observe the response of the system to incoming traffic in order to
determine that the system is performing sub-optimally. If overload is detected,
the monitor should reduce the data rate entering the system by directly control-
ling data source(s) in the system. The advantage of this approach is that it is
relatively simple to retrofit to an existing system, and it is more accurately able
detect the occurrence of overload than simple resource monitoring schemes.

Traffic monitoring and rate selection: The goal of the rate selection algo-
rithm is to determine the maximum throughput of the system at runtime. A
rate-limiting mechanism may then be used to limit the input rate to the maxi-
mum throughput of the system.

There are a number of properties which may be monitored in order to detect
overload. Such properties include throughput, latency, request rate vs. response
rate, and other properties depending on the nature of the network traffic being
monitored. Such traffic analysis may be performed passively, using traffic already
entering the system, or actively, by inserting additional probe traffic into the
system.

Once a given property can be monitored, the rate selection algorithm needs
to know what behaviour is indicative of overload. In the case of throughput, the
characteristic behaviour of an overloaded resource is throughput which decreases
with increased load. In the case of latency, a significant jump in latency may be
observed as the system becomes overloaded. We expect that other properties
will provide additional behaviours which can be used to detect overload.

We have implemented throughput monitoring by instrumenting the network
interface driver. We use a simple feedback system, which continually performs
small changes to the input rate of the system, and observes the output rate. If
throughput decreases over the control period, the search direction is reversed.
This allows the control algorithm to stay near the system’s peak throughput.

2.3 Limitations

We are forced by commodity network hardware to share a single DMA ring be-
tween multiple data-paths. This makes it impossible to apply individual



208 L. Macpherson

rate-limits to each individual data-path, because when one data-path is rate
limited, the throughput of other data-paths which are prefixed by the same
DMA ring are also necessarily reduced. This situation could be resolved by hav-
ing hardware that supports packet demultiplexing into multiple queues, or by
limiting each network interface to a single data-path.

In practice many applications, such as those typically used in network appli-
ances, put the majority of traffic through a single data-path. Therefore despite
this limitation, our approach achieves useful results.

3 Experimental Evaluation

In order to evaluate the ability of our approach to eliminate performance degra-
dation under overload, we have implemented it in the FreeBSD kernel’s em
device-driver for Intel’s Gigabit Ethernet chip-set.

For our approach to be deemed successful, it must prevent the system from
experiencing degraded throughput under overload. In order to show this, we
establish a scenario where livelock is a problem in the FreeBSD implementa-
tion, then compare the behaviour of the standard kernel to one with our own
modifications.

Instead of making quantitative comparisons with existing work, we compare
our approach to the ideal throughput of an unmodified system. If our approach
is able to maintain maximum throughput under overload, then we have achieved
the ideal result for our system. Anything greater than this would indicate that
additional optimisation had occurred, however such optimisation is orthogonal
to the problem of eliminating performance degradation. Anything less than ideal
indicates that additional overheads have been introduced.

3.1 Kernel Configuration

For the purpose of evaluating our system, we will be comparing two different
configurations of the FreeBSD kernel, which we refer to as the standard and
dynamic configurations. No kernel modifications are made between the different
benchmarks, and no hand-tuning of the control algorithm has been done for
specific applications. This section will summarise the similarities and differences
between the two configurations.

The standard configuration has minimal changes when compared to the generic
kernel configuration1. The primary change is that the timer interrupt rate was in-
creased from 100Hz to 1000Hz2 The interrupt moderation setting of the Ethernet
driver was left at the default 8000 interrupts per second. Reducing this value could
be expected to improve peak performance by decreasing interrupt overheads.
1 The generic kernel is the GENERIC kernel and corresponding kernel configuration

file distributed with FreeBSD 5.3-RELEASE.
2 This change is a typical network optimisation in FreeBSD, and has become the default

in recent FreeBSD releases. It was made to allow comparison against the FreeBSD
polling implementation, which requires this setting.
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The dynamic configuration implements our proposed solution, and consists
of the standard configuration, with the addition of a controlled-dequeue-rate
based rate-limiting mechanism in the driver, a control thread to determine the
appropriate receive rate based on throughput monitoring, and some statistics
collection required by the control loop. The interrupt moderation settings remain
the same as for the standard configuration.

3.2 Hardware Description

The FreeBSD machine being tested was based on an Intel Xeon 2.66GHz proces-
sor with hyper-threading disabled3, 1GB RAM, and an Intel PRO/1000 Gigabit
Ethernet adapter4 connected via PCI-X. A D-Link DGS-1216T managed Giga-
bit Ethernet switch was used, and was configured with pause frames disabled on
all ports. This was done to prevent flow control information from propagating
within the network, which was necessary to ensure that the full range of loads
could be applied to the machine being tested.

3.3 Firewall Benchmark

The firewall benchmark is designed to simulate an overloaded network firewall.
The benchmark utilises ipbench [15] to generate a prescribed load on the firewall,
then measures the throughput and CPU utilisation at that load.

Firewall configuration: Figure 2.1 shows how our hardware was configured for
benchmarking. The configuration consists of two VLANs, each containing four
hosts connected via a Gigabit Ethernet switch. The two VLANs are connected
via a single FreeBSD machine acting as router and simple firewall. The hosts
on the first VLAN run the ipbench distributed network benchmark’s UDP load
generator, while the hosts on the second VLAN run UDP echo servers.

2.1: Firewall configuration. 2.2: NFS configuration

The FreeBSD firewall is configured to use the pf packet filter, with a simple
rule-set that checks that all packets have reasonable and valid protocol headers,
and that the source and destination addresses are valid before forwarding.
3 Hyper-threading was disabled because SMP is not supported by FreeBSD’s polling

implementation, and because it makes CPU idle time measurement more difficult.
4 Both ports of a dual-port card were used for the firewall benchmark, two ports of a

quad-port card were used for the NFS benchmarks.
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The ipbench distributed benchmark was run on the hosts in VLAN0. These
hosts generate 512-byte UDP packets at a specified data-rate, which we refer to
as the applied load. The UDP packets traverse the switch and firewall, to the
hosts on VLAN1, which are running UDP echo servers. The UDP echo servers
simply send an identical copy of the UDP payload back to the ipbench host,
which again must travel via the switch and firewall. The ipbench host then
records the rate of echo replies, which we refer to as the achieved throughput.

We note that packets must traverse the firewall twice before they are measured
as achieved throughput. It is also worth noting that the firewall’s input packet
rate on VLAN0 will be higher than the firewall’s input packet rate on VLAN1
when the firewall is overloaded. This is because some packets from VLAN0 will
be dropped before they are seen by VLAN1. Therefore, those packets which are
dropped before reaching VLAN1 will never be echoed, and hence cannot generate
additional load on the firewall.

Firewall measurements: This section discusses measurements taken to eval-
uate our implementation. We begin by establishing a performance baseline for
the standard configuration, by comparing applied load with achieved through-
put. We then compare our dynamic configuration to the standard configuration
on the basis of achieved throughput, CPU utilisation and cycles per delivered
packet, under a variety of applied loads.
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Fig. 2. Firewall: achieved throughput vs. applied load

Figure 2 shows achieved throughput as a function of applied load in the firewall
benchmark, for both the standard and dynamic configurations. The standard line
establishes the baseline throughput of the firewall benchmark. The results for
the standard configuration show that the system does indeed exhibit significant
performance degradation under overload.

The dynamic line in Figure 2 shows the effect of introducing our rate-limiting
to the system. The dynamic line shows that limiting the receive rate by control-
ling the number of packets dequeued per interrupt causes the receive DMA ring
to behave as a non-degradable resource, preventing performance degradation
under overload.
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Our approach comes within 5% of the ideal result of matching the peak
throughput of the standard configuration, while avoiding the effects of perfor-
mance degradation under overload. The slight decrease in peak throughput when
compared with the standard configuration can be attributed to our rate selection
algorithm needing to occasionally select throughputs above and below the max-
imum rate achieved by the standard configuration in order to detect overload.
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3.2: Cycles per packet vs. applied load

Fig. 3. Firewall CPU usage

We measure CPU utilisation by counting the percentage of cycles spent in a
low-priority user process. This lets us accurately determine the number of cy-
cles left for other user processes for a given load. In Figure 3.1, we see that the
dynamic configuration incurs slight overheads when compared to the standard
configuration, however once overload is reached, the dynamic configuration does
not increase its CPU utilisation with applied load, showing that our rate-limiting
mechanism is effective in preventing the system from exposure to excessive net-
work loads.

Once the system becomes overloaded, the standard configuration begins wast-
ing cycles on packets which are later discarded. This can be seen in Figure 3.2,
where cycles per delivered packet increases considerably with applied load. Mean-
while the dynamic configuration maintains consistent overheads even when over-
loaded, since it does not waste resources handling packets which are not processed
to completion.

3.4 NFS Benchmark

The NFS benchmark is designed to test the behaviour of an NFS server un-
der overload. We utilise ipbench to generate very high NFS request rates, and
monitor the corresponding response rate.

NFS configuration: The NFS benchmark configuration consists of nine load
generators running ipbench, a Gigabit Ethernet switch, and a FreeBSD NFS
server, as shown in Figure 2.2. The load generators are connected to the Gigabit
Ethernet switch, which is in turn connected to the NFS server via two Gigabit
Ethernet links, which are trunked using FreeBSD’s Fast EtherChannel (FEC)
netgraph module.
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Fig. 4. NFS: replies vs. requests

It is important to note that the rate-limiting is performed in the network
driver, which is not aware of the existence of FEC. We could have instead con-
figured the NFS server with multiple independent Internet addresses, however
we chose to use port trunking because it allowed us to generate loads exceeding
one Gigabit-per-second while maintaining a simple benchmark configuration.

The NFS server is configured to serve data from an RAM-backed filesystem.
This configuration was chosen primarily because we did not have access to a
high-performance disk array for benchmarking purposes.

Load was generated using ipbench, which was configured to generate read and
write requests with equal probability. Individual request sizes were randomly
selected between 16 and 1024 bytes. All NFS operations were performed on a
single 400 megabyte file.

NFS measurements: The results of the NFS benchmark are shown in
Figure 4. We see that the results of the NFS benchmark have similar char-
acteristics to the results of the firewall benchmark. For both the standard and
dynamic configurations, response rate matches the request rate for request rates
which are less than the maximum capacity of the system (in this case, 70,000
requests per second). Once the system becomes overloaded, the standard con-
figuration experiences gradual and continuous performance degradation as the
applied load increases.

The rate of performance degradation of the standard configuration is con-
siderably lower than that seen in the firewall benchmark. This tells us that the
kernel is doing less work on incoming requests before discarding them than is the
case for the firewall benchmark. While the rate of performance degradation has
improved, it is clear that performance degradation under overload is significant.
Changing the amount of work done by enabling additional packet processing
features (such as a packet filter) would increase the rate of degradation.

We observe that the dynamic configuration still displays a small amount of
performance degradation under overload. Because all measurements are per-
formed by ipbench, results indicate the behaviour of the entire benchmark con-
figuration. Therefore the observed decrease may be the result of packet loss which
occurs externally to the NFS server.
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3.5 Summary of Results

Our results show that the dynamic configuration performs well when subjected
to overload. Unlike the unmodified case, peak throughput is maintained inde-
pendently of applied load. Cycles expended per delivered packet do not increase,
indicating that the cost of our admission control mechanism does indeed scale
with the number of packets admitted, rather than the packets arriving at the
admission controller.

Our results also show that the dynamic configuration provides identical peak
performance to an unmodified system. This demonstrates that traffic monitoring
has been successful in determining the appropriate admission control rate for the
system.

4 Related Work

This section examines a number of existing systems by comparing their features
for a number of criteria which are relevant to system behaviour under overload.
Specifically, we are interested in the cost of admission control in the system,
whether it is possible to cause performance degradation with that admission
control in place, the granularity at which admission control is performed, and
the feedback mechanism used to decide how much load to admit into the system.
The table in Figure 5 gives a summary of these features for a number of existing
systems.

Admission Performance Feedback OS
System control cost degrades Granularity mechanism restructure Ref.
ERL O(admitted) N Packet Full queue Y [7]

Hardware LRP O(admitted) N Socket Full queue Y [5]
Software LRP O(total) Y Socket Full queue Y [5]

SRP O(total) Y Socket Full queue Y [4]
SYN Policing O(total) Y TCP Resource monitor N [13, 10, 11, 12]

WebQoS O(total) Y HTTP Request Queue length N [1]
Yaksha O(total) Y HTTP Request Response time N [6]
Quorum Independent N HTTP Request Response time N [3]
SEDA O(total) Y Multiple Multiple N [14]

Edge limiting O(admitted) N Packet Throughput N

Fig. 5. Existing admission control approaches

4.1 Admission Control

In order for a system to provide acceptable behaviour under overload, it must
implement some form of admission control. This section examines the admission
control mechanisms used in a number of existing systems.

One early instance of kernel-level admission control can be seen in Mogul
and Ramakrishnan’s work on eliminating receive livelock (ERL) in an interrupt-
driven kernel [7]. This solution services queues in a round-robin fashion from
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within a polling thread, and limits the number of packets which may be handled
each time a queue is serviced.

While the main intent of this work was to curtail excessive interrupt rates,
the solution provided a simplistic form of admission control by temporarily dis-
abling input from the network interface when queues became full. This method
of admission control is too coarse to work well on modern network interfaces,
which tend to support very high packet rates, and transfer many packets per
interrupt.

Lazy receiver processing (LRP) [5] used early packet demultiplexing to sepa-
rate individual data-paths within the system. There were two implementations
of LRP, a hardware based solution that demultiplexed packets based upon ATM
virtual circuit identifiers, and a software implementation that demultiplexed
packets based upon IP header fields. Admission control was performed by drop-
ping packets that destined for a socket whose queue was full.

TCP SYN policing [13] is an admission control system which limits the rate
of TCP connection establishment by rejecting the connection setup packets of
a TCP connection. It has been used particularly in the context of web servers,
whose network behaviour is typically characterised by large numbers of short-
lived TCP connections. Admission control occurs by only allowing TCP SYN
packets to enter the system at a controlled rate. This approach is only effective
for loads which are responsive to such feedback, rather than performing load
shedding at the overloaded host.

The staged event-driven architecture (SEDA) [14] wraps every stage in a data-
path with its own admission controller and feedback loop. This results in load
shedding at many points in the system, depending on which stage of the data-
path is overloaded. Non-admittance to a stage allows upstream stages to respond
by altering their behaviour in order to reduce the load applied to the downstream
stage.

4.2 Admission-Control Cost

We are interested in whether the cost of performing admission control scales
with the number of admitted requests, O(admitted), or with the total number of
requests, O(total). If the admission control mechanism itself scales according to
the total number of requests, then the admission control mechanism may itself
be subject to overload, for large enough input loads. If an admission control
mechanism scales with the number of accepted requests, it will not contribute
to performance degradation under overload.

The ERL approach of disabling input from the network interface is inherently
O(admitted), since the system only performs processing on data once it has
already passed the admission control mechanism. This results in short bursts
of traffic being admitted to the system during overload, rather than applying a
consistent load to the host.

The hardware-based LRP approach is able to discard traffic at the network
interface when a socket’s queue is full, and hence achieves O(admitted) perfor-
mance. The software LRP approach must perform packet processing on every
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packet entering the system prior to performing admission control. Therefore, the
software LRP approach is only able to achieve O(total) performance, and given
suitably high loads will exhibit performance degradation.

In a similar manner to software LRP, signaled receiver processing (SRP) [4]
also performs work on all packets entering the system prior to admission control.
SRP is therefore also subject to performance degradation under overload, due
to the expenditure of resources on packets which are later discarded.

SYN policing is strongly dependent on the behaviour of the client. Fundamen-
tally, the performance is O(total), since all packets are examined for the SYN
flag when admission control is occurring, however the extent to which perfor-
mance degradation occurs is determined by the ratio of SYN packets to other
network traffic.

4.3 Performance Under Overload

Systems whose admission-control cost is O(total) exhibit degraded throughput
under overload. The rate at which degradation occurs in such systems is de-
pendent on resource consumption which occurs prior to admission control. The
less work which is performed prior to admission control, the slower a system’s
degradation will be. For this reason, late admission control is still better than
no admission control, even though some performance degradation will still be
present in the system.

Those systems whose admission control cost is O(admitted) or better will
not experience degraded throughput under overload. Of those systems whose
performance does not degrade under overload, we recognise two sub-categories;
those whose peak performance is comparable with that of a standard system,
and those whose peak performance is significantly lower.

4.4 Differentiation

Admission control may be performed at different granularities depending on the
requirements of the system. Most systems perform admission control on either
a per-packet, per-TCP-connection, or per-user basis.

Performing admission control on a per-packet basis is primarily used because
it does not require specific knowledge about the contents of a packet in order for
admission control to take place. This approach has the advantage that admis-
sion control cost can be made independent of the load applied to the admission
controller, allowing the approach to scale to very high applied loads. The disad-
vantage is that it is not possible to preferentially treat packets based on their
contents.

Admission control on a per-TCP-connection basis has been proposed as a
solution for protocols such as HTTP. The advantage of this approach is that
existing connections can be prioritised over new connections. The disadvantage
of this approach is that it requires that the admission controller be able to
process the IP and TCP packet protocol fields, in order to differentiate between
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incoming packets. Such processing consumes resources for each additional packet
received, even if that packet is not admitted.

Admission control can also be performed at higher levels, according to in-
formation available to the application-level protocol. Such information could be
used to perform per-user service differentiation [13].

While the granularity at which admission control is performed is conceptually
orthogonal to the cost of admission control, the cost of admission control is
closely related to the implementation details of session differentiation.

There are two classes of admission control implementation; those which per-
form admission control at the network interface, and those which perform admis-
sion control during protocol processing on the host CPU. Performing admission
control at the network interface is necessary to achieve O(admitted) scalabil-
ity, however performing session differentiation at greater granularities requires
increased processing capacity on the network interface itself.

For commodity IP over Ethernet, performing admission control at the network
interface on a per-packet basis is simply a matter of accepting packets at the
appropriate rate. Performing admission control at higher levels requires the ex-
amination of higher level protocol fields in order to differentiate between packets.
Such functionality is typically not available in commodity Ethernet interfaces,
however in other research contexts, such as user-level network protocol imple-
mentations, programmable Ethernet interfaces have been modified to perform
hardware packet filtering into multiple input queues [8].

For TCP/IP over ATM, performing admission control at the network interface
on a per-connection basis is feasible, since TCP connections may be mapped
to individual ATM virtual circuits [9, 2]. This is the approach taken by the
hardware-based implementation or LRP [5].

4.5 Feedback

This section will examine feedback mechanisms that are used to control the
acceptance rate of the admission controller. There are three fundamental ap-
proaches that are taken in the literature, explicit flow control, resource-based
feedback, and performance monitoring.

Explicit flow control is used in systems that are structured with queues be-
tween connected components. Such systems allow upstream components to signal
downstream components that they are overloaded, by allowing their incoming
queues to become full. Upon encountering a full receive queue, the downstream
component can presume that the upstream component is unable to process the
incoming data-stream at the required rate, and is overloaded.

Resource-based feedback is implemented by monitoring key system resources,
such as CPU time and memory consumption, in an attempt to determine when a
system has become overloaded. The main problem with resource-based feedback
is that resource usage is not always an accurate indicator of overload.

The third feedback mechanism which is commonly used is performance mon-
itoring. Most systems use some variation of response time measurement, where
the feedback mechanism uses a control loop to maintain response time guaran-
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tees. For example, SEDA, Yaksha and Quorum aim to maintain a well-defined
percentage of traffic above a minimum response time.

5 Conclusion

Current admission control schemes are not suitable for use in scenarios where
network traffic is not responsive, because the cost of admission control in the
system scales with the load applied to the system. Meanwhile, older approaches
such as hardware-based LRP and ERL do not work on current commodity hard-
ware.

We have presented an approach to admission control where the cost of admis-
sion control is a function of the traffic admitted to the system. This approach
allows peak throughput to be maintained under overload, even in the presence
of non-responsive, non-TCP workloads.

We have implemented our approach in a real system and evaluated its effec-
tiveness in preventing overload in two common network appliance applications:
firewalls and networked attached storage (NFS). We have shown that our solu-
tion is effective in eliminating performance degradation under overload for these
systems, while maintaining the desirable property of being simple to implement
in existing operating systems using commodity hardware.
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Abstract. Extensible processors allow customization for an application by 
extending the core instruction set architecture. Extracting appropriate custom 
instructions is an important phase for implementing an application on an 
extensible processor with a reconfigurable functional unit. Custom instructions 
(CIs) usually are extracted from critical portions of applications. This paper 
presents approaches for CI generation with respect to the RFU constraints to 
improve speedup of the extensible processor. First, our proposed RFU 
architecture for an adaptive dynamic extensible processor called AMBER is 
described. Then, an integrated temporal partitioning and mapping framework is 
presented to partition and map the CIs on the RFU. In this framework, a mapping 
aware temporal partitioning algorithm is used to generate CIs which are 
mappable on the RFU. Temporal partitioning iterates and modifies partitions 
incrementally to generate CIs. In addition, a mapping algorithm is presented 
which supports CIs with critical path length more than the RFU depth. 

1   Introduction 

Synthesis of application-specific instruction-set processors (ASIPs) has been an 
important design methodology for system-on-chip processors in the last decade. 
ASIPs have more potential to meet the high-performance demands of embedded 
applications, compared to general purpose processors (GPPs) but the synthesis of 
ASIPs traditionally involved the generation of a complete instruction set architecture 
for the targeted application. On the other hand, GPPs are very flexible but may not 
offer the necessary performance.  

Another method for providing enhanced performance is application-specific 
instruction set extension. An important feature of this design method is extending an 
existing processor core with units specialized for a given domain, rather than 
designing a custom processor completely. By creating application-specific extensions 
to an instruction set, the critical portions of an application’s dataflow graph (DFG) 
can be accelerated by using custom functional units. The nodes of these DFGs are the 
instructions of critical potion of applications and the edges of DFGs represent the 
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dependency between instructions. In our method, custom instruction is a sequence of 
instructions that are extracted from hot basic blocks (HBBs). HBBs are basic blocks 
which are executed more than a predefined number of times and a basic block is a 
sequence of instructions that terminates by a control instruction.  

Using an extensible processor with a reconfigurable functional unit proposes 
favorable tradeoff between efficiency and flexibility, while keeping design turnaround 
times much shorter. The reconfigurable part of an extensible processor executes 
critical portions of an application to gain better performance. It can be coarse grain or 
fine grain. The former, demands for less configuration memory. Also mapping of 
instructions on it is easier. The latter is more flexible but it is slower comparing with 
the coarse grain one. 

Extracting CIs from applications is an important stage in accelerating application 
execution. Some generated CIs cannot be mapped to reconfigurable hardware because 
some RFU constraints, like physical constraints, cannot be considered at this stage. 
We call this kind of CIs rejected CIs. Two different strategies are used for rejected 
CIs. In the first case, rejected CIs are run on the base line processor, and so, this offers 
no speedup. As the second strategy, we suggest using approaches to recover and 
execute rejected CIs on the RFU rather than the base processor. To achieve this goal, 
two approaches are proposed. In the first approach, a CI generation tool is used to 
regenerate the CIs from HBBs according to the RFU constraints. As another 
approach, we propose a novel framework for generating CIs. This framework 
generates CIs in such a way that they can be executed on the RFU. Besides, it 
partitions rejected CIs to multiple mappable CIs. We utilize the same well-known 
temporal partitioning concept for this purpose.  

In Section 2, we highlight some related work. The RFU architecture is described in 
Section 3. Section 4 discusses the design flow proposed for generating CIs. In Section 5, 
experimental results are presented and finally, Section 6 concludes the paper. 

2   Related Works 

Identifying optimal set of custom instruction to improve the computational efficiency 
of applications has received a lot of attention recently. PRISC [13] and Chimaera [17] 
provide compilation tools that attempt to automatically generate mappings for the 
reconfigurable logic. Custom instructions tend to be relatively small, due in part to the 
difficulty of the matching problem and the size of the programmable fabric available. 
DISC [16] is another system that requires CIs to be identified and programmed 
manually. The main focus of DISC is in the management of the loading of custom 
instructions.  

Research in reconfigurable computing is often more in line with our goal. 
Researches in reconfigurable computing investigate the identification of application 
sections that are mapped to a reconfigurable fabric. Most of CI extraction methods 
attempt to identify patterns within a basic block. In [7] the authors combine template 
matching and generation based on the occurrence of patterns which usually led to 
small templates. Template matching is done based on graph isomorphism. Methods 
presented in [5], [8] impose further constraints by allowing multiple input-single 
output patterns. Arnold et al. [1] avoids the exponentially increasing of these patterns 
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by using an iterative technique that detects 2-operator patterns, replace their 
occurrences in DFG and repeats the process. Atasu et al. [2] search a full binary tree 
and decides at each step whether or not to include a particular instruction in a pattern. 
The potential exponential search space is pruned based on input/output constraints. 
They attempt to find maximal subgraphs of application data flow graph, but it does 
not take into account the underlying structure of the execution hardware. Clark et al. 
[4] search possibly good patterns by starting with small patterns and expanding them 
considering the input, output and convexity constraints [18].  

The general goal of this work is presenting methods for CI generation, specifically 
for recovering the rejected CIs. We propose approaches for generating CIs for 
AMBER, an adaptive dynamic extensible processor presented in [11]. AMBER uses a 
coarse grain reconfigurable functional unit with fixed resources. Some of the generated 
CIs might be rejected because of violating RFU constraints. Rejection of CIs decreases 
the speedup. We do not use any pruning algorithm for making smaller CIs from 
rejected CIs because obviously by using bigger CIs more speedup can be obtained. Our 
main contribution is in using an RFU architecture-aware temporal partitioning 
algorithm, which iteratively attempts to partition and generate appropriate CIs. These 
CIs are maximal subgraphs extracted from data flow graph of non-mappable CI.  

For this purpose, we use an integrated temporal partitioning and mapping frame-
work. The idea behind temporal partitioning is that functions that are too large to fit 
on a programmable hardware can be partitioned into several modules which are then 
successively downloaded into the hardware in accordance with a predefined schedule 
[6]. Different algorithms have been presented for temporal partitioning. Bobda [3] 
proposed two methods to solve temporal partitioning problem. The first one was an 
enhancement of the well-known list vector space. The second method uses a spectral 
placement to position the modules in a three-dimensional vector space. Karthikeya et 
al. [6] proposed algorithms for temporal partitioning and scheduling of large designs 
on area constrained reconfigurable hardware. SPARCS [12] is an integrated 
partitioning and synthesis framework, which has a temporal partitioning tool to 
temporally divide and schedule the DFGs on a reconfigurable system. Tanougust et 
al. [15] attempted to find the minimum area while meeting timing constraints during 
temporal partitioning. In [14], Spillane and Owen focused on finding a sequence of 
conditions for activating an appropriate component at a particular time and optimizing 
successive configurations to achieve the desired trade-offs among reconfiguration 
time, operation speed and area.  

In [9], a new design flow was proposed for the compilation of data flow graphs for 
a reconfigurable system. This design flow consists of temporal partitioning and 
physical design phases with a feedback loop. In this paper, we propose a modified 
version of this design flow for generating appropriate CIs as a general methodology 
and use is specifically for AMBER RFU.  This framework attempts to take 
advantages of the basic design flow to generate CIs and improve target extensible 
processor speedup.  

3   RFU Architecture 

In [11] an adaptive extensible processor (AMBER) was presented which has the 
capability of tuning its extended instructions to the running application. For this 
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extensible processor, a coarse grain reconfigurable functional unit (RFU) was 
designed which is an array of functional units (FUs). FUs support all fixed point 
instructions of the base line processor except multiplication, division and load. A 
quantitative approach [4] was used to determine the number of inputs, outputs, nodes, 
routing resources and other architectural specifications. Twenty-two applications of 
Mibench [19] were used to provide quantitative analysis. Also, a mapping tool was 
developed to map CIs on the RFU. The details of RFU design and its integration with 
the base processor is out of the scope of this paper, therefore, for completeness we 
only describe the specification of the final architecture. 

 

Fig. 1. Block diagram of RFU designed for AMBER. 

According to the obtained results, eight inputs, six outputs and 16 FUs brought 
about a reasonable CI rejection rate (about 10%). Rejection rate represents the 
percentage of CIs that can not be mapped on the RFU according to its defined 
constraints. In addition, a proper topology for RFU connections was achieved based 
on the quantitative analysis (Fig. 1). In the proposed architecture, there are left to right 
connections in the 4th row and right to left connections in the 3rd row. Outputs of 
FUs in each row are fully connected to inputs of FUs in subsequent row. In addition, 
there are extra vertical connections, as in Fig. 1, between non-subsequent rows to 
keep the CI rejection rate low.  

4   Integrated Temporal Partitioning and Mapping 

Initial CIs for AMBER can be extracted from hot basic blocks of applications 
according to the algorithm presented in [12]. Two different approaches for generating 
appropriate CIs are used. Appropriate CI set means the set of CIs which satisfy the 
RFU primary constraints and may have the capability of being mapped successfully 
on the RFU. RFU primary constraints are the architectural constraints including the 
number of inputs, outputs and nodes.  We used two different approaches for 
generating CIs. The first CI generation approach (CIGen) considers RFU primary 
constraints for mapping but it cannot consider all of the constraints such as routing 
resources constraints. For considering the physical constraints during CI generation 
physical design process need to be done. Therefore, for rejected CIs, CIGen follows a 
conservative method to generate appropriate CIs.  
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4.1   The Integrated Framework 

Integrated Framework is the second CI generation approach that performs an 
integrated temporal partitioning and mapping process to generate mappable CIs. The 
proposed design flow is shown in Fig. 2. This design flow takes rejected CIs and 
attempts to partition them to appropriate CIs those have the capability of mapping on 
the RFU. Each CI is partitioned into two or more CIs.  

 

Fig. 2. Integrated temporal partitioning and mapping for supporting large CIs. 

Initial temporal partitioning algorithm is done according to [9]. In this stage, RFU 
primary constraints are considered. The generated CIs are accepted and finalized if 
they can be mapped on the RFU. For each partition generated in the previous step, the 
mapping process is done and the generated CI is considered as appropriate if it can be 
mapped on the RFU successfully. Otherwise, an incremental temporal partitioning 
algorithm modifies the partition by moving some of nodes to the subsequent partition. 
In the next step, the mapping process is repeated. This process is done iteratively 
while all partitions are mapped successfully on the RFU. Fig. 3 shows an example of 
a rejected CI which is finally partitioned into two partitions and mapped on the RFU 
successfully. This framework has the following advantages: 

• Reducing the number of rejected CIs: This can affect the overall performance 
by partitioning the rejected CIs to CIs which can be mapped on the RFU. 
• Using a mapping-aware temporal partitioning process: This process attempts 
to prevent the rejection of CIs by modifying CIs according to the feedbacks 
obtained from the mapping process. In fact, only primary constraints of the RFU 
can be considered in the CIGen but it is unaware of such mapping information as 
routing resource constraints. In Integrated Framework, CIs are partitioned in 
such a way that they can be mapped on the RFU. 
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4.2   Incremental Temporal Partitioning Algorithm 

In Integrated Framework, an incremental temporal partitioning process is performed 
iteratively until all partitions are mapped on the RFU successfully. Each partition 
which does not satisfy RFU constraints is modified by selecting and moving proper 
nodes to the subsequent partition and then a new iteration starts. An incremental 
temporal partitioning algorithm tries to modify partitions during the iteration process. 
This algorithm chooses the nodes with highest ASAP level first. The ASAP level of 
nodes represents their order to execute according to their dependencies [10]. In other 
words, a parent node should be executed before its descents because of data 
dependencies between them.  

 

Fig. 3. An example of CI generation using the Integrated Framework. 

All nodes in a partition are sorted according to their ASAP level and the node with 
the highest ASAP level is selected and moved to the subsequent partition. In Fig. 3, 
the order in which are selected and moved to the next partition is 15, 13, 11, 9, 14, 12, 
10, 8, 3 and 7. The nodes are moved until all the generated partitions satisfy the RFU 
architectural constraints. 

4.3   Mapping Procedure 

Mapping process in the Integrated Framework is the same as the well-known 
placement problem. Mapping process can be defined as the placement of the DFG 
nodes on a fixed architecture RFU, to determine the appropriate positions for DFG 
nodes on the RFU. Assigning CI instructions or DFG nodes to FUs is done based on 
the priority of the nodes.  

We calculated slack of nodes [10] to determine their priority for partitioning. 
Slack of each node represents its criticality. For example, slack equal to 0 means that 
it is on the critical path of DFG and should be scheduled with the highest priority. On 
the other hand, for the nodes with the same criticality, ASAP level of them determines 
their mapping order. Therefore, in the first step, ASAP, ALAP1 and slack values of 
                                                           
1   As Late As Possible. 
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each node in DFG are determined [9, 10]. Assigning a position for each selected node 
starts by determining an appropriate row for that node. Row number is set to the last 
row if the selected node is on a critical path with the length more than or equal to 
RFU depth. Otherwise, row number is selected according to slack and ALAP of the 
selected node and the number of un-occupied cells available in the RFU rows.  

For the nodes which do not belong to any critical path with length more than the 
RFU depth, their starting row is set to ALAP- slack -1. This means that we reserve 
FUs of lower rows for the nodes belong to critical path. For this purpose, we prevent 
the occupation of FUs in the lower RFU rows by the nodes which do not belong to 
critical paths. Therefore, spiral shaped mapping of nodes is being possible for long 
length critical paths. After determining the row number, an appropriate column is 
determined for the selected node. Column number is determined according to the 
minimum connection length criterion. All non-occupied cells of the RFU in the 
determined row are checked to find an FU which gives the minimum connection 
length between the selected node and its dependent nodes positioned on the RFU.  

For each row, a maximum capacity is considered to prohibit gathering many nodes 
in a row. Capacity of rows is determined with respect to longest critical path and the 
number of critical paths in the DFG. Row number is decreased and a new attempt 
starts if there is not any cell to assign the selected node. The pseudo code of the 
mapping algorithm is as follows:  

Mapping Algorithm: 

- Determine ASAP level of each node in the input DFG, 

- Determine ALAP level of each node in the DFG, 

- Calculate slack for each node in the DFG. 

for s= 0 to Maximum slack value 

 - Create List of Nodes with slack equal to s 

     for all nodes in the list 

- Determine appropriate position for the selected 
node from the list 

- if the number of nodes mapped on the RFU is equal 
to the DFG node number then mapping process is 
terminated successfully 

Determine appropriate position for a selected node: 

if ALAP- slack >= RFUDepth 

 StartRow= RFUDepth; 

else 

   StartRow= ALAP- slack - 1; 

for Row= StartRow to 0 

-if there is un-occupied column in the selected row 
and the selected row has sufficient capacity, select 
a column with minimum connection length. 
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Referring to the RFU architecture in Fig. 1 and its routing resources, though the 
RFU depth is equal to 5, our mapping algorithm can map CIs whose critical path 
length are at most equal to 8. In Fig. 3, corresponding DFG of the first partition has a 
critical path longer than the RFU depth, and so it takes advantage of a spiral shaped 
mapping. This kind of mapping results in effective usage of routing resources 
(horizontal connections of the third and forth rows) and FUs.  

5   Experimental Results 

SimpleScalar tool set (PISA configuration)[20] and 22 applications of Mibench [19] 
were used for doing experiments. The base line processor of AMBER was MIPS324K 
with five stage pipeline, 32KB L1 data cache (1 clock cycle latency); 32KB L1 
instruction cache (1 clock cycle latency) and 1MB unified L2 cache (6 clock cycle 
latency). RFU was implemented using Synopsys tools with Hitachi 0.18µm library. 
The RFU area size is 1.15mm2.. It was assumed that the RFU has a variable latency 
based on the length of the longest critical path. Regarding base processor frequency 
(166MHz) and RFU delay, CIs with critical path length less than or equal to 5 take 1 
clock cycle and CIs including critical path length more than 5 take 2 clock cycles for 
execution on the RFU. 

Initial CIs were generated according to the method proposed in [11]. Experiments 
showed that the CI rejection rate with respect to RFU architectural constraints was 
about 10%. In 9 of the 22 applications, there was not any rejected CI, which means that 
 

Table 1. Mibench Applications, their CI rejection rates and maximum and minimum length of Cis 

App. 
No. 

Application 
Name 

CI Rejection % 
(Considering 

Execution Freq) 

Min. CI 
length 

 

Max. CI 
length 

 

Min. length of 
Rejected CIs 

 
1 adpcm(enc) 0 5 7 - 
2 adpcm(dec) 0 5 7 - 
3 bitcounts 2.3 4 20 20 
4 blowfish 43.2 5 16 15 
5 blowfish 

(dec) 43.2 5 16 15 
6 basicmath 0 3 11 - 
7 cjpeg 11.7 5 59 11 
8 crc 0 5 5 - 
9 dijkstra 0 4 9 - 
10 djpeg 28.8 4 48 8 
11 fft 3.4 3 16 16 
12 fft (inv) 3.4 3 16 16 
13 gsm (dec) 2.8 5 14 14 
14 gsm (enc) 6.5 4 26 13 
15 lame 11.9 3 13 7 
16 patricia 0 3 6 - 
17 qsort 0 5 7 - 
18 rijndael 

(enc) 40.6 5 16 10 
19 rijndael 

(dec) 35.4 5 18 10 
20 sha 1.9 5 18 7 
21 stringsearch 0 5 9 - 
22 susan 0 6 10 -  
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all CIs in these applications were mapped on the RFU successfully. Rejected CIs of 
remaining 13 applications are as input of our Integrated Framework. Table 1 shows the 
applications, the percentage of rejected CIs considering the RFU constraints and 
execution frequency of CIs, minimum and maximum length of initial CIs and 
minimum length of rejected CIs. Application names with rejected CIs are shown in 
bold face. 
    As mentioned in Section 3, for generating appropriate CIs two approaches 
including CIGen and Integrated Framework were used. For CIs generated by CIGen, 
the mapping process was done and some of them were rejected again at the mapping 
stage because of the RFU violation of routing resource constraints. In this method, 
CIs were generated using a more conservative approach. Some of the CIs can not be 
supported and are rejected. Fig. 4 shows that 10 applications already have CIs which 
are non-mappable on RFU. These rejected CIs have to execute on the base line 
processor and offer no speedup.  
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Fig. 4. Percentage of rejected CIs generated by CIGen 

Fig. 5. Initial and final number of partitions generated by the Integrated Framework 
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In the second approach, we used the Integrated Framework to generate appropriate 
CIs. Using this approach, which iteratively generates CIs, all CIs were successfully 
mapped on the RFU during partitioning process. This is one of the most important 
advantages of the proposed design flow. Fig. 5 shows the initial and final number of 
partitions (CIs) generated for each application using the Integrated Framework. Initial 
number of CIs is the number of partitions generated by the temporal partitioning 
algorithm. In addition, the final number of partitions means the number of CIs that are 
generated after performing the iterative process to modify and generate appropriate CIs.  

Fig. 6 shows the maximum length of the critical path for the generated CIs. 
According to the results obtained, for cjpeg, fft, fft(inv), gsm(end) and gsm(dec), the 
mapping algorithm took advantage of spiral shape mapping to handle critical paths 
with length more than 5.  

Fig. 6. Maximum critical path length for CIs generated by the Integrated Framework 
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Fig. 7. Speedup comparison between CIGen and the Integrated Framework 
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Finally, Fig. 7 shows the speedup comparison for CIGen and the Integrated 
Framework.  The Integrated Framework generated CIs all of which can be mapped 
on the RFU, because, temporal partitioning stage is properly aware of the mapping 
process result and is iteratively done according to the feedbacks obtained from the 
mapping phase. According to Fig. 7, speedup increases using the Integrated 
Framework. For lame, CIGen and the Integrated Framework generated similar CIs, 
therefore, the Integrated Framework does not offer more improvement for lame in 
compared to CIGen. 

6   Conclusion 

In this paper, an integrated framework was presented to address generating 
appropriate custom instructions and mapping them on RFU of an adaptive extensible 
processor. First, an RFU was presented for AMBER, a dynamic adaptive extensible 
processor. Some CIs of the attempted applications were rejected because of RFU 
primary constraints. One method for generating appropriate CIs is applying the RFU 
constraints to the CI generation tool and extracting the CIs which meet these 
constraints (CIGen). Using CIGen may still cause some generated CIs to be rejected. 
This approach does not have the capability of considering constraints such as routing 
resource constraints before mapping since it is unaware of the mapping process result. 
The Integrated Framework is the second approach which uses a mapping-aware 
temporal partitioning algorithm for generating appropriate CIs. In this framework, 
each rejected CI is partitioned to smaller partitions and iteratively modified to meet 
the RFU constraints. The experimental results showed that for the attempted 
benchmarks, the algorithm successfully mapped all CIs on the RFU. Our proposed 
mapping algorithm uses spiral shaped paths to cover CIs with critical paths longer 
than the RFU depth. Also, the Integrated Framework brought about more speedup 
enhancement comparing with CIGen by generating CIs which have less running time 
on the RFU.  
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Abstract.  In the ubiquitous era, it is necessary to research on the architectures 
of multiprocessor system with high performance and low power consumption.  
A processor simulator developed in high level language is useful because of its 
easily changeable system architecture which includes application specific in-
struction sets and functions. However, there is a problem in processing speed 
that both PCs and workstations provide insufficient performance for the simula-
tion of a multiprocessor system. In this research, a simulator for a multiproces-
sor system based on the multi-way cluster was developed. In the developed 
simulator system, one processor model consists of an instruction set simulator 
(ISS) process and several inter-processor communication processes. In order to 
get the maximization of the simulation performance, each processor model is 
assigned to the specific CPU on the multi-way cluster. Also, each inter-
processor communication process is implemented using MPI library, which can 
minimize the CPU resource usage in a communication waiting state. The 
evaluation results of the processing and communication performance using a 
distributed application program such as JPEG encoding show that each ISS 
process in the developed simulator system consumes approximately 100% CPU 
resources for keeping enough inter-processor communication performance. This 
result means that the performance increases in proportion to the number of inte-
grated CPUs on the cluster.  

1   Introduction 

In the ubiquitous era, micro processors are widely used in many applications includ-
ing not only PCs and PDAs but also home appliances and cars. For these applications, 
high performance parallel computing is required for multimedia codec processing, 
digital signal processing, and secure communication processing.  Performance  
improvement by increasing the operating frequency of a processor is reaching the 
upper-bound because of leakage current and power consumption [1]. Both multi-core 
processor systems and multiprocessor systems [2, 3] are effective solution to improve 
performance without increasing operating frequency. However, they still consume a 
lot of power.  To solve these problems, it becomes necessary to research on the archi-
tecture of heterogeneous multiprocessor system with application-specific instruction 
sets and functions, so that it optimizes the balance between high performance and low 
power consumption, and lowers the redundancy of processing. 
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In general, a simulator developed in a high level language is useful for the research 
on the architecture of a processor system, because the system architecture can be 
easily changeable [4-8] with additional application specific instruction sets and func-
tions. However, there is a problem that both PCs and workstations provide insuffi-
cient performance for the simulation of a multiprocessor system. 

In this research, a simulator system for a multiprocessor system was developed 
based on a multi-way cluster. It is expected to provide high parallelism and high per-
formance with multiple CPUs on each node. This paper shows the usefulness of the 
developed simulator system according to the evaluation results on the processing 
capability and communication performance using a distributed processing application. 

2   PE and PE Network 

Fig. 2.1 shows a schematic diagram of a multiprocessor system. In the part (a), each 
CPU is a Processing Element (PE). The system bus connecting the CPUs is called a 
PE Network. From this point of view, a part of multiprocessor system can be simpli-
fied as PEs connected by a PE Network.   

 

Fig. 2.1. Schematic Diagram of a Multiprocessor System 

A PE can be also viewed as a processor, which contains  a general purpose proces-
sor, a DSP, and a processor specific for special function, with application specific 
instruction sets and functions. Furthermore, a PE contains peripherals including a 
monitor, a keyboard, or a HDD. Similarly, PE Network can be viewed as a peripheral 
bus, a system bus, the Internet, or other networks. The following sections show that 
the simulator system can connect various PEs with common network interface and 
protocol. Then, they show the simulator system is useful for the simulation of a het-
erogeneous multiprocessor system. 

3   Simulator System 

3.1   Simulator System 

Fig. 3.1 shows the simulator system architecture. The simulator system consists of a 
simulation engine, a control center (CC), and a GUI. 
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Fig. 3.1. Simulator System Architecture 

The simulation engine consisted of (1) PEs, (2) PE Network, and (3) Global Ac-
cess Memory. Every PE is constructed from (a) Processing Module (PM), (b) applica-
tion-specific Function Module (FM), (c) Memory Module (MM), and (d) Communi-
cation Module (CM). A PM is a core information processing engine. An FM provides 
application specific instruction sets and functions. 

For example, PE1 integrates a general purpose CPU as a PM extended its function 
with an application specific instruction set as an FM. PE2 accelerates a DSP with an 
ASIC optimized for an application as an FM. In PE3, a processor specific for special 
function cooperates with an ASIC for motion estimation, which requires high accu-
racy and massive data processing in video processing. 

An MM is the registers and local memory of a PM and an FM. An MM also serves as 
a memory for inter-PE communication. MM stores information sent and received over 
the PE network, because the MM is accessible from CMs.  A CM is the protocol-
independent general model of PE Network. There is no special module which connects 
CMs. The connection information provided in each CM decides the structure of PE 
Network. Also, system information is sent and received through CMs. The Global  
Access Memory stores information shared between PEs such as large amount of video 
data.  

The CC analyzes information of user’s operations, sends control information to the 
simulation engine, receives simulation results from it, and controls the whole system. 
The CC also works as the gateway of the simulation engine, and operates the simula-
tion engine as if it were a part of a large information processing system. 

As the GUI is independent from a platform it runs, it can operate the simulation 
engine through the CC over various networks. 

PMs and FMs can be implemented with the following various models focusing on 
different functions and abstraction levels: an untimed function model which simulates 
only function without time concept, an instruction set model which simulates only the 
behavior of instructions, a cycle-accurate model [9, 10] which defines the behavior in 
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each clock cycle, and a RTL model which is equivalent to the target hardware. These 
models are written in a language such as C, C++, Java, SystemC [11, 12], or their 
combination. 

3.2   Simulator System Platform 

Fig. 3.2 shows a simulator system platform based on a multi-way cluster which inte-
grates three nodes with different number of CPUs. 
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Fig. 3.2. Simulator System Platform 

A one-way administration node executes the GUI and the CC, and controls the 
whole simulator system. Each of 6PEs is assigned to the specific CPU in a four-way 
node 1 and a two-way node 2 for high-speed simulation. Mainly, the node 1 processes 
main program and the node 2 executes pre-processing, post-processing, and external 
I/O processing. 

The intra-node communication is implemented with high-speed system bus and 
memory bus exclusively used for the specific CPU. The simulator system platform 
implemented Opteron CPU [13] operated in 2.4GHz. One CPU can directly connect 
up to three adjacent CPUs through HyperTransport [14], which is bidirectional multi-
channel system bus possible to transfer data at 6.4GBytes/sec. Each CPU has 4GB 
memory directly-accessible at 3.2GBytes/sec.  

The inter-node communication is implemented with a Gigabit-Ethernet. The 
Ethernet cables can be logically bundled to avoid performance degradation caused by 
the limit of bandwidth. Inter-PE communication model is implemented using MPI 
[15] library which can program the timing of a request for communication and the 
sequence of communication handshake. 

MMs and the Global Access Memory are implemented as shared memory on the 
OS. If the shared memory is created on other CPUs, a PM, an FM and a CM can ac-
cess them in high speed through HyperTransport. 

SuSE Linux 9.1 Professional (kernel 2.6) [16] facilitates process assignment to 
each CPU, process control, MPI programming, and the creation of shared memory 
under 64-bit environment. 
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3.3   Implementation of Simulator System 

Each PM of 6 PEs is implemented with a proprietary MIPS R2000/3000 instruction 
set [17] simulator (ISS) in C++. An ISS can simulate each step of instruction behav-
ior, and it is suitable for the high-speed verification of algorithm of applications. For 
the inter-PE communication, system call 1 instruction (syscall1) and system call 2 
instruction (syscall2) were expanded from the system call instruction in the MIPS 
instruction set. Syscall1 requests to send data for the data receiving PE, and syscall2 
notifies that the data receiving PE finished using data for the data sending PE. 

MMs are implemented with 256KB local memory and registers. The registers con-
sist of general-purpose registers, exception registers, and extended system control 
registers. The Global Access Memory is composed of 4MB internal bulk memory on 
the node 1, 4MB external memory, and also 4MB media memory on the node 2. 

3.4   Details of Simulator System 

3.4.1   Process Organization and CPU Assignment 
Fig.3.3 shows process organization and CPU assignment for the communication be-
tween PE1 and PE2 / PE3. The PE is implemented with one PM process, i.e., MIPS 
ISS, and CM processes consisted of pairs of sending process and receiving process. 
These pairs are used for (1) inter-PE communication and (2) communication with the 
CC. All processes of a specific PE is assigned to a corresponding CPU. Therefore, all 
the processes in the PE are possible to use almost 100% of the specific CPU re-
sources. All the processes are accessible to the registers and the local memory in the 
MM.  Fig. 3.4 shows the local memory map. 

 

Fig. 3.3. Process Organization and CPU Assignment 

3.4.2   Communication Module (CM) 
A CM is implemented using MPI library as native code on the multi-way cluster, and 
works with a pair of a sending process and a receiving one. MPI enables to write the 
detailed sequence of the communication handshake as intended. 
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Fig. 3.4. Local Memory Map 

When the simulator extends the network structure by increasing or decreasing the 
pair of the CM processes, these CM processes are required to minimize the influence 
on the PM process. Then, every sending process or receiving process minimizes its 
CPU resource usage, organized with a loop starting from MPI_Recv() function to 
block its execution and sleep in a waiting state. This enabled the PM process to use 
almost 100% of the specific CPU resources. 

3.4.3   Mailbox 
Necessary information for inter-PE communication includes (1) control information 
(i.e., commands) and (2) data stored in command mailbox and data mailbox respec-
tively. They consist of sending mailbox and receiving mailbox constructed on the 
local memory. 

The command mailbox uses 64-byte fixed area, and stores the following com-
mands: (1) ID of data sending and receiving PE, (2) communication type, (3) address 
to store data in data sending and receiving PE, (4) data size and number of packets, 
and (5)  repeat count of data communication. The command of the communication 
type stores the signal to: 

a. request to send data issued from the data sending PE (REQ signal) 
b. respond for the REQ signal issued from the data receiving PE (ACK signal) 
c. notify that the data receiving PE finished using data(FIN signal) 
The suitable size and the number of data mailbox can be defined according to the 

characteristics of the application. 
The Mail Control was constructed at the top of mailbox area. It manages commu-

nication status using the following register and flags: 
A. Sending Session Counter (SSC) to count the number of communication  

session 
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B. Sending Mailbox Full (SMF) to notify whether the sending mailbox is empty 
to the PM process 

C. Receiving Mailbox Full (RMF) to notify whether the receiving data mailbox 
receives data to the PM process 

3.4.4   Sequence of Communication 
Fig. 3.5 shows the sequence of the inter-PE communication to send data from PE1 to 
PE2 with a single communication buffer. PM1 app. and PM2 app. express the de-
scription of application program running on PM1 and PM2 respectively. PM1 and 
PM2 express the behavior of PMs which application programs cannot detect, for ex-
ample the control of a flags and mailboxes etc. 
 
(flow) 
(1) [PM1 app.] stores sending commands including the REQ signal and the address to 
indicate the top of sending data to the sending command mailbox. 
(2) [PM1 app.] stores sending data to the sending data mailbox. 
(3) [PM1 app.] executes syscall1. 
(4) [PM1] sets SCC and SMF. 
(5) [PM1] extracts the ID of PE2 from the sending command mailbox, then, sends the 
sending commands including the REQ signal to CM2 
(6) [CM2] receives the commands including the REQ signal, and returns from a wait-
ing state.  
(7) [CM2] stores the sending commands including the ACK signal and the address to 
indicate the top of the receiving data to the sending command mailbox. 
(8) [CM2] sends the sending commands including the ACK signal to CM1 
(9) [CM1] receives the commands including the ACK signal, and returns from a 
waiting state.  
(10) [CM1] sends the sending data in the sending data mailbox to CM2 
(11) [CM1] clears SMF, and waits the next commands by MPI_Recv(). PM1 app. 
becomes able to store the sending commands and data for the next session to the send-
ing mailboxes. 
(12) [CM2] receives the data in the receiving data mailbox. 
(13) [CM2] sets RMF, and enters a waiting state by MPI_Recv(). 
(14) [PM2 app.] detects RMF, and stores the received data to the working memory 
(15) [PM2 app.] sets the sending commands including the FIN signal to the sending 
command mailbox. 
(16) [PM2 app.] executes syscall2.  
(17) [PM2] clears RMF. 
(18) [PM2] extracts the ID of PE1 from the sending command mailbox, then, send 
the sending commands including the FIN signal to CM1 
(19) [CM1] receives the commands including the FIN signal, and returns from a 
waiting state. 
(20) [CM1] clears SSC, and enters a waiting state by MPI_Recv(). After that, PM1 
app. can execute syscall1. 
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Fig. 3.5. Sequence of Inter-PE Communication with a Single Buffer 
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4   Performance Evaluation 

This section shows the basic processing performance of PE without CM processing 
and the basic communication performance of CM without PM processing. After that, 
we will evaluate the processing and communication performance of this simulator 
system and its usefulness, using an application -- JPEG encoding program. 

4.1    Performance Evaluation of PM Processing 

The following five application programs were selected for performance evaluation of 
PM processing: (1) transposition of 32x32-bit matrix, (2) two-dimensional DCT for 
8x8-element matrix, (3) a test program for arithmetical and logical instructions  (4) a 
test program for branch and jump instructions, and (5) a test program for memory 
access instructions. Each application program executed 1G instructions on each of 1 
PE, 2 PEs, 4 PEs, or 6 PEs without inter-PE communication, measuring the process-
ing time to evaluate the processing performance of ISSs as PM. Fig. 4.1 shows the 
average processing performance and CPU resource usage of PM. 
 

Fig. 4.1. Average Processing Performance and CPU Resource Usage of PM 

This instruction simulator caches decoded instructions. Therefore, the processing 
performance of PM depends on the cache hit rate. In terms of matrix transposition, 
which shows the lowest performance, the average processing performance of PM was 
over 14MIPS in 6PE case. The performance is only 5% lower than that in 1 PE case. 
Other application programs show almost the same results. For each PE was assigned 
to the specific CPU, the CPU resource usage in all of application programs shows 
almost 100% as expected. 
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4.2   Performance Evaluation of CM Processing 

On the intra-node and inter-node communication models shown in Fig. 4.2, (1) 64-
byte packets same as a command mailbox and (2) 16K-byte packets same as a data 
mailbox were sent and received sequentially in 60 seconds. Each communication 
channel has no dependency. The average of inter-PE communication speed of all 
channels and the CPU resource usage were calculated. To measure the communica-
tion performance while all PMs consume almost 100% of CPU resources, the execu-
tion priority of each CM process was set to be low. Table 4.1 shows the results of the 
measurement. 

 

 

Fig. 4.2. Intra-node Comm. Model (left) / Inter-node Comm. Model (Right) 

Table 4.1. Average Inter-PE Comm. Speed and CPU Resource Usage of PM and CM 

64 16K 64 16K

PM[%] 94.58 98.87 73.31 79.58

CM(send)[%] 4.31 0.38 6.21 10.05

CM(recv.)[%] 1.11 0.74 20.49 10.37

[Packets/sec] 1,222 476 63,991 4,805

[Mbps] 0.60 59.52 31.26 601.07

Average Comm. Speed in All
InterPE Comm. Channel

Intra. Inter.

Average CPU Resource Usage

Communication Model

Size of Packet[Bytes]

 

 
Regarding the inter-node communication, the performance of CM kept 600Mbps 

worth of 4800 packets/sec with 64KByte data packets because of the buffering 
mechanism in the Ethernet board. Considering a MPI header, actual communication 
performance is higher than 600Mbps.  It consumes almost all of communication 
bandwidth of Gigabit-Ethernet. If necessary, bundling the Ethernet cables is able to 
expand the bandwidth. For an application in which communication plays an important 
role, it is possible to increase communication speed by lowering the CPU resource 
usage of PM. The same can be said for the intra-node communication. 

On the other hand, regarding the intra-node communication, communication speed 
is 1200 packets/sec with 16KB packets and 500 packets/sec with 64B packets using 4 
channels, while PM consumes about 95% CPU resources. If much higher communica-
tion speed is required, it is possible to share the information without communication 
by constructing mailboxes on the Global Access Memory based on the characteristics 
of the multi-way cluster. 
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4.3   Performance Evaluation of Simulator System Using JPEG Encoding 
Application Program 

The JPEG encoding application is divided into six sub-programs and executed on 
each PE as shown in Table 4.2. An input image is specified with the format of 24-bit-
depth bitmap file, the size of VGA (640x480), the sampling factor of 4:2:2, and the 
quality of 75. Table 4.2 shows the processing performance of PM, the CPU resource 
usage of PM, the times and the processing rate defined below, the data size in inter-
PE communication, and the performance of CM processing. 

 
• PE operating time = the elapsed time from the beginning of processing to the 

end of it on each PE 
• PM operating time = the time consumed as a user process out of PE operating 

time 
• PM waiting time  = PM operating time * (No. of instructions executed in a 

communication waiting state / No. of all instructions) 
• PM processing time = PM operating time – PM waiting time 
• CM communicating time= PE operating time – PM operating time 
• PE processing rate = (PM processing time + CM communicating time) / PE 

operating time 
 

Table. 4.2. Simulator System Performance Using JPEG Encoding Application Program 

Assigned Node Node 2 Node 2

Assigned PE PE5 PE1 PE2 PE3 PE4 PE6

Function
Bitmap

File
Reading

RGB to
YCrCb

Down
Sampling

DCT/
Quantizati

on

Huffman/R
un-length

JPEG
File

Writing
PM Processing Performance[MIPS] 15.29 14.03 14.58 14.08 14.06 15.68 14.62

PM CPU Resource Usage 99.32% 99.52% 99.95% 99.97% 99.90% 99.95% 99.77%

PE Operating Time[sec] 21.41 21.40 21.40 21.40 21.40 21.41

PM Operating Time[sec] 21.24 21.20 21.31 21.31 21.28 21.32

PM Processing Time[sec] 0.36 3.07 1.55 8.16 2.19 0.02

PM Waiting Time[sec] 20.88 18.13 19.76 13.15 19.08 21.30

CM Commnicating Time[sec] 0.17 0.20 0.09 0.09 0.13 0.09

PE Processing Rate 2.50% 15.28% 7.65% 38.55% 10.84% 0.50% 12.55%

Size of Receiving Data[KBytes] 0 900 900 600 1200 ～600

Size of Sending Data[KBytes] 900 900 600 1200 ～600 0

CM Processing Performance [MBytes/sec] 5.05 8.75 16.10 19.75 ～14.06 ～6.73

Node 1

Average

 
    Each PM could achieve over 14MIPS performance with CM processing. CM could 
achieve over 5MBytes/sec communication performance using less than 1 % CPU 
resources. The performance of PM itself is equivalent to the performance in the case 
of single PM processing without CM processing shown in Fig. 4.1. The performance 
of CM is higher than that of CM processing without PM processing, which is shown 
in Table 4.1. However, this JPEG encoding application used only single communica-
tion buffer and could send the next data only after detecting the execution of data 
processing. As a result, 90% of PE operating time was consumed for a waiting state, 
and the simulation time exceeded 20 seconds for the encoding of one JPEG picture. In 
the next step, the communication waiting time will be reduced using multiple  
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communication buffer and overlapping PM processing and CM processing to improve 
the performance. 

One of the performance improvement methods is averaging the processing times in 
all of PMs and optimizing the partitioning of functions assigned to each PE by detect-
ing performance bottlenecks. This simulator system enables researchers to profile and 
detect the bottlenecks of the processing time and waiting time of each PE. For exam-
ple, the result in Table 4.2 implies that PE3 is one of bottlenecks consuming the long-
est processing time, and partitioning them into DCT and quantization will be effec-
tive. Also, it implies PE6 consumes less than 1% PE processing rate, and combining it 
with PE4 will be effective. Thus, the simulator system is useful to optimize the parti-
tioning of functions, and research new additional instruction sets and application 
specific functions. As a result, the simulator system is suitable to research the archi-
tecture of a heterogeneous multiprocessor system. 

5   Conclusion 

This research focused on a simulator system for a multiprocessor system based on the 
high performance multi-way cluster integrated multiple CPUs on each processing 
node. The implemented simulator system maximized its performance, assigning each 
PE to the specific CPU on the multi-way cluster and implementing CM with MPI 
which can minimize the CPU resource usage in a communication waiting state. The 
simulator system executed application at over 14MIPS on each PM, achieving com-
munication performance at over 5MBytes/sec with the distributed processing of JPEG 
encoding using single communication buffer. Thus, this showed that the implemented 
simulator system is useful for the simulation of distributed application on a multi-
processor system.  

This paper showed that the implemented simulator system enables to profile appli-
cation processing time and waiting time of each PE, detect bottlenecks,  optimize the 
partitioning of functions in available PE resources, and research additional new in-
struction sets and application specific functions for the architecture of a heterogene-
ous multiprocessor system suitable for the ubiquitous era.  

In the future, extending the current simulator system, we will research and develop 
a full-scale simulator system suitable for a multi-stream application with new sets of 
PE including ISSs and cycle-accurate models with additional instruction sets, applica-
tion specific untimed function models, and RTL models in a system description lan-
guage such as SystemC. The simulator system will promote the research on the target 
multiprocessor system.  
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Abstract. The Data-Driven Multithreading Chip Multiprocessor
(DDM-CMP) architecture has been shown to overcome the power and
memory wall limitations by combining two key technologies: the use of
the Data-Driven Multithreading (DDM) model of execution, and the
Chip-Multiprocessor architecture. DDM is able to hide memory and syn-
chronization latencies providing significant performance gains whereas
the use of of the CMP architecture offers high-degree of parallelism at
low complexity design and is therefore power efficient.

This paper presents the hardware budget analysis and the runtime
support system for the DDM-CMP architecture. The hardware analysis
shows that the DDM benefits may be achieved with only a 17% hardware
cost increase compared to a traditional chip-multiprocessor implementa-
tion. The support for the runtime system was designed in such a way
that allows the DDM applications to execute on the DDM-CMP chip
using a regular, non-modified, Operating System and CPU cores.

1 Introduction

To deliver performance as predicted by Moore’s Law, computer architects have
relied on extracting higher degrees of Instruction Level Parallelism (ILP) using
more complex structures and larger cache hierarchies. While this approach has
worked well in the past, it is currently only resulting in diminishing returns [1].
This is due to the inability of current architectures in surpassing two major
obstacles: the memory and power walls. Both walls can be traced back to the
von Neumann model of execution that has dominated the computer architecture
field since the advent of digital computers. The memory wall problem is due to
the imbalance between the speed of microprocessors and that of main memory,
while the power wall is due to the high frequencies and complexity in modern
microprocessors.

Data-Driven Multithreading (DDM) [2,3] is an alternative model of execution
that does not suffer from the previously mentioned limitations. DDM has been
shown, in our previous work [2,3], to be able to tolerate the memory and syn-
chronization latencies by allowing the computation processor to produce useful
work while a long latency event is in progress. In this model, the synchroniza-
tion part of the program is separated from the communication part allowing it

C. Jesshope and C. Egan (Eds.): ACSAC 2006, LNCS 4186, pp. 244–259, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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to hide the synchronization and communication delays [2]. While such compu-
tation models usually require the design of dedicated microprocessors, Kyriacou
et al. [2] showed that the DDM benefits may be achieved using commodity mi-
croprocessors. The only additional requirement is a small hardware structure,
the Thread Synchronization Unit (TSU).

State-of-the-art microprocessors have a high transistor density, execute at
very high frequencies, include large cache memories and rely heavily on out-of-
order and speculative execution. For the implementation of these techniques,
multiported and even replicated devices are required. This, however, leads to an
exponential increase at the gate level whereas getting the power consumption
out of hand [4]. As such, major microprocessor manufacturers have shifted their
strategy to multicore chips in order to avoid the memory and power walls. CMPs
utilize the increasing number of on-chip transistors not through more complex
designs but by replicating simpler cores. Although this is a working solution
today, CMPs’ scalability potential is likely to be limited by the memory wall.

DDM-CMP is a single-ISA homogeneous chip multiprocessor that supports
the Data-Driven Multithreading model of execution [5]. As such, it is able to
combine the advantages of the DDM model with those of the CMP architec-
ture offering the potential for better scalability. DDM-CMP has been shown
able to deliver very high performance speedup combined with significant power
reduction [5,6].

While our previous work focused on the DDM model [2,3,12] and more recently
on high-level issues of DDM-CMP [5,6], such as estimations of the performance
and power benefits, in this paper we go a step further and present an analysis
of the hardware budget for the DDM-CMP. As a result we can now accurately
determine the number of cores that may be included in a chip with the same
hardware budget as other traditional CPUs. In this paper we show that, in the
same hardware budget of a modern high-end single-chip microprocessor, it is
possible to build a DDM-CMP chip with 16 cores. The extra hardware cost for
supporting execution under the DDM model are shown to be less than 17% of the
total area. Moreover, we present and validate the Runtime Support System of
DDM-CMP. A careful design of this system allows the execution of both regular
and DDM applications without any modification to the CPU or the OS. This
system was validated using a functional Simics-based [7] full system simulator.

The rest of this paper is organized as follows. Section 2 presents the DDM-
CMP architecture, Section 3 describes the DDM-CMP chip whereas Section 4
the DDM-CMP runtime support system. The validation is presented in Section
5, and Section 6 discusses the conclusions and future work.

2 The DDM-CMP Architecture

2.1 The Data-Driven Multithreading Model of Execution

Data-Driven Multithreading (DDM) provides effective latency tolerance by al-
lowing the computation processor produce useful work, while a long latency
event is in progress. This is achieved by scheduling a thread for execution only
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when its input data have been produced and prefetched. Efficient prefetching of
the input data may be achieved through the CacheFlow policies [8].

The DDM model of execution has been evolved from the dataflow model of
computation [9,10,11]. In particular, it originates from the dynamic dataflow
Decoupled Data-Driven (D3) graphs [12,13], where the synchronization part
of a program is separated from the computation part. The computation part
represents the actual instructions of the program executed by the computation
processor, while the synchronization part contains information about data de-
pendencies among threads and is used for thread scheduling.

A program in DDM is a collection of re-entrant code blocks. A code block
is equivalent to a function or a loop body in the high-level program text. Each
code block comprises of several threads. A thread is a sequence of instructions
equivalent to a basic block. A producer/consumer relationship exists among
threads. In a typical program, a set of threads, called the producers, create data
used by other threads, called the consumers. Scheduling of code blocks, as well
as scheduling of threads within a code block is done dynamically at run time
according to data availability. The instructions within a thread are fetched by
the CPU sequentially in control-flow order. Nevertheless, the CPU can reorder
the sequence of instructions internally to exploit the advantages of out-of-order
execution.

At compile time a program is partitioned into a data-driven synchronization
graph and code threads. Each node of the graph represents one thread associ-
ated with its Synchronization Template. Each thread is identified by the thread
number (Thread#) consisting of the triplet (Context, Block, ThreadID). The
Context field is set at run time to distinguish between multiple invocations of
the same code block or thread. This is useful for the implementation of multi-
ple invocations of functions and loop bodies. The Block field identifies the code
block, while the ThreadID identifies the thread within the code block. The syn-
chronization template of each thread contains the following information: Ready
Count, Instruction Frame Pointer (IFP), Data Frame Pointer (DFP) and Con-
sumer threads (Consumer1 and Consumer2 ). The Ready Count is set by the
compiler and corresponds to the number of input values , i.e. producers to the
thread. This value is decremented at runtime and a thread is enabled, i.e. it is
ready for execution when its Ready Count reaches zero. Whenever the thread
completes its execution, it uses the Consumer thread pointers to decrement their
ready count. When a thread is to be executed, its code and data blocks must
be specified. This information is provided by IFP and DFP. IFP is a pointer to
the address of the first instruction of the thread, whereas DFP is a pointer to
the data frame assigned for the thread/code block.

TSU: Hardware Support for DDM. The purpose of the Thread Synchro-
nization Unit (TSU) is to provide hardware support for data-driven thread syn-
chronization on conventional microprocessors. The TSU is made out of three
units: the Thread Issue Unit (TIU), the Post Processing Unit (PPU) and the
Network Interface Unit (NIU). When a thread completes its execution, the PPU
updates the Ready Count of its consumer threads, determines whether any of
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those threads became ready for execution and if so, it forwards them to the TIU.
The function of the TIU is to schedule and prefetch threads deemed executable
by the PPU. The NIU is responsible for the communication between the TSU
and the interconnection network. The internal structure of the TSU is shown in
Figure 1. A more detailed presentation of the DDM model and its components
can be found in [3].

Network Interface 
Unit (NIU) Post Processing Unit (PPU) Thread Issue Unit (TIU)

PPU Control Unit

Synchronization
Memory

Graph
Memory

Ack. Queue

TIU Control Unit

Firing Queue

Waiting 
Queue

TxQ

RxQ

NetQ

Prefetch
Unit

Fig. 1. Thread Synchronization Unit (TSU) and its relationship with the execution
processor

CacheFlow. Although DDM can tolerate communication and synchronization
latency, scheduling based on data availability may have a negative effect on local-
ity. To overcome this problem, the scheduling information together with software-
triggered data prefetching, are used to implement efficient cache management
policies. These policies are named CacheFlow. A presentation and evaluation of
the CacheFlow policies can be found in [8]. The most effective CacheFlow policy
contains two optimizations, False Conflict Avoidance and Thread Reordering.
False Conflict Avoidance prevents the prefetcher from replacing cache blocks re-
quired by the threads deemed executable and so reduces cache misses. Thread
Reordering attempts to exploit both temporal and spatial locality by reordering
the threads still waiting for their input data.

The DDM model used on a Data-Driven Network-Of-Workstations [14] ar-
chitecture tolerates well both the communication and synchronization latency.
Although Dataflow is known to reduce memory access locality, DDM together
with CacheFlow was shown to reduce the local memory latency resulting in very
high speedup values [2]. In particular, for a set of SPLASH-2 benchmarks [15],
the use of DDM without CacheFlow, increases the cache miss rate from 7.1%
to 9.8%. Adding CacheFlow reduces it to only 1.4% [8]. Overall, for 16- and
32-node machines, the authors observed performance speedup, compared to the
sequential single node execution, of 14.4× and 26.0×, respectively.
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More details about the DDM model of execution as well as the analysis of its
performance potential can be found in [2,3].

2.2 The Data-Driven Multithreading Chip Multiprocessor

DDM-CMP is a chip multiprocessor able to support the Data-Driven Multi-
threading model of execution. DDM-CMP combines the benefits of the DDM
model together with those of the CMP architecture without requiring any mod-
ification to the OS or the CPUs. Its performance and power reduction potential
have been presented in our previous work [5,6]. The main factor that allows the
DDM-CMP architecture to achieve high performance benefits is that it utilizes
the DDM model of execution, which allows it to explore more parallelism on
Chip Multiprocessor with simple cores. Using simple cores is the main reason
that enables the architecture to achieve power reductions.

Preliminary evaluations showed that with equal frequency, technology and
hardware budget as the baseline Pentium 4 chip, the DDM-CMP chips with 4
unmodified Pentium III core and 8 Pentium III cores with reduced cache sizes
consume less power than the baseline, 22% and 19%, respectively. For a scenario
where the DDM-CMP chip is allowed to consume the same power as the baseline
processor, the performance speedup ranges from 2.3X to 11.7X for the 4 core
DDM-CMP and 2.3X to 22.6X for the 8 core DDM-CMP, for the 4 SPLASH-
2 [15] benchmarks studied.

3 DDM-CMP Chip

3.1 Chip Layout

The DDM-CMP chip includes the execution cores along with all other units
that are required in order to operate as a shared-memory chip multiprocessor
and support the DDM model of execution. The extra hardware required to enable
the on-chip CPUs to operate as a shared-memory chip multiprocessor is an on-
chip interconnection network along with the necessary logic to guarantee data
consistency. These extra units are referred as the “CMP Hardware Support”. To
support the DDM model, the chip also includes one TSU per execution core and
a communication media between the TSUs. These extra units are referred as
the “DDM Hardware Support”. Without loss of generality, Figure 2 depicts the
layout of a DDM-CMP chip with only 4 cores.

Instead of requiring ISA extensions to support the CPU-TSU communication
we use simple memory read and write operations. This is achieved by having
the TSU as a memory-mapped device. Therefore, the execution core (CPU),
of the DDM-CMP chip can be any commodity microprocessor that supports
memory-mapped devices. As the vast majority of today’s microprocessors meet
the requirement, this is not a limitation. In the current implementation, the
basic core chosen for the DDM-CMP chip is the PowerPC405 [16]. The use of
simple, embedded processors is justified by Olukotun et al. [4] who showed that
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System Network

Fig. 2. The layout of DDM-CMP chip with 4 cores

the simpler the cores of the multiprocessor, the higher their frequency can be. In
addition, embedded processors are smaller and therefore we are able to include
more cores in the same chip. The reason we have selected this specific embedded
processor, is that it is the processor used in the hardware prototype platform
currently under development.

The System Interconnection Network enables the communication between the
CPUs and the rest of the memory hierarchy. Additionally, it serves as the nec-
essary media for the enforcement of memory consistency between the on-chip
caches. CPU-TSU communication also uses this network as the TSUs are mem-
ory mapped devices. Nevertheless, to avoid congestion on the primary data path,
a dedicated network, the TSU Network, serves the communication between the
TSUs.

3.2 Hardware Budget Analysis

To estimate the hardware budget of the DDM-CMP chip we performed a detailed
analysis for each of its units. Specifically, we analyzed the total hardware require-
ments of the TSUs, the two interconnection networks and the CPUs. The number
of entries for the different TSU structures, is borrowed from the D2NOW con-
figuration [14], the predecessor of DDM-CMP. That TSU configuration proved
to be efficient for the execution of the SPLASH-2 [15] benchmarks.

As depicted in Figure 1, the TSU consists mainly of memory units and a
small number of logic units. The largest units of the TSU are the Graph and
Synchronization Memory, which keep the Synchronization Graph of the program
(see Section 2.1). Both these structures are indexed with the Thread#. As a
thread can be stored in any available entry, both structures are implemented as
Content Addressable Memories (CAM) 1.

1 As these units have only 64 entries, implementing them as content addressable mem-
ories, will not result in a performance penalty.
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For each thread, the Graph Memory (GM) contains its Thread#, its two
Data-Frame-Pointers and its two Consumer-pointers. As each of these fields is
32-bits long the total size of each entry in the GM is 160 bits. The current GM
is configured with 64 entries.

To allow threads with more than two Data Frame or Consumer pointers,
two additional memory units exist on the TSU, the Data Frame Pointer (DFP)
and the Consumer lists (CON). These units are simple Direct-Mapped memory
structures with 128 entries, each of which 32 bits long.

The Synchronization Memory (SM) contains the Ready-Count counters of the
execution threads. Although each Ready-Count counter is only 4 bits long, what
increases the size of the SM is the fact that one such counter exists for each par-
allel invocation of a thread. As such, each thread is allowed to have 64 dynamic
instances, with each entry of the SM being 32 bytes long. For consistency, SM
must have the same number of entries as the GM, i.e. 64.

The Waiting Queue (WQ) is a Direct Mapped structure that keeps the Thread#
and the Index of the threads deemed executable. The WQ has 16 entries of 64 bits
(both Thread# and Index are 32 bits long). According to the CacheFlow policies
(see Section 2.1), when a prefetch request is issued for a thread of the WQ, this
thread is moved in the Firing Queue (FQ). This FIFO structure has 16 entries and
holds for each thread its Thread#, its Index, its Instruction Frame Pointer and
finally its Data Frame Pointer. As such, the total size of an FQ entry is 128 bits.

The threads that have completed their execution are held in the Acknowledg-
ment Queue (AQ). This simple FIFO structure has 64 entries, each of which is
80 bits long. The Thread# and the Index require 64 bits, whereas the other 16
bits concern information that is necessary for the post-processing phase.

Finally, two more FIFO structures exist in the Network Interface Unit (NIU)
of the TSU, the Transmit and the Receive Queue. Each queue has 64 32-bit long
entries.

To estimate the hardware budget for the memory units of the TSU we used
CACTI [17], a well known tool for on-chip cache area estimation. Table 1 sum-
marizes the way TSU memory units were modeled as a caches. For the FIFO
and Direct Mapped units we used the area results concerning the data array of
the modeled cache whereas for the CAM units the total cache area. As CACTI’s
results are in terms of area and not transistor count, we determined the #tran-
sistor/area ratio using a known cache example. We modeled in CACTI, the
Data-Cache of a 180nm Pentium III processor and compared its area with the
processor’s floorplan and total number of transistors. For the 180nm technology,
this ratio was found to be 185K transistors per mm2. Based on this analysis, the
memory units of the TSU require a total number of 584K transistors.

For the logic units of the TSU, we used a different approach. Specifically, we
used hardware synthesis estimations and concluded that they require approxi-
mately 35K transistors. Therefore, the total transistor count for the TSU was
found to be 620K.

The transistor count for the System Interconnection Network was estimated
based on the results reported in [18]. Specifically, the authors report the System
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Table 1. The configuration of each memory unit of the TSU

Real Configuration GM SM WQ FQ AQ DFP CON NIU
- Memory Type CAM CAM DM FIFO FIFO DM DM FIFO
- Number of entries 64 64 16 16 64 128 128 64
- Size per entry (bits) 160 256 64 128 80 32 32 32

Configuration in CACTI GM SM WQ FQ AQ DFP CON NIU
- Associativity FA FA DM DM DM DM DM DM
- Cache Size 1280 2048 128 256 640 512 512 256
- Block Size 10 32 8 16 10 8 8 16
- Associativity FA 1 1 1 1 1 1 1
- Read/Write Ports 0 0 0 0 0 0 0 0
- Exclusive Read Ports 1 1 1 1 1 1 1 1
- Exclusive Write Ports 1 1 1 1 1 1 1 1
- Number of sub-banks 1 1 1 1 1 1 1 1

Transistor Count(×1000) 179 179 21 30 51 32 32 60

Interconnection Network together with the necessary Cache Coherency logic to
be approximately 3.125mm2 per core for the 180nm technology. According to
the previously determined #transistor/area ratio, this is approximately equal to
580K transistors. Although, the TSU network is simpler and thus most likely
smaller than the System Interconnection Network, we will consider both to have
the same requirements, which is an overestimation. Finally, the execution core of
the DDM-CMP chip, the PowerPC405, accounts for approximately 5.2 million
transistors [19].

Overall, the hardware budget for each DDM-node, including all necessary
hardware support units, is about 7 million transistors. Table 2 summarizes the
transistor budget decomposition for a DDM-CMP node. All values reported are
per-node and represent thousands of transistors.

Table 2. DDM-CMP node transistor-budget decomposition. The values reported con-
cern the portion for each DDM-CMP node. Numbers represent thousands of transistors.

DDM Hardware Support CMP Hardware Support CPU
TSU memory TSU Logic TSU Network overhead CMP Overhead CPU

584 35 580 580 5200

Figure 3 presents a relative analysis of the real estate of a DDM-CMP node.
The CPU accounts for 74.5% of the area budget, while the CMP and DDM hard-
ware support account for 8.3% and 17.2% respectively. This is a good indication
that the performance benefits of DDM can be achieved at a minimal hardware
cost of 17.2%.

From the information reported in [20], the number of transistors used in im-
plementing Intel Pentium 4 3.2GHz 1MB L2 cache 90nm technology is approxi-
mately 125 million, while the number of transistor used in a DDM-CMP node is
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Fig. 3. (a) Transistor count ×1000 for each unit of a DDM-CMP node. (b) Percentage
of the area budget for the CPU core, the DDM overhead and the CMP overhead

7 million. Therefore, given the same hardware budget we can build a DDM-CMP
chip with 16 cores.

4 DDM-CMP Runtime System and Support

A primary target of the DDM-CMP architecture is to be able to execute not only
DDM applications, but also conventional, non-DDM binaries. To meet this goal,
a runtime support system that does not require modifications of the Operating
System or the CPU cores has been designed. As such, the runtime system has
to satisfy two important requirements. First, when an application is executed in
parallel in a shared-memory multiprocessor, the execution CPUs need to have
access to the same virtual address space. This is also true in the DDM model of
execution. Secondly, as the TSU space is limited, a mechanism that dynamically
loads and unloads its internal structures with the proper data is required.

To meet these requirements, we designed a simple, lightweight user level
process, the DDM-Kernel, which is presented in the next section.

4.1 The DDM-Kernel

A DDM-application starts its execution by launching n DDM-Kernels. Each
Kernel is run by a different process on a different CPU. The application com-
pletes its execution when all its kernels have done so. This approach guarantees a
common virtual address for all CPUs, the first requirement the runtime support
system must meet.

Figure 4 depicts the pseudocode of the DDM-Kernel. Its first operation is to
transfer the execution to the address of the first instruction of the Inlet Thread
(the first thread of each Code-Block is called the “Inlet Thread”) of the first
Code-Block it will execute. The rest of its code is a simple loop, which purpose
is explained later on.



Hardware Budget and Runtime System for DDM-CMP 253

The primary responsibility of Inlet Threads is to load the TSU with all threads
of their Code-Block (Figure 5-(a)). The information regarding these threads is
inserted in the application’s code during compilation. At this point, the oper-
ation of the DDM-Kernel guarantees that the TSU will contain the necessary
information to execute all threads of that Code-Block.

On the other hand, the last thread of a Code-Block is the block’s Outlet
Thread (Figure 5-(b)). Its primary operation is to clear the resources allocated
on the TSU for that block. When such a command is sent to the TSU, all its
internal state is flushed. The inlet and outlet threads enable the DDM-Kernel
to meet its second goal, the dynamic loading/unloading of the TSU.

goto (first_instruction_of_INLET_THREAD)

THREAD_SELECT: address = readReadyThreadFromTSU();
goto address;

Fig. 4. The pseudocode of the DDM-Kernel

The THREAD SELECT loop, combined with the TSU’s post-processing
phase, guarantee that execution will be transfered to subsequent threads. Specif-
ically, the last operation of all threads is to inform their TSU that they have
completed their execution and jump to a special loop in the DDM-Kernel named
the THREAD SELECT loop (Figure 5-(a)-(b)-(d)). Acknowledging the thread
completion is achieved by sending a special flag to the corresponding TSU which
triggers the post-processing phase. As a result, the next thread deemed for exe-
cution is found.

for all threads t 
of my code_block
{
  loadTSU(t);
}
exec_Completed();
goto THREAD_SELECT;

clearTSU();

exec_Completed();
goto THREAD_SELECT;

instruction 1;
instruction 2;
. . . 
instruction n;

exec_Completed();
goto THREAD_SELECT;

Inlet Thread Outlet Thread Execution Thread 
clearTSU();

exec_Completed();
exit

Outlet Thread (last block)

Fig. 5. The pseudocode of DDM threads. The first thread of a block is named Inlet
Thread and the last Outlet Thread

The THREAD SELECT loop performs two simple operations: reads from
the TSU the address of the next available thread and branches to that address.
When the CPU requests this address, the TSU first tests whether a ready thread
exists, i.e. checks if a thread has Ready Count equal to 0. If this is the case,
it returns the address of its first instruction. In case no ready thread exists, it
returns the address of the THREAD SELECT loop (Figure 5-(d)).
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As it was mentioned earlier, upon their completion, all threads jump to the
address of the THREAD SELECT loop. However, the outlet thread of the last
block, is set by the compiler to force the DDM-Kernel to exit (Figure 5-(c)).

4.2 On-Chip Communication

The DDM-Kernel operation reveals the need for three different communication
paths: between TSUs, between a CPU and its TSU and between CPUs and the
System Network.

Communication between the TSUs is necessary for the correct operation of the
DDM-model. For this communication path, a dedicated network named TSU-
Network (Figure 2) exists. In the current design, this network is implemented
using a simple broadcast bus.

As explained in the previous section, a two-way communication path between
the CPU and the TSU is also necessary. To read data from the TSU, the CPU
places the address of the corresponding memory mapped device on the system-
network. Snooping the network, the TSU mapped to that specific address iden-
tifies that the request is directed to itself. Subsequently, the TSU places on the
network the requested data. This request is not sent to the main memory as the
network’s logic, through the address decoding, determines that it is targeted for
a memory mapped device. In order to send data to the TSU, a similar process
is followed. Specifically, the CPU places the address of the target device on the
system-network followed by the data. The TSU that corresponds to that address
reads and manipulates these data.

The communication between the CPU and the memory hierarchy is the same
as in any CMP. Specifically, the CPU’s memory controller places the address
of the requested data on the network. The network’s logic identifies that this
address is for the main memory and forwards the request. At the same time,
the TSUs, by snooping the network, will identify that the specific request is not
directed to them and ignore it.

4.3 Multiprogramming Execution Issues

For the execution of a DDM application to be interruptible without problems,
two requirements must be met. First, the Process-Control-Block of the DDM-
Kernel must be restored prior to resuming its execution. Second, during the
interrupt period, the contents of the TSU must remain unchanged. The first re-
quirement is guaranteed by the operating system context switch procedure. The
second requirement is enforced by the TSU, by saving the Process ID (PID) of
its corresponding DDM-Kernel (Kernel-ID). For a process to update the state of
the TSU, its PID must match with the TSU’s Kernel-ID. By satisfying these re-
quirements, the DDM-Kernel implementation allows the simultaneous execution
DDM and non-DDM applications.

4.4 DDM-CMP Compiler Support

For a thorough evaluation of the architecture it is necessary to have an appro-
priate compiler. A compiler for the DDM model of execution needs to identify
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independent parallelizable loop iterations and function calls. These are the por-
tions of code that will be converted into DDM-threads. Additionally, the DDM-
compiler must provide some guarantees specifically regarding the DDM model.
For example, it must assure that the Code-Blocks are small enough to fit in the
internal queues of the TSU.

However, at the early stages of the development of a novel architecture such
as the DDM-CMP, hand-coded application results [2,3,12] and pragma-based di-
rectives for code generation are an acceptable way to do initial testing. Currently
we support a semi-automatic code generation through the DDM Preprocessor.
This process resembles the one followed for OpenMP programs where special
pragma directives are inserted in the source code. The DDM directives allow
the user to specify the thread’s code and Code-Blocks’ boundaries. The DDM
Preprocessor then adds in the native code instructions for the creation of the
DDM threads and the DDM-Kernels.

Figure 6 depicts an example of a program that uses such pragma directives.
Specifically, in line 01 the BLOCK START pragma is used to inform the complier
that a new DDM Code-Block starts. This Code-Block ends at line 16 with the
BLOCK END pragma instruction. Lines 03-07 and 09-13 define threads 1 and
2, respectively. The code of a thread is enclosed within the THREAD START
and THREAD END pragma directives. With the THREAD START pragma the
user defines the Thread# of the thread, the Thread# of its consumers and the
DDM-Kernel/CPU that will run it.

The BLOCK START pragma has the effect of adding to the native code a
proper Inlet Thread for the specific block. Similarly, the BLOCK END pragma,
leads to adding an Outlet Thread to the code. The necessary information for these
threads is taken from the included THREAD START pragma directives. Addi-
tionally, the THREAD START pragma, defines the first instruction of the thread.
Finally, the THREAD END pragma directive, defines the last instruction of the
thread and makes the compiler insert in its place a branch to the THREAD
SELECT loop. An example of the generated code is shown in Figure 8.

00 ...
01 #PRAGMA DDM BLOCK_START BLOCK 1
02
03 #PRAGMA DDM THREAD_START THREAD 1 CONSUMERS 2,4 KERNEL 1
04 for(i=0;i<effort;i++)
05 for(j=0;j<effort;j++)
06 Out1+=(i*j+j)/(j+1);
07 #PRAGMA DDM THREAD_END
08
09 #PRAGMA DDM THREAD_START THREAD 2 CONSUMERS 5,6,8 KERNEL 1
10 for(i=0;i<effort;i++)
11 for(j=0;j<effort;j++)
12 Out2+=(i*j+j)/(j+Out1);
13 #PRAGMA DDM THREAD_END
14
15 ...
16 #PRAGMA DDM BLOCK_END
17 ...

Fig. 6. An example program that uses the DDM pragmas
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5 Runtime Support System Validation

We validate the proposed DDM-Kernel using a functional, Simics-based [7] full
system simulator using a variety of different applications. Due to space limita-
tions, we only present one example. This synthetic application was designed to
have a relatively complex thread dependency graph in order to test the correct
execution of the TSU and DDM-Kernel. Also, the core code of each thread may
be artificially increased by performing more iteration of the same operation. We
call this number of iterations the loop effort. As the iterations result from the
use of two nested loops we represent this effort in terms of n × n. Figure 7 de-
picts the threads and the corresponding synchronization graph for the program
used.
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1
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2

Execution
Thread

Outlet 
Thread

Inlet 
Thread

Fig. 7. The Synchronization Graph of the program used for the experiments

The different tones of the threads represented in Figure 7 represents the static
assignment of each thread to a particular processor. Therefore, all light threads
will execute on processor A while all dark threads will execute on processor B.

This program is written using the pragma directives as presented in Sec-
tion 4.4. An excerpt of this program is shown in Figure 6. After this program is
passed through the DDM-CMP preprocessor, it outputs the code including the
corresponding DDM-Kernel and Threads. An excerpt of the the main, together
with the DDM-Kernel code, is shown in Figure 8-(a). An excerpt of the thread
code is presented in Figure 8-(b).
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int main(int argc,char *argv[]){
...
//CREATE THE DDM KERNELS
for(i=0;i<NO_OF_DDM_KERNELS;i++) {
pid=fork();
if(pid==0) { //CHILD CODE

ownTSU=&(tsuArray->tsu[i]);
//Bind the DDM Kernel to a processor
bindprocessor( getpid(), (i+1)) );
//Move execution to DDM kernel
kernelNumber=i+1;
goto DDM_KERNEL;
return 0;

}
}
...

//The DDM KERNEL
DDM_KERNEL:
switch(kernelNumber) {
case 1: loadTSU(

ownTSU, //Execution TSU
101,101,0,//ThrID,IFP,RC
1,0,0,0); //Cons 1,2,3,4

goto THREAD_SELECT;
break;

...
}

//The THREAD SELECT LOOP
THREAD_SELECT:
threadUnderExecution=

currentlyExecutedThread(ownTSU);

switch(threadUnderExecution) {
case 101: goto INLET_BLOCK01_KERNEL01;

break;
...
case 2: goto THREAD02;

break;
...

}
...

(a)

// B L O C K 0 1
//Inlet thread Block 01-Kernel 01
INLET_BLOCK01_KERNEL01:

//LOAD THREAD01
loadTSU(

ownTSU, //Execution TSU
1,1,1, //ThrID, IFP, RC
2,3,4,0);//Cons 1,2,3,4

...

threadCompletedExecution(ownTSU);
goto THREAD_SELECT;

...

THREAD02:
tmp_Out=0;
tmp_In01=threadResults->result[1];

for(i=0;i<effort;i++)
for(j=0;j<effort;j++)

tmp_Out+=(i*j+j)/(j+tmp_In01);

threadResults->result[2]=tmp_Out+1;
threadCompletedExecution(ownTSU);

goto THREAD_SELECT;

...

OUTLET_BLOCK01_KERNEL01:
(*numberOfLiveKernels)--;
exit(0);

(b)

Fig. 8. (a) Main and DDM-Kernel and (b) Thread code

The program was implemented using the available tools and executed on
the functional DDM-CMP Simics-based simulator. The correct execution of the
Runtime System was validated by comparing the results of this, and other similar
programs, against the execution of their corresponding serial code.

6 Conclusions and Future Work

DDM-CMP is a single-ISA homogeneous chip multiprocessor that overcomes
memory and power limitations. This is achieved by combining two key technolo-
gies. First, the use of the Data-Driven Multithreading model of execution, which
is an efficient dataflow-oriented implementation that has minimal hardware re-
quirements and tolerates long latencies by allowing the processor to produce
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useful work while a long latency event is in progress. Second, chip-multiprocessor
architectures offer high-degree of parallelism at low complexity design and there-
fore are power efficient.

This paper presented the design and implementation details of the DDM-CMP
chip. The main contributions include the detailed hardware budget analysis and
the runtime support system description and validation. The analysis showed
that the DDM benefits may be achieved with only a 17% hardware cost increase
compared to a simple chip-multiprocessor implementation. The analysis also
showed that in the hardware budget as a state-of-the-art single-chip uniprocessor
it is possible to build a 16-core DDM-CMP chip. Finally, DDM applications
are shown to execute on the DDM-CMP chip using a regular, non-modified,
Operating System. To achieve this, a simple user-level process used to coordinate
the DDM application execution, the DDM-Kernel, was presented and validated.

Based on the design presented in this paper we are currently pursuing the
implementation of a Xilinx-based hardware prototype to validate the concepts
here presented. In addition, we are developing a fully automated compiler for
DDM.
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Abstract. Intelligent city traffic for travelling navigation, traffic pre-
diction and decision support needs to collect large-scale real-time data
from numerous vehicles. As a small, economical yet reasonably efficient
device, wireless sensors can conveniently serve for this purpose. In this
paper1, we investigate how to deploy wireless sensor networks in buses
to gather traffic data for intelligent city traffic. The paper presents a self-
organization mechanism and a routing protocol for the proposed sensor
networks. Our work has three advantages: (1)adaptive network topol-
ogy, which satisfies highly mobile city traffic environment, (2)directed
data transmission, saving energy consumption of sensor nodes with lim-
ited power resource, and (3)longer lifetime because of fewer redundant
network communication and balanced power usage of sensor nodes in a
network.

1 Introduction

Wireless sensor networks will play a key role in sensing, collecting, and dis-
seminating information about environmental phenomena. With the advances in
computation, communication, and sensing capabilities, large scale sensor-based
distributed environments are becoming a reality. There are a wide range of appli-
cations for sensor networks with differing requirements. Such distributed sensor
networks allow us to continuously monitor and record the state of the physi-
cal world which can be used for a variety of purposes such as transportation,
medicine, surveillance, environment monitoring and protection, security, defense,
science and engineering[1,2,3,4,5,6,7].

Intelligent traffic management is a very important issue. For this purpose,
Shanghai municipality launched a project ShanghaiGrid in 2003. The main issues
in this project are to collect real-time traffic data from buses and taxis, handle
these data with Grid technologies, and finally provide citizens with intelligent
services. For solving the first issue, some GPS terminals have been deployed in a
1 This paper is supported by 973 Program of China (2002CB312002), National Nat-

ural Science Foundation of China(60473092, 90612018, 60503043), Natural Science
Foundation of Shanghai Municipality of China (05ZR14081), and ShanghaiGrid from
Science and Technology Commission of Shanghai Municipality (05DZ15005).

C. Jesshope and C. Egan (Eds.): ACSAC 2006, LNCS 4186, pp. 260–269, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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part of vehicles. However, many drivers especially taxi drivers dislike using GPS
devices because they are expensive and inconvenient. Sensors are an appropriate
substitute for sensing traffic data from various vehicles to analyze traffic status,
plan travelling routes and so on.

A sensor network is composed of a large number of sensor nodes that are
densely deployed either inside the phenomenon or very close to it. Each of these
scattered sensor nodes has capabilities to collect data and route data back to
the sink. After deployment, topology changes are due to change in sensor nodes’
position, reachability (due to jamming, noise, moving obstacles, etc.), available
energy, malfunctioning, and task details. In our target environment, the topol-
ogy of a sensor network for sensing traffic data changes very frequently because
sensors keep continuously mobile. Protocols and algorithms for these sensor net-
works must possess self-organizing capabilities [8,9,10,11,12,13].

Sensor nodes mainly use a broadcast communication paradigm. They are
inherently resource constrained in power, computation and storage capacities.
Power consumption of a sensor node can be divided into three domains: sensing,
communication, and data processing. Energy expenditure in data communica-
tion is much more compared to others[14]. Therefore, energy consumption of a
sensor node significantly increases with transmission distance. In order to max-
imize lifetime of a network, nodes in our sensor network communicate in the
following way.

– In a sensor network, only one node closest to the sink can directly transmit
data to it in a hop. We call such a sensor node as a super node.

– Other sensor nodes can directly communicate only with neighbor nodes.
They send data back to the sink in a multihop fashion, through the super
node.

– Each sensor node only relays data from nodes farther from the super node
in distance.

– All nodes work as the super node in turn by elections. After an election,
the sensor network keep a stable topology for a period of time. During this
period, the super node keeps the closest to the sink.

The goal of this paper is to investigate feasibility to deploy wireless sensor
networks for intelligent traffic. We proposes a model for self-organization of sen-
sor networks that are used to collect traffic information for decision support and
intelligent prediction such as road status (free or jammed), the best path to an
expected destination, estimated time that the next bus is going to arrive at a
stop. And then we design a protocol for routing traffic data to the Grid system.

2 Related Work

Routing for wireless sensor networks has recently received a lot of attention.
Many algorithms have been proposed in research literatures.

Flooding is a classical mechanism to relay data in sensor networks without
the need for topology maintenance. In flooding, each node receiving a data or
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management packet broadcasts it to all of its neighbors, unless a maximum
number of hops for the packet is reached or the destination of the packet is
the node itself. Flooding is a simplest routing protocol, but with several serious
deficiencies such as implosion, overlap and resource blindness[11,15].

Gossiping, a derivation of flooding, sends data to one randomly selected neigh-
bor, which picks another random neighbor to forward the packet and so on.
Gossiping avoids implosion problem by just selecting a random node to send
the packet rather than broadcasting, however, message propagation takes longer
time[11,16].

SPIN is a family of adaptive protocols and addresses the deficiencies of classic
flooding by considering resource adaptation and data negotiation between nodes
in order to eliminate redundant data and save energy. In SPIN, whenever a node
has available data, it broadcasts a description of the data instead of all the data
and sends it only to the sensor nodes that express interest to save energy[15,17].

Directed Diffusion has become a breakthrough in data-centric routing, where
the sink sends out interest, which is a task description, to all sensors. The task
descriptors are named by assigning attribute-value pairs. Each sensor node then
stores the interest entry in its cache. The interest entry contains a timestamp
field and several gradient fields. As the interest is propagated throughout the
sensor network, the gradients from the source back to the sink are set up. When
the source has data for the interest, the source sends the data along the interest’s
gradient path[13,18].

LEACH is a 2-level hierarchical routing protocol which attempts to minimize
global energy dissipation and distribute energy consumption evenly across all
nodes. The nodes self-organize into local clusters with one node in each cluster
acting as a cluster head, based on the received signal strength. The head works
as a routers to the sink. Cluster members send data to the cluster head(low
energy transmission) which in turn sends it to the base station(high energy
transmission). Energy dissipation is evenly spread by dissolving clusters at reg-
ular intervals and randomly choosing the cluster heads. However, LEACH uses
single-hop routing where each node can transmit directly to the cluster-head.
Therefore, it is not applicable to networks deployed in large regions [19].

The above protocols need to be improved to address higher topology changes
and higher scalability for highly mobile traffic system.

3 Background

Our research focuses on how to collect real-time traffic data from buses for Shang-
haiGrid, which is a long term research plan sponsored by Science and Technology
Commission of Shanghai Municipality (STCSM) to provide intelligent traffic ser-
vices for citizens and Shanghai government. As the most important part of digital
city and city Grid plan, ShanghaiGrid concentrates on constructing metropolis-
area information Grid infrastructure, establishing an open standard, and develop-
ing a set of system softwares for the information Grid for widespread upper-layer
applications from both research communities and official departments. By means
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Fig. 1. Prediction of road traffic status

of flexible, secure and open standards, data information and dedicated services
among virtual organisations, this project will build an information Grid testbed
for Shanghai and support typical applications of Grid based traffic-jam control
and guidance.

The ShanghaiGrid project is built on four major computational aggregations
and networks in Shanghai, i.e. the CHINANET (public internet backbone built
by China Telecom), the SHERNET (Shanghai Education and Research Net-
work), Shanghai Supercomputing Center, and campus networks in Shanghai Jiao
Tong University, Tongji University and Shanghai University, and is planned to
enable the heterogeneous and distributed resources to collaborate into an in-
formation fountain and computation environment for research, education and
metropolis management applications, seamlessly and transparently. To achieve
the goal, the project consists of four interdependent sub-projects: the research
and investigation on requirements, protocols and standards of information Grid
infrastructure, the development of system software and establishment of ma-
jor Grid nodes, the development of decentralized virtual research platform, and
research on metropolis Grid applications.

Relying on the growing network infrastructure and abundant scientific re-
search resources, the ShanghaiGrid project will construct the first metropolis-
area information Grid to provide tremendous data manipulations and ubiquitous
information services for variety of organizations. Especially, the traffic-congestion
control and guidance application are planned to take advantage of Grid comput-
ing to integrate traffic data collection, traffic monitoring and supervising, traffic
information supply and traveller guidance, in order to make the traffic system
run more efficient and people easier to travel within the city [20,21,22,23]. Fig.1 is
an example for prediction of the road traffic status, where traffic flow is depicted
by different colours.
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Fig. 2. The architecture of city Grid with sensor networks

As mentioned above, current data collection in this project mainly relies on
GPS systems. We argue that the wireless sensor network is a better substitute
because: (1) GPS data is often lost owing to high building, bad weather and
other disadvantageous factors, and (2) a sensor is more economical than a GPS
terminal. We propose an architecture where real-time traffic data is collected
by sensor networks for ShanghiGrid, as shown in Fig.2, which consists of five
layers. The application layer means actual intelligent traffic services, mainly
including estimation of road status for traffic-congestion control, prediction of
arrival time of the next bus, the best travelling path to a specified destination,
decision support and simulation. The next application support layer provides
application-specific environment and tools. The Grid middle layer is the core of
ShanghaiGrid, which is responsible for task management, data service, schedul-
ing, workflow, transaction etc., based on Grid technologies. Grid resources form
the infrastructure layer. This paper concentrates on the data collection layer,
which collects real-time traffic data based on sensor networks.

4 Sensor Network Design

As a part of intelligent traffic service, our sensor networks take charge of collec-
tion of real-time traffic data such as passenger number, speed and direction of
vehicles, the number of bus line. In this paper, we present how to design sensor
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networks to gather data from buses. Sensing taxi data will be reported in near
future.

There are hundreds of bus lines and thousands of taxies in Shanghai. Based
on practical situation, public traffic generally complies with the following model.

– Each bus line that consists of hundreds of buses often covers 10 to 20 kilo-
meters.

– Each bus line associates with a scheduling office, located at an end of the
traffic line to schedule these buses.

– Buses move back and forth on the line one by one.
– Each bus stays at the scheduling office for a few minutes before the next

round, during which it is the bus closest to the scheduling office.

Sink

Sen s o r
No d e

Sch ed u lin g  Office

STOP

Shanghai
Grid

Super
N

ode

Fig. 3. A sensor network for collection of bus information

4.1 Topology of a Sensor Network

Design of a scalable sensor network and efficient routing protocol to collect traffic
information for intelligent traffic poses many significant challenges because of

– continuous movement of sensors. The super node that directly communicates
with the stable sink has to change continuously.

– limited computation, communication, and storage resources at sensor nodes.
Data has to be routed back to the sink in an energy-efficient way.

We deploy sensors in each bus. A bus line forms a sensor network with a
number of ordinary sensor nodes, a super sensor node and a sink, as shown
in Fig. 3. All sensor nodes have the capabilities to observe, temporarily store
and route data back to the sink by a multihop routing mechanism at any given
time/period of the measurement. Moreover, a super node acts as a gateway of a
sensor network. The sink may communicate with the Shanghai Grid via Internet
or satellite. Sensor nodes do not transmit data from different sensor networks
through checking their bus line numbers. In the same network, sensor nodes only
route data from nodes further from the super node.
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4.2 Sensor Network Model

We model a bus line in L={O,B,BS}, where O is a scheduling office for a bus
line, one scheduling office for each bus line; B={B1,B2,...,Bn} is a set of of buses
that move on the same bus line and BS is a set of bus stops. Each bus is equipped
with a sensor node.

No Name Length
(Byte) Description

1 LineID 1 ID of the bus line

2 BusID 1 ID of the bus

3 Passenger 1 Number of passengers

4 TimeStamp 10 Report time ("MMDDhhmmss" )

5 Location 9 Longitude and Latitude

6 Speed 1 Kilometers per hour

7 Status 1 A bus runs or stops

8 Stop 1 Bus stop

9 Direction 1 Back or forth

10 Reserved 2 Reserved Field

Fig. 4. The structure of sensing data

Sensors deployed in the same bus line self-organize into a network by an elec-
tion. A sensor network in a bus line L can be modelled as SN(L)={Sink, Super,
S, D}, where the Sink is a communication node deployed in the scheduling office,
and interconnects with Shanghai Grid, Super is the super node, S={S1,S2,...,Sn}
is a sensor set and D={D1,D2,...,Dn} is a sensing data set. Sensor Si (i=1,2,...n)
is deployed on the bus Bi. It collects data Di all the time and transmits Di to
the sink node every 18 seconds. Di and Dj (i,j=1,2,...,n, i�=j) have the same data
structure but different values. Note that the value(s) of Di change(s) continu-
ously. The data structure of Di is illustrated in Fig. 4.

4.3 Election of a Super Node

Energy consumption of a sensor node contains data processing and data trans-
mission. The longer transmission distance, the more energy consumption for
data transmission. We assume a node can directly communicate with only its
neighbors to reduce its energy consumption by adjusting transmission power of
the node.

Election of a super node occurs periodically. Whenever a sensor node detects
that a signal from the sink exceeds a threshold, it initiates an election to run
for a super node. We call such a sensor node as a candidate super node. In fact,
the super node from a successful election is that the closest to the sink. Election
algorithm includes the following two phase.
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Fig. 5. A topology after an election

Initiation of an election. A candidate super node sends an ELECTION mes-
sage to its two neighbors. The message contains a node name N0, a bus line
number and an election time.

Promulgation of the ELECTION message. After a sensor node receives an
ELECTION message from the node Ni with the same direction, it changes the
node name into Ni+1, then relays the message to further nodes. This process
continues until the end of this bus line.

An election forms a hierarchical graph with two nodes in every level except
the super node N0, as shown in Fig. 5, where a solid line between two sensor
nodes denotes a hop transmission. The two nodes with the same name Ni move
towards reverse directions. Note that a node with the name Ni only routes an
ELECTION message from nodes with the name Ni−1.

4.4 Routing Traffic Data

In our sensor networks, sensor nodes collect traffic data from buses and then
send them back to the sink by a multihop fashion. A node works as both a data
source and a router, however, any node only routes sensing data from the same
network. The super node is a sole sensor that can communicate with the sink in
a hop. Routing traffic data is based on the topology generated from an election,
where each sensor node associates with a logical name Ni. Between two elections,
data transmission can happen many times.

Sensor nodes route traffic data using the directed routing algorithm (see
Fig.6), where S is a set of nodes in a sensor network, Ni represents a sensor
node with a logical name Ni generated from the last election.

In our routing algorithm, a sensor node only relays traffic data from its own
sensor network. It can be realized by checking the LineID in the data Dj because
data sensed from different bus lines carries different LineIDs. As a result, each
sensor network only reports the traffic data from its own bus line. In addition, a
sensor only routes the data from the node that moves to the same direction and is
farther from the super node than itself, which reduces redundant communication.
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Imput:  traffic  data Dj

Output: transm iss ion of the Dj

Ni rec eives  traffic  data Dj from  Nj

If Nj in S               //transm it data from  its  ow n netw ork
    If j > i              //transm it data for farther nodes
        If Nj m oves  to the sam e direc tion
            broadc as t the data Dj

        EndIf
   EndIf
EndIf

Fig. 6. Routing algorithm for the node Ni

In our sensor network, the farther from the super node a sensor with the name
Ni is, the more i becomes.

5 Conclusions and Future Work

We have investigated a deployment of wireless sensor networks in buses to gather
traffic data for intelligent city traffic. The paper presented a self-organization
mechanism and a routing protocol for the proposed networks. Our method has
adaptive network topology, directed data transmission and longer lifetime.

We are going to study how to deploy and design sensor networks in more than
eight thousand of taxis to provide more precise traffic services.
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Abstract. This paper describes a control system processor architecture
based on ΔΣ modulation (ΔΣ-CSP). The ΔΣ-CSP uses 1-bit processing
which is a new concept in digital control to remove multi-bit multiplica-
tions. A simple conditional-negate-and-add (CNA) unit is proposed for
most operations of control laws. For this reason, the targeted processor
is small and very fast, making it ideal for embedded real-time control ap-
plications. The ΔΣ-CSP has been implemented as a VLSI hard macro
in a high-performance 0.13μm silicon process. Results show that it com-
pares very favorably to other digital processors in terms of area and clock
frequency.

1 Introduction

Many analogue-to-digital (A/D) and digital-to-analogue (D/A) converters em-
ploy an intermediate ΔΣ modulating stage for high quality data conversion [1].
The ΔΣ modulator converts signals into a simple bit-stream, i.e. 1-bit signals
that can be stored in 1-bit registers. This bit-stream contains all the useful
information of the input, thus making it possible to perform signal process-
ing directly on those 1-bit signals. ΔΣ-based signal processing has been widely
investigated in the context of finite-impulse-response (FIR) filters [2], infinite-
impulse-response (IIR) filters [3] and audio processing [4]. Moreover these sys-
tems are able to interface to analogue signals directly as the decimating filter
for A/D converters and interpolating filter for D/A converters are removed. For
this reason, integration of ΔΣ modulators in control system processing has been
studied [5].

The actual implementation of control laws is part of the design process which
most control engineers strive to achieve in as straightforward and transparent
way as possible. ΔΣ-based control systems can be implemented as software run-
ning in existing digital processors, but this doesn’t result in a cost effective

C. Jesshope and C. Egan (Eds.): ACSAC 2006, LNCS 4186, pp. 270–280, 2006.
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solution, particularly taking the 1-bit feature into consideration. We therefore
propose a novel ΔΣ-based control system processor for demanding control ap-
plications and evaluate its hardware performance compared with other digital
processors running a control example.

2 1-bit Processing

1-bit processing is a new concept in digital control. Fig. 1 shows the diagram of
such a system. Here PDM means pulse density modulation. In 1-bit processing,
however, the continuous signal is shaped into a single bit-stream via ΔΣ mod-
ulation. A digital ΔΣ modulator is placed after the controller in the main loop,
resulting in a 1-bit signal after control processing. As a result, the processed 1-
bit signal is used to control physical systems directly through PDM which works
similarly to pulse-width-modulation (PWM).

PDMn−bit
ΔΣ  Controller

1−bit
ΔΣ

Physical System

Ai

Fig. 1. 1-bit control system

2.1 ΔΣ Modulation

Fig. 2 shows a ΔΣ modulator, in which several integrators are cascaded in the
forward loop to create a higher order filter, with each integrator receiving an
additional input from the quantiser. The output of the quantiser is a binary
value (±Δ).

∫
−Δ

+Δ
u q

          ∫

Fig. 2. ΔΣ modulation

Each sample q has its corresponding part on the original input u but with
quantisation noise [6]. When the sampling frequency is sufficiently high, this
quantization noise can be ignored as the noise spectrum within the signal band-
width is much smaller than the input signal spectrum.
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2.2 Controller Structure

1-bit processing requires a very fast sampling frequency which may result in long
word-lengths for both coefficients and variables within the controller, primarily
because the differences between successive values of the input and output become
increasingly small. This is related to the known problems of coefficient sensitivity
with conventional forms of control system processing using the shift operator z
[7]. This feature becomes particularly critical with the much higher sample rates
required for 1-bit signal processing. It has been recognized that alternative forms,
using the δ-operator, overcome a number of these problems [8].

The δ-operator is defined as

δ = q − 1. (1)

in which q is the shift operator. Hence, the equation y = δ−1x is implemented
as

y(n + 1) = x(n) + y(n). (2)

This paper concentrates on minimising the circuit complexity through taking
advantage of 1-bit processing. Thus, a canonic δ-form that integrates the ΔΣ
modulator is proposed, shown in Fig. 3 for a second order structure. Notice
that the input u is a 1-bit signal from the 1-bit A/D converter. As a result, all
multiplications in this structure are between a 1-bit signal (either +1 or -1) and
a multi-bit coefficient, which just changes the sign of the multi-bit coefficient.
Multiplication therefore becomes a simple ‘conditional-negate’, removing the
need for multi-bit multipliers in the calculations. Variable x1 and x2 are multi-
bit and the gain k is a power of 2 scaling factor which requires only a simple
shift operation and avoids the need for a multiplication which otherwise would
increase the circuitry complexity. For VLSI implementation, this structure shows
great advantages over traditional designs as both the circuit complexity and
computation latency are greatly reduced.

2

0p

0q

δ−1 δ−1

p1

q1

k k

p2

ΔΣ
y

output
1−b

u

x1

input
1−b

x

Fig. 3. The canonic δ-form for 1-bit processing

The transfer function (not including the ΔΣ modulator) of the controller in
Fig. 3 therefore can be written as:
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Y

U
=

p0k
2δ−2 + p1kδ−1 + p2

q0k2δ−2 + q1kδ−1 + 1
. (3)

Consider for example a generalised single-input single-output controller of
second order. Its transfer function can be represented by

H(s) =
a1s

2 + a2s + a3

s2 + b1s + b2
. (4)

From Eq. 1, the δ operator approximates to sT when the sampling time T
is very small. Here s is the Laplace operator. Hence, from Eq. 3 and Eq. 4, the
coefficients are obtained:

p0 = a3T
2k−2,

p1 = a2Tk−1,
p2 = a1,
q0 = b2T

2k−2,
q1 = b1Tk−1.

(5)

Here k is used to scale up the coefficients which are very small due to the high
sampling frequency.

3 Processor Architecture

The ΔΣ-CSP is reasonably simple by considering all the necessary elements
needed to perform a control law.

3.1 Word Length

The ΔΣ-CSP adopts a fixed-point arithmetic format because the floating-point
arithmetic is expensive in terms of speed, power and complexity. However the
word length needs to be carefully chosen to ensure that the full value and dy-
namic range of the variables can be accommodated.

A simple criterion used to determine the number of fractional bits is described
in [9], and a reasonable number of fractional bits would be in the range of 8-16
bits, which will support a wide range of controllers. A 24-bit fixed-point format
is chosen for one-bit processing, which contains 16 fractional bits, 7 integer bits
and 1 sign bit. This format accommodates a signal with an amplitude between
-128 to 128, which is sufficient for most control applications as the input/output
is only -1 or 1 and no multipliers are needed in one-bit processing. Because there
are no multiplications, no overflow or underflow bits are specified.

3.2 Instruction Set Architecture (ISA)

The ISA of the proposed programmable solution is given in Table 1. The in-
struction set is fairly small and specialised to control law implementation.

Each instruction contains three elements: an opcode, an I/O address and
a data RAM address. These elements decide the word length to represent an
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Table 1. ΔΣ-CSP opcodes

Binary code Opcode Function description

000 HLT No operation

001 RDW Read data from the program RAM

010 WRB Output the result to the digital output ports

011 WRW Write the intermediate states to the data RAM
100 SRS Right shift

101 CNA Conditional negate and accumulate

110 SET Set the sampling frequency for the timer

111 WPC Set the start value for the program counter

instruction. In this processor design, we use 16-bit word format, which includes
3 bits for opcode, 4 bits for digital I/O and 9 bits for data RAM. The processor
has only 8 opcodes (see Table 1) to accomplish all the necessary operations
for a control system. 8 digital inputs and 8 digital outputs are provided in the
I/O block which allows a maximum of 8 inputs and 8 outputs for an MIMO
(multi-input and multi-output) control system. As there are 9 bits to represent
an address of the data RAM, it allows access to a RAM with a maximum size
of 512 ∗ 24b. This is enough to perform a complex control system as only the
states, which are used in the next sample calculations, will be written to the
data RAM.

3.3 Microarchitecture

Fig. 4 depicts the block diagram of the ΔΣ-CSP. All calculations take place in
the arithmetic and logic unit (ALU). Memories are used to store coefficients and
instructions. The following major microarchitecture blocks are identified:

Program Counter. The program counter maintains the memory of the cur-
rently executing instructions of the control law in the program RAM. It starts
at an initial location and is incremented by 1 on every clock cycle. The pro-
gram counter contains an initial address, from which the control loop begins.
When the control law has executed, the program counter stops counting via a
‘HLT’ instruction and awaits the next sample trigger event. The initial address
is reloaded in the program counter and execution begins once again.

Decoder. In the decoder, the instructions are extracted into three parts: op-
code, I/O address and memory address. The decoder also generates control logic
signals which control memory and digital I/O accesses by enabling read and
write signals to the memories and the digital I/O block.
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Fig. 4. ΔΣ-CSP diagram

Arithmetic and Logic Unit. The ALU takes the opcode and three inputs
from I/O, accumulator and data RAM respectively for each calculation.

For a controller structure of the type as shown in Fig. 3, the conditional-
negate-and-add (CNA) unit, is utilized to perform most operations of control
laws. The CNA unit performs the operation

D = �B|A + C, (6)

where B is either a coefficient or a state variable, A is a 1-bit signal, and C is
a state variable. � is a symbol which means conditional-negate. Hence �B|A
conditional-negates B given a condition of A. A is from either input u or out-
put y. If A is 1, �B|A gives B. Otherwise, �B|A gives −B. Finally, to com-
plete the CNA operation, the result of the conditional-negation is added to the
state variable C and is stored in the accumulator, ready for the next arithmetic
operation.

The other arithmetic unit is the shift operation. The scaling factor k in the
main loop is a very small power of 2 value in order to enlarge the coefficients.
Hence when realised in hardware, it corresponds to a signed shift right operation.
Other arithmetic operations such as add, subtract, multiply or divide are not
necessary. In addition, very few logic operations are necessary for control system
processing [10], and as a result, no Boolean unit is included in this design.

Accumulator. After processing in the ALU, each result is stored in the accu-
mulator for the following instruction at the next clock cycle. Note that the data
in this accumulator will be cleared as soon as a ‘HLT’ instruction is read. This
operation is necessary because the final result of each control loop cannot be
brought in the calculations at the next sample time.
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Sample Timer. The sample timer contains a 24-bit register. When the ‘SET’
instruction is read, the processor will write a value to this register. This value is
used to decide the sample time along with the clock frequency.

3.4 VLSI Macrocell

We defined a number of high-level parameters that affect the implementation of
the VLSI Macrocell of the ΔΣ-CSP. These included amongst others parameters
to specify the size of the control program in 16-bit words and whether the control
program storage is implemented as an array of flops or using a single-port embed-
ded SRAM. The design was validated at RTL level and subsequently synthesized
using the Synopsys Design Compiler. The optimized netlist was re-validated
and then read into Synopsys Physical compiler where an optimal placement
was achieved using the Gates-to-Placed-Gates flow. The optimized and placed
netlist was subsequently read into Cadence SoC encounter where the power plan
was designed and certain physical constraints were specified. The target fre-
quency was 400 MHz and the target technology was UMC 0.13μm, 8-layer copper
process.

Fig. 5 depicts the Floorplan (placed database) and final layout (routed)
database. The major identifiable blocks are:

– USB Core: This is to the left of the Floorplan and occupies approximately
50% of the total silicon area. We used the USB 1.0 interface core and syn-
thesized it for a clock frequency of 48 MHz.

– ΔΣ-CSP Program RAM: An array of flops for storing the control program
and associated multiplexing logic.

– Data RAM: Coefficient/Data RAM. Implemented as an embedded memory
of 512 words by 24 bits.

– BCSP Core: The processing logic of the ΔΣ-CSP.

The design was routed in Cadence SoC encounter and the following results
were obtained and shown in Table 2:

Table 2. Results of the design

Frequency (MHz) 355 (DC target 400 MHz)

Std cells (RAMs) 10505(3)

area 1194μm × 594μm = 709438μm2

Core Utilization 64.5%

3.5 System Performance

The ΔΣ-CSP performance is compared to the direct implementation by imple-
menting a 4th order controller. The results are further compared to a conventional



A Novel Processor Architecture for Real-Time Control 277

Fig. 5. Flop-based ΔΣ-CSP

control system processor (CSP) [11] and also many other processors. The transfer
function of the example controller is

H(s) =
1

(1 + 1.4 s
w + s2

w2 )2
, (7)

where w = 2π.
Table 3 shows the comparison results. From the table, the direct implemen-

tation is more than 9 times faster than the ΔΣ-CSP to process control laws.
But the ΔΣ-CSP is still the fastest programmable solution compared to other
processor implementations. The power consumption suggests that the ΔΣ-CSP
is most power efficient as well.

4 Motor Control Application

To thoroughly evaluate the performance of 1-bit processing and ΔΣ-CSP in
real-life control applications, we demonstrate a practical DC motor controller in
this section.
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Table 3. Comparison results

direct impl. ΔΣ-CSP CSP TMS320C31 Strong-ARM PentiumIII

Frequency(MHz) 139 355 50 60 233 500

Clock cycles/instruction N/A 1 1 2 1.79 1.15

Number of instructions N/A 24 23 48 43 49

Computation time(μs) 0.0072 0.0676 0.46 1.603 0.331 0.113

Power consumption(w) 0.004 0.28 0.82 2.6 1 > 20

Fig. 6 shows the diagram of a DC motor model with Laplace transfer functions.
The objective is to control the position of a rotating load with flexibility in the
drive shaft.

1

Position

0.1

15.80.1
1

0.001s  2
1

s

1

0.0005s

1

0.02s+1
1

Voltage

Fig. 6. DC motor diagram

A 4th order position controller was designed including a PI filter, a phase
advance filter and a notch filter to minimise the effect of the resonance caused
by the flexibility. The Laplace transfer function for the control system is

H(s) =
0.0001s4 + 0.001s3 + 0.25s2 + 0.2501s + 0.001

0.0001s4 + 0.011s3 + 0.11s2 + s
. (8)

A hardware-in-loop methodology is adopted to verify the feasibility of the ΔΣ-
CSP. The DC motor and the ΔΣ modulator are both modelled in the computer
with C++. The ΔΣ-CSP architecture is realised with the FPGA technology.

The coefficients are represented in a 24-bit fixed-point word format, which
results in a maximum error of 0.524% when the sampling frequency is selected
at 1kHz. Because the accuracy of the coefficients should be the same as that of
overall control system (typically within 5%) [12], the coefficients can be safely
engaged in calculations to perform the control law in the ΔΣ-CSP.

The step response of the hardware-in-loop simulation is compared with that
of the digital simulation which was carried out in Matlab. The digital simulation
takes Eq. 8 as a continuous control system in Simulink. The results are shown in
Fig. 7(a). A small area of the simulation results is enlarged as shown in graph (b)
because this area is where the peak response of the control system happens. The
only difference is that the motor oscillates a bit more heavily with the hardware-
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Fig. 7. Comparisons between the hardware-in-loop simulation and the digital
simulation

in-loop simulation. This is due to the effect of pulse density modulation, and will
not affect the whole system performance.

5 Conclusion

The ΔΣ-CSP is an extremely small and fast application-specific processor. De-
spite its simplicity, the ΔΣ-CSP outperforms even the fastest of the other proces-
sors by a significant margin.

At the moment, we are investigating the possibility of very high parallel VLSI
architectures consisting of tens to hundreds of ΔΣ-CSP cores in an ASIC format.
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Abstract. Compiler optimizations aimed at improving cache locality are critical 
in realizing the performance potential of memory subsystem. For scientific 
programs, loop and data transformations are two important compiler 
optimization methods to improve cache locality. In this paper, we combine loop 
and data transformations and present a 0-1 integer linear programming (0-1 
ILP) based approach that attempts to solve global locality optimization 
problems. We use the treelike memory layout graph (TMLG) to describe a 
program’s locality characteristics, formulate the locality optimization problems 
as the problems of finding the optimal path sets in TMLGs, and then use 0-1 
ILP to find the optimal path sets. Our approach is applicable not only to 
perfectly nested loops but also to non-perfectly nested loops. Moreover, the 
approach is suitable for handling the circumstances that arrays are accessed not 
only along dimensions but also along diagonal-like directions. The 
experimental results show the effectiveness of our approach.  

Keywords: Cache locality, compiler optimizations, memory layouts, loop 
transformations, data transformations, integer linear programming. 

1   Introduction 

As the memory speed can not keep up with the speed of microprocessors, memory 
subsystem has become one of the main performance bottlenecks of the whole 
computer system. To minimize the impact of this speed gap, memory hierarchies have 
been used extensively in current computer systems. The performance of programs is 
determined to a great extent by the use of memory hierarchies and the effective use of 
caches in memory hierarchies can be made by exploiting programs’ cache locality. 
Loop transformations and data transformations are two important compiler 
optimization methods to improve programs’ cache locality. Loop transformations 
improve cache locality by iteration space transformations and scheduling techniques, 
while data transformations improve cache locality by data space transformations. 

Loop transformations can improve both temporal and spatial locality, and the effect 
of loop transformations is local. As loop transformations have the above advantages, 
many researchers [1-3] have used loop transformations to optimize cache locality over 
the last decade. Wolf and Lam [1] show how to use unimodular loop transformations 
followed by tiling loops that carry some form of reuse to improve locality. Li [2] 
optimizes cache temporal and spatial locality by using loop transformations to reduce 



282 J. Xia, L. Luo, and X. Yang 

the column heights of the global data reuse matrix of a set of array references. 
McKinley et al. [3] present a method that considers loop fusion, distribution, 
permutation, and reversal for improving locality.  

Loop transformations must be legal and therefore are constrained by data 
dependences. In addition, imperfectly nested loops and explicitly parallelized 
programs are in general difficult to be optimized by loop transformations. The above 
disadvantages of loop transformations have led a great number of researchers [4-7] to 
consider improving cache locality by data transformations. Data transformations 
aren’t constrained by data dependences and in many cases they can successfully 
optimize the cache locality of the arrays referenced in imperfectly nested loops and 
explicitly parallelized programs. Clauss et al. [4] use the parameterized polyhedra 
theory and Ehrhart polynomials to assure that the data layout corresponds exactly to 
the utilization order of these data. Kandemir et al. [5] present a hyperplane based 
approach for optimizing spatial locality in loop nests. Leung [6] optimizes spatial 
locality by using data transformations to reduce the column heights of access 
matrices. Xia et al. [7] present a projection-delamination technique for optimizing 
spatial locality and a data transformation framework based on it.  

Data transformations have no effect on temporal locality and the effect of data 
transformations is global. As loop and data transformations have advantages and 
disadvantages on optimizing cache locality respectively, there have some researchers 
[8-10] who unify loop and data transformations to optimize cache locality. Cierniak 
and Li [8] use loop permutations and array dimension permutations in an exhaustive 
search to determine the appropriate loop and data transformations for a single nest. 
Kandemir et al. [9] present a matrix-based approach for optimizing the global locality 
using loop and data transformations. Kandemir et al. [10] use integer linear 
programming (ILP) and the memory layout graph (MLG) to find the best combination 
of loop and data layout transformations for optimizing the global locality. 

In this paper, we combine loop and data transformations and present a 0-1 integer 
linear programming (0-1 ILP) based approach that attempts to solve the global 
locality optimization problems. We use the treelike memory layout graph (TMLG) to 
describe a program’s locality characteristics, formulate the locality optimization 
problems as the problems of finding the optimal path sets in TMLGs, and then use 0-1 
ILP to find the optimal path sets. The 0-1 ILP formulation obviates the need for any 
heuristic and can allow us to solve locality optimization problems optimally within 
our loop transformation space, data transformation space and cost model. Our 
approach is inspired by the approach used by Kandemir et al. [10] to solve the locality 
optimization problems. Kandemir et al. [10] use the MLG to describe a program’s 
locality characteristics. An MLG is built from several nest graphs (NGs), and an NG 
is built from several loop graphs (LGs). Their approach can only be applicable to 
perfectly nested loops and can be only suitable for handling the circumstances that 
arrays are accessed along dimensions. To make our approach applicable not only to 
perfectly nested loops but also to non-perfectly nested loops, we improve on the NG 
and the LG and redefine them. We call the redefined NG and LG as the redefined nest 
graph (RNG) and redefined loop graph (RLG) respectively. To make our approach 
suitable for handling the circumstances that arrays are accessed not only along 
dimensions but also along diagonal-like directions, we find all possible optimal 
memory layouts for each array and use them to compose its data transformation 
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space. At last, we determine an optimal memory layout for each array and find its 
corresponding data transformation matrix to optimize cache locality. From the above 
we can see that the application scope of our approach is more extensive than the 
approach in [10]. The experimental results show that our approach is very effective in 
improving the performance of the test programs and the use of 0-1 ILP formulation 
doesn’t increase the compilation time significantly. 

The rest of this paper is organized as follows: Section 2 outlines the basic notation 
and assumptions. Section 3 presents the method for finding the optimal memory 
layouts of arrays. Section 4 introduces the TMLG and gives the method of 
constructing it. Based on the TMLG, Section 5 presents our approach in detail. 
Section 6 gives and discusses the experimental results. Section 7 concludes the paper. 

2   Technical Preliminaries 

We view the iteration space of a loop nest of depth n  as an n -dimensional 
polyhedron where each point is denoted by an n ×1 column vector 

( )T
niiiI ,,, 21= . We call I  as the iteration vector and show the lower and upper 

limits for a loop i as li and ui respectively. Similarly, every m -dimensional array X  
declared in the program defines an m -dimensional polyhedron (namely data space), 
each point of which represents an array element and can be denoted by an m ×1 
column vector. We assume that all loop bounds and subscript expressions are affine 
functions of enclosing loop indices and symbolic constants. Under the above 

assumptions, the reference can be represented as oIA + , where m × n  matrix A  is 

called as the access matrix and m ×1 column vector o  is called as the offset vector 
[1]. Without loss of generality, we assume the default memory layout is column-
major for all arrays. 

3   Optimal Memory Layouts 

As the innermost loop is the most frequently accessed loop in all the loops of a given 
loop nest, we always hope the innermost loop can get the best locality. Given an m -

dimensional array B’s certain reference oIA + , where ( )T
niiiI ,,, 21=  and 

),,( 1 nA αα= , according to nα , we discuss the locality exhibited by this 

reference in the following three circumstances: 

1. If 0=nα , the reference will exhibit temporal locality in the innermost loop. 

2. If nα  is a column vector with the first element non-zero and all the other 
elements zeros, the reference will exhibit spatial locality in the innermost loop 
with strong possibility. 

3. If nα  belongs to all the other circumstances, the reference will exhibit bad 
locality in the innermost loop with strong possibility. 
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From the above, we can see nα  contains locality information the reference oIA +  

exhibits. If nα  belongs to the third circumstance, we can do data transformations on 
array B such that it can be accessed along columns. If a non-singular matrix M  can 

make M nα  become a column vector with the first element non-zero and all the 
other elements zeros, array B will be accessed along columns after it is transformed 
by M . We can use the following method to find M .  

First we find a basis of nα ’s orthogonal space. Suppose this basis is 11 ,, −mββ . 

Then we find a column vector mβ  that can make mββ ,,1  linearly independent, 

and use them to construct a non-singular matrix M , where T
m )(β  is the first row  

of M  and T
m

T )(,,)( 11 −ββ  are all the other rows. Therefore according to  

nα , we can find a data transformation matrix M  that can optimize the spatial  

locality of array B’s reference oIA + . We call nα  as an optimal memory layout of 
array B.  

Assume array B is referenced s  times and let sγγ ,,1  be the last columns of 

these s  references’ access matrices respectively. Assume sγγ ,,1 are non-zero 

column vectors and therefore all of them are the optimal memory layouts of array B. 

If we can find a non-singular matrix M  that can make each of sMM γγ ,,1  

become a column vector with the first element non-zero and all the other elements 

zeros, then we call the optimal memory layouts sγγ ,,1  are consistent, which 

means we can use the same data transformation matrix to optimize the spatial locality 
of all these s  references simultaneously; otherwise we call they are not consistent. 

We can prove that if any two of the optimal memory layouts sγγ ,,1  are linearly 

dependent, then they are consistent; otherwise they are not consistent. According to 

the linear relationship among sγγ ,,1 , we can divide them into several groups such 

that any two vectors from the same group are linearly dependent while any vector 
from one group is linearly independent with any vector from the other groups. Then 
we can select any vector from each group to denote the optimal memory layout the 
group is representative of and use them to compose array B’s data transformation 
space. Any vector from this data transformation space is a candidate of array B’s final 
optimal memory layout. 

4   Constructing TMLG 

Given a loop nest, we use a TMLG to describe this loop nest’s locality characteristics. 
A TMLG is constructed from RNGs and each RNG corresponds to a sub-nested loop 
of a given loop nest. Moreover, a RNG is constructed from RLGs and each RLG 
corresponds to a loop of a given sub-nested loop. 
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Input: Loop nest 
1L ; 

Output: All the sub-nested loops of 
1L  with their corresponding attributes; 

L =
1L ; attribute=NULL; ∅=Φ ; 

FindSN ( L , attribute) 

{ Starting from the outermost loop of L , find all the perfectly close loops 
sii ,,1

(where loop 
1i  is the 

outermost loop) and use them with all the non-loop structure statements enclosed by them to compose sub-
nested loop SN; 
Set SN’s attribute to attribute; {∪Φ=Φ SN } ; 

IF loops 
sii ,,1

 do not enclose any loop nest THEN Return; 

ELSE 

 FOR each loop nest 'L  enclosed by loops 
sii ,,1

 

  { FindSN ( 'L , SN) }} 
 

Fig. 1. The recursive algorithm of finding all the sub-nested loops of 1L  

(a)                                        (b)

DO i0=li0,ui0   SN1

DO i1=li1,ui1

DO i2=li2,ui2

DO i3=li3,ui3

{X(i1,i2+i3),Y(i1+i3,i2+i3,2i1+i2),
Z(i2+i3,i1+i3),W(i2+2i3,i2+3i3)} SN2

ENDDO
ENDDO
ENDDO
DO i1=li1,ui1

DO i2=li2,ui2   SN3

  {X(i2,i1)}
DO i3=li3,ui3

DO i4=li4,ui4

    {Y(i1+2i3+i4,i1+i2+i4,i2+4i3+i4),
Z(i1+i4,i2+i3),W(2i4,i2+2i4)}  SN4

ENDDO
ENDDO
DO i5=li5,ui5

DO i6=li6,ui6

{Y(i1+i2+3i5,i1+i6,i1+2i2+6i5+i6),  SN5

V(i1+3i5+2i6,i1+2i5+3i6)} 
ENDDO
ENDDO
ENDDO    SN3

ENDDO
ENDDO   SN1

DO i0=li0,ui0

DO i2=li2,ui2

DO i3=li3,ui3

DO i1=li1,ui1

{X(i1,i2+i3),Y(i1+i3,i2+i3,-i2+2i3),
Z(i1+i3,i2+i3),W(i3,i2)} 
ENDDO
ENDDO
ENDDO
DO i1=li1,ui1

DO i2=li2,ui2

  {X(i2,i1)}
DO i4=li4,ui4
DO i3=li3,ui3

    {Y(i1+2i3+i4,i1+i2+i4,2i1-i2+i4),
Z(i2+i3,i1+i4),W(i2,-2i2+2i4) }
ENDDO
ENDDO
DO i6=li6,ui6

DO i5=li5,ui5

 {Y(i1+i2+3i5,i1+i6,i1-i6),
V(i5-i6,i1+5i6)}

ENDDO
ENDDO
ENDDO
ENDDO
ENDDO

 

Fig. 2.  (a)The loop nest and its sub-nested loops.  (b) The optimized code of the loop nest. 

4.1   Sub-nested Loop 

A sub-nested loop of a loop nest is composed of all the perfectly close loops 
(‘perfectly close’ means there are not any statement among the loops) of this loop nest 
and all the non-loop structure statements enclosed by these loops. We attach an 
attribute to each sub-nested loop and use this attribute to record the sub-nested loop’s 
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parent sub-nested loop. The recursive algorithm of finding all the sub-nested loops of 
a given loop nest is presented in Fig. 1. 

From this algorithm we can see if the loop nest is a perfectly nested loop, it has 
only one sub-nested loop, namely the loop nest itself; if the loop nest is a non-
perfectly nested loop, it has more than one sub-nested loop, and if we think of each 
sub-nested loop as a node and connect it with its parent sub-nested loop according to 
its attribute, then we will get a tree. Consider the loop nest in Fig. 2(a). It is a non-
perfectly nested loop and the array references used by this loop nest is enclosed by ‘{’ 
and ‘}’. The actual computations performed inside the nest are irrelevant for our 
purposes. Following the algorithm in Fig. 1, we can find out the loop nest’s five sub-
nested loops SN1, SN2, SN3, SN4 and SN5 (which are enclosed by dashed lines 
respectively). SN1 contains no statement and its attribute is NULL. Both the attributes 
of SN2 and SN3 are SN1 and both the attributes of SN4 and SN5 are SN3. The tree 
composed of these five sub-nested loops is shown in Fig. 3(c). 

4.2   Constructing RNG and RLG 

Given a sub-nested loop, we construct a RLG for each loop of this sub-nested loop 
that can be placed in the innermost position. A RLG is constructed using node-rows 
which correspond to arrays accessed in the sub-nested loop. For each array, we insert 
a node-row into RLG. The nodes in a node-row denote the optimal memory layouts in 
the data transformation space of the array that the node-row corresponds to. In a given 
RLG, the node-rows are placed one after another from the top down. Between the two 
consecutive node-rows X and Y (that correspond to arrays X and Y respectively), 
there are Layout(X) × Layout(Y) edges where Layout(.) returns the number of the 
optimal memory layouts in a given array’s data transformation space. In addition to 
the node-rows, the RLG has a start node and a terminal node. Each node in the first 
node-row is connected to the start node and each node in the last node-row is 
connected to the terminal node.  

Under the condition that the innermost loops enclosing all references of an array 
are unchanged, we have presented the method of determining this array’s data 
transformation space in Section 3. However, we consider not only data 
transformations but also simple loop permutation transformations inside sub-nested 
loops to improve cache locality in this paper, and hence according to loop 
permutation transformations, it is possible that the innermost loops enclosing these 
references are changed. Based on the method presented in Section 3, we determine an 
array’s data transformation space as follows: 

Assume array B is referenced s  times in a loop nest and these s  references are 

sss oIAoIA ++ ,,111  respectively, where ),,( 1 kknkkA γγ= . Without loss of 

generality, we assume sk ≤≤∀1 , reference kkk oIA +  occurs in sub-nested loop 

SN k , the loops 
kkpk ii ,,1 in SN k  can be placed in the innermost position of SN k  

and 
kkpk ii ,,1 are the 1kq th ,,  the 

kkpq th element of kI  respectively. Therefore, 

sk ≤≤∀1 , all the non-zero column vectors among 
kkpk kqkq γγ ,,

1
are array B’s 

optimal memory layouts. Then using the method presented in Section 3, we can 
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divide these optimal memory layouts into several groups and select any vector from 
each group to compose array B’s data transformation space. 

Continue the example in Fig. 2(a). Assume in SN2, loops i1, i2 and i3 can be placed 
in the innermost position of SN2; in SN3, loops i1 and i2 can be placed in the innermost 
position of SN3; in SN4, loops i3 and i4 can be placed in the innermost position of SN4; 
in SN5, loops i5 and i6 can be placed in the innermost position of SN5. Following the 

above method, we can find array X’s data transformation space is { }TT )10(,)01( , 

array Y’s data transformation space is { TTT )011(,)110(,)201(   

}T)111(, , array Z’s data transformation space is { }TTT )11(,)10(,)01( , 

array W’s data transformation space is { }TT )11(,)32(  and array V’s data 

transformation space is { }TT )32(,)23( . The RLG corresponding to loop i1 in 

SN2 is shown in Fig. 3(a). 
Given a sub-nested loop, we construct its corresponding RNG as follows: A RNG 

has a start node (marked with St) and a terminal node (marked with Tr). After we 
have constructed a RLG for each loop of the sub-nested loop that can be placed in the 
innermost position, we connect all RLGs’ start nodes to the RNG’s start node and all 
RLG’s terminal nodes to the RNG’s terminal node, and hence get the RNG 
corresponding to the sub-nested loop. If the sub-nested loop contains no array, we use 
a single node to denote its RNG. The RNG corresponding to SN2 in Fig. 2(a) is shown 
in Fig. 3(b). 

4.3   Treelike Memory Layout Graph 

Given a loop nest, we construct a tree T by thinking each sub-nested loop of the loop 
nest as a node and connect it with its parent sub-nested loop according to its attribute. 
Then we replace each node in T with the RNG corresponding to the sub-nested loop 
that is denoted by the node, and hence get the loop nest’s corresponding TMLG. The 
TMLG corresponding to the loop nest in Fig. 2(a) is shown in Fig. 4. 
    From the above we can see that a TMLG corresponding to a loop nest is a tree-like 
structure formed by the connections among RNGs. If we think of each RNG in the 
TMLG as a node, then the TMLG is a tree. We call the start node of the RNG denoted 
by this tree’s root node as the root node of the TMLG (if the RNG denoted by this 
tree’s root node is a single node, this single node is the root node of the TMLG). 
Moreover, we call the terminal nodes of the RNGs denoted by this tree’s leaf nodes as 
the leaf nodes of the TMLG. For each RNG which is not a single node, we define a 
path from the RNG’s start node St to its terminal node Tr is a path of this RNG. In 
addition, we define the path set of a TMLG is the path set that is composed of the 
paths from the TMLG’s root node to its all leaf nodes and that satisfies the condition 
that for all paths passing the same RNG, their partial paths in this RNG are all 
identical. From this definition, we can see the path set of a TMLG visits all the RNGs 
and as long as the paths of all the RNGs are determined, the path set of the TMLG is 
determined too. A path set of the TMLG corresponding to the loop nest in Fig. 2(a) is 
shown in Fig. 4 (the path set is denoted by the bold lines). If a RLG corresponding to  
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       (a)                                                                (b)                                                                         (c) 

Fig. 3. (a) The RLG corresponding to loop i1 in SN2.  (b) The RNG corresponding to SN2.  (c) 
The tree composed of the sub-nested loops in Fig. 2(a). 

 

Fig. 4. The TMLG, node costs and a (an optimal) path set corresponding to the loop nest in  
Fig. 2(a) 

a loop in a sub-nested loop is visited by the path set of the TMLG, it means this loop 
should be placed in the innermost position of this sub-nested loop for best locality. In 
addition, if a node in a node-row is touched by the path set, it means the optimal 
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memory layout denoted by this node should be selected as the final optimal memory 
layout of the array that this node-row corresponds to. 

4.4   Node Costs 

A node cost is the estimation of the cache misses and only nodes in node-rows have 

costs associated with them. We use notation ][ jV xl
Q  to denote j th node of a node-

row for array Q  in the RLG l  of the RNG x . Then, we define ])[( jVCost xl
Q  as the 

number of cache misses incurred due to array Q  in the sub-nested loop x  when the 

optimal memory layout denoted by node ][ jV xl
Q  is selected as the final optimal 

memory layout of array Q  and the loop l  is placed in the innermost position of  

the sub-nested loop x . The cost of a TMLG’s path set is the sum of the costs of all 
the nodes that are in node-rows and that are contained by the path set. We use the 
following simple method to estimate node costs. 

Assume oIA +  is a reference of array Q  in the sub-nested loop x  and the loop 

index of the loop l  is the q th element of iteration vector I . Let 1α  be the q th 

column of A  and 2α  be the optimal memory layout denoted by node ][ jV xl
Q . 

Suppose the loop l  is placed in the innermost position and 2α  is selected as the final 

optimal memory layout of array Q . Therefore, from Section 3 we can know if 1α  is 

a zero column vector, oIA +  will exhibit temporal locality and we let the number of 

cache misses incurred due to oIA +  be TL; if 1α  is a non-zero column vector and 

dependent with 2α , oIA +  will exhibit spatial locality with respect to 2α  and we let 

the number of cache misses incurred due to oIA +  be SL; if 1α  is a non-zero 

column vector and independent with 2α , oIA +  will exhibit no locality with respect 

to 2α  and we let the number of cache misses incurred due to oIA +  be NL. We let 
TL<SL<NL. The node costs of the TMLG corresponding to the loop nest in Fig. 2(a) 
are shown in Fig. 4. 

5   Our Approach 

5.1   Problem Statement 

Our goal in this paper is to minimize the number of cache misses thereby reducing the 
time spent due to memory stalls. We achieve this goal by selecting an innermost loop 
for each sub-nested loop, which encloses array references in question, in a given loop 
nest and selecting an optimal memory layout for each considered array referenced in 
this loop nest. The above operations to achieve this goal correspond to finding a path 
set of the TMLG with minimized cost. We call a TMLG’s path set with minimized 
cost as this TMLG’s optimal path set and use 0-1 ILP to find the optimal path set.  
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5.2   Integer Variables and Objective Function 

We use notation xl
PQH  to denote all the Layout( P )×Layout( Q ) edges between two 

consecutive node-rows P  and Q  for a RLG l  of a RNG x . Notation ],[ kjH xl
PQ , 

on the other hand, denotes the edge between the j th node of node-row P  and the 

k th node of node-row Q  for a RLG l  of a RNG x . We also use ],[ kjH xl
PQ  to 

denote the 0-1 integer variable associated with the edge denoted by ],[ kjH xl
PQ . 

Given a path set of a TMLG, ],[ kjH xl
PQ  has a value of 1 if the edge denoted by it 

belongs to the path set; otherwise its value is 0. 
Given a path set of a TMLG, if the k th node of a node-row Q  in a RLG l  of a 

RNG x  is touched by this path set, there must have 1],[
)(

1
=∑ =

PLayout

j

xl
PQ kjH , where 

P  is the node-row connected to Q  directly; otherwise there must have 

0],[
)(

1
=∑ =

PLayout

j

xl
PQ kjH . Therefore, the cost of this path set can be denoted as 

                             ∑∑∑ ∑ ∑
= =x l Q

QLayout

k

xl
Q

PLayout

j

xl
PQ kVCostkjH

)(

1

)(

1

]))[()],[((                      (1) 

The objective of the global locality optimization problem is then to select a path set in 
a given TMLG such that the value denoted by Formula (1) is minimized. 

5.3   Constraints 

After the objective function is determined, the constraints for 0-1 integer variables 
should be determined to ensure that the selected edges and nodes can form a path set 
of a given TMLG. There are three conditions that need to be satisfied: 

1. The RNG path condition 
The selected edges and nodes in each RNG that is not a single node can form a 

path of the RNG. We can express this condition in terms our integer variables as 

.],[],[)](...1[
)(

1

)(

1
∑∑

==
=∈∀

RLayout

s

xl
QR

PLayout

j

xl
PQ skHkjHQLayoutk  

Here, P ,Q  and R  are three arrays corresponding to three consecutive node-rows in 

the RLGs. 
2. The single RNG path condition 
The selected edges and nodes in each RNG that is not a single node can only form 

a single path of the RNG. We can formalize this condition as 
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Here, nll ,,1 are all the RLGs of the RNG x  and P  and Q  are any two consecutive 

node-rows in x . 
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3. The static memory layout condition 
As we only consider static data transformations, each array should only have a 

unique memory layout. It indicates that if a node of array Q  is selected in sub-nested 

loop x , the same node should also be selected in any sub-nested loop 'x  that 
accesses array Q . We can formalize this condition as 

∈∀k [1…Layout(Q )]: 
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Here, array Q  only occurs in the sub-nested loops vxx ,,1 , vPP ,,1  are the arrays 

whose node-rows are directly connected to that of array Q  in vxx ,,1  respectively, 

and ,, 21
ss ll  are all the RLGs of the RNG sx .  

5.4   Example 

Using the Cplex integer programming tool, we find an optimal path set of the TMLG 
in Fig. 4 (the optimal path set is denoted by the bold lines in Fig. 4). The optimal path 
set gives a static optimal solution of the locality optimization problem of the loop nest 
in Fig. 2(a). According to it, we determine : Loop i1, i2, i3 and i5 are the innermost 
loops for SN2, SN3, SN4 and SN5 respectively; the final optimal memory layouts for 
arrays X, Y, Z, W and V are T)01( , T)201( , T)10( , T)32(  and T)23(  

respectively. According to these optimal memory layouts, we can find the data 
transformation matrices for optimizing spatial locality of X, Y, Z, W and V. After we 
do the determined loop and data transformations on the loop nest in Fig. 2(a), the 
optimized code is shown in Fig. 2(b). 

6   Experimental Results 

In this section, we report our experimental results obtained on a PC with a single 
2GHz Intel Pentium 4 processor. This processor has an 8KB, four-way set associative 
L1 data cache and a 512KB, eight-way set associative L2 cache. Both the line sizes of 
the L1 data cache and the L2 cache are 64Bytes. The memory size is 512MB. 

For this study, we select 14 programs whose characteristics are shown in Table 1. 
All of the programs manipulate double-precision arrays, are written in FORTRAN, 
and compiled using the native g77 compiler. matmult is a routine that multiplies two 
matrices; syr2k is a banded matrix update routine from BLAS; stencil is a five-point 
stencil computing code; htribk is a test program from Eispack; mxm, cholsky, vpenta 
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           Table 1.  Test programs in our experiment set 

Program Problem size Var Constr Time 1 Time 2
matmult 1024×1024 matrices 60 38 0.06 0.13 

syr2k 1024×1024 matrices 108 58 0.06 0.16 
stencil 1024×1024 matrices 24 16 0.09 0.13 
htribk 1024×1024 matrices 108 83 0.08 0.25 
mxm 1024×1024 matrices 60 40 0.06 0.19 

cholsky The size parameters 
are set to 2500 212 150 0.1 0.34 

vpenta 920×920 arrays 
920×920×3 arrays 298 237 0.11 0.36 

cfft2d1 1024×1024 matrices 16 15 0.06 0.23 
adi 1024×1024×3 arrays 126 65 0.08 0.16 

amhmtm 1024×1024 matrices 128 86 0.07 0.19 
bmcm 1024×1024 matrices 36 31 0.06 0.2 

mxmxm 1024×1024 matrices 104 66 0.09 0.16 
transpose 4096×4096 matrices 32 23 0.09 0.13 

test 1024×1280 array 
1280×1280 array 112 58 0.06 0.14 

DO i1=1,N 
DO i2=1,N 

X(i1+i2,i1+2*i2) 
=Y(2*i1+i2,3*i1+i2) 

ENDDO 
ENDDO 
DO i1=1,N 
DO i2=1,N 

Y(3*i1+2*i2,2*i1+3*i2) 
=X(2*i1+2*i2,3*i1+2*i2) 

ENDDO 
ENDDO 

Fig. 5. Program test

  

and cfft2d1 are four test programs from Spec92/NASA benchmark suite; adi is one of 
Livermore kernels; amhmtm and bmcm are two subroutines from program WSSI in 
Perfect Club benchmarks; mxmxm is a routine from [8] that multiplies three matrices; 
transpose is a routine from a large computational chemistry application [11]; test is a 
program shown in Fig. 5 and we use it to compare our approach with the approach in 
[10]. The fourth and the fifth columns give the number of 0-1 integer variables (Var) 
and the number of constraints (Constr). The Time 1 column gives the times (in 
seconds) required to find optimal solutions using Cplex and the Time 2 column gives 
the times (in seconds) required to compile the optimized programs. From Table 1 we 
can see the times taken to find optimal solutions are not very high and the time taken 
to find a solution constituted at most 36 percent of the total compilation time.  
    We use the following method to test each program: First, we take the original 
unoptimized code as input and test it with g77 compiler option -O0, option -O3 and 
options -O3 -funroll-loops respectively. Then, we take the code optimized by the 
approach proposed in this paper as input and test it with g77 compiler option -O0, 
option -O3 and options -O3 -funroll-loops respectively. Compiler option -O0 denotes 
no optimization and option -funroll-loops denotes loop unrolling optimization. The 
performance results are presented in Table 2. 

From Table 2 we can see that except for mxm our approach can improve the 
performance of the rest of 13 programs significantly. With no optimization turned on 
(-O0), our approach improves the performance of the original codes on average by a 
factor of 5. In all codes excluding mxm, the code generated with our approach without 
any additional optimizations (-O0) outperforms the best compiler-optimized version (-
O3 -funroll-loops) of the original code. The main reason for this result is that the 
native compiler couldn’t use necessary data transformations to improve the locality of 
arrays and the imperfect nest structure prevented the loop transformations in some 
codes. With the best compiler optimizations turned on, our approach improves the 
performance of the original codes on average by a factor of 15 excluding mxm. This  
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Table 2.  Performance results 

Ver Time Speedup Ver Time Speedup Ver Time Speedup
-O0 118.03 13.67 8.63 -O0 35.18 6.05 5.81 -O0 2.734 0.3125 8.75
-O3 114.19 3.62 31.5 -O3 25.41 2.37 10.7 -O3 2.719 0.1719 15.8

-O3+ 114.93 3.4 33.8 -O3+ 25.92 2.14 12.1 -O3+ 2.734 0.1563 17.5

(a) matmult                       (b) syr2k                        (c) stencil 

Ver Time Speedup Ver Time Speedup Ver Time Speedup
-O0 303.77 63.24 4.80 -O0 11.36 11.29 1.01 -O0 86.55 14.22 6.09
-O3 225.97 36.96 6.11 -O3 4.83 5.07 0.95 -O3 81.02 7.33 11.1

-O3+ 215.078 37.26 5.77 -O3+ 4.3 4.49 0.96 -O3+ 80.66 7.14 11.3

(d) htribk                         (e) mxm                         (f) cholsky 

Ver Time Speedup Ver Time Speedup Ver Time Speedup
-O0 3.34 0.58 5.76 -O0 2.07 0.42 4.93 -O0 3.1094 0.5625 5.53
-O3 3.29 0.34 9.68 -O3 1.79 0.34 5.26 -O3 2.9688 0.5313 5.59

-O3+ 3.29 0.34 9.68 -O3+ 1.76 0.34 5.18 -O3+ 2.9688 0.5313 5.59

(g) vpenta                         (h) cfft2d1                       (i) adi 

Ver Time Speedup Ver Time Speedup Ver Time Speedup
-O0 123.95 13.953 8.88 -O0 125 14.766 8.47 -O0 218.77 27.48 7.96 
-O3 118.625 3.922 30.2 -O3 119.25 3.875 30.8 -O3 205.04 7.38 27.8 

-O3+ 118.953 3.703 32.1 -O3+ 119.344 3.6563 32.6 -O3+ 213.68 6.93 30.8 

(j) amhmtm                        (k) bmcm                        (l) mxmxm 

Ver Time Speedup Ver Time Speedup1 Speedup2 
-O0 7.1875 1.2188 5.90  -O0 2.73 2.3 1.07 2.55 2.15 
-O3 7.2813 1.0156 7.17  -O3 2.74 1.97 0.87 3.15 2.26 

-O3+ 7.2969 0.7188 10.2  -O3+ 2.44 1.99 0.87 2.80 2.29 

(m) transpose                                       (n) test 

In (a) to (m), the second column gives the times (in seconds) spent running the versions taking the original 
(unoptimized) code as input and taking the code optimized by our approach as input in its first subcolumn and the 
second subcolumn respectively; the third column gives the speedups of the code generated with our approach 
relative to the original code with the same compiler optimization options. In (n), the second column gives the times 
(in seconds) spent running the versions taking the original (unoptimized) code as input, taking the code optimized 
by the approach in [12] as input and taking the code optimized by our approach as input in its first subcolumn, the 
second subcolumn and the third subcolumn respectively; the third and the fourth columns give the speedups of the 
code generated with our approach relative to the original code and the code generated with the approach in [12] 
with the same compiler optimization options respectively. Symbol –O3+ denotes -O3 -funroll-loops options.  

 
 

shows optimizing locality with data transformations is very important even in the 
cases where loop unrolling and O3-level optimizations are applicable. From Table 2 
we also can see that loop unrolling does not always improve the performance. In 
addition, from the performance results of program test we can see the approach in 
[10] is not suitable for handling the circumstances that arrays are accessed along 
diagonal-like directions whereas our approach is suitable, and therefore the versions 
generated with our approach outperform the versions generated with the approach  
in [10]. 
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7   Conclusions 

The performance of programs is determined to a great extent by the locality exhibited 
by memory accesses. In this paper, we combine loop and data transformations and 
present a 0-1 ILP based approach to solve the global locality optimization problems 
based on the TMLG. As our approach combines loop and data transformations, it can 
optimize both temporal locality and spatial locality. The experimental results show 
our approach can improve the performance of the test programs significantly. 

References 

1. M.Wolf and M.Lam. A data locality optimizing algorithm. In Proc. SIGPLAN Conf. Prog. 
Lang. Des. & Impl., Toronto, Canada, pp. 30-44, 1991. 

2. W.Li. Compiling for NUMA parallel machines. PhD dissertation, Cornell University, 
Ithaca, NY, 1993. 

3. K.McKinley, S.Carr and C.W.Tseng. Improving data locality with loop transformation. 
ACM Transactions on Programming Languages and Systems, 18(4): 424-453, 1996. 

4. P.Clauss and B.Meister. Automatic memory layout transformations to optimize spatial 
locality in parameterized loop nests. ACM SIGARCH Computer Architecture News, 
28(1): 11-19, 2000. 

5. M.Kandemir, A.Choudhary, N.Shenoy, P.Banerjee and J.Ramanujam. A hyperplane based 
approach for optimizing spatial locality in loop nests. In the Proceeding of 1998 ACM 
International Conference on Supercomputing, Melbourne, Australia pp. 69-76, 1998. 

6. S.Leung. Array restructuring for cache locality. Dept. Computer Science and Engineering, 
University of Washington, Technical Report UW-CSE-96-08-01, 1996. 

7. Jun Xia, Xuejun Yang, Lifang Zeng and Haifang Zhou. A projection-delamination based 
approach for optimizing spatial locality in loop nests. Chinese Journal of Computers, 
26(5): 539-551, 2003. 

8. M.Cierniak and W.Li. Unifying data and control transformations for distributed shared 
memory machines. In Proc. SIGPLAN Conf. Prog. Lang. Des. & Impl., La Jolla, CA, 
pp.205-217, 1995.  

9. M.Kandemir, A.Choudhary, J.Ramanujam and P.Banerjee. A matrix-based approach to 
global locality optimization. Journal of Parallel and Distributed Computing, 58:190-235, 
1999. 

10. M.Kandemir, P.Banerjee, A.Choudhary, J.Ramanujam, and E.Ayguade. Static and 
dynamic locality optimizations using integer linear programming. IEEE Transactions on 
Parallel and Distributed Systems, 12(9): 922-940, 2001. 

11. High Performance Computational Chemistry Group. NWChem: A computational 
chemistry package for parallel computers, version 1.1. Richland,Wash: Pacific Northwest 
Laboratory, 1995. 



C. Jesshope and C. Egan (Eds.): ACSAC 2006, LNCS 4186, pp. 295 – 308, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Design and Analysis of Low Power Image Filters  
Toward Defect-Resilient Embedded Memories 

for Multimedia SoCs  

Kang Yi1, Kyeong Hoon Jung2, Shih-Yang Cheng3,  
Young-Hwan Park3, Fadi Kurdahi3, and Ahmed Eltawil3  

1 School of Computer Sceince and Electronic Engineering,  
Handong Global University, Pohang, Korea  

yk@handong.edu 
2 Department of Electrical Engineering, Kookmin University, Seoul, Korea 

khjung@kookmin.ac.kr 
3 Department of EECS, University of California, Irvine, CA 92697-265 
{shihyanc, younghwp, kurdahi, aeltawil}@uci.edu 

Abstract. In the foreseeable future, System-on-Chip design will suffer from the 
problem of low yield especially in embedded memories. This can be a critical 
problem in a multimedia application like H.264 since it needs a huge amount of 
embedded memory. Existing approaches to solve this problem are not feasible 
given the higher memory defect density rates in technologies below 90 nm. In 
this paper, we present a new defect-resilience technique which employs the 
directional image filter in order to recover data from corrupted embedded 
memory. According to the analysis based on simulation the proposed filter can 
greatly improve the visual quality of the defected H.264 video streams with 
errors in data memory reaching up to 1.0% memory BER (Bit Error Rate) with 
lower power consumption relative to conventional median filter. Therefore, the 
proposed method can be a good solution to overcome the problem of low yield 
in multimedia SoC memory without suffering from additional redundant 
memory overhead. 

Keywords: Low power image filter design, Embedded memory, Memory yield 
enhancement, Memory-error resilient design, BIST, BISR, H.264 codec. 

1   Introduction 

The ever-shrinking design geometries are allowing system designers to integrate 
larger memories on-chip. Integrating memories and processing core (random logic) 
into a single chip has the following benefits: (1) higher performance, (2) reduced 
power consumption, (3) lower parts cost, (4) less inter-chip communication 
complexity, and (5) smaller number of packages on a system board. Embedded 
memories are expected to account for most of the silicon die area in the near future 
SoC (System-on-a-Chip) design as the system-on-chips are moving from logic 
dominant to memory dominant to meet the application requirements [9]. According to 
the 2001 International Technology Roadmap for Semiconductor the embedded 
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memories are going to occupy from 54% to 94% of silicon real estate by year 2014 
[1,2]. In particular, multimedia application such as H.264 video decoders require 
significant amount of memory to store intermediate frame data. Thus, the rapid 
growth in multimedia content and the corresponding increase in demand for high 
performance and low-power terminals has exerted increased pressure to integrate 
these large memories into a System-on-Chip. 

However, the lower yield of embedded memory is becoming a barrier to the 
widespread of very deep submicron technology adoption in SoC. Because memory 
design uses the most aggressive design rules, memory circuits are more susceptible to 
the manufacturing errors than random logic circuits. The situation is likely to get 
worse with the random dopant fluctuation (RDF) problem under 100 nm technology 
[7]. Therefore, the increasing embedded memory size on a chip may result in the 
lower SoC yield and higher manufacturing chip cost. Thus, the embedded memory 
yield is becoming a key issue for the overall SoC yield improvement.  

In order to combat this memory yield problem memory repair is typically 
performed after manufacturing using redundancy. Spare columns and rows are used to 
replace the defective parts of the memory [3, 4]. These methods show a reasonable 
yield improvement for the current technology by repairing defective memories with 
up to 0.003% error rate. But, these existing techniques do not work properly with the 
very deep-submicron technologies because these methods require too much overheads 
in terms of the area for the higher defect density of future nano device technology. 
According to [4] the redundancies to repair memory with even 0.1% BER (Bit Error 
Rate) require at least 67% of area overhead. 

In this paper, we present a new approach that handles embedded memories with 
higher defect densities than current technologies. Our approach essentially pushes the 
task of repair from the circuit level up to the application level. To illustrate this 
approach we focus in this paper on one representative application which is the  H.264 
video decoder. H.264 is a promising multimedia application which is also memory-
hungry. To achieve 100% error free huge embedded memory is an almost impractical 
assumption especially for advanced processes. Instead of fixing the errors at the 
circuit (or bit-exact) level, we compensate for them at the application level. There 
exist a multitude of techniques to do so. One of these techniques is to perform simple 
spatial filtering on the individual video frames. In this paper, we focus on this 
approach and present a family of spatial filters that can recover the defect pixel values 
with simple and yet effective image processing algorithms as depicted in Fig 1. We 
also analyze the performance and power consumption of these filters in software 
implementation. With these filters, we can guarantee 100% application-level recovery 
from errors in embedded memories with up to 0.1% BER as well as current 
technology memory with BER of 0.001%. 

The next chapter explains the background knowledge about defect memory 
problems in H.264 application and summarizes the related previous works. In  
Chapter 3, we define the problem for filter design and in Chapter 4 we design new 
filters for simple and enhanced image processing to recover defective pixel values. In 
Chapter 5, we show the experimental results and discuss the implication. Finally, in 
Chapter 6, we conclude our work with future research directions. 
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Fig. 1. Our System Architecture with Memory Error-Resilient H.264 decoder : our system has 
large memory which is defect location. The Defect map and BIST will be used for the problem. 

2   Background 

In [7], it was shown that one does not need to discard the manufactured chips with 
memory defects only if we implement the error resilience features at the design time 
with application specific data redundancies. In [7], we found that it is possible to 
compensate for the loss due to imperfect data memories using application-level error 
concealment techniques. By nature, multimedia data has redundancies and such a 
redundancy may be used to recover data properly. Therefore, H.264 is an ideal 
example to demonstrate the embedded memory yield enhancement by our approach. 
Assume an HDTV decoder with 1920 x 1080 pixels image size per frame and the 
decoded frame image is stored in a memory called Decoded Picture Buffer (DPB) 
which can be used later for inter-prediction task. Since 4:2:0 sampling mode is 
assumed and each components has 8 bits per pixel the DPB size is 24Mbits per frame.  
Since 2 – 5 frames are usually required as a reference frame, at least 48 Mbits of data 
memory is required. Currently, this DPB memory exists as an external memory chip 
connected to the main processor chip. As device geometries continue to shrink, the 
forthcoming SoC design is going to integrate this external memory into a chip. As 
mentioned before, such huge memories with future VDSM technology will suffer 
from higher defect rate resulting in lower SoC yield problem. 

Fig 2 shows overall structure of our H.264 decoder with memory defect resilient 
feature. A defect map memory stores the defect pixel location and is used for error 
concealment schemes with image filter. The image filter is applied only to the defect 
pixels to get the correct pixel value for each defect pixel reading operation. We may 
assume that the defect map is constructed at the manufacturing test time. 
Alternatively, we may assume that it is reconstructed at each power up time by 
scanning memory reflecting the changing memory status. 

Fig 3 shows the overhead of using defect map compared with the existing 
redundancy approach in [4] and [5] for 100% embedded SRAM yield. Note that the 
Y-axis in Fig 2 is a log scale. The redundancy scheme in [4] can at most repair only 
0.003% defects thus the data used for that level of defects is based on approach in [4]. 
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For higher defect rates we used the data from [5]. The defect map can be implemented 
in one of two ways: (1) using CAM (Content-Addressable Memory) and (2) using a 
tag bit for every data word (TAG). In comparing redundancy-based approaches with 
the proposed defect map-based approach, and assuming 0.1 % memory BER, our 
approach (defect map + filter) of [7] requires only 2.29% memory area overhead with 
the CAM-based defect map. The data in Fig 3 indicates clearly that the defect map 
with filter approach requires much less area overhead for 100% memory yield. 
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Fig. 2. H.264 decoder with error resilience feature by defect map and filtering 
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Fig. 3. Overhead Comparison between defect resilience schemes 

3   Problem Definition (Filter Design Constraints) 

We are going to design filters under the following assumptions and design 
requirements. 
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(1) The filters are for the H.264 decoder side. 
(2) The errors come not from transmission but from the storage defect for the image 

reference frame data. 
(3) The filters work on the Y,U and V domain only. 
(4) The defects are distributed in a randomly uniform fashion. 
(5) The defect rates to cover are in the range from 0.001% to 1.0%. 
(6) Every defect location is known by defect map.  
(7) The filter will only target the defect pixels whose locations are in the defect  

map. 
(8) Our memory defect model is based on the stuck-at fault model in bit level.  
(9) The defective pixel map is provided for each Y, U, and V component as separate 

and independent memories and the defect map memory is assumed to be error 
free, which is reasonable assumption for the defect map is quite small. 

(10) The filter should not be too complicated. The filter overhead to overall system 
should be minimized. 

4   Our Filter Design 

The best image filter for error concealment shown in [7] is the median filter which 
sorts the neighboring eight pixels and finds the median value [10]. This filter shows 
relatively high PSNRs and good visual quality. However, the problem with the 
median filter is that it blurs the image when used repeatedly, which makes it 
inappropriate to use for the higher error rate cases. The other problem is that the 
median filter requires complex processing as pixel values have to be sorted and 
therefore consumes a lot of power. One difference between our problem and the 
traditional image error concealment problem is that the error rates of memory for our 
problem domain are typically smaller than those assumed in the traditional image 
processing area. Thus, we don’t need to use the existing complex image processing 
filters to recover the image. In this section, we develop several special image filters 
which are adjusted for our unique situation.  

 4.1   Basic Filter Designs 

We devised a set of basic simple filters based on the idea that image pixel value can 
be recovered by finding image direction [11]. Basically, our filters consider only the  
3 x 3 pixels around each of the defective pixel to find the image direction as shown in 
Fig 4 in order to minimize the filter complexity. 
 
(1) Two pixel mean value filter (MEAN2 filter): This filter finds the defect pixel 

value as the mean value of two pixels horizontally neighboring the defective 
pixel. This filter is the lowest cost filter but works well at very low error rates. 
For example, The MEAN2 filter for P8 is computed as follows : 

 
Pixel_value (P8)  (pixel_value( P0) + pixel_value (P4))/2 
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Fig. 4. A 3 x 3 array of pixels round defect pixel P8 : Every filter of our paper assumes this 
basic 3x3 pixel array to find the correct value of the defect pixel P8 

 
 Directional filter (DIR filter): This is an advanced version of blind mean of two 

pixel filter (MEAN2). Instead of taking the mean of horizontally adjacent two 
pixels, this filter tries to find the better direction among four possible directions 
(horizontal, vertical, and two diagonals) of image. Basically, our new filter 
consists of two phases: the image direction identification phase and the computing 
the pixel value phase. In the phase 1 the image direction is detected by the 
absolute differences of two pixel pair for each direction. The direction related to 
the pixel pair with the least difference is considered the image direction. Fig 5 
explains the four candidate directions. DIR filter shows very good performance 
(PSNR  and visual) only if the surrounding pixels are all sound (non-defect pixel 
or non-boundary cases). According to our analysis of defect images with 1.0% 
memory BER, DIR filter can compare four all directions properly only for about 
53% cases and it fails to decide the direction at all for about 0.02%.  
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Dir 0
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Fig. 5. Directional filter with four candidate directions : DIR filter decide the image direction 
among the four candidate directions by the pixel value difference computation of the pairs 

 Extended Directional Filter (EXT filter): In some cases DIR filter fails finding 
image direction because there are too many corrupted pixels around the defect 
pixel. In this case, Extended Directional (EXT) filter may be an alternative 
method. The EXT filter uses more pixels to detect image direction in phase 2 of 
DIR filter by searching the 5x5 surrounding pixels as shown in Fig 6. According 
to our observation, EXT filter evaluates all four directions at about 75% cases. It 
shows relatively higher performance but is more complicated than DIR filter.  

Table 1 summarizes the filter performance results with “foreman” video image 
(encoded with QP=28) with 1.0% BER in memory. In the table 1, “Median_filter1” 
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column shows the median pixel value excluding the neighboring defect pixels while 
“Median_filter2” column shows median filter including every eight neighboring 
pixels. The results in Table 2 show that DIR filter and EXT filter outperform the 
median filters for luma but are not as good as median filters for chroma. 
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Fig. 6. Pixels used for EXT filter : 5x5 pixels are used for more reliable image direction 
detection for Y component in phase 2 of EXT filter  

Table 1. PSNR of filters for foreman video image with 1.0% error 

Components Median filter1 Median filter2 DIR filter EXT filter 
Y 28.73 28.54 29.95 32.06 
U 38.55 38.37 33.53 34.81 
V 39.63 39.85 36.16 36.56 

4.2   Enhanced Chroma Filter Designs  

In Table 1, it is clear that we need to develop better filters for the chroma image 
components (U and V). The required filters must match the quality but achieve lower 
cost (power) than median filter. We designed two alternative chroma filters. For these 
new filters we have an assumption that every luma values are available because these 
filters use luma component to evaluate image direction. To support this assumption 
we should use the luma filters twice per pixel to get the correct luma pixel values.   
 

 Four Directional UV filter (UV4 filter): The UV4 filter is designed for U and 
V components only. When we have many consecutive defect pixels there are 
higher probabilities that every four directions are discarded from the candidates 
resulting in unfiltered pixels.  As a result, with an increasing defect density, we 
may have more unfiltered condition with DIR filter. Because the distortion of 
chroma is known to be less sensitive to human eyes, the sampling rate of luma to 
chroma is already assumes 4:1. Because of this sampling rate if we have peculiar 
value for a chroma of a pixel, the image may be degraded with big ugly spot. 
Thus, we need a new filter that does not miss any pixel even under the higher 
defect density. Our idea is to use luma information in the corresponding 
positions with the chroma component that we want to filter without failure. Fig 7 
shows the required luma pixels for defective chroma value U8. The image 
direction detection idea is similar to that of the DIR filter.  
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If the estimated direction is horizontal in Y component, we take the mean value 
of U4 and U0 to find the filtered U8 value in U component. Assume that the 
estimated direction from UV4 filter is U0 and U4. But, if U0 is also a defective 
pixel our strategy is to apply the same filter for U0 to get the estimate of its 
correct value and use that value of U0 to get an estimate of the U8 value. Under 
extreme conditions this may lead to too many levels of recursion which results in 
additional power consumption. In order to prevent that, we restrict the number of 
recurrence depth. Our simulation results tell the recursion depth one is enough 
for the quality of filtered color value. 
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U4U8U0

U3U2U1

U5U6U7

U4U8U0

U3U2U1

Y12Y13Y14Y15
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Fig. 7. Directional UV filter concept with lumma : one pixel in Chroma (U8) corresponds four 
pixels in Lumma (Y0~Y3). We use Y0 ~ Y15 to find the image direction of U8. 

 
 Eight Directional UV filter (UV8 filter): The Eight Directional UV filter 

(UV8) is a modified version of UV4 filter. Instead of taking the mean value of 
two pixels, it just copies the neighboring pixel value. The UV8 filter is based on 
the idea that the neighboring pixel values in chroma are not so different and the 
color difference is less sensitive to the human eyes. The computation complexity 
of UV8 and quality is usually comparable to UV4.  

5   Experimental Results and Filter Analysis 

We estimate the performance and power consumption of filters to decide which filter 
combination is the best for our problem. We assume that our target H.264 system-on-
a-chip consists of DSP core plus embedded memories as shown in Fig 8. Therefore, 
our filter will be implemented in forms of a program code added to the H.264 decoder 
 
 

Fig. 8. Our System Configuration with DSP and embedded memory 
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program code launched on a DSP processor. The DSP processor used in our 
experiment is TMS320C5510 with 1.6 V supply voltage. 

We used Code Composer Studio from TI [12] to compute the clock cycles and 
utilization of each filter. We used the power computing provided by TI web site [13] 
to get the estimated DSP power by entering frequency and utilization. Our final power 
consumption data includes memory power of defect map (CAM) and DPB (SRAM) 
as well as the core power consumption as shown in the following equation.  
 
Total_ Power = Core Power + Defect Map Power + DPB Power 
Total_Cycles = Cycles/Pixel  Ppixel  Image_Size/Frame  Frame_Num/Sec 
Ppixel = 1-(1- Pbit )

Pixel_Depth 
 

In the above equations, Ppixel is a pixel error rate, Pbit is a bit error rate, Pixel_Depth 
is the number of bits for each pixel component (8 for our case), and Cycles/Pixel 
means the number of instruction cycles for each filter execution on a DSP.  

We applied all of our filter combination in one of two manners : priority and 
weighted selection. The priority selection with notation filterA>filterB means that 
primary we use the filterA and then we use the filterB only if filterA fails finding the 
proper value (because of too much defect pixels or boundary pixel case). And, the 
notation filterA+filterB means applying two filter at the same time equally and 
selecting one of the results according to some criteria. In the following pseudo code, 
we summarize the priority and weighted combination. A priority combination 
approach consumes less power compared with weighted combination.  

 
Function FilterA>FilterB (pic : pixel_position ) { 
   New_value  Compute Filter A (pic) 
   IF (Filter A fails to find the filtered value) 
        New_value  Compute Filter B(pic) 
   Pixel_value(pic)  New_value 
} 
 
Function FilterA+FilterB (pic : pixel_position ) { 
   (New_value1, quality_metric1)  Compute Filter A (pic) 
   (New_value2, quality_metric2)  Compute Filter B(pic) 
   IF (quality_metric1 is better than quality_metric2) 
        Pixel_value(pic)  New_value1; 
   ELSE 
        Pixel_value(pic)  New_value2 
} 
 

Our assumptions on the input streams are that: (1) videos are encoded with 
quantization parameter QP= 28 for all the I, B, and P frames and (2) the frames are 
transferred in a IPBPBPBP… sequences, and (3) one I frame comes every 60 frames. 
We use a sample H.264 video sequence named “foreman”, at 30fps and 144 x 176 
(QCIF) frame image size with 4:2:0 sampling rate. We assume our target system has 
five reference frames in all cases. Every PSNR value is computed relative to the 
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original sample YUV format video image before encoded in H.264. The PSNR value 
is computed by the following equation. 
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Where f(i,j) and F(i,j) are the pixels at location (i,j) of the output and reference 
images, respectively. 

First, we evaluate the chroma filters. We apply different filter combinations to our 
1.0% error image and we measure the performance (the quality of image measured by 
PSNRs) and the cost (consumed power). The candidate filters for chroma are DIR, 
EXT, UV4, UV8, and their combinations. We also compare our filter results with 
those of the median filter used in [7]. Because the luma filter quality influences the 
result of UV4 and UV8 filter, we set luma component to be error-free for UV filter 
performance experiments. Considering both the power consumption and quality, best 
choice seems to be (DIR>UV8) and (DIR>Median) from experiments. 

Secondly, The chroma (Y) filter candidates are tested. The candidate filters for 
luma are DIR, EXT, MED (MEDIAN filters), and their combinations. In order to 
decide the visual quality of only luma, we set chroma component error free. From the 
experiments we find that DIR, DIR>EXT and DIR>MED are good choices in terms 
of power and quality. 

Finally, we put together the best filter choices for luma and chroma and try to find 
the best filter combinations. From the experiments, we find DIR>EXT for luma and 
DIR>MED for chroma is the best choice in terms of both power and quality of image. 
Table 2 shows the experimental result of filters with PSNR values and power 
consumption data including defect map and DPB power as well as core power 
consumption at BER 1.0%. This filter combination saves about 64% of filter power 
compared with the median filter as shown in Table 2.  

Fig 9 shows the video image of 29th frame of foreman with 1.0% memory BER 
and filtered image with median and our best. Note that median filter (c) and our filter 
(d) show no significant difference from the originally encoded image (a) without 
error. 
Table 2 and Fig 9 show that our best filter combination achieves compatible visual 
quality with MED filter application while consuming less power. 

Fig 10 and Fig 11 show the PSNR values of Y, U component respectively for each 
different filter at different defect densities. The result of V component is very similar 
to that of U component. We can have a range of filter choice according to defect 
density. Some filters show same result with less complexity and less overhead at 
different defect density. With mean2 filter we can achieve the same quality as median 
or DIR filters as shown Fig 10 and Fig 11 to save power consumption. If our goal is to 
select the highest quality filter with lower power consumption, at the BER range 
below 0.1% then we will choose mean2 filter. At the BER below 0.001% we do not 
need to apply any filtering. Note that 1.0% BER is at least 1000 times larger error rate 
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Table 2. Filter Test Result (Luma Error=1.0%, Chroma Error=1.0%) 

Y filter UV filter Y U V 
Visual 
Qulaity 

Power 
Consumption 
(mW) 

DIR DIR>UV8 29.95 38.72 39.86 Poor 18.50 

DIR>EXT DIR>UV8 31.72 38.62 39.85 Poor 18.61 

DIR>MED DR>UV8 29.86 38.72 39.86 Poor 18.55 
DIR DIR>MED 29.95 38.68 39.95 Acceptable 9.80 
DIR>EXT DIR>MED 31.72 38.68 39.95 Acceptable 9.91 
DIR>MED DIR>MED 29.86 38.67 39.93 Acceptable 9.80 

MED MED 28.54 38.37 39.85 Acceptable 27.53 

 
 

 
  (a) encoded original image (QP=28,I=30)             (b) corrupted image Bit Error Rate=1.0% 

 

 
   (c) median filter result from the corrupted         (d) our low power filter result from corrupted 
 
Fig. 9. Comparison with Corrupted and Recovered Foreman Video Capture :  encoded image 
without error (a) and filtered image (c) and (d) from corrupted image show almost same visual 
quality. Our best filter result and median filter results shows almost as visual quality. 
 
 
than the current technologies. So, currently most cases will choose mean2 filter or just 
leave the defect pixel as it is. But, as the technology advances the DIR>EXT filter is 
more likely to be chosen. 
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Fig. 10. Luma (Y) Filter Choice at Various Defect Densities : DIR>EXT filter is adequate for 
high BER and mean2 filter for low error rate. For BER< 0.001% we don’t need any filter. 
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Fig. 11. Chroma (U) Filter Choice at Various Defect Densities : DIR>MED filter is adequate 
for high BER and mean2 filter for low error rate. For BER< 0.001% we don’t need any filter. 

Summarizing from the above observation, we can conclude the filter choice as 
follows: 

(1) At BER ≤ 0.001%, any filter is not required for all cases. 
(2) At BER in the range of 0.001% through 0.1%, mean2 filter is the best choice 

for all cases. 
(3) At BER ≥ 0.1%, DIR>EXT is the best filter for luma and DIR>MED is the 

best filter for chroma. 

Fig 12 shows the core power + DPB memory power consumption from our filter 
selection and median filter for a range of defect memory density. We excluded the 
defect map power from Fig 12 to highlight the power saving effect by the proper filter 
selection. In Fig 12, “Median” means power consumption by median filter and “Our 
Best” means the power consumed by our filters choice above. At higher defect 
densities, savings of 3.2 x to 12 x in power are observed. 



 Design and Analysis of Low Power Image Filters 307 

Fig. 12. Power Consumption Data by our Best Filters and Median Filter : Our filter shows 
about 12 times energy saving compared with median filter at 1.0% BER. 

6   Conclusion 

In this paper, we addressed the problem of high memory defect density in the near 
future nano technology era. It is a well known problem that the increasing embedded 
memory defect density is one of the hardest problems in memory-hungry SoC design. 
Our approach is based on the idea that we can recover data errors from defective 
memories at the application level. This is done by making use of the characteristics in 
the multimedia application itself. For multimedia filtering can be employed to 
perform such application-specific error recovery. Our newly designed directional 
filters coupled with defect map hardware recover the image in defective memory 
while consuming less power and area than conventional approaches. Our new filters 
show about 64 % power saving relative to conventional median filters. Our simulation 
results show that the new scheme achieves 3.3 to 12 times power reduction at higher 
defect density in memory. For the future, we are working to find more efficient filters 
exploiting the temporal features of H.264 as well as spatial features. 
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Abstract. A large-scale direct interconnection network usually consists
of enormous number of simple routers. However, its behavior is some-
times very complicated. Such a complicated behavior prevents us from
accurate understanding and efficient control of the network. Among se-
rious problems in interconnection networks, congestion control is of ex-
treme importance since network performance is drastically degraded by
a congested situation. We focus our discussion on throttling, injection
limitation in other words, as one of the most hopeful solutions to the
congestion problem. Our approach is inspired from physics. We define
entropy as a desirable metric for representing the network’s congestion
level. We also define packet mobility ratio as a proper approximation of
entropy. Thus we reach a new throttling method called ‘Entropy Throt-
tling’ that is based on theoretical discussion on congestion. Evaluation
results by our simulator reveal effectiveness of the proposed method.

1 Introduction

Interconnection network is a vital component in today’s state-of-the-art mas-
sively parallel systems[1,2]. Most of large-scale direct interconnection networks
are composed of many routers. Routers are connected to each other and they
relay packets until reaching their destinations. Large-scale networks do not em-
ploy centralized control mechanisms to answer the scalability requirement. Thus,
routers operate independently.

This principle causes serious performance problem in some congested situa-
tions. Each router operates by itself, i.e., it can use only localized information.
Thus, globally optimal control is difficult (or very costly). This results in se-
rious congestion under a heavy traffic load. In general, network throughput is
proportional to traffic load when the network is not congested. However, once
the network is congested, throughput is drastically degraded to very poor per-
formance level.

C. Jesshope and C. Egan (Eds.): ACSAC 2006, LNCS 4186, pp. 309–322, 2006.
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To answer this congestion problem, throttling (in other words, injection limi-
tation) is a hopeful solution. That is, we measure the network’s congestion level
properly by using some metric. When the metric exceeds a given threshold, we
limit packet injection into the network until the metric indicates uncongested.

Major issues for implementing throttling method are (1) selecting proper met-
ric(s) and (2) obtaining proper threshold. Many researches have proposed their
throttling methods. However, some of them lack theoretical background and
some others require long time to reach optimal situation.

This paper discusses congestion mechanisms and their relation to network
metrics. We propose an appropriate metric for efficient throttling. The rest of
this paper is organized as follows. In Section 2, we first show generation, formu-
lation and vanishment of congestion, and at the same time, some major network
metrics are shown. We show that entropy metric illustrates congestion level ap-
propriately. Based on the discussion results, Section 3 shows a practical metric
derived from entropy, packet mobility, and proposes a novel throttling method
called Entropy Throttling. Section 4 shows our evaluation results. We show some
important related work in Section 5. Finally, Section 6 concludes this paper.

2 Network Congestion Metrics

2.1 Transient Congestion Behaviors

An interconnection network offers proportional throughput to its input traffic
load, when the network is not congested. Once the traffic load exceeds a certain
threshold, the network performs poorly. Basically, throttling methods aim at
controlling traffic load not to exceed the threshold. Thereby the network can
offer its maximum performance.

We can consider fully controlled situations by an ideal throttling method.
The ideal method should detect an early sign of the onset of congestion, so that
it can throttle packet injection. At the first step of this study, we have deeply
investigated the network behavior to capture the early sign properly.

We have shown some typical behaviors of congestion by using cellular au-
tomata (CA) models[3,4,5]. Under critical traffic load conditions, a probabilistic
fluctuation causes a small-scale congestion. The small congestion absorbs its sur-
rounding packets and then it grows to a large congestion cluster. In this situation,
most packets are absorbed and the system becomes heavily congested. The con-
gestion cluster shows an equilibrium state where incoming and outgoing packets
are balanced. When the traffic load is closed to the threshold, the congestion
cluster moves according to the network’s routing algorithm and vanishes.

We have shown the congestion mechanisms by using CA model[3,4,5].
Figure 1 shows formulation, movement and vanishment of a congestion cluster
in two-dimensional torus topology. The CA model is composed of paths and
nodes, which form lattice-shaped texture. A dot represents a packet. Packets
move unidirectionally in x- and y-axis, i.e., rightward and downward, respec-
tively. This simplified model illustrates congestion process clearly.
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(a) t=1200 (b) t=1400 (c) t=1600 (d) t=1800

(e) t=2000 (f) t=2400 (g) t=2800 (h) t=3200

(i) t=3600 (j) t=3800 (k) t=4200 (l) t=4400

Fig. 1. Congestion cluster in cellular automata model

(a) t=34000 (b) t=34400 (c) t=34800 (d) t=35200 (e) t=35600

(f) t=36000 (g) t=36400 (h) t=36800 (i) t=37200 (j) t=37600

Fig. 2. Congestion cluster in interconnection network simulator

We have also found similar congestion cluster in our interconnection network
simulator. Figure 2 shows congestion behaviors in 32 × 32 two-dimensional
torus network. A simple dimension-order routing algorithm is applied. Each dot
represents occupation level of packet buffers in each router. A dark dot shows
that the packet buffer is full and a white dot means empty buffer. Traffic load
is carefully selected around a critical load condition.

In critical load conditions, congestion clusters occur intermittently. In more
heavier load conditions, such congestion clusters continuously emerge. Thus, the
ideal throttling method should capture an early stage of congestion emergence.
Thereby the early congestion should disappear and the system should be an
uncongested situation.
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2.2 Proper Metrics for Throttling

Even when the traffic load is stable, a fluctuation causes transient congestion
cluster if the load is near the threshold. Once the congestion cluster is formulated,
since most packets are absorbed in the cluster, the congestion situation continues
for a long time.

To make throttling sufficiently effective, we should choose an appropriate met-
ric to avoid the formulation of congestion cluster. We claim the following features
for the metric.

(1) The metric should represent the congestion level properly at all instants
of time. The metric should be independent of network topologies, routing
algorithms, and communication patterns. Furthermore, the metric shows in-
stantaneous value of congestion level.

(2) Threshold should be constant. Tuning of threshold value may result in a good
performance under a stable traffic load condition. However, it requires long
time to offer stable performance and it does not follow transient congestion
sufficiently.

(3) The metric should be easy to measure, since the throttling method should
be implementable in practical interconnection network architecture.

2.3 Entropy Metric

We have proposed an entropy metric to represent congestion level properly[3,4].
The entropy measure was inspired from thermodynamics, i.e., by substituting
molecules for packets, free moving situation is explained as vapor phase and
congested situation as solid (or liquid) phase. Entropy is capable of representing
such phases; when the system is in a vapor phase, entropy value is high, and
when in a solid phase, entropy becomes low.

We define entropy in interconnection networks as follows.
Assume that a traveling packet (identified with i) has a velocity vi at any

instant. Entropy is defined

H =
1

Ntp

∑

i

v−1
i log2 vi (1)

where Ntp is the number of traveling packets in the network.
Generally, velocity is defined as differentiation of position with respect to

time. We define the velocity vi as follows. We use an approximate value as the
velocity, that is, vi ≈ hi/Δt where hi is number of hops of the traveling packet
in a Δt time. hi represents the packet’s traveling distance. We do not discuss
traveling directions for simplification; only the number of hops is used.

We measure traveling distance for all the packets in the whole network and
determine statistical distribution for each of possible traveling distance dh value.
Let nh be the number of packets whose traveling distance is h, where 0 ≤ h ≤ Δt.
Thus our first approximation of the original entropy H is represented as follows.

HΔt =
Δt
∑

h=1

nh

Ntp
log2 h. (2)
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Fig. 3. Some network metrics at an intermittent congestion

When the system is in a non-congested situation, packets travel long distance
in Δt time. Thus, it results in a large entropy value. In a congested situation,
since not a few packets are captured in a congested area, their short traveling
distances decrease the entropy value. Thus, the entropy value properly represents
the system’s congestion level.

Now, we show that the entropy satisfies the criteria listed above and other
metrics are inadequate for throttling control. We discuss (a) number of traveling
packets in the network (Ntp), (b) throughput (th)1, (c) average latency (lat),
and (d) entropy (HΔt) as candidates of throttling metrics.

Figure 3 shows time sequences of some network metrics in uniform random
traffic pattern (Fig. 3(a)) and 2% hot-spot traffic (Fig. 3(b)). The network is
32×32 two-dimensional torus and simple dimension-order routing is used. Figure
2 shows snapshot views of Fig. 3(a). In Fig. 3(b), 2% of packets are destined to
the center node (16, 16) and other remaining packets are randomly destined.

We can find that all the metrics (a) to (d) can represent congestion situation
at some degree. At the same time, we can find some differences.

(a) Number of traveling packets (Ntp) properly represents congestion level. Al-
though, absolute Ntp values shown in Figs. 3 (a) and (b) are different. For
example, there are over 1000 packets traveling in uniform random traffic,
however, only about 100 packets in hot-spot traffic.

(b) Throughput (th) is given as the number of delivered packets in every 100
cycles. In uniform random traffic, this metric represents congestion level
at some degree, although, noisy fluctuations are also found. However, this
metric is not useful in hot-spot traffic as shown in Fig. 3(b).

1 i.e., number of delivered packets.
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(c) Average latency (lat) is given as the average of latency values of delivered
packets in every 100 cycles. This metric corresponds to the congestion sit-
uation. However, we should notice that this metric has an essential delay.
Latency of a packet is evaluated only after the packet is delivered at its
destination. Thus, at an early stage of congestion formulation, the average
latency metric is not increased until packets go though the congestion and
reach destinations. Both Figs. 3(a) and (b) show that the average latency
metric follows other metrics after several hundred cycle delay.

(d) The entropy metric also shows congestion situation properly. From its defin-
ition, the entropy has essential merit that the metric is independent of net-
work topology, routing algorithm, and traffic pattern. The maximum value
is given by Δt; Hmax

Δt = log2 Δt ≈ 6.64 when Δt = 100. As shown in Fig. 3,
we can find an appropriate threshold value of about 4.0.

As discussed above, only entropy measure has desirable features for throttling.
It satisfies our criteria (1)–(3) given at the beginning of this section. Figure 3
includes another metric ((e) packet mobility ratio), we will discuss the metric in
the following section.

3 Entropy Throttling

3.1 Approximation of Entropy

Despite its preferable features, the entropy measure is impractical to implement
in actual routers. Equation (2) requires to measure packets’ moving distances in
each Δt period. To measure the entropy with proper accuracy, Δt should not be
so small, for a typical example, Δt=100 [cycles].

One possible solution is adding some information into packets. As the addi-
tional information squeezes communication bandwidth, we cannot employ this
scheme.

Another solution is proper approximation of the entropy. We further approxi-
mate (2) to match the practical router and interconnection network organization.
The impracticability comes from the long measuring period, i.e., Δt >> 0. We
discuss the limit where Δt → 0. That is,

lim
Δt→0

HΔt = lim
Δt→0

(

Δt
∑

h=1

nh

Ntp
log2 h

)

. (3)

Actually, at the Δt → 0 limit, each packet moves at most one hop. That is,

h0 =
{

1, if the packet moves
0, otherwise. (4)

Note that limΔt→0
nh

Ntp
shows the ratio of moved packets at any instants of time.

We introduce a new metric, packet mobility ratio, as follows.

pm = lim
Δt→0

nh

Ntp
(5)
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Here, we introduce rough approximation of entropy by using the pm metric.

H(0) = κpm. (6)

Equation (6) leads us to a practical and efficient entropy measure. All we need
to measure the entropy is counting the numbers of moved and unmoved packets.
Figures 3 (a) and (b) show the packet mobility ratio in uniform random pattern
and 2% hot-spot traffic one, respectively. We can find that the metric properly
represents congestion level.

3.2 Measurement Circuit

Here, we discuss how we can practically measure the packet mobility ratio. We
assume some dedicated registers for measuring the metric and we propose a
measurement circuit which can be embedded in two-dimensional mesh/torus
networks. Figure 4 shows the circuit. Each router has a register named ‘MCR’
(mobility counter register). MCR has two values, nab and nob. nob stands for the
number of occupied buffers which contain at least one flit of packet. nab is the
number of active buffers whose packets are not blocked.

Each router sends its MCR to the center direction in its row, and at the same
time, each router adds the incoming MCR values with its own MCR. Thus each
center node has a partial sum

∑

i MCRi,j , and the partial sum is broadcasted
by using outbound links. By applying the similar operation in vertical direction,
we can calculate

∑

i,j MCRi,j effectively. The resulting value is composed of
(Nob, Nab) where Nob =

∑

nob and Nab =
∑

nab. The entropy value can easily
be calculated by pm = Nab/Nob.

The measurement circuit, given in Fig. 4, can be easily embedded in two-
dimensional mesh/torus networks. The circuit can share physical links with
packet communication. Each router sends a necessary register to its adjacent
router only when its MCR and partial sum values change. But it should wait
sending if the physical link is occupied by packet communication. This cycle-
stealing method does not affect packet communication performance but delays
the entropy calculation. The latency is not fatal to our purpose since physical
links are not always occupied by packet communication. A textbook says that
more than 50% of time is open [2]. We will evaluate the essential delay in Section
4.4. Actually, the virtual control channel (VCC, [6]) and Cross-Line[7,8,9] meth-
ods make efficient use of this fact. Thus, the measurement circuit can update
the entropy measure in O(N) time for N × N networks.

3.3 Entropy Throttling

After the approximated entropy value is measured, throttling method is quite
simple. The entropy measurement circuit delivers the resulting entropy value to
each router. Each router checks the entropy value for sinking below a certain
threshold. If the entropy becomes lower than the threshold, router should pro-
hibit new packet injection. We call the novel throttling method Entropy Throt-
tling. We assume the threshold Rth and we will discuss its actual value in the
next section.
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(unused register and link)

adder

a0 mobility count register (MCR)

Fig. 4. Entropy measurement circuit

4 Evaluation

We have implemented the Entropy Throttling method in our interconnection
network simulator to evaluate the effectiveness. Since the Entropy Throttling is
independent of routing algorithms, we use simple dimension-order routing and
minimum adaptive routing algorithms for evaluation. Network topology is two-
dimensional torus of 32 × 32 size. It is a conscious choice to use 32 × 32 torus,
since larger-scale networks are critical to congestion. We use eight-flit packets
and virtual cut-through flow control. Each virtual channel has its own packet
buffer at each input port of the router. The capacity of packet buffer is 16 flits.
A Packet can be forwarded one hop at each clock cycle, if the packet is not
blocked.

4.1 Random Traffic Performance

Figure 5 illustrates the network performance of dimension-order routing under
the uniform random traffic pattern. Figure 5(a) shows the normalized throughput
and Fig. 5(b) shows average latency curves. In these graphs, “no TC” means “no
throttling control.” Other curves labeled “Rth = w” show particular performance
curves of Entropy Throttling with the threshold Rth = w.

In our evaluations, each node generates a packet in a given interval. Normal-
ized offered traffic value is the inverse of the packet generation interval. Note that
packet injection into the network is actually postponed while the corresponding
router is not ready to receive the packet.

Each simulation runs 200,000 cycles, and network metrics are measured in the
latter 100,000 cycles in order to omit initial conditions. Normalized throughput is



Entropy Throttling 317

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

no
rm

al
iz

ed
 th

ro
ug

hp
ut

normalized offered traffic

no TC
Rth=0.50
Rth=0.70
Rth=0.90

(a) normalized throughput

0

50
100

150
200

250
300

350

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

av
er

ag
e 

la
te

nc
y 

[c
yc

le
s]

normalized offered traffic

no TC
Rth=0.50
Rth=0.70
Rth=0.90

(b) average latency

Fig. 5. Dimension-order routing, uniform
random traffic
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Fig. 6. Adaptive routing, uniform ran-
dom traffic

a ratio of the number of delivered packets to a theoretical maximum throughput.
Similarly, ‘average latency’ shows the average of latency of delivered packets.
These metrics are measured in every 100 cycles.

Figure 5(a) shows that Entropy Throttling properly controls network through-
put even under heavy traffic load, if a proper threshold (i.e., Rth = 0.7 in this
graph) is given. Furthermore, Fig. 5(b) reveals considerable reduction in average
latency to about 50 percents. Note that the Rth =0.5 curve is mostly overlapped
and we cannot discriminate from ‘no TC’.

Figure 6 shows adaptive routing performance under uniform random traffic
pattern. This figure also shows the effectiveness of Entropy Throttling.

4.2 Hot-Spot Traffic Performance

Figures 7 and 8 show 2% hot-spot performance of dimension-order and min-
imum adaptive routing, respectively. Simulation conditions are similar to those
of Figs. 5 and 6, except that 2% of packets are destined to a center node, (16, 16)
in the 32 × 32 two-dimensional torus network.

Figures 7(a) and 8(a) show that no significant differences are observed regard-
less of the throttling method. In this traffic pattern, a particular bottleneck, i.e.,
the hot-spot, limits the whole network’s performance. That is why the throttling
method offers little improvement in threshold under the hot-spot traffic pattern.

However, average latency is significantly improved in both deterministic and
adaptive routing. Figures 7(b) and 8(b) illustrate the fact and we can find more
than 50% reduction in average latency.

Furthermore, we can find that the appropriate threshold value is Rth = 0.7
also in this traffic pattern. This fact shows that the proposed Entropy Throttling
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Fig. 7. Dimension-order routing, 2% hot-
spot traffic
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Fig. 8. Adaptive routing, 2% hot-spot
traffic

does not need dynamic tuning of threshold value. We find that Rth = 0.7 is
the proper threshold value for uniform random and hot-spot traffic and also
deterministic and adaptive routing algorithms.

4.3 Observation of the Throttling Effects

Figures 5, 6, 7 and 8 show statistical results. We show dynamical feature of the
proposed throttling method in Figures 9 and 10. They show time sequence
of average latency, entropy and packet mobility ratio values at starting 5,000
cycles in simulation. The network is 32 × 32 two-dimensional torus and simple
dimension-order routing algorithm is used. Simulation conditions are the same
as other evaluations and performance curves are shown in Fig. 5.

Figure 9 shows the network behavior without throttling control, and Fig. 10
shows the proposed Entropy Throttling with Rth = 0.7 threshold value.

Figures 9(a) and 10(a) show network metrics when average packet generation
interval is 32 cycles (normalized offered traffic is (packet length)/(interval) =
8/32 = 0.25. At this traffic load, the network becomes heavily congested. The
packet generation interval is 44 cycles in Figs. 9(b) and 10(b). This represents
normalized offered traffic as 8/44 ≈ 0.18.

Figure 10(a) shows that Entropy Throttling acts a considerably different be-
havior from that of un-throttled case shown in Fig. 9(a). The Entropy Throttling
properly controls the congestion situation. Oscillation phenomena, whose dura-
tion is several hundred cycles, are observed in Fig. 10(a). This shows that the
throttling method controls congestion formulation.
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Fig. 9. Time sequence of average latency, entropy and average packet mobility
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Fig. 10. Time sequence of average latency, entropy and average packet mobility (under
Entropy Throttling with Rth = 0.7)

In non-congested situations (as shown in Figs. 9(b) and 10(b)), no significant
difference is observed. This shows that the throttling method is harmless when
the traffic is smooth.

4.4 Response of the Entropy Circuit

As described in Section 3.2, our proposed entropy circuit has an essential delay
caused by cycle-steal use of physical links. We measured transient behavior of the
entropy circuit. In a particular simulation at the normalized offered traffic load
of 0.1, we changed the traffic pattern from uniformly random to 2% hot-spot.
Figure 11 shows the time sequence plot of the approximated entropy (Rm) that
is measured by the entropy circuit, accompanied by the average packet mobility.
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Fig. 11. Response of the entropy circuit
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Figure 11(b) is an enlarged plot of (a). This graph shows that the essential delay
of the measurement circuit is practically small.

5 Related Work

The key issues in this paper are (1) introducing the entropy measure as a proper
representation of congestion level, and (2) applying the entropy to throttling
control.

Bernstein defines entropy measure to determine a proper routing in global
communication such as the Internet[10]. His entropy value is based on the net-
work routing parameters, and the value does not represent congestion level. The
entropy is used for selecting optimal routing paths among TCP/IP routers.

Several throttling methods have been proposed. Baydal et al. assume worm-
hole routing and propose some variants of throttling methods that use local
information in each router, i.e., U-Channels, ALO and INC[11]. U-Channels and
ALO methods use the number of unblocked channels. This metric is similar to
our proposed MCR (mobility count register) shown in Section 3.2, however, they
use the information only locally while our method calculates the whole value.
INC method measures the amount of packet flow in a certain interval of time.
Their methods only use localized information and do not reflect global congestion
situation.

DRIL, proposed by Lṕes et al.[12], and CLIC, proposed by Obaidat et al.[13],
also use localized information and do not use the whole congestion situation.
Although localized information is somewhat practical in highly parallel networks,
localized methods cannot sufficiently control congestion formulation because the
congestion is a result of global behavior of routers.

Thottethodi et al. have proposed an adaptive throttling method [14,15]. Their
method throttles packet injection by means of the number of traveling packets
in packet buffers. They use an independent communication mechanism from
packet communication and and use meta-packets to gather congestion informa-
tion in the whole network. Throttling is determined by the resulting (gathered)
information. This method is similar to our proposed method in the sense that
both methods collect local information and forms a global measure to determine
throttling. However, our method is different in the following two points. (1) Our
method shares physical links with packet communication with relatively low la-
tency, and (2) our method does not require dynamic tuning of threshold value of
throttling. A major drawback of the Thotthethodi’s method is long latency and
oscillation. The method determines optimal threshold by hill-climbing method
and the method requires long time to attain a stable performance. Furthermore,
the method shows drastic oscillation whose duration is about 5,000 to 10,000
cycles. Our method also shows oscillation, however, its duration is short (several
hundred cycles) and fluctuation in performance is not so large.

Furthermore, we claim that our approach is based on theoretical discussion on
congestion metric. Many of the existing methods use simple metrics. For exam-
ple, Baydal et al. shows an empirical rule that the network saturates when the
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number of free channel is decreased under 30% of useful channels[16]. Another
example, Thotthethodi’s method given in [14], uses the number of traveling pack-
ets in packet buffers. This metric is similar to the number of traveling packets,
but the metric is not appropriate as we discussed in Section 2.2.

6 Conclusions

Most large-scale interconnection networks are composed of a lot of independent
routers. Routers work autonomously under certain distributed control mech-
anisms. Difficulties in proper control of routers are brought from the fact. A
large-scale interconnection network is a complex system, where we do not have
sufficient knowledge on its behavior.

Network congestion is one of serious problems. Especially in large-scale inter-
connection networks, since no effective centralized control is given, congestion
degrades the network performance drastically. Such situation is very similar to
heavy traffic jams which we sometimes experience in usual life.

We focus our discussion on congestion control, especially on injection limi-
tation (throttling). Since congestion is caused as a result of network’s dynamic
behavior, we first show transient congestion phenomena. Then we discuss possi-
ble metrics for representing congestion level properly, and we show the entropy
measure has desirable features. The entropy is a simple derivation of thermody-
namics entropy.

Furthermore, we introduce packet mobility ratio as an appropriate approxima-
tion of the entropy. The approximated entropy can be measured by a simple circuit
which can be embedded in two-dimensional mesh/torus networks. We propose En-
tropy Throttling by using the entropy metric. The proposed method is based on
our theoretical discussion and the method does not need dynamic tuning.

Evaluation results reveal that the proposed method is effective in controlling
congestion. The results present a proper threshold Rth = 0.7, which is applica-
ble to uniform random and 2% hot-spot traffic patterns under deterministic
and adaptive routing algorithms. Since the threshold value is theoretically inde-
pendent of actual interconnection network methods and no dynamic tuning is
required, the proposed method is expected to be applicable to a wide range of
applications.
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Abstract. A novel architecture for performing digital color image en-
hancement based on reflectance/illumination model is proposed in this
paper. The approach promotes the log-domain computation to eliminate
all multiplications, divisions and exponentiations utilizing the approxi-
mation techniques for efficient estimation of log2 and inverse-log2. A new
quadrant symmetric architecture is also incorporated into the design of
homomorphic filter to achieve very high throughput rate which is part of
V component enhancement in Hue-Saturation-Value (HSV) color space.
The pipelined design of the filter features the flexibility in reloading a
wide range of kernels for different frequency responses. A generalized ar-
chitecture of max/min filter is also presented for efficient extraction of
V component. With effective color space conversion, the HSV-domain
image enhancement architecture is able to achieve a throughput rate of
182.65 million outputs per second (MOPS) or equivalently 52.8 billion
operations per second on Xilinx’s Virtex II XC2V2000-4ff896 field pro-
grammable gate array (FPGA) at a clock frequency of 182.65 MHz. It
can process over 174.2 mega-pixel (1024×1024) frames per second and
consumes approximately 70.7% less hardware resource when compared
to the design presented in [10].

Keywords: color image enhancement, reflectance/illumination model,
HSV-domain image processing, log-domain computation, 2D convolu-
tion, multiplier-less architecture, homomorphic filter, quadrant symmet-
ric architecture, parallel-pipelined architecture.

1 Introduction

Physical limitations exist in the sensor arrays of imaging devices, such as CCD
and CMOS cameras. Often, the devices cannot represent scenes well that have
both very bright and dark regions. The sensor cells are commonly compensated
with the amount of saturation from bright regions, fading out the details in the
darker regions. Image enhancement algorithms [1], [2] provide good rendering to
bring out the details hidden due to dynamic range compression of the physical
sensing devices. However, these algorithms fail to preserve the color relation-
ship among RGB channels which result in distortion of color information after
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enhancement. The recent development of fast converging neural network based
learning algorithm called Ratio Rule [3], [4] provides excellent solution for nat-
ural color restoration of the image after gray-level image enhancement. Hardware
implementation of such algorithms is absolutely essential to parallelize the com-
putation and deliver real time throughputs for color images or videos containing
extensive transformations and large volumes of pixels. Implementation of win-
dow related operations such as convolution, summation, and matrix dot products
which are common in enhancement architectures demands enormous amount of
hardware resources [5], [6]. Often, large number of multiplications/divisions is
needed [7]. Some designs compromise this issue by effectively adapting the archi-
tectures to very specific forms [5], [6], [8] and cannot operate on different sets of
properties related to the operation without the aid of reconfiguration in FPGA
based environment. We propose the concept of log-domain computation [9] to
solve the problem of multiplication and division in the enhancement system and
significantly reduce the hardware requirement while providing high throughput
rate.

We proposed a hardware-efficient architecture in [10] for enhancement of the
digital color images using a Ratio learning algorithm [3], [4]. The enhancement
scheme works very well in general for color images with uniformed or non-
uniformed darkness. In this paper, we propose an alternative design of the system
to significantly reduce hardware requirement while achieve similar fidelity in the
enhanced images. The new architecture processes the images in HSV-domain
with the homomorphic filter and converts the enhanced images back to RGB
representation with highly effective conversion factor [11], [12].

2 Concept of the Design

In section 2.1, we describe the concept of the design proposed in the machine
learning based image enhancement system. We then carry this concept and apply
it to HSV-domain image enhancement with the discussion in section 2.2. This
leads to the theory for optimal design in which we extended the idea from section
2.2 to section 2.3.

2.1 Enhancement Based on Framework of Ratio Learning
Algorithm

The color image enhancement with Ratio Rule comprises three steps [10]. The
first step is to boost separate RGB components to bring out the details hid-
den in dark regions of the image. This technique introduces color distortion in
the enhanced image. The second step is to characterize the relationship between
the components and train the synaptic weights of the fully connected neural net-
work. In final step, the boosted RGB components are fed into the neural network
for color balancing to restore the natural color which exists in the original im-
age back to the enhanced image. The final step affectively corrects the distorted
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relationship of RGB channels for natural color rendition. This enhancement con-
cept can be applied to HSV-domain as an alternative mechanism to avoid color
distortion.

2.2 HSV-Domain Enhancement

Color distortion correction can be avoided for color image enhancement in HSV-
domain. Only the V component in HSV needs to be enhanced instead of boosting
separate RGB channels in RGB color space. Extraction of the V component is
defined as

V (x, y) = max(RI(x, y), GI(x, y), BI(x, y)), (1)

where the I(x, y) is the input image. The V component is enhanced by a homo-
morphic filter defined as

V enh(x, y) = e(ln(
V (x,y)

2P )∗h(x,y)) × D, or

V enh(x, y) = 2(log2(V (x,y)
2P )∗h(x,y)) × D

(2)

for logarithmic based two expression where the * denotes convolution opera-
tion, h(x, y) is the spatial-domain filter coefficients from its corresponding high-
boosting homomorphic transfer function in frequency domain, P is the resolution
of the pixel, D is the de-normalizing factor, and Venh(x, y) is enhanced intensity
value of the image. This enhancement model assumes that the detail (reflectance
components) in the image is logarithmically separable [12], [13]. The convolution
or digital filter operation can be defined as

V enhl(x, y) =
a

∑

m=−a

a
∑

n=−a

V nl (x − m, y − n) × h(m, n), (3)

where a = (K − 1)/2 for K × K filter kernel, Vnl is the normalized logarithmic
scaled version of V (x, y) and Venhl is the result from performing 2D convolution.
The quadrant symmetry property of the homomorphic filter operation defined
in (2) allows us to optimized (3) to reduce the number of multiplications by 3/4,
which we proposed in [14]. The folded version of (3) can be expressed as

V enhl(x, y) =
K
2 −1
∑

m=0

K
2 −1
∑

n=0
V nl

(

x ± m + K
2 , y ± n + K

2

)

× h(m, n)

+V nl(x, y) × h
(

K
2 , K

2

)

V enhl(x, y) =
K−1

2
∑

m=0

K−1
2

∑

n=0
h(m, n)

×

⎡

⎢

⎢

⎣

V nl
(

x + m − K
2 + 1, y + n − K

2 + 1
)

+V nl
(

x − m + K
2 , y + n − K

2 + 1
)

+V nl
(

x + m − K
2 + 1, y − n + K

2

)

+V nl
(

x − m + K
2 , y − n + K

2

)

⎤

⎥

⎥

⎦

(4)
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for odd and even dimension kernels respectively. The enhanced image can now
be transformed back to RGB representation by

{R′G′B′}n = {{e, p, t}, {n, e, t}, {t, e, p}, {t, n, e}, {p, t, e}, {e, t, n}}
for i in {{0}, ...{5}} ,

(5)

where t=1–S, n=1–S ×f , p=1–S×(1–f), e=1, and {R’G’B’}n is the normalized
enhanced RGB components. The i and f are the integer and fraction portions
of H component in HSV-domain and is defined as

H =

⎧

⎨

⎩

0 + (G − B)/(V − min(RGB)) , if V = R
2 + (B − R)/(V − min(RGB)) , if V = G
4 + (R − G)/(V − min(RGB)) , if V = B .

(6)

The S component in HSV domain is defined to be

S =
V − min(RGB)

V
. (7)

The final output, {R’G’B’}, can be calculated as

{R′G′B′} =
{R′G′B′}n × V enh

max ({R′G′B′}n)
, (8)

where Venh = 2V enhl×D. Equations (1)-(8) provide basic framework for the algo-
rithm we propose for hardware design of HSV-domain color image enhancement
system.

2.3 HSV-Domain Enhancement with Optimal Color Space
Conversion

We have shown the concept of enhancing color images in HSV-domain in section
2.2. It reduces the processing bandwidth needed in hardware design to focus
on one channel (V component) rather than concurrently processing on all RGB
channels. This approximately cuts the hardware resource by 2/3 compared to the
design discussed in section 2.1. As Li Tao et al demonstrated in the color image
enhancement algorithms [11], [12], the color restoration process can be further
simplified. She had shown that since H and S components in HSV color space
remain constant, the equations (5)-(8) needed for inverse transformation can be
replaced by

{R′G′B′} =
{RGB}

V
× V enh . (9)

This approach should moreover reduce the hardware requirement to more than
2/3 compared to [10]. In the next section, we show the optimal architectural
realization of the equations (1), (2), and (9) in the color image enhancement
system.
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3 Architecture for Color Image Enhancement

A overview of the block diagram of the system is described in section 3.1. A
very tightly coupled system architecture which decomposes the block diagram
presented in section 3.1 in to components is discussed in section 3.2. Discussion
on the design of data buffer, V component extraction, homomorphic filtering and
color space conversion components are explained in sub-sequential sub-sections.

3.1 Overview of the Computational Sequence

A brief overview of the image enhancement system with color restoration is
shown in Fig. 1 along with its interface signals. The architecture features RGB
streaming input with the options of specifying the image width on ‘Imsize’ bus,
and reloading of kernel coefficients through ‘KernBus’ for the convolution op-
eration. The output buses include the enhanced RGB components. The com-
putational sequence takes place as follows. The input pixels are buffered just
enough to create internal parallel data bus (PDB) to maximize the fine grained
parallelism for massive parallel processing. The V component is extracted from
PDB. This component is converted to log2 scale and filtered through a flexible
2D convolution architecture optimized for quadrant symmetric kernels. Lastly,
the output from the homomorphic filtering process is combined with the original
RGB components to restore color back from HSV-domain.

Fig. 1. Block diagram illustrates the overall sequence of computation which takes place
within the system along with its interface signals

3.2 The Tightly Coupled System Architecture

The tightly coupled system architecture is illustrated in Fig. 2. It mainly consists
of three units, the data buffer unit (DBU), the homomorphic filter unit (HFU),
and the HSV to RGB conversion (HRC) arithmetic. The integration of these
units contributes to consistent and highly parallel-pipelined design to maximize
hardware utilization and delivery optimal peak performance which might be
degraded in a loosely coupled or unevenly pipelined system. The design of these
units is discussed in greater detail in the following sub-sections.
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Fig. 2. System Architecture illustrates the coupling of three main units to achieve
optimal peak performance

3.3 Data Buffer Unit

The DBU is implemented with dual port RAMs (DPRAMs) as shown in Fig. 3.
One set of DPRAMs is utilized to form line buffer (LB) to create massive in-
ternal parallelism for concurrent processing. Each line of the image is store in
one LB with the pixels fetched in raster-scan fashion. This reduces the input
data bandwidth to unity. The DPRAM based implementation has advantage of
significantly simplifying the address generator compared to commonly known
first-in-first-out (FIFO) based approach. Tracking of items is eliminated as op-
posed to LBs implemented by FIFOs. The address generator is well scalable. It
consists of two counters to automatically keep track of the memory locations to
insert and read the data to internal PDB for extraction of V component. Data
bus A (DBA) is used to insert new pixel values designated by address bus A
(ABA). The data bus B (DBB) is used for reading the pixel values. K-1 sets of
DPRAMs are utilized in DBU for K × K dimension kernels with one address
generator.

3.4 Extraction of V Component

The V component is extracted by a max filter presented in [15]. The concept was
extended from the architecture for 2D uniform filter. For 1D max filter, which is
what we need in this design, a pipelined adder tree (PAT) style can be utilized.
A generalized 1D max filter architecture for N nodes is shown in Fig. 4. The
design utilizes the signs from subtractions in the PAT structure to successively
filter and merge until a maximum value is found at the end of last pipeline stage.
An array of K 3-to-1 max filters is necessary as illustrated in MAX(RGB) Array
block of Fig. 2. This architecture works for min finder as well by swapping the
inputs fed to 2-to-1 multiplexer (mux).
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Fig. 3. Detail architecture of the DBU shown in Fig. 2. Each LB is constructed with
2 BRAMs to store RGB components. (K-1) sets of BRAMs are needed for K × K
dimension kernels.

Fig. 4. Elementary architecture of the max filter is used to extract the V component.
K elements of 3-to-1 max filters are needed in the MAX(RGB) Array shown in Fig. 2.

3.5 Architecture of the Homomorphic Filter

The HFU coupled with an array of the log2 scaled version of V component
is illustrated in Fig. 2. The quadrant symmetry property of the 2D convolu-
tion operation indicated by (4) allows the computation to concentrate on one
quarter of the kernel through folding. The vertical folding of data is accom-
plished by linearly fold the data from the last stage of internal PDB with adders.
This halves the processing bandwidth. To normalize a value v (log2(v/2N) =
log2(v) − N), which is negative, given the fact that image pixels are positive
and log2 of negative number is undefined, the absolute value can be logically
approximated by taking the inverted output (Q ≈ N − log2(v) = log2(v)) of
the registered result from vertical folding. This procedure inherently utilizes
the V-fold pipeline stage rather than introducing additional stage and resource
to compute the absolute value of the normalized v. To reduce the processing
bandwidth by another half, the horizontal folding is performed, taking account
of the delay in systolic architecture [14]. The registered results of the H-fold
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stage are sent to arrays of processing elements (PEs) for successive filtering.
The partial results from the PE arrays (PEAs) are combined together by a
PAT. The overall output of the homomorphic filter for each channel is kept in
log2 scale for the color space conversion in the HRC architecture as shown in
Fig. 2.

3.5.1 Architecture of Pipelined Processing Elements in Homomor-
phic Filter. The design of the PE in the homomorphic filter utilizes the log-
domain computation to eliminate the need of hardware multipliers [9]. The data
from H-fold register is pre-normalized without extra logics by shifting the bus. It
is then converted to log2 scale as shown in Fig. 5(a) and added with log2 scaled
kernel coefficients (LKC) in LKC register set. The result from last stage is con-
verted back to linear scale with range check (RC). If the overflow or underflow
occurs, the holding register of this pipeline stage is set or clear, respectively.
Setting and clearing contribute the max and min values representable to N -bit
register. The output of this stage is de-normalized, likewise by bus shifting, before
it is successively accumulated along the accumulation line. The log2 architecture
shown in Fig. 5(b) is very similar to [9], except full precision is used and registers
are introduced to approximately double the performance. The maximum logic
delay is reduced to single component and makes no sense to pipeline beyond this
point. Interested readers are referred to [9] for detailed implementation.

Fig. 5. Architecture of the PE in the homomorphic filter (a), and the pipelined log2

module (b)

3.6 HSV to RGB Color Space Conversion

The HRC unit inverse transforms the enhanced image in HSV color space back to
RGB representation. As illustrated in Fig. 2, the center-tapped RGB components
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from DBU pass through synchronization register set to compensate the latencies
associated with HFU. The synchronized RGB components are converted to log2
scale. Furthermore, the V component at this node is also determined with the
architecture shown in Fig. 4. The Venhl output is first de-normalized by adding
constant 8 in log-domain which is equivalent to multiplication of de-normalizing
factor D = 28. The division in (9) is calculated by subtraction in log-domain
as illustrated in Fig. 2. The final output of the enhanced RGB components is
computed by taking the inverse-log2 of the sum of the resultant subtraction and
Venhl. This completes the discussion on the design of image enhancement system.
The simulation and error analysis of the architecture is discussed next.

4 Simulation and Error Analysis

Images with non-uniform darkness are used in the simulation of the hardware
algorithm. The parameter set for the test is as follows:

– 8-bit unsigned pixel resolution
– Transfer function of the homomorphic filter [16]:
– Boost ratio: 2
– Cutoff frequency: 0.1
– Filter order: 2
– 1/4/15-bit coefficient sign, integer, and fraction for log2 scaled homomorphic

filter coefficients (transfer function quantitized accordingly), respectively
– 9/4-bit integer/fraction in accumulation line of PEs in homomorphic filter
– Full precision log2/inverse-log2 fractions
– 7×7 window for homomorphic filter.

4.1 Simulation

The image is sent to the architecture pixel by pixel in raster scan fashion. After
the initial latency of the system (i.e. Imsize×(K-1)/2+(K+1)/2+15+DPAT cy-
cles, where DPAT is the latency of PAT), the output becomes available and is
collected for error analysis. The overall output of the enhancement architecture
is recorded to give pictorial view of the enhanced image for quick evaluation of
the visual quality. Typical test image is shown in Fig. 6(a) where the shadow
regions exist as the consequence of the saturation in bright region. The outputs
of the system produced by Matlab software and hardware simulation are illus-
trated in Fig. 6(b) and 6(c) respectively. As one can see that majority of the
detail hidden in the dark regions of the original image are brought out while
the natural color is preserved. The enhanced image produced in hardware sim-
ulation is slightly brighter than the one computed by Matlab software. Overall,
the visual quality is very satisfied with least areas of shadow regions. The error
introduced from replacing equations (5)-(8) by (9) is shown in Fig. 6(d) with 50



332 M.Z. Zhang et al.

Fig. 6. Images shown from (a) to (d) are the test color image with non-uniformed
darkness, the Matlab software output image, the result from hardware simulation,
and the error introduced with 50 times magnification for replacing equations (5)-(8)
by (9)

times magnification. The simplification induces negligible magnitude of error at
extremely dark regions of the image.

4.2 Error Analysis

Typical histograms of the error between software algorithm and hardware simu-
lation are shown in Fig. 7 for the test image. The error produced in homomorphic
filter illustrated in Fig. 7(a) has average error of 2.91 pixel intensity. The average
error of overall system in Fig. 7(b) is slight larger than 2.91. Simulation with
large set of images shows majority of the errors in this system is less than 5
to 10 pixel intensities with the average errors around 4. This error measure in-
cludes the fact that the hardware simulation is bounded to approximation error
and specific number of bits representable in the architecture where the software
algorithm is free from these constraints. While the hardware simulation shows
very attractive results, the efficiency of hardware utilization and its performance,
which is discussed in the follow up section, is even more impressive.
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Fig. 7. Error histograms of the homomorphic filter and the system are shown in (a)
and (b) from enhancement of the test image with average errors of 2.91, and 2.97 pixel
intensities respectively. Typically, the error is less than 5 to 10 with the average error
around 4.

5 Hardware Utilization and Performance Evaluation

5.1 Hardware Utilization

The hardware resource utilization is characterized based on the Xilinx’s Vir-
tex II XC2V2000-4ff896 FPGA and the Integrated Software Environment (ISE).
The particular FPGA chip we target has 10,752 logic slices, 21,504 flip-flops
(FFs), 21,504 lookup tables (4-input LUTs), 56 block RAMs (BRAMs), and 56
embedded 18-bit signed multipliers in hardware; however, we do not utilize the
built-in multipliers. The resource allocation for various sizes of the kernels in
homomorphic filter is shown in Table 1 with the resolution parameters listed
in section 4. For 9×9 kernels in homomorphic filter, the computational power
is approximately 81 multipliers which is significantly less compare to [10] with
similar setting where 243 multipliers and 150 dividers are needed if conventional
approach is taken. With the concept of log-domain computation the amount of
hardware resource available become feasible in this implementation. The maxi-
mum windows can be utilized on target FPGA consumes 85% of the logic slices
(4 slices is equivalent to 1 configurable logic block), 51% of the FFs, 49% of
LUTs and 32 BRAMs (2 BRAMs for each line of RGB components). Table 2
shows the proposed design uses approximately 70.7% less logic slices on average
compared to the architecture presented in [10].

5.2 Performance Evaluation

The critical timing analysis of Xilinx’s ISE shows that the 182.65 MOPS, or
equivalently 52.8 ((17×17) ×182.65e6) billion operations per second, is the most
optimal throughput achievable with the maximum clock frequency of 182.65
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Table 1. Hardware resource utilization for various sizes of the kernels in the homomor-
phic filter along with its corresponding performance indicates the overall effectiveness
of the architecture

Table 2. Comparison on the resource allocations and performance between the pro-
posed architecture and the implementation presented in [10] illustrates that the pro-
posed design uses significantly less hardware resource and gains higher system through-
put while it achieves very similar quality in the enhanced images. It reduced 70.7% logic
slices on average.

MHz. Further evaluation of pipelining the critical path suggests that increasing
the level of pipelining does not gain significant throughput rate. This directly in-
dicates the impact of the design with tightly coupled interfaces and well pipelined
system. Given 1024×1024 image frame, it can process over 174.2 frames per sec-
ond without frame buffering at its peak performance. This tremendous gain in
the performance while consuming significantly less hardware resources would
have been extremely difficult to achieve without the log-domain computation.
The additional benefit is that the filter coefficients are not hardwired, which
gives the highest flexibility in reloading the coefficients without the need of dy-
namic reconfiguration for different characteristics of the transfer functions. While
Table 2 shows significant percentage of the hardware resource reduction, it also
indicates that the performance of the proposed approach increases to 124% when
compared to the design we presented in [10].

6 Conclusion

A novel architecture for performing color image enhancement has been presented.
The approach utilized log-domain computation to eliminate all multiplications,
divisions and exponentiations. Log2 and inverse-log2 computations were per-
formed based on the approximation techniques with improved performance. A
new high performance quadrant symmetric architecture was also presented to
provide very high throughput rate for the homomorphic filter in the image en-
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hancement where the V component of the image in HSV-domain was boosted.
A generalized architecture for max/min filter was also presented as part of the
extraction of V component. Tight system integration was also achieved along
with very effective color space conversion mechanism to minimize degradation
of system’s performance. It has been observed that the system is able to sustain
a throughput rate of 182.65 million outputs per second (MOPS) or equivalently
52.8 billion operations per second with 17×17 homomorphic filter on Xilinx’s
Virtex II XC2V2000-4ff896 FPGA at a clock frequency of 182.65 MHz. Given
1024×1024 image frame, it can process over 174.2 frames per second without
frame buffering at its peak performance. It was further observed that the pro-
posed architecture requires approximately 70.7% less logic slices on average when
compared to the architecture for gray-level image enhancement [10].
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Abstract. In this paper, we study routing and wavelength assignment
for realizing hypercube communications on optical WDM chordal ring
networks with chord length of 3. Specifically, we design an embedding
scheme and identify a lower bound on the number of wavelengths re-
quired, and provide a wavelength assignment algorithm which achieves
the lower bound. Our result for this type of chordal ring is about half of
that on WDM ring with the same number of nodes.

Keywords: Wavelength Division Multiplexing (WDM), routing and
wavelength assignment(RWA), hypercube communication, chordal ring.

1 Introduction

Wavelength Division Multiplexing (WDM) optical networks provide huge band-
width, and has become a promising technology for parallel/distributed com-
puting applications [11]. In WDM networks, the fiber bandwidth is partitioned
into multiple data channels, in which different messages can be transmitted si-
multaneously using different wavelengths. To efficiently utilize the bandwidth
resources and to eliminate the high cost and bottleneck caused by optoelec-
trical conversion and processing at intermediate nodes, end-to-end lightpaths
are usually set up between each pair of source-destination nodes. The lightpath
must satisfy the wavelength-continuity constraint [13], if there is no wavelength
converter facility available in the network. In this case, a connection must use
the same wavelength throughout its path. That is to say, the connections in
WDM optical networks without wavelength conversion are subject to the follow-
ing two constraints [13]: 1. Wavelength continuity constraint : a lightpath must
use the same wavelength on all the links along its path from source to destina-
tion node. 2. Distinct wavelength constraint : all lightpaths using the same link
(fiber) must be assigned distinct wavelengths. Such is referred to as Routing
and Wavelength Assignment (RWA) problem [13], which is a key problem for
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increasing the efficiency of wavelength-routed all-optical networks. RWA tries to
minimize the number of wavelengths to realize a communication requirement by
taking into consideration both routing options and wavelength assignment op-
tions. A number of communication patterns, such as multicast communication,
all-to-all communication, broadcasting etc. realized on different type of optical
WDM networks have been discussed[7][9][14] .

Hypercube communication is one of the most versatile and efficient communi-
cation patterns for parallel computation. One drawback to the hypercube is that
the number of connections grows logarithmically with the size of the network.
In [12], wavelength assignments for hypercube communications on WDM linear
arrays, rings, meshes, and tori were studied. We improved the results in [12] and
extended the results to the unidirectional hypercube in [4]. However, the numbers
of wavelengths required to realize hypercube communications on the topologies
discussed in [4][12] are large if the number of communication nodes is large. In
order to reduce the number of required wavelengths, we design the embedding
of hypercube communications realized on a special chordal ring networks. The
results show that the number of wavelengths can be reduced by adding some
chords on the simple regular networks.

The rest of this paper is organized as follows. In Section 2, the lower bound
for the number of wavelengths required to realize hypercube communications on
chordal ring networks with chord length of 3 is identified and the number of
wavelengths is derived. The embedding scheme and the routing scheme are also
designed. Comparisons for the numbers of wavelengths between WDM ring and
WDM chordal ring with chord length of 3 are given in Section 3. Finally, we
conclude the paper in Section 4.

2 RWA of Hypercube Communications on Chordal Ring
Networks with Chord Length of 3

2.1 Chordal Ring Networks with Chord Length of 3

As described in [1], a chordal ring is basically a ring network, in which each node
has an additional link, called a chord. The number of nodes in a chordal ring
is assumed to be even, and nodes are indexed as 0, 1, 2, . . . , N − 1 around the
N -node ring. We assume that each even numbered node i(i = 0, 2, . . . , N − 2)
is connected to a node (i + w) mod N , where w is the chord length, which is
assumed to be positive odd.

In this paper, we assume the chord length of the chordal ring is 3, which we
denote by CR(n, 3) with N = 2n nodes numbered from 0 to N − 1. We assume
each link in the network is bidirectional and composed of a pair of unidirectional
links with one link in each direction. For Hn, if (x, y) ∈ Hn, then (y, x) ∈ Hn.
Assuming that these two communications can be realized by two lightpaths in
the same path of opposite directions passing through different fiber links, the
same wavelength can be assigned to these two lightpaths. In this case, we can
ignore the problem of communication directions in Hn.
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2.2 Hypercube Communication Pattern

Two nodes are connected in the hypercube if and only if the binary representa-
tions differ by exactly 1 bit. A connection in the hypercube is called a dimensional
i connection [8] if it connects two nodes that differ in the ith bit position.

For hypercube communication pattern, two nodes of x and y, whose binary
representations differ by the ith bit position, are connected by two dimensional
i connections of (x, y) and (y, x). We define Hn as the set of hypercube commu-
nications with N = 2n nodes, and DIM i

n, where 0 ≤ i ≤ n − 1, as the set of all
the corresponding dimensional i connections. That is,

Hn =
⋃n−1

i=0 DIM i
n,

DIM i
n = {(j, j + 2i), (j + 2i, j)|j mod 2i+1 < 2i}.

For Hn, there are n×2n = N log N connections and 2n connections in DIM i
n

for each 0 ≤ i ≤ n − 1.

2.3 Wavelength Requirement Analysis

Given a network G and communication pattern H , the congestion for embedding
H in G is the minimum among all the embedding schemes for maximum number
of paths in H that use the links in G. Let Cong(H, G) denote the congestion of
graph H embedded in graph G, and λe(H, G) denote the number of wavelengths
required for realizing communication pattern of H in optical network G by em-
bedding scheme e. Although the objective and techniques of RWA are different
from those of embedding, the relevance between congestion and the number of
wavelengths is shown by the following lemma [2]:

Lemma 1. λe(H, G) ≥ Cong(H, G).

The congestion of embedding hypercube on linear array [3], denoted by
Cong(Hn, Ln), is the minimum over all embedding schemes of the maximum
number of hypercube edges that pass any edge of the linear array, which can be
obtained by the following lemma.

Lemma 2. Cong(Hn, Ln) =
{

(2N − 2)/3, if n is even;
(2N − 1)/3, if n is odd.

We design the embedding scheme of the nodes in Hn onto CR(n, 3) as follows.
Assume that X is an order of binary representations, and X−1 is the reversal

order of these binary representations. For example, if X = a, b, c, d, then X−1 =
d, c, b, a, and (X1X2)−1 = X−1

2 X−1
1 . The node order of Xn is defined recursively

as follows:
X1 = 0, 1,
X2 = 0X1, 1X−1

1 ,
...

Xn = 0Xn−1, 1X−1
n−1.

This is also called a binary-reflected Gray code[6].
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Embed the ith node of Xn in Hn onto the ith node of CR(n, 3). Thus, we
establish the 1-1 mapping from the nodes of Hn to the nodes of CR(n, 3). We
define such an embedding scheme as reflected embedding and the corresponding
number of wavelengths as λr. For the routing scheme of the connections, we
design a routing scheme with the assumption of all the communications routed by
the shortest path. For the connection of (u, v), if u is even, route the connection
along the links (u, u + 3), (u + 3, u + 4), (u + 4, u + 7), ..., (v − 3, v) through the
chordal links and the ring links alternatively until it reaches v. If u is odd, route
the connection along the links (u, u+1), (u+1, u+4), (u+4, u+5), ..., (v−1, v)
through the ring links and the chordal links alternatively until it reaches v. We
call such a routing scheme Shortest Path Alternate Routing(SPAR). For example,
if the source node is 0 and the destination node is 15 for the connection of (0, 15)
in H5, the routing path is 0 → 3 → 4 → 7 → 8 → 11 → 12 → 15 by SPAR
scheme, as the dashed line is shown in Figure 1. As to the connection of (1, 14),
the routing path is 1 → 2 → 5 → 6 → 9 → 10 → 13 → 14.

In order to obtain the number of wavelengths required to realize Hn on
CR(n, 3), we first derive the results on a type of chordal linear array with N = 2n

nodes numbered from 0 to N −1, which we denote by CLA(n, 3). For CLA(n, 3),
node i(i = 0, 2, . . . , N − 3) is connected to a node i + 3. We divide the set of the
links of CLA(n, 3) into three sets as follows.

Chordal link set: E1 = {(i, i + 3) | i = 0, 2, . . . , N − 3}.
Even link set: E2 = {(i, i + 1) | i = 0, 2, . . . , N − 3}.
Odd link set: E3 = {(i, i + 1) | i = 1, 3, . . . , N − 2}.
The number of wavelengths required to realize hypercube communications on

CLA(n, 3) can be obtained in the following lemma.

Lemma 3. By the reflected embedding scheme and routing scheme of SPAR, the
number of wavelengths required to realize hypercube communications on CLA(n, 3)
is �N/3�.

Proof. By the reflected embedding scheme and routing scheme of SPAR, for
each i, DIM i

n ∪ DIM i+1
n are routed on 2n−i−2 disjoint CLA(i + 2, 3) subarrays

and the connections on each subarray with 2i+2 nodes do not share any links
with the connections on the other subarray. Therefore, the maximum number of
wavelengths required to realize DIM i

n ∪ DIM i+1
n is 2i on the links which are in

E1 and E3. For n is even, λr(Hn, CLA(n, 3)) = λr(
⋃n−1

i=0 DIM i
n, CLA(n, 3)) =

λr(
⋃

i=0,2,4,...,n−2(DIM i
n ∪ DIM i+1

n ), CLA(n, 3)) = 20 + 22 + 24 + . . . + 2n−2 =
N/3 − 1/3. For n is odd, λr(Hn, CLA(n, 3)) = λr(

⋃n−1
i=0 DIM i

n, CLA(n, 3)) =
λr(

⋃

i=1,3,5,...,n−2(DIM i
n∪DIM i−1

n ), CLA(n, 3))+λr(DIM0
n, CLA(n, 3)) = 21+

23 + 25 + . . . + 2n−2 = N/3 − 2/3, since one wavelength is sufficient to realize
DIM0

n on the links of E2.

We first provide the lower bound on the number of wavelengths required to
realize Hn on CR(n, 3), and then derive the number of wavelengths.

The congestion of embedding hypercube on cycle has been studied as the
problem of cyclic cutwidth for hypercube [5]. As far as we know, the problem
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Fig. 1. CR(5, 3)

of cyclic cutwidth for hypercube is still an open problem [5][10]. The best lower
bound known for the cyclic cutwidth for hypercube, denoted by ccw(Hn) in
[5], is ccw ≥ 1

2 lcw(Hn). lcw(Hn) is referred to cutwith of hypercube which is
equal to congestion of hypercube on linear array. Although the cyclic cutwidth
hypercube has not been discovered, a conjecture, ccw(Hn) = �5N/12�, has been
made in [5]. So far as has been tested, this conjecture has been held. Based on
this conjecture, we obtain the following lemma.

Lemma 4. If ccw(Hn) = �5N/12�, the number of wavelengths required to realize
hypercube communications on CR(n, 3) is not less than �5N/24�.

Proof. Assume that the conjecture of ccw(Hn) = �5N/12� is held. No matter
what the embedding scheme is used, there exists a cut on CR(n, 3) that separate
two neighborhood nodes x and y, with at lease 2 links connecting x and y, such
that at least �5N/12� or �5N/12�−1 connections passing through this cut. Since
there are at lease 2 links connecting this cut, it can be easily calculated that each
of these 2 links must be used at least �5N/24� times, regardless of the embedding
and routing schemes used.

Theorem 1. The number of wavelengths required to realize hypercube commu-
nications on CR(n, 3) is �5N/24�.

Proof. By reflected embedding, connections in Hn−DIMn−1
n −DIMn−2

n embed-
ded on CR(n, 3) can be regarded as four Hn−2 embedded on four CLA(n−2, 3),
denoted by SubCLAi(i = 0, 1, 2, 3), as illustrated in Figure 1. Since SubCLA0,
SubCLA1, SubCLA2 and SubCLA3 are disjoint and the connections in each
CLA(n−2, 3) do not share links with the connections in other CLA(n−2, 3) by
the shortest path, wavelengths can be reused and the same set of wavelengths
can be assigned to each CLA(n−2, 3). By Lemma 3, the number of wavelengths
required for each CLA(n − 2, 3) is �N/12�.
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For the connections in DIMn−1
n ∪ DIMn−2

n , it can be easily proven that the
number of wavelengths required is N/8.

Therefore, the number of wavelengths required to realize Hn on CR(n, 3) is
�N/12�+N/8 = �5N/24� by reflected embedding and routing scheme of SPRA.

3 Comparisons

We compare the wavelength requirement for realizing Hn on chordal ring of
CR(n, 3) and WDM ring. Figure 2 shows the wavelength requirement for WDM
ring and CR(n, 3) with the same number of process nodes when 3 ≤ n ≤ 8. It can
be seen that the wavelength requirement for realizing hypercube communication
on CR(n, 3) is about half of that on the 2n-node ring. Although the number of
links for CR(n, 3) is about one and a half of that for the ring networks, it can
be observed that single wavelength fiber can be used for the links in Even link
set(E2) of CR(n, 3).

Fig. 2. Wavelength requirement for Hn on ring and CR(n, 3)

4 Concluding Remarks

In this paper, we discussed routing and wavelength assignment of hypercube
communications on optical chordal ring networks of CR(n, 3). Specifically, we
identified the lower bound on the number of wavelengths required, and designed
an embedding scheme and wavelength assignment algorithm which uses a near-
optimal number of wavelengths. The results show that the wavelengths require-
ment to realize the hypercube communication on the chordal ring of CR(n, 3) is
about half of that on WDM ring networks with the same number of nodes. Since
hypercube communication represents a common communication pattern shared
by a large number of computational problems, our results have both theoretical
and practical significance which increases with the growth of the popularity of
WDM optical networks. In our future research, we will continue to study the
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problem of realizing hypercube communication patterns on general chordal ring
networks without the limitation of the chord length.
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Abstract. In this paper, an open performance model framework
PMPS(n) and a realization of this framework PMPS(3), including mem-
ory, I/O and network, are presented and used to predict runtime of NPB
benchmarks on P4 cluster. The experimental results demonstrates that
PMPS(3) can work much better than PERC for I/O intensive applica-
tions, and can do as well as PERC for memory-intensive applications.
Through further analysis, it is indicated that the results of the perfor-
mance model can be influenced by the data correlations, control correla-
tions and operation overlaps and which must be considered in the models
to improve the prediction precision. The experimental results also showed
that PMPS(n) be of great scalability.

Keywords: Performance Model, Parallel, I/O, Convolution Methods.

1 Introduction

Methods of performance evaluations can be broken down into two areas [1]:
structural models and functional/analytical models. Simulators have the ad-
vantage of automating performance prediction from the user’s standpoint. The
disadvantage is that these simulators capture all the behavior of the proces-
sors, simulations can take on an upwards of 1,000,000 times longer than the real
runtime of the application [2].

In the second area of performance evaluation, functional and analytical mod-
els, the performance of an application on the target machine can be described
by a complex mathematical equation. When the equation is fed with the proper
input values to describe the target machine, the calculation yields a wall clock
time for that application on the target machine. Various flavors of theses meth-
ods have been researched.

The goal of our work is to create a more accurate functional and analytical
models of scientific applications in parallel systems.

2 PMPS(3)

An open performance prediction model of parallel systems based on convolution
methods [3,4,5,6] PMPS(n) is showed in this paper.

C. Jesshope and C. Egan (Eds.): ACSAC 2006, LNCS 4186, pp. 344–350, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The framework of PMPS(n) is illustrated in Fig. 1. In the framework, we
capture n kinds of machine profiles and gather n kinds of application signatures.
Generally, the more information is captured (n is larger), the more the result
of framework will be precise, and the longer time the predicting will last. The
modules in this framework are classified into two parts: n1 modules are used
to analyze the performance of single-processor nodes; n2 modules are used to
analyze the performance of network. In this case,n = n1 + n2.
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Fig. 1. Performance model of parallel systems

In the PMPS(n), we have considered not only the influence of n kinds of
operations of the applications on the prediction, but also the influence of overlaps
of operations. We can denote the performance of the single processor as Eq.(1).

pcpu =
m

∑

i=1

⎛

⎝

n1
∑

j=1

(WjBBi)(OpsjBBi/RatejBBi −
n1
∑

k=j+1

OverlapTBBi(Opsj , Opsk))

⎞

⎠ .

(1)
in which:

– m: Total number of base blocks completed by that parallel application;
– n1: Total number of operation types analyzed in the model;
– WjBBi: The contribution of the jth operation to the prediction in the BBi.

If the operation takes part in the prediction, it is 1, or it is 0.
– OpsjBBi: The number of the jth operation in the BBi, denotes the appli-

cation signature;
– RatejBBi: Ratio of the jth operation in the BBi, denotes the machine

profile;
– OverlapTBBi(Opsj , Opsk): The overlap time of the jth operation and the

kth operation in the BBi.

We can obtain the performance of network by using the same method. Us-
ing the performance of single-processor and network as input parameters, the
convolution module can predict the runtime T / of application.

Furthermore, we define the accuracy of the prediction of the model in Eq.(2).
In which T is wall clock time of the application.

Error =
T − T /

T
100% (2)
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PMPS(n) is an open performance model of the parallel systems based on con-
volution methods. Generally, when using this model to predict the performance
of a system, we only consider the key factors that can influence the performance.
For example, the PERC model carried out by San Diego Supercomputer Center
is a typical model of PMPS(2). The PERC considered that the single-processor
performance is mainly decided by the memory operation, and the scalability is
mainly decided by the character of network[3,5]. Using the model to predict the
runtime of storage-intensive applications, the error will be less than 20%.

The I/O is another main factor that can influenced the performance of the
system enormously. For example, error of predicting the runtime of HYCOM
on a 234-node system with that each node is consisted of IBM Power4 is about
30.6%. It is for that the influence of I/O system on the performance hasn’t been
considered [4]. We put forward a model of PMPS(3) (n1=2, n2=1) that includes
the factor of I/O subsystem based on PMPS(2). Therefore, we can denote the
performance of single-processor as Eq.(3).

pcpu =
m

∑

i=1

(OpsmBBi/RatemBBi + OpsIOBBi/RateIOBBi − OverlapTBBi(Opsm, OpsIO)) .

(3)
Moreover, if we don’t consider the factor of operation overlaps, that is
OverlapTBBi(Opsm, OpsIO) = 0, then we have Eq.(4).

pcpu =
m

∑

i=1

(OpsmBBi/RatemBBi + OpsIOBBi/RateIOBBi) . (4)

3 Experimental Details

In the next section, we will provide detailed results for the P4 Linux cluster.
The P4 Linux cluster has 8 processing nodes. Each node has a 2.4GHz Intel
Pentium IV processor running Red Hat Linux 7.2 with kernel version 2.4.17.
Each processor is equipped with L1 and L2 caches of 8KB and 512KB. Each
node has 512M DDR SDRAM memory and a 7200 RPM Ultra-ATA/133 60GB
hard disk. All nodes are connected using 100Mb/s Ethernet.

For parallel I/O performance testing, this work centers on the combined use
of three I/O system software package to provide both a convenient API and
high performance I/O access [9]. The Parallel Virtual File System PVFS [8],
the ROMIO MPI-IO implementation ROMIO MPI-IO [10], and the Hierarchical
Data Format HDF5 [11] application interface together provide the I/O function-
ality.

We use NPB [7] as the testing program.In the experiments, part of the NPB
benchmarks is used and the size of problems is listed in Table [1]. In order to test
I/O operation influence on the prediction result of the PMPS(3) and PERC, we
use BTIO [12] in NPBs to test the parallel I/O performance.
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Table 1. NPB benchmarks used in this work

Name Input Description
CG Class S/W/A Conjugate Gradient
FT Class S/W Fast Fourier Transform
MG Class S/W/B 3-D Multi-grid
BT Class S/W/B Block Tri-diagonal
SP Class S/W Scalar Penta-diagonal

BTIO Class S/W/B Test the speed of parallel I/O was provided by the BT

4 Results

4.1 Single-Processor Experimental Results

In Fig. 2, we present the wall clock time, PERC prediction time and PMPS(3)
prediction time of NPB kernel benchmarks running in single Intel P4 processor.
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Fig. 2. Single Processor Predictions vs. Observed for NPB Kernels

From the experimental result, we can find that the prediction precision of
PMPS(3) don’t increase compared with PERC model. The error range of PERC
is (-2.2%–6.8%) and that of PMPS(3) is (-2.4%–4.2%). This is for that the kernel
programs of NPB are memory-intensive applications. They are mainly used in
testing the floating point computing performance, seldom in testing the I/O
operations.

For any application workload, the prediction time of PMPS(3) model will be
longer than that of PERC. This is mainly because of the difference between
the performance prediction formulas of the two models on single processor. As
compared to PMPS(3), it has no I/O operation time.
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The prediction precision of the PMPS(3) is better than that of PERC when
more I/O operations are included in the applications. Fig. 3 shows the experi-
mental result of NPB applications and BTIO. From the results, we can obtain
that for BT and SP, the prediction results of PMPS(3) are equivalent to that of
PERC, but for BTIO, the prediction results of PMPS(3) are better than that of
PERC. The errors of former are 6.9% and 4.6%, while the errors of the latter are
33.5% and 37.9%. The prediction error of PERC in I/O intensive applications is
7 times of that of PMPS(3), which is far beyond the bound we can accept.
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Fig. 3. Single Processor Predictions vs. Observed for NPB Application and BTIO

For I/O intensive applications, more the I/O operations in the whole appli-
cations, less the prediction error of the PMPS(3), and vice versa. For example,
the number of bytes written by I/O in Class S is 0.83Mbytes and in Class W is
22.12Mbyes [12]. The prediction error of PMPS(3) reduces from 6.9% to 4.6% in
the two instances, however, the prediction error of PERC increass from 33.5%
to 37.9%.

The prediction error of PMPS(3) and PERC for applications of BT and SP in
NPB is greater than that for kernels such as CG, FT and MG. The control flow
and data flow in NPB kernel benchmarks is very simple, and the programs have
little dependency. So they have little influence on the performance. However,
if the signatures of benchmark are closer to the applications, the control flow
and data flow in programs will be more complex, and the performance will be
more easily influenced by the dependency operations. Moreover, because of the
dependency of the programs, the time of the applications predicted by model is
much less than that of practice in most instances, and the error is positive. It
should be explored further that how the dependency can influences the prediction
results in PMPS(n) model [6,13].
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4.2 Multi-processor Experimental Results

We analyzed the running time of MG Class B, BT Class B and BTIO Class B
in the 8-node P4 cluster separately. For each application, we use 3 parameters of
single-processor nodes as the input of Dimemas. They are peak performance of
CPU: MaxFlops; testing result of PERC model: PERCFlops and testing result
of PMPS(3): PMPSFlops. The wall clock time and the prediction time of the
three applications are illustrated in Fig. 4.
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Fig. 4. Observed vs. Predicted times for MG kernel Class B on P4 Clusters

Similarly to the prediction result of the single processor, PMPS(3) can do as
well as PERC for memory-intensive applications. For I/O intensive applications,
the prediction results of PMPS(3) are much better than that of PERC. This is
because of the different input parameters of Dimemas simulator. If the perfor-
mance parameters entered into the single-processor nodes are more precise, the
performance prediction error of the cluster system will be much less. The per-
formance parameters of the single-processor nodes can influence the prediction
results of the models greatly.

For any applications, the prediction precision of a model doesn’t vary with
the number of processor, so the model has good scalability. We can see from Fig.
4 that the change of the number of processor nodes has little influence on the
prediction error. Because the scalability depends on the performance parameters
of the network.

5 Conclusion

In this paper, we bring forward PMPS(n), a general framework of the per-
formance prediction model of parallel computing system based on convolution
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methods, and present an implement of PMPS(3) that can cover the prediction
of the single-processor nodes performance, I/O performance and network perfor-
mance. Using the model to predict the performance of NPB benchmarks running
in P4 cluster, we can find that PMPS(3) can work much better than PERC for
I/O intensive applications, and can do as well as PERC for memory-intensive
applications. This shows that PMPS(3) is more generalized. We also find that
data dependency, control dependency and operation overlap influenced the run-
ning time and the prediction results of the applications through experiments.
Such factors must be considered in the prediction models. Finally, the result of
the experiments shows that each model under the framework of PMPS(n) has
very good scalability, and the prediction error cannot vary with the system size.
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Abstract. Post-link and dynamic optimizations have become impor-
tant to achieve program performance. A major challenge in post-link
and dynamic optimizations is the acquisition of registers for inserting
optimization code in the main program. It is difficult to achieve both
correctness and transparency when software-only schemes for acquiring
registers are used, as described in [1]. We propose an architecture feature
that builds upon existing hardware for stacked register allocation on the
Itanium processor. The hardware impact of this feature is minimal, while
simultaneously allowing post-link and dynamic optimization systems to
obtain registers for optimization in a “safe” manner, thus preserving the
transparency and improving the performance of these systems.

1 Introduction

The dynamic nature of languages and dynamic program behavior has increased
the importance of post-link and dynamic optimization systems. Many such sys-
tems have been proposed in the past[4][5][6][11][12]. To deploy optimizations at
post-link or run time, these systems need registers. Register acquisition, which,
in the context of post-link and dynamic optimization broadly includes obtaining
extra registers for optimization, is challenging due to several reasons: (i) com-
piled binaries have already performed traditional register allocation that tried
to maximize register usage; (ii) control and data flow information, which is nec-
essary for performing register allocation, may not be accurately known from
analysis of binary. At runtime when code is seen incrementally, flow analysis is
more restricted. Thus, there is no efficient software solution for acquiring regis-
ters for post-link time optimization, and even more so for dynamic optimization.
Software support, such as compiler annotations, and architecture/hardware sup-
port, such as dynamic stack register allocation, can potentially ease post-link and
runtime register acquisition.

The requirements of register acquisition for post-link and dynamic binary
optimization systems are different from traditional and dynamic compilation
models. Since register allocation has already been performed, such systems have
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to make very conservative assumptions about register usage. Dynamic binary op-
timization systems face the additional burden of finding registers with minimal
runtime overhead. Post-link time optimization systems do not have a time con-
straint, since analysis is done off line. Traditionally, these systems rely on binary
analysis to find registers that are infrequently used. These registers are freed for
optimization by spilling them. For architectures that support variable-size reg-
ister windows, these optimization systems increase the size of register window
to obtain registers. Unfortunately, these software-based schemes make assump-
tions about code structure that can be easily broken. In this paper, we make the
following contributions: (i) Briefly describe existing register acquisition schemes
in post-link time and dynamic optimizers, such as Ispike[5] and ADORE[2][4]
(ii) Present an architecture feature that enables the use of variable-size register
windows to dynamically obtain required registers. In the context of this paper,
register allocation means register acquisition as described above.

2 Software-Based Register Allocation

2.1 Fixed-Number Register Allocation

Registers can be allocated statically with help from the compiler or from hard-
ware. The compiler can be instructed to not use certain general purpose registers,
which can be later used by dynamic optimization systems. Similarly, hardware
can be implemented to allow the use of certain registers only for specific pur-
poses. If the compiler is used for static register allocation, compiler support must
be available from compilers and some form of annotation must be provided for
the dynamic optimizer to differentiate between supported and unsupported bi-
naries. Hardware can support a fixed number of registers (shadow registers) for
optimization. [1] presents a detailed explanation of the limitations involved in
using a fixed number of registers. Lu et al. in [4] showed that allocating registers
dynamically can significantly improve the performance of runtime optimization
systems.

2.2 Dynamic Register Allocation

Register Spilling: Registers used for dynamic optimizations can be obtained
by first scanning the optimized trace (a single-entry multiple-exit region of code)
to find unused registers, then spilling and restoring these registers at trace entry
and exit, respectively. The main challenge in register spilling is where to spill
registers. Possible choices are (i) on stack top (ii) on the heap (thread shared or
thread private). Each of these has limitations detailed in [1].

Dynamically Increase Variable Register Window Size: The size of frame
(of the function to be optimized) is incremented by executing a copy of the
alloc[15] instruction for the current frame with an increased frame size. Figure
1, shows how extra output registers are dynamically allocated for optimization.
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Fig. 1. Mechanism of dynamic register allocation using alloc instruction on the IA64
architecture[15]

However, there are some limitations to this approach. It is difficult to find the
alloc instruction for the register frame of code to be optimized. Scanning the
binary may lead to detection of an incorrect alloc instruction due to compiler
optimizations, such as function splitting. Aggressive compilers use multiple allocs
to allocate different number of registers down different paths. The presence of
multiple allocs may lead code scanning in finding the wrong alloc. Leaf routines
may not have an alloc instruction at all, and they use registers from the caller’s
output frame and global registers. These are described in detail in [1].

Since static scanning has limitations, a dynamic mechanism is needed to find
the state of the current register stack. This state information is encoded in an ar-
chitecturally invisible register called current frame marker (CFM). On a function
call contents of this register are copied to an architecturally visible application
register called previous function state (ar.pfs). To determine the register stack
state dynamically, we can inject a function call just before trace entry. The in-
jected function call then reads the ar.pfm register and passes this value to the
dynamic optimizer. Possible methods of injecting a function call are (i) inserting
a call instruction before trace entry and (ii) generating a trap by inserting an
illegal instruction, for example. For reasons discussed in [1] we need to generate
a trap, which has a high overhead (as much as 1789%).

3 Architecture Support

Since the main limitation of existing support is the absence of fast access to
current register state information, an easy architecture extension is to expose
the CFM register and thus providing the current state information. Doing so,
reduces the overhead of finding current state, but does not reduce the overhead
of determining if the state is the same as when the trace is generated. If the
state has changed, traces need to be regenerated that can result in substantial
overhead. With this limitation in mind, we sought features that were free from
the above limitations and provided a fast and easy way to obtain additional
registers.
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Fig. 2. Main idea of dynamic register allocation

3.1 Main Idea

The main requirements of allocating registers dynamically is a scheme that uses
relative addressing to access registers. If we use a fixed method to access regis-
ters, compilers can use those registers, and we will have no guarantee of using
those registers post-compilation. A disadvantage of fixed register schemes is that
optimizations cannot be stacked onto one another. A scheme that can allocate
registers on top of existing allocation is better suited to runtime optimization,
or in general, incremental post-link optimization. Figure 2, shows the main idea
of this approach. In this figure, a new instruction can allocate some number of
registers from available architectural registers by only specifying the number of
registers needed rather than specifying complete frame information (as is needed
in the current implementation of alloc instruction). The other aspect shown in
the figure is the access mechanism for these registers. Registers are accessed
relative to the Top of Register Stack (ToRS). Let us consider some cases and
explain how dynamic register allocation will work with such a mechanism, even
if the compiler uses this scheme for allocating registers. Suppose that post-link,
we want to optimize a loop that already addresses some registers using the top
of register stack. Let us assume that optimization requires 2 dynamic registers.
We can use a new instruction to increment the size of frame by 2 and adjust the
relative offset of instructions already using relative addressing by 2. Note that
only those instructions that are in the trace need to be modified, as the state
of register frame would be restored upon trace exit. We need another instruc-
tion to restore the register frame. Thus, a stack-based approach coupled with
relative addressing from top of stack can be effectively used for dynamic register
allocation.

3.2 Relative Addressing

In this section, we will discuss implementation details of the relative addressing
scheme proposed. There are 128 registers in the IA64 ISA and a 7-bit field is
used to address these registers. In the simplest form, a bit can be added to each
7-bit register entry that distinguishes regular access from relative access. We
would add an extra bit for each register field thereby increasing the instruction
width from 41 bits to 44 bits (maximum of 3 register fields in an instruction).



Issues and Support for Dynamic Register Allocation 355

Fig. 3. Case example showing stack allocation of 20 registers highlighting the case
where total number of registers accessed is less than 64

Fig. 4. Example with 80 registers are allocated on the stack highlighting the case where
total number of registers accessed is greater than 64

However, we can use a clever trick to ensure that the register address field width
is not increased. In this scheme, the 7th bit is used to distinguish between regular
access and relative access. Since we are left with only 6 bits for indexing into
registers, let us discuss how 128 registers can be accessed using this addressing
scheme.

Case 1: Number of Registers allocated by compiler ≤ 64: In this case
(Figure 3) all registers can be accessed by both relative and regular access. The
number of registers (static and stack) total to less than 64. Thus, they can
be accessed by both modes. For regular access the 7th bit is set to zero. If the
compiler wants to use relative accessing it is free to do so. In the example shown,
20 stack registers are allocated along with 32 static registers. Register r51 is the
last allocated register which can be accessed as r51 or as ToRS[-1] as the ToRS
points to r52. The compiler should encode this field as 10000002.

Case 2: Number of Registers allocated by compiler > 64: In the example
shown in figure 4, the compiler has to use regular mode for registers r0 to r47.
Registers r48 to r63 can be accessed using regular mode and ToRS mode (ToRS[-
64] to ToRS[-49] respectively) and registers r64 onwards have to be accessed
using relative addressing (ToRS[-48] onwards).

Thus, the addressing mode is implemented such that the width of register
field remains the same. In the extreme case, when all 128 registers are allocated,
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inc_alloc imm7
imm7 - a 7-bit immediate field used to specify the amount to increment the frame by

Operation:
if(cfm.sof+imm7) > 96 then Illegal_operation_fault() else cfm.sof += imm7

dec_alloc imm7
imm7 - a 7-bit immediate field used to specify the amount to decrement the frame by

Operation:
if(cfm.sof-imm7) < 0 then Illegal_operation_fault() else cfm.sof -= imm7

Fig. 5. Instruction format for inc alloc and dec alloc instructions

r0 to r63 are accessed using regular mode and r64 to r127 are accessed using
ToRS[-64] to ToRS[-1], respectively. Since, some registers can be accessed by
both the modes, we must be careful when we increase the size of register frame,
as it may so happen that some register that was accessed using ToRS mode
now has to be accessed via direct mode. As an example, let the initial frame
have 64 stack registers and the first stack register (r32 ) is accessed using ToRS
mode. If the size of frame is increased by, say, 5 registers, then the access of this
register would have to converted into direct mode. Since this involves knowing
the current frame state, optimizers can choose to bail out when such conditions
exist.

Since a register access on Itanium already performs an indexing operation
to access the correct physical register, we believe our implementation does not
add to the hardware cost. To reduce the cost of subtracting the offset, the top
of register stack can be maintained as part of the current frame in the CFM
register.

3.3 New Instructions

Some new instructions must be added to manage dynamic register stack in a
way which is slightly different from the alloc instruction. The aim is to leverage
existing hardware. We add two new instructions for increasing and decreasing
the register stack. The first instruction is inc alloc that increments the current
register frame size (cfm.sof) by a number specified in the instruction. The second
instruction is dec alloc that decrements the sof value in cfm. The format and
operation of these instructions are shown in Figure 5.

4 Related Work

Dynamic binary translation poses similar challenges to register acquisition. Reg-
ister allocation in translation involves mapping source (i.e. the binary to be
translated) registers to the target (i.e. the host) machine’s registers. Shade[9][10]
is a dynamic translation and tracing tool for the SPARC platform. It translates
SPARC (v8 and v9) and MIPS 1 instructions for SPARC v8 systems. For native
translation, the virtual and the actual number of registers are the same. Since
some registers are needed by SHADE, registers in the translated program are
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remapped to different physical registers and registers are spilled lazily. PIN [13]
is a instrumentation tool for 4 architectures IA32, EM64T, IA64 and ARM. It
performs native translation for each of these architectures and does register re-
allocation and liveness analysis. PIN builds register liveness incrementally as it
sees more code. When traces are linked, PIN tries to keep a virtual register in
the same physical register whenever possible. If this is not possible, it reconciles
differences in mapping by copying registers through memory before jumping to
another trace. Probst et al. [8] discuss a technique for building register liveness
information incrementally for dynamic translation systems.

Post-link optimizers such as SPIKE[6] and Ispike[5] optimize binaries by an-
alyzing profile information. SPIKE needs registers for inserting instrumentation
code. It uses register usage information collected by scanning the binary to find
free registers, so that register spills can be minimized. Ispike collects profile from
hardware counters on the Itanium platform and thus it does not require registers
for collecting profile. However, data prefetching optimization requires registers.
Ispike uses either free registers by liveness analysis, increments register stack (by
looking for alloc instruction) or uses post-increment/decrement in prefetch and
load operations.

Dynamic optimizers can be similar to dynamic translators if they use transla-
tion to build traces. Dynamo [11] is a dynamic optimizer for PA-RISC binaries.
When emitting traces to be optimized, Dynamo tries to create a 1-1 mapping
between virtual and physical registers. For registers that cannot be mapped, it
uses the application context stored in the translator to store the physical regis-
ters. DynamoRIO [12] is a system based on Dynamo for x86 systems. ADORE
[2][3][4] as described earlier uses alloc instruction or spills registers to obtain
registers for optimization. Saxena in [14] describes various issues of register allo-
cation for the ADORE system and presents data for finding dead registers in a
trace. Jesshope in [17] uses register access by relative addressing to communicate
dependencies between variables in dynamically parallelized code. Relative access
to registers is not a new idea, but one that is already implemented in Itanium.
Our contribution is to provide another base for accessing registers, to tackle the
specific problem of register acquisition for post-link and dynamic optimization.

5 Conclusion

Register allocation for post-link and dynamic optimization systems poses in-
teresting challenges as correctness, overhead and transparency are important
concerns. In this paper, we have presented a modest hardware addition to the
IA64 architecture, as an example, to illustrate how such a feature would simplify
dynamic register acquisition. The proposed hardware support ensures correct ex-
ecution while imposing no performance overheard and transparency limitations.
When multiple post-link and dynamic optimizations are present, the proposed
hardware allows optimization systems to stack their optimizations on top of
each other. The architecture feature described, leverages existing hardware on
the Itanium processor, thus will likely be feasible. We believe that given the
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performance delivered by post-link and dynamic optimization, it will be cost-
effective to devote more hardware resources for this purpose.
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Abstract. The increasing application demands put great pressure on high 
performance processor design. This paper presents a multi-core System-on-
Chip architecture for high performance computing. It is composed of a sparcv8-
compliant LEON3 host processor and a data parallel coprocessor based on 
transport triggered architecture, all of which are tied with a 32-bit AMBA AHB 
bus. The LEON3 processor performs control tasks and the data parallel 
coprocessor performs computing intensive tasks. The chip is fabricated in 
0.18um standard-cell technology, occupies about 5.3mm2 and runs at 266MHz. 

Keywords: SoC, heterogeneous, multi-core, TTA. 

1   Introduction 

Nowadays, the application domain is shifting from desktop computers and multi-
processors to general-purpose computers and embedded systems, especially with the 
new applications manipulating all kinds of media signals. These developing 
applications such as graphics, image and audio/video processing put great pressure on 
high performance processor design. The increasing application demands make the 
traditional processors inadequate to meet the application requirements, thus high 
performance processors are in demand. Chip multiprocessors are a natural trend for a 
workload which has independent threads, which we need to take advantage of the 
architecture, and we also need to fit a lot of computation into a small area. 

As VLSI technology improves to allow us to fabricate hundreds of millions of 
transistors on a single chip, it is possible to put a complete multiprocessor, including 
both CPUs and memory, on a single chip. System-on-Chip (SoC) technology is 
mature now. One of the advances that will be enabled by SoC technology is the 
single-chip multiprocessor. Single-chip multiprocessors will be useful not just in low 
cost servers but also to perform video and a wide variety of consumer applications. 
The advent of single-chip multiprocessors will require us to rethink multiprocessor 
architectures to fit the advantages and constraints of VLSI implementation. 

This paper studies a heterogeneous multi-core SoC architecture which is composed 
of a LEON3 processor and a data parallel coprocessor (DPC) based on transport 
triggered architecture (TTA). It can exploit instruction level parallelism (ILP) as 
much as possible with support of custom function units for special operations. The 
rest of this paper is organized as follows. Section 2 briefly describes the LEON3 
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processor and the transport triggered architecture. Section 3 describes the proposed 
multi-core SoC architecture and several architecture decisions. In section 4 
performance tests and results are given while the last section concludes and discusses 
the future work. 

2   Overview of LEON3 and TTA 

In this section, the sparcv8-complicant LEON3 host processor is introduced first, and 
then the transport triggered architecture follows. 

2.1   The LEON3 Processor 

LEON3 is a sparcv8-compliant processor developed by Gaisler Research [1]. It 
provides sufficient research resources which are centered around the LEON3 
processor core and includes a large IP library, behavioral simulators, and related 
software development tools - all the necessary components to create high quality and 
high performance products allowing us to shorten the development cycle of new cores 
and tools. So LEON3 was chosen as our host processor. It is designed with the 
following main features: advanced 7-stage pipelines, separate instruction and data 
caches, local instruction and data scratchpad rams, hardware multiply, divide and 
MAC units. It uses AMBA-2.0 AHB bus interface. Additional modules can easily be 
added using the on-chip AMBA AHB/APB buses. The model is highly configurable, 
and particularly suitable for SoC designs. 

2.2   Transport Triggered Architecture 

Transport triggered architecture (TTA) [2] can provide both flexibility and configura-
bility during the design process. It provides support for instruction level parallelism. 
Based on the flexibility and configurability of TTA, the high performance processor 
architecture can be specially designed according to the characteristics of specific 
applications. 

In traditional architectures, one instruction execution is operation triggered. In 
contrast, transport triggered architectures use data transport to trigger execution. In 
TTA, the instruction set is composed of only one MOVE instruction implementing 
assignment among registers. Different register classes are provided: operator registers 
are used to hold operands and result registers are used to hold the computing results 
while trigger register triggers an operation whenever updated. Here, a standard RISC 
instruction can be decomposed into a series of MOVE operations. For example, a 
usual add operation can be presented as follows: 

add r3 , r2 , r1       =>       r1 -> Oadd ;    r2 -> Tadd ;    Radd -> r3 

Transport triggered processors have very small cycle times for instruction 
execution, because they reduce every operation to a MOVE instruction. Moreover, 
fine-grained parallelism can be exploited: each basic step previously handled by the 
pipeline organization is now available to the compiler for parallelism extraction. On 
the other hand, TTA completely relies on compiler heuristics to achieve higher 
performance. The transport network required to allow data movement among different 
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registers presents the same challenges as any computer networks including the need to 
avoid performance bottlenecks. As shown in Fig. 1, the structure of TTA is very 
simple. Function units (FU) and register files (RF) are connected to buses by sockets.  

FU FU FU

FU Register
File

Register
File

socket bus

 

Fig. 1. General Structure of TTA. It is composed of function units and register files, all of 
which are connected by the transport network. 

In TTA, the number of the function units, register files and their ports, buses and 
bus connections can be configured according to the analyses of application 
characteristics. This brings the flexibility for the architecture design. In addition, one 
TTA instruction always contains several parallel data move operations after software 
optimization. For example, a TTA instruction under 6 buses is shown as follows: 

r5 -> Oadd ;    r2 -> Tadd ;    Rmac -> r0;    r1 -> Osub ;    r7 -> Tsub ;    Rmul -> r3; 

The maximum number of parallel operations is the same as the number of the 
buses. Therefore, the increase of the bus number brings increase of performance. In 
addition, the architecture designer can customize special operations into the 
instruction set by designing special function units for some special operations [3]. 
Thus, some critical bottleneck operations in a specific application can be 
accomplished by special function units to meet performance requirements of the 
application. 

3   Implementation 

In this section, the typical benchmark applications used in the experiments will be 
given first. Then the proposed multi-core SoC architecture will be described and 
several architecture decisions will be made. 

3.1   Typical Benchmark Applications 

Several benchmark applications from TI DSP library [7] are selected to do the 
experiments. FFT is the fast fourier transform as a fast implementation of discrete 
fourier transform. IIR is the infinite impulse response filter while FIR is the finite 
impulse response filter. IDCT is the inverse discrete cosine transform frequently used 
in video processing applications to decode the compressed image. MATRIX is the 
multiplication of two matrixes. MAX is to find a maximum number from an array. 
These kernel applications are frequently used in many embedded DSP applications so 
accelerating these applications is a matter of great significance. 



362 J. Guo, K. Dai, and Z. Wang 

3.2   The Whole Architecture and Function Units Design 

The whole SoC architecture is depicted in Fig. 2. It is composed of a LEON3 host 
processor and TTA-based DPC along with sufficient external interfaces. The TTA-
based coprocessor has eight clusters. The control tasks are completed by the LEON3 
host processor while the computation intensive tasks can be scheduled to the clusters 
by the host processor to achieve higher performance. Moreover, each cluster has eight 
parallel SIMD Data Paths. Multimedia instructions and bit operations are added into 
the instruction set to accelerate media and security applications.  
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Fig. 2. Overview of the Whole Architecture 

The type and number of major operations which is derived from the analysis of 
simulation results determines the type and number of the function units in TTA to 
meet the application requirements. According to the type of the operation, designer 
can quickly decide what function unit to implement; similarly, the number of function 
units is decided according to the proportion of the equivalent operations. In the 
simulation independent of architecture, the parallelism upper bound is determined 
through trace analysis. The number of the buses determines how many operations can 
be executed at the same time, and so the parallelism upper bound means how many 
buses should be used. The number of the average active registers shows that how 
many registers should exist at the same time both to save the hardware cost and to 
keep the performance. 

Specific configuration of function units in each cluster is given as follows. Four 
integer ALUs perform the common operations including the arithmetical and logical 
ones. To support many embedded applications better, sub-word parallelism on half-
word or byte is added. Two floating-point units perform operations on single and 
double precision floating-point operands. The floating-point unit is fully pipelined and 
a new operation can be started every clock cycle except that floating-point divide 
operation which requires 20 clock cycles and is not pipelined. Three compare units do 
the compare operation and return a result, which can be used to predicate the 
conditional transfers by the conditional codes. One CORDIC unit is designed based  
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on the parallelization of the original CORDIC algorithm [4] and to compute many 
complex functions with a delay of 33 clock cycles. 

3.3   Memory System 

Research in [5] shows that SRAM is complex and not friendly to compiler and its 
performance is not necessarily better than traditional cache-based architecture. So we 
still choose the cache-based architecture. While as illustrated in [6], sharing L2 cache 
among multiple cores is significantly less attractive when interconnect overheads are 
taken into account than when the factors of delay and area are ignored. So only L1 
cache and large register file system is chosen in our design. The L1 cache is multi-
banked and high-bit address interleaved.  

256-bit long cache-line is selected to achieve higher performance. Longer cache-
line can exploit better data spatial locality and can support vector operations too. The 
performance of DPC under write-through and write-back policy is compared. The 
read and write miss ratio for several benchmark applications under write-back policy 
are shown in Table 1. Performance gains compared with write-through policy is also 
given in Table 1. From Table 1, it can be seen that write-back policy achieves a better 
performance and becomes our final choice. It is due to that the write-back policy can 
work better with the longer cache-line and can save memory bandwidth while the 
write-through policy will waste more memory bandwidth. 

DMA channels are used to allow the host processor or other peripherals to access 
the processed data quickly. TTA structure depends on scheduling algorithms heavily, 
so the number of registers for compiler use is performance sensitive. For register file, 
8 banked and total 128 registers with 1R/1W port are used in our design as a tradeoff 
of performance and cost. 

Table 1. The Read/Write  miss ratio under write-back policy and its performance gains 

Application Read miss ratio Write miss ratio Performance gains 
FFT 6.10％ 2.53％ 4.35％ 
IIR 0.05% 2.09% 7.43% 
FIR 0.05％ 0.78％ 13.27％ 
IDCT 7.50％ 0.00％ 2.23％ 
MATRIX 10.42% 4.17% 0.27% 

4   Experimental Results 

A prototype chip with the host processor and one cluster is first implemented and 
tested with different technology to verify our design. The performance comparison is 
given too. 

4.1   Implementation with Different Technologies 

The prototype design is first implemented on a FPGA board. The Gidel’s PROCStar 
board is utilized, which comprises three large ALTERA EP1S80F780 devices. The 
prototype runs at 20MHz and the application tests are all done and passed under this 
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platform. Then under the clock frequency of 266 MHz, the implementation of the 
prototype design utilizing a 0.18um CMOS standard cell technology resulted in an 
area of approximate 5.3mm2 including expected layout overhead with regard to the 
synthesis results with the Synopsys® Design Compiler®. 

4.2   Performance Comparison of the Whole Chip 

The performance speedup of several typical applications from TI DSP library [7] on 
DPC compared with LEON3 is given in Table 2. It can be seen from Table 2 that 
DPC achieves a considerable speedup compared with LEON3 processor. The 
extraordinary speedup of IIR and FIR is due to that they use sine operation frequently 
which can be accelerated by the CORDIC function unit in DPC. 

Table 2. The typical applications performance comparison between LEON3 and DPC. The 
speedup is given here. 

Application Speedup 
radix-4 complex 128-dot FFT 3.84 
500-dot IIR 348.89 
128-dot FIR 3797.11 
8x8 IDCT 2.86 
64-dot MAX 5.20 

5   Conclusions and Future Work 

From above, it can be seen that the heterogeneous multi-core architecture composed 
of LEON3 and DPC achieves higher performance. Moreover, clock gating technology 
can be easily used to lower power dissipation due to its clear architecture. Given a 
fixed circuit area, using heterogeneous multi-core architectures instead of homo-
geneous chip multi-processors can provide significant performance advantages for a 
multi-programmed workload. First of all, a heterogeneous multi-core architecture can 
match each application to the core best suited to meet its performance demands. 
Second, it can provide improved area-efficient coverage of the entire spectrum of 
different workload demands, from low thread-level parallelism that provides low 
latency for few applications on powerful cores to high thread-level parallelism in 
which simple cores can host a large number of applications simultaneously. 

Multiprocessors will be important for media processing because this area is 
characterized by enormous computing power and by a massive amount of data 
communication and data storage. In the future we won’t be able to solve that with a 
monolithic processor and memory architecture. We’ll need distributed architectures to 
deal with the performance requirements these systems have. Heterogeneous multi-
core technology is a better option. 

In this paper we studied a heterogeneous multi-core processor that is very suitable 
for different applications for its flexibility and configurability. Through the 
application characteristics analysis and special function unit support, it is easy to 
modify the architecture to adapt to different applications. Traditional processor 
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architecture is fixed, so the software must be adjusted to map to the hardware 
structure to gain best performance, whereas the DPC is configurable, so the 
hardware/software co-design method can be used to achieve a higher performance. 

In the future work, the application partition techniques and workload scheduling 
algorithm between both sides will be our main work. An integrated simulator and 
development environment for both sides will be developed too. 
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Abstract. Dynamic branch predictor logic alone accounts for approx-
imately 10% of total processor power dissipation. Recent research indi-
cates that the power cost of a large dynamic branch predictor is offset
by the power savings created by its increased accuracy. We describe a
method of reducing dynamic predictor power dissipation without de-
grading prediction accuracy by using a combination of local delay region
scheduling and run time profiling of branches. Feedback into the static
code is achieved with hint bits and avoids the need for dynamic predic-
tion for some individual branches. This method requires only minimal
hardware modifications and coexists with a dynamic predictor.

1 Introduction

Accurate branch prediction is extremely important in modern pipelined and MII
microprocessors [10] [2]. Branch prediction reduces the amount of time spent
executing a program by forecasting the likely direction of branch assembly in-
structions. Mispredicting a branch direction wastes both time and power, by ex-
ecuting instructions in the pipeline which will not be committed. Research [8] [3]
has shown that, even with their increased power cost, modern larger predictors
actually save global power by the effects of their increased accuracy. This means
that any attempt to reduce the power consumption of a dynamic predictor must
not come at the cost of decreased accuracy; a holistic attitude to processor power
consumption must be employed [7][9].

In this paper we explore the use of delay region scheduling, branch profiling
and hint bits (in conjunction with a dynamic predictor) in order to reduce the
branch power cost for mobile devices, without reducing accuracy.

2 Branch Delay Region Scheduling

The branch delay region is the period of processor cycles proceeding a branch
instruction in the processor pipeline before branch resolution occurs. Instructions
can fill this gap either speculatively, using branch prediction, or by the use of
scheduling. The examples in this section use a 5 stage MIPS pipeline with 2
delay slots.

C. Jesshope and C. Egan (Eds.): ACSAC 2006, LNCS 4186, pp. 366–372, 2006.
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2.1 Local Delayed Branch

In contrast to scheduling into the delay region from a target/fallthrough path of
a branch, a locally scheduled delay region consists of branch independent instruc-
tions that precede the branch (see Figure 1). A branch independent instruction
is any instruction whose result is not directly or indirectly depended upon by
the branch to calculate its own behaviour.

Fig. 1. An example of local delayed branch scheduling

Deciding which instructions can be moved into the delay region locally is
straightforward. Starting with the instruction from the bottom of the given basic
block in the static stream, above the branch, examine the target register operand.
If this target register is NOT used as an operand in the computation of the
branch instruction then it can be safely moved into the delay region. This process
continues with the next instruction up from the branch in the static stream, with
the difference that this time the scheduler must decide whether the target of the
instruction is used by any of the other instructions below it (which are in turn
used to compute the branch).

Local Delay Region Scheduling is an excellent method for utilising the delay
region where possible; it is always a win and completely avoids the use of a
branch predictor for the given branch. The clear disadvantage with local delay
region scheduling is that it cannot always be used. There are two situations
that result in this: well optimised code and deeply pipelined processors (where
the delay region is very large). It is our position that, as part of the combined
approach described in this paper, the local delay region is profitable.

3 Profiling

Suppose that we wish to associate a reliable static prediction with as many
branches as possible, so as to reduce accesses to the dynamic branch predictor
of a processor at runtime (in order to save power). This can be achieved to a
reasonable degree through static analysis of the assembly code of a program; it
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Fig. 2. The profiler is supplied with parameters for the program and the
traces/statistics to be logged

is often clear that branches in loops will commonly be taken and internal break
points not-taken.

A more reliable method is to observe the behaviour of a given program while
undergoing execution with a sample dataset [4]. Each branch instruction can
be monitored in the form of a program trace and any relevant information ex-
tracted and used to form static predictions where possible. A profiler is any ap-
plication/system which can produce such data by observing a running program
(see Figure 2). The proceeding two sections examine the possibility of remov-
ing certain classes of branch from dynamic prediction by the use of run-time
profiling.

3.1 Biased Branches

One class of branches that can be removed from dynamic prediction, without
impacting on accuracy, are highly biased branches. A biased branch is a branch
which is commonly taken or not taken, many times in succession before possibly
changing direction briefly. The branch has a bias to one behaviour. These kinds
of branches can, in many cases, be seen to waste energy in the predictor since
their predicted behaviour will be almost constantly the same [5] [8].

The principles of spatial and temporal locality intuitively tell us that biased
branches account for a large proportion of the dynamic instruction stream. Iden-
tifying these branches in the static code and flagging them with an accurate sta-
tic prediction would enable them to be executed without accessing the dynamic
predictor. The profiler needs to read the static assembly code and log, for each
each branch instruction during profiling, whether it was taken or not taken at
each occurrence.

3.2 Difficult to Predict Branches (Anti Prediction)

Another class of branch instructions that would be useful to remove from dy-
namic branch predictor accesses are difficult to predict branches. In any static
program there are branches which are difficult to predict and which are inher-
ently data driven. When a prediction for a given branch is nearly always likely
to be wrong, there is little point in consuming power to produce a prediction for
it since a number of stalls will likely be incurred anyway [5] [8] [6].
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Using profiling, it is possible to locate these branches at runtime using different
data sets and by monitoring every branch. The accuracy of each dynamic predic-
tion is required rather than just a given branch’s behaviour. For every branch,
the profiler needs to compare the predicted behaviour of the branch with the
actual behaviour. In the case of those branch instructions where accuracy of the
dynamic predictor is consistently poor, it is beneficial to flag the static branch
as difficult to predict and avoid accessing the branch predictor at all, letting the
processor assume the fallthrough path. Accordingly, filling the delay region with
NOP instructions wastes significantly less power executing instructions that are
unlikely to be committed.

4 Combined Approach Using Hint Bits

The main goal of the profiling techniques discussed previously can only be re-
alised if there is a way of storing the results in the static code of a program,
which can then be used dynamically by the processor to avoid accessing the
branch prediction hardware [3].

Fig. 3. Block diagram of the proposed scheduling and hinting algorithm. The dot-
ted box indicates the new stages introduced by the algorithm into the creation of an
executable program

The combined approach works as follows:

1. Compile the program, using GCC for instance, into assembly code.
2. The Scheduler parses the assembly code and decides for which branch in-

structions the local delay region can be used (see section 2.1).
3. The Profiler assembles a temporary version of the program and executes it

using the specified data set(s). The behaviour of each branch instruction is
logged (see section 3).

4. The output from the profiling stage is used to annotate the delay scheduled
assembly code.

5. Finally, the resulting annotated assembly code is compiled and linked to
form the new executable.
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The exact number of branches that can be eliminated from runtime predictor
access in the target program depends upon the tuning of the profiler and the
number of branches where the local delay region can be used.

4.1 Hint Bits

So far we have described a process of annotating branch instructions in the static
assembly code to reflect the use of the local delay region and of the profiling
results. The way this is represented in the assembly/machine code is by using
an existing method known as hint bits (though now with the new function of
power saving).

The four mutually exclusive behaviour hints in our algorithm which need to
be stored are:

1. Access the branch predictor for this instruction.
2. or Assume this branch is taken (don’t access dynamic predictor logic).
3. or Assume this branch is not taken (don’t access dynamic predictor logic).
4. or Use this branch’s local delay region (don’t access dynamic predictor logic).

The implementation of this method requires two additional bits in an instruc-
tion. Whether these bits are located in all of the instruction set or just branches is
discussed in the proceeding section. Another salient point is that the information
in a statically predicted taken branch replaces only the dynamic direction pre-
dictor in full; the target of the assumed taken branch is still required. Accessing
the Branch Target Buffer is costly, in terms of power, and must be avoided.

Most embedded architectures are Reduced Instruction Set Computers [8].
Part of the benefit of this is the simplicity of the instruction format. Since most
embedded system are executing relatively small programs, many of the frequently
iterating loops (the highly biased branches, covered by the case 2 hint) will be
PC relative branches. This means that the target address for a majority of
these branches will be contained within a fixed position inside the format. This
does not require that the instruction undergo any complex predecoding, only
that it is offset from the current PC value to provide the target address. Branch
instructions that have been marked by the profiler as having a heavy bias towards
a taken path, but which do not fall into the PC relative fixed target position
category have to be ignored and left for dynamic prediction.

The general ‘hinting’ algorithm:

1. Initially, set the hint bits of all instructions to: assume not taken (and do
not access predictor).

2. Set hint bits to reflect use of the local delay region where the scheduler has
used this method.

3. From profiling results, set hint bits to reflect taken biased branches where
possible.

4. All remaining branch instructions have their hint bits set to use the dynamic
predictor.
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4.2 Hardware Requirements/Modifications

The two possible implementation strategies are:

Hardware Simplicity: Annotate every instruction with two hint bits. This is
easy to implement in hardware and introduces little additional control logic.
All non branch instructions will also be eliminated from branch predictor
accesses. The disadvantages of this method are that it requires that the
processor’s clock frequency is low enough to permit an I-Cache access and
branch predictor access in series in one cycle and that there are enough
redundant bits in all instructions.

Hardware Complexity: Annotate only branch instructions with hint bits and
use a hardware mechanism similar to a Prediction Probe Detector [8] to
interpret hint bits. This has minimal effect on the instruction set. It also
means there is no restriction to series access of the I-Cache then branch
predictor. The main disadvantage is the newly introduced PPD and the
need for instructions to pass through the pipeline once before the PPD will
restrict predictor access.

The hardware simplicity model offers the greatest power savings and is partic-
ularly applicable for the embedded market where the clock frequency is generally
relatively low, thus a series access is possible. It is for these reason we the use the
hardware simplicity model. In order to save additional power, some minor mod-
ifications must be made to the Execution stage to stop the statically predicted
instruction from expending power writing back their results to the predictor
(since their results will never be used!).

Fig. 4. Diagram of required hardware modifications. The block below the I-Cache
represents a fetched example instruction (in this case a hinted taken branch).
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It can be seen that after a given program has had its hint bits set, all of the
branches assigned static predictions (of taken or not taken) have now essentially
formed superblocks, with branch resolution acting as a possible exit point from
the newly formed super block. When a hint bit prediction proves to be incorrect,
it simply acts as a new source of a branch misprediction; it is left for the existing
dynamic predictor logic to resolve.

5 Conclusion and Future Work

Branch predictors in modern processors are vital for performance. Their accu-
racy is also a great source of powersaving, through the reduction of energy spent
on misspeculation [8]. However, branch predictors themselves are often compa-
rable to the size of a small cache and dissipate a non trivial amount of power.
The work outlined in this paper will help reduce the amount of power dissipated
by the predictor hardware itself, whilst not significantly affecting the prediction
accuracy. We have begun implementing these modifications in the Wattch [1]
power analysis framework (based on the SimpleScalar processor simulator). To
test the effectiveness of the modifications and algorithm, we can have chosen to
use the EEMBC benchmark suite, which provides a range of task characterisa-
tions for embedded processors.

Future investigation includes the possibility of dynamically modifying the
hinted predictions contained within instructions to reflect newly dynamically
discovered biased branches.
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Abstract. A Hamiltonian path in G is a path which contains every ver-
tex of G exactly once. Two Hamiltonian paths P1 = 〈u1, u2, . . . , un〉 and
P2 = 〈v1, v2, . . . , vn〉 of G are said to be independent if u1 = v1, un = vn,
and ui �= vi for all 1 < i < n. A set of Hamiltonian paths {P1, P2, . . . , Pk}
of G are mutually independent if any two different Hamiltonian paths in
the set are independent. It is well-known that an n-dimensional hyper-
cube Qn is bipartite with two partite sets of equal-size. Let F be the set
of faulty edges of Qn such that |F | ≤ n − 2. In this paper, we show that
Qn − F contains (n − |F | − 1)-mutually independent Hamiltonian paths
between any two vertices from different partite sets, where n ≥ 2.

Keywords: Interconnection networks, hypercubes, Hamiltonian, pair-
wise independent Hamiltonian paths, fault-tolerant embedding.

1 Introduction

A graph G = (V, E) is a pair of the vertex set V and the edge set E, where V
is a finite set and E is a subset of {(u, v) | (u, v) is an unordered pair of V }.
We also use V (G) and E(G) to denote the vertex set and the edge set of G,
respectively. Let n and m be the numbers of vertices and edges of G, respec-
tively. Interconnection network (network for short) is usually represented by a
graph where vertices represent processors and edges represent communication
links between processors. There are several pairwise conflicting requirements in
designing the topology for networks. The interested readers may refer to [1,11,16]
for extensive references. Among them, the hypercube [2,12] has several excellent
properties such as recursive structure, regularity, symmetry, small diameter, rel-
atively short mean internode distance, low degree, and much small link (edge)
complexity, which are very important for designing massively parallel or distrib-
uted systems. It is almost impossible to design a network which is optimal from
all aspects. Specifically, fault-tolerance is highly desirable in massive parallel sys-
tems that have a relative high probability of failure. A number of fault-tolerant
considerations for specific multiprocessor architectures have been discussed (for
example, see [3,5,6,8,9,10,13,14,15]).
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Two vertices u and v are adjacent iff (u, v) ∈ E(G). A path P [v0, vk] =
〈v0, v1, . . . , vk〉 in G is a sequence of distinct vertices such that any two con-
secutive vertices are adjacent. A path may contain other subpath, denoted as
〈v0, v1, . . . , vi, P [vi, vj ], vj , vj+1, . . . , vk〉, where P [vi, vj ]=〈vi, vi+1, . . . , vj−1, vj〉.
A cycle is a path with v0 = vk and k ≥ 3. A path in G is called a Hamiltonian path
if it contains every vertex of G exactly once. Two Hamiltonian paths in a graph
G, P1 = 〈u1, u2, . . . , un〉 and P2 = 〈v1, v2, ..., vn〉, are independent if u1 = v1,
un = vn, and ui �= vi for every 1 < i < n; and both are full-independent if ui �= vi

for every 1 ≤ i ≤ n. Moreover, P1 and P2, are independent at u1 if u1 = v1 and
ui �= vi for every 1 < i ≤ n. A set of Hamiltonian paths {P1, P2, . . . , Pk} of
G, where P1 = 〈u1, u2, . . . , un〉, are pairwise independent (respectively, pairwise
full-independent, pairwise independent at u1) if any two different Hamiltonian
paths in the set are independent (respectively, full-independent, independent at
u1). Broadcasting is the information dissemination problem that consists, for
one node of a network, to send its pieces of information to all the other nodes
of a network. Constructing a set of k pairwise independent Hamiltonian paths
enable us to efficiently broadcast a message formed by k pieces on a graph G:
one end-vertex of the paths works as the source to send the k pieces of the given
message along the k parallel Hamiltonian paths. This broadcasting can be done
in O(n) time under the all-port model, where n is the number of vertices of G.

A graph G = (V0 ∪ V1, E) is bipartite if V is the union of two disjoint sets
V0 and V1 such that every edge (u, v) ∈ E implies either u ∈ V0 and v ∈ V1 or
u ∈ V1 and v ∈ V0. It is well known that the hypercube is bipartite. Since edge
failures may occur when a network is put into use, it is meaningful to consider
networks with faulty edges. In this paper, we attempt to construct pairwise
independent fault-free Hamiltonian paths in an n-dimensional hypercube Qn =
(V0 ∪V1, E) with faulty edges, which is quite different from finding “exactly one”
fault-free Hamiltonian cycle in the arrangement graph [6], longest path in the
star graph [7,8,10], and arbitrary-length cycle in the Möbius cube [9]. Let F be
the set of faulty edges of Qn such that |F | ≤ n − 2. We show the following three
results:

1. Qn −F , where n ≥ 2, contains (n−|F |−1)-pairwise full-independent Hamil-
tonian paths between two adjacent vertices.1

2. Qn−F , where n ≥ 2, contains (n−|F |−1)-pairwise independent Hamiltonian
paths starting at any vertex v ∈ Vi to n − |F | − 1 distinct vertices belonging
to V1−i, where i ∈ {0, 1}.

3. Qn−F , where n ≥ 2, contains (n−|F |−1)-pairwise independent Hamiltonian
paths between any two vertices from different partite sets, where n ≥ 2.

2 Preliminaries

A subgraph of G = (V, E) is a graph (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E.
Given a set V ′ ⊆ V , the subgraph of G = (V, E) induced by V ′ is the graph
1 Let F be a set of edges of a graph G. Throughout this paper, the notation G − F

represents the resulting graph obtained by deleting those edges in F from G.
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G′ = (V ′, E′), where E′ = {(u, v) ∈ E| u, v ∈ V ′}. For a vertex u in G = (V, E),
the neighborhood of u, denoted by NG(u), is the set {v| (u, v) ∈ E}. Moreover,
|NG(u)| is the degree of u, denoted by degG(u). For a path P = 〈v1, v2, . . . , vk〉
in G, let P (i) denote the ith vertex of P , i.e., P (i) = vi.

An n-dimensional hypercube (n-cube for short) Qn is a graph with 2n vertices
in which each vertex u is labelled by an n-bit binary string u = unun−1 . . . u1,
where ui ∈ {0, 1}. For i ∈ {1, 2, . . . , n}, we use ui = vnvn−1 . . . v1 to denote the
ith neighbor of u such that vi = 1 − ui and vj = uj for all j ∈ {1, 2, . . . , n}
and j �= i. Two vertices are adjacent if and only if their strings differ exactly
in one bit position. An edge e = (u, v) ∈ E(Qn) is said to be of dimension i
if u = bnbn−1 . . . bi . . . b1 and v = bnbn−1 . . . bi . . . b1, where bj ∈ {0, 1} for j =
1, 2, . . . , n, and bi is the one’s complement of bi, i.e., bi = 1 − bi. Note that there
are 2n−1 edges in each dimension. The Hamming weight of u = unun−1 . . . u1,
denoted by w(u), is the number of i such that ui = 1. Since the degree of each
vertex equals n, Qn is an n-regular graph. Moreover, Qn is a bipartite graph
with bipartition {u| w(u) is odd} and {u| w(u) is even}. For convenience, we use
black vertices to denote those vertices of odd weight and white vertices to denote
those vertices of even weight.

An n-cube Qn can be represented by ∗ ∗ . . . ∗
︸ ︷︷ ︸

n

, where ∗ ∈ {0, 1} means the

“don’t care” symbol. An i-partition on Qn = ∗ ∗ . . . ∗
︸ ︷︷ ︸

n

is to partition Qn along di-

mension i for some i ∈ {1, 2, . . . , n}, into two subcubes, Q0
n−1 = ∗ ∗ . . . ∗

︸ ︷︷ ︸

n−i

0 ∗ ∗ . . . ∗
︸ ︷︷ ︸

i−1

and Q1
n−1 = ∗ ∗ . . . ∗

︸ ︷︷ ︸

n−i

1 ∗ ∗ . . . ∗
︸ ︷︷ ︸

i−1

, where Q0
n−1 and Q1

n−1 are the subgraph of Qn

induced by {xnxn−1 . . . xi . . . x1 ∈ V (Qn)| xi = 0} and {xnxn−1 . . . xi . . . x1 ∈
V (Qn)| xi = 1}, respectively. Note that each Qj

n−1, j ∈ {0, 1}, is isomorphic
to an (n − 1)-cube. Assume that Q0

n−1 and Q1
n−1 are the subcubes after ex-

ecuting an i-partition on Qn. The set of crossing edges, denoted by Ec, is
{(u, v) ∈ E(Qn)| u ∈ V (Q0

n−1), v ∈ V (Q1
n−1)}. Let F be the set of faulty edges of

Qn. Throughout this paper, we assume that |F | ≤ n−2. Let F0 = F ∩E(Q0
n−1),

F1 = F ∩ E(Q1
n−1), and Fc = F ∩ Ec.

3 Fault-Free Pairwise Independent Hamiltonian Paths

We first provide a previous known property which is useful in our method.

Lemma 1. [14] Let Qn, n ≥ 2, be an n-cube with |F | ≤ n − 2. Then, Qn − F
contains a fault-free Hamiltonian path between any two vertices from different
partite sets.

For convenience, we define δ = n − |F | − 1 in the remainder of this paper.

Lemma 2 (Many-to-many). Let Qn, n ≥ 2, be an n-cube with |F | ≤ n − 2,
and {(u1, v1), (u2, v2), . . . , (uδ, vδ)} ⊂ E(Qn). Then, Qn −F contains δ-pairwise
full-independent Hamiltonian paths P1[u1, v1], P2[u2, v2], . . . , Pδ[uδ, vδ].
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Proof. The proof is by induction on n. The basis cases where n = 2, 3 clearly
holds (the case where n = 3 can be easily verified by a computer program). We
now consider an n-cube for n ≥ 4. If |F | = n − 2, then δ = 1. By Lemma 1,
Qn − F contains a Hamiltonian path between any two vertices from differ-
ent partite sets. Therefore, the result holds for |F | = n − 2. We next con-
sider the situation in which the number of faulty edges is at most n − 3. For
each d ∈ {1, 2, . . . , n}, let cd be the cardinality of the set {(ui, vi)| the di-
mension of (ui, vi) equals d, where i ∈ {1, 2, . . . , δ}}. Without loss of gen-
erality, assume that c1 ≥ c2 ≥ · · · ≥ cn. Obviously, cn = 0 because δ =
n − |F | − 1. We then execute an n-partition on Qn to obtain Q0

n−1 and Q1
n−1.

Note that each (ui, vi) is in either Q0
n−1 or Q1

n−1. Let p be the cardinality
of the set {(ui, vi) ∈ E(Q0

n−1)|i ∈ {1, 2, . . . , δ}} and let q be the cardinality
of the set {(ui, vi) ∈ E(Q1

n−1)|i ∈ {1, 2, . . . , δ}}. Clearly, p + q = δ. Without
loss of generality, assume that {(u1, v1), (u2, v2), . . . , (up, vp)} ⊂ E(Q0

n−1) and
{(up+1, vp+1), (up+2, vp+2), . . . , (uδ, vδ)} ⊂ E(Q1

n−1). Since |F0| ≤ |F |−1 ≤ n−3
and (n − 1) − |F0| − 1 ≥ (n − 1) − (|F | − 1) − 1 = n − |F | − 1 = δ ≥ p,
by the induction hypothesis, Q0

n−1 − F0 contains p-pairwise full-independent
Hamiltonian paths P1[u1, v1], P2[u2, v2], . . . , Pp[up, vp]. On the other hand, since
|F1| ≤ |F | − 1 ≤ n − 3 and (n − 1) − |F1| − 1 ≥ (n − 1) − (|F | − 1) − 1 =
n − |F | − 1 = δ ≥ q, Q1

n−1 − F1 contains q-pairwise full-independent Hamil-
tonian paths Pp+1[up+1, vp+1], Pp+2[up+2, vp+2], . . . , Pδ[uδ, vδ]. Then, there ex-
ist edges (Pi(t), Pi(t + 1)) ∈ E(Pi[ui, vi]) for all i ∈ {1, 2, . . . , δ}, where t ∈
{1, 2, . . . , 2n−1 − 1}, such that the crossing edges (Pi(t), Pi(t)n) and (Pi(t +
1), Pi(t + 1)n) are both fault-free. (The reason is explained below: Since the
number of edges in Pi[ui, vi] equals 2n−1 − 1, if these edges do not exist, then
|F | ≥ |Fc| ≥  2n−1−1

2 � > n − 2 for n ≥ 3, which is a contradiction.) Each path
Pi[ui, vi] can thus be represented by 〈ui, P

′
i [ui, Pi(t)], Pi(t), Pi(t + 1), P ′′

i [Pi(t +
1), vi], vi〉. Since |F1| ≤ |F | − 1 ≤ n − 3 and (n − 1) − |F1| − 1 ≥ (n − 1) −
(|F | − 1) − 1 = n − |F | − 1 = δ ≥ q, by the induction hypothesis, Q1

n−1 −
F1 contains q-pairwise full-independent Hamiltonian paths R1[P1(t)n, P1(t +
1)n], R2[P2(t)n, P2(t + 1)n], . . . , Rp[Pp(t)n, Pp(t + 1)n]. Similarly, Q0

n−1 − F0 also
contains q-pairwise full-independent Hamiltonian paths Rp+1[Pp+1(t)n, Pp+1(t+
1)n], Rp+2[Pp+2(t)n, Pp+2(t + 1)n], . . . , Rδ[Pδ(t)n, Pδ(t + 1)n]. Then, {〈ui, P

′
i [ui,

Pi(t)], Pi(t), Pi(t)n, Ri[Pi(t)n, Pi(t+1)n], Pi(t+1)n, Pi(t+1), P ′′
i [Pi(t+1), vi], vi〉|

1 ≤ i ≤ δ} forms δ-pairwise full-independent fault-free Hamiltonian paths in Qn.
��

Lemma 3 (One-to-many). Let Qn, n ≥ 2, be an n-cube with |F | ≤ n−2. Let
s be an arbitrary black (respectively, white) vertex in Qn and w1, w2, . . . , wδ ⊂
V (Qn) be δ distinct white (respectively, black) vertices. Then, Qn − F contains
δ-pairwise independent Hamiltonian paths P1[s, w1], P2[s, w2], . . . , Pδ[s, wδ] start-
ing at s.

Proof. Due to the space-limitation, the proof is omitted. ��

We next present another result regarding to pairwise independent Hamiltonian
paths between two arbitrary vertices from different partite sets.
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Theorem 1 (One-to-one). Let Qn, n ≥ 2, be an n-cube with |F | ≤ n − 2.
Then, Qn − F contains δ-pairwise independent Hamiltonian paths between two
arbitrary vertices from different partite sets.

Proof. Let b and w be two arbitrary vertices from different partite sets. Without
loss of generality, assume that b is a black vertex and w is a white vertex. In the
following, we attempt to construct δ-pairwise independent Hamiltonian paths
between b and w. The proof is by induction on n. The basis cases where n = 2
clearly holds. We now consider an n-cube for n ≥ 3. If |F | = n − 2, then δ = 1.
By Lemma 1, Qn − F contains a Hamiltonian path between b and w. We next
consider the situation in which the number of faulty edges is at most n − 3.
Let d ∈ {1, 2, . . . , n} − {k| there is a faulty edge of dimension k}. A d-partition
is executed on Qn to obtain Q0

n−1 and Q1
n−1. Note that Fc = ∅ after this d-

partition. Without loss of generality, assume that b ∈ V (Q0
n−1). There are the

following two cases.

Case 1: Both b and w are in Q0
n−1. Since |F0| ≤ |F | − 1 ≤ n − 3 and (n −

1) − |F0| − 1 ≥ (n − 1) − (|F | − 1) − 1 = n − |F | − 1 = δ, by the induc-
tion hypothesis, Q0

n−1 − F0 contains δ-pairwise independent Hamiltonian
paths P1[b, w], P2[b, w], . . . , Pδ[b, w]. Note that (Pi(t), Pi(t + 1)) is an edge
for all i ∈ {1, 2, . . . , δ}, where t ∈ {1, 2, . . . , 2n−1 −1}, and the crossing edges
(Pi(t), Pi(t)d) and (Pi(t + 1), Pi(t + 1)d) are both fault-free because Fc = ∅.
Note that Pi[b, w] = 〈b, P ′

i [b, Pi(t)], Pi(t), Pi(t + 1), P ′′
i [Pi(t + 1), w], w〉. On

the other hand, since |F1| ≤ |F |−1 ≤ n−3 and (n−1)−|F1|−1 ≥ (n−1)−
(|F | − 1)− 1 = n − |F | − 1 = δ, by Lemma 2, Q1

n−1 − F1 contains δ-pairwise
full-independent Hamiltonian paths R1[P1(t)d, P1(t + 1)d], R2[P2(t)d, P2(t +
1)d], . . . , Rδ[Pδ(t)d, Pδ(t+1)d]. Then, {〈b, P ′

i [b, Pi(t)], Pi(t), Pi(t)d, Ri[Pi(t)d,
Pi(t+1)d], Pi(t+1)d, Pi(t+1), P ′′

i [Pi(t+1), w], w〉| 1 ≤ i ≤ δ} forms δ-pairwise
independent fault-free Hamiltonian paths in Qn.

Case 2: b ∈ V (Q0
n−1) and w ∈ V (Q1

n−1). Let w1, w2, . . . , wδ be arbitrary δ
white vertices in Q0

n−1. Since |F0| ≤ |F | − 1 ≤ n − 3 and (n − 1)− |F0| − 1 ≥
(n − 1) − (|F | − 1) − 1 = n − |F | − 1 = δ, by Lemma 3, Q0

n−1 − F0 contains
δ-pairwise independent Hamiltonian paths P1[b, w1], P2[b, w2], . . . , Pδ[b, wδ]
starting at b. Note that wd

1 , wd
2 , . . . , wd

δ are all black vertices in Q1
n−1. Sim-

ilarly, since |F1| ≤ |F | − 1 ≤ n − 3 and (n − 1) − |F1| − 1 ≥ (n − 1) −
(|F | − 1)− 1 = n − |F | − 1 = δ, by Lemma 3, Q1

n−1 − F1 contains δ-pairwise
independent Hamiltonian paths R1[wd

1 , w], R2[wd
2 , w], . . . , Rδ[wd

δ , w]. Then,
{〈b, Pi[b, wi], wi, w

d
i , Ri[wd

i , w], w〉| 1 ≤ i ≤ δ} forms δ-pairwise independent
fault-free Hamiltonian paths in Qn.

By combing the above two cases, we complete the result. ��

4 Concluding Remarks

In this paper, we focus on fault-tolerant embedding, with the n-dimensional
faulty hypercube Qn being the host graph and Hamiltonian paths being the
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guest graph. We have shown the following results to demonstrate fault-tolerant
embedding ability of pairwise independent Hamiltonian paths.

1. When |F | ≤ n − 2, Qn − F contains (n − |F | − 1)-pairwise full-independent
Hamiltonian paths between two adjacent vertices, where n ≥ 2.

2. When |F | ≤ n − 2, Qn − F , contains (n − |F | − 1)-pairwise independent
Hamiltonian paths starting at any vertex v ∈ Vi to n − |F | − 1 distinct
vertices belonging to V1−i, where i ∈ {0, 1} and n ≥ 2.

3. When |F | ≤ n − 2, Qn − F contains (n − |F | − 1)-pairwise independent
Hamiltonian paths between any two vertices from different partite sets, where
n ≥ 2.

Since Qn is regular of degree n, the number of tolerable faulty edges, the length
of each fault-free paths, and the number of fault-free paths obtained are optimal
with respect to a worse case where all faulty edges are incident to one common
vertex.
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Abstract. Chen et al. in 2004 proposed a new hierarchy structure, called the 
enhanced pyramid network (EPM, for short), by replacing each mesh in a 
pyramid network (PM, for short) with a torus. Recently, some topological prop-
erties and communication on the EPMs have been investigated or derived. Their 
results have revealed that an EPM is an attractive alternative to a PM. This 
study investigates the node-disjoint paths between any two distinct nodes and 
the upper bound of the ω-wide-diameter of an EPM. This result shows that the 
EPMs have smaller ω-wide-diameters than the PMs. 

Keywords: Enhanced pyramid networks, pyramid networks, fault-tolerance, 
wide diameter, node-disjoint paths, container, interconnection networks. 

1   Introduction 

Pyramid networks (PMs, for short) have conventionally been adopted for image proc-
essing [6, 10], computer vision [6], parallel computing [5] and network computing 
[1]. A PM is a hierarchy structure based on meshes. Recently, there are many re-
searches on the PMs, such as Hamiltonicity [2, 12, 16], pancyclicity [2, 16], fault 
tolerance [1], routing [7, 15], and broadcasting [8]. Note that the node degree of a PM 
is from 3 to 9, and both its node connectivity and edge connectivity are 3 [1, 16]. For 
establishing a PM in expandable VLSI chips, each of its nodes should be configured 
as a 9-port component or too many different components should be designed and 
fabricated. In other words, those nodes of degree less than 9 have unused ports. These 
ports can be used for further expansion or I/O communication. To modify a well-
known network a little bit such that the resulting network has better topological prop-
erties. Chen et al. [4] in 2004 proposed a variant network of the PM, named the  
enhanced pyramid network, by reconnecting some of the unused ports. 

An enhanced pyramid network (EPM, for short), suggested by Chen et al. [4], is a 
supergraph of a pyramid network with the same node set. In other words, a PM is a 
spanning subgraph of an EPM. The EPM can be constructed by replacing each mesh 
of the PM with a torus. Therefore, the hardware cost of the EPM would be slightly 
more expensive than the PM because some extra edges have to be added in the VLSI 
                                                           
* Corresponding author. 
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chips. Some topological properties and communication on the EPMs, including the 
number of nodes/edges, node connectivity, edge connectivity, diameter, routing algo-
rithm, and a simple broadcasting algorithm, have been determined or derived [4]. 
Their results show that the EPM has better topological properties than the PM such as 
larger node/edge connectivity and better fault-tolerance ability. 

The topological structure of an interconnection network (network, for short) can be 
modeled by a graph [3, 10, 12, 13, 17]. The vertices and edges of a graph respectively 
correspond to nodes and edges of an interconnection network. The length of a path is 
the number of edges, which the path passes through. Given two nodes s and t in a 
network G, the distance between them, denoted by dG(s, t), is the length of their 
shortest path. The diameter of a network G, denoted by d(G), is defined as the maxi-
mum of dG(s, t) among all pairs of distinct nodes in G. A ω-wide container, denoted 
by Cω(s, t), is a set of node-disjoint paths of width ω. The length of Cω(s, t), denoted 
by l(Cω(s, t)), is the length of the longest path in Cω(s, t). The total length of Cω(s, t), 
denoted by lT(Cω(s, t)), is the sum of the lengths of the ω paths in the Cω(s, t). The ω-
wide distance between s and t in G, denoted by dω(s, t), is minimum among all l(Cω(s, 
t)). The ω-wide diameter of G, written as dω(G), is the maximum of ω-wide distance 
among all pairs of distinct nodes in G. Obviously, dG(s, t) ≤ dω(s, t), d(G) ≤ dω(G), and 
dω(s, t) ≤ dω(G). Parallel transmission is a one-to-one communication in G such that 
the message can be transmitted from the source node to the destination node via a 
container between them to enhance the transmission performance and/or improve 
fault tolerance ability of the communication. Notably, the parallel transmission delay 
is bounded above by dω(G). This work first constructs a ω-wide container between 
any two distinct nodes in an EPM and then based on the constructed containers the 
upper bound of the ω-wide diameter of the EPM can be determined. 

The rest of this paper is organized as follows. Section 2 describes the structure and 
terms of an EPM, and some notations and definitions in graphs. Section 3 first con-
structs a ω-wide container between any two distinct nodes in an EPM and then deter-
mines the upper bound of the ω-wide diameter of the EPM. Finally, the conclusion is 
made in Section 4. 

2   Preliminaries 

This section first formally describes the structures of the PM and EPM and then de-
fines some notations and definitions in graphs that are used in the rest of this paper. 

The node set of a mesh M(m, n) is V(M(m, n)) = {(x, y) | 0≤x<m, 0≤y<n}. Two 
nodes (x1, y1) and (x2, y2) are joined by an edge iff |x1–x2| + |y1–y2| = 1, where (x1, y1) 
and (x2, y2) belong to V(M(m, n)). The n-layer pyramid network, denoted by PM[n], is 
a hierarchy structure based on meshes. The node set of PM[n] is V(PM[n]) = {(k; x, y) 
| 0≤k≤n, 0≤x, y<2k}, where n≥0. Note that the node (0; 0, 0) is the PM[0]. A node (k; 
x, y)∈V(PM[n]) is said to be a node at layer k with the coordinate (x, y). The nodes at 
layer k are connected as a M(2k, 2k). 

The EPM is a conjunction of a quad tree and tori. The node set of a torus T(m, n) is 
V(T(m, n)) = {(x, y) | 0≤x<m, 0≤y<n}. Let {u, v} denote an edge connecting nodes u 
and v of a network. The edge set E(T(m, n)) = E(M(m, n))∪{{(x, 0), (x, n–1)}, {(0, y), 
(m–1, y)} | 0≤x<m, 0≤y<n}. In other words, an EPM can be constructed by replacing 
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each mesh of a PM with a torus. The nodes at layer k are connected as a T(2k, 2k). 
Notice that a M(2, 2) is also a T(2, 2) in some sense. An EPM of n layers is denoted 
by EPM[n]. The node set of EPM[n] is V(EPM[n]) = {(k; x, y) | 0≤k≤n, 0≤x, y<2k}, 
where n≥2. In general, the node (0; 0, 0) is called the apex of EPM[n] (apex, for 
short). For ease of discussion, we define some symbols in the following. 

For a node v = (k; x, y) at layer 1≤k≤n in EPM[n], the coordinate of its parent, de-
noted by P(v), is given by (k–1; ⎣x/2⎦, ⎣y/2⎦). Conversely, v is a child of P(v). More-
over, each node in EPM[n] has a parent (four children) except the apex (the nodes at 
layer n). More generally, we recursively define the hth ancestor of v, denoted by Ph(v), 
as follows: 

(1) h=1, P1(v) = P(v) is simply the parent of v. 
(2) h>1, Ph(v) = (k–h; ⎣x/2h⎦, ⎣y/2h⎦) is the parent of Ph–1(v). 

For a node v = (k; x, y) at layer 0≤k<n in EPM[n], the coordinates of its four chil-
dren are given by (k+1; 2x, 2y), (k+1; 2x+1, 2y), (k+1; 2x, 2y+1), and (k+1; 2x+1, 
2y+1). Conversely, v is the parent of its children. 

For simplicity, let (a)b denote a modulo b. For a node v = (k; x, y) at layer 2≤k≤n in 
EPM[n], (k; (x+1)2k, y), (k; x, (y+1)2k), (k; (x–1)2k, y), and (k; x, (y–1)2k) are the coordi-
nates of its four siblings, and they are also denoted by S0(v), S1(v), S2(v), and S3(v), 
respectively. 

3   Node-Disjoint Paths 

Before describing how to construct ω node-disjoint paths between any pair of nodes 
in EPM[n], some lemmas are first presented. These lemmas related to how to routing 
paths in EPM[n] are stated in Subsection 3.1. By the aid of these lemmas, a shortest 
path between any pair of nodes is first constructed and then the other ω−1 paths can 
be built based on the shortest path. Subsections 3.2 describes how to construct these ω 
paths, where 2≤ω≤4. 

3.1   Routing in EPM[n] 

Given two paths P1 and P2, let P1→P2 denote joining P2 to the tail of P1. Let PG(u, v) 
denote a path between two nodes u and v in a network G. Let l(P) denote the length of 
a path P. Some results derived by Chen et al. [4] are described first. 

Lemma 1 [4]. The node connectivity of EPM[n] is 4. 

By Menger’s theorem [17] and Lemma 1, there is a 4-wide container between any 
pair of nodes in EPM[n]. 

Lemma 2 [4]. If dT(2k, 2k)(u, v) < 2+dT(2k−1, 2k−1)(P(u), P(v)), dT(2k, 2k)(u, v) = dEPM[n](u, v). 

Lemma 3 [4]. Given two nodes u=(kuk; xu, yu) and v=(kvk; xv, yv), 0≤kv≤ku<n, there is a 
shortest PEPM[n](u, v) having the form as PEPM[n](u, Pku–kv+i(u))→PT(2k, 2k)(P

ku–kv+i(u), 
Pi(v))→PEPM[n](P

i(v), v), where 0≤i<kv. 
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By Lemma 3, a shortest path PEPM[n](u, v) can be constructed and it is the first con-
structed path when a container is built. Since a shortest path between any two nodes 
has been established, the diameter of EPM[n] can be easily obtained and stated in the 
following lemma. 

Lemma 4 [4]. d(EPM[n]) = 2n, where n≥2. 

After constructing a ω-wide container between any pair of nodes in a network, the 
upper bound of the ω-wide diameter of the network can be determined as the maxi-
mum length among the constructed ω-wide containers. 

The first path P1(s, t), constructed by Lemma 3, is shortest and its length is at most 
d(EPM[n]) = 2n. Then the other ω–1 paths P2, ..., Pω, can be constructed based on P1, 
they disjoint to each other and also disjoint to P1. Notably, the other ω–1 paths are 
never shorter than P1, and then a method is proposed to share P1 with the others, in 
order to shorten the length of the ω-wide container. 

Given two nodes u and v at layer ku and kv of EPM[n], respectively. They have at 
most four siblings Si(u) and Sj(v), respectively, where 0≤i, j≤3. P(u) (P(v)) also has at 
most four siblings Si(P(u)) (Sj(P(v))), 0≤i (j) ≤3. Let Qij(u, v) denote a path from Si(u) 
to Sj(v) along siblings of P1(u, v). We can recursively construct Qij(u, v)as follows: 

(1) v is P(u): Qii(u, P(u)) is a shortest path from Si(u) to Si(P(u)) excluding P1(u, 
P(u)). 

(2) v is Ph(u), where 2≤h≤ku–2: Qii(u, Ph(u)) = Qii(u, Ph−1(u))→Qii(P
h–1(u)), Ph(u)). 

Note that Qii(u, Ph(u)) might not be a shortest path from Si(u) to Si(P
h(u)) in 

EPM[n] excluding P1(u, Ph(u)). 
(3) Let w=(kw; xw, yw)=Pku−kw(u), z=(kz; xz, yz)=Pkv−kz(v), if 2≤kw=kz≤min{ku, kv}: 

Qij(u, v) = Qii(u, w)→PT(2kw, 2kw)(Si(w), Sj(z))→Qjj(v, z). 

Obviously, there are 4 Qii(u, P(u))s can be constructed. For each Qii(u, P(u)), it is 
represented by π1 (π2) if l(Qii(u, P(u))) = 1 (2). l(Qii(u, P(u)))+l(Qmm(u, P(u))) = 3, 
where m is (i+2)4. Also, if Qii(u, Ph(u)) has h1 π1s and h2 = h−h1 π2s, then Qmm(u, 
Ph(u)) has h2 π1s and h1 π2s, where m is (i+2)4. Therefore, l(Qii(u, Ph(u)))=h+h2, 
l(Qmm(u, Ph(u)))=h+h1, and l(Qii(u, Ph(u)))+l(Qmm(u, Ph(u))) = 3h. The shortest one of 
Qii(u, Ph(u)) and Qmm(u, Ph(u)) is denoted by QS(u, Ph(u)). Otherwise, the longest of 
them is denoted by QL(u, Ph(u)). Therefore, l(QS(u, Ph(u))) ≤ ⎣3h/2⎦ = h+⎣h/2⎦, and 
l(QL(u, Ph(u))) ≤ 2h. That is, there are at most ⎣h/2⎦ (h) π2s in a QS(u, Ph(u)) (QL(u, 
Ph(u))). QS is also denoted as QSE (QSO) if i is even (odd). 

3.2   ω-Wide Container 

This subsection constructs a ω-wide container between any pair of nodes in EPM[n]. 
For ease of discussion, let s=(ks; xs, ys), t=(kt; xt, yt), w=(kw; xw, yw)=Pks−kw(s), z=(kz; xz, 
yz)=Pkt−kz(t) be four nodes in EPM[n] for n≥2, where 2≤kw=kz≤min{ks, kt}. 

Lemma 5 [9]. l(QS(s, w)+dT(22, 22)(Si(w), Sj(z))+l(QS(z, t) ≤ 2n+2⎣n/2⎦–4, l(QS(s, 
w)+dT(22, 22)(Si(w), Sj(z))+l(QL(z, t) ≤ 3n+⎣n/2⎦–5, and l(QL(s, w)+dT(22, 22)(Si(w), 
Sj(z))+l(QS(z, t) ≤ 3n+⎣n/2⎦–5. 
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Lemma 6. l(C2(s, t)) and l(C3(s, t))≤ 2n+2⎣n/2⎦–2, l(C4(s, t))≤3n+⎣n/2⎦–3, lT(C2(s, 
t))≤4n+2⎣n/2⎦–2, lT(C3(s, t))≤ 6n+4⎣n/2⎦–4, and lT(C4(s, t))≤10n+2⎣n/2⎦–6. 

Proof. For ω-wide container, 2≤ω≤4, by Lemma 3 and Lemma 4, a shortest path P1(s, 
t) can be first constructed and l(P1(s, t)) ≤ 2n. Second, a Qij(s, t) is constructed as the 
second path P2(s, t) = {s, Si(s)}→QSE(s, w)→PT(22, 22)(Si(w), Sj(z))→QSE(z, t)→{Sj(t), 
t}. By Lemma 5, l(P2(s, t)) ≤ 2n+2⎣n/2⎦–2. Thus, l(C2(s, t)) ≤ 2n+2⎣n/2⎦–2 and 
lT(C2(s, t)) ≤ 4n+2⎣n/2⎦–2. A C3(s, t) can be constructed by adding the third path P3(s, 
t)={s, Si(s)}→QSO(s, w)→PT(22, 22)(Si(w), Sj(z))→QSO(z, t)→{Sj(t), t} into the original 
C2(s, t). l(P3(s, t)) ≤ 2n+2⎣n/2⎦–2. Hence, l(C3(s, t)) ≤ 2n+2⎣n/2⎦–2 and lT(C3(s, t)) ≤ 
6n+4⎣n/2⎦–4. For constructing a C4(s, t), P3(s, t)={s, Si(s)}→QSO(s, Pn–2(s))→PT(22, 

22)(S(Pn–2(s)), S(Pn–2(t)))→QL(Pn–2(t), t)→{Sj(t), t} and P4(s, t)={s, S(s)}→QL(s, Pn–

2(s))→PT(22, 22)(S(Pn–2(s)), S(Pn–2(t)))→QSO(Pn–2(t), t)→{Sj(t), t}. By Lemma 5, both 
l(P3(s, t)) and l(P4(s, t)) ≤ 3n+⎣n/2⎦–3, and lT(C4(s, t))≤10n+2⎣n/2⎦–6 is maximum. 
Note that all PT(22, 22)s disjoint to each other. ■ 

The Cω(s, t) constructed in the proof of Lemma 6 is too long and l(Pω(s, t))s−l(P1(s, t)) 
are too large, for 2≤ω≤4. A Cω(s, t) can be shortened by rerouting its paths such that 
each path shares some part of the P1(s, t). The X(PEPM[n](u, P2(u)), Qii(u, P2(u))) is an 
operation to reroute the two node-disjoint paths PEPM[n](u, P2(u)) and Qii(u, P2(u)) in 
EPM[n] by using some nodes near to them, where u∈V(P1(s, Pn–2(s)). After rerouting, 
one path from u to Si(P

2(u)) is denoted by R1, the other path from Si(u) to P2(u) is 
denoted by R2, and they are still disjoint to each other. The rerouting would little in-
crease the sum of the lengths of the paths. l(R1) − l(PEPM[n](u, P2(u))) and l(R2) − 
l(Qii(u, P2(u))) are represented by c1 and c2, respectively. The main idea of rerouting is 
to share the shortest path of the original container with the other paths such that the 
longest path in Cω(u, v) is only one longer than the shortest path and then l(Cω(u, v)) 
can be minimized. 

Lemma 7. X(PEPM[n](u, P2(u)) and Qii(u, P2(u))) can be completed within 2 layers, and 
c1=2, c2= 0 or 1. 

Proof. Given a node u=(k; x, y), there are 4 Qii(u, P2(u)))s. Without lost of generality, 
only X(PEPM[n](u, P2(u)), Q00(Si(u), Si(P

2(u)))) is discussed. Let x=(xk–1xk–2 … x20x0)2 in 
binary, and the bit 0 of y is y0, Q00(P(u), P2(u)) is a π2. Hence, P(u)=(k–1; (xk–1xk–2 … 
x20)2, ⎣y/2⎦), P2(u)=(k–2; (xk–1xk–2 … x2)2, ⎣y/4⎦), H0(u)=(k; (xk–1xk–2 … x210)2, y), 
H0(P(u))=(k–1; (xk–1xk–2 … x21)2+1, ⎣y/2⎦), S0(P

2(u))=(k–2; (xk–1xk–2 … x2)2+1, ⎣y/4⎦), 
a=(k; 2⎣x/2⎦+2, 2⎣y/2⎦+1), and b=(k; 2⎣x/2⎦+2, 2⎣y/2⎦+2). Before rerouting, l(P1(u, 
P2(u))) = 2 and l(Q00(u, P2(u))) = 4–x0. In order to keep disjoint to the other Qii(u, 
P2(u)))s, after rerouting, R2 must be PT(2k, 2k)(S0(u), a)→{a, b}→P(b, P2(u)). l(R1) = 4 
and l(R2) = 5–x0–y0. Hence, c1 = 4–2 = 2, c2 = (5–x0–y0) – (4–x0)=1–y0 = 0 or 1. ■ 

Theorem 8. d2(EPM[n]) ≤ 2n+⎣n/2⎦–1, for n≥2. d3(EPM[n]) ≤ 2n+⎡(2n+2)/3⎤ 
(2n+⎡2n/3⎤) if n is even (odd), for n≥4. d4(EPM[n]) ≤ 2n+⎡3n/4⎤ (2n+⎡(3n–1)/4⎤) if n 
is even (odd), for n≥4. 

Proof. This theorem can be proved by rerouting the Cω(s, t) constructed in the proof 
of Lemma 6. 



 Constructing Node-Disjoint Paths in Enhanced Pyramid Networks 385 

Case 1. (for C2(s, t)): Only the longest C2(s, t) should be considered. After reconstruc-
tion, the new paths are P'1(s, t)=PEPM[n](s, w)→PT(22, 22)(w, Sj(z))→Qjj(z, t)→{Sj(t), t} 
and P'2(s, t)={s, Si(s)}→Qii(s, w)→PT(22, 22)(Si(w), z)→PEPM[n](z, t). The lengths of 
P'1(s, t) and P'2(s, t) are at most 2n+⎣n/2⎦–1. 

Case 2. (for C3(s, t)): Assume there are hs and ht π2s in QSE(s, w) and QSO(t, z), respec-
tively, the lengths of hs and ht are at most ⎣(n–2)/2⎦. Let hsx=⎣2×hs/3⎦–1, htx= 
⎣2×ht/3⎦–1. After applying X(PEPM[n](P

hsx−2(s), Phsx(s)), QSE(Phsx−2(s), Phsx(s))) and 
X(PEPM[n](P

htx−2(t), Phtx(t)), QSO(Phtx−2(t), Phtx(t))), the new paths are P'1(s, t), P'2(s, t), 
and P'3(s, t) with lengths l'1, l'2, and l'3, respectively. By Lemma 6 and Lemma 7, l'1, l'3 
≤ 2n+⎡(2n+2)/3⎤ (2n+⎡2n/3⎤) and l'2 ≤ 2n+⎣(2n+2)/3⎦ (2n+⎣2n/3⎦) if n is even (odd), 
for n≥4. 

Case 3. (for C4(s, t)): After applying 3 times of rerouting, the new paths are P'1(s, t), 
P'2(s, t), P'3(s, t), and P'4(s, t) with lengths l'1, l'2, l'3, and l'4, respectively. Similarly, l'1, 
l'4 ≤ 2n+⎡3n/4⎤ (2n+⎡(3n–1)/4⎤), l'2, l'3 ≤ 2n+⎣3n/4⎦ (2n+⎣(3n–1)/4⎦) if n is even 
(odd), for n≥4. ■ 

It is easy to check that d2(EPM[1]) = d3(EPM[1]) = 2, d3(EPM[2]) = d4(EPM[2]) = 4, 
d3(EPM[3]) = 6, and d4(EPM[3]) = 7. 

4   Concluding Remarks 

This work has revealed that d2(EPM[n]) ≤ 2n+⎣n/2⎦−1, for n≥2, d3(EPM[n]) ≤ 
2n+⎡(2n+2)/3⎤ (2n+⎡2n/3⎤), n is even (odd), for n≥4, and d4(EPM[n]) ≤ 2n+⎡3n/4⎤ 
(2n+⎡(3n–1)/4⎤), n is even (odd), for n≥4. In [1], d2(PM[n]) =3n−1, and d3(PM[n]) 
≤10n/3+6. Therefore, an EPM has smaller ω-wide-diameter than the pertinent PM. 
The ω-path transmission delay of a network is bounded below by its ω-wide diameter. 
The lower bound of dω(EPM[n]) is still unknown. We are going to determine the 
lower bound of dω(EPM[n]) and we claim that it is equal to its upper bound. If this is 
true, dω(EPM[n]) can be eventually obtained. 
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Abstract. Using caching to enhance performance has been widely used
in the computer system. This is still true in the distributed paradigm. In
the distributed environment, caches are distributed in each of the nodes
and can be collected to form a global cache. However, the overall perfor-
mance cannot benefit from the global cache without efficient cooperation
of these global resources. The local file system in each node knows noth-
ing about a stripe and thus can not benefit from the related blocks of a
stripe. We propose a striping cache (SC) which knows the related blocks
of a stripe and can use them to improve the performance of a striped
network file system. This high level cache can benefit from previous reads
and can aggregate small writes to improve the overall performance. We
implement this mechanism in our reliable parallel file system (RPFS).
The experimental results show that both read and write performance
can be improved with SC support. The improvement comes from the
fact that we can reduce the number of disk accesses by employing SC.

1 Introduction

I/O subsystem has been the bottleneck of a computer system[1] so far, both
at space and bandwidth aspects. Network file systems[2,3] provide an unified
naming space across network servers. Clients can utilize the centralized server
model to extend their disk space in the network. Parallel file systems[4,5,6,7,8,9]
use striping to add storage bandwidth which a single server could not offer. They
alleviate the issue of concurrent accesses when serving many clients.

Caching is widely used in the computer system to enhance the performance.
The client/server model of network file systems implies two possibilities for
caching, either in the server or clients. Requested data hitting in the client’s
local cache can save the number of disk accesses. The benefit of caching in the
server side comes from the fact that accessing remote memory is faster than
accessing local disks. As the network technologies emerge[10,11], the potential
advantage of remote caching becomes evident.

We proposed a modularized redundant parallel virtual file system[12] based
on the original parallel virtual file system (PVFS)[13] to protect data from loss.
We have demonstrated that using buffers to cache parity is beneficial when small
write happens. We extend this prototype system and propose a striping cache
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(SC) in our reliable parallel file system (RPFS). SC utilizes the concept of remote
caching and can not only solve the problem of small write but also improve the
performance of the original PVFS. The benefits come from the fact that we
successfully reduce the number of disk accesses.

We organize this paper as follows. We first describe the related research topics
in section 2. The system architecture of our RPFS along with SC are then
presented in section 3. Finally, we show the evaluation of using SC in section 4,
and section 5 concludes our work.

2 Related Work

Employing a cache to improve performance has been widely used either in hard-
ware architecture or software infrastructure. xFS[7] is the first one to implement
the concept of cooperative caching[14] in a distributed paradigm. Hint-based
cooperative caching[15] reduced the communication overhead needed in a coop-
erative caching. Its hints decentralize the central coordination but still have high
accuracy. NFS-cc[16] implements cooperative caching in NFS and can offer good
concurrent accesses for many clients.

However, all of those mentioned before are client side cooperative caching
schemes and have consistency problems. Our striping cache (SC) is a server side
cache with each block having its home node. In other words, our SC suffers no
duplicate problem and hence incurs no consistency problem. It is implemented in
each of the I/O nodes without any kernel level modification. This global server-
side cache has the knowledge of a stripe, knows how to collect related blocks
to form a stripe and is aware of its corresponding parity. With our novel cache
replacement algorithm, we can greatly reduce the number of disk accesses and
thus enhance the overall performance. Besides, the penalty of parity updating
can also be alleviated by employing SC.

3 System Architecture

First, we shortly describe the functionalities of PVFS. It has three main com-
ponents: mgr, iod and libpvfs. The mgr daemon is executed in the management
node and maintains the metadata of the system. There can be only one manage-
ment node in the system. Iod runs on each of the I/O nodes, serving the requests
from clients and feeding them with the requested data. Libpvfs provides native
calls of PVFS, allowing applications to gain the maximal I/O performance that
could offer. Besides, a kernel module implements POSIX-complaint interfaces
which allow traditional applications to run without any modification.

Our RPFS has two functionalities which original PVFS does not provide.
One is the redundancy mechanism, the other is the global striping cache (SC).
These two functionalities are implemented without affecting the original striping
structure of PVFS. We will describe both of them in more detail in the following
subsections.
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3.1 Striping Cache

The striping cache (SC) is implemented in each of the I/O nodes. It lies between
iod daemon and local file system and is used both as a read ahead and a write
behind buffer. Each node has 4096 cache blocks with each block (16K+32) bytes
in size. These blocks are divided into 1024 sets, with each set contains 4 blocks.
These buffers are pre-allocated within each I/O node when the iod daemon is
executed. The 16 KB region is used to cache files, while the 32 bytes metadata
contains many information used for cache replacement algorithm and parity
updating. Fig. 1 shows this structure with detailed field names and their size.

96-bit DTag

16 KBytes 

Data

Dirty Bit
Block 1

Block 2

Block 3

Block 

4096

.

.

.

96-bit PTag

13-0

File OffsetInode number

23-1455-2463 -0

96-bit Tag

31-bit LRef

32-bit GRef

Fig. 1. Cache Blocks of an I/O Node: DTag is used to indicate whether this block
contributes to a specific parity block described by PTag. If a write happens, the dirty
bit would be set. LRef records the number of hits in this cache block. GRef indicates
the number of related cache blocks being read or written within the same stripe.

DTag field describes the tag information which uniquely identifies the cache
block itself. The identity of a data segment is its 64 bits inode number and its
high 32 bits offset, shown in Fig. 1. Different data segments which hash to the
same set have different DTag values. The dirty bit is set when the data block is a
newly written one. Its value is cleared when the dirty block and its corresponding
parity block have been written to disk. LRef field is used to record the number
of hits in this cache block, which acts as the reference for cache replacement
algorithm. GRef field monitors the related cache blocks (by the same DTag
value) being read or written in SC.

3.2 Distributed Cache Replacement Algorithm

With SC support, we need a novel cache replacement algorithm. Fig 2 shows the
pseudo code of our cache replacement algorithm. Each node runs its own thread
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IF PTag is null THEN
IF Operation is READ THEN

USE LRef Field & LRU
ELSE

IF Dirty bit is Set THEN
Write the Parity Block and the replaced Block

END IF
Write Operation Proceed
Update the PTag Field

END IF
ELSE

IF PTag == itself.DTag and DTag != itself.DTag THEN
Replace the block

ELSE IF PTag != DTag
USE LRef Field & LRU

END IF
END IF

Fig. 2. Distributed Cache Replacement Algorithm in SC

to periodically monitor the status of a stripe. It would update the GRef fields of
the corresponding cache blocks in SC. Besides, it must write the PTag fields of
cache blocks whenever a write happens or half of the data segments of a stripe
are cached.

4 Experiment Results

Nine nodes are connected with a fast Ethernet switch to form a cluster, one
metadata server and eight I/O servers. We perform three kinds of tests and
would describe them separately in the following subsections.

4.1 Cache Hit Ratio Test

First, we measure the hit ratio in our SC by putting a hook in each of I/O
nodes. We then count the number of hits in cache blocks within the measured
time intervals ranging from 10 ms to 100 ms. Fig. 3 shows the hit ratio of our
SC. The measurements are repeated several times and hit ratios within the same
time interval are averaged.

4.2 Performance Test Using Native API

We use the pvfs test.c utility accompanied with PVFS distribution to test the
concurrent accesses. In this test, each I/O node acts as a client too. Fig. 4 shows
the results of read when eight clients are used. The read performance of RPFS
is better than PVFS because of the global server-side cache. Data segments
are brought into cache blocks in the unit of 16 KB. This realizes the effect of
prefetching.
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Fig. 3. Hit Ratio of SC: Measured in time intervals ranging from 10 ms to 100 ms.
The measurements repeat several times and hit ratios within the same time interval
are averaged.

Fig. 4. Read - Native Call Fig. 5. Write - Native Call

Fig. 5 shows the results when using pvfs test.c to perform write tests. Updat-
ing parity blocks has significant impact on RPFS because small write still needs
four operations : read the old striped blocks, read the old parity block, write
the desired block and write the newly calculated parity block. Without a global
cache, we cannot aggregate small writes to form a big write. A big write not only
can reduce the number of parity writing. Besides, the global cache can shorten
request time since data may be accessed directly from SC instead of disks. Com-
pared with Fig. 4, the write performance of PVFS is better than that of read.
As for the RPFS, parity writing has less impact due to the use of SC. Its write
performance is only reduced by 3% when compared with its read performance.

4.3 Single Client Read/Write

We use Bonnie++[17] to test the traditional POSIX interfaces. In this test, a
single client is used to run Bonnie++ program. We mount PVFS in the client’s
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local directory so that it behaves like a local file system. All measurements are
performed in the mounted directory. Fig. 6 and Fig. 7 show the results. Again, we
observe that RPFS has performance benefits when compared with PVFS. In this
test, the network bandwidth of fast Ethernet limits the throughput that a singe
client could get from multiple I/O nodes. It is saturated at around 17 MB/sec.

Fig. 6. POSIX Read Fig. 7. POSIX Write

5 Conclusion

The proposed architecture, SC , helps the read and write operations in a striped
network file system. It also alleviates the effects of “small-write” problem if the
file system has a RAID-5 alike structure. SC can be regarded as a global cache
space which can read ahead and write behind data blocks. With the global
knowledge and our novel distributed cache replacement algorithm, it can effi-
ciently utilize the cache both for reading and writing. SC is a high level global
cache which does not need any kernel level modification. With this characteristic,
it can be applied to any striped network file system with little effort.
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Abstract. This paper introduces a Linda [2] like peer-to-peer tuple
space middleware build on top of distributed hash table – DTuplesHPC.
This tuple space middleware is capable of being a high performance com-
puting platform. And the decoupled style of tuple space [1] model is used
instead of the message-passing model that is widely used in MPI based
high performance computing. With the help of tuple space model, the
distributed computing can be liberated from architectural consideration.
First, the DTuples platform allows the dynamic organization of the com-
puting resources. That is to say, the job can be submitted at any time,
but the computation resources may be ready later. The time and space
are all decoupled in DTuplesHPC. Second, it brings the simple tuple
space programming model to the large-scale high performance comput-
ing at desktop. In our design, the in(), rd(), out(), copy-collect() and
eval() primitives are supported. In this paper, we present the key design
concepts of the DTuples.

1 Introduction

Since SETI@Home [12], the high performance computing has never been con-
strained in the laboratory and the expensive super computer. The peer-to-peer
technology has been proven that it can explore the computation energies of the
vast number of personal computers.

In the high performance computing area, the MPI is the de-facto standard.
The P2P-MPI is a reasonable evolution in peer-to-peer to high performance
computing, but the design and development of the program is not easy. The
message-passing model only decoupled the processes from space, but not in time.
Also, the MPI is a low level service, so it is a difficult to programming. To make
MPI utilize the power of the all participants, the algorithm must be split into
many pieces. The synchronization and message exchanging are controlled by the
programmer itself. In this view, the MPI and P2P-MPI are primal solutions to
the high performance computing. The primary difference between the message
passing model and tuple space model is that the message passing model needs
an end point to deliver the message, the P2P-MPI needs endpoint to deliver the
message too, the tuple space model not. The tuple space model is look like a
bulletin board system where some one post and some one read. The reader and
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poster need not simultaneously online. The tuple space model can also been seen
as topic-based system in which each tuple has a name. The tuple space can also
be modeled to a hierarchy space where the tuple space is splited into spaces and
sub spaces.

We think that the tuple space model is more suited to the distributed comput-
ing than the message-passing model. The main shortcoming of the tuple space
model in high performance computing is that the tuple space model is a high level
abstraction of the coordination language; it lacks the sorts to fine granularity
control to the processes and resources. But fortunately, this shortcoming is not
fatal in the notion of desktop high performance computing, such as SETI@Home.
In this paper, we present the DTuples as a desktop high performance computing
toolkit.

The remainder of the paper is structured as follows. Section 2 presents the
primitives of the DTuples and the two level tuple space. Section 3 discusses some
issues relating to the design and implementation of the DTuples. Finally, the last
section concludes the paper with a brief summary.

2 DTuples Basics

Tuple space model is not conflicts with peer-to-peer model. But they have sig-
nificant differences. First, the tuple-space model is a model to describe the com-
munication between time and space decoupled process in local area network.
Secondly, The tuple space model has well defined communication primitive to
coordinate the processes. The tuple space model has the ability to decouple the
processes in time and space. The peer-to-peer model is inability in this area. We
have seen that the tuple space model is so similar to peer-to-peer model in the
form of role of the nodes or agents in the view of application. This inspired us
to build a kind of tuple space service on top of the distributed hash table.

2.1 DTuples

DTuples [8] is a tuple space middleware service build on top of the structured
peer-to-peer network. The tuple space service on top of peer-to-peer network
can benefits from the peer-to-peer in the scalability, fault-tolerance and self-
organization. The underlying peer-to-peer network provides the DTuples storage
and messaging service. The base of the DTuples is FreePastry [9], a free and open
source DHT implementation. The DTuples support the following primitives: rd(),
in(), out() and coppy-collect().

2.2 Subject Tuplespace

DTuples provides a two level tuples space: the public space and the subject
space. The subject space is owned by process and can be accessible by the other
process under the permission of the owner. The subject tuple space can be used
to partition the flat space. The unprefixed call to these primitives is on the public
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tuple space. For example, call to out(t) will output a tuple t to the public tuple
space. Suppose TS1 is the name of a subject tuple space, TS1.out(t) will output
the tuple t into the subject space named TS1. The eval() primitive is supported
in DTuplesHPC.

3 Design and Implementation

The DTuplesHPC system is composed of a set of distributed nodes in peer-to-
peer mode. The centre node is the bootstrap node that initializes the compu-
tation and spawns some computation tasks that runs in the other nodes. After
the computation tasks completed, the bootstrap node collects the intermediate
results from tuple space and synthesis the final result.

DTuplesHPC is the prototyped as an extension of DTuples for the enabling
of distributed computing. The main extension of the DTuplesHPC is to add
support for the eval() primitive into DTuplesHPC.

DTuples application

Java Virtual Machine

Operating System

Distributed Hash Table

Tuple manager

DTuples application Interface

Local
Storage

Transaction
management

Replica
management

Active
Tuples

Container

Java RMI File Transfer Service

Fig. 1. Architecture of DTuples node. Every DTuplesHPC node has the same structure.

3.1 Design Requirements

To make the tuple service meaningful in usage, we require the design and imple-
mentation have the following requirements.

1. Task dispatched into appropriate peers. DTuplesHPC must have the ability
to schedule the tasks to the processor that is willing to accept jobs.
The task submitted to DTuples by the form of active tuple through eval()
primitive.

2. Fault-tolerance. DTuples provides reliable tuples storage service through
replication. DTuplesHPC programs use tuples to communicate and store
intermediate result.

3. Scalable. The system will be higher performance when there are more com-
puters joined in the system.
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In the design of the DTuples, the tuple management function is build on
top of replica management function. The tuples in DTuples space are replicated
to make sure the fault-tolerance. The replica management function is complex
and hard to implement because the replicas of tuple need to be maintained in
consistency during lifetime.

3.2 Architecture

Fig.1 shows the overall architecture of the DTuplesHPC system. The Tuples in
the tuple space is managed by tuple manager, which is a daemon process that
runs in every peer that participants the work. The tuple manger maintains the
tuples in local storage and cooperates with the other tuples through DHT based
storage and routing protocol. The tuple manager manages the transaction and
replication of the tuples. The DTuples API provides an event and message service
on top of the DHT. In the left side of the tuple manager, there is an active tuple
container. The code fragment in the active tuples is not complete program, but
code fragment. The container is the execution context of those code fragments.
The code can be locally executed or can be remotely executed through the RMI
call to the Java remote object. All the codes, including the locally executed and
remotely executed, are executed in container. In the architecture, the container
is not a part of the tuple manager because the active tuple and the passive tuple
are different.

The P2P nature of this architecture makes the DTuplesHPC system scalable
and fault-tolerant. The system will continue running in case of node shutdown
and benefits from the joining of extra nodes. The overlay network is distributed
hash table based. In the help of this layer, the system is scalable and self orga-
nization. The local storage managed by the tuple manager is directly interact
with the distributed hash table as the previous section stated. At the top of the
architecture, the API layer provides five primitives to the application.

3.3 The eval() Primitive

Many tuple space implementation support only passive tuple, such as JavaSpaces
[6]. In DTuplesHPC, active tuples is supported. eval() writes a tuple to tuple-
space after arguments in the expression are evaluated by creating new processes
which perform their tasks independently. When and where the new process is
created is not specific. eval() taking an active tuple and placing it into the tuple
space returning immediately. The process finishes by returning a passive tuple in
tuple space. The active tuple cannot be retrieved from tuple space unlike passive
tuples.

3.4 Active Tuples

The eval() primitive use formals in active tuples to specific the node that is
suitable to accept the active tuple and run the tasks it carried on. This is a
trade off to the requirements of the easy and efficiency. The active tuples in our
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system is modeled as the composition of passive tuple and code fragment (the
code fragment is running in container). The active tuple is invisible in the tuple
space to any operation. It will never be touched by any other processes until it
has been evaluated. Once the active tuple has been evaluated, the code in the
active tuple will be executed once. The evaluation of the active tuple is not the
time the tuple is inserted into the tuple space, but the time the matching passive
tuple was inserted. In DTuplesHPC, the eval() primitive is used to spawn the
tasks that is parallel executed.

The active tuple is the used to create process in DTuplesHPC. The tasks the
active tuple created are java object that implements the several specific inter-
faces. In DTuplesHPC, we call the object active object. The object must imple-
ments java.rmi.Remote, java.rmi.Serialable and java.lang.Runnable interface to
enable it is callable from remote and it can be transferred between JVMs.

The task is executed in container, which is the context of the execution. The
container provides the fault-detection and process management function. The
process is executed in a thread in the container. Fig.2 shows the container. The
container is composed of a thread pool and other components. The active tuples
are executed in the context of a thread. The execution of the active tuples is
coordinated by the dispatcher and security manager. The execution of the tasks
in thread pool is monitored by activity monitor. The monitor detects the fault
and restarts the faulty thread.

Each active tuple is composed of template and code fragment. The code frag-
ment is a java object. The template is used to select the appropriate node that
is suitable to execute the tasks carried by active tuple. Nodes that are ready to
accept tasks perform in() primitive to wait tasks. The procedure of waiting tasks
are hidden from the eval() primitive. It is done by the system. After the dis-
patcher daemon received a active tuple it places the corresponding active object
in the container.

The active object produces a passive tuple in the tuple space, and then exit.
The passive tuple produced by execution of the active object is the result of the
computation. The bootstrap task collects those tuples and synthesis them into
the final results of the algorithm.

3.5 Container for the Active Objects

The active tuples is resides in the tuple space in the view of the programmer. But
in the internal view of DTuples, the tuple are resides in the local storage of the
tuple manager. The active objects in the active tuples are resides in the active
objects container. If the peer that the tuple reside isnt the peers that the code is
executed, the code will executed remotely. The remote execution of the code is
done by transfer the code from the home container to the execution container.
The home container is the container where the code resides now. The execution
container is the container the code will be executed in. The home container of
active tuple may be the execution container, may be not. So the active tuple
may be move from container to container.
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The execution of the tasks need resources, the resources may not reside in the
peers the code is executing. But the passive tuples in the tuple space is accessible
in anywhere within the tuple space. So the resources the code in the active tuples
needed can only be obtained in the form of tuples. In this way, the code can be
migrate to any peers in tuple space and execute everywhere in the tuple space.

ActiveTuples Container

RMI/IIOP Monitor

Tuple
Interface

Dispatcher

thread pool

thread
thread

thread
thread-1

Security

Fig. 2. The container in DTuplesHPC node. Tasks that spawned by eval() primitives
are stored and exectued in container.

3.6 Data Items and Resources Needed by Computation

In DTuples, all the data are represented in the form of tuple, even the primitive
data type, such as integer and float. So the data is referenced not by URL
or address but by tuple. Tuple is shared data in shared space. Tuple are public
accessible by any process running on the tuple space. In this meaning, the process
can run on any of the nodes in the system. The process is executed transparently.

Data is represented by passive tuple. Data carried by tuples are shared. The
tuples are not bounded into any specific node in the system. So the process can
migrate among nodes. This is superior to the other system.

4 Conclusion

The main contribution of the DTuplesHPC is it extending the tuple space model
to the area of peer-to-peer computing. It provides the ability of coordination that
is lacked in the current peer-to-peer framework. This is needed in developing
more sophisticated peer-to-peer applications. Second, it makes tuple space model
an alternative for high performance computing area. Third, it is more scalable
than the other tuple space implementation. The main drawback of DTuplesHPC
is that the active tuple container use threads to execute the task. The different
tasks are not isolated and may influence each other. In future, the DTuplesHPC
will use separate JVM processes to execute the tasks.
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In our opinion, the tuple space model is an ideal model for the peer-to-peer
computing and grid computing for it provides the higher abstraction for the
computation and data. And it decouples the participants in time and space
which is more suitable than the other facilities that currently used in grid and
peer-to-peer system. In the future, the load balancing and fine-granular tasks
schedule will be researched.
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Abstract. In this paper we present the algorithm of a 16-bit hybrid multiplier, 
which can work in two modes. In normal mode, it performs a 16-bit multi-
plication. In SIMD mode, it performs two parallel 8-bit multiplications. The 
proposed algorithm is based on the raix-4 modified Booth’s algorithm. Our 
algorithm generates ten partial products and a modifier, which is five less than 
the other algorithms. We can get one 32-bit product or two 16-bit products by 
directly accumulating the ten partial products and the modifier, easing the 
design of the tree structures for compressing the partial products and the final 
adder. The proposed algorithm is adopted by YHFT-DSP/800, a high perfor-
mance fixed-point DSP. The multiplier was full custom designed in 0.18um 
CMOS technology. We also designed a test chip. The test results show the 
multiplier works well at 400MHz in normal mode, 480MHz in SIMD mode. 
The simulated power is 35.8 mW at 400MHz, and 42.5 mW at 480MHz. 

1   Introduction 

The multiplier is an important kernel of the digital signal processors (DSP) because it 
typically determines the performance of the chips. Different digital signal processing 
algorithms need different data widths. 16-bit data is common for many applications. 
But some image and video processing tasks are well served by 8-bit data [1]. To 
enhance the performance of such multimedia applications, many DSPs provide SIMD 
instructions, in which the specified operation is executed on two (or more) operand 
sets to produce multiple outputs. In general purpose microprocessors, special SIMD 
units are designed to implement SIMD instructions, such as the MMX unit of Pentium 
II [2]. The multiplier often consumes a lot of layout area and power. So it is not 
economical to add a new unit to the embedded DSPs, which is power sensitive. For 
DSPs, a unit that supports both types of operations is more favorable.  

Magnus Själander et al. proposed a twin-precision multiplier[3] which can perform 
one N-bit multiplication or two N/2-bit multiplications in parallel. Magnus’s multi-
plier is based on simple array multiplier. For a 16-bit multiply, there will be 16 partial 
products. While the amount of hardware and delay depends on the number of partial 
products to be added. In this paper, we propose a novel hybrid multiplier algorithm 
which can work in two modes. In normal mode, it can perform a 16-bit multiplication. 
In SIMD mode, it can perform two 8-bit multiplications in parallel. Our multiplier is 
based on the radix-4 modified Booth’s algorithm. For 16-bit hybrid multiplier, there 
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are only ten partial products and a modifier. Our method generates only two more 
partial products than the ordinary 16-bit multiplier, but five less than the multiplier 
presented in [3]. So our algorithm is more efficient in performance, area and power. 

We have organized this paper into three major sections. In Section 2, we introduce 
the algorithm of the 16-bit hybrid multiplier. In Section 3, we present the circuit 
design of YHFT-DSP/800’s multiplier, which adopts the algorithm proposed in this 
paper. Section 4 depicts the design of the test chip and presents the test results. 

2   The Algorithm of the 16-Bit Hybrid Multiplier 

The methods of implementing integer multipliers can reduce to two steps－create a 
group of partial products, then add them to produce the final product. The speed and 
area of the multiplier are proportional to the number of partial products. Modified 
Booth’s algorithm reduces the number of partial products by about a factor of two. 
Furthermore, only simple shifting and complementing are required to produce the 
partial products. So it is widely used in high speed multiplier. In radix-4 Booth’s 
algorithm, the multipliers are divided into overlapping groups of 3 bits. Each group is 
decoded to select a single partial product from the set {-2M, -M, 0, M, 2M}, where M 
is the multiplicand. Fig. 1 shows the dot diagram for a 16×16 multiply using the 
radix-4 version of the algorithm (Booth 2) [4], where Ni refers to the ith bit of the 
multiplier N, SN refers to the sign of N, S=1 indicates the partial product is inverted, E 
is used for sign extensions (Interested readers can refer to [4]). We should point out 
that the sign extensions of the first partial product are different with the others. 

 

Fig. 1. 16 bit Booth 2 multiply 

The algorithm of the 16-bit hybrid multiplier is based on the radix-4 modified 
Booth’s algorithm. This multiplier can work in two modes. In normal mode, it 
operates as an ordinary 16-bit multiplier. The operation is 

 

P[31:0] = M[15:0] × N[15:0] (1) 

P is the output of the multiplier and it is 32-bit wide. When working in SIMD mode, it 
dose two 8-bit multiplications. The operations are 

P[15:0] = M[7:0] × N[7:0] (2) 
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        P[31:16] = M[15:8] × N[15:8] 

The lower 16 bits of P are used to hold the product of lower 8-bit SIMD multiply. The 
higher 16 bits of P are used to hold the product of higher 8-bit SIMD multiply. 

The kernel of the hybrid multiplier is the method we used to generate the ten 
partial products and one modifier. No matter what mode the multiplier works in, if we 
accumulate the ten partial products and the modifier, we will get the correct results. 
Fig. 2 is the block diagram of the circuit that we use to generate the partial products 
and the modifier. M is a 16-bit multiplicand, and N is a 16-bit multiplier. The ten 
partial products are divided into two groups, each of which has a different multi-
plicand, M1 for partial products PP1－PP5, and M2 for PP6－PP10.  

 

Fig. 2. Partial product generation circuit of the hybrid multiplier 

The partial product generation process is illustrated by the use of a dot diagram, as 
shown in Fig.3. The values of SNL、Nx、E1、E2 , and E3 in Fig. 3 depend on the 
multiplier’s work mode. In the hybrid multiplier, we use the same algorithm to 
produce a partial product as in Fig. 1. If the multiplicand and the 3-bit multiplier 
group are the same, the generated partial products should be the same. We’ll use this 
guideline to compare different partial products in the rest of this section. 

 

Fig. 3. Partial products of the hybrid multiplier 

Now, let’s see how the hybrid multiplier works in normal Mode. First, we assume 
the multiplicand and the multiplier in Fig. 1 are equal to those in Fig. 3. Second, we’ll 
let SNL = N7. So the multiplier group of PP5 is {N7, N7, N7}, and PP5 is 0. Next we 
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will make M1 = M. Now PP1－PP4 in Fig. 3 will be the same as PP1－PP4 in Fig. 
1. Then, we let M2 = M, Nx = N8, E1 = E, E2 = 1, E3=0. Now PP6－PP10 in Fig. 3 
will be equal to PP5－PP9 in Fig. 1 respectively. If we add the ten partial products in 
Fig3, we will get the same result as in Fig. 1. Namely a 16-bit multiply is performed. 

Next, we will show how this multiplier can perform two 8-bit multiplies. In SIMD 
mode, we’ll initialize SNL with the sign of the lower 8-bit multiplier. So PP1－PP5 are 

the partial products of M1×N[7:0]. Then let Nx=0，E1 = E ， E2 = E ， E3=E. 

Now PP6－PP10 are the partial products of M2×N[15:8]. Namely , the hybrid 
multiplier can be viewed as two 16×8 multipliers.  

The dot products in Fig. 3 are divided into four regions. The effective result of the 
lower 8-bit multiply is generated by the dot products in Region I. The effective dot 
products of the higher 8-bit multiply locate in Region IV. We want to get two 16-bit 
products by simply accumulating the ten partial products. We must assure the dot 
products in Region II will not affect the result of the lower 8-bit multiply, and the dot 
products in Region I, II , and III will not affect the result of the higher 8-bit multiply. 

If we set M2 = {M[15:8]，8’b0}, the sum of PP6－PP10 is the product of  

P2 = {M[15:8]，8’b0} × N[15:8] (3) 

The lower 8 bits of P2 will be all 0s. Namely the sum of the dot products in Region II 
is 0. So the dot products in Region II don’t affect the result of the lower 8-bit SIMD 
multiply. The higher 16-bit of P2 is the product of the higher 8-bit SIMD multiply. 

 

Fig. 4. Partial products of the lower 8-bit SIMD multiply using a 16-bit multiplier 

Now we’ll generate the partial products of the lower 8-bit SIMD multiply by 
means of an ordinary 16-bit multiplier shown in Fig. 1. The method is  

P3 ={8’bSML, M[7:0] }×{8’bSNL, N[7:0] } (4) 

SML in (4) is the sign of the lower 8-bit multiplicand, while SNL is the sign of the lower 
8-bit multiplier. The generated partial products are shown in Fig. 4. The lower 16-bit 
of P3 are the product of the lower 8-bit multiply. While the higher 16-bit of P3 are all 
signs. S=0 if the product is positive. Otherwise S=1. Then we’ll go back to PP1-PP5. 

If we let M1={8’bSML, M[7:0] }, the sum of PP1－PP5 will be equal to the sum of 
the dot products in Region I of Fig.4. Let P1 be the sum of PP1－PP5. The difference 
between P1 and P3 is 32'hfe00_0000. If we add 32'hfe00_0000 to P1 when the 
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product of the lower 8-bit SIMD multiply is positive, or add 32'hfe01_0000 to P1 
when the product of the lower 8-bit SIMD multiply is negative, the higher 16 bits of 
P1 will be all 0s. Namely the sum of PP1－PP5 will have no effect on the higher 16 
bits of the result. Actually, we only need to add 16'hfe00 or 16'hfe01 to the higher 16 
bits of the result. We call the value added a modifier. Now if we add the 10 partial 
products and the modifier together, we will get the products of two 8-bit multiplies. 

We summarize the algorithm of the 16-bit hybrid multiplier in Table.1. In our 
algorithm, except the sign extensions of PP6, there is no modification to the Booth’s 
algorithm. Our work focuses on changing the inputs to the Booth encoders and the 
circuits that produce a partial product. The modifier is the key to our algorithm. We 
can get one 32-bit or two 16-bit products by simply adding them together, easing the 
design of the tree structures for compressing the partial products and the final adder. 
Compared to the ordinary 16-bit multiplier, our algorithm produces one more partial 
product and one more modifier. Other penalties include the configuration circuits of 
the two multiplicands and several bits in the inputs to the Booth encoders.  

Table 1. Summary of the 16-bit hybrid multiplier’s algorithm 

 Normal Mode SIMD Mode 
M1[15:0] M[15:0] {8’b SNL, M[7:0]} 
M2[15:0] M[15:0] {M[15:8], 8’b0} 
SNL N8 the sign of the lower 8-bit multiplier 

Nx N8 0 

{E3, E2, E1} {0, 1, E} {E, E , E } 

Modifier 0 16'hfe00 or 16'hfe01 

The algorithm introduced in this section can also be extended to other word width. 
We have implemented a more complex 32-bit hybrid multiplier which can perform 
one 32-bit multiply, or two parallel 16-bit multiplies, or four parallel 8-bit multiplies.  

3   Design Implementation 

The algorithm presented in this paper is adopted by the multiplier unit of YHFT-
DSP/800 [5]. YHFT-DSP/800 is designed in a cell based approach, and its maximum 
frequency is 250MHz. The test of the chip shows our algorithm is correct.  

 

Fig. 5. Multiply pipeline of YHFT-DSP/800 
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To get higher performance, we redesigned the multiplier in 0.18um CMOS tech-
nology by full custom design. Multiply pipeline of YHFT-DSP/800 consists of two 
stages [6], as shown in Fig. 5. The first stage generates all partial products and the 
modifier, then compresses them into two 32-bit data. The second stage adds the two 
32-bit data to produce the final product.  

Only static complementary CMOS logic and pass transistor logic are used in the 
circuit. Tree structures for compressing the partial products are the most critical and 
complex part in the multiplier. We designed a tree consists of two stages of 4-2 
compressor, one stage of 3-2 compressor [6]. All 8-bit operands of YHFT-DSP/800 
are unsigned, so the modifier in SIMD mode is 16'hfe00. Only the higher 8 bits are 
effective. We spread them into the empty positions in the highest 8 columns of the dot 
products. So the partial products needed to be compressed in a column are no more 
than 10. In the layout design, all Booth encoders are located on one side of the tree 
structures, as shown in Fig. 6. The partial product generation circuits are near to their 
compressor to reduce the wire length and the needed route channels.  

The adder in stage two is a 32-bit Han-Carlson adder [7, 8]. Han-Carlson adder is a 
parallel prefix adder with good balance between logic depth and fanout. 32-bit Han-
Carlson adder consists of seven logic stages, one stage of P/G generation, 5 stages of 
carry propagation, and the final stage of sum. To reduce the input load, we insert one 
stage of inverter between the third and fourth stage of logic. The input load is reduced 
by 66% and the area is reduced by 30%, while the delay increase is 8% [9]. 

The multiplier consists of 13,444 transistors. The size of the multiplier is 
400um×160um. The layout is shown in Fig. 6, with the test circuitry included. 

 

Fig. 6.  Micrograph of the test chip 

4   Test Strategy 

To test the full custom multiplier, we designed a test chip. To avoid the expensive 
cost of high frequency package and test, we proposed a low cost, flexible test strategy. 
The basic idea of our test strategy is to use two scan chains to load the test vectors and 
scan out the results serially. The input scan chain has 37 registers, as much as the 
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multiplier’s input latches. The output scan chain consists of two levels of registers. 
The first level is used to capture the outputs of the multiplier, while the second level is 
used to scan out the result. The two scan chains worked at low speed. To capture the 
multiplier’s high frequency characteristics, we preciously designed the enable pulse 
generation circuitry. 

The multiplier’s clock, clk, is generated by four on-chip ring oscillators. We can 
select clk from these four on-chip clocks and an external clock by three clock select 
pins. In order to know the real frequency of the multiplier, an output pin, ClockOut, is 
used to output the clk divided by 8. 

Fig. 6 is the micrograph of the test chip. The package type is DIP24.We designed a 
test board to test the chip. The test condition is Vdd = 1.8V, room temperature. When 
we selected the external 27MHz clock as the multiplier’s clock, the measured 
frequency of ClockOut was 3.45MHz. It showed the frequency-divide circuits worked 
well. Then we tested the chip in SIMD mode and normal mode respectively for each 
of the four on-chip clocks. In every mode, we tested 128 vectors. The test results are 
listed in Table 2. The multiplier can work at 400MHz in normal mode, 480MHz in 
SIMD mode. Because the period of the on-chip clock is fixed, we couldn’t get more 
accurate frequencies. But we can say the real performance of the multiplier is better. 
The simulated power was 35.8 mW at 400 MHz, 42.5 mW at 480MHz. 

Table 2. Test results of the test chip 

ClockOut(MHz) clk(MHz) Normal Mode SIMD Mode 
37.2 300 succeeded succeeded 
43.8 350 succeeded succeeded 
50.6 400 succeeded succeeded 
59.4 480 failed succeeded 

5   Conclusion 

This paper presents the algorithm of a 16-bit hybrid multiplier which can work in 
normal mode or SIMD mode. This algorithm generates ten partial products and a 
modifier. We can add them to produce the results of a 16-bit multiplication or two 8-bit 
multiplications. Compared to other similar researches, our algorithm produces less 
partial products. So it is more area and delay efficient. We implemented the algorithm 
by full custom design. The test results show our algorithm has the potential to achieve 
high frequency and low power. The proposed test strategy is very efficient to test hard 
macros. It avoids expensive packages and test equipments. What’s more, we can locate 
the test vector that the chip fails. So it can help the designers to improve the design.  
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Abstract. Memory wall is always the focus of computer architecture
research. In this paper, we observe that in computers with write-back
cache, memory write operation actually lags behind write instruction
commitment. By the time memory write operation executes, the data
might already have gone out of its live range. Based on this observation,
a novel Cache architecture called LIve Range Aware Cache (LIRAC) is
proposed. LIRAC can significantly reduce the number of write opera-
tions with minimal hardware support. Performance benefits of LIRAC
are evaluated by trace-based analysis using simplescalar simulator and
SPEC CPU 2000 benchmarks. Our results show that LIRAC can elimi-
nate 21% of write operations on average and up to 85% in the best case.

Keywords: Live Range, Cache, Memory Hierarchy.

1 Introduction

One of the most important problems in computer architecture discipline is Mem-
ory wall. While Processor follows the well-known Moore’s law, doubling its per-
formance every 18-24 months, the speed of memory access grows about 7% every
year. Memory Access is the bottleneck of the whole computer system.

We notice that when scratch data is cached in write-back cache, it is un-
necessary to write back cached data when the modified data is swapped out,
since the modified data will no longer be read again. However, existing cache
architectures cannot effectively take advantage of this observation. In this paper,
we explicitly distinguish writes in processor domain and memory domain, and
further propose LIve Range Aware Cache (LIRAC). LIRAC focuses on reducing
the number of write-back operations, and does not affect read operations. With
write operations decreased, LIRAC can reduce both execution time and energy.

The live range of register has been studied by previous research. In [1],
Franklin and Sohi studied the lifetime of register instances and concluded that
many registers were short-lived. Efforts have been made to reduce register com-
mitments in superscalar processors to ease the pressure of register allocation and
save energy [2],[3],[4],[5]. This paper studies the live range of memory address and
focuses on reducing memory write operations. Compared with previous register
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live range analysis, memory optimization is more important because memory
access is far more expensive than register access.

Trace-based simulation is used to evaluate the result of LIRAC. Simulation
result shows that LIRAC can reduce 21% of write operations on the average and
up to 85% in the best case.

The rest of this paper is organized as follows. Section 2 describes the architec-
ture of LIRAC. Section 3 presents methodology and simulation results of LIRAC
architecture. We conclude in Section 4.

2 Live Range Aware Cache Architecture

2.1 Write in Processor and Memory Domain

We observe that there are two types of writes in a computer system, writes
in processor domain (Wp) and writes in memory domain (Wm). Wp refers to
write instructions committed by processor and Wm refers to write operations
performed to memory (e.g. cache write-back). In computers without buffering
technology, Wp and Wm are exactly the same. However, in computers with
buffering technology, both the occurrence and sequence of Wp and Wm may be
different, as shown in Fig. 1.

Fig. 1. Writes in Processor and Memory Domain

Fig. 1 shows the assembly code of an example program. The first instruction
writes R1 to memory address ADDR0. The value is temporally saved in cache
and not written to memory. At this time, cache and memory are incoherent.
Cache holds the current value while memory holds the stale value. The following
two instructions write R2 to ADDR1 and R3 to ADDR0 respectively. Up till this
time, all values are buffered in the write-back cache and no actual memory write
operation has occurred. The fourth instruction reads memory address ADDR1,
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which is different from ADDR1 but mapped to the same cache location. The
cache line containing ADDR1 is swapped out and replaced by the new line. At
this time, the dirty cache line containing ADDR1 is written back to memory.
Similar operation happens when the fifth instruction is executed.

Wp and Wm of ADDR0/ADDR1 are shown in the figure. From the figure,
we can tell that both the occurrence and sequence of Wp and Wm are different.

For a given address, Wm always lags behind Wp. Wp is the inherent property
of software. Given a program, the occurrence and sequence of Wp is fixed, so the
number of Wp cannot be reduced. On the other hand, Wm is determined by both
software and hardware. A program may generate different Wm sequences with
different memory hierarchy. This paper focuses on how to reduce the number of
Wm.

2.2 Live Range and Dead Range

To reduce Wm, the purpose of Wm is reexamined first. A write operation is
useful only if the memory address might be read again. If a write operation is
definitely followed by another write operation to the same memory address, then
the first write becomes useless.

Fig. 2. Live Range and Dead Range

Fig. 2 shows a sequence of instructions. The first instruction writes R1 to
ADDR0. If it is executed on a computer with no write-back caches, the value
must be written to memory to ensure correctness. If the program is executed on
a computer with write-back cache, the value can be buffered in cache temporally.
Thereafter the second instruction reads the value from cache. In conventional
write-back cache, when the fourth instruction is executed, the dirty cache line
containing ADDR0 will be swapped out and written back to memory. Nonethe-
less, if we can know in advance that the next memory access to ADDR0 is



412 P. Li et al.

definitely write, as shown in the figure, we can discard the dirty line without
writing it back to memory. This observation can be used to reduce Wm.

To achieve this, the live range and dead range of a memory address are defined.
The word ”Live Range” is borrowed from compiler technology. Here we define
the live range and dead range of a memory address. The live range of a memory
address is from a write of the memory address to the last read of the address
before another write of the same address. Similarly, the dead range of a memory
address is from the last read of the memory address to the next write of the
address. The definitions are also illustrated in Fig. 2.

2.3 Architecture of LIRAC

In conventional write-back cache, a cache line will be written back to mem-
ory if the data has been modified. But, in our proposed LIRAC architecture, a
cache line is written back to memory if the data has been modified AND the
modified address is in its live range. In other words, when the data is in its
dead range at eviction, nothing will be written back regardless of the dirty flag.
LIRAC architecture does not change the replacement policy of cache, nor does it
change read operations. Compared with conventional write-back cache, LIRAC
can significantly reduce the number of write operations with minimal hardware
support.

Fig. 3. Cache State Transition Graph

Fig. 3(a) shows the state transition graph of a cache line in conventional write-
back cache. There are three states: NP, S0 and S1. NP stands for ”Not Present”,
indicating that the address is not located in cache. S0 indicates that the address
is in cache and it is clean. S1 indicates that the address is in cache and it is dirty.
Three operations, R, W and P, can act on these states. R, W and P stands for
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read, write and replace operation to the address respectively. If operation P acts
on the state S0, the cache line is just replaced and not written back to memory.
If P acts on the S1, the cache line is written back to memory before replaced by
another cache line.

Fig. 3(b)shows the state transition of a cache line in a LIRAC system. A new
operation, LR, is added to indicate the LastRead instruction mentioned above.
LR acts similarly to normal read operation except on state M. If LR acts on M,
the next state is S because the live range of the given address ends. In other
words, if a cache line in dead range is replaced by others, it is simply thrown
away rather than written back to main memory. With the additional transition,
the number of Wm can be reduced.

3 Performance Evaluation

In this paper, we use memory tracing to evaluate the benefit of LIRAC. First
run the program and record all memory access information, then, analyze the
traces to find the live range of each memory address. Tracing is fairly simple
to implement, but it is not a realistic approach. Trace studies depend on many
factors such as program input and thus is unreliable. Moreover, trace analysis
is an oracle heuristics approach (i.e. perfect branch prediction, perfect memory
disambiguation, etc.) and thus the result can only be used as an upper bound of
practical approach (e.g. compiler analysis or binary transformation). However,
the result of trace analysis can be helpful to compiler analysis and binary trans-
formation. Since trace analysis is simple, we use this method in this paper to
evaluate the performance of LIRAC architecture.

Memory trace simulation contains three steps: trace generation, trace analysis
and trace execution. 3 multimedia applications(MPEG Decode, MPEG Encode
and H.264 Decode) and 10 SPEC 2000 applications are selected to evaluate the
performance of LIRAC architecture. All benchmarks are compiled with ”-O2”
option.

Simplescalar simulator [6] is used to generate traces. Trace generation is to
get memory access sequence in processor domain, so sim-fast mode is selected
because no detailed hardware implementation is necessary. Each trace item con-
tains three fields: memory access type, memory access address and instruction
address. The size of the generated trace files are huge. For example, running gcc
in test mode will generate a trace file larger than 5GB. To save disk space and
simulation time, scaled inputs instead of standard inputs are used in some bench-
marks including gcc, gzip, and bzip2. Sampling technique is not used because
accurate live range information is not available in sampled traces.

Trace analysis is used to find live range of every memory address. The algo-
rithm is sketched in Fig. 4. Live structure is a hash map with address as key
and trace number as value. It is used to track the last live read. Trace file is fed
to trace analyzer sequentially. For a read trace item, Live structure is updated;
for a write item, trace analyzer will look up Live structure and mark previously
recoded read as LastRead.
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Fig. 4. Algorithm for Trace Analysis

In trace execution, both the original trace and optimized trace are run on a
trace simulator to evaluate the effect of LIRAC architecture. Dinero IV simula-
tor [7] is a fast, highly configurable trace-driven cache simulator developed by
Wisconsin University. It supports multi-level cache, different replacement policy
and sub-block organization. Less than 10 lines are modified to support LIRAC
architecture in Dinero IV simulator.

Baseline structure in our experiment is 4-way associative, write-back, write-
alloc data cache. The replacement policy is LRU.

Fig. 5. Reduction of Wm using LIRAC architecture

Simulation results are shown in Fig. 5. For each benchmark, there are 6 bars,
respectively for cache sizes 1KB, 4KB, 16KB, 64KB, 256KB and 1MB. The
height of each bar shows the ratio of writes in LIRAC to writes in baseline
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conventional cache(i.e. the shorter the better). From the figure, we can see that
LIRAC can reduce 21% memory writes on average and up to 85% in the best
case.

4 Conclusion

In this paper, we explicitly distinguished two kinds of writes: write in processor
domain (Wp) and writes in memory domain (Wm) and defined live range and
dead range of a memory location. Based on this we proposed the architecture of
LIve Range Aware Cache (LIRAC) Simulation results show that the potential
benefit of LIRAC can be great. This is only an initial result for Live Range Aware
Memory Hierarchy study. While the initial results are promising, a lot more work
needs to be done. In the future, we plan to modify compiler implementation to
support LIRAC architecture.

Acknowledgments. We would like to thank the anonymous reviewers for their
valuable feedback. This material is based on work supported by Funded by Basic
Research Foundation of Tsinghua National Laboratory for Information Science
and Technology (TNList) and Intel China Research Center.

References

1. Manoj Franklin and Gurindar S. Sohi, ”Register Traffic Analysis for Streamlining
Inter-Operation Communication in Fine-Grain Parallel Processors”, Proceedings of
25th International Symposium on Microarchitecture, 1992, 236–245.

2. Luis A. Lozano C. and Guang R. Gao, ”Exploiting Short-Lived Variables in Super-
scalar Processors”, Proceedings of 28th International Symposium on Microarchitec-
ture, 1995, 292–302.

3. Guillermo Savransky, Ronny Ronen and Antonio Gonzalez, ”A Power Aware Regis-
ter Management Mechanism”. International Journal of Parallel Programming, Vol-
ume 31, Issue 6, December 2003, 451–467.

4. Dmitry Ponomarev, Gurhan Kucuk, Ponomarev, Oguz Ergin and Kanad Ghose,
”Isolating Short-Lived Operands for Energy Reduction”, IEEE Transaction on Com-
puters, Vol. 53, No. 6, June 2004, 697–709.

5. Milo M. Martin, Amir Roth, and Charles N. Fischer, ”Exploiting Dead Value Infor-
mation”. Proceedings of 30th International Symposium on Microarchitecture, 1997,
125–135.

6. Todd Austin, Eric Larson and Dan Ernst, ”SimpleScalar: An Infrastructure for
Computer System Modeling”, IEEE Computer 35(2), 2002, 59–67.

7. Jan Edler and Mark D. Hill, ”Dinero IV Trace-Driven Uniprocessor Cache Simula-
tor”, http://www.cs.wisc.edu/ markhill/DineroIV, 2003.



The Challenges of Efficient Code-Generation for
Massively Parallel Architectures

Jason M McGuiness1, Colin Egan1, Bruce Christianson1, and Guang Gao2

1 Department of Compiler Technology and Computer Architecture, University of
Hertfordshire, Hatfield, Hertfordshire, U.K. AL10 9AB

c.egan@herts.ac.uk
2 CAPSL, University of Delaware, Delaware, U.S.A.

g.gao@capsl.udel.edu

Abstract. Overcoming the memory wall [15] may be achieved by in-
creasing the bandwidth and reducing the latency of the processor to
memory connection, for example by implementing Cellular architectures,
such as the IBM Cyclops. Such massively parallel architectures have so-
phisticated memory models. In this paper we used DIMES (the Delaware
Iterative Multiprocessor Emulation System), developed by CAPSL at
the University of Delaware, as a hardware evaluation tool for cellular
architectures. The authors contend that there is an open question re-
garding the potential, ideal approach to parallelism from the program-
mer’s perspective. For example, at language-level such as UPC or HPF,
or using trace-scheduling, or at a library-level, for example OpenMP or
POSIX-threads. To investigate this, we have chosen to use a threaded
Mandelbrot-set generator with a work-stealing algorithm to evaluate the
DIMES cthread programming model for writing a simple multi-threaded
program.

1 Introduction

Integrating the processing logic and memory [2], termed PIM, is an approach
to overcome the memory wall [15]. PIM architectures may improve both data-
processing and data-access times, but the combined processor speed and the
amount of memory may be reduced [2]. This may be overcome by connecting
multiple, independent PIM cells, giving a cellular architecture. In this organisa-
tion, every thread unit is an independent single-issue, in-order processor, thus
able to potentially access memory independently. Moreover, the different mem-
ory hierarchies may have different access timings and consistency models such as
location consistency [7]. This gives rise to a number of code-generation problems,
centred around the fact that to provide computational power, these systems are
not only massively parallel, but have complex memory hierarchies.

Research also proceeded towards thread-generating compilers, for example,
HPF and UPC [9], IBM XL Fortran and Visual Age C/C++, largely based
upon OpenMP, all of which have their compromises. Some of these also have
support for the various memory models.
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Unfortunately general-purpose languages have been slow to adopt a sophis-
ticated abstraction of the machine model, library-based approaches have devel-
oped, for example, the various implementations of OpenMP. But, the authors
contend that library-based solutions to threading are too dependent upon the
programmer to use effectively. For example, the explicit use of locks in programs
is prone to error, with deadlocks and race-conditions that are hard to track down
easily, introduced, even on systems with only a few processors. The development
of suitable tools to debug multi-threaded applications has also been slow. De-
buggers are in development, for example for Cyclops [8], but there have been
too few, with limited functionality.

As identifying parallelism both correctly and efficiently is very hard for the
programmer to do, the authors contend that they should not do it. The compiler,
equipped via these libraries with a detailed machine-model, could be able to use
the programmer-identified parallelize-able variables and functions, to generate
more efficient code. The authors identified little work investigating the software
aspect of the code-generation problem for massively-parallel architectures. Un-
fortunately, if this case would continue, this shortcoming could adversely affect
the popularity of such systems and maintain the perception that massively paral-
lel architectures are too specialised and thus too expensive to be of more general
use. Given the popularity of introducing multi-core processors, this position is
set to become even more untenable.

2 Related Work

2.1 The Programming Models: From Compiler to Libraries

With such compute bandwidth, and parallelism, a number of problems for the
programmer have been raised, primarily these are focused on the problems of
memory reads and writes. Super-scalar chips have had mechanisms to hide these
problems from the programmer, but the cellular architectures of such chips as
picoChip [6] and IBM BlueGene/C [1] do not. Thus the programmer needs to
know how memory reads and writes interact with:

– the software-controlled data-cache attached to that pipeline,
– the software-controlled data-cache of other on-chip pipelines,
– any global on-chip memory,
– the software controlled data-caches of other off-chip pipelines,
– the global on-chip memory that is on any other chips,
– any global memory that is not on any chip
– and finally, given the massive parallelism available, how to make efficient use

of it.

For a programmer, the memory access models are important to understand,
or to have a library or compiler that hides the details from the applications
programmer. In the remainder of the paper the authors will focus on the IBM
BlueGene/C architecture, and a prototype implementation of it called Cyclops
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[2,4], that was implemented at CAPSL at the University of Delaware in col-
laboration with the University of Hertfordshire. The Cyclops architecture was
prototyped in hardware, called DIMES/P, [14] which was used as the platform
for executing the programming example, described later in this paper. In the
following sections the memory access models will be discussed, leading on to
a presentation of the authors’ experience in developing a program for such an
architecture. The experience gained from this will allow the authors to discuss
the major problems that were faced, how, if at all, they were overcome, and the
outstanding problem domains that, in the authors’ experience, would hinder the
acceptance of multi-core chips and, moreover such massively parallel designs as
IBM BlueGene/C.

2.2 Programming Models on Cellular Architectures

The hardware differences between cellular and super-scalar architectures indicate
that different programming models, to those used for super-scalar architectures,
are required to make effective use of the cellular architectures [7,8]. In the first
two of those three papers, their authors propose the use of a combination of
execution models and memory models, as already noted in this paper.

The primary concerns when programming DIMES/P, and thus any Cyclops-
based architecture, were:

– How to manage the potentially large numbers of threads.
– How to easily express any parallelism within the input source-code.
– How to make correct, and most effective use, of the memory consistency

models.

Some research has already been done regarding programming models for the
threading, such as using thread percolation as a technique to perform dyna-
mic load-balancing [10]. Another piece of research [3] investigated using multi-
level scheduling-schemes: a work-stealing algorithm at the higher-level and a
multi-threading technique at the lower-level to hide communication latencies.
Alternatively there is research [13] into how to implement OpenMP efficiently
on cellular architectures such as IBM BlueGene/C.

3 Programming for Cyclops - cthreads

This section will very briefly describe the cthread programming model, which is
an early version of TNT [5,8], then how it was used to implement the program-
ming example, followed by a discussion of the implementation.

The implementation of the memory consistency models was relatively sim-
ple: earlier, unpublished, work on the GCC-based compiler had implemented a
simple algorithm: all static variables were stored in on-chip memory, and the
function call stack, including all automatic variables was placed in the scratch-
pad memory.
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As there was no language-level support for thread management, a library
had to be implemented to support the thread management instructions in the
Cyclops ISA, which was used as the basis for creating a higher-level C++ ab-
straction. This was because the cthread implementation, that closely followed
a POSIX-Threads API, was considered far too primitive by the authors to be
effectively used for programming Cyclops. This C++ API also included critical-
section, mutex and event objects to allow for easier management of the lower-
level objects.

To test these ideas, and the Cyclops architecture, a small, simple and em-
barrassingly parallel program to generate Mandelbrot sets [12] was created. In
the following sections a brief overview of how this how this program may be
implementation for DIMES/P.

3.1 Threading and the Mandelbrot Set

Due to the properties of DIMES/P, alternative techniques were not possible, as
there are only 8 thread units between two processors. In this implementation,
the complex plane was divided into a series of horizontal strips. Those strips may
be calculated independently of each other, using separate threads, implemented
as algorithm 1.

Algorithm 1. The render-thread algorithm.
1. Set the value of m, the maximum iterations, greater than zero. Set the estimated completion-

time, t, to ∞.
2. Set c = x, where x is the top-left of the strip to be rendered.
3. Initialise n = 0, z0 = 0.

(a) Execute zn+1 = z2
n + c.

(b) Increment n.
(c) If | zn |≥ 2 then that c is not in the set of points which comprise the Mandelbrot set. Go

to 4.
(d) If n > m then that c is in the Mandelbrot set, i.e. c ⊂ M . Go to 4.
(e) Go to 3a.

4. Increment the real part of c. If the real part of c is less than the width of the strip to be
rendered, go to 3.

5. Calculate the average of t and the time it took to render that line.
6. Set the real part of c to the left-hand of the strip. Increment the complex part of c. If the

complex part of c is less than the height of the strip, go to 3.
7. Signal work completed, set t = 0 (thus this thread is guaranteed not to be selected by the

work-stealing algorithm 2).
8. Suspend.

However, each strip will, in general, take a different amount of time to com-
plete, thus the threads would have completed their assigned portion of work at
different times. Thus a work-stealing algorithm 2 performed the load-balancing
between the threads.

The bandwidth of the work-stealing thread, algorithm 2, limited scaling to more
worker threads, algorithm 1. But algorithm 2 would able to tolerate failures: if a
worker thread stopped responding, its work would have been eventually stolen.
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Algorithm 2. The work-stealing algorithm.
1. Monitor render threads for a work-completed signal. That thread that completes we shall denote

as Tc.
2. Find that render thread with the longest estimated completion-time, t, note that each render

thread updates this time upon completion of a line. Call this thread Tl.
3. Stop Tl when it completes the current line it is rendering.
4. Split the remaining work to be done in the strip equally between the two render threads Tc and

Tl.
5. Restart the render threads Tc and Tl.
6. Go to 1.

If robustness is not required, then the image generated may be viewed as an
array values. Each of these values would be the classification of c. Thus if one
has p0...q threads, each pn thread initially classifies a point in the array offset
by n, and once completed, would move along the array using a stride of q. This
would allow the use of a number of threads that is bounded by the number of
points within the image.

3.2 DIMES/P Implementation of the Mandelbrot-Set Application

In cthreads, each software thread was statically allocated to one of the 8 hardware
thread-units in DIMES/P at program start-up. The software threads were:

1. The a thread was required for cthreads support and the debugger [8], if it
were to be run.

2. The main loop of the Mandelbrot-set application.
3. The thread that executed the work-stealing algorithm 2. In principle, a wor-

ker thread could also run on this thread unit, but cthreads did not support
virtual threads.

4. The remaining 5 threads were worker threads that executed algorithm 1.

Further details regarding the implementation may be found in [11].

4 Discussion

The limitations of DIMES/P prevented further study of the properties of this
program: scalability and timings were not done because of the limited number
of thread units (8) and memory capacity.

The memory model support, using the C/C++ keyword static by the com-
piler, made natural use of language-level syntax to map data into scratch-pad
and on-chip memory made using these different memory models. The atomic,
word-sized, memory-operations on Cyclops were not used for this problem, be-
cause of the multiple, read-modify-write operations that had to be maintained
as an atomic unit. If the manual locking had been implemented within the com-
piler, then it may have been possible for the compiler to perform optimization
on the locking of access to the data.

With regards to the thread library: in the opinion of the author’s, the complex-
ity of POSIX-Threads has been a hindrance to successful multi-thread program
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creation. Abstracting the algorithms that expressed the parallelism within the
Mandelbrot program, for example the work-stealing algorithm, was not imple-
mented for this paper, as this was considered to be potentially too closely coupled
to the actual program in question. Ultimately this decision, in the authors’ opin-
ion, was flawed, and by extracting and abstracting the work-stealing algorithm
from both the program and Cyclops, would have allowed a programmer to reuse
that algorithm with other programs, thus separating the design of the parallelism
from the details of the program that would wish to use it.

It is still an open question regarding what may be the ideal approach to paral-
lelism: language-level support such as UPC, HPF or other language extensions,
or within the compiler using trace-scheduling, or should it be at a library-level
using, for example OpenMP or POSIX-Threads, or should it be within the ar-
chitecture, such as the data-flow design. If programs more sophisticated than the
one described in this paper are to be successfully written for these cellular ar-
chitectures, then based upon this brief examination, it is the authors’ contention
that it would be highly advantageous to have:

– Compiler support for making use of any available the memory model of the
architecture.

– Compiler support for locking, which would aid the programmer with writing
code that avoids race-conditions.

– Reusable abstractions of techniques of implementing parallelism, such as
work-stealing, or master-slave models. These abstractions could make use
of both data and code locality to ensure that a thread unit re-executes the
same code, if desirable.
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Abstract. The systolic array paradigm has low communication demand
because it does not use costly global communication and each processor
communicates with few other processors. It is thus suitable to be used
in cluster computing. The systolic approach, however, is vulnerable in a
heterogeneous environment where machines perform differently. In this
paper we propose a redundant systolic solution with high-availability to
deal with this problem. We analyze the overhead that results from the
need to coordinate the actions of the redundant processors and show that
this overhead is worth the performance improvement it provides.

Keywords: cluster computing, heterogeneity, redundancy, high-avail-
ability.

1 Introduction

Since the early eighties, systolic arrays have been proposed to implement numer-
ically intensive applications, e.g. image and signal processing operations such as
the discrete Fourier transform, product of matrices, matrix inversion, etc. for
VLSI implementation on silicon chips [3]. Given a sequential algorithm specified
as nested loops, more formally as a system of uniform recurrence equations, de-
pendence transformation methods [4,5,6] map the specified computation into a
time-processor space domain that can be mapped onto a systolic array.

One nice property of a systolic algorithm is that each processor communi-
cates only with a few other processors. It is thus suitable for implementation on
a cluster of computers in which we wish to avoid costly global communication
operations. A recent work [2] explores the systolic array paradigm in cluster
computing. This approach, however, is not adequate in a heterogeneous environ-
ment where the performance of the computers may vary along time. Since the
systolic structure is based on tightly-coupled connections, the existence of one
single slow processor can compromise and degrade the overall performance. In
this paper we propose a solution based on redundancy to deal with this problem.
There are many techniques for dependable computing based on check-pointing
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and roll-back recovery [7]. The redundant approach is simple but we introduce
some overhead to coordinate the actions of the redundant processors. We show
that this overhead is worth the performance improvement it provides. The ex-
perimental results show that the incurred overhead is small compared to the
overall performance we get over the non-redundant solution.

2 Matrix Multiplication Example

In [2] we use the systolic array structure to solve two basic problems: matrix
product and alignment of two strings. We now use the matrix product example
to illustrate the redundancy method. Given two n × n input matrices A and B,
we wish to compute matrix C = AB. The basic systolic matrix multiplication
algorithm is shown in Figure 1. For matrices of size n×n, the number of proces-
sors p used is n2. The input elements of A and B enter the systolic array and
move across the array while elements of the product C remain in the processors.

To implement this systolic algorithm on a cluster, synchronization can be
implemented by using non-blocking sends and blocking receives. However, as
observed in [2], the basic systolic algorithm is not suitable for cluster computing
because of the fine granularity and the large number of processors required. To
make the granularity coarser we consider sub-matrices instead of single elements
in the basic algorithm. Assume the number of processors is P = p×p and assume
also n divides p. We can view the product of two n × n matrices as multiplying
two p × p matrices whose elements are n/p × n/p sub-matrices.

� �+ = + = + =
× × ×

� �+ = + = + =
× × ×

� �+ = + = + =
× × ×

� � �

� � �
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b13

b23

b33

Fig. 1. Basic systolic matrix multiplication algorithm

3 Use of Redundancy

The redundancy approach to deal with heterogeneity is relatively straightforward
but nonetheless promising in terms of the results obtained. For this approach to
be feasible, we rely on the abundance of computing resources in the cluster. One
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Fig. 2. Redundant systolic structure with degree of redundancy = 2

issue that needs to be addressed is how we employ redundancy. Another issue
is that the use of redundancy may incur in overhead and we need to investigate
the influence of this overhead on the overall performance.

Assume we want to implement a parallel systolic algorithm that requires p
processors. To implement this algorithm, we use kp processors, where k is a small
integer. To facilitate the presentation, we use k = 2. We first define a few terms.
A redundancy group is a collection of processors that execute the same compu-
tation, with the same input data and produce the same output. The number of
processors in each redundancy group is called the degree of redundancy. For sim-
plicity, we assume the same degree of redundancy for all the redundancy groups.
For each redundancy group of degree k, identify each processor of the group by
the label h, where 0 ≤ h < k. With this, we denote by redundancy layer h the
collection of processors with label h. We use the term bad processor to denote a
processor that out-stands negatively in terms of available capability to process
the given application. Similarly, we denote by good processor the processor that
out-stands in the group positively in performance.

The proposed redundant structure will be composed by copies of the origi-
nal systolic array by adding, if necessary, communication channels among the
redundancy layers, as shown in Figure 2.

Fig. 3. Replicated independent systolic arrays

A straightforward way to employ redundancy is merely to have k copies of
the original systolic structure and perform computation in each redundancy
layer independently (see Figure 3). Whichever redundancy layer finishes first
would report the desired result. There is practically no overhead incurred. Note,
however, the existence of one bad processor in a redundancy layer determines
the bad performance of the entire layer.
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The above discussion motivates the definition of the bad performance proba-
bility of the redundant system. Given a redundant systolic structure of degree of
redundancy k and total of kp processors in each redundant layer of p processors,
and given the existence of m bad processors, the bad performance probability is
the probability of the redundant system to perform poorly due to the influence
of at least one of the m bad processor. To compute this probability, consider
k urns each with p balls. Given that a total of m balls are red (bad), it is the
probability of all the urns having at least one red ball.

Fig. 4. Communication phase in the redundancy layers (left) and computation phase
in the redundancy groups (right)

Alternatively, we can employ redundancy in each of the processors of the
original systolic array (see Figure 4). In the original systolic algorithm each
processor repeats three phases: data input from neighbor processors, computation
of the received data, and output of computed data to neighbor processors. On
the right of Figure 4 we show that each individual processor of the original
systolic algorithm defines a redundant group, in which all its processors execute
the same computation of the computation phase in parallel. The running time of
the redundancy group to execute a computation is given by the processor that
finishes first the given computation. Given k urns each with p balls, and knowing
that m balls are red, the bad performance probability is the probability of at
least one urn containing all red balls.

During the computation phase, there is a competition among the redundant
processors, so that only the result obtained by the fastest processor is considered.
We create two processes in each processor: the computation process computes the
product of the sub-matrices of A and B, and the control process coordinates the
processors of the redundancy group to determine the winner. The two processes
share the same memory and mutual exclusion is enforced so that only one process
can access shared data at a time. The control process needs to be informed when
the computation process has finished the computation. The computation, on
the other hand, needs to be informed by the control process when to abort its
computation.

To guarantee that only one processor is the declared winner within a redun-
dancy group, we use the token ring algorithm [1]. The processors of the group
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Fig. 5. The ring topology used by the token ring algorithm to ensure mutual exclusion

have the ring topology and each processor is identified by an integer label from
0 to k − 1. A token circulates from processor to processor in the ring. When the
token reaches processor k − 1, it returns to processor 0 and the cycle repeats.
The processor that holds the token at any moment has the priority to enter a
critical region and thus can execute the necessary tasks exclusively. If a processor
holding the token does not want to enter the critical region, it simply passes the
token forward to the next processor in the ring. See Figure 5. The token carries
a token value, initially defined to be -1. The processor that finishes its computa-
tion and that currently holds the token assigns its label as the new token value
and then passes it forward, declaring itself to be the winner. The new token
circulates in the ring to signal all the participants to abort their computation.

4 Experimental Results

We ran experiments on a cluster of 16 microcomputers with a Switch 3COM
3300 and Fast Ethernet 100Mbit/s. Each microcomputer consists of a 1.2GHz
Athlon Thunderbird processor with 256 KB L2 cache, 768 MB PC133 SDRAM
and a 30 GB ATA100 hard disk. The operating system is Debian Linux 2.2.19.
We use ANSI C, compiled under version GNU gcc 2.95.2-13, POSIX Threads
package for the local threads and LAM-MPI for the message exchanges. The test
consists of running a sequence of 50 problems of matrix products. Figure 6 shows
results in a homogeneous environment, with no slow machines. The matrix sizes
tested were 180 × 180 up to 420 × 420.

Fig. 6. Running times in a homogeneous environment
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Fig. 7. Heterogeneous environment - “redundant - 2 slow”: each group has a slow
machine, and “redundant - group slow”: all the machines of a group are slow

Fig. 8. Running times in a heterogeneous environment for different matrix sizes

To simulate a heterogeneous environment, we made one or more machines to
act as slow machines, by running another process simultaneously. In Figure 7 we
assume there is at least one slow machine in a redundancy group. Figure 8 shows
the same results for several matrix sizes and slow machines with different degrees
of slowness. Figure 9 shows the running times of the normal systolic algorithm

Fig. 9. The effect of one slow machine on the performance
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without redundancy and the redundant systolic algorithm, for two matrix sizes
and different degrees of slowness of the bad machine.

The experiment shows clearly the benefit of the redundant approach. The most
interesting fact we observe in this experiment is that the redundant solution does
not depend on the degree of slowness of the bad machine.

5 Conclusion

The systolic array paradigm has less demand on communication because they
do not use the global communication primitives. The tightly coupled nature of
its processors, however, show the vulnerability to the presence of even one single
slow machine in the system. This paper proposes a way to use the abundant
computing resources to deal with this problem. The use of redundancy do incur
in additional cost, due to the overhead to implement the redundancy control
mechanism. We compared the behavior of the sequential algorithm, the systolic
algorithm without redundancy, and the redundant systolic algorithm, in homo-
geneous environment and also in a heterogeneous environment where one or more
machines are forced to act as slow machines. Our experiment shows the benefit
of the redundant approach. Despite the overhead, the redundant solutions out-
perform the non-redundant one. We note also that the redundant solution does
not depend on the degree of slowness of the bad machine.
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Abstract. In some sensor network applications e.g. target tracing, multi-profile 
data about an event are fused at intermediate nodes. The optimal planning of 
such fused traffic is important for prolonging the network lifetime, because data 
communications consume the most energy of sensor networks. As a general 
method for such optimization problems, genetic algorithms suffer from 
tremendous communication diversities that increase greatly with the network 
size. In this paper, we propose a diversity-controllable genetic algorithm for 
optimizing fused traffic planning. Simulation shows that it gains remarkable 
improvements.  

Keywords: Sensor Networks, Lifetime Optimization, and Data Fusion. 

1   Introduction 

Consider a number of wireless static sensor nodes randomly distributed in a region for 
target tracing. Each node has a limited battery energy supply which is mainly used for 
data communications, and the nodes’ throughputs are limited too. When a target 
enters in the sensing field of a node, a report is generated to describe this event. Other 
nodes maybe detect the same target and these reports are usually temporal or spatial 
related. These raw data are fused at intermediate nodes to achieve deep knowledge 
about the position and the speed of a target. We call such data flow fused traffic.  

The energy storage of a sensor node is greatly constrained and it is almost 
infeasible to replace a large amount of nodes’ batteries. Therefore, one of the key 
challenges of sensor networks is to maximize the lifetime. Since data communications 
consume the most energy, it is reasonable and efficient to optimize fused traffic 
planning to prolong a network’s lifetime. The lifetime is usually regarded as a period 
from a network’s deployment to its partition when there is a node that cannot send its 
report to the sink.  

Some existing works focus on this problem. The literatures [1-4] investigate the 
upper bound or the expectation of the maximum lifetime. In [5] and [6], Chang et al. 
provide a heuristic algorithm. But it performs arbitrarily badly in the worst case [7]. 
In the literature [8], another heuristic approach is presented, but the running time of it 
has a bad scalability to the network size [9]. In [10], a tree-based approximate 
algorithm is presented to reduce the running time and achieve better scalability in 
terms of network size. These works [5-10] present heuristic algorithms to maximize 
the lifetimes approximately. However, these works do not take energy consumed by 



 A Diversity-Controllable Genetic Algorithm 431 

receiving data, throughput constraints, and data fusion into account. Actually, the 
energy consumed by receiving data should not be ignored in most cases. In literature 
[11-13], the powers of RX and TX units are reported as in the same order of 
magnitude. The energies consumed by Mote [14] to send and receive a unit packet are 
20 nAh and 8 nAh. Furthermore, Throughput constraints and the influence of data 
fusion should be considered too.  

In this paper, we investigate the fused traffic planning optimization problem with 
considering energy and throughput constraints. We propose a diversity-controllable 
genetic algorithm to solve it. The rest of this paper is organized as follows. In section 2, 
the problem is formulated. In section 3, our approach is described. In section 4, 
simulations are given. Finally in section 5, some concluding remarks are made. 

2   Problem Formulation 

A sensor network in consideration is modeled as ( , , , , , , )sN G p q w o X Y= . ( , )G V A is 

a connected directed graph, whereV is the set of nodes and A is the set of directed 
links. Each node u has initial energy uE . Let ( )p u be the residual energy of node u . 

Let ( , )sq u v and ( , )rq u v denote the energies required by node u to send and receive an 

information unit to and from v . According to the probability distribution of events, 
each node u has a data-generating rate ( )w u . Let ( )o u denote the limited data 

throughput at node u . In addition, we denote the sets of sources and sinks as X and Y . 

A virtual traffic planning is defined to be −RAXx
a ),(:δ , if 
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The lifetime of sN under the virtual traffic planning x
aδ is defined as formula (5). If 

there are no x
aδ ′ and its corresponding lifetime T ′ so as to T T′ > , x

aδ is an optimal 

virtual traffic planning and T is the maximum lifetime. It is obvious that an optimal 
fused traffic planning can be deduced from an optimal virtual traffic planning easily. 
Therefore, the problem can be stated as follows. Given a sensor 
network ( , , , , , , )sN G p q w o X Y= , ask for an optimal virtual traffic planning *x

aδ and 

the maximum lifetime *T .  

( , ) ( , )min ( ) ( , ) max ( , ) maxˆ x x
r v u s u v

u V x X x X
v V v V

T p u q v u q u vδ δ
∈ ∈ ∈∈ ∈
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⎝ ⎠⎝ ⎠
∑ ∑  . (5) 



432 Y. Pan et al. 

3   A Diversity-Controllable Genetic Algorithm 

3.1   Basic Approach 

Since the fused traffic planning optimization problem can be modeled as a virtual 
flow velocity assignment optimization problem, we take paths with unit flow 
velocities as coding objects.  

Consider a sensor network with a maximum lifetime *T . In the period of the 
maximum lifetime, node u generates *( )w u T⋅ units flow, and could take *( )w u T⋅ paths 

at most to balance its original data flow. An individual is defined to be a set of 
chromosomes. The number of chromosomes depends on the number of sources in the 
network. A chromosome contains a set of unit paths as genes. Each path takes a unit 
virtual flow velocity from a source to the sink. We define a parameter PREC to 
control the number of paths that a source can take. The number is determined 
by ( )  w u PREC⋅⎢ ⎥⎣ ⎦ , where ⋅⎢ ⎥⎣ ⎦ is the greatest integer no more than a number. While 

PREC increases, a node can balance its original data flow to more paths, and the 
network is expected to live for a longer time.  

The crossover operation includes two steps. The first step is to choose individuals 
according to parameter CP and individuals’ fitness. We use CP to control the total 
number of individuals that will take part in the crossover operation. However, the 
opportunity of each individual depends on its fitness. The second step is to crossover 
two individuals in each chromosome. Here, we use parameter CN to control the 
number of points that two chromosomes will take crossover in. The mutation 
operation is similar. The first step is to choose individuals according to MPROB and 
fitness. The second step is to choose random genes according to MPER and replace 
them with new generated ones. From numeric experiments, we get a set of parameter 
values: MPER = 0.15; MPROB = 0.95; CP = 0.40; CN = 4. 

In order to evaluate the fitness of an individual, we calculate its lifetime and 
punishment. The actual flow velocity on each link depends on the maximum virtual 
traffic. The lifetime depends on the most short-lived node and is calculated by 
formula (5). Additionally, a punishment function is defined as formula (6) to support 
throughput constraints.  
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( , ) ( , )
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∑ ∑
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Since the lifetime and the punishment have different units, it is reasonable to 
standardize them to values between 0 and 1 according to the average lifetime and the 
average punishment of a population. We denote standardized lifetime and punishment 
as T ′ and P′ . The fitness of an individual is calculated by (1 )F T Pα α′ ′= ⋅ + − ⋅ , 

whereα is set to balance the influences of the lifetime and the punishment.  
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3.2   Diversity Control 

The performance of a genetic algorithm greatly depends on the fitness of initial 
population. However, the basic way to generate initial populations is the random 
method which takes random unit paths as genes. Therefore, the average fitness of a 
random generated population greatly depends on the population size and the 
individual diversity. With the increase of individual diversity, greater population size 
is necessary to ensure that there are good individuals in a random generated 
population.  

In the worst case, the type of paths is in the same order of the network size’s 
factorial. Since unit paths are taken as genes, the type of genes, and consequently the 
individual diversity, increases greatly with the network size. If individual diversity is 
not controlled efficiently, the basic genetic algorithm will have a bad scalability.  

We use two methods to control the individual diversity. The first is to control the 
number of genes in a chromosome by using parameter PREC. The second is to control 
the type of genes by limit the hop counts of unit paths.  

However, when we set limits to the number and the type of genes in chromosomes, 
we also set a limit to the algorithm’s approximation. In order to achieve better results, 
we use a method called incremental diversity. The basic idea is to use a final 
population under a small PREC and a tight hop count constraint to generate an initial 
population under a large PREC and a loose hop constraint. At beginning, we set a tight 
limit to the number and the type of genes. The individual diversity is low and a small 
population size is enough to offer sufficient population average fitness. Then, we loose 
the constraints step by step and construct a newer initial population based on an older 
finial population. While the constraints are loosen gradational, nodes might divide their 
original flow velocities into more pieces and distribute them to more paths basing on 
their earlier assignments. In this way, we will get an initial population with high fitness 
and a small population size works well even under a high individual diversity. 

4   Simulations 

Firstly, let’s consider a sensor network shown in Fig. 1.1. Node 0, 1 and 2 take node 6 
as their sink. Node 3 and 4 take node 7 as their sink. An ideal solution is plotted in 
Fig.1.2. The lifetime of each node is shown in Table 1. The maximum lifetime of the 
network is 1.113468.  

Table 1. The lifetime of nodes in the ideal solution 

Node 0 1 2 3 
Lifetime 1.338458 1.113468 1.113468 1.397984 

Node 4 5 6 7 
Lifetime 1.113468 1.236226 1.724138 6.666667 

At beginning, we use GA (Genetic Algorithm) without diversity control. We set 
PREC = 10 and increase PS. The results are shown in Table 2. The parameter 
GENERATION_NUM denotes the time of genetic manipulations. 
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Fig. 1. An 8-node 2-sink sensor network and one of its ideal solutions 

Table 2. The lifetime as a function of PS (GENERATION_NUM=100) 

PS 100 150 200 250 300 
Lifetime 1.078167 1.102688 1.101322 1.109570 1.111111 

PS 400 450 500 550 600 
Lifetime 1.111111 1.104362 1.111111 1.111111 1.111111 

We find that the lifetime increases scarcely while PS rises from 100 to 600. Then, 
we set PREC to a greater value to get a better result. Table 3 shows the lifetime as a 
function of PREC, which increases from 10 to 80. We set PS = 600 and 
GENERATION_NUM = 100. Note that the lifetime decreases while PREC increases. 
The reason is that such population size can not offer sufficient average fitness while 
individual diversity has increased with PREC.  

Table 3. Lifetime as a function of PREC (PS=600) 

PREC 10 30 50 60 70 80 
Lifetime 1.111111 1.038287 0.914599 0.894988 0.853593 0.847009 

Table 4 shows the result of an improved algorithm, where the number of genes are 
controlled by PREC and PS = 400. This improved algorithm achieves 1.113173. The 
flow velocity assignments are very close to those shown in the ideal solution. 

Table 4. The lifetime under each value of the PREC vector 

PREC  5 10 20 40 80 
GENERATION_NUM 100 50 50 50 100 

Lifetime 1.111111 1.111111 1.111111 1.112811 1.113173 

Additional, we use random generated networks to compare GAs with and without 
diversity control. We generate three sensor networks, which have 20, 50, 100 nodes 
being distributed randomly in a10 10× square area. To each network, 2~8 nodes are 
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selected to be sinks. An initial energy (chosen from 200 to 500 randomly) and a data-
generating rate (chosen from 5 to 12 randomly) are assigned to each node. The  
energy needed to receiving or sending an information unit is assigned to each link 
according to its length. The maximum PREC is set to be 3.2. The maximum hop 
count is set to the network size. 
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Fig. 4. Performance comparison of GAs with and without diversity control 

We could observe that GA with diversity control gains remarkable improvements.  
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5   Conclusion 

In this paper, we propose a diversity-controllable genetic algorithm to solve the fused 
traffic planning optimization problem in sensor networks. Different from previous 
works, we take the number and the type of genes as controllers of individual diversity 
and achieve good scalability to the network size.  

The time complexity of the basic approach is PANSMG , where P is the maximum 
PREC, A is the maximum data-generating rate, N is the population size, S is the 
sources’ number, M is the number of arcs, and G is the generation number.  
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Abstract. Scheduling algorithms significantly affect the performance of a real-
time system. In systems with power constraints, context switches in a schedule 
result in wasted power consumption. We present a scheduling algorithm and a 
heuristic for reducing the number of context switches. The algorithm executes 
in near linear time in terms of the number of jobs, finds a feasible schedule in 
most cases if it exists, and reasonably reduces the number of context switches. 
Thus it is a power-aware scheduling algorithm. 

1   Introduction 

Task Scheduling for real-time systems is a well understood and widely studied issue 
in literature. The primary focus of most task scheduling algorithms is to generate a 
feasible schedule. In some real-time systems additional constraints like availability of 
power, size of memory and speed of processor among others may affect the schedul-
ing policies and algorithms with feasibility ([1-3]). Scheduling algorithms may be 
online or offline. In online scheduling, the scheduling algorithm competes for proces-
sor time along with the tasks being scheduled. In offline scheduling, all task related 
information required for scheduling must be available for the scheduling algorithm[4]. 
    Due to limited battery life of many mobile and embedded systems, power con-
sumption is an important factor for any processing in these systems. This issue has 
been addressed at various levels – at the architectural level (e.g. DVS, DFS), at the 
systems level (e.g. scheduling, caching techniques, compilation techniques [5 - 8]), at 
the applications level (e.g. data structures and algorithm design). 
    Most of the power-aware scheduling techniques in the literature are dependent of 
specific platform features such as clocks, device characteristics, or memory technolo-
gies. It is also possible to consider the impact of generic factors – such as process-idle 
time, and context-switch time, in power-aware scheduling.  
    Our approach to power-aware scheduling is to consider the time spent on context 
switches and reduce it as much as possible. We discuss the impact of context switch-
ing on task schedules in Section 2. In Section 3, we describe a static scheduling algo-
rithm that attempts to minimize the number of context switches in a schedule. We 
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analyze the algorithm in Section 4.  The experimental results of the static scheduling 
algorithm are described in Section 5. We discuss some limitations of the algorithm as 
well as improvements and alternatives in Section 6. 

2   Context Switching 

Context switch time is the time taken to switch between two processes or threads in a 
schedule. The context switch duration includes the time taken for saving the context 
of the current process / thread and loading the context of the next process / thread. 
This implies that when a process finishes or a new process starts a context switch is 
not counted. There are various factors that impact the context switch duration. Most 
of them are architecture or operating system related [9], [10].  
    Available analyses or evaluations of scheduling algorithms in literature do not ac-
count for context switch time. In particular, they use a simplistic model where context 
switch duration is assumed to be 0. This affects the evaluations in two ways: (a) actual 
execution times may not match scheduled times and in particular, hard real time tasks 
may miss deadlines;   (b) the context switch is unproductive and the energy consumed 
for the operation is a waste and in particular, this may critically impact the perform-
ance of a low-power system. An indirect but more significant impact of context 
switches could be due to cache flushes. In fact, the additional energy consumption due 
to this indirect impact has been reported to be significantly higher [11]. A power-aware 
operating system and scheduling algorithm should account for the impact of context 
switches on power consumption. We partially address this issue through a scheduling 
algorithm that reduces the number of context switches in a schedule.  

3   Algorithms 

Our objective is to design an off-line scheduling algorithm for hard real-time systems 
such that the generated schedule has the minimum possible number of context 
switches.  Toward this we make some simplifying assumptions for each task type t:  
    All t are periodic and preemptible in nature. For each job j of task type t, the dead-
line d(j)  is equal to Arri. Time(j) + period p(t). For all t, the arrival time for the first 
job is time 0 and for all t, the worst case execution time e(t) is known. 

Under these assumptions, given a list of task types L ordered by their periods, one 
can pre-compute the Hyper-period H and a list of job records Jobs, lexicographically 
ordered by the key (p(t(j)), t(j)), where each record has a job identifier j, task type t(j), 
deadline d(j), arrival time a(j) and execution time e(j). 

A brute force scheduling algorithm can now be easily arrived at: 

3.1   Algorithm Brute-Force 

Inputs: hyper-period H, a list of job records Jobs (ordered as above)  
Output: A feasible schedule if it exists, the number of context switches. 
Steps: 
1. Generate all schedules P of Jobs i.e. divide each job into sub-jobs of unit execution 
time and compute all permutations of the list of sub-jobs. 
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2. m=H; cur=first schedule in P. 
3. for each permutation pi in P, 

a. check if pi is feasible 
b. if yes, then count the number of context switches, say m’;  if (m’ < m) , 
then m=m’; cur=pi. 

4. if (m=H) then output ‘infeasible’ 
5. else output cur and m. 
Fact: Algorithm Brute-Force computes a feasible schedule if it exists and the com-
puted feasible schedule has the minimum possible number of context switches. 
But Algorithm Brute-Force is exponential (it requires Ο(Η!) steps). This is impracti-
cal to compute when H is large. We need an algorithm which can compute a feasible 
schedule (if one exists) in polynomial time such that the number of context switches 
in the schedule is low. 

3.2   Heuristic Algorithm 

Our heuristic is to minimize the fragmentation of schedulable intervals. Consider the 
input from the table 1. 

      Table 1. Task list for the schedule                Table 2. Job list derived from table1 

Task Arri.
Time Period Exec.

Time

A 0 2 1

B 0 8 4
 

  

Job Arri.Time Deadline Exec. Time

A1 0 2 1

A2 2 4 1

A3 4 6 1

A4 6 8 1

B 0 8 4
 

    Table 2 provides arrival time, deadline and execution time of all the jobs corre-
sponding to each of the tasks in the table 1. 
    In this case our heuristic gets applied as follows. 

1. Schedule A1 in the first feasible slot and A4 in the last feasible slot (see Figure 1). 
2. Schedule A2 in the last feasible slot and A3 in the first feasible slot (see Figure 1). 
3. Schedule B in the first feasible slot. At the end of time slot 3 it has to be switched 
out and rescheduled at the end of time slot 5 (see Figure 1). 

 

Fig. 1. Gantt chart after step-3 
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Algorithm 2 uses this heuristic to generate a feasible schedule if it exists. The 
schedule is likely to reduce context switches as it reduces fragmentation of intervals 
thereby allowing jobs to fit into these intervals without switching. Assume that H and 
the list of jobs is pre-computed as it was done for Algorithm BruteForce. 

Algorithm IntFragment 
Inputs: hyper-period H, a list of job records J (ordered as above)  
Output: A feasible schedule if it exists, the number of context switches. 
Steps:  
1. odd = true 
2. let Ji, Ji+1, … Jk  be all the jobs of  task  t 

a. if  (odd ) then schedule Ji,, Jk in the first and last feasible slots respectively 
b. else schedule Ji, Jk in the last and first feasible slots respectively. 
c. odd = !odd; i=i+1; k=k-1; 

        d. repeat steps 2.a to 2.d until k<=i 
e. if (k==i) then schedule Ji in the first feasible slot. 

3. repeat steps 1 and 2 until no more tasks left. 
4. output the schedule and  the number of context switches in the schedule 

3.3   Correctness Arguments 

Algorithm IntFragment may fail to find a feasible schedule for some inputs that admit 
feasible schedules. For instance, consider the input from the table 3. Job list can be 
derived out of the task list like in the previous example. 

Table 3. Task list for which IntFragment algorithm fails to find a valid schedule 

 

                                                                                      Fig. 2. Gantt chart after step-5 

    In this case our heuristic gets applied as follows. 

1. Schedule A1 in the first feasible slot and A5 in the last feasible slot (see Figure 2). 
2. Schedule A2 in the last feasible slot and A4 in the first feasible slot (see Figure 2). 
3. Schedule A3 in the first feasible slot (see Figure 2) 
4. Schedule B1 in the first feasible slot and B3 in the last feasible slot (see figure 2).  
5. B2 can not be scheduled to meet its deadline (see Figure 2). 

Such failures happen typically when the utilization is high. The following sched-
ulability test states a sufficient condition for the algorithm to find a feasible schedule: 

Task Arri. 
Time 

Period Exec. 
Time 

A 0 3 1 

B 0 5 3 



 A Context-Switch Reduction Heuristic for Power-Aware Off-Line Scheduling 441 

3.3.1   Schedulability Test 
Given a set of N independent, pre-emptible and periodic tasks on a uniprocessor such 
that their relative deadlines are equal to their respective periods, if for each task i, 

(p(i) - Σj < i ( ⎡p(i) / p(j)⎤ * e(j))) <= e(i) (1) 

where p(i) is the period of task i and e(i) is the execution time of task i, then this is a 
sufficient condition to obtain a feasible schedule through Algorithm IntFragment. 

3.3.2   Correctness 
Given a set of N independent, pre-emptible and periodic tasks on a uniprocessor such 
that their relative deadlines are equal to their respective periods, Algorithm IntFragment 
generates a feasible schedule if  one  exists and if  the schedulability test is satisfied. 

Proof:  Omitted because of space limit. 

4   Analysis of Algorithm IntFragment 

4.1   Complexity of the Algorithm 

Claim: The worst case time complexity of Algorithm IntFragment is  

pmax * Σt ∈ Tasks H/p (t) (2) 

where pmax is the maximum among the periods of all tasks, H is the hyper-period, and 
p(t) is the period of task t. 

Proof: Omitted because of space limit. 

4.2   Quality of the Schedule 

Since our objective was to minimize the number of context switches we evaluate our 
algorithm by this metric (applied on the generated schedule) and compare it with the 
other algorithms. 

Consider the example used in Section 3.2. Algorithm Intfragment produces a 
schedule with 1 context switch (see Figure 1 in Section 3.2). In comparison, for the 
same input, both the Rate Monotonic algorithm and the Earliest Deadline First algo-
rithm will produce a schedule with 3 context switches (see Figure 3). 

 

Fig. 3. Schedule obtained by Rate Monotonic and Earliest Deadline First Algorithms 

    Although Algorithm IntFragment typically fares better than other scheduling algo-
rithms in reducing context switches, it does not necessarily produce a schedule with the 
minimum number of context switches. For instance, consider the input from the table 4. 
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Table 4. Task list for which IntFragment algorithm performs better than the other  scheduling 
algorithms like rate monotonic and EDF 

Task Arri.Time Period Exec. Time 
A 0 2 1 
B 0 10 4 

    For this input, Algorithm IntFragment produces a schedule with 2 context switches 
(see Figure 4) whereas there is a feasible schedule with 1 context switch (see  
Figure 5). Thus Algorithm IntFragment is an approximation algorithm. 

  

Fig. 4. Schedule obtained by the IntFragment 
algorithm 

Fig. 5. Schedule obtained by the Brute-Force 
Technique. 

Worst-case Approximation Claim 
Let I be an input of t tasks. If I admits a feasible schedule and satisfies the Schedula-
bility Test 3.3.1, then Algorithm IntFragment will produce a feasible schedule, with at 
most O(t2) context switches. 

Proof: (Omitted). 

Although this may imply that a schedule produced by Algorithm IntFragment is infi-
nitely worse compared to a minimal context-switch schedule, in practice, it produces 
far fewer number of context switches than the worst possible case, which is O(H), 
where H is the hyper-period. 

5   Experimental Results 

We performed energy characterization by running eCos Operating System on Stron-
gARM 1100, the processor core of the SmartBadge at a speed of 59MHz. The period 
and execution time of periodic tasks in the experiment are listed in the table 5. Task 
list for each of the experiments are presented in the table 6.  

The experimentation is carried out with standard algorithms like EDF, LSTF and 
the proposed IntFragment algorithm extensively.  The saving of context switches and 
energy per unit time (one second) for IntFragment with respect to EDF and LST algo-
rithms are presented in table 7.  

Experimentation results show that the indirect impact because of cache miss  
increases the energy consumption thus reduces the performance. The detailed discus-
sion supporting the secondary impact with minimum and maximum energy consump-
tion for context switching is described in [11]. The base value of the minimum and 
the maximum energy consumption for a context switch is borrowed from [11].  
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Table 5. List of all the periodic tasks involved in 
the energy characterization experiment 
 

Table 6. Task set corresponding to 
each of the experiments 

Task No Period(ms) Exe. Time(ms)
T1 3.39 1.695
T2 5.085 1.695
T3 10.17 3.39
T4 13.56 5.085
T5 16.95 3.39
T6 33.9 3.39
T7 33.9 6.78
T8 45.765 5.085
T9 50.85 16.95

T10 67.8 8.475
T11 81.36 13.56
T12 91.53 15.255
T13 101.7 8.475
T14 101.7 15.255
T15 162.72 6.78
T16 162.72 27.12
T17 203.4 33.9
T18 203.4 101.7
T19 406.8 37.29  

Exp. No Task Set
Exp 1 T1, T3, T16 
Exp 2 T1, T4, T15 
Exp 3 T1, T3, T11 
Exp 4 T1, T3, T8 
Exp 5 T1, T6, T12 
Exp 6 T1, T18 
Exp 7 T1, T3, T17 
Exp 8 T2, T9, T14, T13, T19 
Exp 9 T1, T7, T10, T13, T19 
Exp10 T1, T5, T6, T13, T19  

 
 

 
Table 7. Context Switches and Energy saved by IntFragment algorithm compared to Earliest 
Deadline First algorithm 

Exp 
No 

CS  
Saved 
w.r.t.  
EDF 

MinEnergy 
saved w.r.t. 
EDF (uJ) 

MaxEnergy 
Saved 
w.r.t. EDF 
(mJ) 

CS 
Saved 
w.r.t. 
LSTF 

MinEnergy 
saved w.r.t. 
LSTF (uJ) 

MaxEnergy 
Saved 
w.r.t. LSTF 
(mJ) 

Exp 1 141 482.22 3.584 147 502.74 3.736 
Exp 2 110 376.2 2.796 110 376.2 2.796 
Exp 3 135 461.7 3.431 147 502.74 3.736 
Exp 4 109 372.78 2.77 109 372.78 2.77 
Exp 5 90 307.8 2.287 90 307.8 2.287 
Exp 6 142 485.64 3.609 142 485.64 3.609 
Exp 7 142 485.64 3.609 148 506.16 3.762 
Exp 8 140 478.8 3.558 140 478.8 3.558 
Exp 9 159 543.78 4.041 159 543.78 4.041 
Exp 10 140 478.8 3.558 140 478.8 3.558 
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6   Conclusions 

We have shown an approximation algorithm for offline scheduling called IntFragment 
which will reduce the number of context switches and energy consumption. The 
schedulability test and detailed experimentation results for the same are addressed. 
Future work would include extension of this approach to reduce the time taken for an 
average context switch as well as the number of context switches. Also, this algorithm 
could be adapted for online scheduling. Experimental evaluation may substantiate our 
claims regarding the implied energy savings. 

References 

1. M. Kandemir, G. Chen, W. Zhang, and I. Kolcu, “Data Space Oriented Scheduling in Em-
bedded Systems”, Proceedings of the conference on Design, Automation and Test in 
Europe - Vol. 1, 2003. Page: 10416    

2. Padmanabhan Pillai, and King G. Shin, “Real-Time dynamic voltage scaling for Low-
power embedded operating systems”, In Greg Ganger, editor, Proceedings of the 18th 
ACM Symposium on Operating Systems Principles (SOSP – 01), Volume 35, 5th ACM 
SIGOPS Operating Systems Review, Pages 89 – 102, New York, October 21 – 24 2001. 
ACM Press. 

3. J. Pouwelse, K. Langendoen, H. Sips,  “Dynamic Voltage Scaling on a Low-Power Micro-
processor”, UbiCom Technical Report 2000/3, Delft University of Technology. 

4. Jane Liu. “Real-Time Systems”, Prenctice Hall. 2000. 
5. Yu-Ting Hung , “Power-Aware Compilation with Architectural Support and. Instruction 

Scheduling”, In proceedings of Eleventh Workshop on Compiler Techniques for  High 
Performance Computing, Taiwan, 2005. 

6. J. L. Ayala, and A. Veidenbaum, “Reducing Register File Energy Consumption Using 
Compiler Support”, Workshop on Application Specific Processors (in conjunction with 
IEEE International Symposium on Microarchitecture), Istanbul (Turkey), November 2002. 

7. Hongbo Yang, “Power-Aware Compilation Techniques for High Performance Proces-
sors”, Ph.D. Thesis. Department of Electrical and Computer Engineering, University. of 
Delaware, Delaware, USA, 2004. 

8. D. Mosse, H. Aydin, B. Childers and R. Melhem, “Compiler-assisted dynamic power 
aware scheduling for real-time applications”, In Workshop on Compilers and Operating 
Systems for Low Power, October 2000. 

9. Bill Dittman “Strategied for Minimizing Context Switch Times in Large Register set Envi-
ronment with Primary Focus on the PowerPC Architecture with Floating Point and 
AltiVec Extensions”,QuadrosSystems. http://www.rtxc.com/pdf/article_esd-conference_ 
05-08-2004.pdf 

10. Richard Gooch, “Linux Scheduler Benchmark Results”,  
11. http://www.atnf.csiro.au/people/rgooch/benchmarks/linux-scheduler.html 
12. A. Acquaviva, L. Benini, B. Ricco', “Energy Characterization of Embedded Real-Time 

Operating Systems,” ACM Computer Architecture News, vol. 29, no. 5 pp. 13--18, De-
cember 2001. 



On the Reliability of Drowsy Instruction Caches�

Soong Hyun Shin1, Sung Woo Chung2, and Chu Shik Jhon1

1 School of Electrical Engineering and Computer Sciences,
Seoul National University, Seoul 151-742, Korea

{shordan, csjhon}@panda.snu.ac.kr
2 Corresponding Author

Division of Computer and Communication Engineering,
Korea University, Seoul 136-713, Korea

swchung@korea.ac.kr

Abstract. As technology scales down, the leakage energy accounts for
more portion of total energy in a cache. Applying the Dynamic Voltage
Scaling(DVS) to a cache, which is called a drowsy cache, is known as one
of the most efficient techniques for reducing leakage energy in a cache.
However, it increases the Soft Error Rate(SER) and many researchers
began to doubt the reliability of a drowsy cache. In this paper, we show
that the instruction cache(I-cache) can adopt the DVS without reliability
problems for several reasons. First, an I-cache always stores read-only
data, rarely incurring unrecoverable errors. In the I-cache, the soft error
can be recovered by re-fetching from the lower level memory. Second,
the effect of soft errors on performance is negligible, because the SER is
extremely low. Additional, considerable percentage of soft errors do not
harm the performance. In this paper, the evaluation results show that
the drowsy I-cache rarely increases unrecoverable errors and negligibly
degrades the performance.

1 Introduction

Reliability is one of the most crucial considerations for computer systems. As
technology shrinks and the supply voltage is lowered, the reliability of mem-
ory systems including caches is threatened[1]. In addition, the dependability
is more weakened, when the DVS is used. Many researchers have investigated
the wide range of soft error issues, such as physical phenomena of soft errors,
soft error models, calculating the Soft Error Rate(SER) according to technology
scaling[2][3][4]. Moreover, a number of methods for protecting circuits from soft
errors, detecting soft errors, and correcting data have been proposed[5].

The soft errors occur in the drowsy cache[6] ten times frequently as many as
in the conventional cache. Moreover, as the probability that two or more cells in
a cache line is defected by a soft error is increased, the necessity of a design for
reliability becomes serious. The reliability of a cache is important because the
error may induce system malfunction.

� This work was supported by the Brain Korea 21 Project.

C. Jesshope and C. Egan (Eds.): ACSAC 2006, LNCS 4186, pp. 445–451, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fortunately, the soft error problem in an I-cache, which is concerned in this
paper, is mitigated because of its read-only feature. As the data in an I-cache
always exist in the lower level cache, they do not need to correct the errors with
error correction techniques, but just to re-fetch the erroneous data from the lower
level memory. Complicated recovery circuits are not cost-effective under the
current SER. The re-fetching recovery has another merit that the conventional
cache architecture is hardly changed because the recovery policy needs only
parity bits and the bit interleaving method. The bit interleaving makes physically
adjacent bits belong to different logic words, which is commonly used to reduce
multi-bit errors[1].

In this paper, we evaluate the performance and reliability effects of soft errors
on the drowsy I-cache. The rest of this paper is organized as follows. Section 2
introduces our soft error model, error correction codes, and the soft error effect
on a drowsy I-cache. Section 3 simulates the soft error effects on the drowsy
I-cache. Lastly, section 4 concludes this paper.

2 Soft Error

2.1 Soft Error Model

Soft errors, different from hard errors incurred by a bad electronic circuit, are
temporal upsets caused by alpha particles or neutrons from cosmic radiation[4].
The soft error threatens a circuit more aggressively according as the supply volt-
age is lowered to reduce power consumption[3]. There are many factors which
influence the probability of soft error occurrences: technologies, doing and pack-
aging materials, altitude and so on. All of other parameters, except supply volt-
age, are assumed to be fixed in order to investigate the relation between the
supply voltage and the SER. Based on [3], the SER at sea level is calculated as

SER ∝ A × exp(−Qcrit

Qs
) (1)

where,
A: the drain area,
Qcrit: the critical charge,
Qs: the collection slope.

A soft error occurs if collected charges of a cell exceed the Qcrit of that cell.
Because the Qcrit is proportional to the supply voltage, the SER increases at
exponential rate as the supply voltage is decreased. In the 70 nm technology,
an SRAM cell operates normally at 1.0V and retains data at 0.3V(the drowsy
state). Thus, the SER in the drowsy state is ten times higher than the SER in
the normal state. Besides, the SER during read or write is five times higher than
that of normal state[1]. Based on[1], the SER of a 6T SRAM(70-nm technology)
cell is 2.7e-14 per cycle(1ns cycle).

Generally, almost every soft error is single bit error. However, as the Qcrit

decreases these days, the collected charge exceeds two or more times of Qcrit
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more frequently than before and two or more adjacent cells are infected together
at an event more often. Thus, consideration for double bit errors(DBEs) and
multi bit errors(MBEs) becomes important. DBEs and MBEs differ from a multi-
SBE which originates from single upset event. Contrary to DBEs or MBEs, the
multi-SBE means that two or more SBEs occur in the same cache line by chance.
The position pattern of multi-SBE cells cannot be specified

The probability of SER is estimated at 7.e-12, based on[1], and the DBE found
to be 1/100 of SBE at 1.0 supply voltage. The possibility of the multi-SBE is
quite low because two or more errors occur in the same cache line without any
memory references between the errors.

Fig. 1. Examples of error detectioin/correction code

2.2 Error Correction Codes

Until now, many error correcting codes(ECCs) have been introduced. Almost
every ECCs are hardware redundancies which need additional hardware. The
additional amount of hardware is highly dependant on the ability to detect and
correct errors. The most widely known ECCs are parity bits and the hamming
code. Figure 1 shows the parity bits and the hamming code. Gray cells and white
cells indicate two cache lines. Figure 1(a) depicts parity bits which are commonly
used in I-caches. It is very simple and takes low hardware cost; however, it is
not able to recover original value and to detect two or more errors. Figure 1(c)
depicts the hamming code[7], which corrects single-bit errors and detect double-
bit errors(SEC-DED). Its hardware overhead is 50% when the number of data
bits is 8. This policy is fit for an architecture which has responsibility to recover.

2.3 Soft Error Recovery in Caches

Characteristics of the target structure have to be studied to find an appro-
priate ECC, because the reliability and the cost of ECC should be considered
together. A data cache(D-cache) should recover a cell infected by a soft error
if the cell holds modified data because the data is the only valid copy in the
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Fig. 2. Classification of soft errors

system. Contrary to the D-cache, the parity checking is sufficient for an I-cache.
As the I-cache always holds read-only data, the infected cell can be recovered by
re-fetching from lower level memory. Though re-fetching increases the average
memory access time(AMAT), the penalty is expected to be negligible because of
the low SER. To defense an I-cache from DBEs, checking parity bits enhanced
by bit interleaving is recommended because it changes DBEs to two SBEs with
little additional hardware cost(Figure 1(b)). As shown in Figure 1(b), even if a
DBE infects two adjacent cells, these errors are detected by checking parity bits
because these cells do not belong to the same parity bit.

2.4 Soft Error Effects on Performance

Soft errors of an I-cache disappear without any damages when the erroneous
cache line is evicted without following read operation. Thus, the cache execu-
tion time can be divided into harmful periods or harmless periods according to
whether the following reference exists or not. As an I-cache handles harmful soft
errors as cache misses in the proposed technique, the recovery is simple, but the
cache miss rate and the AMAT would increase.

3 Simulation

We implemented a soft error generator in the simulator SimpleScalar 3.0 for
simulations[8]. The default simulator configuration is a 32KB, 32byte, 32-way
L1 I-cache with parity bits and bit interleaving, a 32KB, 32byte, 4-way L1 D-
cache and a unified 256KB, 64byte, 4-way L2 cache. To observe a soft error effect
on the other configuration, we simulated a 32KB, 32 byte, 4-way L1 I-cache as
well. The access times to the L1, L2, and memory are 1, 8, and 40, respectively.
In the drowsy I-cache, cache lines are put into the drowsy mode every 2000
cycles. The benchmarks are selected from SPEC2000[9] and each benchmark is
fast forwarded 300 million instruction and then simulated 1 billion instructions.

Figure 2 shows a classification of soft error. In every benchmark, the number
of DBEs and MBEs occupies is less than 1%. Every DBE is detected as two SBEs



On the Reliability of Drowsy Instruction Caches 449

0.95

0.97

0.99

1.01

1.03

1.05

1.07

1.09

1.11

1.13

1.15

gzip crafty parser gap bzip2 wupwise mesa galgel art lucas AVG

A
M

A
T

 (C
lo

ck
 C

yc
le

s)
.

4-way drowsy cache 4-way normal cache 32-way drowsy cache 32-way normal cache

(a) The AMAT including wakeup penalties

0.0E+00

5.0E-08

1.0E-07

1.5E-07

2.0E-07

2.5E-07

3.0E-07

3.5E-07

4.0E-07

4.5E-07

5.0E-07

gzip crafty parser gap bzip2 wupwise mesa galgel art lucas AVG

O
ve

rh
ea

d 
on

 A
M

A
T

 (C
lo

ck
 c

yc
le

s)
.

4-way drowsy cache 4-way normal cache 32-way drowsy cache 32-way normal cache

(b) The AMAT overhead

Fig. 3. The AMAT and AMAT overhead with current soft error rates

by bit interleaving and corrected. A multi-SBE, or an unrecoverable soft error,
does not appear in all benchmarks because of its extremely low probability.

Though the total soft error of the drowsy cache is about 9.8 times higher than
that of the normal cache, the number of total soft errors of the drowsy cache is
117, on average(average error per 1 billion inst. = 1.17e-7). Moreover 49 - 52%
of the soft errors in drowsy cache are harmless. Thus, the I-cache has only 56 -
60 erroneous cells while executing 1 billion instructions. Difference between the
4-way cache and the 32-way cache is not shown.

To evaluate the soft error damage to the I-cache, we examined the AMAT.
Shown in Figure 3(a), the AMATs of the 4-way and 32-way drowsy cache are
1.035 and 1.033, respectively and those of the normal cache are 1.006 and 1.004,
respectively; the AMAT of the drowsy cache is about 3% longer, relatively small,
than that of the conventional cache. Moreover, the AMAT overhead caused by
soft errors are almost invisible because its probability is 2.66E-7 in the 4-way
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Fig. 4. The AMAT and AMAT overhead with various soft error rates. The circle rep-
resents the SER of the current technology.

drowsy cache(Figure 3(b)). Most of the AMAT overhead is caused by the wake-up
penalties. Hence, the SER does not affect the reliability significantly at present.
Though the soft error ovehead is negligible with current technology, the SER is
expected to increase in the future. To evaluate the SER in future technology, we
simulated the AMAT with accelerated SERs from 1.E-12 to 1.E-4(for a cache
line). Figure 4(a) depicts the AMATs with the accelerated SERs including wake-
up penalties and Figure 4(b) shows the AMAT overheads of soft errors, excluding
the wake-up penalties. In Figure 4(a), AMATs of the 32-way drowsy cache are
2.79%, 2.84%, and 32.32% longer at 1.E-11, 1.E-8, and 1.E-5, respectively. Except
the cases of 1.E-5 or 1.E-6, there are no significant differences between the drowsy
cache and the normal cache. As shown in Figure 4(b), the AMAT overhead
increases linearly and the overhead is less then 0.01 clock cycles if the SER is
1.E-7 or less. Consequently, when the SER of a cache line is below 1.E-6, the
drowsy I-cache is reliable enough even with the re-fetch penalty.
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4 Conclusion

It has been widely considered that the drowsy cache is inefficient to use in the
future because the SER is increased exponentially by suppressing supply voltage.
The key observation is that I-caches store only read-only data. Thus, the drowsy
I-cache overcomes the soft error problems by re-fetching the corresponding data.
Though the SER is expected to be increased in the future, it may not hurt
the performance noticeably. It is reasonable to apply drowsy technique to an I-
cache. The multi-SBE threatens the system reliability because it is not detected
by parity bits and cannot be resolved with bit interleaving. Fortunately, it is not
so serious, since the error rate of multi-SBE is very low. This paper investigates
reliability of the drowsy I-cache that dramatically reduces the leakage energy.
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Abstract. Cryptographic algorithms are usually compute-intensive and
more efficiently implemented in hardware than in software. By taking
advantage of FPGA technology, some work offers high performance and
flexible solutions for cryptographic algorithms. But FPGAs still have
some drawbacks. To overcome inherent shortages of FPGA, a novel asyn-
chronous reconfigurable cryptographic engine (ARCEN) is introduced.
In this architecture, reconfigurable cryptographic array is the kernel. It
routes signals asynchronously between adjacent cells through Neighbor-
to-Neighbor wires with 4-phase handshaking protocol. Computation cir-
cuit for reconfigurable cell is developed with modified DSDCVS logic.
Experiment results show that the architecture has a better performance
than FPGA.

1 Introduction

Cryptographic algorithms can be implemented in hardware by ASICs (Applica-
tion Specific Integrated Circuits) or in software by software-programmed proces-
sors. Due to the diversity of applications, cryptographic machines have to meet
the enormous computing demands of the algorithms. Such flexibility is also cru-
cial for adapting to the evolving requirements of state-of-the-art algorithms
and standards. ASIC-based solutions, lacking flexibility, provide effective per-
formance but they can only offer a fixed number of algorithms to designers.
Software solutions can provide the required flexibility but they are inadequate
for high speed encryption applications.

Reconfigurable hardware is a general term that applies to any device which
can be configured, at run-time, to implement a function as a hardware circuit.
It typically consists of a set of computing elements connected by communica-
tion medium. Both the computing elements and the communication medium are
programmable. The computing elements can be either fine-grained or coarse-
grained, which can exploit fine grain and coarse grain parallelism available in
the application.
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c© Springer-Verlag Berlin Heidelberg 2006



Design of a Reconfigurable Cryptographic Engine 453

In the past several years, there has been a growing body of work on using
reconfigurable devices to implement cryptographic algorithms. Some early stud-
ies have shown that reconfigurable implementations of DES and RSA have both
achieved significant speedups over general-purpose processors[1][2]. In some re-
cent research work, reconfigurable hardwares have been integrated into System-
on-a-Chip (SoC) as cryptographic engines. In [3], a reconfigurable elliptic curve
cryptosystems on a chip has been designed and the experiment results show
over 2000 times speedup when compared with general-purpose processor solu-
tions. The SHA-2 hash algorithm family has also been implemented successfully
on reconfigurable hardware[4]. However, all the work mentioned above employs
FPGAs (Field-Programmable Gate Arrays) as reconfigurable cryptographic en-
gine. Although FPGAs can provide good performance and flexibility, they still
have some drawbacks. Firstly, as fine-grained reconfigurable device, FPGAs usu-
ally need a large amount of configuration data, which will lengthen the configu-
ration time. Secondly, as general-purpose reconfigurable device, FPGAs require
abundant routing resources in order to adapt to various applications, which will
increase the chip area and power consumption[5].

In this paper, we introduce a novel adaptive cryptographic engine. Different
from the stated preceding work, we develop a coarse-grained asynchronous recon-
figurable array with high-performance for cryptographic applications. Without
global clocks, asynchronous circuits can be totally prevented from the inferior-
ity of clock-skew. And the problem of clock tree power consumption has been
eased off. Moreover, in asynchronous circuits, there is no global timing signal
which can be used as a reference clock, thus timing and power analysis attack
are consequently expected to be more difficult[6]. The architecture we developed
is called ARCEN (Asynchronous Reconfigurable Cryptographic ENgine).

The rest of this paper is organized as follows. Section 2 describes the ar-
chitecture of our cryptographic engine. Section 3 presents the implementation
details of this device. Section 4 analyzes the performance of this architecture
and provides the experiment results. At last, Section 5 is the conclusion.

2 System Architecture

The proposed asynchronous cryptographic engine (ARCEN) is shown in figure 1.
It consists of five main components:

– A random number generator, which is mainly used for generating secret keys.
– A data packets dispatcher, which is responsible for data moving between

reconfigurable array and the outside.
– A cryptographic control unit, which is the main controller of the system. In

this unit, there’s an address generator which is responsible for generating
memory addresses for data input/output.

– A reconfigurable cryptographic array, which is the computation core of the
whole system.

– A cryptographic library, which stores the ARCEN configuration of crypto-
graphic algorithms.
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The reconfigurable cryptographic array (RCA) is the core component of this
system. With this component, ARCEN can be dynamically adapted to crypto-
graphic algorithms of different secret keys.

The RCA is SRAM-based, asynchronous reconfigurable computing device and
consists of logic cells surrounded by NN (Nearest Neighboring) channels. It con-
sists of a parallel configuration controller (PCC), four data input interfaces (DIF)
and a set of reconfigurable logic cells (RC). PCC is used for configuring the re-
configurable cells. DIFs are responsible for data transferring. Because of the
regularity of cryptographic algorithms, the routing resources are the NN con-
nections between the logic cells. The routing requirement can be satisfied by NN
connections in most cryptographic applications. Even a small amount of long
wires exist, they can be substituted with several NN connections. Compared
with FPGA, this architecture can save more routing area. The datapath of the
logic cells is 8-bit wide and the cells communicate with the nearest neighbor-
ing cells from ESWN (East, South, West, North) directions through a pair of
data-wires which are 8-bit wide, dual-rail encoded. Since there is no clock in
RCA design, logic cells have to use asynchronous hand-shaking protocol when
communicating.

The structure of RCA logic cell is shown in figure 2. Each logic cell is composed
of input router, function unit and output router. Input router channels from
physical input ports of four nearest neighboring directions (EIN, SIN, WIN,
NIN) to three internal logical channels (A, B, C) as the inputs of the function
unit. The input router is implemented by several MUXs.

Output router is the part that channels data from inside to the physical output
port of logic cell (EOUT, SOUT, WOUT, NOUT). Besides being outputted
through function unit (F, Z), input data from the four nearest neighboring input
ports of logic cell (EIN, SIN, WIN, NIN) can also be channeled to the output
ports directly through output router.
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The function unit of logic cell is designed to support up to 10 operations.
Among these 10 operations, ”and”, ”or” ”xor” ”shift” operations are used for
basic logical functions; ”add” and ”sub” operations take charge of fundamental
arithmetic functions; ”zero”, ”one”, ”2-1mux” and ”d-router”(dynamic router)
are supposed to provide some control logic resources in some special applications.

3 Implementation

3.1 Asynchronous Handshake Protocol

Since there is no clock in RCA, logic cells have to use handshake protocol to send
and receive data on NN channels. In our design, we choose 4-phase handshake
protocol (see in figure 3). In 4-phase handshake protocol, only the rising of
”Req” signal can inspire the transfer process, but its control circuit is simple,
and this protocol is well suited for DCVSL (Differential Cascode Voltage Swing
Logic)[7].

request

data

acknowledge

one cycle

Sender Receiver

Req

Ack

Data

Fig. 3. 4-phase asynchronous handshake protocol

We adopt dual-rail encoding technology to implement 4-phase handshake pro-
tocol with simple control circuit. In dual-rail encoding, each bit of data is im-
plemented by two wires, of which one is the original data, and the other is the
complement of it. Both ”01” and ”10” represent valid data and inspire the ”Req”
signal rising, while the state of ”00” means invalid data and set the ”Req” signal
falling. ”11” is an illegal state, which is not supposed to appear.

3.2 Control Circuit Design

In short, the role that control circuit plays is to implement dual-rail encoding
4-phase handshake protocol. After configuration, logic cells in RCA form the
structure of asynchronous mircopipeline, which is indicated in figure 4. In each
logic cell, there are three main parts, namely, OP, CD and RE. OP is the opera-
tion circuit taking charge of computation logic, which is implemented by DCVSL
and will be discussed later, and the other two parts constitute the control circuit.
RE (Request Enabler) is used for generating req signal, whose active falling edge
can make the operation circuit pre-charged (reset). Meanwhile, CD (Completion
Detector) is used for detecting the state of operation circuit and generating ack
signal, which is asserted high when operation circuit has finished an evaluation
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or low when it has finished a pre-charge phase. The functioning process of the
synchronous micropipeline will be analyzed in detail in section 4. The following
terms are used in the discussion of latency issues:

– top(n): evaluation time of a computation of operation circuit in logic cell n.
– tcd: processing time of CD (Completion Detector).
– tre: processing time of RE (Request Enabler).
– tpre(n): pre-charge time of operation circuit in logic cell n.
– td(n): delay of signal transition on wires between logic cell n and logic cell

n+1.
– tcyc(n): the time interval which logic cell n should be ready for evaluating a

new data after it has started to evaluate the previous one.

Since top(n) and tpre(n) are specified by operation circuits, and td(n) is deter-
mined by the routing resources of RCA, the factors which can reduce tcyc(n) are
tre and tcd. We place the CD part before operation circuit, and parallel the parts
of RE and CD, which can merge tre and tcd into the same time interval. In this
case, both tre and tcd are replaced by tcontrol, then the tcyc(n) can be described
as equation (1):

tcyc(n) = top(n) + tpre(n) + 2tcontrol + 2td(n) (1)

Obviously, only when the following constrain is satisfied, can this improved
structure of asynchronous micropipeline function.

tcd + td(n) > top(n) (2)

Control

OP OPOP

Logic Cell #1 Logic Cell #3Logic Cell #2

Datafor1 Datafor4Datafor3Datafor2

ack0 ack2 ack3

req1 req2 req3

Control Control

ack1

Fig. 4. Asynchronous micropipeline with improved control circuit

3.3 Operation Circuit Design

Since well suited for dual-rail encoding, DCVSL is taken into consideration for
implementing operation circuit in RCA. We propose a new DSDCVSL (Data-
Driven DCVSL) for synchronous pipeline with the advantages of high-speed,
simple-control and low-cost[8]. The usage of DSDCVSL structure for operation
circuit is shown in figure 5. There must be a series of circuits in a logic cell
to support various operations. They can be implemented by NMOS tree with
different logic functions. In figure 5, the ack and req signals are responsible for
setting the state of operation circuit.
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Fig. 6. STG of asynchronous micropipeline

4 Evaluation and Results

4.1 Performance Evaluation

The functioning process of asynchronous micropipeline formed by logic cells in
RCA is shown in figure 6 by signal transition graph (STG). In figure 6, the
transition of ack is represented by ack+ and ack-, of which ”+” means the
transition from low to high and ”-” means high to low. D+ and D- represent
the state of operation circuit, of which ”+” means evaluation and ”-” means
pre-charging. (i) represents the Logic Cell of stage i in asynchronous pipeline,
while (i+1) and (i+2) represent its successive two logic cells. The arrows dedicate
the constrain relationships of signals of neighboring logic cells. For instance, the
arrow between ack(i+1)- and D(i)- means that before the operation circuit of
logic cell i being pre-charged, the signal of ack from logic cell (i+1) to logic cell
i must be inspired from high to low. The minimum cycle of one logic cell from
the asynchronous micropipeline has been stated in equation (1). The latency of
total asynchronous micropipeline, which is the main measurement of RCA, can
be described as equation (3).

T =
n

∑

i=1

(

top(i) + td(i)
)

(3)

4.2 Experiment Results

To show the effectiveness of our cryptographic engine, we have conducted several
tests of simulation, which are based on the technology library of SMIC in 0.18
CMOS process. We have implemented the modulo multiplication on FPGA and
compared the performance with our design (ARCEN). The comparison results
are listed in table 1, and the target FPGA device is Xilinx Virtex-E. The results
of ARCEN is generated by analyzing Synopsys HSPICE report.
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Table 1. Estimated throughput comparisons of ARCEN and FPGA

Key Length (bit) Throughput (Mbit/s)
FPGA (Virtex-E) ARCEN

128 14.455 78.278
256 7.926 78.201
512 4.383 78.163
1024 2.486 78.144

5 Conclusions and Future Work

We introduce a novel asynchronous reconfigurable cryptographic engine
(ARCEN) and discuss the design of ARCEN to achieve high performance. The
analysis and experiment results have proven that ARCEN functions well with
high-performance.

Future work includes designing a dynamic partial reconfigurable architecture
to achieve further savings in area and to reduce the reconfigure time of the
device. And we will go deeper into the research of using asynchronous circuits to
defend timing analysis and power analysis attack, thus to enhance chip security.
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Abstract. In Simultaneous Multithreading (SMT) processors, the instruction 
fetch policy implicitly determines shared resources allocation among all the co-
scheduled threads, and consequently affects throughput and fairness. However, 
prior work on fetch policies almost focuses on throughput optimization. The is-
sue of fairness between threads in progress rates is studied rarely. 
    In this paper, we take fairness as the optimization goal and propose an en-
hanced version of ICOUNT2.8 with better fairness called ICOUNT2.8-fairness. 
Results show that using ICOUNT2.8-fairness, RPRrange (a fairness metric de-
fined in this paper) is less than 5% for all types of workloads, and the degrada-
tion of overall throughput is not more than 7%. Especially, for two-thread MIX 
workload, ICOUNT2.8-fairness outperforms ICOUNT2.8 in throughput at the 
same time of achieving better fairness. 

Keywords: SMT, Instruction Fetch Policy, Throughput, Fairness. 

1   Introduction 

Simultaneous Multithreading (SMT) processors [1,2] improve performance by run-
ning instructions from several threads at a single cycle. Co-scheduled threads share 
some resources, such as issue queues, physical registers, and functional units. The 
way of allocating shared resources among the threads will affect throughput and fair-
ness. Throughput measures the combined progress rate of all the co-scheduled 
threads, whereas fairness measures how uniformly the threads are slowed down due to 
resource sharing [3]. Currently, shared resources allocation is mainly decided by the 
instruction fetch policy. However, Prior work on fetch policies has ignored fairness 
and almost focused on throughput optimization, such as ICOUNT2.8 [2], STALL, 
FLUSH [4], DG, PDG [5, and so on. In order to achieve higher throughput, these 
policies tend to favor threads that naturally have high IPC [6], hence sacrificing  
fairness.  

In fact, fairness in progress rates is very critical because the Operating System 
(OS) thread scheduler assumes that in a given timeslice, the resource sharing  
uniformly impacts the progress rates of all co-scheduled threads in SMT processors. 
Based on this assumption, an OS assigns more timeslices to threads with higher  
                                                           
∗ This work was supported by Chinese NSF under the grant No.60376018. 
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priority, thus priority-based timeslice assignment can work in a SMT processor sys-
tem as effectively as in a time-shared single-thread processor system. On the contrary, 
if this consumption can not be met, priority inversion may arise. It is worse that OS is 
not aware of this problem, and cannot correct this situation. Therefore, in order to 
ensure the OS scheduler’s effectiveness, the hardware in SMT processors should 
provide fair progress rates to all the co-scheduled threads.  

In this paper, we take fairness as the main optimization goal and propose an en-
hanced version of ICOUNT2.8 with better fairness, which is called ICOUNT2.8-
fairness.  In our new policy, relative progress rates of all co-scheduled threads are 
recorded and detected each cycle. If the range of relative progress rates is lower than a 
threshold, fairness is met approximately and ICOUNT2.8 is used as the fetch policy. 
Thus throughput would not be degraded significantly. Otherwise, relative progress 
rates are used to decide fetch priorities. The lower a thread’s relative progress rate is, 
the higher its fetch priority is. Unfair situation is corrected by this way.  

The rest of the paper is organized as follows. Section 2 presents the methodology 
and gives the definition of a new fairness metric RPRrange. In Section 3, we analyze 
the fairness of ICOUNT2.8 fetch policy. Section 4 details how to enhance 
ICOUNT2.8 with better fairness and Section 5 illustrates the results. Finally, conclud-
ing remarks are given in Section 6. 

2   Methodology 

Execution is simulated on an out-of-order superscalar processor model derived from 
SMTSIM [7]. The simulator models all typical sources of latency, including caches, 
branch mispredictions, TLB misses, etc. The baseline configuration of our simulator 
is shown in Table 1. 

Table 1.  Baseline configuration of the simulator 

Parameter Value 
Fetch Width 8 instructions per cycle 
Instruction Queues 64 int, 64 fp 
Functional Units 6 int (4 load/store), 3 fp 
Renaming Registers 100 int, 100 fp 
Branch Predictor 2K gshare 
Branch Target Buffer 256 entries, 4-way associative 
L1I cache, L1D cache 64KB, 2-way, 64-bytes lines, 1 cycle access 
L2 cache 512KB, 2-way, 64-bytes lines, 10 cycles latency 
L3 cache 4MB, 2-way, 64-bytes lines, 20 cycles latency 
Main Memory Latency 100 cycles 

 
All benchmarks used in our simulations are taken from the SPEC2000 suite [8] and 

are executed using the reference input set. We follow the idea proposed in [9] to run 
the most representative 300 million instruction segment of each benchmark. Bench-
marks can be divided into two groups based on their cache behaviors: MEM and ILP. 
MEM benchmarks used in our simulations include parser, twolf, lucas, art, swim and 
applu. ILP benchmarks include gzip, eon, gap, crafty, fma3d and mesa. Table 2 lists 
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the multithreaded workloads used in our simulations. These workloads either contain 
benchmarks all from MEM type (the MEM workloads in Table 2), or all from ILP 
type (ILP), or an equal mix from MEM type and ILP type (MIX).  

Table 2. Multithreaded Workloads 

Size Type Workloads 
ILP {gzip, crafty}, {gzip, fma3d}, {gap, mesa}, {fma3d, mesa} 

MIX 
{gzip, parser}, {gzip, lucas}, {fma3d, twolf}, {fma3d, swim} 
 {parser, eon}, {parser, mesa}, {art, fma3d}, {applu, mesa} 

2 

MEM {parser, twolf}, {parser, lucas}, {twolf, applu}, {art, swim} 
ILP {gzip, eon, gap, crafty}, {gzip, crafty, fma3d, mesa} 

MIX 
{gzip, gap, parser, twolf}, {gzip, crafty, art, swim} 
 {parser, twolf, fma3d, mesa}, {applu, lucas, fma3d, mesa} 

4 

MEM {lucas, art, swim, applu}, {parser, twolf, lucas, art},  
ILP {gzip, eon, gap, crafty, fma3d, mesa} 
MIX {gzip, gap, mesa, parser, twolf, lucas}, {gap, famed, mesa, parser, twolf, lucas} 6 
MEM {parser, twolf, lucas, art, swim, applu} 
ILP {gzip, eon, gap, crafty, fma3d, mesa, gzip, crafty} 

MIX 
{gzip, gap, fma3d, mesa, parser, twolf, art, applu} 
 {gzip, eon, gap, crafty, lucas, art, swim, applu} 

8 

MEM {parser, twolf, lucas, art, swim, applu, art, parser } 
 

 
We use IPC to measure throughput and also define a new metric to measure fair-

ness. Let IPCalonei denote IPC of thread i when it runs alone in a SMT processor and 
IPCsmti denote IPC of thread i when it runs with other threads. The relative progress 
rate of thread i (RPRi) is defined as Equation (1): 

                                           %100×=
i

i
i IPCalone

IPCsmt
RPR                                               (1) 

Assume the number of co-scheduled threads is n. We define a fairness metric 
RPRrange, which is the range of relative progress rates of all co-scheduled threads 
and given by equation (2): 

),...,,(),...,,( 2121 nn RPRRPRRPRMINRPRRPRRPRMAXRPRrange −=            (2) 

RPRrange is always between zero and one. The smaller RPRrange is, the better 
fairness is. We say that an ideal fairness is achieved when RPRrange is zero, that is, 
the relative progress rates of all co-scheduled threads are equal. 

3   Fairness of ICOUNT2.8 Fetch Policy 

ICOUNT2.8 is used widely in SMT processors. ICOUNT presents that the threads 
with few instructions in decode, rename, and the instruction queues are prioritized to 
fetch instructions; 2.8 presents that the number of threads that can fetch in one cycle 
is 2, and the maximum number of instructions fetched per thread in one cycle is 8.  

To get how uniformly the co-scheduled threads are slowed down when using 
ICOUNT2.8 fetch policy, we choose some workloads from Table 2 to simulate.  
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Figure 1 shows the RPRrange results. We can see that for most of workloads, unfair-
ness arises. Especially for {fma3d, swim}, RPRrange reaches 0.71, where the relative 
progress rate of fma3d is 0.26 and that of swim is 0.97.  
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Fig. 1.  Fairness of ICOUNT2.8 

Under this unfair situation, problems may occur. Assume that fma3d and swim are 
ready threads waiting to be scheduled by the OS scheduler and fma3d has a higher 
priority. To make fma3d achieve a faster forward progress, the OS scheduler can 
assign more timeslices to it. However, in the timeslices in which fma3d and swim are 
co-scheduled, swim makes faster forward progress. The OS scheduler is not aware of 
this problem, so it will not assign further more timeslices to fma3d. Finally, swim 
may achieve a faster forward progress, which makes the OS scheduler ineffective. 

4   Enhancing ICOUNT2.8 Fetch Policy with Better Fairness 

The basic idea behind ICOUNT2.8-fairness is: when fairness is met, use ICOUNT2.8 
as fetch policy; otherwise, correct unfairness by other method. So two things must be 
resolved.  First is to detect when unfairness happens. Second is to correct unfairness. 

For the first thing, we use RPRrange to determine if fairness is met. Therefore, 
IPCsmt and IPCalone of all threads are needed. IPCsmt can be gotten easily. To get 
IPCalone dynamically, we employ two phases: sample phase and statistic phase.  

During the sample phase, the processor runs in single-thread mode. Each thread 
runs alone for a certain interval respectively. 

During the statistic phase, the processor runs in multi-thread mode and all threads 
are co-scheduled. Each cycle, IPCsmt and RPRrange are re-calculated. If RPRrange is 
more than a threshold, we say that unfairness happens. 

A key point must be considered. Programs experience different phases in their exe-
cution in which their IPC varies significantly [10]. Hence, if we want to get more 
accurate progress rates, we need take into account this variable IPC. Our solution is to 
execute sample phase and statistic phase in an alternate fashion.  

For the second thing, it is obvious that we can use relative progress rates to correct 
unfairness. That is, make the thread with lower progress rate run faster by assigning 
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higher fetch priority to it. However, when there are only two threads co-scheduled, 
this method may not correct unfairness. The reason is that instructions are fetched 
from two threads each cycle. Although the thread with lower relative progress rate has 
higher fetch priority, if it can not fill the fetch bandwidth, instructions from the other 
thread with higher relative progress rate can be fetched still. In order to address this 
problem, when fairness is not met and the number of threads co-scheduled is two, 
only one thread can fetch instructions in one cycle. 

Now three parameters are needed to be defined for ICOUNT2.8-fairness policy. 

Lengthstatistic: the length of the statistic phase. 
Lengthsample: the length of interval in which each thread runs alone during the sam-

ple phase. So the total length of a sample phase is Lengthsample multiplied by n, where 
n is the number of co-scheduled threads. 

Thresholdfairness: a threshold to detect unfair situation. If RPRrange is more than 
Thresholdfairness, we say that unfairness arises. Otherwise, fairness is met. 

5   Results 

5.1   Choosing Parameters for ICOUNT2.8-Fairness 

To simulate the impact of Lengthstatistic on throughput, only ICOUNT2.8 is used dur-
ing the statistic phase. Figure 2 shows the results. Y-axis denotes the average degrada-
tion of throughput per thread compared to ICOUNT2.8. We can see that 224 is an 
inflexion point. So we choose 224 as the value of Lengthstatistic. 
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Fig. 2. Impact of Lengthstatistic on throughput 

 

Fig. 3. Impact of Thresholdfairness on  throughput 

In our simulations, Lengthsample is smaller than Lengthstatistic greatly and the impact 
of Lengthsample on throughput is very limited. Therefore, we choose 216 as the value of 
Lengthsample without simulation. 

Now we measure the impact of Thresholdfairness on throughput. Figure 3 shows the 
results. Y-axis denotes the degradation of overall throughput compared to 
ICOUNT2.8. Similarly, we can see that 0.001 is an inflexion point, so we choose 
0.001 as the value of Thresholdfairness. 
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5.2   ICOUNT2.8-Fairness vs. ICOUNT2.8 

In this section, we compare ICOUNT2.8-fairness to ICOUNT2.8 with chosen para-
meters.  

Figure 4 depicts fairness results of ICOUNT2.8 and ICOUNT2.8-fairness. The av-
erage RPRrange of ICOUNT2.8 for ILP, MIX and MEM workloads are 8.8%, 21.0% 
and 14.3%, respectively. For ICOUNT.28- fairness-224-216-0.001, the respective val-
ues are 4.4%, 2.8% and 3.0%. Fairness is improved greatly. We can also see that for 
all types of workloads, RPRrange of ICOUNT2.8-fairness is less than 5%. So we can 
say that ICOUNT2.8-fairness is very stable in fairness.  
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Fig. 5. Throughput of ICOUNT2.8-fairness relative to ICOUNT2.8 

Figure 5 shows throughput increment or degradation of ICOUNT2.8-fairness com-
pared to ICOUNT2.8. We can see that the degradation is 6.9% in worst. For two-
thread MIX workload, throughput is improved when better fairness is achieved. The 
key point is ICOUNT2.8 fetches instructions from two threads in one cycle, and the 
thread with cache misses can fetch instructions still if there are only two threads co-
scheduled. After a certain number of cycles, shared resources clogging may happen. 
Two-thread MIX workloads contains an MEM-thread with low IPC and an ILP-thread 
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with high IPC. Therefore, it is easier that shared resources are clogged by MEM-
thread, which causes ILP-thread cannot make forward progress because of lack of 
resources. However, in ICOUNT2.8-fairness, when the number of co-scheduled 
threads is two, only one thread can fetch instructions if unfairness arises. Thus, re-
sources can be occupied fairly by two threads according to their IPC, and the ILP-
thread can acquire enough resources to make forward progress. 

6   Conclusions 

Our contribution is that we propose an enhanced version of ICOUNT2.8, called 
ICOUNT2.8-fairness. When fairness is met, ICOUNT2.8 is used to ensure through-
put. Otherwise, fetch priorities of threads are determined by relative progress rates to 
correct unfair situation. Results show that compared to ICOUNT2.8, ICOUNT2.8-
fairness achieves better fairness, and throughput is only affected slightly. For all types 
of workloads, RPRrange is less than 5% and the degradation of throughput is not 
more than 7%. Especially for two-thread MIX workload, ICOUNT2.8-fairness out-
performs ICOUNT2.8 in throughput at the same time of achieving better fairness. 
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Abstract. IEEE 754r is the ongoing revision to the IEEE 754 floating point 
standard and a major enhancement to the standard is the addition of decimal 
format. Thus in this paper we propose a novel BCD subtractor called carry skip 
BCD subtractor. We also propose the reversible logic implementation of the 
proposed carry skip BCD subtractor. Reversible logic is emerging as a promis-
ing computing paradigm having its applications in low power CMOS, quantum 
computing, nanotechnology, and optical computing. It is not possible to realize 
quantum computing without reversible logic. It is being tried to design the BCD 
subtractor optimal in terms of number of reversible gates and garbage outputs.  

1   Introduction 

The decimal arithmetic is receiving significant attention as the financial, commercial, 
and Internet-based applications cannot tolerate errors generated by conversion be-
tween decimal and binary formats. A number of decimal numbers, such as 0.110, 
cannot be exactly represented in binary, thus, these applications often store data in 
decimal format and process data using decimal arithmetic software [1]. The advantage 
of decimal arithmetic in eliminating conversion errors also comes with a drawback; it 
is typically 100 to 1,000 times slower than binary arithmetic implemented in hard-
ware. Since, the decimal arithmetic is getting significant attention; specifications for it 
have recently been added to the draft revision of the IEEE 754 standard for Floating-
Point Arithmetic. IEEE 754r is an ongoing revision to the IEEE 754 floating point 
standard [2,3]. Some of the major enhancements so far incorporated are the addition 
of 128-bit and decimal formats. It is anticipated that once the IEEE 754r Standard is 
finally approved, hardware support for decimal floating-point arithmetic on the proc-
essors will come into existence for financial, commercial, and Internet-based applica-
tions. Still, the major consideration while implementing BCD arithmetic will be to 
enhance its speed as much as possible.  

Reversible logic is also emerging as a promising computing paradigm. Researchers 
like Landauer have shown that for irreversible logic computations, each bit of infor-
mation lost, generates kTln2 joules of heat energy, where k is Boltzmann’s constant 
and T the absolute temperature at which computation is performed [4]. Bennett 
showed that kTln2 energy dissipation would not occur, if a computation is carried out 
in a reversible way [5], since the amount of energy dissipated in a system bears a 
direct relationship to the number of bits erased during computation. Reversible  
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circuits are those circuits that do not lose information and reversible computation in a 
system can be performed only when the system comprises of reversible gates. These 
circuits can generate unique output vector from each input vector, and vice versa, that 
is, there is a one-to-one mapping between input and output vectors. 

Reversible circuits are of high interest in low-power CMOS design, optical com-
puting, nanotechnology and quantum computing. The most prominent application of 
reversible logic lies in quantum computers [6]. A quantum computer performs an 
elementary unitary operation on one, two or more two–state quantum systems called 
qubits. Each qubit represents an elementary unit of information; corresponding to the 
classical bit values 0 and 1. Any unitary operation is reversible and hence quantum 
arithmetic must be built from reversible logical components.     

The major constraint while designing reversible logic circuits is to minimize the 
reversible gate used and garbage output produced(outputs which may not be used but 
are provided to maintain reversibility).  In this paper we introduce a novel BCD sub-
tractor called Carry Skip BCD subtractor. The proposed BCD architecture is designed 
especially, to improve the speed of the BCD subtraction. The BCD subtractor inter-
nally consists of nine’s complementer, BCD adder and parallel adder. Thus special 
emphasize has been laid on their architecture, to make them carry skip, to overall 
improve the efficiency of the subtractor. We also propose a novel reversible imple-
mentation of the carry skip BCD subtractor, using the recently proposed TSG gate [7] 
and the other existing gates in literature. The TSG gate has the advantage that it can 
work singly as a reversible Full adder with only two garbage outputs. The reversible 
implementation of the proposed BCD subtractor is being tried to be optimal, in terms 
of number of reversible gates and garbage outputs. Thus an attempt has been tried to 
design the fast BCD adder, as well as, to provide the platform for building decimal 
ALU of a Quantum CPU.   

2   BCD Subtractor 

In the BCD subtraction, nine’s complement of the subtrahend is added to the minu-
end. In the BCD arithmetic, the nine’s complement is computed by nine minus the 
number whose nine’s complement is to be computed.  This can be illustrated as the 
nine’s complement of 5 will be 9-5= 4 which can be represented in BCD code as 
0100.   

In BCD subtraction, there can be two possible possibilities: 

• The sum after the addition of minuend and the nine’s complement of subtrahend 
is an invalid BCD Code or a carry is produced from the MSB. In this case deci-
mal 6 (binary 0110) and the end around carry (EAC) is added to the sum.  The fi-
nal result will be the positive number represented by the sum. 

• The sum of the minuend and the nine’s complement of the subtrahend is a valid 
BCD code which means that the result is negative and is in the nine’s comple-
ment. 

In BCD arithmetic, instead of subtracting the number from nine, the Nine’s comple-
ment of a number is determined by adding 1010(Decimal 10) to the one’s complement 
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of the number. The nine’s complementer circuit using a 4-bit adder and XOR gates  is 
shown in Fig. 1 and the one-digit BCD subtractor, using the nine’s complementer 
circuit  is shown in  Fig. 2. 

                     

         Fig. 1. Nine’s Complementer                                          Fig. 2. BCD Subtractor  

3   Proposed Carry Skip BCD Subtractor 

In order to design the carry skip equivalent of the BCD subtractor, the authors pro-
pose the carry skip equivalent of its individual components. 

3.1   Carry Skip BCD Adder 

Recently, the Carry Skip BCD Adder is constructed in such a way that, the first   full 
adder block consisting of 4 full adders can generate the output carry ‘Cout’ instanta-
neously, depending on the input signal and ‘Cin’, without waiting for the carry to be 
propagated in the ripple carry fashion [8]. Fig. 3 shows the Carry Skip BCD adder. 
The working of the Carry Skip BCD Adder (CS BCD Adder) can be explained as 
follows. 

In the single bit full adder operation, if either input is a logical one, the cell will 
propagate the carry input to its carry output. Hence, the ith full adder carry input Ci, 
will propagate to its carry output, Ci+1, when Pi= Xi Yi where Xi and Yi represents 
the input signal to the ith full adder.  In addition, the four full adders at the first level 
making a block can generate a “block” propagate signal ‘P’. When ‘P’ is one, it will 
make the block carry input ‘Cin’, to propagate as the carry output ‘Cout’ of the BCD 
adder, without waiting for the actual propagation of carry in the ripple carry fashion.  
An AND4 gate is used to generate a block propagate signal ‘P’. Furthermore, depend-
ing on the value of ‘Cout’, appropriate action is taken. When it is equal to one, binary 
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0110 is added to the binary sum using another 4-bit binary adder (Second level or 
bottom binary adder). The output carry generated from the bottom binary adder is 
ignored, since it supplies information already available at the output carry terminal. 

        

Fig. 3. Carry Skip BCD Adder                Fig. 4. Proposed Carry Skip BCD Subtractor   

3.2   Carry Skip BCD Subtractor 

Figure 4 shows the proposed carry skip BCD subtractor consisting of nine’s comple-
menter and carry skip BCD adder. It is to be noted that the carry skip implementation 
of the nine’s complementer will not be beneficial. The reason for this lies in the fact 
that we are concerned only with generating the complementing output in nine’s com-
plementer not with ‘Cout’.  In Fig. 4, the last block (bottom 4-bit adder) is being de-
signed in the carry skip fashion, to quickly generate the ‘Cout’.  The proposed circuit 
in Fig.4 is the maiden attempt to provide the carry skip equivalent of the conventional 
BCD subtractor.  

4   Basic Reversible Gates  

There are number of a existing reversible gates in literature such as Fredkin gate, 
Feynman Gate and Toffoli Gate (TG) [9,10].  Since, the major reversible gate used in 
designing the BCD subtractor is TSG gate, hence only the TSG gate is discussed in 
this section. The TSG gate is a 4 * 4 one through reversible gate [7] as shown in 
Fig.5. One of the prominent functionality of the TSG gate is that it can work singly as 
a reversible Full adder unit with bare minimum of two garbage outputs (lower bound 
for reversible full adder). Fig. 6 shows the implementation of the TSG gate as a re-
versible Full adder. It was shown in [7] that the reversible full adder design using 
TSG gate, is better than the reversible full-adder designs existing in literature.  
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          Fig. 5. Reversible 4 *4 TSG Gate  Fig. 6.  TSG  Gate as a Reversible Full Adder  

5   Reversible Carry Skip BCD Subtractor 

It is evident from Fig. 2 that in order to implement reversible logic design of BCD 
subtractor, the whole reversible design must be decomposed into three modules 

• Design of reversible Nine’s Complementer (which in turn has to be designed us-
ing reversible parallel Adders). 

• Design of reversible BCD Adder. 
• Integration of the modules using existing reversible gates to design the reversible 

BCD subtractor with minimum gates and garbage outputs. 

5.1   Reversible Nine’s Complementer 

The reversible nine’s complementer is designed using the TSG gate and the Feynman 
Gate (FG). FG is used to design the reversible XOR function, as it can implement the 
XOR function with bare minimum of one garbage output. The 4-bit reversible adder 
used in the nine’s complementer can be further improved for efficiency by employing 
reversible parallel adders proposed by us in [7].  Fig. 7 shows one of the possible 
ways of realizing reversible nine’s complementer. 

 

Fig. 7. Reversible Nine’s Complementer  

5.2   Reversible Carry Skip BCD Subtractor 

The design of reversible carry skip BCD adder is presented by us in [8], thus its de-
sign is not discussed in this paper. Fig. 8 shows the reversible implementation of the 
proposed carry skip BCD subtractor. In order to simplify the explanation of the de-
sign, the design is labeled as part 1 and part 2. It is to be noted that we have carefully 
examined the architecture of BCD subtractor to design it optimal, in terms of number 
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of reversible gates and garbage outputs. In Fig.8 (Part 1), we have used the Feynman 
gates as chains for generating the XOR, copying, and NOT functions with zero gar-
bage. If the architecture is not deeply examined, it can lead to increase in the garbage. 
The reason for this stems from the fact that when Feynman gate is used for generating 
the XOR and NOT functions, it produces atleast one garbage output in both cases but 
the careful examination by us has produced the zero garbage.  Fig.8 (Part 2) shows the 
reversible implementation of the bottom 4-bit carry skip adder block. The TSG and 
the Fredkin gates (F) are used for designing this block. In the proposed design, three 
outputs of the TSG gate are utilized (as propagate Pi= Xi Yi is also required), thus 
reducing the garbage of reversible full adder from two to one. The three Fredkin in 
the middle of Fig.8 (part 2) are used to perform the AND4 operation. The single 
Fredkin in the left side of Fig.8 (part 2) performs the AND-OR function to create the 
carry skip logic and generate the block carry out signal ‘Cout’. Fan-out is avoided by 
using the Feynman gate. Since, the proposed reversible Carry skip BCD adder is de-
signed using optimal modules; hence overall it will be optimal in terms of number of 
reversible gates and garbage outputs. 

 

 

Fig. 8. Reversible Carry Skip BCD Subtractor 

6   Conclusions 

The focus of this paper is the IEEE 754r (the ongoing revision to the IEEE 754 
floating point standard considering decimal arithmetic) and the design of reversible 
BCD arithmetic units. Thus, this paper proposes novel Carry Skip BCD subtractor 
along with its reversible logic implementation. It is being tried to design the BCD 
subtractor optimal both in terms of number of reversible gates and garbage outputs. 
This is done by choosing the appropriate reversible gates for realizing the Boolean 
functions. The reversible circuits designed and proposed here, form the basis of the 
BCD ALU of a primitive quantum CPU.  
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Abstract. Because the absence of hardware support, almost all of embedded 
operating system are based on SDRAM in past time. With progress of 
embedded system hardware, embedded system can provide more substrative 
supports for embedded operating systems. In this paper we present an operating 
system microkernel for embedded system which can reside in the SRAM on 
chip. With progress of embedded system hardware, embedded system can 
provide more substrative supports for embedded operating systems. In this 
paper we present an operating system microkernel named SRAMOS for 
embedded system which can reside in the SRAM on chip. This microkernel can 
make the most of low power consumption of SRAM. The experiment results 
show that this microkernel performs better than the traditional embedded 
operating systems.   

Keywords: power-efficient, microkernel, embedded operating system. 

1   Introduction 

In recent years, wireless networks are employed everywhere and mobile devices are 
used more and more popularly. Most mobile devices have limited hardware support 
compared to PCs. And embedded operating systems for mobile devices have to base 
on this hardware.  

According to the operating system design concept which comes from the desktop 
operating system and limited by the hardware, current embedded operating systems 
such as Embedded Linux [1], Symbian [2], Plam [3], Pocket PC [4] and the 
proprietary system all reside in SDRAM. There are many constraints exist if they are 
in SDRAM such as real-time response.  

With the evolution of embedded hardware and software, some new techniques 
have appeared, such as cache programmable. Programmable cache is one of the main 
features of Intel 27x family [5] based on ARM 10 architecture. To enhance the 
efficiency of embedded operating system, we present the microkernel in SRAM (the 
programmable cache). This a new concept for embedded operating system designs. 

The remainder of this paper is organized as follows. Section 2 introduces the 
architecture of Intel 27x family; section 3 describes architecture of the SRAMOS; 
Experimental results will be given in section 4. Finally, section 5 provides conclusion 
and future work. 
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2   SRAM on Chip of Intel 27x Family 

Intel 27x processor is owned by Intel Company and it is an integrated system-on-a-
chip microprocessor designed for mobile devices.  

High-performance and low-power is the main target for this processor. The 
architecture is in accordance with ARM 10 but it does not support all of ARM 
Instructions (V5TE) in which floating point instructions are excluded. The ARM 
programmer’s model is complied by the Intel PXA27x processors. In additional, Intel 
provides extra supports to PXA27x family which is added by Intel techniques: Intel® 
Wireless MMX™ integer instructions in applications such as those that accelerate 
audio and video processing.  

PXA27x provides extra 256K cache which is considered as internal memory. This 
cache is internal memory-mapped SRAM which consists of four banks in which then 
capacity is 64K. The SRAM array module consists of four banks of 8-K x 64-bit 
memory arrays. Each memory bank has a dedicated single-entry queue and 8 K x 64 
bits for data storage. If a memory bank is in standby mode, the access request is 
stored in the queue while the memory bank is placed in run mode. The access is 
completed when the memory bank has entered run mode. If a memory bank is in run 
mode and the queue does not contain any pending access requests, the queue is 
bypassed and the memory is accessed normally. 

This piece of SRAM is placed on chip and thus PXA27x can provide extra power 
management which is bank-by-bank management for this cache and thus can reduce 
the power consumption. In addition, this cache can support Byte Write Operation and 
are not associated with any I/O signals. Figure 1 shows the block diagram of this 
cache. 

 

Fig. 1. Internal memory block diagram [5] 
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As we can see from Figure 1, six parts are consisted of this cache: the four SRAM 
banks, queues, the system-bus interface, control and status registers, power 
management block, and memory-bank multiplexing and control. 

Table 1 shows the internal memory banks how to be mapped to registers. 

Table 1. Extra cache mapped to registers [5] 

Address Name Description Page 
0x5800_0000–
0x5BFF_FFFC 

reserved

0x5C00_0000–
0x5C00_FFFC 

Memory 
Bank 0

64-Kbyte 
SRAM

0x5C01_0000–
0x5C01_FFFC  

Memory 
Bank 1

64-Kbyte 
SRAM

0x5C02_0000–
0x5C02_FFFC  

Memory 
Bank 2

64-Kbyte 
SRAM

0x5C03_0000–
0x5C03_FFFC  

Memory 
Bank 3

64-Kbyte 
SRAM

0x5C04_0000–
0x5C7F_FFFC

reserved

0x5C80_0000–
0x5FFF_FFFC  

reserved

 

3   Architecture of SRAMOS 

Commonly embedded operating systems are stored in Flash or some other external 
storage. And these traditional embedded operating systems have many functions 
integrated together even if it is an embedded operating system with a microkernel 
because there are much memory can be used for this kernel.  

But as we can see from section 2, the size of SRAM on chip is only 256KB and it’s 
too small to place so many data and instructions in SRAM. Thus we design a 
microkernel fro SRAM which we name it after SRAMOS. In the following part of 
this section, we will illustrate this SRAMOS in details. 

SRAMOS must ensure that this microkernel can run in SRAM. Because of the size 
limitation of SRAM, the microkernel has to be designed as small as possible. Thus 
some parts in traditional embedded operating system must be taken from the kernel 
and the remainders have to be cut down or modified in order to make all parts of 
SRAMOS be able to be contained in the microkernel. The most design principle is 
minimum and optimal. 

According to the foregoing design principle, we design three parts in the 
microkernel of SRAMOS: Task Management, SRAM Management and Security. The 
architecture is shown in Figure 2. 

Commonly microkernel is stored in flash on chip. When system starts, microkernel 
is loaded from flash on chip. 
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Fig. 2. Architecture of microkernel 

3.1   Task Management 

Processes and threads scheduling is the mainly work of this part. Task Management is 
designed to be able to scheduling tasks by different policies which are used mixedly 
in the microkernel.  

The most important policy is to support real-time response. Because of the gap 
between main memory and CPU, embedded operating systems for real-time are 
difficult to design and implement. With the evolution of CPU, this gap will be more 
and broader. In memory hierarchy, cache which is mainly based on SRAM memory is 
used to reduce the speed gap between CPU and main memory and other external 
storage. The same policy is used by SRAMOS to reduce the gap. Scheduling in 
SRAM will obtain faster response to the real-time tasks.  

The traditional embedded systems like to place more tasks in memory for 
scheduler. But not same to the traditional embedded systems, SRAMOS only places 
enough tasks into SRAM to ensure the efficiency of scheduling. The relative security 
mechanisms can be added into this part if necessary. 

3.2   SRAM Management 

Now there are only 256KB SRAM provided by the processors. Thus SRAM 
Management must provide finely management for SRAMOS. 

Different from common memory management, we divide SRAM into different 
District which is allocated to different processes and threads. Three Districts are 
divided: Kernel District, Real-Time District and User District as shown in Figure 3. 
Kernel District is allocated to the microkernel of SRAMOS. Microkernel runs in this 
part of SRAM to ensure the security of kernel data and instructions.   

Real-Time District is allocated to the Real-Time tasks. User District is allocated to 
the common tasks. Kernel District and Real-Time District can use the space of the 
User District if necessary. But User District can not use the space of Kernel District 
and Real-Time District. Further, different Memory Banks of SRAM are divided into 
pages to manage. 

3.3   Power Management 

This part takes charge of power-efficient management. A large number of embedded 
systems are driven by batteries, not by wired power supply. Efficient power usage is  
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Fig. 3. Experimental results 

required to increase utilization time. Normal embedded OS makes use of DPM  
[6, 7, 8] or other optimized algorithm to reduce power consumption. But previous 
platform architecture must use SDRAM on board as memory. And SDRAM costs 
power very much. SRAMOS run in SRAM on chip. The ratio of power consumption 
for SRAM is expected to be 10% of SDRAM [9]. So power efficiency of new 
architecture will be more excellent than previous architecture. 

Table 2. Power comparison of SDRAM and SRAM [5] 

Memory Idle  
(mA) 

Active  
(mA) 

Read  
(16 bit) 

Erase  
(16bit) 

Write  
(16 bit) 

Mobile SDRAM 0.5 75 90ns N/A 90ns 
Low Power SRAM 0.005 3 55ns N/A 55ns 
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3.4   Security 

To the entire microkernel, common security mechanisms are adopted in SRAMOS 
such as processes protection and so on. And In different parts of microkernel, security 
mechanisms are adopted. They are also able to be considered as a part of security. 

Because of there is no I/O provided by processors, there is no I/O management in 
this microkernel as the traditional embedded operating system. 

4   Experimental Results 

To test this SRAMOS, we construct a testbed for it. The prototype system is SimBed 
[10]. SimBed constructs a processor model which is written in C. Thus it can 
emulates the M-CORE microcontroller, a low-power, 32-bit CPU core with 16-bit 
instructions [11, 12]. We construct our testbed which concept comes from SimBed 
but more simple than it damagingly. 

The object embedded operating system which is a cut down version of embedded 
linux (ELinux) for this test and SRAMOS. The experimental results are shown in 
Figure 3. 

We choose 2ms as the period. These initial test results show that SRAMOS is 27% 
lower power consumption than the ELinux. 

To get more accurate results we will construct new simulate testbed in the future. 

5   Conclusion and Future Work 

In this paper, we present a power-efficient microkernel running in SRAM named 
SRAMOS. This microkernel is able to provide lower power consumption than 
common embedded operating systems. And it can provide extra gains to the mobile 
devices such as real-time response, smaller embedded systems simultaneously. 
Because programmable SRAM is a new technique of hardware, more designs and 
detail implementation need to be improved especially how to make use of the feature 
of SRAM which can provide low power consumption. At the same time, more 
accurate test methods and tools should be proposed to test the energy and power 
consumption of this microkernel. 
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Abstract. The majority of currently available branch predictors base their 
prediction accuracy on the previous k branch outcomes. Such predictors sustain 
high prediction accuracy but they do not consider the impact of unbiased 
branches which are difficult-to-predict. In this paper, we quantify and evaluate 
the impact of unbiased branches and show that any gain in prediction accuracy 
is proportional to the frequency of unbiased branches. By using the 
SPECcpu2000 integer benchmarks we show that there are a significant 
proportion of unbiased branches which severely impact on prediction accuracy 
(averaging between 6% and 24% depending on the prediction context used). 

1   Introduction 

Branch instructions are a major bottleneck in the exploitation of instruction level 
parallelism (ILP) since (in general-purpose code) conditional branches occur 
approximately every 5 – 8 instructions [5]. With increasing instruction issue rate and 
depth of the pipeline, accurate dynamic branch prediction becomes more essential. 
Very high prediction accuracy is required because an increasing number of instruc-
tions are lost before a branch misprediction can be corrected. Even a 3% mispre-
diction rate can have a severe impact on MII processor performance [1, 10]. 

Chang [2] introduced the idea of grouping branches by their bias in an attempt to 
reduce the impact of aliasing. By profiling, branches were classified between 6 static 
classes and were then guided to the most appropriate dynamic predictor. Chappell [3] 
investigated difficult-to-predict branches in a Simultaneous Subordinate Micro-
Threading (SSMT) architecture. Chappell constrained microthreading to only 
difficult-to-predict branches which were identified as those being reached along a 
‘difficult-path’. We believe that such branches are unbiased. More recently, Desmet 
[4] applied the concept of Gini-index to construct a decision tree based on a number 
of dynamic and static branch features. In line with our thoughts, Desmet concluded 
that accurate branch predictors require more than just the type of predictor and history 
register length to achieve accurate branch prediction. 

Alternative methods of dynamic branch prediction are available such as neural 
branch prediction [6, 15]. Despite a neural branch predictor’s ability to achieve a very 
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high prediction rate and the ability to exploit deeper correlations at linear costs, the 
associated design complexity due to latency, large quantity of adder circuits, area and 
power are still obstacles to industrial adoption. As such we therefore consider neural 
prediction techniques to be outside the scope of this paper. 

The main objective of this paper is to highlight the impact of unbiased branches so 
that they can be considered in the design of two-level predictors. In remainder of this 
paper we evaluate the impact of unbiased branches, and therefore difficult-to-predict 
branches, on three commonly used prediction contexts (local, global and global XOR 
branch address) and their corresponding two-level predictors [8, 9, 10, 13]. 

2   Identifying Difficult-to-Predict Branches 

The majority of branches demonstrate a bias to either the taken or the not-taken path 
which means branches are highly polarised towards a specific prediction context (a 
local prediction context, a global prediction context or a path-based prediction 
context) and such polarised branches are relatively easy-to-predict. However, a 
minority of branches show a low degree of polarisation since they tend to shuffle 
between taken and not-taken and are therefore unbiased and difficult-to-predict. 

In this study, we identify unbiased branches by cascading branches through the 
three different prediction contexts and their respective predictors: a PAg, a GAg and a 
Gshare predictor. We also increase the history register lengths in units of 4-bits from 
16-bits to 28-bits as shown in Figure 1. Within our prediction contexts, a feature is the 
binary context on p bits of prediction information. Finally, each static branch has 

associated k dynamic contexts in which it can appear ( pk 2≤ ). We define the 
polarisation index (P) of a certain dynamic branch context as equation (1): 
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branches instances; 
• k = the number of distinct prediction contexts that appear during the branch’s 
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instances corresponding to context Si, T = the number of “taken” branch instances 
corresponding to context Si, ki ...,,2,1)( =∀ , and therefore 110 =+ ff ; 

• if kiSP i ...,,2,1)(,1)( =∀= , then the context iS  is completely biased 

(100%) and the branch is highly predictable; 
• if kiSP i ...,,2,1)(,5.0)( =∀= , then the context iS  is totally unbiased and 

the branch might be difficult to predict. 

Consider the following trivial examples, a branch in a certain dynamic context 
shows the following behaviour: TTTTTT… or NNNNNN… in which case the 
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transitions are always taken or always not-taken, and would be biased and easy-to-
predict. However, a branch in a certain context that is stochastic will show a highly 
shuffled behaviour, which would result in the branch being unbiased and difficult-to-
predict with its transitions toggling between T and N. We therefore consider that the 
rate of transition between branch outcomes is an important feature that can be applied 
to branch prediction. We introduce the distribution index which is the based on the 
rate of transitions as shown by equation (2): 
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where: 

• nt = the number of branch outcome transitions in context Si; 
• ),min(2 TNT⋅  = the maximum number of possible transitions; 

• k = the number of distinct dynamic contexts, pk 2≤ , and p is the history 
register length; 

• if kiSD i ...,,2,1)(,1)( =∀= , then the behaviour of the branch in context Si 

is “contradictory” (the most unfavourable case), and the predictor cannot learn it; 
• if kiSD i ...,,2,1)(,0)( =∀= , then the behaviour of the branch in context Si 

is constant (the most favourable case), and the predictor can be learned. 

A branch with a low distribution index (tending to 0) will show a repeating pattern 
and there will be few transitional changes. In contrast, a branch that exhibits many 
transitional changes will show a shuffled pattern and will have a high distribution 
index (tending to 1). Hence, the greater the distribution index means that the branch 
becomes more difficult-to-predict in a given predictor. We consider any branch for a 
given prediction context that has a distribution index of ≤0.2 to be easy-to-predict and 
define a difficult-to-predict branch for a given prediction context to be a branch with a 
low polarisation index (P<0.95 as derived from equation 1 (an unbiased branch)) and 
with a distribution index of >0.2. We chose this value because for a given branch 
context with a polarisation index >0.95 will be easy-to-predict and will achieve a high 
prediction accuracy. Consequently branches with a polarisation index of <0.95 will be 
difficult-to-predict. 

We identify and reduce the number of unbiased branches (Figure 1) by passing 
unbiased branches through successive cascades of different prediction contexts with 
increasing history information (from 16- to 28-bits). 

The number of unbiased branches is reduced from one prediction context to the 
next because an unbiased branch in one prediction context is not necessarily unbiased 
in a different prediction context. By the time our final prediction context (28-global 
history bits XORed with 28-bits of the branch address) is iterated the only remaining 
unbiased branches are those that have been unbiased throughout all iterations of all of 
the previous prediction contexts and these remaining unbiased branches are therefore 
identified as difficult-to-predict. We therefore predict with a short history prediction 
context before a long history prediction context to remove biased branches (those that 
are easy-to-predict) as early as possible. 
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Fig. 1. Unbiased branches cascading through the prediction contexts 

3   Simulations 

In this study we identify unbiased branches in the SPEC2000 benchmark suite [12] by 
cascading branches through the three different prediction contexts and their respective 
predictors: a PAg predictor, a GAg predictor and a Gshare predictor. We use the 
SimpleScalar simulator [11] and all results are reported on 1 billion dynamically 
executed instructions, skipping the first 300 million instructions. 

Figure 2 shows the prediction accuracy achieved by the 16-local history bit 
prediction context using the PAg predictor. The average prediction accuracy of this 
local prediction context is around 91%, which is limited by the impact of the unbiased 
branches which have an average prediction accuracy of around 76%. The frequency 
of unbiased branches (Table 1) varies between 5.76% (mcf) and 44.98% (twolf) with 
an average of 24.55%. 
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Fig. 2. PAg prediction accuracy with the 16-local history bits prediction context 

Table 1. Percentage of unbiased branches (16-local history bits prediction context) 

Benchmark mcf parser bzip gzip twolf gcc Avg.
Unbiased branches (P<0.95) 5.76% 20.60% 26.42% 38.73% 44.98% 10.80% 24.55%  

The unbiased branches are now cascaded through the 16-global history bit 
prediction context and its corresponding GAg predictor. The average prediction 
accuracy of this global prediction context is around 93%, which again is limited by 
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the impact of the unbiased branches. The average prediction of accuracy unbiased 
branches is around 72% and the frequency of these unbiased branches (Table 2) varies 
between 3.28% (mcf) and 32.41% (twolf) with an average of 17.48%. 

Table 2. Percentage of unbiased branches (16-global history bits prediction context) 

Benchmarks mcf parser bzip gzip twolf gcc Avg.
Unbiased branches (P<0.95) 3.28% 12.95% 23.4% 28.89% 32.41% 3.92% 17.48%  

The remaining unbiased branches are now cascaded through the 16-global history 
prediction context XORed with 16-bits of the branch address and its associated 
Gshare predictor. The prediction accuracy of the 16-history bit Gshare predictor 
improved by around 1% in comparison with the 16-history bit GAg predictor. 
However, the number of unbiased branches remained the same as those of the GAg 
predictor apert from gcc which showed a marginal reduction to 3.91%. 

The history register length was increased by 4-bits to 20-bits and then the 
remaining unbiased branches were cascaded through the 20-local history bit 
prediction context and its associated PAg predictor. We continued to cascade through 
our remaining prediction contexts (local, global, global XOR branch address), 
increasing the amount of history information by 4-bits at a time (to a maximum of 28-
history bits) as shown by Figure 1 thereby gradually reducing the number of unbiased 
branches through each context and decreasing the number of unbiased branches. 

A distribution index tends to 0 for a branch that is not shuffled (and is easy-to-
predict) and tends to 1 (and is difficult-to-predict) for a shuffled branch. We 
partitioned the percentage of branches into 5 distribution index intervals: (0.0 - 0.2), 
(0.2 - 0.4), (0.4 - 0.6), (0.6 - 0.8) and (0.8 - 1.0). 
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Fig. 3. Distribution rates of the 16-local history bit prediction context 

Figure 3 shows the intervals for the 16-local history bit context and that around 
41% of the unbiased branches have a distribution index interval (0.4 - 0.6), making 
their branch behaviour relatively shuffled and around 21% of the branches have a 
distribution index between (0.8 - 1.0), making their behaviour highly shuffled and 
therefore difficult-to-predict. Using the cut-off distribution index of <0.2, our 
simulations show that only around 16% of the unbiased branches are easy-to-predict 
with the 16-history bit local prediction context. Gcc has the greatest percentage of 
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unbiased and easy-to-predict branches (around 39%) and gzip the greatest percentage 
of unbiased and difficult-to-predict branches (around 30%). 

Similarly, we determined the intervals for the 16-global history bit prediction 
context and the intervals for the 16-global history bit XORed with 16-bits of the 
branch address prediction context (intervals were the same for both contexts). Since 
both of these are global prediction contexts, it is not surprising that their distribution 
indices are similar. With the 16-history bit global prediction contexts only around 3% 
of the unbiased branches have a distribution index <0.2, around 33% have a 
distribution index of (0.4 - 0.6), and around 28% have a distribution index of  
(0.8 – 1). As with the local prediction context, gcc has the greatest percentage of 
unbiased but easy-to-predict branches (around 8%), but twolf has the greatest 
percentage of unbiased and difficult-to-predict branches (around 39%). 

Figure 4 shows the reduction in the number of unbiased branches as they cascade 
through the three prediction contexts. The percentage reduction in the number of 
unbiased branches decreases from around 25% to around 6%. We consider that this 
value of 6% is still too high and further investigations are required. 
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Fig. 4. Reducing the number of unbiased branches with increasing history register length 

In an earlier paper [14], we explored the benefits of adding sufficient information, 
in the form of successive branch addresses, to uniquely identify each program path. 
We continue that work in this study evaluating, on all branches, paths of different 
lengths (p branches) used together with global histories of the same length (p bits). 
The results are presented in Figure 5, where they are compared with the results 
obtained using only global history prediction context. 
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Fig. 5. The gain introduced by the path for different context lengths 
 



486 L. Vintan et al.  

Our simulations show that the best gain is achieved with short history lengths 
(p<16) and there is only marginal gain with longer history lengths, meaning that long 
global history (p bits) approximates very well the longer path information (p 
branches). 

We have also undertaken similar simulations with neural predictors [6, 15] and in 
addition to the SPEC benchmarks we have used the Championship Branch Prediction 
benchmarks [7, 16]. However, due to space limitations we have not shown the results 
of these simulations in this paper. 

4   Conclusions and Further Work 

In this paper, we have shown that the design of branch predictors should consider the 
identification of difficult-to-predict branches. Different branches exhibit different 
behaviours for given prediction contexts and predictors, and the amount of shuffling 
impacts on prediction accuracy. Even after cascading branches through a series of 
prediction contexts there remains a significant number of difficult-to-predict branches 
and the frequency of these difficult-to-predict branches varies between different 
programs and between different prediction contexts. Computer Architects cannot 
therefore continue to expect a prediction accuracy improvement with conventional 
predictors and alternative approaches are necessary. We have briefly investigated the 
use of increased correlation information by recording path information as well as 
history information and have shown that some gain can be obtained with short history 
register lengths (<16), but path information with longer history register lengths only 
achieves marginal gain. 

This work demonstrates that current branch predictors use limited prediction 
contexts (local, global correlation and path information) due to the degree of 
polarisation. We have therefore shown that the use of more prediction contexts is 
required to further improve prediction accuracies. Our current thoughts are to use a 
particularly relevant “piece” of the dynamic CPU context or alternatively some HLL 
code information. In order to efficiently use such information we consider it will be 
necessary to have a significant amount of compiler support. 
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Abstract. Memory bandwidth and interface flexibility are often bottlenecks of 
embedded processors. The research about memory bandwidth optimization has 
become a hot topic. This paper introduces four new bandwidth optimization 
methods for External Memory Control Interface (EMCI) integrated in high per-
formance digit signal processors (DSP), and aims at realization of the maximum 
throughput of data transmission and architecture flexibility, i.e. programmable 
and decoupled structure, pipelined transmission of burst mode, programmable 
priority for arbitration, and preferential reading based on cache-line offset. The 
experiment results show that the performance improvement is remarkable, but 
different for synchronous and asynchronous memories, and depends on the ap-
plication behavior. The decoupled structure proves to be of great benefit to the 
architectural exploration and optimization for DSPs. 

1   Introduction 

External Memory Control Interface (EMCI) is a memory management unit used in 
embedded microprocessors for transmitting data with external memories. The advan-
tage of integrated EMCI includes high transmission bandwidth, low power consump-
tion and high reliability. In DSP application systems, DSP often need to connect  
various memories through the integrated EMCI unit. How to increase the data 
throughput and maximum the flexibility of memory interface architecture is the big-
gest design challenge of EMCI for high performance DSPs. 

Many related works have been presented about the design methodology of memory 
interface. The paper [1] presents a design of memory interface logic of FPGA core. 
The authors in [2] decouple the application specific datapath design with the devel-
opment and synthesis of the external memory interfaces. The memory interface de-
sign in [8] decouples the target architecture dependent characteristics from the 
datapath that implements the application. The authors in [3] present the design of 
memory sequencers that can be automatically generated from a behavioral synthesis 
tool and which can efficiently handle predictable address patterns. Paper [9, 10] also 
gives the exploration of the memory interface design techniques. 
                                                           
∗ Funded by“863”High Tech Project of China （No. 2004AA1Z1040）and  the project  from 

National Science Foundation of China (No. 60473079). 
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In our previous work [6] [7], we presented an EMCI design which transmitted data 
for L2 cache and DMA. We will give the optimization of previous EMIC design tak-
ing into account the real-time consideration in this paper. 

2   Architecture Profile 

The EMCI presented in this paper can handle L2 cache requests and DMA requests 
according to certain priority, totally support four subspaces of memory address sized 
512MB, support pipelined synchronous burst SRAM (SBSRAM), synchronous dy-
namic RAM (SDRAM) and typical asynchronous memories (such as ROM, FIFO and 
Flash) with width of 8-bit, 16-bit and 32-bit respectively. 

EMCI uses a set of external buses to access external memories in time share mode. 
EMCI unit consists of L2 read/write buffers, DMA read/write buffers, arbitration unit, 
decoder unit, control register group, memory controllers and bus switch, as shown in 
Fig. 1. The L2 cache/DMA reading requests are queued in the buffers and then dis-
patched to the memory controller to be processed. Data returned from memories is 
stored in buffers temporarily and transmitted to L2 cache or DMA.  

 

Fig. 1. The block diagram of EMCI 

The arbitration unit makes arbitration between L2 cache requests and DMA re-
quests. The buffer that wins in arbitration will get a token flag, and then dispatch 
requests to the memory controllers, and won’t lose the token flag until its requests are 
processed completely. The data coherency between L2 and DMA is not the design 
consideration of EMCI. The control register group consists of six registers, and can be 
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configured by CPU through configuration bus. The decoder unit decodes the read/ 
write addresses and provides decoding results to memory controllers. The memory 
controller consists of a synchronous memory controller and an asynchronous memory 
controller. The synchronous memory controller processes accesses of SDRAM and 
SBRAM. The asynchronous one processes the accesses of asynchronous SRAM, 
ROM, FIFO, and Flash. The bus switch selects a group bus signals generated by the 
memory controllers and sends them onto the external bus. Thus only one memory of 
the four subspaces is accessed at any given time. 

3   Design Methodology of Bandwidth Optimization 

3.1   Programmable and Decoupled Structure 

Programmability is an important design methodology of embedded processors. The 
programmable parameters of our optimized EMCI include the memories type, width, 
and access latency, etc. EMCI uses a global control register EMCI_GLB to hold the 
general configuration information, and uses a 32-bit control register SS_CR to hold 
the configuration parameter for each subspace. Two extra control registers, 
DRAM_CR1 and DRAM_CR2 are used for SDRAM configuration parameters.  

We improve the scalability of EMCI by introducing a decoupled architecture, 
which is achieved by defining two interfaces. One communicates with the datapath 
and transmits data to DMA and L2 cache, which is shown as the left part of the dia-
gram of Fig.2. The other is the memory controllers, which generate all the external 
memory control signals and implement the assembly of data, as shown as the right 
part of Fig.2. In this decoupled structure, the data transmission granularity between 
EMCI and DMA/L2 cache can be changed easily by changing the structures of 
read/write buffers; the number of memories types supported by EMCI can be in-
creased or decreased by increasing or decreasing corresponding memory controllers. 

3.2   Pipelined Transmission of Burst Mode 

In our previous work [6], DMA requests data from EMCI in single burst transmission 
mode. In this mode, DMA won’t issue the next burst requests to EMCI until all the 
data of last burst returns from EMCI. The read buffer of EMCI holds one burst re-
quest at most at a time. It is shown that the transmission efficiency and throughput of 
single burst transmission mode is very low. This performance penalty is serious espe-
cially for high-speed synchronous memories, such as SDRAM and SBSRAM.  

To address this problem, we use a novel mode, the pipelined transmission of burst 
mode, to improve the throughput of EMCI. As shown in Fig. 2, DMA first issues 
burst request 1～N to EMCI successively before any data returns. After the data of 
the first burst request returns from EMCI, DMA issues the burst request N+1 to 
EMCI. After the data of the second burst request returns DMA from EMCI, DMA 
issues the burst request N+2 to EMCI, and so on. The depth of EMCI read buffers for 
DMA must not less than N. Once the pipelined transmission starts, the EMCI read 
buffers will not get idle, and the usage of external bus and data throughput is  
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Fig. 2. The procedure of the pipelined transmission of burst mode between DMA and EMCI 

improved significantly. Fig. 2 presents the procedure of this mode. The frequency of 
DMA operation clock, CLK_I, is higher than that of EMCI operation clock CLK_E. 

3.3   Access Bypass and Preferential Reading Based on Cache-line Offset  

In typical processors’ design, L2 cache read data from external memories through 
DMA, and has no direct data-path to memory interfaces. This structure is simple for 
the implementation, but increases the stall time of L2 cache read miss. We add an 
access bypass from L2 cache to EMCI in our DSP to reduce the access latency.  

The data replacement strategy of L2 cache is LRU (Least Recently Used). In our 
previous design, when a read miss of L2 cache occurs, L2 cache only sends the start 
address of the cache line to EMCI to request a cache-line. Then EMCI reads the 
words of this cache-line sequentially from memories.  To reduce the stall time of CPU 
pipeline when L2 cache miss occurs, we use the preferential reading method based on 
cache-line offset. In this method, each cache line is divided into four blocks, and 8 
words in each block. When a cache line miss occurs, L2 cache uses two signals to 
indicate the offset value of the block including the missing word. Then EMCI first 
reads the block indicated by the cache-line offset, and then reads other blocks.  

3.4   Programmable Arbitration Priority 

In our previous work [6], EMCI used the token spin method based on fixed priority to 
handle the L2 requests and DMA requests. However, this token spin method can’t 
achieve bounded delays and lacks of consideration of real-time transmission. In this 
paper we revise this arbitration strategy to programmable priority. We add a priority 
control register (PCR) to the arbitration unit. PCR can be configured through the 
configuration bus, and indicates the priority order of L2 cache and DMA requests. 
This method of programmable priority is very useful for users to process data trans-
mission with real-time constraint through the EMCI to DMA datapath. Users can set 
the value of PCR at the headline of the interrupt service procedure of a DMA trans-
mission, and recover its value at the end of the procedure. Real-time data transmission 
through DMA won’t be starved by L2 cache requests. 



492 D. Wang et al 

4   Experiment Results 

In pipelined transmission of burst mode, proper number, N, of the initial bursts to 
fulfill the transmission pipeline is critical in the design tradeoff. Since SDRAM is the 
fastest memory supported by EMCI, the value of N should ensure there is no idle on 
the external bus between burst N and burst N+1 of reading SDRAM. The analysis 
shows that N is the minimum integer satisfying the following inequation. 

4
4321 CCCC

N
+++>  (1) 

As shown in Fig. 2, C1 is the synchronization time (cycles) from DMA sending out 
to EMCI starting decoding the first address. C2 is the time from the end of C1 to 
EMCI activating the external bus. C3 is the time from the end of C2 to the fourth word 
of the first burst appearing on the bus. C4 is the time from the end of C3 to returning 
DMA. The value of C1 and C4 is related with the clock synchronization scheme used 
between CLK_I and CLK_E. C3 is related to the specific SDRAM module. In our 
design, C1≈2.5, C2=3, C3=6, C4≈3, so N=4. To validate the efficiency of the pipelined 
method, we carry out some comparison experiments. We use EMCI to read 4KB data 
from external memories, i.e. SDRAM, SBSRAM and ASRAM, respectively. Fig. 3 
gives the cycles needed by EMCI to transmit 32 words from the three memories in 
two transmission modes respectively. This experiment shows that the performance 
improvement for accessing SDRAM and SBSRAM is 58%~63%, and for asynchro-
nous SRAM (ASRAM) is 8%~12% compared with our previous design. It implies 
that continuous transmission is critical to exploit the maximum performance of high-
speed synchronous memories. 

As mentioned above, we use the preferential reading method to handle read miss of 
L2 cache. Experiment show that this method is more efficient than sequential read 
starting from the first address of a cache line. One block of L2 cache line consists of 
eight words. If the missing word locates at block 1, block 2, block 3 and block 4 of L2 
cache line, EMCI reading the missing block sequentially needs 18, 26, 34, and 42 
cycles respectively, while the preferential reading always needs 18 cycles. The im-
provement is 45% on average. 

 

Fig. 3. The performance improvement of pipelined burst transmission compared with non-
pipelined mode of reading 32 words. The synchronous memories SDRAM and SBSRAM 
benefit more than asynchronous memory ASRAM. 
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There are two levels of cache in our DSP. If there is only one level cache, it 
needn’t wait the whole block of data returning from EMCI. Once the requested word 
returns from EMCI, CPU pipeline can be released. In this case, the offset of the pref-
erential reading method could be selected as the location of the missing word in the 
cache line. 

The programmability of timing parameters of our design provides a great deal of 
flexibility for memories connection. The simulation results show that all supported 
memories can be connected with EMCI smoothly. Moreover, the programmability of 
timing parameters can achieve a smooth connection of two DSPs by EMCI of one 
DSP and HPCI (Host Port Control Interface) of the other DSP as shown in Fig. 4. By 
programming the timing parameters of EMCI in DSP-1 in terms of the timing re-
quirement of HPCI in DSP-2, we can realize 16-bit data transmission between them, 
which is very useful for building a multiprocessor system. 

 

Fig. 4. The smooth direct data-path of two DSPs connected by EMCI and HPCI of two DSPs 

The decoupled architecture of our EMCI design proves to be of great benefit to the 
architectural exploration and optimization of the whole DSP. It takes only a week to 
revise the first design version of our processor to the new one and complete the verifi-
cation work, which saves a great deal of the time to market of the whole chip.  

To verify the efficiency of the programmable priority strategy, we use nine typical 
benchmarks of DSP applications to make this comparison experiment. First, we set 
the priority order as L2 cache write > L2 cache read > DMA write > DMA read, then 
change the priority to the reverse order, and record the CPU cycles needed by each 
benchmark. The result shows that that the benefit of programmable priority technique 
heavily depends on the application behavior. The priority has no effect on the applica-
tions that have no use of DMA transmissions, and provides maximum 4.1% speedup 
for the applications using DMA transmissions. 

5   Conclusion 

The throughput of data transmission and real-time performance is critical to DSP and 
embedded processors. The memory controller interface integrated in these processors 
is the first stage of the datapath and must be optimized for embedded applications. 
The programmability is another important architecture feature of embedded systems 
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and can enlarge the adoption of embedded processors by users. However, the effi-
ciency of programmability depends on applications. The architects must make some 
trade-off between flexibility and cost of the implementation of programmability. 
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Abstract. On the basis of the short diameter of Petersen graph, and high 
connectivity of Hypercube, an innovative interconnection network named 
HRP(n) (Hyper-cubes and Rings connected Petersen Graph), is proposed, and 
whose characteristics are studied simultaneously. It is proved that HRP(n) has 
not only regularity and good extensibility, but also has shorter diameter and 
better connectivity than those interconnection networks such as Qn, TQn, CQn, 
and HP(n). In addition, the unicasting, broadcasting, and fault-tolerant routing 
algorithms are designed for HRP(n), analyses show that those routing 
algorithms have good communication efficiency. 

Keywords: Petersen graph;Interconnection network; Routing algorithm. 

1   Introduction 

Parallel computer interconnection networks have been a hot spot in the researching 
fields of parallel and distributed systems for a long time. Researchers have studied all of 
the topologies of Parallel computer interconnection networks such as Ring, Tree, Star, 
Mesh, Torus, Hypercube and Petersen Graph etc. Since their topologies are both of the 
characteristics such as regularity, high fault-tolerance, short diameter and embeddable 
ability, Hypercube and Petersen Graph are welcomed and well studied by most of the 
researchers and scientists, and are two kinds of important and attractive topologies of 
Parallel computer interconnection networks [1-3]. 

In 1987, Hibers [4] etc studied the topologies of hypercube interconnection networks, 
and proposed a kind of new hypercube network named TQn (Twisted Cubes). In 2000, 
Chang [5] etc studied the problem of edge congestion in TQn, and presented a new shortest 
path algorithm with time complexity of O(n) and the edge congestion of 2n. In 2002, 
Huang [6] etc studied the Hamilton path in fault-tolerant TQn, and proved that in TQn with 
both faulty nodes and links, when |F|<n-4, there exists a Hamilton path between any two 
nodes u, v in V(TQn)-F, which belongs to TQn-F , where F represents the set of faulty 
nodes in TQn. In 2000, Chang [7] etc studied another novel hypercube network CQn 
(Crossed Cubes), and proved that CQn is of shorter diameter than that of hypercube 
network Qn. In 2003, Yang [8] etc studied the fault-tolerant ability of CQn with both 
faulty nodes and links, and proved that rings with length l(4 ≤ l ≤ |V(CQn)|-fv) can be 
embedded into CQn, when the number of faulty nodes fv and the number of faulty links 
fe satisfy fv+fe ≤ (n-2) where V(CQn) is the number of nodes in CQn. In 2004, Wang and 
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Lin [9,10] studied the fault-tolerant characteristics of hypercube networks, and proposed 
two kinds of innovative fault-tolerant models and routing algorithms based on the 
concepts of Maximum Safety-Path Vectors and Maximum Safety-Path Matrix, which 
solved the problems of how to record the most of optimal paths in n dimensional 
hypercube networks by using vectors or matrices through n-1 rounds of information 
exchanges between neighboring nodes only. 

In 1992, Das [11] etc studied Petersen Graph interconnection networks, and 
constructed a new Petersen Graph network HP (Hyper Petersen Network) by 
embedding Petersen Graph into Hypercube networks, which is proved to have shorter 
diameter and better fault-tolerant ability than that of Qn. In 2001, Liu [12] etc proposed an 
innovative extension of Petersen Graph network on the basis of ring, and constructed a 
new Petersen Graph interconnection network RP (Ringed Petersen),which has 10×n 
nodes, and in which the node connection degree and network diameter are 5 and [n/2]+2 
separately. In 2004, Wang and Lin [13] proposed two kinds of novel interconnection 
networks such as DCP(n) (Double-loops Connected Petersen graph) and TCP(n) 
(Torus Connected Petersen graph) by combining the topological characteristics of 
Petersen graph with Double-loops and Torus respectively. And it is prove that both 
DCP(n) and TCP(n) networks have better communication performances than those 
previous well-known interconnection networks such as RP and Torus etc. 

By combining the characteristics of short diameter of Petersen Graph and the high 
connectivity of Hypercube networks, an innovative interconnection networks HRP(n) 
(Hyper-cubes and Rings connected Petersen Graph) is proposed in this paper. It is proved 
that HRP(n) has characteristics such as regularity and good extensibility. And in 
addition, HRP(n) network has 1.5625×2n nodes, and it is proved that the diameter and 
node connection degree of HRP(n) are (n-1) and n separately, so HRP(n) network has 
shorter diameter and better connectivity than those previous well-known Qn, TQn, CQn 
and HP(n) networks. Finally, unicasting, broadcasting and fault-tolerant routing 
algorithms are designed for HRP(n) respectively, which are proved to be of good 
communication efficiency. 

2   Notations And Terminology 

In this section we briefly review some notations and definitions commonly used in 
interconnection networks, which are closely followed by this paper. 

An interconnection network can be represented by a undirected graph G=(V, E) 
where V is the node set and edge set E represents the set of bidirectional communication 
links among the nodes. 

The connection degree of a node u∈V denotes the number of neighboring nodes of u. 
Equivalently, connection degree is the number of links incident on the node. 

The distance between two nodes u and v in G represents the length of the shortest 
path between them. The maximum distance between any two nodes in G is called the 
diameter of network G. 

A node can be labeled with a binary string (b1b2…bn). Without otherwise specified, 
any node in G process distinct labels. 

An n dimensional Hypercube Interconnection Network Qn (n-cube) is consisted of 2n 

nodes and n2n-1 links. There exists a link between two nodes u and v if and only if they 
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are labeled with binary strings of length n differing in one bit. In other words, any pair 
of neighboring nodes differs exactly in one bit. Fig. 1 illustrates the topology of the 4 
dimensional Hypercube network. 

 

Fig. 1. A 4 dimensional Hypercube network 

The well known Petersen Graph is composed of 10 nodes denoted by V = {u0, u1 
,…, u4, v0, v1, …, v4}. The 10 nodes can be grouped into inner and outer groups which 
in turn are connected by the edge set E = {uivi} ∪ {ui+1ui} ∪ {viv(i+k) mod 5}. Fig 2 
illustrates the topology of the Petersen Graph interconnection network. 

 

Fig. 2. A Petersen Graph network 

In Fig. 2, it is obvious that u0=0, u1=1, u2=2, u3=3, u4=4, v0=5, v1=6, v2=7, v3=8, 
v4=9, and so that the edges set E of which is { uivi} ∪ { ui+1ui } ∪ { viv(i+ 2) mod 5 }, 
where i=0,1,2,3,4. 

3   Construction And Analysis Of HRP(n) Network 

Let there are N=1.5625 × 2n nodes totally, then a Hypercubes and Rings connected 
Petersen Graph (HRP) can be constructed as follows: 
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1) The 1.5625 × 2n nodes can be assembled into 50 groups each containing 2n-5 

nodes. Within each group, nodes will then be connected via a (n-5) dimensional 
Hypercube network and each node is identified with a node-id of binary string (b1b2 · · · 
bn-5) . 

2) The 50 different n-5 dimensional Hypercube networks can be further divided into 
10 groups, each with a group-id ranged from 0 to 9. Within each group, the 5 different 
(n-5) dimensional Hypercube networks will in turn each be indexed with a net-id from 0 
to 4.  

3) Notice that in each group, each node-id in the 2n-5 binary string space is attached 
to 10 nodes, one in each of the 10 Hypercube networks. Therefore, nodes within the 
same group and with the same node-id can be interconnected through a Petersen Graph. 
This Petersen graph is termed Inner Petersen Graph in our topology. 

4) Notice that for each pair of net-id (range from 0 to 9) and node-id (in the space of 
binary string (b1b2 · · · bn-5)) there are exactly 5 nodes, one in each group. These nodes 
will be connected through a ring. 

Consequently, each node in the HRP(n) constructed above can be identified by a 3-
tuple (r, s, t), where r (0 ≤ r ≤ 4) is the node's group-id, s (0 ≤ s ≤ 9) is the node's net-id, 
and t, in the form of binary string (b1b2 · · · bn-5), is the node's node-id. 

Table I summarizes the key properties of HRP in parallel with several other well-
known topologies. Compared to Qn, TQn, CQn, or HP(n), HRP demonstrates same or 
shorter diameter but with much lager number of nodes. At the same time, HRP furnishes 
the networks with higher degree of connection. 

Table 1. Comparisons of HRP(n), Qn, TQn, CQn, and HP(n) networks 

Topology Regularity Total Nodes 
(N) 

Node 
Connection 
Degree (d)

Diameter
(D) 

Construction 
Costs

(d D) 

Qn Yes 2n n n n2

TQn Yes 2n n n-1 n2-n

CQn Yes 2n n+1 n-1 n2-1

HP(n) Yes 1.25 2n n n-1 n2-n

HRP(n) Yes 1.5625 2n n n-1 n2-n
 

From table 1, we can prove that HRP has the following properties: 

Lemma 1: HRP(n) is composed of 1.5625×2n nodes. 
Lemma 2: The node connection degree of HRP(n) is n. 
Lemma 3: The diameter of HRP(n) is n-1. 
Lemma 4: HRP(n) is regular. 
Theorem 1: The construction cost of HRP(n) is n2 –n, where the construction cost 

of a network is defined as the product of its diameter and node connection degree. 
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4   Routing Algorithms for HRP(n) Network 

4.1   Unicast Routing Algorithm for HRP(n) 

Assume that a message needs to be routed from node A = (r1, s1, t1) to node B  
= (r2, s2, t2): 

Step 1: If r1 = r2 and s1 = s2, then A and B are in the same Hypercube. Assume the 
Hamming distance between t1 and t2 is t. If t = 1, A will send the messages to B 
directly. Otherwise, A will send the messages to its neighboring node C with 
Hamming distance t-1 to B at first, and C will send the messages to its neighboring 
node D with Hamming distance t-2 to B. This pattern will continue until the message 
reaches B. 

Step 2: If r1 = r2 but s1 <> s2, then A and B are not in the same Hypercube, but in the 
same group. A shall send the message to node C identified by 3-tuple (r1, s1, t2) 
according to Case 1. Since C and B are within the same group and with the same node-
id, and are connected by a Petersen Graph. So the routing can be done through standard 
algorithms for Petersen graph. 

Step 3: If r1 <> r2, then A and B are not in a same group. A shall first send the 
message to node C (r2, s1, t1). Notice that C posses the same node-id and net-id as A and 
hence is connected to A via a ring. C, residing in the same group as B, can then use Case 
1 and Case 2 to route the message to B. 

Since the diameter of HRP is (n-1), in the worst condition, the message needs to be 
routed (n-1) times before reaching is destination. 

4.2   Broadcasting Routing Algorithm for HRP(n) 

To broadcast a message to all the nodes within HRP, node A can follow the steps below: 

Step 1: A shall send messages to all the nodes on the same Petersen Graph and ring 
as itself. 

Step 2: These nodes (including A itself) shall broadcast the message its own 
Hypercube network. 

According to the above broadcasting routing algorithm, it is obvious that the step (1) 
needs 2 rounds of information exchanges, and the step (2) needs n-5 rounds of information 
exchanges, so the whole broadcasting needs 2+n-5=n-3 rounds of information exchanges 
totally. 

4.3   Fault-Tolerant Routing Algorithm for HRP(n) 

For any node A in the n dimensional HRP(n) network, we define the n-1 dimensional 
vector SPVA[k] (1 ≤ k ≤ n-1) as follows: 

SPVA[1]=
1: If the links between  and its all neighbors are not fault

0 : Otherwise

A⎧
⎨
⎩
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SPVA[k]=
( )1:  [ 1]  

0:Otherwise

nei AIf k nSPV − =∑⎧⎪
⎨
⎪⎩

,where 1<k ≤ 6 and nei(A) represents A’s 

neighboring nodes. 

SPVA[k]=
( )1:  [ 1]  

0:Otherwise

nei AIf k n kSPV − > −∑⎧⎪
⎨
⎪⎩

 ,where k>6 and nei(A) represents A’s 

neighboring nodes. 

It is easy to prove that the following theorem stands: 

Theorem 2: For any given node A in HRP(n), SPVA[k]=1(1 ≤ k ≤ n-1)⇒ For any 
node B other than A in HRP(n), .if the distance between A and B is k, then there exists 
a fault-free path between A and B, and in addition, the length of the path is k. 

According to the description of theorem 2, it is obvious that the routing based on 
SPVA[k] (1 ≤ k ≤ n-1) is fault-tolerant. 

5   Conclusions 

By combining the characteristics of the short diameter of Petersen Graph and the high 
connectivity of Hypercube networks, a novel interconnection networks HRP(n) is 
proposed. It is proved that HRP(n) has good characteristics of both Petersen Graph and 
Hypercube networks such as regularity, short diameter and high node connection degree 
etc, and in addition, HRP(n) is of the same or shorter diameter, more nodes and higher node 
connection degree than Qn, TQn, CQn and HP(n) networks. So, HRP(n) has better 
communication performances than Qn, TQn, CQn and HP(n) networks, and is a kind of 
interconnection network with good characteristics. 
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Abstract. In this paper, a method is proposed to analyze the mini-
mum average cycle period of the timed circuits. Timed Petri net is used
to model timed circuits. Our method is focus on structural analysis of
the Petri net model of the timed circuits, which is another way to reduce
the state space of the analyzed model. Then an algorithm is proposed
to optimize the performance of timed circuit by asynchronous retiming
technique. The algorithm balances the asynchronous pipelines to gain the
target cycle period while minimize the area at the same time. Experimen-
tal results demonstrate the computational feasibility and effectiveness of
both approaches.

1 Introduction

Timed circuits[1][2][3] are asynchronous circuits considering timing information
during synthesis. Compared to delay-insensitive circuits, speed-independent cir-
cuits and quasi-delay insensitive circuits, timed circuits are more efficient with
speed and cost. But traditional analysis and optimization method can not be
used for timed circuit. In this paper, a systematic approach for evaluating and
optimizing the cycle period of timed circuits is presented.

The outline of the rest of this paper is as follows. In the next section the
mathematical preliminary of timed Petri net and basic concept of retiming are
given. The following section is dedicated to cycle period analysis of timed circuits.
In section 4, timed circuit optimization techniques are presented. Section 5 shows
the comparison with other methods. We concluded the paper with a discussion
of our future work.

2 Preliminary

2.1 Timed Petri Net

The timed Petri net model used in this paper is defined as:
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Definition 1. A timed Petri Net is a five-tuple N =< P, T, F, Δ, M0 >. P =
{p1, . . . , pm} is a finite nonempty set of places. T = {t1, . . . , tn} is finite set of
transitions. F ∈ (P×T )∪(T×P ) is the flow relation. Δ := T → Q+×(Q+∪{∞})
is a function mapping each t ∈ T to a possibly unbounded delay, where Q+ is
the set of non-negative rational numbers. M0 ⊆ P is the initial marking of the
net.

For convenience, Δ(t) = (l, u) where l < u; Δl(t) = l and Δu(t) = u return the
lower and upper bound of delay of transition t.

The incidence matrix C of a PN with n transitions and m places is an n × m
matrix C = [cij ] whose entries are defined as cij = c+

ij − c−ij . where c+
ij = w(i, j)

is the weight of the arc from transition i to its output places j and c−ij = w(j, i)
is the weight of the arc to transition i from the place j.

A P-invariant (place invariant) of a PN is any integer positive (column) vector
I which is solution of the matrix equation: C × I = 0. Finding basic invariants
is a classical problem of linear algebra, and there are known algorithms to solve
this problem efficiently.

2.2 Retiming

Asynchronous circuits differ from synchronous circuits in the way clock signal
generated. Clock trees are used in synchronous circuits to drive the clocks of
registers and latches. However, local handshake circuits are used to generated
clocks of registers and latches in asynchronous circuits. Retiming is a powerful
technique for synchronous sequential circuits optimization, can this technique
be used for asynchronous circuits optimization? The answer is ’Yes’.

Suppose that the handshake logic of asynchronous circuits is ignored during
optimizing stage, asynchronous circuits can be viewed as an interconnection of
logic gates and memory elements (registers and latches) controlled by handshake
circuits, which can be modeled as a directed graph G = (V, E, d, w). The vertex
set V of the graph models the functional elements of the circuit, and each vertex
v has an attribute d(v) that denotes the propagation delay of the corresponding
functional element. The directed edges E of the graph models the interconnec-
tions between functional elements. Each edge e ∈ E has a weight (number of
memory elements) w(e). The timed Petri net model and the digraph model of
the timed circuit can transformed into each other.

For any path p = v0
e0−→ v1

e1−→ . . .
ek−1−−−→ vk, the path weight can be defined

as: w(p) =
∑k−1

i=0 w(ei). The path delay can be defined as: d(p) =
∑k

i=0 d(vi).
A retiming of a circuit G =< V, E, d, w > is an integer-valued vertex-labeling
r : V → Z. The retiming specifies a transformation of the original circuit in
which memory elements are added or removed or moved so as to change the
graph G into a new graph Gr = (V, E, d, wr) so as to minimize the cycle period
and area at the same time. For timed circuits, cycle period means average time
separation between events, which is reciprocal with throughput of the timed
circuit.
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The number of flip-flops on a given edge (u, v) after retiming is given by

wr(u, v) = w(u, v) + r(v) − r(u) (1)

In order to characterize the clock period of a retimed circuits, we define two
quantities:

W (u, v) = min{w(p) : p : u � v} (2)
D(u, v) = max{d(p) : p : u � v and w(p) = W (u, v)} (3)

The quantity W (u, v) is the minimum number of registers on any path from
vertex u to vertex v. Path w(p) = W (u, v) is called a critical path from u to v.
The quantity D(u, v) is the maximum total propagation delay on any critical
path from u to v.

3 Cycle Period Analysis

It is assumed that the timed Petri net is consistent, ie., ∃x > 0, CT x = 0.
Suppose there is a delay of at least li = Δl(ti) associated with transition ti, i =
1, . . . , n. This means when ti is enabled, c−ij tokens will be reserved in place pj for
at least li before their removal by firing ti. We define resource-time product(RTP)
as the product of the number of tokens (resources) and length of time that these
tokens reside in a place. Thus, the RTP is given by c−ij lixi, which can be rewritten
in matrix form:

(C−)T Dx (4)

Where C− = [c−ij ]n×m and D is the diagonal matrix of li, i = 1, . . . , n. (C−)T Dx
represents of the vector of m RTP’s for m places, and each RTP considers only
reserved tokens. Now suppose there are on the average M̄(pj) tokens in the place
pj during one cycle τ . Then the RTP in the vector is given by M̄τ . Since RTP
obtained by this way of measure includes both reserved token and nonreserved
tokens, we have the following inequality:

M̄τ ≥ (C−)T Dx (5)

Taking the inner product of equation (5) with a nonnegative P-invariant y and
using the invariance, yT

i M̄ = yT
i M0, we have

yT
i M0τ ≥ yT

i (C−)T Dx

and

τ ≥ yT
i (C−)T Dx

yT
i M0

(6)

Therefore, a lower bound of the cycle τ or the minimum average cycle time is
given by

τmin = max
i

{yT
i (C−)T Dx

yT
i M0

} (7)
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Where the maximum is taken over all independent minimal-support of
P-invariant, yi ≥ 0 [5]. This is the minimum cycle period of the best case.

We substitute the diagonal element of matrix D to ui where ui = Δu(ti) is
the upper bound of the delay of transition ti. Using equation (7) we can get the
worst case minimum average cycle period of the timed Petri net.

4 Cycle Period Optimization

4.1 Algorithm

In this section, we give an algorithm to solve the timed circuit minimum cy-
cle period retiming problems. Our algorithm is based on Leiserson and Saxe’s
algorithm [4], changed the searching range of feasible clock periods, reduced
the computation complexity, and optimization objective is minimum area at the
same time of minimizing clock period. The feasible clock period test can be done
by solve a MILP problem[4].

Theorem 1. Let G =< V, E, d, w > be a timed circuit, let c be an arbitrary
positive real number, and let r be a function from V to integers. Then r is a
legal retiming of G such that Φ(Gr) ≤ c if and only if:

r(u) − r(v) ≤ w(e), for every edge u → v of G (8)
r(u) − r(v) ≤ W (u, v) − 1, for all vertex u, v ∈ V, such that D(u, v) > c (9)

Proof can be referenced at [4]. Equation (8) is called non-negativity constraints,
equation (9) is called long path constraints.

Definition 2. Let c be an arbitrary positive real number, c is a feasible clock
period of an asynchronous circuits if and only retiming r with Φ(Gr) is a legal
retiming.

If condition (8) and (9) is satisfied, the clock period c is feasible. The feasible
clock period test can be reduced to the following mixed-integer linear program-
ming problem below.

Problem 1 (MILP). Let S be a set of m linear inequalities of the form xj −xi ≤
aij on the unknown x1, x2, . . . , xn, where the aij are given real constants, and let
k be given. Determine feasible values for unknown xi subject to the constraint
that xi is integer for i = 1, 2, . . . , k, xi is real for i = k + 1, k + 2, . . . , n, or
determine no such value exist.

For a graph G =< V, E, d, w >, it can be proved that if there exist a function
s : V → [0, c], satisfy s(v) ≥ d(v), ∀v ∈ V and s(v) ≥ Δ(v)+d(v), for zero weight
edge u → v, then the cycle period of the graph Φ(G) ≤ c. So if r is a feasible
retiming of graph G, and Φ(Gr) ≤ c, then the following inequalities must be
satisfied:

1) −s(v) ≤ −d(v), for every vertex v ∈ V ,
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2) s(v) ≤ c, for every vertex v ∈ V ,
3) r(u) − r(v) ≤ w(e), for every edge u

e−→ v,
4) s(u) − s(v) ≤ −d(v), for every edge u

e−→ v such that r(u) − r(v) = w(e).

We substituted s(v) = c(R(v) − r(v)), ∀v ∈ V , we got:

Theorem 2. Let G =< V, E, d, w > be a asynchronous circuit, and let c be a
positive real number. Then there is a retiming r of G such that Φ(Gr) ≤ c if and
only if there exist an assignment of a real value R(v) and an integer value r(v)
to each vertex v ∈ V such that the following conditions are satisfied:

1) r(v) − R(v) ≤ −d(v)/c for every vertex v ∈ V ,
2) R(v) − r(v) ≤ 1 for every vertex v ∈ V
3) r(u) − r(v) ≤ w(e) wherever u → v, and
4) R(u) − R(v) ≤ w(e) − d(v)/c wherever u → v

Theorem.2 reduces the clock period feasible test to a MILP. The algorithm is
given below:

Algorithm retiming timed circuit
Description Give an asynchronous circuit G =< V, E, d, w >, this algorithm

determines a retiming r such that Φ(Gr) is as small as possible.
Input A graph representation G =< V, E, d, w > of the circuit.
Output A retiming for minimum clock period, minimize area at each clock

period.
Begin
s1 Compute cycle period Tl with the method presented in section 3.

Set Tu = max{Δ(v), ∀v ∈ V }. Tl and Tu are the lower bound and upper
bound of cycle period of graph G =< V, E, d, w >.

s2 Set T = Tu+Tl

2 .
To test whether a potential clock period T is feasible, solve problem MILP
to determined whether conditions in Theorem 2 can be satisfied.
if T is feasible, then record r(v), ∀v ∈ V , set Tu = T ; Else, set Tl = T .
If Tu − Tl > ε goto s2

s3 For the minimum clock period find in step 3, use the value for r found by
the algorithm that solves Problem MILP as the optimal retiming.

End

The cycle period analysis method in section 3 gives the lower bound of feasible
cycle period with

∑

e∈E w(e) registers. In step 2 of algorithm, Δ(v), ∀v ∈ V is
computed by construct the subgraph G0 of G, the subgraph contains precisely
those edges e with register count w(e) = 0, G0 should be acyclic to insure
no combinational loop exist. Perform a topological sort on G0, go through the
vertices in the order defined by the topological sort. On visiting each vertex,
compute the quantity Δ(v) as follows:

1) If there are no incoming edge to v, set Δ(v) = d(v),
2) Otherwise, set Δ(v) = d(v) + max{Δ(u), u → v and w(e) = 0}
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The minimum clock period computation algorithm is implemented in Matlab.
The asynchronous circuits retiming algorithm is implemented in C. The MILP
problem is solved by glosol, a freely available MILP solver. In the next section,
an example is given to prove the feasibility and effectiveness of this method.

4.2 Example

The left of figure.1 gives an example of the digraph of a simple RISC processor
design. This processor is a simple Von Neumann computer which performs an
instruction fetch, decode, operand read, ALU operation and operand write to
execute each instruction. The black dash on the edge of digraph means the
register in the circuit.

The timed Petri net model of the graph is shown in figure.2. The token represent
the registers in the circuit. The model has 3 minimal-support P-invariants, the
cycle period can be computed by equation (7). Thus cycle period lower bound is
Tl = 59ns. Then the upper bound is computed, Tu = max{Δ(v), v ∈ V } = 71ns.

Once the upper bound and lower bound of cycle period of the circuit is com-
puted, our algorithm is applied to computer the minimum cost retiming. Suppose
ε = 0.1, then after 7 times iteration of MILP solve procedure, the minimum cost
retiming of the circuit is shown in figure.1 right.
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5 Prior Work

In [6] the author formulate the cycle time computation as a minimal cost-to-time
ratio cycle problem and used the Lawler’s algorithm[7]. The algorithm requires
Θ(n3) steps to compute the shortest distance between all pairs of places, using
the Floyd-Warshall algorithm. The overall computation requires Θ(n3 log2 n)
steps. Where n is the number of places in the Petri net model. The total com-
plexity of our method is Θ(M |PST |3), which is better than the algorithm in [6].
where M is the number of siphons that are traps of the Petri net model, |PST |
is the number of places in siphon PST .
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The major difference between our asynchronous retiming algorithm and Leis-
erson and Saxe’s algorithm is the way to search possible feasible minimum clock
period. Leiserson and Saxe’s algorithm computed d(u, v) matrix and sort the
elements of d(u, v), binary search is used to find feasible minimum clock period,
which is very time-consuming. Our algorithm used the lower bound and upper
bound and binary search in an constant interval [Tl, Tu], which reduced the iter-
ation times efficiently. The second difference is that when solving the MILP to
test whether a clock period is feasible, the optimization objective is to minimize
the area represented by

∑

∀e:u→v w(e) + r(v) − r(u). This method minimize area
at the same time of minimizing clock period.

6 Conclusion and Future Work

This paper first presented an algorithm for cycle period analysis of the timed
circuits. The timed circuits is modeled as a consistent timed Petri net model.
Then based on the cycle period analysis method, we proposed an algorithm to
optimize the performance of timed circuits, including cycle period minimization
and area minimization. This algorithm can be used to balance the pipeline stage
of asynchronous circuits to achieve better performance.

The further research will focus on extensions on retiming algorithm to take
into account the delay variation of asynchronous unit and take into account the
min timing constraint to make the algorithm more general.
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Abstract. By exploring thread-level parallelism, chip multiprocessor
(CMP) can dramatically improve the performance of server and commer-
cial applications. However, complex CMP chip architecture made debug-
ging work time-consuming and rather hard. In this paper, based on the
experience of debugging CMP simulator ThumpCMP, we present a set
of acceleration techniques, including automatic cache-coherence check,
fast error location, and workload rerun times reducing technique. The
set of techniques have been demonstrated to be able to make CMP chip
debugging work much easier and much faster.

1 Introduction

Integrated circuit processing technology offers increasing integration density,
which fuels microprocessor performance growth. In coming 10 years, to integrate
a billion transistors on reasonably sized silicon chip is not a dream. However, tra-
ditional processor performance will not always scale while the transistor counts
increases. Many researchers deemed multiprocessor architecture ideal to utilize
more and more dense transistor integration. One of the promising multiprocessor
architecture is chip multiprocessors (CMP) [1,2,3].

Before designing a physical CMP system, developing a simulator is well-
suitable for fast and initial performance evaluation and correctness verification.
There are a few open source CMP simulator research projects, such as GEMS
[4] by university of Wisconsin Madison, M5 [5] by university of Michigan, Lib-
erty [6] by Princeton and SimFlex [7] by CMU. GEMS focus on memory hi-
erarchy, cache coherence protocol, and interconnection topology, enabling fast
performance evaluation different CMP architectures. M5 allows flexible configu-
ration of multi-system networks on chip. Liberty introduces structural modeling
methodologies into simulation. SimFlex specializes in fast, accurate and flexible
full-system simulation by sampling simulation method.

These open source simulators are flexible to configure different CMP struc-
tures. However, CMP simulation usually needs to take much longer time than
single-core processor. This is not only because CMP chip integrates many more
cores, on chip inter-connect network and cache-consistency protocols complicated
the whole system and lengthen system simulation time.
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Many simulation acceleration techniques are explored and applied in CMP
system simulation, including trace-driven and sampling method. However, sim-
ulation is still rather time-consuming. [7] reports that CMP Simulation is much
slower than real hardware platforms, especially when CMP is composed of out-
of-order processor cores. This paper figures out that an out-of-order simulation
system needs 150 years to run audited TPC-C to the end.

The time-consuming simulation made CMP design debugging work even
harder, since it need much long time to re-run the workload to fix bugs. So it is
quite important to speedup the CMP debugging in the early development cycle.
In this paper, we propose several CMP debugging acceleration techniques, auto-
matic cache coherence check and fast bug positioning, which have been proven
useful in acceleration the debugging work of a dual-core CMP, ThumpCMP by
Tsinghua Univ. China.

The remainder of the paper is organized as followings: Section 2 gives an
overview of ThumpCMP, and then Section 3 describe debug acceleration tech-
niques, such as automatically cache coherence checking, Section 4 discusses fast
bug positioning. Finally, Section 6 draws conclusion.

2 ThumpCMP Simulator

ThumpCMP is a full system cycle-accurate dual-core simulator. Each core of
ThumpCMP simulates a Thump processor, a 32-bit MIPS-like microprocessor.
The typical frequency of Thump is 400MHz. Each core owns private L1 instruc-
tion and data cache. Two cores share the unified L2 Cache. L1 cache uses write-
through policy and L2 Cache takes write-back policy. ThumpCMP uses snoop-
ing protocol to maintain cache coherence, and adopts write-invalidate strategy
to keep only one copy available in all caches once writing new data.

The software architecture of thumpCMP simulator itself is component-based.
All components are grouped and ordered automatically based on the relations
of their inputs and outputs. Only when inputs change, a component is activated
and whose state transitions are simulated, which avoids unnecessary operation
simulation and accelerates simulation.

Compared with debugging on single-core simulator, ThumpCMP debugging is
much harder and slower. During the Linux 2.6 kernel boot process debugging on
ThumpCMP simulator, we explored several effective multiprocessor debugging
acceleration techniques.

3 Automatic Cache Coherence Check

Principle. Errors in multiprocessor architecture design or in program running
in CMP simulator usually incur cache incoherence. However, it is often far from
the spot where coherence violation happened while people catch the incoherence
bugs. In normal cases, people have to re-run the workload from the start step
by step to find the spot where multiple cache copies are different. This process
is quite time-consuming.
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Automatic cache-coherence check is proposed to avoid the step-by-step re-run
process. The basic idea of automatic cache-coherence check is to check all cache
copies while the usual simulation is going on. Once cache-coherence violation is
detected, system will notify designer immediately, so the re-run time to find the
cache-coherence violation spot is saved.

In fact, only memory load/store instructions can incur cache incoherence prob-
lems. Thus cache-coherence check can be conducted only at the time of processor
core performing data load or store operations instead of at each target clock cy-
cle. Fig. 1 illustrates cache-coherence check mechanism that performed at each
data loading. In detail, if a processor core needs to load data at address A, after
data is returned to processor, the data is compared with all other valid cache
copies of address A. If same, cache is coherent. Otherwise,cache is incoherent at
address A.

Fig. 1. Automatic Cache-coherence Check at the Time of Data Loading

In shared L2 cache CMP structure, when all data load and store operations
visit cache, the above cache-coherence check is able to find all cache-coherence
defects. But in the case that L2 cache uses write-back policy and some processor
cores bypass cache and visit memory directly, there may be incoherence between
cache and memory copies.

For example, as shown in Fig. 2, processor core 0 stored data x at address A,
that operation invalidated original cache data y in core 1 and wrote new data
x to L2 cache. L2 cache uses write-back policy and not write data back into
memory immediately. If processor core 1 directly visits memory address A now,
stale data y is returned from memory to core 1, and incoherence occurs.

Thus, if a processor core performs data load/store operation with cache by-
passed, the address copies in memory should be checked to be consistent with
all cache copies.

For each load instruction simulation, cache-coherence check incurs additional
latency for data comparison of all valid cache copies corresponding to the load
address. The time complexity of each cache-coherence check is linear with cache
numbers. Compared with thousands of host instructions in simulating a load
instruction of target CMP system, overhead of cache-coherence check can be ba-
sically neglected or fully tolerated for current CMP system (mostly core numbers
are no more than 32).

Optimization. In CMP system, not all load operations would introduce cache
incoherence problems. If the data to be loaded is private for a processor core, the
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Fig. 2. Cache and Memory Incoherent Case

data must have only one copy at any time in all caches and the load operation
can’t pollute cache. In this situation, load time cache-coherence check can be
avoided and the check is only need to be carried out while loading shared data.

The optimization method requires simulator to distinguish between private
and shared load operations. If CMP system shares L2 cache, and MESI protocol
is used to maintain L1 cache coherence, the state of cache block (E (exclusive)
and S (shared)), can be used to determine whether data to be loaded is private
or shared.

Besides, cache bypass operations need also be pay attention to. To detect
whether data is private or not in this case, memory should provide support for
times data have been read. As an alternative method, cache coherence check is
performed on all load operation in the case of cache bypass, and only on shared
data load operation if not cache bypass.

4 Fast Bug Positioning

Save Checkpoint Periodically. ThumpCMP Simulator provides breakpoint
function so that designer can use it to set the conditions of triggering breakpoint,
e.g., the number of instructions before simulator pauses. It’s helpful when debug
long-piece software code on ThumpCMP. However, in some time, before the pre-
set breakpoint triggering condition meets, some system errors may occur. In this
situation, system usually asked for re-run from scratch. For an error occurred a
bit later, the re-run is rather time-consuming.

To avoid overleaping and re-running, checkpoint is used to save spot and
recover later. Because nobody know when and where an error will appear, it
is reasonable to let simulator save checkpoints automatically in a given time-
interval.

Fast Error Positioning using calling chain. When an error occurred and
simulation halted, it’s fairly easy to know which function was being executed
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according to program counter register, but the information is usually not enough.
The current resided function may be some widely and frequently used sub-
routine, and shows nothing information on what is wrong with the simulation.

Anyway, it must be some statements in the previous function calling chains
caused the final fatal error. So it’s useful to record the whole function calling
chains and analyze the function calling chains when error occurred. Usually,
by this way, the bugs are much easy to find. In ThumpCMP simulator, there
exists such a function calling stack to record the function calling chain for each
processor core.

ThumpCMP uses MIPS compatible instruction set. The caller function uses
JAL/JALR jump instruction to transfer control to other function. At the same
time, the return address is stored in general purpose register r31. After callee
function finishs its work, it uses JR AR instruction to return to the address
saved in r31 and return control to the caller function.

In ThumpCMP implementation, when processor core encounters a jump in-
struction, including J, JR, JAL, JALR instructions, the jump destination address
is push into the function calling stack. Whenever a processor encounters a JR
AR instruction, ThumpCMP will pop the top record from function calling stack.
In this way, the function calling stack records all previous function calls by now.

5 Reducing Workload Rerun Times

For a new CMP design, bugs lies not only in hardware (simulator) but also in
software (workload running on simulator, such as Linux Operating System in
ThumpCMP). If each bug correction brings simulation from scratch, to fix all
bugs is very time-consuming. In fact, after hardware or software modification, it
is possible for most cases that workload need not to be run newly from beginning,
but just run from a previous checkpoint or modify a register value by hand. This
section will find these cases and propose how to avoid rerunning.

First, this section analyzes what system state variables and checkpoint con-
tents are composed of. Second, this section gives an analysis on how to avoid
rerunning in the simple case that only a few of state variable are needed to
modify. At Last, we discuss how to avoid rerunning in two cases of modification
respectively, hardware and software modification.

Checkpoint Contents. An integrated circuit mainly consists of memory (in-
cluding registers, caches and memory), data-path (combinational circuit and
pipeline registers), and control logic (combinational circuit), as shown in
Fig. 3. System status is defined by all register variables, including registers (gen-
eral purpose or CP0), caches (L1 instruction cache, L1 data cache, L2 Cache),
TLBs (instruction TLB, data TLB), memory and pipeline registers (registers to
save data for next clock cycle use between pipelines).

To recovery simulation later, checkpoint should record total system status
accurately. Besides that, for full-system simulation, checkpoint should also record
IO information (for example, record console information to recovery all printed
information on console).
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Fig. 3. Integrated Circuit Component Sketch

Simple Modification Case. If errors are found in design, but only a few of
state variables have to change their values in correct simulation, the modification
can be made by hand on the basis of previous simulation. In ThumpCMP, we
provide modification function on all state variables.

In the course of debug Linux operating system in ThumpCMP, we tried and
succeeded in modifying general purpose register value to correct data, modifying
PC to jump over some function and go on from a new position, and modifying
word value in cache or memory to maintain consistent state.

Though modification by hand in the process of workload running has risk
of correctness and requires more attention, it does great help in the debug of
complicated and slow simulation system.

Complex Modification Case. In the case that simulator is modified, if all
register variables are kept same, to reuse checkpoint is to find a previous avail-
able checkpoint that has the same system status at a specific time point with
new simulation after modification. Otherwise, if added or removed registers are
independent with other registers at the time point of previous checkpoint saved,
previous checkpoint can still be used.

In ThumpCMP, we define a unique id for each pipeline register. Id is reserved
even if the register is discarded after some modification. In this method, even if
pipeline registers are added or removed, values in previous checkpoint can be set
on variables in new design. When new pipeline registers are added into design,
the new registers are set zero by default or assigned by user.

In the other case that software is modified, virtual address of code and data
after recompilation is changed even if there is a checkpoint in that codes executed
are kept same as newly correct simulation. To reuse checkpoint, one way is to use
compiler to keep virtual address of previous preformed code and data unchanged
by the time point of checkpoint saved, or an alternative way is to build map
function between different virtual address of same code or data, and replace
all of them to new value in previous checkpoint. Both methods are difficult to
implementation and being researched on ThumpCMP.

6 Debug Results on ThumpCMP

In the debug of ThumpCMP, above introduced techniques make great con-
tribution on reducing debug time and making debug easier. Using automatic
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cache-coherence check mechanism, we found two cache bypass errors. One error
is due to simulator design bug on Hit invalidate writeback L2 cache instruction,
which make cache flush did not write correct values back to memory so that other
processor fetch wrong data from memory into its cache. Another error came from
that a cache flush is forgotten in operating system design. Furthermore, fast bug
positioning methods and workload rerun times reducing techniques together ac-
celerate ThumpCMP debug.

7 Conclusions and Future Work

Based on the debug work in ThumpCMP, this paper presents several debug
accelerate techniques from the aspect of automatic cache-coherence check, fast
bug positioning and workload rerun times reducing techniques. These techniques
make it easy and fast to debug large-scale multiprocessor system.

Next, we will go further in research on how to avoid rerunning in the case of
software modification, and try to re-use previous checkpoint as more as possible.
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Abstract. Dynamic Description Logic (DDL) can support both the sta-
tic and dynamic knowledge representation, thus this paper introduces a
kind of Software Architecture (SA) Model based on DDL, the purpose
of which is to facilitate the description of each part of SA as well as
the constraints between them. In addition, the model also supports the
detection of the consistency problems existed in dynamic architecture.
In the end, the mapping from SA to DLL is discussed, and an example
of a complete architecture model of Pipeline-Filter style is described.

1 Introduction

Software Architecture (SA) is significant for software system design, and has
important effects to the development of large-scale software as well. SA defines
the structure of components, their interrelationships, composing pattern and
satisfied constraints, and principles and guidelines governing their design [1][2].

Description Logic (DL) is one of effective tools for knowledge representation,
supporting domain-level abstraction [3], while Dynamic Description Logic (DDL)
supports static and dynamic knowledge representation at the same time [4][5].
This paper applies DDL to the modeling of SA: Section 2 gives a brief introduc-
tion to DDL; Section 3 presents the mapping from SA to DDL and a complete
architecture model of Pipeline-Filter style; Section 4 discusses its application on
consistency detection; Section 5 introduces some related work; the final section
concludes the paper and discusses some further work.

2 Dynamic Description Logic DDL

DL is a decidable fragment of First-Order Logic (FOL), providing better express-
ing ability and decidable reasoning. DDL is the extension of DL: the represen-
tation and reasoning of static and dynamic knowledge are integrated, and the
description and semantic interpretation of actions are presented, dealing with
static and dynamic knowledge synchronously.
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DDL of this paper is based on the ALCN and the details can refer to [5],
especially an action constructors ‖(parallel composition) is introduced, where

α‖β ≡

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

α; β ∪ β; α, if α and β are atom actions;
α1; α2; β ∪ α1; β; α2 ∪ β; α1; α2, if α ≡ α1; α2, and β is an atom action
α1; α2; β1; β2 ∪ α1; β1; β2; α2 ∪ α1; β1; α2; β2 ∪ β1; β2; α1; α2
∪β1; α1; β2; α2 ∪ β1; α1; α2; β2, if α ≡ α1; α2, and β ≡ β1; β2;
· · · , and all that

3 Description of SA Model

SA describes the structures of program or computing system, including compo-
nents, connectors, their outside-accessible attributes, and interrelations. Compo-
nent is a kind of logic unit featuring particular functions, two sorts of which are
simple component and composite component. Connector presents the manners
and rules of components’ cooperation, and provides a kind of glue [6] that in-
tegrates the components. The configuration of SA is described by compounding
some components and connectors to be larger complex component. A subsystem
is a kind of composite component, whose configuration is its overall arrangement.

Section 3.1 presents the mapping from SA to DDL, and Section 3.2 describes
a complete architecture model of Pipeline-Filter style based on DDL.

3.1 Mapping from SA to DDL

3.1.1 Component. Concept Component describes component, and concrete
simple and composite components are described as the subconcepts of Com-
ponent. Concept Connector describes connector, and concrete connectors are
described as the subconcepts of Connector. The connective relation between
Component and Connector is denoted as relation linkto. Relation havepart de-
notes the comprising relation between Component and its subcomponents and
their connectors; especially simple component has no subcomponent. Component
does some cooperation such as providing service to and requiring service from
outside-environment. Cooperation is realized by Concept Gate, two subconcepts
of which are InGate for requiring service and OutGate for providing service.
Relation provide denotes providing service that is output, and require denotes
requiring service that is input. The axiomatization of Component is:

Component ≡ (∃provide.OutGate
�

∃require.InGate)
�

≥ 0linkto.Connector
�

≥
0havatype.� (� denotes universal concept)

Each Component has a certain function, which is realized as a concrete action.
Component is BeforeCompute before the action and is AfterCompute after the
action. If an action is compute and the processed datum is x, then:
BeforeCompute ≡ Component

�
[compute(x)]AfterCompute

AfterCompute ⊆ Component

3.1.2 Gate. Each Gate has a certain type character, denoted by concept
Type, and the relation is described as havetype. The actions on Gate are input
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and output. The Gate is BeforeIO before input or output, and is AfterIO after
input or output. In the following axioms, in and out are the instances of InGate
and OutGate respectively, and x and v are the instances of a certain type.
Gate ≡ (InGate

�
OutGate)

�
= 1havetype.T ype

BeforeIO ≡ Gate
�

[input(in, x)
�

output(out, v)]AfterIO AfterIO ⊆ Gate

3.1.3 Type. The subconcepts of Type are some concrete data types char-
acterizing all their instances. For example, Int characterizes all its instances as
integer. Type is FullData after completely input and before output, otherwise is
EmptyData. After input or output is completed, the current value is Eof.
EmptyData ≡ Type

�
[input(in, x)]FullData

FullData ≡ Type
�

[output(out, v)]EmptyData Eof ⊆ Type

3.1.4 Connector. Connector describes the common character of certain
cooperation and consists of two Gates to connect with a Component by each to
indicate the outside-behavior of the components taking part in the cooperation.
A protocol for cooperation connects the gates to compound the functions of the
components as a complex function. Relation receive denotes input from OutGate,
and send denotes output along InGate. Connector is axiomatized as:
Connector ≡= 1receive.OutGate

�
= 1send.InGate

�
= 1linkto.Component

Component and Connector should be connected by the same-type Gate and
the behavior on the Gates is complementary for the protocol, that is if Compo-
nent is output along the Gate, then the protocol input from it, vice versa. The
cooperation is described as action glue, which is the composition of actions on
connector’s gate and is parallel to the actions on component’s gate connected to
the connector. Connector is BeforeGlue before gule and is AfterGlue after glue.
BeforeGlue ≡ Connector

�
[glue(in, out, x)]AfterGlue AfterGlue ⊆ Connector

3.1.5 Composite Component. Relation attach realizes the same-type con-
necting between the Gates of Connector and Component, substituting the con-
nector’s gate by the gate of concrete component. Relation bind designates the
subcomponent’gate as the same-type gate of the composite component. The
function of composite component is described as the parallel composition of all
the subcomponents’actions and the connectors’ glue action.
InGate ≡ Gate

�
(≤ 1attach.InGate

�
≤ 1bind.InGate)

OutGate ≡ Gate
�

(≤ 1attach.OutGate
�

≤ 1bind.OutGate)

3.2 An Architecture Example of Pipeline-Filter Style

In this section, a complete SA model of Pipeline-Filter Style is introduced based
on DDL. Fig.1 presents an instance compositefilter of composite component
CompositeFilter, consisting of an instance pipe of connector Pipe and two in-
stances filter1 and filter2 of simple component Filter. Suppose that all the
types of gates in the system are Int.
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Fig. 1. compositefilter

3.2.1 DDL Description Language
Concept:Component,Connector,Gate,InGate,OutGate,Type,Int,Filter,Compos-
iteFilter,Pipe,BeforeIO,AfterIO,FullData,EmptyData,BeforeCompute,AfterCo-
mpute,BeforeGlue,AfterGlue,Eof;
Relation:havepart,provide,require,linkto,havetype,attach,bind,receive, send;
Instances: in:InGate,out:OutGate,x:Int,v:Int;
Concept constructors: ∩, ∪, ¬, ∃, ∀, ≥ n, ≤ n, = n
Action definition:
α(in, x) ≡ ({InGate(in), Int(x), havetype(in, x),BeforeIO(in), EmptyData(x)},

{φ/FullData(x), {Eof(x)}/AfterIO(in), {¬Eof(x)}/BeforeIO(in)})
β(out, v) ≡ ({OutGate(out), Int(v), havetype(out, v), BeforeIO(out), FullData(v)},

{φ/EmptyData(v),{Eof(v)}/AfterIO(out), {¬Eof(v)}/BeforeIO(out)})
input(in, x) ≡ (α(in, x))∗ output(out, v) ≡ (β(out, v))∗

glue(in, out, x) ≡ (α(in, x);β(out, x))∗

computei realizes a certain computing function, and the details are ignored.
State definition:
w1 = {InGate(in), Int(x), havetype(in,x), BeforeIO(in), EmptyData(x),¬Eof(x)}
w2 = {InGate(in), Int(x), havetype(in,x), FullData(x),BeforeIO(in)}
w3 = {InGate(in), Int(x), havetype(in,x), BeforeIO(in), EmptyData(x),Eof(x)}
w4 = {InGate(in), Int(x), havetype(in,x), FullData(x),AfterIO(in)}
w5 ={OutGate(out), Int(v), havetype(out, v), BeforeIO(out), FullData(v), ¬Eof(v)}
w6 = {OutGate(out), Int(v), havetype(out, v), EmptyData(v),BeforeIO(out)}
w7 = {OutGate(out), Int(v), havetype(out, v),BeforeIO(out), FullData(v), Eof(v)}
w8 = {OutGate(out), Int(v), havetype(out, v), EmptyData(v),AfterIO(out)}
and then Tα(in, x) = {(w1, w2), (w3, w4)} Tβ(out, v) = {(w5, w6), (w7, w8)}

T input(in, x) = (Tα(in, x))∗ Toutput(out, v) = (Tβ(out, v))∗

Tglue(in, out, x) = (Tα(in, x) ◦ Tβ(out, v))∗

3.2.2 TBox. Some new axioms are added to describe some constraints of the
Pipeline-Filter styled SA based on the general description in Section 3.1.
CompositeF itler≡Component

�
≥ 1havepart.CompositeF ilter

�
≥ 0havapart.P ipe

�
≥ 0linkto.P ipe

F ilter ≡ CompositeF ilter
�

∀havepart.⊥ (⊥ denotes bottom concept)
Int ⊆ Type Eof ⊆ Int Gate ≡ (InGate

�
OutGate)

�
= 1havapart.Int

EmptyData ≡ Int
�

[input(in, x)]FullData

FullData ≡ Int
�

[output(out, v)]EmptyData

BeforeCompute ≡ CompositeF ilter
�

[computei(x)]AfterCompute

AfterCompute ⊆ CompositeF ilter P ipe ≡ Connector
�

=1linkto.CompositeF ilter

BeforeGlue ≡ Pipe
�

[glue(in, out, x)]AfterGlue AfterGlue ⊆ Pipe
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3.2.3 ABox. Fig.2 depicts the compositefilter in Fig.1, where dot denotes
instances, directive real line denotes relation, directive dashed denotes the coop-
erating relation between concepts, and the word below is action name.

Fig. 2. An Instance in ABox

4 Application in Consistency Detection Aspect

Dynamic SA reconfigures during executing time, thus change and evolution arise
and consistency detection is necessary. The decidable reasoning and mature tools
of DDL support the consistency detection of dynamic SA very well, such as Loom
[7] and Racer [8]. The corresponding relation between the reasoning mechanism
of DDL and the consistency detection of dynamic SA is depicted as Table 1.

Table 1. Detecting Consistency Problem

Consistency problem Detecting support Example of inconsistency
of SA of DDL reasoning problems

Consistency problem of Satisfiability detection Com2 ≡ ¬Com1
�

. . .
SA description of TBox concept Com2 ⊆ Com1

Consistency problem Consistency Com2 ⊆ ¬Com1

between SA description detection of DDL Com2(a1)
and instances Knowledge base Com1(a1)

Com1(a) Con1(p) Int(x)
Consistency Consistency Double(y) OutGate(og1)

problem among detection of ABox OutGate(og2) provide(a, og1)
SA instances assertion havetype(og1, x) receive(p, og2)

havetype(og2, y) attach(og1, og2)
Consistency problem Instance detection BeforeIO(in)

within an instance of SA of ABox AfterIO(in)
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Taking the consistency problem among SA instances as an example, if there
is Double ⊆ ¬Int

�
. . .in Tbox, that is type Double and Int are inconsistent, and

for an assertion set A0 = {OutGate(og1), OutGate(og2), havetype(og1, x), havetype(
og2, y), Int(x),Double(y)},according to the ALCN -Tableau arithmetic, extend
OutGate(og2) using

⋂

−rule and get another assertion set A1 = {OutGate(og1),
OutGate(og2), havetype(og1, x), havetype(og2, y), Int(x),Double(y), Int(y)}, finally
detect the inconsistency {Double(y), Int(y)}.

“trace concept” and “trace relation” [9] can be explicitly added into the model
and the querying function of Loom and Racer can assist the detection.

5 Related Work

DL is a kind of Object-Oriented formalization for knowledge representation.
In 1991, Schmidt-Schauβ and Smolka proposed the minimal DL language of
practice AL [10]. Wolter presented a kind of dynamic DL theory [4], in which
action is seen as a modal operator and enhances the expressing ability of DL.
According to the character and requirement of Semantic Web, Zhongzhi Shi etc.
proposed a kind of new DDL [5], integrating the static and dynamic knowledge
and providing the legible semantic and decidable reasoning service.

At present, many Architecture Description Language (ADL) have been real-
ized: XYZ/ADL [11] supports the stepwise transition from higher-level archi-
tectures to lower-level architectures; based on the Pi-calculus, Darwin [12] is
used to describe distributing architecture; π-ADL [13] specifies the dynamic and
mobile architecture; etc. Considering the better expressing ability and decidable
reasoning, this paper presents a kind of SA model based on the DDL.

6 Conclusion

DL is one of effective tools for knowledge representation, while DDL supports
the representation of static and dynamic knowledge at the same time, providing
better expressing ability and decidable reasoning. This paper presents a kind of
SA model based on the DDL: the expressing ability facilitates the description of
constraints satisfied by each part of SA, the decidable reasoning can efficiently
detect some consistency problems existed in dynamic SA, and DDL classifies the
components and supports the incremental specification and modularity.

There is a lot of work need to do, for example, based on the fruits of research
on DDL, to perfect the SA model, and then to define the ADL and to develop the
corresponding system supporting it. On the other hand, the research on resolving
the consistency problem of dynamic SA becomes the emphasis of next-step work.
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Abstract. Modern embedded processors employ dynamic branch pre-
diction to reduce performance penalty caused by branch instructions.
Existing branch predictor designs are all based on the behavior of ap-
plications on a GPP (general purpose processor). However, for an em-
bedded system, such as smart phone, multimedia applications are the
main workload. Therefore, in this paper, we perform detailed analysis on
the branch behavior of multimedia applications. We believe that iden-
tifying important characteristics of the branch behavior of multimedia
applications is important for designing a branch predictor for embedded
processors.

1 Introduction

The design of embedded processors is getting complicated to meet the perfor-
mance demand of multimedia and communication applications. Deeper pipelin-
ing is commonly used to improve performance. For example, the Intel Xscale
processor [1] has 7 stage pipelines. Therefore, a dynamic branch predictor is
usually employed to reduce the performance degradation caused by instructions
that alter the execution flow (branch instructions). The branch prediction accu-
racy is not only critical for performance; it also affects power consumption since
mis-predicted branches incur energy wastes.

Existing branch predictor designs are based the branch behavior of applica-
tions running on a GPP (general purpose processor). However, the workloads
for embedded system are mainly multimedia applications. We found that with
a commonly used bi-modal branch predictor [2], multimedia workloads have an
average 7.73% mis-prediction rate. This observation confirms with the findings in
the work by Bishop et al.[3]. They also found that branch prediction accuracy of
multimedia applications is poor due to unpredictable data dependent branches.
Therefore, it is important to understand the branch behavior of multimedia ap-
plications.

Previous works on workload characterization of multimedia applications focus
the memory subsystem [4][5]. Bishop et al.[3] looked at the branch prediction
accuracy of multimedia application but they did not analyze the branch behavior
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in detail. There are works on characterizing branch behavior, but they focus on
the workloads on GPP (e.g., SPEC2000 benchmark)[6]. In this paper, we analyze
the branch behavior of multimedia applications through the simulation-based
methodology. We assume an ARM-like branch prediction unit: bi-modal branch
predictor, return stack. We make the following important observations:

1. Although loops are easier to predict than if-branches, we observe that loops
account for 50% of mis-predicted branches. That is because the multimedia
applications contain tight loops. The loop iteration count ranges from 3 to
19 on the average for most of the applications tested in this paper.

2. About 90% of loops are counted loops,70% of them are nested loops. If
counted loops can be correctly predicted, the branch prediction accuracy
can increase up to 8%.

3. The correlation degree between branches varies among applications tested.
The percentage of correlation branches in mis-predicted forward branches
ranges from 2% to 99.04%. Our experimental results show that if correlation
branches can be correctly predicted, the branch prediction accuracy can
increase up to 6%.

4. We find only 20% of mis-predicted if-branches shows regularity in control
variable values. This indicates that a value-based branch predictor [7] may
not be effective for multimedia applications.

The rest of this paper is organized as following. Section 2 presents the simu-
lation methodology. In Section 3, we characterize mis-predicted branches. Sec-
tion 4 discusses possible enhancements to the branch predictor design. Finally,
Section 5 concludes.

2 Evaluation Methodology

We adopt the simulation-based approach for the branch behavior characteri-
zation of multimedia applications. We use the SimpleScalar tool set [8] as our
simulator. We use the MediaBench suit [9] as our target applications. The Me-
diaBench contains a set of multimedia applications: adpcm encoder/decoder,
g721 encoder/decoder, jpeg encoder/decoder, epic/unepic, lame, and mpeg en-
coder/decoder. We assume an ARM-like architecture. The branch prediction
unit contains a bi-modal branch predictor, and return stack. The arm instruc-
tion set contains predicted instructions to eliminate branch instructions. Fig-
ure 1 shows the branch prediction accuracy of multimedia applications for an
ARM-like architecture. We can see that most of the multimedia applications
have only about 90% of prediction accuracy. To understand the behavior of mis-
predicted branches, we look into both the backward and forward branches. For
mis-predicted backward branches, we quantify the distribution of counted loop,
general loops, and nested loops. For mis-predicted forward branches, we analyze
three properties: correlation between branches, regularity of control variable val-
ues of if-branches, and how the control variable values are generated. Note that
some of the mis-predicted branches are located in the pre-built libraries which
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Fig. 1. Branch prediction accuracy of MediaBench Benchmarks on ARM architecture

do not have source codes. Therefore, the results presented below only cover the
branches in the user codes.

3 Characteristics of Mispredicted Branches

Figure 2 shows that distribution of forward and backward branches in mispre-
dicted branches. We can see that even though backward branches are easy to
predict, they still account for a significant number of mis-predicted branches.
With a bi-modal branch predictor, a loop branch is mis-predicted in the last
iteration. Therefore, a tighter loop would result in higher mis-prediction rate.
Figure 3 shows the loop iteration on the average for each application. We can
see that, except for the adpcm encoder/decoder, the average iteration counts
range from 3 to 19. Therefore, we will look into both the forward and backward
branches carefully in the sections below.
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Fig. 2. Backward and forward branch distribution in mis-predicted branches
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Fig. 3. Distribution of Loop Iteration

3.1 Characteristics of Mispredicted Backward Branches

There are two forms of loops, general loops vs. counted loops. We further divide
counted loops into two categories: loop iteration count can be determined at
compile time vs. run time. Figure 4 shows the distribution. We can see that most
of backward branches are counted loops, 90% on average. Roughly half of counted
loops have statically determined iteration counts. We also find most of counted
loops are nested loops, 70% on average. Since counted loops have predictable
looping behavior, it presents opportunity for improving branch predictordesign.

Fig. 4. Distribution of general loops, counted loops

3.2 Characteristics of Mispredicted Forward Branches

To understand the behavior of mispredicted forward branches, we classify the
forward branches in three aspects. We first analyze correlation between branches.
We then identify the regularity of control variable value of if-branches. This gives
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Fig. 5. Distribution of correlation branches in mis-predicted forward branches

us an insight on the effectiveness of the previously proposed value-based branch
predictor [10]. Finally, we analyze the sources of if-branch control variables.

Correlation between Branches. We identify the correlation between branches
by examining the source codes. Figure 5 shows the percentage of correlation
branches among mis-predicted forward branches. We see the distribution of
correlation branches varies among applications. For lame, almost 100% of mis-
predicted branches exhibit correlation property. However, for the jpeg encoder/
decoder, we only see 2 to 3% of mis-predicted branches are correlation branches.
On average, about 31% of mis-predicted forward branches are correlation
branches.

Regularity of Control Variable Values. Some of the control variable values
actually present regularity: stride and repeating patterns. Figure 6 shows the
distribution of mispredicted forward branches in terms of the value pattern of
control variables: stride, repeating and irregular. Note that there are no mispre-
dicted forward branches in the adpcm decoder. We can see that most of control
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Fig. 6. Distribution of control variable value pattern in mispredicted forward branches
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variable values are irregular in the multimedia applications tested except for epic
and unepic where repeating pattern takes up 45% and 60%, respectively. On av-
erage, 22% of control variable data in mis-predicted forward branches exhibit
regular patterns. These results indicate previously proposed value-based branch
predictor may not be effective for multimedia applications.

Value Generation of Control Variables. We can classify the mis-predicted
forward branches in three categories considering how the control variable values
are generated:

1. Array structure. The values of branch control variable are stored in array
structure. Followings are the code example:

for ( i = 0; i < n; i + + ){
if (im[i] == 0)

{ statement; }
}

For this type of branches, the branches can actually be resolved earlier if we
can compare the array with the branching conditions in parallel.

2. Calculation. The value of branch control variable is produced by a sequence
of operations like add, sub, shift, etc.

3. Function parameters/return values. The value of branch control variable
could come from either function parameters or return value of a function
call.

Fig. 7. Distribution of sources of control variables in mispredicted forward branches

Figure 7 shows the distribution of mispredicted forward branches in the four
categories described above. We can see that most of the control variable values of
mis-predicted forward branches are generated through a sequence of computation
(62% on average). For the epic and jpeg encoders, more than 50% of the control
variable values are stored in an array structure. On average, only 10% of control
variable values are from function parameters or return value.
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4 Discussion

In this section, we discuss possible branch predictor enhancements based on the
analysis presented in the above. Figure 8 shows the distribution of 5 categories
of mis-predicted instructions in the dynamic branch instruction stream: counted
loops, predictable control variable values of if branches, correlation branches,
the value of branch control variable are stored in array structure or through a
sequence of calculation. We can see that counted loop and correlation branches
are two main types that are worth paying attention. For example, in the mpeg2
encoder, if the counted loops can be predicted correctly, the branch prediction
accuracy can increase 8%. Several applications could benefit from correlation
branch predictor, such as the g721 encoder and decoder. The results also show
that value-based branch predictor is not effective for multimedia applications.

Fig. 8. Distribution of 5 branching types in dynamic branch instructions

To solve the counted loop problem, we can adopt the approach of the Ita-
nium architecture which provides a special counted loop branch instruction (the
br.cloop instruction) and the Loop Counting application register (LC) [11]. The
challenge of adopting this approach is to handle the nested loops which are
commonly seen in multimedia applications. To increase the predictability of cor-
relation branches, we could adopt the correlation branch predictor commonly
seen in a modern GPP. However, the higher design complexity of the corre-
lation branch predictor would lead to more energy consumption compared to
the bi-modal branch predictor used in most of current embedded processors.
Since low power is a critical design issue of an embedded processor, the en-
ergy/performance tradeoff by adopting correlation branch predictor needs to be
carefully evaluated.

5 Conclusion

In this paper, we characterize the branch behavior of multimedia applications.
We find that the forward and backward branches account for 50% of mis-
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predicted branches, respectively. 90% of mis-predicted backward branches are
counted loops, and 31% of mis-predicted forward branches are correlation
branches. Therefore, to increase branch prediction accuracy, we should target
at both correlation branches and counted loops. We are currently investigating
techniques to improve the prediction accuracy of these two types of branches.
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Abstract. The characteristics of the stream architectures--stress locality, 
parallelism, decoupling of memory operations and computation--matches the 
capabilities of modern semiconductor technology with computer-intensive 
parallel applications and allow for high performance of compiler optimized 
code. This paper presents a detailed study of porting the fluid dynamics 
calculation with 2D Lagrange and Euler Method to a stream processor----
MASA. 
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1   Introduction 

YGX2 combines Lagrange method and Euler method to calculate 2D detonation 
hydrodynamics problems. There are mainly three reasons that StreamYGX2 was 
chose as our study of application development on MASA [1]. Firstly, YGX2 is one of 
IAPCM (Beijing Institute of Application Physics and Computing Mathematics) 
Benchmarks, which shares many characteristics with other scientific codes. Secondly, 
the program is fairly straightforward to understand, and the amount of experiments 
and data analysis required is reasonable. Finally, several versions of conventional 
processors are available now for comparison and reference of our study. These 
problems are also commonly found in other scientific codes. The techniques we 
developed for StreamYGX2 are generally applicable to scientific codes on MASA 
and other stream processors, and are not limited to fluid dynamics. Our research in 
StreamYGX2 covers extensive experiments in the MASA hardware design and 
software systems. Moreover, we will be honored to provide feedback to the MASA 
architecture and compilation teams, if needed.  

Since this paper mainly studies the performance of single chips, of which the size 
of the mesh grid is about 40000 particles. YGX2 calculates partial differential 
equation by finite difference approach, in order to obtain density, velocity, pressure 
and energy of particles in 2D mesh grid. In this case, the calculation of every particle 
needs relative values of up to 8 neighbors. We discussed the algorithm on MASA  
in [6]. 
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2   Optimization of StreamYGX2 

We developed StreamYGX2 to perform the fluid computing of YGX2, using highly 
parallel hardware of MASA. StreamYGX2 performs special processing on original 
bounds that has short parallelism. At the same time strip-mining creates new 
boundary particles. Since values of the first row and the last row in each batch can not 
be calculated correctly, these new boundary particles need to be computed repeatedly 
in neighboring batches. Correct values must replace wrong values. Batches of long 
stream need redundant boundary rows other than simply striped. This process needs 
data reorganization. However, a row of particles is not sequential records in stream. 
Since kernel cannot operate on irregular records very well, data reorganization is 
completed in scalar core rather than stream core. This can be briefly illustrated in the 
pseudo-code (Kernel uvxrlUv) below: 

…… //other kernel  
for(int i=0;i<NUM;i++)// strip-mining incurs loop (in the case, NUM=12) 
  {           
       streamLoad(p[NUM], 3600 ,ysp); //non-block transfer 

im_stream<im_float> pin = ysp(0,3600); //repair stream 
uvxrlUv(pin,pout); //invoke kernel uvxrlUv, StreamYGX2 consists of 18 

kernels 
streamSave(pout, 3600 ,ysp) // non-block transfer 
…… // scalar operations of data reorganizing between batches 

         } 
…….  // scalar operation between Kernels 

Since there is no data dependency between several invocations of the same kernel 
while processing different batches, this loop can be software pipelined in order to hide 
memory latency and scalar operation latency. In our implementation, scalar 
operations have little detrimental effect on the overall performance (only 18% of the 
total run time). The other advantage of running the same kernel in series is that the 
kernel’s microcode is only loaded once every 12 kernel invocations, which expresses 
time locality. 

To attain high performance on MASA, we must ensure program latency tolerance, 
parallelism, and locality. Share memory and non-block transfer allow executing scalar 
operations, memory operations and kernel computations concurrently and frequently. 
StreamYGX2 has abundant parallelism, not only because each particle can  
be calculated independently from any other particles, but also different properties  
can be computed in a separate step. This parallelism is used to operate MASA’s 8 
cluster in SIMD fashion. Multiple memory hierarchies capture locality that is 
expressed by stream model. This section explains what optimizations are available on 
MASA.Several optimizations are effective at improving the performance of 
application on MASA. This paper presents two important software optimizations for 
scientific computing: 1. how loop unrolling at kernel level improves inner-loop IPC, 
2. how software-pipelining at stream level hides memory latency. 

A kernel is a computation intensive function that operates on streams. It usually 
consists of a single, computation-intensive loop, thus loop unrolling highly increases 
functional unit utility. The effectiveness of optimization is more evident for MASA 
with several symmetrical multiply-add units than without these units.  
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Figures 1a and 1b show the effect of applying loop unrolling to the kernel Roqpp. 
In each figure, the 6 columns represent the cluster’s 6 functional units, and the box 
represents an instruction that starts execution at a particular cycle. The optimized 
kernel is unrolled 4 times to achieve an execution rate that is 3.45 time of the original 
kernel. It takes 220 cycles for each loop iteration, each cycle achieve four original 
independent interactions with unrolled loop. However, loop unrolling is not effective 
for the kernel with heavy workload, because IPC is high enough to support functional 
units to achieve almost peak arithmetic rate.  

  

Fig. 1. (left) Schedules of the kernel Roqpp, 
before, and after loop unrolling is applied – (a) 
and (b) respectively1  

Fig. 2. (right) Snippet of execution of 
Kernel uvxrlUv showing the improvement 
in overlap of memory and kernel opera-
tions. Left column of both (a) and (b) 
represents a kernel being executed, and the 
right columns are for memory operations. 

Kernels of StreamYGX2 process long streams in smaller batches. There is no data 
dependency between different batches. Software pipelining the loop so that kernels 
from one stage can be executed at the same time as serial memory accesses between 
kernels of other stages. Figure 2 shows a snippet of execution of Kernel uvxrlUv. 
Figure 2a and 2b represent both before and after the application of software pipelining 
respectively. The next kernel invocation cannot start immediately after the last 
invocation finishes, and it must wait for the intervening memory load to complete as 
shown in Figure 2a. Figure 2b shows a perfect overlap of memory and computation. 
Scalar operation between batches is also executed at the same time as memory 
operation. 
                                                           
1 All results of compiler and running are obtained from MASA compiler and MASA cycle-

accurate simulator which can be downloaded from our academic website http:// masa. 
nudt.edu.cn. 
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3   Performance Evaluating 

We developed both the C++ cycle accurate simulator [2] of MASA and the hardware 
emulator on Xilinx Vertex4 FPGA based on ISIM2. The parameters of the MASA 
system are summarized in Table 1. The C++ cycle accurate simulator simulates the 
MASA’s behavior cycle-accurately. Experiments were carried out for the run of the 
fluid system of StreamYGX2.  

Table 1.   MASA parameters  

Parameter value Parameter value 
Word length 64bit Memory bandwidth 5.3GB/s 
Operating frequency 500MHz Number of clusters 8 

Number of streams 
address generators  

2 Cluster component 4 adder-multiplier 
units, 1 divide unit 

SRF size 512KB Peak performance 36GFlops 

Table 2.  StreamYGX2 kernels Performance  

Kernel run 
time every 
invocation 
(cycle) 

float-
point 
operates/ 
SRF 
reference 

LRF 
bandwidth 

(GB/s) 

SRF 
bandwidth 

(GB/s) 

IPC3 ALU 
Gflops 

El1 4187 5 304 20.5 20.4 12 
El2 100212 112 351 1.15 23 19.1 
Meuvef 7174 4 219 20 15.3 10.5 
Meuvfue 4872 9 443 18 24.2 19.5 
Meuvm1 3960 2 141 14.5 11.8 3.1 
Meuvmead 3743 5 531 34.5 39.2 20.1 
Meuvuv1 3910 6 468 21.3 36.2 16.8 
Meuvuv2 3040 6 411 25.3 24.4 17.9 
Meuvxr41 2101 4 325 27.4 22.3 13.7 
Roqpden 4080 14 526 14.1 34.3 24 
Roqpp 50475 51 273 1.71 17.6 10.9 
Roqpq1 9169 21 619 9.5 36.7 25.3 
Roqpq2 3566 10 466 16.08 27.5 19.1 
Uvxrlden 3788 13 524 15.1 31.3 25.1 
Uvxrluv 54686 88 517 2.37 29.5 25.9 
Uvxrluv0 1118 71 131 0.7 6.9 6.2 
Xrwxlrl1 25699 29 371 4.41 22.4 16 
Xrwxlrl2 21556 56 417 2.63 27.1 18.5 
weighted 

average 
 68.8 385 4.8 24.2 18.4 

                                                           
2 Cycle Accurate Simulator of Imagine. 
3 Including non-arithmetic instruction. 
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The arithmetic intensity and locality are tightly related. In most cases, the higher 
arithmetic intensity, the more stress is the locality. Arithmetic intensity of application 
refers to the ratio of arithmetic to global bandwidth, while arithmetic intensity of 
kernel refers to the ratio of arithmetic to SRF bandwidth. Table 2 summarizes the 
statistics of all kernels. The last row of Table 2 shows the weighted average of 
StreamYGX2. The ratio used in calculation of weighted average is the run time of one 
kernel to the run time of total kernels. The second column of Table 2 shows the run 
time of each Kernel invocation. The third column of Table 2 shows arithmetic to 
memory bandwidth ratio at floating point in each Kernel. The weighted average is 
68.8 (perform over 68.8 floating point operations for each 64-bit word transferred 
over the SRF interface), which allows ALU array executes with full loads. The cluster 
stalls, which were caused by SRF data supply delay, are less than 1% of the kernel’s 
run time.  

LRF bandwidth and SRF bandwidth (only account bandwidth between cluster and 
SRF, other SRF client includes net interface, DRAM and scalar core) during Kernel 
execution are shown in the fourth column and fifth column of Table 2. More than 
90% of references are made to the LRF due to the large mounts of kernel locality 
available in this application. SRF bandwidth which is no more than 65% of the peak 
(51.2GB/s) shows SRF bandwidth can satisfy client requirements, including bursty 
SRF bandwidth requirements. 

Instructions per cycle (IPC) and performance result (Gflops) of each Kernel are 
shown in the sixth and seventh column. As shown in the Table, MASA demonstrates 
potential to deliver high performance. 
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Fig. 3. (left) Bandwidth hierachy Fig. 5. (right) Stall caused by data access affected 

by varied sizes of SRF and various strips  
 

 
Figure3 illustrates the bandwidth of the memory hierarchy, in three levels. The 

access ratio of the three levels of the memory hierarchy (DRAM, SRF, LRF) in the 
whole application is 1:2.5:114, and the actual bandwidth needs are 2.1GB/s, 7.3GB/s, 
386GB/s respectively. Bounds processing requires streams in SRF to be transferred to 
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DRAM. SRF is mainly used as a buffer between clusters and memory. It is unable to 
capture the producer-consumer locality between kernels. Nevertheless, locality within 
kernels is fully captured. Shared memory can dramatically reduce the access of 
DRAM and SRF, compared to exclusive memory. 

StreamYGX2 has abundant Data Level Parallelism (DLP) and Instruction Level 
Parallelism (ILP), and it is compute-intensive, too. The total runtime of 
StreamYGX24 is 11.8s, while IPC is 24.2. The performance that can be achieved for 
StreamYGX2, in our experiment, is 18.4Gflops (double-precision). Figure4 shows 
speedup of Ygx2 running on Alpha21264 (500MHz) versus a number of other 
processors. The numbers above the bars are the runtime [3]. MASA is approximately 
4 times faster than Itanium2 (1.6GHz, optimization flag -o3 -fast). 

 

 
 

Fig. 4. Speedup of Ygx2 running on various processors, the number above the bars declares the 
runtime of YGX2 application 

4   Discussions 

Strip-mining is applied in StreamYGX2. It is beneficial to hide the latency when 
loading kernel microcode and memory operation. It can also reduce the amount of 
intermediate results so as to decrease memory accesses, which are incurred by SRF 
overflow. However, excessive strip-mining will lead to increased bounds, computing 
complexity and overhead of strips switching.  

The size of SRF may affect the performance. Larger SRF can prefetch more 
microcodes in kernels and more streams, which shorten the latency of memory access. 
On the contrary, smaller SRF may cause some of the streams not be prefetched. As 
we know that enlarging SRF size leads to hardware overhead. 

In our research in SreamYgx2, most of streams between kernels need to be 
transferred to be reorganized. This transfer process means that enlarging SRF (more 
than 512 KB) has no major effect on performance. Our experiments attempted to 
optimize size and number strips to achieve minimum SRF demands, in order to 
improve effectiveness and efficiency of the performance. Figure5 shows different data 
access stalls (memory stall + SRF stall5) caused by various sizes of SRF and various 
strips. The result shows that 3600-words batch with 512KB SRF can achieve the best 
performance so far. Continuing enlarging SRF can barely reduce the stall and 
                                                           
4 537 time-steps. 
5 Cluster stalls refers stall when the SRF is not ready to accept stream read or write requests 

from the clusters. Memory stalls refers stall waiting for a stream load or store to complete. 
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changing batch sizes will not improve the performance at all. Therefore, it is vital to 
consider the characteristics of applications when deciding SFR sizes. And the size of 
SRF determines batch size. 

StreamYGX2 shares characteristics with other scientific applications, such as 
streamFEM-3D, streamFLO and streamMD[4]. The ratio of memory access, SRF 
access and LRF access of scientific applications shown in table3 is about 1:3:100, and 
of media process is about 1:10:200[5]. 

Table 3.  References in scientific applications (data of streamYGX2 is one time-step) 

Application LRF Refs SRF Refs memory Refs 
StreamFEM3D 153.0M 6.3M 1.8M 
StreamMD 90.2M 1.6M 0.7M 
StreamFLO 234.3M 7.2M 3.4M 
StreamYGX2 206.5G 4.6G 1.8G 

Furthermore, the application-level access patterns of scientific computing may be 
irregular. For instance, the scientific applications exhibit large amounts of irregular 
producer-consumer locality, which results from the prevalence of irregular 
intermediate streams (need to be reorganized). Irregular producer-consumer locality 
refers to the consumption of the stream occurs in a different sequence than the one it 
was generated in. Consequently, SRF only captures limited producer-consumer 
locality.To keep up with the new characteristics of scientific applications, MASA 
SIMD architecture has to be constantly improved and updated. In terms of hardware, 
multiple flexible SRF accesses needs to be supported. When irregular producer-
consumer locality is captured, the performance will be improved noticeably. In terms 
of software design, vectorlized stream programming language plays the vital role 
since it makes coding much easier. Our future task is to try our best to develop 
StreamYGX2 in other parallel execution modes. 
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Abstract. SecureTorrent is a secure file swarming system based on Bit-
Torrent. It provides access control, end-to-end confidentiality, and au-
ditability, while maintaining advantages of file swarming. This paper
presents an initial performance evaluation. As compared with BitTor-
rent, the performance overhead of encryption in most cases is negligible,
at worst 15%. In a real-world higher latency network, the extra overhead
of encryption would be significantly lower.

1 Introduction

File swarming is a peer-to-peer mechanism for distributing content on the Inter-
net. By distributing workload and bandwidth requirements as widely as possible,
it aims to eliminate bottlenecks and hot spots. File swarming evolved initially
for free content, with no concern for security. Security can be added by e.g. by
password-protecting content, but changes to content are a stop-gap solution.

The approach explored in this paper is to add encryption to file swarming.
Specifically, encryption has been added to BitTorrent [1]; the resulting system is
called SecureTorrent. BitTorrent was chosen as a typical, popular example, with
source code amenable to the required changes.

A major motivation for file swarming is to speed up file downloads, so the
focus in our evaluation is on showing that our implementation has no significant
performance cost. Work reported on here is a proof of concept, so SecureTorrent
does not include a convenient user interface or set up tools.

Section 2 relates this work to previous work. Section 3 provides an overview of
SecureTorrent, starting from a brief description of BitTorrent. Section 4 contains
performance measures, followed by conclusions.

2 Related Work

There has not been much previous work on secure file swarming, but it is useful
to review some of the alternative approaches to content distribution and to
security, as a basis for understanding the design decisions in SecureTorrent. The
remainder of this section explores these issues in turn, followed by tying the ideas
together as a basis for the design decisions in SecureTorrent.

C. Jesshope and C. Egan (Eds.): ACSAC 2006, LNCS 4186, pp. 538–544, 2006.
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2.1 Content Distribution

Two fundamental difficulties in content distribution arise from unpredictable
demand and dynamic content (not addressed in this paper), otherwise it would
be simple to minimize latency by caching. Studies have shown that the amount
of Web traffic that cannot be cached is as high as 20% [2]; even with an infinite
cache size, the upper bound for the hit rate is 30-50% [2].

A simple approach to load balancing content distribution is round robin DNS,
where a domain name server has multiple addresses for the same name, an
approach is in wide use for web sites, with various variations [3]. Round robin
DNS only addresses server load, not network congestion. A more sophisticated
approach is to use distributed servers, redirecting traffic to the nearest server,
as is done by Akamai’s edge delivery service [4].

Another approach to distribution of like content to multiple users is multicas-
ting (in the network layer: single packet to multiple hosts [5]). We have elsewhere
reviewed difficulties with scalability and internet-wide use of multicasting [6].

There are three main types of P2P system. Purely decentralised systems (e.g.,
Chord [7], Gnutella [8], FreeNet [9]) rely on peers finding each other by broad-
cast messages. Partially decentralised systems have dynamically selected “su-
pernodes” with fast network connections to provide searching and routing for
parts of the network (modified Gnutella protocol [8] and KaZaA1). Hybrid sys-
tems eschew fault tolerance of no single point of failure for improved performance
with static servers for peer discovery and searching (Napster2, BitTorrent [1]).

The main benefit of peer-to-peer approaches over the other surveyed ap-
proaches is their potential to adapt to unpredictable demands.

2.2 Secure P2P Content Distribution

Secure distribution using peer-to-peer file sharing may have some novely, but
basic precepts remain the same as in current secure content distribution systems.
Two main ideas that have to be implemented: access control and encryption.
Authentication may also be an issue, if users have to be identified.

A system has to control who has access to it, and stop a third party from lis-
tening in on any transactions. At time of writing, only a few P2P networks imple-
ment access control, e.g., KaZaA and Napster, which only use it for accounting.
Both use at least one central server, which they can use to authenticate against.
Without a central server, access control using authentication would be possible if
a Kerberos [10] or LDAP style authentication system is used. This functionality
can be handled by the tracker (the server which coordinates file transfers), but
it introduces another point of failure. Another option is a distributed Byzantine
agreement protocol [11], at the cost of extra broadcasts.

In a purely decentralised P2P network, it is difficult to implement access
control without a central server to authenticate against. These networks also

1 http://kazaa.com
2 http://www.napster.com

http://kazaa.com
http://www.napster.com
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make it hard to implement economical peer to peer encryption. Using SSL it
can be done very easily, but this raises other issues, such as trust and high
computational expense. If a shared key can be agreed on, encryption becomes
much less expensive, as most of the computationally expensive operations (in
SSL: prime number generation) are not needed. Without a central server, it is
unclear how to share the key securely.

The only application using peer-to-peer encryption is Skype3, using the same
underlying partially decentralised network as KaZaA to route phone calls.

2.3 Putting It All Together

If the level of security is no worse than any packet eavesdropping, a secure P2P
approach would not offer serious drawbacks compared with a web site download.

The approach in the work reported on here is based on encryption of the data
stream, with design compromises based on points in this section. Technologies
used are not novel in themselves, so the focus in evaluation is on performance.

3 Overview of SecureTorrent

SecureTorrent is based on BitTorrent, a popular P2P file swarming system. It
aims to add access control, end-to-end confidentiality, and auditability to file
swarming. The system also stops attackers from intercepting content in transit.

The remainder of this section provides a little more detail of BitTorrent,
an overview of details of how SecureTorrent adds security to BitTorrent, and
concludes with a brief report on the status of SecureTorrent.

3.1 BitTorrent and SecureTorrent

BitTorrent is a hybrid peer-to-peer system [12]: clients (peers) use to a central
server (tracker) to discover peers. BitTorrent does not support searching; instead,
.torrent files containing metadata about content being distributed, including
the address of the tracker, and hashes of the content, are used. A BitTorrent peer
process loads these metadata files, and contacts the tracker for a list of peers.
It then communicates with the other peers in the swarm, trading small chunks
(know as pieces) of the content. In this way, the content is distributed across the
swarm. Each peer aims to maximise its download rate, and uses strategems such
as favouring peers with higher upload rates, and ignoring peers without many
pieces of the content [1,13]. File integrity is checked from a hash (stored in the
.torrent file) of each piece (usually 256 KB) of the content.

SecureTorrent consists of two pieces of software: the peer and the tracker,
each based on BitTorrent versions. They differ from the originals in providing
the confidentiality, access control, and auditability required to add security.

Confidentiality and access control are achieved in two ways. Confidentiality of
transmitted data is ensured by encrypting all peer-to-peer traffic, and peers to
3 http://www.skype.com

http://www.skype.com
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the tracker, while access control is implemented by forcing peers to authenticate
with the tracker, when they first join the swarm. If the peers do not authenticate,
they will not receive a list of other peers, or any encryption keys.

For simplicity of implementation, traffic between the peers and the tracker is
encrypted using SSL. SSL encryption is not used for peer-to-peer traffic, mainly
because of the need for certificates. SSL is a public key encryption system, which
means that two systems can negotiate a secret key over an insecure channel. How-
ever, to verify identity of the system, a certificate is used. Providing certification
for each peer in the swarm would seriously degrade tracker performance, and
also increase data transfers. Consequently, a shared-key system is used.

The shared-key system is uses 128-bit keys (AES encryption standard). When
peers authenticate with the tracker, they receive a serialised list of keys, unique
to that content. When two peers start their handshake, each randomly selects a
key from the list, and then randomly generates an initialisation vector (IV ). The
key number and IV are then transmitted unencrypted to the other peer, and
all traffic after that is encrypted with the key and initialisation vector specified.
The keys are never transmitted in clear, and as a random initialisation vector is
used each time, the encrypted traffic is no more vunerable than usual.

The shared-key system also implements key swapping. After a random amount
of time, each peer will generate a new IV , and pick another key number. The
peer then sends these details over the encrypted link, and sends the next packet
encrypted with the new parameters. This is done so that if one key becomes
compromised, only a segment of the communication is compromised.

Authentication is the weakest link: a peer can give away its copy of the keys.
SecureTorrent provides auditability by logging when a peer logs on, and log-

ging event messages from users. Event messages (started, stalled, finished,
and disconnecting) let the tracker know the current status of the peer. These
messages can suggest possible intrusions: e.g., if a single user logs on from
multiple IP addresses, and sends lots of started and finished messages, it
would be probable that the account has been compromised. It would also be
possible in principle to detect a peer who has not been given the keys by a
tracker.

3.2 SecureTorrent Progress

SecureTorrent is a working beta. The encrypted socket code could more efficient,
but it is testable, permitting performance evaluation against BitTorrent. It has
been verified that SecureTorrent exhibits the same behaviour as BitTorrent in
a range of scenarios, including those reported here. If, despite minor implemen-
tation inefficiencies, SecureTorrent performs comparably to BitTorrent, with no
more difference than reasonable experimental variation, the performance would
be acceptable. SecureTorrent could be deployed after additional testing covering
a wider variety of conditions (load, different platforms, etc.).
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(a) BitTorrent: Case 1 Start of Swarm
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(b) SecureTorrent: Case 1 Start of Swarm

Fig. 1. BitTorrent vs. SecureTorrent Behaviour

4 SecureTorrent Performance

The overhead of encrypting all traffic should make SecureTorrent slower than
BitTorrent in a CPU-limited situation, which may happen on a fast, lightly
loaded LAN – not the scenario for which file swarming was designed.

To evaluate performance, Internet connections were simulated via bandwidth
shaping on a single ethernet. In a more realistic scenario with longer latencies
for transactions, additional overheards of SecureTorrent should be less signifi-
cant. The experiment was run on Pentium 4 systems, five running Linux Fedora
Core 2 (SecureTorrent clients), and one Windows XP (tracker). For bandwidth
shaping, the Linux machines used trickle4. Incoming bandwidth was limited to
800 kb/s, outgoing to 160kb/s, to simulate a typical home internet connection.
Three experimental scenarios simulated different stages of the swarm.

The remainder of this section presents results from each scenario, followed by
an overall summary.

The first experimental case simulated the start of the swarm: one peer (the
seed) had a complete copy of the content. The other four all initially had to
receive pieces from the seed. Only one machine was incurring all the encryp-
tion overhead, but the lack of distribution of network overheads should be a
bigger bottleneck; a best-case scenario for SecureTorrent. Figure 1 shows av-
erage transfer and piece acquisition rates across the swarm for BitTorrent and
SecureTorrent. Both reach a stable state quickly, with a constant rate of piece
acquisition.

The next two cases simulate operations after the swarm has started. The first
case has two peers as seeds, and the second has three, representing respectively
a middle and a late phase of the swarm. There should be a faster acquisition rate
in these two cases, as there is more aggregate bandwidth available for uploading
pieces. As the number of peers grows, we expect the effect of encryption to be
more significant: the rate of piece acquisition will depend less on network speed.
4 http://monkey.org/~marius/pages/?page=trickle

http://monkey.org/~marius/pages/?page=trickle
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Fig. 2. SecureTorrent vs BitTorrent Concluded

Figure 2 compares SecureTorrent and BitTorrent with two and three seeds.
The acquisition rate for BitTorrent is slightly higher in all cases, most likely
because of inefficiencies in the encrypted sockets library. The biggest difference
in any piece acquisition time is 15%, the largest seen in any of our measurements.
The two and three seed cases are not significantly different.

In summary: when the most effective bandwidth distribution is taking place,
the difference between BitTorrent and SecureTorrent is largest, but the difference
in piece acquisition rate was never above 15% in measured examples. BitTorrent
and SecureTorrent exhibit the same trends, with both going into a steady state
as all of the peers start to exchange pieces.

5 Conclusions

This paper has described an evaluation of a preliminary framework for secure
file swarming. The emphasis has been on comparing performance with a stan-
dard implementation of file swarming. As expected, the performance impact of
encryption is most significant when the network is not a bottleneck.

In a real-world scenario with other traffic on the Internet and long-haul con-
nections, the worst-case scenario is improbable: network latency would be more
significant than on our testbed network. Further, as processor speeds improve,
overheads of encryption reduce. So we expect larger topologies on a real network
with relatively high latencies to perform at least as well as our test bed.

In future work, it would be useful to extend the model to include more aspects
of security. Areas to consider include authentication and key distribution. It
would also be useful to investigate a wider range of traffic conditions.

We have demonstrated feasibility of adding encryption to file swarming. The
approach is relatively simple, and is at least as good a level of protection against
eavesdropping as downloading from a web site. Giving an unauthorised third
party the keys is possible, but so is giving away log in details; auditability of
SecureTorrent creates potential to trap such unauthorized use. Data encryption
means that intercepting packets will not make content immediately accessible.
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Abstract. Emerging stream processors for intensive computing use local register 
file to support ALUs array and use VLIW to explore instruction level parallelism. 
The current VLIW compilers for local register file such as ISCD work well on 
moderate media application without considering register allocation pressure. 
However, more complicated applications and optimizations that increase the size 
of the working set such as software pipelining make consideration of register 
pressure during the scheduling process. Based on ISCD complier, this paper 
presents two new techniques: spilling schedule and basic block repartition that 
compose a new schedule algorithm to alleviate register pressure. Experimental 
results show that it can deal with heavy workload application very well. The 
algorithm can also be applied to other microprocessors with the similar register 
architecture.  

Keywords: stream processor, VLIW, register allocation, local register file, 
spilling. 

1   Introduction 

Along with the requirement to computation performance increasing in entertainment, 
national defense, commerce, computation intensive application is becoming the main 
workload of microprocessor. Computation intensive application demands high 
performance processor (10~100Gflops/s). As a result some emerging programmable 
processors for intensive computation, such as Imagine[1], Merrimac[2], MASA[3], 
are noticeable. They are all called stream processor that achieve high performance by 
using a large amount of ALUs, the requirement for the register file’s size and 
bandwidth is very high. Since conventional central register file, cannot satisfy the 
requirement [4], stream processors all use distributed register file with shared bus 
connected.  

In the mid-1990’s, Scott Rixner and Peter Mattson first introduced the concept of 
distributed register file in stream architecture [4] which is called local register file 
(LRF), and developed compiler ISCD for it. Till now, ISCD has been improved 
continually. ISCD deals with VLIW schedule for distributed register file, which is 
employed in Imagine stream media processor and Merrimac. However, since the ISCD 
compiler does not consider registers during the scheduling process, it is possible for 
more registers to be required than are available in a register file. Register pressure is not 
as important for a media processor because the working set of most media processing 
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functions is relatively small and distributed register file architecture supports a large 
number of registers. As implemented, the ISCD compiler does not incorporate any 
mechanism to alleviate register pressure. However, more complicated application (e.g. 
science computing) and optimizations that increase the size of the working set such as 
software pipelining make consideration of register pressure during the scheduling 
process. If we use ISCD to compile these heavy workload programs, the ISCD will get a 
register allocation spilling failed and terminate. Peter Mattson the designer of ISCD 
agrees that this problem will limit the distributed register file architecture to extend to 
more application domains [1].This paper presents two new techniques as follows to 
alleviate register pressure. 

2   VLIW Compiler for Distributed Register File  

Since distributed register file processor owns a number of ALUs, VLIW is often used 
to exploit instruction level parallelism (ILP). Functional units array usually is divided 
into multiple clusters, while each cluster consists of several functional units including 
ALUs and other functional units. In stream processor, one VLIW is issued at every 
cycle, while multiple VLIWs can be pipelined.  

Fig. 1. VLIW format and functional units of Imagine stream processor 

Communication scheduling and basic block partition [1], which has been never 
used in compilation for conventional central register file, are employed in the step, 
especially for distributed register file. Communication scheduling is responsible for 
data transfer between local register files. In the register allocation of scalar processor 
with single central register file, if any nodes are marked as actual spills, we generate 
spill code store/load to temporarily pop the variable to memory. However, in stream 
architecture the random memory accessing is limited, while only the stream memory 
accessing is permitted. It’s impossible for complier to construct a stream for the 
variable that spills in a LRF, because the number of streams is fixed before schedule. 
Furthermore, since the other LRFs may have idle registers, it’s wasteful of popping 
this variable to memory. 
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The original ISCD schedule strategy allocates the register at the last step and does 
not consider it before. In fact, the failure is not caused by the register allocation 
algorithm itself, because after instruction schedule and communication schedule, 
every variable is in a fixed LRF at a certain cycle. It is the main reason of register 
allocation failure that the register allocation algorithm at the last step can not allocate 
registers among LRFs if some LRFs spill. 

An algorithm predicting the LRFs usage when choosing LRF during instruction 
and communication schedule could avoid the LRF spilling. But the scheduling 
process for a VLIW architecture is already NP-complete and shared interconnect 
introduces additional, non-orthogonal resources to the allocation problem so an exact 
approach is difficult [1]. We try other two naïve method: spilling schedule which 
deals with register pressure after the schedule and basic block repartition which deals 
with register pressure before the schedule. 

3   Spilling Schedule 

The ISCD compiler allocates registers for each register file separately using 
conventional techniques. Once the ISCD compiler has constructed the webs for a given 
register file, it assigns webs to registers using a standard interference graph and graph 
coloring [5]. The flow of a traditional graph coloring algorithm is shown in figure 2. 
Because of low register pressure and strict memory access limitation, ISCD cut off the 
spill procedure of the algorithm (shown as dashed in figure 2). So when it failed to 
finding a k-coloring of interference graph, the compiling will stop immediately. 

renumber build coalesce spill costs simplify select

Spill code

 

Fig. 2. The flow of a traditional register allocation algorithm 

 

Fig. 3. The flow of the improved register allocation algorithm 

This paper improves the traditional register allocation algorithm for distributed 
register file, by introducing a new approach called spilling schedule, which 
synthesized techniques of communication schedule and traditional spilling process.  
In the improved algorithm shown in figure 3, the nodes marked as actual spills are 
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popped to other LRFs instead of memory. Basic principles of spilling schedule is: 
adding copy operations to allow a value to be stored in another register file until just 
before it is used, and moving operations from functional units with high register 
pressure to that with relatively low register pressure. Spilling schedule shorten the live 
ranges of some nodes in interference graph that will alleviate register allocation 
pressure of the spilled LRF. 

In spilling schedule, the resources used by copy operations should not conflict with 
that used by previous VLIW and communication schedule. These resources include 
buses, function units and registers. As referred before, VLIW communication 
schedule are already NP-complete. Any conflict may result in all schedules being 
invalid. The same is true for the register allocation. Thus spilling schedule construct a 
residual networks, which composed by all the idle data paths (bus, units) and 
registers. It’s easy to construct the residual networks by marking used resources as 
“busy” at each cycle based on the result of previous schedules. Then the copy 
operation can be scheduled directly on residual networks by original communication 
scheduling of ISCD. The residual network must be updated after spilling schedule for 
the next spilling process. 

Spilling schedule need to pre-allocate all the LRFs before schedule copy 
operations. Set all the LRFs’s size to be infinite before pre-allocate, so the 
pre-allocate will not failed by spilling. Then, allocate LRFs on previous schedule 
result to get exact usages of each register file. The popped variable will be stored in 
the LRF with lowest usage to avoid another spilling. Follows describes the procedure 
of spilling schedule:Spilling schedule will not increase the schedule length of 
program, because the Copy operation is always inserted before the consumer 
operation of the spilling node. It’s a most efficient approach to solve the register 
allocation failure. However, although distributed register file architecture supports a 
large number of registers, it is much smaller than the working set in memory. Spilling 
schedule can’t ensure that all heavy workload programs’ register allocation succeed, 
thus we introduce another approach as follows. 

4   Basic Block Repartition  

We present a new basic block partition algorithm. The main idea is that, before 
instruction scheduling, register workload are considered according the last register 
allocation result.. Compiler with old algorithm reports failure when register allocation 
fails, while compiler with new algorithm returns to the first step to repartition basic 
block according to the last scheduling result and schedule again until allocation 
succeeds. Continually adding new basic blocks which even includes one operation, 
can ensure successful scheduling. So times of backtracking are at most N (the number 
of operations). Result in section 5 shows that the average backtracking time is 2 when 
scheduling succeeds. 

To describe the basic block repartition procedure, we must first explore the notion 
of a cut of a DAG, which is similar to the definition of “cut” used in Ford-Fulkerson 
method for solving the maximum-flow problem[6], except that here we enhances 
constraint on cut. Let G=<V, E, > be a directed acyclic graph, in which V is the set of 
vertices and E is the set of edges. We distinguish two kinds of vertices in a DAG: a 
source vertices set S and a sink vertices set T. A cut (V1, V-V1) of a directed acyclic 
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graph G is a partition of V. We says that an edge crosses the cut (V1, V-V1) if one of 
its endpoints is in V1 and the other is in V-V1. All the edges crossing the cut have to 
be the same direction (from S to T or from T to S, this constraint is required to ensure 
repartition against bringing nested basic blocks) .Let Eg be the set of edges crossing a 
cut. A minimum cut of a DAG is a cut whose |Eg| is minimum over all cuts of the 
DAG, and a maximum cut otherwise. And if |V1|=|~V1| we call it an equal cut, else w 
call it an unequal cut. Equal cut may both be a minimum cut or a maximum cut, and 
similarly for an unequal cut as well. 

1: z = 3.14
BLOCK 0

2: in0 >> x 3: in1 >> y

8: d = z + x

6: c = z * z

4: a = y * y

5: b = a + 1.0

7: v = b * c

9: u = d * d

10: out0 << u

11: out1 << v
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               Fig. 4. Equal cut by BFS algorithm               Fig. 5. Equal cut by DFS algorithm 

Different graph searching algorithms may used to cut DAG, which will also 
result in the different characteristics of cut. Figure 4 and figure 5 show two cut 
algorithms both for equal cut respectively using breadth-first search (BFS) or 
depth-first search (DFS) algorithm. Cut results shown in figure 4 and figure 5 
demonstrate that DFS cut algorithm may badly break the parallelism among 
weak-connected components, as it preferentially separates independent operations in 
two new blocks but keeps the length of crucial paths, while BFS cut may do rather 
lightly, as it preferentially separates dependent operations in two new blocks but 
shortens the length of crucial paths. So the schedule lengths of new blocks that cut 
by BFS are better than DFS, at the cost of more interferential node in coloring graph. 

Basic block partition based on cut considers global operation distribution of 
program. The time to cut a DAG by BFS or DFS algorithm is O(|E|) [6]. When 
register allocation fails, basic block repartition is started. The backtracking ensures 
the new algorithm can completely avoid register allocation failure. The performance 
and the probability of successful scheduling present a wide range of algorithmic 
trade-offs, which is determined by different cut algorithms. Figure 6 shows VLIW 
schedules for ElSecond (An IAPCM [9] benchmark) using two algorithms 
respectively. Register allocation fails using the old strategy. Purple block denotes 
operation, whose register allocation fails. The compiler with new strategy schedules 
successfully. A suitable algorithm results in minimal times of backtracking and lowest 
lost of compiling efficiency. It can be seen in section 5. 
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Fig. 6. Instruction schedule’s visualizing views for ElSecond (partial) 

5   Result and Analysis  

We developed a new compiler ISCD_R that embeds the new register allocation 
techniques referred to before. ISCD_R implemented the spilling schedule and 
multiple repartition approaches that can be specified by command line options listed 
in table 1. With –auto, compiler repartitions basic block based on a heuristic approach 
that selects correct cut approach according to the last register allocation result. 

ISCD_R is evaluated using ten benchmarks with heavy workload, including media 
processing, graphics processing benchmarks [3] and several IAPCM (Beijing Institute 
of Application Physics and Computing Mathematics) Benchmarks[7]. All benchmarks 
were implemented on Imagine stream processors (as shown in figure 1) in KernelC [1]  

 
Table 1. new command options of ISCD_R  

BFS DFS Minimum 
cut 

Maximum 
cut 

Equal  
cut 

Unequal 
cut 

Heuristic 

-b -d -mi -ma -e -ue x y -auto 
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Fig. 7. Average successful ratios of various cut algorithms at different backtracking 
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Fig. 8. Efficiency of various cut algorithms at different backtrackings 

because it is the only language supported by ISCD. However, the VLIW algorithm 
works on basic operation. In other words, the schedule result is independent of 
high-level language. 

Experimental result shows that the main reason, for ISCD scheduling program with 
heavy workload fails, is register allocation failure. ISCD_R, which is presented in this 
paper, introduces spilling schedule and basic block repartitioning to avoid register 
allocating failure. As spilling schedule has no effect on compiling efficiency, it tries 
to increase the LRF usage and achieve load balance between LRFs. However, spilling 
schedule cannot ensure that register allocation would succeed. On the contrary, basic 
block repartition can do it at the cost of compiling efficiency. Result of benchmarks 
shows that no matter what basic block repartition approach is, scheduling using 
ISCD_R succeeds by backtracking at most 5 times (average 2 times).  
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Abstract. New trends in the space industry, e.g. the development of wireless 
networked constellations using miniaturized satellites, have generated a press-
ing need for condition-based maintenance, self-repair and upgrade capabilities 
on-board satellites. This can be achieved by using reconfigurable hardware 
technologies, such as high-density Field Programmable Gate Arrays, imple-
menting an entire on-board computer on a single chip. In this paper we present 
a system-on-chip architecture for on-board partial run-time reconfiguration to 
enable system-level functional changes on-board satellites ensuring correct op-
eration, longer life and higher quality of service.  

1   Introduction 

Future space missions are envisioned as highly autonomous, intelligent and distrib-
uted multi-spacecraft missions consisting of miniaturized satellite nodes. Constella-
tions of very small satellites can be used to implement virtual satellite missions, 
which are a cost-effective and flexible alternative approach to building large space-
craft. The Surrey Space Centre has a long-term research programme, codenamed 
ChipSat, which aims to apply advanced micro- and nano- technologies to small satel-
lites [1]. An on-board computer is implemented in the form of a system-on-chip 
(SoC) device targeting the small satellite platform. The SoC design is an attempt to 
build a generic on-board computer (OBC), which takes advantage of high-density 
SRAM-based Field Programmable Gate Arrays (FPGAs). FPGAs can easily accom-
modate on a single chip a complex on-board computer, resulting in an efficient hard-
ware architecture in terms of power, area and speed.  

A disadvantage of SRAM-based devices is that they are vulnerable to the effects of 
high levels of radiation in the space environment [2]. Heavy ions from cosmic rays 
can easily deposit enough charge in or near an SRAM cell to cause a single-bit error, 
or single event upset (SEU). Because SRAM FPGAs store their logic configuration in 
SRAM switches, they are susceptible to configuration upsets, meaning that the rout-
ing and functionality of the circuit can be corrupted. In this paper we present a SoC 
architecture that utilizes partial run-time reconfiguration, which can be used to miti-
gate radiation effects preventing system failures in on-board electronics.  

The paper is organized as follows. Section 2 reviews previous related work.  
Section 3 introduces the SoC architecture and software design for partial run-time 
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reconfiguration. Section 4 gives a simple case study to verify the feasibility of the 
design. Section 5 concludes the paper. 

2   Related Work 

Radiation effects in SRAM FPGAs have been a topic of active investigation over the 
last couple of years. M. Ohlsson [3] studied the sensitivities of SRAM FPGAs to 
atmospheric high-energy neutrons. FPGAs were irradiated by 0-11, 14 and 100 MeV 
neutrons and showed a very low SEU susceptibility. P. Graham [4] classified the 
radiation effects in SRAM FPGAs and showed that SEUs can result in five main 
categories of design changes: mux select lines, programmable interconnect point 
states, buffer enables, LUT values, and control bit values. 

M. Settler [5] introduces mitigation strategies for SRAM FPGAs. Scrubbing is the 
periodic readback of the FPGA’s configuration memory followed by comparing of the 
memory content to a known good copy and writing back any corrections required. By 
periodically scrubbing an FPGA, configuration errors present in the FPGA can be 
corrected. Triple module redundancy (TMR) is an effective technique creating fault 
tolerant logic circuits. In TMR, the design logic is tripled and a majority voter is 
added at the output. Recently, Xilinx [6] have provided a design tool, XTMR that 
automatically implements TMR in Xilinx FPGA designs, protecting from SEUs the 
voting circuits. However, designs with TMR are at least three times as large as non-
TMR designs, and suffer from speed degradation as well. Power consumption is also 
tripled along with the logic. 

Some types of SRAM FPGAs are capable of partial run-time reconfiguration, 
which allows an FPGA to change part of its functions while the system is running. 
This capability can also be used to mitigate radiation effects by repairing the areas 
affected by soft failures. Xilinx produced two flows for partial reconfiguration: mod-
ule based and difference based [7]. Module based partial reconfiguration is accom-
plished by dividing a design into modules. The design tool can repair, upgrade or 
change a module while the remaining system is running. Difference based partial 
reconfiguration is accomplished by making a small change to a design, and then gen-
erating a bitstream based only on the difference between the two designs. For the 
module based design flow, partial bitstreams can be created using the Xilinx PlanA-
head tool [8], which can then be committed to FPGAs using the SelectMAP interface 
or the on-chip Internal Configuration Access Port (ICAP) module. For the difference 
based design flow, the JBits development environment [9] is widely used to create 
partial bitstreams, which can be committed to FPGAs via the Xilinx hardware inter-
face (XHWIF). The OPB interface to the ICAP module permits connection of this 
peripheral to the MicroBlaze soft core processor [10]. J. Williams [11] developed an 
ICAP device driver for the uCLinux kernel, running on the MicroBlaze processor.  

3   Reconfigurable SoC Design 

The SoC implements an on-board computer and is targeted at the Xilinx Virtex II 
FPGAs. The central processing unit of the SoC is the LEON microprocessor, which is 
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a SPARC V8 soft intellectual property (IP) core written in VHDL [12]. The SPARC 
architecture is a RISC architecture with typical features like large number of registers 
and few and simple instruction formats. However, the LEON3 IP core is more than a 
SPARC compatible CPU. It is also equipped with various peripherals that intercon-
nect through two types of the AMBA bus (AHB and APB), e.g. Ethernet, SpaceWire, 
PCI, UART etc. The SoC is an AMBA centric design and subsystems of the OBC can 
be added to the LEON3 processor providing that they are AMBA interfaced. Different 
subsystems will be considered for specific satellite missions, for example a high-level 
data link controller (HDLC) interface for signal downlink and uplink, a compression 
core.an encryption hardware accelerator, etc..  

So far we have introduced the soft IP cores of the SoC architecture, however, the 
Xilinx FPGAs also provide on-chip hard cores, e.g. Block SelectRAM (BRAM), 
multipliers. Starting from the Virtex II Xilinx have integrated an internal configura-
tion access port into the programmable fabric, which enables a user to write software 
programs that modify the circuit structure and functionality at run-time for an embed-
ded processor. The ICAP is actually a subset of the SelectMAP interface [13], which 
is used to configure Xilinx FPGAs. Fig. 1 shows the diagram of the SoC architecture. 

 

Fig. 1. The SoC architecture of the OBC 

The ICAP and BRAM are connected to the LEON3 processor via the AMBA bus. 
Once the FPGA is initially configured, the ICAP is used as an interface to reconfigure 
the FPGA. The control logic for reading and writing data to the ICAP is implemented 
in the LEON3 processor as a software driver. The BRAM is used as a configuration 
cache. Because Virtex II FPGAs support reconfiguration only by frames, the BRAM 
must be big enough to hold one frame each time. The bitstream of each SoC compo-
nent can be stored on board in a Flash memory. The bitstream of a new or upgraded 
SoC component can be uploaded through the satellite uplink from the ground station. 

3.1   Software Design 

An ICAP device driver is available in the Xilinx EDK toolkit. The driver enables an 
embedded microprocessor to read and write the FPGA configuration memory through 
the ICAP at run-time. On-chip reconfiguration is accomplished by using a  
 



 A Self-reconfigurable System-on-Chip Architecture 555 

read-modify-write mechanism [14]. To modify the on-chip subsystems, the ICAP first 
determines the configuration frames that need to be modified, and then reads each 
frame into the BRAM once at a time. The contents of each frame are modified before 
being written back to the ICAP. The current ICAP driver only supports modifying of 
a single frame at a time. 

In the embedded microprocessors the driver is managed by a real-time operating 
system. For example Xilinx released a driver running in uClinux, which is ported to 
the MicroBlaze processor. There is an embedded Linux port to the LEON3 processor, 
which is called SnapGear that can be used for the OBC. The SnapGear Linux is a full 
source package, comprising a kernel, libraries and application code for rapid devel-
opment of embedded Linux systems. The LEON port of SnapGear supports both 
MMU and non-MMU LEON configurations. Actually the non-MMU kernel is a 
uClinux port similar to the Microblaze uClinux port. In this case the original ICAP 
driver can be used in the LEON3 processor without significant modifications. 

The device driver implements the read( ), write( ) and ioctl( ) system calls: read( ) 
reads a frame from the ICAP into a user memory buffer (BRAM); write( ) writes a 
frame from a user memory buffer to the ICAP; and ioctl( ) controls operations, like 
querying the status or changing operation modes. Upon system boot, the driver is 
automatically installed in the SnapGear, and the ICAP is registered in the Linux de-
vice subsystem, appearing as /dev/icap. This feature allows us to access the ICAP 
module using standard Linux system calls, such as open, read and write. 

4   Technology Demonstration  

In order to verify our design we demonstrate a simple example based on the LEON3 
processor and a direct memory access controller (DMAC). The satellite OBC has 
several high data rate interface modules. For instance, the SpaceWire interface with a 
data rate up to 400 Mbit/s is used to connect to other on-board devices. The high-level 
data link controller (HDLC) interface with up to 10 Mbit/s is employed for uplink and 
downlink data transmission to the ground station. The DMAC handles the data trans-
fer between the main memory and the peripherals bypassing the CPU. At the Surrey 
Space Centre a soft DMAC IP core was developed for the AMBA interface [15].  
Fig. 2 shows the block diagram of the DMAC and its interconnection with the  
peripherals. 

The CPU allocates a memory block and assigns it to the DMAC. Furthermore, the 
CPU writes the transfer mode and the peripheral device address to the DMAC regis-
ters. After configuring the DMAC there are two possibilities to trigger the data trans-
fer process. In the first option, the CPU sends a start command to the DMAC. In the 
second option, the transfer will be triggered via hardware handshake between the 
DMAC and the peripheral device. In this case the device must be DMA-capable by 
providing appropriate hardware handshake signals. The minimal hardware handshake 
between the DMAC and the peripheral device consists of a request signal. In addition, 
an acknowledge signal is normally used additionally. If a peripheral device receives 
data from “outside” the peripheral device asserts the request signal DREQ. The 
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Fig. 2. Interconnection between the DMAC and the peripherals [15] 

DMAC transfers the received data from the peripheral device controller to the mem-
ory and asserts the acknowledge signal DACK. When the transfer is completed a state 
bit will be set in the DMAC or the DMAC causes an interrupt.  

There are two kinds of data transfer. In the single-access transfer the DMAC acti-
vates the control and address bus signals, the peripheral device puts its data on the 
data bus during and the memory reads the data, or the memory puts its data on the 
data bus and the peripheral device reads it. The second technique is called dual-access 
transfer. Firstly, the DMAC reads the data from a peripheral device or memory and 
buffers it internally. Secondly, the DMAC writes the data to memory or to a periph-
eral device. 

4.1   Implementation Results 

We first implement a partial SoC, which consists of the LEON3 processor, the ICAP, 
and the BRAM, into the Virtex II FPGA. Then we add the DMA controller into the 
partial SoC while it is running. Synplify Pro is used to produce the netlists of the 
partial SoC, the DMA controller, and the complete SoC that consists of both the par-
tial SoC and the DMA controller. The resultant netlists are floorplanned using the 
PlanAhead tool. The reason to floorplan the complete SoC is that it provides a refer-
ence for the placing of the individual components. Hence it ensures that the dynamic 
circuit (i.e. the DMAC) is correctly interfaced to the static circuit (i.e. the partial 
SoC). Fig. 3 illustrates the design partitioning between the resultant static and dy-
namic circuits. Bus macros are inserted to interface signals between the static and 
dynamic circuits. 

We download the partial SoC bitstream to the FPGA and store the DMAC bit-
stream dma.bit in the memory. At the same time the image of the SnapGear Linux is 
downloaded to the bootloader. After system boot the ICAP device is automatically 
registered as /dev/icap. We can manually reconfigure the SoC through the debugging 
window. The reconfiguration can be achieved simply by executing the following 
command: 

$ cat dma.bit > /dev/icap 

Now the DMAC is added to the SoC and ready to transfer data between the periph-
erals and the memory. In order to check whether or not the DMAC works we connect 
the SoC to a PC via the RS232 interface. We create a data block with arbitrary values 
and send the data block size and the data block to the RS232 interface.  
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Fig. 3. Block-diagram of the design partitioning for partial reconfiguration  

The LEON3 processor receives the block size from the serial interface and config-
ures the DMAC according to this size. After initiation of the DMA transfer the UART 
sends a DMA request with each received byte. So the DMAC controller reads each 
received byte from the UART and transfers it to the main memory. Furthermore the 
processor calculates a check sum for all received values. The results are printed to the 
debugging window through the serial interface as shown in Fig. 4. 

 
 
 
 
 
 
 
 
 
 

 

Fig. 4. Testing of the DMAC by transferring 1000 bytes from the UART to the memory 

5   Conclusions 

In this paper we present a system-on-chip architecture for on-board partial run-time 
reconfiguration to enable system-level functional changes on-board satellites ensuring 
correct operation, longer life and higher quality of service. Our work is focused on the 
hardware architecture, whereby we port an ICAP driver running in uCLinux to the 
LEON processor IP core. The reason for using the LEON processor core is that it is 
becoming more and more popular in space computing as it realizes a standard archi-
tecture, has a fault tolerant version and has already been flown successfully as part of 
the monitoring camera payload of the ESA Venus Express mission.  

Traditional solutions to SEU mitigation, such as TMR, are very hard to realize in 
very small satellites, which are extremely restricted in terms of power and mass. We 
believe that the self-reconfigurable computing architecture proposed in this paper 
offers an alternative solution to the SEU problem for resource-constrained embedded 
applications in space and other non-benign environments.  

$ ./dmatest 
I am waiting for data!  
Wait for end of transfer! 
The DMA controller transferred 1000 bytes from    
the UART to the memory. 
I am calculating check sum. 
The check sum is 248. 
I am waiting for data. 
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Abstract. VIM integrates vector units into memory, which exploits the low-
latency and high-bandwidth memory access. On VIM-based architecture, the 
low temporal locality thread running on VIM processor is called Light-Weight 
Thread, while the low cache miss rate thread running on host processor is called 
Heavy-Weight Thread. The thread distinguishment can impact the system 
performance directly. Compared with the distinguishment at programming 
model level, compile-time thread distinguishment can release programmer from 
changing existing program. After overviewing the VIM micro-architecture and 
the system architecture, this paper presents an analytical model of thread 
distinguishment. Based on this model, we present a compile-time algorithm and 
evaluate it with two thread instances on the evaluation environment we develop. 
We find that parameters affecting the thread distinguishment are the cache miss 
rate, the vectorizable operation rate and the arithmetic-to-memory ratio. We 
believe that this algorithm is constructive to improve the performance of the 
VIM-based node computer. 

1   Introduction 

PIM (Processor-In-Memory) [1] architecture aims at the problem of memory wall [2]. It 
integrates a processor and a sizable memory on ONE chip which can potentially 
deliver high performance by enabling low-latency and high-bandwidth communi-
cation between processor and memory [3]. Now, the Embedded DRAM produced by 
IBM Inc. can integrate at least a 32Mb memory, whose clock frequency reaches at 
least 500MHZ, which is used in the SOC chip of QCDOC [4]. 

Vector technology can always achieve high sustained performance, such as Earth 
Simulator [5], while it needs the architecture support of low-latency and high-
bandwidth memory access. Thus, one of the good choices is to combine vector 
technology with PIM technology, such as VIM [6] and VIRAM [7].  

In general, the low temporal locality thread, which is relatively performed well in 
PIM [8], is called LWT (Light-Weight Thread) and the low cache miss rate thread is 
called HWT (Heavy-Weight Thread). There are two methods to distinguish these two 
kinds of threads. 

One method is to modify the existing programming model or develop a new one. 
Peter M. Kogge and his partners have classified the programming models suitable for 
PIM architecture into the some types [9]. Another programming model used by HTMT 
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project [10] has also modified its syntax. The Cascade project [11] of Cay Inc develops a 
new programming model, Chapel [12], to support its hybrid architecture which also 
adopts PIM technology. The flaw of this method is that programmers have to modify 
or rewrite the existing programs to fit the new programming models, which would be 
a tremendous work.  

This paper gives a compile-time method to distinguish the LWT and HWT  to 
avoid the flaw of the method above. 

The rest of the paper is organized as follows: Section 2 overviews the VIM micro-
architecture and system architecture; Section 3 presents our analytical model to 
distinguish the LWT and HWT; Section 4 describes the evaluation environment and 
evaluates the algorithm by two simple threads; and Section 6 discusses related work. 

2   Architecture of VIM and Entire System 

VIM prototype structure consists of five main units: a 32-bit RISC core, a 32-bit 
vector unit with 4 Lanes (2 Lanes in earlier prototype structure [6]), a crossbar, a 
memory control unit and an EDRAM, and the entire system architecture, to some 
extent, is like Cray Cascade [11], as shown in the Fig. 1. 

 

Fig. 1. VIM micro-architecture structure and a VIM-based node computer’s structure 

Host processor and VIM processors are distinguished by their operational 
parameter values as shown in Table 1. And the related parameters of a given thread 
are shown in Table 2. 

Table 1.  Parametric assumptions of hardware 

Parameter Description Experimental Value 
Th.r Arithmetic instruction execution time of host processor 1ns 
Th.m.c Cache access time of host processor  2ns 
Th.m.m Memory access time of host processor 90ns 
Th.m Memory access average time of host processor \ 
Tv.r Arithmetic instruction execution time of VIM processor 5ns 
Tv.m Memory access time of VIM processor 30ns 
Nl Number of vector Lane in VIM processor 4 
m Number of VIM processor \ 
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Table 2. Parameters of a considered thread 

Parameter Description 
Nr Number of the arithmetic instruction 
Nm Number of the memory instruction 
Rrp Vectorizable arithmetic operation rate 
Rmp Vectorizable memory operation rate  
Rr/m The arithmetic-to-memory instruction ratio Nr/ Nm 
Miss cache miss rate on host processor 

3   Analytical Model of Thread Distinguishment 

Whether a thread should be executed on VIM processor or host processor depends on 
its execution time. We let TVIM denote the execution time of a thread on VIM 
processor and Thost denote the execution time of a thread on host processor. Here are 
the two analytical equations: 

mTNRNTRNmTNRNTRNT rvlrprrvrprmvlmpmmvmpmVIM //)1(//)1( .... ××+×−×+××+×−×=  and 

rhrmhmhost TNTNT .. ×+×= , where cmhmmhmh TMissTT ..... +×= . 

Therefore, the performance speedup of VIM processor relative to host processor 
can be computed as follow:  

mTNRRTRRmTNRTR
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When Δ > 0, Speedup > 1, processing the thread on VIM processor is faster than 
on host processor. Otherwise, processing the thread on host processor is faster than on 
VIM processor. The determinant parameters are Rr/m, Rrp, Rmp and Miss. 

4   Evaluation 

In this section, we develop an evaluation environment, present a compile-time 
algorithm based on the thread distinguishment model above and evaluate it with two 
thread instances on the evaluation environment.  
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4.1   Evaluation Environment 

Two threads to be tested in our experiment are matrix plus thread and matrix 
multiplying thread, all matrixes used are n×n 4-byte integer. 

VIMNCSim (VIM-based Node Computer’s Simulator) consists of a host processor 
simulator and a VIM simulator. Host processor simulator implements some simple 
arithmetic and memory access instructions and has a 1-level cache whose parameters 
are shown in Table 3. VIM simulator embeds a 32Mb EDRAM and implements some 
simple vector instructions such as vload, vstore, vadd, vsub, vmult, vdiv and etc.  

Table 3. Cache parameters and their experimental values 

Parameter Experimental Value 
Line width 64B 
Association 2-way 
Cache size 128KB 

Replace strategy LRU 

VIMNCFC (VIM-based Node Computer’s Fortran Compiler) is a simple 
FORTRAN compiler for VIMNCSim which implements a thread distinguishment 
algorithm. In this algorithm, we suppose that the values of all the computer’s 
parameters are already presented during compile time. So what we should focus on 
are the thread’s parameters. 

Miss, the cache miss rate on host processor, can be statically estimated during 
compile time which can be found in reference [13]. Other thread’s parameters can be 
easily estimated. The thread distinguishment algorithm is presented in Table 4. 

Table 4. Thread distinguishment algorithm 

Input:  a thread in the form of nested loop 
Output:  whether the thread is a LWT or a HWT 

Step 1: estimate the value Miss of the thread statically. 
Step 2: count the loop depth Depth and count each loop’s iteration number N[Depth]. 
Step 3: set Nr = 0 and Nm = 0. 
Step 4: for each loop depth i (i is from 0 to Depth - 1) do the following steps: 

Step 4.1: count NNr, the arithmetic operation in loop i,  

Step 4.2: set ∏
=

×+=
i

j
rrr jNNNNN

0

][ . 

Step 4.3: count NNm, the memory operation in loop i,  

Step 4.4: set ∏
=

×+=
i

j
mmm jNNNNN

0

][ . 

Step 5: vecorize all loops. 
Step 6: set NVr = 0 and NVm = 0. 
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Table 4. (continued) 
 
Step 7: for each loop depth i (i is from 0 to Depth - 1) do the following steps: 

Step 7.1: count NNVr, the arithmetic non-vectoriztion operation of in loop i. 

Step 7.2: set ∏
=

×+=
i

j
rrr jNNNVNVNV

0

][ . 

Step 7.3: count NNVm, the memory non-vectoriztion operation in loop i. 

Step 7.4: set ∏
=

×+=
i

j
mmm jNNNVNVNV

0

][ . 

Step 8: set
r

r
rp N

NV
R −=1 ,

m

m
mp N

NV
R −=1 and

m

r
mr N

N
R =/ . 

Step 9: calculate Δ in Formulation (1). 
Step 10: if Δ > 0, this thread is a LWT, otherwise it is a HWT. 

 

4.2   Evaluation Results 

The two testing thread runs on VIMNCSim with both one VIM processor and more. 
For comparisons, they are compiled into both the executable codes on the VIM 
simulator and that on the host processor simulator with VIMNCFC.  

The simulation results are shown in Table 5~ Table 8.  

Table 5. results on single VIM processor computer MA = Matrix Addition, MM = Matrix 
Multiplication 

Execution time( 10-4s) Thread type Correct? 

n
MA MM MA on 

host
MM on 

host
MA on 
VIM

MM on 
VIM

MA MM MA MM 

10 -3.14193 -4.80465 0.06951 0.4834 0.1478 1.506 HWT HWT Yes Yes 
20 -2.32173 -3.83605 0.2751 3.647 0.4768 9.162 HWT HWT Yes Yes 
40 -2.26097 -3.66431 1.092 28.34 1.863 68.20 HWT HWT Yes Yes 
80 -2.2235 -3.57582 4.355 223.4 7.365 525.5 HWT HWT Yes Yes 

100 -2.21543 -3.55797 6.802 435.1 11.48 1019 HWT HWT Yes Yes 
200 -2.19872 -3.52212 27.18 3712 45.71 8024 HWT HWT Yes Yes 
400 -2.19008 -3.50413 108.7 31193 182.4 63696 HWT HWT Yes Yes 
800 -2.18569 -3.49513 434.5 249253 728.8 507585 HWT HWT Yes Yes  

The results above show that both the threads of matrix addition and matrix 
multiply should be HWTs for the major reason of low cache miss rate. 

The results above show that when VIM processors are many, both the threads of 
matrix addition and matrix multiply should be LWTs in most situations for the major 
reason of parallel execution on VIM processors. When VIM processors are few,  
the thread of matrix multiply should be HWT for the major reason of low cache miss 
rate. 
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Table 6. results on 2 VIM processor computer MA = Matrix Addition, MM = Matrix 
Multiplication 

Execution time( 10-4s) Thread type Correct? 

n
MA MM MA on 

host
MM on 

host
MA on 
VIM

MM on 
VIM

MA MM MA MM 

10 0.757328 -3.4843 0.06951 0.4834 0.1023 1.111 LWT HWT No Yes 
20 2.719063 -1.08297 0.2751 3.647 0.2948 6.002 LWT HWT No Yes 
40 3.767842 0.198515 1.092 28.34 0.9528 36.60 LWT LWT Yes No 
80 3.862001 0.448257 4.355 223.4 3.725 272.7 LWT LWT Yes No 

100 3.702921 0.334631 6.802 435.1 6.021 544.6 LWT LWT Yes No 
200 3.923035 0.59978 27.18 3712 22.96 4074 LWT LWT Yes No 
400 3.94414 0.65053 108.7 31193 91.42 32096 LWT LWT Yes No 
800 3.954835 0.675946 434.5 249253 364.8 254785 LWT LWT Yes No 

 

Table 7. results on 4 VIM processor computer MA = Matrix Addition, MM = Matrix 
Multiplication 

Execution time( 10-4s) Thread type Correct? 

n
MA MM MA on 

host
MM on 

host
MA on 
VIM

MM on 
VIM

MA MM MA MM 

10 13.08233 3.093910 0.06951 0.4834 0.05675 0.7163 LWT LWT Yes No 
20 13.5623 5.104828 0.2751 3.647 0.2038 4.422 LWT LWT Yes No 
40 15.82547 7.924167 1.092 28.34 0.5888 23.96 LWT LWT Yes Yes 
80 16.99173 9.373327 4.355 223.4 1.9048 146.3 LWT LWT Yes Yes 

100 16.46043 8.963283 6.802 435.1 3.291 307.6 LWT LWT Yes Yes 
200 16.9346 9.549174 27.18 3712 12.04 2178 LWT LWT Yes Yes 
400 17.17308 9.843558 108.7 31193 45.92 16296 LWT LWT Yes Yes 
800 17.1966 9.902650 434.5 249253 182.8 128385 LWT LWT Yes Yes 

 

Table 8. results on 8 VIM processor computer MA = Matrix Addition, MM = Matrix 
Multiplication 

Execution time( 10-4s) Thread type Correct? 

n
MA MM MA on 

host
MM on 

host
MA on 
VIM

MM on 
VIM

MA MM MA MM 

10 30.69114 10.12532 0.06951 0.4834  0.05675 0.7163 LWT LWT Yes No 
20 39.56474 21.34302 0.2751 3.647  0.1128 2.842 LWT LWT Yes Yes 
40 40.32332 23.72287 1.092 28.34  0.4068 17.64 LWT LWT Yes Yes 
80 42.73986 26.75578 4.355 223.4  1.1768 95.76 LWT LWT Yes Yes 

100 42.43585 26.64232 6.802 435.1  1.926 189.1 LWT LWT Yes Yes 
200 43.41855 27.87132 27.18 3712  6.581 1230 LWT LWT Yes Yes 
400 43.91271 28.48884 108.7 31193 24.08 8712 LWT LWT Yes Yes 
800 44.16050 28.79834 434.5 249253 91.84 65185 LWT LWT Yes Yes 
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Though most thread distinguishments are correct, our algorithm may distinguish 
the threads incorrectly in some situations, mainly because the statically estimated 
cache miss rates are inaccurate. In future work, we will look for more effective 
algorithm to statically estimate the cache miss rate.  

5   Summaries and Future Work 

The thread distinguishment of LWT and HWT can impact the system performance 
directly. Compared with the distinguishment at programming model level, compile-
time thread distinguishment can release programmer from changing existing program. 
This paper presents a compile-time algorithm to distinguish them. Through analysis 
and experiments, we find that the determinant parameters are the cache miss rate, the 
vectorizable operation rate and the arithmetic-to-memory ratio. 

The thread distinguishment algorithm may be inaccurate in an actual node 
computer, because it does not distinguish the execution time of different arithmetic 
instructions and the statically estimated cache miss rate is inaccurate too. In the 
future, we will aim to improve the thread distinguishment algorithm for the actual 
node computer. 
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Abstract. This paper introduces LEAP(Loop Engine on Array Proces-
sor), a novel coarse-grained reconfigurable architecture which accelerates
applications through Loop Self-Pipelining (LSP) technique. The LSP can
provide effective execution mode for application pipelining. By mapping
and distributing the expression statements of high level programming
languages onto processing elements array, the LEAP can step the loop
iteration automatically. The LEAP architecture has no centralized con-
trol, no centralized multi-port registers and no centralized data memory.
The LEAP has the ability to exploit loop-level, instruction-level, and
task-level parallelism, and it is suitable choice for stream-based applica-
tion domains, such as multimedia, DSP and graphics application.

1 Introduction

In recent years, coarse-grained reconfigurable architectures have become in-
creasingly important alternatives for accelerating applications. More and more
coarse-grained reconfigurable architectures have been proposed [1,2,3,4]. Coarse-
grained reconfigurable architectures become important due to their combination
of the advantages of both ASICs and general processors. Compared to fine-
grained reconfigurable architectures, coarse-grained reconfigurable architectures
can achieve significant speedup and power saving.

Most of coarse-grained reconfigurable architectures comprise of processing ele-
ments array and interconnection mesh, which are reconfigurable for accelerating
different applications. The processing elements may consist of ALUs that can
implement word-level function instead of bit-level operation in fine-grained re-
configurable architectures. Coarse-grained reconfigurable architectures are far
less flexible than fine-grained ones, but much more complex operations can be
implemented efficiently on them.

In this paper, we propose a coarse-grained reconfigurable architecture named
LEAP (Loop Engine on Array Processor), which is based on a simple technique
for loop pipelining and an execution mode called FIMD (Fixed Instruction flow
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Multiple Data flow mode)[5]. The LEAP architecture is a data-driven architec-
ture, which has 8*8 reconfigurable processing elements array and data mem-
ory that provides reconfiguration. This architecture aims to map the expression
statements of high level programming languages onto processing elements and
build a pipelining dataflow structure according to a static dataflow graph, and
accomplishes tasks automatically and efficiently for applications. The LEAP ar-
chitecture has two highlighted features: a technique provides loop self-pipelining
execution, and a reconfiguration mechanism to maintain applications consistency
while minimizing the impact on performance. To achieve loop self-pipelining,
balancing is performed through addition of more storage (i.e., FIFOs) in each
processing element.

2 Related Works

Many coarse-grained reconfigurable architectures have been proposed in recent
years. Both of Morphosys [1] and REMARC [4] are typical reconfigurable archi-
tectures which consist of a RISC processor and reconfigurable arrays. They all
need synchronization mechanism or global control unit to control the execution of
the reconfigurable arrays. ADRES [2] is a single architecture, in which a VLIW
processor is tightly coupled with a coarse-grained reconfigurable matrix. Re-
searchers of ADRES consider that the integration of the VLIW processor and the
coarse-grained reconfigurable matrix can achieve goals of improved performance,
a simplified programming model and communication cost reduction. The PACT
XPP architecture [3] is based on a hierarchical array and a packet-oriented com-
munication network. The PACT XPP architecture’s automatic packet-handling
mechanism and its sophisticated hierarchical configuration protocols differ the
PACT XPP from other coarse-grained architectures.

However, since lack of direct support for high level programming languages,
performance improvement of the architectures above heavily depends on the
dataflow software pipelining technique or other software pipelining approaches
[6]. More or less, the use of these techniques might lead to resource problems.
Our architecture may address this problem, and make compiler simpler.

3 Architecture Overview

The LEAP architecture is shown in Figure 1. It includes a processing elements
array (PEA), an interface controller, a data memory array and a reconfigurable
data communication network. The interface controller receives messages from
the host processor, and dispatches them to the other parts. In this section, we
present the main components of the LEAP architecture.

Processing elements array: Processing elements array is composed of two het-
erogeneous Processing elements (PEs): Computing Processing Element (cPE)
and Memory Processing Element (mPE). Both cPE and mPE have their own
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Fig. 1. The LEAP architecture: (a) simple diagram of the LEAP architecture; (b) data
communication network

configuration cache called instruction RAM for configuration information
caching, and configuration control is distributed over each PE. Before PEs run-
ning, configurations are loaded into the instruction registers. During running, the
instructions in instruction registers are not changed until being reconfigured. So
the interconnection of PEs creates a pipelined dataflow architecture, and data
streams continuously flow through the architecture without any centralized con-
trol. The instructions on each PE are fixed when data streams flow, following
the FIMD mode [6].

All of mPEs are specially designed to accomplish data loading and storing, and
they drive data to flow on processing elements array (see Figure 2a). The Loop
Step Engine (LSE) is connected directly with data memory, and generates the
addresses for memory accessing. The LSE should synchronize with the dataflow.
One mPE may fetch one word from data memory per clock cycle, and then it
sends the word to two different destinations due to its two output ports. The
data on the input port of an mPE, which is transferred from other PEs, can be
stored into data memory by the LSE.

The cPE (see Figure 2b) contains several instruction registers which provide
instructions for executing and an ALU that performs the actual computation.
The ALU is able to perform common fixed-point arithmetical and logical oper-
ations, as well as some special works such as sorting, calculating maximum and
sum-reduction. An operation of the ALU is performed as soon as all required
data are available according to data-driven mode, and the result is immedi-
ately sent into the PEA by the two output ports. The busy signals generated
in PEs control accurate data communication between PEs. When the input
FIFOs of one PE are in “almost full” state, the busy signals will not allow
the connected PEs to send any data. The FIFOs keep the pipelined datapath
balancing.
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Data memory array: Data memory array consists of four data memory pairs
in the LEAP architecture (see Figure 1a). A data memory pair contains two data
memory either of which has two accessing ports that can be used in read mode
or write mode. Figure 3 shows the structure of a data memory pair which can be
accessed by a pair of mPEs. In Figure 3, the module mpe0 and mpe1 respectively
represent the accessing port of two different mPEs, and the module if port wr
and if port rd mean the write and read port by which the interface controller
can access the data memory. Depending on the different configurations, one mPE
can access the data memory in either read or write mode. Thus Data memory
array can provide flexibility for application mapping.
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4 Loop Self-Pipelining

In coarse-grained reconfigurable architectures, loop pipelining execution plays a
very important role to achieve maximum throughput, which can heavily improve
their performance. However, in many coarse-grained reconfigurable architectures,
loop pipelining execution mostly depends on software pipelining approaches [6]
but not on hardware direct support. The LEAP architecture can assure appli-
cation mapping from high level programming languages to the reconfigurable
architecture.

Counter
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Fig. 4. Loop Self-pipelining: (a) a simple example; (b) dataflow graph mapping on the
LEAP architecture; (c) operation binding

In the LEAP architecture, each individual operation in a loop body can be
performed on a PE through operation binding (see Figure 4c). By operation bind-
ing, the dataflow that represents the kernel loops of an algorithm can be mapped
onto the LEAP architecture, and the processing elements array, can accomplish
computation tasks automatically and efficiently by utilizing data-driven principle
without centralized control. This is the main idea of Loop Self-pipelining (LSP),
which is similar to the software technique called self loop pipelining [6].The LSP
allows efficient execution for loop pipelining, and leads to an increase in paral-
lelism exploitation. Furthermore, it alleviates the pressure on compiler.

Figure 4 shows the procedure of Loop Self-pipelining. In Figure 4b, three
counters in dataflow graph provide the index value of the FOR loop (see Figure
4a), and they are independent of each other. Three independent paths, furnishing
the index value, are required for loop pipelining. There is no centralized control.
The counters can drive data flowing by generating a new value when the old one
has been consumed. The result of operation binding on the LEAP architecture
is shown in Figure 4c. The counters are bound into mPEs, and the arithmetical
operation addition is bound into cPEs. Additionally, all variables in the FOR
loop are stored in their individual data memory.
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The LSP technique fully utilizes the advantages of data-driven architecture.
It transfers the control on loop behavior to memory operation, which manages
the whole computation through the control of dataflow (see Figure 5). In Figure
5, the three mPEs act like valves, two for data-flow’s flowing into, and one for
flowing out. When PEs are flooded with data, throughout will be up to one result
per cycle, i.e., if there are no loop-carried dependencies, a single loop iteration
can be performed at one cycle no matter how many operations in this loop.

...
for(  i  =0;i <N; i++){

       C[i]=A[i]  +  B[i];
}
...

A[i1]

Processing Element Array

B[i2]

+ C[i3] C[]

A[]

B[]

Control the loop

Fig. 5. Relation between the loop code and processing elements array

5 Performance Analysis

There are 56 cPEs in the LEAP architecture, and utilizing all cPEs yields a
peak performance of 56 fixed point operations per cycle. Table 1 shows the
performance of several algorithms by cycle-accurate Verilog simulation.

Table 1. Performance of the LEAP architecture.

Algorithm
#Cycle of
Running

#PE
#Cycle
of Init.

Ops/cycle
#Config

mPE cPE

FFT 5530 38 624 10 10 1
Median Filter 167001 42 1152 30 12 6

Sobel Edge Detection 166741 32 984 16 12 6

The algorithms in Table 1 are 1024 point depth first dit2 FFT, 3 ∗ 3 window
median filter and 3∗3 window Sobel edge detection. Median filter and Sobel edge
detection are applied to a 320 ∗ 240 image. We implemented Sobel edge detec-
tion algorithm only utilizing 50% of cPEs, and 66% for median filter algorithm
at most. They utilize very few cPEs, leaving unused PEs for other algorithms
running in parallel. Ops/cycle in Table 1 presents the peak performance, i.e.,
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the number of the cPEs bound by these algorithms. In Table 1, the initial con-
figuration takes very few cycles, e.g., only 624 cycles for FFT. Median filter and
Sobel edge detection have the common features in memory accessing, and they
require the same number of configuration words. Performing them take 167001
cycles and 166741 cycles respectively. The time consumed includes the cycles for
data exchanging between data memory and external memory, which overrides
the computation time.

6 Conclusions

This paper introduces the novel coarse-grained reconfigurable architecture
named LEAP. Compared to other architectures, the LEAP architecture has sim-
ple data communication network, brief loop pipelining execution mode and flex-
ible data memory. The feature that data can flow from up to down in mesh is
suitable for stream-based application. The prototyping phase of the LEAP archi-
tecture has been implemented on an Altera FPGA EP1S80F1508C6 providing
79,040 logic elements. The host computer can communicate with the LEAP
prototype through PCI bus, and testbench codes have run successfully on the
prototype.
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Abstract. Today’s portable electric consumer devices tend to include more 
multimedia processing capabilities. This trend results increased processing 
resources, thus causing more power consumption. Therefore, the power-
efficiency becomes important due to battery operated nature of portable 
devices. In this paper, we propose a reconfigurable data cache architecture, in 
which data allocation to a cache is constrained by address range configuration. 
Then we evaluate trade-off between performance and power efficiency. 
Comparing to the conventional cache architectures, power consumption can be 
reduced decently while maintaining miss rate of the proposed data cache similar 
to those of the conventional caches. The result shows that the reconfigurable 
data cache operates with 33.2%, 53.3%, and 70.4% less power when compared 
with direct-mapped, 2-way, and 4-way set-associative caches respectively.  

Keywords: low-power, cache architecture, embedded system, multimedia 
application. 

1   Introduction 

Today’s portable electric consumer devices tend to include more multimedia 
processing capabilities, such as encoding and decoding of digital audio, video, and 
still-images. As the devices are integrated with more multimedia processing 
capabilities, power consumption increases significantly and the power efficiency of 
the processing cores becomes one of the important design factors. Inside any 
particular processing core, it is well-known that on-chip cache consumes significant 
amount of power so that cache design becomes one of the main targets for power 
reduction usually. 

In this paper, a reconfigurable data cache architecture is proposed to reduce the 
power consumed by data caching. For this goal, we extract the data accessing patterns 
of several multimedia benchmarks and utilize those characteristics to design a 
reconfigurable data cache architecture which distributes data accesses into a sub 
buffer and small direct-mapped caches. Then we evaluate its performance and power 
efficiency. The result shows that when the data address range is mapped carefully to 
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each cache and buffer, miss rate of the reconfigurable data cache architecture is very 
similar to those of the conventional caches when proper sizes are given to each cache. 
Besides, power consumption by data caching decreases decently. When compared 
with direct-mapped cache, 33.2% of power consumption can be decreased, and 
around 55.3% and 70.4% can be decreased for 2-way and 4-way set associative 
caches respectively. 

In Section 2, researches which cover memory system and multimedia applications 
are addressed as a related work. In Section 3, we propose a reconfigurable data cache 
architecture and describe its operation scheme. And also, we address the 
characteristics of memory access patterns, which are the basis for this work, within 
multimedia applications. Section 4 describes simulation methodology and its results 
are shown in Section 5. And lastly, Section 6 summarizes our work. 

2   Related Work 

The work in [1] performs the performance evaluation of multimedia applications for 
conventional memory system hierarchies and compares to SPECint95. This work 
shows that multimedia applications work well with conventional cache architectures 
and analyzes the reason. The work in [2] gives an overview of low-power techniques 
for mobile multimedia and internet applications. The paper classifies low-power 
techniques into several design-level based methodologies. Especially in the hardware 
architecture level, five reconfigurable hardware schemes are addressed. 

There is an attempt to reduce power dissipations in memory hierarchies using 
special buffers. The work in [3] uses Energy-Saver Buffers(ESB) which resides 
between the L2 cache and main memory. ESB reduces the additional overhead 
incurred due to frequent resynchronization of the memory modules in a low-power 
state. The work in [4] presents a method that uses data buffers to smoothen request 
variations and to create long idleness for power management. 

The work in [5] proposes hardware and software prefetching techniques for video 
applications to improve performance of a general purpose processor. The work in [6] 
performs detailed analysis on the mpeg-2 video decoder and its data usage pattern. 
This work evaluates the cache performance using various cache parameters and 
structures. 

The work in [7], which is very similar to our work, proposes region-based caching. 
In this work, cache consists of two small caches, which are stack cache and global 
cache, and one main cache. The main idea of this work is filtering the stack and 
global data accesses out of the regular cache access so that the allocation of data is 
partitioned through multiple caches.  

3   Reconfigurable Data Cache Architecture 

To further increase the power efficiency of data cache, application-specific analysis of 
data access pattern should be performed and then, data cache architecture can be 
tailored according to the characteristics for a given system specification. 
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3.1   Data Access Characteristic of Multimedia Applications 

Multimedia applications tend to show some common characteristics which can be 
summarized as the followings; (1) Data stream (audio, video, or image) goes through 
a predefined flow of algorithms. (2) Each data unit under processing of a certain 
algorithm function has the same size. (3) Data sets, such as coefficient tables required 
for filtering or reference block of MPEG coding, are applied to the target stream data 
at any consistent access rate. These can be represented as Figure 1. 

Fig. 1. Characteristics of multimedia algorithm processing flow 

To observe data access characteristics of multimedia applications, we extract 
memory traces by executing several multimedia benchmarks. Figure 2 shows an 
example of mpeg2enc. We can identify that there are certain address ranges having 
same access characteristics within the ranges (shaded portion). Other benchmarks also 
show similar manner of data access pattern like mpeg2enc application. 

Fig. 2. Relationship between access frequencies and address ranges for mpeg2enc 

3.2   Reconfigurable Data Cache Architecture and Management Policy 

Our base architecture model of reconfigurable data cache consists of one sub buffer, 
two direct-mapped sub caches, one direct-mapped main cache, address demultiplexer, 
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and cache select unit as presented in Figure 3. The sub buffer has four 32byte-sized 
entries, and each of two direct-mapped sub caches has a half size of the main cache. 
For example, assuming 8KB of total cache size, there are two 2KB direct-mapped sub 
caches, and one 4KB direct-mapped main cache. 

The number and size of sub caches or buffers are not limited by the design we 
proposed in this paper. This can be changed depending on a target application, a given 
system specification, and design resource constraints. The reason why we choose one 
sub buffer and two sub caches is based on the access pattern extracted in Section 3.1, 
which shows that the address ranges having similar access characteristics can be 
separated into two or three ranges. 

 
Fig. 3. Block diagram of proposing reconfigurable data cache architecture 

All the caches are managed as if it is a normal cache. But the data allocation is 
limited by the predefined addresses which are registered in the cache select unit. 
Whenever there is a data access, cache select unit determines which cache to use 
according to the requested data address. Likewise, this scheme also applied to the sub 
buffer. We assume that configuring or registering addresses of the cache select unit is 
handled by special instructions. The processor should support these instructions so 
that programmer can utilize to set up the cache select unit and to load buffer data. 

In this manner, the two sub caches and one sub buffer are mapped to the specified 
data address ranges and this kind of address mapping can be reconfigured on runtime 
when needed. But write-back and flush of cache data should be performed before 
reconfiguring the cache select unit. 

4   Performance Evaluation 

To perform performance evaluation, we select 6 benchmarks from mibench bench-
mark suite [10, 11] for image processing and audio processing. The 6 benchmarks 
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selected are cjpeg, djpeg, lame, mad, tiff2bw, and tiffdither. And we cross-compile 
mpeg2enc and mpeg2dec programs [8] onto arm binary codes. Total 8 benchmarks 
are executed in simplescalar-arm 0.2 processor simulator [9], and then we capture ad-
dresses of the data accesses except the stack region. These data address traces are run 
on the cache simulator and we obtain cache performance for the different parameters. 
The total sizes of caches used are 4KB, 8KB, 16KB, and 32KB. And the line size of 
32bytes is used for all caches. 

For the power estimation of caches, we use CACTI 3.2[12, 13] model to obtain 
cache power parameters and apply the obtained parameters to calculate cache access 
power. The process technology parameter used is 0.13um. To configure 
reconfigurable data cache architecture, we mapped four sub buffers and two sub 
caches to the predefined memory address regions which are obtained by data access 
pattern analysis. This configuration of a cache select unit is performed only once 
when cache simulator initializes. The average performance(miss rate) and average 
power consumption(nJ) is shown in the following Figure 4 and Figure 5. 

Fig. 4. Average performance of the proposed cache compared with the conventional caches 

Fig. 5. Average power of the proposed cache compared with the conventional caches. 

The results show that when the size of cache is either 4KB or 8KB, miss rate of 
proposed architecture is relatively higher than the conventional caches due to capacity 
misses. Therefore, effect of power reduction of the proposed cache diminishes due to 
frequent lower-level memory accesses. But if the size of cache becomes 16KB or 
32KB, meaning that there are sufficient entries to cope with capacity miss, the miss 
rate goes under that of direct-mapped cache and maintains similar performance 
compared to 2-way or 4-way set-associative caches. 
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Fig. 6. Distribution effect of data accesses using reconfigurable data cache. The percentage 
value means the average amount of data access each cache and buffer absorbs. 

The above Figure 6 presents distribution effect of data accesses. By separating data 
accesses into small caches and a buffer, we get reduced power consumption by 
accessing just one small cache or a buffer. As a result, our reconfigurable data cache 
consumes 33.2%, 55.3%, and 70.4% less power when compared to direct-mapped, 2-
way set-associative, 4-way set-associative caches respectively. The amount of power 
consumption our reconfigurable data cache consumes is shown in Table 1. 

Table 1. Relative amount of power the reconfigurable data cache consumes when compared to 
the conventional caches 

Cache architectures 
Cache size DM 2-way 4-way 

4KB 78.37% 51.63% 30.59% 
8KB 59.85% 39.99% 25.12% 

16KB 67.66% 48.10% 31.00% 
32KB 61.21% 47.20% 31.88% 

average 66.77% 46.73% 29.65% 

5   Conclusion 

In this work, a reconfigurable data cache architecture is proposed. It consists of two 
small direct-mapped caches and one small buffer. Before runtime, each cache and the 
buffer are mapped to a specific data address ranges defined by a programmer so that 
data accesses are distributed over small caches and buffer. Constraining data accesses 
to occur in one small cache or a buffer, we get reduced power consumption. The 
performance evaluation is performed using eight multimedia benchmarks. And we 
can identify that when the data address range is configured carefully to each cache 
and if the size of total cache becomes large to cover capacity misses, miss rates of the 
reconfigurable data cache becomes very similar to those of conventional caches. 
Furthermore, power consumption by data caching decreases decently. When 
compared with direct-mapped cache, 33.2% of power reduction acquired, and around 
55.3% and 70.4% for 2-way and 4-way set associative caches respectively. 
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Abstract. Most approaches to interface synthesis take two interface
FSMs including transactions or burst, derive a product FSM and gen-
erate an interface circuit from the product FSM. With these methods,
it could be difficult and complicated to describe interface FSM of IP es-
pecially when IP has many transactions. Additionally, such descriptions
may lead to a very large product FSM which results in large interface
circuits. We propose a simplified interface FSM description scheme where
transactions are represented based on transfers and several parameters.
Since all transactions supported by IP may not be used in the system, the
synthesis algorithm is designed to consider only those transactions which
are involved in parameter matching. Through experiments we observed
that our description scheme helps reduce the size of interface circuits and
our synthesis method correctly generates the interface circuits.

1 Introduction

There are many studies on generating interface circuits from the interface pro-
tocols of intellectual properties (IP) [1, 2, 3]. One of the key problems of auto-
matic synthesis of interface circuits revolves around how to describe the interface
protocol of IP exactly and conveniently. A regular expression-based description
was used to describe interface protocols [3]. But regular expression cannot con-
vey branch conditions or multiple transactions. Timing diagram is seen as one
such method to describe interface protocols of IPs [5]. But this method is not
easy when it comes to representing several transactions or distinguishing among
transactions.

The interface synthesis flow usually follows the steps mentioned below. The
interface FSMs are derived from interface protocols described in one of afore-
mentioned methods, and then a product FSM is built from interface FSMs of IP
by the synthesis algorithm. Next, the interface circuit is generated based on the
product FSM [1, 2, 5]. An interface protocol FSM consists of states and transi-
tions. The write portion of interface protocol of AMBA AHB master is captured
in Fig. 1. Only one transaction, an incremental burst of undefined length, is
shown and the others are omitted with a shaded triangle as space is limited.
There are 18 states and 40 transitions in FSM for the write operation of AMBA

C. Jesshope and C. Egan (Eds.): ACSAC 2006, LNCS 4186, pp. 581–587, 2006.
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master [2]. As we can see in the state diagram in Fig. 1, with these methods
it could become difficult and complicated to describe IP interface protocols es-
pecially when IP has many transactions. Further, such descriptions may lead
to a very large interface circuit generated from the product FSM. This paper
proposes a simplified interface FSM description scheme where transactions are
represented based on transfers and several parameters. In this way, we not only
simplify the IP interface protocol description but also improve the readability
and reusability of the description. Experiments show that this simplified inter-
face protocol description scheme helps reduce the size of the generated interface
circuits.

Fig. 1. The write Transaction of AMBA Master Protocol (Incremental burst of unde-
fined length)

2 Simplified Interface Protocol Description Method

The full protocol of AMBA AHB master and OCN MNI[4] are described in the
proposed scheme, called SIMPLE (a simplified interface protocol (FSM) descrip-
tion language), in Fig. 2. We need only three states (initial state, write state,
and read state) in this case. Designers may use pseudo-variables to represent
internal conditions of IP.

In the proposed method transactions are represented based on transfers and
several parameters. In Fig. 2, ”$transaction” on the transitions is a parameter
that represents transaction type. $address, $wdata, and $rdata are parameters
indicating a valid address, write data, and read data. In addition, internal vari-
ables (’count’ in Fig. 2) in the description may be used for counting burst length
of IP. The proposed method necessitates that the transaction parameters in in-
terface protocol of an IP in a side have to be determined and matched or paired
with those of another IP in the other side before the interface circuits are gen-
erated, and such information is described in the matching information as shown
in Fig. 3.
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Fig. 2. Protocol descriptions of AMBA master and OCN MNI in SIMPLE

The matching information includes port pairings, transaction mapping, and
etc. This is generated through GUI interactions. Fig. 3 shows a part of the match-
ing information for interface circuits between AHB and OCN MNI. Port pairing
specifies the ports of the two IPs which are to be connected. For example, in
Fig. 3, ”FA” of OCN MNI is paired with ”HADDR” of AHB. Additionally, a
designer can set the size of the buffer assigned to a pair of ports. Transaction
mapping specifies all transactions on both sides which are to be paired to com-
plete the correct transfer of data. The underlined sentence in Fig. 3 represents
a mapping between 4-beat burst transactions. This indicates that in order to
connect two transactions, the value ”011” of ”HBURST (2:0)” of AHB master
should be converted to the value ”01” of ”FS (3:2)” of OCN MNI. Matching
information as shown in Fig. 3 determines the transaction-related parameters
that appear in SIMPLE. The transactions not specified in matching information
match single transactions of each IP. Besides, the matching information may
include data on write/read signals, control signals and default value assignments
on output ports.

Fig. 3. A part of matching information for the synthesis of interface circuit between
AHB master and OCN MNI
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3 Interface Synthesis Algorithm

An interface FSM is defined as P=(Q, I, O, D, V, T∈q, q0), where Q is the state
space and I and O are the sets of input and output control signals, D is a set of
ports via which data/address are transferred, V is a set of user-defined variables,
T is a set of transitions of state q, q0 is an initial state. T = { t1: q→(a) q’},
where t1 is a transition, q and q’ are source and destination states. ’a’ is the
associated action of transition. In this paper, we extract an interface FSM from
SIMPLE automatically. Two protocols PA = (QA, IA, OA, DA, VA, TA ∈qA,
qA0) and PB = ( QB, IB, OB, DB, VB, TB∈qB , qB0) are inputs of interface
synthesis algorithm. The synthesis algorithm constructs a product FSM PI =
(QP , IP , OP , DP , VP , TP ∈qP , qA0B0). The output (input) ports of PI correspond
to input (output) ports of interface FSMs, DP is determined by port pairings in
matching information. qA0B0 is an initial state of PI. QP is a subset of {<qA,
qB, s(a), s(w), s(r)> | qA∈QA, qB∈QB, a∈DP , w∈DP , r∈DP }, where s(a/w/r)
indicates the existence (0 or 1) of data in the buffer defined by the port pairing
for address/write data/read data port.

Fig. 4. Modified synthesis algorithm

Fig.4 displays our algorithm to generate a product FSM from interface FSMs
and matching information. The synthesis algorithm presented in the paper [1]
was modified in order to take the matching information into account and to
prune redundant states and transitions during interface synthesis.
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The meaning of valid() function in Fig.4 is as follows. valid(t
′

1 t
′

2 , s(a), s(w),
s(r)) at (a) in Fig. 4 is defined ’true’ if the sender has requested data stored in
buffer or if the requested data is to be sent directly from the sender side port to
the receiver side port. In the synthesis of interface circuits between IP (ip1) as a
slave that sends address and data simultaneously in a transfer of a burst and IP
(ip2) as a master that sends only one address followed by a number of data in a
burst, valid() needs to be true although ip2 does not send the requested address
to ip1 as long as the address buffer has the start address from ip2. The function
ModifyCounter() function at (b) in Fig. 4 changes the number of data in each
buffer as data moves in or out of the buffer. When ip1 acts as a master and ip2
acts as a slave, the addresses sent from ip1 to the address buffer are redundant
except for the first start address. Therefore, the functionality of ModifyCounter()
is changed so that the counter of the address buffer does not increase for the
addresses that follow the first address. The FSM shown in Fig. 5 is a product

Fig. 5. The generated product FSM from AHB Master and OCN MNI

FSM derived from AHB Master in Fig 2 (a) and OCN MNI in Fig. 2 (b). We
omit three wait states due to space limitation. The state name consists of a
state name of master IP, a state name of slave IP, and the number of data in
the corresponding buffer. The ’W’ or ’R’ in a state name indicates that a write
or read address is stored in the address buffer. The interface circuit is generated
from this product FSM.

4 Experimental Results and Summary

The proposed synthesis tool called AIG (Automatic Interface circuits Genera-
tion) has been implemented with about 16,000 lines of JAVA code. AIG takes as
inputs two IP interface protocol descriptions and matching information. In the
experiments to show the efficacy of the proposed interface protocol description
scheme, we use AHB master interface protocols described using the previous
methods (Examples 1 and 2 in Table 1) and our method (Example 3 in Table 1)
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Table 1. The synthesis results of AHB master - OCN MNI interaface circuits with
different description methods for AHB master

No.
AHB Master Synthesis result
Description
Method

Supported
Transactions

# S # T # S # T area
(slice)

fmax

(MHz)
1 Previous

Method [2]
Write Transactions
(length: 1, 4,
undefined)

3 13 6 44 60 201.
288

2 Previous
Method [2]

Write/Read
Transactions
(length: 1, 4,
undefined)

5 23 9 58 145 158.
239

3 Proposed
method

All Transactions
(Except for Error,
Split, Abort)

3 11 9 53 103 180.
799

Table 2. The synthesis results of AHB master - OCN MNI interaface circuits with
different description methods for AHB master

Master:Slave
Master Slave Generated Interface Circuits
# S # T # S # T # S # T Area fmax(MHz)

AHB:OCN 3 11 3 13 9 53 103 180.799
OCN:AHB 4 16 3 9 12 89 374 105.430
BVCI:AHB 4 11 3 9 6 34 61 355.694
AHB:BVCI[7] 3 11 3 8 20 74 130 264.277
AHB:APB 3 11 3 5 3 9 7 581.564

to generate interface circuits between AHB master and OCN MNI. The compar-
ison of synthesis results with different input descriptions is shown in Table 1. ’#
S’ (’# T’) in Table 1 indicates the number of states (transitions) of generated
interface circuits. ’area’(’fmax’) indicates the area (the maximum frequency) of
interface circuits. Please note in examples 1 and 2 in Table 1 that with previ-
ous method the more transactions are added in the description, the more states
and transitions are necessary to represent such transactions. Furthermore, the
descriptions supporting more transactions incur more area and make slow the
maximum frequency of interface circuits. However, the interface protocol de-
scription (example 3 in Table 2) in the proposed scheme requires a very small
number of states and transitions to represent all the necessary transactions by
virtue of parameterization and transfer-based descriptions. Also, the description
(example 3 in Table 1) using the proposed scheme results in a smaller area and
faster attainment of maximum frequency of the generated interface circuit than
the description (example 1, 2 in Table 1) using the previous method supporting
single write, read and undefined length burst.
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Considering matching information during interface synthesis, interface circuits
can be generated even when it is not easy to do so with previous methods which
have limitations like being unable to deal with differences in characteristics of IP
interface protocols. With the proposed interface protocol description scheme, we
could describe the interface protocols shown in Table 2 using only 3, 4 states. The
experimental results of interface synthesis for IPs with various characteristics are
displayed in Table 2. Using the synthesis of the interface circuit between AHB
(mater) and OCN (MNI), we have an example of a successful generation of
interface circuits between IP that sends address and data simultaneously in a
burst and IP that sends a single start address followed by a number of data in
a burst. To display the appropriateness of the interface synthesis method, we
applied one of the generated interface circuits to a real system design. In other
words, we observed that the generated interface circuits (AHB:OCN, OCN:AHB)
could replace manually-designed interface circuits and work correctly on a H.264
decoder system [8].

We propose a simplified interface FSM description scheme (SIMPLE) where
transactions are represented based on transfers and several parameters. The syn-
thesis algorithm is designed to consider only transactions involved in parameter
matching between two IPs to be connected. With SIMPLE, we could describe
the various interface protocols only with 3, 4 states. Experiments shows that
our simplified interface protocol description scheme helps reduce the size of the
generated interface circuits and our synthesis method correctly generates the
interface circuits.
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Abstract. Leakage power will exceed dynamic power in microprocessor as fea-
ture size shrinks, especially for on-chip caches. Besides developing low leakage 
process and circuit, how to control the leakage power in architectural level is 
worth to be studied. In this paper, a PDSR (Periodically Drowsy Speculatively 
Recover) algorithm and its extended version with adaptivity are proposed to op-
timize instruction cache leakage power dissipation. SPEC CPU2000 simulation 
results show that, with negligible performance loss, PDSR can aggressively de-
crease leakage power dissipation of instruction cache. Compared with other ex-
isting methods, PDSR and adaptive PDSR achieve more satisfying and more 
robust energy efficiency. 

Keywords: Leakage Power, Drowsy cache, Periodically Drowsy Speculative 
Recover, Adaptive.  

1   Introduction 

Leakage Power of the chips is expected to increase by five times for each technology 
generation in the future, resulting in leakage power becoming the dominant part of 
chip power budget.  
    On-chip caches are the most leakage energy intensive components in microproces-
sor due to large scale transistors. State-destroying and state-preserving techniques 
have been proposed to reduce the leakage power of memory structures. Gated-vdd [1] 
is state-destroying technique, which disconnects a cell from its supply voltage or 
ground. Various control policies such as Cache Decay [2] have been proposed to gate 
cells. Accesses to the gated cells need data reloading from the lower memory level, 
which leads to extra dynamic energy consumption. State preserving techniques such 
as drowsy caches [3], put cells into low leakage mode without destroying their con-
tents. In this mode the cells leak weakly, but still more than the gated-vdd approach. 
Drowsy do not entail extraneous misses but can incur performance loss. Accessing 
drowsy cells requires several additional cycles—to bring them back to normal state—
but typically less than the latency of a decay-induced miss. DVS (Dynamic Voltage 
Scaling) [4] is an effective circuit to implement drowsy caches. 
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    The key difference between drowsy caches and cache decay is that in drowsy 
caches the cost of being wrong is relatively small. Many papers [5,6] dedicate to con-
troversy about which method is more effective. But this is a headachy problem, be-
cause the answer depends on many factors, such as next level cache access latency, 
state transition cycles, or even application behavior. Other works [6,7] attempt to 
combine these two techniques, resulting in more manufacturing challenges and more 
sophisticated control policy. In my opinion, elaborating a single technique and design-
ing economical control policy are more practical. In this paper, we select drowsy 
method based on DVS as our object of optimization, because drowsy is relatively 
moderate in performance overhead, especially for L1 on-chip caches. 
    According to Flautner [3], simple policy—where cache lines are periodically (4k 
cycles) put into a low-power mode—reaches a reasonable compromise between easy 
implementation, power saving, and performance protection for data cache. But for 
more spatial and less temporal locality, L1 Icache works better with noaccess pol-
icy—putting only lines that were not accessed in a period into low-power mode. In 
this paper, an improved simple policy cooperating with speculatively recovering is 
proposed to more aggressively put I-cache lines into drowsy states without perform-
ance impact. An adaptive extension is also proposed to dynamically adjust the refresh 
window size for eliminating energy efficiency dithering among different workloads.  

2   Methodology 

Simulations in this paper are based on the SimpleScalar framework [8]. Our processor 
model closely resembles Alpha 21264 [9] (Table 1). Power estimation models are 
based on Princeton Wattch [10] and Virginia HotLeakage [11]. We choose 70nm 
technology with 0.9V supply voltage and 0.3V drowsy voltage, 5.6GHz clock speed 
and 80℃  environment temperature. The threshold voltages of N-transistor and  
P-transistor are 0.19V and 0.21V respectively. The benchmark suite for this study 
consists of a set of eight SPEC CPU2000 benchmarks: applu, art, equake, mgrid, 
bzip2, gcc, mcf and vortex. They are compiled for the Alpha instruction set using 
Compaq Alpha compiler with SPEC peak settings. In order to capture the most impor-
tant program behaviors while at the same time accelerating simulation, we use the 
simulation points that were described and verified in SimPoint [12]. 

Table 1. Configuration of Simulated Processor 

Processor core 
Instruction Window 80-RUU, 40-LSQ 
Issue width 4 
Function Unit 4-IntALU, 1-IntMULT, 2-FALU, 1-FMULT, 2-MPort 
Memory Hierarchy 
L1 DCache 64KB, 4-way, 32Bblock, WB 
L1 ICache 64KB, 2-way, 32B block, WB 
Unified L2 Cache 1MB, 4-way, 32B block, WB, 6-cycle latency 
Memory 100 cycles, 16 bus width 
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2.1   Metrics 

IPC can be used to represent performance. Architectural leakage control polices pos-
sibly result in power overheads (

e
P ), which consists of four sources: dynamic power 

and leakage power due to extra hardware, dynamic power due to mode transitions, 
and dynamic power due to extra latency in accessing the drowsy lines. So Normal-
izedleakagesaving can represent the compositive effect of leakage power reduction: 

)( /
e

Normalizedleakagesaving origleakage newleakage P origleakage= − −  

Energy efficiency is a popular metric to trade off between power and performance. 
EDP (Energy Delay Product) is an appropriate value to quantitatively represent en-
ergy efficiency. Simulation cycles can represent delay ( D ), then the energy effi-
ciency optimizing ratio γ  can be calculated as: 

2 2 2/ ( ) /( ) ( ) /( )
d s d s d s d s

EDP EDP P P D P P D S P P P Pγ ′ ′ ′ ′′ ′= = + ⋅ + ⋅ + +=  

dP , sP  are the baseline dynamic and leakage power respectively, and 
d

P ′ , 
s

P′  are the 
corresponding dynamic and leakage power after optimization. S  is the speedup in 
Amdahl’s law [13]. Assuming the average proportion between leakage power and the 
total power in microprocessor chip is 

1
α , and the proportion between I-cache leakage 

power and total leakage power is 
2

α , then the proportion α  between I-cache leakage 
power and total power is 

1 2
α α . Leakage power is proportional to transistor number, 

so 
2

α  can be represented by area percent of the structure. Then, 

2 1
/ , / (1 ) /,

s icache s s icache d s icache
P P P P P Pα α α α− − −= = = −  

Simply, we consider the extra power 
e

P  as a part of the optimized leakage power 

s icache
P

−
′ , that is 

s icache e
P newleakage P−

′ = + . Assuming instructions committed when 
using leakage control policy is the same as before, the dynamic energy can be consid-
ered no change, so 

d d
P P S′ ⋅＝ . Architectural leakage control policies usually increase 

execution time, making 1S ≤  and dynamic power reduced, but we can assume 

d d
P P′ =  conservatively. If the leakage power of I-cache is reduce to 1 / λ , then 

2

2 2

1 2
2

2

1 1(1 ) 1

s icache

s icache
d s s icache

s icache s icache

P
P S

S S
PP P P P P

αγ
α α αα α

α α λ λ

−

−−
− −

= ⋅ = ⋅ =
− −′+ − + + + − +

 

γ  expresses that the improvement of energy efficiency when using architectural leak-
age power control policy to a structure depends on not only the power reduction abil-
ity λ  and the performance impact S , but also the area proportion 

2
α  and leakage 

power importance 
1

α .  

3   Periodically Drowsy Speculatively Recover 

For aggressive leakage power reduction, tag arrays are always drowsed together with 
data arrays. This results in another cycle stall for waking up all the drowsy lines in the 
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indexed set. Longer access latency may increase total execution time and thus energy 
dissipation, offsetting the leakage energy saving. This negativity can be neutralized by 
speculatively recovering method. Researches [14] have shown that instruction access 
has some temporal or spatial locality, making them predictable. Cache and prefetch 
are all based on this observation and have been popularly equipped in modern proces-
sors. In drowsy caches, waking up latency can also be overlapped with oracle knowl-
edge of access trace. With this approximated future knowledge, drowsy cache lines 
can be speculatively recovered and extra stall cycles can be partially eliminated. This 
would allow a more aggressive drowsy policy with negligible performance loss. 
Combined with traditional simple periodical policy, a PDSR policy is named. 
    Speculative recovering is somewhat different from prefetching. Recovering only 
raises supply voltage to normal level instead of fetching data from memory like pre-
fetching, because the contents of drowsy lines are retained. Moreover, recovering 
granularity is cache set instead of block for the reason mentioned above. No matter hit 
or miss, waking up latency is hidden completely. PDSR can sustain inaccuracy well, 
because misprediction will not pollute cache except for extra transition energy.  
    Generally, instruction caches access cache lines sequentially except when branches 
are encountered. In many prefetching studies, the next-line prefetch has been shown 
effective for improving cache performance [15]. So a modified next-set prediction 
mechanism is also all right for speculatively recovering. Each access to drowsy in-
struction cache triggers a speculative recovering. The next set close to the indexed set 
by this access is pre-recovered by default. Note that all cache lines are still put into 
drowsy mode periodically, which is the same as traditional simple policy. 

3.1   Comparison with Other Control Policies 

Through SPEC CPU2000 simulation, we compared PDSR with other existing leakage 
power control policies, including simple policy and noaccess policy. A 64K bytes, 2-
way set associative, 32 bytes cache line instruction cache is configured. The refresh 
window size is set to 4k cycles, and recover latency is set to 2 cycles. To calculate γ , 
α  is set to 0.05, just as the setting in the last section. Normalized IPC, Normal-
izedleakagesaving and γ  is illustrated in fig. 1, 2, and 3. From figure 1, we can see 
that processor performance with PDSR policy is higher than that with simple or noac-
cess policy, resulting from next-set speculative recovering. But due to speculative 
recovering, leakage power net saving with PDSR policy is a little smaller than simple 
or noaccess policy (see fig. 2). Considering power and performance together, the 
energy efficiency of PDSR policy is better than the other two policies (see fig. 3). 
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Fig. 1. Normalize IPC 

 
Fig. 2. Normalized leakage net saving 



592 C. Zhang et al.  

0

0.2

0.4

0.6

0.8

1

1.2

a
p
p
l
u

a
r
t

b
z
i
p
2

e
q
u
a
k
e

g
c
c

m
c
f

m
g
r
i
d

v
o
r
t
e
x

A
v
e
r
a
g
e

E
D
P
 
o
p
t
i
m
i
z
i
n
g
 
r
a
t
i
o

orig

noaccess

simple

PDSR

 

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

a
p
p
l
u

a
r
t

b
z
i
p
2

e
q
u
a
k
e

g
c
c

m
c
f

m
g
r
i
d

v
o
r
t
e
x

A
v
e
r
a
g
e

N
o
r
m
a
l
i
z
e
d
 
I
P
C orig

PDSR2k

PDSR4k

PDSR8k

PDSR16k

 
Fig. 3. Energy efficiency optimizing ratio 

 
Fig. 4. Normalized IPC of different window 
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Fig. 5. Normalized leakage net saving of 
different window size 

 

Fig. 6. EDP optimizing ratio of different 
window size 

 
 
Note that although the average γ  of PDSR is bigger than 1, two benchmarks, gcc and 
equake achieve deteriorated energy efficiency due to drastic performance impact. 
Since the access latency of Icache is crucial for pipeline throughput, leakage control 
policies can not increase access latency too much. 

3.2   Refresh Window Size 

Refresh window size will impact the effect of PDSR policy. Generally, the bigger the 
window size is, the higher performance is achieved (see fig. 4). On the contrary, the 
bigger the window size is, the less leakage power is saved (fig. 5). Longer refresh 
period can take advantage of instruction reuse, one recovering satisfying multiple 
accesses, so the number of recovering operation is reduced and wake up latency is 
eliminated. Smaller window size refreshes cache lines more frequently and makes the 
lines drowsy almost all the time, achieving higher off ratio. When considering power 
and performance together, PDSR with 4k and 16k windows achieve the higher aver-
age energy efficiency (see fig. 6). But for different workloads, the window sizes 
achieving the optimized γ  are different. For example, 2k window size is the optimal 
setting for applu, 4k window size is the optimal setting for mgrid, and 16k window 
size is the optimal setting for equake. So, for achieving the optimized energy effi-
ciency among all benchmarks, refresh window size must be adjustable. 

4   Adaptive PDSR  

PDSR can achieve satisfying average γ , but constant window size can not achieve 
the optimized γ  among all benchmarks. Different workloads have different access 
pattern, even different phases in a single benchmark have different runtime behavior, 
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resulting power and performance dithering. So making the window size adaptive will 
allow a finer power-performance tradeoff. We call it adaptive PDSR policy. 
   One way of accomplishing this is by counting the normal accesses 

n
A  (accesses that 

locate in the recovered set, meaning normal accesses without extra waking up cycles) 
in each interval. nr  is defined as the ratio between normal accesses 

n
A  and total 

accesses A  in the last interval. Window size (W ) alters in a set of discrete values 
(

w
W S∈ ). We still assume α =0.05 (

1
α =50%, 

2
α =10%). To achieve energy effi-

ciency improvement ( 1γ > ), speedup 1 / 2

0.95 0.975S > ≈  is necessary, and Icache off 
ratio 2

1 1 1 / (1 ) /af Sλ α− − > −=  is also necessary. These two necessary conditions 
can be used to adjust W , ensuring that energy efficiency is improved at any moment. 
S  can be approximated by nr , and Icache off ratios in each interval are gained by 
snooping recovering signal. The following is control flow. 

min( )
w

W S= ; 
if ( /

n
A A<0.975) then 

 W =W +1;  /*a bigger size in 
w

S  is assigned */ 
else if (

2
1 (1 ) /

a
f S α− < − ) then 

 W =W -1; /*a smaller size in 
w

S  is assigned */ 

With adaptivity, W selects the most appropriate size in 
w

S  for current phase and 
current workload, eliminating power and performance dithering among different 
workloads and different execution phases. 
    Setting {512,1024, 2048, 4096, 8192,16384}

w
S =  and wake up latency 2 cycles, we 

evaluate the ability of adaptive PDSR in energy efficiency balancing among bench-
marks. Fig. 7 describes the track of refresh window size alteration when eight bench-
marks are simulated. Note that only 100M instructions are committed. We can see 
that W swings in 

w
S  until the most appropriate size is selected. Different workloads 

have different steady points and different convergence patterns. Fig. 8 illustrates per-
formance of adaptive PDSR. Although it doesn’t work as well as 16k PDSR, but its 
power saving is much more than 16k PDSR, even than 4k PDSR policy (see fig. 9). 
Fig. 10 describes the energy efficiency optimizing ratio of adaptive PDSR, 4k PDSR 
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Fig. 7. Track of window size alteration Fig. 8. Normalized IPC of APDSR 
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and 16k PDSR policies. Obviously, with adaptive PDSR, each benchmark achieves 
almost the optimal energy efficiency, and the average γ  is also the optimal. 

5   Conclusion 

We present PDSR algorithm, an improved simple policy for instruction drowsy 
caches with the help of next-set prediction mechanisms to speculatively recover cache 
lines. Simulation results show that constant window size PDSR can achieve superior 
energy efficiency than traditional noaccess and simple policy, but dithering among 
different benchmarks exists. We then propose an adaptive extension of PDSR to trade 
off performance and power when a wide range of applications are loaded. SPEC 
CPU2000 simulation results show that, with negligible performance loss, adaptive 
PDSR can aggressively decrease energy dissipation of Icache and achieve more ro-
bust and more satisfying energy efficiency. 
 
Acknowledgments. This work was supported by NSFC (No. 60376018) in China. 

References 

1. M. D. Powell et al. Gated-Vdd: A Circuit Technique to Reduce Leakage in Deep- Submi-
cron Cache Memories. ISLPED2000, pp.90-95. 

2. S. Kaxiras, Z. Hu and M. Martonosi. Cache Decay: Exploiting Generational Behavior to 
Reduce Cache Leakage Power. ISCA2001, pp.240-251. 

3. K. Flautner, N.S.Kim, S.Martin, D.Blaauw, and T.Mudge. Drowsy Caches: Simple Tech-
niques for Reducing Leakage Power. ISCA2002, pp.147-157. 

4. T. Pering, T. Burd and R. Brodersen. The Simulation and Evaluation of Dynamic Voltage 
Scaling Algorithms. ISLPED1998, pp.76-81. 

5. Yingmin Li et al. State-preserving vs. Non-state-preserving Leakage Control in Caches. 
DATE2004. 

6. Yan Meng, Timothy Sherwood and Ryan Kastner. On the Limits of Leakage Power Re-
duction in Caches. HPCA11, 2005 

7. S. Kaxiras, et al. A Simple Mechanism to Adapt Leakage-Control Policies to Temperature. 
ISLPED 2005. 

8. D. Burger and T. Austin. The SimpleScalar Tool Set, version 2.0. Computer Architecture 
News, 25(3):13-25, June 1997. 

9. R. Kessler. The Alpha 21264 Microprocessor. In IEEE Micro, pp.24-36, Mar, 1999. 
10. D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for Architectural-level 

Power Analysis and Optimization. The 27th ISCA, pp.83-94, June 2000. 
11. Y. Zhang, et al. Hotleakage: An Architectural, Temperature-aware Model of Subthreshold 

and Gate Leakage. Tech. Report CS-2003-05, University of Virginia, Mar. 2003. 
12. http://www.cs.ucsd.edu/~calder/simpoint/ 
13. Hennessy J L and Patterson D A. Computer Architecture: A Quantitative Approach. San 

Francisco: Morgan Kaufmann Publish, 3rd edition, 2002 
14. S. Sair, T. Sherwood, and B. Calder. Quantifying load stream behavior. In the HPCA-8, 

Feb. 2002. 
15. J. Smith and W.-C. Hsu, Prefetching in Supercomputer Instruction Caches, Proc of Int. 

Conf. on Supercomputing, pp. 588- 597, Nov 1992.  



C. Jesshope and C. Egan (Eds.): ACSAC 2006, LNCS 4186, pp. 595 – 601, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

An Efficient Approach to Energy Saving in 
Microcontrollers 

Wenhong Zhao1 and Feng Xia2 

1 Precision Engineering Laboratory, 
Zhejiang University of Technology, Hangzhou 310014, China 

wenhongzhao@gmail.com 
2 National Laboratory of Industrial Control Technology, 

Zhejiang University, Hangzhou 310027, China 
xia@iipc.zju.edu.cn 

Abstract. Although energy saving has increasing importance for energy-limited 
microcontrollers, low power and high control performance are at odds with 
each other. This paper presents a simple yet efficient dynamic voltage scaling 
(DVS) scheme that targets reducing CPU energy consumption while meeting 
control requirements. With focus on two typical kinds of sources of workload 
variability, it explores a combination of time-triggered and event-triggered 
mechanisms. Simulations are carried out to highlight the merits of the proposed 
approach. It is argued that in comparion with traditional DVS scheme, it saves 
considerably more energy while providing comparable control performance. 

Keywords: Energy saving, dynamic voltage scaling, microcontroller, control 
performance, workload variability. 

1   Introduction 

In recent years, there has been a growing use of embedded computing platforms in 
real-time control applications, e.g., mobile robots and automotive electronic systems, 
etc. An evident trend in today’s embedded applications is that an increasing number 
of devices are battery-powered. Battery life thereby becomes a critical factor that 
determines the usability of the system, and must be taken into account during system 
design. However, the goals of achieving high performance and prolonging battery life 
are at odds with each other in a way that improving performance often demands 
higher energy consumption [1]. In the context of embedded control, the limited 
computing capacity further causes the problem of energy management to be much 
more vital for microcontrollers running on batteries. They must have low energy 
consumption in order to prolong battery life while providing required control 
performance [2-4]. 

One promising method to achieve tradeoffs between low power and high 
performance in CMOS-based embedded systems is dynamic voltage scaling (DVS) 
[1, 5]. The majority of existing microprocessors such as Intel’s Xscale and 
StrongARM, AMD’s K6-2+, and Transmeta’s Crusoe, etc. have all supported this 
technique. DVS exploits the hardware characteristics of these processors to reduce 
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energy consumption through dynamically changing the supply voltage and operating 
frequency at the same time. It has been demonstrated to be highly effective in saving 
energy for different types of applications, both real-time and non real-time.  

In traditional microcontrollers, concurrent control tasks are usually scheduled 
according to their worst-case execution times (WCET). Because the actual execution 
time of a task is less then its WCET in most cases, budgeting for the WCET may 
result in excessive energy consumption even if the DVS technique is adopted [6]. 
Moreover, the workload of a multitasking microcontroller may vary significantly 
during run time. Typical reasons include, e.g., changes in either task execution times 
or the number of tasks. This fluctuating feature of workload makes it not so easy to 
develop an efficient DVS scheme for microcontrollers. 

In the literature, only a few researchers have applied DVS to real-time control 
tasks. Lee and Kim [7] consider tradeoffs between control performance and energy 
consumption for the first time, and propose both static and dynamic solutions. Xia et 
al. [2] suggest the DVS-FS scheme by integrating DVS with feedback control real-
time scheduling. Wang et al. [8] propose a static energy-aware optimization solution 
using evolution strategy for codesign of control and real-time scheduling. Jin et al. [9] 
has dealt with the problem of energy-aware scheduling design of control tasks. Xia 
and Sun [3] present the methodology of EDVS based on direct feedback scheduling. 
Following this methodology, we develop a cost-effective DVS approach that uses an 
asynchronous period adjustment mechanism in our previous work [4].  

In this paper, we attack the problem of saving energy in multitasking micro-
controller where the workload changes significantly over time. A DVS scheme that 
essentially operates in an interval-based fashion is presented. In order to properly 
scale the voltage of the processor, the near-future workload is predicted using a 
simple yet effective algorithm. Besides the time-triggered feature of our approach, we 
also introduce an event-triggered mechanism to cope with the workload variability 
due to adding or removing control loops/tasks, which may be needed during system 
reconfiguration. Simulation experiments are carried out to evaluate the performance 
of the proposed approach.  

The structure of this paper is as follows. In Section 2, we describe the problem 
considered. Our approach is presented in Section 3. Its performance is evaluated in 
Section 4 by simulation experiments. Section 5 concludes this paper.  

2   Problem Description 

Consider a DVS-enabled microcontroller where N independent controller tasks {τi} 
run concurrently. Each controller task is responsible for controlling a plant. It is 
natural for controller tasks that they are periodic, with the deadline equal to the 
period. Each control task τi is characterized by the following parameters: 

 ci: the execution time. For various reasons, e.g., the size of sampled data to be 
processed by the control algorithm changes with the state of the plant, this 
parameter may vary during run time and is not known until the completion of 
task execution. 

 wi: the worst-case execution time assumed to be known.  



 An Efficient Approach to Energy Saving in Microcontrollers 597 

 hi: the period that corresponds to the sampling period of the relevant control 
loop. Once designed offline, the periods of all tasks will remain fixed. 

For sake of simple description, we define ci and wi for the case where the processor 
operates at its full speed. Note that when the voltage is adjusted, the actual execution 
time and worst-case execution time of each task will change accordingly. 

2.1   Tradeoff Between Energy and Delay 

For processors built on CMOS circuits, the dominant source of energy consumption is 
the dynamic power dissipation. It has been found that the amount of energy 
consumption, Ei, for task τi typically increases quadratically with the supply voltage 
[10,11]. Therefore we have 

2 2( )total i i i dd ddE E C R V V
 

(1) 

where Ci is a constant indicating the average switched capacitance per clock cycle, Ri 
is the total number of cycles required for the execution of the task, and Vdd is the 
supply voltage. Employing an interval-based DVS approach, we will assign the same 
voltage level for all tasks within every time interval.  

According to (1), reducing voltage saves energy. However, the voltage reduction 
increases circuit delay, D, and their relationship approximates that 

2/( )dd dd tD V V V
 

(2) 

where Vt is the threshold voltage. For control loops, a natural result of increase in 
circuit delay is longer control delay, which degrades control performance from the 
control perspective. This will be much more serious if the task schedulability is 
violated due to prolonged task execution times. Obviously, there is a fundamental 
tradeoff between saving energy and improving control performance when 
dynamically scaling the voltage of the microcontroller.  

2.2   Workload Variability 

With DVS, the degree to which the energy consumption could be reduced is highly 
dependent on the system workload [11]. As a consequence, workload variability 
affects the effectiveness of DVS, especially when the timeliness and schedulability of 
all tasks must be guaranteed in order to achieve required control performance. In this 
paper, we consider two typical kinds of sources of workload variations:  

1) Varying task execution times. The execution time (parameter ci) of each task 
may change over time, regardless of the voltage scaling. 

2) Dynamic task activation and termination. New tasks/loops may be added, and 
existing tasks/loops may be removed at runtime. 

In the next section, we will present an efficient DVS scheme to manage workload 
variability, with the primary goal of saving energy while maintaining satisfactory 
control performance. 
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3   The Proposed Approach 

Assume that all CPU voltages are normalized with respect to the maximum value, and 
the normalized voltage, α, can be changed continuously in the range of [αmin, 1], 
where αmin is the minimum (normalized) voltage. When the voltage is set to α, the 
actual (worst-case) execution time of τi will be ci/α (wi/α). The switching overheads 
between voltage levels are neglected. Control tasks are scheduled according to the 
EDF algorithm. Throughout this paper, we define workload as the product of CPU 
utilization and normalized voltage. 

The architecture of our approach is given in Fig. 1. Basically, the proposed DVS 
scheme operates in a time-triggered fashion. That is, it performs the workload 
prediction and voltage scaling operations at regular intervals during run time. We 
choose such a system-level method rather than a task-level approach mainly because 
of its simplicity and effectiveness. A second reason is that task-level solutions often 
require modification of the application program as well as support from the compiler, 
which cannot always be guaranteed in the context of embedded control.  

Workload
Prediction

Voltage
Scaling

CPU

Monitor

Task
Activation or
Termination

event

DVS

timer

 

Fig. 1. Architecture of our approach 

3.1   Workload Prediction 

Let’s consider first the workload variability caused by varying execution times only. 
During every invocation interval, the proposed DVS approach monitors current CPU 
utilization, uk, which is the ratio of busy CPU time to the interval, T. Then the 
workload of current interval is calculated as k k ku α= ⋅ . To predict the near-future 

workload, several algorithms have been presented in the realm of DVS [5]. We here 
use a simple algorithm that has been successfully applied to job execution-time 
estimation for real-time control tasks [12]. The predicted workload will be: 

1
ˆ ˆ (1 )k k kλ λ+ = + −  (3) 

where λ is a forgetting factor.  
Based on the predicted workload, the DVS module will adjust the voltage such that 

the CPU cycles will be fully utilized in the next interval. Similar to our previous work 
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[4], we here set the voltage level that maximizes the CPU utilization while meeting 

the task schedulability constraint, i.e., 1 1 1
ˆˆ / 1k k ku α+ + += ≤ . Therefore we have 

min 1 min

1 1 min 1

1

ˆ                 

ˆ ˆ            1

ˆ1                          1

k

k k k

k

α α
α α

+

+ + +

+

⎧ <
⎪⎪= ≤ ≤⎨
⎪ >⎪⎩

 (4) 

3.2   Event-Triggered Mechanism 

To cope with abrupt and large workload variations induced by dynamic task 
activation and termination, we integrate an even-triggered mechanism into the 
originally time-triggered DVS architecture. Each time a new control task/loop is 
added or an existing task/loop is removed, the DVS scheme will be triggered 
immediately, causing the CPU voltage to be re-assigned as follows.  

In case a new control loop j is added during the time interval 1[ ,  )k kT T + , we will 

first update the value of 1
ˆ

k +  by 

1 1
ˆ ˆ /k k j jw h+ += + . (5) 

If several tasks are added at the same time, the above operation will be performed 
iteratively for every task. And then a new voltage will be determined using (4).  

In case of task termination, the event-triggered mechanism operates similarly. The 

only difference relies on the algorithm used to update 1
ˆ

k + . When τj is removed, it 

becomes 

1 1
ˆ ˆ /k k j jc h+ += −  (6) 

where cj is the recorded execution time of the latest job of task j. Note that each time a 

new value of 1
ˆ

k +  is calculated, it will be memorized temporarily for further use and 

the old one could be discarded.  

4   Evaluation 

We next conduct simulation experiments to evaluate the performance of our 
approach. Consider the case where four simple control loops share one variable-
voltage microcontroller. The controlled plants have the same transfer function 
G(s)=1000/(s2+s), and each control task executes a well-designed PID control 
algorithm. The timing parameters (wi, hi) of each task are (3, 10), (2, 9), (2, 10), (2, 9) 
respectively, in time unit of ms. The parameter ci of each task vary uniformly in the 
range [ ,  ],  0 1i iw wβ β⋅ < ≤ . This distribution function of task execution times has 

been used in [13]. Other parameters are set as follows: αmin=0.36, λ=0.6, T=50ms. 
Simulations run in the following pattern. At the start, task τ1 and τ2 are switched on. 

Task τ3 and τ4 remain off until t = 1s. At time t = 2s, task τ4 is removed. The whole 
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simulation lasts 3s. Each plant experiences an input step change every 1s when active. 
Three methods are examined: 1) NON: the CPU always operates at full speed, 2) 
TRA: traditional DVS based on WCET, 3) OUR: the approach presented in Section 3. 
Each value reported below takes the average of 10 runs.  

 

  

Fig. 2. Energy consumption ratio Fig. 3. Control cost ratio 
 

Energy Consumption Ratio (ECR). We define ECR as the ratio of energy 

consumption of TRA or OUR to that of NON. Accordingly, 2

1

K

k
k

ECR Kα
=

=∑ , 

where K is the total number of invocation. Fig. 2 shows the ECR of TRA and OUR as 
a function of β. It is clear that DVS is effective in energy saving, and our approach is 
able to save up to 40% more energy compared with traditional DVS scheme. OUR 
and TRA become nearly identical when β=1. 

Control Cost Ratio (CCR). In simulations we record the IAE (integral Absolute 
Error) of each loop to assess the control performance. The CCR is defined as the ratio 
of the sum of all loops’ IAE of TRA or OUR to that of NON. Note that the larger the 
control cost the worse the control performance. The simulation results are shown in 
Fig. 3. As we can see, the examined three schemes deliver comparable control 
performance, because all CCR values are quite close to one. 

5   Conclusions 

This paper deals with the problem of reducing energy consumption in multitasking 
microcontrollers. An efficient DVS scheme that features the combination of time-
triggered and event-triggered mechanisms is presented. It is devoted to managing the 
workload variability of real-time control tasks. Simulation results show that compared 
with traditional DVS method, our approach is more effective in reducing energy 
consumption while guaranteeing comparable control performance. 

Acknowledgments. This work is partially supported by Zhejiang Provincial Natural 
Science Foundation of China under Grant No. M503059. 
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