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Preface

Metabolomics is an emerging scientific area that is rapidly growing in the last few 
years. It is a key strategy in systems biology that generates (quantitative) informa-
tion about the intermediates or final products of the metabolism, thus indicating the 
metabolic pathways that are affected during a biological process, such as a disease 
or a drug treatment. Complementary to other omics strategies (genomics, transcrip-
tomics, and proteomics), where extensive information about the genotype is 
obtained, metabolomics has an important role in connecting genotype-phenotype 
information.

This volume of Proteomics, Metabolomics, Interactomics and Systems Biology 
series provides a comprehensive view of metabolomics, from the basic concepts, 
through sample preparation and analytical methodologies, to data interpretation and 
applications in Medicine. This edition, entitled Metabolomics: From Fundamentals 
to Clinical Applications, is the first book to cover metabolomics clinical applica-
tions also emphasizing analytical and statistical aspects. Moreover, future trends 
and perspectives in clinical metabolomics are also presented. The book is organized 
in 13 chapters, where expert researchers in the field of metabolomics contributed, 
discussing and reviewing the most important and recently developed features of 
clinical metabolomics.

For researches already experienced in metabolomics, this book will be useful as 
an updated definitive reference. For beginners in the field and graduate/undergradu-
ate students, this edition will provide detailed information about concepts and 
experimental aspects in metabolomics, as well as examples and perspectives of 
applications of this strategy to clinical questions.

Alessandra Sussulini 
Campinas, Brazil
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Chapter 1
Metabolomics: Definitions and Significance 
in Systems Biology

Aline Klassen, Andréa Tedesco Faccio, Gisele André Baptista Canuto, 
Pedro Luis Rocha da Cruz, Henrique Caracho Ribeiro, 
Marina Franco Maggi Tavares, and Alessandra Sussulini

Abstract  Nowadays, there is a growing interest in deeply understanding biological 
mechanisms not only at the molecular level (biological components) but also the 
effects of an ongoing biological process in the organism as a whole (biological 
functionality), as established by the concept of systems biology. Within this context, 
metabolomics is one of the most powerful bioanalytical strategies that allow obtain-
ing a picture of the metabolites of an organism in the course of a biological process, 
being considered as a phenotyping tool. Briefly, metabolomics approach consists in 
identifying and determining the set of metabolites (or specific metabolites) in bio-
logical samples (tissues, cells, fluids, or organisms) under normal conditions in 
comparison with altered states promoted by disease, drug treatment, dietary inter-
vention, or environmental modulation. The aim of this chapter is to review the 
fundamentals and definitions used in the metabolomics field, as well as to empha-
size its importance in systems biology and clinical studies.

Keywords  Metabolomics • Systems Biology • Targeted Metabolomics • Untargeted 
Metabolomics • Lipidomics • Clinical Metabolomics
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Abbreviations

CE	 Capillary electrophoresis
DA	 Discriminant analysis
DI	 Direct infusion
GC	 Gas chromatography
HPLC	 High-performance liquid chromatography
IPLC	 Ion-pairing liquid chromatography
LC	 Liquid chromatography
MALDI	 Matrix-assisted laser desorption ionization
MS	 Mass spectrometry
MSI	 Mass spectrometry imaging
NMR	 Nuclear magnetic resonance
PCA	 Principal component analysis
PLS	 Partial least squares
OPLS	 Orthogonal projections to latent structures
QC	 Quality control
SRM	 Selected reaction monitoring
UPLC	 Ultra-performance liquid chromatography

1.1  �A Brief History of Metabolomics and Its Relevance 
in Systems Biology

With the advent of the systems biology paradigm, which proposes to explore how 
interactions between biological components (biomolecules) affect the functionality 
(biological processes) of an organism as a whole [1], several bioanalytical methods 
have been proposed and/or improved. Formerly, molecular biology and physiology 
approaches were employed to acquire biomolecular and functional information, 
respectively. However, both strategies only provided limited data considering a tar-
get biomolecule and the directly related pathways, being incapable of characteriz-
ing a biological system in a complete and integrated way. For that reason, the 
development of the omics strategies caused a real revolution in this scientific area, 
and nowadays they are widely used in systems biology. Omics strategies aim at 
identifying the entire set of biomolecules (genes, proteins, metabolites, etc.) con-
tained in a biological tissue, cell, fluid, or organism, thus generating a huge amount 
of data that are evaluated by biostatistics and bioinformatics tools. Figure 1.1 shows 
how the omics approaches are correlated and their respective objects (biomole-
cules) of study. Genomics, transcriptomics, and proteomics are beyond the scope of 
this book; therefore, we will herein focus on metabolomics as a key systems biol-
ogy strategy.

A. Klassen et al.
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The term metabolome first appeared in the literature in 1998, when Oliver et al. 
[2] measured the change in the relative concentrations of metabolites as the result of 
deletion or overexpression of a gene. Metabolome is therefore used to address the 
entire set of metabolites an organism expresses. In 2001, metabolomics was defined 
by Fiehn as the comprehensive and quantitative analysis of all metabolites of the 
biological system under study [3]. Previously, in 1999, Nicholson et al. [4] used the 
term metabonomics to refer to the “quantitative measurement of the dynamic multi-
parametric metabolic response of living systems to physiopathological stimuli or 
genetic modifications.” Alterations in endogenous metabolite levels that may result 
from disease processes, drug toxicity, or gene function have been evaluated in cells, 
tissues, or biological fluids by metabonomics [5–8]. Latent biochemical informa-
tion obtained from metabonomics may be used for diagnostic or prognostic pur-
poses. Such information reflects actual biological events rather than the potential for 
disease, which gene expression data provide [9].

In the last decade, other terminologies have appeared in the literature to define 
and to classify metabolism studies. Metabolite (or metabolic) profiling was firstly 
described as the analysis of a small number of predefined metabolites for investiga-
tion of selected biochemical pathways and has its origin in early metabolism studies 
of Horning and Horning in 1971 [10]. Metabolic fingerprinting was defined by 
Fiehn [3] as “a rapid classification of samples according to their origin or their bio-
logical relevance.” Finally, in 2005, Kell et al. [11] proposed the term metabolic 
footprinting to refer to the exometabolome, i.e., what a cell or system excrete under 
controlled conditions. Most recently, in 2015, the term real-time metabolome profil-
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Fig. 1.1  A correlation between the main omics strategies used in systems biology studies
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ing was proposed by Link et al. [12] referring to the direct injection of bacteria and 
cells in a high-resolution mass spectrometer and the monitoring of hundreds of 
metabolites in cycles of a few seconds over several hours.

However, before those terms were coined, studies involving metabolomics 
notions were firstly reported in the literature in the late 1940s by Williams and 
coworkers [13]. These studies were based in the data from over 200,000 paper chro-
matograms obtained from body fluid samples from different subjects, including 
alcoholics and schizophrenics, which produced evidence that there were character-
istic metabolic patterns associated with each one of these groups, considering a 
hypothesis of “biochemical individuality.” Gates et al. published, in 1978, a review 
compiling these historical events [14]. The development of novel analytical tech-
niques and biostatistics improvements in the 1980’s allowed an enormous progress 
of metabolic profiling studies. Then, at the end of the 1990s, many acronyms related 
to omics strategies appeared, and at that point, the terms metabolome, metabolo-
mics, and metabonomics were proposed. A review from van der Greef and Smilde 
[15] discusses the symbiosis of metabolomics and chemometrics and presents an 
interesting timeline of the evolution of metabolomics.

Lipidomics is a subdivision of metabolomics defined as “the full characterization 
of lipid molecular species and their biological roles with respect to expression of 
proteins involved in lipid metabolism and function, including gene regulation” [16]. 
This term was proposed in 2003 by Han and Gross [17] to define the research area that 
focuses on identifying alterations in lipid metabolism and lipid-mediated signaling 
processes that regulate cellular homeostasis during health and disease. Currently, lipi-
domics research emphasis consists on identifying alterations in cells and body fluid 
lipid levels, revealing environmental disturbances, pathological processes, or response 
to drug treatments [18].

1.2  �Definitions and the Metabolomics Workflow

Although several terms have been devised in the literature to classify metabolo-
mics/metabonomics studies [2, 4, 19–21], there is still not an actual consensus 
regarding terminology. A much simpler general definition that relates to the fact 
whether the researcher knows a priori what kind of metabolites to search has been 
proposed here, and it will guide the decisions on the metabolomics workflow pre-
sented in Fig. 1.2. In this context, a targeted metabolomics approach is defined as 
a quantitative analysis (concentrations are determined) or semiquantitative analy-
sis (relative intensities are registered) of a few metabolites and/or substrates of 
metabolic reactions that might be associated to common chemical classes or linked 
to selected metabolic pathways. Metabolic profiling as mentioned earlier thus 
belongs to this definition. An untargeted metabolomics approach is based primarily 
on the qualitative or semiquantitative analysis of the largest possible number of 
metabolites from a diversity of chemical and biological classes contained in a 

A. Klassen et al.
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biological specimen. Both fingerprinting and footprinting metabolomics belong to 
this definition.

Lipidomics could be considered as a targeted metabolomics strategy, since it 
involves the study of a subset of specific metabolites (lipids). However, due to the 
complexity of the lipids, lipidomics itself is categorized as targeted or untargeted 
lipidomics, when the objects of study are specific lipids or global exploratory analy-
ses are performed, respectively. The term focused lipidomics was proposed in 2009 
as a strategy “for detecting molecules in some categories while comprehensively 
utilizing specific fragments (product and precursor ion scanning) or neutral loss 
caused by a specific feature of the partial structures of the molecules (neutral loss 
scanning)” [22]. However, the execution of focused lipidomics is only possible 
when working with mass spectrometry techniques, and actually this is not so distant 
from the targeted lipidomics concept. More details about lipidomics can be found in 
Chap. 11.

The metabolomics workflow, shown in Fig. 1.2, comprises the sequential steps 
that underline both targeted and untargeted metabolomics analyses, which will be 
further described.

Biological problem and experimental design.  The initial step of the metabolomics 
workflow relies on a clear and straightforward formulation of the biological problem 
to be addressed. This step is of crucial importance because it will govern the experi-
mental design that follows. According to the biological problem, the type of metabo-
lomics approach (targeted vs. untargeted metabolomics), sample type (biological 
fluids, tissues, cells, and/or intact organisms), sample size (number of specimens to 
be assessed), experimental conditions to which samples will be submitted, frequency 
of sample collection, metabolic quenching to interrupt enzymatic activity (addition 
of organic solvents and/or immediate freezing of samples by the use of dry ice or 
liquid nitrogen), storage conditions (−80 °C is usually preferred for long-term stor-
age of biological fluids) [23], analytical platforms to be employed, and also sample 
preparation strategies must all be defined at this point, since they are somehow inter-
related [24]. It is important to emphasize that metabolomics studies are always com-
parative in character; therefore, a group of control samples (samples that did not 
undertake the investigated condition) and test samples (carrying information on the 
investigated condition) are usually defined in the experimental design.

Sample preparation.  Once the biological problem is defined and experimental con-
ditions for sample collection and storage are established, a further step on sample 
preparation prior to analysis might be considered. Sample preparation is intimately 
related to the sample type (whether it is a cell, a tissue, or a biological fluid), the 
selected metabolomics approach (targeted vs. untargeted analysis), and the elected 
analytical platform.

For targeted metabolomics, the extraction procedure is usually optimized for the 
specific metabolites or metabolite chemical classes under consideration and may 
involve steps such as cleanup for removal of sample matrix interferents and/or pre-

1  Metabolomics: Definitions and Significance in Systems Biology
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Problem formulation
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                           metabolites
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NMR:
   Phasing / baseline correction /
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Univariate statistics:     t-test, Kruskal Wallis, Mann Whitney, ANOVA, etc.
Multivariate statistics: Data overview (PCA) / model building (PLS-DA, 

OPLS-DA, etc.) / model validation

Discriminant metabolites:

VIP, S-Plot, Jack-knife

MS / NMR:     Putative 
    metabolite search - (libraries)

MS:      Spiking / fragmentation 
NMR:   2D, Stocsy, ROC, etc.

Metabolic pathway relationships (libraries)

Internal / external validation

Biological
problem

Experimental
design
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Data
processing

Statistical
analysis

Data acquisition

Metabolite
identification

Biological
validation

Metabolic pathways
interpretation

Fig. 1.2  Analytical workflow for studies in metabolomics
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concentration strategies, such as liquid-liquid and solid-phase extraction, to enhance 
the compound detectability [25].

For untargeted metabolomics of biofluids, sample preparation is usually mini-
mal. Protein precipitation is sometimes considered as a mean to preserve column 
integrity in liquid chromatographic experiments or to prevent capillary clogging in 
capillary electrophoretic experiments. In general, a simple filtration and a few-fold 
dilution are often performed. Tissue and/or cell preparations require more elabo-
rated extraction procedures, usually carried out by solid-phase extraction with pure 
solvents or mixtures, followed by centrifugation and dilution. Gas chromatographic 
analyses of biofluids and cell/tissue extracts demand further derivatization steps to 
convert polar metabolites into volatile adducts [26]. These steps are time-consuming 
and prone to errors, limiting the number of total samples to be processed in a single 
metabolomics experiment. Nuclear magnetic resonance experiments usually require 
sample dilution in proper deuterated solvents. More details about sample prepara-
tion in clinical metabolomics can be found in Chap. 2.

Data acquisition.  Differently from other omics sciences, metabolomics imposes a 
great analytical challenge due to the immense variety of chemical composition that 
biological samples exhibits, spanning from compounds with distinct chemical 
properties, structural features and functionality, as well as discrepant concentra-
tion levels. It is important to emphasize that currently no single analytical platform 
leads to a comprehensive identification and quantification of the entire metabolite 
set of a biological system [27, 28]. The chemical diversity of the metabolome, as 
well as its wide dynamic range [29], demands that different analytical techniques 
be combined to generate complementary results that will ultimately enhance meta-
bolic coverage [5, 28].

The analytical techniques commonly employed for data acquisition in metabolo-
mics studies are nuclear magnetic resonance (NMR) [23, 30] spectroscopy and 
mass spectrometry (MS) [31]. NMR spectroscopy can be considered as a universal 
metabolite detection technique, where samples can be analyzed directly with mini-
mal manipulation and many classes of small metabolites can be measured simulta-
neously [5, 7, 32]. Major drawbacks in NMR for metabolomics are poor sensitivity 
and spectral complexity with superimposition of signals at certain spectral regions 
compromising clear identification. In a recent metabolomics study, NMR allowed 
characterization of 49 metabolites in human serum, with concentrations above 
10 μmol L−1 (“normal NMR-detected serum metabolome”), whereas MS techniques 
were able to characterize more than 90 metabolites with concentrations lower than 
10 μmol L−1 [33].

While MS is more sensitive and specific in comparison to NMR spectroscopy, it 
usually requires a previous separation step, using a hyphenated separation technique 
[27], such as gas chromatography (GC), high-performance liquid chromatography 
(HPLC) or ultra-performance liquid chromatography (UPLC), and capillary elec-
trophoresis (CE). Separation techniques coupled to MS are important to reduce 
sample complexity and to minimize ionization suppression effects, thus enhancing 
the detection sensitivity and increasing the metabolome coverage [27].

1  Metabolomics: Definitions and Significance in Systems Biology
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GC-MS is a sound technique in the metabolomic arena [34–37]. However, the 
need for time-consuming sample derivatization schemes limits its applicability to 
small sets of samples. Nevertheless, structural specificity of the generated adducts 
makes it easy to build dedicated spectra libraries that aid metabolite identification. 
Furthermore, due to derivatization, quite distinct classes of important rather polar 
metabolites, such as amino acids, biogenic amines, and carboxylic acids, can be 
assessed in a single chromatographic run and ionization mode. Furthermore, 
GC-MS via headspace techniques cover the volatile portion of the metabolome.

Perhaps due to extensive sample manipulation GC-MS demands, LC-MS has 
been the technique of choice in many metabolomics studies [38–42], covering the 
moderately polar fraction of the metabolome. Several modes and different columns 
chemistries, including reversed-phase liquid chromatography (RPLC), hydrophilic 
interaction liquid chromatography (HILIC), and more rarely ion-pairing liquid 
chromatography (IPLC), allow LC-MS to cover a wide range of metabolite catego-
ries and polarities.

Although not as prominent as the chromatographic techniques, capillary electro-
phoresis coupled to mass spectrometry (CE-MS) has joined the metabolomic ana-
lytical arsenal due to its unique characteristics, particularly the ability to assess 
directly the most polar and/or ionic fraction of the metabolome [43–45].

It is also possible to perform a metabolomics analysis by direct infusion (DI) 
mass spectrometry, but a lot of information is lost, due to ionization suppression of 
many metabolites present at very low concentrations in complex biological matrices 
[46]. Matrix-assisted laser desorption ionization coupled to MS (MALDI-MS) and 
MALDI mass spectrometry imaging (MALDI-MSI) are increasingly being invoked 
for metabolomics studies specially those assessing tissues, cells, and their compart-
ments [47]. The incapability of differentiating metabolite isomers is a shortcoming 
of the MS technology. More details about NMR spectroscopy in metabolomics can 
be found in Chap. 3. Chapters 4 and 5 describe MS coupled to chromatographic and 
electrophoretic techniques, respectively.

Analytical methodologies used for lipidomics were recently reviewed [18, 48]. 
Basically, the only difference from a metabolomic and a lipidomic experiment is 
sample preparation: for lipidomics is necessary to include a lipid extraction step, 
usually by liquid-liquid extraction or solid-phase extraction, prior to NMR or MS 
analysis [18].

Analytical platform stability issues often arise when untargeted metabolomic 
studies are performed, since all samples are analyzed just once in a series of ran-
domized sequential runs. To circumvent these issues and to ensure data reliability 
for further processing, the use of a quality control (QC) pool sample, prepared by 
mixing small volumes of all control and test samples, is often employed. 
Instrumental stability is checked by running several times the QC sample upfront 
and during sample analyses by intercalating QC samples every four or five sam-
ples, depending on run time. Repeatability of QC spectra and/or mass chromato-
grams is inspected visually and statistically. The importance of QC samples in 
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metabolomics studies is thoroughly discussed in the review articles of Dunn et al. 
[49] and Theodoridis et al. [38].

Data processing.  For untargeted metabolomics, the acquired raw data are submitted to 
a preprocessing step according to the type of analytical platform employed. For NMR, 
data treatment includes phasing, baseline correction, alignment, and normalization. 
Softwares and algorithms, such as PERCH (PERCH Solution Ltd.), Chenomx NMR 
Suite (Chenomx Inc.), MestReNova (MestreLab Research), MetaboLab [50], AutoFit 
[51], TopSpin (Bruker Corp.), and MATLAB (The MathWorks Inc.), are routinely 
used. For hyphenated MS techniques, data treatment includes spectral deconvolution, 
dataset creation, grouping, alignment, filling data gaps, normalization, and data trans-
formation. Several free access and proprietary softwares are available to process MS 
data as discussed comparatively by Sugimoto et al. [52]: XCMS [53], Mass Profiler 
Professional (MPP, Agilent Technologies), MZmine [54], MetAlign [55], MassLynx 
(Waters Corp.), and AMDIS [56], among others [57].

For targeted metabolomics, analyte quantitation or semiquantitation is a relevant 
part of data processing and is more commonly carried out using MS spectroscopy 
[58, 59] rather than NMR, although recommendations are available [60]. Methods 
are usually developed and conditions optimized for the selected metabolite (s), and 
the proposed method undergoes extensive validation following regulated protocols 
for the parameters specificity/selectivity, precision, accuracy, linearity, limits of 
detection and quantification, and robustness before application is set out. In targeted 
analyses, the use of internal standards is recommended to improve precision and to 
handle matrix effects [61], specially isotope-labeled internal standards. Selected 
reaction monitoring (SRM) is a versatile tool for targeted metabolomics when 
triple-quadrupole mass spectrometers are used [61].

An interesting alternative approach for comprehensive targeted metabolomics 
has been put in practice lately using commercially available kits [62]. High-
throughput quantitative MS analyses of hundreds of endogenous metabolites of a 
few chemical classes (acylcarnitines, amino acids, hexoses, phospho- and sphingo-
lipids, biogenic amines, etc.) are performed upfront, and statistical evaluation of 
results selects the discriminant metabolites. Although a great deal of compounds is 
usually disregarded after statistical analyses, at the end the discriminant metabolites 
have already been quantified. This approach opposes the more traditional one where 
untargeted metabolomics indicates qualitatively the potentially discriminant metab-
olites, usually a small number of compounds, that are next quantified by targeted 
metabolomics, followed by statistical evaluation of importance. Drawbacks of the 
comprehensive targeted metabolomics relate to the fact that a lot of analytical effort 
is placed on the quantitation of hundreds of metabolites that might render no signifi-
cant information, and the search of discriminant metabolites is carried out on a 
limited number of chemical classes imposed by the commercial kit composition, 
with no room for discovery of novel metabolites. Chapter 6 gives more details about 
data processing in metabolomics.
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Statistical analysis.  Metabolomic data are quite complex and require chemometric 
tools to reveal discriminant metabolites between control and test samples [63]. 
Multivariate analyses, comprising unsupervised methods, such as principal compo-
nent analysis (PCA), and supervised methods, such as partial least square discrimi-
nant analysis (PLS-DA) and orthogonal projections to latent structures discriminant 
analysis (OPLS-DA), are often employed for sample overview and classification. 
Univariate analysis based on Student’s t-test, Mann-Whitney U test, etc. is also used 
to corroborate multivariate results. The mathematical models must be validated, 
which is carried out by cross validation procedures and permutation tests [63–65]. 
Chapter 7 brings more details about chemometrics in metabolomics.

Metabolite identification.  Metabolite identification is required only for untargeted 
metabolomics studies, since for targeted metabolomics, the metabolite or metabolite 
class of interest is already defined. For such purpose, free databases and libraries, such 
as HMDB [66], KEGG [67], PubChem [68], Metlin [69], MassBank [70], LIPID MAPS 
[71], ChEBI [72], MMD [73], BioMagResBank [74], MetaboID [75], and Chenomx 
NMR Suite (Chenomx Inc.), are among the most commonly accessed. MassTRIX [76] 
is also a searching tool that uses some of the databases listed above. Once a putative 
metabolite has revealed identity, confirmation must be pursued. This can be accom-
plished by spiking techniques with authentic standards followed by comparison of frag-
mentation patterns between sample and standard (MS spectra) or 2-D NMR.

Metabolic pathways association.  Biological interpretation is an important step of 
any metabolomics study, targeted or untargeted. Once putative metabolites are listed 
and their identification confirmed, corresponding metabolic pathways are next 
searched. Several databases are available for this purpose: KEGG [67], MetaCyc 
[77], SMPDB [78], MetaboLights [79], and Reactome [80], among others. For 
details on the information compiled in databases, the review of Karp and Caspi can 
be consulted [81]. When altered metabolites are associated to respective metabolic 
pathways, a rationale can be elaborated in attempt to answering the original biologi-
cal question that guided the metabolomics study. In Chapter 8, more details about 
metabolite identification and pathways analysis can be found.

Biological validation.  Although biological validation is not commonly pursued 
after a metabolomics study is completed, many authors consider that the results will 
only make a broader sense if proven by validation. Usually an external validation is 
recommended [63, 82], in which an entire new set of samples are collected and pro-
cessed, as the work of Barbas et al. [83] exemplifies. Alternatively, the discriminant 
metabolites found preliminarily in the untargeted metabolomics study can be quan-
titatively analyzed in the same sample set (internal validation). Biological validation 
can also be reached by independent specific studies conducted with the discriminant 
metabolites found in the original metabolomics study. Ganti et al. [84] performed an 
untargeted metabolomics study using urine samples of kidney cancer patients and 
control subjects that revealed high levels of acylcarnitines associated with cancer 
status and kidney cancer grade. The study was then validated by in vitro experiments 
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establishing that acylcarnitines affect cell survival and are indicative of inflamma-
tion. Biological validation serves therefore to corroborate the results obtained pre-
liminarily in the original metabolomics study and to consolidate the biological 
interpretation of results.

1.3  �The Importance of Metabolomics in Clinical Studies

From the beginnings of metabolomics until nowadays, most of the applications are 
focused on plant metabolomics. Nevertheless, with the recent advent of precision 
medicine, clinical metabolomics is on the spotlight for being able to provide molec-
ular phenotyping of biofluids, cells, or tissues. In this context, clinical metabolo-
mics is increasingly being applied to diagnose diseases, understand disease 
mechanisms, identify novel drug targets, customize drug treatments, and monitor 
therapeutic outcomes [85, 86].

As metabolites indicate end points of the gene expression and cell activity, 
metabolomics can provide a holistic approach for understanding the phenotype of 
an organism, playing a fundamental role in systems biology [27]. The characteriza-
tion of metabolic phenotypes supports precision medicine by pointing out the meta-
bolic imbalances that underlie diseases, discovering new therapeutic targets, and 
indicating potential biomarkers that may be used to either diagnose disease or moni-
tor action of therapeutics [87].

Clinical metabolomics is thus an area of intense investigation and has been 
revised periodically for different conditions and diseases [63, 88–97]. Chapters 9, 
10, 11, 12, and 13 organized in this book compile many applications of clinical 
importance following the metabolomics framework.
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Chapter 2
Collection and Preparation of Clinical 
Samples for Metabolomics

Andrew J. Chetwynd, Warwick B. Dunn, and Giovanny Rodriguez-Blanco

Abstract  A wide range of biofluids (urine, serum, plasma, saliva, etc.) as well as 
cellular and tissue samples can be collected and investigated in clinical metabolomic 
studies. The choice of sample is dependent on the clinical question being investi-
gated with biofluids typically studied to identify biomarkers, whereas tissues and 
primary/immortalised cells are typically studied to investigate mechanisms associ-
ated with pathophysiological processes. Methods applied to collect samples, quench 
metabolism and extract samples differ between sample types from simple collect, 
dilute and analyse methods for urine to complex washing, quenching and biphasic 
extraction methods for tissues. The range of sample collection and extraction meth-
ods are discussed with sample-specific considerations highlighted. Finally, methods 
for imaging of cells and tissues and for in vivo metabolomic analysis will also be 
introduced.
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Abbreviations

ATCC	 American Type Culture Centre
BMI	 Body mass index
BSTFA	 N,O-Bis(trimethylsilyl)trifluoroacetamide
CHO	 Chinese hamster ovary
CSF	 Cerebrospinal fluid
DESI-MS	 Desorption electrospray ionisation-mass spectrometry
DNA	 Deoxyribonucleic acid
EDTA	 Ethylenediaminetetraacetic acid
ESI	 Electrospray ionisation
GC-MS	 Gas chromatography-mass spectrometry
HILIC	 Hydrophilic interaction chromatography
HS-SPME	 Headspace solid-phase microextraction
IPA	 Isopropyl alcohol
LC	 Liquid chromatography
LC-MS	 Liquid chromatography-mass spectrometry
LLE	 Liquid-liquid extraction
MALDI-MS	 Matrix-assisted laser desorption/ionisation and mass spectrometry
MSTFA	 N-Methyl-N-(trimethylsilyl) trifluoroacetamide
MTBE	 Methyl tert-butyl ether
NMR	 Nuclear magnetic resonance
PBS	 Phosphate-buffered saline
RNA	 Ribonucleic acid
SIMS	 Secondary ion mass spectrometry
SOP	 Standard operating procedure
SPE	 Solid-phase extraction
SPME	 Solid-phase microextraction
TCA	 Tricarboxylic acid

2.1  �Introduction

The choice, collection and preparation of biological samples in clinical metabolomic 
studies can have a significant impact on the metabolomic data acquired, the quality 
of the analytical data collected and the conclusions derived from the study. Therefore, 
careful consideration of which sample type to collect, how to collect the sample to 
provide a metabolic snapshot of the sample at the time of sampling and how to 
extract samples is required. In this chapter, we will discuss the different types of 
samples that can be collected and analysed, highlight appropriate methods for col-
lection and sample extraction and discuss current advantages and limitations. These 
discussions will be focused on untargeted metabolomic studies to investigate hun-
dreds or thousands of metabolites in a single sample. Sample imaging and in vivo 
real-time analysis will also be introduced.

A.J. Chetwynd et al.
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2.1.1  �Sample Types Investigated in Clinical Studies 
and Associated Considerations

The range of samples that can be collected in a clinical study is wide ranging and 
can consist of biofluids, primary cells and tissues. Figure 2.1 provides an overview 
of different sample types accessible and applied in clinical metabolomic research, 
either currently or those that can be expected to be investigated in the future.

The sample type chosen can be defined by the clinical question being investi-
gated. As examples:

	(a)	 Biomarkers applied in the clinic are primarily assayed in biofluids, and there-
fore discovery studies to identify a single biomarker or a biomarker panel are 
typically also applied to biofluid samples.

	(b)	 Studies to understand pathophysiological mechanisms are typically interested 
in a specific organ in the human body. To enable research to investigate the ‘site 
of action’ of a specific metabolic perturbation, then the organ should be sam-
pled and studied.

However, in some studies, the preferred sample type cannot be collected, and a 
different ‘surrogate’ sample type has to be investigated. For example, the collection 
of 2000 kidney biopsies from healthy and diseased subjects to study metabolic 
mechanisms in kidney diseases is not feasible in relation to the expense of sample 
collection (e.g. surgery would be required for all subjects) and in performing an 
ethically acceptable study (e.g. the collection of kidney biopsies from healthy sub-
jects is not ethically acceptable). However, the collection of urine or plasma samples 
could be performed as biofluid samples can be collected in an ethically acceptable 

Fig. 2.1  A summary of the different biofluids, cells and tissues studied in clinical metabolomics
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manner, and costs for collection would be significantly lower including for large-
scale studies. Consideration as to whether the biofluid can identify metabolic 
changes related to the tissue of interest should also be undertaken. In this example, 
the analysis of urine, which is a by-product of the pathophysiological operation of 
the kidney, is a suitable ‘surrogate’ sample to determine metabolic or physiological 
changes in the kidney.

2.1.2  �Sampling Considerations

The collection of samples requires a number of objectives to be met. The primary 
objective should be to ensure that the sample collected is qualitatively and quantita-
tively representative of the sample before it was collected. When this objective is 
met, then the data acquired from the sample is biologically representative of the 
question being asked, and any results can be viewed as valid. With this in mind, 
samples can be separated into two general classes: (i) metabolically active samples 
and (ii) metabolically inactive samples. Figure 2.2 shows the differences in relation 
to sample collection and extraction for these two classes of samples as defined for a 
mammalian cell culture. The extracellular metabolome can be typically viewed as a 
metabolically inactive sample, and the intracellular metabolome is viewed as the 
metabolically active sample.

Fig. 2.2  A comparison of sampling, metabolic quenching and extraction required for intracellular 
and extracellular metabolome samples. The example here is shown for the culture of mammalian 
cells

A.J. Chetwynd et al.
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All cells and tissues can be viewed as metabolically active, and therefore quench-
ing of metabolism is required and will be discussed later in this chapter. Biofluids 
can be defined as metabolically inactive as they are extracellular, but care should be 
taken. Urine is metabolically inactive, but serum/plasma, CSF and saliva could be 
viewed as metabolically active, and care should be taken. As a minimum we recom-
mend that biofluids are stored on ice while being processed and then stored follow-
ing processing for long periods at −80 °C.

Importantly, tissues require metabolic quenching and extraction. Metabolic 
quenching of tissues typically involves rapidly washing in a saline or phosphate-
buffered solution and rapid quenching by placing in liquid nitrogen [1]. Most tissues 
are collected in an operating theatre with the exception of the muscle and skin (as a 
punch biopsy), faeces and the placenta, which is expelled after pregnancy. Health 
and safety guidelines do not allow liquid nitrogen to be placed in an operating the-
atre, and so tissues have to be transported to a different location, preferably on ice. 
Therefore, rapid quenching of tissue in this environment is not always feasible, and 
this should be considered when the requirement to study metabolic pathways with a 
high metabolic flux is required (e.g. the glycolytic and TCA metabolic pathways in 
cancerous tissue).

2.2  �Biofluids

2.2.1  �Urine

Urine is one of the most widely studied biofluids in metabolomic research, primar-
ily due to its ease of collection, as discussed later. The urinary metabolome has been 
used to investigate the metabolic consequences of disease for the entire body due to 
its being a major excretory route of water-soluble metabolites and xenobiotics [2]. 
The presence of both endogenous and exogenous metabolites means that urine 
metabolomics may be implemented for disease biomarker discovery [3], drug dis-
covery and characterisation [4], determination of nutritional status [5] and effects of 
environmental toxicants [6]. To date over 3100 metabolites have been characterised 
in human urine, and this is considered the minimum number of metabolites present 
as new sample preparation and analytical techniques are likely to uncover other 
metabolites present at lower concentrations [7].

2.2.1.1  �Sample Collection

When collecting urine samples the timing of collection can make an appreciable qual-
itative and quantitative difference in the urinary metabolome [8, 9]. Typically there 
are three types of urine sample that can be collected, first morning void, spot urine 
and a 24 h urine collection [10]. Generally first morning voids are a preferred sample 
type, following an overnight fast of several hours thus reducing the effect of the last 
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meal or medication [11, 12]. Spot urine samples are taken at a time point during the 
day and are particularly common when some form of intervention such as dietary or 
pharmaceutical has been administered [10]. However, it is well known that a number 
of metabolites are excreted in a diurnal rhythm or cosine rhythm [8, 9]. Ideally, a 
urine sample would comprise of a pooled sample of all voids within a 24 and h period 
thus reducing the impact of any circadian variation in the sample, defined as a 24 h 
urine and representing a complete 24 h circadian cycle. Spot urine samples at specific 
time points that are uniform between all subjects such as first morning void also help 
to counter this problem when a 24 h sample collection is not feasible.

Collection of urine samples is predominantly easy in the general population. 
Subjects are asked to provide a urine sample into a pot and return the sample. Urine 
samples can be collected in the home and transported to a clinic, which is appropri-
ate for 24 h urine samples, or spot urines can be collected at the clinic. No highly 
trained staff is required for the collection of urine samples. For immobile subjects 
urine samples can be collected with a catheter, and for babies urine can be collected 
with absorbent pads in nappies.

2.2.1.2  �Storage and Stability of Urine Samples

One concern with metabolomics is the time taken to collect all samples, extract 
samples and then collect a metabolic profile for each sample, as in most studies 
extended periods of sample storage is required, thus storage must have minimal/no 
effect on the metabolome of the sample being studied [13, 14]. Several studies 
utilising LC-MS, GC-MS and NMR have investigated the effect of different storage 
temperatures and number of freeze thaw cycles [13, 15–17]. It has been demon-
strated that urine samples rapidly degrade when stored at room temperature even for 
short periods of time with glycolytic metabolites showing signs of degradation or 
metabolism [16]. For long-term storage, −20 °C has been demonstrated to have no 
effect on the urinary metabolome after storage for 6 months. However, −80 °C is 
recommended as no longer-term stability studies of length greater than 6 months 
have yet to be carried out applying untargeted metabolomics [2, 13, 16, 17]. Thus, 
it is optimal to freeze urine samples as soon as possible following collection to mini-
mise the time spent at room temperature.

Analytical run times in large-scale clinical metabolomic studies can operate 
from hours to days in length during which time urine samples are kept in the autos-
amplers of LC-MS, GC-MS and NMR analysers at 4  °C. During this time, it is 
important that metabolic profiles at the end of the run are still representative of 
those in samples analysed at the start of the run. Studies suggest that 48 h at 4 °C 
does not significantly alter the urinary metabolome, as such it is recommended that 
only 48 h worth of samples should be stored at any one time in an autosampler [13, 
17]. During the metabolomic workflow from sample collection to analysis, it is 
likely that samples will be frozen and thawed a number of times due to the time 
taken to collect and prepare samples. The impact of multiple freeze thaw cycles has 
been investigated using LC-MS, and it is reported that up to nine freeze thaw cycles 

A.J. Chetwynd et al.



25

have no significant impact upon the urinary metabolome [13, 17]. However, it is 
prudent to limit the number of freeze thaw cycles to as few as reasonable possible 
[18].

A further complication to urine collection and storage is bacterial contamination 
and metabolism with a contribution to urinary metabolites by bacteria. While the 
urine itself is sterile in a healthy individual, bacterial contamination can be intro-
duced via the urethra during urination. As such it is recommended to collect a mid-
stream urine sample to minimise this risk [19]. Furthermore, a number of antibacterial 
additives such as sodium azide and sodium fluoride have been demonstrated to 
reduce metabolic variation as a result of bacterial contamination and metabolism 
[18, 20]. Storage of samples at −80 °C is also known to prevent any metabolism of 
urinary metabolites by contaminating bacteria with the added benefit of not adding 
any chemicals to the sample itself, which can be beneficial for GC-MS, NMR spec-
troscopy and LC-MS studies [18].

2.2.1.3  �Sample Preparation

Sample preparation for urinary metabolomics is an often overlooked piece of the 
experimental workflow yet plays a vital role in the quality, reliability and coverage 
of the urinary metabolome [14, 21–23]. To date the most widespread preparation 
methods for LC-MS or NMR are either the injection of neat urine following cen-
trifugation or injection of diluted urine following centrifugation [10, 19, 23]. Both 
neat and dilute urine preparations have benefits for global metabolomics. Neat is 
unmodified and therefore contains the unadulterated metabolome; however, when 
analysed by LC-MS, the sensitivity to low-abundance metabolites suffers as a result 
of high-abundance co-eluting peaks and subsequent ion suppression. The high salt 
content of urine encourages the formation of a range of adducts within the electro-
spray source, in addition to fouling the LC column and the ESI source [24–26]. The 
dilution of urine prior to analysis reduces this ion suppression and may potentially 
allow detection of some less abundant metabolites, which were previously hidden 
by a high-abundance co-eluting metabolite. However, it has been shown that many 
low-abundance peaks are diluted to below the limit of detection using a ‘dilute-and-
shoot’ method [24, 27, 28].

The use of solid-phase extraction (SPE) sample preparation methods, which 
incorporate a sample cleanup and a sample concentration step, is becoming more 
popular [28–30]. These methods allow unwanted urinary salts, matrix effects and 
proteins to be removed and with sample pre-concentration low-abundance metabo-
lites become more easily detected [23]. Importantly, the use of SPE has been shown 
to have a similar repeatability to ‘dilute-and-shoot’ sample preparation suggesting 
that a more comprehensive coverage of the metabolome can be achieved without 
compromising on data quality [28, 29]. The use of such an extensive sample cleanup 
may also have the added benefit of reducing source and chromatographic column 
fouling and extending column life.

2  Collection and Preparation of Clinical Samples for Metabolomics
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In GC-MS analysis, it is typical to lyophilise the urine samples prior to a chemical 
derivatisation step in order to improve derivatisation efficiency and thus sensitivity 
[12, 31]. In these cases urine is typically derivatised using either BSTFA or MSTFA, 
although samples requiring storage are more stable following derivatisation with 
MSTFA [12]. Recently, a number of studies have begun to utilise liquid-liquid 
extraction and SPE as a sample cleanup step without the need for a derivatisation 
stage [32]. Furthermore, the use of headspace solid-phase microextraction 
(HS-SPME) has shown promise as a method of increasing sensitivity to volatile 
organic compounds in urine. Here urine is heated, and volatiles diffuse into the gas 
phase and become trapped on the SPME fibre before being thermally released into 
the GC-MS instrument [33, 34]. SPME has the benefit of not requiring any solvent 
and being a quick technique while incorporating a sample concentration step, which 
has benefits in terms of costs and environmental impact [33–35]. The high concen-
tration of urea in urine can impact significantly on the quality of GC-MS data. The 
enzymatic removal of urea with urease is commonly applied to allow the detection 
of low-abundance metabolites, which co-elute with the broad urea peak [36]. 
However, some studies have reported a detrimental effect of urease treatment [37].

2.2.1.4  �Pre-analysis Normalisation

The solute concentration of urine is known to vary by up to 15 times both between 
and within individuals providing separate samples [38]. This is due to a number of 
contributing factors such as fluid intake and health status [38, 39]. Consequently, 
without a normalisation method to correct for this variation in urine concentration 
between samples, metabolite variation may be mistakenly attributed to the case 
study, when in fact they are a result of differences in urine concentration between 
individuals. Recently a number of studies have shown that equalising urine concen-
tration during the sample preparation process greatly reduces the effect on the bio-
logical results of varying urine concentration. This is achieved by measuring the 
urine concentration using methods such as osmolality or specific gravity and dilut-
ing samples down to the lowest concentration [40, 41].

2.2.2  �Serum and Plasma

Blood serum and plasma are the second most frequently applied biofluid in metabo-
lomic studies after urine. Blood provides a snapshot of metabolism that integrates 
many tissues in the human body through its interactions with these tissues and so 
provides a metabolic picture of global metabolism though with a lower level of 
specificity in comparison to urine. The choice of serum or plasma is an important 
but as of yet not fully answered question, and different research groups use serum 
or plasma. A number of studies have investigated the qualitative and quantitative 
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differences between serum and plasma, though only small differences have been 
identified, which do not providea a clear choice for either of the biofluids [42–44]. 
Indeed serum and plasma have been applied in a range of different applications 
related to cancer [45], endocrinology [46], inflammatory diseases [47] and diseases 
of the cardiovascular system [48].

2.2.2.1  �Sample Collection

Unlike for the collection of urine and saliva, the collection of blood requires trained 
staff (phlebotomists) to collect and process blood in suitable volumes, and therefore 
collection is routinely applied in the clinic. The collection of dried blood spots is 
one exception that does not require trained staff. Sample collection can be per-
formed by each subject, and samples can be transported at room temperature to the 
clinic by the subjects or via postal services (e.g. see reference [49]).

The main difference between serum and plasma is the presence or absence of 
clotting. For serum, whole blood is collected into tubes and is allowed to clot for a 
specified time and temperature before centrifugation to pellet the clot and cells and 
provides the liquid serum containing all metabolites and proteins not removed in the 
clotting process. Large differences in the time and temperature of clotting have been 
shown to influence the metabolite composition of serum, and standardised proto-
cols should be applied [50, 51]. The authors of this chapter recommend allowing 
samples to clot at 4 °C to reduce any metabolic activity, which in the human body 
operates optimally at 37 °C. Plasma is the liquid volume of whole blood, and the 
collection of plasma does not involve a clotting process. Instead, whole blood is 
mixed with an anticoagulant to inhibit clotting followed by centrifugation to sepa-
rate the liquid plasma from red and white blood cells. Typical anticoagulants include 
lithium heparin, EDTA and citrate. We recommend the use of lithium heparin, 
which is a high molecular mass biochemical unlike citrate and EDTA, which have 
similar molecular masses to metabolites, and indeed citrate is an endogenous 
metabolite.

For the collection of serum or plasma, whole blood is collected into different 
types of tubes following venepuncture [52]. The tubes allow for the collection of 
serum or plasma, with serum tubes containing no additive or a gel to aid clotting, 
and plasma tubes are coated with an anticoagulant to inhibit clotting. Tubes are 
inverted several times to allow mixing of anticoagulants with whole blood. The 
tubes are centrifuged, and the liquid fraction (serum or plasma) is transferred to 
separate tubes for storage [53].

2.2.2.2  �Storage and Stability

It is recommended that serum or plasma is stored as 0.5 or 1.0  mL aliquots at 
−80 °C. Both biofluids contain proteins and enzymes, for example, released from 
cells and tissues in the human body before sampling, which can provide metabolic 
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activity. Processing of whole blood should be performed ideally at 4 °C with plasma 
and serum aliquots being thawed on ice before metabolite extraction. As discussed 
for urine samples, the time-extracted samples placed in an autosampler at 4  °C 
should also be considered, and the authors recommend a maximum time of 48 h in 
an autosampler.

2.2.2.3  �Sample Preparation

Serum and plasma are a composite of water, metabolites and higher molecular mass 
biochemicals including proteins, RNA and DNA.  Metabolites range from small 
ionic species like sodium and ammonium ions, through water-soluble metabolites to 
lipids, and the method of sample preparation is dependent on the metabolites to be 
investigated. All protocols have the objective to remove higher molecular mass bio-
chemicals and extract metabolites into a suitable solvent system. The most fre-
quently applied method to extract metabolites is liquid-liquid extraction (LLE) 
[54–56]. Here an organic solvent is added in excess to serum or plasma, which acts 
to precipitate the higher molecular mass biochemicals while allowing all or a subset 
of metabolites to remain in solution. A number of different solvents have been 
reported including methanol, acetonitrile, isopropyl alcohol (IPA) [57] and acetone 
[58], and the use of different temperatures and extraction times have been investi-
gated [54, 59]. It is the choice of the researcher to define an appropriate solvent and 
temperature for their biological question and metabolites of interest; for example, 
the use of IPA for extraction of lipids is highly reported [57]. Following precipitation 
for a defined period of time, the samples are centrifuged to pellet the precipitate, and 
the supernatants are aliquoted to a different tube for further processing or analysis.

Whether the drying of samples is required should be considered in relation to the 
solvents applied. For GC-MS applications, sample drying is typically required prior 
to derivatisation with MSTFA. However, for LC-MS applications, sample drying 
can be avoided if an appropriate solvent is used for sample dilution. For example, 
for HILIC applications, which require injection of the sample in an organic-rich 
solvent, the samples can be injected directly or after dilution on to the chromato-
graphic column without drying.

The presence of lipids, predominantly glycerophospholipids, can impact on the 
quality of data and the number of unique metabolites detected in untargeted studies 
[60, 61]. Selected extraction procedures or further sample manipulation steps can be 
applied to remove single or multiple lipid classes from extracted samples prior to 
analysis. The use of biphasic extraction methods to move lipids into an organic 
solvent and water-soluble metabolites into a water/methanol solvent, with each sol-
vent immiscible in the other, provides the ability to analyse only the lipid fraction or 
the water-soluble fraction [58]. The use of complementary LC-MS assays can ben-
efit from this approach, for example, the use of HILIC methods to analyse the 
water-soluble metabolites and the use of a C18 reversed-phase method for analysis 
of lipids. SPE can also be applied, typically the sorbent is a C18 phase which absorbs 
lipids while allowing water-soluble metabolites to be eluted and analysed [61, 62].

A.J. Chetwynd et al.
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2.2.3  �Other Biofluids

2.2.3.1  �Saliva

Saliva has for the most part been an overlooked biological fluid for metabolomic 
analysis yet is thought to accurately reflect the plasma metabolome. With this in 
mind, saliva sampling could make a desirable surrogate for plasma as it does not 
require specialist collection and is easy to collect and is non-invasive [63, 64].

Consideration of the type of saliva sample either stimulated, whereby saliva pro-
duction is stimulated with citric acid, or non-stimulated (resting) is required. A 
comparison of the two has shown that TCA cycle and amino acid profiles are dis-
rupted and found at lower concentrations in stimulated saliva samples as a result of 
dilution [65]. As such the majority of studies into saliva metabolomics choose to use 
unstimulated samples, usually following a period of fasting and delayed oral hygiene 
to prevent contamination [66–68].

Saliva samples are typically collected and then frozen while awaiting analysis. 
Storage at −20 °C for up to 3 weeks has been shown to have no detrimental effect 
on the salivary metabolome [65]. Prior to any sample preparation, saliva samples 
are centrifuged to remove cellular and food debris [63].

The majority of salivary metabolomic studies have been performed using NMR, 
whereby samples are buffered in 0.2 mol L−1 phosphate buffer and diluted with D2O 
[69, 70]. In LC-MS-based analysis, saliva has been hydrolysed using both NaOH 
and HCl in order to hydrolyse and release metabolites from proteins and cells pres-
ent in the sample [63]. Hydrolysis via an ultrasonic probe has also been investigated 
as an enhanced hydrolysis method [63]. The use of any hydrolysis step has been 
demonstrated to significantly increase the number of metabolites detected; further-
more, a sample pre-concentration step is often required due to the low abundance of 
salivary metabolites [71].

2.2.3.2  �CSF

Cerebrospinal fluid (CSF) is a fluid that fills the spinal column and brain ventricles 
and plays a role in fluid regulation and nutrient transport in the central nervous system 
[72]. Metabolomic analysis of CSF offers great promise for understanding neurologi-
cal disorders such as Alzheimer’s disease and amyotrophic lateral sclerosis [73].

CSF samples are collected via ahealthcare professional using a lumbar puncture. 
In a non-traumatic collection, the fluid should be clear and void of blood. Following 
collection, samples require centrifugation to remove any cell debris and then frozen 
at −20 °C for long-term storage. For short-term storage, the CSF metabolome is 
known to be stable for up to 2 days at 4 °C but known to be unstable at temperatures 
exceeding 5 °C [72, 74].

To date CSF samples have mainly been analysed using basic dilution sample prep-
aration. However, lyophilisation and pre-concentration have been used in NMR to 
improve coverage of the metabolome at the loss of some volatile organic metabolites 
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[74]. For GC-MS analysis, samples may be derivatised using either BSTFA or MSTFA 
[75]. So far, very little work has been completed to develop new sample preparation 
methods for CSF metabolomics; given the sparse nature of these methods, it may be 
of interest to develop new methods utilising SPE or SPME in order to increase the 
ability to detect lower-abundance metabolites.

2.2.3.3  �Sweat and Breast Milk

In addition to the biofluids already discussed, a number of others are used although 
much less frequently. Sweat composition is known to be modified in several disease 
states and as such is becoming a more popular matrix for metabolomic analysis 
[78]. Sweat collection is stimulated using a sweat inducer, which is applied to the 
skin, heats the area and collects the sweat [76, 77]. Few studies have analysed sweat 
but those that have used a basic sample dilution or neat sample following centrifu-
gation for LC-MS or NMR analysis [76, 78]. Additionally, a sample cleanup method 
to remove the high salt content of sweat samples and allow a pre-concentration step 
using SPE has been developed [78].

Human breast milk has also begun to become a more popular biological fluid for 
metabolomic analysis particularly in the field of nutritional metabolomics for infants 
[79]. Care should be taken to record when the patient last fed to reduce the impact of 
the diet on the breast milk metabolome, and samples are cooled to as cold as possible 
to minimise any degradation [81]. Here for both LC-MS and NMR, a number of meth-
ods have been reported for extracting the polar and non-polar metabolites [80, 81].

2.3  �Primary and Immortalised Cells

Metabolomic studies in human biological samples have mainly focused on the anal-
ysis of biofluids for clinical applications such as disease diagnosis or prognosis 
[82]. Metabolic profiling of a whole organism does not provide information about 
specific cell types under different conditions, which may be important for the devel-
opment of drugs targeting specific cell phenotypes. In this regard, metabolomic 
studies of cell lines can be used to complement the information provided by whole 
organism metabolic phenotyping [83]. Metabolomic studies of mammalian cells 
are easier to perform and to interpret because there are no confounding factors to 
consider such as genotype, gender, age, BMI or alcohol intake, which are present in 
other clinical metabolomic applications [83, 84]. Another advantage of performing 
metabolomic experiments on cell lines is the relatively easy correlation with other 
‘omics’ approaches such as transcriptomics or proteomics, thus enabling the con-
struction of biological networks and pathway interactions at the system levels [85]. 
Cell culture metabolomics has been used in different areas including drug discov-
ery and foodomics [83, 86, 87]. It has been explored recently for metabolic tracer 
and flux analysis [88, 89] and as a tool in basic biology to understand molecular 
mechanisms such as metabolic reprogramming in cancer cells and the Warburg 
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effect [90, 91]. Different cell lines from different organs, including the first human 
cancer cell lines, have been collected in cell culture biobanks and can be easily 
accessed from biological resource centres such as the American Type Culture 
Centre (ATCC, www.atcc.org). Cell culture systems are divided into primarily cell 
culture, cell lines and cell strains, which can grow in suspension or adherently [92].

2.3.1  �Considerations

Metabolomic experiments in cell lines face different challenges in sample prepara-
tion in comparison with the analysis of body fluids. Some of these issues include 
variability of growth medium formulation, influence of number of passages, meta-
bolic quenching and metabolite extraction, which are time-consuming and might 
lead to metabolite degradation and leakage from the cell before extraction [86, 93].

Some of the above-mentioned issues in cell metabolomics can be solved by 
appropriate experimental design and the development of standard operating proce-
dures (SOPs) for metabolite extraction. Experimental design is important whichever 
sample is to be studied [94, 95]. For example, it is also recommended to randomise 
both sample extraction and sample analysis accordingly. Cell cultures grown in dif-
ferent flasks or wells, and subsequently treated in a similar way (i.e. drug treat-
ment), are considered as biological replicates [83]. Different aliquots sampled from 
the same flask or well after a defined treatment can be considered as technical (and 
not biological) replicates. For cell culture metabolomics, six biological replicates 
(i.e. from 6-well plate cultures) are recommended.

Another concern in cell line metabolomics, especially when comparing different 
cell types, relies on variations in growth media formulation. It is recommended to 
use the same media (and batch of media) for all cell lines to reduce variability in 
metabolic profiles. However, the use of sub-optimal media can also affect the meta-
bolic phonotype because cells might not achieve the same growth conditions [93]. 
Mammalian cell culture media, for example, are complex mixtures containing sev-
eral buffers, amino acids and other variable components such as foetal bovine serum 
that can cause significant ion suppression effects in LC-MS. When analysing intra-
cellular metabolites, the growth media must be efficiently washed from the cell 
pellet to avoid contamination with exogenous components [94]. On the other hand, 
when analysing extracellular metabolites, particular attention should be taken to 
method development and evaluation, to avoid leakage of intracellular metabolites 
into the extracellular medium during sampling [95].

2.3.2  �Sampling and Extraction

Metabolic profiles should represent the physiological status of the cells at the time 
of sampling. Therefore, metabolic quenching constitutes the key step to minimise 
changes in metabolite levels, to improve the reproducibility and to avoid 
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misleading results [93, 96]. Therefore, metabolite extraction from cell lines must be 
performed as quickly as possible to avoid enzymatic reactions that can change the 
qualitative and quantitative composition of the sample. A schematic representation 
of the methodological steps in metabolite extraction from cell lines is presented in 
Fig. 2.3.

The analysis of the extracellular metabolome, also known as the exometabo-
lome, metabolic footprint or spent culture media, can provide significant advantages 
as defined in Fig. 2.2. Sampling is relatively simple with separation of media from 
cells in suspension achieved either by cold centrifugation or by the use of low 
molecular mass cut-off filters [97]. It is recommended to perform these procedures 
rapidly in order to avoid metabolic activity and quantitative changes to the meta-
bolic profile. Cold centrifugation usually takes 5–15 min to complete, and in some 
cases, a washing step is needed to remove salts interfering with the mass spectrom-
etry analysis [93]. Filtration is quicker, but it is more expensive, and the membrane 
can get easily blocked [98]. A robust fast filtration sampling method has recently 
been reported called MxP® FastQuench, followed by lipid/polar extraction for cells 
in suspension. This method suggests an efficient metabolite recovery and the poten-
tial to be extendable to all mammalian cell types [99]. The collection of the extracel-
lular metabolome in adherent cells is easier because the media can be collected by 
pipetting, followed by a cold centrifugation step to eliminate cell debris. Metabolite 
extraction is then performed by adding the extraction solvent. After centrifugation, 

Fig. 2.3  Schematic methodological workflow proposed for metabolic quenching and metabolite 
extraction from mammalian cell cultures
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the supernatant is analysed directly, or evaporated for further reconstitution for the 
preferred analytical procedure [100].

Intracellular metabolite profiling of cells in suspension can be achieved follow-
ing metabolic quenching by heating or by adding ice-cold solvents. Here the sus-
pension (a composite of media and cells) is sampled followed by metabolic 
quenching and typically subsequent separation of cells from the media and solvents 
applied during quenching. The addition of ice-cold 100 % methanol at −40 °C for 
metabolic quenching should be avoided because it might lead to metabolite leakage 
after membrane solubilisation [86, 101]. Cold isotonic saline quenching solutions at 
4 °C have arisen to prevent cell membrane damage. For cells in suspension, a mix-
ture of acetonitrile/water (1:1) was demonstrated as optimal for metabolite extrac-
tion in a detailed study with different conditions for Chinese hamster ovary (CHO) 
cells [102].

Analysis of intracellular metabolites from adherent cells requires some addi-
tional and critical steps. The medium must first be discarded either by pouring it 
from all samples simultaneously or by aspiration with a pipette or a vacuum pump. 
Samples are then washed two to three times with ice-cold phosphate-buffered saline 
(PBS) to remove any medium residue. The excess of PBS is then washed out also 
by aspiration from all the samples; this is a critical step because the PBS can gener-
ate ion suppression in mass spectrometry analysis [103]. The extraction solvent 
(stored in the freezer at –20 °C) is then added to the cells in the range of 1–2 × 106 
cells mL−1, and this volume is consistent for all the samples. Plates/flasks can be 
incubated at −80 °C for 10 min, and then the cells are scraped to detach them from 
the growth surface for a final centrifugation step where the supernatant contains the 
metabolites of interest [103].

Different solvent compositions can be used for metabolite extraction from cell 
cultures. A mixture of methanol/water (4:1) has been reported, but different compo-
sitions containing methanol/acetonitrile/water can favour the extraction of highly 
polar metabolites such as nucleotide triphosphates [104]. Some authors have 
described the use of combined quenching and extraction procedures. A quick method 
for metabolite extraction involving a one-step washing with water, followed by 
direct addition of liquid nitrogen and a 1min solvent extraction step using a metha-
nol/chloroform mixture (9:1), has been reported [105]. A recently proposed method 
for the analysis of cell metabolism using LC-MS and isotope tracers has been 
reported. They suggest a polar extraction solvent-containing methanol/acetonitrile/
water (5:3:2), followed by a cell scraping procedure to fully wipe debris from the 
growth surface [89]. Others have reported cell scraping into an extraction solvent as 
an optimal procedure to simultaneously quench and harvest adherent cells [106].

For adherent cells, a trypsinisation procedure is commonly used to detach cells 
from wells or flasks. However, it has been reported that this procedure might affect 
the metabolic profiling because extra steps of washing and centrifugation can result 
in metabolite lost. In addition, this enzymatic procedure is cell type dependent, so if 
the cells are exposed to trypsin for more than 2–3 min, then cell lysis can occur with 
subsequent intracellular metabolite leaking [107]. Supernatants from simultaneous 
quenching and extraction can be directly injected into the mass spectrometer. 
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However, depending on both the number of cells in the experiment and the extrac-
tion method used for metabolite isolation, the concentration of some metabolites can 
fall below the limit of detection of the analytical instrument. A sample concentration 
procedure can be performed by either evaporating to dryness or lyophilising the 
samples and subsequent reconstitution with an appropriate solvent for the analytical 
platform of choice.

2.3.3  �Normalisation

Normalisation of metabolomic data from cell line studies constitutes an important 
topic to consider when developing and evaluating a method. Cell counting can be a 
good practice, and it must be performed immediately prior to the incubation period. 
Separate experiments have to be performed exclusively to determine the number of 
cells. Alternatively, normalisation procedures including total protein content and 
total peak area have been used [108, 109]. DNA concentration has also been recently 
proposed as an efficient and robust method for normalising metabolomic data [110].

2.4  �Tissues

A wide array of tissues have been studied applying metabolomic approaches includ-
ing muscle [111], cardiac tissue [112], liver [113], cancerous lung tissue [114], 
placenta [115], arteries [116] and skin [117]. The selection of a tissue sample pro-
vides localised metabolic activity snapshots relevant to the tissue chosen in com-
parison to biofluids, which can reflect changes in multiple organs in the human 
body. The study of tissues is normally performed to investigate mechanistic differ-
ences related to pathophysiological processes.

2.4.1  �Sample Collection, Storage and Stability

Human tissues are metabolically active and therefore require rapid metabolic 
quenching when they have been collected. Typically, tissues are collected, then are 
rapidly washed in a phosphate-buffered aqueous solution or in saline to remove as 
much blood as possible and are then rapidly frozen in liquid nitrogen to quench 
metabolism [118]. Washing of tissues to remove as much blood as possible is an 
important step as the blood metabolome will be different to the tissue metabolome 
and therefore contaminates the tissue metabolome. As for other sample types, tissue 
should be separated into appropriate size aliquots and stored frozen at −80 °C. For 
untargeted or targeted metabolomic studies, typically 20–100  mg of tissue is 
required to provide good coverage of the tissue metabolome [115, 119]. One excep-
tion is faeces, where up to 2 g of material is typically extracted [120].
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Human tissue samples are normally collected via an invasive procedure with the 
exception of a small number of tissues, which can be collected with minimally inva-
sive or non-invasive techniques. The placenta is a large pregnancy-related tissue, 
which is naturally expelled from the body following delivery of the foetus and 
which can be sampled and studied [115]. However, metabolic activity can still be in 
operation during this process, and different levels of oxygenation and nutrient deliv-
ery before and during sampling should be considered; it has been shown, for exam-
ple, that the metabolic composition of tissue early and late in the first trimester is 
different and related to the level of blood delivery of oxygen and nutrients [115]. 
Skin and tissue biopsies can be collected with minimally invasive techniques; faeces 
can be collected without an invasive technique, while most other tissues are col-
lected in a clinic or operating theatre.

One important aspect for tissues is that they are not homogenous when compared 
to biofluids. If small samples are collected from a large tissue, then careful consid-
eration must be taken to ensure the same area of the tissue is collected from different 
subjects. For example, the adult human liver weighs approximately 1.5 kg and has 
four lobes, which are metabolically different. Therefore, the collection of 50 mg of 
tissue has to be carefully considered to ensure the same area of the liver is being 
sampled. Small metabolic differences have been observed in different parts of a tis-
sue. For example, differences between the centre and edge of placenta have been 
reported [115].

The metabolic stability of tissue samples has not been studied in detail applying 
untargeted metabolomic approaches to our knowledge. We recommend similar stor-
age times and range for all samples collected for a study and matching of storage 
times between different biological classes. As for other sample types, we recom-
mend storage of the tissue at −80 °C and storage in an autosampler at 4 °C following 
extraction for a maximum of 48 h.

2.4.2  �Sample Preparation

The preparation of tissues can be separated into two processes. Tissue is normally 
homogenised applying physical techniques including manual mortar and pestle 
[115] or ball grinding with stainless steel or silica particles [121, 122]. Normally, 
this process is performed with the tissue and extraction solvent combined as the 
physical process of homogenisation also results in cell lysis and extraction of 
metabolites from the tissue into the solvent. The solvent or solvents applied vary 
depending on the assay to be applied. Extraction methods are either monophasic 
(one miscible solvent system) or biphasic (two immiscible solvent layers). 
Monophasic extraction methods provide an extract, which typically provides greater 
coverage of the metabolome in a single solution. Biphasic extractions have the 
advantage that water-soluble metabolites can be separated from lipids through the 
use of two immiscible solvents. Although each solvent system contains fewer 
metabolites, when analysed separately and the data combined, then a greater 
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coverage of the tissue metabolome is observed because of fewer interferences in the 
assays applied [123]. Monophasic extractions typically apply a water/methanol or 
water/acetonitrile solvent system through a combination of water/chloroform/meth-
anol as a single-miscible solvent system has been used [124]. The use of IPA with 
other solvents to selectively extract lipids has also been applied [123]. For biphasic 
extractions, water and methanol are typically applied with a non-polar solvent and 
chloroform [115], dichloromethane [119] and MTBE [125] have all been applied. 
The most common technique applied is the Folch extraction, developed in the 1950s, 
which extracts into a single-miscible solution of water/chloroform/methanol fol-
lowed by an addition of further water to create phase separation [126]. More recently, 
the Matyash method has grown in frequency of application, especially for the analy-
sis of lipids [127]. One experimental limitation is observed in biphasic extractions. 
The two immiscible solvents are separated by a layer composed of the cellular 
debris. The aliquoting of the top layer is relatively easy, but the aliquoting of the 
lower layer requires the puncturing of the debris layer with needle or pipette which 
can cause some of the debris to enter the lower phase and contaminate it. Chloroform 
and dichloromethane are the lower layers when applied with methanol and water as 
their densities are greater than water. The water/methanol solution is the lower layer 
when applied with MTBE as MTBE has a density less than water. Therefore, the 
choice of solvent can depend on whether water-soluble metabolites or lipids are to 
be investigated. If lipids are to be investigated only then MTBE/methanol/water is 
appropriate, as the lipids will be present in the upper layer, whereas if water-soluble 
metabolites are to be investigated, then a chloroform/methanol/water extraction 
method is appropriate to ensure the water/methanol solution is the top layer.

2.4.3  �Pre-analysis Normalisation

The normalisation of tissue mass extracted is an important aspect of tissue metabo-
lomics. With only a 5–10 % difference in the masses of tissues to be extracted, then 
the same volume of extraction solution can be applied. However, with larger varia-
tions of tissue masses being extracted the volume of solvent should be normalised 
to the mass of tissue. For example, if you were extracting two tissues of mass 20 and 
40 mg, then you would use 2× the volume of solvent for the 40 mg tissue compared 
to the 20 mg tissue. This ensures the ratio of tissue and solvent is identical for all 
samples as this ratio can influence the percentage recovery of metabolites [128].

2.5  �Cell and Tissue Imaging

The sampling of cells and tissues typically involves the homogenisation of tissues 
and the lysis of cells during the extraction protocol. These processes remove rele-
vant qualitative and quantitative information on the distribution of metabolites 
within a single cell or the collection of cells in a tissue. The subcellular location of 
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metabolites can provide further data in many clinical studies, which aid mechanistic 
interpretation. Imaging of intact cells and tissues can provide information on the 
spatial distribution of metabolites. A range of different imaging technologies can be 
applied dependent on the sample size and spatial resolution required.

Mass spectral imaging is frequently applied in metabolomics and includes 
MALDI-MS imaging [129], DESI-MS imaging [130] and SIMS imaging [131]. 
Thin tissue slices are prepared followed by analysis. Some controversy has been 
centred on whether paraffin-imbedded tissues, used commonly in pathology, could 
be applied for mass spectral imaging; recent work has shown the applicability of 
these sample types [132]. These imaging techniques raster the source across a tissue 
and collect a mass spectrum at each pixel of the sample. The mass spectral image is 
a composite of all the pixels and through computational analysis the distribution of 
different metabolites can be visualised. This approach will be discussed further in 
Chap. 12.

2.6  �Studies Without the Need for Sampling

The importance of a suitable method for sample collection and preparation has been 
highlighted for the entire sample types discussed in this chapter. Cells and tissues 
require rapid metabolic quenching, which is not always feasible in the clinical envi-
ronment. The time required for preparation and analysis of samples can be a number 
of hours, which is not ideal when data is being applied for clinical decision-making, 
especially during surgery. The ability to collect data in vivo and in real time during 
surgery and the use of these data for rapid clinical decision-making will move 
metabolomics into the operating theatre. The recent invention and translation of the 
intelligent knife (iKnife) is the most significant example of in vivo and real-time 
data collection being applied during surgery. Here the surgeon applies electrosurgi-
cal knives, which use an electrical current to rapidly heat tissue, cutting through it 
while minimising blood loss. This process vaporises the tissue and releases a smoke 
plume that can be sucked through a tube into a mass spectrometer placed in the 
operating theatre to provide real-time data for clinical decision-making [133]. For 
example, this technique can differentiate between tumour and healthy tissue allow-
ing all of the tumours to be removed while not removing too much healthy tissues, 
both allowing a more positive clinical outcome [133]. Extensions into colonoscopy 
and other applications are expected in the next 5 years [134].
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Chapter 3
Nuclear Magnetic Resonance Strategies 
for Metabolic Analysis

Clement Heude, Jay Nath, John Bosco Carrigan, and Christian Ludwig

Abstract  NMR spectroscopy is a powerful tool for metabolomic studies, offering 
highly reproducible and quantitative analyses. This burgeoning field of NMR 
metabolomics has been greatly aided by the development of modern spectrometers 
and software, allowing high-throughput analysis with near real-time feedback. 
Whilst one-dimensional proton (1D-1H) NMR analysis is best described and remains 
most widely used, a plethora of alternative NMR techniques are now available that 
offer additional chemical and structural information and resolve many of the limita-
tions of conventional 1D-1H NMR such as spectral overlay. In this book chapter, we 
review the principal concepts of practical NMR spectroscopy, from common sam-
ple preparation protocols to the benefits and theoretical concepts underpinning the 
commonly used pulse sequences. Finally, as a case study to highlight the utility of 
NMR as a method for metabolomic investigation, we have detailed how NMR has 
been used to gain valuable insight into the metabolism occurring in kidneys prior to 
transplantation and the potential implications of this.
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3.1  �Introduction

Metabolomics, like other ‘omics’ studies, has been the subject of great scientific 
interest in recent years. NMR spectroscopy is a valid method for identification of 
constituent metabolites within a bio-sample, with proponents highlighting the 
highly sensitive, reproducible nature of this technique. Metabolic pathways are 
reflective of the genome and proteome with up to 10,000-fold increase in metabolite 
concentration resulting from single amino acid change in a protein or base change 
in a gene [1]. Furthermore, metabolic changes are apparent within minutes of a 
biological event and therefore provide an almost ‘real-time’ feedback [2]. Whilst 
NMR metabolomic experiments have been described since the early 1980s [3], the 
development of high-throughput NMR spectrometers with the necessary software 
for analysis has been relatively recent and has greatly improved its scientific utility 
[2]. Indeed, the development of modern NMR spectrometers combined with the 
setup of standardized sample preparation and acquisition protocols [4] has enabled 
the analysis of thousands of molecules with high sensitivity and reproducibility 
within a few minutes [5].

NMR metabolomic techniques have been used to gain clinical insight into a mul-
titude of pathological conditions, ranging from cancer [6] to neurodegeneration [7], 
and a full range of the clinical applications of NMR is outside the remit of this 
chapter. However, in order to highlight some of the applications of NMR spectros-
copy, we have used renal transplantation as a case study.

3.2  �NMR of Biological Samples

Whilst variation in spectrometer configuration does exist between groups, efforts 
have been made to standardize NMR techniques to optimize reproducibility and 
enable valid comparison of results. Multinational projects such as the International 
Phenome Center Network (IPCN) have served to further highlight this, with the 
principal instrument manufacturer suggesting a standardized setup for this purpose. 
This configuration is a 600 MHz spectrometer, equipped with the latest generation 
of console, a 5  mm room temperature probe and a temperature-controlled auto-
mated sample-changing robot. For the purpose of this review, we will mainly focus 
on this standard spectrometer configuration, and whilst this is sufficient for the vast 
majority of NMR metabolic studies, there are situations (e.g. limited sample size) 
where this is inappropriate and alternative configurations should be used (e.g. cryo-
genic or fine bore probes).

Fortunately, sample preparation of biological samples prior to NMR analysis is 
usually relatively straightforward with example protocols for commonly used sam-
ples discussed below. Common to all sample preparation protocols is the addition of 
a phosphate buffer solution and of an internal chemical shift standard such as TMSP 
or DSS. Deuterated water (D2O) is added to all aqueous NMR samples to a final 
concentration of 5 %. NMR systems use the D2O signal as a lock frequency to com-
pensate for long-term magnetic field drifts. Once samples are transferred into NMR 
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tubes, the caps should be sealed with a polyoxometalate (POM) ball to avoid solvent 
hydrogenation and evaporation. If there is any delay between sample preparation 
and data acquisition, it is a good practice to store samples at −80 °C during any 
interim period.

3.2.1  �Biofluids: Plasma/Serum (Blood-Derived Samples)

In contrast to serum, plasma is usually collected into vials containing an anticoagu-
lant to prevent clot formation and maintain samples in a fluid state. The choice of 
anticoagulant (typically either lithium heparin or ethylene diamine tetra acetate 
(EDTA)) [8] depends on the NMR analysis purpose. For lipoprotein analysis, EDTA 
is advantageous as lithium heparin and lipoprotein signals overlap making the inter-
pretation complex. Similarly, for the analysis of small metabolites, lithium heparin 
is preferred as the Mg2+ and Ca2+ complexes within EDTA results in signal overlay.

A widely endorsed sample preparation protocol [4] for blood-derived (either 
plasma or serum) samples using 5 mm NMR tubes consists of sample centrifugation 
(typically 15 min) with subsequent collection of the supernatant. 350 μL of sample 
(plasma or serum) is mixed with 350 μL of a pH 7.4 75 mmol L−1 NaH2PO4 phos-
phate NMR buffer solution in an Eppendorf tube with a solvent composition of 
H2O:D2O of 90:10 as well as containing the chemical shift standard DSS at a con-
centration of 0.6 mmol L−1.

3.2.2  �Biofluids: Urine

As urine samples are prone to bacterial contamination, a small volume of aqueous 
NaN3 solution (0.05 %  m/v) is commonly added to each sample before storage 
(−80 °C) and sample preparation. 600 μL of urine is centrifuged at high speed, and 
540 μL of supernatant is vigorously mixed with 60 μL of a 1.5 mol L−1 pH 7.4 
KH2PO4 phosphate buffer solution containing sodium trimethylsilylpropanoate 
(TMSP). As for the plasma samples, the tubes are sealed and placed in an automatic 
sample changer prior to NMR analysis.

3.2.3  �Tissue/Cells: Extraction Procedures

Analyses of tissues or cells for NMR metabolomics commonly require extraction 
procedures to disrupt tissue and cellular integrity and ensure consistent metabolite 
distribution within samples. Although the utility of tissues or cells for NMR metab-
olomics analyses is self-evident, there is no standardized extraction procedure for 
this and is likely to reflect the different characteristics of tissues studied. However, 
there are some steps common to all extraction methods.
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The first is the cessation of enzyme activity and therefore ongoing metabolic 
processes. This is commonly achieved by quenching the samples [9] in liquid N2 or 
in chilled methanol (−40 °C) with subsequent storage at −80 °C until extraction.

Homogenization is necessary to release intracellular metabolite stores. The two 
principal methods for this are fast homogenization using an electric tissue homogenizer 
[10] or manual homogenization using a liquid nitrogen-cooled mortar and pestle [11]. 
However, the second method is cumbersome, labour intensive and time-consuming and 
requires great caution to avoid partially thawing of the samples during grinding.

Because the large variety of metabolites contained within cells and tissues, and 
the wide range of polarity and physicochemical features of these, there is no ideal 
method to extract the entire metabolome. However, as NMR-based metabolic stud-
ies mostly focus on the polar compounds, the optimal method should be able to 
extract the highest amount of polar metabolites from the sample.

Furthermore, the method must be robust, reliable and, depending on the scien-
tific purpose, sometimes be able to remove lipids very efficiently. Considering the 
high number of extraction methods, only the main procedures used in metabolomics 
will be described in this section.

One widely used extraction method is the perchloric acid method [12]. This pro-
cedure allows proteins to precipitate and extracts hydrophilic metabolites. The sam-
ples are centrifuged after the addition of the acid to remove proteins from the sample, 
and the supernatant is collected after being neutralized with potassium hydroxide 
(KOH). Whilst this method is very effective for extracting amines [13], acid treat-
ment may damage the chemical structure of other metabolites of interest. Hence, 
monophasic methods, such as the acetonitrile/water [14], methanol/water or metha-
nol/acetonitrile/water [15], and biphasic procedures such as methanol/chloroform/
water [16] are widely used. An alternative biphasic extraction method has been 
developed using methyl tert-butyl ether (MTBE) [17] instead of chloroform to reduce 
solvent toxicity. For all mono-/biphasic methods, the polar phase is recovered after 
centrifugation and dried using a vacuum concentrator. Once dried, samples are usu-
ally resuspended in phosphate buffer and centrifuged before the supernatant is placed 
in an NMR tube. Although biphasic methods are more labour intensive, the results 
are superior, compared to monophasic techniques, in terms of yield and reproduc-
ibility [18] and provide hydrophilic and hydrophobic metabolite separation.

In addition, although mainly used for liquid chromatography-mass spectrometry 
(LC-MS) analysis [19, 20], solid phase extraction (SPE) can also be successfully 
applied for NMR analysis as a separation technique or in order to concentrate the 
metabolic content and thus enhancing the sensitivity. Recently, SPE has been incor-
porated into LC-NMR systems as an interface between LC and NMR, the SPE 
cartridges trapping the peaks of interest.

3.2.4  �Tissue: HR-MAS Samples

Although most NMR-based metabolic tissue studies are performed following extrac-
tion, an elegant alternative method for tissue analysis is high-resolution magic angle 
spinning (HR-MAS) spectroscopy. In addition to the avoidance of time-consuming 
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extraction procedures, HR-MAS is non-destructive enabling sample recovery after 
analysis, which is often particularly useful in clinical studies where tissue volume is 
critical and needed for different investigative modalities (e.g. histopathology). Another 
advantage of HR-MAS is that it allows the absolute quantification of all the different 
metabolites by working directly on the raw material [21], avoiding inconsistencies 
inherent to all extraction methods. However, unlike 1D liquid-state NMR, additional 
pulse sequence elements such as CPMG (Carr-Purcell-Meiboom-Gill) are necessary 
to remove broad signals from macromolecules from the HR-MAS NMR spectrum. 
Unfortunately, the use of a CPMG element, which is a T2-filter, leads to a loss of 
magnetization. Hence, metabolite concentrations derived from CPMG spectra have to 
be corrected to account for magnetization loss during the CPMG sequence. Various 
methods have been developed to minimize the problem of magnetization loss [21–
23]; however, T2 relaxation times of different metabolites are tissue dependent; there-
fore a universal solution addressing all different tissue types used is not available.

For HR-MAS tissue studies, the most common NMR sample preparation method 
[24, 25] involves acquiring a tissue sample using a 2 mm biopsy punch and placing 
this (typically between 10 and 15 mg) into a 33 μL-disposable Kel-F insert with 
10 μL of deuterium oxide (D2O) containing TMSP. Contrary to liquid-state NMR, 
for HR-MAS, homogenization of the magnetic field has to be done manually prior 
to data acquisition. The solvent has also an important role by increasing the degree 
of mobility of the sample which facilitates the averaging of dipolar interactions at 
the magic angle [26].

The use of a biopsy punch allows work with either frozen or fresh tissue. The 
insert is then sealed with a conical plug and a screw cap before being placed into a 
standard 4 mm zirconium oxide (ZrO2) rotor and closed with a cap.

Another way to prepare HR-MAS samples is to introduce the sample directly 
into a 4 mm ZrO2 rotor fitted with a 12 or 50 μL cylindrical insert [27] and adding a 
variable amount of solvent, depending on rotor and actual sample size. Generally, 
all the different steps of the sample preparation protocol are done on a cooled plate 
(3–4 °C) to minimize tissue degradation.

Disposable inserts are advantageous during sample preparation as their use 
avoids long and fastidious washing procedures necessary to avoid cross-
contamination between samples. After the sample insertion into the NMR rotor, the 
rotor is then either immediately inserted into the HR-MAS probe pre-cooled to 3 °C 
or placed in a cooled HR-MAS sample changer.

3.3  �NMR Pulse Sequences

There are several NMR spectroscopic methods used to identify and quantify the 
metabolome. For quantification, the simplest method is one-dimensional proton 
NMR spectroscopy (1D-1H NMR). Another commonly used method is two-
dimensional proton J-resolved NMR spectroscopy (2D-1H Jres NMR). For the pur-
pose of signal annotation (i.e. peak identification), NMR spectroscopic techniques 
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such as two-dimensional proton-proton homonuclear total correlation spectroscopy 
(2D-1H,1H TOCSY) and two-dimensional proton-carbon heteronuclear single quan-
tum coherence spectroscopy (2D-1H,13C HSQC) are commonly used. The 2D-1H,13C 
HSQC method is also commonly used in tracer-based metabolism analysis.

3.3.1  �1D 1H NMR Spectroscopy

Because of the reproducibility and suitability for high-throughput sample analysis, 
1D-1H NMR spectroscopy is widely used for NMR-based metabolomic studies [4]. 
Another advantage of this approach is the linearity of the NMR signal with respect 
to the metabolite concentration, i.e. 1D-1H NMR is perfectly suited to quantify 
metabolite concentrations in complex mixtures with a large range of concentrations 
of the different molecules.

Most samples for NMR analysis are water based (e.g. urine / plasma / CSF), and 
even dried extracts are usually resuspended in aqueous solutions. As the metabolite 
concentrations within samples are usually quite small (50 μmol L−1 to 50 mmol 
L−1), compared with proton concentration of water (approximately 110 mol L−1), 
water suppression is needed to suppress the otherwise domineering signal of water-
related protons within the NMR spectrum. Several methods for water suppression 
are commonly used and briefly discussed.

The simplest approach is to irradiate the sample with a weak (i.e. not to affect 
other NMR resonances apart from the water signal) radio frequency (RF) pulse for 
an extended period of time (usually 4–5 s) prior to an excitation pulse with a much 
higher RF strength to generate observable magnetization. Although this approach, 
also known as pre-saturation, is the simplest form of water suppression, it can be 
greatly enhanced by a NOESY pre-saturation pulse sequence [28]. In this, the exci-
tation pulse is replaced by three consecutive pulses where a short (typically 10 ms) 
mixing time is introduced between the second and the third pulse. The three pulses 
effectively replace the single excitation pulse in the pre-saturation experiment and 
result in a more uniform excitation of the NMR sample, which leads to enhanced 
water suppression. Pulsed field gradients are commonly used to enhance water sup-
pression using this NMR technique.

Other water-suppression techniques, such as SOGGY [29], are potentially supe-
rior in terms of water suppression but introduce artefacts into the NMR spectra, 
which lead to non-linearity of the NMR signal with respect to the metabolite con-
centration. Given the RF homogeneity modern NMR probes can achieve, the 
NOESY pre-saturation experiment is the best-suited NMR pulse sequence for 
1H-NMR-based metabolomic studies.

The area under each signal in a 1D-1H NMR spectrum is proportional to the 
number of nuclei contributing to this signal, which can be used to accurately quan-
tify metabolite concentrations. Using high-powered spectrometers, metabolite con-
centrations as low as 50  μmol L−1 can be reliably quantified within complex 
samples.

3  Nuclear Magnetic Resonance Strategies for Metabolic Analysis



52

3.3.2  �2D J-Resolved NMR Spectroscopy

Each proton in a molecule within a unique chemical environment results in a peak 
in a 1D-1H NMR spectrum. Even with a small number of constituent molecules 
within a sample, NMR spectra often have hundreds of different peaks resulting in 
areas of overlapping peaks termed ‘spectral congestion’. This congestion phenom-
enon is exacerbated by signal splittings through spin-spin or J-coupling. Depending 
on the number of protons attached to adjacent carbons, NMR signals are split into 
several components. Collectively, this compromises unambiguous peak identifica-
tion and accurate metabolite quantification. To resolve any spectral discrepancies, 
the introduction of an independent second dimension can be invaluable (2D NMR). 
Figure 3.1 depicts a 2D-Jres spectrum of glutamate.

One of the simplest two-dimensional pulse sequences is 2D J-resolved NMR 
(2D-Jres NMR) spectroscopy [31]. The acquisition of a 2D-Jres spectrum is com-
paratively quick, compared to most 2D NMR methods, and can be achieved in as 
little as 5 min [32]. 2D-Jres spectroscopy reduces spectral overlap by separating 
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Fig. 3.1  One-dimensional projected Jres (a, b) and two-dimensional Jres spectra (c, d) of gluta-
mate. The spectra in a and c are obtained by Fourier transformation of the apodized 2D-FID, 
whereas the spectra in b and d are the result of the same processing as the spectra on the left-hand 
side followed by a TILT and symmetrization procedure, which effectively removes homonuclear 
1H couplings from the 1D projection. All spectra were processed and plotted using the MetaboLab 
software package [30]
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chemical shift and signal splitting. Whilst the horizontal dimension of the 2D spec-
trum contains contributions from both chemical shift and J-coupling, the vertical 
dimension of the spectrum contains only information from J-coupling. Through a 
procedure termed tilting, followed by symmetrisation, the J-coupling information 
exclusively appears in the vertical dimension of the spectrum, whilst the horizontal 
dimension only contains chemical shift information. The projection of the resulting 
2D spectrum (pJres) onto the chemical shift axis appears as a proton-decoupled 1D 
NMR spectrum with all signal splittings being removed.

Another benefit of this spectroscopic technique is that it is possible to directly 
compare spectra acquired at different magnetic field strengths. Whilst resonance 
frequencies change linearly with the external magnetic field strength, J-coupling 
constants are fixed and independent of the external magnetic field strength. Through 
the separation of chemical shift and J-coupling into two independent dimensions, 
spectra acquired at different magnetic field strengths can be directly compared. This 
is not possible using a 1D 1H NMR spectroscopic approach.

Although this experimental approach reduces overlap in the resulting NMR 
spectra, there can still be substantial spectral congestion present. Magnetisation 
transfer throughout the entire molecule (e.g. 2D-TOCSY) or the introduction of dif-
ferent nuclei (e.g. 13C using a 2D-1H,13C HSQC approach) can be very helpful to 
further reduce spectral overlap. However, 12C, by far the most abundant carbon iso-
tope, is not NMR active. The natural abundance of 13C is only 1.07 %, whereas it is 
practically 100 % for 1H, and therefore limits detection to metabolites with reason-
ably high concentrations. Most metabolomic studies employ spectral techniques 
such as 1D-1H or 2D-Jres using only the most sensitive nucleus, 1H.

Both 1D-1H and 2D-Jres NMR are untargeted approaches. No assumptions about 
molecular composition, etc. are made. The acquisition times are reasonably short so 
that spectra can be acquired in high throughput. Hardware development in recent years 
(e.g. automated sample filling, sample changing, tuning and matching) supports this 
approach. Using these NMR approaches, it is possible to acquire spectra for approxi-
mately 50–100 samples in a day using a single spectrometer. There are several spectral 
databases and numerous software tools available to facilitate the analysis of these 
spectra. At this stage, these NMR approaches are beneficial for metabolic profiling. 
Metabolites soluble in aqueous solutions are quantifiable using this methodology. 
Such metabolites include sugars, organic acids, amino acids, phenolic compounds.

3.3.3  �2D 1H-1H-TOCSY NMR Spectroscopy

The 2D 1H-1H-TOCSY NMR experiment can help to reduce overlap further. In a 2D 
TOCSY spectrum, both frequency axes are chemical shift axes. The magnetization 
is transferred around the entire spin system (which is any part of a molecule where 
protons are not separated by a quaternary carbon). Therefore, in addition to signals 
with the same chemical shift in both dimensions (also known as diagonal peaks), 
additional signals appear where the chemical shifts in the horizontal and the vertical 
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dimension, respectively, are different (cross peaks, see Fig. 3.2). These cross peaks 
can help to annotate peaks in overcrowded regions of a 1D spectrum. As long as one 
of the resonances in the molecule is far enough away, the cross peak will be isolated 
in the 2D spectrum. Even if both diagonal signals, giving rise to the cross peak, are 
located in overlapped regions of the spectrum, it is still possible to obtain isolated 
cross peaks, as long as there is no other molecule that contains protons with very 
similar resonance frequencies in a single spin system.

The key element for the TOCSY experiment is the isotropic mixing sequence. 
This pulse sequence element creates an environment where the magnetization trans-
fer via the J-coupled proton network can occur. There is a variety of different isotro-
pic mixing sequences available with the DIPSI-2 and several variants of the MLEV 
being amongst the most commonly used. Whilst DIPSI-2 is a sequence developed 
for an optimal polarization transfer without shaped pulses, MLEV/16 is purely 
based on 180° pulses and therefore suffers considerably from off-resonance arte-
facts. These artefacts can be avoided if the pulses used cover a very large bandwidth, 
which is why this mixing scheme is often used in conjunction with adiabatic pulses 
[33]. This is particularly attractive when using a HR-MAS probe, because the adia-
batic pulses can be easily synchronized with the rotor speed, eliminating potential 

Fig. 3.2  Two-dimensional TOCSY spectrum of glutamate with 1D-NOESY-presat spectra of glu-
tamate shown on top and the right side. Magnetization is distributed across the entire spin system 
inside the glutamate molecule. The NMR signal at the upper right-hand corner without any cross 
peaks to the glutamate signal belongs to a different molecule (DSS). All spectra were processed 
and plotted using the MetaboLab software package [30]
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magnetic susceptibility-based artefacts as well as magnetization loss through RF 
inhomogeneity [34].

2D 1H-1H-TOCSY NMR spectra can also be used to determine relative pathway 
information in tracer studies. In any 1H NMR spectrum, a proton signal is split into 
two peaks if the proton is bound to a 13C nucleus. Whilst in a 1D-1H spectrum this 
signal splitting exacerbates the spectral congestion, cross peaks in a 2D 1H-1H-
TOCSY spectrum are well enough resolved to cope with the additional spectral 
complexity. Because each cross peak in a 2D-TOCSY spectrum belongs to two dif-
ferent protons, the splitting pattern of the cross peaks carries information on 13C 
isotopomer distribution in the molecule [35].

3.3.4  �2D 1H-13C-HSQC NMR Spectroscopy

The 2D 1H-13C-HSQC spectrum compared to the 2D 1H-1H-TOCSY spectrum 
shows a further decrease in spectral overlap. The HSQC pulse sequence transfers 
magnetization between protons and directly bounds 13C nuclei, therefore correlating 
their respective resonance frequencies. Each pair of carbon and proton nuclei gives 
rise to a signal in a 2D-HSQC spectrum, with the 13C chemical shift usually dis-
played in the vertical and the 1H chemical shift in the horizontal dimension. The 
correlation of the two chemical shifts can help to annotate signals where there is 
ambiguity in 1D-1H spectra.

Because of the natural abundance of 13C (1.07 %), its use in standard metabolo-
mic studies is quite limited due to its reduced sensitivity, which is vital for unam-
biguous metabolite identification. However, the 2D-1H,13C HSQC experiment is 
invaluable for tracer-based approaches [36, 37]. Rise in signal intensity and 13C-13C 
signal splittings, arising in the vertical (13C) dimension of high-resolution HSQC 
spectra can be used to conduct a model-free isotopomer analysis in order to study 
metabolic events in great detail [37].

To retain multiplicity information, HSQC spectra need to be acquired at high 
resolution, such as 16,384 increments, which leads to prolonged acquisition times. 
Even when using fast acquisition techniques such as non-uniform sampling schemes 
(NUS), acquisition times can be as long as 5 h per spectrum.

3.4  �Data Preprocessing

Most NMR-based metabolic studies, especially in a clinical setting, are performed with 
a large sample number. Differences between sample groups are not known in advance 
and can be quite subtle. Hence, the use of multivariate statistical analysis is essential in 
order to highlight differences or correlations between samples or groups of samples.

However, these multivariate statistical analyses are extremely sensitive to data 
preprocessing, which is an intermediate step between raw NMR spectra and statisti-

3  Nuclear Magnetic Resonance Strategies for Metabolic Analysis



56

cal data analysis. Given the potential for errors during the multiple steps between 
raw NMR data and statistical outputs, robust and accurate processing is essential to 
ensure differences between the sample groups are biologically meaningful. Key 
stages of NMR data processing and preprocessing are detailed below.

3.4.1  �Automated NMR Spectra Processing

An essential step after acquisition of the FID (free induction decay) is Fourier trans-
formation (FT). This operation converts a signal from the time domain (seconds) to 
the frequency domain (Hertz). This procedure is fully automated on modern NMR 
spectrometers. Prior to FT, weighting functions, also called apodization functions, 
and zero filling are performed. The zero-filling process is based on the addition of 
zeroes to the existing data points of the FID to double their number (‘zero filling 
once’). This is done to increase the resolution of the spectrum. The weighting func-
tions are used to enhance either the sensitivity or the resolution of the resulting NMR 
spectrum, depending on the type acquired (e.g. 1D-1H vs. 2D-Jres NMR). This pro-
cedure consists of multiplying the FID by a mathematical function (e.g. a decaying 
exponential, Gaussian, sine or squared sine bell or a combination of those window 
functions). The most commonly used apodization function for 1D-1H NMR is the 
exponential window function, generally applied with a line broadening of 0.3 Hz. For 
2D JRES experiments the most widely used window functions are sine or SEM [38].

Usually, only the real part of the frequency domain is displayed but it contains a 
mixture of absorption and dispersion line shapes. An absorption Lorentzian line 
shape is always positive and is centred at the frequency of the signal, whilst a dis-
persion Lorentzian line shape is broader and made of positive and negative parts.

Unfortunately, the spectrometer produces time-domain data with an arbitrary 
phase and so the real part of the spectrum will not be in pure absorption mode. 
Hence, it is necessary to adjust the phase of the spectrum until all the peaks appear 
to have the required absorption line shape. This procedure is called ‘phasing the 
spectrum’ and can be done automatically or manually using NMR software. This 
crucial step has to be done for 1D and multidimensional NMR spectra alike. It is 
important to point out that the process of manual phase correction is operator depen-
dent with different spectroscopists producing different results based on the same 
raw data. Accordingly, automated phase correction is preferable, particularly for 
room temperature systems, where instruments produce data with very stable phases 
and high-quality baselines. In contrast, on cryogenic NMR systems, which gener-
ally produce spectra with less phase stability and less favourable baseline proper-
ties, phase correction has to been done manually.

3.4.2  �Baseline Correction

Once all spectra have been phased, the next important preprocessing step is baseline 
correction. Indeed, most NMR spectra present baseline distortions due to different 
factors originating from instability or imperfections of the spectrometers or from the 
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nature of the sample (heterogeneity of the sample and chemical exchange). The pres-
ence of macromolecules (long chain lipids or proteins), which have very short relax-
ation times compared to small metabolites, gives rise to very broad signals in the 
NMR spectrum. Therefore, macromolecular signals appear as baseline distortions in 
the spectrum. As baseline distortions affect the area under each NMR peak, it impacts 
on metabolite quantification. As most multivariate statistical analysis methods treat 
baseline signals (noise) and real signals in the same way, these are directly affected 
when the baseline is not perfectly flat and can lead to overfitting of the data.

To correct these distortions, baseline correction can be performed either on the 
raw data before FT or on the NMR spectrum. Although the latter is the most com-
monly used way to adjust the baseline, it is possible to reconstruct the time domain 
by oversampling [39] or extrapolation [40] of the data. Digital filters have also been 
integrated into the acquisition parameters on modern NMR spectrometers to obtain 
a flat baseline with a very low residual first order phase correction by shortly delay-
ing the acquisition and calculating the missing data points during this delay. For 
state-of-the-art NMR-based metabolic studies, use of the digital filters is highly 
recommended.

Baseline correction in the frequency domain is based on a subtraction of a mod-
elled baseline of the experimental NMR spectrum. The most common methods are 
iterative polynomial fitting with automatic threshold [41], asymmetric least square 
smoothing (AsLS) [42], locally weighted scatterplot smoothing (LOWESS) [43] 
and automatic peak recognition followed by fitting a fifth degree polynomial and its 
subtraction from the original spectrum [44]. It is also possible to correct the baseline 
in an automated way using commercially available NMR software packages such as 
the Chenomx NMR suite [45].

For major baseline distortions, in particular when using cryogenically cooled 
probes, manual baseline correction is recommended. However, on standard meta-
bolic systems with room temperature probes, automated processing is recommended 
to achieve the highest degree of reproducibility.

3.4.3  �Alignment

Signal shifts between spectra from different samples lead to major problems in sub-
sequent data analysis. These shifts can occur even if all the samples have been pre-
pared following the same strict sample preparation protocol. Chemical shift 
referencing using the internal standard only allows correcting for global shifts 
between samples. Peaks can shift to different extents and in opposite directions for 
different signals in the NMR spectrum. Chemical shift is influenced by a multitude 
of factors, including concentration of salts or specific ions, instrumental factors or 
temperature and pH variations. Even small variations can bias multivariate statisti-
cal analysis and obscure the discovery of biomarkers or the pattern of metabolic 
profiles. Therefore, it is necessary to use alignment algorithms as an additional pre-
processing step to correct for local signal shifts.

One of the most common NMR alignment methods is correlation optimized warp-
ing (COW) [46], which aligns different intervals by optimizing the overall correlation 
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between the sample and a reference spectrum. This algorithm divides the spectrum 
into equal-sized segments and aligns them independently by compression or stretch-
ing. Although initially created to correct for misalignment of chromatographic data-
sets, this method works reliably for NMR spectra.

Another widely used method is interval correlated shifting (icoshift) [47]. This 
warping method consists of segmenting the NMR spectra into regularly spaced or 
different length segments and aligning the different segments to a reference spec-
trum. The algorithm calculates and maximizes the cross-correlation of each interval 
by a fast Fourier transform (FFT) and aligns all the segments simultaneously. By 
aligning the entire set of spectra concurrently, it shortens calculation time compared 
to the COW algorithm significantly.

Peak alignment represents a key challenge in NMR spectroscopy. Various meth-
ods to correct for signal misalignment have been developed such as hierarchical 
cluster-based peak alignment (CluPA) [48], dynamic time warping (DTW) [46] and 
peak alignment using reduced set mapping (PARS) [49]. For urine datasets, an iter-
ative fuzzy warping (FW) [50] algorithm, initially developed for chromatography, 
has been introduced and successfully implemented for NMR spectra.

Despite being widely used, these alignment methods may bias signal areas and 
can compromise the accuracy of metabolite quantification. For this reason, absolute 
quantification based on raw data is advised. Software packages such as Chenomx 
allow for signal shifts in individual NMR spectra and can therefore be used for reli-
able metabolite quantification without the need for signal alignment.

3.4.4  �Binning

To apply multivariate statistical analysis, it is necessary to transform all the infor-
mation contained in the spectra into a table containing as many rows as observations 
(samples) and as many columns as the number of variables (NMR data points). 
However, in metabolic studies, an NMR spectrum contains tens of thousands of data 
points, and a bucketing or binning procedure is commonly applied to reduce the 
number of variables and simplify data analysis. Binning consists of segmenting the 
NMR spectrum into a number of bins and measuring the integral (area under 
the curve) of every segment. Signal shifts smaller than the bin size will vanish after 
binning if they occur just within a single bin. Binning leads to a loss of resolution, 
and the size of the different bins has to be determined carefully. There are two dif-
ferent spectral binning procedures: all bins can be of equal size, typically between 
0.005 and 0.05 ppm. Alternatively an ‘intelligent’ binning procedure [51–55] can be 
applied, which determines the size of each interval in such a way that every bin 
represents a peak or a group of peaks. The main drawback of equidistant binning is 
the risk of splitting a peak when a signal is assigned to different bins in different 
NMR spectra. Indeed, even if all the spectra are correctly aligned, due to different 
shimming qualities, the boundaries of the peak may vary slightly. Therefore, the use 
of variable bin size is recommended.
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Regions of the spectrum containing only noise should be removed from the NMR 
spectrum to avoid overfitting of the data during statistical analysis. It is also necessary 
to remove regions corresponding to the solvent signals used during extraction or sample 
preparation. When a solvent suppression method (e.g. pre-saturation of one or multiple 
frequencies) is used, it is very important to exclude not only the region corresponding 
to the residual solvent peak but the entire region affected by the saturation.

3.4.5  �Data Normalization

As we have seen in a previous part of this chapter, although NMR sample prepara-
tion is straightforward and most of the protocols are standardized and highly repro-
ducible, small variations linked to this step may appear between the samples. For 
example, small variations may be caused during multiple stages of sample prepara-
tion (pipetting, weighing tissue). Furthermore, in the case of metabolic urine studies, 
the urine concentration, which depends in particular on the amount of water ingested, 
could also create variations between the samples. All these factors introduce varia-
tions in signal intensities which are not correlated to metabolism and which interfere 
with multivariate statistical analysis. To correct these effects, different normalization 
methods have been developed. The first one is normalization of the entire spectral 
area, which consists of dividing the intensity of every bucket by the total spectral 
area (TSA) normalization. However, this method has limitations in terms of robust-
ness and accuracy especially in the case of an important variation of one or few 
metabolites by downscaling the normalized spectra [56]. Thus, the standard method 
used in NMR-based metabolic study, which is able to address this issue, has been 
established and called probabilistic quotient normalization (PQN) [56]. This algo-
rithm relies on the determination of the most probable dilution factor for all signals 
of the spectrum compared to a reference spectrum. Once the most probable quotient 
(k) has been calculated, a k-fold normalization is applied to all the variables.

The two above-mentioned procedures are the most common in NMR metabolo-
mics, but other normalizing methods may also be used including normalization to 
creatinine concentration (for urine samples), vector length normalization and histo-
gram matching normalization [57].

At this stage of the data processing, the final step is variance stabilization of the 
different variables. The concentration ranges of all the metabolites detected by NMR 
may be very important and vary a lot between the different samples. Although the 
most abundant metabolites usually display larger variations, it frequently happens that 
small signals are responsible for the discrimination between two groups of samples. If 
the data is not scaled, higher signals will have the largest influence on the statistical 
multivariate results and can obscure the contribution of the smaller signals. The most 
common scaling methods in NMR metabolomics are mean centring, autoscaling, 
Pareto scaling, vast scaling and glog transformation. It is important to point out that 
contrary to normalization methods, which are carried out independently on each sam-
ple, scaling operations are performed simultaneously on all spectra in the dataset.
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Mean centring transforms all bins in such a way that they vary around zero 
instead of around the mean value and corrects variations between high-concentrated 
and low-concentrated metabolites. From a mathematical point of view, it consists of 
subtracting the mean intensity of each column for each observation and is typically 
applied prior to the application of another scaling method.

Autoscaling, also called standardization, involves the reduction of the data by 
dividing every variable by its standard deviation, whilst Pareto scaling entails a divi-
sion by the square root of the standard deviation. Autoscaling converts all the values 
in such a way that all the metabolites have unit variance, so that they are equally 
important and have a comparable scale. Great care has to be taken when applying 
autoscaling. This method gives a large influence to variables containing only noise 
and could lead to overfitting of the data. Therefore, Pareto scaling is a good alterna-
tive by being an intermediate between standardization and no scaling, hence staying 
closer to the original data. However, this procedure has the disadvantage to decrease 
the importance of large variations, the latter being more reduced than small varia-
tions. Vast scaling [58], which corresponds to the acronym of variable stability 
(Vast), is an extension of autoscaling, but an additional scaling step is done using 
also the coefficient of variation as a scaling factor. This method has the opposite 
effect of Pareto scaling: it increases the influence of metabolites with small standard 
deviation and decreases the one of metabolites with large standard deviation. 
Finally, one of most suitable scaling method for NMR-based metabolic studies is 
the generalized logarithm (glog) transform [59]. It transforms the intensity for each 
variable to a new value dependant on the transform parameter and the value of origi-
nal intensity, to stabilize the variability in the dataset. This method has been reported 
to be more suitable and more efficient than the other ones above-mentioned [59].

At this stage, the data are ready to be analysed by unsupervised multivariate 
statistical analysis such as principal component analysis (PCA) [60] or independent 
component analysis (ICA) [61] as an exploratory tool to determine some trends 
between the samples and in some favourable case to discriminate groups of sam-
ples. When the separation obtained with unsupervised methods is not good enough, 
it is possible to apply supervised methods (with pre-assignment of classes to the 
different samples) such as partial least square – discriminant analysis (PLS-DA) or 
orthogonal PLS-DA (OPLS-DA) [62].

Figure 3.3 shows an example of a statistical data analysis applied to a series of 
30 NMR spectra, which underwent data processing and preprocessing as outlined in 
this section.

3.5  �NMR Databases for Metabolic Research

With the growth of NMR-based metabolomics over the past decade, there has been 
a concomitant need for appropriate spectral databases to aid in the identification of 
metabolites. During the early days of metabolomics or metabolite analysis by NMR, 
laboratories had to construct their own private databases and run a range of 
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reference spectra of the most common metabolites they expected to find. This tar-
geted approach also involved consulting with published work to search for it. Apart 
from being time-consuming, this was generally unsatisfactory given the many 
methods by which samples were prepared and analysed. The need for databases 
containing not only reference spectra but also information pertaining to how this 
data was obtained (in addition to other information, such as cross reference) has led 
to an enormous increase in confidence within the discipline. Most modern spectral 
databases vary in the detail of their content, may be freely available and may vary in 
sophistication and indeed in price in some circumstances. Whilst they contain, as a 
minimum, chemical shift reference information, others may provide complex 
spectral-fitting algorithms, allowing for proper quantification of metabolites within 
a complex matrix. 1D NMR data remains the most abundant data accessible, but, in 
recent years, a surge in HSQC and TOCSY experimental spectral libraries has been 

Fig. 3.3  Possible outcome of a statistical data analysis of NMR spectra. Panel a shows an overlay 
of 30 NMR spectra of blood samples belonging to three different sample groups (control and two 
different disease states). A score plot of the PLS-DA analysis of these samples is shown in panel b, 
where the control group on the right-hand side is well separated from the two diseased groups. 
Both disease groups separate from the control group on the second latent variable. Panel c shows 
a loading plot of latent variable number 1, which is a graphical representation of how much each 
data point in the NMR spectra contributes to the separation between the different sample groups. 
All spectra were processed and plotted using the MetaboLab software package [30]
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apparent as the use of these techniques within the community has increased. This is 
a brief list of the more recognizable freely available databases.

3.5.1  �HMDB

The Human Metabolome Database (HMDB) was first introduced in 2007 [63] and 
currently remains the world’s largest and most comprehensive, organism-specific 
metabolomic database. Standardized NMR spectra (such as from 1D-1H, 1D-13C, 
2D-1H13C HSQC, 2D-1H1H TOCSY) has risen from 385 spectra in the original 
release to 1,054 in 2013 [64]. Many of these are linked to MS data, as well as offer-
ing other useful information such as the role of a given metabolite in metabolic 
pathways or any link it may have to specific diseases. This increase in metabolite 
number is primarily a result of the significant expansion of both ‘detected’ metabo-
lites and ‘expected’ metabolites (those for which biochemical pathways are known 
or human intake/exposure is frequent but the compound has yet to be detected in the 
body). In the 3.0 release of HMDB, a clear distinction has been made between these 
categories.

The new chemical ontology also distinguishes the source (or probable source) of 
these compounds using an ‘origin’ data field. Using this data field (for both detected 
and expected metabolites), compounds are further classified as being microbial, 
endogenous and drug, toxin or food derived. The database can be accessed by 
browsing, chemical shift search or bulk downloading. However, a significant disad-
vantage of the database is the lack of batch-processing capabilities for spectral 
matching.

3.5.2  �Madison Metabolomics Consortium Database (MMCD)

This database, which is maintained by the National Magnetic Resonance Facility at 
Madison, is a resource for metabolomics research based on nuclear magnetic reso-
nance (NMR) spectroscopy and mass spectrometry (MS) [65]. Specifically, one-
dimensional (1D) and two-dimensional (2D) NMR data are available, including 
1D-1H, 1D-13C, 2D-1H1H-TOCSY, 2D-1H13C HSQC, 2D-1H13C HMBC (heteronu-
clear multiple-bond correlation) and 2D-HSQC-TOCSY. Peak lists can be typed in 
manually, or files can be uploaded in a variety of the common formats used by NMR 
spectroscopists. This database gives an emphasis to Arabidopsis thaliana but is not 
species specific.

Similar to the HMDB, the MMCD provides chemical shifts, chemical formula, 
names and synonyms, structure and physical and chemical properties, in addition to 
NMR (and MS) data on pure compounds under defined conditions in some cases. 
NMR searches can use any one of MMCD’s three chemical shift databases: experi-
mental, empirically predicted from structure or quantum chemical calculated.
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NMR-based searches give users considerable flexibility with regard to the type 
and quality of data entered. Chemical shifts can be combined with filters that search 
for complex multinuclear spin topologies. For example, users can specify chemical 
shift and atom connectivity (e.g. number of attached hydrogens).

As well as experimental NMR data collected by the MMC, its compounds con-
tain links to NMR data collected by the HMDB. Although the HMDB and MMC 
collect data under different conditions (HMDB, H2O, 50 mmol L−1 phosphate buf-
fer, pH 7.0; MMC, 99.9 % D2O, containing 50 mmol L−1 phosphate buffer, pH 7.4), 
the chemical shifts for compounds common to the two are as expected in good 
general agreement.

The database also contains information on the presence of the metabolite in dif-
ferent biological species and extensive links to images, references and other public 
databases, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
PubChem. The MMCD search engine supports versatile data mining and allows 
users to make individual or bulk queries on the basis of experimental NMR and/or 
MS data plus other criteria. The site supports complex queries from any combina-
tion of its five basic search engines: text, structure, NMR, mass and miscellanea.

3.5.3  �BioMagResBank

The BioMagResBank (BMRB) is the central repository for experimental NMR 
spectral data, primarily for macromolecules [66]. However, the BMRB also con-
tains a subsection specifically for metabolite data. The database as a whole also 
contains structures, structure viewing applets, nomenclature data, extensive 1D and 
2D spectral peak lists (from 1D, TOCSY, DEPT, HSQC experiments), raw spectra 
and FIDs for several hundred molecules. The data is both searchable and download-
able. Based at the University of Wisconsin, BMRB mirror sites exist at Osaka 
University, Japan, and at CERM in Florence, Italy, with the Osaka facility also being 
a data deposition and processing site. BMRB also collaborates closely with NMR 
metabolomic/metabonomic groups and the National Magnetic Resonance Facility 
at Madison (NMRFAM) and with many other groups in the NMR community.

3.5.4  �BML-NMR

The Birmingham Metabolite Library Nuclear Magnetic Resonance (BML-NMR) 
database is centred at the University of Birmingham (UK) and the initiative acts as 
a freely available resource containing over NMR spectra of 208 common metabolite 
standards [67]. This database also includes both 2D-1H J-resolved spectra and 1D-1H 
spectra. The spectra have been recorded at 500 MHz using various water-suppression 
methods and acquisition parameters, for solutions at pH values of 6.6, 7.0 and 7.4. 
Library data can be accessed freely and searched through a custom-written web 
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interface, whilst FIDs, NMR spectra and associated metadata can be downloaded 
according to a Microsoft installer compatible XML schema.

3.5.5  �COLMAR

The COLMAR database as developed in the Brüschweiler laboratory is a web server 
that allows one to query a range of NMR data. The general approach is the unifica-
tion of the NMR spectroscopic information of two of the largest public metabolo-
mic databases, namely, the BMRB and the HMDB discussed before. COLMAR 
13C-1H HSQC sorts HSQC spectra of metabolites into their individual isomeric 
states, which permits improved identification of metabolites, because it is isomer-
population insensitive [68]. According to the authors, this, together with an improved 
query algorithm, allows COLMAR 13C-1H HSQC metabolomic database to increase 
the accuracy of metabolite identification by more than 37 % and decreases the false 
positive identification rates by more than 82 % over existing 13C-1H HSQC metabo-
lomic databases.

Also included on the homepage is the C-TOCCATA customized database, which 
specializes the querying of 13C-13C TOCSY spectra of uniformly 13C-labelled 
metabolomic samples, and the 1H(13C)-TOCCATA customized database, which per-
mits the querying of 1H1H TOCSY and 13C1H HSQC-TOCSY spectra of complex 
metabolite mixtures at natural 13C abundance [69]. The innovative element of such 
databases is that they sort the spectral information of each metabolite into its indi-
vidual spin systems and, where applicable, its slowly interconverting isomers. Since 
selected cross sections of the 2D TOCSY spectrum reflects the 1D spectrum of spin 
systems rather than the entire 1D spectrum, this increases the accuracy of metabolite 
identification over existing 1D 1H and 1D 13C NMR metabolomic databases, 
respectively.

3.6  �Metabolic Analysis of Kidneys Prior to Transplantation 
Using NMR Techniques

3.6.1  �Introduction to Transplantation

The evolution of renal transplantation is a triumph of modern medicine, with 
patients undergoing organ transplant in the modern era expecting a 90 % 1-year 
graft survival [70]. Transplantation is now unquestionably the optimal treatment for 
patients with end stage renal failure, with distinct survival and quality of life advan-
tages over remaining on dialysis, even in patients with complex medical comorbid-
ity [71–73]. Kidneys from live donors have the best outcomes, but those not fortunate 
enough to have a suitable donor must rely on a cadaveric organ.
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For cadaveric organs, there is an inevitable time duration between the organ 
removal (retrieval) operation and implantation into the recipient, owing to both 
logistical (e.g. transportation) and immune compatibility matching processes.

Hypothermic machine perfusion (HMP) and static cold storage (SCS) are the 
two methods of kidney preservation that are widely used in clinical practice during 
this time period between organ retrieval and implantation [74]. Static cold storage 
(SCS) is the simplest and remains the most commonly used [75]. The kidney is 
essentially stored ‘on ice’ in a hypertonic solution within a polystyrene storage 
container.

Hypothermic machine perfusion (HMP) is the alternative to SCS and involves 
the recirculation of specialized perfusion fluid through the renal vasculature at sub-
physiological pressures (e.g. 30 mmHg for the LifePort kidney transporter). HMP is 
associated with improved short- and longer-term function following transplantation 
of cadaveric kidneys [76–78]. Although the beneficial effects of HMP were initially 
thought to be largely mechanical, there is increasing evidence that facilitative 
metabolism may also have a beneficial role [79, 80]. NMR spectroscopy is one 
method for detailing renal metabolism during SCS and HMP conditions, and 1H 1D 
NMR has been used to analyse urine, perfusion fluid recipient serum and tissue 
samples in kidney transplant models [81–88].

An in-depth understanding of the metabolism occurring during HMP has clear 
translational value. Despite the ever-growing demand, transplantation is limited by 
the paucity of available organs. Resultantly, increasing numbers of marginal organs 
are being transplanted, many of which would have been previously deemed to be 
non-transplantable [89]. Such marginal kidneys have inferior outcomes compared 
with standard criteria cadaveric organs, and therefore metabolic optimization could 
be a useful therapeutic target during the preservation window to ensure the best 
outcome for these high-risk kidneys. Secondly, there is a clinical need for a reliable 
test to determine post-transplant graft outcome and thus determine the ‘usability’ of 
such marginal organs. However to date, there remains no single reliable pre-
transplant predictor of post-transplant graft function, and a metabolic biomarker 
could serve to highlight such non-viable organs.

Hypothermic machine perfusion seems particularly well suited for metabolomic 
analysis as perfusion fluid samples, or perfusate, are readily available, are non-
invasive and offer insight into the cellular components within the organ. Furthermore, 
machine perfusion also offers the opportunity for repeated measurements, and the 
rapidity of 1H spectrum acquisition makes the utilization in real time feasible [83].

3.6.2  �Metabolism During Organ Preservation

The governing principles of SCS are simple and have undergone little change since 
the inception of renal transplantation some 60 years ago, namely, the deceleration of 
metabolism that occurs as the temperature of the kidney is reduced. At storage tem-
peratures below 4 °C, there is a reduction of normal metabolic function to 5–8 % 
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[90]. This is thought to preserve organ ATP reserves and limit the accumulation of 
harmful byproducts such as lactic acid.

However, hypothermia does not cause a uniform deceleration of all metabolic 
pathways [79], and, furthermore, the effect on cellular metabolism of hypothermia 
within different organs is not uniform [91]. If indeed certain enzymes are particu-
larly thermo-sensitive, then manipulation of such pathways may offer a mechanism 
for protective metabolic support.

In a recent study of urine in patients post kidney transplant, using both 1H NMR 
and GC-MS [84], there were clear differences between the urinary metabolome at 
day 7 compared with 12 months postoperatively. These early differences included 
increased taurine, hypotaurine and D-glucose and decreased citric acid. The authors 
suggested (based on metabolic pathway analysis software) that these changes were 
due to the predomination of glycolytic pathways and reduction in TCA activity in 
the post-transplant period. In a previous study of urine 1H NMR spectra, Foxall 
et al. demonstrated differing spectral patterns for kidneys with good function com-
pared to those with delayed function, highlighting the link between the urinary 
metabolome post-transplant and functional outcome [88]. High levels of the medul-
lary trimethylamine-N-oxide (TMAO), in particular, correlated with poorer func-
tion and are an indicator of renal medullary injury [81, 88, 92].

In a similar (1H NMR) study of serum from kidney transplants, the metabolic 
profile was not found to vary as dramatically over the first week but was markedly 
different to that from healthy controls [93].

In a murine transplant model, Serkova et al. demonstrated increased levels of 
allantoin from animals with kidney transplants exposed to greater ischemic insults 
[81]. During periods of oxidative stress, there is increased xanthine oxidase activity 
and degradation of xanthines, resulting in accumulation of end pathway products 
such as allantoin. Therefore, the authors suggested allantoin could be used as a 
surrogate marker for oxidative stress and that levels correlated with the severity of 
cold ischemia. Interestingly, the metabolic phenotype identified in this study had 
better correlation with degree of histological injury compared with the non-specific 
but commonly used measurement of transplant function serum creatinine [81].

Cellular levels of ATP have been proposed as a valid determinant of organ viabil-
ity during the preservation period which can be measured directly and indirectly 
using 31P NMR [94–101]. This technique has been employed to study whole organs 
ex  vivo, obviating the problems associated with the rapid degradation of ATP 
in  vitro in both oxygenated [94, 101] and non-oxygenated conditions [99]. The 
prognostic value of ATP measurement to denote organ viability appears preserved 
even several years following the index transplantation [102].

Bon et al. reported the metabolite panel present in the perfusion fluid of porcine 
kidneys during HMP using 1H 1D NMR [83]. The concentration of metabolites 
increased during perfusion and included central metabolites such as lactate and 
acetate, amino acids (e.g. alanine, valine, glutamine and glutamate), creatinine and 
TMAO. This metabolic perfusion fluid panel has been corroborated in subsequent 
studies [85, 86]. In the study by Bon et al., the metabolites in the perfusion fluid 
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identified by 1H NMR was different when a modified perfusion fluid was used, 
highlighting that metabolism can be manipulated during HMP.

We sought to determine the amount of new metabolism that occurs during HMP 
and SCS conditions using 1H NMR (as yet unpublished). Pairs of porcine kidneys 
were preserved using either SCS or HMP conditions for 24 h. Overlay spectra of 
both tissue and fluid are depicted in Fig. 3.4. The total amount of each metabolite 
was calculated in the perfusate in each condition as well as the total amount in each 
kidney for these closed systems. This was compared with control kidneys and the 
net metabolic gain ascertained. As expected, the total amount of metabolites in the 
circulating HMP fluid was greater compared with the static conditions of 
SCS.  However, the amount of metabolites in the tissue also varied dramatically 
between the two conditions. The net gain of central metabolites such as lactate, 
glutamate, aspartate, fumarate and acetate was greater for HMP compared with SCS 
conditions although not exclusively in the tissue. This study served to highlight 
several important concepts. Firstly, that the net metabolic gain during preservation 

Fig. 3.4  1H-NMR spectral overlay plot demonstrating marked differences in spectra between kid-
neys stored using HMP (red) and SCS (blue) conditions for 24 h. Samples are from extracted 
paired porcine medulla samples with the whole spectrum, and focused regions of interest (a–c) are 
displayed. All spectra were processed and plotted using the MetaboLab software package [30]
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is different for HMP and SCS conditions, secondly that 1H NMR can be utilized to 
determine these differences and thirdly that even in these extreme non-physiological 
conditions such as HMP, efficient mechanisms are active to transport metabolites 
from the intracellular arena into the extracellular perfusion fluid.

Porcine kidneys are considered the best model for human organs in transplanta-
tion studies owing to their similar physiological and anatomical properties [103–
106]. In order to determine whether porcine organs are a valid metabolic model 
during HMP, we compared the metabolic profiles of perfusate for human and por-
cine organs using 1H 1D NMR [86]. Of the 30 metabolites that were identifiable 
using NMR and present in both species, 16 (53.3 %) were present in comparable 
concentrations in the pig and human kidney perfusates. For 29 metabolites (96.7 %), 
there was no difference in the rate of change of concentration between pig and 
human samples suggesting that porcine kidneys are indeed valid metabolic models 
for human HMP studies. This is important, as experimental studies are needed in 
order to establish the optimal conditions of perfusion with additional therapies such 
as supplemental oxygen still under investigation.

3.6.3  �Biomarker Studies

There is a clinical need for a reliable test to determine post-transplant graft outcome 
and thus determine the ‘usability’ of marginal organs. Although scoring systems 
have been proposed for this purpose, often using histological parameters from kid-
ney biopsy [107], they are not used widely. In practice, donor information, such as 
patient age, comorbidity or terminal serum creatinine, along with kidney biopsy 
data are used to judge the ‘transplantability’ of kidney, but they still have a limited 
capacity for accurate prediction of graft outcomes [108, 109]. Furthermore, clini-
cally used measurements for the monitoring of post-transplant graft function also 
have limitations as rejection can occur in the presence of normal creatinine values, 
and structural changes on renal biopsy only present after significant injury has 
occurred [110].

The identification of a biomarker during the pre-transplant period would be 
attractive and useful but to date has proved elusive. Low intrarenal resistance has 
been shown to correlate with improved post-transplant function, but several studies 
have demonstrated that organs should not be rejected solely on flow dynamic infor-
mation which strengthens the need for a perfusate biomarker [111–114].

In a systematic review of perfusate biomarker analysis by Bhangoo et al. [115], 
there was found to be a paucity of high-quality biomarker studies. Elevated levels of 
glutathione-S-transferase (GST), lactate dehydrogenase (LDH) and aspartate trans-
aminase (AST) were significantly associated with delayed graft function in the 
majority of studies. However, there was insufficient evidence to recommend any 
single parameter as a sensitive pre-transplant biomarker. AST is expressed from 
injured renal parenchymal cells. GST is a marker of renal tubular injury and LDH is 
a non-specific marker of cellular injury [115].
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In order to determine whether 1H 1D NMR could be used to highlight a useful 
biomarker to predict transplant outcome, the perfusion fluid of 26 cadaveric kidneys 
was analysed during HMP at two time points (45 min and 4 h) [85]. We found that 
the metabolic profile of kidneys that functioned immediately (IGF) differed to those 
in which delayed graft function (DGF) was observed. Four metabolites appeared 
particularly predictive of graft function: glucose, inosine, leucine and gluconate. 
This study served to highlight that the metabolic profile of perfusion fluid in cadav-
eric human kidneys for transplantation is predictive of functional outcome. The idea 
of a metabolic panel identified using 1H NMR serving as a biomarker of transplant 
viability has been corroborated by previous animal studies [83].

3.6.4  �Metabolic Pathway Analysis and 2D Studies

1D NMR methods (both 1H and 31P) have highlighted an array of metabolites that 
can be used both to understand metabolic processes within the organ and potentially 
serve as biomarkers of post-transplant function. Whilst metabolic pathway software 
is available to try and highlight possible pathways involved, such tools have inher-
ent limitations, which are probably exaggerated in the highly non-physiological 
conditions of ex vivo organ preservation.

Although multiple time point analysis can provide further evidence to demon-
strate active pathways, 1H 1D NMR essentially details a metabolic snapshot at the 
time of sampling. It is often difficult to draw meaningful mechanistic metabolic 
information from this. For example, the detection of lactate within the perfusate of 
a machine-perfused kidney could be secondary to the metabolism or release of pre-
existing intracellular substrate stores as well as de novo metabolism of substrates 
derived from the perfusion fluid. Thus, the appearance of a particular metabolite 
within the perfusion fluid does not confirm de novo metabolism.

Metabolic tracer analysis is an alternative way to highlight active metabolic path-
ways and can elegantly and unequivocally demonstrate the presence of de novo 
metabolism within these complex systems. NMR spectroscopy is a powerful tool to 
analyse complex 13C isotopomer/isotopologue distributions in metabolites derived 
from labelled tracer molecules. There are various spectroscopic methods available 
of which the simplest is 1D-13C approach. This is not a new concept with initial 
studies using 13C in NMR tracer experiments reported over 40 years ago [116] and 
validation of this model in ex vivo organ perfusion models (e.g. heart and lung) 
[117–120].

Whilst the data requirement (and therefore acquisition time) is much greater for 
two-dimensional (2D) 13C NMR tracer studies, they do have significant advantages 
compared to 1D 13C NMR experiments. In addition to the greater sensitivity, there 
is increased spectral dispersion using 2D NMR, and the utility of this has been dem-
onstrated in human studies [121].

In an effort to determine metabolism in porcine kidneys during HMP, we incor-
porated [U-13C] glucose into the cooled recirculating perfusion fluid [122]. Analysis 
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of perfusion fluid and kidney tissue extracts was performed using both 1D 1H and 
2D 1H, 13C heteronuclear single quantum coherence NMR (2D-1H,13C HSQC). This 
approach enables both metabolite quantification and proportionate distribution of 
13C isotopologues to be calculated. In this small study, we found that there was sig-
nificant enrichment of 13C in central metabolites such as [U-13C] lactate which pro-
vides unequivocal evidence of de novo glycolytic pathway activity.

3.6.5  �Conclusion

There appears to be a strong correlation between the metabolic phenotype of trans-
plant kidneys during the period prior to transplantation and the functional outcome 
for that organ. The implications of this are twofold; firstly that a metabolic ‘panel’ 
could be used as a useful biomarker to determine which organs are non-viable and 
should not be transplanted. Secondly, the metabolism could potentially be opti-
mized during perfusion to improve the function of highly damaged organs. NMR 
spectroscopy is a valid technique for metabolic characterization of organs during 
perfusion and is likely to be used increasingly for this purpose. Both 1D-1H NMR 
and 2D studies offer metabolic insights into this complex system with the high-
throughput, reproducible quantification of metabolites determined by 1D-1H analy-
sis complemented by mechanistic information from 2D-13C studies. We hope that 
the utility of NMR in kidney transplantation can be translated to multiple clinical 
scenarios.
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Chapter 4
Metabolomic Strategies Involving Mass 
Spectrometry Combined with Liquid and Gas 
Chromatography

Aline Soriano Lopes, Elisa Castañeda Santa Cruz, Alessandra Sussulini, 
and Aline Klassen

Abstract  Amongst all omics sciences, there is no doubt that metabolomics is 
undergoing the most important growth in the last decade. The advances in analytical 
techniques and data analysis tools are the main factors that make possible the devel-
opment and establishment of metabolomics as a significant research field in systems 
biology. As metabolomic analysis demands high sensitivity for detecting metabo-
lites present in low concentrations in biological samples, high-resolution power for 
identifying the metabolites and wide dynamic range to detect metabolites with vari-
able concentrations in complex matrices, mass spectrometry is being the most 
extensively used analytical technique for fulfilling these requirements. Mass spec-
trometry alone can be used in a metabolomic analysis; however, some issues such 
as ion suppression may difficultate the quantification/identification of metabolites 
with lower concentrations or some metabolite classes that do not ionise as well as 
others. The best choice is coupling separation techniques, such as gas or liquid chro-
matography, to mass spectrometry, in order to improve the sensitivity and resolution 
power of the analysis, besides obtaining extra information (retention time) that 
facilitates the identification of the metabolites, especially when considering untar-
geted metabolomic strategies. In this chapter, the main aspects of mass spectrome-
try (MS), liquid chromatography (LC) and gas chromatography (GC) are discussed, 
and recent clinical applications of LC-MS and GC-MS are also presented.
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Abbreviations

AMDIS	 Automated Mass Spectra Deconvolution and Identification System
APCI	 Atmospheric pressure chemical ionisation
APPI	 Atmospheric pressure photoionisation
BSTFA	 N,O-bis-(trimethylsilyl)-trifluoroacetamide
CE	 Capillary electrophoresis
CI	 Chemical ionisation
DB-5MS	 Equivalent to a (5 %-phenyl)-methylpolysiloxane
DC	 Direct current
DIMS	 Direct infusion mass spectrometry
EI	 Electron ionisation
ERHILIC	 Electrostatic repulsion hydrophilic interaction chromatography
ESI	 Electrospray ionisation
FTICR	 Fourier transform ion cyclotron resonance
FTMS	 Fourier transform mass spectrometry
FWHM	 Full-width half-maximum
GC	 Gas chromatography
GC-MS	 Gas chromatography mass spectrometry
GCxGC	 Comprehensive two-dimensional gas chromatography
HILIC	 Hydrophilic interaction liquid chromatography
IT	 Ion trap
LC	 Liquid chromatography
LSER	 Linear solvation energy relationship
MS	 Mass spectrometry
MSTFA	 N-methyl-N-(trimethylsilyl)-trifluoroacetamide
MTBSTFA	 N-methyl-N-tertbutyldimethylsilyltrifluoroacetamide
NIST	 National Institute of Standards and Technology
NPLC	 Normal-phase liquid chromatography
OT	 Orbitrap
Q	 Quadrupole
QIT	 Quadrupole ion trap
QqQ	 Triple quadrupole
QTOF	 Quadrupole time of flight
RF	 Radio frequency
RPLC	 Reverse-phase liquid chromatography
RTL	 Runtime library
SIM	 Single-ion monitoring
SRM	 Selected reaction monitoring
THF	 Tetrahydrofuran
TOF	 Time of flight
UPLC	 Ultra-performance liquid chromatography
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4.1  �Introduction

Metabolomic analysis in biological systems has become more and more important 
nowadays in different research areas, including the search for biomarkers that can 
support the understanding of the aetiology and biological/molecular bases of com-
plex diseases, such as diabetes, coronary heart disease and cancer [1].

Mass spectrometry (MS) is the most suitable analytical technique in metabolomics 
for clinical studies, and the use of this technique has been growing in the last decades. 
In the clinical area, biological fluids, such as urine, blood and saliva, are commonly 
the object of study used for metabolomic analysis. Those biofluids are complex sam-
ples, with variable compound concentrations; consequently, the direct injection of the 
samples in the mass spectrometer compromises the detection of many metabolites 
due to ion suppression. Thus, separation techniques, such as gas chromatography 
(GC) and liquid chromatography (LC), coupled to the mass spectrometer, are required. 
In this way, all compounds, previously separated by one of the techniques mentioned 
before, will be introduced one after another into the mass spectrometer, which facili-
tates the metabolite identification by retention time and using authentic standards, in 
addition to the structural information (mass-to-charge ratio and relative abundance of 
the molecular ion/fragments) obtained by mass spectrometry.

In this chapter, we discuss the main aspects of mass spectrometry, including the 
most widely used mass analysers in targeted or untargeted metabolomics, and also 
GC- and LC-hyphenated techniques, considering the proper MS ionisation tech-
niques in each case.

4.2  �Mass Spectrometry

Mass spectrometry (MS) is often the technique of choice in clinical metabolomics 
for identifying/quantifying different classes of metabolites. Briefly, MS consists in 
producing gas-phase ions that are further detected and characterised by their mass 
and charge [2].

A sample inlet, an ion source, a mass analyser and a detector compose a mass 
spectrometer. The sample inlet has the function of introducing the sample into the 
mass spectrometer, the ion source generates gas-phase ions via an ionisation 
technique, the mass analyser separates the ions according to their mass-to-charge 
ratio (m/z), and the detector generates an electric current from the incident ions that 
is proportional to their abundances [3].

As considered by this chapter, the sample inlet is a separation technique (either gas 
or liquid chromatography), and proper ionisation techniques will be discussed for each 
chromatography-MS coupling in the following sections. Of course, the sample can be 
also directly injected into a mass spectrometer, being this technique called direct infu-
sion mass spectrometry (DIMS). However, the major drawbacks are ion suppression 
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effects, which cause an enormous loss of metabolite information, and the requirement 
of a high-resolution mass analyser, which increases the cost of the analysis.

Mass analysers can be used either alone or combined. This combination can be 
made between the same type of mass analyser or between different mass analysers 
(hybrid instruments) and is called tandem mass spectrometry (MS/MS). In MS/MS, 
the ions that arrive at the first mass analyser (precursor ions) are isolated, subse-
quently fragmented, and finally those fragment ions are separated according to their 
m/z in a second mass analyser and detected. For some types of mass analysers, the 
number of mass analysis steps can be increased, i.e. the fragment ions can be re-
fragmented and further detected. In this case, the experiment is termed multiple-
stage mass spectrometry (MSn, where n refers to the number of mass analysis steps). 
Tandem mass spectrometry and multiple-stage mass spectrometry improve the 
identification of a molecule, because not only the molecular ions are detected but 
also the fragments generated from precursor ions.

The main performance characteristics of a mass analyser are [2–4]:

	(a)	 Mass accuracy (accuracy of the measured m/z provided by the mass analyser, 
directly related to the mass resolving power and stability of the mass analyser)

	(b)	 Mass resolving power (ability of a mass spectrometer to provide a specified 
value of mass resolution, i.e. generate distinct signals for two ions with a small 
m/z difference)

	(c)	 Mass range (limits of m/z over which a mass spectrometer can detect ions or is 
operated to record a mass spectrum)

	(d)	 Transmission efficiency (ratio of the number of ions reaching the detector and 
the number of ions leaving the mass analyser, related to the sensitivity of the 
mass spectrometer, i.e. the minimal concentration of a compound leading to a 
peak intensity greater than a specified signal-to-noise ratio)

	(e)	 Scan speed (rate at which the analyser measures over a certain mass range)
	(f)	 Scan cycle time (the time required to obtain a mass spectrum, also called duty 

cycle)

Mass analysers that can be used for LC-MS or GC-MS are the same. The particu-
larity that guides the mass analyser choice is the type of metabolomic analysis to be 
performed, either targeted or untargeted.

4.2.1  �Mass Analysers Used for Targeted Metabolomics

As previously described in Chap. 1, the goal of targeted metabolomics is to perform 
a quantitative analysis of specific metabolites (or a defined set of metabolites). The 
main features for a mass analyser to be used in targeted metabolomics are transmis-
sion efficiency, scan cycle time and scan speed. In this case, single quadrupole (Q), 
triple quadrupole (QqQ), quadrupole ion trap (QIT) and Orbitrap (OT) are the most 
employed mass analysers.

Single quadrupole (Q) is the simplest mass analyser, which operates either in the 
single-ion monitoring (SIM) or scan mode. For targeted metabolomics, the SIM 
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mode is preferred because it provides a significantly better sensitivity. In the SIM 
mode, the quadrupole parameters (RF and DC voltages) are adjusted to filter and 
select only one specific m/z [5].

Triple quadrupole (QqQ) instruments have the advantage over single quadrupole 
ones for being able to perform selected reaction monitoring (SRM) experiments. In 
the first mass analysis stage, a specific precursor ion is selected by the first quadru-
pole. Then, fragmentation occurs in the collision cell (second quadrupole or other 
multipole, operating at RF only) by collisions with an inert gas. Finally, specific frag-
ment ions are monitored in the third quadrupole to increase both the sensitivity and 
the selectivity compared to the single quadrupole operating in the SIM mode [3, 5].

Quadrupole ion trap (QIT) has similar principles as the single quadrupole mass 
analyser, which uses an electric field applied in the electrodes for ion separation by 
mass-to-charge ratio. Once the ions, with certain m/z, enter into the electrode area, 
the applied field promotes the orbit of these ions. As the radio frequency is increased, 
the ions with higher m/z become more stabilised, whereas the ions with lower m/z 
become less stabilised and are not detected due to the collisions with the walls of the 
mass analyser [6]. This analyser is not suitable to be used in combination with 
UPLC due to its low sensitivity, once the injection volume is reduced in this chro-
matography type.

The most recently developed mass analyser, with high acquisition speed, is the 
Orbitrap (OT). It operates at acquisition rates of 12 Hz. The analyser operation is 
based on harmonic ion oscillations in electrostatic field. The ions around a central 
electrode are trapped, and the m/z values are measured from the frequency of ion 
oscillations. As the ions are tangentially introduced into a logarithmic electric DC 
field between these two electrodes, they start to oscillate radially around the wire and 
are eventually ejected at the ends of the trap. This device provides high mass resolu-
tion (>100,000 FWHM), high mass accuracy (2–5 ppm) and acceptable dynamic 
range (103). However, the scan speed is inversely related to mass resolution, i.e. one 
scan per second can be acquired when selecting 100,000 mass resolution; as a result, 
the reproduction of the correct chromatographic peak shape is affected. Whereas, 
when faster scanning is selected (10 scans s−1), mass resolution is decreased (10,000 
FWHM) [7]. Recently, a modification of the Orbitrap EliteTM instrument has pro-
vided a resolution above 1,000,000 at a transient length of 3 s [8, 9].

Thus, for targeted metabolomics, high sensitivity can be achieved with OT mass 
analyser operating at high acquisition speed. In addition, the high-resolution power 
helps to associate the fragment ions to precursor ions in complex mixtures.

4.2.2  �Mass Analysers Used for Untargeted Metabolomics

Untargeted metabolomics consists in an exploratory analysis that aims to identify 
the entire set (or at least the majority) of metabolites contained in a biological sam-
ple, as previously described in Chap. 1. The main features for a mass analyser to be 
used in untargeted metabolomics are mass resolution power, mass range and mass 
accuracy. In this case, time of flight (TOF), quadrupole time of flight (QTOF), 
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Fourier transform ion cyclotron resonance (FTICR) and Orbitrap (OT) are the most 
employed mass analysers.

Time of flight and quadrupole time of flight are the most used mass analysers for 
untargeted metabolomics due to the data acquisition over a wide mass range with 
high mass accuracy and resolving power. Their performance involves the time mea-
surement that ions take to travel from the beginning to the end of a field-free flight 
tube. Ions are accelerated in an electric field reaching a terminal linear velocity, 
which depends on their m/z ratio. About 10,000 consecutive scanning events per 
second at sampling rate of 50  Hz can be achieved with a mass error of 5  ppm, 
whereas a resolution of 40,000 at m/z 956 and maximum acquisition speed of 30 Hz 
can be achieved by the integration of ion mobility separation to TOF. QTOF mass 
analyser is distinguished of TOF by the possibility to integrate MS/MS at the same 
resolution of the precursor ion [9].

FTICR is a high-resolution mass analyser that employs cyclotron frequency 
in a fixed magnetic field for the determination of the ions m/z. The disadvantage 
of FTICR instruments is their relatively slow acquisition rates. At a scan rate of 
1 Hz with mass resolution of 100,000 at m/z 4000, the number of points over the 
chromatographic peak, especially if additional MS/MS scans are required, is low 
when FTMS is combined with modern fast chromatography systems. This limits 
the application of FTICR in liquid chromatography mass spectrometry (LC-
MS)- and capillary electrophoresis mass spectrometry (CE-MS)-based metabo-
lomics [10].

About OT mass analysers, as its performance was already explained in Sect. 4.2.1, 
it is important to mention that an OT mass analyser allows untargeted metabolomic 
experiments due to the high resolution at high speed acquisition and mass accuracy 
(<5 ppm), which is much higher in comparison to a TOF mass analyser. According 
to the literature, OT has become a mainstream instrument for metabolomics, for 
providing more complete results by LC-OT in comparison to LC-FTICR and 
LC-TOF MS [9].

4.3  �Liquid Chromatography Coupled to Mass Spectrometry 
in Clinical Metabolomics

Amongst all separation techniques that can be coupled to mass spectrometry in 
metabolomics, liquid chromatography (LC) is the most employed, mainly due to its 
versatility, i.e. the possibility of separating different classes of compounds, from 
very polar up to very non-polar compounds. This versatility is possibly owed to the 
many chromatographic columns with a variety of stationary phases available [11].

The separation in the chromatographic system depends, basically, on properties 
such as hydrophobicity, molecular size and polarity of the compounds. The separa-
tion of compounds occurs into a chromatographic column composed by a stationary 
phase with polar or non-polar properties. In chromatography using polar stationary 
phase columns, the solvent used to elute the compounds from the stationary phase 
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(mobile phase) presents higher polarity than the stationary phase, which is called 
normal-phase liquid chromatography (NPLC). However, in chromatography using 
non-polar stationary phase columns, the mobile phase presents lower polarity than 
the stationary phase, which is called reversed-phase liquid chromatography (RPLC). 
Then, non-polar compounds, such as lipids, elute first in NPLC, whereas polar com-
pounds, such as amino acids, elute first in RPLC [12].

Clinical samples contain very polar compounds (amino acids) and also com-
pounds with high hydrophobicity (phospholipids). Thus, the stationary phase can be 
chosen based on the compound classes of interest, if the aim of the study is targeted 
metabolomics. However, if the interest is to reach the most information as possible 
(untargeted metabolomics), more than one type of column is necessary [13]. 
Table 4.1 summarises LC-MS applications in clinical metabolomics, considering 
different column types.

Column
LC-MS 
system Metabolites Biological matrix Reference(s)

C18 UPLC-
QTOF MS

Amino acids, sugars, 
peptides, lipids, nitrogenous 
bases, organic acids, 
nucleotides, phospholipids

Human liver cancer 
cell line, mammary 
cancer cell line, breast 
cancer cell line

[14–17]

UPLC-TOF 
MS, 
HPLC-
QTOF MS, 
UPLC-QqQ 
MS

Amino acids, α-hidroxy 
esters, sterol lipids, sugars, 
organic acids

Diabetic mouse kidney 
and liver tissue

[18]

Lipids, sugars, organic 
acids, amino acids, 
sphingolipids

Diabetic mouse 
plasma, rat plasma, 
human myocardial 
ischemia plasma, rat 
haemolytic and aplastic 
anaemia plasma

[18–22]

Amino acids, lipids, organic 
acids

Mouse hair [18]

Organic acids Rat faeces [19]
HPLC-
FTICR MS, 
HPLC-
QTOF MS, 
UPLC-QqQ 
MS, 
UPLC-
QTOF MS

Nucleosides, amino acids, 
organic acids, nitrogenous 
bases, sphingolipids

Human bladder cancer 
urine, human urine, 
human type 2 diabetic 
urine, rat haemolytic 
and aplastic anaemia 
urine

[20, 22–24]

UPLC-IT-
FTICR MS, 
HPLC-TOF 
MS, 
HPLC-
QTOF MS

Steroids, lipids, amino 
acids, dipeptides, 
glycerolipids, nitrogenous 
bases, organic acids

Human hepatitis 
disease serum, rat 
myocardial infarction 
serum, human 
oesophageal cancer 
serum

[25–27]

Table 4.1  Applications of LC-MS in clinical metabolomics, considering the most used column 
types

(continued)
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Column
LC-MS 
system Metabolites Biological matrix Reference(s)

C8 UPLC-
QTOF MS

Lipids, amino acids, organic 
acids

Diabetic rat liver tissue [28]

HPLC-
QTOF MS

Amino acids, organic acids, 
lipids

Human oesophageal 
cancer serum

[27]

HPLC-TOF 
MS, 
HPLC-
QTOF MS

Lipids, steroid lipids, 
glycophospholipids, sugars, 
amino acids, sphingolipids

Human plasma, rat 
diabetic plasma

[29, 30]

HPLC-
QTOF MS

Organic acids, sterol lipids Human urine [20]

HILIC UPLC-
QTOF MS, 
HPLC-QqQ 
MS

Sugars, amino acids, 
nucleosides, organic acids, 
nitrogenous bases, peptides

Human liver cancer 
cell line, mouse 
mammary tumour 
model, human 
pancreatic cancer cells, 
human colon cancer 
cells

[14, 31–33]

HPLC-IT 
MS, 
UPLC-TOF 
MS, 
UPLC-QqQ 
MS

Organic acids, amino acids, 
nucleosides, amino sugars, 
sugars, nitrogenous bases

Rat urine, human urine [34–37]

UPLC-QqQ 
MS, 
HPLC-TOF 
MS, 
UPLC-
QTOF MS, 
UPLC-OT 
MS, 
HPLC-QqQ 
MS

Amino acids, organic acids, 
phospholipids

Rat plasma, human 
plasma, human 
cardiovascular disease 
plasma

[21, 29, 38]

Amino acids, lipids, 
glycerolipids, nitrogenous 
bases

Rat brain and liver 
tissue

[39, 40]

Table 4.1  (continued)

In order to obtain information of non-polar and weakly polar compounds, C18 
and C8 are the most used columns, mainly due to their robustness, ease to handle, 
fast conditioning, versatility, the ability to cover a wide range of chemical classes 
and good performance for clinical untargeted metabolomics [41, 42]. However, for 
hydrophilic, ionic and polar compounds, which are poorly retained in C18 or C8 
columns, or insufficiently charged to be retained by ion-exchange chromatography, 
hydrophilic interaction liquid chromatography (HILIC) is recommended. HILIC is 
similar to NPLC; the difference comes from the mobile phase, which is composed 
of polar and/or aprotic organic solvent miscible in water.

HILIC combines highly hydrophilic stationary phase, such as unmodified, chem-
ically modified silica (amino, cyano, amide, diol, zwitterionic and/or polar poly-
mer), with mobile phase, such as any polar organic solvents (acetonitrile, methanol, 

A.S. Lopes et al.



85

isopropanol, etc.) and aprotic solvents (tetrahydrofuran, THF and dioxane) contain-
ing small amount of water (<5 %).

In comparison to RPLC, in HILIC the strong solvent is water; thus, the gradient 
starts with high percentage of organic solvent, and the separation begins after 
increasing the percentage of aqueous phase, ending with high percentage of this 
phase.

In metabolomics, polar compounds are preferentially determined by HILIC, 
mainly due to the mobile-phase compatibility to mass spectrometry, in comparison 
to NPLC, high-detection sensitivity and high amount of organic solvent in the 
mobile-phase composition, which allows desolvation in the mass spectrometer ioni-
sation process. In addition, a low back pressure due to minor viscosity of organic 
solvent used in the organic phase and the possibility to inject the sample dissolved 
in organic solvents are advantageous [43]. However, a disadvantage in comparison 
to RPLC is low injection volume capability, which reduces the sensitivity and gen-
erates wider peaks, resulting in low-peak resolution. Applications of RPLC and 
HILIC in metabolomics field have been reported in the literature [44, 45].

About HILIC, the retention mechanisms are based by partitioning, hydrogen 
bonds and electrostatic interactions [46]. Partitioning phenomenon is considered as 
a liquid-liquid separation system because polar compounds are partitioned between 
two liquid phases, acetonitrile-rich phase and water-rich layer immobilised on the 
hydrophilic stationary phase, which is formed by strong water attraction by the polar 
groups present in the stationary phase. The lower the water concentration in mobile 
phase, the higher the water layer. For mobile phases with water at concentration 
lower than 20 %, an excess of water adsorbed at stationary phase is created; as a 
result, a multilayer is formed. At high concentrations of organic phase, only water 
layer is adsorbed (closer) to the stationary phase, because only molecules of water 
can interact with the residual silanols of the stationary phase. Therefore, the polar 
compounds are solubilised in the water layer; thus, the more hydrophilic compounds 
are, the more solubilised in the water layer, the more retained in the stationary phase. 
On the other hand, the elution of polar compounds happens at high concentrations 
of water due to the water layer reduction. A condition for the water layer formation 
is the presence of small amount of water (lower than 5 %) in the organic phase [42].

In addition to the partitioning mechanism, hydrogen bonds (H-bond) of the ana-
lyte with stationary phase are considered. This mechanism was related by LSER 
(linear solvation energy relationship) and proved that compounds that contain func-
tional groups with hydrogen donor or hydrogen acceptor can interact with station-
ary phase by H-bond [47]. This separation mechanism is pronounced if low quantity 
of water is used in mobile phase.

Finally, electrostatic interactions of basic and acid compounds can be consid-
ered. The ionised residual silanols, present in the stationary phase, which were not 
eliminated by hydrogen bond or steric effects, can interact with basic compounds, 
such as occurs in ion-exchange mechanism, whereas acid compounds (e.g. acid 
phosphopeptides) can be retained due to hydrophilic interaction or electrostatic 
repulsion hydrophilic interaction chromatography (ERHLIC), generated when 
enough organic solvent is employed in a mobile phase [48].
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The extension of each mechanism depends mainly on the kind of stationary and 
mobile phase. As explained above, the percentage of water in the organic phase 
affects directly the water layer formation; as a result, the partitioning mechanism is 
affected. However, the salt present in aqueous phase decreases the electrostatic 
attraction or repulsion. On the other hand, analyte retention occurs due to the water 
layer increasing, which is affected by presence of salt in mobile phase. In addition, 
the pH of the mobile phase influences the extension of retention because the pKa of 
the analytes are affected; thus, the charge of the analytes can be altered [42].

As the stationary phase is classified in neutral, charged and zwitterionic, the 
separation mechanism extension can be affected distinctly. Neutral stationary phase 
contains polar functional groups, which are uncharged at pH 3 up to 8; thus, in this 
case, hydrophilic interaction is the main separation mechanism [42]. However, if 
charged stationary phase is employed, which contains polar groups, and is depen-
dent on the pH of the mobile phase, the extension of the separation mechanism is 
based on ion-exchange mechanism and hydrophilic partitioning [49].

Finally, the three separation mechanisms (partition, electrostatic and hydrogen 
bond) can occur in a zwitterionic stationary phase, mainly due to the presence of 
zwitterionic ligands (sulfobetaines) that have negative and positive charges. Many 
applications of HILIC have been presented in the literature and specific to the clini-
cal field, as well as the use of RPLC and HILIC simultaneously [13, 50–53].

Currently, RPLC and HILIC columns with lower internal diameter (e.g, 1 mm) 
and lower length have been proposed to improve metabolite detection. Therefore, an 
introduction of instruments that are able to operate at very high pressure – ultra-
performance liquid chromatography (UPLC) – coupled to mass spectrometry has 
been proposed to improve metabolite detection. This technology allows an increased 
resolution, better sensitivity and ion suppression reduction. As a result, more ana-
lytes are detected in a sample in comparison with conventional HPLC. In addition, 
lower solvent consumption is observed, due to the low flow rate (150–250 μL min−1), 
which is possible because of the internal column diameter reduction (e.g. 1 mm). 
This kind of columns allows the same linear velocities obtained in conventional 
columns (i.d. 2.1 mm). The use of UPLC technology for biofluid analysis is increas-
ing [54, 55].

In order to enhance the column lifetime, as to RPLC as to HILIC, sample prepa-
ration is necessary for clinical samples. The introduction of the samples without 
sample preparation can clog the chromatographic column and in the mass spectrom-
eter can cause ion suppression and ion source deterioration because of the presence 
of salts in relatively high concentrations. The sample preparation method depends 
on the aim of the analysis. The main challenge in sample treatment for LC-MS in 
clinical applications is to isolate a compound and/or compound classes (targeted 
metabolomics) from the biofluids or the variety of concentrations of different classes 
(untargeted metabolomics). Different sample cleanup techniques for clinical appli-
cations, for targeted metabolomics, have been reviewed [56]. However, for untar-
geted analysis, as the interest is to obtain the most information as possible, only the 
protein precipitation procedure is recommended. More details about sample prepa-
ration for clinical metabolomics can be found in Chap. 2.
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4.3.1  �MS Ionisation Techniques Used in LC-MS

Mass spectrometry is considered a powerful technique to detect metabolites and has 
high sensitivity to quantify them, as mentioned in Sect. 4.2. Metabolites present in 
biofluids must be ionised before MS detection. Hence, an interface between LC and 
MS is necessary, and this is usually the ion source. Three ionisation techniques are 
commonly used in metabolomics: electrospray ionisation (ESI), atmospheric pres-
sure chemical ionisation (APCI) and atmospheric pressure photoionisation (APPI). 
Amongst them, ESI is the most widely used ionisation technique for untargeted 
metabolomics, mainly because ESI is considered a soft ionisation technique, e.g. 
generates ions with little or no fragmentation, which can help in the identification of 
unknown metabolites, and also for being able to ionise compounds at an extensive 
polarity range. This approach has been extensively implemented in clinical metabo-
lomics [57, 58]. In addition, ESI requires no sample derivatisation, ionises a large 
mass range of compounds and is suitable for non-volatile and polar compound anal-
yses with high sensitivity.

Electrospray is a process that creates or transfers intact ions from solution to gas 
phase at atmospheric pressure. A spray is induced after a high-voltage application 
on a capillary. Thus, charged droplets are formed and emerge from a Taylor cone 
(jet of charged particles formed by an electric field after voltage application) to the 
mass analyser after solvent evaporation, which release ions with multiple charges 
(z) to the gas phase, even though metabolomics has interest in z = 1.

Other ionisation techniques are employed for LC-MS systems in metabolomics, 
such as APCI and APPI. Similar to ESI, APCI and APPI are considered soft ionisa-
tion techniques. Both can be used in positive and negative modes and are employed 
for non-polar and thermally stable compounds (e.g. lipids), respectively.

Each ionisation technique is able to detect compounds with different polarities 
and mass ranges; therefore, complementary information is obtained if more than one 
ionisation technique is employed. In addition, to provide complementary metabolo-
mic information, analyses in the positive and negative ionisation modes are required. 
Comparing ESI analysis alone, an increase of 20 % of detected metabolites in human 
blood was observed when APCI analysis was employed [59]. Some MS instruments 
can provide analysis in positive and negative modes and detect compounds with dif-
ferent polarities at the same mass spectrometry analysis [60].

4.4  �Gas Chromatography Coupled to Mass Spectrometry 
in Clinical Metabolomics

Gas chromatography (GC) is a well-established analytical technique used routinely 
in metabolomics platforms when coupled with some types of mass spectrometers. 
This instrumentation is based on separation of volatile (or made more volatile by 
chemical derivatisation) and thermally stable metabolites. The chemical classes that 
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can be considered naturally volatile are [61]: ketones, aldehydes, alcohols, esters, 
furan and pyrrole derivatives, heterocyclic compounds, sulphides, some lipids, iso-
cyanates, isothiocyanates and hydrocarbons with 1–12 carbons. The classes that can 
be made volatile by derivatisation are sugars, sugar phosphates, amino acids, lipids, 
peptides, long-chain alcohols, amines, amides, alkaloids, sugar alcohols and organic 
acids [61].

When the sample is injected in the GC instrument (usually a volume of 0.5–2 μL), 
the metabolites are volatilised immediately, and an inert gas (helium or nitrogen) 
carries the sample from a heated injection system (200–250 °C) to a coated capillary 
column. Capillary column coating is composed by a solid or liquid phase (called as 
stationary phase), where an inert gas flows through, carrying the metabolites. The 
capillary column is maintained within an oven, which has a fine temperature con-
trol. As the temperature increases, the compounds that have low boiling points elute 
from the column sooner than those that have higher boiling points. Columns with 
varying chemical composition of stationary phases have been utilised in clinical 
metabolomic analysis; however, DB-5MS (chemically bonded with 5 % diphenyl 
cross-linked 95 % dimethylpolysiloxane) columns or columns with equivalent sta-
tionary phase (HP-5MS and RTX-5MS) are more commonly used [62, 63]. The 
separation of metabolites occurs by a chemical interaction between the stationary 
phase (polarity) and the temperature (volatility). A result of this complex mecha-
nism of separation when coupled to a mass spectrometer is high-resolution power 
and sensitivity. However, the main limitation of the use of gas chromatography is 
the derivatisation step, necessary for some metabolite classes. For many applica-
tions of GC, the metabolites are not naturally volatile, and it is necessary to add this 
sample preparation step, which is time consuming, low throughput and can be error 
prone, introducing variability and artefacts [64].

The derivatisation step in metabolomic studies is usually made by a two-step 
process, which encompasses oximation and silylation/chloroformate reagent. The 
oximation protects ketone functional groups from keto-enol tautomerism and decar-
boxylation and inhibits the ring formation of reducing sugars [65]. Derivatisation 
based on silylation is the most popular; nevertheless, reagents based on chlorofor-
mate are also used for clinical metabolites [66]. Derivatisation based on silylation 
includes the following agents: N,O-bis-(trimethylsilyl)-trifluoroacetamide 
(BSTFA), N-methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA) and N-methyl-
N-tertbutyldimethylsilyltrifluoroacetamide (MTBSTFA) that can react with nearly 
all polar functional groups, including –COOH, −OH, −NH and –SH, increasing the 
compound volatility by replacing the active hydrogen with an alkylsilyl group [65, 
67]. Before the silylation step, it is necessary to check for complete dryness of the 
sample to avoid hydrolysis that is typical of these reagents, whose efficiency indeed 
depends upon the preservation of the anhydrous environment [66]. Xiong et al. [68] 
used the oximation-silylation (with BSTFA reagent) method to derivative metabo-
lites in urine samples, focusing to discriminate patients with phenylketonuria. The 
authors detected, simultaneously, amino acids, organic acids, carbohydrates, amides 
and fatty acids. Begley et al. [69] also used the oximation-silylation method, but 
with MSTFA reagent for untargeted metabolomics of human serum samples. 

A.S. Lopes et al.



89

Derivatisation based on chloroformate has the advantage of being conducted in 
aqueous media. Zheng et al. [70] quantified, simultaneously, short-chain fatty acids 
and branched-chain amino acids using propyl chloroformate reagent in complex 
biological samples, including faeces, plasma and urine, from animal and human 
subjects. Other derivatisation reagents can also be used for specific metabolites on 
targeted studies [71, 72].

After the separation by GC, the metabolites enter into the mass spectrometer for 
identification and/or quantification. For this purpose, the molecule (metabolite) 
needs to be ionised, in order to be further separated according to the m/z ratio, which 
is detected and converted into electronic signal. The production of charged metabo-
lites separated by GC occurs by two forms: electron ionisation (EI) or chemical 
ionisation (CI). EI is performed in a high-vacuum ion source (10−7 to 10−5 mbar, 
200–250 °C) where the gas-phase molecules are bombarded by a fixed electron volt-
age, typically −70 eV [73]. This electron bombarding gives the sample molecules 
excess of energy, and many fragment ions are formed. Fragmentation pattern is 
characteristic to a particular molecule and therefore can be useful in determining the 
structure of the analyte, which is easily compared to available databases [62]. 
However, some compounds fragment completely and do not provide the molecular 
ion; thus, CI can be utilised as an alternative ionisation technique for these specific 
metabolites. In CI, a gas (methane or ammonia) reacts with the metabolite resulting 
in a charged molecule. CI is a relatively softer ionisation technique, producing spec-
tra with reduced fragmentation when compared to EI [62]; in conjunction with exact 
mass, it can aid in the confirmation or identification of metabolites and hence poten-
tial biomarker candidates [74]. EI is the most commonly used ionisation technique 
in GC-MS-based metabolomic studies, generating reproducible mass spectra with 
minimal instrument-to-instrument variations. CI can produce molecular ions for 
some volatile compounds that do not give molecular ions in EI. The main use of CI 
is to confirm the molecular mass of some compounds [74, 75].

After the fragmentation in the ion source, the fragments are separated in mass 
analysers and detected. The generated mass spectrum is characteristic for each mol-
ecule and can be compared with mass libraries available in databases together with 
the retention time (or retention index) reported from chromatograms. Data treat-
ment involves computational tools used to validate the metabolite identification and 
can usually be made using software packages provided by the instrument’s manu-
facturer or using free access softwares. Nowadays, there are many software pack-
ages available [76, 77]. In general, after analysis, data treatment includes data 
preprocessing, data processing, statistical analysis and validation.

Data preprocessing includes the following important steps: deconvolution, library-
based identification and alignment [65]. Deconvolution is a very important step for 
an untargeted metabolomic study, extracting only valuable signals from a complex 
mixture of signals in the chromatogram, and, in addition, performs treatment of 
noise, correction for baseline drift and extraction of co-eluting components [65]. 
Amongst the softwares, the AMDIS (Automated Mass Spectra Deconvolution and 
Identification System) presents free access and is commonly used for this task by 
many research groups. Subsequently, metabolite identification by GC-MS is usually 
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made by library databases. The two most used libraries for GC-MS metabolite iden-
tification are Fiehn RTL library and NIST (National Institute of Standards and 
Technology) mass spectra database. Fiehn library has the advantage of including 
retention index and retention time information that can be compared with experi-
ments performed following the same analytical method [78]. This additional infor-
mation increases the reliability in the analysis and decreases false positive results. 
The availability of spectral libraries to metabolite identification is the main advan-
tage of the GC-MS over LC-MS methods for clinical metabolomic studies. Therefore, 
few preprocessing software packages and available databases are used for both low- 
and high-resolution data. The study performed by Peralbo-Molina et al. [79] repre-
sents the difficulty of identifying compounds using databases: NIST database (used 
by the authors) does not contain high-resolution MS information as provided by the 
TOF analyser; thus, more steps in the data processing were necessary to validate the 
identification of each compound. Finally, alignment is needed for correcting reten-
tion time differences between chromatographic runs and matching data from differ-
ent samples. This preprocessing is based on retention time and mass spectra 
similarity: compounds from different samples are compared together by computing 
a spectral score from their respective spectra [65, 77]. Some software packages are 
available to perform alignment alone or as consequential process of peak finding and 
deconvolution. Bioinformatics tools for GC-MS data preprocessing were compared 
recently on the literature [80].

After data preprocessing, it is necessary to explore the data and to remove any 
mystifying information, meanly for untargeted metabolomics [81]. This step is 
known as data processing, which includes discard of contaminants (derivatisation 
reagents, compounds from column bleeding, etc.), normalisation, scaling and trans-
formation [65]. Finally, the statistical analysis (univariate or multivariate data analy-
sis) is applied to the conclusion of the research goal.

The mass analysers that can be coupled to gas chromatography are single quad-
rupole (Q), triple quadrupole (QqQ), time of flight (TOF) and ion trap (IT). Recent 
GC-MS applications using these analysers can be seen in Table 4.2. The coupling 
between Orbitrap (OT) and GC was recently developed [106]; nevertheless, until 
the present moment, it was only applied for plant extract [107], and there are expec-
tations that it will be applied to clinical metabolomics.

Although the new developments of fast and high-resolution power mass analys-
ers coupled to GC, the tendency of this chromatography separation technique in 
metabolomics includes an increase in the use of comprehensive two-dimensional 
gas chromatography (GCxGC) using columns with different selectivities, thus 
enhancing the resolution power. GCxGC combining two columns with orthogonal 
separation characteristics yields a multiplicative increase in peak capacity [108]. A 
thermal- or pressure-based modulator is located between the columns to periodi-
cally focus the effluent from the first column and transfer it to the second column in 
small concentrated segments [109]. GCxGC has been applied to targeted and untar-
geted metabolomics in the clinical area and is preferentially coupled to TOF-MS 
[110, 111].
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Table 4.2  Applications of GC-MS in clinical metabolomics

Column
GC-MS 
system Metabolites

Biological 
matrix Reference

DB-5MS GC-QTOF 
MS

Organic acids, esters, 
alcohols, lipids

Exhaled breath 
condensate

[79]

DB-5 GC-TOF 
MS

Amino acids, esters, steroids, 
sugar, organic acids, sugar 
alcohols

Serum [82]

VF-1 ms and 
HP-1a

GC-Q MS 
and GC-IT 
MS

Steroids Urine [83]

AT-5MS GC-IT MS Steroids Plasma [84]
DB-5MS GC-QTOF 

MS
Alcohols, organic acids, 
esters, sugar alcohols, sugars, 
amino acids, piperidines, 
non-metal oxoanionic 
compounds, lipids

Human sweat [85]

CP-SIL 8 CB GC-Q MS Organic acids, amino acids, 
sugars, nitrogenous bases, 
amides

Serum [86]

Rtx5Sil-MS GC-TOF 
MS

Amines, sugars, organic acids, 
amino acids, steroids, lipids, 
amino acids, non-metal 
oxoanionic compounds

Cerebrospinal 
fluid

[87]

DB-50a GC-TOF 
MS

Untargeted analysis (no 
identification performed)

Plasma [88]

Rtx5Sil-MS GC-TOF 
MS

Sugars, amines, sugar 
alcohols, lipids, organic acids

Blood (plasma/
serum)

[89]

Rxi-1 ms GC-TOF 
MS

Amines, alcohols, 
nucleosides, organic acids, 
nitrogenous bases, sugars

Saliva [90]

RTX-5Sil MSa GC-TOF 
MS

Amino acids, organic acids, 
sugars, lipids, amino acids, 
nucleosides, amines

Breast tissue [91]

ZB-5MS GC-QqQ 
MS

Amino acids, organic acids, 
sugar alcohols, sugars, 
amines, alcohols

Urine [92]

TR-5MS GC-QqQ 
MS

Organic acids Urine [93]

DB-5 + DB-17 GCxGC-
TOF MS

Organic acids, amino acids, 
lipids

Serum [94]

BPX-5 + BPX-
50

GCxGC-
TOF MS

Organic acids Urine [95]

DB-5 + DB-1701 GCxGC-
TOF MS

Sugars, lipids, non-metal 
oxoanionic compounds

Plasma [96]

DB-5MS and 
HP-5

GC-Q MS 
and 
GC-TOF 
MS

Amino acids, organic acids, 
vitamins, sugars, steroids

Plasma [97]

(continued)

4  Metabolomic Strategies Involving Mass Spectrometry



92

4.5  �Conclusions and Future Prospects

The use of chromatographic techniques coupled to mass spectrometry is a perfect 
combination for clinical metabolomics field. When combining efficient separation 
techniques with high sensitivity and/or high-resolution mass spectrometers, the 
quantification/identification of metabolites contained in complex biological samples 
can be successfully achieved for targeted and untargeted clinical metabolomics.

LC-MS and GC-MS are the most employed analytical platforms in clinical metab-
olomics, and the tendency is that they will remain with this status, since many improve-
ments have been developed in the last decade, both in chromatography (new stationary 
phases for columns, two-dimensional separations, etc.) and in mass spectrometry 
(mass analysers with increased resolution power, nanospray ion sources, etc.).
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Abstract  This chapter focuses on the important contribution of CE-MS in 
metabolomics, describing the nature of CE-MS coupling and the technical 
improvements that have led to the interfaces used in modern instrumentation. 
Moreover, it will discourse how the variety of electrolyte compositions and addi-
tives, which has conferred CE the exceptional selectivity of its multiple separa-
tion modes, has been handled to allow interfacing with MS without compromising 
ionization efficiency and the spectrometer integrity. Finally, the methodologies of 
CE-MS in current use for metabolomics will be discussed in detail. To verify the 
scope of CE-MS in clinical metabolomics, a myriad of representative applications 
has been compiled.
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Abbreviations

ACE	 Affinity capillary electrophoresis
ACS	 Acute coronary syndrome
AD	 Alzheimer’s disease
ANN	 Artificial neural network
ANOVA	 Analysis of variance
APCI	 Atmospheric pressure chemical ionization
APFO	 Ammonium perfluorooctanoate
BGE	 Background electrolyte
CE	 Capillary electrophoresis
CEC	 Capillary electrochromatography
p-CEC	 Pressure-assisted CEC
CESI	 Capillary electrophoresis integrated to electrospray 

ionization
CGE	 Capillary gel electrophoresis
CIEF	 Capillary isoelectric focusing
CITP	 Capillary isotachophoresis
CKD	 Chronic kidney disease
CMC	 Critical micelle concentration
CoA	 Co-enzyme A
CRPS	 Complex regional pain syndrome
CSF	 Cerebrospinal fluid
CTAB	 Cetyltrimethylammonium bromide
CVA	 Canonical variate analysis
CZE	 Capillary zone electrophoresis
DA	 Discriminant analysis
DS	 Dextran sulfate
EOF	 Electroosmotic flow
ESI	 Electrospray ionization
FAB	 Fast atom bombardment
FDR	 False discovery rate
FTICR	 Fourier-transform ion cyclotron resonance
GC	 Gas chromatography
HCA	 Hierarchical cluster analysis
HF	 Hydrogen fluoride
HILIC	 Hydrophilic interaction liquid chromatography
1H NMR	 Proton nuclear magnetic resonance
HPLC	 High-performance liquid chromatography
I.D.	 Inner diameter
IS	 Internal standard
IT	 Ion trap
kNN	 k-Nearest neighbors
LC	 Liquid chromatography
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LDA	 Linear discriminant analysis
LLE	 Liquid-liquid extraction
LOO-CV	 Leave-one-out cross validation
M	 Molecule
MALDI	 Matrix-assisted laser desorption ionization
MCR-ALS	 Multivariate curve resolution alternating least squares
MEKC	 Micellar electrokinetic chromatography
MLR	 Multiple linear regression
MS	 Mass spectrometry
MS/MS	 Tandem mass spectrometry
MSc	 Multiple sclerosis
MSI	 Multi-segment injection
O.D.	 Outer diameter
OPLS	 Orthogonal projections to latent structures
PB	 Polybrene
PCA	 Principal component analysis
PF	 Partial filling
PKD	 Polycystic kidney disease
PLS	 Partial least square
PVA	 Polyvinyl alcohol
PVS	 Poly(vinyl sulfonate)
Q	 Quadrupole
QC	 Quality control
QqQ	 Triple quadrupole
qRT-PCR	 Quantitative real-time polymerase chain reaction
RPLC	 Reversed-phase liquid chromatography
SAM	 Significance analysis of microarrays
SDS	 Sodium dodecyl sulfate
SHL	 Sheath liquid
SPE	 Solid-phase extraction
SRM	 Selected reaction monitoring
SVM	 Support vector machine
TEA	 Triethylamine
TEDETAMA-co-HPMA	 Copolymers of N-(2-hydroxypropyl) methacrylamide 

(HPMA) and the dendronic methacrylic monomer 
2-(3-(Bis(2-(diethylamino)ethyl)amino)propanamido)
ethyl methacrylate (TEDETAMA, derived from 
N,N,N′,N′-tetraethyldiethylenetriamine, TEDETA)

TOF	 Time of flight
UPLC	 Ultra-performance liquid chromatography
UTI	 Urinary tract infection
UV	 Ultraviolet radiation
VIP	 Variable importance in the projection
VUR	 Vesicoureteral reflux
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5.1  �The Niche of CE-MS in Metabolomics

Metabolomics, the analysis of the entire set of metabolites (metabolome), or a 
partial set of selected metabolites and/or substrates, expressed by an organism in 
preestablished conditions, via comparative experiments, has been the subject of 
irrefutable attention by the scientific community, since its inception in the late 
1990s by Nicholson et al. and Fiehn [1, 2]. Both formats, untargeted (hypothesis 
generating) and targeted (hypothesis driven) metabolomics, are possible and have 
helped characterizing systemic responses of organisms to disease, pharmaceutical 
intervention, and dietary modulation [3–6]. Proton nuclear magnetic resonance (1H 
NMR) spectroscopy [7, 8] and mass spectrometry (MS) hyphenated with high- or 
ultra-performance liquid chromatography (HPLC or UPLC) and gas chromatogra-
phy (GC) are the analytical platforms with prevalent use in the characterization of 
the metabolome [9–14]. A plethora of applications [15] with natural product-
related [16, 17], nutritional [18–20], pharmaceutical [21], and clinical [22–26] 
importance have been compiled periodically. The choice of analytical technology 
applied in such studies is typically dependent upon the assessed class of chemical 
compounds, the cost of analysis, ease of sample preparation, and the requirement 
for sensitivity, specificity, and robustness. No single method enables complete cov-
erage of the holistic metabolic information, and increasingly, metabolomics stud-
ies are adopting more than one analytical platform to augment the number of 
identified metabolites.

The particularities of metabolomics within the context of systems biology, as 
well as a general workflow of metabolomics studies from experimental design to 
biological validation, have been discussed thoroughly in Chap. 1. It is important 
to detail here the extent by which different analytical platforms approach the 
metabolome contents and how capillary electrophoresis is inserted in this 
context.

NMR has been the precursor technique for metabolomics and made a relevant 
contribution in the variety of application areas cited and referenced so far. This is 
mostly due to suitable performance characteristics, such as robustness, ease of data 
acquisition, and fairly wide metabolic coverage [1, 7, 8]. However, sensitivity and 
spectrum complexity have been issues in NMR metabolomics studies.

Nowadays, the high selectivity and sensitivity offered by MS platforms allowed 
MS to have conquered a sizeable niche in metabolomics, especially when the mass 
analyzer is hyphenated up front to a separation instrument [14]. Temporal separa-
tion of metabolites prior to detection is a desirable feature when complex matrices 
such as biological fluids and tissues are assessed.

GC-MS has been comprehensively explored for metabolomics since the very 
beginning [2, 14], with early studies in the context of plant metabolomics [16]. 
Although GC-MS is suited to assess the volatile portion of the metabolome, sample 
derivatization schemes [27] aiming primarily at volatility enhancement allowed GC 
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to reach a rather polar fraction in water-rich biofluids; for instance, carboxylic acids, 
amino acids, and biogenic amines can all be analyzed simultaneously in a single 
chromatographic run and ionization mode. Moreover, the high specificity associ-
ated with the resulting adducts allows the use of low-resolution mass spectrometers 
and the building of dedicated spectra libraries for compound identification [28]. 
Nevertheless, necessary sample derivatization schemes are time-consuming tasks 
and have limited the application of GC-MS to clinical protocols where only a small 
set of samples is under consideration.

Liquid chromatography-mass spectrometry (LC-MS) has been the premier tech-
nique in metabolomics for many years [9–14], despite the fact that to achieve the 
same metabolic coverage NMR does, multiple column chemistries must be screened. 
There are plenty of systematic studies where the information acquired from the 
more traditional reversed-phase (RPLC-MS) to the recently revisited hydrophilic 
interaction (HILIC-MS) modes is combined to promote a more thorough metabolic 
coverage (from nonpolar and/or moderately polar metabolites up to the ionic/polar 
ones) [29, 30]. The completion of human serum and urine metabolomes is a good 
example of the complementary information NMR and hyphenated MS analytical 
platforms offer [31, 32].

Considering the orthogonal separation mechanism provided by capillary elec-
trophoresis (CE), it has emerged as a promising complementary technique to 
both liquid and gas chromatography for metabolic profiling of biological fluids 
as an impressive series of periodic review articles attest [33–56]. Intrinsic char-
acteristics, such as high efficiency and resolution power, rapid analyses, and, 
most importantly, the ability to assess, without derivatization, the most polar 
and/or ionic compounds in the metabolome, have placed CE in an advantageous 
position. This chapter will therefore give a comprehensive overview of the state 
of the art in CE-MS technology, describing the methodologies in use for metabo-
lomics and compiling representative applications of CE-MS in clinical 
metabolomics.

5.2  �CE-MS

5.2.1  �Onset and Pioneer Work

Although MS has currently achieved remarkable capacity to screen the composition 
of complex samples, in order to obtain relevant information about any biological 
system in a comprehensive manner as metabolomics studies do, it is recommend-
able to couple MS with different separation techniques and benefit from the three-
dimensional information the hyphenated system imparts (retention and/or migration 
time, peak intensity, and mass-to-charge ratio).
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Within the context of coupling separation techniques to MS, CE-MS was the last 
to be established, and interfacing the two platforms followed a timeline. While GC 
and HPLC were firstly registered around the 1950s and 1960s [57, 58], the first 
reports on electrophoresis effectively performed on capillary tube dimensions were 
registered in 1981, by Jorgenson and Lukacs [59, 60]. Before that, some authors had 
published electrophoretic separation on “quasi-capillary” dimensions, namely, 
Hjérten (using 300 μm i.d. capillary for the separation of inorganic ions, nucleo-
tides, and proteins), Virtanen (using 200–500 μm i.d. capillaries), and Everaerts and 
collaborators, who first reported a completely automatized CE system using 100 μm 
i.d. capillaries [61–63].

Capillary zone electrophoresis (CZE) is the simplest and most commonly used 
CE mode due to the straightforwardness of background electrolyte (BGE) compo-
sition, principle of separation, and broad application to the analysis of diverse 
samples, containing from small ions to large biomolecules [64]. In CZE, analytes 
are separated according to differences in electrophoretic mobilities, which are 
dependent on the molecule/species charge-to-radius ratio and the medium viscos-
ity. Neutral analytes are thus not separated by this mode, constituting one of the 
CZE main drawbacks. To overcome such limitations and to expand CE applicabil-
ity, other CE modes have been developed, such as micellar electrokinetic chroma-
tography (MEKC, where micelles are used as carriers to assess primarily the 
separation of neutral compounds) [65], capillary isoelectric focusing (CIEF, 
where separation of amphiprotic substances is conducted in a pH gradient) [66–
68], capillary isotachophoresis (CITP, where discontinuous leading and terminat-
ing electrolytes are used to separate small molecules and ions) [69], capillary gel 
electrophoresis (CGE, which uses gels or entangled polymers to assess large mol-
ecules and polymers) [70], capillary electrochromatography (CEC, where packed 
capillary columns are used to explore additional solute-stationary phase interac-
tions) [71], and affinity capillary electrophoresis (ACE, which explores biospe-
cific interactions) [72], among other modes. In fact, the versatility of performing 
almost all different modes (CEC and certain formats of CGE are a few exceptions) 
in the same capillary format and in the same equipment, only requiring alteration 
of the BGE composition, constitutes one of the major advantages of CE as a sepa-
ration technique. Additional characteristics of CE include high resolution and 
efficiency (a million plates can be achieved), low consumption of BGE (few μL 
per run), small sample volume (few nL per run), and relatively fast separations 
(less than 5 min in favorable cases).

The most frequently used detection scheme available in almost all commercial 
CE equipments is based on absorption of UV-visible radiation (CE-UV). The UV 
detector is usually built on-capillary. By removing a narrow portion of the poly-
imide that coats externally the capillary, a detection window of tenths of millimeters 
is created. Any compound containing a chromophore group that passes the detection 
window will absorb the UV-visible radiation focused on the capillary and give a 
signal. However, the optical length available for absorption is the capillary inner 
diameter (usually 50 or 75 μm). Comparing such dimensions with those presented 
by HPLC detection cells (in the order of cm), allied to the reduced sample volume 
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introduced into the CE capillary (in the order of nL), puts in evidence the reduced 
concentration sensitivity posed by CE-UV systems.

The analysis of biological samples generally requires the use of sensitive, selec-
tive, and universal detectors. CE-MS coupling has arisen as a valuable alternative to 
overcome sensitivity and also selectivity issues associated with the UV detector, 
since the MS detector provides online spectral information; in addition, it is univer-
sal, and rather sensitive, depending on the interface used in the coupling. However, 
two main issues must be addressed when coupling CE to MS, namely, the separa-
tion mode and the interface design.

The CE-MS coupling was registered for the first time in 1987 by Smith and col-
laborators [73], constituting the first description of what is now known as sheathless 
interface. In their pioneer work, a capillary electrophoresis system (operated under 
CZE mode) was coupled to a quadrupole mass spectrometer using electrospray ion-
ization (ESI) for the analysis of quaternary ammonium salts. In their instrumental 
arrangement, the cathode (or low voltage end) of the CE capillary was inserted into 
a stainless steel capillary in order to establish both the CE and the ESI electrical 
circuits. The capillary inlet was immersed in a BGE reservoir, and an electroosmoti-
cally induced flow allowed the CE effluent to be directly introduced into the 
MS. Nitrogen gas was used as drying gas in countercurrent to the CE effluent to 
assist droplet desolvation. Higher separation efficiency was obtained by decreasing 
the sample plug and concentration. However, several restrictions were imposed by 
this first CE-MS arrangement: low flow requirements for spray stability, limited 
BGE composition, and issues related to the capillary preparation process, such as 
the need of several steps for metal deposition and erosion of the deposited metal, 
requiring replacement after a few days of operation. By addressing these problems, 
in the following year, Smith and col. published a new manuscript, where some 
improvements were reported [74]. The CE capillary cathode end was again inserted 
into a stainless steel tube, and few millimeters of the capillary were protruded out-
side. In addition, silver vapor was used to produce the metal deposit at the capillary 
end, providing a system with better mechanical strength and extended lifetime. As 
a result, improved efficiencies of ESI sampling and ion transmission were achieved. 
A broader range of compounds, such as amino acids, polypeptides, quaternary 
ammonium salts, and water-soluble vitamins, was analyzed, presenting better 
separation efficiency than reported previously. In the same year, Smith and col. 
described a completely new and improved ESI interface, where the contact at the 
CE terminus was replaced by a thin sheath of flowing liquid [75]. It was the birth of 
the sheath liquid interface. With this new arrangement, a qualitative improvement in 
ESI stability was reached, and more importantly, no special treatment was required 
to establish the electrical contact at the capillary end, allowing easy replacement of 
the capillary. This design also constituted the basis for implementation of other CE 
modes. It is important to recognize the merit and contribution of Smith’s research 
group, who proposed in 1 year apart both CE-MS interface designs, which evolved 
into today’s modern instrumentation [76].

Figure 5.1 depicts a schematic representation of the variety of CE mechanisms, 
ionization modes, and types of mass analyzers reported so far in CE-MS coupling. 
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CZE is undoubtedly the most commonly used separation mode in the CE-MS cou-
pling, due to the easy manipulation of BGE composition (vide Table 5.1 for exam-
ples). In general, a simple buffer solution composed of volatile or semi-volatile 
acids or bases and corresponding salts is employed, e.g., formic or acetic acids, 
ammonia, and/or ammonium formate or acetate. However, the use of such simple 
BGE compositions restricts the pH range in which CE-MS separations can be per-
formed. BGE additives may be required to improve the separation quality when 
resolution is compromised. The use of organic modifiers and cyclodextrins has been 
invoked, although the latter is known to hinder ionization efficiency and to contami-
nate the ion source and/or the mass analyzer ion optics, restricting its applicability.

MEKC has also been coupled to MS and provide the concurrent separation of 
neutral and ionic compounds, which interact with micelle compartments and/or sur-
face to different extents. The solute McGown volume and the solute’s ability to 
interact with electrolyte components via hydrogen bonding seem to be the 
determinant factors that explain retention. The surfactants commonly used in 
MEKC (SDS, CTAB, bile salts, etc.), which are added to the BGE in a concentra-
tion above their critical micelle concentrations (CMC), are generally nonvolatile 
species. Thus, depending on the concentration used, they might cause ionic suppres-
sion at the interface and contamination of the ion optics or capillary clogging if 
introduced into the MS system [147]. To circumvent these problems, the addition of 
volatile surfactants to the BGE has been recommended. Moreno-González et  al. 
have employed ammonium perfluorooctanoate (APFO) as a semi-volatile surfactant 
for the separation of amino acids in human urine by MEKC-MS [148]. Separation 
of 20 amino acids (including leucine and isoleucine) with detectability in the ng 
mL−1 range was achieved with a BGE composed of 150 mmol L−1 APFO aqueous 
solution, adjusted to pH 9.0 with 14.2 mol L−1 ammonium hydroxide. At these pH 

Fig. 5.1  Schematic diagram of CE-ESI-MS systems

K.T. Rodrigues et al.



107

Ta
bl

e 
5.

1 
R

ep
re

se
nt

at
iv

e 
ap

pl
ic

at
io

ns
 o

f 
C

E
-M

S 
in

 c
lin

ic
al

 m
et

ab
ol

om
ic

s

R
ef

.
A

pp
lic

at
io

n
M

at
ri

x
M

et
ab

ol
om

ic
s

M
et

ab
ol

ite
s

B
G

E
SH

L
M

S
Sa

m
pl

e 
pr

ep
ar

at
io

n
D

at
a 

an
al

ys
is

O
th

er
 

m
et

ho
d

[7
7]

A
cu

te
 c

or
on

ar
y 

sy
nd

ro
m

e
Se

ru
m

U
nt

ar
ge

te
d

A
ce

ty
lc

ar
ni

tin
es

, 
am

in
o 

ac
id

s
0.

8 
m

ol
 L

−
1  H

Fo
r 

in
 1

0 
%

 M
eO

H
4 
μL

 H
Fo

r 
in

 
50

 %
 M

eO
H

E
SI

(+
)-

T
O

F
L

L
E

, 
ul

tr
ac

en
tr

if
ug

at
io

n
t-t

es
t, 

PC
A

, 
PL

S-
D

A
, 

O
PL

S-
D

A

L
C

-M
S/

M
S

[7
8]

A
gi

ng
T

T
D

 m
ic

e 
ur

in
e

U
nt

ar
ge

te
d

A
m

in
o 

ac
id

s 
an

d 
de

ri
va

tiv
es

 a
nd

 
ac

et
yl

sp
er

m
id

in
e

2 
m

ol
 L

−
1  H

Fo
r 

in
 2

0 
%

 M
eO

H
50

 %
 M

eO
H

 
w

ith
 0

.1
 %

 
H

Fo
r

E
SI

(+
)-

T
O

F
M

ix
ed

 w
ith

 M
eO

H
, 

H
2O

, a
nd

 B
G

E
; 

ce
nt

ri
fu

ge
d

X
C

M
S,

 P
C

A
, 

PL
S-

D
A

–

[7
9]

A
lz

he
im

er
’s

 d
is

ea
se

Pr
og

re
ss

io
n

C
SF

U
nt

ar
ge

te
d

C
ho

lin
e,

 a
rg

in
in

e,
 

hi
st

id
in

e,
di

m
et

hy
-L

-a
rg

in
in

e,
 

ca
rn

iti
ne

, c
re

at
in

e,
 

va
lin

e,
 s

er
in

e,
 a

nd
 

pr
ol

in
e

0.
5 

m
ol

 L
−

1  H
Fo

r 
at

 p
H

 1
.8

IP
O

H
/H

2O
 

(5
0 

%
)

E
SI

(+
)-

T
O

F
In

te
rn

al
 s

ta
nd

ar
ds

 
ad

de
d 

to
 th

e 
C

SF
 

fo
llo

w
ed

 b
y 

ul
tr

afi
ltr

at
io

n

D
at

a 
an

al
ys

is
 

(B
ru

ke
r 

D
al

to
ni

cs
),

 
M

zm
in

e,
 P

C
A

, 
L

O
O

-C
V

, L
D

A
, 

C
V

A

–

[8
0]

A
lz

he
im

er
’s

 d
is

ea
se

Pr
og

re
ss

io
n

Se
ru

m
U

nt
ar

ge
te

d
Po

la
r 

m
et

ab
ol

ite
s

0.
8 

m
ol

 L
−

1  H
Fo

r 
in

 1
0 

%
 M

eO
H

1 
m

m
ol

 L
−

1  
H

Fo
r 

in
 5

0 
%

 
M

eO
H

E
SI

(+
)-

T
O

F
L

L
E

, 
ul

tr
ac

en
tr

if
ug

at
io

n
PL

S-
D

A
, V

IP
–

[8
1]

C
an

ce
r

Bl
ad

de
r

U
ri

ne
U

nt
ar

ge
te

d
A

m
in

o 
ac

id
s 

an
d 

de
ri

va
tiv

es
0.

8 
m

ol
 L

−
1  H

Fo
r 

in
 1

0 
%

 M
eO

H
1 

m
m

ol
 L

−
1  

H
Fo

r 
in

 5
0 

%
 

M
eO

H

E
SI

(+
)-

T
O

F
D

ilu
tio

ni
n 

H
2O

 
(1

:5
)

A
N

O
V

A
, 

O
PL

S-
D

A
L

C
-Q

T
O

F 
-M

S

[8
2]

C
an

ce
r

Br
ea

st,
 m

ou
th

, a
nd

 
pa

nc
re

as

Sa
liv

a
U

nt
ar

ge
te

d
A

m
in

o 
ac

id
s 

an
d 

de
ri

va
tiv

es
, 

ca
rb

ox
yl

ic
 a

ci
ds

, 
ca

rn
iti

ne
, a

m
in

es
, 

bi
le

 a
ci

d

1 
m

ol
 L

−
1  H

Fo
r

50
 %

 M
eO

H
 

w
ith

 
0.

5 
μm

ol
 L

−
1  

re
se

rp
in

e

E
SI

(+
)-

T
O

F
D

ilu
tio

n 
in

 H
2O

 
(9

:1
) 

w
ith

 I
S

M
as

sH
un

te
r 

(A
gi

le
nt

 
Te

ch
no

lo
gi

es
),

 
X

C
M

S,
 

D
ou

gl
as

-
Pe

uc
ke

r 
al

go
ri

th
m

, 
St

ee
l-

D
w

as
s 

te
st

, A
N

N
. P

C
A

, 
SV

M
, M

L
R

–

[8
3]

C
an

ce
r

Co
lo

n
C

el
l

U
nt

ar
ge

te
d

A
m

in
o 

ac
id

s 
an

d 
de

ri
va

tiv
es

, a
m

in
es

, 
nu

cl
eo

si
de

, s
ug

ar

1 
m

ol
 L

−
1  H

Fo
r

IP
O

H
/H

2O
 

(5
0 

%
)

E
SI

(+
)-

T
O

F
L

L
E

, u
ltr

afi
ltr

at
io

n 
an

d 
ly

op
hi

liz
at

io
n

X
C

M
S,

 W
el

ch
 

t-t
es

t, 
St

ud
en

t’s
 

t-t
es

t

L
C

-M
S 

(H
IL

IC
  

an
d 

R
P)

(c
on

tin
ue

d)

5  Strategies Involving Mass Spectrometry Combined with Capillary Electrophoresis



108

[8
4]

C
an

ce
r

Co
lo

n 
an

d 
sto

m
ac

h
T

um
or

 ti
ss

ue
Ta

rg
et

ed
M

et
ab

ol
ite

s 
in

vo
lv

ed
 in

 
gl

yc
ol

ys
is

, p
en

to
se

 
ph

os
ph

at
e 

pa
th

w
ay

, 
T

C
A

, u
re

a 
cy

cl
es

, 
an

d 
am

in
o 

ac
id

 a
nd

 
nu

cl
eo

tid
e 

m
et

ab
ol

is
m

s

1 
m

ol
 L

−
1  H

Fo
r;

 
50

 m
m

ol
 L

−
1  

A
m

A
c,

 p
H

 8
.5

 
(S

M
IL

E
 

(+
)-

co
at

ed
 

ca
pi

lla
ry

) 
an

d 
50

 m
m

ol
 L

−
1  

A
m

A
c,

 p
H

 7
.5

50
 %

 M
eO

H
 

w
ith

 
0.

5 
μm

ol
 L

−
1  

re
se

rp
in

e;
 

50
 %

 M
eO

H
 

w
ith

 
1 
μm

ol
 L

−
1  

re
se

rp
in

e 
an

d 
5 

m
m

ol
 L

−
1  

A
m

A
c 

in
 

50
 %

 M
eO

H

E
SI

(+
/−

)-
T

O
F

L
L

E
, u

ltr
afi

ltr
at

io
n 

an
d 

ly
op

hi
liz

at
io

n
W

ilc
ox

on
 te

st
, 

m
ul

tiE
xp

er
im

en
t

V
ie

w
er

–

[8
5]

C
an

ce
r

Lu
ng

 a
nd

 p
ro

sta
te

T
um

or
 a

nd
 

su
rr

ou
nd

in
g 

tis
su

es

U
nt

ar
ge

te
d

Se
ve

ra
l

C
at

io
ns

: 
1 

m
ol

 L
−

1  H
Fo

r
A

ni
on

s:
 

50
 m

m
ol

 L
−

1  
A

m
A

c,
 p

H
 8

.5

C
om

m
er

ci
al

 
SH

L
E

SI
(+

/−
)-

T
O

F
L

L
E

, 
ul

tr
ac

en
tr

if
ug

at
io

n
PC

A
na

no
L

C
-M

S/
M

S

[8
6]

C
an

ce
r

St
om

ac
h

U
ri

ne
U

nt
ar

ge
te

d
A

m
in

o 
ac

id
s

1 
m

ol
 L

−
1  H

Fo
r

0.
1 

%
 H

Fo
r 

in
 

50
 %

 M
eO

H
E

SI
(+

)-
IT

C
en

tr
if

ug
at

io
n,

 
fil

tr
at

io
n

M
an

n-
W

hi
tn

ey
, 

A
N

O
V

A
 

K
ru

sk
al

-W
al

lis
 

te
st

, P
C

A

–

[8
7]

C
an

ce
r

Pr
os

ta
te

U
ri

ne
Ta

rg
et

ed
Sa

rc
os

in
e,

 
L

-p
ro

lin
e,

 
l-

cy
st

ei
ne

, 
L

-l
eu

ci
ne

, 
L

-g
lu

ta
m

ic
 a

ci
d,

 
an

d 
L

-k
yn

ur
en

in
e

0.
4 

%
 H

Fo
r 

in
 

50
 %

 M
eO

H
 a

nd
 

0.
2 

%
 H

Fo
r 

in
 

50
 %

 M
eO

H

–
E

SI
(+

)-
IT

SP
E

 (
St

ra
ta

-X
 

st
ro

ng
 c

at
io

n 
ca

rt
ri

dg
e)

 a
nd

 
ly

op
hi

liz
at

io
n

–
–

[8
8]

C
hr

on
ic

 k
id

ne
y 

di
se

as
e

Pl
as

m
a

U
nt

ar
ge

te
d

1 
m

ol
 L

−
1  H

Fo
r;

 
50

 m
m

ol
 L

−
1  

A
m

A
c,

 p
H

 8
.5

 
(S

M
IL

E
 

(+
)-

co
at

ed
 

ca
pi

lla
ry

)

5 
m

m
ol

 L
−

1  
A

m
A

c 
in

 
50

 %
 M

eO
H

E
SI

(+
/−

)-
T

O
F

L
L

E
, u

ltr
afi

ltr
at

io
n 

an
d 

ly
op

hi
liz

at
io

n
Sp

ea
rm

an
’s

 r
an

k 
co

rr
el

at
io

n,
 

L
ik

eh
oo

d 
fu

nc
tio

n

–

Ta
bl

e 
5.

1 
(c

on
tin

ue
d)

R
ef

.
A

pp
lic

at
io

n
M

at
ri

x
M

et
ab

ol
om

ic
s

M
et

ab
ol

ite
s

B
G

E
SH

L
M

S
Sa

m
pl

e 
pr

ep
ar

at
io

n
D

at
a 

an
al

ys
is

O
th

er
 

m
et

ho
d

K.T. Rodrigues et al.



109

[8
9]

C
om

pl
ex

 r
eg

io
na

l p
ai

n 
sy

nd
ro

m
e

U
ri

ne
U

nt
ar

ge
te

d
A

m
in

o 
ac

id
s 

an
d 

de
ri

va
tiv

es
, 

ca
rb

ox
yl

ic
 a

ci
ds

, 
am

in
es

1 
m

ol
 L

−
1  H

Fo
r 

pH
 1

.8
 (

PB
-P

V
S 

co
at

in
g)

0.
1 

%
 H

Fo
r 

in
 

50
 %

 M
eO

H
E

SI
(+

)-
T

O
F

D
ilu

tio
n 

1:
1 

w
ith

 
B

G
E

X
C

M
S,

 P
C

A
, 

PL
S-

D
A

M
E

K
C

[9
0]

D
at

a 
pr

oc
es

si
ng

Cl
us

te
rin

g a
lg

or
ith

m
U

ri
ne

U
nt

ar
ge

te
d

A
m

in
o 

ac
id

s,
 

or
ga

ni
c 

ac
id

s,
 

nu
cl

eo
tid

es

1 
m

ol
 L

−
1  H

Fo
r 

ad
ju

st
ed

 w
ith

 
N

H
4O

H
 to

 
pH

 2
.4

(T
E

D
E

TA
M

A
-

co
-H

PM
A

 
co

po
ly

m
er

-
co

at
ed

 c
ap

ill
ar

y)

50
 %

 I
PO

H
E

SI
(−

)-
T

O
F

Fi
ltr

at
io

n
H

ie
ra

rc
hi

ca
l 

ag
gl

om
er

at
iv

e 
cl

us
te

r 
an

al
ys

is
 

(n
ew

 a
lg

or
ith

m
s)

–

[9
1]

D
at

a 
pr

oc
es

si
ng

M
iss

in
g v

al
ue

s
Pl

as
m

a
U

nt
ar

ge
te

d
Se

ve
ra

l
0.

8 
m

ol
 L

−
1  H

Fo
r 

in
 1

0 
%

 M
eO

H
1 

m
m

ol
 L

−
1  

H
Fo

r 
in

 5
0 

%
 

M
eO

H

E
SI

(+
)-

T
O

F
L

L
E

, 
ul

tr
ac

en
tr

if
ug

at
io

n
Z

er
o,

 m
ed

ia
n,

 ½
 

m
in

im
um

 a
nd

 
kN

N
 im

pu
ta

tio
n 

m
et

ho
ds

, t
-t

es
t, 

an
d 

M
an

n-


W
hi

tn
ey

 te
st

–

[9
2]

D
ia

be
te

s 
m

el
lit

us
Ty

pe
 1

U
ri

ne
U

nt
ar

ge
te

d
Pr

ot
ei

n 
an

d 
am

in
o 

ac
id

 m
et

ab
ol

is
m

0.
8 

m
ol

 L
−

1  H
Fo

r 
in

 1
0 

%
 M

eO
H

1 
m

m
ol

 L
−

1  
H

Fo
r 

in
 5

0 
%

 
M

eO
H

E
SI

(+
)-

T
O

F
D

ilu
tio

n 
w

ith
 H

2O
 

(1
0x

) 
an

d 
ce

nt
ri

fu
ga

tio
n

PC
A

, O
PL

S-
D

A
,

t-t
es

t
L

C
-M

S 
(p

la
sm

a)

[9
3]

D
ia

be
te

s 
m

el
lit

us
Ty

pe
 2

Se
ru

m
U

nt
ar

ge
te

d
A

m
in

o 
ac

id
s,

 
ci

tr
ul

lin
e,

 
ac

et
yl

ca
rn

iti
ne

0.
8 

m
ol

 L
−

1  H
Fo

r 
in

 1
0 

%
 M

eO
H

4 
μL

 H
Fo

r 
in

 
50

 %
 M

eO
H

E
SI

(+
)-

T
O

F
L

L
E

, 
ul

tr
ac

en
tr

if
ug

at
io

n
t-t

es
t, 

M
an

n-
W

hi
tn

ey
 

te
st

, M
an

n-
K

en
da

ll 
tr

en
d 

an
al

ys
is

–

[9
4]

D
ila

te
d 

ca
rd

io
m

yo
pa

th
y

H
ea

rt
 ti

ss
ue

U
nt

ar
ge

te
d

C
ha

rg
ed

 
m

et
ab

ol
ite

s
C

at
io

ns
: 

1 
m

ol
 L

−
1  H

Fo
r

A
ni

on
s:

 
50

 m
m

ol
 L

−
1  

A
m

A
c,

 p
H

 8
.5

5 
m

m
ol

 L
−

1  
A

m
A

c 
in

 
50

 %
 M

eO
H

 
co

nt
ai

ni
ng

 
0.

1 
μm

ol
 L

−
1  

he
xa

ki
s

E
SI

(+
/−

)-
T

O
F

H
om

og
en

iz
at

io
n 

w
ith

 M
eO

H
PC

A
, t

-t
es

t
L

C
-M

S/
M

S
L

C
-T

O
F-

M
S

(c
on

tin
ue

d)

5  Strategies Involving Mass Spectrometry Combined with Capillary Electrophoresis



110

[9
5]

E
xe

rc
is

e 
tr

ai
ni

ng
Pl

as
m

a
U

nt
ar

ge
te

d
L-

ca
rn

iti
ne

, g
lu

ta
th

io
ny

l- 
L

-c
ys

te
in

e,
 

hy
po

xa
nt

hi
ne

, O
-a

ce
ty

l- 
L

-c
ar

ni
tin

e

1 
m

ol
 L

−
1  H

Fo
r 

in
 1

5 
%

 A
C

N
0.

1 
%

 H
Fo

r 
in

 
60

 %
 M

eO
H

E
SI

(+
)-

T
O

F
D

ilu
tio

n 
w

ith
 

20
0 

m
m

ol
 L

−
1  

A
m

A
c,

 
ul

tr
afi

ltr
at

io
n

t-t
es

t, 
PC

A
, 

H
C

A
, P

L
S-

D
A

, 
tw

o-
w

ay
 

A
N

O
V

A

–

[9
6]

Fa
tty

 li
ve

r 
di

se
as

e
N

on
al

co
ho

lic
 re

la
te

d
Se

ru
m

U
nt

ar
ge

te
d

Su
lf

at
ed

 s
te

ro
id

s
50

 m
m

ol
 L

−
1  

A
m

A
c 

pH
 8

.5
(C

O
SM

O
 

(+
)-

co
at

ed
 

ca
pi

lla
ry

)

5 
m

m
ol

 L
−

1  
A

m
A

c 
in

 
50

 %
 M

eO
H

 
co

nt
ai

ni
ng

 
0.

1 
μm

ol
 L

−
1  

he
xa

ki
s

E
SI

(−
)-

T
O

F
L

L
E

, 
ul

tr
ac

en
tr

if
ug

at
io

n
St

ee
l-

D
w

as
s 

te
st

L
C

-T
O

F-
M

S

[9
7]

G
as

tr
ic

 in
ju

ry
A

sp
iri

n 
in

du
ce

d
Se

ru
m

, a
nd

 
st

om
ac

h 
tis

su
e

U
nt

ar
ge

te
d

T
C

A
 c

yc
le

, 
β-

ox
id

at
io

n,
 

co
lla

ge
n 

m
et

ab
ol

is
m

C
at

io
ns

: 
1 

m
ol

 L
−

1  H
Fo

r
A

ni
on

s:
 

50
 m

m
ol

 L
−

1  
A

m
A

c,
 p

H
 8

.5
(C

O
SM

O
 

(+
)-

co
at

ed
 

ca
pi

lla
ry

)

5 
m

m
ol

 L
−

1  
A

m
A

c 
in

 
50

 %
 M

eO
H

 
co

nt
ai

ni
ng

 
0.

1 
μm

ol
 L

−
1  

he
xa

ki
s

E
SI

(+
/−

)-
 

T
O

F
L

L
E

, u
ltr

afi
ltr

at
io

n
PC

A
, P

L
S-

D
A

, 
A

N
O

V
A

, 
D

un
ne

tt’
s 

te
st

–

[9
8]

H
ep

at
iti

s
T

is
su

e
U

nt
ar

ge
te

d
C

om
po

un
ds

 r
el

at
ed

 
to

 g
lu

ta
th

io
ne

 
bi

os
yn

th
es

is

1 
m

ol
 L

−
1  H

Fo
r;

 
50

 m
m

ol
 L

−
1  

A
m

A
c,

 p
H

 8
.5

 
(S

M
IL

E
 

(+
)-

co
at

ed
 

ca
pi

lla
ry

)

5 
m

m
ol

 L
−

1  
A

m
A

c 
in

 
50

 %
 M

eO
H

 
co

nt
ai

ni
ng

 
20

 μ
m

ol
 L

−
1  

PE
PI

S 
an

d 
1 
μm

ol
 L

−
1  

re
se

rp
in

e

E
SI

(+
/−

)-
T

O
F

C
en

tr
if

ug
at

io
n,

 
fil

tr
at

io
n 

an
d 

ly
op

hi
liz

at
io

n

D
ou

gl
as

-
Pe

uc
ke

r 
al

go
ri

th
m

, 
R

ei
je

ng
a 

fu
nc

tio
n

–

[9
9]

H
ep

at
o-

ce
llu

la
r 

ca
rc

in
om

a
Se

ru
m

U
nt

ar
ge

te
d

A
m

in
o 

ac
id

s,
 

or
ga

ni
c 

ac
id

s,
 

am
in

es
, s

ug
ar

 
ph

os
ph

at
es

C
at

io
ns

: 
1 

m
ol

 L
−

1  H
Fo

r
A

ni
on

s:
 

50
 m

m
ol

 L
−

1  
A

m
A

c 
pH

 8
.5

5 
m

m
ol

 L
−

1  
A

m
A

c 
in

 
50

 %
 M

eO
H

 
co

nt
ai

ni
ng

 
0.

1 
μm

ol
 L

−
1  

he
xa

ki
s

E
SI

(+
/−

)-
T

O
F

L
L

E
, 

ul
tr

ac
en

tr
if

ug
at

io
n

PL
S-

D
A

, H
C

A
, 

W
ilc

ox
on

 
M

an
n-

W
hi

tn
ey

 
te

st
, F

D
R

–

Ta
bl

e 
5.

1 
(c

on
tin

ue
d)

R
ef

.
A

pp
lic

at
io

n
M

at
ri

x
M

et
ab

ol
om

ic
s

M
et

ab
ol

ite
s

B
G

E
SH

L
M

S
Sa

m
pl

e 
pr

ep
ar

at
io

n
D

at
a 

an
al

ys
is

O
th

er
 

m
et

ho
d

K.T. Rodrigues et al.



111

[1
00

]
H

un
tin

gt
on

’s
 d

is
ea

se
Pr

og
re

ss
io

n
Pl

as
m

a
U

nt
ar

ge
te

d
Pr

ot
ei

n 
m

et
ab

ol
is

m
, 

pr
os

ta
gl

an
di

ns
, 

th
ro

m
bo

xa
ne

s,
 

lip
ox

in
s,

 a
nd

 
le

uk
ot

ri
en

es

50
 m

m
ol

 L
−

1  
H

A
c 

an
d 

50
 m

m
ol

 L
−

1  
H

Fo
r 

ad
ju

st
ed

 to
 

pH
 3

.5
 w

ith
 

am
m

on
ia

0.
05

 %
 H

Fo
r 

in
 6

0 
%

 I
PO

H
E

SI
(+

)-
T

O
F

Pr
ot

ei
n 

pr
ec

ip
ita

tio
n,

 
ul

tr
ac

en
tr

if
ug

at
io

n,
SP

E
 o

nl
in

e

M
C

R
-A

L
S,

 
PL

S-
D

A
–

[1
01

]
H

yp
er

ch
ol

es
te

ro
la

em
ia

D
ie

t i
nd

uc
ed

Pl
as

m
a

U
nt

ar
ge

te
d

A
m

in
o 

ac
id

s 
an

d 
de

ri
va

tiv
es

, f
at

ty
 

ac
id

s 
es

te
rs

0.
8 

m
ol

 L
−

1  H
Fo

r 
in

 1
0 

%
 M

eO
H

1 
m

m
ol

 L
−

1  
H

Fo
r 

in
 5

0 
%

 
M

eO
H

E
SI

(+
)-

T
O

F
L

L
E

, 
ul

tr
ac

en
tr

if
ug

at
io

n
PC

A
, P

L
S-

D
A

L
C

-M
S,

 
G

C
-M

S

[1
02

]
In

bo
rn

 e
rr

or
s 

of
 

m
et

ab
ol

is
m

D
ri

ed
 b

lo
od

 
sp

ot
Ta

rg
et

ed
A

m
in

o 
ac

id
 a

nd
 

ac
yl

ca
rn

iti
ne

1.
4 

m
ol

 L
−

1  
H

Fo
r, 

pH
 1

.8
1:

1 
M

eO
H

/
H

2O
 w

ith
 

0.
1 

%
 H

Fo
r

E
SI

(+
)-

IT
L

L
E

, u
ltr

afi
ltr

at
io

n 
an

d 
di

lu
tio

n 
w

ith
 

A
m

A
c 

so
lu

tio
n

–
–

[1
03

]
L

iv
er

 d
is

ea
se

Se
ru

m
U

nt
ar

ge
te

d
γ-

gl
ut

am
yl

, 
di

pe
pt

id
es

, 
tr

an
sa

m
in

as
es

, a
nd

 
m

et
hi

on
in

e 
su

lf
ox

id
e

50
 m

m
ol

 L
−

1  
A

m
A

c,
 p

H
 8

.5
 

(C
O

SM
O

 
(+

)-
co

at
ed

 
ca

pi
lla

ry
)

5 
m

m
ol

 L
−

1  
A

m
A

c 
in

 
50

 %
 M

eO
H

 
an

d 
0.

1 
μm

ol
 L

−
1  

he
xa

ki
s

E
SI

(−
)-

T
O

F
–

K
ru

sk
al

-W
al

lis
 

te
st

 a
nd

 D
un

n’
s 

po
st

-t
es

t, 
M

an
n-

W
hi

tn
ey

 
te

st
, M

L
R

L
C

-T
O

F-
M

S 
an

d 
L

C
-M

S/
M

S

[1
04

]
L

iv
er

 d
is

ea
se

Se
ru

m
, a

nd
 

liv
er

 ti
ss

ue
Ta

rg
et

ed
γ-

gl
ut

am
yl

 p
ep

tid
es

20
0 

m
m

ol
 L

−
1  

H
A

c 
pH

 3
.3

0.
5 

m
m

ol
 L

−
1  

A
m

A
c 

in
 

50
 %

 M
eO

H

E
SI

(+
)-

Q
qQ

L
L

E
, 

ul
tr

ac
en

tr
ifi

ug
at

io
n

–
L

C
-M

S/
M

S

[1
05

]
L

iv
er

 in
ju

ry
Al

co
ho

l r
ela

te
d

Pl
as

m
a

U
nt

ar
ge

te
d

A
m

in
o 

ac
id

s,
 

gu
an

id
in

os
uc

ci
na

te
C

at
io

ns
: 

1 
m

ol
 L

−
1  H

Fo
r

A
ni

on
s:

 
50

 m
m

ol
 L

−
1  

A
m

A
c,

 p
H

 8
.5

(C
O

SM
O

 
(+

)-
co

at
ed

 
ca

pi
lla

ry
)

C
at

io
ns

: 
0.

5 
μm

ol
 L

−
1  

re
se

rp
in

e 
in

 
50

 %
 M

eO
H

A
ni

on
s:

 
5 

m
m

ol
 L

−
1  

A
m

A
c 

in
 

50
 %

 M
eO

H
 

co
nt

ai
ni

ng
 

0.
1 
μm

ol
 L

−
1  

he
xa

ki
s

E
SI

(+
/−

)-
T

O
F

L
L

E
, 

ul
tr

ac
en

tr
if

ug
at

io
n

L
in

ea
r 

re
gr

es
si

on
 

an
al

ys
is

, 
B

en
ja

m
in

i a
nd

 
H

oc
hb

er
g’

s 
FD

R

– (c
on

tin
ue

d)

5  Strategies Involving Mass Spectrometry Combined with Capillary Electrophoresis



112

[1
06

]
L

un
g 

in
ju

ry
Ve

nt
ila

to
r i

nd
uc

ed
Pl

as
m

a
U

nt
ar

ge
te

d
O

rg
an

ic
 a

m
in

es
, 

am
in

o 
ac

id
s,

 a
nd

 
th

ei
r 

de
ri

va
tiv

es
, 

ca
rn

iti
ne

s

0.
8 

m
ol

 L
−

1  H
Fo

r 
in

 1
0 

%
 M

eO
H

4 
μL

 H
Fo

r 
in

 
50

 %
 M

eO
H

E
SI

(+
)-

T
O

F
SP

E
 (

ph
os

ph
ol

ip
id

s 
an

d 
pr

ot
ei

ns
 

re
m

ov
al

)
U

ltr
ac

en
tr

if
ug

at
io

n

t-t
es

t, 
PL

S-
D

A

[1
07

]
M

et
ab

ol
ic

 d
is

or
de

rs
U

ri
ne

 a
nd

 b
lo

od
 

sp
ot

s
Ta

rg
et

ed
C

ar
ni

tin
es

, 
ca

rb
ox

yl
ic

 a
ci

d,
 

cr
ea

tin
in

e,
 a

nd
 

ga
la

ct
os

e

20
 m

m
ol

 L
−

1  
A

m
A

c,
 p

H
 8

.5
2 

m
m

ol
 L

−
1  

A
m

A
c 

in
 

50
 %

 M
eO

H

E
SI

(−
)-

Q
qQ

B
lo

od
 s

po
ts

: 
so

lid
-l

iq
ui

d 
ex

tr
ac

tio
n;

 u
ri

ne
: 

fil
tr

at
io

n 
(0

.4
5 
μm

)

–
–

[1
08

]
M

et
ab

ol
ite

 p
ro

fil
in

g
Es

tro
ge

n 
sp

ec
ia

tio
n

U
ri

ne
Ta

rg
et

ed
E

st
ro

ge
ns

50
 m

m
ol

 L
−

1  
am

m
on

iu
m

 
bi

ca
rb

on
at

e,
 

pH
 9

.5

5 
m

m
ol

 L
−

1  
am

m
on

iu
m

 
bi

ca
rb

on
at

e 
in

 
80

 %
 M

eO
H

E
SI

(−
)-

T
O

F
D

ilu
tio

n 
(1

0x
)

–
–

[1
09

]
M

et
ab

ol
ite

 p
ro

fil
in

g
Iso

ba
ric

 la
be

lin
g

U
ri

ne
Ta

rg
et

ed
A

m
in

e-
co

nt
ai

ni
ng

 
m

et
ab

ol
ite

s
0.

2 
%

 H
Fo

r 
in

 
50

 %
 M

eO
H

0.
2 

%
 H

Fo
r 

in
 

50
 %

 M
eO

H
E

SI
(+

)-
Q

T
O

F
U

ltr
afi

ltr
at

io
n,

 
la

be
lin

g 
w

ith
 4

-p
le

x 
D

iL
eu

–
na

no
L

C
-

E
SI

-M
S/

M
S

[1
10

]
M

et
ab

ol
ite

 p
ro

fil
in

g
Ky

nu
re

ni
c p

at
hw

ay
C

SF
Ta

rg
et

ed
T

ry
pt

op
ha

n 
m

et
ab

ol
ite

s
5 

m
m

ol
 L

−
1  

A
m

A
c 

in
 5

 %
 

A
C

N
 p

H
 9

.7

50
 %

 M
eO

H
E

SI
(+

)-
T

O
F

D
ilu

te
d 

(5
×

),
 a

dd
 

50
 %

 A
C

N
–

–

[1
11

]
M

et
ab

ol
ite

 p
ro

fil
in

g
Th

io
l s

pe
cia

tio
n

Pl
as

m
a

Ta
rg

et
ed

T
hi

ol
s

1 
m

ol
 L

−
1  H

Fo
r, 

pH
 1

.8
M

eO
H

/H
2O

 
(6

0:
40

 %
) 

w
ith

 0
.1

 %
 

H
Fo

r

E
SI

(+
)-

IT
D

ilu
te

d 
3-

fo
ld

 w
ith

 
20

0 
m

m
ol

 L
−

1

A
m

A
c,

 p
H

 5
 a

nd
 

20
 m

ol
 L

−
1  A

la
-A

la

R
R

F,
 M

L
R

, 
k-

fo
ld

 c
ro

ss
 

va
lid

at
io

n

–

[1
12

]
M

et
ho

d 
op

tim
iz

at
io

n
Ad

di
tiv

es
 fo

r B
G

E 
an

d 
SH

L

U
ri

ne
Ta

rg
et

ed
A

m
in

o 
ac

id
s 

an
d 

de
ri

va
tiv

es
, 

ca
rb

ox
yl

ic
 a

ci
ds

, 
nu

cl
eo

si
de

, s
ug

ar
 

ph
os

ph
at

e,
 p

ur
in

e

25
 m

m
ol

 L
−

1  
T

E
A

 (
pH

 1
1.

7)
 

(P
B

-D
S-

PB
-

co
at

ed
 c

ap
ill

ar
y)

50
 %

 M
eO

H
 

w
ith

 
5 

m
m

ol
 L

-1
 

T
E

A

E
SI

(−
)-

T
O

F
C

en
tr

if
ug

ed
 a

nd
 

m
ix

ed
 w

ith
 B

G
E

 
(1

:1
)

D
at

aA
na

ly
si

s 
(B

ru
ke

r 
D

al
to

ni
cs

)

–

[1
13

]
M

et
ho

d 
op

tim
iz

at
io

n
Ca

pi
lla

ry
 co

at
in

g
C

SF
, p

la
sm

a 
an

d 
ur

in
e

U
nt

ar
ge

te
d

O
rg

an
ic

 a
ci

ds
, 

am
in

o 
ac

id
s

1 
m

ol
 L

−
1  H

Fo
r 

pH
 1

.8
 

(P
B

-P
V

S-
co

at
ed

 
ca

pi
lla

ry
)

50
 %

 M
eO

H
 

w
ith

 0
.1

 %
 

H
Fo

r

E
SI

(+
)-

T
O

F
C

SF
 a

nd
 p

la
sm

a:
 n

o 
pr

ep
ar

at
io

n;
 u

ri
ne

: 
m

ix
ed

 w
ith

 B
G

E
 

an
d 

ce
nt

ri
fu

ge
d

–
C

E
-U

V

Ta
bl

e 
5.

1 
(c

on
tin

ue
d)

R
ef

.
A

pp
lic

at
io

n
M

at
ri

x
M

et
ab

ol
om

ic
s

M
et

ab
ol

ite
s

B
G

E
SH

L
M

S
Sa

m
pl

e 
pr

ep
ar

at
io

n
D

at
a 

an
al

ys
is

O
th

er
 

m
et

ho
d

K.T. Rodrigues et al.



113

[1
14

]
M

et
ho

d 
op

tim
iz

at
io

n
Ca

pi
lla

ry
 co

at
in

g
U

ri
ne

U
nt

ar
ge

te
d/

ta
rg

et
ed

N
uc

le
os

id
es

, a
m

in
o 

ac
id

s,
 c

ar
bo

xy
lic

 
ac

id
s,

 n
uc

le
ot

id
es

, 
am

in
es

1 
m

ol
 L

−
1  H

Fo
r;

 
A

ni
on

: 
25

 m
m

ol
 L

−
1  

A
m

A
c,

 p
H

 9
 

(P
B

-P
V

S 
an

d 
PB

-D
S-

PB
 

co
at

ed
 c

ap
ill

ar
ie

s 
fo

r 
bo

th
 m

od
es

)

50
 %

 M
eO

H
 

w
ith

 0
.1

 %
 

H
Fo

ra
nd

 5
0 

%
 

M
eO

H
 w

ith
 

0.
1 

%
 

co
nc

en
tr

at
ed

 
N

H
4O

H

E
SI

(+
/−

)-
T

O
F

M
ix

ed
 w

ith
 B

G
E

 
(1

:1
) 

fo
r 

ca
tio

n 
an

al
ys

is
 o

r 
w

ith
 

H
2O

 (
1:

1)
 f

or
 a

ni
on

–
C

E
-U

V

[1
15

]
M

et
ho

d 
op

tim
iz

at
io

n
Ca

pi
lla

ry
 co

at
in

g
U

ri
ne

U
nt

ar
ge

te
d/

ta
rg

et
ed

Ty
ra

m
in

e,
 

do
pa

m
in

e,
 

cr
ea

tin
in

e,
 h

ip
pu

ri
c 

ac
id

, g
lu

ta
th

io
ne

, 
pr

ol
in

e 
be

ta
in

e,
 a

nd
 

am
in

o 
ac

id
s

1 
m

ol
 L

−
1  H

Fo
r 

pH
 2

 (
PB

-D
S-

PB
 

co
at

in
g)

50
 %

 M
eO

H
 

w
ith

 0
.1

 %
 

H
Fo

r

E
SI

(+
)−

T
O

F
M

ix
ed

 w
ith

 B
G

E
 

(1
:1

) 
an

d 
ce

nt
ri

fu
ge

d

X
C

M
S,

 
PL

S-
D

A
, P

C
A

U
PL

C
-M

S

[1
16

]
M

et
ho

d 
op

tim
iz

at
io

n
In

te
rfa

ce
U

ri
ne

U
nt

ar
ge

te
d

A
m

in
o 

ac
id

s 
an

d 
de

ri
va

tiv
es

, a
m

in
es

, 
nu

cl
ei

c 
ac

id
s,

 a
nd

 
sm

al
l p

ep
tid

es

1.
7 

m
ol

L
−

1

(1
0 

%
) 

H
A

c
Sh

ea
th

le
ss

E
SI

(+
)-

T
O

F
M

ix
ed

 w
ith

 I
S 

an
d 

H
2O

 (
1:

1:
8)

 a
nd

 
ul

tr
afi

lte
re

d

M
as

sH
un

te
r 

(A
gi

le
nt

 
Te

ch
no

lo
gi

es
),

 
X

C
M

S,
 

D
ou

gl
as

-
Pe

uc
ke

r 
al

go
ri

th
m

, 
St

ee
l-

D
w

as
s 

te
st

–

[1
17

]
M

et
ho

d 
op

tim
iz

at
io

n
In

te
rfa

ce
U

ri
ne

U
nt

ar
ge

te
d/

ta
rg

et
ed

A
m

in
o 

ac
id

s 
an

d 
de

ri
va

tiv
es

, 
ca

rn
iti

ne
s,

 
nu

cl
eo

si
de

s,
 

cr
ea

tin
in

e,
 v

ita
m

in
s

10
 %

 H
A

c
Sh

ea
th

le
ss

E
SI

(+
)-

T
O

F
M

ix
ed

 w
ith

 B
G

E
 

(1
:1

) 
an

d 
ce

nt
ri

fu
ge

d

D
at

aA
na

ly
si

s 
(B

ru
ke

r 
D

al
to

ni
cs

)

–

[1
18

]
M

et
ho

d 
op

tim
iz

at
io

n
In

te
rfa

ce
M

ou
se

 C
SF

, 
pl

as
m

a 
an

d 
ur

in
e

U
nt

ar
ge

te
d/

ta
rg

et
ed

Pu
ri

ne
, a

m
in

o 
ac

id
s 

an
d 

de
ri

va
tiv

es
, 

ch
ol

in
e,

 c
re

at
in

in
e

10
 %

 H
A

c
Sh

ea
th

le
ss

E
SI

(+
)-

T
O

F
D

ilu
te

d 
w

ith
 H

2O
 

(1
:1

)
–

–

[1
19

]
M

et
ho

d 
op

tim
iz

at
io

n
O

ve
ra

ll 
co

nd
iti

on
s

U
ri

ne
Ta

rg
et

ed
D

op
am

in
e,

 
no

re
pi

ne
ph

ri
ne

, 
ep

in
ep

hr
in

e,
 

3-
m

et
ho

xy
ty

ra
m

in
e,

 
no

rm
et

an
ep

hr
in

e,
 

m
et

an
ep

hr
in

e

1 
%

 H
A

c,
 p

H
 2

.8
 

(P
V

A
-c

oa
te

d 
ca

pi
lla

ry
)

M
eO

H
:H

2O
 

(7
5:

25
) 

w
ith

 
0.

1 
%

 H
A

c

E
SI

(+
)-

T
O

F
SP

E
 o

n 
O

as
is

 M
X

C
 

ca
tio

n-
ex

ch
an

ge
 

ca
rt

ri
dg

e

–
C

E
-U

V

(c
on

tin
ue

d)

5  Strategies Involving Mass Spectrometry Combined with Capillary Electrophoresis



114

[1
20

]
M

et
ho

d 
op

tim
iz

at
io

n
O

ve
ra

ll 
co

nd
iti

on
s

U
ri

ne
U

nt
ar

ge
te

d/
ta

rg
et

ed
N

uc
le

os
id

es
, a

m
in

o 
ac

id
s,

 c
ar

bo
xy

lic
 

ac
id

s,
 s

ug
ar

s,
 

nu
cl

eo
tid

es
, 

m
on

oa
m

in
e

50
 m

m
ol

 L
−

1  
H

A
c 

an
d 

50
 m

m
ol

 L
−

1  
H

Fo
r 

at
 p

H
 2

.5

M
eO

H
:H

2O
 

(8
0:

20
) 

w
ith

 
0.

1 
%

 H
A

c 
an

d 
IP

O
H

/
H

2O
 (6

0:
40

 %
) 

w
ith

 0
.5

 %
am

m
on

ia

E
SI

(+
/−

)-
IT

C
en

tr
if

ug
at

io
n,

 
fil

tr
at

io
n 

an
d 

ly
op

hi
liz

at
io

n

–
C

E
-U

V

[1
21

]
M

et
ho

d 
op

tim
iz

at
io

n
O

ve
ra

ll 
co

nd
iti

on
s

Pl
as

m
a

Ta
rg

et
ed

C
ar

ni
tin

es
20

0 
m

ol
 L

−
1  

am
m

on
iu

m
 

fo
rm

at
e,

 p
H

 2
.5

M
eO

H
:H

2O
 

(7
0:

30
) 

w
ith

 
0.

1 
%

 H
Fo

r

E
SI

(+
)-

IT
D

ep
ro

te
in

iz
ed

 w
ith

 
co

ld
 A

C
N

 (
1:

5)
 a

nd
 

ce
nt

ri
fu

ge
d

–
–

[1
22

]
M

et
ho

d 
op

tim
iz

at
io

n
Pt

 n
ee

dl
e s

pr
ay

er
M

ou
se

 li
ve

r 
tis

su
e

Ta
rg

et
ed

M
et

ab
ol

ite
s 

in
 

gl
yc

ol
ys

is
, p

en
to

se
 

ph
os

ph
at

e,
 a

nd
 

T
C

A
 p

at
hw

ay
s

50
 m

m
ol

 L
−

1  
A

m
A

c,
 p

H
 8

.5
 

(C
O

SM
O

 (
+

)
co

at
ed

 c
ap

ill
ar

y)

5 
m

m
ol

 L
−

1  
A

m
A

c 
in

 
50

 %
 M

eO
H

 
w

ith
 

0.
1 
μm

ol
 L

−
1  

he
xa

ki
s

E
SI

(−
)-

T
O

F
L

L
E

, u
ltr

afi
ltr

at
io

n 
an

d 
ly

op
hi

liz
at

io
n

M
Z

m
in

e
–

[1
23

]
M

et
ho

d 
op

tm
iz

at
io

n
O

ve
ra

ll 
co

nd
iti

on
s

U
ri

ne
Ta

rg
et

ed
A

m
in

o 
ac

id
s

1 
m

ol
 L

−
1  H

Fo
r

5 
m

m
ol

 L
−

1  
A

m
A

c 
in

 
50

 %
 M

eO
H

E
SI

(+
)-

Q
qQ

D
ilu

tio
n 

w
ith

 H
2O

 
(1

:5
)

–
–

[1
24

]
M

ig
ra

in
e 

 
Co

rt
ica

l s
pr

ea
di

ng
 

de
pr

es
sio

n

Pl
as

m
a

U
nt

ar
ge

te
d

Ly
si

ne
, p

ip
ec

ol
ic

 
ac

id
10

 %
 H

A
c 

(n
eu

tr
al

ly
 c

oa
te

d 
ca

pi
lla

ry
)

Sh
ea

th
le

ss
E

SI
(+

)-
T

O
F

Pr
ot

ei
n 

pr
ec

ip
ita

tio
n 

w
ith

 e
th

an
ol

PC
A

, P
L

S-
D

A
, 

O
PL

S-
D

A
L

C
-M

S/
M

S

[1
25

]
M

od
el

 o
rg

an
is

m
Ba

ct
er

ia
Ba

cil
lu

s 
su

bt
ili

sc
el

ls
Ta

rg
et

ed
In

te
rm

ed
ia

te
s 

of
 

gl
yc

ol
ys

is
 a

nd
 th

e 
T

C
A

 c
yc

le

50
 m

m
ol

 L
−

1  
A

m
A

c,
 p

H
 9

 
(S

M
IL

E
 

(+
)-

co
at

ed
 

ca
pi

lla
ry

)

5 
m

m
ol

 L
−

1  
A

m
A

c 
in

 
50

 %
 M

eO
H

E
SI

(−
)-

IT
L

L
E

, u
ltr

afi
ltr

at
io

n 
an

d 
ly

op
hi

liz
at

io
n

–
–

[1
26

]
M

od
el

 o
rg

an
is

m
Ba

ct
er

ia
Ba

cil
lu

s 
su

bt
ili

sc
el

ls
Ta

rg
et

ed
C

itr
at

e 
is

om
er

s,
 

nu
cl

eo
tid

es
, 

di
nu

cl
eo

tid
es

, a
nd

 
co

en
zy

m
e 

A
 

co
m

po
un

ds

50
 m

m
ol

 L
−

1  
A

m
A

c,
 p

H
 7

.5
 

(D
B

-1
-c

oa
te

d 
ca

pi
lla

ry
)

5 
m

m
ol

 L
−

1  
A

m
A

c 
in

 
50

 %
 M

eO
H

E
SI

(−
)-

M
S 

pr
es

su
re

 
as

si
st

ed

L
L

E
, u

ltr
afi

ltr
at

io
n 

an
d 

ly
op

hi
liz

at
io

n
–

–

Ta
bl

e 
5.

1 
(c

on
tin

ue
d)

R
ef

.
A

pp
lic

at
io

n
M

at
ri

x
M

et
ab

ol
om

ic
s

M
et

ab
ol

ite
s

B
G

E
SH

L
M

S
Sa

m
pl

e 
pr

ep
ar

at
io

n
D

at
a 

an
al

ys
is

O
th

er
 

m
et

ho
d

K.T. Rodrigues et al.



115

[1
27

]
M

od
el

 o
rg

an
is

m
Ba

ct
er

ia
Ba

cil
lu

s 
su

bt
ili

sc
el

ls
U

nt
ar

ge
te

d/
ta

rg
et

ed
N

uc
le

os
id

es
, a

m
in

o 
ac

id
s,

 o
rg

an
ic

 a
ci

ds
, 

su
ga

rs
, n

uc
le

ot
id

es
, 

m
on

oa
m

in
e;

 
co

m
po

un
ds

 
in

vo
lv

ed
 in

 
gl

yc
ol

ys
is

, T
C

A
 

cy
cl

e,
 a

nd
 p

en
to

se
 

ph
os

ph
at

e 
pa

th
w

ay
s

1 
m

ol
 L

−
1  H

Fo
r;

 
50

 m
m

ol
 L

−
1  

A
m

A
c,

 p
H

 8
.5

 
(S

M
IL

E
 

(+
)-

co
at

ed
 

ca
pi

lla
ry

) 
an

d 
50

 m
m

ol
 L

−
1  

A
m

A
c,

 p
H

 7
.5

5 
m

m
ol

 L
−

1  
A

m
A

c 
in

 
50

 %
 M

eO
H

E
SI

(+
/−

)-
IT

L
L

E
, u

ltr
afi

ltr
at

io
n 

an
d 

ly
op

hi
liz

at
io

n
–

–

[1
28

]
M

od
el

 o
rg

an
is

m
Ba

ct
er

ia
Es

ch
er

ich
ia

 co
li 

ce
lls

U
nt

ar
ge

te
d

N
uc

le
os

id
es

, a
m

in
o 

ac
id

s,
 o

rg
an

ic
 a

ci
ds

, 
su

ga
rs

, n
uc

le
ot

id
es

, 
m

on
oa

m
in

e

80
 %

 
20

 m
m

ol
 L

−
1  

A
m

A
c 

pH
 9

.5
: 

20
 %

 I
PO

H

Sh
ea

th
le

ss
E

SI
(−

)-
Q

IT
L

L
E

, u
ltr

afi
ltr

at
io

n 
an

d 
ly

op
hi

liz
at

io
n

–
D

ir
ec

t 
in

fu
si

on
 

E
SI

-M
S

[1
29

]
M

od
el

 o
rg

an
is

m
Ba

ct
er

ia
Es

ch
er

ich
ia

 co
li 

ce
lls

U
nt

ar
ge

te
d/

ta
rg

et
ed

N
uc

le
os

id
es

, a
m

in
o 

ac
id

s,
 c

ar
bo

xy
lic

 
ac

id
s,

 n
uc

le
ot

id
es

, 
am

in
es

, s
ug

ar
s

50
 m

ol
 L

−
1  

A
m

A
c,

 p
H

 8
.7

 in
 

5 
%

 M
eO

H

20
 m

m
ol

 L
−

1  
N

H
4O

H
 in

 
50

 %
 I

PO
H

E
SI

(−
)-

T
O

F
L

L
E

, u
ltr

afi
ltr

at
io

n 
an

d 
ly

op
hi

liz
at

io
n

Q
ua

nt
A

na
ly

si
s 

(B
ru

ke
r 

D
al

to
ni

cs
) 

an
d 

M
Z

m
in

e

G
C

-M
S

[1
30

]
M

od
el

 o
rg

an
is

m
Ce

ll 
- s

in
gl

e c
ell

T
ha

la
m

ic
 ti

ss
ue

U
nt

ar
ge

te
d

G
A

B
A

1 
%

 H
Fo

r
0.

1 
%

 H
Fo

r 
in

 
50

 %
 M

eO
H

E
SI

(+
)-

Q
T

O
F

L
L

E
–

–

[1
31

]
M

od
el

 o
rg

an
is

m
Ce

ll
C

ol
on

 
ad

en
oc

ar
ci

no
m

a 
H

T-
29

 c
el

l l
in

e

U
nt

ar
ge

te
d

Po
ly

am
in

es
 

pa
th

w
ay

3 
m

ol
 L

−
1  H

Fo
r

50
 %

 I
PO

H
E

SI
(+

)-
T

O
F

L
L

E
, 

ul
tr

ac
en

tr
if

ug
at

io
n

PC
A

, A
N

O
V

A
–

[1
32

]
M

od
el

 o
rg

an
is

m
Ce

ll
U

-8
7 

M
G

 
gl

io
bl

as
to

m
a 

ce
ll 

lin
e

U
nt

ar
ge

te
d

O
rg

an
ic

ac
id

s,
 s

ug
ar

 
ph

os
ph

at
es

, a
nd

 
nu

cl
eo

tid
es

10
 %

 H
A

c 
pH

 2
.2

Sh
ea

th
le

ss
E

SI
(−

)-
T

O
F

Ly
si

s,
 L

L
E

–
–

[1
33

]
M

od
el

or
ga

ni
sm

Fi
sh

Ze
br

afi
sh

 
em

br
yo

U
nt

ar
ge

te
d

C
at

io
ni

c 
m

et
ab

ol
ite

s
10

 %
 H

A
c

0.
1 

%
 H

Fo
r 

in
 

50
 %

 M
eO

H
 

or
 0

.1
 %

 H
A

c 
in

 7
5 

%
 I

PO
H

 
(fl

ow
-t

hr
ou

gh
 

m
ic

ro
-v

ia
l 

in
te

rf
ac

e)

E
SI

(+
)-

Q
T

O
F

M
ec

ha
ni

ca
l l

ys
is

, 
ul

tr
afi

ltr
at

io
n

–
– (c

on
tin

ue
d)

5  Strategies Involving Mass Spectrometry Combined with Capillary Electrophoresis



116

[1
34

]
M

od
el

 o
rg

an
is

m
Pa

ra
sit

e
Fa

sc
io

la
 

he
pa

tic
a

tis
su

e

U
nt

ar
ge

te
d/

ta
rg

et
ed

O
rg

an
ic

 a
m

in
es

, 
am

in
o 

ac
id

s
0.

8 
m

ol
 L

−
1  H

Fo
r 

at
 p

H
 1

.8
 in

 2
0 

%
 

M
eO

H

0.
5 

%
 H

Fo
r 

in
 

70
 %

 M
eO

H
E

SI
(+

)-
Q

T
O

F
L

L
E

X
C

M
S,

 in
-h

ou
se

 
sc

ri
pt

 M
at

la
b,

U
PL

C
-M

S 
(R

P 
an

d 
H

IL
IC

)

[1
35

]
M

ul
tip

le
 s

cl
er

os
is

 
Eff

ec
t o

f m
et

hi
on

in
e 

en
ke

ph
al

in

G
lio

m
a 

ce
ll 

lin
e 

(C
6,

 R
G

2,
 H

4,
 

U
25

1,
U

87
)

U
nt

ar
ge

te
d

A
m

in
o 

ac
id

s,
 

gl
yc

yl
gl

yc
in

e
C

at
io

ns
: 

1 
m

ol
 L

−
1  H

Fo
r

A
ni

on
s:

 
50

 m
m

ol
 L

−
1  

A
m

A
c,

 p
H

 8
.5

50
 %

 M
eO

H
 

co
nt

ai
ni

ng
 

0.
1 
μm

ol
 L

−
1  

he
xa

ki
s

E
SI

(+
/−

)-
T

O
F

L
L

E
H

C
A

, S
A

M
qR

T-
PC

R
, 

flo
w

 
cy

to
m

et
ry

 
an

al
ys

is

[1
36

]
M

yo
pi

a
V

itr
eo

us
 h

um
or

U
nt

ar
ge

te
d

M
et

hy
la

tio
n 

pr
oc

es
s 

m
et

ab
ol

ite
s,

 
ac

et
yl

ca
rn

iti
ne

s,
 

am
in

o 
ac

id
s

0.
8 

m
ol

 L
−

1  H
Fo

r 
in

 1
0 

%
 M

eO
H

1 
m

m
ol

 L
−

1  
H

Fo
r 

in
 5

0 
%

 
M

eO
H

E
SI

(+
)-

T
O

F
D

ilu
tio

n 
w

ith
 H

2O
 

(5
x)

O
PL

S-
D

A
L

C
-M

S

[1
37

]
N

eu
ro

de
ge

ne
ra

tiv
e 

de
m

en
tia

Se
ru

m
, s

al
iv

a
U

nt
ar

ge
te

d
T

C
A

 c
yc

lic
 

m
et

ab
ol

ite
s,

 a
m

in
o 

ac
id

s 
an

d 
de

ri
va

tiv
es

, 
cr

ea
tin

in
e

1.
7 

m
ol

 L
−

1  H
A

c
Sh

ea
th

le
ss

E
SI

(+
)-

T
O

F
U

ltr
ac

en
tr

if
ug

at
io

n
PC

A
, P

L
S-

D
A

–

[1
38

]
O

st
eo

ar
th

ri
tis

U
ri

ne
Ta

rg
et

ed
A

m
in

o 
ac

id
s

2 
m

ol
 L

−
1  H

Fo
r 

w
ith

 2
0 

%
 

M
eO

H

50
 %

 I
PO

H
 

w
ith

 0
.1

 %
 

H
Fo

r

E
SI

(+
)-

T
O

F
Sp

ik
ed

 u
ri

ne
PC

A
–

[1
39

]
Po

ly
cy

st
ic

 k
id

ne
y 

di
se

as
e

Pl
as

m
a

U
nt

ar
ge

te
d

A
m

in
o 

ac
id

s 
an

d 
de

ri
va

tiv
es

, 
ca

rb
ox

yl
ic

 a
ci

ds
, 

nu
cl

eo
si

de
, a

m
in

es
, 

ca
rn

iti
ne

s

1 
m

ol
 L

−
1  H

Fo
r, 

an
d 

50
 m

m
ol

 L
−

1  
A

m
A

c,
 p

H
 8

.5
 

(C
O

SM
O

 
(+

)-
co

at
ed

 
ca

pi
lla

ry
)

50
 %

 M
eO

H
 

w
ith

 
0.

1 
μm

ol
 L

−
1  

he
xa

ki
s

E
SI

(+
)-

T
O

F
L

L
E

, u
ltr

afi
ltr

at
io

n 
an

d 
ly

op
hi

liz
at

io
n

U
np

ai
re

d 
t-t

es
t

–

Ta
bl

e 
5.

1 
(c

on
tin

ue
d)

R
ef

.
A

pp
lic

at
io

n
M

at
ri

x
M

et
ab

ol
om

ic
s

M
et

ab
ol

ite
s

B
G

E
SH

L
M

S
Sa

m
pl

e 
pr

ep
ar

at
io

n
D

at
a 

an
al

ys
is

O
th

er
 

m
et

ho
d

K.T. Rodrigues et al.



117

[1
40

]
Sa

m
pl

e 
ha

nd
lin

g
M

ul
ti-

se
gm

en
t i

nj
ec

tio
n

Pl
as

m
a

U
nt

ar
ge

te
d

A
m

in
o 

ac
id

s 
an

d 
de

ri
va

tiv
es

1 
m

ol
 L

−
1  H

Fo
r 

w
ith

 1
5 

%
 A

C
N

M
eO

H
:H

2O
 

(6
0:

40
) 

w
ith

 
0.

1 
%

 H
Fo

r

E
SI

(+
)-

T
O

F
D

ilu
tio

n 
w

ith
 A

m
A

c 
(4

x)
 a

nd
 

ul
tr

ac
en

tr
if

ug
at

io
n

–
–

[1
41

]
Sa

m
pl

e 
ha

nd
lin

g
Pr

oc
es

sin
g a

nd
 st

or
ag

e
Se

ru
m

, p
la

sm
a

U
nt

ar
ge

te
d

C
ha

rg
ed

 
m

et
ab

ol
ite

s
C

at
io

ns
: 

1 
m

ol
 L

−
1  H

Fo
r

A
ni

on
s:

 
50

 m
m

ol
 L

-1
 

A
m

A
c,

 p
H

 8
.5

(C
O

SM
O

 (
+

) 
ca

pi
lla

ry
)

C
at

io
ns

: 5
0 

%
 

M
eO

H
 

co
nt

ai
ni

ng
 

0.
1 
μm

ol
 L

−
1  

he
xa

ki
s

A
ni

on
s:

 
5 

m
m

ol
 L

−
1  

A
m

A
c 

in
 

50
 %

 M
eO

H
 

co
nt

ai
ni

ng
 

0.
1 
μm

ol
 L

−
1  

he
xa

ki
s

E
SI

(+
/−

)-
T

O
F

L
L

E
, u

ltr
afi

ltr
at

io
n

PC
A

, t
-t

es
t

–

[1
42

]
Sc

hi
zo

ph
re

ni
a

Pl
as

m
a

U
nt

ar
ge

te
d

C
re

at
in

e,
 b

et
ai

ne
, 

or
ga

ni
c 

ac
id

s,
 

ho
m

oc
ys

te
in

e

C
at

io
ns

: 
1 

m
ol

 L
−

1  H
Fo

r
A

ni
on

s:
 

50
 m

m
ol

 L
−

1  
A

m
A

c,
 p

H
 8

.5
(C

O
SM

O
 

(+
)-

co
at

ed
 

ca
pi

lla
ry

)

C
at

io
ns

: 
0.

5 
μm

ol
 L

−
1  

re
se

rp
in

e 
in

 
50

 %
 M

eO
H

A
ni

on
s:

 
5 

m
m

ol
 L

−
1  

A
m

A
c 

in
 

50
 %

 M
eO

H
 

co
nt

ai
ni

ng
 

0.
1 
μm

ol
 L

−
1  

he
xa

ki
s

E
SI

(+
/−

)-
T

O
F

L
L

E
, 

ul
tr

ac
en

tr
if

ug
at

io
n

M
an

n-
W

hi
tn

ey
 

te
st

, s
te

p-
w

is
e 

D
A

–

[1
43

]
Se

ps
is

R
at

 lu
ng

 ti
ss

ue
U

nt
ar

ge
te

d
A

m
in

o 
ac

id
s,

 
am

in
es

, c
ar

ni
tin

es
0.

8 
m

ol
 L

−
1  H

Fo
r 

in
 1

0 
%

 M
eO

H
4 
μL

 H
Fo

r 
in

 
50

 %
 M

eO
H

E
SI

(+
)-

T
O

F
L

L
E

, 
ul

tr
ac

en
tr

if
ug

at
io

n
t-t

es
t, 

PL
S-

D
A

L
C

-M
S,

 
G

C
-M

S

[1
44

]
U

ri
na

ry
 tr

ac
t i

nf
ec

tio
n

U
ri

ne
U

nt
ar

ge
te

d/
ta

rg
et

ed
A

m
in

o 
ac

id
s 

an
d 

de
ri

va
tiv

es
1 

m
ol

 L
−

1  H
Fo

r 
pH

 1
.8

 
(P

B
-P

V
S-

co
at

ed
 

ca
pi

lla
ry

)

0.
1 

%
 H

Fo
r 

in
 

50
 %

 M
eO

H
E

SI
(+

)-
T

O
F

M
ix

ed
 w

ith
 B

G
E

 
an

d 
ce

nt
ri

fu
ge

d
A

N
O

V
A

, 
PL

S-
D

A
, V

IP
– (c

on
tin

ue
d)

5  Strategies Involving Mass Spectrometry Combined with Capillary Electrophoresis



118

[1
45

]
V

es
ic

ou
re

te
ra

l r
efl

ux
U

ri
ne

Ta
rg

et
ed

A
m

in
o 

ac
id

s
0.

80
 m

ol
 L

−
1  

H
Fo

r 
pH

 1
.9

6 
in

 
15

 %
 M

eO
H

0.
50

 %
 H

Fo
r 

in
 6

0 
%

 
M

eO
H

E
SI

(+
) 

-I
T

D
ilu

tio
n

–
–

[1
46

]
X

en
ob

io
tic

 e
xp

os
ur

e
U

ri
ne

U
nt

ar
ge

te
d

Pa
ra

ce
ta

m
ol

 s
ul

fa
te

, 
gl

uc
or

on
id

e,
 

cy
st

ei
n,

 a
nd

 
pa

ra
ce

ta
m

ol
 

gl
uc

or
on

id
e

20
 m

m
ol

 L
−

1  
io

ni
c 

st
re

ng
th

 
H

Fo
r/

am
m

on
iu

m
 

fo
rm

at
e 

bu
ff

er
, 

pH
 3

 
(P

ol
yE

-3
23

-
co

at
ed

 c
ap

ill
ar

y)
 

an
d 

20
 m

m
ol

 L
−

1  
io

ni
c 

st
re

ng
th

 
N

H
4O

H
/A

m
A

c 
bu

ff
er

, p
H

 9

80
 %

 I
PO

H
 

an
d 

20
 %

 
B

G
E

E
SI

(+
/−

)-
Q

qQ
–

In
-h

ou
se

 
de

ve
lo

pe
d 

M
at

la
b 

pr
oc

ed
ur

es
 a

nd
 

PC
A

−

A
ll 

pe
rc

en
ta

ge
s 

an
d 

pr
op

or
tio

ns
 a

re
 e

xp
re

ss
ed

 in
 v

/v
AC

N
 a

ce
to

ni
tr

ile
, A

m
Ac

 a
m

m
on

iu
m

 a
ce

ta
te

, H
Ac

 a
ce

tic
 a

ci
d,

 H
Fo

r f
or

m
ic

 a
ci

d,
 IP

O
H

 is
op

ro
pa

no
l, 

M
eO

H
 m

et
ha

no
l

Ta
bl

e 
5.

1 
(c

on
tin

ue
d)

R
ef

.
A

pp
lic

at
io

n
M

at
ri

x
M

et
ab

ol
om

ic
s

M
et

ab
ol

ite
s

B
G

E
SH

L
M

S
Sa

m
pl

e 
pr

ep
ar

at
io

n
D

at
a 

an
al

ys
is

O
th

er
 

m
et

ho
d

K.T. Rodrigues et al.



119

and concentration conditions, a strong electroosmotic flow (EOF) is observed, the 
surfactant is totally deprotonated (perfluorooctanoic acid has a pKa of 2.8), and 
APFO micelles are formed (CMC is 25 mmol L−1). With the exception of lysine and 
arginine, at the pH range from 7 to 9, amino acids are either negatively charged or 
neutral, which enhances their interaction with micelles. The authors observed that 
analyte resolution under the optimized conditions is a result of micelle partitioning 
and electrophoresis. Therefore, the most negatively charged amino acids were 
attracted to the anode, presenting low mobilities, while the positively charged amino 
acids interact electrostatically with the micelle surface, also showing long migration 
times. Finally, this method presented an improved selectivity when compared to a 
standard CZE-MS method and required a simple dilution of the urine sample with 
BGE prior to introduction into the CE system.

An interesting strategy to couple MEKC to MS is to partially fill the CE capillary 
with a BGE containing surfactant, whereas the remaining portion of the capillary is 
filled with a regular BGE, compatible with the MS system. In the partial filling 
technique (PF-MEKC-MS), the analytes are then primarily separated by interac-
tions with micelles in the surfactant BGE length and reach the CE-MS interface 
before the surfactant does, when the current is interrupted. Sirén et al. have devel-
oped both PF-MEKC-UV and PF-MEKC-MS methods for the separation of endog-
enous low-hydrophilic steroids in plasma and urine samples [149]. For the 
PF-MEKC-MS method, the micellar solution was composed of 29.3 mmol L-1 SDS 
and 1.1  mmol  L−1 sodium taurocholate in 20  mmol  L−1 ammonium acetate at 
pH 9.68. Analytes that partially co-migrated after passing the surfactant BGE length 
were resolved in the MS operated at selected reaction monitoring (SRM) mode, 
resulting in the separation of eight analytes within 9 min.

CEC-MS has also been successfully used for the analysis of clinical samples. 
CEC development aimed at joining the high efficiency of CE (since the mobile 
phase flows through the capillary by EOF action, instead of pump pressure) with the 
high selectivity and peak capacity offered by the stationary phase in liquid chroma-
tography. Therefore, a stationary phase must be introduced into the CE capillary, 
which may be one of the main experimental challenges of the CEC technique. The 
literature reports some options to this task, such as slurry packing (which may form 
bubbles in the separation bed and demands insertion of frits into the capillary ends 
to retain the stationary phase), open-channel CEC (where the inner capillary wall is 
functionalized), and in situ polymerization of a monolithic phase, which is the pre-
ferred strategy. Blas and McCord have performed the analysis of urine samples by 
CEC-MS to quantify traces of ten benzodiazepines [150]. A monolith based on 
porous acrylate was used. An online pre-concentration step (stacking consisting of 
the injection of a large amount of sample – 15 min at 12 bar – dissolved in aqueous 
medium) and the use of a TOF mass analyzer were required to obtain high sensitiv-
ity and specificity. To ensure that only hydrophobic interactions between analytes 
and the monolith occur, analyses were performed at pH  7.0, using 5  mmol  L−1 
ammonium acetate as BGE. Under these conditions, analytes at 1 ng mL−1 in urine 
samples could be quantified. One of the main problems encountered in CEC is bub-
ble formation due to Joule heating, which may cause column dry out and current 
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interruption. To circumvent these problems, pressure-assisted CEC (p-CEC), where 
an extra pressure flow matches the EOF, coupled with ESI-QTOF-MS via a sheath-
less interface has been proposed for metabolomics profiling of urine samples [151]. 
The optimized method was successfully applied in the contrast of lung cancer 
patients and healthy subjects. Among 16 discriminant metabolites, three glutamine 
conjugates, including phenylacetylglutamine, acylglutamine C8:1, and acylgluta-
mine C6:1, were identified.

To our knowledge, other CE modes in CE-MS couplings, such as CIEF-MS and 
CGE-MS, have not been applied in clinical metabolomics studies, and they will not 
be covered in this chapter.

5.2.2  �CE-MS Interfaces

An important aspect to be considered when coupling CE to MS is the interface 
itself. Although many ionization schemes have been tested to date (Fig. 5.1), elec-
trospray ionization (ESI) has been the ionization mode of choice, since it transfers 
ionizable analytes from the liquid phase to the gas phase, and it allows the analyses 
of high molecular-mass molecules by inducing formation of multiple charges 
(reduced m/z values). The development of CE-ESI-MS interfaces has mirrored the 
established LC-ESI-MS couplings. However, the reduced CE flow and the CE elec-
tric circuit (which must be closed at the CE capillary outlet or at the MS entrance) 
had to be regarded.

There are three main configurations for coupling CE to MS: coaxial sheath liquid 
interface, liquid junction interface, and sheathless interface. The formers are also 
called microspray interfaces while the latter is referred as nanospray interface [55, 
152–155]. Some of the modern interface couplings used in CE-MS technology are 
schematically represented in Fig. 5.2.

The coaxial sheath liquid interface has gained great acceptance in CE-MS 
applications because it promotes a good spray stability, resulting in great robust-
ness (Fig. 5.2a, b). Basically, the CE capillary outlet is introduced into a concen-
tric tube where a sheath liquid (SHL) is pumped at nano- to microliter min−1 
range. A third concentric tube may be introduced in order to conduct a nebulizer 
gas, assisting in the spray formation. One main drawback of sheath liquid inter-
faces is that the electrophoretic effluent (typical flow rate between 10 and 
300 μL min−1) is mixed to the SHL (typically 1–10 μL min−1) at the capillary end, 
leading to sample dilution and consequent reduced detection sensitivity (one to 
two orders of magnitude decrease, depending on the BGE pH). Optimization of 
BGE composition as well as SHL flow and composition must therefore be care-
fully investigated in order to improve the ESI process and overall system detect-
ability [55]. Nevertheless, the selection of both BGE and SHL is restricted to 
volatile or semi-volatile compounds, and routinely used salts in CE separations, 
such as borate and phosphate, must be avoided. Mixtures of organic solvents – 
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such as acetonitrile, methanol, and isopropanol – water, and weak acids or bases 
solutions (for positive and negative ESI, respectively) are generally considered 
for SHL [156]. Evaluation of the stability of CE-ESI-MS methods with sheath 
liquid interface may be derived from inter- and intraday precision measurements, 

a b

c

d

Fig. 5.2  Modern interfaces for CE-MS: coaxial sheath liquid (a, b) and sheathless (c, d) designs. 
Legends: (a) pictorial representation of Agilent coaxial sheath liquid CE-MS interface, (a) nebuliz-
ing gas, (b) sheath liquid, (c) CE capillary with BGE, (d) stainless steel spray needle with 0.4 mm 
i.d. and 0.5  mm o.d., (e) outer tube, and (f) ground connection; (b) engineering sketch of the 
coaxial sheath liquid CE-MS interface (graphics courtesy from Agilent Technologies) (reprinted 
with permission from Ref. [55]); (c) pictorial representation of Sciex sheathless CE-MS interface, 
(a) CE capillary inlet, (b) static conductive liquid capillary, and (c) sprayer porous tip; (d) engi-
neering sketch of the CESI interface and cartridge (Photos are provided courtesy of AB Sciex Pte. 
Ltd. Operating as Sciex)
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where the variation of peak areas of analytical standards spiked in body fluids is 
considered [157].

The sheath liquid interface position may be linear or orthogonal to the MS sys-
tem. The main advantage offered by the latter geometry is that contamination or 
clogging of the MS inlet is less prone to occur and the choice of BGE composition 
is less critical, allowing the use of less volatile salts. Moreover, since the ESI volt-
age is applied at the MS entrance, charged species from the CE system are directed 
to the MS by electrostatic interaction, leading to higher detectability than in linear 
interfaces [158]. In fact, this is the most suitable and robust way to isolate the CE 
and the ESI electrical circuits.

The liquid junction interface is also based on a system supported by a sheath 
liquid [159]. However, mixing of BGE and SHL occurs far from the MS entrance, 
within a reservoir. Actually, the CE capillary ends inside this reservoir, and, in the 
opposite side, an electrospray needle is positioned within a distance ranging from 
10 to 25 μm. With this geometry, the CE and the ESI electrical circuits operate indi-
vidually, and the BGE selection may be performed independently of the MS restric-
tions. In addition, replacement of the ESI needle may be easily accomplished and 
does not affect the CE capillary. However, there are three main disadvantages that 
cause the scarce application of this interface: (i) the right alignment between the CE 
capillary and the ESI needle is laborious, (ii) the dead volume within the reservoir 
leads to band broadening (with consequent loss of separation efficiency), and finally, 
(iii) bubble formation on the CE capillary outlet often occurs, due to electrolysis 
reactions, resulting in current drop.

A recent variation of sheath liquid interfaces has been proposed by Chen and 
collaborators, named flow-through micro-vial interface [160]. The main character-
istic of this interface is that the electrical circuits and flow rate requirements of the 
separation and ionization processes are decoupled. The authors have used a stain-
less steel hollow needle with optimized geometry to surround the CE capillary end. 
Therefore, the inner side of the needle works as the CE outlet vial, while the outer 
side is used as the ESI emitter. The CE capillary end is inserted into the needle until 
its outer diameter meets the dimension of the inner side of the needle. Both needle 
and CE capillary are connected to a tee union, where a second capillary is orthogo-
nally attached in order to deliver the SHL into the needle. Typical flow rates of the 
SHL are as low as 0.1 mL min−1, which reduces considerably the dilution of the CE 
effluent at the capillary end, when compared to regular sheath liquid interfaces, 
improving sensitivity. Another characteristic of the proposed interface is the 
possibility of using capillaries with any type of surface modification (such as 
neutral-coated capillaries for protein analysis, for instance) or even no pretreatment. 
The performance of the flow-through micro-vial interface comparatively to the con-
ventional sheath liquid interface was evaluated by Lindenburg et al. in the profiling 
of cationic metabolite standards, exhibiting a fivefold improvement in terms of 
detection limits [133].

Sheathless interfaces transfer directly the CE effluent into the MS system, avoid-
ing sample dilution and, consequently, present the best detectability among the 
CE-MS interfaces [161]. The main requirement of such interface is to close the CE 

K.T. Rodrigues et al.



123

electrical circuit at the capillary end and simultaneously to afford electrical poten-
tial to the ESI. Considering that coaxial sheath flow interfaces have been developed 
after LC-MS interfaces, the possibility to develop an interface exclusively used in 
CE-MS coupling has arisen the interest of many research groups. For this reason, 
the literature reports several different ways to couple CE to MS by a sheathless 
interface focusing on creating a distinct ESI electrical contact. Application of a 
conductive coating to the emitter tip, joining a conductive emitter tip to the CE cap-
illary, insertion of a wire into the CE capillary end, and positioning a metal sleeve 
around a porous etched CE capillary wall are among the many propositions [162, 
163]. Although sheathless interfaces present better detectability due to the absence 
of a sheath liquid, allow closer positioning of the CE capillary to the MS (increasing 
the effective analyte mass transfer), and exhibit improved ionization and droplet 
desolvation, it still poses some limitations. The disadvantages of sheathless CE-MS 
interfaces comprise: (i) The absence of commercially available apparatus (except 
for the recently launched interface based on the work of Moini, discussed below). 
(ii) EOF variation. (iii) Low robustness. (iv) Limited lifetime of the emitter tip. (v) 
Limited BGE composition selection, which must comprise volatile compounds, 
since the CE effluent is directly inserted into the MS system. Therefore, routine 
analysis with sheathless interfaces may be jeopardized because of the constant need 
for emitter tip substitution. In addition, low system repeatability is generally 
observed.

In 2007, Moini has shown for the first time a robust sheathless CE-MS interface, 
commercialized some years afterward by Sciex [164]. Nowadays, this is still the 
only sheathless interface that is commercialized with a CE-MS equipment. In 
Moini’s design, the CE capillary tip has been etched with a 49 % HF solution (after 
removing the polyimide external coating) to obtain a porous tip to be inserted into 
the ESI needle, filled with BGE (Fig. 5.2c, d). The porous junction is necessary to 
allow ion transport for closing the CE electrical circuit and concomitantly to supply 
the ESI voltage. This interface has overcome the limitations imposed by the previ-
ously reported sheathless interfaces in many aspects: (i) Its fabrication is reproduc-
ible and automated. (ii) A single-step etching process makes the capillary tip porous 
and with a smaller outer diameter – the inner wall is preserved during fabrication by 
flowing nitrogen gas. (iii) Any tip disruption may be easily fixed by removing a 
small section of the capillary. (iv) Eventual electrolysis reactions occur outside the 
CE capillary, avoiding bubble formation, which would harm CE separation due to 
current interruption. Ramautar et al. have explored this interface configuration for 
profiling human urine metabolites [117].

A comparison of the performance of CE-ESI-MS sheath liquid and sheathless 
interfaces in terms of detectability for the analysis of intact proteins has been reported 
by Haselberg et al. [165]. Capillaries with a porous tip were inserted into a stainless 
steel needle filled with static conductive liquid and installed in a conventional ESI 
source. The same porous tip capillaries were used in a sheath liquid interface with 
isopropanol as SHL, resulting in fairly similar responses in terms of protein signals. 
However, limits of detection obtained with the sheath liquid interface were substan-
tially higher than those obtained with the sheathless interface (from 82 to 136 times 
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higher), due to increased baseline noise levels in the former. Detection limits were 
overall improved by a factor of 6.5–20 with sheathless CE-MS.

5.2.3  �CE-MS Methodologies for Metabolomics

CE-MS metabolomics studies are often conducted under electrospray ionization 
(ESI) with triple coaxial sheath flow interfaces and time-of-flight (TOF) mass ana-
lyzers [33–56]. Due to simplicity, CZE is the preferred CE mode in metabolomics, 
generating robust methods. Unlike LC-MS, the mobile phase or more precisely the 
BGE composition changes according to the selected ionization mode. The addition 
of low percentages of organic solvents to volatile BGEs is often sought to improve 
resolution. Baseline separation of leucine/isoleucine/allo-isoleucine isomers in 
methanol-modified formic acid BGE is a landmark [138, 145]. In addition, a sheath 
liquid that may be of distinct composition for each ionization mode is used to pro-
mote and/or enhance ionization at the ion source. Small cationic and anionic charged 
species are the expected metabolite targets visualized by CE separations. In CE-MS 
with positive ionization mode ([M]+, [M + H]+, [M-H2O + H]+, [M + Na]+, etc.; M 
stands for molecule), it is possible to inspect amino acids, biogenic amines, and 
nucleosides, whereas the negative ionization mode ([M-H]−, [M + HCOO]−, 
[2  M + Na-2H]−, etc.) reveals carboxylic acids, phosphorylated carboxylic acids, 
phosphorylated saccharides, nucleotides, nicotinamide and flavin adenine coen-
zymes, as well as citrate isomers, dinucleotides, and CoA compounds [125].

A schematic representation of the overall possibilities CE-MS offers for the anal-
ysis of cationic and anionic metabolites is depicted in Fig. 5.3. Typically, cationic 
metabolites are screened in uncoated fused-silica capillaries with low pH volatile 
electrolytes, such as formic acid or acetic acid, generating a small but normal elec-
troosmotic flow (EOF, flow toward the cathode due to little ionization of the capil-
lary wall silanol groups). The CE system is operated under positive high voltage, 
applied at the capillary inlet, and it is connected to the MS via ESI in positive ion-
ization mode (Fig. 5.3a). Anionic metabolites may also be screened in this format; 
however, high pH volatile electrolytes, such as ammonia/ammonium salt buffers 
(ammonium formate, acetate, or carbonate being the most commonly used), are 
mandatory to generate an EOF high enough to conduct the compounds which passed 
the interface toward the MS entrance. Nevertheless, since a positive voltage is 
applied at the capillary inlet, the anions will migrate counter-electroosmotically. 
Moreover, the ESI voltage needs to be set appropriately (negative ionization mode). 
This approach is not preferential for anionic metabolite analysis because by setting 
the migration of anions against EOF, long analytical runs are imposed and migra-
tion time repeatability might be compromised, which is already a concern in CE 
separations in bare fused-silica capillaries.

A more elegant solution for the CE-MS analysis of anionic metabolites is reached 
with the use of coated capillaries and high pH electrolytes (Fig. 5.3b, c). The CE 
system is now operated under a negative high voltage, applied at the capillary inlet, 
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and it is connected to the MS via ESI in negative ionization mode. Either a cationic 
polymer coating (Fig. 5.3b) to reverse EOF (flow directed toward the anode) or a 
neutral coating (Fig. 5.3c) to eliminate EOF can be chosen. In the former, the nega-
tive species electrophoretic velocity and the electroosmotic flow velocity are in the 
same direction (toward the anode or positive pole), resulting in additionally faster 
separations. In the latter, since EOF is eliminated, a pressure-driven flow is usually 
implemented to prevent that sheath liquid components enter the separation 
capillary.

With these simple approaches, Soga and collaborators introduced untargeted 
metabolomics of biological cells using CE-MS platforms for the first time [125, 
127]. By using all schemes of Fig. 5.3, a thorough evaluation of the metabolome of 
Bacillus subtilis cells upon the onset of sporulation was pursued. For the cationic 
metabolites screening, a BGE composed of 1 mol L−1 formic acid and a SHL com-
prised of 5 mmol L−1 ammonium acetate in 50 % methanol/water were used. Sets of 
30 protonated [M + H]+ ions were analyzed successively by SIM mode to cover the 
entire range of m/z from 70 to 1027 (Fig. 5.4). Anionic metabolites were screened 
in a BGE composed of 50 mmol L−1 ammonium acetate at pH 8.5 with a SHL com-
prised of 5  mmol  L−1 ammonium acetate in 50 % methanol/water in a cationic 
polymer-coated capillary, SMILE(+). Nucleotides and coenzyme A compounds 

a

b

c

Fig. 5.3  CE-MS methodologies for untargeted metabolomics of cationic metabolites (a) and 
anionic metabolites using cationic polymer-coated capillaries (b) and neutral capillaries (c)
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were screened in a GC-coated capillary (polydimethylsiloxane, DB-1) in a slightly 
lower pH BGE, 50 mmol L−1 ammonium acetate at pH 7.5, with the same SHL. To 
prevent entrance of the SHL into the separation channel, a pressure of 50 mbar was 
applied to the capillary inlet promoting a flow of solution toward the anode. Exactly 

Fig. 5.4  Selected ion electropherograms for cationic metabolites of Bacillus subtilis in the range of m/
z101–150. The numbers in the upper left corner of each trace are the abundances associated with the 
tallest peak in the electropherogram, for each m/z, and the numbers on top of peaks are relative migra-
tion times normalized with methionine sulfone (IS) (Reprinted with permission from Ref. [127])
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1692 metabolites were catalogued, 150 were positively identified, and 83 were 
assigned based on the expected charge state and isotopic distribution. Later on, 
Soga and col. advocated the use of platinum ESI spray needle to replace stainless 
steel spray needles in the analysis of anionic metabolites [122]. It was observed that 
stainless steel was prone to oxidation and corrosion at the anodic electrode due to 
electrolysis; the resulting precipitation of iron oxides plugged the capillary outlet. 
Moreover, eventual complexation of anionic metabolites with iron and nickel ions 
generated by corrosion would reduce significantly detection sensitivity because the 
formed complexes are positively charged and move backward to the cathode 
(capillary inlet).

Within the context of CE-MS methodologies for metabolomics, a few parame-
ters of interest will be examined. Because metabolomics studies are comparative in 
nature, they demand high-precision measurements. Migration time repeatability, 
essential in untargeted metabolomics studies, and/or peak area repeatability, crucial 
in targeted metabolomics quantitation studies, must be addressed properly. It is well 
accepted that migration time variability is a consequence of EOF variability, which 
in turn is related to the capillary inner surface state and integrity. Thus, adsorption 
of solutes to the capillary wall and/or any sort of adverse solute-wall interactions, 
electrolyte components-wall interactions, etc. will compromise the EOF magnitude 
and consequently affect migration time repeatability. Many authors have addressed 
this issue by using covalently coated capillaries, such as the work of Soga and col. 
referred above [122, 125, 127]. De Jong and collaborators have proposed to modify 
the capillary walls dynamically with charged polymers [166]. Bilayers constituted 
of polybrene (PB) and poly(vinyl sulfonate) (PVS) or triple layers constituted of 
PB, dextran sulfate (DS), and PB have been extensively investigated to the meta-
bolic profiling of biofluids [113, 114, 144]. Overall, covalently bound polymers are 
still preferred in metabolomics studies due to stability and durability. Moreover, any 
leakage of polymer during CE operation cannot be tolerated, especially if it results 
in contamination of the mass analyzer.

Full coverage of metabolites by any hyphenated technique to MS demands the 
use of both positive and negative ionization modes. It is worth mentioning that a 
large fraction of metabolites in biological fluids is acidic in nature and can only be 
ionized efficiently using negative ionization. However, signal-to-noise ratios in 
negative ionization mode are often low by two to three orders of magnitude when 
compared to positive ionization, thereby limiting sensitivity in metabolomics 
applications [112]. Reduced MS signals for anions have been attributed to analyte 
ionization suppression by the presence of acetate ions in the BGE and/or SHL 
[114, 167]. To circumvent this loss of sensitivity, the transformation of anionic 
metabolites into cationic compounds by derivatization or complexation has been 
proposed, allowing positive ionization mode to be applied [167, 168]. With these 
methodologies, sensitivity indeed improved for anionic compounds, and more 
favorable detection limits were achieved. However, derivatization procedures 
increase sample pretreatment complexity, and losses of metabolites can occur due 
to incomplete derivatization. Furthermore, not every anionic compound can be 
derivatized efficiently. Therefore, a great deal of development is still necessary for 
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the CE-MS analysis of the metabolome in negative ionization mode, despite the 
efforts toward the testing of new BGE additives [112].

Still regarding ionization modes, an alternative strategy to simplify procedures 
during data acquisition in CE-MS metabolomics has been proposed by Gulersonmez 
et al. [132]. A single BGE at an intermediary pH is used for both positive and nega-
tive ionization modes, e.g., pH 3.0 acetic acid. This pH is low enough to protonate 
most of the metabolites exhibiting basic moieties (biogenic amines, amino acids, 
etc.) generating cationic compounds, and at the same time, it is high enough to pro-
mote partial dissociation of those metabolites with acidic moieties (carboxylic 
acids, nucleotides, etc.) generating anionic compounds. Therefore, the same BGE is 
used to screen both cationic and anionic portions of the metabolome, in consecutive 
runs (TOF mass analyzers), by a simple switch of the ESI voltage.

Analytical frequency is another parameter of concern in metabolomics studies, 
since runs are usually long to ensure that a large variety of metabolites of differing 
properties is inspected. Multiple sequential injections of samples (volumetric trans-
fer of sample to the separation capillary by applying pressure at capillary inlet), 
intercalated by injections of BGE zones, before the high voltage has been set, are a 
classical CE strategy to improve analytical frequency, and it has been implemented 
advantageously in CE-MS metabolomics by Britz-McKibbin and collaborators 
[140]. The authors developed a multi-segment injection (MSI) as a multiplexed 
CE-MS platform in which a serial injection of seven or more discrete human plasma 
sample segments could be performed within a single capillary without compromis-
ing the separation quality and/or quantitative performance. The overall MSI scheme 
is depicted in Fig. 5.5 and increased sample throughput by one order of magnitude. 
By using a seven-segment sample injection for single-step acquisition, building of 
external and processed analytical curves for quantitation of polar metabolites and 
isomers in plasma, with acceptable accuracy and precision, use and/or selection of 
internal standards, running recovery tests samples, identification strategies via pat-
tern recognition, etc., have all been successfully demonstrated.

5.3  �Representative Applications of CE-MS in Clinical 
Metabolomics

Capillary electrophoresis as an analytical platform to assess metabolites in biological 
samples has been used for decades. The work of Jellum and collaborators in the profil-
ing of organic acids in biofluids, using UV detectors to screen metabolic diseases, 
may be referred as the first CE-based clinical metabolomics [169–171]. By the same 
token, the work of Barbas and collaborators, who investigated metabolic disorders, 
known as inborn errors of metabolism, by screening short-chain carboxylic acids in 
human urine, is another innovatory example of the diagnostic power of CE technology 
[172, 173]. The pioneerism of global metabolic fingerprinting or untargeted metabo-
lomics using CE-MS platforms has been attributed unequivocally to Soga’s research 
group [125, 127], as described previously in this chapter and summarized by the 
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group reviews [36, 174]. At this point, it is worth mentioning the important contribu-
tion of Mishak’s research group, who has established the reliability of CE-MS plat-
forms for the initial diagnosis and prognosis of the progression of numerous diseases 
via biomarker discovery by mapping endogenous peptides in human urine [175, 176].

Table 5.1 compiles many examples of CE-MS in clinical metabolomics organized 
by studied condition or disease, biological matrix, metabolomics approach, and type 
of metabolites screened (targeted metabolomics) or revealed (untargeted metabolo-
mics). A few details of the analytical methods, such as BGE and/or SHL composi-
tion, type of mass analyzer, sample preparation procedures, algorithm and/or software 
used in data treatment, and finally whether the study was exclusively conducted by 
CE-MS or data was acquired in a multiplatform setup, were also provided.

Table 5.1 was meant to present a comprehensive revision of the literature in the 
period from 2001 to 2016. Based on the relatively small number of applications 
Table 5.1 brings, associated with an even smaller number of groups researching in the 
field, it is fair to conclude that CE-MS in the clinical metabolomics scenario has still 
much room for growth. A possible explanation for the rather limited use of CE-MS 
technology in this field might be related to the fact that CE-MS is still considered a 
novelty compared to other much more established techniques, such as GC-MS, 
LC-MS, and NMR, and there is a certain resistance to consider its use in metabolo-
mics. Issues such as migration time variability, sample loadability and throughput, 

a

b

c

Fig. 5.5  Multiplexed separation based on serial injection of seven discrete sample segments 
within a single capillary by MSI-CE-MS (a), where (b) ions migrate as a series of zones in free 
solution prior to ionization. This format enables reliable quantification of polar metabolites and 
their isomers in different samples since ionization occurs within a short time interval (≈2–6 min) 
under steady-state conditions when using a high mass resolution TOF-MS (c) (Reprinted with 
permission from Ref. [140])
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low concentration sensitivity, etc. are still of concern by many metabolomics leading 
groups, despite the relevant advancements made over decades to overcome CE-MS 
technical and methodological difficulties, as thoroughly discussed in this chapter. 
Another relevant aspect that might hinder the use of CE-MS in clinical metabolomics 
studies is the lack of standardized operating protocols. As Table 5.1 contents sustain, 
each research group develops and implements its own method, with small but tangible 
variations of capillary coatings, dimensions and conditioning, BGE and/or SHL com-
position, as well as MS type and parameters. There is no convergence toward a single 
optimized strategy to perform untargeted metabolomics studies, for instance, or a 
complete detailed protocol for metabolomics, as it is the case for GC-MS-, LC-MS-, 
and NMR-based metabolomics. Such protocol would boost sales of CE-MS instru-
mentation, allowing the creation of an universal database for metabolite identification, 
and stimulate applications in clinical metabolomics, among other areas.

Metabolomics studies follow a general workflow, comprising problem formulation, 
experimental design, sample preparation, data acquisition and processing, statistical 
analysis, metabolite identification, association to metabolic pathways, and biological 
validation. All these steps were critically discussed in Chap. 1. Notably, a large number 
of applications compiled in Table 5.1 were conducted under the premise of untargeted 
clinical metabolomics, i.e., to improve the knowledge on the onset and progression of 
a given disease at metabolic level and to search discriminant metabolites that could be 
used further on for diagnosis and/or prognosis purposes. Furthermore, most of the 
reported CE-MS methods in Table 5.1 were conducted with high-resolution mass spec-
trometers using sheath liquid interfaces (available commercially much longer than 
sheathless interfaces), using low pH BGE and aqueous methanolic SHL. Untargeted 
metabolomics studies comprise simpler sample treatments, involving protein precipita-
tion, followed by filtration and dilution. Sample procedures for targeted metabolomics 
are of course dependent on the identity of the metabolites under investigation. Overall 
sample preparation strategies for metabolomics and their impact on results have been 
revised by many authors [42, 106, 177, 178]. Quality control samples (QC), pool of all 
control and test samples under consideration in a given study, have often been consid-
ered to attest platform stability during data acquisition. Method validation concepts for 
untargeted metabolomics have also been reviewed [157].

Another feature of Table 5.1 is that data preprocessing often relies on in-house 
developed algorithms or free access softwares with PCA, PLS-DA, and OPLS-DA 
being the preferred multivariate data analysis. Peak alignment in such algorithms is 
usually of great importance because it deals with the intrinsic migration time vari-
ability of CE-MS data and it has long been a topic of investigation [179–182]. A 
great challenge in metabolomics studies in general is metabolite identification. In 
CE-MS platforms, several authors have demonstrated strategies of peak identifica-
tion using mobility in conjunction with accurate m/z values [183–185]. Finally, 
analytical multiplatform studies in Table 5.1 are rare.

An illustration of the contents of Table 5.1, discriminating conditions and diseases 
studied so far by CE-MS under the metabolomics perspective, is depicted in Fig. 5.6a. 
It is readily observed that several types of cancer received a great deal of attention by 
the scientific community. Fig. 5.6b shows the temporal evolution of publications in 
the field denoting the growing interest CE-MS has drawn in the last decades.
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a

b

Fig. 5.6  CE-MS in clinical metabolomics. Literature publications compiled in Table  5.1 were 
organized by type of condition and/or disease (a) and temporal progression of articles (b). Legends: 
ACS acute coronary syndrome, AD Alzheimer’s disease, CKD chronic kidney disease, CRPS com-
plex regional pain syndrome, MSc multiple sclerosis, PKD polycystic kidney disease, VUR vesico-
ureteral reflux, UTI urinary tract infection
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5.4  �Conclusions and Perspectives

From its inception in the late 1980s, CE-MS has matured into a resourceful tech-
nique that encompasses the analysis of compounds from many different chemical 
classes, especially those with ionic and/or highly polar character that constitute an 
important subset of the human metabolome. Relevant features of CE, such as high 
efficiency and resolution power, fast analysis time, multiple separation modes, use 
of aqueous-based electrolytes, compatibility with biofluids, small sample volume, 
etc. were combined with the remarkable detection sensitivity, extra selectivity, and 
spectral information provided by MS technologies. Several technical difficulties 
related to early CE-MS interface designs and platform stability issues have been 
tackled and improved considerably, especially in the last decade that was testimony 
to the commercial launching of complete CE-MS systems. Intrinsic aspects related 
to the technique performance have also been addressed properly, allowing CE-MS 
to grow into a robust technology for metabolomics.

Despite the clear adequacy of CE-MS for clinical metabolomics and the techni-
cal improvements evidenced over the years, the field is still underrepresented when 
compared to the contribution of other well-established NMR and chromatography-
based platforms, showing a rather limited number of research leading groups 
actively working in the area. Implementation of analytical multiplatform approaches, 
necessary to establish a more comprehensive coverage of the metabolome, analysis 
of larger clinical cohorts, expansion of the applicability to key diseases and condi-
tions, and setting up interlaboratorial validation studies are a few strategies that 
should boost the use of CE-MS in clinical metabolomics and build user confidence 
in the technology.
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Abstract  From data acquisition to statistical analysis, metabolomics data need to 
undergo several processing steps, which are crucial for the data quality and interpre-
tation of the results. In this chapter, methods for preprocessing, normalization, and 
pretreatment of metabolomics data generated from nuclear magnetic resonance 
spectroscopy (NMR) and mass spectrometry (MS) are presented and discussed. 
Preprocessing is reported for both NMR and MS analysis. The challenges in prepro-
cessing such complex data are highlighted. Subsequently, normalization methods 
such as total area normalization, probabilistic quotient normalization, and quantile 
normalization are explained. Finally, several scaling and data transformation meth-
ods are discussed for metabolomics data pretreatment, which is an important step 
prior to statistical analysis.
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Abbreviations

ANOVA	 Analysis of variance
CPMG	 Carr-Purcell-Meiboom-Gill
GC	 Gas chromatography
glog	 Generalized log
LC	 Liquid chromatography
LOESS	 Locally estimated smoothing
m/z	 Mass-to-charge ratio
MS	 Mass spectrometry
NMR	 Nuclear magnetic resonance spectroscopy
PCA	 Principal component analysis
PLSR	 Partial least squares regression
R2	 Linear regression coefficient
RSD	 Relative standard deviation
RT	 Retention time
QCs	 Quality control samples
TSP	 3-trimethylsilylpropionic acid

6.1  �Introduction

Metabolomics analysis in clinical applications is often performed by either NMR or 
LC/GC-MS [1–4]. These platforms generate highly complex high-throughput data 
when biofluids are analyzed. NMR is a non-destructive and reproducible technique 
because the sample and the instrument do not physically interact [5]. In contrast, LC/
GC-MS are destructive and less reproducible techniques [6]. However, LC/GC-MS 
have higher sensitivity compared to NMR [7]. Advanced technologies in the instru-
mentation offer fast and inexpensive solutions for metabolomics analysis and pro-
vide the opportunity of analyzing more than a thousand samples in an experimental 
run [8, 9]. The complexity of the data escalates, and consequently the data must go 
through various preprocessing and quality control steps prior to statistical analysis. 
There are many available methods and softwares for preprocessing, and new meth-
ods are developed or novel softwares are released constantly. The recent methodolo-
gies in omics data preprocessing can be followed via online web-based tools [10]. In 
Fig. 6.1, a generalized workflow for metabolomics data analysis is shown, consider-
ing the steps from data acquisition to statistical analysis. After the samples are ana-
lyzed by the instrument, the raw data of each sample need to be converted and 
processed in order to be summarized in a data table. The rows and the columns must 
be as comparable as possible after all the processing steps. This chapter focuses on 
the three blocks at the middle of this workflow and aims to give better understanding 
to the reader about the various steps of preprocessing and pretreatment. The follow-
ing sections are fashioned according to Fig. 6.1 as Sects. 6.2, 6.3, 6.4, and 6.5.
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6.2  �Preprocessing of LC/GC-MS Data

In MS-based analyses, the measured variables are mass-to-charge ratios (m/z). 
When MS is combined with LC or GC, an additional dimension is added to the vari-
able space, which is the chromatographic retention time. Therefore, raw LC/GC-MS 
data consist of a 3D structure of m/z, retention time (RT), and intensity count. In 
Fig. 6.2, an LC-MS profile of a blood serum sample is demonstrated in a specific 
retention time interval. Raw LC-MS data have many data points in one sample, as 
the data are often acquired in high-resolution instruments. Most of the data are gen-
erally either spectral noise or not biologically relevant (column material, contami-
nants, etc.). Therefore, it is necessary to convert each 2D sample profile into a 1D 
vector of peak areas/intensities.

The aim of preprocessing is to generate a 2D data table of features where the 
rows correspond to the study samples and the columns to m/z-RT pairs. There are 
several preprocessing steps in order to achieve this, and various softwares are avail-
able to perform the preprocessing, such as MarkerLynx (Waters), MassHunter 
(Agilent), MarkerView (AB Sciex), XCMS [11], MZmine 2 [12], and Progenesis QI 
(Waters). The LC/GC-MS data preprocessing steps are:

	(a)	 Peak picking/detection and deconvolution: Peak picking is a crucial step of the 
preprocessing pipeline. It aims to detect each measured ion in a sample and to 

Statistical analysis

Univariate (t-test, ANOVA) Multivariate (PCA, PLSR)

Data pretreatment

Centering and scaling Data transformation

Normalization

Data preprocessing

NMR: baseline correction, phasing,
peak alignment, binning 

MS: peak detection, alignment,
gap filling 

Data acquisition

NMR LC-MS GC-MS

Fig. 6.1  General processing steps of metabolomics data analysis, from data acquisition to statisti-
cal analysis
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assign to a feature (m/z-RT pair). In this step, the peak picking algorithm cap-
tures and deconvolutes peaks from the extracted ion chromatograms taking pos-
sible baseline and noise structures into account. If necessary, smoothing such as 
moving average or Savitzky-Golay filters can be applied during this step.

	(b)	 Alignment: Improvements in the technology of mass spectrometers provide 
good reproducibility in the m/z dimension; however, reproducibility may be a 
problem in the RT dimension especially for LC-MS experiments. During 
chromatographic separation, RT shifts can occur due to changes in the mobile 
phase and the column stationary phase, variations in temperature and pres-
sure, column aging, or effects related to sample matrix. Therefore, a metabo-
lite can be eluted in slightly different retention times across the samples. This 
problem is crucial when hundreds or thousands of samples are analyzed in a 
long experimental run. Alignment algorithm aims to group detected peaks 
across the samples with respect to a m/z and a RT window. The grouped peaks 
are subsequently integrated as peak height or peak area and assigned to a 
feature in the data table.

	(c)	 Gap filling: The data table after peak picking and alignment will contain miss-
ing values (gaps) in some of the samples. The reason of the presence of missing 
values is generally the existence of badly shaped peaks, which can be missed 
during the peak picking process, and peaks with low intensity, which cannot be 
detected during the peak picking process. Some of the preprocessing algorithms 
have gap-filling algorithms where peak structures are searched in the raw data 
on the defined m/z and RT window. This approach is useful when large peaks 
are missed during peak picking. There are also missing value estimation meth-
ods in literature [13], such as k-nearest neighbor imputation method. Care must 
be taken when using such methods because the imputations are based on the 
complete part of the whole data, which may not be the best representation for 
imputing the missing values.
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After the initial preprocessing steps, the data table is complete without missing 
values. The next step is to assess the quality of the features in the data table. For 
metabolomics studies, it is recommended to analyze quality control samples (QCs) 
after every couple of (between 5 and 10) study samples in the entire sample run in 
order to monitor the experiment [14, 15]. The QCs are prepared by pooling the 
study samples; therefore, they represent the whole sample set. By looking at the 
QCs, it is possible to assess each feature in the data table for:

	(a)	 Presence in the QCs: Some preprocessing softwares provide the number of 
samples, which are present in a predefined sample group (the QCs in this case). 
Features that are not present in a certain number of QCs can be filtered out from 
the data table. This filtering step assumes the sample set is well represented by 
the QCs.

	(b)	 Intensity drifts: As data acquisition takes a significant amount of time, it is com-
mon to observe intensity drifts, which cause intra- and inter-batch variation 
throughout the analysis. These drifts are specific to each feature and cannot be 
handled by sample normalization. Therefore, each feature has to be examined 
separately. There are methods available to remove intensity drifts [14, 16, 17], 
and a common method is to fit a nonlinear locally estimated smoothing (LOESS) 
curve to the intensities of the QCs along the experimental run order. Thereafter, 
a correction factor for each study sample is estimated by interpolating the 
LOESS curve to the experimental run of the study samples. These correction 
factors are used to remove intensity drifts in each feature by dividing the inten-
sity by the correction factor. In Fig. 6.3, the effect of the drift correction on the 
data is demonstrated. This drift correction step is important, and care must be 
taken when applying, because there should not be outliers among the QCs, and 
they may require normalization beforehand.

	(c)	 Repeatability: Each feature in the QCs should have low relative standard devia-
tion (RSD) across the QCs throughout the experimental run in order to have a 
good repeatability. RSD for each feature is calculated by dividing the sample 
standard deviation by the sample mean. The features with high percent RSD 
values should subsequently be removed from the data table. The suggested 
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threshold is 20 % for LC-MS and 30 % for GC-MS [14], but it may be more 
flexible depending on the size of the sample set.

	(d)	 Linearity: A series of QC samples with varying dilutions can be prepared and 
analyzed within the experimental run [18]. The dilution factors can thus be 
regressed against the corresponding intensities of each feature in the data table. 
The features with low R2 and with negative beta coefficients are thus removed 
from the data table. An R2 threshold between 0.5 and 0.7, which is not very strin-
gent, is suggested; nonetheless, it depends on the study sample size. Inspecting 
the distribution of the R2 values may provide help in deciding the threshold.

At the end of the preprocessing steps, the data table is generated by features of 
m/z-RT pairs after filtering based on the QCs and correcting for instrumental drifts. 
The columns of the data table are to the best extent made comparable for further 
analysis.

6.3  �Preprocessing of 1H NMR Data

Preprocessing of metabolomics data acquired using 1H NMR is crucial and chal-
lenging in clinical studies when blood (serum/plasma) and urine samples are ana-
lyzed. In NMR metabolomics, sample spectra can be acquired by different NMR 
experiments, such as standard 1D 1H NMR experiment, 1D 1H Carr-Purcell-
Meiboom-Gill (CPMG) spin-echo NMR experiment, and 2D 1H-1H J-resolved 
NMR experiment. Each of these experiments contains water presaturation. CPMG 
experiment is specifically used for blood samples because it removes the broad 
baselines with respect to the macromolecules, such as the phospholipids and lipo-
proteins, in the blood.

In general, initial steps of preprocessing in 1H NMR experiments involve apo-
dization, Fourier transform, phasing, baseline correction, and chemical shift cali-
bration. These steps are currently automated by the instrument vendor software and 
can be applied either manually or automatically according to the scientific 
problem.

Figure 6.4 demonstrates representative 1D 1H NMR spectra for blood serum and 
urine after proper initial preprocessing steps. The spectral data acquisition range for 
these samples is δ -0.50–10.00 ppm by the instrumental setting because no bona fide 
metabolite signals are expected outside this region. By looking at the CPMG 
(Fig. 6.4a) and standard 1D (Fig. 6.4b) 1H NMR spectra of blood serum, the broad 
baselines under the sharp peaks on the standard 1D 1H NMR spectrum draw atten-
tion. The latter spectrum contains several broad resonances from macromolecules, 
and these broad resonances are highly overlapped with the low molecular mass 
metabolites with sharp peaks. Nevertheless, the information captured from both 
experiments is complementary. On the other hand, standard 1D 1H NMR spectrum 
of urine (Fig. 6.4c) exhibits numerous sharp peaks throughout the spectral range. 
The broad baselines are observed only locally.

I. Karaman



151

20
×105

×106

×105

10

In
te

ns
ity

In
te

ns
ity

In
te

ns
ity

0

20

10

0

4

2

0

10 8 6 4

Chemical Shift (ppm)

Chemical Shift (ppm)

Chemical Shift (ppm)

2 0

10 8 6 4 2 0

10 8 6 4 2 0

a

b

c
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spectrum of blood serum, and (c) 1H NMR standard 1D spectrum of urine
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Once all of the sample spectra are available, one can generate a data table where 
the rows correspond to the study samples and the columns to spectral data points. 
The columns of the data table should correspond to the same information after the 
preprocessing. During spectral data acquisition, peak shifts can be observed due to 
changes in pH, temperature, or fluctuations in the magnetic field. This will cause the 
columns of the data incomparable along the samples. Therefore, metabolite signals 
should be aligned and made comparable prior to statistical analysis. Below, some of 
the most commonly used approaches for NMR preprocessing are highlighted:

	(a)	 Using high-resolution 1H NMR spectra: The data can be analyzed as raw spec-
tra or after applying a peak alignment algorithm. When peak shifts are system-
atic, they can be corrected by calibrating the spectra toward a reference peak, 
such as the singlet at δ 0.00 ppm due to the internal standard TSP added to every 
sample (see the sharp peak at δ 0.00 on the spectra in Fig. 6.4). For blood serum/
plasma, the glucose doublet at δ 5.23 ppm is a suitable alternative to TSP since 
TSP may bind to proteins in serum/plasma samples, which will cause changes 
in peak shape and position. However, there may still be small but significant 
shifts in the peak positions between the samples. Applying peak alignment 
algorithms can correct shifts in the peak positions to some extent. Figure 6.5 
depicts a hypothetical example of spectral data alignment. There are several 
algorithms available in the literature [19–21]. Most of these methods locate the 
position of the peaks in a sample spectrum and fit the corresponding chemical 
shift in a reference spectrum. Some of the common ones are icoshift and recur-
sive segment-wise peak alignment algorithms. Both algorithms require a refer-
ence spectrum. A reference spectrum can be randomly selected, or a sample 
spectrum, which is the closest to the rest of the sample spectra, can be used. 
Alternative to using a sample spectrum as reference is creating a reference spec-
trum by calculating the mean or median spectrum from the entire sample set or 
the QCs. The major drawback of peak alignment methods is that they may not 
handle overlapping peaks correctly, especially when two adjacent peaks overlap 
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or even swap in position between samples due to different amount of peak 
shifts. Nonetheless, statistical analysis of spectra after carefully applying peak 
alignment algorithms can be a good compromise to analyzing raw spectra.

	(b)	 Using binned 1H NMR spectra: Binning or bucketing can be applied to raw 
spectra or to aligned spectra in order to correct for shifts in the peak positions 
on the raw spectra or small misalignments on the aligned spectra. By binning, 
spectral resolution is lowered by converting segments of the spectrum into a bin 
where the spectral data inside each segment are summed as area under the curve 
and represented by one single value. The data also become more compact and 
easy to handle computationally. There are several methods available in litera-
ture for binning [22, 23]. Although binning is attractive for lowering the resolu-
tion and handling the misalignments, care must be taken when applying. The 
binning method and the parameters should be selected with caution in order to 
obtain good data. Otherwise, peaks may fall into the wrong bins, peaks may be 
split, and obviously binning does not handle overlapping peaks.

	(c)	 Quantifying known metabolites: When targeted metabolomics data analysis is 
the case, converting the spectral data table into a table of annotated and quanti-
fied metabolites is convenient even though new metabolites are not generally 
available for analysis. Automated quantification of metabolite levels from spec-
tra is not an easy process due to peak overlapping, variations in peak positions, 
and spectral noise. In addition, building a calibration model is time consuming 
and requires standard sample spectra for calibration. There are methods in lit-
erature such as Bayesian automated metabolite analyzer [24] where peaks from 
1D 1H NMR spectra are deconvoluted and assigned to specific metabolites from 
a known metabolite list.

As one can see above, all of the approaches have benefits and weaknesses. They 
aim to make the columns of the data table comparable between the samples. It is up 
to the analyst to decide how to proceed with the preprocessing, keeping in mind the 
various consequences. Assuming the columns of the data table are comparable after 
the preprocessing steps, the analyst can move to the next step, which is the normal-
ization of the samples. If high-resolution or binned 1H NMR spectra are used for 
further analysis, it is important to remove interfering spectral regions related to 
water suppression residual (δ 4.40–5.00  ppm) and possible contaminants in the 
samples. Peak of urea at around δ 5.80 ppm should be also removed from urine 
spectra. The reason is that they are not changing proportionally with the changes in 
concentration, and they may adversely influence the normalization of the samples.

6.4  �Normalization

The term normalization here is used for the division of each row of data table by a 
normalization factor. Normalization procedure removes unwanted variation between 
the samples and allows quantitative comparison of the samples. In metabolomics, 
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study samples are biofluids in most cases, and they exhibit differences in the con-
centration of metabolites due to varying dilution factors for different samples. For 
example, metabolite concentrations in different urine samples may differ with 
respect to the amount of water as the solvent. Therefore, the measured metabolite 
concentrations will reflect to dilution instead of the changes in metabolic responses. 
In order to remove such variations between the samples, a normalization factor 
should be computed for each row of the data table. There are several ways for per-
forming normalization [25–29]:

	(a)	 Addition of internal/external standard(s): A standard with known concentration 
can be added to every sample, and the samples can be normalized using the 
peak area/intensity of this standard. However, this method is not convenient for 
untargeted metabolomics because the source of unwanted variation is not only 
related to sample introduction to the instrument but also the variations in the 
dilution factors.

	(b)	 Total area normalization: The normalization factor for each sample is com-
puted by summing all of the features in the corresponding row. The disad-
vantage of this normalization is that changes in metabolite concentrations 
across the samples will affect the normalization factor because the tech-
nique assumes the total metabolite concentration in a sample does not 
change across the samples. High-concentration metabolites contribute to 
the total area, i.e., the normalization factor, more than the small-concentra-
tion metabolites. In the presence of a significant change in the peak inten-
sity/area of a high-concentration metabolite, the normalization factor will 
be affected.

	(c)	 Probabilistic Quotient Normalization: This method assumes that metabolite 
peaks affected by dilution will have the same fold changes between two sam-
ples. Fold changes of a sample are computed for every feature against a target 
spectrum/profile, which can be the median spectrum/profile. The normalization 
factor for that sample is the median value of the fold changes. This method is 
not affected by large changes in a few metabolites because it uses the median of 
many fold change values instead of an estimated single sum as for total area 
normalization.

	(d)	 Quantile normalization: This method forces all samples in a sample set to have 
identical peak intensity/area distribution. The difference of quantile normaliza-
tion from the previous ones is that there is no estimated normalization factor for 
each sample. First, each row of the data table is sorted from lowest to highest. 
Thereafter, mean/median of each column is calculated from the sorted data 
table. These mean/median values form the target spectrum/profile. All rows of 
the data table are replaced with the target spectrum/profile. Finally, the data 
table is restored into its original order before sorting. The rows of the new data 
table are composed by the normalized samples. This method can be problematic 
with high-value features in the data table because they can dramatically differ 
from sample to sample.
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6.5  �Data Pretreatment

When clean and normalized metabolomics data are ready for statistical analysis, it 
is important to use the appropriate data pretreatment method before starting [30, 
31]. The data are converted into different forms by data pretreatment. The effects of 
technical and measurement errors are aimed to be reduced, whereas the relevant 
biological variations are aimed to be enhanced.

The choice of data pretreatment method depends on the scientific question and 
the data analysis method to be used. If univariate analysis is used, generally there is 
no need for a pretreatment. However, when multivariate analysis methods are con-
sidered, data pretreatment plays an important role in obtaining and interpreting the 
results. In Sects. 6.5.1 and 6.5.2, ways for data pretreatment are explained with a 
few example methods. A publically available exemplar LC-MS data set [32] was 
used for demonstrating the outcome of each data pretreatment method described. 
The preprocessed data table consists of 28 rows/samples and 168 columns/features. 
Although metabolomics data from clinical applications contain thousands of sam-
ples and features, the exemplar data set used here is sufficient for the readers to 
understand how data pretreatment works.

6.5.1  �Centering and Scaling

In untargeted metabolomics studies with a purpose of biomarker discovery, multi-
variate analysis techniques based on latent variable projections such as PCA or 
PLSR are used. Such methods extract information from the data by projecting onto 
the direction of the maximum variance. Analyzing the data from NMR and MS 
platforms directly by latent variable projection techniques will focus on the average 
spectrum/profile, and any type of biological variation in the data will be masked. 
Therefore, mean-centering the data table, where the mean of a feature is subtracted 
from each element of the feature vector, is a common practice before PCA and 
PLSR, and generally it is applied by default. By mean centering, it is aimed to 
remove the offset from the data and focus on the biological variation, as well as 
similarities/dissimilarities among the samples in the data.

Metabolites that are more abundant will exhibit high values in the data table and 
subsequently show large differences among samples compared to the low-abundant 
metabolites. NMR and MS platforms are effective in quantifying low-abundant 
metabolites, as well as the highly abundant metabolites. As PCA and PLSR are 
focusing on the maximum variance, centering the data alone may not be enough to 
find biomarkers because the highly abundant metabolites will dominantly contrib-
ute to the model. The biologically important but low-abundant metabolites thus can 
be masked, and the results of the statistical analysis may become biased. 
Consequently, scaling each feature in the data table, which potentially corresponds 
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to a metabolite, needs to be carefully considered. In the following, the scaling oper-
ations are explained for one feature, i.e., column, in the whole set of features in the 
data set.

	(a)	 Auto-scaling (unit variance scaling): The mean and the standard deviation of 
the feature are calculated. The feature is first mean-centered. Thereafter each 
element in the mean-centered feature is divided by the standard deviation. The 
aim of auto-scaling is to give equal weights to all of the features. Therefore, 
metabolites with both low and high abundance will equally contribute to the 
multivariate model. The drawback of auto-scaling is that noisy and uninforma-
tive features will also be as important as the interesting features. Moreover, the 
measurement errors on the metabolites with low abundance will inflate as they 
are more affected. One needs to make sure that the features in the data table 
have good quality, i.e., noisy features or features with low repeatability/linearity 
are filtered in case of analyzing MS data. When NMR data analysis is consid-
ered, auto-scaling may be better used after removing noisy and outlying/con-
taminant regions from the spectra. Auto-scaling can be also useful when 
multivariate analysis is combined with variable selection.

	(b)	 Pareto scaling: This is similar to auto-scaling but in this case, each element in 
the mean-centered feature is divided by the square root of the standard devia-
tion. Pareto scaling is a compromise between mean-centering and auto-scaling 
because Pareto-scaled metabolites with high abundance are less dominant com-
pared to the corresponding mean-centered ones. Nonetheless, the Pareto-scaled 
data are kept closer to the mean-centered data, and the drawbacks of using only 
mean-centering count also for Pareto scaling. Therefore, multivariate analysis 
may be still prone to focus on the metabolites with high abundance.

	(c)	 Range scaling: The mean and the range of the feature are calculated. The range 
is defined as the difference between the minimum and the maximum values in 
the feature. Each element in the mean-centered feature is divided by the range 
in range scaling. Using the range as the scaling factor is risky as it is sensitive 
to only a few outlying samples in a large sample set. It can still be an alternative 
to auto-scaling when range is estimated robustly.

	(d)	 Vast (variable stability) scaling: Each element in the auto-scaled feature is 
divided by the coefficient of variation, which is the ratio of the standard devia-
tion and the mean. In contrast to auto-scaling where each feature equally con-
tributes to the statistical model, the focus falls onto the more stable features 
after vast scaling. The assumption here is that important metabolic features 
should have small coefficient of variation, i.e., relative standard deviation, so 
that they will be more stable.

In Fig. 6.6, the effect of centering and scaling to features in sample 17 from the 
exemplar LC-MS data set is depicted. In panel (a), most of the features seem to have 
low abundance. There are a few very highly abundant features. In panel (b), mean-
centering moved the features to distribute around zero, but the same highly abun-
dant features are still present and dominating the data. This is also visible in panel 
(d) after the features were Pareto-scaled even though low-abundant features were 
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inflated to some extent. On the other hand, the features seem to be more comparable 
with each other after auto-scaling and range scaling in panel (c) and (e). In panel (f), 
the vast-scaled features seem to be more comparable compared to mean-centered 
and Pareto-scaled data; however, care must be taken because the features with high 
coefficient of variation were penalized.
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Fig. 6.6  Graphical representation of (a) untreated, (b) mean-centered, (c) auto-scaled, (d) Pareto-
scaled, (e) range-scaled, and (f) vast-scaled features of sample 17 from the exemplar data set. 
Y-axes of each plot were left unlabeled because they are varying with respect to the pretreatment 
method
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6.5.2  �Data Transformation

The data from NMR and MS platforms are generally subject to heteroscedastic noise 
from various sources where the amount of noise increases as a function of increased 
signal intensity. Statistical analysis tools assume the noise is homoscedastic where 
the noise is consistent across all features. Therefore, the data table may need to be 
transformed into a form in which the noise structure is no more heteroscedastic. 
Furthermore, the distributions of the features can be skewed and may need to be 
made close to normal prior to any type of statistical analysis. Transformations aim to 
correct for heteroscedasticity and skewness. They also have pseudo scaling effect on 
the features because the differences of the features with high and low abundances are 
substantially diminished. Notwithstanding, it may still be necessary to apply center-
ing and scaling after transformation. In the following, a few common transformation 
operations are explained for each element of the entire data table.

	(a)	 Log transformation: Logarithm of each element in the feature is calculated and 
replaced with the original data. In case of the presence of values between 0 and 
1, 1 can be added to each element in the feature before the logarithm operation. 
Log transformation aims to convert multiplicative noise into additive noise.

	(b)	 Glog transformation: This is similar to log transformation but logarithm opera-
tion is applied to x x+ +2 l  instead of x directly where x is the untransformed 
element in the data, and λ is the transform parameter. Glog transformation can 
be used as a scaling method after optimizing the transform parameter using a 
series of technical replicate samples [33]. Therefore, only biological variation 
will predominantly remain in the data table after glog transformation.

	(c)	 Power transformation: Square root of each element in the feature is calculated 
and replaced with the original data. Although it does not convert the multiplica-
tive noise into additive noise, it has similar effects as log transformation.

In Fig. 6.7, the effect of data transformation to features from the exemplar LC-MS 
data set is depicted. Homoscedastic data are supposed to have a flat distribution on 
such plots. In panel (a), some features with high average seem to have high standard 
deviation as well. This means the data set is heteroscedastic and needs to be made 
homoscedastic by data transformation. In panel (b) and (c), log and glog transforma-
tions seem to work well on this data set because the transformed data have a flat dis-
tribution. On the other hand, the power-transformed data do not have flat distribution, 
as can be seen on panel (d). The reason might be the presence of multiplicative error.

6.6  �Concluding Remarks

In this chapter, the main preprocessing steps involved in metabolomics data 
analysis for NMR and LC/GC-MS platforms were summarized. Descriptions 
for commonly used methods for each step were briefly provided with 
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discussions on their advantages and disadvantages. The purpose of preprocess-
ing and normalization procedures is to extract clean and comparable data across 
the samples from the raw data. Pretreatment aims to focus on the biologically 
relevant information in the data. It is important to use methods that are conve-
nient to the data set at hand in order to remove artifacts and variation without 
biological importance. The choice should not be biased according to the bio-
logical question; therefore, the methods must be chosen with respect to the 
assumptions and the limitations of the methods.

Acknowledgements  The author thanks Rui Pinto for helpful discussions in the preparation of 
this book chapter.
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Chapter 7
Chemometrics Methods and Strategies 
in Metabolomics

Rui Climaco Pinto

Abstract  Chemometrics has been a fundamental discipline for the development of 
metabolomics, while symbiotically growing with it. From design of experiments, 
through data processing, to data analysis, chemometrics tools are used to design, 
process, visualize, explore and analyse metabolomics data.

In this chapter, the most commonly used chemometrics methods for data analysis 
and interpretation of metabolomics experiments will be presented, with focus on 
multivariate analysis. These are projection-based linear methods, like principal 
component analysis (PCA) and orthogonal projection to latent structures (OPLS), 
which facilitate interpretation of the causes behind the observed sample trends, cor-
relation with outcomes or group discrimination analysis. Validation procedures for 
multivariate methods will be presented and discussed.

Univariate analysis is briefly discussed in the context of correlation-based linear 
regression methods to find associations to outcomes or in analysis of variance-based 
and logistic regression methods for class discrimination. These methods rely on 
frequentist statistics, with the determination of p-values and corresponding multiple 
correction procedures.

Several strategies of design-analysis of metabolomics experiments will be dis-
cussed, in order to guide the reader through different setups, adopted to better 
address some experimental issues and to better test the scientific hypotheses.
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Abbreviations

ANOVA	 Analysis of variance
ASCA	 ANOVA-simultaneous component analysis
AUC	 Area under the curve (in the context of ROC curves)
CV	 Cross-validation
CV-ANOVA	 Cross-validation – analysis of variance
FWER	 Family-wise error rate
FDR	 False discovery rate
GC-MS	 Gas chromatography coupled to mass spectrometry
HCA	 Hierarchical cluster analysis
ICA	 Independent component analysis
iQC	 Internal quality control (sample)
IS	 Internal standard
LC-MS	 Liquid chromatography coupled to mass spectrometry
LOO	 Leave-one-out procedure in cross validation
MS	 Mass spectrometry
MWAS	 Metabolome-wide association studies
MWSL	 Metabolome-wide significance level
OPLS	 Orthogonal projections to latent structures
OPLS-DA	 Orthogonal projections to latent structures – discriminant analysis
OPLS-EP	 Orthogonal projections to latent structures – effect projection
PC	 Principal component
PCA	 Principal component analysis
PLS	 Projections to latent structures
PRESS	 Predicted residual error sum of squares
R2X	 Fraction of variance in the data explained by each latent variable
R2Y	 Fraction of variance of y/Y explained by each latent variable
ROC	 Receiver operating characteristic (curve)
Q2	 Model statistics to evaluate quality of model prediction
RMSECV	 Root mean squared error of cross validation
RMSEP	 Root mean squared error of prediction
SMART	 Scaled-to-maximum, aligned and reduced trajectories
SUS	 Shared and unique structures
VIP	 Variable importance on projection

7.1  �Introduction

Metabonomics [1] or metabolomics [2] concerns the study of the metabolome, a 
multivariate ensemble of small molecules that are intermediates and products of 
metabolism. Its main emphasis is on metabolite profiling, at the level of cells or 
organs, of endogenous and/or exogenous metabolites, and on the effects of pertur-
bations of the metabolism caused by disease, environmental, or dietary influences.
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Chemometrics can be defined as “the chemical discipline that uses mathematical, 
statistical, and other methods employing formal logic, to design or select optimal 
measurement procedures and experiments, and to provide maximum relevant chemi-
cal information by analysing chemical data” [3]. It differs from statistics in analytical 
chemistry mainly due to its computer intensive nature, and for being mostly multivari-
ate analysis based [4]. Due to the nature of the signals in chemistry, namely in spec-
troscopy, chemometrics developed around the subject of multivariate analysis, because 
of its ease of interpretation. These are correlation-/projection-based methods, which 
require computationally intensive work. While bioinformatics and chemoinformatics 
are also used for data analysis, they are more related to data mining and use of data-
bases. These disciplines have some overlap with chemometrics and methods like prin-
cipal component analysis (PCA), for instance, are used by all of them.

Chemometrics is intensively used in the metabolomics context due to its experi-
mental design component and to the fact that metabolic systems are multivariate in 
nature, with data mostly a product of 1H NMR spectroscopy and gas/liquid chroma-
tography coupled to mass spectrometry (GC/LC-MS). Metabolomics naturally 
relates to clinical research due to the fact that specific metabolite profiles express 
themselves in a living organism through a resulting health phenotype.

Clinical experiments exist in different areas and contexts, such as understanding 
biological processes and disease mechanisms, in vitro studies of materials of human 
origin, models of human disease processes, follow-up after surgery, epidemiologi-
cal studies, diagnostic and therapeutic methods, effect and mechanism of vaccines 
and drugs, biomarker discovery and disease discrimination, among others [5]. 
Chemometrics may help unravel information from metabolomics in different 
aspects of each of these contexts. Although not specifically designed for clinical 
research, the methods presented in this chapter adapt to the field naturally, as they 
can be used to explore clinical metabolomics data.

This chapter is devoted to the uses of state-of-the-art chemometrics methods and 
their application to metabolomics data in clinical analysis.

7.2  �Notation

Notation in the text is as follows: vectors are presented in bold lower-case (e.g. y), 
matrices in bold upper-case (e.g. X) and indexes in italic lower-case letters (e.g. i). 
The metabolite data matrix X consists of samples in i rows and metabolic features 
(or metabolites) in j columns. Each continuous or discrete outcome y (e.g. blood 
pressure) has the same length i as rows in X. To define classes for the two-class case, 
a dummy vector y (e.g. 0 = control; 1 = disease) is built. In case there are more than 
two classes, a dummy matrix Y with one vector per class is built. Confounder fac-
tors, when mentioned, are vectors z with the same length as the rows in X. Qualitative 
confounder vectors are transformed into dummy matrices the same way as described 
for multiple classes. In case there are two or more confounders, they are horizon-
tally concatenated into a matrix Z. Transposed matrix is indicated by using the letter 
“T” in superscript, as in XT.
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7.3  �Data Preprocessing

While using univariate analysis, there is no need for variable normalization (unless 
normal distribution is deemed necessary) because each metabolic feature is evalu-
ated separately; however, in multivariate analysis, normalization is of utmost impor-
tance and depends on the analysis in question. As preprocessing, normalization, 
scaling and transformations of data are discussed in Chap. 6 of this book, they will 
not be herein discussed in detail. We assume the samples were already normalized 
with the objective of reducing magnitude effects (e.g. caused by different dilution 
levels), and the variables were scaled in an appropriate way (e.g. 1H NMR was 
Pareto scaled; LC-MS was centred and unit variance scaled) and potentially trans-
formed adequately (log transformation or other). Both 1H NMR and MS data are 
now considered a data matrix X of metabolic features ready for statistical analysis.

7.4  �Chemometrics Contexts and Methods

The need for chemometrics tools arises around three decades ago, due to the devel-
opment of more complex instruments with a consequent increase in the number of 
variables, and is propelled by the development of computational capacity. Large-
scale dataset simultaneous visualization is more difficult in a univariate approach, 
and, for example, multiple regression modelling is constrained by variable colinear-
ity. As referred previously, the chemometrics discipline is based on computing 
intensive methods, in general multivariate, which solves the colinearity problem in 
a covariance-/correlation-based framework.

There are many different multivariate methods for modelling data, as shown in 
previous literature reviews [6–8]. They can be unsupervised (no assumptions made 
on the samples) or supervised (samples are defined into classes, or each sample is 
associated to an outcome yi value). Multivariate methods represent the samples as 
points in the space of the initial variables. The samples can then be projected into a 
lower dimensionality space – into components or latent variables – such as a line, a 
plane or a hyperplane, which can be seen as the “shadow” of the dataset viewed 
from its “best” viewpoint. The coordinates of the samples in the newly defined 
latent variables are defined as the scores, while the directions of variance to which 
they are projected are defined as the loadings. The loadings vector for each latent 
variable contains the weights of each of the initial variables in that latent variable. 
For a certain latent variable, the more a sample score is distant from its centre, the 
higher values it has in some of the initial variables (while potentially having lower 
values in others). Respectively, these initial variables have high weights in the load-
ings vector of that latent variable.

Projection-based linear methods are popular due to the simplicity of interpreta-
tion, thus used when understanding of a system is important. Nonlinear methods 
such as neural networks, support vector machines and random forests are less 
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common in metabolomics when interpretation is needed, and are used mostly for 
prediction of new samples in classification/regression contexts.

At the moment, due to the large amount of features involved in untargeted metab-
olomics, most of the statistical methods are applied previously to compound/metab-
olite identification. Only after finding a smaller number of important statistically 
significant metabolic features (putative metabolites), the analyst proceeds to the 
identification phase, as this may be very time-consuming. Bayesian networks have 
also been recently used in metabolomics but are not purely based on numerical 
metabolomics data. Because of their need for extra information, including metabo-
lite identification and/or information from databases, these methods are considered 
to be more in the bioinformatics than in the chemometrics domain; thus, they will 
not be discussed here.

7.4.1  �Multivariate Data Exploration (PCA)

The simplest correlation- and projection-based multivariate analysis linear method, 
and simultaneously the most widely used tool in chemometrics, is principal compo-
nent analysis (PCA) [9–12]. It can be seen as the basis for other multivariate meth-
ods, thus being commonly used to introduce the concept of latent variables, and it is 
widely used as an exploration tool in metabolomics [13].

PCA is a non-supervised method. As it contains no assumptions on the data, it is 
used as a visualization and exploration tool at the start of any analysis, in order to 
detect trends, groups and outliers. It allows simpler global visualization by repre-
senting the variance in a small number of uncorrelated latent variables, which can 
then be understood to be information or random variation.

PCA decomposes the data matrix into principal components (latent variables or 
latent structures) that represent the underlying structure of the data. This allows one 
to represent the structured variance in the data by a smaller number of (latent) vari-
ables, while discarding the noise, thus making it appropriate for dimensional reduc-
tion. A matrix X (of e.g. metabolites) is decomposed by PCA using p components 
as follows: X = T.PT + E, where X has dimensions n × m, T is a n × p matrix of scores, 
P is a m × p matrix of loadings and E is a n × m matrix with residual variance, i.e. not 
included in the latent variable model. Depending on the objective of the analysis, 
the number of components in the model can be decided arbitrarily (e.g. a number 
“large enough”), according to a certain percentage of variance described with that 
number of components (e.g. 95 % of cumulative variance), or by using cross-valida-
tion strategies (which are later described).

An example of a PCA analysis is depicted in Fig.  7.1. Scores are coloured 
according to some meta-information after PCA calculations, in order to understand 
the reasons for the clusters. Samples in the same cluster are similar in the compo-
nents represented, while variables in the same clusters are correlated with each 
other. To see, e.g. which variables are higher/lower in group B, draw a line passing 
in the centre of group B and through zero and then draw a line in the same direction 
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in the loadings plot. Variables 1 are over that line in the same area as samples from 
group B; thus they are in higher values in B than in, e.g. group A (which is on the 
opposite side). Inversely, variables 2 have higher values in group A. Samples C, 
located close to the origin, have average behaviour between A and B. Variables 3 
have no influence in this component, as their weights in the loadings of PC1 and 
PC2 are close to zero. Note that PC1 vs PC2 are being shown, but due to PCA’s 
orthogonality of components, any PC can be plotted perpendicular to each other. In 
addition, sometimes plots of three components (xyz) are used, although they may 
become too complex to visualize due to the number of features involved.

Mathematically, the first principal component is the line that better approximates 
the data, in the least-squares sense. It represents thus the direction of the largest 
variance in the dataset, or in other words, the direction in which the variance of the 
coordinates of the samples is maximized. The dataset information explained by the 
first component can be subtracted from the initial data, and a second component can 
then be calculated from the residuals. Each principal component (PC) represents a 
fraction of the variance in the data – a pattern that can be in higher or lower magni-
tude in each sample – and is unrelated (orthogonal in a linear algebra sense, perpen-
dicular in a geometrical sense) to the others (thus can be drawn perpendicularly to 
each and every other). The orthogonality property of PCA can be easily understood 
if one considers the calculation of each PC at a time. After PCi is calculated from a 
data matrix X, the information it represents is deleted from X. Thus, for the calcula-
tion of the next component PCi+1, that information is not available anymore.

Apart from helping at visualizing trends and groups in the data, an important 
application of PCA is to look for outliers in the samples. Outliers are samples that 
have scores very distant (thus different) from the others. They can be found by 
inspecting the scores or a model’s cumulative measure of distance such as Hotelling 
T2 [14], as well as by inspecting the residuals of the model (large residuals may 
indicate mild outliers). Due to their high leverage during model creation, special 
care must be taken in order to remove them or not, prior to defining a model and 
interpreting it. It may make sense to remove outliers, if one understands they are 
caused by gross errors during sample preparation or instrumental analysis. More 
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Fig. 7.1  PCA scatter plots of scores t1 vs t2 (left) and loadings p1 vs p2 (right) should be inspected 
simultaneously in order to understand the relations between trends and groups observed in the 
samples (score plot) and which variables – metabolites – are responsible for it (loadings plot)
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difficult decisions arise for less extreme samples, in which the large score distance 
to other samples cannot be justified by that, but is the result of correctly measured 
high or low values in some variables. Many different ways exist to look for multi-
variate outliers [15–18]. Robust algorithms, which can better at handling outliers, 
have been developed for PCA [19]. Note: an extensive literature list on PCA can be 
found on http://www.stats.org.uk/pca.

7.4.2  �Multivariate Regression (OPLS)

Projection to latent structures (PLS) [20] is a supervised multivariate linear regres-
sion method similar in concept to PCA, which finds the relations between two 
matrices (data X and response Y), by maximizing the covariance of their latent 
variables. It allows to understand which variables (e.g. metabolites) of X are more 
correlated to the response (e.g. calcium levels in blood) and to make predictions for 
new samples.

Orthogonal projection to latent structures (OPLS) [21] is a modification of the 
PLS method. OPLS has the same predictive power as PLS but provides better inter-
pretation of the relevant variables than PLS. It does so by decomposing the data in 
so-called “predictive” information related to the response Y (as concentrations, 
classes), “orthogonal” structured information not related to the response (as instru-
mental, biological variations) and residual variation.

The decomposition of a matrix X by OPLS for the single-y case using p latent 
variables is as follows [22]: X = 1.x̄T+ tp.pp

T + To.Po
T + E, where the data matrix X has 

dimensions n × m, 1 is a vector of dimension n × 1 with ones in all positions, x̅ is a 
vector n × 1 with the column averages of X, tp is a vector of n × 1 predictive scores, 
pp is a vector of n × 1 predictive loadings, To is a n × p − 1 matrix of orthogonal 
scores, Po is a m × p − 1 matrix of orthogonal loadings and E is a n × m matrix with 
residual variance, not included in the latent variable model, as it contains only resid-
ual, nonstructured variation.

The model prediction of a y variable by OPLS is obtained by y = ȳ + tp.qp
T + r, in 

which y is a response vector of dimensions n × 1, ȳ is a vector of dimension n × 1 with 
the average of y in all positions, t is the predictive scores vector from X and q is a 
vector n × 1of predictive loadings from y, while r is a n × 1 vector of y residuals.

Notice that for the single-y case, there can be only one predictive component, 
although many orthogonal ones may exist. Because of the predictive and orthogonal 
variance decomposition, one can look at the predictive score direction from negative 
to positive as an increase in the magnitude of y, which is positively correlated with 
variables in the positive side of the predictive loadings (and inversely correlated 
with variables on the negative side). For the multiple-y case, there may be multiple 
predictive components, reflecting the overlap in information between the matrices 
X and Y. Figure 7.2 illustrates single-y OPLS analysis.

OPLS is the multivariate linear method of choice to, e.g. find metabolic biomark-
ers correlated with a continuous variable, such as calcium score or blood pressure.
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7.4.3  �Multivariate Classification/Class Discrimination 
(OPLS-DA)

OPLS discriminant analysis (OPLS-DA) [23] has been largely used in the metabolo-
mics context, and it is now the multivariate linear model of choice for classification/
discrimination [24]. The term classification is used when the objective is to classify 
new objects into one of two or more possible classes (e.g. control, disease A, disease 
B). The term discrimination is used for the two-class case, in which the objective is 
to separate two classes and investigate the causes for class separation (e.g. biomarker 
discovery or which metabolites are in higher/lower concentration in a disease class 
in relation to a control class). Figure 7.3 shows an OPLS-DA example.

Notice that in OPLS the vector y is a continuous variable; in two-class discrimi-
nation, OPLS-DA y is categorical and, thus, defined as a dummy vector of 0/1 for 
the two-class case (for the multiple-y case, it is a dummy matrix with a 0/1 vector 
per class), describing class belonging. Although multi-class OPLS-DA can be cal-
culated, most of the applications in metabolomics use a two-class model, as the 
interpretation is much more straightforward. Strategies for multiple class compari-
son using OPLS-DA are presented later in the chapter.

7.4.4  �Note on Orthogonality

PLS was the method of choice for multivariate regression for many years, but OPLS 
has lately seen an increase in metabolomics data analysis, especially for discrimina-
tion and biomarker discovery. The reason is that although the methods explain the 
same variance in both X and Y matrices and have the same predictive capability, 
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Fig. 7.2  Single-y OPLS scatter plots of scores (left) and loadings (right) for predictive component 
1 vs orthogonal component 1, with scores coloured by y variable (e.g. blood pressure). OPLS 
models the y variable in the predictive component; thus samples with positive score t1 (right side 
of the scores plot) are more concentrated on variables on the positive side of p1 (clusters 2 and 7) 
and less concentrated in variables with negative p1 (clusters 1 and 6). The orthogonal variation that 
is seen in the orthogonal scores to1 (up–down) can also be inspected by colouring the scores 
according to different meta-information (e.g. gender, age) or the loadings (e.g. compound class). 
Variables related to a trend in the orthogonal scores are found along the orthogonal component 
loadings po1
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PLS computes latent variables that contain mixed sources of variation, while OPLS 
decomposes the structured variation into predictive and orthogonal. In the simplest 
case, OPLS with only one y variable – or OPLS-DA with two classes – the informa-
tion related to y is contained in the first predictive component, while the orthogonal 
components contain information related to other sources of structured variance, 
while discarding residual variance or noise.

It is important to realize though that orthogonal components contain information 
that is not noise [25] and should be investigated in order to bring more understand-
ing of an experiment. With that in mind, the datasets should be accompanied of the 
most complete amount of meta-information regarding unintended sources of varia-
tion such as sample preparation, experimental conditions and characterization of 
samples and variables as possible. In some cases, patterns and groups of samples (or 
variables) can be seen in the orthogonal scores (colouring them according to the 
meta-information may help), which can be related to that variation, e.g. sample 
batch, gender, age, sample dilution or other stratifications of the data. Then the 
orthogonal loadings should be investigated to see which variables have influence in 
the orthogonal score trends and groups. As all components in the model have their 
variation quantified, that may allow additional understanding of the relative varia-
tion in the phenomenon in study in comparison to others and, e.g. allow better tun-
ing of experimental conditions in future experiments.

7.4.5  �Cluster Analysis

Many cluster analysis methods exist, because as some authors consider, “cluster-
ing is in the eye of the beholder” [26]. Nonetheless, due to its simplicity and 
usefulness, hierarchical cluster analysis (HCA) has been widely used and will 
thus be presented. This is a non-supervised clustering method, used to put in 
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Fig. 7.3  OPLS-DA predictive vs orthogonal scores (left) and predictive loadings (right) for a two-
class separation (e.g. control vs disease). The disease group, with positive predictive scores, has 
higher values than the control group in the variables with positive p1 (on the right of the loadings 
plot); it has lower values than the control group in the variables with negative p1 (left side of the 
loadings plot). The loadings weights were ordered according to magnitude, for easy visualization 
of its importance, and also the existence of confidence intervals which indicate their statistical 
significance
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evidence natural clustering of samples and/or variables, in the dataset. In case 
both samples and variables are clustered, one can see which clusters of variables 
are defining the clustering of the samples. Although the method is generally used 
for multivariable analysis, its nature is not multivariate, as no latent variables are 
defined.

In one of its forms, the method starts by considering that each single object 
is a cluster. On the first iteration, it finds the minimal distance between two of 
these (single object) clusters and clusters them. In the second iteration, it finds 
again the minimal distance between the updated clusters and clusters them. It 
proceeds the same way until all objects are part of the same cluster. Thus, since 
the beginning (after appropriate normalization/transformation of the objects in 
study), two parameters must be defined: the distance metrics to use and the link-
age type. Distance metrics is related to how one measures “closeness” of two 
objects, and commonly used metrics are the Euclidean and Mahalanobis dis-
tances, or the Pearson and Spearman correlations. Linkage type is related to 
which objects in the current groups are used to calculate those distances, and 
common types are “single” (minimum distance between one object in each 
group), “average” (distance between averages of the objects in the groups) and 
“Ward” (minimum model error increase for merging two clusters). A dendro-
gram of the clustering process can be plotted, in which the length of the bars 
represent the distance between the clusters, together with a heat map of the 
actual data values (see Fig. 7.4).

Considering the samples, and depending on the study context and objective, 
the method can be applied to the actual data (metabolic features values), to its 
PCA scores, PCA distances to model, or any other meaningful transformation of 
the data.

The major advantages of the method are that it is easy to understand and its 
application is straightforward. The major disadvantage is the difficulty in interpret-
ing the data when there are too many samples or too many variables (most common 
in metabolomics).

7.4.6  �Independent Component Analysis (ICA)

ICA is a blind source separation method used in signal processing, and it separates 
multivariate signals into additive subcomponents. Its interpretation is similar to 
PCA, but instead of orthogonal components, it calculates non-Gaussian, mutually 
independent ones. Contrary to PCA, ICA does not order the components according 
to variance, and the number of components influences the structure of the compo-
nents themselves; thus an adequate determination of the right number of compo-
nents is of utmost importance. ICA algorithms have been used for analysis of 
metabolomics data, to detect metabolic patterns [27], phenotypes [28], and in class 
discrimination [29].
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7.5  �Complementary Strategies for Data Analysis

Most applications of multivariate analysis in metabolomics use PCA for data explo-
ration and then OPLS or OPLS-DA for regression or class discrimination/biomarker 
discovery, respectively. The methods are applied directly to the dataset itself, after 
appropriate preprocessing. Nonetheless, these same methods can be used to analyse 
or visualize the data in creative and helpful ways, depending on the experimental 
design and the objectives of the study. Below we present some of those examples.

7.5.1  �OPLS-DA Strategies for Comparison of Discriminant 
Metabolites

As referred in Sect. 7.4.3, OPLS-DA can be used for multiple class discrimination 
and classification, but the direction of class separation may not align over the latent 
variables axes, thus turning interpretation less straightforward. In case the objective 
of the study is to understand the difference of multiple classes (treatments, condi-
tions or disease states) to the same control class, it may be preferable to model each 
of the classes against control separately (e.g. control vs disease A and control vs 
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disease B) and then compare the results. Two suggestions on how to do that are 
presented below:

	(a)	 Comparison of models of two classes vs same control:
In this case, one can use the shared and unique structures (SUS) plot [30]. 

For the two-class case OPLS-DA models always represent the class discrimina-
tion along the predictive (“abscissa” axis) component, which allows straightfor-
ward loadings interpretation. For more than two classes/properties, this 
representation may not be possible to do using only one predictive component; 
thus the class separation may not be along a single axis. For this reason, the 
most convenient way of comparing two models is to create individual models 
for each of the possibilities (e.g. control vs disease A and control vs disease B) 
and then compare their loadings against each other.

From the OPLS (DA) models, different loadings vectors can be obtained. 
The correlation between the predictive score vector and each of the X variables 
is defined as the pcorrel loadings. Being composed of actual correlations, its val-
ues vary between −1 and 1, thus appropriately standardized for inter-model 
comparison. The SUS plot is simply a scatter plot of the pcorrel of two individual 
models. It should be visualized simultaneously with a p-loadings plot with con-
fidence intervals (or any other measure of variable significance), so one can also 
see which variables are significant. Three different situations may arise for each 
of the significant variables:

	 (i)	 If aligned along a positive “/” diagonal, they show the same behaviour in 
both models (e.g. increased concentration of metabolite Xi in disease A vs 
control as well as in disease B vs control).

	(ii)	 If aligned along a negative “\” diagonal, they show opposite behaviour in 
each model (e.g. increased metabolite concentration of metabolite Xi in dis-
ease A vs control, but decreased in disease B vs control).

	(iii)	 Aligned along the horizontal/vertical axis shows an effect in one of the 
models, but not in the other.

	(b)	 Comparison of models of more than two classes vs same control:
		 With more than two classes, the SUS plot approach gets complicated. A better 

visualization approach can be made using a network approach, plotting together 
the significant variables from each of the models. When considering, e.g. a small 
number of different diseases in relation to the same control class, the following 
definitions may be used (see Fig. 7.5):

	 (i)	 The different diseases are represented as central nodes, in a different shape/
size and colour than the metabolites.

	(ii)	 For each disease, its significant metabolites are represented as peripheral 
nodes, connected through directed edges to the disease.

	(iii)	 The direction (or colour) of the edges indicates if the metabolite is more 
concentrated in the disease (pointing to the disease) or in the control (point-
ing to the metabolite).

	(iv)	 The edge width can be used to denote the degree of variable significance 
(p-value, correlation, fold change).
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	(v)	 Colour codes can be used for each metabolite, reflecting the number of 
diseases they are common to or any other relevant information (e.g. chemi-
cal class).

As shown in Fig. 7.5 (left), SUS plot is a scatter plot of pcorrel of two models 
of, e.g. diseases A and B vs control (C). Each pcorrel is a correlation value, thus 
varying between −1 and 1 in each model. Variables (features or metabolites) over 
the positive diagonal are upregulated (A + B+) or downregulated in both diseases 
(A−B−) in relation to control. Variables over the negative diagonal have inverse 
behaviour in each of the diseases (A + B−) or (A−B+) in relation to control. 
Variables over the x-/y-axis are only up-/downregulated in one of the diseases 
(e.g. A+ or B+), but not significantly different from control in the other.

Figure 7.5 (right) shows a network representation of relevant metabolites (small 
circles) obtained for OPLS-DA for comparisons of, e.g. different disease classes 
(A–D, large circles) to the same control. The colour and size of the nodes differentiate 
the disease classes from the metabolites. The edge arrows pointing from a metabolite 
to one of the disease nodes (A–D) indicate that the metabolite level is higher in that 
disease than in the control group and vice versa. As examples, metabolite 1 is statisti-
cally significant in the models of diseases A, B and C. Looking at the arrow directions, 
it is upregulated in A and C and downregulated in B, in relation to control. Metabolites 
2 and 3 are only downregulated in the model of disease C, in relation to control.

In case there are not many variables, but many classes, one can change the roles 
of classes with metabolites in the plots.

7.5.2  �Comparisons of Trajectories and Profiles

The modelling of multivariate metabolic trajectories has been used mostly to follow 
time series processes using different strategies or in different subjects. It can be 
applied when the design of experiments uses groups of samples that have a 
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sequential dependence (e.g. follow multiple individuals during time). The main idea 
is to use multivariate modelling to follow the evolution of each of the groups of 
dependent samples and then compare their score trajectories. Although not all these 
examples are in the clinical context, they may be adapted to it, if the right experi-
mental design is used.

Using a method called “scaled-to-maximum, aligned and reduced trajectories” 
(SMART) [31], two groups of animals were studied in relation to the effects of 
drugs against control using 1H NMR. The average of the initial time point of each 
individual is subtracted from all the samples of all individuals, to achieve a similar 
start point. The data is then scaled to a common magnitude by using the largest 
magnitude value for each treatment group, prior to using PCA (scores) to visualize 
the average trajectories for each treatment. Similar trajectories correspond to similar 
behaviour of the groups and vice versa. The same strategy can be used in other 
experimental settings.

In another type of application, urine samples of patients following a kidney 
transplant were collected in time and studied using 1H NMR, in order to identify 
profiles for toxicity/rejection or normal recovery [32]. Grafts take different time in 
different individuals until actually start working properly/incorrectly. In this type 
of analysis, each patient was used as their own reference; thus the specific changes 
occurring during time for each individual could be examined. As the samples of 
each individual were not separated into “before” and “after” graft classes, the first 
objective was to identify time samples related to those two moments in the proce-
dure. For that the researchers first used PCA in each patient and selected grouped 
samples in the extreme sides of the scores into the two classes (“before” and “after” 
graft functioning). Then they performed OPLS-DA to discriminate between those 
classes for each patient and collected the predictive discriminant loadings into a 
matrix. Finally, these discriminant loadings – which represent the profile that dis-
criminates “before” and “after” graft for each patient – were used to represent each 
of the patients. PCA was performed in this matrix of loadings profiles to find a 
common effect profile and the most important metabolites for good patient recov-
ery or kidney rejection.

Finally, we discuss a high-throughput multiple comparison study of transgenic 
tree lines against a common wild type done over several years [33]. The study 
objective was to understand which mutant lines (around five biological replicates 
per line) were more affected by the genetic engineering and which ones were 
similar in metabolic features. A batch effect due to biological and experimental 
variation did not allow the global comparison of phenotypes using the original 
data. The authors used an integrated chemometrics pipeline for the analysis of the 
data, which had the additional advantage of reducing those batch effects. This 
pipeline started with PCA for quality control of the wild-type samples of each of 
the batches separately, to detect outliers. Then, they investigated the existence of 
outliers in the mutants, by projecting the mutant plant samples of each batch in 
their respective batch PCA and looking at how they differed from the ones in their 
group. After the data was cleaned of outliers, they used OPLS-DA for class dis-
crimination between the control samples and each of the mutant lines. This had 
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the objective of finding the pattern (OPLS-DA predictive loadings) for differentia-
tion from control for each of the mutants and also of reducing the batch differ-
ences for global comparison. The loadings representing the differentiation pattern 
were used in representation of each mutant line and visualized using PCA and 
HCA, where clusters of mutants could be visualized, together with correlated 
groups of metabolic features.

7.5.3  �Modelling Designed Data (ASCA)

The well-established analysis of variance (ANOVA) is an ensemble of univariate 
methods used to analyse differences among group means. It partitions the variation 
of designed factor treatments and interactions, to evaluate if any of the levels in a 
factor or interaction is statistically different from the others. ANOVA-simultaneous 
component analysis (ASCA) [34, 35], in which ANOVA and PCA work together, 
is designed with similar intent, generalized for the multivariate case. In experi-
ments where there is the possibility to design a balanced experiment, it can be used 
to evaluate which factors and interactions are statistically significant and to find 
which metabolites are relevant in each of those factors. Different types of data scal-
ing may be used to amplify some aspects of the data, thus giving rise to different 
solutions [36].

An example of this type of design would be an experiment in which different 
drug formulations are given to individuals and their metabolic profile is evaluated at 
several time points, in order to understand if a formulation level at a specific time is 
statistically different from the others.

ASCA tests for the statistical significance of levels’ difference in multivariate 
factors using a random permutation approach [37] for the factor(s) of interest. The 
rationale is that if no level is different from the others, the averaging process will 
make the factors approach zero, which should happen in the permuted models, but 
not in a statistically significant factor. For each factor testing, the sample group is 
randomly changed a large number of times and each time the factors are recalcu-
lated. A p-value for the significance of each factor can be calculated, based on the 
frequency of (number of times) factors that have a sum of squares (SSQ) larger than 
the original, non-permuted, factor.

7.5.4  �Evaluate Effects on Matched Samples

In case the objective is to study the effect of a treatment, and there are matched 
samples of the type “before” and “after”, the strategy OPLS-effect projections 
(OPLS-EP) [38, 39] can be used.

The method can be seen as a generalization of t-test for paired samples, thus 
similar to investigating if an average if different from zero (in opposition to t-test for 
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unpaired samples, in which the difference between averages of two classes is evalu-
ated). It simply uses subtraction of the “before” sample from the respective “after” 
sample and considers that this difference will reflect the effect of the treatment. If 
MS instruments are used, it has also additional advantages on the reduction of batch 
and drift effects, attained through running the paired samples close to each other in 
the run order, while randomizing its relative position. The assumption is that if 
paired samples are ran close to each other, there is no significant drift between them.

In this strategy, the resulting “after-minus-before” subtracted data is modelled 
using OPLS, using (in general) metabolite data divided by its standard deviation, 
against a y vector with 1  in all its positions. While OPLS-DA on the same data 
would model class discrimination (comparable to unpaired t-test), OPLS-EP mod-
els effect difference (comparable to paired t-test). By plotting the predicted effect 
(Yhat, target value of 1) for each sample, one can understand which samples had 
larger (Yhat >1) or smaller (Yhat <1) effect, while looking at the predictive loadings 
indicates which variables were more important in that effect. The advantage of the 
method is that it looks for an effect, without being in reality a supervised method, as 
the samples have no need for class definition.

7.6  �OPLS-Type Model Validation

PCA is mostly used as an exploratory method, and as the inclusion of more compo-
nents has no influence in the previous ones, most times there is no need to decide the 
appropriate number of latent variables to use in the model. The same is not true for 
OPLS-type models. Furthermore, once an OPLS-type model is established, before 
it can be used for prediction, or to decide on the significance of the discriminant 
variables, rigorous validation must be performed [40]. It is worth to mention that 
many times the score plot will look like indicating a good class separation, but later 
validation does not confirm that.

The methods described in the following sections are used in the context of mul-
tivariate analysis, mostly of the OPLS-type, for the selection of an appropriate num-
ber of latent variables and for model validation.

7.6.1  �Internal Cross Validation (CV)

During model building, CV is generally used in order to decide on the appropriate 
number of latent variables to include in the model. For each number of latent vari-
ables desired, X is divided into subsets of samples and then one model is built at a 
time, containing all samples except the ones in the corresponding subset. The subset 
samples are then predicted in the corresponding model, and the difference between 
the expected and the predicted value is saved. By doing the same for all subsets, one 
can obtain the predicted residual error sum of squares (PRESS) and additional 
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statistics that allow model quality comparison. The number of latent variables that 
gives the least prediction error is selected for the final model. A root mean squared 
error of cross validation (RMSECV) can be calculated and expressed in the same 
units as the Y variable. One should then evaluate three important statistics:

	 (i)	 R2X: fraction of variance of X explained by each latent variable. Always 
increases with increasing number of components, even when overfitting by 
modelling noise in X. Answers questions (in OPLS-DA) of the type “how 
much of the variation in X is related to the difference between the classes?”

	(ii)	 R2Y: fraction of variance of y/Y explained by each latent variable. It always 
increases with increasing number of components, as it starts modelling noise 
in X in order to explain y/Y. This statistics answers questions (in OPLS-DA) 
of the type “how good is the separation between the two classes?”

	(iii)	 Q2: The most important statistic to decide on the quality of the model, it varies 
between[-INF, 1]. It is the fraction of variance of y/Y predicted by each latent 
variable. Because it is based on prediction, the inclusion of noise should not 
increase Q2. However, although it is expected to stop increasing, or to start 
decreasing, after all structured information was modelled, that is not always 
observed. This statistic answers questions (in OPLS-DA) of the type “how well 
can we predict the two classes?”

CV yields different statistic results, depending on how CV groups are defined. A 
commonly used strategy of leaving one sample out (LOO) at each CV round is not 
advised [41], as the perturbation in the data may be too weak to have a significant 
effect. CV should also not be used with replicate samples, as the inclusion of one of 
the replicates allows better predictions of its sisters, and this will inflate the statis-
tics, showing better results than it should. Designed data may also have its prob-
lems, as the removal of some influential samples from a model may destroy the 
structure of the data and not allow them to be well predicted (e.g. as for samples in 
the extremes of the design factors).

In general, CV rounds should be defined in a balanced way, with each round 
containing samples from all quadrants of the experimental design. When dealing 
with datasets containing multiple individuals and samples of, e.g. different disease 
phases of the same individual, a practical advice would be to leave all samples from 
one individual out in each of the CV rounds, due to risk of autocorrelation. This 
strategy removes the contribution of each individual to build a model in each round 
of CV, while evaluating how the samples of that individual match the other individu-
als for each of its disease phases.

7.6.2  �Cross Validation Scores (CV-Scores)

During CV, the different samples’ subsets are predicted, and scores can be obtained. 
Because they are predicted from samples that were not used in the same round to 
build an OPLS-DA model, classes in the CV-scores always look less separated than 
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when visualizing the scores (obtained from the model including all samples). In the 
case of an OPLS regression model, the CV-scores will look less correlated to y. 
Nevertheless, CV-scores should always be visualized as they give a more realistic 
figure of future model prediction quality. Evaluation of CV-scores is in most litera-
ture just visual, but numerical measures can also be adopted [42].

7.6.3  �Cross Validation-ANOVA (CV-ANOVA)

Analysis of variance can be used to compare the size of the residuals of two models 
applied to the same data [43]. Here it is adapted as a diagnostic method to evaluate the 
reliability of an OPLS-type model. It compares the y predicted residuals of the model 
with the variation around the global average, using an F-test for comparison of vari-
ances. In case the model predicted residuals are significantly smaller than the variation 
around the average, the null hypothesis of equal residuals of the two models is rejected, 
with a certain confidence level (e.g. 0.05). It is a rapid method as it uses values calcu-
lated during cross validation, and easy to evaluate, as it provides a significance p-value. 
Nevertheless, according to the author’s experience, due to biases and unidentified 
structured information in the data, if CV-ANOVA indicates a bad model, that is most 
certainly true, while if it indicates a good model, that may not necessarily be the case.

7.6.4  �Permutation Test

Permutation test is a method to evaluate the statistical significance of the estimated pre-
dicted power, Q2 [22, 44, 45]. In this method, the R2Y (self-prediction) and Q2 (cross-
validated prediction) of a defined model are compared to the ones from a large number 
of models in which the y vector has been randomized, and no good prediction capability 
is expected. The evaluation of the model validity is done by looking at the number of 
“random” models that present better statistics than the one being evaluated, or by look-
ing at the intercept of the linear regression of each of those two statistics [22].

Notice that the R2Y and Q2 values are plotted in function of the correlation of 
each of the randomized y vectors and the actual true y vector. In case high Q2 values 
are found for some “random y” models, one should examine if that correlation is 
high, in which case means that the randomization process created a “randomized” y 
that is very similar to the actual y vector.

7.6.5  �External Validation

While the above validation methods can provide an idea of the quality of the models, 
prediction of an external data can elevate our confidence in the model quality to a 
higher level. Depending on the objective of the experiment, more confidence can be 
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deposited in a model that can predict samples that were acquired or processed in dif-
ferent times, machines, by different operators, etc. and were not used for model con-
struction. Sensitivity and specificity can be evaluated in case of OPLS discriminant 
analysis/classification, while continuous measures of prediction error can be calcu-
lated in case of OPLS regression (root mean squared error of prediction, RMSEP).

7.6.6  �Comparison of Model Loadings

It is itself an external validation; one can evaluate the validity of models by confirm-
ing the statistical significance of the discriminant variables. If an experiment is 
repeated, the class discrimination should be influenced by the same variables. An 
SUS plot of the two models may be used for that, in which case the same discrimi-
nant variables should be aligned along a positive diagonal.

7.6.7  �Receiver Operating Characteristic (ROC) Curves

A well-established technique in clinical essays [46], it is very useful to compare over 
different classification models (using the area under the curve, AUC) or to evaluate 
thresholds for better sensitivity or specificity (using graphical representation). In the 
case of two-class OPLS-DA, after a model is calculated and the predicted classes 
obtained, a ROC curve can be calculated by incrementally moving the discrimination 
threshold between 0 and 1 and plotting the results for each incremental value.

7.7  �Significance of Variables in OPLS-Type Regression/
Discrimination

Once an OPLS-type model has been determined and adequately validated, it is in 
general of interest to find out which variables (features or metabolites) are more influ-
ential in the model and to decide on its statistical significance. In order to visualize the 
influence of a variable in the model (regression or class discrimination), one can just 
sort the relevant vectors (p-loadings or VIP) by magnitude. To determine the validity 
of each of the variables, several strategies are described in the following sections.

7.7.1  �p-loadings with Confidence Intervals

The p-loadings of the predictive latent variable represent the influence of the vari-
able in the OPLS regression/discrimination. Furthermore, during internal cross vali-
dation (CV), multiple OPLS-type models are produced, while leaving some samples 
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out in these different CV rounds. The p-loadings obtained in each of these CV 
rounds can be averaged and a standard error (error bars, confidence intervals) calcu-
lated with a predefined level of significance (e.g. 0.05). Some authors sort the 
p-loadings by magnitude just for model-influence visualization. Then, for statistical 
significance consider that, for a certain variable, if the error bars do not cross zero, 
the variable is statistically significant (in other words, the absolute value of variable 
minus standard error is larger than zero).

7.7.2  �pcorrel and Correlation Threshold

The p-loadings can be rescaled as the correlation coefficient between the variables 
in X and the scores (t) of the OPLS-type model (here defined as pcorrel). These pcorrel 
are correlation values and, thus, have values between the limits [−1–1]. A correla-
tion threshold for a desired level of significance (e.g. 0.05), dependent on the num-
ber of samples, can be obtained from a table of critical values for Pearson correlation. 
The statistically significant variables are the ones which absolute pcorrel larger than 
the adequate critical correlation threshold.

7.7.3  �Variable Importance on the Projection (VIP)

This is an established and compact parameter used to summarize the importance of 
each of the X variables in a PLS with >2 components. Important variables have VIP 
larger than 1, while a variable is more irrelevant the lower than 1 is its VIP. There 
are different VIP measures for OPLS [47, 48], and researchers adopt in general the 
one defined in their software package.

7.7.4  �Note on Significance of Variables

Some authors choose to select statistically valid features or metabolites only if they 
obey multiple criteria, including some of the ones described above plus others com-
ing from univariate testing. These can be a minimum correlation needed, p-values 
after some multiple testing correction or fold change.

7.8  �Univariate Analysis

Univariate analysis has been used in conjunction with multivariate analysis to study 
variation and to test statistical significance of parameters and variables in metabolo-
mics studies. Notice that while multivariate analysis can handle certain amounts of 
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batch and drift variation, univariate analysis should only be used if correction for 
these effects is satisfactory. Nevertheless, new attention has been given to the analy-
sis of metabolomics data using univariate analysis [49], especially in the field of 
epidemiology [50]. Until recently, rare – if any – metabolomics studies were com-
posed of thousands of samples due to its cost but also to issues related to process 
automatization, data handling, processing and reproducibility, among others. 
However, some large-scale metabolite profiling studies have now been done [51], 
mostly in epidemiological research, as metabolomics is expected to measure envi-
ronmental and exogenous exposures more precisely than traditional questionnaires. 
In these studies, linear or generalized linear models are used in univariate analysis 
fashion, while correcting for confounders. These confounders are experimental fac-
tors that may be correlated with the outcome and in that case are not removed using 
OPLS-type multivariate methods.

A word should be said in relation to the use of parametric (e.g. t-tests, Pearson 
correlation) or nonparametric (e.g. Mann–Whitney U test, Spearman correlation) 
strategies. For normal populations, parametric tests are more powerful than non-
parametric ones, but that is not the case for non-normal populations, unequal vari-
ances and unequal small sample sizes, where using a nonparametric test would be 
advantageous. While testing for normality distribution in four datasets, some authors 
found in average 65 % of metabolic features met normality and equality of variance 
assumptions. Still, as it was dependent on the dataset, they suggest to use both strat-
egies, and if there is a large difference in the results, one should look for outliers in 
the dataset [49].

7.9  �Multiple Testing Corrections

To decide on the statistical significance of a feature or a metabolite, e.g. if it is or 
not correlated with an outcome or if it has discriminant capacity between two 
classes, univariate methods rely on p-values. Because in metabolomics untargeted 
studies one is looking after thousands of variables, multiple testing corrections 
must be applied. The Bonferroni correction was commonly used in the past, when 
the number of variables was small, but as it corrects for the family-wise error rate 
(FWER) – the probability of at least one false positive – it ends up being too con-
servative. Benjamini–Hochberg and other corrections that control the false dis-
covery rate (FDR) [52, 53] are less conservative and widely applied. Nonetheless, 
due to the high degree of correlation observed in metabolomics data (e.g. adjacent 
intensities in NMR peaks), existence of multiple features for the same metabolite 
(e.g. LC-MS dimers, adducts; NMR signal multiplicity), they are also considered 
not appropriate. Thus, permutation strategies such as the metabolome-wide sig-
nificance level (MWSL) [54] have been developed to control for the FWER, 
which determine more robust p-value thresholds for discovery than the above 
methods.
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7.10  �Practical Aspects of Chemometrics in the Context 
of Preprocessing, Pretreatment and Experimental 
Design

Many decisions must be taken when designing a metabolomics experiment, regard-
ing sample type and number, cost, time, human resources, instruments and data 
analysis methods.

The decisions taken will provide answers to different questions; thus a very 
well-defined idea about the methods that will be used for data analysis and inter-
pretation is fundamental, in order to be able to pose objective questions and obtain 
correspondingly appropriate answers. This has a retrospective impact on the 
design of experiments itself. Although not the main focus of this chapter, it seems 
appropriate to include a brief description of different options that can be made, 
which condition the chemometrics data analysis and may be used for batch cor-
rection in MS data.

7.10.1  �1H NMR Data: Types of Data Matrices

Different strategies can be used for the preprocessing of 1H NMR data, depending 
on the type of sample (e.g. urine or serum), because of chemical shifts due to physi-
cochemical sample differences. Blood samples are expected not to change much 
due to homeostatic regulation, while urine is known to change more in concentra-
tion as well as in properties, as it is more affected by microbiota, drugs, diet and 
disease [50, 55].

Direct analysis after alignment: if the alignment is good enough, the data can be 
immediately analysed. When using multivariate methods for the data analysis, data 
tend to be scaled by mean centring or Pareto normalization, with optional log trans-
formation, so the spectral structure is kept. In this case, unit variance normalization 
is not used as it gives the same importance to variation in the signal and in the noise 
region, and the loadings do not show spectral structure similar to the data. If large 
“saw-tooth” (inverted peaks) effects are found in the loadings, it is a sign that the 
alignment was not performed perfectly.

Analysis after alignment and binning: if there are some issues with the align-
ment, but the whole spectrum is to be analysed, binning adjacent values can be used. 
If multivariate analysis is used, data should be normalized by centring or Pareto 
normalization, to keep the original spectral structure, with optional log 
transformation.

Analysis after alignment and peak picking: a similar strategy to binning is to 
integrate peaks, but in a more targeted way, thus rejecting noise regions. If multi-
variate analysis is to be used, unit variance scaling can be used, as noise regions are 
not supposed to exist. When using this strategy, the spectral structure is lost.
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7.10.2  �MS Data: Reducing Batch and Drift Effects

GC/LC-MS instruments are prone to batch and time drift effects, due to changes in 
instrument sensitivity and intensity, among other effects. Targeted methods correct 
batch and drift effects with the inclusion of labelled internal standards, with which 
a ratio between the target compound and the internal standard can be calculated. For 
untargeted GC-MS and LC-MS, several strategies have been used to correct for 
these effects: inclusion of periodic quality control samples (pooled from all or from 
a group of samples in the experimental set) that are expected to yield the same 
results along time, addition of internal standards to the samples (heavily labelled 
and/or not occurring in the samples) representing different compound classes, and 
experimental design using paired samples (when having samples with and without 
effect). These methods present both advantages and disadvantages, which are tenta-
tively explained below.

Periodic Internal Quality Control (iQC) Samples [56]  An adequate volume of 
pooled sample is built by pooling an amount of each of the biological samples. 
Subsamples of this main sample, assumedly with equal composition and concentra-
tion, are interspersed (e.g. every fifth sample) with the biological samples and ran in 
the instrument. For each individual variable, these iQC samples are then modelled 
using locally weighted regression (e.g. robust loess). Once a model is established, 
one can calculate the ratio between each biological sample and the LOESS curve 
(while the iQC samples should all equal 1) for each variable. This method is used 
both for batch and drift correction. While potentially the most adequate correction 
method, its major disadvantage is the increase in the total number of samples, with 
impact on time and cost of the experiment.

Internal Standards (IS)  A certain number of quality control labelled compounds, 
not expected to have endogenous expression in the samples, representing different 
chemical/biological classes (e.g. amino acids, fatty acids) are added in the same 
concentration to each biological sample. These compounds are assumed to be in the 
same concentration in each sample. The advantage of the method is that there is no 
need for additional samples. The disadvantage is that the internal standards may not 
be the adequate ones to normalize the data. To correct for batch/drift using internal 
standards, the following strategies have been applied:

	 (i)	 Correction by single or multiple internal standards (IS): if a single IS was 
used, the ratio or log2 ratio between each variable and the IS can be calculated, 
and the variable is considered corrected. If multiple IS were used, the decision 
of which IS shall be used to normalize a certain variable can be done according 
to maximum IS correlation [57] or by minimal retention time difference [58].

	(ii)	 Correction using multiple IS and PCA: the features representing the IS are nor-
malized dividing each one by their corresponding standard deviation. PCA is 
calculated on this dataset, and the scores of the first component are obtained, 
representing the major batch/drift effect on the dataset. Then the procedure is the 
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same as in the previous case. For each variable, the ratio between each sample 
and the corresponding score value is calculated, normalizing the data. The major 
disadvantage of this method is that it can only correct one major batch/drift effect 
and may even wrongly correct features that were less affected by those effects.

	(iii)	 Correction using OPLS: a procedure similar in concept to orthogonal signal cor-
rection has been applied to microchannel microarray data using OPLS [59], 
cleaning the data from orthogonal variation that is not common within sets of 
biological replicates. The method uses the data in matrix X and a dummy matrix 
identifying the replicates in a matrix Y. After it identifies the orthogonal informa-
tion, it builds the corrected data matrix using matrix multiplication of predictive 
scores and loadings, plus the residual variance. The strategy seems applicable to 
metabolomics, and a variation of it, using information from the IS samples, has 
been used in the context of batch normalization and drift correction [60].

Experimental Design Using Paired Samples  In case there are reference samples, 
like “before” (baseline) and “after” treatment for the same individual, or when using 
multiple time points, or matched case–control, and the objective is to study an effect 
(e.g. of a drug, or disease). In these cases the matched samples can be ran close to 
each other, and the drift between them is assumed as negligible. The baseline sam-
ple can then be subtracted from the effect(s) sample(s), with the result being the 
difference between the two (the effect itself). Local randomization of the matched 
samples is used, to minimize for any sequential bias. While not needing additional 
samples, the major disadvantage of this method is that it is only applicable in situa-
tions where a reference sample exists. Additionally, one will be studying not the 
current metabolite relative levels but the effect’s metabolite relative levels in rela-
tion to baseline. The OPLS-EP method previously mentioned [38] is an example of 
this strategy in practice, for paired samples “before” and “after” effect. Alternatively 
to subtracting a “before” sample (baseline), the average per group of paired samples 
could be subtracted from each of the respective paired samples, in which case the 
baseline sample would be kept for analysis.

7.11  �Internet Resources and Software

Following the developments in other omics fields, efforts have been put into creat-
ing internet platforms for automated and semi-automated metabolomics data analy-
sis. Some very good resources are now available, which may require a minimum of 
knowledge of the methods on the side of the researcher to output meaningful data 
analysis results. Among the most well known and commonly used are MetaboAnalyst 
[61–65], metaP-server [66], Workflow4metabolomics [67] and Galaxy-M [68], and 
work is in progress in the large-scale computing for medical metabolomics website 
PhenoMeNal [69]. Finally, the website OMICtools [70] provides a comprehensive 
description of software that can be used for metabolomics data analysis, as well as 
a number of sites that can be used for different purposes in the omics fields.
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7.12  �Concluding Remarks

Chemometrics has been heavily used in all steps of metabolomics studies and has 
here been discussed in the context of data analysis in clinical metabolomics contexts. 
Its relevance in this field is due to the complexity and number of variables in metabo-
lomics datasets and the simplicity of interpretation of its results. While other strate-
gies in bioinformatics start appearing that gather information from databases, thus 
needing previous identification of metabolites, chemometrics methods are purely 
numerical, thus finding its own place in the data analysis pipeline. The possibility of 
automation has brought to light some websites that provide statistical calculations, 
chemometrics methods included, without major input from the analyst.
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Chapter 8
Computational Strategies for Biological 
Interpretation of Metabolomics Data

Jianguo Xia

Abstract  Biological interpretation of metabolomics data relies on two basic steps: 
metabolite identification and functional analysis. These two steps need to be 
applied in a coordinated manner to enable effective data understanding. The focus 
of this chapter is to introduce the main computational concepts and workflows 
during this process. After a general overview of the field, three sections will be pre-
sented: the first section will introduce the main computational methods and bioin-
formatics tools for metabolite identification using spectra from common analytical 
platforms; the second section will focus on introducing major bioinformatics 
approaches for functional enrichment analysis of metabolomics data; and the last 
section will discuss the three main workflows in current metabolomics studies, 
including the chemometrics approach, the metabolic profiling approach and the 
more recent chemo-enrichment analysis approach. The chapter ends with summary 
and future perspectives on computational metabolomics.

Keywords  Metabolomics • Chemometrics • Metabolic profiling • Metabolite set 
enrichment analysis • Chemo-enrichment analysis
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GC-MS	 Gas chromatography mass spectrometry
CSF	 Cerebral spinal fluid
GO	 Gene ontology
GSEA	 Gene set enrichment analysis
LC-MS	 Liquid chromatography mass spectrometry
MSEA	 Metabolite set enrichment analysis
NIST	 National Institute of Standards and Technology
NMR	 Nuclear magnetic resonance
PCA	 Principal component analysis
PLS-DA	 Partial least squares discriminant analysis
OPLS-DA	 Orthogonal partial least squares discriminant analysis
ORA	 Overrepresentation analysis
PCR	 Polymerase chain reaction

8.1  �Introduction

Measuring metabolites and interpreting their biological relevance within the con-
texts of different experimental conditions are the primary objective in metabolomics 
researches. To achieve this objective, two basic steps need to be performed: metabo-
lite identification and functional analysis, with the former providing the necessary 
inputs for the latter operation. These two steps need to be executed in a coordinated 
manner to promote efficient biological understanding. However, significant chal-
lenges remain in both steps.

The ultimate goal of metabolomics is to achieve comprehensive and high-
throughput metabolome measurement. This goal is hampered by at least three major 
obstacles: (1) small compounds have diverse chemical properties, making it diffi-
cult to assay many metabolites simultaneously using a single analytical platform; 
(2) there is no effective amplification technique available to facilitate detection of 
low-abundance metabolites (such as using PCR for DNA molecules); and (3) many 
metabolites lack unique spectral signatures to allow unambiguous compound asign-
ment. Nuclear magnetic resonance (NMR) spectroscopy and gas or liquid chroma-
tography coupled with mass spectrometry (GC- or LC-MS) are commonly used in 
combination to improve the metabolome coverage. Metabolite identification is 
mainly performed by searching the spectral features against a reference spectral 
library. However, searching a comprehensive spectral database often leads to many 
potential hits with similar matching scores, and researchers often need to manually 
choose the most probable identities based on the context and domain knowledge. 
This step represents a key bottleneck in current metabolomics studies. Better algo-
rithms and more context-specific databases are needed to enable high-throughput 
and high-accurate metabolite identifications.

Knowing compound identities is the first step toward biological interpretation of 
metabolomics data. The conventional procedure after this step involves manually 
looking up the metabolites of interest in different compound databases, reading rel-
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evant literature, and finally synthesizing the information into a justifiable biological 
“story” based on the overall information obtained. This approach is subjective and 
time-consuming. Over the past decade, many computer-assisted data interpretation 
strategies have been developed. Among them, functional enrichment analysis using 
a predefined knowledge database has gained wide acceptance in omics data interpre-
tation. The basic idea is to shift the unit of analysis from a single molecule to groups 
of functionally related molecules (i.e., those within the same pathway or biological 
process). This approach directly connects statistical significance with biological 
interpretation. More advanced algorithms have also been recently implemented that 
are able to integrate the dependencies and connectivities among different molecules 
to further reveal the biological insight and to improve system understanding.

Based on their strategies in dealing with metabolite identification and functional 
analysis, current metabolomics workflows can be summarized into three general cat-
egories: the chemometrics approach (also known as untargeted metabolomics), the 
metabolic profiling approach (also known as targeted or quantitative metabolomics), 
and the chemo-enrichment analysis approach (Fig. 8.1). The chemometrics approach 
focuses on identifying and interpreting a subset of spectral features that are found to 
have changed significantly during the experimental studies; the metabolic profiling 
approach aims to comprehensively characterize all metabolites in the spectra before 
subsequent statistical and functional analysis; and the more recent chemo-enrichment 
analysis approach directly maps spectral features into metabolic pathways/networks 
and then tests the enrichment of the collective chemical signals generated from these 
biological processes, which largely avoids the time-consuming step for accurate 
compound assignment.

This chapter is organized into three sections. The first section introduces the main 
computational approaches for metabolite identification from common analytical 
platforms (Fig. 8.1, Step 1); the second section describes the three main bioinfor-

Fig. 8.1  The diagram summarizes the three computational strategies for metabolomics data inter-
pretation: the chemometrics approach (top), the metabolic profiling (bottom), and the chemo-
enrichment analysis (middle). The dotted lines delineate the two major steps in the process: 
metabolite identification and functional analysis. Note that these two steps are integrated into a 
single one in the chemo-enrichment approach
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matics approaches for functional enrichment analysis (Fig. 8.1; Step 2); and the last 
section compares the three metabolomics workflows for biological interpretation. 
Each section is further organized under subtitles describing the computational con-
cepts, the available bioinformatics tools, and their main features.

8.2  �Metabolite Identification Methods

Although it is possible to determine the identity of a single metabolite de novo 
through labor-intensive NMR or MS-based methods, this approach is generally 
infeasible in metabolomics in which hundreds to thousands of compound species 
are measured simultaneously. In practice, compound identification is based on 
matching features from sample spectra against a reference spectral database, and a 
closely matched hit will be considered as the putative identity of the corresponding 
spectral peaks. However, many metabolites do not produce unique, detectable sig-
natures in their NMR or MS spectra to permit unambiguously determination of their 
identities. The situation is further complicated by peak shifts and overlaps typical in 
the spectra of complex biological samples. Direct database search tends to yield 
high percentage of false positives, and further labor-intensive manual refinement is 
usually necessary. To improve the efficiency of metabolite identification, two gen-
eral computational strategies have been employed: (1) limiting the search space to 
only those biologically and biochemically possible candidates by developing more 
context-specific spectral databases, and (2) improving the peak assignment algo-
rithms by incorporating prior knowledge based on spectral dependencies, biochemi-
cal connectivities and biological relationships.

8.2.1  �Compound Identification from NMR Spectra

Proton NMR spectroscopy has been widely used in metabolomics studies involving 
human biofluids. Multiple small-molecule metabolites can be measured simultane-
ously without prior separation, which greatly simplifies the sample preparation 
requirements. NMR spectra are highly reproducible, and samples analyzed from 
one spectrometer will generate near-identical results to those measured on other 
types of spectrometers. These features have made NMR spectroscopy a platform of 
choice for large-scale collaborative metabolomics projects.

The Chenomx NMR Suite (Chenomx, Canada) is a widely used metabolomics 
tool for processing and profiling one-dimensional (1D) proton NMR spectra. The 
main feature of Chenomx is the integration of a powerful interactive visualization 
interface with a reference spectral library for over 600 metabolites that are detectable 
by NMR in common biofluids. Metabolite identification and quantification are 
achieved through manual peak fitting against those reference spectra. Another widely 
used commercial tool is the AMIX software package (Bruker Biospin GmbH, 
Germany), which offers similar features. The company has recently implemented a 
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software (FoodScreener) that supports automated high-throughput targeted metabo-
lomics profiling for wine, honey, and juice using defined spectra libraries.

Compared to commercial tools, public bioinformatics tools for NMR-based 
metabolomics tend to focus on spectral alignment, binning and batch processing [1, 2]. 
They usually lack user-friendly interface or comprehensive spectra libraries to sup-
port manual compound identification. As public NMR spectra libraries become 
increasingly available [3, 4], this situation has begun to change. For instance, the 
Bayesian automated metabolite analyzer for NMR (BATMAN) is an R package 
designed for deconvolution and quantification of metabolites from 1D proton NMR 
spectra of complex mixtures [5, 6]. The Bayesian model incorporates characteristic 
peak patterns of metabolites and also accounts for peak shifts commonly seen in 
NMR spectra of biological samples. BATMAN can compute relative concentrations 
of the compounds together with associated uncertainty estimates using a Markov 
chain Monte Carlo algorithm. The procedure is computationally intensive and usu-
ally requires hours of CPU time to process a single spectrum of common biofluids. 
Bayesil is a web-based tool that supports automated phasing, referencing, baseline 
correction, metabolite identification, and quantification for 1D proton NMR metab-
olomics spectra [7]. The algorithm is implemented based on probabilistic graphical 
models and a prior knowledge of probable biofluid compositions with built-in sup-
port for cerebral spinal fluid (CSF), serum, and plasma. Compared to BATMAN, 
Bayesil can process a spectrum in a few minutes with high precision and recall. For 
excessively overlapped NMR spectra of complex biofluid mixtures, two-dimensional 
(2D) NMR is often used to help resolve spectra ambiguities for metabolite identifi-
cation purpose. The Bruker AMIX package (Bruker Biospin GmbH, Germany) can 
also support 2D NMR analysis. The Java desktop application MetaboMiner and the 
R package rNMR are two public bioinformatics tools for metabolite identification 
from 2D NMR spectra [8, 9].

8.2.2  �Compound Identification from GC-MS Spectra

GC-MS offers a high degree of chromatographic resolution and reproducibility. The 
platform is suitable for measuring volatile, low-molecular mass (<500  Da), and 
thermally stable compounds such as sugars, fatty acids, and amino acids. For large 
and polar compounds, chemical derivatization is often employed to improve their 
volatility and thermal stability. The most commonly used ionization technique in 
GC-MS is electron ionization, which is very robust and reproducible. The character-
istic mass spectral fragmentation patterns can be used to build a spectral library for 
metabolite identification.

Many software tools are available for metabolite identification and quantification 
from GC-MS-based metabolomics data. The automated mass spectral deconvolution 
and identification system (AMDIS) coupled with the National Institute of Standards 
and Technology (NIST) database is probably the most widely used software package 
for GC-MS data analysis [10]. The AnalyzerPro (SpectralWorks, UK) and ChromaTOF 
(LECO, USA) are the two widely used commercial tools for processing and profiling 
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the GC-MS spectra for metabolomics studies. Compared to NMR-based metabolo-
mics data, more public bioinformatics tools are available for GC-MS spectral 
processing, deconvolution, alignment, as well as compound identification. Popular 
tools include BinBase [11], MetaQuant [12], MetabolomeExpress [13], 
MetaboliteDetector [14], TagFinder [15], etc. With the availability of public GC-MS 
spectral databases [16, 17] and our improved knowledge on the metabolite composi-
tions of common biofluids such as CSF, serum, and urine [18–20], the GC-MS-based 
metabolomics is expected to be the most promising platform to deliver automated 
compound identification and quantification for a broad range of biofluids.

8.2.3  �Compound Identification from LC-MS Spectra

Compared to GC-MS, LC-MS typically has lower chromatographic resolution and 
reproducibility. However, LC-MS techniques can access a much broader mass range 
(100–2000 Da) because volatilization or derivatization is not necessary. LC-MS is 
also a better choice for separating and identifying polar and nonvolatile compounds. 
Electrospray ionization and atmospheric pressure chemical ionization are the two 
most common ionization methods used in LC-MS. Both techniques will generate a 
molecular ion whose mass can be searched against a spectral database of known 
metabolites for possible identification. However, due to the finite mass accuracy of 
the MS equipment and the large number of potential formulas, using mass informa-
tion alone is usually insufficient for metabolite identification [21].

To address this issue, many bioinformatics tools employ extra information to 
improve peak assignment and metabolite identification from LC-MS metabolomics 
data. One approach incorporates known chemical reactions among candidate com-
pounds based on the metabolic pathways/networks to improve annotation, as certain 
combinations would make more biochemical sense when they are detected together. 
For instance, the MI-Pack and the ProbMetab are able to use the metabolic pathway 
information obtained from MetaCyc or KEGG to improve metabolite identification 
[22, 23]. The second approach takes into consideration of the dependency structures 
of multiple peaks (isotopologues, adducts, molecular fragments, and multiply 
charged ions) derived from each metabolite in a LC-MS spectrum to improve peak 
annotation. The MetAssign tool has implemented this approach [24]. The core algo-
rithms used in these tools are based on graphical models, with most of them using a 
Bayesian approach to perform probabilistic annotation of metabolites.

8.3  �Functional Analysis Approaches

Most metabolites can potentially participate in multiple functional roles within a 
biological system, and it is difficult to pinpoint the biological processes responsible 
for the profiles observed in a metabolomics experiment. A biological process is 
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typically made of a group of molecules. If a biological process is changed in a study, 
the molecules involved should have a higher potential to be identified as significant 
by the omics platform. Motivated by this concept, functional analysis has shifted the 
unit of analysis from a single molecule to a group of functionally related molecules. 
Instead of testing a single gene or metabolite, researchers now directly evaluate 
whether a group of molecules (representing a biological process) is consistently 
changed (enriched). This approach greatly simplifies the omics data interpretation 
and is more sensitive in detecting subtle but consistent changes occurred in a bio-
logical process.

The functional analysis requires two components: a knowledge database defin-
ing functionally related molecule groups and a statistical algorithm to perform 
enrichment tests. The popular gene set enrichment analysis (GSEA) tool is shipped 
with a comprehensive collection of gene sets in the form of Molecular Signature 
Database (MSigDB), which greatly facilitates the subsequent development of tools 
for enrichment analysis [25, 26]. In metabolomics, except the public metabolic 
pathway databases such as KEGG [27] or MetaCyc [28], a comprehensive collec-
tion of functionally related metabolite groups was unavailable until very recently. 
The first large collection of metabolite sets appeared in 2010 with the publication of 
the MSEA tool containing >6000 groups of metabolites based on pathways, dis-
eases, genetic variants, and cellular compartments [29]. The other useful resource is 
the ConceptMetab database containing >16,000 biologically defined metabolite 
sets developed based on GO, KEGG, and Medical Subject Headings [30]. The 
ongoing developments of ontologies for systematic metabolite annotations are 
expected to greatly facilitate the development of enrichment analysis tools for 
metabolomics [31, 32]. Below I will introduce the three main categories of statisti-
cal approaches for functional analysis for metabolomics data: over-representation 
analysis (ORA), metabolite set enrichment analysis (MSEA), and metabolic path-
way/network analysis.

8.3.1  �Over-representation Analysis (ORA)

The ORA approach is a traditional strategy for enrichment analysis. It starts with a 
list of metabolites of interest and tests whether certain metabolite groups appear 
more often than would be expected by random chance. This type of analysis can be 
performed using Fisher’s exact test, a chi-square test, a hypergeometric test, or its 
binomial approximation. To perform ORA, researchers need to first perform a sta-
tistical comparison such as t-tests or ANOVA and then select significant metabolites 
using a certain threshold or criterion (i.e., adjusted p-values <0.05). Fold change 
values are also considered sometimes during the selection process.

The ORA approach is very flexible to use and is simple to implement. It has been 
implemented in many metabolomics tools and databases including MSEA, MBRole, 
MetaPA, IMPaLA, MPEA, BiNChE, and ConceptMetab [29–31, 33–36]. A com-
mon critic of the approach is related to its somewhat arbitrary threshold to decide 
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whether a metabolite is significant or not. For instance, different cutoffs sometimes 
lead to different interpretations, and ORA cannot be applied if no significant metab-
olites are found in a given study. Another limitation is that all metabolites are treated 
equally after the selection, ignoring their quantitative differences. Despite these 
shortcomings, ORA remains widely used in omics data interpretation [37].

8.3.2  �Metabolite Set Enrichment Analysis (MSEA)

The MSEA approach has been developed to address the shortcomings associated 
with ORA. It directly tests the enrichment of functional groups using the complete 
concentration data without preselection of significant metabolites. The MSEA is 
named after the popular GSEA developed for gene expression data interpretation 
[26]. The original GSEA approach first uses a univariate method to rank all the 
genes and then tests whether the ranks in the gene set differ from a uniform distribu-
tion, using a weighted Kolmogorov-Smirnov test. The p-value for each gene set is 
calculated via permutation tests. Since then, many different variations of the GSEA 
have been developed with different performance characteristics [38]. For instance, 
the GlobalTest method has shown a general improved performance in terms of sen-
sitivity, versatility, and computational efficiency and works especially well if most 
of the molecules within a group are associated with the phenotype in a modest way 
[38]. The algorithm is based on a generalized linear model to test whether a group 
of molecules is significantly associated with a specific phenotype [39].

Several bioinformatics tools have been implemented to support MSEA for 
metabolomics data. The web-based MSEA program (now part of MetaboAnalyst) is 
the first tool with such capacity to support functional analysis for quantitative 
metabolomics data [29, 40]. Like the original GSEA tool, it contains built-in librar-
ies of defined metabolite sets associated with metabolic pathways, diseases, genetic 
variations, cellular compartments, etc. The GlobalTest algorithm is used for quanti-
tative enrichment analysis directly from a metabolite concentration table. Another 
metabolomics tool with MSEA capacity is the MeltDB, which uses a modified 
GSEA method against the metabolite sets defined by the KEGG metabolic path-
ways [41]. With improved functional annotations for metabolite sets such as the 
ConceptMetab and metabolite ontologies [30, 31], more metabolomics tools with 
MSEA support will be developed in the near future.

8.3.3  �Metabolic Pathway and Network Analysis

In the MSEA approach, groups of molecules labeled with biologically meaningful 
names are used to organize a large body of our current knowledge, making it a popu-
lar approach to aid in omics data interpretation. However, this “flat” representation 
of knowledge followed by enrichment tests based on group memberships ignores 
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the connectivities and dependencies among molecules as well as the inherent over-
laps/hierarchies among different groups. For instance, changes at a central location 
within a pathway tend to have a larger impact on its overall functions compared to 
changes at the very downstream. Integrating the functional analysis with pathway/
network topology analysis will help improve the accuracy in ranking the resulting 
list of biological processes.

In gene expression data analysis, the TopGO is probably the first method that 
integrates knowledge about relationships between different GO terms into calculat-
ing the statistical significances to increase the explanatory power of GO enrichment 
analysis [42]. The signaling pathway impact analysis (SPIA) is another approach 
that combines the evidence obtained from classical enrichment analysis with a 
novel type of evidence that utilize the pathway topology to measure the impact on a 
given pathway [43, 44]. Both approaches have been shown to provide increased 
sensitivity and specificity when compared to other methods based solely on enrich-
ment analysis. Many more tools have been implemented to take into consideration 
of pathway topology for enrichment analysis of gene expression data [45]. 
Applications of similar approaches to metabolomics are currently hampered by two 
obstacles: firstly, metabolomics typically can only measure a small fraction of any 
given metabolic pathway at the moment, which greatly limits our ability to evaluate 
the impact on the overall pathway; secondly, the development of a hierarchical 
ontology system for metabolite annotation has not been well established to allow 
easy plug-in by different bioinformatics tools, as is the case of gene ontology system. 
Therefore, current metabolomics tools focus primarily on enrichment analysis and 
visualization of metabolic pathways. The web-based tool MetPA (now part of 
MetaboAnalyst) is the first tool that supports both enrichment analysis and topology 
analysis within the context of KEGG metabolic pathways [36]. The MetScape is 
another tool implemented as a Cytoscape plug-in that is able to incorporate prior 
knowledge of pathways and molecular interactions for metabolomics pathway anal-
ysis and network visualization [46].

8.4  �Metabolomics Workflows for Biological Interpretation

As indicated in Fig. 8.1, current metabolomics workflows can be largely divided 
into three general categories based on their strategies in metabolite identification 
and functional analysis: chemometrics approach, metabolic profiling approach, and 
chemo-enrichment analysis approach. The chemometrics approach focuses on iden-
tifying and interpreting a subset of spectral features that are found to be important 
within the study. It is relatively high throughput, as only the significant features 
need to be characterized. This approach is widely used in exploratory metabolomics 
studies and for discovery of novel biomarkers. A main drawback associated with 
this approach is the difficulties in biological interpretation, as a limited number of 
compounds are usually insufficient to pinpoint the underlying biological processes. 
In contrast to the chemometrics approach, the metabolic profiling approach aims to 
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characterize all detectable metabolites from the spectral data before subsequent 
functional analysis. It generally yields better sensitivity, selectivity, and interpret-
ability but is of very limited use for novel biomarker discovery. The main drawback 
associated with this approach is that the metabolite identification is usually time-
consuming and labor intensive. The chemo-enrichment analysis approach has been 
recently developed to address the limitations associated with both chemometrics 
and metabolic profiling. It aims to estimate biological activities directly from the 
spectral features by mapping all possible metabolite matches to metabolic path-
ways/networks and then comparing the resulting profiles to identify the enriched 
biological processes.

8.4.1  �The Chemometrics Approach

Chemometrics methods are a class of multivariate statistical methods heavily used 
in analytical chemistry and later metabolomics. These methods are especially useful 
for analysis and modeling of high-dimensional complex spectral data in untargeted 
metabolomics, where features (peaks or spectral bins) are highly correlated. The 
two most commonly used chemometrics methods are principal component analysis 
(PCA) and partial least squares discriminant analysis (PLS-DA). PCA aims to proj-
ect a high-dimensional data into a low-dimensional space that captures the most 
variance of the data. The direction of projection is computed based on the data (X) 
only, without referring to the experimental conditions (Y). PCA is suitable for data 
overview and to understand the inherent patterns within the data. There is no guar-
antee that the directions of maximum variance will be the same as the directions of 
the variance associated with the experimental conditions. In contrast, PLS-DA aims 
to project a high-dimensional data X into a low-dimensional space that capture the 
most covariance between X and Y. It is often used to identify the spectral features 
that are different across experimental conditions. Orthogonal PLS-DA (OPLS-DA) 
is a variant of PLS-DA which uses orthogonal signal correction to maximize the 
explained covariance between X and Y on the first component, and the remaining 
components capture variance in X which is orthogonal to Y [47].

The chemometrics approach is composed of three general steps. A chemometrics 
method such as PLS-DA or OPLS-DA is first applied to analyze the spectral data to 
identify significant features associated with the experimental conditions. This step 
can be performed using several commercial or public tools. The SIMCA-P program 
(Umetrics, Sweden) is widely used by the metabolomics community. It offers excel-
lent graphic capabilities and comprehensive analysis options for chemometrics 
methods including PCA, PLS/OPLS-DA, and SIMCA (soft independent modeling 
of class analogy). MetaboAnalyst is a web-based tool that supports comprehensive 
metabolomics data processing, normalization, and chemometrics analysis (PCA, 
PLS-DA, and more recently, Orthogonal PLS-DA [40, 48, 49]. For users who know 
how to program in R, many R packages are available for chemometrics analysis [50, 
51]. After selection of significant spectral features, the second step is to perform 
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compound identification using the tools and resources as described in Sect. 8.2. In 
the third step, the list of identified metabolites will be subject to ORA to find out 
which pathways or biological processes are significantly enriched biological pro-
cesses are significantly enriched for biological interpretation (Sect. 8.3).

8.4.2  �The Metabolic Profiling Approach

Metabolic profiling is often used to validate and expand upon results obtained from 
untargeted analysis. It is also increasingly applied to study variations of metabolite 
concentrations in relatively well-characterized biofluids such as CSF, blood, urine, 
etc. Although the process of metabolite identification and quantification is currently 
a rate-limiting step, this approach offers several distinctive advantages. For instance, 
metabolic profiling significantly improves statistical power by reducing the number 
of features from 1000–10,000 of features peaks to hundreds of metabolites. The 
manual process also largely removes missing values and spectral noises, which 
greatly facilitates downstream statistical analysis and biomarker discovery.

The biggest advantage of metabolic profiling is the ease of data interpretation. 
The complete metabolite concentration table can be directly used for MSEA, meta-
bolic pathway, or network analysis using the tools described in Sect. 8.3. The web-
based tool MetaboAnalyst provides extensive functions for functional analysis and 
interpretation for data generated from metabolic profiling approach. Importantly, 
the metabolite concentration data is very compatible with other omics data and can 
be analyzed together to help pinpoint the biological pathways involved in the exper-
imental conditions. There are several bioinformatics tools that provide support for 
integrated analysis of metabolomics data with transcriptomics data. For instance, 
the MetaCore (Thomson Reuters, USA) allows joint analysis and visual exploration 
within its comprehensive collections of pathway and network [52]. The public tools 
IMPaLA and MetScape can accept a list of metabolites and a list of genes for joint 
analysis and visualization on metabolic networks [34, 46]. INMEX is a web-based 
tool that supports statistical analysis and joint enrichment analysis for data sets from 
transcriptomics and metabolic profiling studies [53].

8.4.3  �The Chemo-enrichment Analysis Approach

The chemo-enrichment analysis approach is a more recent strategy developed to 
facilitate high-throughput interpretation of metabolomics data generated from high-
resolution LC-MS platforms. The key idea is to redefine the metabolite sets, meta-
bolic pathways, or networks using the spectral features (i.e., m/z) of the corresponding 
metabolites and then test the enrichment of these “collective chemical signals” 
within the untargeted metabolomics data. Accurate compound identification is not 
necessary because errors (i.e., incorrect peak assignments) tend to will be randomly 
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distributed, while the true biological signals will be consistent, which can be 
detected by testing the enrichment of their collective chemical signals. The chemo-
enrichment approach directly connects spectral features with biological interpreta-
tions without explicit compound identification. In practice, the metabolite 
identification is performed post hoc for those enriched biological processes of inter-
est. The approach is useful in metabolomics studies for organisms with well-anno-
tated metabolic pathways and networks.

There are a few tools that offer support for chemo-enrichment analysis. The 
mummichog is probably the first bioinformatics tool that implemented the concept 
[54]. It accepts two lists of spectral peaks (i.e., m/z values) – a significant peak list 
(i.e., those identified using t-tests) and a reference peak list (all features detected in 
the MS experiment). The significant peak lists are then searched against a database 
to find all potential matches to metabolic pathways and networks. The result is com-
pared with those obtained based on peak lists randomly drawn from the reference 
peaks to compute statistical significance. The tool is available as a Python program. 
It has been recently implemented in the popular web-based tool XCMS Online to 
reach a broader audience [55]. MarVis-Pathway is a more recent stand-alone bioin-
formatics tool with chemo-enrichment analysis feature. It employs a hypergeomet-
ric-based approach to evaluate the enrichment of metabolic pathways directly from 
the untargeted metabolomics data [56].

8.5  �Summary and Future Perspectives

This chapter introduces several key concepts and recent developments in computa-
tional strategies for metabolomics data interpretation. Compound identification 
constitutes a major bottleneck in current metabolomics studies. Accurate metabolite 
identification requires manual intervention and additional laboratory experiments. 
Advances in both analytical platforms and algorithms are making ways to enable 
high-throughput data interpretation. Integrating high-resolution analytics, context-
specific reference spectral databases, together with advanced algorithms that incor-
porate chemical and biological information, we will be able to achieve accurate and 
high-throughput metabolite identification and biological interpretation.

Identification of metabolites (accurately or approximately) is a prerequisite for 
data interpretation. The list of compounds needs to be put into proper biological 
context by identifying their roles in metabolic pathways, their interconnectivity 
with other metabolites, links to genetic variations, or associations with pathophysi-
ological conditions. The group-based functional enrichment analysis has been 
developed to address this issue. This is an active research area with a wide range of 
tools and implementations available. Given the current limitations of the knowl-
edge databases and the statistical algorithms, the resulting enrichment p-values 
should be treated as a ranking system for data exploration and hypothesis generat-
ing rather than an absolute cutoff for decision-making purpose.
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Compared to transcriptomics, metabolomics is closer to an organism’s phenotype 
and is more sensitive to environmental perturbations. Small compounds represent 
the final products of complex interactions between the host genetics and environ-
ment. The metabolome includes both the endogenous metabolites produced directly 
by the host organism and the compounds derived from microbial, xenobiotic, dietary, 
and other exogenous sources. As a result, metabolomics is increasingly applied to 
study the impact of diet, gut microbiota, and environmental exposures. Developing 
novel bioinformatics tools and specialized knowledge databases to support these 
applications are the new frontiers in the current computational metabolomics.
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Chapter 9
Applications of Metabolomics in Cancer 
Studies
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Abstract  Since the start of metabolomics as a field of research, the number of stud-
ies related to cancer has grown to such an extent that cancer metabolomics now 
represents its own discipline. In this chapter, the applications of metabolomics in 
cancer studies are explored. Different approaches and analytical platforms can be 
employed for the analysis of samples depending on the goal of the study and the 
aspects of the cancer metabolome being investigated. Analyses have concerned a 
range of cancers including lung, colorectal, bladder, breast, gastric, oesophageal 
and thyroid, amongst others. Developments in these strategies and methodologies 
that have been applied are discussed, in addition to exemplifying the use of cancer 
metabolomics in the discovery of biomarkers and in the assessment of therapy (both 
pharmaceutical and nutraceutical). Finally, the application of cancer metabolomics 
in personalised medicine is presented.
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Abbreviations

9-AA	 9-Aminoacridine
ALL	 Acute lymphoblastic leukaemia
ATP	 Adenosine triphosphate
CE	 Capillary electrophoresis
CLL	 Chronic lymphocytic leukaemia
ECOG	 Eastern Cooperative Oncology Group
ESI	 Electrospray ionisation
GC	 Gas chromatography
GC × GC	 Comprehensive two-dimensional gas chromatography
GPC	 Glycerophosphocholine
HIF	 Hypoxia inducible factor
HILIC	 Hydrophilic interaction chromatography
LC	 Liquid chromatography
MALDI	 Matrix-assisted laser desorption ionisation
MS	 Mass spectrometry
MS/MS	 Tandem mass spectrometry
NEDC	 N-(1-naphthyl)ethylenediamine dihydrochloride
NMR	 Nuclear magnetic resonance
NSCLC	 Non-small cell lung cancer
p53	 Cellular tumour antigen p53
PC	 Phosphocholine
PTC	 Papillary thyroid carcinoma
QqQ-MS	 Triple quadrupole mass spectrometry
TCA	 Tricarboxylic acid
tCho	 Total choline
TOF	 Time-of-flight

9.1  �Introduction

Differences in central carbon metabolism between cancerous and normal cells 
were first demonstrated by Otto Warburg in the 1930s. By the 1950s, Warburg 
demonstrated that cancer cells preferentially used glycolysis over oxidative phos-
phorylation even in the presence of oxygen [1]. Furthermore, elevated glucose 
levels can suppress both glycolysis and oxidative phosphorylation via the 
‘Crabtree effect’, a short-term, reversible response to glucose availability [2]. 
Although the phenotype of reliance on glycolysis rather than oxidative phosphor-
ylation is not efficient for ATP production, glycolysis can provide intermediary 
precursors to feed into many biosynthetic pathways that ultimately generate 
nucleotides, amino acids and lipids, as well as ATP. The mechanisms by which 
this is achieved are multiple.
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A number of metabolic enzymes are affected through the alteration of oncogenes 
(PTEN, RAS, ERK, etc.) and onco-transcription factors (p53, c-MYC, HIF, etc.), 
contributing to the drive in metabolic shifts observed in cancer. Cancer metabolism, 
the closest level related to the cancer phenotype, has therefore been a focus of 
research for decades (for reviews, see Armitage and Barbas, 2014 [3], and Boroughs 
and DeBerardinis, 2015 [4]). Interestingly, different alterations within the cell result 
in similar downstream metabolic effects, demonstrating the importance metabolism 
plays in the cancer cell. Typical responses include elevation of glycolytic flux where 
a high proportion of glucose is metabolised to lactate, even under oxygenated condi-
tions; use of glucose and lactate carbon in the synthesis of nucleic acids, proteins 
and lipids; disruption or truncation of the TCA cycle; orchestration of an alternative 
supply of ATP (e.g. from glutamine or fatty acids); higher affinity for NADPH and 
glutathione production and increased tolerance to oxidative stress and reactive oxy-
gen species-mediated apoptosis. An altered metabolism in cancer has been described 
as an increasingly acknowledged important aspect of the disease and a potentially 
fertile area for the identification of novel therapeutic targets [5].

Metabolomics, due to its ability to detect changes in numerous metabolites 
simultaneously and with no prior hypothesis on the region of metabolome required, 
is currently one of the fastest developing disciplines in cancer research. Some of the 
most notable approaches within cancer metabolomics are depicted in Fig. 9.1.

Over the last decade, over 2000 original research articles were published on can-
cer metabolomics (Web of Science). This involved the research of a range of can-
cers in different types of sample (cells, tissues, biofluids, etc.) to make discoveries 
on metabolic signatures or biomarkers. Such markers have potential use in improv-
ing sensitivity and selectivity in the detection, prognosis and diagnosis of cancer, in 
addition to revealing why treatments work (or don’t work) and to propose new 

Fig. 9.1  Schematic of the applications and approaches of metabolomics used to study cancer. In 
each case, different samples from human biofluids to animal models or cell culture can be used
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potential drug targets in cancer and more. In the last 5 years, the number of articles 
and citations of original research in cancer metabolomics has grown dramatically, 
moving cancer metabolomics into a field of its own. In 2015 alone, almost 400 
original research articles were published in the field of cancer metabolomics. 
Figure 9.2 shows the Web of Science citation report for ‘cancer’ & ‘metabolomics’ 
research articles over the last decade.

Once per year, the Metabolomics Society organises the largest international con-
ference devoted to metabolomics and selects research to be showcased on signifi-
cant advancements made in the field. After each event, highlights of the conference 
as decided by highly respected senior researchers in the field are published in the 
metabolomics journal. From 2015, a number of the featured highlights were specifi-
cally related to cancer metabolomics, now one of the largest subdisciplines in 
metabolomics [6]. One of the most significant of these was the reflection on research 
into the iKnife, a technology developed by Zoltan Takats at Imperial College 
London, UK. This highly innovative technique shows just how clinically relevant 
metabolomics is becoming in cancer research and is the perfect demonstration of 
how far metabolomics-based research has come in the transition from bench to bed-
side. The iKnife uses rapid evaporative ionisation mass spectrometry (MS) coupled 
to an electrosurgical knife allowing metabolomics-based tissue typing in real time 
and thus provides an alternative to conventional histological tests during cancer 
surgery [6]. Other highlights included the metabolomics and proteomics approach 
to identify metabolic enzymes differentially regulated in small cell lung cancer tis-
sues, the elucidation of the metabolic effect of coculturing ovarian cancer cells with 
adipocytes, and how cancer cells deal with toxic-free ammonia generated during 
glutaminolysis (determined through isotope tracer experiments) [6]. In fact, these 
highlights cover some of the hottest topics in cancer metabolomics: the combination 
of different ‘omics’ approaches to reveal system properties of cancer and the linkage 

Fig. 9.2  The number of citations for research articles related to cancer metabolomics in each year 
over the last decade. Information obtained from the Web of Science, counts collated considering 
only original research articles.
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of cancer with other metabolic lifestyle conditions such as obesity and isotope tracer 
experiments to better understand metabolic fluxes. All of this in addition to the pre-
viously mentioned advancement from bench to bedside making metabolomics a real 
clinical tool in cancer research sums up the topical applicability of cancer 
metabolomics.

In this chapter, techniques for the analysis of the cancer metabolome will be 
discussed in addition to exploring the role of metabolomics in the revelation of can-
cer biomarkers and in the assessment of cancer therapy. In line with the current 
approaches and elucidations from the field of cancer metabolomics, the final part of 
this chapter will cover one of the key subtopics of cancer metabolomics that is per-
sonalised medicine. In fact, personalised medicine is highly interesting for a num-
ber of diseases, but the advancement of knowledge gained through cancer 
metabolomics has been remarkable in the last few years.

9.2  �Analysis of the Cancer Metabolome

Two analytical techniques currently dominate the global measurement of metabo-
lites. These are nuclear magnetic resonance (NMR) and MS. NMR was the first 
analytical platform used for comprehensive measurement of metabolites present in 
a biological sample [7]. This technique is highly reproducible, selective and non-
destructive and requires minimal sample preparation [8]. Furthermore, it is gener-
ally accepted as the ‘gold standard’ tool in metabolite structural elucidation [9]. 
Considering changes in energy metabolic pathways which are disturbed by devel-
oping cancer, NMR is a useful tool to measure metabolites involved in glycolysis 
(e.g. glucose, lactate, pyruvate) or the TCA cycle (e.g. cis-aconitate, citrate, suc-
cinate, pyruvate). To date, NMR-based metabolomics has already been success-
fully applied to search for biomarkers of several types of cancer including prostate 
[10], gastric [11], renal [12], cervical [13], oral [14], lung [15] and many others 
[16]. Moreover, several studies have shown utility of NMR metabolic fingerprint-
ing for cancer risk prediction [17, 18], early diagnosis [19, 20] and staging [14, 15, 
21]. Outside of biomarker discovery, this technique has also been found useful to 
study known and potential anticancer agents [22, 23], mechanisms of chemother-
apy resistance [24] or effects of therapy [25]. The drawback of NMR is its rela-
tively low sensitivity in comparison to MS [26]. MS-based metabolomics offers 
quantitative analyses with high selectivity and sensitivity and the potential to iden-
tify metabolites. In comparison to NMR, MS analysis usually requires a sample 
preparation step, which mostly consists of protein precipitation and solid- or liq-
uid-phase extraction [27, 28]. For metabolomics, MS detection of metabolites is 
usually preceded by their separation to reduce the complexity of the acquired mass 
spectra, to provide isobar separation and to deliver additional information on the 
physico-chemical properties of the metabolites [29]. Separation techniques com-
monly used in metabolomics studies include liquid chromatography (LC), gas 
chromatography (GC) and capillary electrophoresis (CE) [30]. Sample treatment 
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procedures and consequently measured metabolites are dependent on the chosen 
separation technique. GC-MS is suitable for volatile and thermally stable analytes, 
while CE-MS is suitable for polar and charged molecules. LC-MS is the most ver-
satile technique and with use of the appropriate columns – non-polar (reversed-
phase chromatography) or polar (HILIC chromatography)  – a huge array of 
metabolites can be detected [31]. All of these techniques have been used in combi-
nation with MS to study cancer metabolism and for discovery of potential bio-
markers; however, the most often utilised are GC-MS and LC-MS (Fig.  9.3). 
LC-MS has been used to study lung [32], biliary tract [33], gastric [34], bladder 
[35] and other genitourinary cancers [36], as well as sarcoma [37], hepatocellular 
carcinoma [38], B-cell malignancies [39] and renal cell carcinoma [40]. LC-MS-
based metabolomics has also been used to study treatment effects in acute lympho-
blastic leukaemia [41] and prostate cancer [42] patients. While for LC-MS 
metabolomics sample preparation is rather simple and usually simultaneous pro-
tein precipitation and metabolite liquid extraction are performed [43], for GC-MS, 
a complex and time-consuming sample derivatisation procedure is necessary in 
order to make metabolites volatile [31]. GC-MS as a stand-alone technique has 
been already applied to study hepatocellular carcinoma [44] and gliomas [45], as 
well as lung [46], colorectal [47], bladder [48], breast [49], gastric [50], oesopha-
geal [51] and thyroid [52] cancers. In comparison to GC-MS, CE-MS does not 
require any chemical derivatisation procedures. It has the potential for rapid analy-
sis and efficient resolution of ionic metabolites including amino acids, organic 
acids, nucleotides and sugar phosphates, thus detecting numerous metabolites 
involved in central metabolic pathways. The sample preparation procedure for 
CE-MS metabolomics analysis is simple, rapid and common to many types of 
compounds; however, the migration time of each compound is often less 

Fig. 9.3  Number of articles applying metabolomics in cancer research divided by different ana-
lytical platforms (or multiplatform studies) and year of publication. These data were obtained 
based on the search of terms “metabolomics + cancer” at PubMed page (http://www.ncbi.nlm.nih.
gov/pubmed) performed on June 7, 2016. Out of 2083 records, reviews and studies just mentioning 
metabolomics were excluded.
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reproducible due to the difference of sample matrix and temperature in the envi-
ronment [53]. Despite the above-mentioned advantages of CE-MS, it is not utilised 
as often in cancer metabolomics studies as other metabolomics platforms. Examples 
of its application have been shown for hepatocellular carcinoma [54], gastric can-
cer [55], lung and prostate tumour tissues [56], in addition to colon cancer cells 
[57]. Each analytical technique has its own drawbacks and advantages for metabo-
lomics. NMR has lower sensitivity but has a huge potential in metabolite identifi-
cation. MS is much more sensitive in comparison to NMR; however, depending on 
the chosen separation technique, different limitations appear. Due to the highly 
reproducible mass spectra of metabolites and availability of universal structural 
and mass spectral libraries for GC-MS, identification of metabolites is rather auto-
mated, though the derivatisation step can introduce artefacts and affect reproduc-
ibility [31]. In the case of LC-MS, identification is the most challenging step. The 
assignment of a measured m/z value to a real metabolite can be performed by the 
analysis of an authentic standard or comparison of obtained MS/MS spectra with 
one available in the literature or internet databases [58]. For many biological com-
pounds, standards are still not available. Less-confident identification can be per-
formed by interpretation of fragmentation spectra, but still a putative identification 
based on accurate mass is necessary. Otherwise, acquired MS/MS spectra can be 
useless [59]. Sometimes a charged molecule with different adducts may produce 
different fragmentation spectra, making identification more challenging [54]. Low 
reproducibility of migration times and the possibility to separate only charged mol-
ecules limit the utility of CE-MS in metabolomics. However, the most important 
limitation of any analytical platform used in metabolomics studies is the inability 
to measure all metabolites present in a biological sample. Actually, no single ana-
lytical technique is capable of measuring and identifying all metabolites; therefore, 
comprehensive metabolomics data needs to be assessed by bringing together data 
from different platforms [60]. Consequently, as it can be seen also in cancer 
research (Fig. 9.3), the number of studies in which several analytical platforms are 
applied together to achieve the scientific goal is increasing. Multiplatform 
approaches have also been used to study several types of cancer including lung 
[61], breast [62], colorectal [63] and prostate [64].

The method chosen to study the metabolome depends also on the approach that 
one wants to use. The following approaches are applied in metabolomics research: 
target analysis of metabolites; metabolic profiling, i.e. measurement of selected 
compounds which belong to one class or one metabolic pathway, and untargeted 
analysis, often termed metabolic fingerprinting, which aims to detect and semi-
quantify all metabolites (if possible) present in a biological sample in order to 
define the unique metabolic pattern which characterises the biological system 
under particular conditions [65]. Metabolic fingerprinting has the greatest potential 
for discovery of novel findings. In cancer research, this approach has potential in 
biomarker discovery and interventional studies in order to evaluate the effect of the 
treatment or search for novel therapeutic targets [66]. Fingerprinting is not focused 
on particular metabolite(s); therefore it allows the discovery of novel metabolic 
pathways, which are disturbed by the disease or studied stimulus. Metabolic 
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fingerprinting can be performed by all above-mentioned analytical platforms. 
While NMR-based metabolic fingerprinting allows the detection of 20–50 metabo-
lites [67], MS-based approaches (especially LC-MS) can detect 100 or 1000 of 
metabolites [68]. However, due to the technical limitations related to ion source 
cleaning, a sequence of fingerprinting analyses with MS detection can be per-
formed on only a limited number of samples in one go [43]. Therefore, a discovery 
study with the use of an untargeted method should be supported by a target meth-
odology (or metabolic profiling method) in order to validate the obtained results on 
a bigger cohort. Such a strategy was recently published for a cancer-related study. 
Piszcz et al. applied serum metabolic fingerprinting to find biomarkers for treat-
ment indication in chronic lymphocytic leukaemia patients. In this research, a 
panel of biomarkers selected by LC-MS fingerprinting was succeeded by triple 
quadrupole MS (QqQ-MS) analysis. Validation by QqQ-MS allowed the proposal 
of a potentially highly specific and sensitive diagnostic approach composed of 
selected acylcarnitines and fatty acid amides [69]. A similar strategy was applied 
to study papillary thyroid carcinoma (PTC) tissue samples in order to find diagnos-
tic markers and identify altered metabolites [70]. In this study, a GC-MS-based 
discovery phase was followed by an LC-QqQ-MS- and GC-TOF-MS-based valida-
tion. Targeted metabolomics proved that galactinol, melibiose and melatonin were 
differentially expressed between PTC and healthy tissues. Galactose metabolism 
was found to be an important factor influencing PTC development by affecting 
energy metabolism. Alpha-galactosidase was proposed as a potential target for 
PTC therapy [70]. An interesting study was performed for lung cancer using mul-
tiplatform metabolomics in order to select serum metabolites for improved staging 
of non-small cell lung cancer (NSCLC) patients. Out of 29 metabolites exhibiting 
a significant trend in levels away from normal individuals to early- and late-stage 
patients, bilirubin and λ-glutamylalanine (the most significant) were selected for 
LC-MS/MS validation. Bilirubin emerged as a metabolite that consistently showed 
a statistically significant trend with increasing NSCLC stage [71]. Amongst others, 
a validation step has also been included in studies on colorectal [63], ovarian [72] 
and oesophageal cancer [73].

Classical measurement of metabolite levels alone provides only a very static 
view on metabolism. For a fuller understanding of metabolism, the underlying met-
abolic fluxes are much more important and informative because they provide a 
much closer functional link to an observed phenotype [74]. Flux-based metabolo-
mics (fluxomics) was first proposed around 20 years ago and is based on utilisation 
of stable, 13C isotope-labelled substrates used for accurately tracking changes in the 
distribution of metabolites in biochemical pathways [75]. 13C-labelled glucose is 
often used in fluxomics studies [76]; however, it is also possible to use other labelled 
compounds as substrates. Application of flux analysis in the context of cancer 
research has revealed metabolic alterations of several metabolic pathways in a wide 
variety of tumours. GC-MS-based fluxomics experiments are often performed in 
order to trace central carbon metabolism. This approach was used to study glutamine 
dynamics in pancreatic ductal adenocarcinoma [77], as well as glutamine‐associ-
ated changes in glioma cells during impaired mitochondrial pyruvate transport [78]. 
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The approach has also been used to reveal that the reductive metabolism of α‐keto-
glutarate contributes to de novo lipogenesis [76]. LC-MS has been applied to study 
the metabolic alterations associated with the M2 isoform of pyruvate kinase, show-
ing significant differences in glycolytic intermediates. It was revealed that these 
glycolytic metabolites feed into serine synthesis, allowing them to proliferate in 
serine‐depleted medium [79].

The other approach for the analysis of tumour samples is matrix-assisted laser 
desorption ionisation mass spectrometry (MALDI-MS) imaging. Although this ana-
lytical platform is rather used for the analysis of larger molecules such as proteins 
[80], with some modifications in the sample preparation and operating approaches, 
it can be used to measure small molecules including lipids, carbohydrates, hor-
mones, nucleotides/nucleosides and drugs and drug metabolites [81]. With this 
technology, it is possible to measure the distribution of diverse molecular species in 
a tissue section without destroying the tissue or the use of target-specific molecular 
labelling reagents [82]. The most popular application of MALDI-MS imaging in 
oncology is drug distribution analysis [83, 84]. By the use of MALDI-MS, the 
detection of an orally administered drug compound in mouse tumour tissue surface 
has been demonstrated [85]. High-resolution MS imaging significantly improved 
the localisation of drug metabolites; therefore, this technique has been found to be 
important to study pharmacokinetics and pharmacodynamics of drugs. Regarding 
anticancer drug studies on localisation of tamoxifen in human breast cancer tumours 
[84], the distribution of alectinib in murine brain [82] or localisation of sunitinib and 
its metabolite tumour-bearing mice [83] by use of MALDI-MS can be mentioned. 
Outside of pharmacological studies, MALDI-MS has also been applied to measure 
endogenous metabolites. With the application of 9-aminoacridine (9-AA) as the 
matrix, the detection of low-mass metabolites and lipids directly from cancer tissues 
has been demonstrated. Applications include lactate and pyruvate for studying the 
Warburg effect, as well as succinate and fumarate, metabolites whose accumulation 
is associated with specific syndromes. It has been possible to use this approach to 
identify regions within tumour tissue samples with distinct metabolic signatures 
that are consistent with known tumour biology [86]. Also, 9-AA-supported 
MALDI-MS imaging has also been used to compare metabolic profiles between 
control livers and those bearing metastatic foci of human colon cancer. Differences 
in nucleotides, lipids and several amino-sugars were observed between the tissues 
studied. The metastatic human colon cancer xenografts displayed remarkable accu-
mulation of UDP-N-acetyl hexosamines and glutathione in vivo [87]. MS and mag-
netic resonance imaging have also been used to analyse total choline (tCho) and 
phosphocholine (PC) in metastatic breast tumour model. MR imaging showed that 
high tCho levels, consisting of free choline, PC and glycerophosphocholine (GPC) 
displayed a heterogeneous spatial distribution in the tumour. MS imaging performed 
on tumour sections has detected the spatial distributions of individual PC, Cho and 
GPC.  PC and Cho intensities were increased in viable compared with necrotic 
regions of MDA-MB-231 tumours but were relatively homogeneously distributed in 
MCF-7 tumours [88]. Wang et al. showed that N-(1-naphthyl)ethylenediamine dihy-
drochloride (NEDC) could act as a matrix for MALDI imaging yielding many more 
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endogenous compounds than 9-AA. NEDC-assisted imaging was applied to study 
colorectal cancer liver metastasis, showing that NEDC is especially well suited for 
examining distributions of glycerophospholipids and low-molecular-weight metab-
olites below m/z 400 [89].

Metabolomics as a field encompasses not only the high-throughput measurement 
of a number of metabolic variables simultaneously – a large part of the metabolo-
mics discipline involves computational approaches to study metabolism. One very 
interesting example of this with a particular reference to cancer research was pub-
lished in 2015 and concerned the chemometric fusion of metabolic profiling data 
from plasma samples with auxiliary patient lifestyle information. Through this 
method, authors created a biocontour, defined as a complex pattern of relevant bio-
logical and phenotypic information that provided a forecast, described as being on 
par with how well most current biomarkers can diagnose current cancer [17]. It was 
shown that this method offers sensitivity and specificity well above 80 % as com-
pared with mammography, which has a diagnosis capacity associated with around 
75 % sensitivity and specificity. This retrospective study compared two sets of data 
in order to develop a suitable model for the forecast of breast cancer.

9.3  �Cancer Metabolomics in the Discovery of Biomarkers

In 2014, Armitage and Barbas reviewed the current trend and future perspectives of 
the cancer biomarker discovery field, collating research on potential biomarkers in 
different cancers revealed by employing a range of different analytical platforms 
[3]. Since then, research has continued to grow globally to find new potential bio-
markers. Figure 9.4 shows the cancers that are most commonly studied by metabo-
lomics, highlighting for each cancer the most cited article to date in each field.

Aiming to improve prognosis/diagnosis of the disease is one of the main applica-
tions of metabolomics in cancer research. This usually involves the discovery of 
biomarkers and the assessment of their sensitivity and selectivity powers in disease 
prognosis/diagnosis. Metabolomics has become increasingly popular in postulating 
potential biomarkers, typically by the comparison of control subjects and cancer 
subjects or cancer subjects before and after initiation of disease or new stage of 
disease (to study progression). The latter is usually performed by comparing sam-
ples from patients with the disease for which there are retrospective samples avail-
able from before the disease presented or from an earlier stage of the disease. 
Similarly, biomarkers can also be revealed to show metabolic features of risk of 
recurrence or relapse in patients by comparing pretreatment samples to samples col-
lected at later time points with knowledge of whether or not cancer recurred in those 
patients. Finally, cancer biomarkers can be revealed by observing the effects of 
mutations or knockouts that theoretically reduce or remove the chance of metastasis 
by comparison to wild-type cancer controls.

The comparison of control and cancer subjects can include the study of cells, 
adjacent tissues or patients. For example, in a comparison of cancer cells to controls, 
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volatile metabolic signatures in human breast cancer cell lines versus normal human 
mammary cells have been unveiled [90]. Novel analyses of volatile compounds in the 
headspace of conditioned culture medium were directly fingerprinted by secondary 
electrospray ionisation (ESI)-MS. Samples could be classified based on a character-
istic odour released by cancer cells whose constituents could be used as disease 
markers. Similarly, comparing adjacent tissues can yield candidate biomarkers of 
cancer. For example, 13 tumours and seven normal tissue markers were identified 
that separated cancer from normal tissues with >80 % sensitivity and specificity, 
mainly due to two metabolite classifiers: cytidine-5-monophosphate and pentadeca-
noic acid. The ratio between these was the most significant discriminator between 
cancer and normal tissues and allowed detection of cancer with sensitivity as well as 
specificity around 94 %.

In recent years, metabolomics has been performed more readily on the compari-
son of samples from clinical patients. For example, using ESI-MS/MS with no prior 
separation technique, serum profiling of cancer patients and control subjects has 
revealed potential biomarkers of colorectal cancer. Quantitative profiles of the con-
centrations of 26 amino acids elucidated 11 to be significantly different between 

Fig. 9.4  The most common cancers studied by metabolomics and the highest cited paper pub-
lished to date (June 2016). Approximate number of citations are displayed.
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cancer and control subjects [91]. All except one had been previously reported as 
potential colorectal cancer biomarkers in previous literature covering a range of dif-
ferent analytical platforms. In a recently published article on the detection of early-
stage ovarian cancer, LC-MS was employed to interrogate the serum metabolome of 
patients and age-matched controls in order to establish a linear support vector 
machine model of 16 diagnostic metabolites [92]. This panel of lipid-related identi-
fiers was successful at a rate of 100 % accuracy for the patient cohort implicating the 
importance of lipid and fatty acid metabolism in ovarian cancer.

The study of disease initiation, progression, recurrence or relapse using metabo-
lomics usually applies to the analysis of plasma or serum from patients. A key 
example of this was published in Cancer Research in 2010 that focussed on the 
development of a metabolic profiling test using GC × GC-MS and NMR to monitor 
recurrent breast cancer [93]. Metabolite profiles of 257 retrospective serial serum 
samples from 56 previously diagnosed and surgically treated breast cancer patients 
were analysed, whereby 116 were derived from 20 patients with recurrent breast 
cancer and 141 samples from 36 patients with no clinical evidence of the disease 
during ∼ 6 years of sample collection. Eleven metabolic markers – formate, histi-
dine, proline, choline, tyrosine, 3-hydroxybutyrate, lactate, glutamic acid, N-acetyl-
glycine, 3-hydroxy-2-methyl-butanoic acid and nonanedioic acid – were shortlisted 
using logistic regression that provided around 85 % specificity, as well as sensitivity 
leading to 55 % accuracy rate of prediction of recurrence more than 12 months 
before recurrence could be clinically diagnosed through alternative methods.

In another example, Lodi et  al. published interesting research on the NMR-
based metabolomics analysis of archived serial paired serum and urine samples 
from myeloma patients at different stages of disease to revel metabolic patterns 
correlated with progression that identified markers useful to individual patients 
[94]. In this way, patients were distinguished based on relapse or remission, and 
this difference in metabolic profile is thought to be applicable to provide prognoses 
in future cases.

In the application to distinguish between early and metastatic breast cancer 
patients and as a tool to potentially predict disease relapse, metabolomics has been 
applied to study serum metabolomes of women with metastatic and predominantly 
oestrogen receptor-negative early-stage breast cancer using high-resolution NMR 
spectroscopy [95]. In this study, a model of prognosis was created using sophisti-
cated statistical approaches that showed that it was possible to distinguish between 
early and metastatic disease in the metabolome at a rate of 83.7 % with 90 % sensi-
tivity, 67 % specificity and 73 % predictive accuracy. Results were subsequently 
reproduced in an independent sample with 82 % sensitivity, 72 % specificity and 
75 % predictive accuracy, and a further confirmation study is said to be underway. 
From these studies, it was shown that the relapse of this disease is associated to 
lower levels of histidine and increase levels of glucose and lipids.

In 2013, Alberice et al. published a research on the recurrence of bladder cancer 
[96]. Pretreatment urine samples were collected from 48 patients diagnosed with uro-
thelial bladder cancer and analysed by untargeted LC-MS- and CE-MS-based metab-
olomics. After the analysis, patients were followed up through hospital pathological 
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charts to identify whether and when the disease recurred or progressed. Patients were 
classified based on their proposed risk (depending on original tumour grade, stage) 
and their final outcome (recurrence of cancer or not), and data were analysed consid-
ering groups based on these factors. Authors reported a total of 27 metabolites that 
significantly distinguished patients based on these groups, some of which had been 
previously related to bladder cancer but not to the progression or recurrence of the 
disease. It was suggested that these candidate biomarkers could be useful in the diag-
nosis of bladder cancer and also in prognostics by characterising the stage of the dis-
ease. Moreover, based on pretreatment profiling, this information could be useful in 
predicting outcome of treatment or to decide which course of treatment could be most 
appropriate to reduce the risk of recurrence.

Zhu et al. have recently published a proof of concept study utilising LC-MS/MS 
applied to monitor disease progression in colorectal carcinoma patients [97]. This 
involved sequential metabolite ratio analysis of serially acquired samples from 20 
patients in order to identify the metabolites that correlate to the status of the disease. 
This novel approach reduces patient-to-patient variability and allows the generation 
of a prognostic model through a defined panel of biomarkers. Although this was a 
relatively small study, it served as a sound proof of principal for further investiga-
tion and was strengthened by the reduction of sample variability that usually makes 
a huge demand on the number of patients required in a metabolomics study of 
human subjects.

Heterogeneity in the clinical course of patients is rife in many cancers. Chronic 
lymphocytic leukaemia (CLL) is one such cancer in which patients require different 
action: some patients present an aggressive form of the disease that requires imme-
diate therapy, while others remain without treatment for years. In recent years, 
research has been directed into finding new prognostic markers to distinguish 
between stable and progressive forms of the disease and subsequently to forecast 
patient survival and select the appropriate course for treatment. A metabolomics 
study to discriminate serum samples from patients with indolent or aggressive forms 
of CLL, highly specific and sensitive diagnostic markers were postulated as dis-
cussed in Sect. 9.2 [69]. Ten markers of discrimination from an initial study were 
validated in a new set of patients and forming a panel of acylcarnitines and fatty acid 
amides; it was possible to find the best method of distinction between indolent and 
aggressive CLL.

Analysing the effects of a knockout or mutation of an onco-feature (gene, tran-
scription factor, protein) to observe how this feature promotes survival of cancer 
cells and therefore how cancer is avoided by this knockout or mutation or how can-
cer cells overcome this removal in order to continue surviving can be very specific 
but highly topical. This is a particularly interesting type of approach if the onco-
feature is suspected to be a reasonable target for future therapy. One example of this 
was published in 2015, whereby the effect of hypoxia inducible factor (HIF), a 
transcription factor promoting survival of tumour cells in low-oxygen environ-
ments, on cellular metabolism, was explored [98]. Wild-type cells were compared 
to HIF-deficient cells at different oxygen tensions with the aim of highlighting the 
potential role of this factor under low oxygen in addition to alternative mechanisms 
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of survival employed in the absence of HIF function. GC-MS was used to compare 
the metabolic profiles of extracts from 30 samples of cells with and without HIF 
exposed to normoxia (21 % oxygen), hypoxia (1 % oxygen) and anaoxia (0 % oxy-
gen). The study revealed different metabolic hubs (highly connected metabolites in 
the pathways as revealed in the metabolic profiles) when HIF was functional or not. 
Cells were observed to be strongly reliant on 4-hydroxyproline to survive in hypoxic 
conditions, while fructose took over this role in HIF-deficient cells. This showed 
both the primary function of HIF but also highlighted why HIF may not be the best 
single target for therapy since cells are able to survive through alternative mecha-
nisms centred on fructose in the absence of HIF.

9.4  �Cancer Metabolomics in the Assessment of Therapy

Metabolomics is increasingly employed in the determination of the effectiveness of 
disease therapy as well as in the exploration of pharmaceutical mechanism of action 
(for a recent review, see Wishart 2016 [99]). In many cases, including different can-
cers, these studies have led to, or have the potential to lead to, the discovery of new 
therapeutic targets. Moreover, such studies have also been useful for looking into 
the ineffectiveness of treatments and to propose their improvement.

Metformin has been a particularly well-studied cancer therapy by metabolomics. 
Neoadjuvant studies of potential metformin biomarkers and its effect in breast can-
cer patients through metabolomics-based approaches have recently been reviewed 
[100]. In 2014, the experiment of a preoperative window study of metformin in 
endometrial cancer was published, evaluating the anti-proliferative, molecular and 
metabolic effects of the drug [101]. In this study, 20 obese women with endometri-
oid endometrial cancer were treated with 850 mg metformin daily for up to 4 weeks 
prior to surgical staging. With particular emphasis on the metabolomics assay, pre- 
and post-treatment serum samples and matched tumour samples collected post-
treatment were analysed by LC-MS global profiling. Responders to the treatment 
were found to be sensitive to metformin’s effects on induction of lipolysis that cor-
related with increased fatty acid oxidation and glycogen metabolism in matched 
tumours relative to the nonresponders. Metformin induced a pronounced shift in 
lipid and glycogen metabolism in the serum and tumours of responders, and thus it 
was suggested from this study that metformin could be a viable treatment for endo-
metrial cancer, at least in obese individuals.

Metformin has been studied by cancer metabolomics not only to investigate its 
effectiveness or ineffectiveness but also to better understand its mechanism of 
action. In a recent study published by He et  al. (2015), metformin was studied 
through a combined metabolomics and transcriptomics approach to study its effect 
over time (8, 24 and 38 h following exposure) in human-derived LoVo cells treated 
with the drug [102]. More than 40 differential metabolites in carbohydrate, lipid, 
amino acid, vitamin and nucleotide metabolic pathways between controls and 
treated cells at each time point were identified showing net global upregulation at 
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8 h followed by downregulation by 24 h. The transcriptome revealed 100–1000 of 
differentially expressed genes with exposure to metformin involving cancer signal-
ling and cell energy metabolism mechanisms. It was concluded from this study that 
metformin supresses the proliferation of LoVo cells, likely through the modulation 
of cell energy metabolism at both transcriptomic and metabolomic levels.

Another frequently used drug in cancer is docetaxel, used in the treatment of 
breast cancer. However, challenges of resistance or incomplete response to this drug 
make its use under-optimal. Using a magnetic resonance spectroscopy-based 
metabolomics approach, potential biomarkers of docetaxel resistance in a mouse 
model for BRCA1-mutated breast cancer have been identified [103]. In this study, 
significant metabolic differences between sensitive and resistant tissue samples 
were revealed elucidating mechanisms of resistance to the compound. Choline 
metabolites were identified as markers of resistance in that their concentrations 
were generally stably higher in docetaxel resistant than in sensitive BRCA1-mutated 
mouse mammary tumours, but that the first days after docetaxel treatment, choline 
metabolites were increased only in the sensitive tumours. From this, it was con-
cluded that both pre- and post-treatment tissue levels of choline compounds have 
the potential to predict response to docetaxel treatment.

In a study of ovarian cancer, LC-MS- and GC-MS-based metabolomics have 
recently been applied to study the mechanisms of platinum sensitivity or resistance 
in cancer cell lines [104]. Almost 180 metabolites were identified as being signifi-
cantly different as a function of sensitivity/resistance including 70 increases and 
109 decreases in platinum-resistant cells. The most altered pathway was determined 
to be cysteine and methionine metabolism, specifically the methionine degradation 
super-pathway and cysteine biosynthesis were the top two canonical pathways 
implicated by Ingenuity Pathway Analysis.

In another study of resistance, untargeted metabolomics has been employed to 
study the therapeutically relevant danorubicin in P-glycoprotein overexpressing 
T-cell acute lymphoblastic leukaemia (ALL) cells [105]. In this case, resistant ALL 
cells were found to exhibit a ‘rewired’ central metabolism with reduced dependence 
on glutamine combined with a higher demand for glucose and an altered rate of 
fatty acid β-oxidation accompanied by a decreased capacity for pantothenic acid 
uptake. Untargeted metabolomics analysis utilising LC-MS was performed for 
comparative analysis of sensitive and resistant cells. Findings were validated by 
selectively targeting components of the metabolic switch away from fatty acid 
β-oxidation with low pantothenic acid availability, using approved drugs and 
starvation approaches followed by cell viability analyses. These were also later 
tested in an acute myeloid leukaemia sensitive/resistant cell line pair.

Immunotherapy is another ‘hot topic’ in cancer therapy for which cancer metab-
olomics has been useful in discovering its capabilities as well as its flaws. The past 
5 years have been described to see ‘something of a revolution in immunologically 
targeted approaches to treatment’ and ‘the area in which there has been the most 
promising evidence of effective translation’ [106]. In a recent study by Wettersten 
et al., metabolic alterations occurring in renal cell carcinoma have been explored, 
revealing the likelihood of ineffective treatment by means of immunotherapies such 
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as IFNγ [107]. More than 200 metabolic profiles were analysed from primary renal 
tumours and normal renal tissue, leading to key discoveries: (i) increased utilisation 
of aerobic glycolysis at the expense of oxidative metabolism via the TCA cycle in 
higher-grade tumours; (ii) glutamine is predominantly metabolised to generate glu-
tathione to attenuate oxidative stress rather than being metabolised to preferentially 
fuel fatty acid synthesis; and (iii) tryptophan metabolism is upregulated by the dis-
ease, causing a subsequent increase in kynurenine, an immunosuppressive metabo-
lite. The latter explains the likely ineffectiveness of immunotherapies but points 
towards a therapeutic target in indoleamine 2,3-dioxygenase as the enzyme that 
catalyses the metabolism of tryptophan to N-formylkynurenine. One such inhibitor, 
1-D-MT, is currently in clinical trial (NCT00567931), while inhibitors of their other 
findings are also currently under investigation [108].

Another topic of recent interest has been in the effectiveness of commonly used 
drugs in the prevention of cancer. For example, in 2016, Liesenfeld et al. showed 
that aspirin reduces the concentration of onco-metabolite 2-hydroxyglutarate [109]. 
This wasn’t an investigation of the effectiveness of treatment in cancer patients, 
rather, the effect of a commonly used over-the-counter drug was tested in healthy 
individuals as part of a randomised, double-blind crossover trial was experimented 
using a metabolomics approach to show aspirin’s potential in cancer prevention.

Cancer metabolomics has been useful for advancing research not only in phar-
maceutical therapies but also in nutraceuticals. In general, the utility of nutraceuti-
cal compounds to combat disease is becoming more and more favourable, and 
metabolomics has played a significant role in the elucidation of the value of such 
compounds, particularly in cancer therapy. Table  9.1 summarises some of these 
notable advancements.

9.5  �Personalised Medicine and the Future for Cancer 
Metabolomics

Metabolomics has been described as the ‘fast line for personalised medicine’ [117]. 
Individuality in drug metabolism has been recognised as an important factor in pre-
scription of cancer therapies [118]. Individuality in metabolism can lead to drastic 
differences between cancer patients with respect to the efficiency or inefficiency of 
currently available treatments. Key examples are tamoxifen and its efficiency as 
determined by patients exhibiting different polymorphisms of CYP2D6 that metab-
olises tamoxifen to biologically active metabolites [119] and irinotecan and its 
metabolism via glucuronosyl transferase encoded by UGT1A1 that can differ from 
patient to patient.

Personalised medicine stems from the theory and utility of stratified medicine. 
The latter involves subdividing patients with a particular disease into groups based 
on the likely mechanisms of the disease and consequently the likelihood of effec-
tiveness of treatment. A key example of this in cancer is the use of stratification for 
patients with chronic myeloid or acute lymphoblastic leukaemia based on whether 
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Table 9.1  The study of nutraceuticals as potential therapies in cancer through metabolomics

Nutraceutical Sample Findings Reference

Silymarin 
extracted from 
Silybum 
marianum

Human-
derived liver 
and T-cell 
cultures

Nontoxic doses induce cytoprotection via 
suppression of metabolism, activation of 
stress pathways and downregulation of 
inflammatory signalling (observed in both 
models)

Lovelace 
et al. (2015) 
[110]

Oil extracted from 
Saussurea lappa, 
costunolide and 
dehydrocostus 
lactone isolated 
from it

Serum and 
urine from 
MCF-7 
breast 
carcinoma 
xenograft 
mice

Metabolic transformation by elevated 
glycolysis and steroid hormone 
metabolism; reduction in fatty acid 
metabolism

Peng et al. 
(2015) [111]

Supercritical fluid 
extract from olive 
leaf (‘El Hor’ 
variety)

JIMT-1 
human breast 
cancer cells

Diosmetin is the most abundant flavone – 
sixfold higher concentration than apigenin 
and 170-fold more than luteolin in treated 
cells. Diosmetin concluded to be main 
driver of anti-proliferative effects. 
Analysis of these flavones in isolation 
showed none as potent as extract itself; 
therefore, synergistic action within extract 
is required for maximal effect

Barrajón-
Catalán et al. 
(2015) [112]

Halofuginone 
extracted from 
Dichroa febrifuga

In vitro and 
in vivo 
models of 
colorectal 
cancer 
(various cell 
lines)

Treatment caused Akt/mTORC1-mediated 
aerobic glycolysis downregulation, 
reduction of glycolysis, GLUT 1 activity, 
TCA cycle intermediates, 
phosphatidylcholine, ceramide, 
sphingomyelin, phosphatidylglycerol, 
phosphatidylethanolamine, 
phosphatidylserine, phosphatidylinositol, 
phosphatidic acid and expression of fatty 
acid synthase

Chen et al. 
(2015) [113]

Flexibilide 
isolated from 
Sinularia flexibilis

HCT-116 
human 
colorectal 
carcinoma 
cells

19 distinct metabolites involved in 
sphingolipid, alanine, aspartate and 
glutamate, D-glutamine and glutamate, 
glycerophospholipid and pyrimidine 
metabolism involved in mechanism of 
action. Likely effects attributed to 
treatment causing cell membrane lesions, 
apoptosis, downregulation of TCA cycle, 
and decreased mitochondrial 
transmembrane potential.

Gao et al. 
(2016) [114]

Vitamin C Human 
colorectal 
carcinoma 
cells K-RAS 
and BRAF 
mutations 
(various cell 
lines)

Mutant cells accumulate glycolytic 
intermediates upstream of glyceraldehyde 
3-phosphate dehydrogenase and deplete 
those downstream implying GAPDH 
inhibition. Increase in PPP metabolites 
implicates shift in glycolytic flux towards 
oxidative PPP as a response mechanism.

Yun et al. 
(2015) [115]

(continued)
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or not they carry the Philadelphia chromosome: carriers may be successfully treated 
with tyrosine kinase inhibitors such as imatinib while noncarriers may not [120].

Nowadays there are many examples of studies using metabolomics in the field of 
personalised medicine for cancer. For example, in 2014, Navarette et al. published 
research on the success of mitomycin C treatment for pancreatic cancer in a person-
alised treatment designed for a patient resistant to other treatments [121]. The 
motive for this study was that mitomycin C proved more successful than rapamycin 
or even the combination of the two. Mitomycin C was selected as the single treat-
ment for this patient based on trials in a murine xenograft tumour model encom-
passing pancreatic adenocarcinoma cells extracted from the patient. However, it 
was not until this metabolomics study that the mechanism of its success was 
explored. Untargeted metabolomics utilising GC-MS and LC-MS revealed mitomy-
cin C’s effect on the TCA cycle, purine metabolism and fatty acid biosynthesis, in 
addition to many significant lipid and amino acid alterations that apparently lead to 
its success over other treatments.

It is clear that personalised medicine offers an interesting avenue for the future in 
cancer therapy. Whether or not its utility as a widespread approach in medicine will 
be feasible from the economical point of view remains to be demonstrated [106]. 
The requirement of funding at different stages of developing a personalised medi-
cine is huge, but on the other hand, if all patients were to receive the most effective 
treatment for their case at the outset, there is potential for a net saving considering 
the lack of necessity to fund subsequent healthcare costs and socio-economic costs 
from loss of earnings for individuals, etc. In any way, it is clear that cancer metabo-
lomics has played and will continue to play a vital role in the discovery of new 
approaches in personalised or stratified medicine.

Metabolomics has scope as a tool in the personalised medicine pipeline not only 
to reveal how or why a treatment has been successful in specific cases. It offers a 
highly sensitive and selective approach in prognosis that could lead to determina-
tion of a treatment strategy either by stratification or on a case-by-case basis.

Prognosis and development of a plan of action for treatment in cancer is gener-
ally performed by ‘overall survival’. For example, overall survival in colorectal can-
cer is usually predicted based on the presence or absence of K-RAS mutations, 

Table 9.1  (continued)

Nutraceutical Sample Findings Reference

Nutmeg Serum from 
mice 
harbouring 
adenomatous 
polyposis 
coli gene 
mutation, 
another 
important 
inducer of 
colon cancer

Reduced levels of uremic toxins cresol 
sulphate, cresol glucuronide, indoxyl 
sulphate and phenyl sulphate

Li et al. 
(2015) [116]
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blood cell counts, serum levels of proteins such as lactate dehydrogenase and 
metabolites such as bilirubin [16]. However, it is already known that these markers 
in addition to the Eastern Cooperative Oncology Group (ECOG) performance status 
may not always be reliable in predicting overall survival. For example, from the 
study of serum samples from 153 metastatic colorectal patients and 139 healthy 
controls, Bertini et al. showed that cancer patients presented metabolic alterations 
interpreted as perturbations in energy metabolism, in addition to an even more pro-
nounced inflammatory response within their metabolome that proved to be statisti-
cally more relevant than either ECOG or K-RAS mutations [122].

In an example of exploring personalised response to medicine, Tenori et al. pub-
lished research whereby pretreatment and serial on-treatment serum samples of 579 
women with metastatic breast cancer randomised to paclitaxel plus either a targeted 
anti-HER2 treatment (lapatinib) or placebo were analysed by NMR [123]. Metabolic 
profiles were compared with time to progression, overall survival and treatment tox-
icity to reveal that a subgroup of patients with HER2-positive disease treated with 
paclitaxel plus lapatinib, metabolic profiles from patients in the upper and lower 
thirds of the dataset showed significant differences for time to progression and over-
all survival, indicating the applicability of metabolomics in sub-selecting patients 
with HER2-positive disease with greater sensitivity to paclitaxel plus lapatinib [123].

Rather than testing for one or a few specific biomarkers in isolation, a patient’s 
metabolic profile could offer a greater whelm of information that could guide a bet-
ter treatment strategy, beyond the point of diagnosis. Since tumours rarely constitute 
more than 1 % of total body weight, it is highly unlikely anyway that changes 
observed in body fluids such as serum, plasma or urine are due to cancer itself [16]. 
However, the changes observed can reveal information about the host response to 
the disease and based on that infer how a patient may respond to treatment. 
Moreover, the gut microbiome is becoming of greater importance in understanding 
diseases like cancer and predicting responses of patients to treatment. Key future 
research applications for metabolomics and lipidomics will likely be to investigate 
the role of gut microbiota in cancer and to better understand how metabolic thera-
pies can be tailored using a personalised medicine approach. Understanding gut 
microbiota in cancer is particularly important given that this can alter the metabolic 
response to drug therapies [124] and also the efficacy anticancer treatment [125].

9.6  �Conclusions

Over the past decades, metabolomics has grown exponentially and so has the num-
ber of articles related to metabolomics. During this time, cancer metabolomics has 
become a field of its own. In this chapter, cancer metabolomics from its history to 
the latest developments have been discussed. Significant advancements have been 
made in biomarker discovery for prognosis, diagnosis and assessment of treatment 
in cancer. This is owed to the continually enhanced methodologies and applications 
in metabolomics and selection of the appropriate experimental design.
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Experimental design is highly critical for the success and impact of any metabo-
lomics study, but it is particularly relevant in disease exploration. The choice of 
samples, analytical platforms, structure of experiment and nature of study strongly 
influence the outcome, and therefore only results from the most robust experimental 
designs should be scrutinised and considered in the implication of new prognostics/
diagnostics or therapeutic strategies. As discussed, a range of different approaches 
has been applied to date in cancer metabolomics, and new topics are trending. For 
example, as the link between diet and lifestyle with diseases like cancer becomes 
more apparent, not to mention the interaction between gut microbiota and host in 
the likelihood of disease or success of treatment, metabolomics analyses of food 
(foodomics) and the microbiome are likely to increase. This will open an avenue of 
new information and opportunities in cancer research.
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Chapter 10
Chronic Diseases and Lifestyle Biomarkers 
Identification by Metabolomics

Annalaura Mastrangelo and Coral Barbas

Abstract  Chronic diseases, also known as noncommunicable diseases (NCDs), are 
complex disorders that last for long periods of time and progress slowly. They cur-
rently account for the major cause of death worldwide with an alarming increase in 
rate both in developed and developing countries. In this chapter, the principal 
metabolomic-based investigations on chronic diseases (cardiovascular diseases, 
diabetes, and respiratory chronic diseases) and their major risk factors (particularly 
overweight/obesity) are described by focusing both on metabolites and metabolic 
pathways. Additional information on the contribution of metabolomics strategies in 
the ambit of the biomarker discovery for NCDs is also provided by exploring the 
major prospective studies of the last years (i.e., Framingham Heart Study, EPIC, 
MONICA, KORA, FINRIK, ECLIPSE). The metabolic signature of diseases, which 
arises from the metabolomic-based investigation, is therefore depicted in the chap-
ter by pointing out the potential of metabolomics to explain the pathophysiological 
mechanisms underlying a disease, as well as to propose new therapeutic targets for 
alternative treatments.
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Abbreviations
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BA	 Bile acid
BAIBA	 Beta-aminoisobutyric
BCAA	 Branched-chain amino acids
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BMI	 Body mass index
BWHHS	 British Women’s Heart and Health Study cohort
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COPD	 Chronic obstructive pulmonary disease
CVD	 Cardiovascular disease
DM-AA	 Diabetes-predictive amino acid
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End-points
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GC	 Gas chromatography
GD	 Gestational diabetes
HFA	 Hydroxy fatty acids
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PCa	 Alkyl-phosphatidylcholines
PL	 Phospholipids
ROC	 Receiver-operating characteristic
SABRE	 Southall And Brent REvisited cohort
S-AMP	 Adenylosuccinate
T1D	 Type 1 diabetes
T2D	 Type 2 diabetes
TMAO	 Trimethylamine N-oxide

10.1  �Chronic Diseases

Chronic diseases, also known as noncommunicable diseases (NCDs), are medical 
conditions that last for long periods of time and progress slowly. Often less visible than 
communicable diseases, they have noninfectious and non-transmissible cause. NCDs 
are currently the major cause of death worldwide (32 %, in 2012), more than all other 
causes combined (68 %, in 2012) [1, 2]. Contrary to common perception, the majority 
of all NCD deaths occur before the age of 70 and mainly in low- and middle-income 
countries where the access to affordable treatment and effective health-care services is 
limited [2]. The rapidly increasing burden of chronic diseases is a global threat for the 
population, not only for the high percentage of deaths but also for its economic, psy-
chological, and social impact. Notably, the indirect costs of chronic diseases (e.g., 
inability to work, loss of productivity, cost of caregivers, among others) in the USA 
amounted to five times their direct costs (i.e., treatments, hospitalization) [3, 4].

The WHO has classified the major chronic diseases in four types as:

•	 Cardiovascular diseases (CVDs)
•	 Cancers
•	 Chronic respiratory diseases
•	 Diabetes

Altogether they accounted for the leading causes of NCD deaths in 2012 (see 
Fig.  10.1) [2]. In the following sections, the principal chronic diseases will be 
described, except for cancers, which are fully discussed in Chap. 9. Additionally, 
the major risk factors leading to chronic diseases will be explored, focusing on 
overweight/obesity as one of the biggest contributors.

10.1.1  �Cardiovascular Diseases

Cardiovascular diseases (CVDs) comprise several disorders of the heart and blood 
vessels including coronary heart disease (which leads to heart attack), cerebrovas-
cular disease (which leads to stroke), rheumatic heart diseases, and other conditions. 
CVDs, particularly heart attack and stroke, are the first cause of death globally, with 
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the low- and middle-income countries showing a substantial increased mortality 
over the years. Currently, over 80 % of cardiovascular deaths occur in developing 
countries with a projection to increase [5].

Heart attack and stroke are usually acute events resulting from inadequate blood 
supply to a portion of myocardium (myocardial ischemia) or of the brain (cerebral 
ischemia); they are strongly associated with atherosclerosis, which consists of lipid 
accumulation in large arteries, that narrows the inner surface of the vessels by 
blocking or severely reducing the normal blood flow. The resulting lack of oxygen 
and glucose induces the death of the cells, thereby damaging the tissue.

Atherosclerosis has a complex etiology; it is initiated by inflammation in the 
endothelial layer of the artery that allows the low-density lipoproteins (LDLs) to 
accumulate in the inner layer of the artery, the intima. LDLs, and their oxidized 
form, then trigger the transmigration of immune cells, particularly monocytes, into 
the intima by creating plaques that become progressively larger with time. The 
plaque formation is a slow and silent process that develops over the years and even-
tually results in the plaque break or in the complete coronary/cerebral artery block-
age (heart attack/stroke) causing premature death if untreated.

Although the recovery from the damage is possible, ischemic events often evolve 
into chronic disabilities that markedly affect the individual long life both emotionally 
and physically. Most importantly, patients who have suffered a heart attack and 
stroke have increased likelihood for second coronary and cerebral events [6].

Hence, prevention of atherosclerosis and CVDs is the most effective measure to 
prevent from premature morbidity, mortality, and disability. Indeed, although the 
drug therapy (i.e., combining aspirin, statins, beta-blockers, and diuretics) is effec-
tive in reducing the number of ischemic events, the identification of high-risk sub-
jects and the preventions from complications remain the best option, both for people 
with established disease and for those at high risk of developing disease.

Fig. 10.1  Pie chart displaying the leading causes of noncommunicable diseases (NCDs) deaths in 
2012 [2] [Source: Global status report on noncommunicable diseases 2014  – World Health 
Organization (WHO)]
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10.1.2  �Chronic Respiratory Diseases

Chronic respiratory diseases are a group of diseases affecting the airways and the 
other structures of the lungs. They include asthma and respiratory allergies, chronic 
obstructive pulmonary disease (COPD), occupational lung diseases, sleep apnea 
syndrome, and pulmonary hypertension [7]. According to the WHO, hundreds of 
millions of people are affected by chronic respiratory diseases, with asthma and 
COPD as the most prevalent lung diseases and major causes of morbidity and mor-
tality worldwide. Indeed, it was estimated that currently 235 million people have 
asthma, whereas 64 million people suffer from COPD. Besides, in 2002, COPD has 
been the fifth leading cause of death globally, and it is expected to become the third 
in 2030 [8].

Asthma and COPD are multifactorial and complex diseases. They are character-
ized by a remarkable heterogeneity both in the clinical course and in their patho-
physiological phenotypes that makes them frequently under-recognized, 
underdiagnosed, undertreated, and insufficiently prevented.

Asthma is a chronic inflammatory disorder mostly common among children 
where it appears with the same incidence as cancer and diabetes [9]. The typical 
symptoms include episodes of wheezing, coughing, chest tightness, and shortness 
of breath, generally in response to environmental exposure to various stimuli (aller-
gens, viral respiratory infections, irritant fumes or gases). Along with a genetic pre-
disposition, they trigger an inflammatory and immune response in the lungs’ airways 
that causes an abnormal narrowing of the airways leading to the typical asthma 
symptoms [7].

In contrast, COPD is a multicomponent and systemic syndrome that affects 
both lungs and organs outside the lungs. It includes conditions such as emphysema 
and chronic bronchitis and is characterized by shortness of breath, cough, and spu-
tum production. The principal underlying cause is cigarette smoking both from 
primary and secondhand exposure that together with occupational dust and chemi-
cals (in high-income country) and indoor and outdoor pollution (mainly in low- 
and middle-income countries) damages the lungs progressively and irreversibly. 
COPD progresses slowly and is mostly asymptomatic until the frequent exacerba-
tions and further reductions in airflow make it clinically apparent, generally by the 
age of 40 [10].

Up to now, no precise diagnosis or definitive therapy is available both for asthma 
and COPD. The diagnosis is typically based on the pattern of symptoms and the 
response to therapy over time and is eventually confirmed by the spirometry test. 
Concerning the therapy, the medicaments commonly employed are bronchodilators 
(long- and short-acting beta-agonist) and corticosteroids that reduce the inflamma-
tion and relieve the symptoms and oxygen administration for patients with chronic 
respiratory failure. Furthermore, avoiding asthma triggers reduces the severity of 
the asthmatic attack [11].

Although the management of these diseases is possible, they remain a health 
threat that need to be monitored over the life span. Indeed, the failure to use appropri-
ate medications or to adhere to treatment can lead to death. Hence, the development 
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of reliable tests for an early and accurate diagnosis, the reduction of the exposure to 
the major risk factors, and prevention strategies to control the progression, exacerba-
tion, and complications of the disease are the essential measure to efficiently manage 
these serious long-term diseases.

10.1.3  �Diabetes

Diabetes is a collection of metabolic diseases characterized by chronic high blood 
glucose levels (hyperglycemia) that, if not well controlled, causes serious damages 
to the whole body (i.e., the heart, blood vessels, eyes, kidneys, and nerves) and other 
long-term consequences that impair the quality of life significantly [12].

The WHO estimates that in 2014 diabetes has affected 422 million people in the 
world, mainly Southeast Asia and Western Pacific Regions, with prevalence among 
adult population. Over the past few decades, diabetes showed a steady rise (the 
incidence of diabetes has quadrupled since 1980), particularly in low- and middle-
income countries, with an increased frequency in children and young people [13]. 
Moreover, in 2012, diabetes was the eighth leading cause of death globally with 3.7 
million deaths, 1.5 million of which directly caused by diabetes and additional 2.2 
million deaths from diseases (i.e., cardiovascular diseases, chronic kidney disease, 
and tuberculosis) related to higher-than-optimal blood glucose [13].

According to the different etiology underlying the insulin deficiency that causes 
hyperglycemia, diabetes has been classified in type 1 diabetes (T1D) and type 2 
diabetes (T2D) [14]. Other conditions characterized by higher-than-optimal blood 
glucose have been described including impaired glucose tolerance (IGT) and 
impaired fasting glycemia (IFG); they are intermediate conditions of hyperglycemia 
that may result in diabetes (mainly T2D). Although these conditions are not estab-
lished diseases, they increase the risk for complications (e.g., CVDs) and have to be 
adequately monitored for life [12]. Additionally, gestational diabetes (GD), which 
is characterized by hyperglycemia and hyperinsulinemia that occur during pregnancy 
and usually remits after pregnancy, has been described as a temporary form of dia-
betes that can be responsible for adverse outcomes during pregnancy, childbirth, 
and future susceptibility to T2D [14, 15].

Concerning T1D, it is characterized by a selective autoimmune destruction of the 
pancreatic β-cells that reduces and eventually eliminates insulin production. 
Commonly with a juvenile onset and with a lesser incidence, it occurs in genetically 
susceptible individuals that are exposed to environmental factors still not well-
defined (hypothetically viral infections, gut microbiota, and specific diet) [16]. In 
contrast, T2D results from gradual depletion in pancreatic β-cells mass and functions 
in response to peripheral insulin resistance that makes the body unresponsive to insu-
lin and stimulates its secretion, thereby leading to β-cell exhaustion from failing to 
compensate the increased insulin demand. Genetic predisposition, ethnicity, older 
age, and environmental risk factors (i.e., overweight/obesity, inadequate physical 
activity, smoking, and poor diet) are the major underlying causes of T2D [13].
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While no prevention strategies have yet been successful for T1D, since its etiol-
ogy is still unknown, T2D is potentially preventable through diet and physical activ-
ity (remarkably more effective than medication) [13]. Besides, even though they are 
chronic progressive diseases, several measures can be carried out to assure long and 
healthy lives for diabetic subjects, including the access to insulin and a strict control 
of glycemia for T1D and lifestyle interventions and early diagnosis for T2D [13]. 
Early diagnosis is particularly important for T2D since its symptomatology is less 
marked than in T1D, and the diagnostic assays generally employed (i.e., fasting 
blood glucose test, oral glucose tolerance tests, measuring glycated hemoglobin) do 
not provide prediabetic and diabetic threshold values [14, 17]. It is noteworthy that 
despite the availability of several diagnostic tests, up to 62 % of T2D cases are undi-
agnosed and untreated [18]. This underscores the need for enhanced diagnostic 
tools to allow the delay or even the prevention of the disease onset and its 
complications.

10.1.4  �Risk Factors

Risk factors for chronic diseases can be gathered into three strongly interrelated 
groups: underlying factors (e.g., globalization, urbanization, socioeconomic deter-
minants, aging), behavioral risk factors (e.g., physical inactivity, alcohol abuse, 
unhealthy diet, tobacco use), and metabolic/physiological risk factors (e.g., hyper-
tension, hyperglycemia, hyperlipidemia, and overweight/obesity) [19].

Urbanization and globalization have greatly influenced the habits of the develop-
ing countries by promoting the rise of untraditional diets; the use of processed foods 
high in saturated fats, salt, and sugar; an increased tobacco and alcohol use; urban 
air pollution; and a more sedentary lifestyle, among others. The chronical exposure 
to these behavioral risk factors then represents the main underlying cause of NCDs 
and premature death. In 2012, alcohol abuse was responsible for 3.3 million deaths, 
with NCDs being responsible for more than half. In addition, tobacco causes six 
million preventable deaths every year, whereas 3.2 million annual deaths have been 
attributed to insufficient physical activity, and 1.7 million annual deaths from CVDs 
were attributed to excess of salt intake [2].

Behavioral risk factors are also responsible for metabolic/physiological altera-
tions including hyperglycemia, hypertension, hyperlipidemia, and overweight/obe-
sity that, in turn, contribute to the progression of the disease toward life-impairing 
complications and premature death.

However, despite the alarming incidence of chronic diseases worldwide, their 
slow evolution and the dependence on modifiable risk factors have influenced pre-
venting measures which are expected to reduce the prevalence of NCDs by 25 % by 
2015 [2].

Among the risk factors for chronic diseases, the condition of being overweight 
and obese is one of the biggest contributors. It can be considered as a model for the 
simultaneous investigation of several risk factors underlying the chronic diseases by 
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providing insights on the interaction patterns that may be responsible for the onset 
of such complex diseases. Indeed, the excess of body weight, which characterizes 
the medical condition of being overweight and obese, results from the interaction of 
genetic and environmental factors and includes at the same time the underlying and 
behavioral risk factors typical of NCDs. Besides, it is usually associated to the met-
abolic and physiological changes, such as hypertension, hyperlipidemia, and hyper-
glycemia, generally present in the NCDs, thereby posing a greater risk for their 
development. Importantly, the increase of NCDs over the years has mirrored the 
prevalence of obesity and overweight (e.g., in 2014, overweight and obesity 
accounted for about 65–80 % of the new cases of T2D in Europe).

10.1.4.1  �Overweight and Obesity

Obesity is a complex condition that affects virtually all age and socioeconomic 
groups, thereby being a global health threat, the “globesity.” In 2014, more than 1.9 
billion adults worldwide were overweight, and over 600 million of which were 
obese, with a predominance of women. Furthermore, according to WHO estimates, 
obesity causes 3.4 million deaths every year, that along with deaths caused by dis-
eases of which obesity is a leading factor, and its strong social and psychological 
impact has placed obesity at the forefront of public health concern [20].

In clinical and epidemiological practice, the body mass index (BMI) is the 
parameter internationally recommended to categorize adult underweight, normal 
weight, overweight, and obesity (see Fig.  10.2). However, since it is an ethnic-
independent measurement, the possibility to employ alternative BMI cutoffs in Asia 
and the Pacific Regions, where the risk of developing chronic diseases is at a lower 
BMI level than populations of European origin, is under evaluation [21].

Moreover, the waist circumference has been employed as additional measure-
ment of obesity for its relationship with the visceral fat which is independent of the 

Fig. 10.2  International classification of adult underweight, overweight, and obesity according to 
BMI [21]
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changes in BMI. It provides sex-specific cutoffs that combined with BMI have dem-
onstrated to have a potential ability to predict the risk of chronic diseases. Indeed, 
higher waist circumference and BMI have been associated with increased risk of 
CVDs and T2D by allowing timely interventions [22].

Currently, behavioral strategies (diet and physical activity) and taxing policies 
(e.g., increased price for sugary beverages and unhealthy food) are the most effi-
cient measures to treat obesity [2]. However, the rapid increase of obesity, particu-
larly in children and developing countries, has boosted the need of strategies aimed 
to preventing and controlling obesity especially in these vulnerable populations. It 
is noteworthy that the incidence of childhood overweight is increasing worldwide 
with 42 million of children (<5 years old) overweight in 2013 [20]. Moreover, child-
hood obesity is strongly associated with higher cardiometabolic risks in adoles-
cence and higher morbidity and mortality from NCDs, mainly T2D and CVDs, in 
adulthood [23–25]. Hence, reducing the prevalence of obesity in children would 
have a long-term effect on reducing the prevalence in adults as well as on the sus-
ceptibility to chronic diseases later in life. Importantly, considerable evidences have 
highlighted that chronic disease risk is present from fetal life and continues cumu-
latively during the life span [26–29]; life-course investigation and interventions are 
thus essential in order to face and control the incidence and the premature mortality 
from NCDs.

10.2  �Metabolomics and Chronic Diseases

The development of chronic diseases is a complex process. NCDs are character-
ized by a progressive dysfunction of metabolic and physiological functions in 
response to chronical exposure to lifestyle factors. From an evolutionary per-
spective, the rapid cultural change has far outpaced the genetic adaptation by 
generating a mismatch between the human evolution and the daily life, thereby 
increasing the susceptibility to chronic diseases [30]. Moreover, because of the 
polygenic nature of human traits and their adaptive nature, the phenotypic expres-
sion of such diseases turned out to be heavily affected by the environment; NCDs 
are indeed considered as a physiological adaptation of the body homeostasis to 
harmful lifestyle behaviors.

Thus, metabolomics, which measures the entire set of metabolites of a wide 
range of biological specimen in a certain time and under particular conditions [31, 
32], has emerged as a versatile and valuable tool to investigate the etiology and the 
pathophysiology of such complex diseases [33]. Indeed, since it is the most proxi-
mal to the phenotype among the omics, it offers the possibility to investigate meta-
bolic pathways that play a role in the overall metabolic dysfunction underlying 
NCDs (either before their onset or during their progression).

Over the years, metabolomics has addressed the investigation of chronic diseases 
by providing an integrated perspective on how metabolites interact in response to 
specific exposures by characterizing metabolic signatures of the diseases [34–37]. 
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Besides, metabolomics has demonstrated predictive, diagnostic, and prognostic 
capabilities that have enabled the study of factors influencing the onset and progres-
sion of chronic diseases [38–40]. Metabolomics studies can be indeed classified 
according to these qualities depending on whether the focus of the study was on the 
identification of the subjects more susceptible to develop a certain disease in the 
future, on the early detection of a currently occurring disease, and on the determina-
tion of features able to predict the disease outcome or the efficacy of a treatment, 
respectively [40].

Thus, while predictive studies have the power to tackle the growth of the chronic 
diseases by anticipating their onset, diagnostic and prognostic studies are able to 
improve the management of an already overt disease, by preventing its adverse out-
come. To achieve this goal, predictive studies require large cohorts (i.e., several 
thousands of participants), where initially healthy subjects are monitored through a 
large period of time (i.e., over 10 years) in prospective study designs. During the 
follow-up period, then, a limited number of healthy subjects will develop the dis-
ease by allowing the identification of risk factors, which are strongly related to the 
disease onset [41] (see Sect. 10.5.3 for more details on the major prospective studies 
of chronic diseases investigated by metabolomics approaches). Concerning diag-
nostic and prognostic studies, they employ instead cross-sectional studies aimed to 
identify biomarkers that allow tracking of the disease state in order to achieve a 
more effective patient stratification and a more accurate characterization of the dis-
ease outcome and the monitoring of the treatment’s effectiveness [42].

Novel biomarkers, thus, hold the promise to be relevant tools in the clinical setting 
(in combination, or not, with traditional biomarkers) by driving a more effective deci-
sion-making process that helps the physician in the daily clinical practice. Additional 
information on the contribution of metabolomics strategies in the ambit of biomarker 
discovery for chronical diseases will be discussed in detail in the following section.

10.3  �Metabolomics and Biomarker Discovery

Biomarkers are classified as screening, diagnostic, and prognostic according to their 
capability on detecting a future disease, a suspected disease, and the progression or 
remission of overt disease, respectively [43]. Since many diseases result in characteristic 
changes in the metabolite profiles, several metabolites have been employed as reliable 
biomarkers for decades [44–47]. Over the last few years, high-throughput technologies 
such as metabolomics, which broaden the coverage of the metabolome, have been 
applied with more frequency in the field of the biomarker discovery [33, 41, 48].

An ideal biomarker should be safe and easy to measure, cost-effective during 
both the discovery and the follow-up processes, and consistent across genders and 
different ethnicities [43]. Regarding the use of metabolites as diagnostic markers, 
one of the major challenges in metabolomics is the validation of the compounds 
statistically significant in small sets of well-selected samples, in a big cohort. While 
there are numerous screening studies in metabolomics research producing potential 
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biomarkers, most of the identified biomarkers have failed to replace existing clinical 
tests. To become a clinically approved test, a potential biomarker should be con-
firmed and validated using hundreds of individuals and should be reproducible, spe-
cific, and sensitive. The reproducibility is assured by validating the biomarkers in 
other study samples, preferably from an independent cohort. In contrast, concerning 
sensitivity and specificity, they are essential features of a biomarker as they measure 
the biomarker’s ability to correctly detect subjects with the target condition (true 
positive rate) and without the target condition (true negative rate), respectively. 
They are generally computed through the receiver operating characteristic (ROC) 
curve analysis which provides the C-statistics or area under the curve (AUC) as a 
measure of the predictive ability of the biomarker model with values that range from 
0.5 (random classification) to 1.0 (perfect classification) [49, 50].

However, in multifactorial disorders such as NCDs, single biomarkers rarely 
own high values of specificity and sensitivity; therefore, a multiple biomarker 
approach has been increasingly employed over the years to select the simplest com-
bination of biomarkers that produces an effective predictive outcome [43].

Biomarkers (alone and more frequently in combination) can be further employed 
to generate risk scores as an estimate of the individual’s risk of developing a certain 
disease in the future. The risk scores are usually generated within prospective stud-
ies that allow exploring the contribution of a new biomarker in an already existing 
predictive model [51]. This assessment is carried out by evaluating the discrimina-
tion power of the new model (model discrimination), the agreement between the 
observed outcome and the expected risk (model calibration), and the possibility to 
refine the stratification of the population into more pragmatic risk categories (i.e., 
reclassification of the subjects from an intermediate risk level to either an upper or 
lower risk level, risk reclassification) [52, 53].

Indeed, it is important to point out that for a metabolite to be employable as a 
biomarker other than in the clinical research, it has to prove to strengthen the predic-
tive model beyond that achieved by conventional biomarkers that are employed in 
the clinical practice [43].

The discovery of new biomarkers is therefore a challenging task that metabolo-
mics has addressed only recently by providing promising findings mainly in the 
field of hypothesis-generating biomarkers. This typology of biomarkers, which is 
focused on explaining the pathophysiological mechanisms underlying a disease, 
aims to understand the metabolic alteration associated with a disease with the ulti-
mate goal of driving the discovery of a more efficient and personalized treatment or 
the design of new drugs from an informed perspective.

10.4  �Study Design and Analytical Considerations

Regarding the workflow in metabolomics, researchers in the field do not agree upon 
the terms, not only for metabolomics and metabonomics, which were originally 
considered as different definitions that nowadays are used indistinctively [31, 32, 
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54], but also for the approach employed (i.e., fingerprinting, global profiling, profil-
ing, among others). Hence, in order to simplify, in the present chapter, they will be 
referred to as targeted or untargeted metabolomics.

In the targeted approach, specific metabolites of known identity are analyzed. In 
mass spectrometry (MS), this often involves the addition of multiple stable isotope-
labeled standards to the biological sample prior to the extraction and derivatization 
steps to control for differences in analyte loss during sample processing and to com-
pensate for ionization-suppression effects. Advantages of targeted methods are that 
(i) identification of compounds is straightforward and (ii) metabolites can be quanti-
fied. A disadvantage is their limited metabolite coverage that can include from a 
small set to several hundred metabolites.

In contrast, untargeted metabolomics involves the simultaneous measurement of 
as many metabolites as possible in a biological specimen. This approach is gener-
ally used in differential analysis of two or more biological or clinical states/treat-
ments; the report consists of differences between the states and is based on signal 
abundances of raw spectral data. The chemical identity of the signals is not known 
a priori, and significant chemical/spectral analysis must be performed to define the 
molecular species. It is noteworthy to point out that while semiquantitative data can 
be employed in the discovery phase, quantitative data is paramount for implementa-
tion in the clinical practice.

In a standard metabolomics workflow, metabolites can come from any biofluid or 
tissue after convenient extraction and can be detected using various chemical detec-
tion platforms including MS and nuclear magnetic resonance (NMR) as the most 
important. Notably, due to the chemical diversity of the metabolites, no single analyti-
cal technique is able to cover the entire metabolome; therefore, whenever possible, a 
combination of platforms has been increasingly applied over the last few years. The 
multiplatform approach, indeed, broadens the metabolite coverage and at the same 
time allows a mutual cross validation of the metabolites that are detected in more than 
one analytical technique. Concerning NMR, it has the potential for high-throughput 
fingerprinting, minimal requirements for sample preparation, robustness of the 
response, and nondestructive nature of the technique. However, only medium to high 
abundance metabolites will be detected with this approach, and the identification of 
individual metabolites based on chemical shift signals, which cause sample clustering 
in multivariate analysis, is challenging in complex mixtures. MS-based metabolite 
detection is instead a powerful tool for investigations of metabolism due to its sensitiv-
ity for low-abundant molecules and flexibility for the detection of multiple chemical 
molecular classes. MS detection platforms are biased in their compatibility of a par-
ticular molecule with a mode of ionization or detection. The ability to globally profile 
highly complex mixtures of plant extracts is enhanced by coupling chromatography 
with MS detection. Thus, a “metabolomics platform” refers to the combination of a 
separation technique and MS. The most commonly utilized metabolomics platforms 
include liquid chromatography–mass spectrometry (LC-MS), gas chromatography–
mass spectrometry (GC-MS), and capillary electrophoresis–mass spectrometry (CE-
MS). Following data acquisition and processing, MS-metabolomics data is often 
expressed as a matrix of molecular features defined by (i) elution time, (ii) mass 
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(mass/charge ratio), and (iii) abundance of the mass signal. Annotating the detected 
molecular feature as a metabolite is the major bottleneck in MS-metabolomics work-
flows [55].

10.5  �Metabolic Signatures of Chronic Diseases

In the past decade, metabolomics has made remarkable progress in providing new 
insights into the systemic alteration underlying NCDs: (1) disease-related metabo-
types have been described that reflect changes in metabolites (i.e., amino acids, 
lipids, and organic acids) in body fluids, organs, and/or tissues as consequence of 
disease or disease-related conditions; (2) the role of new contributors (i.e., gut 
microbiome) in the development and progression of NCDs has been unveiled; (3) 
markers of the disorder’s onset, progression, and prognosis have been identified in 
prospective metabolomic-based studies. The metabolic signature of chronic dis-
eases that arises from these discoveries (Fig. 10.3) will be described in the following 
sections by focusing both on metabolites and metabolic pathways.

10.5.1  �Metabotypes of NCDs

In 2009, Newgard et al. described for the first time a metabotype of obesity and 
insulin resistance (IR) characterized by the increase in branched-chain amino 
acids (BCAA, i.e., leucine, isoleucine, and valine) and related metabolites (i.e., 
propionylcarnitine (C3), isovalerylcarnitine (C5), glutamate) in mice ingesting a 
high-fat diet [36]. This finding was then corroborated by subsequent studies in 
obese and/or diabetic humans and rodents, by identifying BCAA and their by-
products, mainly short-chain acylcarnitines, as sensitive metabolic marker of obe-
sity, IR, and future T2D [56–58]. Interestingly, consistent with these studies, an 
improvement in insulin sensitivity associated with lower BCAA levels was 
described for subjects undergoing weight-loss interventions (i.e., dietary, behav-
ioral, bariatric surgery) [59, 60].

Various hypotheses have been proposed for the increase of BCAA and related 
catabolites in obese and or/diabetic subjects including an increased protein intake, 
increased proteolysis, reduced protein anabolism, or impaired mitochondrial 
catabolism. While several studies have ascribed only a marginal role to the first 
four processes [61–63], the altered BCAA catabolism has been suggested as the 
principal mechanism underpinning such changes [58]. Recent findings have high-
lighted a decrease in BCAA-catabolizing enzymes (e.g., branched-chain alpha-
keto acid dehydrogenase, BCKDH) in the fat and liver of obese genetically 
modified mice and rats; insulin was also linked to BCAA catabolism through its 
action on the hypothalamus [64]. Shin et al. indeed pointed out an inducing effect 
on the hepatic BCKDH, mediated by the insulin signaling in the brain that was 
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found to be responsible for lowering the plasma levels of BCAA, thereby suggest-
ing for the BCAA a role as marker of hypothalamic IR.

The detrimental effects mediated by BCAA have been attributed to their role on 
the overactivation of the mTOR (mammalian target of rapamycin) pathway which 
induces hepatic IR, thus worsening the systemic insulin signaling [65]. High levels 
of BCAA were also found to affect the fatty acids oxidation (FAO); the hepatic 
BCKDH is indeed involved in the catabolism of both BCAA and acylcarnitines, and 
in the case of high BCAA levels, it resulted to be overloaded, thereby producing 
incomplete FAO by-products (i.e., short-chain acylcarnitines) [66]. These metabo-
lites then have been related to the mitochondrial stress and impaired insulin signal-
ing that characterize T2D [67].

Further alterations in the amino acid metabolism were found to be associated to 
CVDs and/or related conditions. Wang et al. postulated that an increase in methyl-
ated arginine species (i.e., N-mono-methylarginine, asymmetrical dimethylargi-
nine, and symmetrical dimethylarginine), which are related to the inhibition of the 
nitric oxide production, may serve as a marker of increased risk of coronary artery 
disease, myocardial infarction, and stroke [68], whereas Wang et  al. revealed 

Fig. 10.3  Metabolic signatures of chronic diseases unveiled by metabolomics. Abbreviations: 
BCAA branched-chain amino acid, S-AMP adenylosuccinate, BAIBA beta-aminoisobutyric, ArAA 
aromatic amino acids, PC phosphocholine, LysoPCs lysophosphocholines, LysoPEs lysophospho-
ethanolamines, FAHFAs fatty acid esters of hydroxy fatty acids, 2AA 2-aminoadipic acid, TMAO 
trimethylamine N-oxide
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changes in the levels of amino acids (glycine, lysine, and cysteine, particularly) in 
young hypertensive men by shedding light on metabolic variations taking place at 
an early stage of hypertension [69].

Changes in amino acid metabolism have been reported also for chronic respira-
tory diseases: Wedes et al. identified the urinary metabolite bromotyrosine, which is 
generated by the enzyme eosinophil peroxidase, as a noninvasive marker of future 
asthma exacerbation in children [70]; Jung et al. described alteration in metabolites 
(i.e., increase in methionine, glutamine, and histidine and decrease in acetate, cho-
line, and arginine) in serum of asthma patients [71]; finally, several studies reported 
a decrease in plasma BCAA in COPD patients concomitant to cachexia [72–74].

A further example of metabotype of respiratory chronic diseases comprises of 
metabolites of the TCA cycle (i.e., succinate, fumarate, oxalacetate, cis-aconitate, 
and 2-oxoglutarate) that were found to be increased in urine and/or serum of asth-
matic patients [71, 75]. High levels of lactate were also found in this patients by 
supporting the hypothesis of an upregulation of the TCA cycle due to a greater effort 
to breathe for the patients with a reduced oxygenation concomitant to the disease 
exacerbation [75].

An additional metabotype made up of lipids (i.e., mainly phospholipids and fatty 
acids) and illustrative of T2D, CVDs, and related conditions has emerged over the 
years by metabolomics and lipidomics approaches.

Phospholipids (PL) are an important class of lipids involved in NCDs. Generally 
described as the main components of the cellular membranes and lipoproteins (HDL 
and LDL mainly), they are involved in various metabolic pathways including sig-
naling events and inflammation that are usually underlying NCDs and their related 
conditions. For instance, Ha and colleagues reported an altered lipid profile com-
prising of several PL metabolites, namely, six lysophosphocholines (LysoPCs 
C14:0, C16:1, C18:1, C18:3, C20:5, and C22:6) and three lysophosphoethanol-
amines (LysoPEs C18:1, C18:2, and C22:6), in case of diabetes; the lipid profile 
was also found to correlate to inflammation, oxidative stress, and future diabetes-
related complications (i.e., arterial stiffness) [76]. Interestingly, also other LysoPCs 
(predominantly with long-chain acyl groups, C ≥ 16) were found to be elevated in 
prehypertensive young men; these lipids then were described to be highly associ-
ated with oxidized LDLs, thereby featuring an increased oxidative stress and inflam-
mation process as potential predictors of future hypertension, atherosclerosis, and 
CVDs [77].

High levels of fatty acids (i.e., palmitic acid, stearic acid, and oleic acid, among 
others) have been also associated to increased risk for T2D and CVDs. Yang et al. 
proposed a link between serum docosahexaenoic, palmitic, and palmitoleic acids 
and prevalence of hypertension [78]. Increased levels of free fatty acids and their 
oxidized by-product (beta-hydroxybutyrate, acetoacetate, and acetone) have been 
also associated to T2D and heart failure [79, 80]. Of note, a new class of fatty acids 
has been recently discovered by untargeted lipidomics, namely, the fatty acid esters 
of hydroxy fatty acids (FAHFAs) that consist of a combination of four fatty acids 
(FA) and four hydroxy fatty acids (HFA) [81]. FAHFAs were described to be pres-
ent in food, synthesizable by mammalian, and at low levels in obese/insulin-resistant 
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humans and mice. Besides, conversely to other fatty acids, FAHFAs were described 
to exert a plethora of beneficial effects on diabetic-related conditions including the 
enhancement of glucose uptake from the bloodstream, improvement of insulin 
secretion and sensitivity, and reduction of inflammation. The FAHFAs’ discovery 
represents therefore an important breakthrough in the field of NCDs and a great 
example of the potential of metabolomics for opening new avenues for the investi-
gation of uncharacterized biochemical pathways in human physiology and diseases 
as well as proposing therapeutic targets for an alternative treatment of metabolic 
diseases.

10.5.2  �New Contributors in Chronic Diseases

The gastrointestinal tract comprises around 1013 cells (1,183–3,180 bacterial phy-
lotypes) in adult’s intestinal microbiome [82], which means 3 × 106 genes (130-fold 
higher than the number in human body) for a metabolically active organ that has 
been proposed as one of the major contributors to human health and disease. Indeed, 
accumulating evidences highlighted the crucial role of the gut microbiota on the 
development of chronic diseases (mainly T2D and CVDs) and related conditions 
(obesity, IR, and atherosclerosis, among others) by its action in several metabolic 
pathways including lipid metabolism, inflammation, energy metabolism, and insu-
lin signaling [83, 84]. In seminal work, Turnbaugh and colleagues demonstrated 
that the transplant of microbiota from obese mice to germfree recipients was able to 
transfer the obese phenotype to the recipients that indeed experienced an increased 
weight gain in comparison to the mice that received a “lean microbiota” [85]. This 
study represented an important new insights into the role of the microbiome in the 
development of a disease or diseases-related condition. Since then, several studies 
have been carried out to investigate the gut microbiota and its relationship with 
health and diseases. Concerning the metabolomic-based investigations, various 
metabolites mirroring the action of the microbiome have been uncovered by provid-
ing new insights into how the microbiota interacts with the host and which meta-
bolic pathways are involved in the gut–host cross talk [86].

Wang et al. identified a novel metabolite, namely, the trimethylamine N-oxide 
(TMAO), with a pro-atherogenic action that was found to be generated by the action 
of the gut microbiota on the dietary phosphatidylcholine (PC) [68]. Dietary PC is 
indeed the main source of the TMAO’s precursors (i.e., choline and betaine) that 
have been previously related to risk for CVDs (i.e., lower levels of choline and 
higher CVD risk). Together these metabolites were also described to increase the 
risk for future cardiovascular events, thereby unveiling an important link between 
dietary intake of lipids, gut microbiota, and future CVD events. Of note, high levels 
of TMAO were also found in the urine of T2D patients by highlighting the potential 
of these metabolites for alternative therapeutical approaches [87]. A further exam-
ple of microbiota-derived metabolites that play a major role in the host metabolism 
is represented by secondary bile acids (BAs, deoxycholate, and lithocholate, among 
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others) which are generated in the gut by the action of the microbiota and reab-
sorbed from the distal ileum through the enterohepatic circulation. BAs have been 
described as signaling molecules through their interaction with the farsenoid X 
receptor and the G-protein-coupled receptor TGR5 in the liver and adipose tissue, 
thus involved in the lipid and glucose homeostasis of the host [88]. Besides, the 
altered bile acid pool has been described as an underlying condition of various dis-
ease and disease-related states. For instance, Zhao and colleagues reported high 
levels of glycochenodeoxycholic acid in plasma of impaired glucose-tolerant sub-
jects [89]; Mastrangelo et al. identified in the increased of taurodeoxycholic acid 
and glycochenodeoxycholic acid in serum samples of obese children a marker of IR 
state [90]; and Shure et al. identified an altered bile acids pool (low levels of cholic 
and muricholic acids and increased deoxycholic acid) in diabetic patients of the 
KORA cohort [91] (see Sect. 10.5.3).

Together with the influence of the gut microbiota, other novel contributors to 
NCDs have been uncovered by metabolomics, namely, the adenylosuccinate 
(S-AMP) and the beta-aminoisobutyric acid (BAIBA) that have been associated 
with T2D and cardiometabolic risk factors, respectively [92, 93]. While Gooding 
et al. unveiled a novel action of S-AMP as a glucose-derived amplifying stimulus of 
insulin secretion, Roberts et al. showed a fascinating effect of BAIBA (by-product 
of the catabolism of thymine or valine) on the browning of the white fat and on the 
stimulation of the beta oxidation in hepatocytes via PPAR-alpha. Briefly, Gooding 
et al. demonstrated the effect of glucose on the production of S-AMP (intermediated 
of the purine/nucleotide pathway) via the pentose phosphate pathway; they have 
also highlighted the stimulating action mediated by S-AMP on insulin secretion 
from human pancreatic beta cells upon normal and diabetic conditions, thereby 
showing a striking ability on rescuing the T2D-impaired secretory function in beta 
cells and suggesting a novel target for therapies. Roberts and colleagues instead 
discovered a novel effect of the BAIBA on the expression of the genes coding for 
brown adipocytes in murine white adipocyte and in human pluripotent stem cells 
during the differentiation to mature adipocytes; they also found an increase of the 
BAIBA during physical activity and a further inverse correlation of the BAIBA to 
cardiometabolic risks by suggesting new metabolic pathways related to the benefi-
cial effect of physical activity.

10.5.3  �Metabolomics in the Epidemiological Setting

Prospective studies are important tools in the epidemiological setting to investigate 
the etiology of a disorder; indeed they offer the possibility to study a large cohort of 
subjects (i.e., thousands of participants) over a period of time (usually for years) by 
allowing the determination of the disease outcomes from initially healthy subjects 
and the eventual association with lifestyle risk factors to which they are exposed. An 
overview of the typical prospective study design is depicted in Fig. 10.4. The major 
prospective studies developed in the last years to address the investigation of NCDs 
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and lifestyle biomarkers by a metabolomics strategy are described in the following 
paragraphs, and their main characteristics and findings are summarized in Table 10.1 
and Fig. 10.5, respectively.

The Framingham Heart Study (FHS) is the first longitudinal study aimed to 
identify the common factors that contribute to CVD. The original cohort (5,209 
men and women between the ages of 30 and 62 from Framingham, Massachusetts) 
was recruited in 1948 and followed up every 2 years. Further cohorts were also 
included (the Offspring Cohort in 1971, the Third Generation Cohort in 2002, the 
Omni Cohort in 1994, and the Second Generation Omni Cohort in 2003), for a 
total of over 15,000 participants for a study that is still ongoing [105]. The study, 
led by the National Heart, Lung, and Blood Institute, in collaboration with Boston 
University, has generated a variety of graded risk scores to estimate the risk of 
several cardiovascular diseases 10–30 years in advance by using a sex-specific 
algorithm that includes smoking habits, blood pressure levels, age, and family 
history of CVD events, among others [106]. Over the years, new technologies 
have emerged and successfully employed in the investigation of the Framingham 
cohorts. Among the metabolomic-based studies, accurate predictors of future car-
diovascular disease, diabetes, and metabolic syndrome (including obesity, dyslip-
idemia, and dysglycemia) were uncovered by studying the offspring and the 
third-generation cohorts. Concerning the risk assessment for diabetes, in 2011, 

Fig. 10.4  Flowchart of a prospective study design
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Wang et al. described fasted levels of five amino acids (i.e., isoleucine, leucine, 
valine, tyrosine, and phenylalanine), at a baseline exposure, as highly associated 
with future onset of diabetes, particularly in predisposed subjects (i.e., obese and 
with high fasting glucose levels) [42]. They further uncovered that a combination 
of three amino acids (i.e., isoleucine, phenylalanine, and tyrosine), the so-called 
diabetes-predictive amino acid score (DM-AA score), predicted future diabetes 
up to 12 years in advance (four- to fivefold higher risk for individuals with the 
highest amino acids score). The findings were also replicated in an independent 
cohort study, the Malmö Diet and Cancer study (MCD, see below), by demon-
strating their generalizability. Notably, a further link was uncovered in the same 
study population between the double-bond content and the carbon chain length of 
lipids (mainly triglycerides) and the risk of diabetes: lipids of lower/higher carbon 
number and double-bond content are associated to an increased/decreased risk of 
future diabetes (12  years in advance) [94]. In 2012, Cheng et  al. identified an 
association between tryptophan metabolism by-products with future CVDs; 
besides, they confirmed the previous findings for the DM-AA score and uncov-
ered a further metabolite (glutamine) as inversely related to future risk of diabetes 
[95]. In 2013, Wang et  al. unveiled a further metabolite (2-aminoadipic acid, 
2-AAA) as strongly associated with future diabetes (up to 12 years in advance), 
both in the discovery (FHS) and replication (MCD) cohorts [96]. Subsequent 
studies on cell-based and animal models have suggested that the 2-AAA might be 
involved in the stimulation of insulin secretion in pancreatic β-cells and the modu-
lation of glucose homeostasis in vivo, respectively [96]. Finally, in 2016, Yin et al. 
investigated the relationship between metabolic profiles, at the baseline level, 

Fig. 10.5  Venn diagram illustrating the metabolites found to be associated with diabetes, cardio-
vascular disease, obesity, and/or dyslipidemia by prospective studies investigated by metabolo-
mics. Bold metabolites were found to be increased in one of the four conditions understudy, 
whereas underlined metabolites were found to be highly associated with insulin resistance
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with risk factors of the metabolic syndrome including obesity, dyslipidemia, and 
dysglycemia [97]. They discovered longitudinal associations between several 
metabolites, such as lipids [e.g., lysoPA(16:0), sphingomyelins, and sitosterol] 
and organic acids (e.g., quinic acid), with one or more features of the metabolic 
syndrome.

The European Prospective Investigation into Cancer and Nutrition (EPIC) is a 
prospective cohort with more than 521,000 study participants (men and women, 
between 35 and 70 years old) enrolled from 23 centers in ten Western European 
countries. Originally designed to explore the association between nutrition and can-
cer, it has included over the years the investigation of other chronic diseases such as 
CVDs and T2D. At the enrolment (1992–1999), detailed information on diet, life-
style characteristics, anthropometric measurements, and medical history was col-
lected; blood samples were also taken and stored in liquid nitrogen at the International 
Agency for Research on Cancer – World Health Organization [107]. Among the 
NCDs investigated, the association between cancer and diet has been the most stud-
ied, whereas upon the study of CVD and T2D and their risk factors, only two cohorts 
were used, namely, a selection of the MDC cohort, the MDC Cardiovascular Cohort 
(MCD-CC, 6,103 participants), and the EPIC-Potsdam cohort (27,584 participants), 
respectively [108, 109]. Concerning the MCD-CC, it was predominantly employed 
to replicate the findings of the FSH study, thereby describing a metabolic profile for 
diabetes and cardiovascular diseases’ prediction. In 2013, the MCD-CC was also 
used by Magnusson et  al. to investigate the predictive capability of the DM-AA 
score described by Wang et al. (see above) both for the onset and the consequences 
of a CVD event [98]. They found that the DM-AA score was able to predict CVD 
events (12 years in advance) by suggesting a possible link between diabetes and 
CVDs. Besides, a link between the amino acid score and an increased propensity 
toward atherosclerosis and inducible ischemia was unveiled. In the same year, 
Floegel et al. described for a subcohort of the EPIC-Potsdam study (2,500 selected 
randomly subjects and 800 T2D cases) a significant association between serum 
metabolites both with increased risk of T2D (e.g., hexose, phenylalanine, and 
diacyl-phosphatidylcholines) and decreased risk of T2D [i.e., glycine, SM(18:0/16:1), 
LPC(18:2), and alkyl-phosphatidylcholines] [99]. These metabolites were further 
included in the predictive model of the German Diabetes Risk score (i.e., ROC AUC 
from 0.847 to 0.912), thereby demonstrating their value as biomarkers. The results 
were then successfully replicated in the prospective KORA study (see below). The 
EPIC-Potsdam subcohort was further employed in 2015 to generate a nested case–
control study for the investigation of the pathophysiology of T2D by using an untar-
geted approach [100]. Alteration in serum carbohydrates (e.g., hexoses), purines 
(e.g., isopentanyladenosine-5-monophosphate), and phospholipids [e.g., LPC(16:0)] 
was found to predict the onset of T2D up to 6 years in advance. Finally, the EPIC-
Potsdam cohort was investigated to evaluate the effect of the specific food consump-
tion (i.e., coffee and red meat) and the incidence of T2D [101, 102]. Sex-specific 
correlations were found by showing an inverse trend between coffee and T2D risk 
only in men and different metabolic profiles according to sex both for coffee and red 
meat consumption. Concerning the coffee consumption, only phenylalanine was 
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found to be slightly associated to T2D, whereas ferritin, glycine, and some lipids 
[i.e., PC(36:4), LPC(17:0), and SM(14:1)] were found to reflect both red meat con-
sumption and increased risk for T2D.

The multinational monitoring of trends and determinants in cardiovascular dis-
ease (MONICA) is a WHO-funded project aimed to monitor the common risk fac-
tors (i.e., cigarette smoking, hypertension, obesity, total cholesterol) leading to 
CVD; a total of 38 populations and 21 countries from all over the word were 
included in the project, and more than ten million of men and women (25–64 years 
old) were surveyed (overall period covered: 1979–1996) [110]. Although the 
MONICA project ended in 1996, the survey on the Augsburg cohort continued and 
derived into the MONICA/Cooperative Health Research in the Region Augsburg 
(KORA) study (18,000 participants) that added the study of diabetes to the investi-
gation of CVDs. The MONICA/KORA study comprises of four surveys (S1 to S4, 
from 1996 to 2001) that were performed with a 5-year interval and followed longi-
tudinally between 4 and 20 years [111]. In 2010 the first metabolomic-based study 
was performed on a subset of the KORA F3 cohort (40 cases and 60 controls, males, 
over 54-year-old) [91]. This pilot study replicated the findings of known biomarkers 
of diabetes (i.e., BCAA, sugar metabolites, ketone bodies) and identified novel 
metabolites (i.e., 3-idroxyl sulfate, glycerophospholipids, free fatty acids, and bile 
acids) related to diabetes under subclinical condition. In 2012, then Wang-Sattler 
et al. investigated a subset of the KORA S4/F4 cohort (876 participants) by unravel-
ing three metabolites (i.e., glycine, LPC(18:2), and acetylcarnitine) as markers of 
prediabetes [38]; the findings were replicated in the EPIC-Potsdam cohort by 
describing a role for glycine and LPC(18:2) as marker both of prediabetes and 
T2D. Besides, the KORA S4/F4 cohorts (S4 n = 4,261, F4 n = 3,080) were further 
investigated to explore the relationship of the metabolic profile with risk factors for 
T2D and CVDs including hypertriglyceridemia and obesity: Mook-Kanamori et al. 
highlighted increased levels of amino acids (i.e., leucine, valine, arginine, proline, 
and phenylalanine) as related to high levels of triglycerides both at the baseline and 
at 7 years follow-up [103], whereas Wahl et al. identified in dyslipidemia (altered 
lipoproteins and triglycerides) and modulated amino acids metabolism (mainly 
BCAA) the features of a potential mitochondrial dysfunction underlying long-term 
weight change [104]. Finally, a further prospective study that derives from the 
MONICA project and employs a metabolomics approach, namely, the National 
FINRISK Study (7,256 participants, overall period 1972–2012) [112], was explored 
by Wurtz et al. by identifying serum level of phenylalanine, monounsaturated fatty 
acids, omega-6 fatty acids, and docosahexaenoic acid as hallmarks for future CVDs. 
The results were further validated in two independent UK cohorts (i.e., Southall and 
Brent REvisited cohort and British Women’s Heart and Health Study cohort) [37].

The Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-
points (ECLIPSE) is a 3-year longitudinal study conducted at 46 centers in 12 coun-
tries. A total of 2,180 COPD patients (men and women aged 40–75, under medication) 
were surveyed every 3 months in order to identify predictors of the COPD progression 
and improve the discrimination of the COPD subtypes [113]. In 2012, Ubhi et al. 
employed a subset of the ECLIPSE cohort for two metabolomic-based investigations 
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that unraveled changes in the metabolism of several amino acids (e.g., serine, sarco-
sine, tryptophan, BCAAs, and 3-methylhistdine, among others) that enabled the strati-
fication of COPD patients (i.e., smoker vs. nonsmokers, patients with and without 
emphysema or with and without cachexia) [73, 114]. Although these findings pro-
vided valuable information in the partially/merely explored field of respiratory chronic 
diseases, none of the metabolomic-based studies investigated the ECLIPSE cohort 
longitudinally, and markers of disease progression and patient’s outcome are still 
lacking to date.

10.6  �Concluding Remarks

Through this chapter we have highlighted the versatility and the striking potential of 
metabolomics to provide new advances in the field of chronic diseases: disease-
related metabotypes were described; crucial players involved in the NCDs are 
unveiled; and finally, a long-term perspective on the disease’s progression was 
pointed out. Even though several limitations still need to be addressed (i.e., the 
improvement of the metabolite identification, the exploiting of the synergies 
between different omics, and the effective use of metabolomics in clinical practice, 
among others), the metabolic signature of diseases that is revealed by the study of 
NCDs is a clear demonstration of the importance of this discipline, not only for 
NCDs but also in the wider context of the human health. The metabolic alterations 
are indeed potentially detectable, understandable, and ultimately treatable by a 
metabolomic-based strategy that thus holds the promise to drive a paradigm shift 
toward the tailoring of the therapy on the altered metabolic pathways rather than on 
the disease’s symptomatology.
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Chapter 11
Lipidomics, Biomarkers, and Schizophrenia: 
A Current Perspective

Sumit Sethi, Mirian A.F. Hayashi, Banny S. Barbosa, João G.M. Pontes, 
Ljubica Tasic, and Elisa Brietzke

Abstract  Lipidomics is a lipid-targeted metabolomics approach aiming at compre-
hensive analysis of lipids in biological systems. Recent technological progresses in 
mass spectrometry, nuclear magnetic resonance spectroscopy, and chromatography 
have significantly enhanced the developments and applications of metabolic profil-
ing of lipids in more complex biological samples. As many diseases reveal a notable 
change in lipid profiles compared with that of healthy people, lipidomics have also 
been broadly introduced to scientific research on diseases. Exploration of lipid bio-
chemistry by lipidomics approach will not only provide insights into specific roles 
of lipid molecular species in health and disease, but it will also support the identifi-
cation of potential biomarkers for establishing preventive or therapeutic approaches 
for human health. This chapter aims to illustrate how lipidomics can contribute for 
understanding the biological mechanisms inherent to schizophrenia and why lipids 
are relevant biomarkers of schizophrenia. The application of lipidomics in clinical 
studies has the potential to provide new insights into lipid profiling and pathophysi-
ological mechanisms underlying schizophrenia. The future perspectives of lipido-
mics in mental disorders are also discussed herein.
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Abbreviations

AA	 Arachidonic acid
APCI	 Atmospheric pressure chemical ionization
BD	 Bipolar disorder
BMI	 Body mass index
CE	 Cholesteryl ester
Cer	 Ceramide
CNS	 Central nervous system
COX	 Cyclooxygenase
DG	 Diacylglycerol
DHA	 Docosahexaenoic acid
ELSD	 Evaporative light-scattering detector
ESI	 Electrospray ionization
FA	 Fatty acyl
FFA	 Free fatty acid
FID	 Flame ionization detector
FTICR	 Fourier transform ion cyclotron resonance
GC	 Gas chromatography
GL	 Glycerolipid
GP	 Glycerophospholipid
GPA	 Glycerophosphatidic acid
HDL	 High-density lipoprotein
hexCer	 Monohexosylceramide
HNE	 4-Hydroxynonenal
HPLC	 High-performance liquid chromatography
IM-MS	 Ion mobility-mass spectrometry
LDL	 Low-density lipoprotein
LOX	 Lipoxygenase
LPC	 Lysophosphatidylcholine
LPE	 Lysophosphatidylethanolamine
LPO	 Lipid peroxidation
MALDI	 Matrix-assisted laser desorption/ionization
MS	 Mass spectrometry
MS	 Mass spectrometry
MS/MS	 Tandem mass spectrometry
NAPS	 N-acyl-phosphatidylserine
NMR	 Nuclear magnetic resonance
NPLC	 Normal-phase liquid chromatography
PA	 Phosphatidic acid
PC	 Phosphatidylcholine
PE	 Phosphatidylethanolamine
PG	 Phosphoglycerol
PI	 Phosphatidylinositol
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PK	 Polyketide
Pl	 Plasmalogen
PL	 Phospholipid
PLA2	 Phospholipase A2 PS: Phosphatidylserine
PR	 Prenol lipid
PS	 Phosphatidylserine
PUFA	 Polyunsaturated fatty acid
Q	 Quadrupole
RBC	 Red blood cell
ROS	 Reactive oxygen species
S1P	 Sphingosine-1-phosphate
SCZ	 Schizophrenia
SL	 Saccharolipid
SM	 Sphingomyelin
SP	 Sphingolipid
SPE	 Solid-phase extraction
ST	 Sterol lipid
TG	 Triacylglycerol
TLC	 Thin-layer chromatography
TOF	 Time of flight
UPLC	 Ultra-performance liquid chromatography
VLDL	 Very low-density lipoprotein

11.1  �Introduction

With the progress of “omics,” lipidomics, a branch of metabolomics, was first put 
forward by Han and Gross [1]. Lipidomics aims to characterize and quantify the 
range of intact lipid molecules in cells and biological fluids, allowing to correlate 
the lipid compositions to genomics, proteomics, diet, and diseases. The amount of 
genomic and proteomic data is greater than that in the lipidomics field, because of 
the complex nature of lipids and the limitations of tools available for such investiga-
tions. The key revolution that has incited advances in lipid analysis in the recent 
years was the development of new mass spectrometry techniques, particularly the 
“soft ionization” techniques, as the electrospray ionization (ESI) and matrix-
assisted laser desorption/ionization (MALDI). Such developments that provided a 
high sensitivity and specificity, excellent mass, and chromatographic resolutions, 
which in addition to an increased accessibility to authentic synthetic lipid standards, 
coupled to the remarkable developments in data and bioinformatics analysis, have 
facilitated the analysis of a wide diversity of lipids, ranging from phospholipids 
(PLs) and triacylglycerols (TGs) to sterols and glycolipids [2]. Lipid metabolism 
may be of particular importance for the central nervous system (CNS), due to its 
characteristic high concentration of lipids. The complexity of such analysis is 
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highlighted by the recent characterization of over 500 different lipid species in a 
collective human serum sample conducted by the LIPID MAPS consortium (www.
lipidmaps.org) [3].

The critical role of lipids in cell signaling and tissue physiology is demonstrated 
by the many neurological disorders, including bipolar disorder (BD) and schizo-
phrenia (SCZ), and neurodegenerative diseases such as Alzheimer’s, Parkinson’s, 
and Niemann-Pick diseases, which present all deregulated lipid metabolism [4]. 
However, little is known about the molecular mechanisms that are altered in changes 
of states such as relapse and remission in mental illness patients. Lipidomics can be 
used in the search for biomarkers for specific diseases. Lipid-based biomarkers 
offer new prospects for precision medicine by providing sensitive diagnostic tools 
for disease forecast and monitoring.

In this book chapter, we describe the lipidomics approaches, summarize promis-
ing biomarkers reported in SCZ, and conclude with commentaries on the future 
contribution of the lipidomics approach within the larger biomarker discovery 
framework currently employed in the field of SCZ.

11.2  �Lipid Classification

Lipids are water-insoluble compounds due to their hydrophobic features. The 
International Lipid Classification and the Nomenclature Committee, together with 
the Lipids Metabolites and Pathways Strategy (LIPID MAPS) Consortium, defined 
eight groups of lipids and divided them into classes and subclasses [2]. They classi-
fied the lipids by their chemically functional backbones and biochemical principles 
in:

	1.	 Fatty acyls (FAs): fatty acids and conjugates, octadecanoids, eicosanoids, doco-
sanoids, and fatty alcohols

	2.	 Glycerolipids (GLs): monoradylglycerols, diradylglycerols, and triradyglycerols
	3.	 Glycerophospholipids (GPs): glycerophosphocholines, glycerophosphoglycer-

ols, glycerophosphoethanolamines, glycerophosphoglycerophosphates, glycero-
phosphoserines, and glycerophosphoinositols

	4.	 Sphingolipids (SPs): sphingoid bases, ceramides, phosphosphingolipids, neutral 
glycosphingolipids, and acidic glycosphingolipids

	5.	 Sterol lipids (ST): sterols
	6.	 Prenol lipids (PR): isoprenoids
	7.	 Saccharolipids (SL): acrylamide sugars
	8.	 Polyketides (PK): linear polyketides

Fatty acids may be saturated, monounsaturated, or polyunsaturated. In animals, 
the residues of predominant fatty acids are the ones with a 16 or 18 carbon atoms 
chain – the palmitic and the stearic acids, which are saturated; oleic acid (C18Δ9) and 
linoleic acid (C18Δ9.12), which are unsaturated. The linolenic (C18Δ9.12,15) and linoleic 
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acids form arachidonic, eicosapentaenoic, and docosahexaenoic acids and are 
essential fatty acids. TGs are the most important way to store energy in the organ-
ism, consisting of deposits in the adipose and muscle tissues.

11.3  �The Molecular Biology of Lipids

Lipids are metabolites that play a significant role in different metabolic pathways. 
They are structural components of the cellular membranes, in which protein com-
plexes, such as ion channels, receptors, and scaffolding complexes, are embedded, 
whether as a substratum, a product, or as a cofactor of biochemical reactions within 
a cell. Many of the biologically applicable lipids aggregate into macromolecular 
assemblies such as micelles or bilayers in aqueous environments of the human 
body. These aggregates comprise proteins, of course, in addition to lipid (e.g., apo-
lipoproteins). Typically, the polar ends of lipid molecules face the aqueous milieu, 
whereas the more nonpolar fatty acyl moieties form a hydrophobic core (Fig. 11.1). 
Such aggregates therefore have unique biophysical properties and surface chemis-
tries, which have important significances for the mechanisms of lipid function.

Lipid Receptors
(For Example, S1P, CD1)

Interfacial Binding
(For Example, Adaptor Proteins, Enzymes)

Integral Interactions
(For Example, Channels, Cytochrome C)

a

b

c

Fig. 11.1  Monolayers of lipid and protein arrangements: (a) binding of lipid ligands by CD1 
protein occurs via the hydrophobic acyl chains of the lipid molecules; (b) protein modules that 
specifically interact with lipid head groups. Interfacial binding is a significant mode of interaction 
for many lipid enzymes, as well as effectors of lipids. It is directed by electrostatic interactions at 
the interfacial region and the characteristics of lipid head groups; (c) the interior portion of a lipid 
assembly (e.g., the bilayer interior) contributes with interactions that arise from the hydrophobic 
parts of lipids molecules that have a role in the regulation of membrane channels
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The finding that membrane lipids can act as precursors for second messengers 
has added to a dramatically different view of lipid action however. Phospholipase-
mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) produces 
a variety of second messengers, such as diacylglycerol (DG), inositol 
1,4,5-trisphosphate (IP(1,4,5)P3), and arachidonic acid (AA), which by themselves 
are precursors of biologically active molecules. DG is rapidly phosphorylated to 
phosphatidic acid (PA) (glycerophosphatidic acid, GPA), which is an important 
intermediate in PL biosynthesis and a potent regulator of enzyme function and 
bilayer structure. IP(1,4,5)P3 is metabolized by complicated enzymatic machinery, 
which leads to the generation of many different polyphosphorylated inositols. AA is 
the precursor for eicosanoids, which have an important and well-recognized role in 
inflammatory processes.

SPs are another example of highly bioactive membrane lipids and, like in the 
case of PI(4,5)P2, various components of their structures exert different activities 
(Fig.  11.2). The ceramide backbone is found in many complex glycolipids, and 
ceramides are potent regulators of cellular growth and death. Sphingosine and its 
phosphorylated derivative, sphingosine-1-phosphate, control the migration of 
immune cells and act via binding to specific receptors.

Furthermore, and in addition to their role as precursors, it is now clear that many 
membrane lipids act as signaling components themselves. Phosphoinositides (PIs; 
phosphorylated derivatives of phosphatidylinositol, GPIns), of which PI(4,5)P2 is a 
prominent representative, are an important class of such signaling lipids and con-
tribute to a wide variety of cellular processes, including calcium homeostasis, mem-
brane trafficking, and cytoskeletal dynamics. Indeed, it is becoming increasingly 
evident that understanding the biology of lipids often relates to understanding the 
responses that are mediated via lipids.

11.4  �Lipids and the Central Nervous System (CNS)

A large number of diseases and neurological disorders in which lipid metabolism is 
altered confirm the crucial role of lipids in cell signaling and tissue physiology. 
Lipid metabolism may be of precise significance for the nervous system, as this 
organ has the second highest concentration of lipids, only after the adipose tissues. 
As mentioned, many neurological disorders, including BD and SCZ, and neurode-
generative diseases, such as Alzheimer’s, Parkinson’s, and Niemann-Pick diseases, 
involve deregulated lipid metabolism [4]. Altered lipid metabolism is also supposed 
to be an important event that contributes to CNS injury.

SCZ is noticeable by disturbances in thinking, emotional reactions, and social 
behavior, with delusions and hallucinations. Drugs that block dopamine receptors 
alleviate symptoms of SCZ, indicative of surplus dopaminergic function, while 
agents that block glutamate receptors induce some of the symptoms of SCZ in nor-
mal persons.
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Fatty acyls

Fatty acids and conjugates [FA01]
Octadecanoids [FA02]
Eicosanoids [FA03]
Docosanoids [FA04]
Fatty alcohols [FA05]
Fatty aldehydes [FA06]
Fatty esters [FA07]

Glycerolipids

Monoacylglycerols (MG) [GL01]
Diacylglycerols (DG) [GL02]
Triacylglycerols (TG) [GL03]

Glycerophospholipids

Phosphatidic acids (GPA) [GP10]
Phosphatidylcholines (GPCho) [GP01]
Phosphatidylserines (GPSer) [GP03]
Phosphatidylglycerols (GPGro) [GP04]
Phosphatidylethanolamines (GPEtn) [GP02]
Phosphatidylinositols (GPIns) [GP06]
and phosphoinositides [GP07-09]
Cardiolipins (CL) [GP12]

Sterol lipids

Sterols [ST01]
Steroids [ST02]
Secosteroids [ST03]
Bile acids and derivatives [ST04]

Sphingolipids

Sphingoid bases [SP01]
Ceramides [SP02]
Phosphosphingolipids [SP03]
Phosphonosphingolipids [SP04]
Neutral glycosphingolipids [SP05]
Acidic glycosphingolipids [SP06]
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Fig. 11.2  Lipid classes and prominent representatives

Current concepts on the neurological deficits of SCZ have focused on aberra-
tions in PL metabolism, mainly increased activity of phospholipase A2 (PLA2) 
enzymes, and reduced activity of the system which integrates polyunsaturated 
fatty acids (PUFAs) into PLs (a simultaneous increase in PL hydrolysis and 
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decrease in synthesis). Neither aberration alone produces SCZ but the presence 
of both does. These aberrations lead to changes in membrane structure and thus 
in the function of membrane-bound proteins, accessibility of cell signaling mol-
ecules, and in neurotransmitter systems. This assumption is reinforced by ani-
mal studies representing that application of PLA2 into the brain produces 
alterations in the dopamine system [5]. Furthermore, since PL metabolism has a 
crucial role in neuronal and synaptic growth and remodeling, it is believable that 
defects in this system result in failure of normal neurodevelopment in SCZ. There 
is also proof that SCZ is related with changes in lipid transport proteins and 
membrane PL composition (increase in phosphatidylserine (PS) and decrease in 
PC and PE) [6]. Genome studies have found that numerous genes involved in 
myelination have decreased expression levels in SCZ.  Recently, significantly 
increased myelin basic protein (MBP) expression was observed in first-episode 
psychosis patients compared to sex and age paired healthy controls [7].

11.5  �Reactive Oxygen Species (ROS) and Lipid Peroxidation 
(LPO)

ROS, including superoxide anion radical and hydrogen peroxide, are produced 
by a number of cellular oxidative metabolic processes, including oxidative 
phosphorylation by the mitochondrial respiratory chain, which includes the 
xanthine oxidase, NAD(P)H oxidases, monoamine oxidases and metabolism of 
AA by cyclooxygenases/lipoxygenases (COX/LOX) [8]. Though current litera-
ture proposes that COX does not directly produce ROS during AA oxidative 
metabolism, COX does form free radicals (i.e., carbon-centered radicals on 
AA). There are numerous reports in the literature on ROS production by COX, 
and this is possibly due to a secondary ROS generation induced by several eico-
sanoids. Interruption of mitochondria during COX-2-associated apoptosis is a 
probable source of ROS production, as it has been established for a number of 
different cells [4, 9]. ROS then cause oxidative damage to nucleic acids, pro-
teins, carbohydrates, and lipids. Beyond impairment to membranes, lipid perox-
ides give rise to reactive α,β-unsaturated aldehydes including malondialdehyde, 
4-hydroxynonenal (HNE), and acrolein. These aldehydes covalently bind to 
proteins through reaction with thiol groups and modify their function. Although 
there are intracellular defenses against ROS, increased production of ROS or 
loss of antioxidant defenses leads to progressive cell damage and decline in 
physiological function. The “oxidative stress” results when generation of ROS 
exceeds the cell’s capacity to detoxify them. The brain is believed to be particu-
larly vulnerable to oxidative stress as it comprises high concentrations of 
PUFAs that are vulnerable to LPO, consumes relatively large amounts of oxy-
gen for energy production, and has lower antioxidant defenses compared to 
other organs [8].
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11.6  �Systems-Level Approaches for Lipidomics

Traditional approaches for lipid analysis typically pre-fractionate lipids into classes 
using thin-layer chromatography (TLC), normal-phase liquid chromatography 
(NPLC), or solid-phase extraction (SPE), and then, distinct specific classes of lipids 
are fractionated into individual molecular species by high-performance liquid chro-
matography (HPLC) coupled with either ultraviolet (UV) or evaporative light-
scattering (ELS) detector. With these traditional approaches, individual molecular 
species of many lipid classes can be evaluated. However, such “classical” tech-
niques often lack sensitivity or need large sample volumes and multistep procedures 
for sample preparation; in addition, the resolution is inadequate, i.e., only a limited 
set of individual molecular species are evaluated. Alternatively, gas chromatogra-
phy (GC) has been, and is still, frequently used for lipid analysis, although usually 
involving time-consuming procedures, which consist of hydrolysis and derivatiza-
tion steps that are essential as most lipids are not GC amenable otherwise. Proper 
GC-based techniques meet the requirement of lipidomics with regards to the wider 
distribution of molecular component detection and physical properties and the 
wider dynamic range coverage of lipid concentrations; very often mass spectromet-
ric (MS) detection is used.

11.6.1  �MS as the First Choice and Successful Technique 
for Lipidomics

With the introduction of soft ionization techniques such as matrix-assisted laser 
desorption/ionization (MALDI), electrospray ionization (ESI), and atmospheric 
pressure chemical ionization (APCI) for MS, being the last two easily coupled to 
LC, the rapid and sensitive analysis for the majority or of a substantial fraction of 
lipids in one single experiment was made possible. Consequently, new soft ioniza-
tion MS-based analytical strategies have been, and are still, emerging in lipidomics 
research. Strategies currently used in lipidomics include direct infusion ESI-MS 
and ESI-MS/MS, LC coupled with ESI-MS or MS/MS, and MALDI combined with 
Fourier transform ion cyclotron resonance MS (MALDI-FTICR-MS) or time-of-
flight MS (MALDI-TOF-MS) [2].

Recently, novel multidimensional methodologies and ion mobility-MS (IM-MS) 
became available for lipidomics. A rapid separation of isomers, conformers, and 
enantiomers can be achieved by two-dimensional IM-MS, in addition to a resolving 
power analogous to that obtained with capillary GC.  IM-MS has already shown 
enormous potential in lipid characterization and analysis of complex biological 
samples [10].

Identification of lipids can be achieved by using MS/MS, recorded in positive or 
in negative modes, as to get information on the head group (positive ESI), and on 
the carbon chain length and degree of unsaturation of the fatty acid chains of the 
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lipid (negative ESI) (Table 11.1). Most GPs, such as phosphatidylcholines (PCs), 
phosphatidylethanolamines (PEs), lysoPCs, ceramides, and cardiolipins, can be 
identified with both positive and negative ionization modes, whereas TGs and DGs 
are identified only in positive mode. TGs are mainly distinguished as ammonium 
and sodium adducts, whereas DGs form sodium adducts and display neutral loss of 
water caused by in-source fragmentation. The formation of these adducts varies 
depending on the chain length of the fatty acids. Shorter TG species ionize prefer-
entially as [M + Na]+ adducts, whereas longer chain length leads to predominant 
[M + NH4]+ species. In-house libraries are commonly created for specific lipids and 
use retention time, m/z value, and MS/MS data. All these tools that have recently 
been established facilitate automated lipid identification. However, it is difficult to 
get information on the double-bond positions, and typically, lipid structures are 
often stated as a single isomer. With the use of MS/MS, the sn-1 or sn-2 position can 
be determined; however, for the thorough data on the lipid identity, there is a need 
for using specific techniques, such as high-energy collision-induced dissociation, 
specific multistage fragmentation approaches, or ozone-induced dissociation. 
Another possibility is to gather specific lipid fractions and, after hydrolysis and 

Table 11.1  Ions formed in ESI(+) and ESI(−) modes as well as the common fragment ions or 
neutral losses of different lipid groups in electrospray ionization MS/MS

Lipid 
class Positive mode Negative mode m/z Head group

PC [M + H]+, 
[M + Na]+

[M − H]−, [M + HCOO]−, [M + CH3COO]− 184.0739 Choline

LPC [M + H]+, 
[M + Na]+

[M − H]−, [M + HCOO]−, [M + CH3COO]− 184.0739 Choline

PE [M + H]+, 
[M + Na]+

[M − H]− 141.0191 Ethanolamine

LPE [M + H]+, 
[M + Na]+

[M − H]− 141.0191 Ethanolamine

PA [M + NH4]+ [M − H]− 152.9953 –
PG [M + NH4]+ [M − H]− 152.9953 Glycerol
PI [M + NH4]+, 

[M + H]+, 
[M + Na]+

[M − H]− 223.0008 Inositol

PS [M + H]+ [M − H]− 185.0089 Serine
DG M + NH4]+, 

[M + Na]+

– Fatty 
acid + NH3

–

TG M + NH4]+, 
[M + Na]+

– Fatty 
acid + NH3

–

CE [M + NH4]+, 
[M + H]+, 
[M + Na]+

– Fatty 
acid + NH3

–

SM [M + H]+ [M + HCOO]−, [M + CH3COO]− 184.0739 Choline

A neutral loss (fatty acid + NH3) means that the mass of the neutral loss is the sum of the mass of 
the fatty acid chain of the lipid and ammonia
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methylation, to examine the fatty acid composition with GC-electron ionization 
MS. Fatty acid methyl esters can be separated according to the carbon number and 
saturation, and positional isomers – that are n3, n6, n9, etc. fatty acid methyl esters – 
can be determined. In addition, with the use of appropriate stationary phases, cis 
and trans isomers can also be separated. Thorough structural information is impor-
tant to comprehend the data in the biochemical context.

11.6.2  �NMR as a Powerful Technique for Lipid Assessment

Nuclear magnetic resonance (NMR) spectroscopy has been used to study the physi-
cal properties of membrane components. This technique has been changed to study 
the properties of lipid mixtures in order to determine their structures and functions. 
Information from these studies is significant with regard to obtaining structure, 
composition of lipids in cells, turnover of lipids, and characterization of lipid syn-
thesis/transport and degradation pathways [11].

Because NMR spectroscopy is an analytical technique widely employed for 
characterization and identification of many classes of substances, it also has emerged 
as suitable analytical platform for the study of biological systems. There are many 
attempts for optimization and development of pulse sequences and for methodolo-
gies of analysis that allow the identification and the classification of organic com-
pounds in complex samples. A great variety of NMR experiments (e.g., HSQC, 
HMBC, TOCSY, etc.) are being used to solve biological issues where biofluid sam-
ples such as serum, plasma, urine, cerebrospinal fluids (CSF), and others are being 
investigated. Biofluids are constituted from a mixture of organic compounds as 
amino acids, carbohydrates, organic acids, lipids, etc. [12]. Beside of this, many of 
these molecules are present in different concentrations in samples and have different 
physicochemical properties (mass, mobility, functions, etc.), making very challeng-
ing lipid and lipoprotein analyses in metabolomics [13]. Nuclear magnetic reso-
nance comes to facilitate the analysis of hundreds of metabolites in a single sample, 
with or without any previous treatment [14].

One-dimensional (1D) NMR spectroscopy using solvent suppression is often 
used for metabolomics analysis. Recently, the new approach is using lipidomics of 
biological samples from the isolated lipids, being one of the successful strategies for 
lipid biological system comprehension [15].

There are diverse types of clinical sample preparations for lipid analysis, from 
simple approaches such as single organic solvent extraction, liquid-liquid extraction, 
and solid-phase microextraction to advanced techniques such as supercritical fluid 
extraction, microwave-assisted extraction, and ultrasound-assisted extraction. The 
common approach is liquid-liquid extraction, which is a method involving the use 
of two immiscible organic solvents. In order to reach exhaustive extraction of lipid 
classes, comprehends from phospholipids and glycolipids to fatty acids, DAGs and 
TAGs, usually for lipids extraction a mixture of chloroform and methanol with 
water is used [16].
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Modified methods aiming to reproduce all properties of the clinical samples, 
from those classical methods as by Folch et al. [17] (chloroform/methanol/water 
ratio 8:4:3  v/v/v) and by Bligh and Dyer [18] (chloroform/methanol/water ratio 
1:2:0.8 v/v/v), are broadly used nowadays [16–20]. Tukiainen et al. [15] use NaCl 
0.15  mol L−1 solution instead of water to extract lipids from plasma. For NMR 
analysis, samples do not have to pass through processes of derivatization or 
sequences of dilutions. Also, after lipid extraction, a solubilization using deutered 
solvent is performed, and this solution is placed into a NMR tube.

However, lipidomics analysis is still very challenging, once lipids show some 
properties that may bring difficulties in analysis performed by some analytical tech-
niques. The typical difference in the polarity between the lipids and the lack of 
chromophores in their structures, for example, complicate the separation and iden-
tification of the classes [21]. In this context, NMR spectroscopy may help with the 
simplification in the sample preparation also, physicochemical properties of sam-
ples are not changed, and the data on diffusion coefficients though peaks at intensity 
measurements, using the pulsed field gradients (PFG) applied during the FT NMR 
experiment [13], can be done.

The use of NMR spectroscopy in lipidomics is not as widespread as in metabo-
lomics because of its low sensitivity compared to MS. However, the application of 
NMR techniques that help in the discrimination of individual molecules, as well as 
in complex mixtures analysis, principally with the employment of two-dimensional 
NMR (DETOCSY, 31P, 1H COSY, among others), which have a detection limit 
around 4 nmol L−1, is increasing in the lipidomics research based on NMR spectros-
copy [14, 22].

The nuclei detected in NMR spectroscopy that commonly are used in the charac-
terization of lipids are 1H, 13C, and 31P, being the 13C NMR spectroscopy very 
employed for triradylglycerols (GL03) and fatty acid analyses. 31P NMR is more 
suitable for glycerophospholipid analysis, and 1H NMR allows analysis of all types 
of lipids [21, 23]. In general, the advantages using NMR for lipid analysis when 
compared to other techniques are direct measurement; nondestructive techniques, 
which allow the recovery of the sample after analysis; and structural analysis of 
compounds. Disadvantages are low sensitivity, spectra dominated by very abundant 
lipids (cholesterol, PC) in 1H NMR, and line broadening of lipids in aqueous solu-
tions in 31P NMR [14, 23].

Studies on 13C and 31P NMR spectroscopy data, and understanding of relations 
between the analytical parameters and physicochemical properties of lipids, help to 
achieve a reliable determination of the composition of phospholipids that constitute 
the matrix of cell membranes [24, 25].

In the 1H NMR spectra acquisition of a blood serum sample, the resonances 
referred to lipid moieties show broad signals and high intensities of peaks similar to 
the signals of lipoproteins thus interfering the analyst in the assignments of the 
peaks [26, 27]. One method used to solve this problem is the application of diffu-
sion NMR spectroscopy that is based on the diffusion process of molecules or ions, 
i.e., in the random translational motion also called Brownian motion of these mol-
ecules [28].
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Liu et al. [13] developed a pulse sequence for spectra edition of biofluid samples 
based on the combination of relaxation time of spin, molecular diffusion, and water 
suppression (WATERGATE) [29], which was named diffusion and relaxation edit-
ing (DIRE) pulse sequence. In this work, different combinations between times of 
longitudinal relaxations (T1) and transversal relaxations (T2) and spin-echo values 
for attenuation of broad peaks from molecules of high molecular mass (or fast relax-
ing) as the lipoproteins and albumins were studied. These allowed the NMR analy-
sis of samples constituted from molecules with different molecular masses without 
the need of a pretreatment as the dialysis.

Posteriorly, Liu et al. [30] studied the measurement of diffusion coefficients of 
individual molecules in blood plasma samples through 1H-1H diffusion-edited total-
correlation NMR spectroscopy (DETOCSY) for better understanding of the trans-
port of molecules in biological system. When they applied a low gradient strength, 
the cross peaks of small molecules were attenuated, while high gradient strength 
was responsible for attenuation of macromolecules or small molecules bound to 
them, and so enabled a more accurate measure of the diffusion coefficient through 
the pairs of cross peaks relating to the separation of molecules.

Lopes et al. [31] studied the lipids in plasma samples of overweight subjects that 
underwent Roux-en-Y gastric bypass surgery (RYGB), a clinical method for weight 
loss that helped the glycemic control induced by hormonal changes. The T2-edited 
(Carr-Purcell-Meiboom-Gill pulse sequence) and diffusion-edited 1H NMR spectra 
(Fig. 11.3) were acquired for monitoring the bariatric surgery and the gastric mixed-
meal tolerance test (MMTT). By T2-edited 1H NMR spectrum, it was possible to 
monitor levels of small molecules (β-glucose, alanine, lactate, etc.) and some amino 
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alanine BCAA
TMSP

TMSPPtoCho

4.5 4 3.5 3 2.5
ppm

2 1.5 1 0.5 0

unsaturated
lipid

glucose

lactate

lipid-CH2

lipid-CH3b

Fig. 11.3  (a) T2-edited and (b) diffusion-edited 1H NMR spectrum for overweight subjects before 
Roux-en-Y gastric bypass surgery. BCAA branched-chain amino acids, EDTA ethylenediaminetet-
raacetic acid, PtoCho phosphatidylcholine, TMSP 2,2,3,3-d4-3-(trimethylsilyl)propionic acid 
(Permission from Omics Journal)
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acids, while the diffusion-edited 1H NMR enabled to measure the level changes in 
HDL, LDL, VLDL, phosphatidylcholine, etc.

Cai et al. [32] analyzed the lipoproteins in plasma and urine samples of first-
episode neuroleptic-naive schizophrenia (FENNS) patients and after the treatment 
with risperidone drug using the diffusion-edited experiments and bipolar pulse pair 
longitudinal eddy current delay (BPP-LED) pulse sequence [33–35]. The LED is 
used to prevent spin relaxation during the diffusion, thus allowing to obtain infor-
mation that can help in the determination of molecular diffusion coefficients [33, 
36]. In their work, Cai et al. [32] observed a reduction in the levels of high-, low-, 
and very-low-density lipoproteins (HDL, LDL, and VLDL), phosphatidylcholine 
(PC), lipids, and unsaturated fatty acids (UFA) and an increase in lysophosphatidyl-
cholines (LPC) in FENNS when compared to the control groups.

The 1H NMR spectroscopy gives information about chemical shifts, intensi-
ties, and chemical environments regarding all compounds that have hydrogen 
atoms in their organic functions. The data from the NMR spectra such as chemical 
shift and intensities (variables) are preprocessed through different methods, as the 
normalization scaling and the transformation after do the correction of baseline 
and the standardization of reference peaks. The preprocessing passes the set of 
spectra in variables that are named of buckets or binning and used in chemometric 
analysis [37].

11.7  �Lipidomics Data Analysis and Bioinformatics

Data processing, data mining, and identification are critical steps in the lipidomics 
analytical workflow. Numerous preprocessing tools that incorporate different 
approaches and possibilities are available for chromatography-MS data, and differ-
ent approaches are typically used for shotgun data. The core functions achieved by 
most tools typically comprise of peak detection, filtering and artifact removal, align-
ment (for LC-MS data), normalization, etc. In addition, “gap filling” is a significant 
feature, i.e., finding “missing” peaks in the data to avoid zero values that make the 
statistical analysis difficult. Filtering and peak detection focus on detecting real 
chromatographic peaks in each data file, and peak alignment focuses on locating 
and listing detected peaks found in the sample files.

Also, the data processing tools have clear advantages but also limitations. In a 
recent study, four automated preprocessing tools for GC-MS and LC-MS data were 
assessed in terms of their ability to ascertain the greatest number of metabolites 
consistently in a set of samples, as well as the robustness of the methods [38]. The 
preprocessing tools selected were MetAlign, MZmine, XCMS, and SpectConnect. 
The results revealed that different tools accomplished better for the GC-MS data 
than for the LC-MS data and that the qualitative and quantitative performance also 
displayed perfect variances between the tools. For GC-MS data, MetAlign had the 
most component recognitions, followed by MZmine, SpectConnect, and XCMS, 
whereas for the accurate-mass LC-MS data, the order was MetAlign, XCMS, and 
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MZmine. The best presentation was obtained when two methods (e.g., MetAlign 
with MZmine or MetAlign and XCMS) were combined. However, in terms of quan-
titative presentation, SpectConnect and MetAlign achieved clearly worse than, for 
example, XCMS and MZmine for the accurate-mass LC-MS data. Both MZmine 
and XCMS provided acceptable quantitative results for GC-MS data as well as 
LC-MS data. All software tools stated a large number of false peaks, and thus man-
ual examination of the chromatographic runs is required to eradicate those peaks. 
The study also indicated that although preprocessing tools have automated steps 
that are impractical to perform manually, a significant level of manual input is 
required in selecting the optimal parameters, processing peak tables, and validation. 
These outcomes clearly display that further expansion of the data processing algo-
rithms is required.

Numerous software tools have been established for the identification of lipids in 
shotgun lipidomics, including LipidQA, LIMSA, FAAT, lipID, LipidSearch, 
LipidView, LipidInspector, LipidXplorer, LipidBlast, and ALEX, both for specific 
applications/instrumentation and for cross-platform software presenting user-
specified instructions interrogating spectral data in an open-source format [38]. 
Typically, in the top-down approach, the data are investigated for specific molecu-
lar fragmentation. For example, in LipidXplorer individual spectra are system-
atized in a single flat file database that is further questioned by user-defined queries 
written in the molecular fragmentation query language (MFQL). In each MS spec-
trum, the lipid class-specific MFQL query checks if plausible precursor masses 
match the elemental composition likely for the corresponding molecular species. 
Optional search criteria can also be applied, for example, based on the odd or even 
number of carbon atoms in the fatty acid residues or the anticipated number of 
double bonds.

11.8  �Physiological Factors Affecting Lipidomic Analysis

11.8.1  �Lipid Composition in Blood-Based Samples

Blood is composed by (a) cellular components encompassing red and white blood 
cells and platelets and (b) a liquid carrier, named plasma. In blood, complex lipids 
are primarily found in the lipoprotein particles, while smaller, more polar lipids 
(e.g., free fatty acids (FFAs), bile acids, sterols) are found in free form or bound to 
protein carriers, such as albumin. Among these lipids, free cholesterol is the most 
abundant and is found primarily in lipoprotein particles. More complex lipids are 
also found in the red blood cells (RBCs) and platelets. Quehenberger et  al. [3] 
accomplished a comprehensive characterization of lipids in human reference 
plasma, i.e., in pooled human plasma obtained from healthy individuals after over-
night fasting and with gender balance and ethnic distribution that is symbolic of the 
US population. A summary of the foremost lipid subclasses and their concentrations 
is given in Table 11.2, with the most abundant lipids in each subclass noticeable. In 
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individual lipoprotein fractions, lipid profiles differ considerably. Specific lipids, 
such as ceramides, have been distinguished primarily in very low-density lipopro-
tein (VLDL) and low-density lipoprotein (LDL) fractions, whereas ethanolamine 
plasmalogens are found primarily in LDL and high-density lipoprotein (HDL) sub-
fraction 2. LysoPCs and ether-linked PCs have been found in all lipoprotein frac-
tions, with the greatest abundances in HDL subfraction 2, HDL subfraction 3, and 
LDL. Most large-scale studies are based on the extent of the lipids in total serum or 
plasma, because it is too time-consuming to first separate, for example, individual 
lipoprotein fractions, followed by lipid analysis. However, the lipid characterization 
of lipoprotein fractions can give a much more thorough view of the lipid metabo-
lism. For example, the VLDL fraction can give improved perception into lipid 
metabolism in liver than the overall lipid composition [39].

The most abundant lipids in human blood are GLs, mainly TGs. The TGs are 
most abundant in chylomicrons and in VLDL and intermediate-density lipoprotein 
fractions. Most recent methods can detect and recognize about 50 or more TGs in 

Table 11.2  Main lipid classes identified in human plasma

Lipid category
Sum 
(mmol L−1) Most abundant lipids

Glycerolipids

TGs 1,058 TG(16:1/18:1/18:1), TG(16:1/18:0/18:2), 
TG(16:0/18:1/18:2)

1,2-DGs 39 DG(36:3), DG(36:4), DG(36:2)
1,3-DGs 13 DG(36:3), DG(36:4), DG(34:1)
Total 1,110
Glycerophospholipids

PE 435 PE(38:5e)/PE(38:4p), PE(38:4), PE(38:6e)/PE(38:5p)
LPE 36.6 LPE(18:2), LPE(18:0), LPE(20:4)
PC 1,974 PC(34:2), PC(36:2), PC(38:4)
LPC 103 LPC(16:0), LPC(18:0), LPC(18:2)
OS 7 PS(36:0), PS(36:1), PS(40:6)
PG 6.12 PG(36:1), PG(38:6), PG(38:5)
PA 2.5 PA(34:0), PA(36:2), PA(36:0)
PI 31.5 PI(38:4), PI(36:2), PI(34:2)
NAPS 0.013 52:1, 54:2
Sphingolipids

SMs 303.468 SM(d18:1/C16:0), SM(d18:1/c24:1), SM(d18:2/C24:1)
hexCers 2.3135 hexCer(d18:1/C22:0), hexCer(d18:1/C24:0), 

hexCer(d18:1/C16:0)
Cers 11.586 Cer(d18:1/C24:0), Cer(d18:0/C24:0), Cer(d18:1/C22:0)
Sphingoid bases 0.5678 S1P(d18:1-P), S1P(d18:0-P), SP(d18:1)
Sterol lipids

Free sterols 3,800 Cholesterol, lathosterol, sitosterol
Esterified sterols 2,954 CE(18:2), CE(18:1), CE(20:4)

Referred from Quehenberger et al. [3] and modified
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human plasma or serum; however, the definite amount of TGs is substantially higher 
than that. A large number of different GPs have been recognized in plasma and 
serum, including PA, PC, PE, PG, PI, and PS. By total class concentration, the over-
whelming majority of GPs in human plasma are PCs and PEs (Table 11.2). These 
two classes also cover substantial amounts of ether-linked lipids. SPs in the blood 
correspond to a part of the circulating lipoprotein particles (VLDL, LDL, and HDL), 
they are carried by serum albumin, and they are also present in blood cells and plate-
lets. Over 200 individual SPs were identified in human plasma, and the sphingomy-
elins (SMs) account for the largest fraction of SPs in plasma [40]. Cholesteryl esters 
(CEs) are one of the most abundant lipid classes (Table 11.2) in human serum and 
plasma, with CE (18:2) constituting a major fraction of the CE subclass. Some lip-
ids are usually not identified in blood samples; for example, cardiolipins are present 
in blood-based samples at very low concentrations and are typically not detected 
with the current nontargeted profiling methods.

11.8.2  �Effect of Gender, Age, Diet, and Sampling Time 
on Lipid Levels

Numerous phenotypic and physiological parameters, including medication and spe-
cific food supplements (e.g., fish oil, and vitamin D), have a significant influence on 
circulating lipid levels, and thus the medication should be documented and consid-
ered during the study planning and for the interpretation of the outcomes. Although 
the huge biological variation of lipid levels, the levels of lipids have been shown to 
have a relatively small difference in the same individual when analyzed under iden-
tical sampling conditions [41].

The levels of lipids such as SMs, PCs, and TGs in blood may vary between the 
genders. Most lipids do not present a strong association with gender, but for differ-
ent age groups, gender does have an effect on specific lipids. Age also has a promi-
nent effect on lipid concentrations, mainly in females. Numerous TGs along with a 
few other lipids have been shown to present significantly higher levels in elderly 
females than in young females in both serum and plasma samples [42]. The same 
study showed that female-specific age-associated changes of the levels of lysoPCs 
were detected in plasma but that were markedly less in serum.

Diet also affects the levels of lipids and individual fatty acids in blood, both in 
the long and short term. In fact, it has been proposed that about 50 % of metabolites 
measured are dependent on diet [43].

In addition to gender and age, the circadian system controls lipid and carbohy-
drate homeostasis, thus augmenting energy storage and its utilization during the 
day. Thus, the time of sample collection also has an effect on lipid profiles. Naturally, 
the diet and fasting conditions play a critical role, but even in fasting conditions, 
specific lipids have revealed difference due to the circadian time course. There are 
still an inadequate number of studies related to circadian time course of lipids in 
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humans; however, the studies reveal so far that specific lipids have a circadian cycle 
pattern [44].

Guidelines usually recommend that lipid profiles should be attained from indi-
viduals in the fasting state. However, it is not always promising to obtain fasting 
samples, for example, in the case of very young children. Also, fasting is uncom-
fortable predominantly in individuals with diabetes, due to the fear of either hyper-
glycemia or hypoglycemia. It is also essential to test the individuals’ capacity and 
flexibility to respond with typical environmental factors, such as physical activity or 
eating. However, most studies to date are inadequate to the analysis of samples 
obtained in a fasted state.

The body mass index (BMI) of individuals also affects the lipid profile. In most 
studies, lipid profiles have been studied in relation to specific obesity-associated 
disease, and precise alterations were observed. However, a substantial portion of 
obese subjects does not present any of the well-known metabolic abnormalities. 
Thus, it is essential to recognize lipids that are associated with obesity rather than 
with a specific disease [45].

11.9  �Lipidomics-Based Biomarkers

Since lipids retain a diversity of biological functions in the processes of life such as 
formation of cellular membranes, energy storage, and cell signaling, they can be 
anticipated to reflect much of the metabolic status in health and disease. In addition, 
several studies have demonstrated that lipid metabolic disorders or abnormalities 
can lead to various human diseases including diabetes, obesity, arteriosclerosis, 
coronary heart disease, and brain injuries [2, 46]. Therefore, monitoring the changes 
of lipid metabolites of certain molecular species in biological samples, as influ-
enced by external stimuli or disturbance by disease processes, will be helpful for the 
discovery of lipid metabolites with potential of being indicative of metabolic disor-
ders or diseases.

Biomarkers could be considered to extend all the way to include our fixed 
genomic characters. At the level of the subcellular and tissue, the research in this 
field has employed the transcriptomics, proteomics, metabolomics, lipidomics, 
immunological, and biological epigenetics [46, 47]. The recent attention in bio-
marker discovery is encouraged by new molecular biology techniques, which 
allows the rapid finding of relevant biomarkers, without specific comprehensive 
insight into the mechanisms of a disease. Lipidomics is the most appropriate 
approach for the study of pathways and networks of lipids in biological systems. 
There is no question that clinical requirement and complexity of lipid metabolism 
will pose a series of novel challenges for researchers devoted to lipidomics of vari-
ous diseases. Numerous risk factors contributing to disease are suggested to influ-
ence lipid metabolism, and thus, they may be reflected in the lipid profile of an 
individual. One of the most extensively known lipid biomarkers is cholesterol, 
which, in the form of total blood cholesterol and/or HDL cholesterol, has been used 
for more than 50 years for the determination of risk for cardiovascular disease [48]. 
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Apart from applications in human diseases, the approach of lipidomics-driven bio-
marker discovery has also been used in nutrition and health fields, aiming the health 
promotion and the disease prevention [49].

In spite of the numerous analytical strategies available to identify changes in 
lipid metabolism related to disorders or diseases, multivariate statistical analysis 
was almost invariably performed to assist the finding of novel lipid molecular spe-
cies that could serve as potential biomarkers.

11.10  �Lipidomics in Schizophrenia Research

One of the goals of schizophrenia (SCZ) research is to explain the disorder in clear 
and simple biological terms and, in doing so, relegate it to the index of mundane – 
and more amenable – human disorders. The existing pace of advances in large-
scale biological data acquisition and data processing might make the task appear 
eminently achievable. However, even the most avid optimists would have to dis-
close that, despite this effort, we are still piecing together the edge of the jigsaw 
puzzle rather than seeing the full picture (in contraposition to the situation of 
Parkinson’s disease – a cousin by neurotransmitter of SCZ). A cross-disciplinary 
understanding of environmental impacts, genetic risk, cellular pathology, anatomi-
cal pathology, network dysfunction, and outward symptomatology has converged 
to inform the development of novel therapies. Multiple explanations have been put 
forward for this qualitative difference in disorder complexity, with main focus on 
the idea that SCZ is not a unitary disorder but rather a common symptomatic end-
point of a great variety of brain dysfunctions and insults. In support to this, SCZ 
now belongs to a wide family of disorders that have proven interrelationships at 
the genetics level. These include BD, depression, intellectual disability, autism 
spectrum disorders, and, recently, multiple sclerosis [46]. Biomarker identification 
is one such arena of research that will have to meet these demands. The advance-
ment in development of commercial SCZ biomarker tests depends on economic 
models, regulation, and perceived healthcare need, just as much as bioinformatics. 
Hence, there may be a more pragmatic short-term goal for biomarkers: to help the 
subdivision and classification of SCZ according to its principal molecular 
etiopathology.

Current technological developments for lipidomics analysis have provided 
remarkable outcomes in other areas of research, with potential to be useful for bio-
marker discovery in SCZ. The lipid biomarkers offer a new outlook for achieving 
better diagnosis either in preclinical experiments using mammal animal models or 
in human clinical evaluations. Lipidomics has the potential for the discovery of 
biomarkers for SCZ, not only in brain tissue but also in the blood (serum or plasma) 
and CSF (Table 11.3; referred from Sethi et al. [2]).

In one study, Kaddurah-Daouk et al. [19] used a specific lipidomics platform and 
found changes in different lipid classes (PC, PE, TG) in the plasma of SCZ patients 
after 2–3 weeks of treatment with atypical antipsychotic drugs. A recent study has 
also proved a significant downregulation of several n3 and n6 PUFAs compositions 
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in PE and in lipid classes in the blood plasma of first-episode SCZ patients [55]. 
These changes in lipid metabolism could indicate a metabolic vulnerability in patients 
with SCZ that may occur early in the development and onset of the disease.

Alterations in the peripheral tissue membrane PLs levels have also been detected 
[61] in RBCs of SCZ patients. Schwarz et al. [51] observed lipid changes in post-
mortem brain samples from SCZ, and they found significant changes in the levels of 

Table 11.3  Application of lipidomics for discovering metabolites/biomarkers in animal model 
and human-based studies of schizophrenia

Model/subject Sample
Analytical 
method(s) Metabolites/biomarkers Reference

Human studies Postmortem brain 
tissues (left 
thalamus)

TLC Phosphatidylcholine, 
sphingomyelin, 
galactocerebrosides 1 and 2, 
phosphatidylserine

[50]

Plasma HPLC-ELSD 
and GC-FID

Triacylglycerols, free fatty 
acids, phosphatidylcholine, 
phosphatidylethanolamine

[19]

Postmortem brain 
tissues (white 
matter, gray 
matter)

UPLC-ESI-
QTOF-MS

Free fatty acids, 
phosphatidylcholine, ceramide

[51]

Red blood cells Free fatty acids, ceramide
Postmortem brain 
tissue 
(hippocampus)

HPLC-ESI-
Q-MS

Phosphatidylserine (n6), 
phosphatidylcholine (n6)

[52]

Serum UPLC-ESI-
QTOF-MS

Triglycerides (lipid cluster, 
LC4 to LC9)

[53]

Lysophosphatidylcholines 
(LPCs)

[54]

Plasma TLC and 
GC-FID

Phosphatidylcholine (n3, n6), 
phosphatidylethanolamine (n3, 
n6)

[55]

Postmortem brain 
tissue (frontal 
cortex)

ESI-
Orbitrap-MS

N-Acylphosphatidylserines, 
N-acylserines

[56]

ESI-MS/MS Glycosphingolipids, choline 
plasmalogens

[57]

Plasma Choline plasmalogen, 
ethanolamine plasmalogen, 
docosahexaenoic acid (DHA)

[58]
Platelets

Postmortem brain 
tissue (frontal 
cortex)

ESI-
Orbitrap-MS

Sulfatides, choline 
plasmalogen, ethanolamine 
plasmalogen, 
N-acyl-phosphatidylserines

[59]

Animal studies Hippocampus Glycosphingolipids, choline 
plasmalogens

[57]

Serum 2D 
HPLC-ESI-
QTOF-MS

Glycerophospholipid, 
sphingolipid, fatty acyls

[60]
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FFAs and PCs in the gray and white matter of SCZ patients compared to control 
samples. Ceramides were significantly increased in white matter of SCZ as com-
pared to control levels. In addition, lipid profiling of RBCs of SCZ accused signifi-
cantly decreased levels of FFAs and ceramides in drug-naїve first-onset patients. 
Reductions of PC levels have formerly been reported for different regions of the 
SCZ brain [50], which was linked to an increase in SM turnover, as PC is the choline 
donor to SM in neurons and oligodendrocytes.

Lipidomic analyses can be complicated due to the high occurrence of metabolic 
syndrome in SCZ and its induction/worsening by treatment with antipsychotics. 
However, in the case of plasmalogen (Pl) analyses, about 20 % decrease in circulat-
ing Pls was described in 20 first-episode and 20 recurrent SCZ patients [62], sug-
gesting that this may represent an intrinsic biochemical deficit involved in this 
developmental disorder. A recent study also revealed significant decrease in choline 
plasmalogens, ethanolamine plasmalogens, and DHA in the plasma of patients with 
SCZ. In contrast, increased cellular levels of choline plasmalogens and decreased 
levels of ethanolamine plasmalogens and DHA were found in platelets of patients 
with SCZ [58]. Another recent study from the same research group demonstrated 
elevated level of sulfatides, choline plasmalogens, ethanolamine plasmalogens, and 
N-acyl-phosphatidylserines (NAPS) in the gray matter of postmortem frontal cortex 
SCZ subjects [59]. As major components of membranes, Pls are essential for mem-
brane fluidity, lipid raft formation, membrane fusion for neurotransmitter release, 
ion transport, and regulation of cholesterol efflux. Pls are also essential in brain 
development, both for white and gray matters.

In conclusion, several studies showed significant changes in prefrontal cortex FA 
concentrations, particularly within cholesteryl ester (CE) and abnormalities in Pl 
levels of SCZ patients compared to controls [20, 62]. An increase in CE-FA concen-
tration turnover in SCZ may reflect the excitotoxicity and neuronal loss reported in 
SCZ patients [63]. This is consistent with findings in postmortem brains from SCZ 
patients, suggesting a hypoglutamatergic and hyperdopaminergic neurotransmitter 
signaling, in association with neuronal loss and disease worsening over time [64]. 
Upcoming studies of Pls are required to explore their role in the pathogenesis of 
SCZ and to clarify whether restoration of normal Pl levels is linked with the thera-
peutic effects of antipsychotic drugs.

11.11  �The Future of Clinical Lipidomics

Lipids offer the possibility of discovery novel key biomarkers for many areas and 
different diseases. They could also fuel diagnostic developments and, thus, support 
more personalized methodologies of treatment. Lipidomics can also be used for 
studying numerous experimental disease models, and this could offer an enormous 
boost for the translational medicine.

During the discovery stage, detailed lipidomic studies currently demand a reper-
toire of several different analytical platforms. Such a quest is currently time-
consuming, and hence, it is appropriate only to a limited amount of samples. However, 
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technology and process improvements are developing and may enable to output thor-
ough lipidome data sets based on large sample sets more rapidly in the near future. 
Another challenge is the bias of the final output arising from the chosen methodologi-
cal setups and instrumentations. Although internal standards are typically applied to 
quantify the lipids of interest, owing to the lack of proper non-endogenous standards, 
only a subset of lipid species can be measured with acceptable precision. It is notable 
that the endpoint results depend on the internal standards applied, and, unfortunately, 
most aberrations among users are found in this aspect. Therefore, due to the lack of 
standardization, it is difficult to relate or combine lipidomic data from different labo-
ratories. Although rigorous standardization and validation processes are required for 
conveying lipidomic assays to clinical practice, the benefits are assorted. Once set up, 
MALDI-MS assays are analytically robust and efficient clinical solutions. The assays 
can be scaled down from the discovery throughput mode involving long per sample 
scan times to just 1–2 min analysis time per sample, with no extensive washing or 
incubation steps in the overall assays. Lipidomic analyses are directed in a 96-well 
format and in a robot-assisted workflow, and therefore, this platform can attain sub-
stantial sample throughputs. More critical for wider assumption remain the issues 
centering on sample transportation, storage, number of freeze-thaw cycles, prepara-
tion, and sample handling during the analytical process.

Given the obtainability of better and more appropriate internal standards and MS 
analysis methods, the eminence of lipidomic outputs will be higher with more lipid 
species determined in absolute quantities. Bioinformatics solutions will permit the 
processing of all data and to put out lipidomic results instantly, in an accessible way. 
Concurrently, informatics setups can monitor all processes in the lipidomic work-
flow, identify automatically any failure in the process, and also monitor continuously 
the sample quality. Placing all these pieces together will guide lipidomic standard-
ization, which will make lipidomic solutions attractive for preclinical and clinical 
studies and pertinent to the regulatory environment in a cost-effective manner.

11.12  �Concluding Remarks and Perspectives

Abnormal lipid or metabolism dysfunction is considered to be the major influence 
aspect in many lifestyle-associated diseases and hereditary/genetic conditions. 
Lipidomics is an emerging approach for a widespread and systematic study of a 
variety of lipids. The field of lipidomics is under a continuous investigation to fur-
ther explore the lipidome with the eventual goal to broaden our biological knowl-
edge for different diseases. Currently, lipidomics has an enormous prospective in 
lipid research, in which different lipid profiling is associated to various diseases, 
and changes of lipid metabolism or pathway modulation can be identified in human 
complex diseases. This offers new perceptions into metabolic and inflammatory 
diseases. The combination of lipid profiles and multivariate statistics can help us in 
novel biomarker discovery, disease pathology explanation, drug-response monitor-
ing in therapy and toxicity, translational medicine, and in-depth uncovering mecha-
nisms of lipid-mediated disease.
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MS and chromatography techniques have significantly encouraged the develop-
ments and applications of lipidomics in clinical chemistry. According to different 
research objectives, different MS and chromatography approaches can be selected, 
and selected approaches must be appropriate for application to the specific lipid 
species. Direct infusion ESI-MS has been used to distinguish whole lipid extracts, 
and it has revealed significant potential in the identification and quantification of 
PLs and fatty acid species in a quick and robust manner. However, direct infusion 
ESI-MS is vulnerable to ion suppression; this shortcoming can be overwhelmed to 
some extent by chromatographic techniques. LC-MS can also be applied to separa-
tion lipids from complex samples into individual lipid classes or separate the same 
lipid class. GC-MS is appropriate for the fatty acids and their derivatives, but it is 
limited by the necessity of analytes being volatile and due to its dynamic range. 
Combined analytical approaches can be acquired by overcoming the limitations of 
individual techniques for a wide range of the lipidome.

Although a number of lipidomic experiments has been carried out on exploring 
diseases through analyzing biomarkers and metabolic pathways in clinics, clinical 
lipidomics is still in its infancy compared to proteomics and metabolomics. The cur-
rent researches on lipidomics focus predominantly on biomarker searching, which is 
apparently inadequate. There is no question that clinical requirement and complexity 
of lipid metabolism will pose researchers enthusiastic to lipidomics of various dis-
eases with a series of novel challenges. The combined techniques will help advance 
our understanding of the physiological functions of lipid species and depict the etiol-
ogy and pathophysiology of multiple lipid-related diseases, such as cancer, obesity, 
diabetes, and atherosclerosis. Integrated with other omics strategies, this platform will 
offer a new outlook for dissecting and improving disease diagnosis and prevention.
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Chapter 12
Spatial Metabolite Profiling by Matrix-
Assisted Laser Desorption Ionization Mass 
Spectrometry Imaging

Berin A. Boughton and Brett Hamilton

Abstract  Mass spectrometry imaging (MSI) is rapidly maturing as an advanced 
method for spatial metabolite profiling. Herein, we provide an introduction to MSI 
including types of instrumentation, detailed sample preparation, data collection, 
overview of data analysis steps, software, common standards, and new develop-
ments. Further, we provide an overview of MSI in the clinical space over the past 3 
years where MSI has been deployed in diverse research areas including cancer, neu-
robiology, lipidomics, and metabolite profiling and mapping to name only a few. We 
provide several examples demonstrating the applicability of MSI to spatially profile 
metabolites in unique systems requiring special considerations outside of the norm.

Keywords  Spatial metabolomics • Mass spectrometry imaging • MALDI • Matrix • 
High resolution
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AP-MALDI	 Atmospheric pressure matrix-assisted laser desorption 
ionization

CHCA (or HCCA)	 α-Cyano-4-hydroxycinnamic acid
Cer	 Ceramide
DAN	 1,5-Diaminonapthalene
DESI	 Desorption electrospray ionization
DHAP	 2,5-Dihydroxyacetophenone
DHB	 2,5-Dihydroxybenzoic acid
DMAN	 1,8-Bis(dimethylamino)naphthalene
FA	 Fatty acid
FFPE	 Formalin-fixed paraffin embedded
fNPs	 Functional iron nanoparticles
FT	 Fourier transform
FTICR	 Fourier transform ion cyclotron resonance
FT-IR	 Fourier transform infrared spectroscopy
HCA	 Hierarchical cluster analysis
Hex	 Hexose
IR	 Infrared
IR-MALDI	 Infrared matrix-assisted laser desorption ionization
ITO	 Indium tin oxide
kMSI	 Kinetic mass spectrometry imaging
LDI	 Laser desorption ionization
MALDI	 Matrix-assisted laser desorption ionization
MIPC	 Ceramide phosphoinositol
MRI	 Magnetic resonance imaging
MS	 Mass spectrometry
MSn	 Multistage tandem mass spectrometry
MSI	 Mass spectrometry imaging
MS/MS	 Tandem mass spectrometry
m/z	 Mass-to-charge ratio
NIMS	 Nanostructure-initiator mass spectrometry
OCT	 Optimal cutting temperature
PA	 Phosphatidic acid
PCA	 Principal component analysis
PC	 Phosphatidylcholine
PE	 Phosphatidylethanolamine
PG	 Phosphatidylglycerol
PI	 Phosphatidylinositol
PS	 Phosphatidylserine
ROI	 Region of interest
RP	 Resolving power
SIMS	 Secondary ion mass spectrometry
TIC	 Total ion chromatogram
TOF	 Time of flight
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12.1  �Introduction

Recent major technical advances in mass spectrometry (MS) have increased the scope, 
applicability, and adoption of the technology in a vast array of research areas [1]. The 
number and scope of approved diagnostic clinical applications utilizing mass spec-
trometry are increasing and broadening extremely rapidly. In particular, the applica-
tion of MS to biochemical imaging via mass spectrometry imaging (MSI) has emerged 
as one of the leading spatial analysis technologies for high-throughput molecular 
imaging in biological systems. MSI has been employed to investigate a vast range of 
different spatial biological questions, and there have been many excellent comprehen-
sive reviews published in recent years [1–14]. A recent survey of MSI users has identi-
fied matrix-assisted laser desorption ionization (MALDI) as the dominant ion source 
(95 %), and imaging of small molecules, including drugs, metabolites, and lipids, rep-
resents approximately 80 % of the application of MSI. In this chapter, we provide an 
introduction to MALDI-MSI used for biological-based research.

The “omics” technologies, genomics, transcriptomics, proteomics, and metabo-
lomics (and others), have provided insights into biochemistry, physiology, and biol-
ogy and are at the forefront of discovery in modern systems biology [15]. The 
exquisite specialization and compartmentalization of biological systems also require 
spatial approaches allowing examination of “where things are happening” to unveil 
the full complexity of the underlying biology.

Spatial analysis can be conducted using a number of different techniques, which 
can be broadly categorized into two approaches: (1) in vitro isolation and extraction 
of individual tissue/cell types and (2) in situ, including in vivo, analysis using an 
imaging approach. The suite of technologies available for in situ imaging is enor-
mously powerful and varied, including Fourier transform infrared spectroscopy, 
magnetic resonance imaging, electron microscopy, histochemical and immunolabel-
ing approaches coupled to optical and fluorescence microscopy, and X-ray fluores-
cence microscopy, with each approach taking advantage of different physical and 
chemical properties of the underlying tissue to provide unique insights. MSI has a 
number of advantages over other imaging modalities which are directly derived from 
the capabilities of modern MS instrumentation, which provide molecular specificity, 
high sensitivity for select analytes, and the ability to measure a broad range of ana-
lytes at high mass-resolving power with high mass accuracy across wide mass ranges. 
Even with these advantages, it is still a challenge to provide the depth of coverage 
that may be achieved from alternative approaches. MSI can provide very high lateral 
resolutions for imaging, giving the ability to distinguish the molecular nature of fine 
morphological features within tissues, even down to the single-cell level. Certain 
MSI approaches take advantage of minimal or no sample preparation steps with a 
number capable of ionization directly off sample surfaces. While our spatial resolu-
tion during MALDI imaging experiments has improved in recent years, other imag-
ing modalities can achieve higher spatial resolution, and Caprioli and coworkers 
have sought to integrate, or fuse if you like, these different modalities to combine the 
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strengths of different imaging modes for a better outcome [16]. For example, they 
showed that correlating modest resolution MALDI imaging (100 μm) with optical 
scans of H&E-stained tissue allowed the prediction of regions of interest at higher 
spatial resolution – the prediction at 10 μm was verified by MSI acquired at 10 μm 
on a serial section. This advance has the potential to combine the specificity of 
MALDI-MSI with optical images and other modes of imaging. The other advantage 
of being able to use modest resolution MALDI-MSI is that the sample throughput 
can be higher, as very high spatial resolution MSI on large tissue sections is not fast 
enough to be considered high throughput on most MALDI instruments. Recent 
instrumental advances have also increased the speed of which data can be collected.

MSI was first applied to biomedical imaging [17, 18] in the mid-1990s corre-
sponding with the introduction of soft ionization techniques, in particular 
MALDI. MSI has significantly advanced, providing both high lateral (spatial) and 
high mass resolution capabilities using a variety of different ion sources and 
approaches. MSI has found extensive use in molecular pathology and histology 
where the technique is used to map the spatial distribution of proteins and small 
molecules including drugs, lipids, and endogenous metabolites within tissues [1, 
12]. MSI has been demonstrated to have a number of advantages, including a label-
free analysis and the simultaneous multiplex measurement of 100 to possibly 1000 
of analytes in a single imaging experiment, providing rich high density multidimen-
sional data. Combination of MSI with advanced software and data analysis tech-
niques now allows the virtual microdissection and interrogation of the molecular 
makeup of individual tissues. Lately, advances in spatial resolution have placed MSI 
at the forefront of single-cell metabolomics [19, 20], demonstrating an ability to 
measure the metabolism of an individual specialized cell within a subpopulation of 
cells. The development of novel data analysis techniques is opening the doors to 
conducting spatial metabolomics and comparative statistics across multiple samples 
allowing exploration of molecular changes during disease processes and identifica-
tion of biomarkers [21, 22].

12.2  �Mass Spectrometry Imaging

There are four essential steps in a basic MSI experiment: (1) sample selection and 
preparation, (2) desorption and ionization, (3) mass analysis, and (4) image registra-
tion and data analysis [14]. Careful control of each is essential to enable generation 
of high-quality images. In particular, sample selection, storage, and preparation 
have a disproportionate impact on the final results; there are many potential pitfalls 
that must be avoided as many sample preparation steps or techniques have the 
potential to contaminate the tissue section with exogenous material affecting repro-
ducibility, ionization, and image quality. Fundamentally, the MSI process involves 
placing a suitable tissue section into an ion source, ionizing the sample and collect-
ing a series of position-correlated mass spectra. This series of individual mass 
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spectra is collected in a two-dimensional (2D) array across surface of the sample 
using one of a range of different ion sources and mass analyzers. The most common 
approach is a microprobe approach where for each spatial coordinate, a single cor-
responding mass spectrum is collected. The resulting mass spectra represent the 
intensities of ionizable molecules present as their mass-to-charge ratios (m/z) which 
are then correlated with a high-resolution optical image of the tissue or histochemi-
cal stain with each spectrum assigned as an individual pixel for image generation. 
When the intensity value of each respective ion is plotted as an intensity map across 
the 2D array, the resultant reconstructed ion image represents the spatial distribution 
of the corresponding molecule(s). Three-dimensional (3D) approaches are also pos-
sible where serial 2D arrays from sequential tissue sections (or depth profiling) 
from the one tissue sample are measured and then a 3D volume is reconstructed 
computationally [23–25].

12.2.1  �Ionization and Mass Analysis

MSI first relies on the ability to form ions that are then transferred under vacuum 
and measured by the mass analyzer. Currently, the dominant ion source and approach 
is MALDI, due to a range of commercially available instruments, which are capable 
of delivering high spatial and mass resolution, ease of use, and broad range of appli-
cability to a variety of biological applications (Fig. 12.1). In practice, lateral resolu-
tions for MALDI instruments are in the range 5–50 μm. The past 3–5 years have 
seen an explosion in different types of ion sources available, including atmospheric 
pressure MALDI (AP-MALDI) and other specialized sources for ambient ioniza-
tion conditions [26]. Further, a number of popular alternative ion sources exist 
including SIMS, desorption electrospray ionization (DESI), nano-DESI, laser abla-
tion electrospray ionization (LAESI), and atmospheric pressure MALDI.  When 
undertaking MSI at very high spatial resolution, there is a significant trade-off with 
sensitivity, because the decreased sampling area will reduce the total number of ions 
available for detection. In short, MSI experiments will usually involve some kind of 
trade-off between spatial resolution and sensitivity; however, advanced mass ana-
lyzers and detectors are now allowing the measurement of very low numbers of ions 
that to some degree mitigates losses in sensitivity at high lateral resolution.

The mass analyzer is the core component of a mass spectrometer, enabling deter-
mination of mass-to-charge ratio (m/z) of an ion. The type of mass analyzer used 
and spectral resolution also have a direct impact on the ability to conduct MSI 
experiments (Table 12.1). The most common mass analyzers used on MSI instru-
ments include time of flight (TOF) and Fourier transform (FT), encompassing both 
orbitrap and ion cyclotron resonance (FTICR) instruments. To distinguish differing 
metabolites in tissues, there is a clear need for accurate mass and high mass-
resolving instruments and/or the use of tandem MS. Low mass resolution instru-
ments can lead to misidentification or misinterpretation due to inability to resolve 
peaks of similar mass in MS scans. Ion traps have been used for imaging studies, 
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Fig. 12.1  Matrix-assisted laser desorption ionization (MALDI) approach. (1) Sample selection 
and preparation: sample tissues are first frozen and then cryo-sectioned with resulting thin sections 
mounted directly to a target. A thin layer of chemical matrix is typically applied across the surface 
of the tissue using a spray deposition or sublimation approach; (2) MALDI: molecules are desorbed 
from the surface by preferential absorption of UV or IR light energy by the matrix, localized phase 
transfer generates an evolving gas plume, ions may be pre-formed in the solid phase or generated 
in the gas phase by ion addition or abstraction from the respective analyte; (3) mass analysis: indi-
vidual position-correlated mass spectra are collected in a uniform array; (4) image registration and 
data analysis: spectra are combined to generate a data cube. MSI data is then defined by x,y loca-
tion, m/z, and ion signal intensity. Individual ion images are reconstructed by plotting the ion signal 
intensity for a single (or multiple) m/z as a false color image across the 2D grid correlated with an 
optical image. Further statistical analysis may be conducted to identify spatial segmentation or 
comparative analysis across sections
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and while being lower resolution mass analyzers, they do offer the possibility to 
perform targeted MSI experiments at MS2 or MSn level, where product ions can 
monitored. This approach can be useful if there is sufficient signal for MSn events, 
and even though the MSI would be displayed for a particular product ion, whole MS 
and MSn spectra are acquired, meaning compound ID can be made by comparing 
full MSn spectra acquired during MSI analysis to spectra from standard materials. 
Undoubtedly, higher mass resolution is very useful in MSI experiments, where sam-
ple purification and fractionation are not possible and sample cleanup is limited, but 
MSn experiments using ion traps also have potential to identify compounds during 
MSI analysis.

The ability of a mass spectrometer to distinguish one mass peak from an ion 
close in mass is described by both mass resolution and resolving power (RP). MSI 
experiments are less sensitive than analyses that orthogonally separate analytes 
prior to measurement and detection; this is directly due to the extremely complex 
biological matrix of the tissues where vast concentration ranges of chemical enti-
ties are present with differing chemistries and molecular sizes (e.g., proteins, lip-
ids, organic acids, amino acids, carbohydrates, inorganic ions, etc.). For MALDI 
experiments, the presence of high abundance low-molecular mass ions generated 
directly from the matrix employed can lead to significant interfering signal. Higher 
mass resolution allows easier identification of contributing ions and exclusion of 
interference from the presence of other chemical entities. Higher mass-resolving 
power is essential for high mass accuracy, whereby a higher RP allows identifica-
tion of the center of peak and determination of the mass error, with low mass error 
allowing unambiguous assignment of a molecular formula aiding in identification. 
Modern high-resolution instruments are capable of <10 parts per million (ppm) 
mass error for TOF and <2  ppm mass error for FT instruments. Measurements 
conducted on low mass resolution instruments are typically operated in a targeted 

Table 12.1  List of common mass analyzers and instrument configurations detailing: mass 
resolution, approximate mass range, MS/MS capabilities, and acquisition speed

Mass analyzer/
configuration Mass resolution

Mass 
range (Da) MS/MS MSn

Acquisition 
speed

Ion trap ~1000 50–4000 Yes Yes Medium
TOF 2500–40,000 20–

500,000
No No Fast

TOF/TOF >20,000 20–
500,000

Yes No Fast/very fast

IT-TOF 10,000 50–20,000 Yes Yes Fast
IT-orbitrap >100,000 40–4000 Yes Yes Slow
FTICR >200,000 10–10,000 Yes Yes Slow
Ion mobility QTOF 13,000/40,000 Up to 

40,000
Yes No Fast

TOF time of flight, TOF/TOF tandem TOF, IT ion trap, FTICR Fourier transform ion cyclotron 
resonance, QTOF quadrupole time of flight, Da dalton
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tandem MS approach to provide molecular selectivity where specific fragment 
ions of single analytes are monitored, providing both molecular specificity and 
increased sensitivity. MSI measurements using higher resolution detectors pro-
vide the ability to unambiguously resolve a peak from the complex spectra that is 
generated allowing untargeted profiling-type techniques. The other exciting 
aspect of performing MSI with mass analyzers offering extreme resolution is that 
in addition to the mass accuracy measurement and the oft referred to isotope enve-
lope, one can also measure the fine structure of each isotope peak. This fine struc-
ture is due to the very small differences in mass that exist in naturally occurring 
isotopes, for example, 34S will be slightly lower in mass than 18O, and if our ana-
lyzer is capable of very high resolution, these species can be resolved and observed 
separately. This fine structure is characteristic of the chemical composition and 
can be used along with mass accuracy and traditional isotope envelope measure-
ment to confirm molecular formulae. This approach has shown great utility in the 
metabolite world. For protein samples, an on-tissue digestion would be required, 
given the mass range of FTICR analyzers. This approach is very exciting too, 
because it opens the possibility of “peptide mass fingerprint”-type experiments – 
whereby if we confirm the presence of several peptides that emanate from an 
individual protein, we essentially have protein identification during an MSI analy-
sis. This approach is important because it removes the requirement for successful 
MS2 experiments.

A hybrid approach that uses ion mobility coupled to mass spectrometry (IM-MS) 
that first separates ions by their mobility in a carrier gas followed by detection by 
MS has recently been developed [27, 28]. IM-MS offers the ability to orthogonally 
separate ions in the gas phase with similar m/z but different shapes via collisional 
cross section (CCS), providing a number of benefits including better signal to noise 
ratio (S/N) and the potential to separate isomers according to their shape and charge 
[29–32]. The application of IM-MS to MALDI-MSI experiments provides much 
promise for the analysis of lipids, peptides, and proteins; however, the benefits of 
IM-MS for small molecule analysis are slowly being unveiled as higher ion mobility 
resolving instruments are developed.

12.2.2  �Sample Preparation

Prior to analysis, tissues must be collected and stored. The steps taken during both 
tissue collection and storage are critical for successful MSI analysis and often vary 
depending upon the analyte of interest. Most experiments will have a distinct timing 
mismatch between sample collection and analysis, requiring the storage of samples 
for a period of time. For most MSI analyses, tissue samples are typically flash-
frozen to quench metabolism and to retain the spatial distribution of analytes and 
are sectioned or prepared at a later time point. Care must be taken to retain the tissue 
morphology during the freezing process and to preserve an accurate representation 
of the native tissue; soft tissues may deform and take the shape of the container 
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(tube or tray) within which they are frozen. Typically, to protect delicate tissues, 
structures, and small metabolites, a gentle freezing approach is recommended, 
including freezing in the atmosphere over liquid nitrogen or in cold carbon dioxide 
atmosphere over dry ice; alternatively, samples may be dipped into isopentane/liq-
uid nitrogen or isopentane/dry ice slurries. Alternatively, a number of heat and 
microwave tissue stabilization methods have been developed for proteins and pep-
tides [33–35].

Once samples are frozen, tissues and analytes are generally stable for months to 
years when stored at −80 °C. Embedding tissues within an external matrix is a com-
mon approach and is often required to ensure that suitable sections are generated 
from fragile tissue types that may have a tendency to fracture and crumble during 
sectioning. A number of different embedding media have been successfully demon-
strated, including agarose [36], gelatin [20, 37–41], and aqueous carboxymethylcel-
lulose solutions (1–5 %) [42, 43]. In general, the easier the frozen matrix is to 
section or the closer the properties of the matrix are to the tissue being sectioned, the 
easier it will be to generate suitable sections of tissue for analysis.

Standard histological workflows utilize optimal cutting temperature (OCT) 
compound (a solution containing ~4 % polyethylene glycols (PEG)) as an embed-
ding medium, but this is strongly discouraged for MSI research due to absorption 
into the tissue and smearing of OCT across the tissue surface during cryo-section-
ing, which has been shown to directly lead to ion suppression effects and loss of 
analyte signals [44].

While cryo-sectioning is the most commonly used method for sample prepara-
tion to access internal metabolites, there are other alternatives for tissue section-
ing. Depending on the analysis method and instrument used, tissues must be 
prepared differently for imaging purposes, and a number of factors must be consid-
ered. External surfaces can be readily analyzed by mounting tissues directly to 
sample stages using double-sided tape, but for the measurement of internal distri-
butions of metabolites, tissues must first be sectioned at an appropriate thickness 
to expose the underlying tissue. In particular, the type of analytes and their stabil-
ity and turnover must be considered. Both the sample height and morphology may 
have a large effect upon the number of ions generated (due to laser focusing) and, 
for linear TOF instruments (LDI and MALDI), mass accuracy and resolution (due 
to changes in flight path length). Instruments where the detector is decoupled from 
the source, such as QIT, LIT, FTICR, and orbitrap instruments, are not reliant upon 
the sample thickness and are only limited by the physical configuration of the 
sample stage.

An established technique for generating thin sections from hard tissues has been 
recently adapted to MSI applications for delicate and difficult tissues [45]. The 
Kawamoto method uses an adhesive film to capture thin sections during cryo-
sectioning. Once the tissue is adhered to the film, it can be transferred then fixed to 
a standard slide and prepared in the normal manner for MSI [46, 47].

For previously fixed tissue samples, there are a number of sample preparation 
protocols that have been developed for formalin-fixed paraffin-embedded (FFPE) 
mammalian tissue specifically for MSI analysis [48]. Previously, FFPE tissues have 
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been considered only suitable for examination of the distribution of metals, pro-
teins, peptides, and other polymeric biomolecules in tissues due to the fixation 
extracting and degrading small molecules. More recently, the possibility of imaging 
small molecules from FFPE tissues has been demonstrated [49–51]. For proteins, 
peptides, and glycogens, further tissue preparation steps are required to retrieve 
antigens lengthening the sample preparation process.

Some tissue types can be very difficult to frozen section, such as secretory 
tissues, among other things. These tissue types benefit from a tissue fixation 
approach; however, FFPE fixation using formaldehyde renders the intact pro-
teins inaccessible. This can be a problem especially for studies where transcrip-
tome libraries do not exist – as the peptides that would be observed after antigen 
retrieval and enzymatic digest are meaningless in the absence of a transcriptome 
library. One approach for these types of sample is to utilize a fixation approach 
that does not involve the protein cross-linking caused by formaldehyde [52]. 
RCL2 and PAXgene Tissue are two products that can be used to fix tissue, which 
do not cross-link the proteins. Once fixed, the tissue is dehydrated (ethanol gra-
dient) and cleared (xylene) prior to paraffin impregnation in much the same man-
ner as routine tissue processing. This approach results in a paraffin-embedded 
tissue that can be sectioned very easily using a microtome. The only caveat is 
that the sectioned tissue cannot be floated on a water bath for mounting onto a 
slide, as the proteins are soluble. The carefully placed tissue section is heat 
mounted to a glass slide and then deparaffinized using xylene. At this stage, the 
tissue can have matrix applied in the same manner as any other tissue. For pro-
tein analysis, the samples are very good because the dehydration and clearing 
remove the lipids and other species that often reduce the sensitivity during an 
MSI analysis. However, the approach is clearly not ideal for analyte classes sol-
uble in ethanol or xylene.

Once mounted to the sample carrier, the tissues are typically dehydrated under 
vacuum prior to either matrix deposition or direct analysis. Prior dehydration 
avoids any shrinkage of tissues leading to changes in sample morphology within 
the instrument. In MALDI-MSI using TOF detection, where a voltage is applied to 
the sample stage, samples are usually mounted either on glass slides coated with 
conductive indium tin oxide (ITO) or on reusable metal sample stages (steel or 
gold-coated steel). Samples are either directly freeze-thaw mounted to the surface 
or adhered using conductive double-sided tape [53]. Freeze-thaw mounting is gen-
erally performed by transferring the cut tissue section to the top of the sample 
holder (slide, plate) and then gently warming the holder from the underside using 
body heat. The tissue section quickly thaws and adheres to the surface of the holder. 
Once mounted, the sections are warmed and transferred to a vacuum desiccation 
chamber and dried under reduced pressure for at least 15 min before any further 
steps are conducted. Tissue sections may degrade rapidly and must either be stored 
under vacuum or, for longer periods, at −80 °C [54]. For MALDI-MSI, application 
of the matrix has been shown to stabilize analytes within the tissue to oxidation and 
degradation processes.
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12.2.3  �Tissue Washing

A commonly accepted principle of MSI analysis is to conduct the minimal amount 
of sample preparation steps, to avoid metabolite degradation, and to retain the dis-
tribution of analytes. However, a number of tissue washing steps can be conducted 
to either increase the sensitivity for certain analytes or to remove background salts 
to decrease salt adducts [55–57]. Mounted sections can be carefully dipped into 
washing solutions and then dried, before further processing such as enzymatic 
digestion or application of matrix. These steps have been successfully employed to 
increase the ionization of selected metabolites (including lipids, proteins, and pep-
tides) in mammalian systems.

12.2.4  �MALDI Matrix Application and In Situ Protein 
Digestion Strategies

MALDI relies upon an exogenous matrix, consisting typically of either small 
organic molecules or inorganic UV absorbent nanoparticles, which must be applied 
by one of a number of different techniques. Further, the achievable lateral resolution 
is dependent upon the size of the matrix crystals, which is in turn dependent upon 
the application technique employed. There are a number of approaches used to 
apply a MALDI matrix that can be separated into two different strategies, involving 
either dry deposition or wet deposition and extraction. The first, dry deposition 
strategy, deposits the matrix without any solvents to the top surface of a tissue sec-
tion by one of two common techniques, employing handshaking of dry fine crystals 
of matrix onto the sample through a sieve or the use of a sublimation apparatus. A 
sublimation approach for deposition of matrix provides very uniform coatings with 
very small crystal sizes (typically in the range of 1–5 μm), allowing imaging with 
high spatial resolution. It is becoming one of the preferred approaches for small-
molecule and lipid imaging [58].

Wet deposition strategies have also had significant attention, and there are many 
different techniques available for specific analyte classes. Wet deposition is one of 
the most common techniques for matrix deposition for MALDI-MSI analysis and 
is essential to conduct in situ protein digests. To conduct an in situ protein diges-
tion, a protease, generally trypsin or α-chymotrypsin, is deposited in a buffered 
solution. Once uniform application of enzyme has been achieved, the sample is 
incubated in a humid atmosphere for a period of time, to allow localized digestion 
before drying and matrix application for MALDI-MSI. Matrix is first dissolved in 
a suitable solvent, then small droplets are applied to the surface of the tissue to be 
imaged, micro-extraction of endogenous molecules takes place at the solvent-tis-
sue interface, and, as the solvent dries, analytes co-crystallize with the dissolved 
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matrix. The achievable lateral resolution of a wet deposition technique is predomi-
nantly dependent upon the droplet size maintained during matrix deposition. There 
are several different techniques reported in the literature, including homemade 
solutions and a range of commercially available instruments, ranging from manual 
airbrushing (where success is highly dependent upon the operator) to more con-
trolled robotic spraying (HTX Imaging TM-Sprayer, HTX Technologies LLC, 
Carrboro, NC, USA; SunChrom SunCollect and SunCollect II plus+, SunChrom 
GmbH, Friedrichsdorf, Germany), automatic droplet deposition through piezo-
electric vibration (ImagePrep, Bruker, Bremen, Germany), inkjet printing (ChIP 
1000, Shimadzu Corp., Japan) with standard inkjet printers [59], robotic spotting 
(Labcyte Portrait 630 Spotter – no longer available), and automatic protein diges-
tion robots (SunChrom SunDigest, SunCollect II plus+, SunChrom). Once deposi-
tion conditions have been optimized for specific solvents, matrix and concentration, 
number of passes or spray cycles, temperatures, and drying, it is possible to achieve 
very small crystal sizes of 5–20+ μm (in the longest dimension), allowing high-
resolution imaging. A combination approach of initial dry deposition using subli-
mation followed by in situ “rehydration/recrystallization” by vapor exchange 
provides excellent results for protein and peptide imaging [7].

12.2.5  �Matrices for MALDI Analysis

There are a large number of matrices that are either in common use or have been recently 
reported in the literature for MALDI, including the main stalwarts 2,5-dihydroxybenzoic 
acid (DHB) [60], 2,5-dihydroxyacetophenone (DHAP) [61], sinapinic acid (SA) [62, 
63], and α-cyano-4-hydroxycinnamic acid (CHCA) [64–66], which are typically used 
for positive-mode MALDI analysis. Recently, lithium salts of DHB, SA, CHCA, and 
vanillin have been demonstrated as suitable matrices for imaging hydrocarbons as the 
lithiated adduct [67]. 9-Aminoacridine (9-AA) [41, 68], 1,8-bis-dimethylaminonaph-
thalene (DMAN) [38, 69], and 1,5-diaminonaphthalene (DAN) [20, 41, 60] were 
reported for negative-mode analyses. 2-Aminoethyl-N-2-aminonaphthalene has also 
been reported as a suitable matrix [70]. Recent use of the plant metabolites quercetin and 
morin [71], which are structural isomers, as matrices for both positive- and negative-
mode analysis, has demonstrated vastly increased detection of phospholipids in mam-
malian tissues when using high-resolution FTICR-MS.

More recently, DAN has been adopted for plant-based imaging, which requires 
very low laser energy and very small crystal size [41]. DAN has been used for MSI 
imaging in both positive and negative modes at very high spatial resolution (how-
ever, caution is required when using DAN as it is suspected to be a carcinogen). 
Further, DAN is also chemically reactive with the ability to form gas phase radicals, 
to induce in-source decay, and to conduct gas phase reductions of disulfide bonds 
[72, 73]. The use of an ambient-pressure MALDI source allows the use of volatile 
matrices, including liquid ion matrices and also water in the form of ice for 
IR-MALDI within frozen tissues [74]. Nanoparticles and colloids have been 
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reported as suitable matrices for MALDI-MSI, including the use of silver and gold 
nanoparticles for the imaging of waxes and phospholipids [75–79]. Furthermore, 
functional iron nanoparticles (fNPs) have been demonstrated in mammalian tissues 
[80]. In the case of small-molecule matrices, these can be readily removed post-MSI 
acquisition, washed with a suitable solvent such as ethanol or aqueous solutions, 
and then subjected to histochemical staining [7].

12.3  �Data Analysis

12.3.1  �Analytical Software and Data Analysis Techniques

MSI experiments generate huge volumes and highly complex data; due to these 
properties, there is a requirement for advanced software and computational data 
analysis techniques to extract meaningful results from the data. Data analysis of 
MSI datasets was in the beginning largely limited to manual identification and 
mapping of individual ions but has in recent years advanced significantly and to 
incorporate advanced clustering and comparative visualization tools allowing 
spatial segmentation, identification, and comparison of multiple ions. Commercial 
data analysis packages include BioMap (Novartis, Basel, Switzerland), 
FlexImaging and ClinProTools (Bruker Daltonik, Bremen, Germany), HDI (high-
definition MALDI MS imaging) coupled to MassLynx and MarkerLynx (Waters, 
Manchester UK), ImageQuest (Thermo Scientific, Waltham, MA, USA), 
MALDIVision (PREMIER Biosoft), SCiLS Lab (SCiLS Bremen, Germany), and 
TissueView (AB Sciex, based on BioMap). Recent adoption of the common 
mzML data format standard (www.imzml.org) [81] by instrument vendors and 
incorporation into a variety of tools or directly into the vendor software (such as 
FlexImaging) has allowed export of instrument-specific data into a common for-
mat, which has aided the development of vendor-independent tools for data analy-
sis and application of advanced statistical techniques to identify underlying 
metabolite distributions and co-localizations. Open-source software packages 
include Datacube Explorer (FOM-AMOLF, Amsterdam, Netherlands) [82], 
Metabolite Imager (University of Texas) [83], MIRION (Justus Liebig University) 
[84], MSiReader (North Carolina State University) [85], OpenMSI (Lawrence 
Berkeley National Lab, CA, USA, http//openmsi.nersc.gov) [86], Cardinal [87], 
SpectViewer (www.maldi-msi.org), OmniSpect [88], MSIQuant [89], LabMSI 
[90], MSI.R [91], and MALDIquant [92]. Many of the current packages for MS 
image analysis have been developed incorporating only visualization and simple 
clustering techniques such as hierarchical cluster analysis (HCA) and principal 
component analysis (PCA).

Due to the inherent heterogeneity of MSI data, preprocessing and spectral “denois-
ing” are recommended to obtain better results [93–95]. Preprocessing includes steps 
for baseline subtraction and smoothing, peak alignment and mass recalibration 
across the entire dataset, normalization of signal intensity, peak-picking, and data 
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reduction steps. A number of publications have provided detailed analysis pathways 
and suitable tools to examine MSI data [86, 93]. Once preprocessing steps are com-
plete, there are three types of unsupervised approaches to identify hidden patterns 
and spatial distributions of metabolites: component analysis, spatial segmentation, 
and self-organizing maps. The first, component analysis, has been dominated by the 
use of principal component analysis (PCA), although other methods have been used 
to uncover the variation in MALDI-MSI data, including nonnegative matrix factor-
ization, maximum autocorrelation factorization, and latent semantic analysis (see 
review by [93]). PCA represents the spatial patterns of molecules in terms of the set 
of score images, but PCA has a number of limitations including negative values 
(which are not present in the data) and difficulty in determining co-localized ion 
images for identified patterns of distribution. Spatial segmentation is a robust 
approach to examine MSI data where a segmentation map displays different regions 
in the tissues with distinct molecular composition [93]. A common approach is to use 
hierarchical cluster analysis (HCA), which is directly incorporated into FlexImaging. 
More recently, advanced spatial segmentation clustering techniques have been devel-
oped that cluster m/z values with distinct regions of the tissue [21, 94] and are incor-
porated directly into the commercial software SCiLS Lab. The third area is an 
emerging data analysis technique that makes use of unsupervised self-organizing 
maps (SOM) [96, 97] and growing self-organizing maps [98] that reduce the dimen-
sionality of the data and allow identification of hidden patterns within the data.

Three-dimensional mass spectrometry imaging (3D-MSI) has been reported 
[99–101] and reviewed previously [5]. 3D-MSI is conducted using one of two 
approaches: (1) depth profiling on the same tissues by conducting sequential raster-
ing events [5], which is common for SIMS [102, 103] but has also been reported for 
laser ablation electrospray ionization, which was used to depth profile plant leaf 
tissue [23], or (2) by combining multiple two-dimensional MSI measurements con-
ducted on serial tissue sections from a single sample. Individual datasets are com-
putationally reassembled to generate 3D volume reconstructions of individual ion 
distributions; for this purpose, researchers have used software such as Amira (www.
fei.com), Image J (imagej.nih.gov/ij), MATLAB (www.mathworks.com), and more 
recently SCiLS Lab (www.scils.de) to generate 3D images.

12.3.2  �Reporting Standards and Online Repositories

Recent guidelines for the reporting of MSI datasets have been published [104]. The 
article outlines the detailed metadata and contextualizing of information that is 
required to fully describe an MSI dataset, and it provides eight specific reportable 
areas: (1) tissue samples, including the type and how the tissue was sampled; (2) tis-
sue preparation, including methods such as washing and matrix application steps; (3) 
optical image, detailing information about the corresponding optical images used for 
MSI analysis; (4) data acquisition, detailing the instrument and parameters used to 
acquire the data; (5) mass spectra preprocessing, detailing the parameters used 
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to baseline subtract, to smooth, and to align spectra, for intensity normalization 
methods, for peak picking, and for data reduction methods; (6) MSI visualization, 
including methods for peak picking and image generation parameters; (7) compound 
identification, including all procedures used to identify individual metabolites; and 
(8) data analysis, detailing procedures, methods, and software used. Current report-
ing standards for identification in metabolomics experiments, including definitions 
for tentative, putative, and confirmed identification, have been previously published 
[105] and at the time of publication are currently being reviewed and updated. For 
MSI experiments, the ability to confirm identifications is all the more difficult due to 
the inability to separate isobaric compounds. Future release of reporting standards 
for MSI experiments in 2017 will provide detailed guidelines for MSI identification 
strategies. A common public repository has also recently been announced, where 
MSI datasets can be deposited for storage and later retrieval [106]. More recently, 
SCiLS Lab has announced SCiLS in the Cloud (www.scils-lab.com), an online 
engine capable of sharing imaging and statistical analysis results in collaborative 
manner. A spatial metabolomics analysis server has been released by the Alexandrov 
group and is available at www.alpha.metasp.eu; the OpenMSI project also offers 
online data analysis and sharing (http://openmsi.nersc.gov).

12.4  �Applications

MALDI-MSI has been extensively deployed in biomedical research with several 
1000 studies published since the early 1990s. A PubMed (http://www.ncbi.nlm.nih.
gov/pubmed) survey of recently published literature over the years 2013 to June 
2016 returns 833 publications with MALDI mass spectrometry imaging. A selec-
tion of publications from the total are referenced below along with examples of 
imaging lipids, peptides, and special metabolites in novel, complex, and difficult 
tissue types. Further, filtering to within the clinical space shows a broad range of 
research areas, a large number of different applications, and a dominance of the use 
of MALDI instruments for analysis (Fig. 12.2). A third of publications focus upon 
cancer (n = 104) with nearly another third on neurological disease (n = 84), reflect-
ing this breakdown a third of analytes studies are lipids (34 %) followed by proteins 
and peptides (29 %) and then drugs and small molecules (24 %). The breakdown 
reflects that lipids derived from biological membranes are readily abundant, require 
few sample preparation steps, and are easily observed by MALDI-MSI.

12.4.1  �Lipids

Many disease models in cancer and neurobiology display significant changes in the 
lipid profile reflecting dramatic changes in lipid metabolism [6, 21, 107–112]. For 
these types of analysis, samples require relatively few preparation steps, 
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Fig. 12.2  (a) Total numbers of publications by disease type and research area over 2013–2016, (b) 
Type of analyte, (c) Type of ionization source

cryo-sectioning of fresh frozen tissues, mounting, dehydration, and application of 
matrix prior to imaging. An example of the complex distribution of lipid within 
class and between differing classes, including fatty acids, phospholipids, ceramides, 
and gangliosides in kangaroo cerebellum, is shown in Fig. 12.3. Analysis in nega-
tive ionization mode is capable of tentatively identifying up to 236 different lipids 
and metabolites. Lipids and metabolites were identified by using the Metaspace 
metabolite annotation engine (www.alpha.metasp.eu) using an accepted FDR of 
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Fig. 12.3  Distribution of different lipid classes in kangaroo cerebellum. Lipids and metabolites 
were identified by using the Metaspace metabolite annotation engine (www.alpha.metasp.eu) 
using an accepted FDR of <0.2<0.1 and an accepted mass error of <5 ppm. Sagittal section of 
kangaroo brain cerebellum, 20 μm thick section, thaw mounted to glass slide with 1,8-bis (pyrro-
lidinyl) naphthalene matrix (5  mg mL−1 in acetone) applied by spray deposition using a HTX 
TM-Sprayer (8 passes, 150 μL min−1 flow rate, 2 mm track spacing with 1 mm offset for repeat 
passes and 90° offset for alternate passes). Data generated on a 7 T Bruker SolariX XR MALDI-
FTICR-MS in negative ionization mode, 150 × 150 μm spot array, 150,000 mass resolution at 
400 m/z. Images were generated in Compass flexImaging 4.1 employing TIC normalization and 
scaled from 0 to 100 % of maximum ion intensity for respective ions.
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<0.1. There are distinct differences in the distribution of two of the most common 
and simple fatty acids FA (18:0) vs. FA (18:1), differing only by a single unsatura-
tion. The unsaturated FA (18:1) is found in high amounts within the white matter 
and distributed throughout the gray matter vs. the fully saturated species FA (18:0) 
having a preferential distribution to the gray matter. Differences in the distribution 
of phospholipids, PA, PE, PI, PS, and cardiolipins, ceramides including sulfated 
species, MIPC, and various gangliosides are observed; in particular, the simpler 
sulfated hexose ceramides (SHexCer (d36:1), SHexCer (d42:3)) are found in the 
axon-rich white matter versus the more complex MIPC and ganglioside species 
(GM1, Type IV Antigen, GalNAc-GM1) found in the gray matter where the major-
ity of the neuronal cell bodies are found.

12.4.2  �Proteins and Peptides

Proteins, the biochemical engines of cells, and endogenous peptides including tachy-
kinins, secretins, opioids, pancreatic peptides, and a range of other biochemically 
active peptides are the next most popular area of research in MSI [113–122]. Proteins 
can be imaged whole (but images tend to be dominated by the most abundant pro-
teins), or for greater coverage, proteins are generally digested in situ to generate a 
series of peptides. A variety of different animal species produce venoms, which are 
cocktails of specialized peptide toxins, evolved for the capture of prey or defense 
against predators. Research into toxic venoms has developed into a significant area of 
study, in particular in the development of antivenoms and as a potential source of 
novel chemotherapeutics. More recently, spatial approaches have been applied to 
examine in vivo localization in the venom gland to better understand evolution of the 
toxic peptides and packaging for deployment. Within an organism venoms are gener-
ally generated in very delicate secretory tissues (glands) requiring highly specialized 
sample preparation methodology to preserve the structure and distribution of endog-
enous molecules. A recent study investigated the nature of the venoms present in the 
gland from a centipede, Thereuopoda longicornis (Fig. 12.4) [123]. Further, the study 
looked to determine whether compartmentalization in the gland existed. A venom 
gland was fixed using RCL2, dehydrated through an ethanol gradient, cleared with 
xylene, and impregnated with paraffin. The section was then deparaffinized using 
xylene prior to matrix application using an ImagePrep system (Bruker). Results dem-
onstrated a heterogeneous distribution of differing venom peptides with the venom 
glands, providing insights into the evolution of venoms across centipede orders.

12.4.3  �Endogenous Metabolites, Drugs, and Small Molecules

Imaging of endogenous metabolites and development of spatial metabolomics 
techniques and tools are a rapidly expanding area [124–126]. Special or highly 
specific metabolites from different species, labeled drugs, or compounds are 
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Fig. 12.4  MALDI-MSI experiment performed in linear positive mode at 50 μm resolution using 
CHCA as matrix. The sample is the venom gland from a centipede, Thereuopoda longicornis, which 
was fixed using RCL2, dehydrated through an ethanol gradient, cleared with xylene, and impreg-
nated with paraffin. Section was deparaffinized using xylene prior to matrix application using an 
ImagePrep system (Bruker). The aim of the study was to investigate the nature of the venom present 
in the gland and to determine whether compartmentalization exists (Further details can be found in 
Undheim et al. [123], Reprinted by permission from PNAS 2015, Copyright © 2015)
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attractive targets for small-molecule MSI [124, 127–139]. These types of com-
pounds may be readily imaged by taking advantage of their specific chemical prop-
erties and use of high mass accuracy capabilities of MS. An example is brominated 
alkaloid analytes from marine sponge samples [140]. The brominated species were 
easy to observe due to the characteristic isotope pattern that bromine confers to 
organic molecules. Further, the sponge sample presented many difficulties to pre-
pare for sectioning, as the brominated alkaloids were very soluble in organic sol-
vents, making typical fixation approaches impossible. Sectioning was ultimately 
achieved by embedding in OCT, prior to frozen sectioning. Pieces of the frozen 
sponge were dropped into the OCT; thawed sponge sample allowed too much dif-
fusion of OCT into the sample. The sections were washed in multiple rinses of 
water to remove as much OCT as possible due to the deleterious impact of OCT on 
collecting MS.  Prepared sections had CHCA matrix applied using ImagePrep 
(Bruker). Figure 12.5 shows the average mass spectrum observed across the tissue 
along the distribution of two brominated analytes at m/z 619 and 574 – the third 
figure overlays these two compounds (619, blue; 574, green) to highlight the dif-
ference in their location across the tissue.

12.5  �Future Directions

Kinetic mass spectrometric imaging (kMSI) has recently been developed as a new 
analytical approach to examine combined spatiotemporally resolved metabolism. 
A single MSI experiment provides only a static snapshot of the underlying molec-
ular distribution of any metabolite. By incorporation of stable isotope labeling, 
metabolic flux within an organism can be examined and has been demonstrated 
for the turnover of and biosynthesis of lipids in a tumor model (Fig. 12.6) [141]. 
Multimodal imaging is an emerging theme, which involves combing two or more 
imaging modalities to provide deeper insights into biology. A simple form of mul-
timodal imaging is already adopted in many MSI workflows which involves gen-
erating a histochemical stained section of tissue, either a serial section or in some 
cases the same piece of tissue on which an MSI measurement has been conducted 
and then co-registering a high-resolution optical images with the acquired MSI 
data. This approach provides more in-depth information (tissue/cell-type distribu-
tion) and can aid in sample interpretation. The combination of MALDI and SIMS 
has been used extensively in plant and animal MSI imaging [142–145], where the 
former has been used to generate lower resolution images across a wide area and 
SIMS used for very high-resolution imaging of a smaller subsection of the tissue. 
High-resolution magnetic resonance spectroscopic imaging (MRSI) has also been 
combined with MSI to examine choline metabolites and cations in tumor cells 
[146]. More recently, the hybrid predictive technique called image fusion has 
been reported and combines high spatial resolution but low chemical specificity 
information, such as images generated from optical microscopy at high magnifi-
cation, coupled to lower spatial resolution but high chemical specificity 
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Fig. 12.5  MALDI-MSI of marine sponge, Stylissa flabella, at 200 μm spatial resolution over a 
mass range of 200–1100 m/z using CHCA as a matrix. The sponge sample presented many difficul-
ties to prepare for sectioning; the analytes of interest, brominated alkaloids, were very soluble in 
organic solvents, making fixation approaches impossible. Sectioning was ultimately achieved by 
embedding in OCT, prior to frozen sectioning. Pieces of the frozen sponge were dropped into the 
OCT; thawed sponge sample allowed too much diffusion of OCT into the sample. The sections 
were washed in multiple rinses of water to remove as much OCT as possible. Prepared sections had 
CHCA matrix applied using ImagePrep (Bruker). Brominated analytes were easy to observe due 
to the characteristic isotope pattern that bromine confers to molecules. The figure above shows the 
average mass spectrum observed across the tissue along the distribution of two brominated ana-
lytes at m/z 619 and 574 – the third figure overlays these two compounds (619, blue; 574, green) 
to highlight the difference in their location across the tissue (Further information can be obtained 
in the following references  – Yarnold et  al. [140] (Reprinted with permission from Molecular 
Biosystems, Copyright © 2012)
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information, such as MSI data, to computationally predict the distribution of 
chemicals in the tissue sections [16]. New instrumentation is constantly being 
developed and recent developments include the Bruker RapiFlex TOF/TOF capa-
ble of high speed imaging (up to 80 pixels per second). Data generated from this 
instrument is being combined with ultrahigh mass resolution FTICR-MS imaging 
(relatively slow imaging) to take advantage of the benefits of each instrument to 
collect data quickly and provide molecular specificity [122]. Ion sources are being 
developed, including the MALDI-2-MS source, which incorporates a second 
post-ionization UV laser to generate gas phase photoionization of metabolites 
within the gas plume [147]. Data analysis remains a bottleneck; however, emerg-
ing MSI data analysis techniques that enable analysis of ultra-high-resolution 
MSI data and incorporate spatial segmentation will enhance discovery of spatially 
resolved metabolism. Further, development of unsupervised techniques that 

Fig. 12.6  Example of kinetic mass spectrometric imaging  – experimental workflow for using 
kMSI to define spatial heterogeneity of lipid composition and biosynthesis. (a) A tumor-bearing 
mouse is administered 2H2O-enriched water to incorporate deuterium into tissue as a result of 
active metabolism. (b) The deuterium-enriched tumor is excised, sectioned, and imaged using 
NIMS. An individual mass spectrum is generated for each pixel every 50 μm, with spectra com-
prised of isotopologues from both 2H-labeled and unlabeled lipid molecules. (c) Serial sections of 
the tumor are used for histopathology correlation with kMSI results. (d) Deconvolution of spectra 
is performed to separate 2H-labeled and unlabeled lipids. Intensity images are generated to show 
the spatial distribution for both newly synthesized and preexisting lipids (Reprinted by permission 
from Macmillan Publishers Ltd: Scientific Reports, 3:1656 [141]. Copyright © 2013)
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utilize the spatial information within an MSI dataset and statistical techniques to 
discover co-occurring metabolites and significant differences in regions of tissue 
will unlock the power of MSI analysis speeding discovery processes.

12.6  �Conclusion

MALDI-MSI has demonstrated application in a vast range of spatial biochemical 
and metabolomics research; the application of ultra-high-resolution and high mass 
accuracy MS provides the ability to distinguish molecular species very close in 
mass and accurately identifies molecular formula. High lateral resolution imaging is 
providing unique spatial insight into the distribution and function of many different 
analyte classes, and the rich, multidimensional, highly dense data is currently pro-
viding unique insights into the vast chemical complexity and specialization found 
within biological systems that is not possible using other methods. Challenges still 
exist including the development of technical methodology to examine specific 
classes of metabolites and advanced computational analysis to examine the data 
produced.
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Chapter 13
Single-Cell Metabolomics
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Abstract  The dynamics of a cell is always changing. Cells move, divide, com-
municate, adapt, and are always reacting to their surroundings non-synchronously. 
Currently, single-cell metabolomics has become the leading field in understanding 
the phenotypical variations between them, but sample volumes, low analyte con-
centrations, and validating gentle sample techniques have proven great barriers 
toward achieving accurate and complete metabolomics profiling. Certainly, 
advanced technologies such as nanodevices and microfluidic arrays are making 
great progress, and analytical techniques, such as matrix-assisted laser desorption 
ionization (MALDI), are gaining popularity with high-throughput methodology. 
Nevertheless, live single-cell mass spectrometry (LCSMS) values the sample qual-
ity and precision, turning once theoretical speculation into present-day applica-
tions in a variety of fields, including those of medicine, pharmaceutical, and 
agricultural industries. While there is still room for much improvement, it is clear 
that the metabolomics field is progressing toward analysis and discoveries at the 
single-cell level.
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Abbreviations

3D	 Three dimensional
7-EC	 7-Ethoxycoumarin
CTC	 Circulating tumor cell
DNA	 Deoxyribonucleic acid
ESI	 Electrospray ionization
iMAP	 Integrated microfluidic array plate
LC-MS	 Liquid chromatography-mass spectrometry
LCSMS	 Live single-cell mass spectrometry
MALDI	 Matrix-assisted laser desorption ionization
MAMS	 Microarrays for mass spectrometry
mRNA	 Messenger ribonucleic acid
MS	 Mass spectrometry
MS/MS	 Tandem mass spectrometry
PDMA	 Polydimethylsiloxane
TA	 Tafluprost acid
TOF	 Time of flight
UV	 Ultraviolet

13.1  �Introduction

Metabolomics, the study of the complete complement of all small molecules 
(<1500 Da) found in a specific cell, organ, or organism [1], is considered the most 
recent – and arguably the end point – of the omics cascade [2]. In fact, it has been 
mentioned by Patti et al. to be the “apogee of the omics trilogy” [3], because unlike 
genomics and proteomics, metabolomics depicts real-time biochemical activity and 
therefore is the key in phenotype association and offers a more reliable depiction of 
the dynamics of the sample in question. As science progresses and technology 
advances, it has now become clear that tissue-scale metabolomics, or even multicell 
metabolomics, yields averaged data that can oftentimes be misleading in making 
assumptions relating to a cell’s condition. Cellular heterogeneity is dynamic and may 
result from a plethora of factors, including genetic, epigenetic, or phenotypic differ-
ences; morphological, biochemical, or functional changes; positional, exogenous, or 
endogenous mutations; and physical, chemical, or biological effects from the environ-
ment [4]. Even cells with identical genotypes can display phenotypical differences [5].

In addition to the above possible causes, stochasticity – induced phenotypic het-
erogeneity through gene and protein expression  – was only recently added as 
another factor contributing to cell deviation [6, 7]. They explained that due to the 
low copy number of DNA and mRNA, “noise,” or random irregularities in the rate 
of their respective reactions, occurs in gene or protein expression, which then causes 
variable molecule concentrations from cell to cell.
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Alas, it is near impossible to find two cells with the same metabolome, even if 
they originate from the same precursor cell. Furthermore, metabolites and other 
small molecules cannot be amplified like DNA, which is why most metabolomic 
and proteomic studies are comprised of large cell number homogenization. The 
ability to detect, identify, and quantify metabolites within a single cell will open 
new doors to understanding the reason behind cell-to-cell heterogeneity, even within 
a seemingly homogeneous population.

This chapter discusses the importance of single-cell metabolomics and signifi-
cant points to consider when sampling a single cell. It also highlights the foremost 
approaches in sampling and analysis and gives a perspective into the future for 
single-cell analysis.

13.1.1  �Why Single-Cell Metabolomics?

In life sciences, the cell is regarded as the minimal functional unit, and its analysis 
has been undoubtedly crucial. Single-cell analysis represents qualitatively and 
exhaustively analyzing a wide range of molecular information carried on numerous 
biomolecules at the single-cell level. It can give insight into unknown processes 
such as cellular evolution, adaptation, and communication.

Single-cell studies are theoretically the only types of analyses that can give a 
depiction of real-time biochemical reactions that oftentimes only take seconds or 
minutes to occur. The realization of how rapid the kinetics actually is within a cell 
can only move science toward the direction of single-cell metabolomics.

Not only that, but cells behave non-synchronously and therefore must be studied 
independently when examining topics such as the cell cycle in order to obtain an 
accurate metabolic profile. Concepts such as stochasticity and heterogeneity would 
be lost in translation when analyzing cell populations due to averaging. Therefore, 
in cases of phenotypic studies, single-cell measurements are essential to produce 
unbiased metabolic models.

During the past few years, single-cell technologies have undergone rapid develop-
ment and reached a critical point where they have become a valuable tool for system-
atic characterization of cellular heterogeneity, which in turn has important implications 
in a wide range of biomedical issues such as gene regulation, cell lineage differentia-
tion, signaling response, and disease characterization. The medical field has evolved 
significantly, which has led toward a paradigm shift in medicine: moving the obser-
vation from patient and organ toward a more in-depth observation  – single cells 
within the organ. This advancement has been enabled to some extent by engineering 
sciences, among which microsystem technologies were a major driving force.

Perhaps the best example for the need of single-cell metabolomics is cancer. It 
only takes one abnormal cell in the whole body that contains 30 trillion cells to 
cause cancer [8]. Single-cell analysis has the potential to help in early detection of 
medical conditions involving modifications in the cellular functions such as cancer 
genesis and progression. There is also a need to differentiate between cells with 
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different metabolomes within the same cancer in order to evaluate phenotype het-
erogeneity, and in effect, prevent drug resistance or discover new, more effective 
therapeutics.

13.2  �Sample Considerations

13.2.1  �The Size of the Cell Matters

The term “single cell” has no limitation on the actual size of the analyzed cell, and 
cells come in a wide spectrum in terms of size. To date, the largest single-cell organ-
ism documented is Caulerpa taxifolia, a member of the green algae family [9]. It 
ranges in size, but can grow up to several meters in length. Another much more 
common single cell is an egg. While the largest egg is that of an ostrich (measuring 
an average of 16 cm long and 13 cm in diameter and weighing 1.5 kg), chicken eggs 
(which are 24 times smaller than the ostrich egg on average) are of much more com-
mon use in science [10]. Mattsson et al. completed metabolic profiling of chicken 
embryos after exposure to perfluoroalkyl acids, a group of ecologically detrimental 
organic chemicals, by drilling holes in each “single cell” and injecting with the said 
substance [11]. Moving along the size spectrum, embryos of Xenopus laevis, or the 
South African clawed frog, have been studied to further understand embryonic 
development through single-cell metabolomics [12, 13]. The group of Sweedler has 
employed several techniques for extensive analysis of single neurons of the sea slug 
Aplysia californica, a cell that can grow up to 500 μm [14–19]. Concerning agricul-
tural chemistry, large plant cells have often been the target of single-cell analysis 
due to their large size, including Allium cepa, commonly known as onion [20].

On the other side of the size spectrum, single-cell studies have been shifting 
toward smaller and smaller cells. The team of Masujima coined the term “live 
single-cell mass spectrometry” and have analyzed single plants cells – which can 
range from 10 to 100 μm – from the leaf, stem, and petal of Pelargonium zonale [21] 
and the leaf, stem, and root of Raphanus sativus [22]. The same group has done 
numerous studies on mammalian cells such as mouse embryonic fibroblasts Swiss 
3 T3 [23], rat basophilic leukemia cell RBL-2H3 [24, 25], and hepatocellular carci-
noma HepG2 [26], all ranging from 10 to 20 μm in size. Their most recent studies 
have been on single blood cells in relation to clinical studies, having successfully 
analyzed white blood cells and circulating tumor cells (CTC), ranging in size from 
12 to 15 μm, and analyzed red blood cells, with an even smaller size of 6–8 μm [27]. 
Figure  13.1 shows actual size ratios of some of the most common cells used in 
single-cell analysis. The human oocyte is the largest single cell in the human body 
and is added as a point of comparison.

It seems that this may be the limit for true single-cell analysis. Ibáñez et  al. 
recently published a study on single-cell yeast metabolomics [28], but their method 
involved using microarrays for mass spectrometry (MAMS) platform, in which 
each hydrophilic reservoir holds anywhere between one and 15 cells. In regard to 
bacteria, groups such as that of Tanaguchi have been successful in proteomics and 
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transcriptomics of Escherichia coli [29–31], but no papers have been reported on 
single-cell bacteria metabolomics, revealing that the current instrumentation has 
reached a plateau in sensitivity. As previously stated, metabolites, in contrast to 
other biomolecules, cannot be amplified [32], and fluorescent labeling would nega-
tively impact metabolic pathways within the cells, making sensitivity in smaller 
cells the major limiting factor in analysis.

13.2.2  �The Condition of the Cell

Numerous techniques have been established for the isolation and analysis of a sin-
gle cell, but one must ask themselves: what condition is the cell in? Even if the 
analysis is successful, will this be an accurate depiction of the metabolic profile? “A 

Fig. 13.1  Depiction of common cells in single-cell analysis magnified from actual size while 
maintaining the true ratio
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major issue is a suitable sample preparation that does not upset the metabolism of 
the cells to be investigated. One way to cope with this problem is to keep the cell in 
a native environment as long as possible” [33].

Cell sampling is arguably the most critical step for single-cell analysis. Protocols 
used for metabolomic studies on a cell population are deemed useless on the single-
cell level. For a single cell, many methods have been established, and many separa-
tion kits have been developed [34]; but these processes are often long and contain 
many steps, causing a disturbance in the natural microenvironment around the cell 
and increasing the possibility of metabolite distortion or exhaustion of molecules of 
low concentration. The time taken between sampling and analysis allows for, some-
times abnormal, enzymatic activity and biochemical processing to cope with the 
changing conditions. Methods such as shock freezing [28], or the immediate addi-
tion of organic solvent after sampling, have been used to prevent continual enzy-
matic activity [22].

To increase high throughput, newer approaches separate and grow single cells in 
individual wells or innovated trapping arrays. Because they are grown inside these 
devices, many argue that it is the perfect method for true single-cell metabolomics. 
On the other hand, others criticize these methods because the cell is not in its natural 
environment. Think of it this way: would a person in a room full of people act the 
same if he/she were in a room alone? Cell communication is a natural and essential 
factor, and completely isolating a cell puts it in an unnatural position, which could 
be projected into the metabolomic profile.

Moreover, it is worth noting that despite the recent innovations in single-cell 
isolation techniques, keeping the cell in its natural environment as much as possible 
until initiating analysis is the most important aspect of analysis. Most current meth-
ods require a degree of manipulation to the cell and isolate the cell from cell-cell 
interactions, thus making it difficult to study certain aspects of cell biology such as 
communication or signaling. The ideal sampling technique should be noninvasive, 
include an efficient quenching step, and have a short lysis/analysis time to prevent 
metabolite decomposition.

13.3  �Methods and Approaches

13.3.1  �Sampling Techniques

The process of single-cell analysis starts with sample preparation. The goal of sam-
ple preparation in single-cell analysis is to isolate the target cell in a high-throughput 
manner without affecting the normal metabolome of the cell. Moreover, to achieve 
such goal, many sampling techniques have been recently developed, each method 
having its own unique advantages, disadvantages, and possible applications, which 
will be discussed in this section.

There are two main approaches for isolation and preparation of the cell for analy-
sis. The first approach is using nanodevices to manipulate the cell and isolate it for 
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further downstream analysis. The second approach utilizes microfluidic devices, 
which have the advantage of higher throughput, but also comes with its own set of 
limitations.

13.3.1.1  �Nanodevices

Due to the recent advances in nanoscale fabrication, several techniques for single-
cell metabolomics have been developed to isolate, introduce chemicals into the cell, 
or capture the cell itself by utilizing nanoscale devices.

The use of micropipettes to gently isolate or sample the cells itself is a promis-
ing field in it of itself, and this can be done manually using a culture plate and a 
micromanipulator, which has the obvious challenge of achieving high through-
put. In order to increase throughput, several automated systems have been intro-
duced lately.

One recent innovation is coupling a micropipette with an automated system that 
can target certain cell types or regions within the cell according to their visual char-
acteristics by the aid of computer software and image analysis. After selecting the 
desired cell, a robot picks up the target cell using a glass micropipette with an inter-
nal diameter of 30 μm and positioned 5 μm away from the bottom of the Petri dish. 
The cell is picked up by a vacuum system connected to the micropipette. Finally, the 
cell is put on 3D printed miniature wells on a Petri dish for downstream analysis. 
This system succeeded in achieving relatively high throughput compared to other 
systems and has the inherent advantage of not using markers to isolate the cells 
(Fig. 13.2) [35]. Moreover, several methods were proposed to introduce chemicals 
into the cell itself or detect optical signals on a subcellular scale. One such method 
utilizes a nanowire attached to the end of an optical fiber, which guides visible light 
into subcellular components. This nanoscale endoscope can also be used to deliver 
payloads into the cell itself [36].

Another interesting approach is using electroporation in which an induced 
electric field is applied to the cells to increase their cell membrane permeabil-
ity, allowing chemicals or drugs to be introduced into the cell. The device pro-
posed by Boukany et  al. consists of two microchannels connected by a 
nanochannel where electroporation occurs [37]. The target cell is placed on one 
channel using optical tweezers, and the transfection agents are placed on the 
other microchannel. Transfection occurs by applying a voltage pulse between 
the channels resulting in an intense, localized electric field over a small area on 
the cell membrane, which allows a precise amount of the transfection agent to 
travel through the nanochannel, cell membrane, and into the cytoplasm by 
electrophoresis.

Despite the recent innovations, there are still challenges to fully implement 
nanodevices as the mainstream cell isolation technique. Maintaining a delicate bal-
ance between high throughput, low loss percentage, precision, degree of invasive-
ness, and ease of use is not an easy task. Automated systems have the advantage of 
being high throughput, but they are also inherently more complex. Manual systems, 
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on the other hand, are simple, but their efficiency depends on human factors and the 
throughput has a high degree of variability.

13.3.1.2  �Microfluidic Arrays

Microfluidic arrays represent another recent approach for single-cell isolation. The 
goal of these methods is the same: to transport and isolate single cells for further 
downstream analysis. The separation or isolation occurs by passing the culture 
media containing the cells through microfluid channels or arrays that isolate the 
cells individually in a high-throughput manner, as shown in Fig. 13.3. There are 

a

b c

Fig. 13.2  Panel (a) represents the schematic of the method; the cells are selected by a software and 
then pipetted to a Petri dish containing miniature multiwall plates that are printed onto 35 mm 
plastic Petri dishes using a commercial 3D printer to reduce convection. Panel (b, c) show the 
multiwells (24, 2 × 2 mm2 wells and 4, 5 × 5 mm2 wells). The larger wells are used for stepwise, 
successive isolation in dense media. Reproduced from Ref 35 with permission from the Nature 
Publishing Group
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many recent innovations in single-cell isolation by using microfluidic arrays, among 
these are the integrated microfluidic array plate (iMAP) and dynamic single-cell 
culture array [38, 39]. Most, if not all, of these methods use polydimethylsiloxane 
(PDMS) as the construction material, along with utilizing soft lithography in fabri-
cation. The iMAP, proposed by Dimov et al., utilizes gravity to guide the cells into 
their respective wells and has the advantage of greater capture rates than other meth-
ods (close to 100 %) [39]. Its design also allows for reagent addition and single-cell 
lysis depending on the analytical goals.

One of the challenges of using microfluidic arrays is isolating the cell without 
causing noticeable damage or changing normal cell behavior. The method estab-
lished by Carlo et al. shows great promise in this regard [38]. The system works by 
channeling the cells gently into a branched array system that consists of U-shaped 
PDMS traps fixed on a glass surface. The geometry of the trap is optimized to 
isolate one or two cells; once a cell occupies the trap, the altered dynamic flow 
around it will minimize the chance of other cells joining it, so in a way, the trap is 

a

c

b

Fig. 13.3  Panel (a) shows an overview of the trapping system; cell flow is gently directed into a 
series of trapping arrays; the scale bar is 500 μm. A single trapping array is shown in panel (b). The 
traps are molded from PDMS and fixed on a glass surface; trap sizes are optimized to capture one 
or two cells at most. A bright-field micrograph of the array is shown with cells trapped inside in 
panel (c) with added magnification of a single cell trapped in the minimum potential of the well. 
Reproduced from Ref 38 with permission of The Royal Society of Chemistry
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self-regulating. The main advantage of such system is its ability to capture the cells 
with a high success rate (~90 %) without causing significant disruptions to the 
normal cell behavior and environment.

13.3.2  �Analytical Methods

Assuming the cell was successfully isolated with minimal pretreatment, the next 
logical step would be to uncover its metabolome. To this effect, a myriad of analyti-
cal methods have been developed to analyze biomolecules. However, there are two 
main hurdles for single-cell analysis, and both relate to the inherently small sample 
size. The first challenge is improving the ability of the instrument to distinguish 
between closely related molecules, i.e., the resolution. Since single-cell analysis 
deals with small sample size (pico- to nanoliters), conventional separation tech-
niques are ill-equipped to deal with such low sample volume without diluting the 
sample excessively or causing significant sample loss. The second challenge is 
increasing the ability to detect lower and lower concentrations reliably, i.e., the 
sensitivity. As sensitivity increases, the viability of the instrument itself to perform 
analysis on the single-cell scale increases.

Keeping the previously mentioned challenges in mind, choosing the perfect analy-
sis technique is no easy task, but among the available analytical methods, mass spec-
trometry has gained prominence lately as one of the best techniques used to analyze 
the chemical composition at the single-cell level due to its relatively high sensitivity 
and resolution. There are several approaches used in single-cell mass spectrometric 
analysis, but this chapter will focus on the two main methods that are matrix-assisted 
laser desorption ionization (MALDI) and live single-cell mass spectrometry (LSCMS).

13.3.2.1  �Matrix-Assisted Laser Desorption Ionization

MALDI is considered a “soft” ionization method, meaning it does not cause exten-
sive fragmentation to the sample ions. The desired sample is mixed with a solution 
of low-mass organic compounds called a matrix, which is essential for ionization 
because it acts as a proton supplier and as a support or scaffold by which ionization 
can occur. Then the resulting mixture is spotted onto a metal plate called the target, 
as shown in Fig. 13.4. After spotting, the mixture is left to dry out, and both the 
sample and the matrix co-crystallize to form a solid deposit on the target. The target 
plate is then loaded into the mass spectrometer – most commonly using a time-of-
flight (TOF) mass analyzer – where it will be subjected to a vacuum while the solid 
crystals of the mixture are irradiated by a UV laser beam that causes ablation of said 
crystals into the gas phase, followed by ionization of the sample. TOF mass spec-
trometry analyzes and detects the ions and gives out signals with ion mass-to-charge 
ratio (m/z) forming a distinct mass spectrometric profile that can be matched to a 
database to identify the sample ions [40].
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Modern MALDI-TOF instruments have achieved enough sensitivity to be reliably 
used in single-cell analytical studies. However, there are still challenges associated 
with using MALDI on the single-cell level. For example, the extensive sample prepa-
ration and ionization under vacuum conditions is far away from the natural environ-
ment of the cell. Some studies aimed to alleviate this issue by performing the ionization 
process in normal atmospheric pressure and then transporting the ions by pneumatic 
assistance of a stream of nitrogen [41]. However, loss of sensitivity is inevitable.

Moreover, the matrix used in the ionization process has extensive molecular sig-
nals in the low molecular ranges (<500 Da), which incidentally is the region with 
most of the small molecule metabolites. This poses a significant challenge to single-
cell metabolomics. Several methods have been proposed that forgo the use of a 
matrix all together and utilize nanophotonic effects for ionization [42]. Lipids, 
which dominate MALDI ionization, also mask metabolite detection as seen in many 
MALDI-TOF MS imaging results. Cell membranes contain a high percentage of 
lipids, also leading to difficulties in single-cell metabolomics. In conclusion, 
although MALDI-based approaches have a lot of potential in single-cell studies in 
regard to sensitivity, there are still challenges that need to be addressed to improve 
this method for use in single-cell analysis.

Fig. 13.4  A schematic representation of MS analysis using MALDI-TOF instrument; the sample-
matrix mixture is left to dry out and then is irradiated with UV laser beam that causes its sublima-
tion and subsequent sample ionization. The ions are then guided into the TOF by electrostatic 
attraction where they are analyzed depending on their mass-to-charge ratios (m/z); the MS spectra 
can then be matched to a database to identify unknown ions
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13.3.2.2  �Live Single-Cell Mass Spectrometry

Understanding cell mechanisms and intracellular dynamics on the single-cell level 
is a tremendous challenge. The live single-cell mass spectrometry (LSCMS) method 
played an integral role in overcoming previous limitations, especially in the “omics 
biology.” Over the past 10 years, the team of T. Masujima has been working on 
perfecting the live single-cell mass spectrometry protocol to aid in realization of 
direct and real-time molecular analysis with simultaneous visualization of a react-
ing single cell, which would elucidate clearly and specifically the molecular mecha-
nisms of living systems [24].

As earlier discussed, there is a limited number of methods that can detect molec-
ular signals, due to the low sensitivity at the cellular and subcellular levels. On the 
other hand, live single-cell mass spectrometry has succeeded in trapping these min-
iscule volumes and detecting 100–1000 of molecular peaks from a single living cell 
while observing the cell under video microscope. Figure 13.5 visually depicts the 
main steps of the LSCMS methodology.

Cells display task-oriented dynamic behavior that can be observed under a 
microscope [43]. While observing a cell, it exhibits various unanticipated and inter-
esting behaviors, and discovering the mechanism behind those fascinating phenom-
ena of life is very intriguing. Observations of cell behavior revealed that the behavior 
of each cell is not identical nor synchronized under the same conditions [44].

As discussed earlier, maintaining cells under the most natural conditions possi-
ble is paramount. In the LSCMS technique, in which cells are kept in their prefera-
ble medium until seconds before trapping and mass spectrometric analysis, this is 
the case. A metal-coated nanospray tip attached to a micromanipulator is used to 
suck a whole single cell or cellular contents from a specific micro-region using a 
tube-connected piston syringe. After capturing the cell contents at the top of the tip, 
it is very difficult to directly spray it into the mass spectrometer due to the high 
viscosity of the cells. To solve this, 2 μL of a standard ionization solvent is intro-
duced from the rear end of the tip to aid sample quenching and ionization. Nanospray 
diameter sizes vary from 1 to 10 μm, which allows for greater flexibility in targeting 
the whole cell or its subcellular organelles or regions.

The nanospray tip’s contents are fed into a nano-ESI attachment on a mass spec-
trometer. Nanospray ionization showed to be the most sensitive and exhaustive ion-
ization method. The molecular contents of a cell can be extracted by nL min−1 level 
stream of an organic solvent through the nanospray tip’s contents and sprayed out to 
the mass spectrometer [45]. Within minutes, the mass spectrometer detects 100 or 
1000 of molecular peaks from the metabolites that were present in the cell under the 
specific conditions it faced at the time the contents were removed. These can then be 
identified by matching to databases to detect specific metabolites corresponding to the 
injected samples, which will be confirmed by their MS/MS fragmentation pattern.

Using this method, we can compare the molecular peaks of cells that are in different 
stages of growth, different locations, or responding to different circumstances using 
statistical analyses of the mass spectrometry data. If, for example, we find that certain 
metabolites are elevated in a specific strain, it implies that the enzyme or protein of this 
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specific metabolic pathway may be the key to the specificity of this strain and could also 
help us to identify new important pathways. The following sections highlight recent 
studies from three different fields to demonstrate possible applications of LSCMS.

Clinical

Live single-cell mass spectrometry has been mainly applied to adhesive cells, due 
to difficulty in sampling and isolation of suspended cells. However, live single-cell 
mass spectrometry succeeded in compiling the comprehensive metabolic profile 
of a single floating cell. At first, a single floating lymphocyte was directly trapped 
inside the nanospray tip from a single drop of blood from a healthy human after 
minimal dilution and sample treatment. Lymphocytes were chosen by visual com-
parison of their morphological and size differences to red blood cells. Then, effi-
cient homogenization of the trapped cell was established by applying supersonic 

Fig. 13.5  Scheme of live single-cell mass spectrometry. The analysis is divided into two main 
parts. First, the cell behavior is monitored via video microscope, and the cell or organelle of inter-
est was directly trapped inside a nanospray tip. Second, the tip’s contents were then directly fed 
into a nano-ESI mass spectrometer after the addition of ionization solvent. Voltage is applied 
between the tip and mass spectrometer to obtain the mass spectra
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waves, and the contents were fed into the mass spectrometer, which was conducive 
to acquiring a wider range of molecular peaks in the single-cell mass spectrum 
(Fig. 13.6). Molecular detection of higher intensities and larger number of peaks 
with a wider m/z range was obtained. Speculation would be that super-sonication 
causes outer lipid cell membrane distortion, which enhances extraction and ion-
ization of the cell contents through mass spectrometry [27].

Discovering and perceiving the significance of cancer cells is one of the numer-
ous potential promising applications of single-cell metabolomics. Detecting cancer 
cells that exhibit high metabolic rates within populations of normal cells that display 
normal metabolism, for example, CTCs that lead to metastasis, would be one such 
application. CTCs are cells shed from the primary tumor that circulate in the blood 
stream. Their primary function is still not clear, and their concentration in the circu-
lating blood is usually very low (~2–10 cells per 10 mL of blood), which makes 
them a perfect candidate for single-cell studies. “Direct single-cell metabolomic” 
method was then applied to a single isolated CTC from a neuroblastoma patient’s 
blood for a comprehensive detection of the metabolite and lipid profiles. CTCs were 
separated and sorted using the fluorescence flow cytometry technique. The meta-
bolic profile of a single CTC was acquired along with detection of vital molecules 
such as amino acids, catecholamine metabolites, which are specific to neuroblas-
toma cancer and drugs from the patient’s treatment regimen. This indicates that this 
method could be useful for monitoring drug delivery concentration levels to tar-
geted cells. Site-specific and cell-specific metabolites were identified by matching 
corresponding peak numbers against the Human Metabolome Database and con-
firmed by establishing their MS/MS fragmentation patterns. “Direct single-cell 
metabolomic method” appears to have a role in future molecular diagnosis not only 

Fig. 13.6  Schematic diagram illustrating the processes of separation and analysis of circulating 
tumor cells using the “live single-cell mass spectrometry” method. Adapted from Ref 27 with 
permission from Analytical Sciences
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for common cells but also for rare cells like CTCs that present in a very low concen-
tration in the blood [27].

Pharmaceutical

There has been increased interest in the analysis of spatial distribution of drugs and 
their metabolites in various cultured cells, or in a target cell for drug discovery and 
development. Drug metabolism monitoring and analysis have been mostly carried 
out by LC-MS, which requires a large number of cells pretreated with sonication 
and homogenization. This leads to, in most cases, the loss of site-specific molecule 
identification and drug localization within a cell. However, live single-cell video 
MS has been developed and applied to the analysis of tamoxifen (anticancer drug) 
metabolism using a human hepatocellular carcinoma cell line. Cultured HepG2 
cells were spiked with 5 μmol L−1 concentration of tamoxifen and then incubated. 
Using a nanospray tip, multiple organelle suctions took place from several different 
cells in the same incubator dish (cytoplasm, nucleus, and vacuole). Results showed 
detection of tamoxifen along with its five metabolites (N-desmethyl tamoxifen, 
4-hydroxy tamoxifen, tamoxifen-N-oxide, 3,4-dihydroxy tamoxifen, 4-hydroxy 
tamoxifen N-oxide). N-Desmethyl tamoxifen, which is mainly metabolized by 
CYP3A4 enzyme, had the highest intensity and was preferably detected. This cor-
roborates with the discovery that the major metabolite of tamoxifen is N-desmethyl 
tamoxifen and that CYP3A4 is the most expressed isozyme in P450 subfamilies of 
HepG2 cells. In vacuoles, tamoxifen was detected but none of its metabolites was 
detected. However, neither tamoxifen nor its metabolites were detected in the 
nucleus. Speculation would be that the cytoplasm contains a metabolizing organelle 
and the transport of metabolites into the nucleus and vacuoles is very limited. This 
study of monitoring drug metabolism on a single-cell level will pave the way for 
low-cost, rapid, precise, and site-specific drug monitoring and discovery [26].

Primary cultures of human hepatocytes are mainly used for predicting drug 
metabolism pathways in humans and detecting the differences between species’ 
metabolic profiles. Therefore, hepatocytes were chosen as an appropriate cellular 
system for metabolic studies of tafluprost, an esterified prostaglandin F2α and com-
mon drug for glaucoma. 7-Ethoxycoumarin (7-EC) was used to endorse the meta-
bolic activity of hepatocytes in vitro.

LSCMS was applied to the analysis of tafluprost metabolites, including taflu-
prost acid (TA), dinor-tafluprost (dinor-TA), tetranor-TA and common phase I 
metabolites, hydroxylated 1,2,3,4-tetranor-TA (tetranor-TA-OH), and hydroxyl-
ated 1,2-dinor-TA (dinor-TA-OH) in a single hepatocyte. These data were com-
pared with the averaged results obtained from multiple cells. A picoliter amount of 
cytoplasm and granules in the cell were captured in a nanospray tip, and the ioniza-
tion solvent was added. The tip was then introduced to the nano-ESI interface of 
mass spectrometer to obtain a single-cell spectrum. Tafluprost metabolism results 
from the multiple hepatocyte analysis using LC-MS showed averaged metabolism 
to tafluprost acid (TA) and β-oxidized metabolites. On the other hand, LSCMS 

13  Single-Cell Metabolomics



338

indicated variation in tafluprost metabolism among individual cells showed signifi-
cant variation in the quantity of TA and dinor-TA. In contrast, there was no signifi-
cant variation of 7-ethoxycoumarin metabolism. This method succeeded in 
detecting the reported metabolic profile in the cytoplasm, and those metabolites 
matched a metabolic pathway and showed a variety of metabolic functions on the 
single-cell level. Therefore, LSCMS showed successful detection of drug metabo-
lism heterogeneity in a single living hepatic cell. This approach has the potential 
for indicating the correlation between drug metabolism and the pharmacological as 
well as the toxicological effects taking place in cultured cells on single-cellular and 
subcellular levels [46].

Agricultural

Food is life, and maintaining a comprehensive metabolomic image of plant cells will 
unlock several pathways into improving crop yield, eliminating unwanted pests, and 
enhancing desired traits in crops. It is important to pursue studies of plant metabolo-
mics and biochemistry because these will provide more insight on the natural 
molecular mechanisms and dynamic activities taking place inside plant cells. As a 
result of protein and enzyme activation, plant cell dynamical functioning produces 
metabolites corresponding to a specific enzyme or protein. Understanding those 
activities will impart an important outlook on the full image of how plants function, 
and recognizing plant genotypes will allow the regulation of such processes.

There are many factors to be taken into consideration in the single-cell analysis 
of plant tissues. Unlike cultured cells, plant tissues have an irregular surface, strong 
cellulose walls, and higher dilution of biomolecules inside the cell. As a result, 
LSCMS has been extended to obtain rapid, versatile, and noninvasive direct single-
cell plant analysis, which is published in Nature Protocols [22]. This technique 
provides a molecular profile including metabolites, lipids, hormones, and nutrients 
of a single plant cell within minutes with minimal pretreatment (Fig. 13.7). If the 
plant tissues remained intact after analysis, morphological changes could be moni-
tored along with metabolic pathways processes. This method was applied to leaves, 
stem, and petal from a healthy Pelargonium zonale plant. Collected data showed 
that there were specific metabolites, which present only in the leaf such as geranic 
acid, while methyl citronellate was detected in both the leaf and stem, but absent in 
the petal [21]. With the provided information, site-specific molecules and chemical 
composition of each site in the cell could be distinguished along with comparing 
between different plant samples. Furthermore, this method could be useful in sev-
eral practical and industrial applications such as quality control of crop treatment 
and medicinal plants, food analysis, and controlling plant diseases. Finally, this will 
open a new outlook in the research done in agricultural sciences.
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13.4  �Future Prospects

Single-cell analysis is a rapidly growing field of biology with much room for improve-
ment, but many challenges remain to be addressed; after all, the field is still in its 
infancy. As previously mentioned, there are several hurdles regarding sample consid-
erations, isolation of single cells, and their subsequent analysis. In order to circum-
vent said challenges, LSCMS was developed, which combines nanoscale devices, 
ambient pressure ionization, and sensitive mass spectrometric measurements while 
maintaining high resolution by the use of Orbitrap technology. Despite all of that, 
there are still limitations and challenges ahead; since the sampling is performed man-
ually and identification of metabolites by matching with databases is done offline, 
several concerns have been raised in regard to the throughput of the method itself. It 
might be argued that obtaining “high-quality” data by insuring that the cell was sam-
pled in its natural environment, i.e., Petri dish, is better than increasing throughput by 
utilizing more aggressive isolation techniques. However, the fact still remains that 
improving throughput is a major challenge that needs to be addressed so that the 
method can be applied to large-scale studies of cell metabolomics.

Plant Single-cell MS Analysis
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Fig. 13.7  Illustrative figure showing the steps of the “live single-cell mass spectrometry” tech-
nique. The fresh plant was cut with minimal sample pretreatment and observed under video micro-
scope. The targeted cell was captured by a micropipette. Ionization solvent was added from the 
rear end, and the tip contents were introduced by electrospray ionization (ESI) to a mass spectrom-
eter, thereby obtaining the metabolic profile of a single plant cell. Reproduced from Ref 22 with 
permission from the Nature Publishing Group
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The sampling phase is the most time-consuming aspect of single-cell analysis, 
and LSCMS is no exception. In order to increase throughput, the process of selec-
tion of suitable cells and sampling was automatized in a collaborative study between 
the Masujima team and Yokogawa electric company. By coupling a motorized x-y 
stage to an automated software system and a dispenser robot, the newly developed 
system is capable of selecting the desired cells according to traits previously input-
ted and then proceed to automatically pick up the whole cell or an organelle, such 
as nucleus or cytoplasm. After that, the nanospray tips are stored in a specially made 
tip rack and can be frozen or analyzed immediately using ESI-MS as shown in 
Fig. 13.8.

Another challenge exists in the sample type itself; since single cells are consid-
ered as a complex biological matrix, sometimes the need for an efficient separation 
and enrichment method arises. Due to the low sample volume associated with single 

Fig. 13.8  High-content single-cell analysis system is shown; the cell is chosen by an image analy-
sis algorithm according to its morphology or fluorescent markers. Then, the robot proceeds to 
sample a whole cell or part of a cell by using a specially made hollow nanospray tip. Finally, the 
trapped cell is stored in a special tip rack for downstream analysis or long-term storage
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cells, it is quite problematic to use a conventional separation method like high-
performance liquid chromatography due to sample loss and dilution. It is also worth 
noting that mass spectrometry by itself cannot differentiate between optical isomers 
and ions with identical mass-to-charge (m/z) ratios. In the latter case, fragmentation 
and MS/MS studies can differentiate between identical m/z ions, but a strong signal 
is required for this to be done successfully – something that depends on the sample 
and the sensitivity of the instrument.

The ideal method for single-cell analysis would combine the minimal disruptive-
ness of nanoscale direct sampling of cells in their culture plates along with the high 
throughput of microfluidic devices coupled with an ionization source that operates in 
normal atmospheric conditions that also does not cause excessive heating or damage 
to the biomolecules themselves during the ionization process. The ionization source 
itself should incorporate a separation step according to ion mobility, for example, or 
other factors so that it is possible to differentiate between optical isomers. Finally, the 
mass analyzer used should have the highest sensitivity possible along with a sufficient 
resolution to differentiate between ions with closely similar mass-to-charge ratio.

Until now, no method proposed for single-cell analysis is perfect in all aspects. 
Balancing throughput, accuracy, and invasiveness of the isolation method while 
choosing the perfect analytical technique that combines high sensitivity, resolution, 
and selectivity is the ultimate goal to be achieved in order to contribute to a wide 
range of fields such as diagnostics, cancer treatment, agriculture, and many others. 
In principle, analysis on a single-cell level is an interdisciplinary science, and we 
hope that this overview will help in encouraging collaborative studies between dif-
ferent fields of life sciences so that we can gain a better understanding of the most 
important building block in our bodies.
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